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Preface 

 

 

 

 

 

 

 
The ongoing miniaturization of devices like transistors used in integrated circuits 

(ICs) has led to feature sizes on the nanoscale. The Intel Core 2 (Yorkfield), first 

presented in 2007, was produced using 45 nm technology. Recently, production has 

reached 14 nm processes, e.g., in the Intel Broadwell, Skylake, and Kaby Lake 

microprocessors. Although the main principles in IC design and production are 

those of microelectronics, nowadays, one therefore speaks of nanoelectronics. 

With miniaturization now reaching double-digit nanometer length scales and the 

huge number of semiconductor devices employed, which result in a correspondingly 

significant rise in integration density, the influence of the wiring and supply 

networks (interconnect and power grids) on  the  physical behavior of  an  IC  can 

no longer be neglected and must be modeled with the help of dedicated network 

equations in the case of computer simulations. Furthermore, critical semiconductor 

devices can often no longer be modeled by substitute schematics as done in the 

past, using, e.g., the Partial Element Equivalent Circuit (PEEC) method. Instead, 

complex mathematical models are used, e.g., the drift-diffusion model. In addition 

to shortened production cycles, these developments in the design of new nano- 

electronic ICs now increasingly pose challenges in computer simulations regarding 

the optimization and verification of layouts. Even in the development stage, it has 

become indispensable to test all crucial circuit properties numerically. Thus, the 

field of computational nanoelectronics has emerged. 

The complexity of the mathematical models investigated in computational 

nanoelectronics is enormous: small parts of an IC design alone may require millions 

of linear and nonlinear differential-algebraic equations for accurate modeling, 

allowing the prediction of its behavior in practice. Thus, the full simulation of an IC 

design requires tremendous computational resources, which are often unavailable to 

microprocessor designers. In short, one could justifiably claim that the performance 

of today’s computers is too low to simulate their successors!—a  statement that  

has been true for the last few  decades and  is  debatably still  valid  today. Thus, 

the dimension reduction of the mathematical systems involved has become crucial 

over the past two decades and is one of the key technologies in computational 

nanoelectronics. 

 
v 
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The dimension or model reduction at the system level, or system reduction for 

short, is mostly done by mathematical algorithms, which produce a much smaller 

(often by factors of 100 up to 10,000) model that reproduces the system’s response 

to a signal up  to  a  prescribed level of accuracy. The topic  of  system  reduction 

in computational nanoelectronics is the focus of this book. The articles gathered 

here are based on the final reports for the network System Reduction in Nanoscale 

IC Design (SyreNe), supported by Germany’s Federal Ministry of Education and 

Research (BMBF) as part of its Mathematics for Innovations in Industry and 

Services program. It was funded between July 1, 2007, and December 31, 2010 

(see syrene.org for a detailed description) and continued under the name Model 

Reduction for Fast Simulation of new Semiconductor Structures for Nanotechnology 

and Microsystems Technology (MoreSim4Nano) within the same BMBF funding 

scheme from October 1, 2010, until March 31, 2014 (see moresim4nano.org). 

The goal of both research networks was to develop and compare methods for 

system reduction in the design of high-dimensional nanoelectronic ICs and to test 

the resulting mathematical algorithms in the process chain of actual semiconduc- 

tor development at industrial partners. Generally speaking, two complementary 

approaches were pursued: the reduction of the nanoelectronic system as a whole 

(subcircuit model coupled to device equation) by means of a global method and the 

creation of reduced order models for individual devices and large linear subcircuits 

which are linked to a single reduced system. New methods for nonlinear model 

reduction and for the reduction of power grid models were developed to achieve 

this. 

The book consists of five chapters, introducing novel concepts for the different 

aspects of model reduction of circuit and device models. These include: 

• Model reduction for device models coupled to circuit equations in Chap. 1 by 

Hinze, Kunkel, Matthes, and Vierling 

• Structure-exploiting model reduction for linear and nonlinear differential- 

algebraic equations arising in circuit simulation in Chap. 2 by Stykel and 

Steinbrecher 

• The reduced representation of power grid models in Chap. 3 by Benner and 

Schneider 

• Numeric-symbolic reduction methods for generating parameterized models of 

nanoelectronic systems in Chap. 4 by Schmidt, Hauser, and Lang 

• Dedicated solvers for the generalized Lyapunov equations arising in balanced 

truncation based model reduction methods for circuit equations in Chap. 5 by 

Bollhöfer and Eppler 

The individual chapters describe the new algorithmic developments in the respec- 

tive research areas over the course of the project. They can be read independently 

of each other and provide a tutorial perspective on the respective aspects of System 

Reduction in Nanoscale IC Design related to the sub-projects within SyreNe. The 

aim is to comprehensively summarize the latest research results, mostly published 

in dedicated journal articles, and to present a number of new aspects never  before 
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published. The chapters can serve as reference works, but should also inspire future 

research in computational nanoelectronics. 

I would like to take this opportunity to express my gratitude to the project part- 

ners Matthias Bollhöfer and Heike Faßbender (both from the TU Braunschweig), 

Michael Hinze (University of Hamburg), Patrick Lang (formerly the Fraunhofer- 

Institut für Techno- und Wirtschaftsmathematik (ITWM), Kaiserslautern), Tatjana 

Stykel (at the TU Berlin during the project and now at the University of Augsburg), 

Carsten Neff (NEC Europe Ltd. back then), Carsten Hammer (formerly Qimonda 

AG and then Infineon Technologies AG), and Peter Rotter (Infineon Technologies 

AG back then). Only their cooperation within SyreNe and their valued work in the 

various projects made this book possible. 

Furthermore, I would like to particularly thank André Schneider, who helped in 

countless ways during the preparation of this book. This includes the LATEX setup 

as well as indexing and resolving many conflicts in the bibliographies. Without his 

help, I most likely never would have finished this project. My thanks also go to 

Ruth Allewelt and Martin Peters of Springer-Verlag, who were very supportive and 

encouraging throughout this project. Their endless patience throughout the many 

delays in the final phases of preparing the book is greatly appreciated! 
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Chapter 1 

Model Order Reduction of Integrated Circuits 

in Electrical Networks 

 
Michael Hinze, Martin Kunkel, Ulrich Matthes, and Morten Vierling 

 
 

Abstract We consider integrated circuits with semiconductors modeled by mod- 

ified nodal analysis and drift-diffusion equations.  The  drift-diffusion equations 

are discretized in space using mixed finite element method. This discretization 

yields a high-dimensional differential-algebraic equation. Balancing-related model 

reduction is used to reduce the dimension of the decoupled linear network equa- 

tions, while the semidiscretized semiconductor models are reduced using proper 

orthogonal decomposition. We among other things show that this approach delivers 

reduced-order models which depend on the location of the semiconductor in the 

network. Since the computational complexity of the reduced-order models through 

the nonlinearity of the drift-diffusion equations still depend on the number of 

variables of the full model, we apply the discrete empirical interpolation method   

to further reduce the computational complexity. We provide numerical comparisons 

which demonstrate the performance of the presented model reduction approach. We 

compare reduced and fine models and give numerical results for a basic network 

with one diode. Furthermore we discuss residual based sampling to construct POD 

models which are valid over certain parameter ranges. 

 
 

1.1 Introduction 

 
Computer simulations play a significant role in design and production of very large 

integrated circuits or chips that have nowadays hundreds of millions of semicon- 

ductor devices placed on several layers and interconnected by wires.    Decreasing 
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physical size, increasing packing density, and increasing operating frequencies 

necessitate the development of new models reflecting the complex continuous 

processes in semiconductors and the high-frequency electromagnetic coupling in 

more detail. Such models include complex coupled partial differential equation 

(PDE) systems where spatial discretization leads to high-dimensional ordinary 

differential equation (ODE) or differential-algebraic equation (DAE) systems which 

require unacceptably high simulation times. In this context model order reduction 

(MOR) is of great importance. In the present work we as a first step  towards 

model order reduction of complex coupled systems consider electrical circuits 

with  semiconductors modeled by  drift-diffusion (DD)  equations as  proposed  in 

e.g. [46, 52]. Our general idea of model reduction of this system consists in 

approximating this system by a much smaller model that captures the input-output 

behavior of the original system to a required accuracy and also preserves essential 

physical properties. For circuit equations, passivity is the most important property 

to be preserved in the reduced-order model. 

For linear dynamical systems, many different model reduction approaches have 

been developed over the last 30 years, see [6, 42] for recent collection books on this 

topic. Krylov subspace based methods such as PRIMA [32] and SPRIM [15, 16] are 

the most used passivity-preserving model reduction techniques in circuit simulation. 

A drawback of these methods is the ad hoc choice of interpolation points that 

strongly influence the approximation quality. Recently, an optimal point selection 

strategy based on tangential interpolation has been proposed in [3, 20] that provides 

an optimal H2-approximation. 
An  alternative  approach  for  model  reduction  of  linear  systems  is balanced 

truncation. In order to capture specific system properties, different balancing 

techniques have been developed for standard and generalized state space systems, 

see, e.g., [19, 31, 35, 37, 49]. In particular, passivity-preserving balanced truncation 

methods for electrical circuits (PABTEC) have been proposed in [38, 39, 51] that 

heavily exploit the topological structure of circuit equations. These methods are 

based on balancing the solution of projected Lyapunov or Riccati equations and 

provide computable error bounds. 

Model reduction of nonlinear equation systems may be performed by a trajectory 

piece-wise linear approach [40] based on linearization, or proper orthogonal 

decomposition  (POD) (see, e.g., [45]), which relies on snapshot calculations and  

is successfully applied in many different engineering fields including computational 

fluid dynamics and electronics [23, 29, 45, 48, 53]. A connection of POD to balanced 

truncation was established in [41, 54]. 

A POD-based model reduction approach for the nonlinear drift-diffusion equa- 

tions has been presented in [25], and then extended in [23] to parameterized 

electrical networks using the greedy sampling proposed in [33]. An advantage of 

the POD approach is its high accuracy with only few model parameters. However, 

for its application to the drift-diffusion equations it was observed that the reduction 

of the problem dimension not necessarily implies the reduction of the simulation 

time. Therefore, several adaption techniques such as missing point estimation  [4] 
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and discrete empirical interpolation method (DEIM) [10, 11] have been developed 

to reduce the simulation cost for the reduced-order model. 

In  this paper, we  review results of [23–27] related to model order reduction   

of coupled circuit-device systems consisting of the differential-algebraic equations 

modeling an electrical circuit and the nonlinear drift-diffusion equations describ- 

ing the semiconductor devices. In a first step we show how proper orthogonal 

decomposition (POD) can be used to reduce the dimension of the semiconductor 

models. It among other things turns out, that the reduced model for a semiconductor 

depends on the position of the semiconductor in the network. We present numerical 

investigations from [25] for the reduction of a 4-diode rectifier network, which 

clearly indicate this fact. Furthermore, we apply the Discrete Empirical Interpolation 

Method (DEIM) of [10] for a further reduction of the nonlinearity, yielding a 

further reduction of the overall computational complexity. Moreover, we adapt to 

the present situation the Greedy sampling approach of [33] to construct POD models 

which are valid over certain parameter ranges. In a next step we combine the 

passivity-preserving balanced truncation method for electrical circuits (PABTEC) 

[38, 51] to reduce the dimension of the decoupled linear network equations with 

POD MOR for the semiconductor model. Finally, we present several numerical 

examples which demonstrate the performance of our approach. 

 

 
1.2 Basic Models 

 
In this section we combine mathematical models for electrical networks with math- 

ematical models for semiconductors. Electrical networks can be efficiently modeled 

by a differential-algebraic equation (DAE) which is obtained from modified nodal 

analysis (MNA). Denoting by e the node potentials and by jL and jV the currents of 

inductive and voltage source branches, the DAE reads (see [18, 28, 52]) 
 

A   
d 

q .A>e; t/ C A g.A>e; t/ C A j C A j D —A i .t/; (1.1) 

ø . j ; t/ — A>e D 0; (1.2) 

dt  
L    L L 

A>
V e D vs.t/: (1.3) 

 

Here, the incidence matrix A      ŒAR; AC; AL; AV ; AI ]      .aij/ represents the network 

topology,  e.g.  at  each  non  mass  node  i,  aij         1  if  the  branch  j  leaves  node 

i and aij 1  if  the  branch  j  enters  node  i  and  aij         0  elsewhere. The 

indices R; C; L; V; I denote the capacitive, resistive, inductive, voltage source, and 

current source branches, respectively. The functions qC, g and øL are continuously 

differentiable defining the voltage-current relations of the network components. The 

continuous functions vs and is are the voltage and current sources. 

C 

d 
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Under the assumption that the Jacobians 

 

@qC 

D .e; t/ WD .e; t/; D 
@g @øL 

.e; t/ WD .e; t/; D . j; t/ WD . j; t/ 

 

are positive definite, analytical properties (e.g. the  index) of DAE  (1.1)–(1.3)    

are investigated in [14] and [13]. In linear networks, the matrices DC, DG  and      

DL are positive definite diagonal matrices with capacitances, conductivities and 

inductances on the diagonal. 

Often semiconductors themselves are modeled by electrical networks. These 

models are stored  in  a  library  and  are  stamped  into  the  surrounding network 

in order to create a complete model of the integrated circuit. Here we use  a 

different approach which uses the transient drift-diffusion equations as a continuous 

model for semiconductors. Advantages are the higher accuracy of the model and 

fewer model parameters. On the other hand, numerical simulations are more 

expensive. For a comprehensive overview of the drift-diffusion equations we refer to 

[1, 2, 8, 30, 43]. Using the notation introduced there, we have the following system of 

partial differential equations for the electrostatic potential  .t; x/, the electron and 

hole concentrations n.t; x/ and p.t; x/ and the current densities Jn.t; x/ and Jp.t;  x/: 

 

div." grad / D q.n — p — C/; 

—q@tn C div Jn D qR.n; p; Jn; Jp/; 

q@tp C div Jp D —qR.n; p; Jn; Jp/; 

Jn D µnq.UT grad n — n grad /; 

Jp D µpq.—UT grad p — p grad  /; 

with .t; x/ Œ0; T] ˝ and ˝ Rd.d  1; : : :  ; 3/. The nonlinear function R  

describes the rate of electron/hole recombination, q is the elementary charge, " the 

dielectricity, µn and µp are the mobilities of electrons and holes. The temperature is 

assumed to be constant which leads to a constant thermal voltage UT . The function 

C is the time independent doping profile. Note that we do not formulate into quasi- 

Fermi potentials since the additional non-linearities would imply higher simulation 

time for the reduced model. Further details are given in [23]. The analytical and 

numerical analysis of systems of this form is subject to current research, see [7, 17, 

46, 52]. 

 

 
1.2.1   Coupling 

 
In the present section we develop the complete coupled system for a network with 

ns semiconductors. We will not specify an extra index for semiconductors, but  we 

G 
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keep in mind that all semiconductor equations and coupling conditions need to be 

introduced for each semiconductor. 

For the sake of simplicity we assume that to a semiconductor m semiconductor 

interfaces ˘O;k ˘  @˝, k   1; : : : ;  m are associated, which are all Ohmic  

contacts, compare Fig. 1.2. The dielectricity " shall be constant over the whole 

domain ˝. We focus on the Shockley-Read-Hall recombination 
 

np — n2
 

R.n; p/ WD i 
 

˙p.n C ni/ C ˙n. p C ni/ 
 

which does not depend on the current densities. Herein, ˙n and ˙p are the average 

lifetimes of electrons and holes, and ni is the constant intrinsic concentration which 

satisfy n2     np if the semiconductor is in thermal equilibrium. 

The scaled complete coupled system is  constructed as  follows.  (We  neglect 

the tilde-sign over the scaled variables.) The current through the diodes must be 

considered in Kirchhoff’s current law. Consequently, the term  ASjS  is  added  to 

Eq. (1.1), e.g. 
 

A   
d 

q .A>e; t/ C A g.A>e; t/ C A j C A j C A j D —A i .t/; (1.4) 

ø . j ; t/ — A>e D 0; (1.5) 

dt  
L    L L 

A>
V e D vs.t/: (1.6) 

 

In particular the matrix AS denotes the semiconductor incidence matrix. Here, 

jS;k D 

Z 

.Jn C Jp — "@tr / · v do: (1.7) 

I.e. the current is the integral over the current density Jn Jp plus the displacement 

current in normal direction v. Furthermore, the potentials of nodes which are 

connected to a semiconductor interface are introduced in the boundary conditions 

of the drift-diffusion equations (see also Fig. 1.2): 
0 q

C.x/2 C 4n2 C C.x/ 

1

 

 .t; x/ D    .x/ C .A>e.t//   D U   log 
B
@ 

i C
A C .A>e.t//  ; 

 

 

n.t; x/ D 

.q

C.x/2 C 4n2 C C.x/

Σ 

; (1.9) 

p.t; x/ D 

.q

C.x/2 C 4n2 — C.x/

Σ 

; (1.10) 

˘O;k 

C 

d 
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Fig. 1.1 Basic test circuit 

with one diode 

 

 

 

 

 

 

 

 

 

for .t; x/    Œ0; T]    ˘O;k.  Here,    bi.x/  denotes the  build-in potential and  ni   

the constant intrinsic concentration. All other parts of the boundary are isolation 

boundaries ˘I      ˘   ˘O, where      v     0, Jn   v     0 and Jp   v     0 holds. For a 

basic example consider the network in Fig. 1.1 where the network is described by 
 

A   D 
.   

1; 0
Σ> 

;  A   D 
.

—1; 1
Σ> 

;  A   D 
.   

0; 1
Σ> 

;  and g.A>e; t/ D  
1 

e  .t/: 
 

The complete model forms a partial differential-algebraic equation (PDAE). The 

analytical and numerical analysis of such systems is subject to current research, 

see [7, 17, 46, 52]. The simulation of the complete coupled system is expensive 

and numerically difficult due to bad  scaling  of  the  drift-diffusion  equations. 

The numerical issues can be significantly reduced by the unit scaling procedure 

discussed in [43]. That means we substitute 

x D LxQ;   D UT  Q ; n D kCk1nQ ; p D kCk1pQ ; C D kCk1CQ ; 

J 
qUT kCk1 qUT kCk1 

D nQ kCk   ; 
 

where L denotes a specific length of the semiconductor (Fig. 1.2). The scaled drift- 

diffusion equations then read 
 

h˝ D n — p — C; (1.11) 

—@tn C vn div Jn D  R.n; p/; (1.12) 

@tp C vp div Jp D —R.n; p/; (1.13) 

Jn D    rn — nr ; (1.14) 

Jp D —rp — pr ; (1.15) 

where we omit the tilde for the scaled variables. The constants are given by h WD 
"UT , vn WD and vp WD , see e.g. [43]. 

L2qkCk1 L2 L2 

n n p 
L 

p p i 
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Fig. 1.2 Sketch of a coupled 

system with one 

semiconductor. Here 

 .t; x/ D ei.t/ C  bi.x/; for 
all .t; x/ 2 Œ0; T] — ˘O;1 

 

 

 

 

 

 

 

1.3 Simulation of the Full System 

 
Classical approaches for the simulation of drift-diffusion equations (e.g. Gummel 

iterations [21]) approximate Jn and Jp by piecewise constant functions and then 

solve Eqs. (1.12) and (1.13) with respect to n and p explicitly. This helps reducing 

the computational effort and increases the numerical stability. For the model order 

reduction approach proposed in the present work this method has the disadvantage 

of introducing additional non-linearities, arising from the exponential structure of 

the Slotboom variables, see [46]. Subsequently we propose two finite element 

discretizations for the drift-diffusion system which with regard to coping with 

nonlinearities are advantageous from the MOR reduction point of view, and which 

together with the equations for the electrical network finally lead to large-scale 

nonlinear DAE model for the fully coupled system. 

 

 
1.3.1 Standard Galerkin Finite Element Approach 

 
Let T denote a regular triangulation of the domain ˝ with gridwidth h, whose 

simplexes are denoted by T. In the classical Galerkin finite element method the 

functions , n and p are approximated by piecewise linear and globally continuous 

functions, while Jn and Jp are approximated by patchwise-piecewise constant 

functions, e.g. 
 

N N N 

 .t; x/ WD 
X 

 i.t/øi.x/; n.t; x/ WD 
X 

ni.t/øi.x/; p.t; x/ WD 
X 

pi.t/øi.x/; 

iD1 iD1 

N 

iD1 

N 

Jn.t; x/ WD 
X 

Jn;i.t/'i.x/; Jp.t; x/ WD 
X 

Jp;i.t/'i.x/; 

iD1 iD1 
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where  the  functions   øi    and   'i    are  the  corresponding  ansatz  functions,  and N 

denotes the number of degrees of freedom. For , n and p the coefficients 

corresponding to the boundary elements are prescribed using the Dirichlet boundary 

conditions. Note that the time is not discretized at this point which refers to the so- 

called method of lines. The finite element method leads to the following DAE for 

the unknown vector-valued functions of time , n, p, Jn, Jp for each semiconductor: 

0 D hS .t/ C Mn.t/ — Mp.t/ — Ch C b .AT e.t//; 

—MnP .t/ D —vnD>Jn.t/ C hR.n.t/; p.t//; 

MpP .t/ D —vpD>Jp.t/ — hR.n.t/; p.t//; 

0 D hJn.t/ C Dn.t/ — diag 
.
Bn.t/ C bQ n

Σ 
D .t/ C bn; 

0 D hJp.t/ — Dp.t/ — diag 
.
Bp.t/ C bQ p

Σ 
D .t/ C bp; 

 

 
(1.16) 

 

where S; M and D; B are assembled finite element matrices. The matrix diag.v/ is 

diagonal with vector v forming the diagonal. The vectors b .ATe.t//, bn, bQ n, bp and 

bQ p implement the boundary conditions imposed on  , n and p through (1.8)–(1.10). 

Discretization of the coupling condition for the current (1.7) completes the 

discretized system. In one spatial dimension we use 
 

aqU   C 
j   .t/ D µ J 

.t/ C µ J .t/ a"UT 

— 
.t/ —   .t/ ; 

S;k 

L 

. 
n

 
n;N p  p;N    

Σ
 

Lh  

. 
P 

N
 

P 
N—1  

Σ
 

 
 

1.3.2 Mixed Finite Element Approach 

 
Since the electrical field represented by the (negative) gradient of the electrical 

potential plays a dominant role in (1.11)–(1.15) and is present also in the coupling 

condition (1.7), we provide for it the additional variable g  leading to the  

following mixed formulation of the DD equations: 

 

h div g  D n — p — C; (1.17) 

—@tn C vn div Jn D  R.n; p/; (1.18) 

@tp C vp div Jp D —R.n; p/; (1.19) 

g   D   r ; (1.20) 

Jn D    rn — ng ; (1.21) 

Jp D —rp — pg : (1.22) 

扫码可进资料分享群



˝ 

˝ 

˝ 

˝ 

2 2 

g 

Z 

˝ 

˝ 

˝ 

˝ ˘ 

1    MOR of Integrated Circuits in Electrical Networks 9 

The weak formulation of (1.17)–(1.22) then reads: Find  ; n; p 2 Œ0; T] ~ L2.˝/ 

and g  ; Jn; Jp 2 Œ0; T] ~ H0;N .div;˝/ such that 

h div g  ' D 

Z  

.n — p/ ' — 

Z   

C '; (1.23) 

— 

Z 

@tn ' C vn 

Z 

Z 

@tp ' C vp 

Z

 

div Jn ' D 

Z

 

div Jp ' D — 

Z

 

R.n; p/ '; (1.24) 

R.n; p/ '; (1.25) 

Z   

g  · ø D — 

Z

    div ø C 

Z      

ø · v; (1.26) 

Z  

Jn · ø D — 

Z  

n div ø C 

Z  

n ø · v — 

Z

 

Z   

Jp · ø D 

Z  

p div ø — 

Z 

p ø · v — 

Z

 

 
n g   · ø; 

(1.27) 

 
p g   · ø; 

˝ ˝ ˘ ˝ 

(1.28) 
 

are satisfied for all ' L2.˝/ and ø H0;N .div; ˝/ where the space H0;N .div; ˝/ 

is defined by 
 

H.div; ˝/ WD fy 2 L2.˝/d W  div y 2 L2.˝/g; 

H0;N .div; ˝/ WD fy 2 H.div; ˝/ W  y · v D 0 on ˘Ig : 

Consequently, the boundary integrals on the right hand sides in Eqs. (1.26)–(1.28) 

reduce to integrals over the interfaces ˘O;k, where the values of , n and p are 

determined by the Dirichlet boundary conditions (1.8)–(1.10). We note that, in 

contrast to the standard weak form associated with (1.11)–(1.15), the Dirichlet 

boundary values are naturally included in the weak formulation (1.23)–(1.28) and 

the Neumann boundary conditions have to be included in the space definitions. 

This is advantageous in the context of POD model order reduction since the non-

homogeneous boundary conditions (1.8)–(1.10) are not present in the space 

definitions. 

Here, Eqs. (1.23)–(1.28) are discretized in space with Raviart-Thomas finite 

elements of degree 0 (RT0), alternative discretization schemes for the mixed problem 

are presented in [8]. To describe the RT0-approach for d D 2 spatial dimensions, let 

T be a triangulation of ̋  and let E be the set of all edges. Let EI WD fE 2 E W  E c 
N̆I   be the set of edges at the isolation (Neumann) boundaries. The potential and the 

concentrations are approximated in space by piecewise constant functions 
 

 h.t/; nh.t/; ph.t/ 2 Lh WD fy 2 L2.˝/ W  yjT .x/ D cT ;  8T 2 T g; 

˝ ˝ 

˝ 

˝ 

˝ 

˝ ˘ 
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with ansatz functions f'igiD1;:::;N  and the discrete fluxes gh .t/, Jh.t/ and Jh.t/ are 
n p 

elements of the space 
 

RT0 WD fy W ˝ ! Rd W  yjT .x/ D aT C bTx;  aT 2 Rd;  bT  2 R; Œy]E · vE D 0; 

for all inner edges Eg: 

Here, Œy]E  denotes the jump yjTC — yjT— over a shared edge E of the elements TC 

and T—. The continuity assumption yields RT0 c H.div;˝/. We set 

Hh;0;N .div;˝/ WD .RT0 \ H0;N .div;˝// c H0;N .div;˝/: 

Then it can be shown, that Hh;0;N posses an edge-oriented basis øj jD1;:::;M. We use 

the following finite element ansatz in (1.23)–(1.28) 

 
 h.t; x/ D 

 
nh.t; x/ D 

 
ph.t; x/ D 

X

iD1 

X

iD1 

X

iD1 

 
 i.t/'i.x/; gh .t; x/ D 

 
ni.t/'i.x/; Jh.t; x/ D 

 
pi.t/'i.x/; Jh.t; x/ D 

X

jD1 

X

jD1 

X

jD1 

 

g ;j.t/øj.x/; 

 

 
Jn;j.t/øj.x/; 

 

 
Jp;j.t/øj.x/; 

9
>

 

>
>=

 

>

>
>

 

 
 
 
 
 

(1.29) 

 

where N T  , i.e. the number of elements of T ,  and M E EN , i.e. the 

number of inner and Dirichlet boundary edges. 

This in (1.23)–(1.28) yields 
 

 

 

h 

jD1 

 
g ;j.t/ 

˝ 

 
div øj 'k — 

X

iD1 

.ni.t/ — pi.t// 

Z

 'i 'k D — 

Z

 

 
C 'k; 

X Z X Z 
Z 

h     h 

— 

iD1 

X

iD1 

ni.t/ 
˝ 

 

pP i.t/ 

Z

 

'i 'k C vn 

 
'i 'k C vp 

 
jD1 

X

jD1 

Jn;j.t/ 
˝ 

 

 

Jp;j.t/ 
˝ 

div øj 'k 

˝ 
 

div øj 'k C 

Z

 

R.n  ; p  / 'k D 0; 

 
R.nh; ph/ 'k D 0; 

X

jD1 

 
g ;j.t/ 

˝ 

 
øj · øl C 

X

iD1 

 
 i.t/ 

˝ 

 
'i  div øl D 

Z     
h øl · v; 

M Z 

˝ ˝ 

˝ 

Z 

— 

˝ 

Z Z 

˘ 
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B
B
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C 

B
B

 
C
C
g

  .t/ 

B
B 

@
 

F .nh; ph; gh / WD 
B
B 

  
˝ . 

0 

; / '  
C
C ; b WD 

B
B R 

0 
h  ATe.t// ø · v 

C
C ; 

  

  
R

R
—

 
C
A

 

2 

2 
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X

jD1 

Jn;j.t/ 
˝ 

øj · øl C 
X

iD1 

ni.t/ 
˝ 

'i  div øl C 

Z

 nhgh  · øl D 

Z   

nh øl · v; 

X

jD1 

Jp;j.t/ 
˝ 

øj · øl — 
X

iD1 

pi.t/ 
˝ 

'i  div øl C 

Z

 phgh · øl D — 

Z

 ph øl · v; 

which represents a nonlinear, large and sparse DAE for the approximation of the 

functions    , n, p, g  , Jn, and Jp. In matrix notation it reads 

0

B 
0 

C

1 0

B

 —ML  ML   hD 
1

C 

0

B 
 .t/ 

1

C
 

MLnP .t/C
C 

B
B

 
vnD n.t/ 

C B C 

0 
B
@ 0 

C
C
A

 

D> MH 

—D> MH 

C
C
A 

B
B
@

 

Jn.t/ 

Jp.t/ 

C
C
A

 

„ 

h    h 
A

ƒ
FE

‚
M 

… 

with 

C F .n ; p ; g / D b.ASe.t//; 

0   

R 
0 

1 0 
— 

R
˝ 

C '
  1 

B
B— R.nh; ph/ 'C

C 
B
B 0 C

C 

B   R˝ 

R  nh  ph     C B C 

 
 
 
 
 

and 

B
B
@

 

R

R
˝

 

nhgh  · ø 

phgh  · ø 

C
C
A

 B
B
@

 
˘    . 

˘ 

˘ 

 

S 

nh ø · v 

ph ø · v 

C 

(1.30) 

Z 
0R

˝

 R.nh; ph/'1

1
 

R.nh; ph/' WD 
B
@ : 

R.nh; ph/'N 

C
A : 

 

All other integrals in F and b are defined analogously. The matrices ML   RN—N  

and MH      RM—M  are mass matrices in the spaces Lh and Hh;0;N , respectively, and  

D RN—M . The final DAE for the mixed finite element discretization now takes the 

form 

˝ 

Z Z 

˝ ˘ 

Z Z 

˝ ˘ 

0 

˝ 

扫码可进资料分享群



C 
dt C R R L L V  V 

B
B

— B C 

B 

@ 0 

0 

A @ J  .t/n 

Jp.t/ 

A 

12 M. Hinze et al. 

 
Problem 1.3.1 (Full Model) 

 

A   
d 

q .A>e.t/; t/ C A g.A>e.t/; t/ C A j .t/ C A 

 

j .t/ 
 

CASjS.t/ C AIis.t/ D 0; (1.31) 

ø . j .t/; t/ — A>e.t/ D 0; (1.32) 

dt  
L    L L 

A>
V e.t/ — vs.t/ D 0; (1.33) 

0

B 
0 

1

C

 

jS.t/ — C1Jn.t/ — C2Jp.t/ — C3gP  .t/ D 0; (1.34) 
0

B 
 .t/ 

1

C
 

MLnP .t/C
C

 n.t/ 
B C B

B   
MLpP .t/C

C C AFEM 
B
B 

p.t/ C
C C F .nh; ph; gh / — b.AT e.t// D 0; (1.35) 

B
B 

0 C
C

 g  .t/ S
 

B C 
 

 

where (1.34) represents the discretized linear coupling condition (1.7). 

We present numerical computations for the basic test circuit with one diode 

depicted in Fig. 1.1, where the model parameters are presented in Table 1.1. The 

input vs.t/ is chosen to be sinusoidal with amplitude 5 V. The numerical results in 

Fig. 1.3 show the capacitive effect of the diode for high input frequencies. Similar 

results are obtained in [44] using the simulator MECS. 

The discretized equations are implemented in MATLAB, and the DASPK 

software package [34] is used to integrate the high-dimensional DAE. Initial values 

are stationary states obtained by setting all time derivatives to 0. In order to solve 

the Newton systems which arise from the BDF method efficiently, one may reorder 

the variables of the sparse system with respect to minimal bandwidth. Then, one can 

use the internal DASPK routines for the solution of the linear systems. Alternatively 

one can implement the preconditioning subroutine of DASPK using a direct sparse 

solver. Note that for both strategies we only need to calculate the reordering matrices 

once, since the sparsity structure remains constant. 

 
 

Table 1.1  Diode model parameters 

Parameter 

L 

UT 

µn 

µp 

a 

Value 

10—4 cm 

0:0259 V 

1350 cm2/(V s) 

480 cm2/(V s) 

10—5 cm2
 

Parameter 

" 

ni 

˙n 

˙p 

C.x/; x < L=2 

C.x/; x ≤ L=2 

Value 

1:03545 · 10—12 F/cm 

1:4 · 1010 1/cm3
 

33 · 10—9 s 

—9:94 · 1015 1/cm3
 

4:06 · 1018 1/cm3
 

330 · 10—9 s 

C 

d 
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Fig. 1.3 Current jV through the basic network for input frequencies 1 MHz, 1 GHz and 5 GHz. 

The capacitive effect is clearly demonstrated 

 
 

1.4    Model Order Reduction Using POD 

 
We now use proper orthogonal decomposition (POD) to construct low-dimensional 

surrogate models for the drift-diffusion equations. The idea consists in replacing the 

large number of local model-independent ansatz and test functions   øi  ;  'j   in the 

finite element approximation of the drift-diffusion systems by only a few nonlocal 

model-dependent ansatz functions for the respective variables. 

The  snapshot  variant of  POD  introduced in  [45]  works  as  follows.  We  run 

a simulation of the unreduced system and collect l snapshots  h.tk; ·/, nh.tk; ·/,  

ph.tk; ·/, gh .tk; ·/, Jh.tk; ·/, Jh.tk; ·/ at time instances tk  2 ft1;::: ; tlg c Œ0; T]. The 

optimal selection of the time instances is not considered here. We use the time 

instances delivered by the DAE integrator. 

Since every component of the state vector y . ; n; p; g ; Jn; Jp/ has its own 

physical meaning we apply POD MOR to each component separately. Among other 

things this approach has the advantage of yielding a block-dense model and the 

approximation quality of each component is adapted individually. 

Let X denote a Hilbert space and let yh W Œ0; T] ~ X ! Rr with some r 2 N. 

The Galerkin formulation (1.29) yields yh.t; ·/ 2 Xh WD spanføX;::: ; øXg, where 

føXg1≤j≤n denote n linearly independent elements of X. The idea of POD consists 

in finding a basis fu1;::: ; umg of the span of the snapshots 

span 

( 

yh.tk; ·/ D 
X 

yh;køX.·/;  with k D 1; : : : ; l

)

 

 

 
satisfying 

 
1 s 

i i 

iD1 

 

 
X  

h 
X 

h
 

 
i i       

2
 

fu ;::: ; u gD  arg min 
fv1;:::;vs gCX 

 
kD1 

y .tk; ·/ —  
iD1 

hy  .tk; ·/; v .·/iXv .·/ 
X 

;   
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for 1 s m, where 1 m l. The functions   ui   
1≤i≤s are orthonormal in X and 

can be obtained with the help of the singular value decomposition (SVD) as follows. 

Let the matrix Y WD .yh ;1;::: ; yh;l/ 2 Rn—l contain as columns the coefficient 

vectors of the snapshots. Furthermore, let M  WD .høX; øXiX/1≤i;j≤n be the positive 

definite mass matrix with its Cholesky factorization M D LL>. Let .UQ ; ̇ ; VQ / denote 

the SVD of YQ  WD L>Y , i.e. YQ  D UQ ̇ VQ > with UQ  2 Rn—n, VQ  2 Rl—l, and a matrix 

˙ 2 Rn—l containing the singular values o1 ≤ o2 ≤ : : :  ≤ om > omC1 D : : :  D 

ol D 0. We set U WD L—>UQ .W; 1Ws/. Then, the s-dimensional POD basis is given by 

 
 

span 

8
<

ui.·/ D 
X

jD1 

Ujiø
X.·/;  i D 1; : : : ; s

9
= 

: 

 

The information content of fu1;::: ; usg with respect to the scalar product h·; ·iX with 

 
s/ D m 2 

iDsC1 i ≤ 1; (1.36) 
0 ≤ ˝. m 2 

iD1 i 

 

is given by 1 ˝.s/. Here ˝.s/ measures the lack of information of  u 1; : : :  ; us 

with respect to span yh.t1; /; : : :  ; yh.tl; / . An extended introduction to POD can be 

found in [36]. 

The POD basis functions are now used as trial and test functions in the Galerkin 

method. 

If the snapshots  satisfy  inhomogeneous  Dirichlet  boundary  conditions,  as  

in (1.16), POD is performed for 
 

 Q .t/ D  .t/ —  r.t/; nQ .t/ D n.t/ — nr.t/; pQ .t/ D p.t/ — pr.t/; 
 

with r, nr, pr denoting reference functions satisfying the Dirichlet boundary 

conditions required for , n and p. This guarantees that the POD basis admits 

homogeneous boundary conditions on the Dirichlet boundary. 

In the case of the mixed finite element approach the introduction of a reference 

state is not necessary, since the boundary values are included more naturally 

through the variational formulation. The time-snapshot POD procedure then delivers 

Galerkin ansatz spaces for    , n, p, g  , Jn and Jp. This leads to the ansatz 

 POD.t/ D U ˛ .t/; gPOD.t/ D Ug  ˛g  .t/; 
9
> 

nPOD.t/ D Un˛n.t/; JPOD.t/ D UJ ˛J .t/; 

>=
 
 

(1.37) 

pPOD.t/ D Up˛p.t/; JPOD.t/ D UJ ˛J .t/: 
>;
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The injection matrices 

U   2 RN—s  ; Un 2 RN—sn ; Up 2 RN—sp ; 

Ug  2 R ; UJn 2 RM—sJn ; UJ 2 RM—sJp ; 

contain the (time independent) POD basis functions, the vectors ̨ .·/ the correspond- 

ing time-variant coefficients. The numbers s.·/ are the respective number of POD 

basis functions included. Assembling the POD system yields the DAE 

0

B 
0 

1

C

 
0

B 
˛ .t/ 

1

C
 

B
B

— P̨n.   C
C

 ˛ .t/ 
B C 

B
B   

P̨p.t/CC C APOD 
B
B 

˛p.    C
C C U>F .nPOD; pPOD; gPOD/ D U>b.ATe.t//; 

B
B 

0 C
C 

B
B

˛g  .   CC
 

@ 0 A @ ˛Jn 
. A 

0 ˛Jp .t/ 

with 
 

APOD D U>AFEMU 

B
B

0 

B 

 
 
 
Ug

> 

 
 
 
D>U 

—U >MLUn  U >MLUp  hU >DUg  

 
I 

 
vnUn

>DUJn 

 

 
vpUp

>DUJ 

1

C
C 

C
C

 

UJ
>

n 
D>Un  I 

—UJ
>

p 
D>Up  I 

 

and U D diag.U ; Un; Up; Ug ; UJn ; UJp /. Note that we exploit the orthogonality of 

the POD basis functions, e.g. Un
>MLUn  D  Up

>MLUp  D  IN—N  and Ug
>
  

MHUg   D 

UJ
>

n 
MHUJn      UJ

>
p 
MHUJp      IM—M . The arguments of the nonlinear functional have     

to be interpreted as functions in space. 

All matrix-matrix multiplications are calculated in an offline phase. The nonlin- 

ear functional F has to be evaluated online. The reduced model for the network 

now reads 

Problem 1.4.1 (POD MOR Surrogate) 
 

A   
d 

q .A>e.t/; t/ C A g.A>e.t/; t/ C A j .t/ C A 

 

j .t/ 
 

ASjS.t/ AIis.t/ 0; 

(1.38) 

C 

p 
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ø . j .t/; t/ — A>e.t/ D 0; 

dt   
L    L 

L 

(1.39) 

A>
V e.t/ vs.t/ 0; 

(1.40) 

jS.t/ — C1UJn ̨ Jn .t/ — C2UJp ̨ Jp .t/ — C3Ug  ̨ Pg  .t/ D 0; 

(1.41) 

B

0 
0 

1

C

 
0

B 
˛ .t/ 

1

C
 

B
B

— P̨n.   C
C

 ˛ .t/ 
B C 

B
B   ̨Pp.t/CC C APOD 

B
B 

˛p.    C
C C U>F .nPOD; pPOD; gPOD/ — U>b.ATe.t// D 0: 

B
B 0 C

C 
B
B

˛g  .   C
 

@ 0 A @ ˛Jn 
. A 

 
 
 

 

1.4.1 Numerical Investigation 

 
We now present numerical examples for POD MOR of the basic test circuit in 

Fig. 1.1 and validate the reduced model at a fixed reference frequency of 1010 Hz. 

Figure 1.4 (left) shows the development of the error between the reduced and the 

unreduced numerical solutions, plotted over the neglected information ˝, see (1.36), 

which is measured by the relative error between the non-reduced states , n, p, Jn, Jp 

and their projections onto the respective reduced state space. The number of POD 

basis functions for each variable is chosen such that the indicated approximation 

quality is  reached, i.e.  ˝         ˝         ˝n        ˝p        ˝g         ˝Jn        ˝Jp :  Since           

we compute all POD basis functions anyway, this procedure does not involve any 

additional costs. 

In Fig. 1.4 (right) the simulation times are plotted versus the neglected informa- 

tion ˝. As one also can see, the simulation based on standard finite elements takes 

twice as long as if based on RT elements. However, this difference is not observed 

for the simulation of the corresponding reduced models. 

Figure 1.5 shows the total number of singular vectors k k kn kp kJn kJp required in 

the POD model to guarantee a given state space cut-off error ˝. While the number 

of singular vectors included increases only linearly, the cut-off error tends to zero 

exponentially. 

(1.42) 

0 ˛Jp .t/ 

d 
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Fig. 1.4 Left: L2 error of jV between reduced and unreduced problem, both for standard and 

Raviart-Thomas FEM. Right: Time consumption for simulation runs for left figure. The fine lines 

indicate the time consumption for the simulation of the original full system 

 

 

Fig. 1.5 The number of required singular values grows only logarithmically with the requested 

accuracy 

 
 

1.4.2 Numerical Investigation, Position of the Semiconductor 

in the Network 

 
Finally we note that the presented reduction method accounts for the position of 

the semiconductors in a given network in that it provides reduced-order models 

which for identical semiconductors may be different depending on the location of 

the semiconductors in the network. The POD basis functions of two identical semi- 

conductors may be different due to their different operating states. To demonstrate 

this fact, we consider the rectifier network in Fig. 1.6 (left). Simulation results  are 
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frequency = 1 GHz 
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Fig. 1.6  Left: Rectifier network. Right: Simulation results for the rectifier network. The input  vs 

is sinusoidal with frequency 1 GHz and offset C1:5 V 

Table 1.2 Distances 

between reduced models in 

the rectifier network 

 

 

 

 

 

plotted in Fig. 1.6 (right). The distance between    the spaces U1 and U2 which are 

spanned, e.g., by the POD-functions  U1
 of the diode S1  and  U2

 of the diode  S2 

respectively, is measured by 
 

d.U1; U2/ max 
u2U1 

 
 

min 
v2U2 

 
ku — vk2: 

kuk2D1  kvk2D1 

Exploiting  the  orthonormality  of  the  bases  U1  and U2
 

 

and  using  a Lagrange 

framework, we find 

d.U1; U2/ D 

q

2 — 2
p

h; 
 

where h is the smallest eigenvalue of the positive definite matrix SS> with Sij D 
1 
 ;i 

2 
 ;j i2. The distances for the rectifier network are given in Table 1.2. While the 

reduced model for the diodes S1 and S3 are almost equal, the models for the diodes 

S1 and S2 are significantly different. Similar results are obtained for the reduction of 
n, p, etc. 

˝ 

10—4 

10—5 

10—6 

10—7 

d.U1; U2/ d.U1; U3/ 

0.61288 5:373 · 10—8
 

0.50766 4:712 · 10—8
 

0.45492 2:767 · 10—7
 

0.54834 1:211 · 10—6
 

; u 

p
o
te

n
ti
a
l 
[V

] 
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1.4.3 MOR for the Nonlinearity with DEIM 

The nonlinear function F in (1.42) has to be evaluated online which means that the 

computational complexity of the reduced-order model still depends on the number 

of unknowns of the unreduced model. A reduction method for the nonlinearity is 

given by Discrete Empirical Interpolation (DEIM) [10]. This method is motivated 

by the following observation. The nonlinearity in (1.42), see also (1.30), is given by 

0 

U>F .U˛.t// D 
B
B
B 

 
0 

Un
>Fn.Un˛n.t/; Up˛p.t// 

Up
>Fp.Un˛n.t/; Up˛p.t// 

0 

1 

C
C
C ; 

UJ
>

n 
FJn .Un˛n.t/; Ug  ̨ g .t// 

UJ
>

p 
FJp .Un˛p.t/; Ug  ̨ g .t// 

see e.g. [23]. The subsequent considerations apply for each block component of F . 

For the sake of presentation we only consider the second block 
 

Un
> 

s

„
ize

ƒ
s

‚
n—

…
N 

Fn 

N 

„
ev

ƒ
alu

‚
at

…
ions 

.  Un 

s

„
ize

ƒ
N

‚
—

…
sn 

˛n.t/; Up 

s

„
ize

ƒ
N

‚
—

…
sp 

˛p.t/   /; (1.43) 

 

and its derivative with respect to ˛p, 
 

@Fn U .U ˛ .t/; U ˛ .t// U : 
„ƒ‚… @p 

n   n 
p   p p 

„ƒ‚… 
size sn—N   

„ 
size N—

ƒ
N

‚
, sparse 

… 
size N—sp 

 

Here, the matrices U.·/ are dense and the Jacobian of Fn is sparse. The evaluation  

of (1.43) is of computational complexity O.N/. Furthermore, we need to multiply 

large dense matrices in the evaluation of the Jacobian. Thus, the POD model order 

reduction may become inefficient. 

To overcome this problem, we apply Discrete Empirical Interpolation Method 

(DEIM) proposed in [10], which we now describe briefly. The snapshots h.tk; ·/, 

nh.tk; ·/, ph.tk; ·/,  gh .tk; ·/,  Jh.tk; ·/, Jh.tk; ·/ are collected  at  time instances tk        2 

t1;:::  ; tl Œ0; T] as before. Additionally, we collect snapshots   Fn.n.tk/; p.tk// 

of the nonlinearity. DEIM approximates the projected function (1.43) such that 
 

Un
>Fn.Un˛n.t/; Up˛p.t// = .Un

>Vn.P
>
n Vn/

—1/P>
n Fn.Un˛n.t/; Up˛p.t//; 

where Vn 2 RN—˙n contains the first ˙n POD basis functions of the space spanned by 

the snapshots fFn.n..tk/; p.tk//g aΣssociated with the largest singular values. The 

1 ˙n 
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to the so-called DEIM indices ˇ1;::: ; ˇ˙n which are chosen such that the growth of 

a global error bound is limited and P>
n Vn is regular, see [10] for details. 

The matrix Wn       .Un
>Vn.P>

n Vn/—1/     Rsn—˙n as well as the whole interpolation 

method is calculated in an offline phase. In the simulation of the reduced-order 

model we instead of (1.43) evaluate: 
 

Wn 

s

„
ize

ƒ
s

‚
n—

…
˙n 

with derivative 

P>
n Fn 

rn

„
ev

ƒ
al

‚
ua

…
tions 

.  Un 

s

„
ize

ƒ
N

‚
—

…
sn 

˛n.t/; Up 

s

„
ize

ƒ
N

‚
—

…
sp 

˛p.t/   /; (1.44) 

W> @P>
n Fn 

.U  ̨   .t/; U  ̨   .t// U : 
n p 

n   n p   p p 

„ƒ‚… 
„ 

@ 
ƒ‚  … 

„ƒ‚… 

In the applied finite element method a single functional component of Fn only 

depends on a small constant number c N components of Un˛n.t/. Thus, the matrix-

matrix multiplication in the derivative does not really depend on N since  the 

number of entries per row in the Jacobian is at most c. 

But there is still a dependence on N, namely the calculation of Un˛n.t/. To 

overcome this dependency we identify the required components of the vector 

Un˛n.t/  for  the  evaluation  of  P>
n Fn.  This  is  done by  defining  selection  matrices 

Qn;n 2 Rc˙n—sn , Qn;p 2 Rc˙p—sp such that 

P>
n Fn.Un˛n.t/; Up˛p.t// D FOn.Qn;nUn˛n.t/; Qn;pUp˛p.t//; 

where FO n denotes the functional components of Fn selected by Pn restricted to the 

arguments selected by Qn;n and Qn;p. 

Supposed that ˙n  sn   N we obtain a reduced-order model which does not   

depend on N any more. 

 

 
1.4.4 Numerical Implementation and Results with DEIM 

 
We again use the basic test circuit with a single 1-dimensional diode depicted in 

Fig. 1.1. The parameters of the diode are summarized in [23]. The input vs.t/ is 

chosen to be sinusoidal with amplitude 5 V. In the sequel the frequency of the 

voltage source will be considered as a model parameter. 

We first validate the reduced model at a fixed reference frequency of 5 109 Hz. 

Figure 1.7 shows the development of the relative error between the POD reduced, 

the POD-DEIM reduced and the unreduced numerical solutions, plotted over the 

lack of information ˝ of the POD basis functions with respect to the space spanned 

by the snapshots. The figure shows that the approximation quality of the POD-DEIM 

size r  —N, sparsen 
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Fig. 1.7  Relative error between DEIM-reduced and unreduced nonlinearity at the fixed frequency 

5 · 109 Hz 
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Fig. 1.8 Time consumption for simulation runs of Fig. 1.7. The horizontal line indicates the time 

consumption for the simulation of the original full system 

 

 

reduced model is comparable with the more expensive POD reduced model. The 

number of POD basis functions s.·/ for each variable is chosen such that the indicated 

approximation quality is reached, i.e. ˝ WD ˝   ' ˝n ' ˝p ' ˝g   ' ˝Jn ' ˝Jp : 

The numbers ̇ .·/ of POD-DEIM basis functions are chosen likewise. 

In  Fig. 1.8  the simulation  times  are plotted versus the  lack  of  information ˝. 

The POD reduced-order model does not reduce the simulation times significantly 

for the chosen parameters. The reason for this is its dependency on the number of 

variables of the unreduced system. Here, the unreduced system contains 1000 finite 

elements which yields 12,012 unknowns. The POD-DEIM reduced-order model 

behaves very well and leads to a reduction in simulation time of about 90% without 

reducing the accuracy of the reduced model. However, we have to report a minor 

drawback; not all tested reduced models converge for large ˝.s/ 3 10—5. This is 

indicated in the figures by missing squares. This effect is even more pronounced for 

POD 

DEIM 

POD 

DEIM 

unreduced 

s
im

u
la

ti
o

n
 t
im

e
 [
s
e
c
] 

re
l.
 L

2
−

e
rr

o
r 

o
f 
o

u
tp

u
t 
j V

 

扫码可进资料分享群



         

   

POD 

DEIM 

unreduced 

22 M. Hinze et al. 

 

250 

 
200 

 
150 

 

100 
 

50 
 

0 

10−7 10−6 10−5 10−4 10−3 

lack of information ∆(s) 
 

Fig. 1.9 The number of required POD basis function and DEIM interpolation indices grows only 

logarithmically with the requested information content 
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Fig. 1.10 Computation times of the unreduced and the reduced-order models plotted versus the 

number of finite elements 

 
 

spatially two-dimensional semiconductors. It seems to be caused by the fact, that 

only a sufficiently large POD basis captured the physics of the semiconductors well 

enough. 

In Fig. 1.9 we plot the corresponding total number of required POD basis 

functions. It can be seen that with the number of POD basis functions increasing 

linearly, the lack of information tends to zero exponentially. Furthermore, the 

number of DEIM interpolation indices behaves in the same way. 

In Fig. 1.10 we investigate the dependence of the reduced models on the number 

of finite elements N. One sees that the simulation times of the unreduced model 

depends linearly on N. The POD reduced-order model still depends on N linearly 

with a smaller constant. The dependence on N of our POD-DEIM implementation 

is negligible. 
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Fig. 1.11 The reduced models are compared with the unreduced model at various input frequen- 

cies 

 
 

Finally, we analyze in Fig. 1.11 the behaviour of the models with respect to 

parameter changes. We consider  the  frequency of  the  sinusoidal  input  voltage 

as model parameter. The reduced-order models are created based on snapshots 

gathered in a full simulation at a frequency of 5 109 Hz. We see that the POD  

model and the POD-DEIM model behave very similarly. The adaptive enlargement 

of the POD basis using the residual greedy approach of [33] is discussed in the next 

section based on the results presented in [23]. 

Summarizing all numerical results we conclude that the significantly faster POD- 

DEIM reduction method yields a reduced-order model with the same qualitative 

behaviour as the reduced model obtained by classical POD MOR. 

 

 
1.5 Residual-Based Sampling 

 
Although POD model order reduction often works well, one has to keep in mind 

that the reduced system depends on the specific inputs and parameters used to 

generate the snapshots. A possible remedy consists in performing simulations over a 

certain input and/or parameter sample and then to collect all simulations in a global 

snapshot matrix Y       ŒY1; Y2; : : :]. Here, each Y i represents the snapshots taken for 

a certain input resp. parameter. 

In this section we propose a strategy to choose inputs/parameters in order to 

obtain a reduced model, which is valid over the whole input/parameter range. 

Possible parameters are physical constants of the semiconductors (e.g. length, 

permeability, doping) and parameters of the network elements (e.g. frequency of 

sinusoidal voltage sources, value of resistances). We do not distinguish between 

inputs and parameters of the model. 
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Let there be r N parameters and let the space of considered parameters be given 

as a bounded set P Rr. We construct the reduced model based on snapshots from 

a simulation at a reference parameter !1 P. One expects that the reduced model 

approximates the unreduced model well in a small neighborhood of !1, but one 

cannot expect that the reduced model is valid over the complete parameter set P.  

In order to create a suitable reduced-order model we consider additional snapshots 

which are obtained from simulations at parameters !2; !3 ;:::  2 P. The iterative 

selection of !kC1 at a step k is called parameter sampling. Let Pk denote the set of 

selected reference parameters, Pk     !1; !2 ;: ::  ; !k  P. 

We neglect the discretization error of the finite element method and its influence 

on the coupled network and define the error of the reduced model as 
 

E .!I P/ WD zh.!/ — zPOD.!I P/; (1.45) 

where   zh.!/ WD .eh.!/; jh .!/; jh .!/; yh.!//>   is    the    solution   of  Prob- 

lem 1.3.1 at  the parameter ! with  discretized semiconductor variables yh        WD 

. h; nh; ph; gh ; Jh; Jh/>. zPOD.!I P/ denotes the solution of the coupled system in 

Problem 1.4.1 with reduced semiconductors, where the reduced model is created 

based on simulations at the reference parameters P    P. The error is considered   

in the space X with norm 

kzkX WD 
.
kek2; kjV k2; kjLk2; 

k kL2 .Œ0;T];L2 .˝//; knkL2.Œ0;T];L2 .˝//; kpkL2.Œ0;T];L2 .˝//; 

kg kL2.Œ0;T];H0;N .div;˝//; 

kJnkL2.Œ0;T];H0;N .div;˝//; kJpkL2.Œ0;T];H0;N .div;˝//

˚ 
: 

Obvious extensions apply when there is more than one semiconductor present. 

Furthermore we define the residual R by evaluation of the unreduced model 

(1.31)–(1.35) at the solution of the reduced model zPOD.!I P/, i.e. 

0 
0 

1 0 
POD.t/

1
 

B
B—MLnP POD.t/CC B

B n
POD.t/ CC

 
 

POD B
B   

MLpP POD.t/
C
C 

B
B pPOD.t/ 

C
C 

@
B 

0 
C
A

 
 

POD 
n 

JPOD.t/ 
 POD  POD     POD  T   POD 

C F .n ; p ; g   / — b.AS e .t//: (1.46) 
 

Note that the residual of Eqs. (1.31)–(1.34) vanishes. 

0 
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We note that the same definitions are used in [22] for linear descriptor systems. 

In [22] an error estimate is obtained by deriving a linear ODE for the error and 

exploiting explicit solution formulas. Here we have a nonlinear DAE and at the 

present state we are not able to provide an upper bound for the error E .! P/ X 

which would yield a rigorous sampling method using for example the Greedy 

algorithm of [33]. 

We propose to consider the residual as an estimate for the error. The evaluation 

of the residual is cheap since it only requires the solution of the reduced system and 

its evaluation in the unreduced DAE. It is therefore possible to evaluate the residual 

at a large set of test parameters Ptest    P. Similar to the Greedy algorithm of [33], 

we add to the set of reference parameters the parameter where the residual becomes 

maximal. 

The magnitude of the components in error and residual may be large and a proper 

scaling should be applied. For the error we consider the component-wise relative 

error, i.e. 
 

k h.!/ —  POD.!I P/kL2 .Œ0;T];L2 .˝// 
 

 

k h.!/kL2 .Œ0;T ];L2 .˝// 

knh.!/ — nPOD.!I P/kL2 .Œ0;T];L2 .˝// 
 

 

knh.!/kL2 .Œ0;T];L2 .˝// 

 
;  : : :  ; 

 

and the residual is scaled by a block-diagonal matrix containing the weights 

0

B
d  .!/I 

B
B
@

 

 
 
dn.!/I 

 

 
 

dp.!/I 

 

 

 

dg  

 

 

 

 
.!/I 

 

 

 

 

dJn 

 

 

 
 

 
.!/I 

 

 

 

 

 

dJp .!/I 

1

C
C 

C
A

 

~ R.zPOD.!I P//: 

The weights d.·/.!/  >  0 may be parameter-dependent. These weights are chosen 

in a way that the norm of the residual and the relative error are component-wise 

equal at the reference frequencies !k where we know zh.!k/ from simulation of the 

unreduced model, i.e. 
 

k h.!k/ —  POD.!kI P/kL2 .Œ0;T];L2 .˝// 

d  .!k/ WD 
k  h.! /k

 · kR .zPOD.! I P//k 
; (1.47) 

 

and similarly for the other components. If kR1.zPOD.!kI P//kL2.Œ0;T];L2 .˝// D 0 holds 

we chose d .!k/ WD 1. 

In  one  dimensional  parameter  sampling  with  P  WD  Œp;  p],  we  approximate 

d.·/.!/  by  piecewise  linear  interpolation  of  the  weights  d.·/.!1/,  : : :,  d.·/.!k/. 

Extrapolation is done by nearest-neighbor interpolation to ensure the positivity of 

the weights. 

; 
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Algorithm 1.1 Sampling 

 

1. Select !1    P, Ptest     P, tol > 0, and set k 1, P1 !1  . 

2. Simulate the unreduced model at !1 and calculate the reduced model with POD basis functions 

U1. 

3. Calculate weight functions d. /.!/ > 0 according to (1.47) for all !k  Pk. 

4. Calculate the scaled residual D.!/R.zPOD .!; Pk// for all ! Ptest. 

5. Check termination conditions, e.g. 

• max!  Ptest  D.!/R.zPOD .!; Pk// < tol, 

• no progress in weighted residual. 

POD 
6. Calculate !kC1 WD arg max!2Ptest 

kD.!/R.z .!; Pk//k. 

7. Simulate the unreduced model at !k   1 and create a new reduced model with POD basis Uk      1 

using also the already available information at !1, : :  :, !k . 

8. Set PkC1 WD Pk [ f!kC1g, k WD k C 1 and goto 3. 
 

 
We summarize our ideas in the sampling Algorithm 1.1. The step 7 in this 

algorithm can be executed in different ways. If offline time and offline memory 

requirements are not critical one may combine snapshots from all simulations of 

the full model and redo the model order reduction on the large snapshot ensemble. 

Otherwise we can create a new reduced model at reference frequency !kC1 with 

POD-basis UN  and then perform an additional POD step on .Uk; UN /. 

 
1.5.1    Numerical Investigation for Residual Based Sampling 

 
We now apply Algorithm 1.1 to provide a reduced-order model  of  the  basic 

circuit and we choose the frequency of the input voltage vs as model parameter.  

As parameter space we chose the interval P Œ108; 1012] Hz. We start the 

investigation with  a reduced model which is created from the simulation of the  

full model at the reference frequency !1 1010 Hz. The number of POD basis 

functions s is chosen such that the lack of information ˝.s/ is approximately 10—7. 

The relative error and the weighted residual are plotted in Fig. 1.12 (left). We 

observe that the weighted residual is a rough estimate for the relative approximation 

error. Using Algorithm 1.1 the next additional reference frequency is !2 108 Hz 

since it maximizes the weighted residual. The second reduced model is constructed 

on the same lack of information ˝ 10—7. Here we note that in practical 

applications, the error is not known over the whole parameter space. 

The next two iterations of the sampling algorithm are also depicted in Fig. 1.12. 

Based on the residual in step 2, one selects !3  1:0608  109 Hz as the next  

reference frequency. Since no further progress of the weighted residual is achieved 

in step 3, the algorithm terminates. The maximal errors and residuals are given in 

Table 1.3. 
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Fig. 1.12 Left: Relative reduction error (solid line) and weighted residual (dashed line) plotted 

over the frequency parameter space. The reduced model is created based on simulations at the 

reference frequency !1 1010 Hz, which is marked by vertical dotted line. Middle: Relative 

reduction error (solid line) and weighted residual (dashed line) plotted over the frequency 

parameter space. The reduced model is created based on simulations at the reference frequencies  

!1  1010 Hz and !2   108 Hz. The reference frequencies are marked by vertical dotted lines . 

Right: Relative reduction error (solid line) and weighted residual (dashed line) plotted over the 

frequency parameter space. The reduced model is created based on simulations at the reference 

frequency !1 1010 Hz, !2 108 Hz, and !3 1:0608  109 Hz. The reference  frequencies  are 

marked by vertical dotted lines 

 
Table 1.3  Progress of refinement method 

 

1.6    PABTEC Combined with POD MOR 

 
In the current section, we combine the PABTEC approach of Chap. 2 and simulation 

based POD model order reduction techniques to determine reduced-order models for 

coupled circuit-device systems. While the PABTEC method preserves the passivity 

and reciprocity in the reduced linear circuit model, the POD approach delivers high- 

fidelity reduced-order models for the semiconductor devices. Details of the approach 

are given in [27]. 

Now we return to the network equations (1.31)–(1.35). The coupling 

relation  (1.34)  can  shortly  be  written  as  jS.t/   D   #.xS.t//,  where  xS.t/    D 

 T .t/; nT .t/; pT .t/; gT .t/; JT .t/;  JT .t/ is the state vector of the semidiscretized 

drift-diffusion equations (1.35). Determining the  state  xS.t/  from  Eq. (1.35)  for  

a  given voltage ATe.t/,  say  xS.t/  D  3.AT e.t//,  and  substituting it  into (1.34), we 

Step k 

1 

 
2 

 
3 

Reference parameters Pk 

f1:0000 · 1010g 

f1:0000 · 108; 

1:0000 · 1010g 

f1:0000 · 108; 

1:0608 · 109; 

1:0000 · 1010g 

Max. scaled residual 

(at frequency) 

9:9864 · 102
 

.1:0000 · 108/ 

Max. relative error 

(at frequency) 

3:2189 · 100
 

1:5982 · 10—2
 

.1:0000 · 108/ 

.1:0608 · 109/ 

4:3567 · 10—2
 

2:2829 · 10—2
 

.2:7283 · 109/ 

.3:4551 · 109/ 

1:6225 · 10—2
 

.1:8047 · 1010/ 
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10
12  

10
8

 10
10  

10
12  

10
8

 10
10  

10
12  

 
parameter (frequency) 
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obtain the relationship  
jS.t/ D g.ATe.t//; (1.48) 

 

where g.ATe.t//  WD  #.3.ATe.t/// describes the voltage-current relation for  the 

semidiscretized semiconductors. This relation can be considered as an input-to- 

output map, where the input is the voltage vector ATe.t/ at the contacts of the 

semiconductors and the output is the approximate semiconductor current jS.t/. 

Electrical networks usually contains very large linear subnetworks modeling 

interconnects. In POD MOR we need to simulate the coupled DAE system (1.31)– 

(1.35) in order to determine the snapshots. To reduce the simulation time, we can 

first to separate the linear subsystem and approximate it by a reduced-order linear 

model of lower dimension using the PABTEC algorithm [38, 51], see also Chap. 2 

in this book. The decoupled device equations are then reduced using the POD 

method presented in Sect. 1.4. Combining these reduced-order linear and nonlinear 

models, we obtain a nonlinear reduced-order model that approximates the coupled 

system (1.31)–(1.35). 

 

 
1.6.1 Decoupling 

 
For the extraction of a linear subcircuit, we use a decoupling procedure from [47] 

that consists in the replacement of the nonlinear inductors and nonlinear capacitors 

by controlled current sources and controlled voltage sources, respectively. The 

nonlinear resistors and semiconductor devices are replaced by an equivalent circuit 

consisting of two serial linear resistors and one controlled current source connected 

parallel to one of the resistors. Such replacements introduce additional nodes and 

state variables, but neither additional loops consisting of capacitors and voltage 

sources (CV-loops) nor cutsets consisting of inductors and current sources (LI- 

cutsets) occur in the decoupled linear subcircuit meaning that its index coincides 

with the index of the original circuit, see [13] for the index analysis of the circuit 

equations. An advantage of the suggested replacement strategy is demonstrated in 

the following example. 

Example 1.6.1 Consider a circuit with a semiconductor diode as in Fig. 1.13. We 

suggest to replace the diode by an equivalent circuit shown in Fig. 1.14. If we would 

replace the diode by a current source, then a decoupled linear circuit would have 

I-cutset and, hence, lack well-posedness. Moreover, if we would replace the diode 

by a voltage source, then the resulting linear circuit would have CV-loop, i.e., it 

would be of index two, although the original circuit is of index one. Note that model 

reduction of index two problems is more involved than of index one problems [50]. 

For simplicity, we assume that the circuit does not contain nonlinear devices other 

than semiconductors. Then after the replacements described above, the    extracted 
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Fig. 1.13  RC chain with a diode 

 

 

 

 

 

 
 

 

 

Fig. 1.14  Decoupled linear RC chain with a circuit replacing the diode 

 
 

linear subcircuit can be modeled by the linear DAE system in the MNA form 

 
ExP.t/ D Ax.t/ C Bul.t/; (1.49a) 

yl.t/ D BTx.t/; (1.49b) 

with x.t/ D 
Σ 

eT .t/ eT .t/  jT .t/  jT .t/ 
Σ

, uT .t/ D 
Σ 

iT .t/ jT .t/  vT .t/ 
Σ 

and 
2 

AC;lCAT 
;l  0  0 

3

 
2 

—AR;lGlA
T

;l —AL;l —AV;l 

3
 

E D 
6
4 0 L  0 

7
5; A D 

6
4 T 

L;l 
T 
V;l 

0 0 ; 

0 0 

2

6 
—AI;l   0 

3

7
 

B D 4 0 0 ; (1.49c) 

0 —I 
 

where the incidence and element matrices are given by 

 
AC;l D 

Σ 
AC 

ˇ 

;

  
AL;l D 

Σ 
AL 

ˇ 

;

  
AV;l D 

Σ 
AV 

ˇ 

;

 
 

2 
AI;l 

S   ; 
0   I 

 

(1.49d) 

Σ 
A  A1 A2 

ˇ
 

2 
G  0   0 

3
 

AR;l D 
R S S ; Gl D 4 0  G1   0 5 : (1.49e) 

 2 0   0  G 

0 0  0 A 
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Here, C, L and G are the capacitance, inductance and conductance matrices, A1
 

and A2 have entries in f0; 1g and f—1; 0g, respectively, and satisfy A1 C A2  D AS. 

Moreover, ez.t/ is the potential of the introduced nodes, and the new input variable 

jz.t/ is given by 
 

jz.t/ D .G1 C G2/G—
1 

1g.ATe.t// — G2ATe.t/; (1.50) 
 

where the matrices G1 and G2 are diagonal with conductances of the introduced 

linear resistors in the replacement circuits on the diagonal. One can show that the 

linear system (1.49) together with the decoupled nonlinear equations (1.35), (1.48) 

is state equivalent to the coupled system (1.31)–(1.35) together with the equation 

ez.t/  D .G1 C G2/—1
.
G1.A1  /Te.t/ — G2.A2  /Te.t/ — jz.t/

Σ 
(1.51) 

eR eR 
 

in the sense that these both systems have the same state vectors up to a permutation, 

see [47] for detail. 

 

 
1.6.2 Model Reduction Approach 

 
Applying  the  PABTEC  method  to  the  linear  DAE  system  (1.49),  we  obtain  

a reduced-order model 

Σ Σ 
2 

is.t/ 
3

 
2

6 
yOl;1.t/ 

3

7
 2 

CO 
1 

3 

EO 
dt 

xO.t/ D AO xO.t/ C BO 1  BO 2  BO 3 4 jz.t/ 5 ; yOl;2.t/ 5 D 4 CO 2 
5 xO.t/; 

 

 

where yl;j      CO jx.t/, j      1; 2; 3, approximate the corresponding components of the 

output yl in (1.49b). Combining this reduced model with the semidiscretized drift- 

diffusion equations (1.35) via (1.48), we can determine the approximate snapshots 

which can then be used to compute the POD-reduced model as in (1.42). The 

coupling relation (1.41) can then be approximated by 

OjS.t/ D C1UJn ̨ Jn .t/ C C2UJp ̨ Jp .t/ C C3Ug  ̨ Pg  .t/: (1.53) 

As for the original system (1.34) and (1.35), we denote the relation between ATe.t/ 

and OjS.t/ by  
OjS.t/ D gO .ATe.t//: (1.54) 

 

Using (1.50) and (1.51), we have —.A2/Te.t/ — ez.t/ D —AT e.t/ C G1g.AT e.t//. 

Then it follows from —.A2/T e.t/ — ez.t/  = CO 2xO.t/ that the semiconductor voltage 

(1.52) 

4 

vs.t/ yOl;3.t/ 
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vector  uS.t/ ATe.t/  can  be  approximated  by  uS.t/  satisfying G1CO 2x.t/ 

G1uS.t/ g.uS.t// 0. Thus, combining the reduced linear system (1.52) with 

the reduced semiconductor model (1.42), we obtain a reduced-order coupled DAE 

system 
 

EO 
d 

xO.t/ — .AO C BO  .G  C G  /CO  /xO.t/ — BO  G  uO  .t/ — BO  i .t/ — BO  v .t/ D 0; 

(1.55) 

—G1CO 2xO.t/ — G1uO S.t/ C gO .uO S.t// D 0; 

(1.56) 

OjS.t/ — C1UJn ̨ Jn .t/ — C2UJp ̨ Jp .t/ — C3Ug  ̨ Pg  .t/ D 0; 

(1.57) 

0

B 
0 

1

C

 
0

B 
˛ .t/ 

1

C
 

B
B

— P̨n.   C
C

 ˛ .t/ 
B C 

B
B   ̨Pp.t/CC C APOD B

B ˛p.    CC C U>F .nPOD; pPOD; gPOD/ — U>b.uO S.t//  D 0: 

B
B 

0 C
C 

B
B

˛g  .   CC
 

@ 0 A @ ˛Jn . A 

0 ˛Jp .t/  
(1.58) 

 

Note that model reduction of the linear subsystem and the semiconductor model can 

be executed independently. 

 

 
1.6.3 Numerical Experiments 

 
In this section, we present some results of numerical experiments to demonstrate the 

applicability of the presented model reduction approaches for coupled circuit-device 

systems. 

For model reduction of linear circuit equations, we use the MATLAB Toolbox 

PABTEC, see Chap. 2. The POD method is implemented in C++ based on the 

FEM library deal.II [5] for discretizing the drift-diffusion equations. The obtained 

large and sparse nonlinear DAE system (1.31)–(1.35) as well as the small and 

dense reduced-order model (1.55)–(1.58) are integrated using the DASPK software 

package [9] based on a BDF method, where the nonlinear equations are solved using 

Newton’s method. Furthermore, the direct sparse solver SuperLU [12] is employed 

for solving linear systems. 
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Fig. 1.15  Input voltage and output currents for the basic diode with the voltage-current  rela-  

tion (1.59) 

 

 

Consider again an RC circuit with one diode as shown in Fig. 1.13. The input is 

given by 
 

vs.t/ D uV .t/ D10 sin.2ı f0t/4
 

with the frequency f0 104 Hz, see Fig. 1.15. The output of the system  is y.t/   

jV .t/.  We  simulate the models over the fixed time horizon Œ0; 2:5 ].  The   linear 

resistors have the same  resistance  R  2 kK and the  linear  capacitors have the 

same capacitance C      0:02 µF. 

First, we describe the diode by the voltage-current relation 
 

g.uS/ D 10—14 .exp.40uS/ — 1/ ; (1.59) 

and apply only the PABTEC method to the decoupled linear system (1.49) that 

models the linear circuit given in Fig. 1.14. System (1.49) with nl 1503 variables 

was approximated by a reduced model (1.52) of dimension 24. The outputs y and   

y of the original nonlinear system (1.31)–(1.33), (1.48), (1.59) and the reduced- 

order nonlinear model (1.55), (1.56) with g replaced by g are plotted in Fig. 1.15. 

Simulation time and the absolute and relative L2-norm errors in the output are 

presented in Table 1.4. One can see that the simulation time is reduced by a factor 

of 10, while the relative error is below 2%. 

As the next step, we introduce the drift-diffusion model (1.17)–(1.22) for the 

diode. The parameters of the diode are summarized in Table 1.5. Note that we do not 

expect to obtain the same output y as in the previous experiment. To achieve this, one 

would need to perform a parameter identification for the drift-diffusion model which 

is not done in this paper. In Table 1.6, we collect the numerical results for different 

model reduction strategies. The outputs of the systems with the reduced network 

and/or POD-reduced diode are compared to the full semidiscretized model (1.31)– 
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Network 

(MNA 

equations) 

Unreduced 

Diode 

(DD 

equations) 

Unreduced 

Absolute 

Jacobian error 

Dim. 

7510 

Simul. 

time (s) 

23.37 

evaluations ky — yOkL2 

20 

17 

16 

11 

Relative 

error 

ky — yOkL2 =kykL2 

2:165 · 10—8
 

2:952 · 10—6
 

7:335 · 10—4
 

2:954 · 10—6
 

1:000 · 10—1
 

1:000 · 10—1
 

D 
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Table 1.4 Simulation time and approximation errors for the nonlinear RC circuit with the basic 

diode described by the voltage-current relation (1.59) 

Table 1.5 Diode model 

parameters 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Table 1.6  Statistics for model reduction of the coupled circuit-device system 

 

 

 

 
Reduced Unreduced 6031 16.90 

Unreduced Reduced 1609 1.51 

Reduced Reduced 130 1.19 

 
 

(1.35) with 7510 variables. First, we reduce the extracted linear network and do 

not modify the diode. This reduces the number of  variables by about 20%,  and  

the simulation time is reduced by 27%. It should also be noted that the reduced 

network is not only smaller but it is also easier to integrate for the DAE solver. An 

indicator for the computational complexity is the number of Jacobian evaluations 

or, equivalently, the number of LU decompositions required during integration. 

Finally, we create a POD-reduced model (1.42) for the diode. The number of 

columns s× of the projection matrices U× is determined from the condition ˝×  ≤ 

tolPOD with ˝× defined in (1.36) and a tolerance tolPOD      10—6 for each component. 

We also apply the DEIM method for the reduction of nonlinearity evaluations in 

the drift-diffusion model. The resulting reduced-order model (1.42) for the diode is 

System 

Unreduced 

Reduced 

Dimension 

1503 

24 

Simulation 

time (s) 

0.584 

0.054 

Absolute error 

ky — yOkL2 

5:441 · 10—7
 

Relative error 

ky — yOkL2 =kykL2 

1:760 · 10—2
 

Parameter 

" 

UT 

n0 

µn 

˙n 

µp 

˙p 

˝ 

l1 (length) 

l2 (width) 

l3 (depth) 

N.‡/; ‡1 < l1=2 

Value 

1:03545 · 10—12 F/cm 

0:0259 V 

1:4 · 1010 1/cm3
 

1350 cm2/(V s) 

330 · 10—9 s 

480 cm2/(V s) 

33 · 10—9 s 

N.‡/; ‡1 ≤ l1=2 

FEM-mesh 

10—4 cm 

10—5 cm 

10—5 cm 

—9:94 · 1015 1/cm3
 

4:06 · 1018 1/cm3
 

500 elements, refined at ‡1 D l1=2 

Œ0; l1] — Œ0; l2] — Œ0; l3] 
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Fig. 1.16  Input voltage and output currents for the four model reduction setups 

 
 

a dense DAE of dimension 105 while the original model (1.35) has dimension 6006, 

for the diode only. Coupling it with the unreduced and reduced linear networks, we 

obtain the results in Table 1.6 (last two rows). The simulation results for the different 

model reduction setups are also illustrated in Fig. 1.16. 

The presented numerical results demonstrate that the recoupling of the respective 

reduced-order models delivers an overall reduced-order model for the circuit-device 

system which allows significantly faster simulations (speedup-factor is about 20) 

while keeping the relative errors below 10%. 

Finally, we  note that the model reduction concept developed in  this section     

is not restricted to the reduction of electrical networks containing semiconductor 

devices. It can also be extended to the reduction of networks modeling e.g. nonlinear 

multibody systems containing many simple mass-spring-damper components and 

only a few high-fidelity components described by PDE systems. 
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Chapter 2 

Element-Based Model Reduction in Circuit 

Simulation 

 
Andreas Steinbrecher and Tatjana Stykel 

 
 

Abstract In this paper, we consider model reduction of linear and nonlinear 

differential-algebraic equations arising in circuit simulation. Circuit equations 

obtained using modified nodal or loop analysis have a special structure that can   

be exploited to construct efficient model reduction algorithms. For linear systems, 

we review passivity-preserving balanced truncation model reduction methods that 

are based on solving projected Lur’e or Lyapunov matrix equations. Furthermore,  

a topology-based index-preserving procedure for extracting large linear subnet- 

works from nonlinear circuits is given. Finally, we describe a new MATLAB 

Toolbox PABTEC for model reduction of circuit equations and present some results 

of numerical experiments. 

 
 

2.1 Introduction 

 
As integrated circuits get more complex and different physical effects have to be 

taken into account, the development of efficient  modeling and simulation tools  

for very large networks is highly required. In this context, model order reduction  

is of crucial importance, especially if simulation of large-scale systems has to be 

done in a short time or it has to be repeated for different input signals. A general 

idea of model order reduction is to approximate a large-scale dynamical system by 

a reduced-order model that preserves essential properties like stability and passivity. 

It is also required that the approximation error is small. 

Many different model reduction approaches have been developed in computa- 

tional fluid dynamics, control design and electrical and mechanical engineering, 

see [3, 13, 61, 64] for books on this topic. One of the most used model reduction 

techniques in circuit simulation is moment matching approximation based on Krylov 
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subspace methods, e.g., [6, 25, 30]. Although these methods  are  efficient  for 

very large sparse problems, the resulting reduced-order systems have only locally 

good approximation properties, and stability and passivity are not necessarily 

preserved. Furthermore, passivity-preserving model reduction methods based on 

Krylov subspaces have been developed for structured systems arising in circuit 

simulation [26, 27, 42, 48] and also for general systems [4, 38, 66]. However, none 

of these methods provides computable global error bounds. Another drawback of 

Krylov subspace methods is the ad hoc choice of interpolation points that strongly 

influence the approximation quality. An optimal point selection strategy based on 

tangential interpolation has been presented in [5, 32] that provides an optimal H2- 

approximation. 

In this paper, we present a survey on passivity-preserving balanced truncation 

model reduction methods for linear circuit equations developed in [54, 56, 72]. They 

involve computing the spectral projectors onto the left and right deflating subspaces 

corresponding to the finite and infinite eigenvalues of an underlying pencil and 

solving projected matrix equations. An important property of these methods is the 

existence of computable error bounds that allow an adaptive choice of the order of 

the approximate model. 

Furthermore, we consider model reduction of nonlinear circuits based on decou- 

pling linear and nonlinear subcircuits followed by reduction of the linear part [68]. 

This model reduction approach can also be combined with the POD-based reduction 

technique for semiconductor devices, see Chap. 1, and further with hierarchical 

reduction methods studied in Chap. 4. The developed model reduction algorithms 

for circuit equations were implemented as MATLAB toolbox PABTEC and tested 

on practical problems. 

Notation  Throughout  the  paper,  Rn;m  and  Cn;m  denote  the  spaces  of  n  ~  m 

real  and  complex  matrices,  respectively. The  opepn  left  and  right  half-planes are 
denoted by  C—  and  CC, respectively, and  i  D —1. The matrices AT  and  A×

 

denote, respectively, the transpose and the conjugate transpose of A Cn;m, and 

A—T .A—1/T . An identity matrix of order n is denoted by In or simply by I. We use 

rank.A/, im.A/ and ker.A/ for the rank, the range and the kernel of A, respectively. 

A matrix A   Cn;n is positive definite (semidefinite), if v×Av > 0 (v×Av   0) for 

all non-zero v Cn. Note that positive (semi)definiteness of A does not require A to 

be Hermitian. For A; B Cn;n, we write A > B (A B) if A B is positive definite 

(semidefinite). Furthermore, diag.A1;::: ; As/ denotes a block diagonal matrix with 

block entries Aj, j D 1; : : :  ; s, on the diagonal. 

 
2.2 Circuit Equations 

 
In this section, we briefly describe the modeling of electrical circuits via differential- 

algebraic equations (DAEs) and discuss their properties. For more details on graph 

theory and network analysis, we refer to [1, 20, 22, 40, 75]. 
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2.2.1 Graph-Theoretic Concepts 

 
A general circuit can be modeled as a directed graph G whose vertices (nodes) nk 

correspond to the nodes of the circuit and whose branches (edges) bk1;k2 nk1; nk2 

correspond to the circuit elements like  capacitors, inductors and  resistors.  For  

the ordered pair bk1;k2 nk1; nk2  , we say that bk1;k2  leaves nk1  and enters  nk2 . 

In this case, bk1;k2  is called incident with nk1  and nk2 . An alternating sequence 

.nk1; bk1;k2 ; nk2 ; : : :  ; nks—1 ; bks—1;ks ; nks / of vertices and branches in G is called a path 

connecting nk1 and nks if the branches bkj—1;kj are incident with the vertices nkj—1 and 

nkj for 2     j     s. A path is closed if nk1      nks . A closed path is called a loop if 

nki      nkj for 1     i < j     s except for nk1 and nks . A graph G is called connected 

if for every two vertices there exists a path connecting them. A cutset is a set of 

branches of a connected graph whose removal disconnects the graph, and this set is 

minimal with this property. A subgraph of the graph G is called a tree if it has all 

nodes of G, is connected and does not contain loops. 

A directed graph G with nv vertices, nb branches and nl loops can be described 

by an incidence matrix A0 D Œapq] 2 Rnv;nb with 

 
apq D 

8
<

:

  
1   if branch q leaves vertex p; 

—1  if branch q enters vertex p; 

0 otherwise; 
 

or by a loop matrix B0 D Œbpq] 2 Rnl;nb with 

 
bpq D 

8
<

:

  
1 if branch q belongs to loop p and has the same orientation, 

—1 if branch q belongs to loop p and has the contrary orientation, 

0  otherwise: 
 

For a connected graph, the matrices A0 and B0 satisfy the following relations 

ker.B0/  D im.AT /; rank.A0/ D nv — 1; rank.B0/ D nb — nv C 1; 

see [22, p. 213]. Removing linear dependent rows from A0 and B0, we obtain the 

full rank matrices A Rnv—1;nb and B Rnb—nv C1;nb which are called the reduced 
incidence matrix and the reduced loop matrix, respectively. 

 

 
2.2.2 Modified Nodal Analysis and Modified Loop Analysis 

 
We now consider a general nonlinear RLC circuit that contains nR resistors, nL 

inductors, nC capacitors, nV independent voltage sources and nI independent cur- 

rent sources. Such circuits are completely described by the graph-theoretic relations 

like  Kirchhoff’s current and  voltage  laws  together  with  the  branch constitutive 
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relations that characterize the circuit elements. Kirchhoff’s current law states that 

the sum of the currents along all branches leaving and entering a circuit node is 

zero. Kirchhoff’s voltage law states that the sum of the voltages along the branches 

of any loop is zero. Let 

 

j D Œ jT ;  jT ;  jT ;  jT ;  jT ]T 2 Rnb ;        v D Œ vT ;  vT ;  vT ;  vT ;        vT ]T 2 Rnb
 

 

denote the vectors of branch currents and branch voltages, respectively, and let the 

reduced incidence and loop matrices 

 

A D Œ AR ;  AC ;  AL ;  AV ;   AI ]; B D Œ BR ;  BC ;  BL ;  BV ;  BI  ] 

be partitioned accordingly, where the subscripts R ; C ; L; V and I stand for resistors, 

capacitors, inductors, voltage sources and current sources, respectively. Then 

Kirchhoff’s current and voltage laws can be expressed in the compact form as 

 

A j D 0; B v D 0; 

respectively, or, equivalently, 
 

BT ı D j; AT y D v; 

where ı Rnb—nv C1 and y Rnv—1 denote the vectors of loop currents and node 

potentials. 

The branch constitutive relations for nonlinear capacitors, inductors and resistors 

are given by 

 
d ø. jL / D vL ; jC  D d qC .vC /; jR  D g.vR /; (2.1) 

 

where the functions ø  RnL  RnL , qC  RnC   RnC  and g   RnR   RnR  describe 

electromagnetic fluxes in the inductors, capacitor charges and resistor voltage- 

current characteristics, respectively. For current-controlled resistors, we have also 

the relation vR %. jR /, where % RnR RnR is the resistor current-voltage  

characteristic function. We assume that 

(A1)  the functions ø, qC and g are continuously differentiable and their Jacobians 
 

@ø. jL / 

@jL 
D .  L /; 

@qC .vC / 

@vC 
D .vC /; 

@g.v   / 

@vR 
D  G.vR /; 

 

are positive definite for all jL , vC and vR , respectively. 

This assumption guarantees that inductors, capacitors and resistors are locally 

passive, see [19] for details. 
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Using Kirchhoff’s laws and the branch constitutive relations, the dynamical 

behaviour of a nonlinear circuit can be described using modified nodal analysis 

(MNA) [37] by the following system of DAEs 

E .x/ d x D A x C f .x/ C B u; (2.2) 

where 

y  D BTx; 

2 
ACC .AT y/AT 0 0 

3 2 
0 —AL  —AV 

3
 

0 0 0 
2 

—AR g.AT y/ 
3

 

 

 
T 
V 

2 
—AI 0 

3
 

0 0 

2 
y 

3 

f .x/ D 
6
4  0 

7
5 ; B D 4 0 0 5 ; x D 4 jL  5 ; 

 
 

 

 
 

and the input u and the output y have the form 

u D 

Σ 
jI 

ˇ 

; y D 

Σ 
—vI 

ˇ 

; (2.4) 

vV —jV 

respectively. Another approach for modeling electrical circuits is based on modified 

loop analysis (MLA), see [79]. In this case, the circuit equations take the form (2.2) 

with 

2 
BLL.BT ı/BT

 0 0 
3

 
2 

0 —BC  —BI 
3
 

 

 

0 0 0 T 0 0  (2.5) 
2 

—BR %.BT ı/ 
3

 
2  

0  —BV 
3

 2  
ı 
3 

f .x/ D 
6
4  0 

7
5 ; B D 

6
4 0 0 

—I 0 

7
5 ; x D 4 vC 5 ; 

 

and the input and the output are as in (2.4). 

We assume that the circuit is well-posed in the sense that 

(A2) the circuit does not contain cutsets consisting of current sources (I-cutsets), 

(A3) the circuit does not contain loops consisting of voltage sources (V-loops). 

These assumptions avoid open-circuit current sources and short-circuit voltage 

sources, respectively. Assumption (A2) is equivalent to 

 

rank.Œ AC ; AL ; AR ; AV ]/ D nv — 1; 

0 0 

(2.3) 

jV 0 I 0 

0 0 

A 

B 

vI 0 

扫码可进资料分享群



C 

D D — 

D C D — 

44 A. Steinbrecher and T. Stykel 

 
which is, on the other hand, equivalent to rank.BI/ D nI. In terms of rank conditions, 

(A3) means that rank.AV / nV or, equivalently, rank.Œ BC ; BL ; BR ; BI ]/ nb nv     

1. 

The index concept plays an important role in the analysis of DAEs. To charac- 

terize different analytical and numerical properties of DAE systems, several index 

notations have been introduced in the literature, e.g., [17, 29, 33, 43]. For example, 

the differentiation index is roughly defined as the minimum of times that all or part 

of a DAE system must be differentiated with respect to t in order to determine the 

derivative of x as a continuous function of t and x. In the sequel, we will use the 

shorter term “index” instead of “differentiation index”. The following proposition 

characterizes the index of the MNA system (2.2), (2.3). 

Proposition 2.2.1 ([24, 68]) Consider a circuit satisfying assumptions (A1)–(A3). 

 
1. The index of the MNA system (2.2), (2.3) is at most two. 

2. The index of the MNA system (2.2), (2.3) is equal to zero if and only if 

 
nV  D 0 and rank.AC / D nv — 1: (2.6) 

3. The index of the MNA system (2.2), (2.3) is equal to one if and only if 

 

rank.Œ AC ; AV ]/ rank.AC / nV   and  rank.Œ AC ; AR ; AV ]/ nv    1: 
(2.7) 

 

Similar, rank conditions can also be formulated for the MLA system (2.2), (2.5). 

Considering the topological structure of the circuit, the conditions (2.6) imply    

that the circuit does not contain voltage sources and the circuit graph contains        

a capacitive tree, respectively. Furthermore, the first condition in (2.7) implies that 

the circuit does not contain loops consisting of capacitors and/or voltage sources 

(CV-loops) except for loops consisting of capacitors only (C-loops), whereas the 

second condition in (2.7) means that the circuit does not contain cutsets consisting 

of inductors and/or current sources (LI-cutsets). 

In the following, we will distinguish between nonlinear circuits, which contain 

nonlinear elements, and linear circuits consisting exclusively of linear capacitors, 

inductors and resistors. A circuit element is called linear if the current-voltage 

relation for this element is linear. Otherwise, the circuit element is called nonlinear. 

Without loss of generality we may assume that the circuit elements are ordered such 

that the incidence matrices are partitioned as 

AC  D 
Σ 

ACN ;   ACQ 

Σ 
; AL  D 

Σ 
ALN ;   ALQ 

Σ 
; AR  D 

h 
ARN ;   ARQ  

i 
; (2.8) 

 

where  the  incidence  matrices  ACN ,  ALN  and  ARN   correspond  to  the  linear  circuit 

components,  and  ACQ ,  ALQ  and  ARQ   are  the  incidence  matrices  for  the  nonlinear 
devices. We also assume that the linear and nonlinear elements are not mutually 
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connected, i.e., 

T 

2 
CN 0 

3 2 
LN 0 

3 
2 

GN AT  y  
3

 

C .AC y/ D 4 
e   T     

5 ; L. jL / D 4 
e 

5 ; g.AR y/ D 4

eg  AT      

5 ; 

where CN RnCN;nCN , LN RnLN;nLN and GN RnRN ;nRN  are the capacitance, inductance and 

conductance matrices for the corresponding linear elements, whereas 

n Q nCQ;nCQ n Q nLQ ;nLQ nRQ nRQ 

 
describe  the  corresponding nonlinear  components,  and jL 
through the nonlinear inductors. 

 

 
2.2.3 Linear RLC Circuits 

 
is  the  current vector 

 

For simplification of notation, a linear RLC circuit containing nR linear resistors, nL 

linear inductors, nC linear capacitors, nI current sources and nV voltage sources will 

be described by the linear DAE system 
 

E d x D Ax C Bu; 
 

(2.9) 

 
 

with the MNA matrices 

y D BTx; 

2 
ACCAT  0  0 

3 2 
—ARGAT

 —AL —AV 

3 2 
—AI 0 

3
 

E D 
6
4 0 L   0 

7
5 ; A D 

6
4 T

 0 0   
7
5 ; B D 

6
4 0 0 ; 

0 I 

(2.10) 
 

or the MLA matrices 

2 
BLLBT  0  0 

3 2 
—BRRBT

 —BC —BI 

3 2  
0  —BV 

3
 

E D 
6
4 0 C   0 

7
5 ; A D 

6
4 T

 0 0   
7
5 ; B D 

6
4 0 0 

—I 0 

7
5 : 

(2.11) 

 

Here, the subscripts R; C; L; V and I stand for linear resistors, linear capacitors, 

linear inductors, voltage sources and current sources, respectively, and L    RnL;nL , 

C     RnC;nC , R     RnR;nR  and G     R—1 are the inductance, capacitance, resistance 

and conductance matrices, respectively. Linear circuits are often used to model 

interconnects, transmission lines and pin packages in VLSI networks. They   arise 

0 0   0 A 

0 0   0 B 

T 
V 0 0 

T 
I 0 0 
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also in the linearization of nonlinear circuit equations around DC operating points. 

According to (A1), we assume that 

(A1 )́  the matrices L, C and G are symmetric and positive definite. 

This condition together with (A2) and (A3) guarantees that the pencil hE — A is 

regular, i.e., det.hE    A/    0 for some h     C, see [27]. In this case, we can define  

a transfer function 
 

G.s/ D BT .sE — A/—1B 

of the DAE system (2.9). Applying the Laplace transform to (2.9) with an initial 

condition  x.0/        x0  satisfying  Ex0        0,  we  obtain  y.s/         G.s/u.s/,  where 

u.s/ and y.s/ are the Laplace transformations of the input u.t/ and the output y.t/, 

respectively. Thus, the transfer function G.s/ describes the input-output relation   

of (2.9) in the frequency domain. Note that the MNA system (2.9), (2.10) and the 

MLA system (2.9), (2.11) have the same transfer function. 

For any rational matrix-valued function G.s/, there exist matrices E, A, Bin   and 

Bout such that G.s/ D Bout.sE — A/—1Bin, see [21]. Then the DAE system 

E d x  D  Ax C Binu; 

y  D Boutx; 

is said to form a realization of G.s/. We will also denote a realization of G.s/ by 

G D .E; A; Bin; Bout/. 
The transfer function G.s/ is called proper if  lim G.s/ < 1, and   improper, 

otherwise. If G.s/ is proper and analytic in  CC 

defined as 

s 

,  then the H1-norm  of  G.s/  is 

 

kGkH1 D  sup  kG.s/k D  lim  sup kG.o C i!/k; 
s2CC o ! 0 ! R 

o > 0 

 

where k·k denotes the spectral matrix norm. 

 
2.2.3.1 Passivity 

 
Passivity  is  the  most  important property of  circuit  equations. System (2.9) with 

x.0/ D 0 is passive if 
 

t 

u.˙/Ty.˙/ d˙ 0 (2.12) 
0 

Z 
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for all t 0 and all admissible u such that uTy is locally integrable. Passive elements 

can store and dissipate energy, but they do not generate energy. Thus, capacitors, 

resistors and inductors are passive, while current and voltage sources are not. 

It is well known in linear network theory [1] that the DAE system (2.9) is passive 

if and only if its transfer function G.s/      BT .sE     A/—1B is positive real, i.e., G   

is analytic in C    and G.s/     G.s/×     0 for all s     C   . Since the system matrices 

in (2.10) satisfy E      ET      0 and A     AT      0, the transfer function of (2.9), (2.10) 

is positive real, and, hence, this system is passive. 

 
 

2.2.3.2 Stability 

 
Stability is a qualitative property of dynamical systems which describes the 

behaviour of their solutions under small perturbations in the initial data. For the 

linear DAE system (2.9), stability can be characterized in terms of the finite 

eigenvalues of the pencil hE A,  e.g., [21].  System  (2.9)  is  stable if  all  the  

finite eigenvalues of hE   A lie in the closed left half-plane and the eigenvalues    

on the imaginary axis are semi-simple, i.e., they have the same algebraic and 

geometric multiplicity. System (2.9) is asymptotically stable if the pencil hE    A   

is c-stable, i.e., all its finite eigenvalues lie in the open left half-plane. Note that 

passivity of the MNA system (2.9), (2.10) implies that this system is stable [1, 

Theorem 2.7.2]. Topological conditions for the asymptotic stability of the MNA 

equations (2.9), (2.10) can be found in [58, 59]. 

 
 

2.2.3.3 Reciprocity 

 
Another relevant property of circuit equations is reciprocity. We call a matrix S 2 

Rm;m a signature if  S  is  diagonal and S2  D  Im.  System  (2.9) is  reciprocal with 

an external signature Sext 2 Rm;m if its transfer function satisfies 

G.s/ D SextG.s/T Sext 

for all s 2 C. Obviously, the MNA system (2.9), (2.10) with symmetric L, C and G 

is reciprocal with the external signature Sext D diag.InI ; —InV /. 

 
2.3    Model Reduction of Linear Circuits 

 
Consider the linear MNA system (2.9), (2.10) with E; A   Rn;n and B   Rn;m. We   

aim to approximate this system by a reduced-order model 
 

EO  d xO  D AO xO C BO u; 
 

(2.13) 
yO  D CO xO; 
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where EO , AO  2  Rnr ;nr , BO  2  Rnr ;m, CO  2  Rm;nr  and nr     n. It is required that the 

approximate system (2.13) has a small approximation error y y and also preserves 

passivity and reciprocity. In the frequency domain, the error can be measured  via 

G GO  in an appropriate system norm, where GO .s/ CO .sEO AO /—1BO is the transfer 

function of system (2.13). 

A classical approach for computing the reduced-order model (2.13) is based on 

the projection of system (2.9) onto lower dimensional subspaces. In this case, the 

system matrices in (2.13) have the form 

EO  D WTE T; AO D WTA T; BO D W T B; CO  D BT T; (2.14) 

where the projection matrices W, T     Rn;nr  determine the subspaces of interest.    

In interpolation-based passivity-preserving model reduction methods like PRIMA 

[48], SPRIM [26, 27] and spectral zero interpolation [38, 66], the columns of these 

matrices span certain (rational) Krylov subspaces associated with (2.9). 

Balanced truncation also belongs to the projection-based model reduction tech- 

niques. This method consists in transforming the dynamical system into a balanced 

form whose appropriately chosen controllability and observability Gramians are 

both equal to a diagonal matrix. Then a reduced-order model (2.13), (2.14) is 

obtained by projecting (2.9) onto the subspaces corresponding to the dominant 

diagonal elements of the balanced Gramians. In order to capture specific system 

properties, different balancing techniques have been developed in the last 30 years 

[31, 46, 47, 52, 55, 69]. An important property of these techniques is the existence of 

computable error bounds that allow us to approximate (2.9) to a prescribed accuracy. 

In Sect. 2.3.1, we consider a passivity-preserving model reduction method for 

general RLC circuits developed in [54, 72]. This method is based  on balancing 

the Gramians that satisfy the projected Lur’e matrix equations. For RC circuits 

consisting only of resistors, capacitors, current sources and/or voltage sources, 

this method can significantly be simplified. In Sect. 2.3.2, we present passivity- 

preserving model reduction methods for RC circuits developed in [56]  that rely 

on balancing the solutions of the projected Lyapunov equations. Thereby, we will 

distinguish three cases: RC circuits with current sources (RCI circuits), RC circuits 

with voltage sources (RCV circuits) and RC circuits with both current and voltage 

sources (RCIV circuits). Finally, in Sect. 2.3.3, we discuss the numerical aspects of 

the presented balancing-related model reduction algorithms. 

 

 
2.3.1 Balanced Truncation for RLC Circuits 

 
First, we consider model reduction of general RLC circuits. Note that passivity of 

the MNA system (2.9), (2.10) can be characterized via the projected Lur’e equations 

 
EX .A — BBT /T C .A — BBT / XET C 2PlBBTPT D —2KcK

T ; 
l c 

(2.15) 

EXB — PlBMT D —KcJ
T ; I — M0M

T D JcJ
T ; X  D PrXPT  ≤ 0; 
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and 

ETY.A — BBT / C .A — BBT /T YE C 2PTBBTPr D —2KT K ; 
r o    o (2.16) 

—ET YB C PTBM0 D —KT J ; I — MTM D JTJ Y  D PT YP  ≤ 0 

with unknowns X Rn;n, Kc Rn;m, Jc Rm;m and Y Rn;n, Ko Rm;n, Jo Rm;m, 

respectively. Here, Pr and Pl are the spectral projectors onto the right and left defla- 

ting subspaces of the pencil hE .A BBT / corresponding to the finite eigenvalues 

along the right and left deflating subspaces corresponding to the eigenvalue at infi- 

nity, and 

M0 D I — 2 lim BT .sE — A C BBT /—1B: (2.17) 

In general, the solvability of the projected Lur’e equations (2.15) and (2.16) requires 

that system (2.9) is passive and R-minimal, i.e., 

rank.Œ hE — A ; B ]/ D rank.Œ hET — AT ; B ]/ D n 

for all h C. For the circuit equations (2.9), (2.10), however, the R-minimality 

condition can be removed. 

Theorem 2.3.1 ([54]) Consider an MNA system (2.9), (2.10) satisfying (A1 )́, (A2) 

and (A3). Then the projected Lur’e equations (2.15) and (2.16) are solvable. 

Note that the solutions X and Y of (2.15) and (2.16) are not unique. However, 

there exist unique minimal solutions Xmin and Ymin that  satisfy 0 Xmin X and 

0 Ymin Y for all symmetric solutions X and Y of (2.15) and (2.16), respectively. 

These minimal solutions Xmin and Ymin of (2.15) and (2.16), respectively, are called 

the controllability and observability Gramians of system (2.9). This system is 

called balanced if Xmin     Ymin     diag.˘; 0/, where ˘   diag.˛1;::: ; ̨ nf / with 

˛1     : : :   ˛nf     0 and nf      rank.Pr/. The values ˛j are called the characteristic 

values of (2.9). Based on the energy interpretation of  the  Gramians  Xmin  and Ymin, 

see [55], one can conclude that the truncation of the states of a balanced system 

corresponding to the small characteristic values does not change the system 

properties significantly. The characteristic values and balancing transformation 

matrices can    be determined from the singular value decomposition of the matrix 

YQ T EXQ , where XQ  and YQ  are the Cholesky factors of the Gramians Xmin  D XQ XQ T  and 

Ymin D YQ YQ T . Taking into account the block structure of the MNA matrices in (2.10), 

we have ET  D SintESint and AT  D SintASint with 

Sint D diag.Inv—1; —InL ; —InV /: (2.18) 

This implies that Ymin D SintXminSint. Then instead of the more expensive singular 

value decomposition of YQ T EXQ , we can compute the eigenvalue decomposition of the 

symmetric matrix XQ T SintEXQ . In this case, the numerical solution of only one Lur’e 

equation is required. If hj  are eigenvalues of XQ T SintEXQ , then ˛j        hj . Thus, the 

reduced-order model (2.13), (2.14) can be determined by projecting (2.9) onto the 

subspaces corresponding to the dominant eigenvalues of XQ T SintEXQ . 
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One can also truncate the states that are uncontrollable and unobservable at 

infinity. Such states do not contribute to the energy transfer from the input to the 

output, and, therefore, they can be removed from the  system  without changing  

the input-output relation [69, 71]. For general DAE systems, such states can be 

determined from the solution of certain projected discrete-time Lyapunov equations 

[69]. Exploiting again the structure of the MNA equations (2.9), (2.10), the required 

states can be determined from the eigenvalue decomposition of the symmetric 

matrix .I — M0/Sext with 
 

Sext D diag.InI ; —InV /: (2.19) 

We summarize the resulting model reduction method for RLC circuits in Algo- 

rithm 2.1. 

 

Algorithm 2.1 Passivity-preserving balanced truncation for RLC circuits 
 

Given a passive MNA system (2.9) with E, A,  B  as  in  (2.10),  compute  a  reduced-order  

model (2.13). 

1. Compute the full-rank Cholesky factor X of the minimal solution Xmin XXT of the projected 

Lur’e equation (2.15). 

2. Compute the eigenvalue decomposition 

XQ T SintEXQ D Œ U  ; U  ] 

Σ 
21   0  

ˇ 

Œ U  ; U  ]T ; 

 

where Sint is as in (2.18), the matrix Œ U1; U2 ] is  orthogonal, 21 diag.h1; : : :  ; hr/ and 

22     diag.hr   1; ::: ; hq/. 
3. Compute the eigenvalue decomposition 

 

.I — M0/Sext D U020UT ; 

where M0 is as in (2.17), Sext is as in (2.19), U0 is orthogonal and 20      diag.hO 1; : : : ; hO m/. 

4. Compute the reduced-order system (2.13) with 

EO D 

Σ 
I    0 

ˇ 

; A 
WTA T 

—B1BT T= 

W T BC1=
p

2 

2   I — B1C1=2 

BO D 

Σ 
W T B

p  

ˇ CO  D 
h 

BT T    C 
p  i

 

 

 
where 

 
 

—B1=    2 
; 1=    2   ; 

B1 D S0j20j
1=2UT Sext;     C1 D U  j20j

1=2; 

W D SintXQ U1j21j
—1=2;     T D XQ U1S1j21j

—1=2; 

S0 D diag.sign.hO 1/; : : : ; sign.hO m//;     j20j D diag.jhO 1j; : : : ; jhO mj/; 

S1 D diag.sign.h1/; :::; sign.hr//;   j21j D diag.jh1j; :::; jhrj/: 

 

# 

; 

; 
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One can show that the reduced-order model computed by Algorithm 2.1 pre- 

serves not only passivity but also reciprocity. Moreover, we have the following error 

bound 

kGO  — GkH1 ≤ kI C Gk2
 .˛rC1 C ::: C ˛q/  

;
 

1 — kI C GkH1.˛rC1 C : : : C ˛q/ 

provided kI C GkH1.˛rC1 C : : : C ˛q/  <  1, see [54] for details. Note that this 

error bound requires the computation of the H1-norm of G, which is expensive for 

large-scale systems. If r is chosen in Algorithm 2.1 such that 

kI C GO kH1 .˛rC1 C : : : C ˛q/ < 1; 

then we can estimate 

 
kGO  — GkH1 ≤ 

 
kI C GO k2

 

 
.˛rC1 C ::: C ˛q/ 

 

 

 
; (2.20) 

1 — kI C GO kH1 .˛rC1 C : : : C ˛q/ 

where  only  the  evaluation  of  the  H1-norm  of  the  reduced-order  system  GO  is 

required. 

If the matrix I M0MT is nonsingular, then the projected Lur’e equation (2.15) 

can be written as the projected Riccati equation 
 

EXFT C FXET C EXBTB XET C P B  BTPT D 0; X D P XPT ; (2.21) 

 
where 

c   c l    o   o   l r r 

F D A — BBT — 2PlBMT .I — M MT /—1BTPr; 

Bc D 
p

2 Jc
—1BT Pr; Bo D —

p
2 BJo

—1; 

JcJ
T D I — M0MT ; JTJo D I — MTM0: 

(2.22) 

 

Note that the invertibility of I — M0M
T depends on the topological structure of the 

circuit. 

Theorem 2.3.2 Consider an MNA  system  (2.9), (2.10). Let the matrix  M0  be as  

in (2.17). Then I — M0M
T is nonsingular if and only if 

 

rank.ZT Œ AI ; AV ]/ D nI C nV ; ZT Œ AI ; AV ] D 0; (2.23) 
 

where ZC and ZRC are the basis matrices for ker.AT / and ker.Œ AR; AC ]T /, respec- 

tively. 

Proof The result immediately follows from [54, Theorem 7]. 

The first condition in (2.23) is equivalent to the absence of loops of capacitors, 

voltage sources and current sources (CVI-loops) except for loops consisting of 

capacitive branches (C-loops). The second condition in (2.23) means that the circuit 
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does not contain cutsets consisting of branches of inductors, voltage sources and 

current sources (LVI-cutsets) except for cutsets consisting of inductive branches 

(L-cutsets). 

 

 
2.3.2 Balanced Truncation for RC Circuits 

 
We now present a Lyapunov-based balanced truncation model reduction approach 

for RC circuits. In this approach, the Gramians of system (2.9) are defined as 

unique symmetric, positive semidefinite solutions of the projected continuous-time 

Lyapunov equations 

 

EXAT C AXET D —PlBBT PT ; X D PrXPT ; 

ET YA C AT YE D —PT BBTP ; Y D PT YP : 
 

The numerical solution of such equations is much less exhausting than of the 

projected Lur’e or Riccati equations. For a balanced system, these Gramians are 

both equal to a diagonal matrix 

 

X D Y D diag.˙; 0/; 

where ˙ diag.o1;::: ; onf /. The values oj are called the proper Hankel singular 

values of system G .E; A; B; BT /. They determine which states are important and 

which states can be removed from the system. 

Note that Lyapunov-based balanced truncation does not, in general, guarantee 

the preservation of passivity in the reduced-order model. However, the RC circuit 

equations either have a symmetric structure 
 

E D ET ≤ 0; A D AT ≤ 0; (2.24) 

or they can be transformed under preservation of passivity into a symmetric form. 

Then Lyapunov-based balanced truncation applied to symmetric systems is known 

to be structure-preserving [45] and, hence, also passivity-preserving. All model 

reduction algorithms presented in this section have been developed in [56]. 

 
 

2.3.2.1 RCI Circuits 

 
First, we consider RCI circuits consisting of resistors, capacitors and current sources 

only. The MNA matrices are then given by 
 

E D ACCAT ; A D —ARGAT ; B D —AI: (2.25) 
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Algorithm 2.2 Passivity-preserving balanced truncation for RCI circuits 

 

Given a passive MNA system (2.9) with E, A,  B  as  in  (2.25),  compute  a  reduced-order  

model (2.13). 

1. Compute the full column rank matrices ZC and ZR such that 

im.ZC/ D ker.AT /; im.ZR/ D ker.AT /: 

 

2. Compute a full-rank Cholesky factor X of the  solution X XXT of the projected Lyapunov 

equation 

 
 
 

where 

EXA C EXA D —PBBT P; X D PXP; 

 
P D I — ZR.ZT EZR/—1ZT E — ZC .Z

T AZC /
—1ZTA 

 

is the spectral projector onto the right deflating subspace of hE A corresponding to the finite 

eigenvalues with negative real part. 

3. Compute the eigenvalue decomposition 

XQ T EXQ D Œ U  ; U  ] 

Σ
˙1   0 

ˇ 

Œ U  ; U  ]T ; (2.26) 
 

where Œ U1; U2 ] is orthogonal, ˙1 D diag.o1; : : : ; or/ and ˙2 D diag.orC1; : : : ; oq/. 
4. Compute  the  full-rank  Cholesky  factors  B0   2  Rr0 ;m  and  B1   2  Rr1 ;m  of  the  matrices 

R0 D BT B   and R1 D BT  B given by 

R0 D BT ZR.Z
T EZR/—1Z T B; R1 D —BT ZC .Z

T AZC /
—1ZT B: (2.27) 

 

5. Compute the reduced-order system (2.13) with 

 
 

 
 

 
where 

2 
Ir    0    0 

3
 

0 0    0 

2 
As   0 0 

0    0   —Ir1 

3

5 ;

  
BO D CO T 

2 
Bs  

3 

B1 

As D ˙
—1=2

UT XQ T AXQ U1˙
—1=2    

and    Bs D ˙
—1=2

UT XQ T B: (2.29) 
 

 

Obviously, the symmetry condition (2.24) is fulfilled. In this case, the reduced-order 

system (2.13) can be computed by Algorithm 2.2. 

One can show that the reduced-order system (2.13), (2.28) has the transfer 

function 

GO .s/ D CO .sEO — AO /—1BO D BT .sI — As/
—1Bs 

1 

C 
s 

R0 
C R1; 
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where the matrices R0 and R1 are as in (2.27), and As and Bs are given in (2.29). 

Furthermore, we have the following H1-norm error bound. 

Theorem 2.3.3 ([56]) Let an RCI circuit (2.9), (2.25) fulfill (A1 )́ and (A2). Then  

a reduced-order model (2.13), (2.28) obtained by Algorithm 2.2 is passive and 

reciprocal  with  an  external  signature  Sext   D   InI.  Moreover,  for  the  transfer 

functions  G  and  GO  of  the  original  system  (2.9),  (2.25)  and  the  reduced-order 

model (2.13), (2.28), we have the H1-norm error bound 

kG — GO kH1 ≤ 2.orC1 C : : : C oq/; 

where oj are the proper Hankel singular values of G     .E; A; B; BT / obtained 

in (2.26). 

 
 

2.3.2.2 RCV Circuits 

 
We now consider RCV circuits consisting of resistors, capacitors and voltage 

sources. Unfortunately, the MNA equations for such circuits do not satisfy the 

symmetry conditions (2.24). We can, however, transform the MLA equations with 

the system matrices 

 
0   0 T

 

E 
0   C   

; A D 
T

 

—BC 

0 

 
; B D 

"
—BV 

#  

(2.30) 

 

into a symmetric system. Such a transformation is the frequency inversion 
 

G?.s/ D G.s—1/: 

The transfer function of the transformed system can be realized as 
 

G?.s/ D BT .sE — A /—1B ; 

 
where 

? ? ? ? 

 

E? D BCC—1BT ; A? D —BRRBT ; B? D —BV : (2.31) 
 

Reducing this system and applying the back transformation, we obtain a reduced- 

order model. The resulting model reduction method is given in Algorithm 2.3. 

The following theorem provides the error bound for the reduced model (2.13), 

(2.33). 

# 

0 
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Algorithm 2.3 Passivity-preserving balanced truncation for RCV circuits 

 

Given a passive MLA system (2.9) with E, A,  B  as  in  (2.30),  compute  a  reduced-order  

model (2.13). 

1. Compute the full column rank  matrices YC  and YR  such  that im.YC /  D       ker.BT / and 

im.YR/ ker.BT /. 

2. Compute a full-rank Cholesky factor X of the  solution X XXT of the projected Lyapunov 

equation 

E?XA? C E?XA? D —PB?B
T P; X D PXP; 

where E?, A?, B? are as in (2.31)  and 

P  D I — YR.YTE?YR/—1YTE? — YC.YTA?YC/—1YTA?: 

 

is the projector onto the right deflating subspace of hE? A? corresponding to the finite 

eigenvalues with negative real part. 

3. Compute the eigenvalue decomposition 

XQ T E  XQ D Œ U  ; U  ] 

Σ 
˙1   0  

ˇ 

Œ U  ; U  ]T ; (2.32) 

 

where Œ U1; U2 ] is orthogonal, ˙1      diag.o1; : : : ; or/ and ˙2      diag.or    1; : : : ; oq/. 

4. Compute the matrices 

 

As D ˙
—1=2

UT XQ T A  XQ U  ̇
—1=2

;     Bs D ˙
—1=2

UT XQ T B  ; 

R0 D BT YR.Y
T E?YR/—1YT B?;     R1 D —BT YC.YT A?YC/—1Y T B?; 

RQ 1 D R1 — BT A—1B : 
 

5. Compute the eigenvalue decomposition 

Σ 
RQ 
1 R0 

ˇ 

D Œ V  ;  V  ] 

Σ 
20  0 

ˇ 

Œ V  ;  V  ]T ; 

 

where Œ V1; V2 ] is orthogonal and 20 is nonsingular. 

6. Compute the reduced-order system (2.13) with 

EO D 

Σ 
I  

O
0   

ˇ

; AO D 

" 
AO 1  

O
0   

#

; BO D —CO T  D 

"  
BO 1  

#

; (2.33) 

0 E1 

where AO 1 D A—
s  

1, BO 1 D A—
s  

1Bs and 

0  A1 BO 1 

EO 1 D VT 

Σ 
R0  0 

ˇ 

V  ; AO 1 D VT 

Σ 
RQ 
1 R0 

ˇ 

V  ; BO 1 D V T 

Σ 
RQ 
1 

ˇ 

: 
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Theorem 2.3.4 ([56]) Let an RCV circuit fulfill assumptions (A1 )́ and (A3). Then 

a reduced-order model (2.13), (2.33) obtained by Algorithm 2.3 is passive and 

reciprocal  with  an  external  signature  Sext   D   InV.  Moreover,  for  the transfer 

functions  G  and  GO  of  the  original  system  (2.9),  (2.10)  and  the  reduced-order 

model (2.13), (2.33), we have the H1-norm error bound 

kG — GO kH1 ≤ 2.orC1 C : : : C oq/; 

where oj are the proper Hankel singular values of G? D .E?; A?; B?; B
T / obtained 

in (2.32). 

 
 

2.3.2.3 RCIV Circuits 

 
Finally, we consider RCIV circuits that contain resistors, capacitors and both current 

as well as voltage sources. Such circuits are modeled by the linear system (2.9) with 

the MNA matrices 

A  CAT
 

E D 

 
0 

; A D 

"
—ARGAT

 —AV 

#
 
 
; B D 

"
—AI     0 

#
 
 

(2.34) 

0 0 

 
or the MLA matrices 

T 0 I 

2
0   0   0

3 2
—BRRBT

 —BC  —BI

3 2  
0  —BV 

3
 

E D 
6
40   C   0

7
5; A D 

6
4 T

 0 0  
7
5; B D 

6
4  0 0 

7
5 : (2.35) 

0    0   0 T 0 0 —I 0 
 

Due to the reciprocity, the transfer function of this system can be partitioned in 

blocks as 

 

 

 

 
see [56]. Assume that 

G.s/ 
GII .s/   GIV .s/ 

;
 

—GT .s/ GVV .s/ 

(A4) the circuit does not contain cutsets of current and voltage sources. 

Then GVV .s/ is invertible and G.s/ has a (2,2) partial inverse defined as 

" 
GII.s/ C GIV .s/ G—1.s/ GT .s/ —GIV .s/ G—1.s/

#
 

—G—1.s/ GT  .s/ G—1.s/ 

A 

B 

G.2;2/.s/ D : 

# 
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Algorithm 2.4 Passivity-preserving balanced truncation for RCIV circuits—I 
Given a passive MNA system (2.9) with E, A,  B  as  in  (2.34),  compute  a  reduced-order  

model (2.13). 

1. Compute a reduced-order model GO .2;2/      .EO 2;2; AO 2;2; BO 2;2; CO 2;2/ by applying Algorithm 2.2 to 

the system G.2;2/       .E2;2; A2;2; B2;2; BT 
2/ as in (2.36). 

2. Compute the reduced-order system (2.13) with 

EO D 

Σ 
EO 2;2    0 

ˇ 

; AO D 

"

 
AO 2;2 

—BO T 

 

BO 2    
; 0 B CT BO 1  0 

0   —InV 

ˇ 

: (2.37) 

 

where BO 1 D BO 2;2ŒInI ; 0]T and BO 2 D BO 2;2 Œ0; InV ]
T . 

 

 

This rational function can be realized as G.2;2/.s/ D BT
 .sE 

 
2;2 

— A2;2 
/—1B  

2;2 with 
 

E2;2 D ACCAT ; A2;2 D —ARGAT ; B2;2 D Œ —AI ; —AV ]: (2.36) 
 

Note that the (2,2) partial inversion can interpreted as the replacements of all voltage 

sources by current sources. The system G.2;2/ .E2;2; A2;2; B2;2; B
T 

2/ is symmetric 

and passive. Then applying balanced truncation to this system and reversing the 

voltage replacement, we obtain a required reduced-order model, see Algorithm 2.4. 

The  following  theorem  establishes  the  properties  of  the  reduced-order 

model (2.13), (2.37) and gives an error bound. 

Theorem 2.3.5 ([56]) Consider an RCIV circuit fulfilling assumptions (A1 )́, 

(A3)  and   (A4).  Let  ZR   an  ZC   be  the  basis  matrices  for  ker.AT /      and 
ker.AT /, respectively, and let Z0  be the basis matrix for im.AR/. Assume that 

C 

ATZ .ZTA CAT Z /—1ZTA 
R 

D 0 and ZTA has full column rank. Then the reduced- 

order model (2.13), (2.37) obtained by Algorithm 2.4 is passive and reciprocal 

with  the  external  signature  Sext   D  diag.InI ; —InV /.  Moreover,  for  the transfer 

functions  G  and  GO  of  the  original  system  (2.9),  (2.34)  and  the  reduced-order 

model (2.13), (2.37), we have the error bound 
 

kG — GO kH1 ≤ 2 .1 C c2 C c2 c2/.orC1 C : : : C oq/; 
 

where oj are the proper Hankel singular values of the (2,2) partially inverted system 

G.2;2/, 
 

c1 D k.AT Z .ZTA GATZ /—1ZTA /—1k; 

c2 D kAT HA 1=2 T 1=2 

V 

V 
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with 

H D QZ 0 
.
.Z0 /T ARGAT Z 0 

Σ—1
.Z0 /T QT and Q D I —Z  .ZT A  CAT Z  /—1ZT A  CAT : 

 

An alternative approach for model reduction of RCIV circuits is based on 

considering the frequency-inverted MLA system 
 

 

 
with the matrices 

G?.s/ D G.s—1/ D BT .sE? — A?/
—1B? 

 
E? D 

" 
BC C

—1BT 

 
0 

; A? D 

" 
—BRRBT

 —BI 

#
 
 
; B? D 

" 
0   —BV 

# 

:
 

0 0 T 0 

 

Let G?.s/ be partitioned in blocks as 

—I 0 

G?.s/ D 

" 
G11.s/ G12.s/ 

# 

:
 

 
 

Assume that 

—GT .s/ G22.s/ 

(A5) the circuit does not contain loops of current and voltage sources. 

Then G11.s/ is invertible and G?.s/ has an (1,1) partial inverse defined as 

" 
G—1.s/ G—1.s/ G .s/ 

#
 

GT .s/ G—1.s/ G   .s/ C GT .s/ G—1.s/ G .s/ 

 

 

where 

 
T 
1;1 

12 

.s E1;1 

11 

— A1;1 

22 

/—1B1;1; 

12 11 12 

 

E1;1 D BCC—1BT ; A1;1 D —BRRBT ; B1;1 D Œ —BI; —BV ]: (2.38) 
 

Reducing this symmetric system and reversing the initial transformation, we obtain 

a required reduced-order model. This model reduction method is presented in 

Algorithm 2.5. 

The  following  theorem  establishes  the  properties  of  the  reduced-order 

model (2.13), (2.39) and gives an error bound. 

Theorem 2.3.6 ([56]) Consider an RCIV circuit fulfilling assumptions (A1 )́, 

(A2)  and  (A5).  Let  YR   and  YC   be  the  basis  matrices  for  ker.BT /     and 
ker.BT /, respectively, and let Y0  be the basis matrix for im.BR/. Assume that 

C 

BTY .YTB C—1BTY /—1YTB 
R 

D  0  and YTB has  full  column  rank.  Then the 

reduced-order  model  (2.13),  (2.39)  obtained  by  Algorithm  2.5  is  passive and 

.G?/.1;1/.s/ D 

D B 
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Algorithm 2.5 Passivity-preserving balanced truncation for RCIV circuits—II 

 

Given a passive MLA system (2.9) with E, A,  B  as  in  (2.35),  compute  a  reduced-order  

model (2.13). 

1. Compute a reduced-order  model GO 1 .EO 1; AO 1; BO 1; CO 1/ using Algorithm 2.3, where E?, A? 

and B? are replaced, respectively, by E1;1, A1;1 and B1;1 as in (2.38). 
2. Compute the reduced-order system (2.13) with 

EO D 

Σ 
EO 1    0 

ˇ

; AO D 

" 
AO 1

 BO 11 

#

; BO D 

Σ  
0

 BO 12 

ˇ

; CO  D 

Σ  
0 —InI 

ˇ

; (2.39) 

0    0 CO 11     0 InI   0 CO 21  0 
 

where BO 11 D BO 1ŒInI ; 0]T , BO 12 D BO 1Œ0; InV ]
T , CO 11 D ŒInI ; 0]CO 1 and CO 21 D Œ0; InV ]CO 1. 

 

 
reciprocal with the external signature Sext  D  diag.InI ; —InV /. Moreover,  for   the 

transfer functions G and GO  of the original system (2.9), (2.35) and the reduced- 

order model (2.13), (2.39), we have the error bound 
 

kG — GO kH1 ≤ 2.1 C cQ2 C cQ 2cQ 2/.orC1 C : : : C oq/; 
 

where oj are the proper Hankel singular values of the system  .G?/.1;1/, 
 

cQ 1 D k.BT YC.YT BRRBTYC/—1YT BI/
—1k; 

cQ 2 D kBT HQ BV k
1=2kBT HQ BIk

1=2
 

V I 

 

with 

HQ D QQ Y 0 
.
.Y 0 /T B  RBT Y 0 

Σ—1 
.Y 0 /T QQ T ; QQ  D I—Y  .YT B C—1BTY /—1YTB C—1BT : 

 

Remark 2.3.7 Model reduction methods for RC circuits can also be extended to  

RL circuits which contain resistors, inductors, voltage and/or current sources. 

Observing that the frequency-inverted MNA equations for RLI circuits as well as the 

MLA equations for RLV circuits yield symmetric systems, we can design balanced 

truncation model reduction methods for RL circuits similar to Algorithms 2.2–2.5. 

 

 
2.3.3 Numerical Aspects 

 
The most expensive step in the presented model reduction algorithms is solving 

matrix equations. The numerical solution of the projected Lyapunov and Riccati 

equations will be discussed in Sects. 2.5.1 and 2.5.2, respectively. Here, we consider 

the computation of the matrix M0 and the projectors Pr and Pl required in 

Algorithm 2.1 as well as the basis matrices required in Algorithms 2.2–2.5. 

C C 
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Fortunately, using the MNA structure of the system matrices in (2.10), the matrix 

M0 and the projectors Pr and Pl can be computed in explicit form 

"
I — 2AT ZH—1ZTA 2AT ZH—1ZTA 

#
 

—2AT ZH—1ZTA —I C2AT ZH—1ZTA 
 

2  
H5.H4H2 — I/ H5H4ALH6 0

3
 

Pr D 4 0 H6 0    D SintPl Sint; (2.41) 
—AT .H4H2 — I/ —AT H4ALH6   0 

V V 

where Sint is given in (2.18), and 

H0 D ZT .ARGAT C AIA
T C AVAT /Z; 

R I V 

H1 D ZT    A L—1ATZ ; 
H2 D ARGAT C AIA

T C AV AT C ALL—1AT ZCRIVH1
—1ZT

 VALL—1AT ; 
R I V L 

H3 D ZTH2Z  ; 

CRI L 

H4 D ZCH3
—1ZT ; 

H5 D ZCRIV H1
—1ZT

 VALL—1AT — I; 
CRI L 

H6 D I — L—1ATZ H—1ZT    A ; 
L   CRIV    1 CRIV   L 

Z D ZCZR
0 

IV—C; 

ZC  is a basis matrix for ker.AT /; 

ZR
0 

IV—C is a basis matrix for im.ZT Œ AR; AI; AV ]/; 

ZCRIV is a basis matrix for ker.Œ AC; AR; AI; AV ]T /; 
 

see [54, 72] for details. The basis matrices ZC and ZCRIV can be computed by 

analyzing the corresponding subgraphs of the given network graph as described in 

[23]. For example, the matrix ZC can be constructed in the form 

 

ZC D 

 
1k1 

…C 

6
6
6
4

 

 

: : : 

0 

 

 
 
1ks 

3 

7
7
5

 

 

by searching the components of connectivity in the C-subgraph consisting of the 

capacitive branches only. Here, 1ki      Œ1; : : : ; 1]T      Rki , i       1; : : : ; s, and …C  is     

a permutation matrix. For this purpose, we can use graph search algorithms like 

breadth-first-search [40]. As a consequence, the nonzero columns of 
 

ARIV—C D ZT ŒAR; AI ; AV ] 

M0 D ; (2.40) 
V 

扫码可进资料分享群



— 

2 

7

1

 

— 

C C C  C 

2    Element-Based Model Reduction in Circuit Simulation 61 

form again an incidence matrix. In order to compute the basis matrix ZR
0 

IV   C, we 

first determine the basis matrix 

ZRIV—C 

1l1 

D …RIV—C 

6
6
6
4

 

: : : 

0 

3 

lt 

7
7
5

 

for ker.AT
 / from the associated graph. Then the complementary matrix Z0

 

can be 
RIV   C 

determined as 

ZR
0 

IV—C D …RIV—CSRIV—C; 

RIV—C 

where SRIV—C is a selector matrix constructed from the identity matrix by removing 

1-st, .l1 1/-st, :: :, .l1 : : :  lt 1/-st columns. One can see that the resulting basis 

matrices and also the matrices H0, H1, H2, H3, H5 and H6 are sparse. Of course, the 

projector Pr will never be constructed explicitly. Instead, we use projector-vector 

products required in the numerical solution of the Riccati equation. 

Algorithms 2.3 and 2.5 require the knowledge of the reduced loop matrix B that 

can be obtained by the search for a loop basis in the circuit graph [2, 22, 39, 40]. 

Since the efficiency in the numerical solution of the projected Lyapunov equations 

can be improved if the matrix coefficients are sparse, it is preferable to choose a basis 

of loops with length as small as possible. This kind of problem was treated in [49]. 

The basis  matrices ZR, ZR
0  and  ZC  required in  Algorithms 2.2 and  2.4 can  be 

computed using graph search algorithms as described above. The basis matrices   
YR and YC required in  Algorithms 2.3  and 2.5  can  be determined by searching  

for  dependent loops  in  the  graphs GR  and  GC  consisting  of  the  resistive  and 

capacitive branches, respectively. Furthermore, the basis matrix YR
0  can be obtained 

by removing the linear dependent columns of BR. Such columns can be determined 
by  searching  for  cutsets  in  the  graph  GR,  e.g.,  [2].  For  the  analysis  of loop 

dependency and the search for cutsets in a graph, there exist a variety of efficient 

algorithms, see [40] and the references therein. 

 

 
2.4 Model Reduction of Nonlinear Circuits 

 
In this section, we present a model reduction approach for nonlinear circuits 

containing large linear subnetworks. This approach is based on decoupling the 

nonlinear circuit equations (2.2) into linear and nonlinear subsystems in an appro- 

priate way. The linear part is then approximated by a reduced-order model using 

one of the model reduction algorithms from Sect. 2.3 depending on the topological 

structure of the linear subcircuit. The nonlinear part either remains unchanged or  

is approximated by a trajectory piece-wise linear (TPWL) approach [57] based  on 
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Decoupling 

 
 
 
 
 

 
TPWL, POD PABTEC 

 
 
 
 
 

Recoupling 

 
 
 
 
 

Fig. 2.1  A model reduction approach for nonlinear circuits 

 
 

linearization, or proper orthogonal decomposition (POD), e.g., [65], which relies 

on snapshot calculations. If the circuit contains semiconductor devices modeled by 

instationary nonlinear partial differential equations [67, 73], these equations can 

first be discretized in space and then reduced using the POD method as described in 

[35, 36], see also Chap. 1 in this book. Finally, combining the reduced-order linear 

and nonlinear models, we obtain a reduced-order nonlinear model that approximates 

the MNA system (2.2). The concept of this model reduction approach is illustrated 

in Fig. 2.1. We now describe this approach in more detail. 

First,  we consider the decoupling procedure developed in [68] that allows us  

to extract a  linear subcircuit from a  nonlinear circuit. This procedure is  based   

on the formal replacement of nonlinear inductors by controlled current sources, 

nonlinear capacitors by controlled voltage sources and nonlinear resistors by 

equivalent circuits consisting of two serial linear resistors and one controlled 

current source connected parallel to one of the introduced linear resistors. Such 

replacements are demonstrated in Fig. 2.2, where we present two circuits before and 

after replacements. It should be noted that the suggested replacements introduce 

additional nodes and state variables, but neither additional CV-loops nor LI-cutsets 
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Fig. 2.2  Replacements of nonlinear circuit elements 

 
 

occur in the decoupled linear subcircuit meaning that its index does not exceed the 

index of the original system (2.2). The following theorem establishes the decoupling 

on the equation level. 

Theorem 2.4.1  [68]  Let A1   2 f0; 1g Q and A2
 2 f—1; 0g Q

 satisfy the 
R R 1 2 n  ;n 

relation A A 
RQ Q D A

RQ , and let G1; G2  2 R RQ 
RQ  be symmetric, positive definite. 

Assume that vCQ 2 RnCQ and jz 2 RnRQ  satisfy 

v Q D AT y; 
C CQ 

jz D .G1 C G2/G—
1 

1eg.AT  y/ — G2AT  y: (2.42) 

 

 

 
d 

dt  C 
 

yz D .G1 C G2/—1.G1.A1 /T y — G2.A
2 /T y — jz/ (2.44) 

RQ RQ 

for the additional unknowns yz 2 Rn RQ  and jCQ 2 RnCQ has the same components y, yz, 

jLN , jLQ , jV  and jCQ in the state vector as the system 
 

d T 

Le. jLQ / dt jLQ D A Q y (2.45) 
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coupled with the linear DAE system 

 

E d x`  D Ax` C Bu`; 

 

 

(2.46) 

 

 
where x D 

h 
yT  yT   jT  jT

 

y` D BTx`; 

jT 
iT

, u   D 
h 

jT  jT
 

 

 
jT   vT vT 

iT

, 

2 
ACCAT  0  0 

3 2 
—ARGAT

 —AL —AV 

3 2 
—AI  0 

3
 

E D 
6
4 0 L   0 

7
5 ;   A D 

6
4 T

 0 0   
7
5 ;   B D 

6
4 0 0 ; 

0 I 

(2.47) 
 

and the incidence and element matrices are given by 

" 
A N 

# " 
A N   A

1
 A2  

# Σ 
A N 

ˇ " 

AV    ACQ 

# 

0 

" 
A A2

 

0 —I I 

A   
# 2

GN 

0 0 0 

0 0 
3

 

AI D 
I RQ LQ   ;   G D 4 0    G1     0  5 ; C D CN ; L D LN : 

0 I 0 
0 0 G2  

(2.48) 
 

Note that the system matrices in the decoupled linear system (2.46)–(2.48) are in 

the MNA form. This system has the state space dimension 
 

n` D .nv — 1/ C nRQ  C nLN C nV  C nCQ 

and the input space dimension m`  D nI C nRQ  C nLQ C nV  C nCQ . It should also be 

noted that the state equivalence in Theorem 2.4.1 is independent of the choice of the 

matrices G1 and G2 satisfying the assumptions in the theorem. The substitution of 

nonlinear resistors with equivalent circuits as described above implies that G1 and 

G2 are both diagonal and their diagonal elements are conductances of the first and 

the second linear resistors, respectively, in the replacement circuits. 

The following theorem establishes the well-posedness of the decoupled system 

(2.46)–(2.48). 

Theorem 2.4.2 ([68]) Let a nonlinear circuit satisfy assumptions (A1)–(A3). 

Assume that it contains neither loops consisting of nonlinear capacitors and voltage 

sources (CV-loops) nor cutsets of nonlinear inductors and/or current sources 

(CV-loops). Then the decoupled linear DAE system (2.46)–(2.48) modeling the 

linear subcircuit is well-posed in the sense that 

1. the matrices C, L and G are symmetric and positive definite, 

2. the matrix AV has full column rank, 

` 

0 0   0 A 

AC D ;   AR D 
;   AL D ; 

T 
V 0 0 
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d 
dt 

RQ RQ RQ R R 
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3. the matrix Œ AC; AL; AR; AV ] has full row rank. 

Note that the presence of CV-loops and LI-cutsets in the original circuit would 

lead after the replacement of the nonlinear capacitors and nonlinear inductors by 

voltage sources and current sources, respectively, to V-loops and I-cutsets in the 

decoupled circuit that would violate its well-posedness. 

The next theorem shows that slightly stronger conditions for the original 

nonlinear circuit guarantee that the decoupled linear DAE system (2.46)–(2.48) is 

well-posed and, in addition, has index at most one. 

Theorem 2.4.3 ([68]) Let a nonlinear circuit satisfy assumptions (A1)–(A3). If 

this  circuit  contains  neither  CV-loops  except  for  CN -loops  with  linear  capacitors 

nor LI-cutsets, then the linear system (2.46)–(2.48) modeling the extracted linear 

subcircuit is well-posed and is of index at most one. 

The index one condition for system (2.46)–(2.48) implies that its transfer 

function is proper. The approximation of such systems is much easier than that of 

systems with an improper transfer function [71]. 

Depending on the topology of the extracted linear subcircuit,  we  can  now 

apply one of the model reduction algorithms presented in Sect. 2.3 to the linear 

system (2.46)–(2.48). As a result, we obtain a reduced-order model (2.13) which can 

be combined with the nonlinear subsystem in order to get a reduced-order nonlinear 

model. 

According to the block structure of the input and output vectors of the extracted 

linear DAE system (2.46)–(2.48), the reduced-order model (2.13) can be written in 

the form 

2 
jI

 

6
6   

z 
3

7
7

 
yO`1 

6
6
6 

yO`2 
7
7
7

 

CO 1 

6
6
6 

CO 2 
7
7
7

 
EO d xO` D AO xO` C Œ BO 1;  BO 2;  BO 3;  BO 4;  BO 5 ] 6 j Q  7 ; yO`3 7 D 6 CO 3 7 xO`; 

dt L 

vV 

vCQ 

yO`4 

yO`5 

6
4 CO 4 

7
5 

 
 
 

(2.49) 
 

where yO `j  D  CO jxO` ,  j  D  1; : : : ; 5, approximate the  corresponding components of 
the  output  of  (2.46).  Taking  into  account  that  —AT y = CO 3xO `  and  —j Q   =  CO 5xO `, 

L C 
Eqs. (2.43) and (2.45) are approximated by 

 

Ce.vOCQ / dt vOCQ D —CO 5xO`; Le. OjLQ / 
d OjLQ D —CO 3xO`; (2.50) 

respectively,  where  OjLQ  and  vOCQ  are  approximations  to  jLQ  and  vCQ ,  respectively. 

Furthermore, for jz and yz defined in (2.42) and (2.44), respectively, we have 
 

—.A2  /T y — yz D —AT  y C G—
1 

1eg.AT  y/ D —v Q  C G—
1 

1eg.v Q /: 

CO 5 
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Since —.A2  /T y — yz = CO 2xO`, this equation is approximated by 
 

0 D —G1CO 2xO` — G1vO RQ g.vO RQ /; (2.51) 
 

where vO RQ  approximates vRQ . Combining (2.45), (2.49), (2.50) and (2.51), we obtain 
the reduced-order nonlinear model 

EO.xO/ d xO  D AO xO C fO.xO/ C BO u; 

 

 
(2.52) 

yO  D CO xO; 

where xO D 
h 

xO T ;   OjT ;   vO T ;   vO T   
iT 

, u D 
h 

jT ;   vT  
iT 

and 
 

EO 

EO.xO/ D 
6
6 0 

 
0 0 0 

Le. OjLQ / 0 0 77 ;
 fO.xO/ D 

2

6
6
6 

 
0 
0 7

7
7 ; 

BO 1 BO 4 

BO D 
6
6 0 0 77 ;  (2.53) 

4 0 0 Ce.vOCQ /   0 5 4 5 4 0 0 5 

2 
AO C BO 2.G1 C G2/CO 2 

 
BO 3 

 
BO 5 

BO 2G1 

3

e 

Σ ˇ 

AOD 
6
6
4 

—CO 3 0 0 0 

—CO 5 0 0 0 

—G1CO 2 0 0 —G1 

7
7
5 ;

 CO D 
CO 1   0   0   0 

CO 4   0   0   0 
: (2.54) 

 

This model can now be used for further investigations in steady-state analysis, 

transient analysis or sensitivity analysis of electrical circuits. Note that the error 

bounds for the reduced-order linear subsystem (2.49) presented in Sect. 2.3 can be 

used to estimate the error in the output of the reduced-order nonlinear system (2.52)– 

(2.54), see [34] for such estimates for a special class of nonlinear circuits. 

 

 
2.5 Solving Matrix Equations 

 
In this section, we consider numerical algorithms for solving the projected Lya- 

punov and Riccati equations developed in [55, 70, 71]. In practice, the numerical 

rank of the solutions of these equations is often much smaller than the dimension of 

the problem. Then such solutions can be well approximated by low-rank matrices. 

Moreover, these low-rank approximations can be determined directly in factored 

form. Replacing the Cholesky  factors  of  the  Gramians  in  Algorithms 2.1–2.5 

by their low-rank factors reduces significantly the computational complexity and 

storage requirements in the balancing-related model reduction methods and makes 

these methods very suitable for large-scale circuit equations. 

0 0 0 0 

扫码可进资料分享群



l r 

— 

D 2 

— 

— 

— 
— 

— 

k = 

1 q 

2    Element-Based Model Reduction in Circuit Simulation 67 

2.5.1 ADI Method for Projected Lyapunov Equations 

We focus first on solving the projected Lyapunov equation 

EX AT C AX ET D —PlBBTPT ; X D PrX PT
 (2.55) 

using the alternating direction implicit (ADI) method. Such an equation has to be 

solved in Algorithms 2.2–2.5. The ADI method has been first proposed for standard 

Lyapunov equations [14, 44, 50, 76] and then extended in [70] to projected Lyapunov 

equations. The generalized ADI iteration for the projected Lyapunov equation (2.55) 

is given by 

.E C ˙kA/Xk—1=2AT C AXk—1.E — ˙kA/T D —PlBBT PT ; 
l 

.E C ˙ kA/XTAT C AXT .E — ̇ kA/T D —P BBTPT
 

(2.56) 

k k—1=2 l l 

with an initial matrix X0 0 and shift parameters ˙1; : : :  ; ˙k C—. Here, ˙ k   

denotes the complex conjugate of ˙k. If the pencil hE A is c-stable, then Xk 

converges towards the solution of the projected Lyapunov equation (2.55). The rate 

of convergence depends strongly on the choice of the shift parameters. The optimal 

shift parameters providing the superlinear convergence satisfy the generalized ADI 

minimax problem 

f˙ ;::: ;˙ gD  arg min max j.1 — ˙1t/ · ::: · .1 — ˙q t/j 
;
 

f˙1;:::;˙q g2C—  t2Spf .E;A/ j.1 C ˙1t/ · ::: · .1 C ˙q t/j 

 

where Spf .E; A/ denotes the finite spectrum of the pencil hE    A. If the matrices    

E and A satisfy the symmetry condition (2.24), then hE A has real non-positive 

eigenvalues. In this case, the optimal real shift parameters can be determined by the 

selection procedure proposed in [78] once the spectral bounds 

 
a D minf hk W  hk 2 Sp—.E; A/ g; b D maxf hk W  hk 2 Sp—.E; A/ g 

are  available.  Here   Sp  .E; A/   denotes   the   set   of   finite   eigenvalues   of   

hE   A with negative real part. In general case, the suboptimal ADI parameters   

can be obtained from a set of largest and smallest in modulus approximate finite 

eigenvalues of hE A computed by an Arnoldi procedure [50, 70]. Other parameter 

selection techniques developed for standard Lyapunov equations [15, 63, 77] can 

also be used for the projected Lyapunov equation (2.55). 

A low-rank approximation to the solution of  the  projected  Lyapunov equa- 
tion (2.55) can be computed in factored form X  ZkZ

T using a low-rank version of 

the ADI method (LR-ADI) as presented in Algorithm 2.6. 

In order to guarantee for the factors Zk to be real in case of complex shift pa- 

rameters, we  take  these  parameters in  complex conjugate pairs f˙k; ˙kC1  D  ˙kg. 
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Algorithm 2.6 The LR-ADI method for the projected Lyapunov equation 

 

Given E, A 2 Rn;n, B 2 Rn;m, projector Pl and shift parameters ˙1; ::: ; ˙q 2 C—, compute a low- 

rank approximation X = ZkZT to the solution of the projected Lyapunov equation (2.55). 
 

1.  Z.1/ D —2Re.˙1/ .E C ̇ 1A/—1PlB, Z1 D Z.1/; 
2.  FOR  k D 2; 3; :::  

Z.k/ D 

s 
Re.˙k/ 

.
I — .˙ C ˙ /.E C ̇   A/—1A

Σ 
Z .k—1/; 

 
 

 

 
END FOR 

 
 

Re.˙k—1/ 

Zk  D Œ Zk—1;  Z.k/ ]I 

 

k—1 k k 

 
 

 

Then a novel approach for efficient handling of complex shift parameters in the 

LR-ADI method developed in [16] can also be extended to the projected Lyapunov 

equation (2.55). At each ADI iteration we have Zk   Œ Z .1/;::: ; Z.k/ ]   Rn;mk. To  

keep the low-rank structure in Zk for large mk, we can compress the columns of Zk 

using the rank-revealing QR factorization [18] as described in [9]. 

Finally, note that the matrices .E ˙kA/—1 in Algorithm 2.6 do not have to be 

computed explicitly. Instead, we solve linear systems of the form .E ˙kA/x Plb 

either by computing (sparse) LU factorizations and forward/backward substitutions 

or by using iterative Krylov subspace methods [62]. 

 

 
2.5.2 Newton’s Method for Projected Riccati Equations 

 

We consider now the numerical solution of the projected Riccati equation 
 

EXFT C FXET C EXBTB XET C P B  BTPT D 0; X D P  XPT
 

 

 
(2.57) 

 

with F, Bc and Bo as in (2.22). Such an equation has to be solved in Algorithm 2.1. 

The minimal solution Xmin of (2.57) is at least semi-stabilizing in the sense that all 

the finite eigenvalues of hE — F — EXminBT Bc are in the closed left half-plane. 

Consider the spaces 

 

SPr Df X 2 Rn;n W  X D XT ; X D PrXPT g; 

SPl Df  X 2 Rn;n W X D XT ; X D PlXPT g: 

Since X D PrXPT , EPr D PlE and FPr D PlF, the Riccati operator given  by 

R.X/ D EXFT C FXET C EXBTB XET C P B BTPT
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maps SPr into SPl . Then the Frechét derivative of R at X 2 SPr is a linear operator 

RX
0 W SPr  ! SPl defined as 

1. . Σ 
R 0 .N/ D lim R.X C ıN/ — R.X/ 

for N 2 SPr . Taking into account that N D PrN D NPT , we have 

RX
0 .N/ D .F C EXBTBc/NET C EN.F C EXBTBc/

T : 

 

Then Newton’s method for the projected Riccati equation (2.57) can be written as 

 

Nj D —.RX
0 /—1.R.Xj//; 

XjC1 D Xj C Nj: 

The standard formulation of this method is given in Algorithm 2.7. 

As in the  standard  case  [41],  we  can  combine  the  second  and  third  steps 

in Algorithm 2.7 and compute the new iterate XjC1 directly from the projected 

Lyapunov equation as presented in Algorithm 2.8. 

 
 

Algorithm 2.7 Newton’s method for the projected Riccati equation 
 

Given E, F Rn;n, Bc      R
m;n, Bo      R

n;m, projectors Pr, Pl  and a stabilizing initial   guess X0, 

compute an approximate solution of the projected Riccati equation (2.57). 

FOR j D 0; 1; 2; : : : 

1. Compute Fj D F C EXjB
TB . 

2. Solve the projected Lyapunov equation 
 

FjNjE
T C ENjF

T D —PlR.Xj/P
T ;   Nj D PrNjP

T : 
j l r 

 

3. Compute XjC1 D Xj C Nj. 

END FOR 

 

Algorithm 2.8 The Newton-Kleinman method for the projected Riccati equation 
 

Given E, F Rn;n, Bc      R
m;n, Bo      R

n;m, projectors Pr, Pl  and a stabilizing initial   guess X0, 

compute an approximate solution of the projected Riccati equation (2.57). 

FOR  j D 1; 2; :::  

1. Compute Kj      EXj    1BT and Fj     F KjBc. 

2. Solve the projected Lyapunov equation 
 

EXj F
T C FjXj E

T D —Pl.BoBT — KjK
T /PT ; Xj D PrXjP

T : 
j 

 

END FOR 

o j l r 
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Although Algorithms 2.7 and 2.8 are equivalent, they behave different in finite 

precision arithmetic and there are significant differences in their implementation 

especially for large-scale problems. 

Similarly to the standard state space case [8, 74], one can show that if hE — F is 
c-stable, then for X0 D 0, all hE — Fj are also c-stable and 

j
lim Xj D Xmin, see [10]. 

The convergence is quadratic if the pencil hE — F — EX !1
T

 is c-stable. Some 
minBc Bc 

difficulties may occur if the pencil hE     F has eigenvalues on the imaginary  axis. 

For circuit equations, these eigenvalues are uncontrollable and unobservable [54]. 

In that case, similarly to [12], one could choose a special stabilizing initial guess  

X0 that ensures the convergence of the Newton-Kleinman iteration. However, the 

computation of such a guess for large-scale problems remains an open problem. 

A low-rank approximation to the minimal solution of the projected Riccati 

equation (2.57) can be computed in factored form Xmin      RQ RQ T with RQ     Rn;k, k      n 

using the same approach as in [11]. Starting with K1      EX0B
T and F1      F     K1Bc, 

we solve in each Newton-Kleinman iteration two projected Lyapunov equations 
 

EX1;j F
T C F X1;j E

T D —P B BTPT ; X1;j D P X1;j P
T ; (2.58) 

EX2;j F
T C F X2;j E

T D —P K KTPT ; X2;j D P X2;j  P
T ; (2.59) 

 

for the low-rank approximations X1;j = R1;jR
T 

j and X2;j = R2;jR
T 

j, respectively, 
1; 2; 

and  then  compute  KjC1   D  E.R   RT   — R   RT  /BT  and  FjC1   D   F  C  KjC1Bc. 

If the convergence is observed after jmax iterations, then an approximate solution 

Xmin      RQ RQ T  of the projected Riccati equation (2.57) can be computed in factored 
form by solving the projected Lyapunov equation 

 

EXFT C FXET D —PlQQT PT ; X  D PrXPT
 (2.60) 

 

with Q Œ Bo;  E.X1;jmax  X2;jmax/B
T ] provided hE  F is c-stable. For computing low-

rank factors of the solutions of the projected Lyapunov equations (2.58)–(2.60), we 

can use the generalized LR-ADI method presented in Sect. 2.5.1. Note that in this 

method we need to compute the products .E C ˙Fj/—1w, where w  2    Rn  and 

E C ˙pFj  D E C ˙.A — BB  / — ˙KjBc with the low-rank matrices Bc  2 R     and 

KO j  D 2PlBMT Jc
—T — Kj  2 Rn;m. One can use the Sherman-Morrison-Woodbury 

formula [28, Sect. 2.1.3] to compute these products as 

.E C ˙Fj/
—1w D w1 C MKO   .Im — BcM O /

—1Bcw1

˚
; 

 

where w1  D  .E C ˙.A — BBT //—1w and MKO   D  ̇ .E C ˙.A — BBT //—1KO j  can be 

determined by solving linear systems with the sparse matrix E ˙.A BBT / either 

by computing sparse LU factorization or by using Krylov subspace methods [62]. 
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2.6 MATLAB Toolbox PABTEC 

 
In this section, we briefly describe the MATLAB toolbox PABTEC which provides 

some functions for analysis, model reduction, simulation and visualization  of 

circuit equations. PABTEC stays for PAssivity-preserving Balanced Truncation for 

Electrical Circuits. 

Figure 2.3 shows the main strategy of PABTEC. First, the user has to specify  

the electrical circuit under consideration. The input data for the main routine 

pabtec.m are incidence matrices describing the topological structure of the cir- 

cuit, element matrices for linear circuit components, element relations for nonlinear 

circuit components and some parameters that can be initialized and verified in the 

routine inipar.m. 

Once  the  circuit  is  specified, it  can  be analyzed  with  the  PABTEC  routine 

sysana.m which delivers the information on the topology structure of the circuit, 

well-posedness and index. If the circuit contains nonlinear elements, it will be 

decoupled into linear and nonlinear parts as described in Sect. 2.4. Model reduction 

of the linear (sub)circuit is implemented in the routine pabtecl.m. Linear circuits 

that contain neither inductors nor capacitors and circuits without resistors cannot 

be  reduced with  PABTEC.  For model reduction of  large resistive network,   one 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

Fig. 2.3  MATLAB toolbox PABTEC 
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can use a graph-based algorithm presented in [60], which is not yet included in 

PABTEC. For other network structures, an appropriate model reduction method will 

be chosen automatically. RC and RL circuits are reduced by the Lyapunov-based 

balanced truncation algorithms presented in Sect. 2.3.2, while for model reduction 

of general RLC circuit, Algorithm 2.1 is applied. If the circuit does not contain 

CVI-loops and LIV-cutsets, then the Gramian in this algorithm is determined by 

solving the projected Riccati equation (2.57). Otherwise, we have to solve the 

projected Lur’e equation (2.15). Independent of the topological structure of the 

circuit, the model reduction algorithms include the following steps: preprocessing, 

solving matrix equations, model reduction and postprocessing. In the preprocessing 

step, the basis matrices required in the projector Pr or P are computed using graph- 

theoretical algorithms. If necessary, also the auxiliary matrices Hk and the matrix 

M0 are computed. The projected Lyapunov equations are solved by the LR-ADI 

method described in Sect. 2.5.1, while the projected Riccati equation is solved by 

the Newton or Newton-Kleinman method presented in Sect. 2.5.2. The numerical 

methods for large-scale projected Lur’e equations proposed in [53] will be included 

in a future release of PABTEC. Note that the matrix equation solvers in PABTEC 

can be seen as extension of the corresponding functions in the MATLAB toolbox 

LyaPACK1[51] and its successor MESS.2 Postprocessing involves the computation 

of error bounds and reduced-order initial vectors required for simulation. 

The last step in PABTEC is combination of the reduced-order linear model with 

unchanged nonlinear part. PABTEC includes also the routines simorih.m and 

simredh.m for simulation of the original and reduced-order models, respectively. 

PABTEC provides the following routines: 

• main routines listed in Table 2.1, which can be called by the user in the main 

program; 

• supplementary routines listed in Table 2.2, which are used in the main routines; 

• auxiliary routines listed in Table 2.3 which are used in the main and supplemen- 

tary routines; 

• user supplied routines listed in Table 2.4, which provide the information on the 

circuit. 

The MATLAB toolbox PABTEC can be used by a line command or via a graphical 

user interface (GUI). PABTEC-GUI contains four tab panels shown in Figs. 2.4 and 

2.5 that enable the user to upload the circuit, set up all required parameters, perform 

model reduction, simulate the original and reduced-order systems and save these 

systems and simulation data. 

 
 

 

 

 
 

1http://www.netlib.org/lyapack/. 
2https://www.mpi-magdeburg.mpg.de/projects/mess 
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Table 2.1  Main subroutines in PABTEC 

System analysis and parameter initialization 

Model order reduction 

 
Simulation 

 
Visualization 

 
 
 

Table 2.2  Supplementary subroutines in PABTEC 

Model reduction 

 
Lyapunov equations 

 
Riccati equations 

 

glrnw 

 
glrnwkl 

Low-rank Newton method for the projected Riccati equation, see 

Algorithm 2.7 

Low-rank Newton-Kleinman method for the projected Riccati equation, 

see Algorithm 2.8 

glradi 

glradis 

gpar 

gparsym 

gpar_wach 

LR-ADI method for the projected Lyapunov equation, see Algorithm 2.6 

LR-ADI method for the projected symmetric Lyapunov equation 

Computing the suboptimal ADI parameters 

Computing the suboptimal ADI parameters for symmetric problem 

Computing the optimal ADI shift parameters for symmetric problem 

bt_rcl 

bt_rci 

bt_rcv 

bt_rciv 

bt_rcvi 

bt_rli 

bt_rlv 

bt_rliv 

bt_rlvi 

Balanced truncation for RLC circuits, see Algorithm 2.1 

Balanced truncation for RCI circuits, see Algorithm 2.2 

Balanced truncation for RCV circuits, see Algorithm 2.3 

Balanced truncation for RCIV circuits, see Algorithm 2.4 

Balanced truncation for RCIV circuits, see Algorithm 2.5 

Balanced truncation for RLI circuits 

Balanced truncation for RLV circuits 

Balanced truncation for RLIV circuits 

Balanced truncation for RLIV circuits 

plotgraph Plot a circuit graph 

simorih 

 
simredh 

Simulation of the original nonlinear system using the BDF method with 

h-scaling of the algebraic equations 

Simulation of the reduced-order nonlinear system using the BDF 

method with h-scaling of the algebraic equations 

pabtec 

pabtecl 

pabtecgui 

Model reduction of nonlinear circuit equations via decoupling linear and 

nonlinear parts and reduction the linear subsystem, see Sect. 2.4 

Model reduction of linear circuit equations using the 

passivity-preserving balanced truncation methods presented in Sect. 2.3 

Graphical user interface for PABTEC 

Subroutines Description 

Subroutines Description 

inipar 

sysana 

Initialization of the parameters for other main subroutines 

Analyzing the topological structure, well-posedness, index of the MNA 

system 
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Table 2.3  Auxiliary subroutines in PABTEC 

Graph-theoretical  algorithms 

 
Numerical linear algebra 

 
Miscellaneous 

 
 
 

Table 2.4  User supplied subroutines for PABTEC 

hmatr 

incmat 

ininet 

matr2ascii 

m0m 

mnadae 

Computing the matrices Hk required for the projectors Pr and Pl 

Determination of the incidence matrices 

Initialization of the network topology 

Export the matrix in ASCII-format 

Computing the matrix M0 as in (2.40) 

Construction of E; A; B from incidence and element matrices 

garn 

garnsym 

nresl 

nresr 

prodinvsym 

prodp 

prodpsym 

prodpl 

prodpr 

Arnoldi method for computing the largest and smallest finite 

eigenvalues of a pencil 

Arnoldi method for computing the largest and smallest finite 

eigenvalues of a symmetric pencil 

Computing the residual norms for the projected Lyapunov equation 

using updated QR factorizations 

Computing the residual norm for the projected Riccati equation using 

QR factorization 

Computing the matrix-vector product E—v, where E— is a reflexive 

inverse of symmetric E w.r.t. to a projector P 

Computing the matrix-vector product E—v, where E— is a reflexive 

inverse of E w.r.t. to the projectors Pr and Pl 

Computing the projector-vector product Pv 

Computing the projector-vector product Plv or PT v l 

Computing the projector-vector product Prv or PT v r 

fastlists 

forest 

inc_bas 

 

inc_rank 

loopmatr 

Forming a node-branch-list from an incidence matrix 

Computing a forest in the graph 

Computing the basis matrices for the left null and range spaces 

of an incidence matrix 

Computing the rank of an incidence matrix 

Computing a reduced loop matrix from a reduced incidence matrix 

Subroutines Description 

Subroutines 

netlist 

PCN 

PLN 

gN 

uV 

iI 

Description 

Incidence and element matrices for linear circuit components 

Matrix valued function for nonlinear capacitors 

Matrix valued function for nonlinear inductors 

Nonlinear current-voltage relation for nonlinear resistors 

Voltages of voltage sources 

Currents of current sources 
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Fig. 2.4  PABTEC-GUI: general panel 

 
 

2.7    Numerical Examples 

 
In this section, we present some results of numerical experiments to demonstrate 

the properties of the presented model reduction methods for linear and nonlinear 

circuits. The computations were done on IBM RS 6000 44P Model 270 with 

machine precision " D 2:22 ~ 10—16 using MATLAB 7.0.4. 
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Fig. 2.5  PABTEC-GUI: simulation panel 

 
 

Example 2.7.1  The first example is a transmission line model from [7] consisting of 

a scalable number of RLC ladders. We have a single-input-single-output reciprocal 

passive  DAE  system  (2.9), (2.10) of  order n      60; 000. The  minimal  solution 

of the projected Riccati equation (2.21) was approximated by a low-rank matrix 

Xmin = eR eRT with eR 2 Rn;58 using Newton’s method as presented in Algorithm 2.7. 
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Fig. 2.6 Transmission line: the frequency responses of the original system and the reduced-order 

models computed by the PABTEC, PRIMA and SPRIM methods 

 

 

The original system was approximated by a reduced model of order nr  D     16 

using Algorithm 2.1 with the error bound ˛ D 2:72 · 10—5, where 
 

kI C GO k2
 .˛rC1 C ::: C ˛q/ ; r D 15: 

1 — kI C GO kH1 .˛rC1 C : : : C ˛q/ 

For comparison, we have also computed the reduced models of order nr  117 using 

the PRIMA and SPRIM algorithms [26, 48]. This order was chosen as a smallest 

integer  such  that  the  absolute  error   GO . j!/      G. j!/   for  the  SPRIM  model  is 

below ̨  on the frequency interval Œ10—5; 1010]. In Fig. 2.6, we display the magnitude 

of  the  frequency responses  G. j!/  and  GO . j!/  of  the  original and  reduced-order 

models. Figure 2.7 shows the absolute errors  GO . j!/     G. j!/  and also the error 

bound ˛. One can see that PABTEC provides a much smaller system with keeping 

the better global approximation properties. It should also be noted that the result 

for SPRIM is presented here for the best choice of the expansion point that was 

found after several runs of this algorithm. Taking this into account, the reduction 

time for the PABTEC method becomes comparable to the actual reduction time for 

SPRIM. G 

Example 2.7.2 Next we consider a nonlinear circuit shown in Fig. 2.8. It contains 

1501 linear capacitors, 1500 linear resistors, 1 voltage source and 1 diode. Such 

a circuit is described by the DAE system (2.2), (2.3) of the state space dimension 

n 1503. We simulate this system on the time interval I Œ0 s; 0:07 s] with a fixed 

stepsize 10—5 s using the BDF method of order 2. The voltage source is given by 

vV .t/ D 10 sin.100ıt/4 V, see Fig. 2.9. The linear resistors have the same resistance 

Full order,n=60000 
   

PABTEC, l=16 

  PRIMA, l=117 

SPRIM, l=117 

M
a

g
n
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e
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Fig. 2.7  Transmission line: the absolute errors and the error bound (2.20) 

 

 

Fig. 2.8  Nonlinear RC circuit 
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Fig. 2.9  Voltage source for the RC circuit 

 
 

R D 2 kK, the linear capacitors have the same capacitance C D 0:02 µF and the 

diode has a characteristic curve g.v Q / D 10—14.exp.40 1 v Q / — 1/ A. 

The diode was replaced by an equivalent linear circuit as described in Sect. 2.4. 

The resulting linear system of order n` D 1504 was approximated by a reduced 

model of order nr  D r C r0, where r0  D rank.I — M0/ and r satisfies the condition 

.˛rC1 C ::: C ˛q/  <  tol  with  a  prescribed tolerance tol.  For comparison,   we 
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Fig. 2.10 Outputs of the original and the reduced-order nonlinear systems and the errors in the 

output for the different tolerances (a) 10—2, (b) 10—3, (c) 10—4, (d) 10—5
 

 

compute the reduced-order linear models for the different tolerances tol 10—2, 

10—3; 10—4; 10—5. The numerical results are given in Fig. 2.10. In the upper plot of 

each subfigure, we present the computed outputs y.t/ jV .t/ and y.t/ of the 

original and reduced-order nonlinear systems, respectively, whereas the lower plot 

shows the error  y.t/    y.t/ . 

Table 2.5 demonstrates the efficiency of the proposed model reduction method. 

One can see that for the decreasing tolerance, the dimension of the reduced-order 

system increases while the error in the output decreases. The speedup is defined as 

the simulation time for the original system divided by the simulation time for the 

reduced-order model. For example, a speedup of 219 in simulation of the reduced- 

order nonlinear model of dimension nO D 13 with the error kyO — ykL .I/ D 6:2 · 10—7 

was achieved compared to the simulation of the original system. G 

Example 2.7.3 We consider now the nonlinear circuit shown in Fig. 2.11. It contains 

1000 repetitions of subcircuits consisting of one inductor, two capacitors and two 

resistors.  Furthermore, at  the  beginning and  at  the  end  of  the  chain,  we  have 

a  voltage  source with  vV .t/  D  sin.100ıt/10 V  as  in  Fig. 2.12  and  an additional 
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Table 2.5  Statistics for the RC circuit 

 

 

Fig. 2.11  Nonlinear RLC circuit 
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Fig. 2.12  Voltage source for RLC circuit 

 
 

linear inductor, respectively. In the 1st, 101st, 201st, etc., subcircuits, a linear 

resistor is replaced by a diode, and in the 100th, 200th, 300th, etc., subcircuits, 

a linear inductor is replaced by a nonlinear inductor. The resulting nonlinear circuit 

contains one voltage source, 1990 linear resistors with R1 D 20 K and R2 D 1 K, 

991 linear inductors with L D 0:01 H, 2000 linear capacitors with C D  1 µF, 

ten diodes with g.v Q / D 10—14.exp.40 1 v Q / — 1/ A, and ten nonlinear inductors 

with 

e  R V  R
 

 

Le. j Q / D Lmin C .Lmax — Lmin/ exp.—j2 Lscl/; 

Dimension of the original nonlinear system, n 

Simulation time for the original system, tsim 

Tolerance for model reduction of the linear 

subsystem, tol 

Time for model reduction, tmor 

1503 1503 1503 1503 

24,012 s   24,012 s   24,012 s   24,012 s 

1e-02 1e-03 1e-04 1e-05 

Dimension of the reduced nonlinear system, nO 

Simulation time for the reduced system, Otsim 

Error in the output, kyO — ykL2 .I/ 

Speedup, tsim=Otsim 

15 s 24 s 42 s 61 s 

10 13 16 19 

82 s 110 s 122 s 155 s 

7.0e-06 6.2e-07 2.0e-07 4.2e-07 

294.0 219.0 197.4 155.0 

u
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Fig. 2.13 The outputs of the original and the reduced-order nonlinear systems and the errors in 

the output for the different tolerances (a) 10—2, (b) 10—3, (c) 10—4, (d) 10—5
 

 

where Lmin D 0:001 H, Lmax D 0:002 H and Lscl D 104 1 . The state space dimension 
of the resulting DAE system is n D 4003. 

The numerical simulation is done on the time interval I D Œ0 s; 0:05 s] using the 

BDF method of order 2 with a fixed stepsize of length 5 · 10—5 s. In Fig. 2.13, we 

again present the outputs y.t/ jV .t/ and y.t/ of the original and reduced-order 

nonlinear systems, respectively, as well as the error y.t/ y.t/ for the different 

tolerances tol 10—2, 10—3, 10—4, 10—5 for model reduction of the decoupled linear 

subcircuit. Table 2.6 demonstrates the efficiency of the model reduction method. 

As in the example above, also here one can see that if the tolerance decreases, 

the dimension of the reduced-order system increases while the error in the output 

becomes smaller. In particular, for the approximate nonlinear model of dimension 

n  189 with the error  y  y  L .I/ 4:10  10—5, the simulation time is only 57 s 

instead of 1 h and 13 min for the original system that implies a speedup of 76.8. 

Other results of numerical experiments with PABTEC can be found in Chaps. 1, 4 

and 5 in this book. 
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Table 2.6  Statistics for the RLC circuit 
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Chapter 3 

Reduced Representation of Power Grid Models 

 
Peter Benner and André Schneider 

 

 

 
Abstract We discuss the reduction of large-scale circuit equations with many 

terminals. Usual model order reduction (MOR) methods assume a small number  

of inputs and outputs. This is no longer the case, e.g., for the power supply network 

for the functional circuit elements  on a  chip. Here, the order of inputs/outputs,   

or  terminals, is  often of  the same order as  the number of  equations. In order    

to apply classical MOR techniques to these power grids, it is therefore manda-  

tory to first perform a terminal reduction. In this survey, we discuss several 

techniques suggested for this task, and develop an efficient numerical imple- 

mentation of the extended SVD  MOR  approach for  large-scale problems.  For  

the latter, we suggest to use a truncated SVD computed either by the implic-      

itly restarted Arnoldi method or  the  Jacobi-Davidson  algorithm.  We  analyze  

this approach regarding stability, passivity, and reciprocity preservation, derive 

error bounds, and discuss issues arising in the numerical implementation of this 

method. 

 
 

3.1 Introduction 

 
As already discussed and motivated in the previous chapters, it is  indisputable  

that model order reduction (MOR) in circuit simulation is absolutely necessary. 

This chapter treats the reduction of linear subcircuits. MOR of these (parasitic) 

subsystems  is  part  of  the  research  focus  since  decades.  A  lot  of  approaches 
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are available (see, e.g., Chap. 2 or [11, 47]), but recently a structural change 

handicaps the explored algorithms, even makes them inapplicable in some cases. 

The established approaches assume a relatively small number of input and output 

connections of these parasitic systems, which is no longer true for some situations 

nowadays. In these cases, a simulation of the full  unreduced model  might be 

much faster than the model reduction step itself such that MOR is not reasonable 

anymore. 

It becomes increasingly important also to model the power supply of the 

electronic devices such that a significant class of applications in circuit simula- 

tion, which violates the assumption above, are power grid networks. In modern 

multi-layer integrated circuits (ICs) these power grids are own layers, which are 

responsible for the power supply of functional circuit elements, e.g., transistors.  

As a consequence, there is a need for high connectivity, which leads to math- 

ematical models with a lot of inputs and outputs, i.e.,  one I/O-terminal (also  

called pin) for each supplied element. The development of new MOR methods 

being applicable to such challenging LTI systems is subject matter of this chap-  

ter. 

Our goal is therefore to find a concept to compress the input/output matrices   

in such a way that we get a terminal reduced system with similar behavior. This 

system realization enables then the use of classical MOR methods as described, 

e.g., in the previous chapter. Fundamentally, there are two popular types of MOR 

methods: either we use modal based methods and Krylov subspace (KROM) 

methods [2, 10, 11, 15, 19, 39] or Hankel norm approximations and balanced 

truncation (BT) methods [2, 9–11, 38]. No matter which MOR method we use, 

with the help of the approach to first reduce the terminals and then to reduce the 

order of the system, it is possible to apply the original I/O-data to a  reduced-  

order model. The detailed procedure is described in this chapter. We illustrate 

numerical results obtained for the performance of  this  approach  using  exam- 

ples. 

In Sect. 3.2 we lay the foundations for the approach. We introduce basic defini- 

tions and explain the mathematical systems appearing in this chapter. We highlight 

different notations and special emphasis is given to the concept of the moments   

of the transfer function of a system. Additionally, the numerical examples, which 

play a role throughout the whole chapter, are introduced. In Sect. 3.3  we  attend  

to different approaches tackling MOR of linear systems with  a lot  of terminals.  

In [17], a modified conjugate gradient algorithm is suggested to analyze power 

grids. Also [16, 27] propose rather theoretical ideas, especially in [16] a method  

for terminal compression is introduced, called SVDMOR, and is the starting point 

of our work. In [33], an extended version, the ESVDMOR approach, is published, 

which we explain in detail. Additionally, we analyze the very similar algorithm 

TermMerg [32], which compresses the terminals by merging them together in a 

special manner. We also comment on two approaches based on very different ideas. 

The first approach, SparseRC [25, 26], is based on considering the network as a 

graph. This opens the door to graph theoretical ideas, such as partitioning and 
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node elimination, which leads to a MOR of the system. The second approach is 

based on interpolation of measurements [3, 29]. With the help of the Loewner 

matrix concept we show how to obtain the minimal realization of  a  reduced 

model. 

As our focus is on ESVDMOR, Sect. 3.4 deals with the characteristics of this 

approach. Essential properties of the original system, such as stability, passivity, and 

reciprocity should not be destroyed during the reduction process. The preservation 

of these properties is an important task in circuit simulation. We introduce basic 

definitions and prove that the ESVDMOR approach is stability, passivity, and 

reciprocity preserving under certain conditions following [7]. Also, the analysis of 

the approximation error derived in [8] is reviewed. We also point out the numerical 

bottlenecks and explain how to avoid them. Here, the truncated singular value 

decomposition (SVD) plays an important role. We will basically introduce two 

approaches to perform a truncated SVD efficiently, building upon [6]. In Sect. 3.5, 

we conclude this chapter by assessing the theoretical results and the numerical 

experiments. We give an outlook to problems of interest for future research in the 

area of MOR for power grids. 

 

 
3.2 System Description 

3.2.1 Basic Definitions 

 
Modeling in the area of circuit simulation, and also in areas such as mechanical, 

physical, biological and chemical applications, often leads to linear time-invariant 

(LTI) continuous-time systems of the form 
 

ExP.t/ D Ax.t/ C Bu.t/;  Ex.0/ D Ex0; 

y.t/ D Cx.t/ C Du.t/: 

With reference to circuit simulation we have the following definitions: 

• A 2 Rn—n is the resistance matrix, 

• E 2 Rn—n is the conductance matrix, 

• B 2 Rn—m is the input matrix, 

• C 2 Rp—n is the output matrix, and 

 

(3.1) 

• D Rp—m is the feed-through term, which in many practical applications is equal 

to zero. 

Furthermore, 

• x.t/ 2 Rn contains internal state variables, e.g., currents or voltages, 

• u.t/ 2 Rm is the vector of input variables, and 

• y.t/ 2 Rp is the output vector. 
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To  ensure a unique solution we also need the initial value x0      Rn. The number    

of state variables n is also called the order of the system. The number of inputs m 

and the number of outputs p are not necessarily equal. Unless otherwise noted, we 

assume the matrix pencil .hE — A/ to be regular, i.e., det.hE — A/ ¤ 0 for at least 

one h C. The matrix E is allowed to be singular. In this case, the system (3.1) 

consists of a differential-algebraic equation (DAE) in semi-explicit form combined 

with an output term. Together, the equations in (3.1) form a descriptor system. In 

this chapter, we will use the notation explained above, but other notations are also 

commonly found in the literature, e.g., 
 

CxP.t/ D —Gx.t/ C Bu.t/; Cx.0/ D Cx0; 

y.t/ D Lx.t/ C Eu.t/: 

Applying the Laplace transform to (3.1) leads to 

 
.sExQ.s/ — Ex.0// D AxQ.s/ C BuQ .s/; 

yQ.s/ D CxQ.s/ C DuQ .s/: 

 

(3.2) 

 

After rearranging the DAE and using the initial condition Ex.0/ D Ex0, we get 

.sE — A/xQ.s/ D Ex0 C BuQ .s/; or 

xQ.s/ D .sE — A/—1Ex0 C .sE — A/—1BuQ .s/; 

which we plug into the output term. Assuming Ex0  D 0, .this  term leads to aΣdirect 

 

Definition 3.2.1 (The Transfer Function) The rational matrix-valued function 
 

G. s/ D C.sE — A/—1B C D; (3.3) 

with s 2 C is called the transfer function of the continuous-time descriptor 

system (3.1). If s D i!, then ! 2 R is called the (radial) frequency. 

Note that, for simplicity, we denote y.s/  y.s/ and x.s/  x.s/. The distinction   

between the variables x.t/ and x.s/ should be clear from the context and the differing 

arguments (t indicating time, s frequency domain). Using the notation (3.2), the 

transfer function is sometimes described by 

 

H. s/ D L.sC C G/—1B C E: 

Modified nodal analysis (MNA) modeling of current driven (impedance form) 

RLC power grid circuits, i.e. the inputs are currents from current sources injected 

into the external nodes or terminals of the circuit, leads to systems with the following 

扫码可进资料分享群



0  E2 —AT
 

2 
0 0 

y D 
Σ 

B 0 
Σ 

x; 

k· k k — O k 

3    Reduced Representation of Power Grid Models 91 

block structure [20]: 

Σ 
E1  0  

ˇ 

xP D 

Σ  
A1   A2 

ˇ 

x C 

Σ 
B1 

ˇ 

u; 
 

 
 

T 
1 

 

where A1, E1, E2 are symmetric, A1 is negative semidefinite, E1 is positive 

semidefinite, E2 is  positive  definite,  and  B1  is  an  incidence  matrix  defining  

the terminals. The impedance modeling of RC circuits (i.e., in the absence of 

inductances) yields systems of DAE index 1  consisting of the  upper left  blocks  

of (3.4). If a system is voltage driven (admittance form), i.e., the inputs  are 

terminal voltages provided by voltage sources and the outputs are terminal currents, 

it is possible to rewrite the system  in  impedance form [25].  Please  note that  

RLC circuits of the form above are always passive. More details about this 

characteristic, about the system structure of MNA modeled RLC circuits, and about 

projection type reduction techniques for such current and voltage driven circuits 

are available, e.g., in [22]. The corresponding transfer function of system (3.4)   is 

G.s/ D BT .sE — A/—1B: (3.5) 

So far, MOR  methods,  i.e.,  the  approximation  of  the  system’s  transfer 

function (3.3),  concentrate  on  reducing  the  order  n  of  the  system  to  a  

smaller order nr. Under the assumption that the dimensions of the input  and  

output  vectors  are  much  smaller  than  the  order  of  the  system  itself,        i.e., 

m; p      n; (3.6) 

the important information is identified within the reduced model. Only the states 

containing this input-output information are preserved. A schematic overview of 

this conventional MOR approach is given in Fig. 3.1. 

For the moment, we assume the reduced-order system GO r.s/ to have a fixed order 

nr. The goal is to find GO r.s/  = G.s/ such that kG. : / — GO r. : /k× in minimized in 

some appropriate norm ×. This will yield a small output error y .:  / y. : / × in 

frequency domain, and, ideally, after applying the inverse Laplace transform, also 

in time domain. The smaller nr, the larger is the error, such that it is an additional 

challenge to find the smallest possible nr for a given tolerance. 

As already mentioned in Sect. 3.1, the assumption (3.6) is often violated due to 

new tasks in applications. The circuit simulation of power grids as part of an IC is 

one of the most common examples for these kinds of systems. Before we present 

different methods to handle MOR including, at least transitional, terminal reduction, 

we need a few more basic definitions. 

(3.4) 
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Fig. 3.1  Schematic overview of conventional MOR 

 

Definition 3.2.2 (The i-th Block Moment)  We define the matrix m0 2 Cp—m as 
 

0 
i 1;1 

6
6 m0

 

 

0 
i 1;2 

m0 

 

0 
i 1;m 

::: m0
 

4
6 

: : : : : 
7
5 

 

as the i-th block moment of (3.3). 

The matrices m0 are equal to the coefficients of the Taylor series expansion of (3.3) 

about s0  D 0, 

1 

G.s/ D C.sE — A/—1B D C.In C .s — 0/K /—1L  D .—1/iCK iL .s — 0/i; 
iD0 

 

with K  WD .—A/—1E and L  WD .—A/—1B. 

m0 
i p;1 m0 

i p;2 
::: m0

 
i p;m 

m ::: m 
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Definition 3.2.3 (The i-th s0 Frequency-Shifted Block Moment) We define the 

matrix m
s0 2 Cp—m as 

 
s0 
i  1;1 

6
6 m

s0 

 
s0 

i  1;2 

ms0 

 
s0 

i  1;m 
::: m

s0
 

m
s0 D 6 i  2;1 i  2;2 7 D C.—.s  E — A/—1E/i.s  E — A/—1B; i D 0; 1; : : : 

i 6
4 :

 : : : :
 : 

7
5 

0 0 

   
 

as the i-th s0 frequency-shifted block moment of (3.3). 

The matrices ms0 are equal to the coefficients of the Taylor series expansion of (3.3) 

about s0 ¤ 0 
 

G.s/ D C.sE — A/—1B D C.In C .s — s0/K /—1L (3.7) 

1 

D .—1/ CK  L .s — s0/ ; (3.8) 
iD0 

 

with K     .s0E   A/—1E and L    .s0E   A/—1B. 

The known moment matching methods [20, 21] make use of the fact that for      

s s0, the leading moments carry sufficient information about the dynamics of the 

system to approximate its input-output behavior. A detailed inspection of the block 

moments reveals that the j-th row, j     1; : : : ;  p, of mi , where mi is one of the i-th (s0 

frequency-shifted) block moments, contains information how the output terminal j 

is influenced by all inputs. Analogously, the k-th column of m
s0 , k 1; : : :  ; m, 

provides information about the impact of the input signal at terminal k to all outputs. 

Inspired by this observation, we define two moment matrices formed by n different 

matrices ms0 . 

Definition 3.2.4 (The Input Response Moment Matrix MI )    The matrix  MI 

Cnp—m composed of n different block moment matrices mi 

MI D 
Σ

m0
T ; m1

T ; : : :  ; mT   
ΣT 

(3.9) 
 

is called the input response moment matrix MI of order n of (3.3). 

Definition 3.2.5 (The Output Response Moment Matrix MO)   The matrix MO 

Cnm—p composed of n different block moment matrices mi 

MO D Œm0; m1; : : : ; mn—1]T (3.10) 

is called the output response moment matrix MO of order n of (3.3). 

::: m
s0

 

i  p;m 
ms0 

i  p;2 
ms0 

i  p;1 

m ::: m 

2 

2 
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Remark 3.2.6  The choice of mi  to create MI  and MO, i.e., whether to use    m0  or m
s0 , and of which order n, is free. However, the following facts give hints.        he 

i T 

calculation of the moments requires computational effort of iterative character. In 

addition, lower order moments often contain basic information and the computation 

of higher order moments might be numerically unstable. Therefore, it is recom- 

mended to use all moments mi up to a certain order n. Frequency shifted block 
moments m

s0  are even more expensive to compute. Consequently, making use  of 

them is  only recommended if  a certain  frequency is of  special interest or  there  

is a large approximation error at this frequency. The order n of MI and MO  does  

not need to be equal, but since the information resulting from the most expensive 

computational steps can be shared, it is obviously beneficial to use the same n. In 

the symmetric case, only the computation of one of the response moment matrices 

is necessary. For more information. please see Sect. 3.4.3. 

 

 
3.2.2 Benchmark Systems 

 
In the following, we introduce two examples which accompany this chapter. If 

numerical experiments and results are shown they are with reference to one of the 

following systems. 

 
 

3.2.2.1 A Test Circuit Example 

 
The first numerical example was provided by the former Qimonda AG, Munich, 

Germany. It is a very simple parasitic RC test circuit called RC549, which is a linear 

subcircuit of a much larger nonlinear circuit. The model consists of one hundred and 

forty-one nodes, such that we get n 141 generalized states in the corresponding 

descriptor system equations. Nearly half of these nodes, more precisely 49:65%, are 

terminals. As these terminals are the interconnects to the full circuit, it follows that 

m      p     70. 

Circuit RC549 is a very useful test example because although half of the states 

are terminals, computations do not need a long time, such that a lot of tests can be 

performed in short time. Therefore, this test example was investigated beforehand 

also in [6, 7, 30]. 

 
 

3.2.2.2 Linear Subdomain for Non-linear Electro-Quasistatic Field 

Simulations 

 

This example shows that the introduced methods are also applicable to problems 

which  are  not  results  of  circuit  simulation  modeling.  It  also  shows  that   the 

扫码可进资料分享群



D 

3    Reduced Representation of Power Grid Models 95 

algorithms are applicable to large-scale systems. The simulation of high voltage 

models often includes nonlinear field grading materials, typically as thin layers. 

They allow higher voltage levels for the modeled devices. These materials have     

a highly nonlinear conductivity, leading to nonlinear resistive effects. A common 

way to describe such models is the electro-quasistatic (EQS) approximation. A 

standard finite element method (FEM) discretization results in a stiff system of 

ordinary differential equations (ODEs). To avoid the evaluation of all system 

equations during the integration, MOR is applied to a subdomain, e.g., proper 

orthogonal decomposition (POD), see [42]. Since most of the domain has con- 

stant material parameters (nonlinear field grading materials are used as thin layers), 

the decoupling of the system  in  a  large linear  part  (upper left  block) and a 

small conductive part (lower right  block)  including  nonlinearities,  such that 

Σ
M11 M12

ˇ Σ
xP 1.t/

ˇ 

C 

Σ
K11 K12

ˇ Σ
x1.t/

ˇ 

D 

Σ
b1.t/

ˇ 

;
 

M21 M22 xP2.t/ K21 K22 x2.t/ b2.t/ 

is possible. For details, see [42]. The matrices M and K denote the  discrete div-

grad operators with respect to permittivity and conductivity. The state vector x.t/ 

contains the nodes potentials.  The  vector  b.t/  contains  boundary  condi-  tion 

information, but only the components of b.t/ with real input are nonzero. Therefor,  

b.t/  can  be  seen  as  the  vector  of  inputs  mapped  to  the  system  by 

an  incidence  matrix,  such  that  b.t/ BO u.t/,  resulting  in  the  system  equa- 

tions 

Σ
M11 M12

ˇ Σ
xP 1.t/

ˇ 

C 

Σ
K11 K12

ˇ Σ
x1.t/

ˇ 

D 

Σ
BO 1

ˇ Σ
u1.t/

ˇ 

:
 

M21 M22 xP 2.t/ K21 K22 x2.t/ BO 2 u2.t/ 

 

Having a look at the second row, we get 
 

M22xP 2.t/ C K22x2.t/ D BO 2u.t/ — M21xP 1.t/ — K21x1.t/; (3.11) 

which   represents   only   the   linear   part,   input   information   u   and intercon- 

nect  information  to   the   conductive  subdomain  variables   xP 1.t/   and   x1.t/.   A 

reformulation of this equation leads to  a  system  equivalent  to  system  (3.1),  

i.e., 

Σ   Σ 
2 

u.t/ 
3

 
M22 xP2.t/ D  —K22  x2.t/ C BO 2 —K21 —M21 4x1.t/5 : (3.12) 

„
W

ƒ
D

‚
E

… „ƒ
WD

‚
A

… 
„ 

W

ƒ
D

‚
B 

…   
xP1.t/ 

 

W.l.o.g., we assume C  D BT . The system, called eqs_lin in this work, is of   order 

n D 14;261 with m D p D 2943 terminals  (20:6%). 
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3.3 Terminal Reduction Approaches 

 
In this section we will provide an overview about some existing methods which 

tackle the problem of MOR for systems with a high number of terminals 

(inputs/outputs). In general, we assume that the original system has too many  

input and/or output terminals to use conventional MOR approaches, so that the 

extra step of terminal reduction is necessary. 

 

 
3.3.1 (E)SVDMOR 

 
Having a closer look at (3.1), we recognize that the matrices C and B carry the 

input and output information. Trying to approximate (3.3) considering that (3.6) is 

violated motivates the idea to modify these input/output matrices. For this purpose, 

we try to find a projection of the . p m/-transfer function G.s/ onto a .ro  ri/-  

transfer function Gr.s/ such that ro p and ri m. To achieve this, we look for a 

decomposition of the transfer function such that 

bG.s/ = VC 

Σ
WTC.sE — A/—1BVB

Σ 
WT

 

 
(3.13) 

„ 
WD

ƒ
G

‚
r .s/ 

…
 

 

with VC; WC  2  Rp—ro  and VB; WB  2  Rm—ri . Of course, the projector   properties 

WTVC  D  Iro  and  WTVB  D  Iri  should  hold.  The  so-obtained  internal  transfer 

function Gr.s/ can be interpreted as a transfer function of a dynamical system with 

fewer virtual input and output terminals. This system can be further reduced with 

any method for model reduction of linear descriptor systems. Again, a schematic 

overview of this approach is shown in Fig. 3.2. 

In what follows, we try to make use of the intimate correlations between the 

input and the output terminals. ESVDMOR [32, 33, 35, 47], an extended version 

of SVDMOR [16, 47], is  a method which is  based on the SVD of the input      

and the output response moment matrices MI and MO, see Definitions 3.2.4 and 
3.2.5. Note that we assume the number of rows in each of both matrices to be 

larger than the number of columns. If this is not the case, the order n has to be 

increased. 

Applying the SVD, we get a low rank approximation of the form 
 

MI D UI ̇ IVI
× = UIri ̇

Iri 
VI

×
ri 
; MO D UO˙OVO

× = UOro ̇ Oro 
VO

×
ro 

; (3.14) 

where 

• for any matrix Z, Z× is its conjugate transpose—in case s0   0, the SVD is real 

and we can work with just the transpose ZT , but for complex s0, the moment 

matrices are in general complex, too; 
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Fig. 3.2  Schematic overview of terminal and model order reduction 

 
 

• ˙Iri  
is an ri ~ ri diagonal matrix and ˙Oro  

is an ro ~ ro diagonal matrix; 
• VIri 

and VOro 
are m ri and p ro isometries (i.e.,  matrices  having  orthog- 

onal/unitary columns) containing the dominant row subspaces of MI and MO, 
respectively; 

• UIri 
and UOro 

are np    ri and nm    ro isometries that are not used any further, 
• ri and ro are in each case the numbers of significant singular values. At the same 

time they are the numbers of the reduced virtual input and output terminals. 

For ease of notation, we furthermore assume that a real expansion point s0 was 

chosen, so that the SVDs (3.14) are real and we can work with transposes in the 

following. 

The  important  information  about  the  input  and  output  correlations  is  now 
contained in VT

 
i 

and VT
 

o 
. Our goal is to decompose C and B. Combining this 

扫码可进资料分享群



Iri 

Ir 

· 

Iri 
ri Iri 

ri ri 

Iri 

Ir Iri 

0 D 

0 0 

98 P. Benner and A. Schneider 

 

information leads to  
C = VOro

 

 
Cr and B = BrV

T : (3.15) 
 

The  matrices  Cr   2  Rro—n  and  Br   2  Rn—ri  are  consequences  of  applying the 

Moore-Penrose pseudoinverse of VOro
 

and VT
 
i 
to C and B, respectively. The Moore- 

Penrose pseudoinverse is denoted by . /C. Equation (3.15), solved for Cr and Br and 

modified by the definition of the Moore-Penrose pseudoinverse, leads to 
 

Cr D VC C D .VT
 VO  /

—1VT C D VT
 C (3.16) 

 
and 

Oro Oro ro Oro Oro 

Br D B 
.
VT 

˚C 

D BVI .V
T VI /—1 D BVI 

 
: (3.17) 

 

Hence, we get a new internal transfer function Gr.s/ 
 

G.s/ = bG.s/ D VOro
 Cr .sE — A/—1Br V

T ; 
„ 

WD

ƒ
G

‚
r .s/     

…
 

 

which is equivalent to (3.13). The terminal reduced transfer function Gr.s/ is 

reduced to 
 

Gr.s/ = GQ r.s/ D CQ r.sEQ — AQ /—1BQ r (3.18) 

by any conventional MOR method. The result is a very compact terminal and order 

reduced model GQ r.s/. The complete approximation procedure is 
 

G.s/ = bG.s/ D VOro
 Gr.s/VT

 
i 
= bGr.s/ D VOro

 GQ r.s/VT : (3.19) 

 

Remark 3.3.1 SVDMOR can be considered as a special case of  ESVDMOR  

setting (3.9) and (3.10) up with n 1 and m0. Furthermore, in [16] a recursive 

decomposition of the matrix-transfer function and an application of SVDMOR to 

each block, the so called RecMOR approach, is suggested. 

Figures 3.3, 3.4, 3.5 and 3.6 show the reduction of RC549 to 5 generalized states 

via one virtual terminal by ESVDMOR. The reduction step in (3.18) is performed 

by balanced truncation, in particular, using the implementation called “generalized 

square root method” [38]. In Fig. 3.3 it is clearly identifiable that one singular value 

of MI  D  m0, and  therefore also  of  MO  D  
.
m0

ΣT 
, dominates. Consequently, the 

system can be reduced to one virtual terminal. The calculation of frequency-shifted 

or  higher order moments is  more costly  and in  this  example not  necessary. For 
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1016 

Singular value decay of MI = m0 of RC549, 

red singular values neglected. 
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Fig. 3.3   Singular value decay of RC549, MI D m0, one virtual terminal 

Transfer function matrix of RC549 reduced via one virtual terminal. 
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Fig. 3.4 Transfer function matrix of RC549 reduced with ESVDMOR to 5 states via 1 virtual 

terminal 
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Absolute reduction error of RC549, n = 141, r = 5 via 1 terminal. 
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Fig. 3.5 Absolute and relative error of RC549 reduced to 5 states via 1 virtual terminal 

 
 

now, we follow the approach to explicitly calculate the matrices MI and MO and 

perform a full SVD in (3.14), see Full matrices (svd) in the legends. In contrast to 

the TermMerg approach, see the next subsection, the ESVDMOR approach does 

not allow to directly identify which state represents the dominant behavior of the 

terminals best. Since the spectral norm plot of the transfer function, see Fig. 3.4, 

and the magnitude plot of node one of the system, see Fig. 3.6, are quite similar, we 

can conclude that node one is representative for all terminals. This is expectable for 

all terminal nodes because of the one dominant singular value. The phase plot makes 

clear that the approximation within the  frequency range of  importance between 

103 and 109 Hz is sufficient. Outside of this range, the phase approximation is not 

accurate. Figure 3.5 shows the overall approximation error of the reduced system. 

Although the absolute errors seems to be very large, the relative errors show that 

the approximation in spectral norm is acceptable, at least in the frequency range of 

interest. 
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PhaseandmagnitudeplotofRC549,node1, 

original(blue,n=141)andreducedsystem 

(green,r=5via1virtualterminal). 
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Fig. 3.6  Bode plot of node 1 of RC549 reduced to 5 states via 1 virtual terminal 

 
 

3.3.2 TermMerg 

 
Based on a similar idea as ESVDMOR, the TermMerg approach was introduced  

in [34]. As can be suspected by its name, the approach merges terminals. If some 

terminals are similar in terms of performance metrics (timing, delays), those are 

identified and grouped as one terminal. TermMerg is, as well as ESVDMOR, 

based on the higher order moment responses. It additionally takes time delays into 

account while clustering the terminals. The input and output terminals are clustered 

separately. Terminals with similar timing responses are merged to one representative 

terminal. The number of clusters for the grouping is calculated by an SVD low rank 

approximation of the input and output response moment matrices MI and MO. The 

k-means clustering algorithm is used to group the column vectors of these matrices 

to different clusters. For each of them, one terminal is selected to represent all other 

terminals of this cluster. Adaptation of the input and output position matrices B and 
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C with respect to the representing vector of each cluster leads to a reduction in the 

number of terminals. 

 
 

3.3.2.1 The k-Means Clustering Algorithm 

 
The k-means clustering is a cluster analysis method to partition n observations into k 

clusters Cli, i D 1; 2; : : : ;  k. Each observation belongs to the cluster with the nearest 

mean. We take a set of observations .x1; x 2;::: ; xn/, with xj    R` for j     1; : : : ;  n, 

for granted. The k-means clustering aims to partition the n observations such as to 

minimize the within-cluster sum of squares 
 

k 

S D kxj — µijj
2: (3.20) 

iD1  xj2Cli 

The vector µi represents the geometric centroids of the data in Cli. The final result is 
a set of k disjoint subsets Cli containing Ni data points each and n D 

Pk   
Ni. One 

i   1 

of the most commonly used k-means algorithms is the Lloyd algorithm [36] which 

gives the global minimum of S in (3.20). The three main steps of the algorithm  

are: 

• Initialization: Set k initial means µ1
1;::: ; µk 

1. 

• Assignment: Each observation is assigned to the cluster with the closest mean, 
 

Cli
t D .xj W jjxj — µi

tjj ≤ jjxj — µi− 
tjj/; 

for j 1; : : : ;  n, i× 1; : : : ; k, and t denotes the iteration number, and 

• Update: The new center vectors of each cluster are calculated by, 

µtC1 D
 X

 
 

xj: 
 

 

The algorithm is repeated until there is no more change in the assignment step. The 

structure of this algorithm is responsible for the sensitivity to the initial choice of the 

number of clusters and their cluster centers. Fortunately, we calculate the number 

of clusters beforehand by using the truncated SVD in (3.14). Note that the number 

of reduced inputs ri and ro is equivalent to the number of input and output clusters, 

respectively. 

Assume xj; j 1; : : : ; m, to be a column vector of MI  containing the moments 

w.r.t. to one input node (node j) and all output nodes such that 

 
MI D Œx1; x2; : : : ; xm]: 

xj2Cli
t 
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Following the Lloyd algorithm, we pick k different vectors out of the xj’s  as  

initial means, perform the steps described above, and save the resulting clusters 

Cl1;::: ; Clri as well as the corresponding centers µ1;:::  ; µri . Within TermMerg, we 

select one representative terminal for each cluster. For each Cli we find the element 

xj for which the distance from µi is the minimum among all elements in Cli. 

Example 3.3.2  We consider a very simple matrix A defined as follows: 

 

A 
1 3 5 7   

:
 

2 4 6 8  
 

Suppose we group the four columns into two clusters Cl1 and Cl2. We choose the 

initial  centroids  randomly  as  µ1
1    .3; 4/T  and  µ2

1   .5; 6/T .  We  compute  a 

distance matrix containing the squared Euclidean distances of each element (column 

index) to each cluster (row index). For the first element a1 .1; 2/T , the distance 

from the first centroid is given by .1   3/2   .2   4/2   8. We construct the distance 

matrix as 

D 
8  0 8 32   

:
 

32 8 0  8 

 

The first set of clusters is Cl1
1        a1; a2   and Cl2

1  a3; a4  . The new centroids are 

µ1
2    .2; 3/T  and  µ2

2    .6; 7/T .  We  repeat the process,  and  the  second set  of 

clusters turns out to be the same as the first one. Consequently, the centroids stay 
the same. Since there is no further change in the centroids, the four columns can be 

clustered into Cl1
2 and Cl2

2. 

 

3.3.2.2 The Reduction Step 

 
Once we know the number of clusters for inputs and outputs, we perform k-means 

to cluster the terminals. We find the representative terminal for each cluster and 

accordingly replace columns of the input position matrix B and the rows of the 

output position matrix C. We include only the representative terminals. 

 

 
3.3.3 SparseRC 

 
In this subsection we comment on an approach based on a completely different idea 

from the one used in the approaches we introduced up to now. Indeed, SparseRC, 

which is introduced in [25, 26], also performs MOR although the number of 

terminals may be very large. A specialty is that the approach is considerably more 

user-oriented. Its application is the reduction of parasitic RC circuits in simulation, 
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e.g. power grids. In [26], the following five basic objectives for successful model 

reduction are mentioned: 

• the approximation error   G. : /     GO . : /   is small in an appropriate norm, 

• stability and passivity are preserved, 

• an efficient computation is possible, 

• for reconnection, the incidence input/output matrix B is preserved in some sense, 

i.e., BO is a sub-matrix of B, and 

• the reduced system matrices EO and AO are sparse. 

While the first three items can be nearly taken for granted in MOR, the last two items 

are user-oriented specifications which are hard to meet. Even if the last item may be 

satisfied by some approaches, the next-to-last item is in general not satisfied as in 

most conventional MOR methods, the reduced model is not sparse. The SparseRC 

approach promises to fulfill these five items. The basic idea is to apply extended 

moment matching projection (EMMP), see next section, to disjoint parts of the 

original system. 

 
 

3.3.3.1   MOR via Graph Partitioning and EMMP 

 
Following [26], the EMMP (derived from an algorithm based on pole analysis via 

congruence transformations called PACT [28] and from sparse implicit projection 

(SIP), see [48]) is a moment matching type reduction approach suitable for multi- 

terminal systems with only a few terminals. Within SparseRC, this projection 

method is applied to subsystems connected via so called separator nodes. Each 

subsystem has just a few terminals and the connection of all reduced subsystems 

leads to a reduced-order version of the original system. 

Assume such a subsystem is given as an LTI system obtained from modeling an 

RC circuit. In this situation, system (3.4), re-arranged and in frequency domain, can 

be written as 
 

.sE — A/x.s/ D Bu.s/; (3.21) 

when ignoring the output term. Now we do a simple block separation into selected 

nodes xs (terminals and separator nodes) and internal nodes xi. This leads to 

.

s 

Σ 
Ei  Ec

ˇ 

— 

Σ 
Ai  Ac

ˇΣ Σ
xi 

ˇ 

D 

Σ 
0 
ˇ 

u;

 

 

where Ai; Ei    R.n—s/—.n—s/, Bs    Rs—s with s    m being the number of selected  

nodes, i.e. the number of terminals m plus the separator nodes which are preserved 

because of the coupling within SparseRC. Applying a congruence transform  with 
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W WD —A—
i  

1Ac and 

X 
In—s W  

; 
0   Is 

xN D XTx 

such that .A; E; B/ are mapped to .XTAX; XTEX; XTB/, yields 
.

s 

Σ 
Ei  EN c

ˇ 

— 

Σ
Ai  0 

ˇΣ Σ
xi 

ˇ 

D 

Σ 
0 
ˇ 

u; (3.22) 

with 

EN T  EN s 0  AN s xNs Bs 

EN c D Ec C EiW; 

EN s D Es C WT EiW C WT Ec C ET W; (3.23) 

AN s D As C AT W : (3.24) 

Solving the first row in (3.22) for xi and plugging the result into the equation of the 

second row of (3.22) leads to 
 

.sEN s — AN s/xNs — s2EN T .sEi — Ai/
—1EN cxN s D Bsu: 

Following [26] further on, the first two moments of system (3.21) at s D 0 are given 

by EN s and AN s in (3.23) and (3.24). Consequently, a reduced-order model AO ; EO     Rk—k, 

k   s, which preserves the first two admittance moments of (3.21) can be computed 

via a moment matching projection V D 
Σ

WT I 
ΣT 

given by 
 

AO D VT AV; BO  D VT B; 

EO  D VT EV; and xO D VT x D xN s: 
 

The question remains how to partition the original RC system with many terminals 

in an appropriate way such that we can apply EMMP  to  the subsystems. There  

are two goals during this process, which depend on each other. One is to find a 

partitioning and the second is to avoid fill-in such that the reduced model is still 

sparse. Usually, fill-in minimizing matrix reordering techniques similar to those 

used to compute an efficient Cholesky factorization can identify nodes causing 

fill-in. SparseRC avoids these techniques due to circuit size or topology. Instead, 

graph decomposition based on the non-zero pattern (nzp) of E  A is used due to   

the analogy between circuit models and graphs. The fill-creating nodes, i.e., the 

separation nodes, are identified and the circuit matrices are reordered in a so-called 
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bordered block diagonal (BBD) form [49]. In this form, the individual blocks  

form the subsystems to be reduced and the border blocks contain the separator 

nodes, which are preserved during the EMMP. Both goals are achieved and the  

five objectives for MOR above are fulfilled. For a detailed discussion, e.g., about 

the matrix properties such as the singularity of Ai or implementation details, see 

[25, 26]. The approach is generalized to RLC networks in [25]. 

 

 
3.3.4    MOR for Many Terminals via Interpolation 

 
This section deals with the modeling of RLC systems of the form (3.1) by means 

of S-parameters (scattering parameters), i.e., measurements of frequency domain 

response data [29]. A  typical application would be  a  black box problem. Given  

is an electrical device, but the knowledge about the circuit inside the device is 

unidentified. With the help of, e.g., a Vector Network Analyzer (VNA), it is 

possible to measure amplitude and phase properties. We get P samples at different 

frequencies fj, j D 1; : : : ;  P, of the device with m inputs and p outputs as 

2
S. j/ ··· S. j/

3
 

11 

S. j/ WD 64  : :
 

1m 

:  
7
5 : (3.25) 

S. j/ ··· S. j/ 

 

The goal is to find the associated transfer function G.s/ such that its values at s i! 

with !  2ıfj are close to the scattering matrix. If  G.i 2ıfj/   S. j/   is small in  

some norm, the computed representation matrices belong to an accurate model. The 

approach uses tangential interpolation and the Loewner matrix concept to find a 

model, even a reduced-order model, of this multiport device. 

 
 

3.3.4.1   Tangential Interpolation and the Loewner Concept 

 
Tangential interpolation is a form of the standard interpolation problem along a 

tangential direction. Consider k different sampling points hi 2 C, the tangential 

directions ri 2 Cm—1, and the tangential data wi 2 Cp—1, such that 

2 D fh1;::: ; hkg c Ck; 

R D Œr1; : : : ; rk] 2 Cm—k;  and 

W D Œw1; : : : ; wk] 2 Cp—k
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is called the right interpolation data. Analogously, we define the left interpolation 

data &j 2 C, lj 2 C1—p and vj 2 C1—m at another h sampling points as 

º D f&1; : : : ; &kg c Ch; 

L D 
Σ

lT ;::: ; lT 
ΣT 

2 Ch—p; and 

V D 
Σ

vT ;::: ; vT 
ΣT 

2 Ch—m: 
 

The rational interpolation problem aims at finding a set of system matrices, such 

that the right and left interpolation constrains 

 

G.hi/ri D wi; i D 1; : : :  ; k; (3.26) 

and ljG.&j/ D vj; j D 1; : : :  ; h; (3.27) 

are fulfilled by the associated transfer function G.s/. 

Definition 3.3.3 (The Loewner and the Shifted Loewner Matrix) Given are a  

set of P k h sampling points h1;::: ; hk; &1; :::  ; &h and the values of a rational 

matrix function G.hi/ and G.&j/ evaluated at these points. By defining tangential 

directions ri and lj we are able to compute the tangential data wi and vj. The matrix 

2 
v1r1—l1w1 ··· v1rk—l1 wk 

3
 

L D 
6
6
4 

&1—
: 
h1      

:
 

: : 

 

&1—
: 
hk 

: 

7
7
5

 

 

  

is called the Loewner matrix. The shifted Loewner matrix is defined as 

2 
&1v1r1—h1l1w1 ··· &1v1rk—hkl1wk 

3
 

o L D 
6
6
4 

&1—
: 
h1 

:
 

: : 

 

&1—
: 
hk 

: 

7
7
5 :

 

 

  

By means of the matrices of Definition 3.3.3 and their  properties,  e.g.,  they 

satisfy certain Sylvester equations and turn out to reveal some kind of tangential 

controllability and observability Gramians, we can solve the modeling problem for 

the given data. 

Lemma 3.3.4 Assume k D h (half of P, if impossible ignore one sampling point) 

and det.zL — o L/ ¤ 0 for all z 2 fhig [ f&jg. Then E D —L, A D —o L, B D V,  

&h—hk &h—h1 

&h—hk &h—h1 
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C D W, and D D 0 is a minimal realization1 of the system whose transfer function 

G.s/  D W.oL — sL/—1V 

interpolates the given data such that (3.26) and (3.27) are satisfied. 

Note that we assume exact data and the needed number of samples. For a proof and 

more details we again point to [29]. There, it is also explained how to reveal the 

order of the underlying system, how to handle different scenarios of measurements, 

and how to get reduced-order models. This kind of approach can be extended to 

parametric systems, see [3]. 

Another important information is how to get the tangential data from (3.25). Note 

that, like in the scattering matrix, for real passive RC circuits the number of inputs 

is equal to the number of outputs m p. In [29], it is proposed to define ri and lj as 

rows and columns of the identity matrix Im to be linearly independent. Consequently, 

for j D 1; : : : ; k, the right interpolation data can be constructed as 

hj D i!j; rj D eq; and wj D S. j/rj; 

where eq Rm—1 (an m-dimensional unit vector with entry 1 in its q-th position)  

with j q mod m. If q 0 we set q m, i.e., if the division of k and m is without residual, 

we take the last row of Im as rj. Analogously, for j  1; : ::  ; h we get the left 

interpolation data as 

 

&j D —i!j; lj D rT ; and vj D ljS. j/: 

 
3.4    ESVDMOR in Detail 

3.4.1    Stability, Passivity, Reciprocity 

 
The preservation of properties is an important topic in MOR. Besides the essential 

information encoded in the equations of the original system (3.1), e.g., resistance 

values or capacities, other information, e.g., structural characteristics (block struc- 

ture, sparsity) or physical qualities, can be of interest. The preservation of such 

properties is of prime importance in a lot of applications. Typically in circuit 

simulation, three basic properties to preserve are stability, passivity, and reciprocity; 

see also Sect. 2.2.3. For this reason, in the following section we give some basic 

definitions and lemmas to establish facts on the preservation of these three properties 

in reduced-order models generated by ESVDMOR [7]. 

 

 
1Loosely speaking, a minimal realization of a descriptor system is a set of matrices .A; B; C; E/ of 

minimal order yielding the transfer function G.s/ of the system. 
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3.4.1.1 Stability 

 
In the analysis of dynamical systems it is important to study the dynamics if the 

considered time horizon goes to infinity. The reduced system is intended to show 

the same behavior as the original one. The following basic definition and lemma 

can be found, e.g., in [10, 14]. 

Definition 3.4.1 (Asymptotic Stability, c-Stability)  The descriptor system (3.1) 

is asymptotically stable if all solutions x.t/ of Ex.t/ Ax.t/ 0 converge to zero at 

infinity, i.e., 
 

lim x.t/ 0: 
t!1 

The  matrix pencil hE A, h C, is  called  c-stable if  it is  regular   and the 

corresponding system (3.1) is asymptotically stable. 

Lemma 3.4.2  Consider  a  descriptor system  (3.1) with  a  regular matrix  pencil 

hE — A. The following statements are equivalent: 

1. System (3.1) is asymptotically stable. 

2. The finite eigenvalues of the pencil hE — A, hi 2 2.A; E/, lie in the open left 

complex half-plane, i.e., hi  C—    h   C Re.h/ < 0 . 

3. Consider the spectral projections Pr and Pl, respectively, onto the right and the 

left deflating subspace of the pencil corresponding to the finite eigenvalues. The 

projected generalized continuous-time Lyapunov equation 
 

ETXA C ATXE C PTQPr D 0; X  D PTXPl 

 

has a unique Hermitian, positive semidefinite (psd) solution X for every Hermi- 

tian, psd right hand side matrix Q. 

Remark 3.4.3 The infinite eigenvalues of the pencil do not affect the behavior of the 

homogeneous system in Definition 3.4.1. Consequently they do not affect stability. 

A very useful observation of Lemma 3.4.2 is the connection between the stability 

of the system and the finite eigenvalues of the pencil. We use this fact to prove the 

following theorem. 

Theorem 3.4.4 Assume the descriptor system (3.1) with its transfer function (3.3) 

to be asymptotically stable. The ESVDMOR reduced-order system corresponding to 

GO r.s/ of (3.19) is asymptotically stable if the inner reduction to GQ r.s/ of (3.18) is 

stability preserving. 

Proof According to Lemma 3.4.2, we know that in the continuous-time case 

stability  is  preserved  if  the  pencil  of  the  reduced  system  is  c-stable. Besides 
regularity this means Re.hQ /  <  0 for all hQ  2  2.AQ ; EQ / (the spectrum of the matrix 

pencil hEQ — AQ ). Remembering that the original system G.s/ is asymptotically stable, 

i.e., .hE — A/ is c-stable, the following implication is obvious: 
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The inner reduction Gr.s/ = GQ r.s/ in (3.18) is stability preserving 

H) .hEQ — AQ / is c-stable    
O
 

H) the reduction G.s/ = Gr.s/ in (3.19) is stability preserving. 

Remark 3.4.5 Many established MOR methods for regular descriptor systems are 

stability preserving and can be applied along the lines of Theorem 3.4.4. Due to their 

computable error bounds we prefer the use of balanced truncation based approaches, 

see [5, 10], and in particular the specialized versions described in Chap. 2 dedicated 

to circuit equations. 

 
 

3.4.1.2 Passivity 

 
One of the most common definitions of passivity of a circuit is the property that   

its elements consume (or at least do not produce) energy. Thus, if the original 

system is passive, also the reduced model should be passive in order to remain 

physically meaningful. In other words, passivity preservation is important for 

stable, accurate, and interpretable simulation results, see also Chap. 2.  A more 

mathematical definition of passivity is the following one, taken from [40]. 

Definition 3.4.6 (Passivity) A descriptor system (3.1) is called passive (or input- 

output-passive) if m D p and the system output y W R ! Rm satisfies 
 

T 

u.t/Ty.t/dt 0; (3.28) 
t0 

for all possible inputs u W R ! Rm, where x.t0/ D 0, the functions u and y are 

square integrable, and Œ0 ≤ t0I T] ≤ R is the time period of interest. 

Since for linear systems a shifting of the time horizon is not a problem, we can 

assume t0 0. Passivity, such as in the previous definition,  is  hard  to  show. 

Therefore, we use another concept, discussed, e.g., in [20], for constructive passivity 

testing. 

Definition 3.4.7 (Positive Real Transfer Function) The transfer function (3.3) is 

positive real iff the following three assumptions hold: 

(i) G.s/ has no poles in CC D fs 2 Cj Re.s/ > 0g, and additionally there are no 

multiple poles of G.s/ on the imaginary axis iR, 
 

(ii) G.sN/ 
×
D G.s/ for all s 2 C; 

×
 

(iii) Re.x  G.s/x/ ≤ 0 for all s 2 CC and x 2 Cm, i.e. G.s/   C G.s/ ≤ 0 for all 

s 2 CC. 

To show some results about passivity preservation of ESVDMOR, we need to know 

the connection between passivity and positive realness. 

Z 
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Lemma 3.4.8 A descriptor system (3.1) is passive if, and only if, its transfer 

function (3.3) is positive real. 

Remark 3.4.9 The original proof can be found in [1]. In [1, 37, 41] another proof  

of this lemma shows the equivalence of passivity and the bounded realness of the 

scattering matrix function, which is nothing else than a  Moebius transformation  

of G.s/. Subsequently, the equivalence of the bounded realness of this scattering 

matrix function and the positive realness of the transfer function is shown. Hence 

the lemma is proven. 

As already mentioned in Definition 3.4.6, for passive systems we assume that the 

number of inputs is equal to the number of outputs: m D p. We furthermore  

assume (3.4) and (3.5). As before, the matrix pencil hE — A is assumed to be regular. 

Theorem 3.4.10 Consider a passive system of the form (3.4) with its transfer func- 

tion (3.5). The ESVDMOR reduced-order system corresponding to GO r.s/ of (3.19) 

is passive if the inner reduction to GQ r.s/ of (3.18) is passivity preserving. 

Proof Following Lemma 3.4.8, we show that Gr.s/ in (3.19) is positive real. Hence, 

we show that the reduced system is passive. The i-th s0 frequency-shifted block 

moments of (3.5) are 
 

m
s0 D BT .—.s0E — A/—1E/i.s0E — A/—1B; 

with det.s E — A/ 6D 0. Following the technique used in [21], we define J D 

Σ
I 0 

ˇ

 

0 —I 
with appropriate block structure. The properties of A1, E1, and E2 as well as the fact 

that J D JT and J2 D I lead to the following rules: 

R1: J D J—1, 

R2: JE D EJ, hence JEJ D E, 

R3: .s0E — A/T  D s0E — JAJ D s0JEJ — JAJ, hence .s0E — A/—T  D .s0JEJ — 

JAJ/—1 D J—1.s0E — A/—1J—1 D J.s0E — A/—1J, 

R4: B D JB, and — i — —   i 

R5: for every matrix X, Y and i 2 N, .—X 1Y/  D X  1.Y.—X/  1/ X holds. 

A straightforward calculation employing these rules shows that 
 

m
s0 T 

D .BT .—.s0E — A/—1E/i.s0E — A/—1B/T
 

D BT .s0E — A/—T f.—.s0E — A/—1 

„ƒE‚…/igT B 
 

 
.R5/ T 

 
 

—X—1 Y 

—T 1 —1    i T 

D B  .s0E — A/ f.s0E — A/ .E.—.s0E — A/ // .s0E — A/g  B 

D BT .s0E — A/—T .s0E — A/T f.E.—.s0E — A/—1//igT .s0E — A/—TB 

D BT f.E.—.s0E — A/—1//igT .s0E — A/—T B 
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.EDET / T —T i —T 

D B  ..—.s0E — A// E/ .s0E — A/ B 

.R3/ T —1 i 1 

D B  .—J.s0E — A/ JE/ .J.s0E — A/ J/B 

.R5/ T 1 —1    i 1 

D B J.s0E — A/ .JE.—J.s0E — A/ // .s0E — A/J.J.s0E — A/ J/B 

.R1; R2/ T 1 —1    i 1 

D B  J.s0E — A/ .E.—.s0E — A/ // .s0E — A/.s0E — A/ JB 

D BTJ.s0E — A/—1.E.—.s0E — A/—1//iJB 

.R4/ T 1 —1    i 

D B .s0E — A/ .E.—.s0E — A/ // B 

.R5 backwards/    T —1 i 1 

D B  .—.s0E — A/ 

D mi : 

E/ .s0E — A/ B 

By means of (3.14) it follows from (3.9) and (3.10) that MI  D MO, such that VT D 
T 
Oro 

D VT . Hence 

bG.s/ D VrB  .sE — A/    BrV  ; (3.29) 

with Br analogous to (3.17). If the MOR method used in (3.18) leads to a positive 

real transfer function, passivity is preserved. 

In Definition 3.4.7 and Lemma 3.4.8 it is shown that the system (3.4) is passive 

if the Hermitian part of the transfer function along the imaginary axis is positive 

semidefinite, i. e., GH 
1 .G. j!/     G. j!//      0. As an illustration, in  Fig. 3.7 

we show the smallest nonzero eigenvalue of the Hermitian part of the original 

transfer function GH. j!/ and of the terminal, not yet order reduced transfer function 

GO H. j!/. In every case the systems are positive semidefinite. Figure 3.8 shows the 

relative difference of these smallest eigenvalues to those of the original system. As 
T T 

we only add zero eigenvalues in (3.19) by multiplying VOro  
D  Vr    and V D V 

from  the  left  and  the  right  to  the  positive  real  transfer  function  GQ r.s/,  positive 

semidefiniteness is preserved. 

As inner reduction method, again the passivity-preserving balanced truncation 

approaches described in Chap. 2 can be employed. 

 
 

3.4.1.3 Reciprocity 

 
Another important property of MOR methods is reciprocity preservation,  which is 

a requirement for the synthesis of the reduced-order model as a circuit. We assume 

the setting given in (3.4). An appropriate definition can be found, e.g., in [40]. 

V 

r 
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Hermitian part of the inner transfer function  tt̂ H (jω) 
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Fig. 3.7 Smallest eigenvalues of the Hermitian part of the transfer function of RC549 
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Fig. 3.8  Relative difference correlated to the largest eigenvalue of the original transfer function 
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Definition 3.4.11 A transfer function (3.3) is reciprocal if there exist m1; m2 2 N 

with m1      m2      m, such that for ˙e      diag.Im1 ;    Im2/ and all s     C being not a pole 

of G.s/, it holds 

G.s/˙e D ˙eG
T .s/: 

The matrix ˙e  is called external signature of the system. A descriptor system is 

called reciprocal if its transfer function is reciprocal. 

As a consequence, a transfer function of a reciprocal system is a matrix of the form 

 

G s 
G11.s/  G12.s/ 

(3.30) 
—GT .s/ G22.s/ 

where G11.s/  D  GT .s/  2  Rm1;m1  and G22.s/  D  GT .s/  2  Rm2;m2 . That  is, 
11 22 

G.s/ 
0   I   

is a Hamiltonian matrix. 
—I 0 

Theorem 3.4.12 Consider a reciprocal system of the form (3.4). The ESVDMOR 

reduced-order system  corresponding to  GO r.s/  of  (3.19) is  reciprocal  if  the  inner 

reduction to GQ r.s/ of (3.18) is reciprocity preserving. 

Proof Due to the reciprocity of the original system, the corresponding transfer 

function (3.5) has the structure given in (3.30). Equation (3.29) shows that none   

of the steps in ESVDMOR destroy this symmetric structure if (3.18) preserves 

reciprocity. 

 

 
3.4.2 Error Analysis 

 
Knowledge about the approximation error is  motivated  by  the  desire  to  meet 

the (industrial) requirements placed on the reduced-order  model  and,  at  the  

same time, to get a reduced model, which is as small as possible and as good        

as necessary. Because approximation errors are, of course, caused at  different 

steps of the algorithm, an analysis of these  particular  errors  is  an  important 

basis to estimate the total approximation error. Most of  the  particular  single 

errors are well studied. In the following section, we  describe the  results about      

a priori error estimation  of  the  ESVDMOR  approximation  in  [8].  Based  on  

the known approximation errors, e.g. those of truncated SVD or balanced 

truncation, we  combine  all  errors,  firstly  with  many  assumptions  and  later  

for more general models, to derive a global error bound of the ESVDMOR 

approach. 
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Since the difference between the original transfer function and the one given  

by the reduced-order model is still a matrix-valued function of s,  matrix norms  

are needed to define the kind of error measurement. In the following, the two most 

important norms regarding MOR, the spectral norm and the H1-norm, are 

defined. 

Definition 3.4.13 (Spectral Norm)  The spectral norm of a   matrix H Ck—` is 

induced by the Euclidean vector norm and defined as 

jjHjj2 D 
p

hmax.H×H/ D omax.H/; 

where H× denotes the conjugate transpose of H, hmax.·/ the largest eigenvalue, and 

omax.·/ the largest singular value. 

The second useful and important norm is based on the Hardy Space theory, see, e.g., 

[18]. 

Definition 3.4.14 (H1-Norm)  The H1-norm of an asymptotically stable transfer 

function (3.3) is defined as 

 
jjGjjH1 D  sup  omax.G.s// D  sup  jjG.s/jj2: (3.31) 

s2CC s2CC 

 

Due to the maximum modulus theorem, we can express (3.31) as   G    H1 

sup omax.G.i!//. 
!2R 

For  unstable  systems,  the  H1-norm  is  not  defined.  In  this  case,  G.s/  is  not 

holomorphic in the open right half plane, i.e., it is not an element of the Hardy 

space H1 of interest. 

 
3.4.2.1 Particular Error Bounds 

 
Equation (3.14) describes a truncated SVD. We know the error caused by an SVD 

approximation, e.g. of MI , is given by 

eM  D 
 
 
 MI .n/ — UI  ˙

I VT 
 
 
   D o ; 

 

 

˙ I D diag.o I ; : : : ; o I ; o I
 ;::: ;oI

 ≤ 0/; ˙ D diag.o ; : : :  ;o /; 
1 ri      riC1 min ri 1 ri 

 

and o I ≤ o I for j D 1; ::: ; min — 1. The same applies to MO. The notation MI .n/ 
j j   1 e ses t y on the number n of used block moments m . 

xpres he dependenc i 

where 
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RC549 via one virtual terminal - Hankel singular values and the balanced truncation cut off. 
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Fig. 3.9 Hankel singular value decay of RC549 via one virtual terminal. The red lines show the 

BT error bounds, computed by the truncated HSVs for the three different methods 

 

 

Provided the use of a suitable MOR method which provides an error bound, e.g., 

the balanced truncation (BT) methods for RC circuits as discussed in Chap. 2, we 

know the error caused in (3.18). BT methods perform a reduction based on    the 

truncation of the  so-called proper Hankel singular values (HSVs) o1 ;::: ; oq   of 

the system (where q n), see Sect. 2.3.2 for details. The error for balanced 

truncation using any of the variants discussed in the previous chapter is bounded  

by 
 

 
 Gr — GQ r

 
 

H1 
≤ const: · 

kD

X

nr C1 

oOk D ı; (3.32) 

 

in case we reduce the proper part of the system to order nr. 

Figure 3.9 shows the HSVs of RC549, for which the terminal reduced original 

system Gr.s/ is a single-input single-output (SISO) system, computed several 

methods (the Arnoldi and Jacobi-Davidson based methods are explained in the 

following section). We see that the decay of the HSVs is fairly slow. Additionally, 

the beforehand applied terminal reduction corrupts the computation, which explains 

the differences according to the decomposition approaches. Nevertheless, the strong 

decay of the HSVs and a relative tolerance of O .10—15/ leads to only 5 (in JDSVD 

case to 6) reduced generalized states. Similarly, Fig. 3.10 shows the HSVs of eqs_lin 

with 573, respectively 520, virtual terminals. It is remarkable that the cut off in this 

Arnoldi (svds/eigs) 

Jacobi Davidson (jdsvd) 

Full  matrices (svd) 

V
a
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e 

o
f 
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e 

H
S

V
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eqs lin via virtual terminals - Hankel singular values and the balanced truncation cut off. 
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Fig. 3.10  Hankel  singular  value  decay  of eqs_lin  via 573  (Arnoldi  and  full  SVD)  and  520 

(JDSVD) virtual terminals 

 

 

case was not induced by reaching the given relative tolerance but by accomplishing 

the predefined maximum order of the reduced system nr 300. As a result, we may 

expect a relative error of O .10—5/, which is confirmed in Fig. 3.11. 

 
3.4.2.2 Total ESVDMOR Error Bound 

 
The error analysis discussed here follows in large parts [8]. Due to (3.19) and the 

triangle inequality, the total ESVDMOR error in the spectral norm on the imaginary 

axis can locally be expressed as 

 

etot D 
 
 
 G.i!/ — GO r.i!/

 
 
 

2 
≤ 
 
 
 G.i!/ — GO .i!/

 
 
 

2 
C 
 
 
 

GO .i!/ — GO r.i!/
 
 
 

2 
: 

„ 
D

ƒ
e

‚
out

 … „  ƒ
ei

‚
n

 

… 

(3.33) 

The spectral norm is invariant under orthogonal transformations. Consequently,  

the balanced truncation part (the error caused by the inner reduction ein) follows 

from (3.19), (3.32), (3.33) 

ein D  VO 

 
Gr.s/VT

 — VO GQ r.s/VT 
 
 
 
 D 

 
 Gr.s/ — GQ r.s/ 

 
 ≤ ı: 

 
Arnoldi (svds/eigs) 
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ro ro 

V
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e 

H
S

V
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Absolute balanced truncation model reduction error with error bound. 
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Fig. 3.11  Absolute and relative error of eqs_lin, n 14; 261, r 300 via 573 (Arnoldi and full 

SVD) and 520 (JDSVD) virtual terminals 

 
 

To analyze the terminal reduction part, also called outer reduction error eout, we 

start by considering RLC circuits only, i.e., p m denoted by m, L BT , and, if 

s0E     A     0, consequently G.s/      G.s/T . Due to symmetry, MI      MO      U˙VT , 

and also VI  VO   V. Moreover U    V holds in the SVDMOR case, which  

means that there is only one i-th s0 frequency-shifted block moment in the ansatz 

matrices (n D 1), e.g. m0 2 Rm—m, such that 

MI D MT  D m0 D BT .s0E — A/—1B D U˙VT  D U˙UT  = Ur˙rU
T : 

 

The local terminal reduction error eout at s0 then is 

eout D 
 
 

 
G.s0/ — GO .s0/

 

 
 
 D   BT .s0E — A/—1B — UrB

T .s0E — A/—1BrV
T 
 
  

D BT .s E — A/—1B — U UTBT .s E — A/—1BU UT
 

D  
 
 U˙ UT — UrU

T U˙ UT UrU
T 
 
   D 

 
 U˙ UT — Ur˙rU

T 
 
  

D  orC1; 
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if we keep r singular values or terminals. Applying balanced truncation, the total 

error at s0 in the SVDMOR case in the spectral norm is then given by 

etot ≤ orC1 C 2 

jD

X

nrC1 

oO j: (3.34) 

Hence, at least in the neighborhood of the expansion point chosen for the terminal 

reduction, we can expect an error of the same order of magnitude. 
In the ESVDMOR case we allow n ≤ 1 (n different m0 within the ansatz 

i matrices). For simplicity let us assume n  D  3 (m   , m   , an   m   ) and    s 2 R. 

Thus, 
0 1 

d 
2 0 

0 
m

s0 
1 0 

U.1/ 
1 

0 
U.1/ U.1/ 

1 
. Σ. Σ 

MI D @ m   A D @ U A ̇ V  D  @ U .2/ 
U

.2/ A  1
 

2 1 

DW 
. 
U1 U2 

2 

Σ 
. 
˙1   0  

Σ. 
VT 

Σ 

0   ̇ 2 
T

 

where the row partitioning in U is as in MI; MO and the column partitioning refers 

to the number of kept singular values, which we denote by the number r. We get 

m0  D U. j/˙VT , j  D 1; 2; 3, (which is not an SVD as U. j/  is not orthogonal, but 

kU. j/k2 ≤ 1 holds). Thus we can write 

G.s/ — GO .s/ D 
X

.m
s0 — mO 

s0 /.s — s0/
j
 

D .m    — mO   / C .m    — mO   /.s — s0/ C .m    — mO   /.s — s0/   C O.s — s0/  : 
 

Defining P1 WD V1VT , and consequently I — P1 D V2VT , we can bound the first 
1 2 

expressions thus as follows: 
 

m
s0 — mO 

s0  D m
s0 — P1m

s0 P1 D U. j/˙VT — P1U. j/˙VT V1VT
 

D U. j/ 

. 
˙1   0  

Σ. 
VT 

Σ 

— P  U. j/ 

. 
˙1   0  

Σ. 
Ik 

Σ 

VT 

0   ̇ 2 
T 1 

0   ̇ 2 0 1
 

D U. j/ 

. 
˙1 0 

Σ. 
VT 

Σ 

C

 

0  0 T
 

C U. j/ 

. 
0   0  

Σ. 
VT 

Σ 

— P  U. j/      

. 
˙1 

Σ 

VT 

0 ˙2 
T 1 

0 1
 

T 
1 

2 

jD0 

2 

; 
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D U. j/ 

. 
0   0  

Σ 

VT C .I — P1/U. j/ 

. 
˙1 

Σ 

VT
 

D U. j/ 

. 
0   0  

Σ 

VT C V2VT U. j/ 

. 
˙1 

Σ 

VT  DW ej;1 C ej;2: 

 

We can now express the error as follows: 
 

G.s/ — GO .s/ D e0;1 C e1;1.s — s0/ C e2;1.s — s0/
2

 

Ce0;2 C e1;2.s — s0/ C e2;2.s — s0/
2
 

 

 
C O .s — so/ ; 

 

where, when taking norms, and using kU. j/k2 ≤ 1, kVT k2 D 1, 

kej;1k2 ≤ orC1: 

The terms kej;2k2 cannot be bounded in a meaningful way. If orC1 is zero, then V2VT 

projects onto the nullspace of MI, such that if orC1 is small enough, V2VT is still an 

orthoprojector onto the joint approximate nullspace of the first n moments. That is, 
the error, up to order n 1, is essentially contained in the nullspace of the first n 

moments. Future investigations may focus on exploiting this fact to get a general 

error bound. 

 

 
3.4.3 Implementation Details 

 
An efficient implementation is very important, especially if large scale systems  

are taken into account. Usually, within ESVDMOR we perform a full SVD and 

then set all singular values smaller than a threshold value equal to zero. This 

threshold value depends on the error we allow for ESVDMOR, see Sect. 3.4.2. 

The most obvious idea to increase the efficiency of the ESVDMOR approach        

is  to  avoid this full  SVD  in  (3.14) because the  ensuing step  in  the  algorithm  

is to discard  the  expensively  computed  information.  The  numerical  costs  for 

an SVD of MI can grow  up  to  O .npm2/  flops.  In  case  of  MO,  these  costs  

may be of order O .nmp2/ flops. This is not appropriate for large-scale circuit 

systems. The computation of the reduced-order model only needs the leading 

block-columns VIri 
and VOro 

of the orthogonal matrices computed with the SVD. 

Consequently, we apply a truncated SVD, which can be computed cheaply 

employing sparsity of the involved matrices. There are a couple of  truncated  

SVD  approaches  available,  e.g.,  [12,  13,  46].  Efficient  algorithms  based   on 
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the Arnoldi method [31, 44] or the Lanczos method [4] as representatives of 

Krylov subspace methods are suggested in [6, 43]. A Jacobi-Davidson SVD 

approach is explained in [24]. Both possibilities will be explained in the  following. 

We start by having a look at joint features. Both methods are based on iterative 
computation of eigenvalues. Without loss of generality, we have a look at the input 
response moment matrix MI . The same observations also hold for MO. It is known 

that the computation of the eigenpairs of the m m matrix MTMI leads to the singular 

values of MI [23]. But as forming the product should be avoided for reasons of 

numerical stability and efficiency (we even do not form MI , see Sect. 3.4.3.3), both 

methods work with the augmented matrix 

AI D 

Σ  
0  MI 

ˇ 

: (3.35) 

 

It is shown, e.g. in [45], that the eigenvalues of AI are of the form 

 

2.AI/ D f—om; : : : ; —o1; o1; : : : ; omg 

and the positive eigenvalues are the singular values of MI. 

 

3.4.3.1 The Implicitly Restarted Arnoldi Method 

 
One way to compute a TSVD is based on the implicitly restarted Arnoldi method 

[31, 44]. This approach exploits the symmetry of the matrix AI. Hence, it becomes 

equivalent to the symmetric Lanczos algorithm without taking advantage of the 

special block structure of AI. The Arnoldi method computes an orthonormal basis 

of a Krylov subspace and approximates eigenpairs for the projection of AI onto the 

Krylov subspace. This iterative method becomes more expensive the more iterations 

it needs until convergence. This motivates the use of the restarted version, which  

is explained briefly in the following. A restart means that we delete parts of the 

calculated Krylov basis after a certain number of steps. Unfortunately, this also 

means a loss of information. In detail, the Arnoldi method after j  k  l steps  

without restart gives 

AIQj D QjHj C qjC1  0; ::: ; 0; hjC1;j  ; 

D QjHj C hjC1;jqjC1ej ; 

where Qj is an orthogonal matrix and Hj Cj—j is an upper Hessenberg matrix. The 

number of eigenvalues we are interested in is k 2ri and l is the number of Krylov 

vectors we want to discard. Applying l QR steps with shifts &1;:: : ; &l, which are 

often chosen to be the l eigenvalues of Hj corresponding to the unwanted part of the 
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spectrum, we get a matrix U such that 

 

HO j D U×HjU: 
 

So we also have  
QO j WD QjU; uT  D eT U: 

j j 

 

With fjC1 D hjC1;jqjC1 we get 
 

AIQO j D QO jHO j C fjC1uT : 
 

Now we split the components in 

QO j D 
Σ 

QO k QQ l 
Σ 

; HO j D 

Σ   
HO 

k     × 
ˇ 

; uT  D Œ0; : : : ; 0; ̨ ; ×; : : : ; ×]: 

ˇe1eT  HQ k 
j
 

After removing the last l columns we end up with 

AIQO k D QO kHO k C ˇQQ le1eT C fmC1Œ0; : : : ; 0; ̨ ]; 

D QO kHO k C .ˇQQ le1 C ˛fmC1/e
T ; 

D QO kHO k C fOmC1eT : 

We get again an Arnoldi recursion equivalent to the one we would get after k steps 

with starting vector qO 1. Until we reach an appropriate stopping criterion, see, e.g., 

[31], we perform l steps again and restart until the eigenvalues of HO k have converged 

to the largest singular values of MI . 

 
3.4.3.2 The Jacobi-Davidson SVD Method 

 
A Jacobi-Davidson variant for singular value computation based on the augmented 

matrix AI in (3.35) is proposed in [24]. The given block structure is exploited by 

the usage of two search spaces U Rnp; V Rm and respectively two test spaces 

X Rnp;  Y Rm, where n  is  still  the number of moment matrices   of G.s/ 

of which the matrix MI  is constructed. We  introduce   matrices U Rnp—k; V 

Rm—k; X Rnp—k; Y Rm—k whose columns are equal to the basis vectors of the 

four subspaces mentioned above. 

For approximations to the singular values, that we call & here, we use an auxiliary 

real number y and vectors u 2 U ;  v 2 V . Further, we employ the fact that for a 

singular triple .oi;  ui;  vi/ of MI 2 Rnp—m the following equations 

MI vi D oiui; MTui D oivi (3.36) 
 

hold for i D 1; ::: ; rank.MI/. 
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Definition 3.4.15  For vectors x 2 .R  ;  y 2 R  and subspaces X  c R  ;  Y. cΣR , 

both x ? X and y ? Y . We denote this by 

.
x
Σ 

?? 

.
X 

Σ 

:

 

Similar to the orthogonal complement of a    single vector we denote the subspace 

u;v 2 Rm ~ Rn W  xTu D yT v D 0 as .x; y/??. 

We impose a double Galerkin condition for the residual res D res.&; y/ defined as 

res.&; y/ WD 

Σ 
MI v — & u 

ˇ 

?? 

Σ
X 

ˇ 

: (3.37) 

 

Introducing c;  d 2 Rk, such that u D Uc; v D Vd, (3.37) is equivalent to 

XTMIVd D & XTUc; 

YTMTUc    D yYTVd: 

 

 

 
(3.38) 

 

The assumption xTu  ¤ 0;  yT v  ¤ 0 for test vectors x  2  X ;  y  2  Y  leads  to 

approximations &  D 
xTu

 
yTMT u 

 

v for the singular values, that do   not 

necessarily need to be equal. This depends on the choices for the test spaces X ; Y , 

which is examined later. Suppose we already have approximations .&; y; u; v/ and 

look for new singular vector approximations .u; v/ D .u C s;v C t/, which fulfill a 

double orthogonal correction .s; t/??.u; v/, such that 

MI.v C t/ D o.u C s/; (3.39) 

MT .u C s/ D ˙.v C t/: 

Equation (3.39) can be rearranged to 

Σ
—o Inp MI 

ˇ Σ
s
ˇ 

D —res C 

Σ
.o — & /u

ˇ 

: (3.40) 

 

Since we are searching in .x; y/?? we consider the projection P onto .x; y/?? along 

.u; v/, which expands (3.40) to 

"
Inp —  1 uxT 0 

# Σ
—& Inp 

MI 

ˇ Σ
s
ˇ 
 
D —res: (3.41) 

0 Im —  1 vyT
 

„ 
proje

ƒ
ct

‚
ion P 

…
 

T   —yIm    t 

we say that the composed  vector if 

( 

MT 
I —˙Im 
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np 
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—yIm 
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v Ty 
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e t 
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D D e D e D 
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We also replace the unknown o; ˙ by the known approximation &; y in (3.41). Since 

x 2 Rnp; 8ey 2 Rm with uTex ¤ 0;  vTey ¤ 0, 

I 1 
u Tex 

 

xuT 0 
# Σ

s
ˇ 

D 

Σ
s
ˇ 

0 I 1 

v Tey 
yvT t t 

"
I p — 1 uxT 0 

#Σ
—& I M  

ˇ"Inp —  1 

 

 
xuT 0 

#Σ
s
ˇ 

e 
(3.42) 

with .s; t/ .u; v/. If x; y are nonzero multiples of x; y, the operator in (3.42) is 

symmetric and maps .u;  v/?? to .x; y/??. 

At this point, the Galerkin choice of the test spaces needs to be explained. If we 

choose X D U and Y  D V , with dim U D dim V  D k, we get 

UTMIVd D & c; VTMTUc D yd 

for (3.38). Again, we have approximations u      Uc and v      Vd. With test vectors  

x      u; y      v, and with   u         v         1, we have singular value approximations   

&    y    uTAv which are equal. Furthermore, for x    u;  y    v the correction 

equation (3.42) becomes 

Σ
Inp —uuT 0 

ˇΣ
—& Inp   MI 

ˇΣ
Inp —uuT 0 

ˇΣ
s
ˇ

D —res 

 
(3.43) 

 

in which the operator is symmetric and maps .u; v/?? to itself. We conclude  

the standard variant of the JDSVD in Algorithm 3.1. The orthonormalization is 

performed by MGS and RMGS, which stands for the modified Gram- Schmidt- and 

the repeated modified Gram- Schmidt- orthonormalization. Due to orthogonality 

this Galerkin choice is optimal for computing of the largest singular values which 

is the problem we want to solve. Computing the singular values closest to a 

target ˙ is equivalent to computing the singular values of largest magnitude of 

the shifted and inverted matrix .A ˙I/—1, which implies a different correction 

equation. 

A comparison of the influence of different decomposition methods applied 

within the terminal reduction of RC549 to one terminal can be found in Fig. 3.12. 

The magnitude approximation is satisfying while the approximation of the phase 

becomes even worse  by means of Arnoldi or JDSVD.  If  we  keep 66   terminals, 

holds, we can expand (3.41) to the JDSVD correction equation. 

0 Im —vvT
 MT 

I —& Im 0 Im —vvT
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Algorithm 3.1 JDSVD with standard Galerkin choice for computation of omax.MI/ 

 

Input: Initial vectors .s; t/, tolerance ‹. 

Output: Approximate singular triple .omax; u; v/. 

1: for k 1 to . . .  do 

2: Orthonormalize s; t w.r.t. Uk; Vk. 

3: Expand search spaces Uk; Vk with vectors s; t. 

4: Compute largest singular triple .&;  c;  d/ of Hk D UTMIVk. 

5: Set u D Ukc; v D Vkd. 

6: Compute residual res D MI v — & u 
ˇ

.
 

 
7: if  res ‹ then 

8: return, 

9: else 

MTu — &v  

10:  Approximately compute solution of correction equation (3.43) for .s; t/ .u; v/. 

11: end if 

12:  end for 

 
Bode plot of RC549, node 1,   

original (blue, n = 141) and reduced  system 

(green, r = 5 via 1 virtual terminal). 
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Fig. 3.12  Bode plot of node 1 of RC549 reduced to 5 states via 1 virtual terminal 
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Singular value decay of MI = m0 of RC549, 

red singular values neglected. 
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Fig. 3.13   Singular value decay of RC549, MI D m0, 66 virtual terminals 

 
see Figs. 3.13 and 3.14, we can see a slight  improvement.  In  particular,  the 

phase approximation of the JDSVD approach becomes reasonable in the important 

frequency range. Like mentioned before, in this example the crucial point is the 

order reduction by means of BT, such that keeping more terminals does not 

significantly improve the overall approximation. Figure 3.15, as well as a zoomed 

version of it in Fig. 3.16, show that reducing the number of terminals of eqs_lin 

leads to a clear number of virtual terminals. Choosing machine precision as relative 

tolerance, the algorithms automatically truncate after 573 virtual terminals. The 

fact that JDSVD already stops after 520 virtual terminals is only a question of 

internal settings and does not express any disadvantage of the approach. If we need 

a very accurate terminal reduction, maybe it is worth the effort of calculating a 

whole SVD of the explicitly computed I/O-response moment matrices. If efficiency 

plays a role, both methods, Arnoldi and JDSVD, lead much faster to acceptable 

results. 

 
 

3.4.3.3 Efficiency Issues 

 
No matter which method we choose, the explicit computation of the response 

moment matrices, see Definitions 3.2.2 and 3.2.3, is too expensive and possibly 

numerically unstable. Moreover, using an established algorithm we need to provide 

Arnoldi (svds/eigs) 

Jacobi Davidson (jdsvd) 

Full matrices (svd) 

σ
i
(M

I
 ),

 w
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h
 M

I
 =

 m
0
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Bode plot of RC549, node 1,  

original (blue, n = 141) and reduced  system 

(green, r = 5 via 66 virtual  terminals). 
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Fig. 3.14  Bode plot of node 1 of RC549 reduced via 66 virtual terminals 

 
 

the information of the matrix AI in (3.35) 

AI D 

Σ  
0  MI 

ˇ 

or  AO WD 

Σ 
0  MO 

ˇ

 

 

applied to a vector x, i.e., AI=Ox y, to build up the required subspaces. We use a 

function for this purpose. In the following we distinguish the two cases above. 

 
 

3.4.3.4 Truncated SVD of the Input Response Moment Matrix MI 

 

Consider the augmented matrix AI 2 R.npCm/—.npCm/. The function input arguments 

are a vector x 2 RnpCm and a scalar n, which is equal to the number of used moments 

n, see (3.9). Output argument is a vector y 2 RnpCm. We assume a block   structure 
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Singular value decay of MI = m0 of eqs lin, 

red singular values neglected. 
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Fig. 3.15   Singular value decay of eqs_lin, MI D m0
 

Zoom - singular value decay of MI = m0 of eqs lin, 

red singular values neglected. 
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Fig. 3.16  Zoom of Fig. 3.15 
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of the vectors x and y corresponding to the block structure of MI in AI, such that 

y0
 0 

B C B 

m0 

1 
x0 1 

m1   7 C BB  x
1   

C 

B
@ yn—1 

C
A 

B
B
@ 

Σ

 

m0
T m1

T ··· mn—1
T 
Σ

 

 
mn—1 

0 

C
C
A 

B
@ xn—1 

C
A 

 

where for i D 0; :::;n — 1, 

0

B  
yipC1  

1

C 

0

B 
ynpC1 

1

C
 

0

B  
xipC1  

1

C
 

0

B 
xnpC1 

1

C
 

y  D B@ : 

y.iC1/p 

C
A ; y D B@

 : 

ynpCm 

C
A ; x  D B@ : 

x.iC1/p 

C
A ; and x D B@

 : 

xnpCm 

C
A :

 

 

Performing the  matrix-vector multiplication, we  get  the  components yi  for  i  D 

0; : : : ;n  — 1 as 

yi D mix
n    and yn  D m0

T x0 C m1
T x1 C ··· C mn—1

T xn—1 D mi
T xi: 

i 

 

To compute these components efficiently, we replace the block moments by their 

factors according to (3.2.2) and (3.2.3). Following Algorithm 3.2, we compute the 

parts of y by repeatedly applying the factors to parts of x. We want to emphasize that 

we use the same factors each time. Providing this function to the methods described 

above enables the efficient computation of the desired singular values and vectors 

of MI. 

 

3.4.3.5 Truncated SVD of the Output Response Moment Matrix MO 

 

The computation of the truncated SVD of MO works nearly analogously. Due to the 

fact that MO has a different structure, also the structure in (3.44) changes to 

y0
 0 

B C B 

 

m0
T 

m1
T 

1 
x0 1

 

7 C BB  x
1   

C 

B
@ yn—1 

C
A 

B
B
@ 

Σ

 

m0 m1 ··· mn—1 

Σ
 

 
mn—1

T
 

0 

C
C
A 

B
@ xn—1 

C
A 

:: 

:: 
0 

6
4

 

yn xn 

0 
6
4

 

yn xn 
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Algorithm  3.2  Computation  of  components yi,  i 0; : : : ;n  (input response 

moment matrix) 
 

Input: System matrices A; E; B; C, vector x, number of moment matrices n, and frequency s0. 

Output:  Vector y D AIx. 

1:  Initialize y D 0. 
—

 

2: Compute the inverse P .s0E A/ 

3: % Prepare for loop 

4: a Bxn; 

5: a Pa; 

6: for i 0 to .n 1/ do 

7: % Computation of the first n parts 

8: yi  D Ca; 

1, please see Remark 3.4.16. 

9: % If necessary set up for the next iteration, 

10: if i .n 1/ then 

11: a Ea 

12: a Pa 

13: end if 

14: % Compute factors, partly by embedded loop 

15: b CT xi; 

16: for j 0 to .i 1/ do 

17: b PTb; 

18: b ETb; 

19: end for 

20: b PTb; 

21: % Computation of the last part 

22: yn      yn     BTb; 

23:  end for 

 

where also the block structure of x and y changes, such that for i D 0; ::: ;n — 1, 

0

B  
yimC1  

1

C 

0

B 
ynmC1 

1

C 

0

B  
ximC1  

1

C 

0

B 
xnmC1 

1

C
 

y  D B@ : 

y.iC1/m 

C
A ; y D B@

 : 

ynmCp 

C
A ; x  D B@ : 

x.i C
1/m 

C
A ; and x D B@

 : 

xnmCp 

C
A :

 

 

Applying matrix vector multiplication, we get again the components yi  for i       D 

0; :::;n — 1 as follows, leading to Algorithm 3.3: 

yi D mi
T xn    and    yn D m0x0 C m1x1 C ··· C mn—1xn—1 D mix

i: 
i 

 

Remark 3.4.16 In line 2 of Algorithm 3.2 and of Algorithm 3.3, we require the 

computation of an inverse for ease of notation. In later lines it is easy to see that this 

inverse is applied in a matrix-vector product. Hence, the application of the inverse 

should be achieved by solving the corresponding linear system of equations, using, 

e.g., a pre-computed LU decomposition, or iterative methods. 
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Algorithm  3.3  Computation  of  components yi, i 0; : : : ;n (output response 

moment matrix) 
 

Input: System matrices A; E; B; C, vector x, number of moment matrices n, and frequency s0. 

Output:  Vector y D AOx. 

1:  Initialize y D 0. 
—

 

2: Compute the inverse P .s0E A/ 

3: % Prepare for loop 

4: a CT xn; 

5: for i 0 to .n 1/ do 

6: % Computation of the first n parts 

7: yi  D PTa; 

8: yi D BT yi; 

1, see Remark 3.4.16. 

9: % If necessary set up for the next iteration, 

10: if i .n 1/ then 

11: a      P a; 

12: a      E a; 

13:        end if 

14: % Compute factors, partly by embedded loop 

15: b Bxi; 

16:        b     Pb; 

17:       for j     0 to .i     1/ do 

18: b     Eb; 

19: b     Pb; 

20:        end for 

21: % Computation of the last part 

22: yn      yn     Cb; 

23:  end for 

 

A few points remain to discuss. Looking at Sect. 3.4.3.2, we see that the information 

about y MI x as well as y  MOx is sufficient within the JDSVD due to exploiting 

the block structure of AI. Hence, Algorithms 3.2 and 3.3 simplify accordingly. 

For high numbers of n both methods, Arnoldi as well as JDSVD, become 

numerically unstable. A reasonable number n depends on the specific system and 

fortunately is often small in practice. Moreover, for linear circuits with the same 

number of inputs and outputs, mostly one moment of the transfer function, i.e.,      

n     1, is sufficient. 

The question how many virtual terminal Gr.s/ should have, i.e. how many 

singular values and vectors of MI and MO we need to compute, is partly answered 

in Sect. 3.4.2. This information influences the tolerances given to the algorithms for 
computing the truncated singular value decomposition explained above. 

 

 
3.5    Summary and Outlook 

 
Linear descriptor systems with more than just a handful of inputs and outputs 

appear in a lot of applications. This work motivates the need of MOR  for this  

kind of systems within the context of IC design and circuit simulation. Three 
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basic, widely different approaches, are presented, i.e., reduction based on SVDs 

revealing the I/O-behavior, a graph partitioning approach, and the interpolation- 

based construction of a reduced-order model from measurement data. Afterwards, a 

concrete method of the first type, the so-called ESVDMOR, is explained in detail. 

The preservation of important properties is shown as well as the approximation 

error is analyzed. Furthermore, special attention is given to an efficient truncated 

SVD implementation in the framework of ESVDMOR. The performance of the 

three proposed ESVDMOR implementations is illustrated using two test  cases.   

In conclusion, one may say that in all three cases, the approximation of the 

magnitude of the frequency response can be achieved satisfactorily, while the phase 

approximation suffers from the additional truncation error in the truncated SVD 

approaches. Hence, if preservation of the phase is of importance, one has to invest 

more computational resources and use the full SVD of the generalized moment 

matrices. 
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Chapter 4 

Coupling of Numeric/Symbolic Reduction 

Methods for Generating Parametrized Models 

of Nanoelectronic Systems 

 
Oliver Schmidt, Matthias Hauser, and Patrick Lang 

 
 

Abstract This chapter presents new strategies for the analysis and model order 

reduction of systems of ever-growing size and complexity by exploiting the 

hierarchical structure of analog electronical circuits. Thereby, the entire circuit is 

considered as a system of interconnected subcircuits. Given a prescribed error- 

bound for the reduction process, a newly developed algorithm tries to achieve a 

maximal reduction degree for the overall system by choosing the reduction degrees 

of the subcircuits in a convenient way. The individual subsystem reductions with 

respect to their prescribed error-bound are then performed using different reduction 

techniques. Combining the reduced subsystems a reduced model of the overall 

system results. Finally, the usability of the new techniques is demonstrated on two 

circuit examples typically used in industrial applications. 

 
 

4.1   Introduction 

 
In order to avoid immense time and financial effort for the production of deficiently 

designed prototypes of integrated circuits (ICs), industrial circuit design uses 

mathematical models and simulations for predicting and analysing the physical 

behavior of electronical systems. Hence, redesigns and modifications of the systems 

can easily be carried out on a computer screen and tested by subsequent simulation 

runs. Thereby, analog circuits in general are modelled by systems of differential- 

algebraic equations (DAEs), which are composed of component characteristics and 

Kirchhoff laws. 

The development in fabrication technology of ICs during the last years led to  

an unprecedented increase of functionality of systems on a single chip. Nowadays, 

ICs have hundreds of millions of semiconductor devices arranged in several layers 
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and low-level physical effects such as thermal interactions or electromagnetic 

radiation cannot be neglected anymore in order to guarantee  a  non-defective 

signal propagation. Mathematical models based on DAEs, however, have almost 

reached their limit and cannot model these effects accurately enough. Consequently, 

distributed elements for critical components such as semiconductor devices and 

transmission lines are used which yield supplementary model descriptions based  

on partial differential equations (PDEs), where also the spatial dependencies are 

taken into account. The coupling with DAEs modelling the remaining parts of the 

circuit then leads to systems of partial differential-algebraic equations (PDAEs).  

A spatial semidiscretization finally results in very high-dimensional systems of 

DAEs, thus rendering analysis and simulation tasks unacceptably expensive and 

time consuming. 

Since design verification requires a large number of simulation runs with 

different input excitations, for the reasons mentioned above, model order reduction 

(MOR) becomes inevitable. Dedicated techniques in various areas of research have 

been developed among which the most popular ones are numerical methods taylored 

for linear systems. Besides these, there also exist symbolic methods [8, 10, 15, 19, 

20], where symbolic means that besides the system’s variables also its parameters 

are given as symbols instead of numerical values (see Sect. 4.1.1). They indeed are 

costly to compute, but allow deeper analytical insights into functional dependences 

of the system’s linear and nonlinear behavior on its parameters by maintaining the 

dominant ones in their symbolic form. The basic idea behind these methods is a 

stepwise reduction of the original system by comparing its reference solution to the 

solution of the so far reduced system by using error functions which measure the 

difference between the two solutions. Since the resulting reduced system contains 

its parameters and variables in symbolic form, these methods can be seen as a kind 

of parametric model order reduction (pMOR). Compared to the standard parametric 

model order reduction techniques [4, 12], the symbolic ones can be additionally 

applied to nonlinear systems. 

In order to avoid infeasibility of analysis and reduction of systems of ever- 

growing size and complexity, new strategies exploiting their hierarchical structure 

have been developed in the current research project. They further allow for a 

coupling of distinct reduction techniques for different parts of the entire circuits. 

The corresponding algorithms have been implemented in Analog Insydes [1], 

the software tool for symbolic modeling and analysis of analog circuits, that is 

developed and distributed by the Fraunhofer ITWMin Kaiserslautern, Germany. It 

is based on the computer algebra system Mathematica [21]. 

The new approach has been successfully applied with significant savings in 

computation time to both a differential and an operational amplifier typically used in 

industry. The reduced models also proved to be very robust with regard to different 

inputs such as highly non-smooth pulse excitations. Thus, the aptitude of the new 

hierarchical model reduction algorithm to circuits of industrial size has been shown. 
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4.1.1    Symbolic Modeling of Analog Circuits 

 
In the field of analog electronic circuits, there are different ways of modeling of  

the devices’ behaviors. The approach Analog Insydes uses is the combination of 

Kirchhoff laws with symbolic device models to generate a symbolic system of 

differential-algebraic equations. As mentioned before, symbolic means here that 

besides the system’s variables also its parameters are given as symbols instead of 

numerical values. 

For a better understanding, consider the following circuit consisting of a voltage 

source V, a resistor R and a diode D. 
 

I 1 

R 

2 
V + 

V 
. 

3.33167·10− 3VD·q 

 

 

 

 
V1 − VD 

R 
= I 

Σ 

D AREA· IS   e k − 1 

− 
+ GMIN · VD = I 

 

 

The resulting system of equations contains the following equations modeling the 

current of the circuit by using the resistor’s and diode’s model equations. Additional 

to the system variables, like V1,VD and I, the parameters R, AREA, IS, k, q and GMIN 

are also given as symbols. This allows, besides the simulation after inserting the 

symbol’s values, to analyse this system symbolically. That means in this case, that 

we could just solve symbolically the system for the voltage in node 1 with respect 

to the parameters and the voltage at the diode: 

 
V1 D R · 

.

AREA · I  

.

e 
3:33167·10—3 VD ·q 

Σ
 

 
GMIN · VD

Σ  
C VD 

 

The next section follows the notes of [16–18]. 

 

 
4.2    Hierarchical Modelling and Model Reduction 

 
In general, electronic circuits consist of a coupling of blocks such as amplifiers, cur- 

rent mirrors, or polarization circuits. Each block itself might have such a structure or 

is at least a network of interconnected components like diodes, resistors, transistors, 

etc. Consequently, the entire circuit is a hierarchical network of interconnected 

subcircuits, where each of these subcircuits may be modelled differently, e.g. based 

on netlists, PDEs, or DAEs. 

C 
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The main idea behind the new algorithm for hierarchical reduction developed is 

the exploitation of the circuit’s hierarchical structure in order to perform different 

reduction techniques on the distinct subcircuits. Besides a suitable choice of the 

methods according to the modelling of the corresponding subcircuits, this further 

allows for a faster processing of smaller subproblems if the administrative cost does 

not get out of hand. Furthermore, particularly in the case of symbolic model order 

reduction methods, like used in Analog Insydes, larger circuits become manageable 

at all. 

Standard graph theoretical methods such as the modified nodal analysis (MNA) 

for transforming a circuit into a system of describing equations, however, lose the 

structural information available at circuit level. Therefore, we developed a new 

workflow for separate reductions of single subcircuits in the entire system, which 

uses information obtained from a previous simulation run. Since, in general, there 

is no relation between the errors of single nonlinear subsystems and the entire 

system available, we further introduced a new concept of subsystem sensitivities. By 

keeping track of the error on the output, which is resulting from the simplification 

of the subsystem, the sensitivities are used to measure the influence of single 

subsystems on the behavior of the entire circuit. Finally, these sensitivities are used 

to compute a ranking of subsystem reductions. In order to obtain a high degree of 

reduction for the entire system, it allows to replace the subcircuits by appropriate 

reduced models in an heuristically reasonable order. The details are explained in the 

following sections. 

 

 
4.2.1 Workflow for Subsystem Reductions 

 
Assume an electronic circuit ̇  to be already hierarchically segmented into a set of 

m subcircuits Ti and an interconnecting structure S: 

 

˙ D . f Ti j i D 1; : : : ;  m g; S /:  (4.1) 

As already mentioned, each Ti itself might be recursively segmented into a set of 

subcircuits and a coupling structure. However, here we only consider a segmentation 

on the topmost “level 0”. If one simply applies methods such as MNA to the circuit 

˙ in order to set up a set of describing equations, the resulting equations generally 

involve mixed terms from different subcircuits. In order to maintain the hierarchy 

information available on circuit level, in a first step the subcircuits are cut out from 

their connecting structure (cf. Fig. 4.1). Each subcircuit T is then connected to a 

test bench (a), i.e. a simulation test environment, where the voltage potentials at  

its terminals are recorded during a simulation run. For example, by simulating the 

original entire circuit, for each subcircuit T the interconnection of the remaining 

ones act as a test bench for T. 

Note that the reduced model generated by the described method depends strongly 

on the input signals used. Thus, the input signal of the circuit has to cover the 

technical requirements of the later usage. 
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Fig. 4.1  Subsystem reduction via test bench approach 

 
 

In a second step, the terminals of T are connected to voltage sources that generate 

exactly the recorded voltage potentials1 (b). Hence, one has a closed circuit CT with 

a defined input-output behavior at the terminals of T. A method such as MNA is 

used to set up a describing system FT of equations2 for CT . Next, FT can be reduced 

using arbitrary appropriate symbolic or numeric reduction techniques (c). 

In a last step, the voltage sources at the terminals of the reduced model FT are 

removed (d). Since the terminals of the subsystem are preserved during the reduction 

process, the original subcircuit T in ˙ can easily be replaced by the reduced model 

FT of FT , thus using the same interconnecting structure S as introduced in (4.1). The 

entire procedure is repeated several times for each subcircuit Ti in ˙, thus yielding 

collections of reduced models for each Ti. The whole workflow is summarized in 

Algorithm 4.1. 

It should further be mentioned here that this approach only controls the errors  

at the terminals of the single subcircuits. A priori, one cannot guarantee a certain 

global error, i.e. the error on the output of the entire circuit ˙, when replacing the 

original subcircuits Ti by reduced models FTi . Thus the following algorithms were 

introduced to control the global error during the process. 

 

 
 

1For doing it best, we first have to determine the voltage and current sources of the circuit that 

can act as inputs. Thus, the corresponding independent value of each port has to be considered as 

output. If you connect a voltage source at a port p this would be the current through port p, and 

vice versa. 

For simplicity, we use here voltage sources as inputs and the currents as outputs. Besides of 

that, it turns out that residual based solvers simulate analog circuits containing transistors faster 

and more accurate if the voltages are given at the circuit’s ports instead of the currents. 
2Assume we are dealing with systems of DAEs. If PDEs are involved, apply a  semidiscretization  

w.r.t. the spatial coordinates. 
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Algorithm 4.1  Reduction of subcircuits 
 

Let T D Ti be a subcircuit in an electronic circuit ˙ D . f Ti j i D 1; ::: ; m g; S /. 

a. Connect T to a test bench and record the voltage potentials at its terminals during a simulation 

run applying a suitable input. 

b. Remove the test bench and connect grounded voltage sources to the terminals of T that generate 

exactly the recorded voltage potentials, thus having T isolated as a closed circuit CT ; further, 

set up a describing system of equations FT for CT . 

c. Reduce FT by using appropriate symbolic or numerical reduction techniques, where the voltages 

at all terminals of CT are the inputs and the currents (flowing inwards) are the outputs. Here a 

family of reduced subsystems with different size and approximation quality is generated. 

d. Remove the voltage sources at the terminals after the reduction and finally obtain a family of 

reduced subsystems, where each reduced subsystem FT serves as a behavioral model of T. 

 

4.2.2 Subsystem Sensitivities 

 
In general, there is no relation between the error of the entire system and those 

of its nonlinear subsystems known. Therefore, in order to use reduced models of 

appropriate degree for the subsystems, in this section, we investigate the influence 

of single subcircuits Ti on the behavior of the entire circuit ˙ given by (4.1). This 

offers a high degree of reduction also for ˙. 

The goal here is to have an estimate of a subcircuit’s sensitivity, i.e. the sensitivity 

of ˙ with respect to changes in the corresponding subcircuit’s behavior. Our 

novel approach measures the sensitivity by observing the influence of subcircuit 

reductions on the output of ̇  and finally leads to a ranking of subcircuit reductions, 

i.e. an heuristically optimized order of subcircuit reductions. 

Usually, the term sensitivity analysis in the background of electronic circuits 

means the influences of single components or system parameters on certain circuit or 

network variables. In that case, the absolute sensitivity of a variable z w.r.t. changes 

in a network parameter p is defined by 

sa.z; p/ D 

ˇ

 ̌ ; (4.2) 

 

 
whereas 

@p ˇpDp0 

sr.z; p/ D p 

ˇ

 ̌ D p · sa.z; p/ (4.3) 

@p ˇpDp0 
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is the relative sensitivity of z w.r.t. p. In the two equations above, p0 is the nominal 

value of p. Note that 

sa.z; p/ = 

ˇ

 ̌ z —ez (4.4) 
˝p ̌ pDp0 p0 — ep 

is an approximation of sa using perturbed values z   z. p / and p of z    z.p/ and 

p   p0. While z    z.p0/ corresponds to a simulation of ˙ using the parameter 

p p0, z is obtained by using the perturbed parameter p p during the simulation 

run. 

Since we cannot derive the output y of ̇  w.r.t. one of its subcircuits, we imitate 

the meaning of Eq. (4.4) by replacing a single subcircuit T in (4.1) by a perturbed 

version T, i.e. by a reduced model FT of its describing system of equations. Note that 

any other subsystem in ̇  remains original, only T is replaced by one of its reduced 

models. We then simulate the configuration of ̇  at hand and compare the original 

output y, i.e. the reference solution, to the perturbed entire system’s output y. 

By Definition 4.2.1, the sensitivity of the subcircuit T in ˙ is defined as the 

vector of tuples containing the reduced models and the resulting error on the 

perturbed entire system. For simplicity, we will not distinguish between subcircuits 

and the corresponding describing subsystems based on equations and denote both of 

them simply by T. 

Definition 4.2.1 Let ˙ . Ti i 1; ::: ; m ; S / be an electronic circuit of 

interconnected subcircuits Ti connected by a structure S. Let further T Ti be 

one of the subcircuits in ˙. The sensitivity of T in ˙ is the vector 

sT  D 
.
.eT .1/; E.y; y eT .1///; : : : ; .eT.mT /; E.y; y eT.mT ///

Σ 
(4.5) 

that contains tuples of reduced models eT. j/ for T and the resulting error E.y; y eT . j// 
on the original output y of ̇ . In this notation, y   . j/ is the output of the corresponding 

system 

˙ D  f T. j/ g[ f Ti j i D 1; : : : ;  m g n f  T g; S  ; (4.6) 

where T in comparison to the original circuit ̇  is replaced by its jth reduced model . j/ 
eT    . 

In this definition, eT 

 
 

. j/ 

by nonlinear symbolic model order reduction and an accepted error of 10% or by 

Arnoldi method and k iteration steps for example. 
Note that the sensitivity of T involves systems ̇  . j/ which are the same as ̇  

itself  except for exactly  one subsystem,  namely T ,  
eT     

is  replaced by  a  reduced 
j/ 

version eT.   . Note further that these sensitivities depend again on the chosen input 

signals, as for the method introduced in Sect. 4.2.1. 

D 
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from the vector Lp. This procedure is repeated until all the vectors Li are empty. For 

a better overview of this approach see Algorithm 4.2. 
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Remarks 4.2.2  The sensitivity notion in Definition 4.2.1 can be further augmented 

by replacing the corresponding error E.y; y 

sion that takes also additional subsystem cr 
. j// by a more general ranking expres- 

ia, like system size and sparsity, into 

 

The next section describes how to use these sensitivities in order to obtain an 

heuristically reasonable order of subsystem reductions for the derivation of a system, 

that consists of reduced subsystems. Basically, the entries of the sensitivity vector 

of each subsystem are ordered increasingly with respect to the error on y. Then, 

following this order, the corresponding reduced models are used to replace the 

subsystems in ˙. 

 

 
4.2.3 Subsystem Ranking 

 
In this section, we present a strategy that allows an appropriate replacement of the 

subsystems of ̇  by their reduced models in a reasonable order. The new algorithm 

presented here uses a ranking for deriving a hierarchically reduced model of the 

entire system ˙. 

The basic idea behind the algorithm is ordering the reduced models of each 

subsystem increasingly w.r.t. the error3 on the output y of ˙ and subsequently 

performing the subsystem replacements according to this order. After each replace- 

ment, the accumulated error of the current subsystem configuration is checked by 

a simulation. If the user-given error bound " for the error of the entire system ̇  is 

exceeded, the current replacement is undone and the tested reduced model is deleted. 

Otherwise, the next replacement is performed and the procedure is repeated. 

Let T
. j/ 

denote the jth reduced model of the subsystem Ti. For each Ti in ˙ we 

define a ector L which contains the entries of s  and is increasingly ordered with 

respect to the error E.y; y 
.0/ 

. j//. The original subsystems Ti of ̇  are then initialized 
i 

by eT i   .  In  each  iteration  of  the  hierarchical reduction  algorithm, the  subsystem 
 

 
(reduced) model Tp     that is used for Tp in ˙. If the resulting accumulated error on 

the output y of ̇  exceeds the user-specified error bound ", the corresponding latest .q/ .q0/ 

subsystem replacement is undone, i.e. Tp    is reset to Tp     in ˙. Furthermore, all 

reduced subsystems of subsystem Tp are deleted, since we assume that worse rated 

subsystems would also exceed the error bound. Otherwise only the  corresponding 

sensitivity value .Tep 
.q/ ; E.y; y // of the tested reduced subsystem T

.q/ 
is deleted 

p 

 
 

 

 
 

3See Remarks 4.2.2. 
4Minimal with respect to the corresponding error E.y; y 

 

 

. j//. 
i 

of the vectors Li replaces the current 4 

account [9]. 

eT 
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Algorithm 4.2 Heuristically reasonable order of subsystem replacements 

Input: segmented electronic circuit ˙ D 
. 

f Ti  j i D 1; : : : ;  m g; S 
Σ

, input u, error bound " 
Output:  reduced  entire  system  ė  D feT j i   D  1; : : : ; m g; S  ,  where  T are  suitably 

i i 

reduced subsystems, E.y; y  / ≤ ", and where y ˙ is the output of  ̇

1:  for all subsystems Ti do 

2: Li WD order.sTi / w.r.t. E.y; yeT 
. j// 

3: T
.0/ 

WD Ti 

 

5: L WD .L1; : : :  ; Lm/ F set starting point 

6: ˙ WD ˙ 

7:  y WD solve.˙; u/ F calculate reference 

 
8: while L do .q/ 

 

min 

9: compute .eT p  ; E.y; yeT 
.q/ // WD i;Li2L.min.Li// w.r.t. E.y; yeT 

. j// F choose reduced 

10: replace current eT p     by eTp 

11: update.ė/     
e

 F update and solve new reduced overall system 

12: y WD solve.˙; u/ 

out ė 

14: delete entry .Tp ; E.y; y .q/ // in L 
p 

 

15: if "out     " then check resulting error 

16: if dimension.Lp/ 0 then 

17: delete5 entry Lp in L 

18: end if 
19: else .q/ .q0 / 

20: reset Tp  to Tp undo reduction if error exceeds error bound 

21:  update.˙ /  

22: delete5 entry Lp in L 

23:        end if 

 

24:  end while 

 

Remarks 4.2.3 Note that Algorithm 4.2 can further be improved, e.g. by a clustering 

of subsystem replacements, where reduced models that cause a similar error on y are 

bundled in a cluster. Thus, costly multiple simulations for computing the solution 

e

once after a whole cluster of subsystem replacements is executed. In case the error 

 

 

 

 
5  For  a  vector  X   D   .x1; : : : ; xn/,  deleting  the  entry  xi  in  X  means,  that  a  vector  XQ   D 

.x1; ::: ; xi—1; xiC1; :::; xn/ of dimension n — 1 results. 

bound is  still  not violated, we  can  continue with the  next cluster of   subsystem 

for 
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replacements. Otherwise, however, all replacements in the current cluster have to 

be rejected and it has to be subdivided for further processing. 

Another idea for further improvements is the use of approximate simulations 

such as k-step solvers which quit the Newton iteration for computing the  system’s 

solution after k steps. Thus, one obtains an approximate solution y = y for the output 

of the so far reduced system ė which can be used for the error check E.y;by/ ≤ " 

4.2.4 Algorithm for Hierarchical Model Reduction 

 
To combine all the considerations of the preceding sections, the algorithm for 

hierarchical model reduction exploiting the hierarchical structure of electronic 

circuits is set up. It is schematically shown in Fig. 4.2. 

Remarks 4.2.4 Since electronic circuits even nowadays are designed in a modular 

way using building blocks of network devices and substructures such as current 

mirrors and amplifying stages, the hierarchical segmentation of an electronic circuit 

is given in a more or less natural way. Otherwise, the segmentation has  to be  

made manually or by using pattern matching approaches[13] in order to detect 

substructures in the entire circuit. 

Note that the presented algorithm (cf. Fig. 4.2) can be applied recursively to the 

subcircuit levels such that a hierarchically model order reduction results. 

 

 
4.3 Implementations 

 
The algorithms of the preceding sections have been completely implemented in 

Analog Insydes [1] and the approach for hierarchical model reduction was fully 

automated. It is divided into three main procedures 

• ReduceSubcircuits, 

• SensitivityAnalysis, and 

• HierarchicalReduction 

that have to be executed sequentially. Each of the above procedures takes several 

arguments among which there are some optional ones. 

ReduceSubcircuits is called with the specification of an already segmented 

netlist of the circuit which is to be hierarchically reduced, the specification of the 

reduction method for each subcircuit, the simulation time interval necessary for 

recording the voltage potentials at the ports of the subcircuits, and several optional 

parameters. In accordance with the provided data, the procedure then computes the 

reduced models for all the specified subcircuits and appends them to the   original 

instead of y. 
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Fig. 4.2 Schematic illustration of the full algorithm for hierarchical model reduction using 

subsystem sensitivities. 

 

 

circuit object. This offers an easy switching among the respective models for a single 

subcircuit. 

The return value of ReduceSubcircuits, i.e. the hierarchically segmented 

circuit object together with the reduced models of each subcircuit, is then used as 

parameter of the function SensitivityAnalysis. In addition, the names of the 

reduced models, a specification of the output variables, the simulation time interval 

for the error check, and the error function itself to measure the error on the reference 

solution y are provided. The procedure computes the sensitivity vectors of each 

subcircuit and returns them ordered increasingly w.r.t. the error on y. 

Finally, HierarchicalReduction needs a specification of the entire circuit 

and its reduced subcircuit models, the global error bound, the output variables, the 
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sensitivities returned by SensitivityAnalysis, the simulation time interval 

necessary for the error check, and several optional arguments. Then the subsystem 

replacements are performed according to the sensitivities and the accumulated error 

is checked after each replacement (Algorithm 4.2). The procedure terminates when 

all sensitivity lists have been processed and deleted. 

In addition to the above, there have been implemented several data structures and 

operators for their manipulation, as well as some well-known reduction algorithms, 

transmission line models—based on a discretization of a PDE model—and further 

components based on general state space systems. We further implemented some 

environments to test the above procedures and functionalities. However, we will not 

go into detail here, for an overview we refer to [16]. 

 

 
4.4 Applications 

 
In order to demonstrate the large potential of the new hierarchical reduction 

approach, it is applied in time domain to two analog circuit examples that are typical 

representants of components used in industrial circuit design. The results of the 

hierarchical reduction of the two circuits are compared to the direct non-hierarchical 

approach. Furthermore, some additional input excitations are applied to the circuits 

in order to show the robustness of the derived reduced models. 

Note that we present here the application of the introduced methods on circuits 

containing strongly nonlinear devices to demonstrate the ability of the approach in 

the field of nonlinear analog circuits. 

 

 
4.4.1 Differential Amplifier 

 
The differential-amplifier circuit shown in Fig. 4.3 consists of five subcircuits 

DUT, DUT 2, L 1, L 8, and L 9, where the latter three ones are transmission lines 

connecting the supply voltage sources VCC and VEE and the input voltage source 

V1 with the remaining parts of the circuit. For the modelling of the transmission 

lines, we take a discretized PDE model, namely, the telegrapher’s equations (cf., 

e.g., [5–7, 11]), with 20 line segments each. While VCC and VEE generate constant 

voltage potentials of 12 V and 12 V, respectively, the input voltage generated by 

V1 is a sine wave excitation with an amplitude of 2 V and a frequency of 100 kHz. 

Finally, the computations are performed on a time interval I   Œ0: s; 10—5 s]. 

Using MNA to set up a system of describing DAEs yields 167 equations 

containing 645 terms (on “level 0”). A non-hierarchical symbolic reduction of the 

entire system then needs approximately 2 h and 11 min,6 where most of that   time 

 
 

6The computations are performed on a Dual Quad Xeon E5420 with 2.5 MHz and 16 GB RAM. 
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Fig. 4.3  Differential  amplifier with its intuitive hierarchical  segmentation into five   subcircuits  

DUT, DUT 2, L 1, L 8, and L 9. 

 
 

( 95%) is needed for the computation of the transient term ranking.7 Due to this, 

the computational costs are approximately the same for all choices of the error 

bound ". The error function used first discretizes the time interval I to a uniform grid 

of 100 points and then takes the maximum absolute difference of the two solutions 

on this grid as a measure for the error. 

With " equal to 3% the system is reduced to 124 equations and 416 terms, while a 

permitted error of 10% narrows these numbers down to 44 equations and 284 terms. 

The results are shown in Fig. 4.4. Note also that the error bound of 10% is fully 

exploited. 

In contrast to the immense time costs of the non-hierarchical approach, the new 

algorithm for hierarchical reduction reduces the entire system in only 4 min and   

50 s. The subcircuits DUT and DUT 2 are reduced symbolically by using a sweep 

of error bounds 
 

sw D f1%; 10%; 50%;  90%; 100%g; (4.7) 

such that each subsystem yields 5 reduced subsystems. The three transmission lines 

L 1, L 8, and L9 are reduced numerically by applying Arnoldi’s algorithm [2,  3]. 

 

 
7A term ranking is a trade-off between accuracy and efficiency in computation time that estimates 

the influence of a term in a system of equations on its solution. Here, however, we use full 

simulations instead of low-accuracy estimates. For more details see [20]. 
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Fig. 4.4 Solution of the original (solid) and the non-hierarchically reduced system (dotted) 

allowing 3% (left) and 10% (right) maximum error, respectively. The input V1 is 2 Sin.2ı105t/ 
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Fig. 4.5 Left: Solution of the original (solid) and the reduced system (dotted) allowing 3% (first 

row) and 10% (second row) maximum error, respectively. Right: The corresponding error plots. 

The input V1 is 2 · Sin.2ı105t/ Volts 

 
For L1 there are five reduced models computed by performing the Arnoldi iteration 

for up to 5 steps, and for L8 and L9 there are made only up to 3 steps, thus yielding 

three reduced models each for L 8, and L 9. 

For " 3% the resulting reduced overall system contains 62 equations with 315 

terms, and " 10% leads to a reduced overall system with 60 equations and 249 

terms. The solutions of the original and the respective reduced systems are shown 

in Fig. 4.5 together with the corresponding error plots. 

In this case we conclude that the hierarchical reduction approach is more than 

26 times faster than the non-hierarchical one. Also the number of equations of the 

reduced model in the 3% error case could be halved. Moreover, by applying further 

input excitations to both the original and the hierarchically reduced system with 
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Fig. 4.6 Left: Solution of the original (solid) and the reduced system (dotted, "  3%) together  

with the input excitation (dashed). Right: The corresponding error plots 

 

 

" 3%, it turns out that the derived model is very robust, even w.r.t. highly non- 

smooth pulse excitations (cf. Fig. 4.6). Note further that the simulation is accelerated 

approximately by a factor of 5. 

 

 
4.4.2 Reduction of the Transmission Line L1 by Using an 

Adapted PABTEC Algorithm 

 
The tool PABTEC [14] uses the Balanced Truncation reduction technique to reduce 

the linear parts of an analog circuit. Please refer to Chap. 2.6 for further informations 

about this software. 

To demonstrate the coupling of the introduced algorithm with a numeric model 

order reduction method, we use PABTEC to reduce the linear transmission line L 1. 

The remaining subcircuits DUT, DUT 2, L 8, and L9 have been reduced by the 

same methods shown in the example before. In doing so, the original entire system 
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Fig. 4.7 Left: Solution of the original (solid) and the reduced system (dotted) together with the 

input excitation (dashed). Right: The corresponding error plots. The first row corresponds to the 

reduced system obtained by allowing an error of " D 3%, while the second row shows the results 

for " D 10%. The input V1 is 2 · Sin.2ı105t/ Volts 

 
consists of 191 equations containing 695 terms. Applying the hierarchical reduction 

algorithm with error bounds "     3% and "      10% then needs about 8 min and    

20 s and yields systems with 96 equations and 2114 terms and 84 equations and 

1190 terms, respectively. The results of their simulation (speed-up by a factor of 

approximately 5) are shown in Fig. 4.7. 

 

 
4.4.3 Operational Amplifier 

 
The second circuit example to which we apply the new algorithms is the operational 

amplifier op741 shown in Fig. 4.8. It contains 26 bipolar junction transistors (BJT) 

besides several linear components and is hierarchically segmented into seven 

subcircuits CM1–3, DP, DAR, LS, and PP. For a detailed description of their 

functionality in the interconnecting structure we refer to [16, Appendix C]. 

The goal is a symbolic reduction of the entire circuit in time domain with an 

overall error bound of " D 10%. While the input voltage source Vid provides a sine 

wave excitation of 0:8 V and 1 kHz frequency on a time interval I Œ0 s; 0:002 s] to 

the system, its output is specified by the voltage potential of node 26. The input 

together with the corresponding output, i.e. the reference solution, is  shown  in 

Fig. 4.9. Note that the reference solution is pulse-shaped and, thus, the standard 

error function used for the differential amplifier in the preceding sections  may  

lead to large errors for small delays in jumps of the solution. Hence, even with a 
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Fig. 4.8  Operational amplifier op741 composed of seven subcircuits CM1–3, DP, DAR, LS, PP 

 
 

 

Fig. 4.9 Input voltage excitation (left) and the corresponding reference solution (right) of the 

operational amplifier op741 

 

 

prescribed error bound of 10%, the system might not be reduced at all. In order to 

cope with these problems, here we use the L 2-norm as error function. 

Using MNA to set up a system of describing DAEs for the entire system yields 

215 equations and 1050 terms. The direct non-hierarchical symbolic reduction 

method needs more than 10:5 h and yields a system containing 97 equations and 

593 terms. At the same time, providing a sweep of error bounds 

 

sw D f2%; 10%; 20%; 30%; 50%; 70%;  90%; 100%g (4.8) 

for the separate symbolic reduction of all seven subcircuits and applying the 

hierarchical reduction algorithm needs only 2 h and 22 min. The resulting system, 

however, consists of 153 equations and 464 terms, which can be narrowed down to 
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Fig. 4.10 Output of the 

original (solid) and the hybrid 

reduced entire system (dotted) 

 

 

 

 
 

 

Table 4.1 Overview of the results of the reduction of the operational amplifier op741 

Original system: 215 equations, 1050 terms, 26:0 s simulation time 

 

Time costs 10:5 h 2:5 h <4h  

Equations/terms 97=593 139=362 34=92 

Error 2:51% 7:16% 5:68% 

Simulation time 16:0 s 11:4 s 2:2 s 

Time costs >12 h 2:5 h <4h  

Equations/terms 80=405 132=336 34=93 

Error 0:37% 0:08% 5:32% 

Simulation time 9:5 s 13:1 s 2:0 s 

The computations were performed on a machine with 8 Quad-core AMD Opteron 8384 “Shanghai” 

(32 cores in total) with 2:7 GHz and 512 GB RAM on a SuSE Linux 10:1 system 

 

 

139 equations and 362 terms by slight manual improvements8 of the hierarchical 

reduction algorithm. 

Considering the obtained systems as interim solutions and applying a second 

non-hierarchical symbolic reduction then reduces the size drastically and leads to  

a  model with only 34 equations and 92 terms. Simultaneously, there are almost  

no further changes for the non-hierarchically reduced system with 97 equations. 

Note that the additional time cost is less then 1:5 h, while the simulation time of the 

“hybrid” reduced model is significantly decreased. 

Figure 4.10 offers a qualitative impression of the results obtained by the hybrid 

approach. Furthermore, earlier results involved a newly designed alternative error 

function E× which is less sensitive with respect to small delays in jumps of the 

system’s solution. 

Table 4.1 provides an overview of the best results obtained by the three different 

approaches. See also Fig. 4.11 which offers some details about the accuracy,  time 

 
 

8Due to the structure preserving reduction method, the resulting reduced model contains equations 

connecting the models of the subcircuits, that can be avoided, like: Voltage of node 24 of 

subcircuit LS is equal to the voltage of node 24 of subcircuit PP. 

Unifying the corresponding variables (i.e. V$24$LS and V$24$PP) yields a decrease of the 

number of equations. 
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Fig. 4.11 Summary of the reduced models of the op741 amplifier obtained by the three different 

reduction approaches. The boxes contain the number of equations/terms of the reduced models, 

the time costs of a simulation using the original sine wave excitation, and the error on the output 

V$26 of the original amplifier 
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costs for simulation, and number of equations and terms of the different reduced 

models. We will not go into detail here, for further information we refer to [16] 

instead. 

With a view towards the robustness of the derived models, we apply some 

further input excitations, namely, a sine wave with 3 kHz frequency, a sum of sine 

waves of 250, 500, and 2000 Hz, and a pulse excitation of 250 Hz. In addition to 

almost perfectly coinciding output curves of the corresponding reduced models  

(cf. Fig. 4.12), the speed-up in simulation time is up to a factor of 19, see Table 4.2. 

The presented systems are identified by their number of equations and terms. 

 
 

 

  
 
 

  
 

 

 

 

 

 

 
 

 

 
 

Fig. 4.12 Three different input excitations (left) and the resulting outputs of both the original 

(solid) and the hybrid reduced system (dashed). (a) A voltage pulse. (b) Output results for the 

voltage pulse. (c) A sine wave  with frequency  3000 Hz. (d) Outputs applying the input in (c).  (e) 

A sum of sine waves. (f) The outputs for the sum of sine waves 
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Table 4.2  Speed-up of simulation of a hybrid reduced entire system w.r.t. the original one 

 
4.5 Conclusions 

 
To conclude this chapter, we briefly summarize the results: The new hierarchical 

reduction approach offers enormous savings in computation time, a significant 

speed-up in system simulations, and yields good reduced models w.r.t. the error,  

the number of equations and terms of the original system. Moreover, even for 

highly non-smooth pulse excitations, the reduced models turn out to be very robust. 

The developed methods were applied to two model classes, circuits consisting of 

nonlinear subcircuits and circuits containing subcircuits modelled by PDEs, that 

demonstrated the large potential of the new algorithms. 
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Chapter 5 

Low-Rank Cholesky Factor Krylov Subspace 

Methods for Generalized Projected Lyapunov 

Equations 

 
Matthias Bollhöfer and André K. Eppler 

 
 

Abstract Large-scale descriptor systems arising from circuit simulation often 

require model reduction techniques. Among many methods, Balanced Truncation is 

a popular method for constructing a reduced order model. In the heart of Balanced 

Truncation methods, a sequence of projected generalized Lyapunov equations has to 

be solved. In this article we present a general framework for the numerical solution 

of projected generalized Lyapunov equations using preconditioned Krylov subspace 

methods based on iterates with a low-rank Cholesky factor representation. This 

approach can be viewed as alternative to the LRCF-ADI method, a well established 

method for solving Lyapunov equations. We will show that many well-known 

Krylov subspace methods such as (F)GMRES, QMR, BICGSTAB and CG can be 

easily modified to reveal the underlying low-rank structures. 

 
 

5.1 Introduction 

 
The numerical simulation of large-scale integrated circuits nowadays approaches 

system sizes of several hundred million equations. This ever-increasing size has 

several sources; one of which is the accelerating scale of miniaturization, another 

reason is the increasing  density  of  the  integrated  devices.  The  simulation  of 

the complete system requires many simulation runs with different input signals. 

These simulation runs would be impossible to compute in acceptable time using 

the original system. Instead it is necessary to replace the original system by a 

significantly smaller reduced model which inherits the essential structures and 

properties of the original system as, e.g., passivity and stability. To deal with this 

problem model order reduction techniques (MOR) have turned out to be a key 

technology in order to generate reduced models. Among the most popular methods 
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for MOR are those based on Krylov subspace method or Balanced Truncation (BT) 

[3, 11, 30]. For problems arising from circuit simulation in particular passivity- 

preserving balanced truncation methods [33, 34, 45] are of particular interest, since 

beside reducing the circuit to a reduced order model, major important properties 

like stability and passivity have to be preserved to obtain a physically correct model 

(see also Chaps. 2 and 3). Another frequently used method mainly applied to partial 

differential-algebraic equations (PDAE) is the Proper Orthogonal Decomposition 

(POD) method, cf. [16, 26], Chap. 1. 

This article is organized as follows. In Sect. 5.2 we will give a brief introduction 

to balanced truncation which is the motivation for our methods and requires to 

solve several sequences of generalized projected Lyapunov equations. This includes 

existing numerical methods for solving Lyapunov equations. In Sect. 5.3 we will 

present our novel approach for generalized projected Lyapunov equations based  

on Krylov subspace methods. Finally we will use several examples from circuit 

simulation, as well as other examples, to demonstrate our approach in Sect. 5.4. 

 

 
5.2 Balanced Truncation 

 
The basis for the numerical methods for generalized projected Lyapunov equations 

presented in this paper are those using Balanced Truncation (BT). In particular 

passivity-preserving Balanced Truncation methods will be of special interest for 

model order reduction techniques applied to circuit simulation problems. 

 

 
5.2.1 Introduction to Balanced Truncation 

 
To start with the idea of Balanced Truncation we consider a linear time invariant 

descriptor system 
 

ExP D Ax C Bu 

y D Cx C Du 
where A; E 2 Rn;n; B 2 Rn;m; C 2 Rp;n; D 2 Rp;m

 

 

such that m; p n. Numerical methods for MOR replace E, A, B, C by smaller 

matrices EQ , AQ , BQ , CQ such that for all matrices the initial dimension n is replaced by a 

suitable l      n, i.e., AQ ; EQ     Rl;l, BQ     Rl;m, CQ     Rp;l. 

When using Balanced Truncation the reduction of the model is done by multi- 

plying with matrices W Rl;n, T  Rn;l in order to obtain the reduced descriptor  

system 
 

.E; A; B; C; D/ ! .EQ ; AQ ; BQ ; CQ ; D/ D .WET; WAT; WB; CT; D/: 
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The transformation matrices W and T are constructed using the solutions of 

generalized Lyapunov equations, the so-called proper controllability gramian Gpc 

and the proper observability gramian Gpo. When E is singular one also has to take 

into account the improper controllability gramian and the improper observability 

gramian, for details we refer to [34]. For the computation of a reduced model we 

have to compute X  Gpc  and Y  Gpo  by solving the projected generalized   

Lyapunov equations 

EXAT C AXET C PlBBTPT  D 0;  where X  D PrXPT ; (5.1) 

ET YA C AT YE C PTCT CPr D 0;  where Y D PT YPl: 

Here Pl, Pr are obtained from the Weierstrass canonical form for .E; A/. To do so 

we assume that det.A   hE/   0. In this case there exist nonsingular V and Z such 

that 

V—1EZ D 

. 
I 0 

Σ 

; V—1AZ D 

. 
J 0 

Σ 

: (5.2) 

Here J; N denote matrices in Jordan canonical form where N nilpotent. The left and 

right projection of .E; A/ to 

.PlEPr; PlAPr/ D 

.

V 

. 
I  0 

Σ 

Z—1;  V 

. 
J 0 

Σ 

Z—1

Σ 

(5.3) 

 

yields the projectors Pl and Pr of the matrix pencil hE A with respect to the 

subspace of finite eigenvalues. By solving (5.1) we obtain symmetric, positive 

semidefinite solutions  X       RRT  and Y        LLT ,  provided that  the  eigenvalues 

of J from (5.2) are located in the open left half plane. In many application 

problems for MOR in circuit simulation the matrices X, Y are numerically of 

approximate low rank. Using the singular value decomposition of LTER and LTAR 

the balanced system is built. This way some general properties such as passivity 

are not necessarily preserved. To even preserve passivity it is necessary to solve the 

projected Lur’e equations [33], see also Chap. 2. In some special cases these in turn 

can be traced back to algebraic Riccati equations of the form 
 

EXAT CAXET C.EXCT —PlB/T R—1.EXCT —PlB/ D 0;  where X D PrXPT
 (5.4) 

 

and 
 

AT YECET YAC.BT YE—CPr/
T R—1.BT YE—CPr/ D 0; where Y D PT YPl: (5.5) 
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For details we refer to [33, 34]. Solving Riccati equations using Newton’s method 

or the Newton-Kleinman method [4, 44] (cf. also Sect. 2.5.2) requires solving a 

sequence of projected, generalized Lyapunov equations of the form 
 

EXkAT C AkXkET C PlBkBTPT  D 0;  where Xk  D PrXkPT ; 
 

(5.6) 

ETYkAk C ATYkE C PTCTCkPr  D 0;  where Yk  D PTYkPl: 
 

Compared with the original pencil .E; A/, the matrix Ak in .E; Ak/ is obtained from 

a low-rank correction of A. For large-scale sparse systems arising from circuit 

simulation this allows for the computation of sparse approximations (resp. sparse 

factorizations) of .E; A/ and then to transfer these approximations to the pencil 

.E; Ak/ using the Sherman–Morrison–Woodbury formula [14] with respect to Ak. 

 

 
5.2.2 Numerical Methods for Projected, Generalized Lyapunov 

Equations 

 
We will now describe in detail how projected, generalized Lyapunov equations of 

type 
 

EXAT C AXET C PlBBTPT  D 0;  where X  D PrXPT
 (5.7) 

 

are solved numerically. For simplicity we restrict ourselves to solving a single 

equation of this  type which is  at the heart of Balanced Truncation methods and  

in practice such equations have to be solved frequently, e.g. once per iteration in 

Algorithm 2.7. 

One of the most commonly used methods for solving (projected) generalized 

Lyapunov equations is the ADI method [28, 31, 44, 47]. The ADI method for 

solving (5.7) consists of a sequence j 1; 2; 3; : : : of steps, which is decomposed 

into two half-steps 
 

.E C ˙jA/X 1 AT  D —PlBBT PT — AXj—1.E — ˙jA/T ; 
j— 2 l 

AXj.E C ˙jA/T D —PlBBT PT — .E — ˙jA/Xj— 1 AT : 

 

From  these  two  coupled  equations  we    successively  compute Xj   j
.  Here 

˙1; ˙2; ˙3;:::  refer  to  shift  parameters  that  have  to  be  chosen  appropriately to 
achieve convergence, see [32, 47]. Starting with X0  0 and using that the right   

hand side PlBBTPT is symmetric and positive semidefinite one can easily verify 

that all iterates Xj RjRT are also symmetric and positive semidefinite. This can be 
used  explicitly in the ADI method to represent the iterates by low rank  Cholesky 
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Algorithm 5.1 LRCF-ADI for generalized, projected Lyapunov equations (5.7) 
1:  Comppute shift parameters ˙1; : : : ; ̇ t 

2: z1 D —2Re.˙1/.E C ̇ 1A/—1PlB 

3:  R D Œz1] 

4:  for i D 2 : : : t : : : dpo 
5: zi D Pi—1 D p 

 
 

2˙i 

Σ
zi—1 — .˙i C ̇Ni—1/.E C ˙iA/—1Azi—1

Σ
 

6: R  D  R 
 

z 
—2˙i—1 

i 

7:  end for 

Œ  i—i   i] 

 
 

 

factors 

Rj D 

Σq
—2Re.˙j/f.E C ̇ jA/—1PlBg;  f.E C ˙jA/—1.E — ṄjA/Rj—1g

ˇ 

: 

 

For the generalized case, the projectors Pl and Pr from (5.3) ensure that if Rj—1   D 

PrRj—1, then we also obtain Rj     PrRj and thus Xj     PrXjPT holds. 

The matrices of type .E  ˙jA/, .E  ˙jA/—1 commute with each other independent 

on the choice of ˙j. This observation has been used in [28] to reduce the numerical 

complexity of the computation of Rj by one order of magnitude. This has lead to the 

Low-Rank Cholesky Factor-ADI Method (LRCF-ADI) and can be described for the 

case of general and projected Lyapunov equations by Algorithm 5.1. 

For the convergence of the ADI method the choice of the shift parameters 

˙1; ˙2; :::  is essential. For the case where E I and A is symmetric and positive 

definite optimal shift parameters are known [47]. In general one often has to work 

with heuristic parameters as, e.g., in [31, 32] although asymptotically optimal shifts 

can be determined by Fejér-Walsh points [43] or Leja-Bagby points [27, 42]. Also, 

recent global optimization strategies to approximate optimal shifts have lead to 

promising results [38]. 

 

 
5.3 Low-Rank Cholesky Factor Krylov Subspace Methods 

 
The objective of this article is to describe novel numerical solution methods for 

projected generalized Lyapunov equations based on low-rank Krylov subspace 

methods. These are frequently used as core part of the model order reduction 

approach. In principle ADI methods belong to the class of iterative methods for 

solving the linear system (5.7). This can be equivalently rewritten as 

 

LX D B; 
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where L E A A E corresponds to the Lyapunov operator in (5.1), X 

vec.X/ and, B  vec. PlBBTPT /. Our goal is to preserve the matrix structure as 

well as the low-rank structure of the Lyapunov equation (5.7), while at the same 

time the benefits of structure-preserving preconditioned Krylov subspace methods 

applied to LX D B will be exploited. 

 
5.3.1 Low-Rank Krylov Subspace Methods 

 
Krylov subspace methods without preconditioning consist of series of matrix- 

vector multiplications, scalar products and linear combinations of vectors. The 

residuals  Rk         B    L Xk  are  located  in  span  R0; L R 0; ::: ; L k—1R0    and 

the approximate solutions Xk 1, respectively, can be represented by elements of 

the space X0 span R0; L R0; : :: ; L k—1R0 . For two-sided Krylov subspace 

methods such as BiCG or QMR, multiplications with the transposed matrix also 

have be taken into account. Here as part of the solution process, both Riccati 

equations (5.4), (5.5) could be treated simultaneously solving both associated linear 

equations (5.6) in common. This follows from the property of two-sided Lanczos 

methods which require a right initial guess such as PlBkBTPT and an appropriate left k    l 
initial guess which could be chosen as PTCTCkPr. Yet the two-sided methods have 

r    k 

to be slightly modified to explicitly compute the additional approximate solution. 

While the iterates are located in a Krylov subspace on one hand, on the other 

hand we have that the right hand side —PlBBTPT of the Lyapunov equation, as 

well as the approximate solution X RRT , can be represented as symmetric low- 

rank matrices. The obvious approach to migrate both structures for adapted Krylov 

subspace methods consists of keeping all iterates of the Krylov subspace method in 

symmetric low-rank format. This in turn yields elementary operations for iterates 

of type Zi  D QiMiQT , where Mi  D MT , i  D 1; 2 are also symmetric but of   much 

smaller size than Zi. We  set Zi vec.Zi/ and note that elementary  operations are 
translated as follows: 

• L Z1 is equivalently written as 

EZ  AT C AZ  ET D ŒEQ  ; AQ  ] 

Σ  
0   M1 

ˇ 

ŒEQ  ; AQ  ]T
 

„   ƒ‚  … 
„  

1        
… 
„   ƒ‚

T    

… 
DWQ2 

 
• analogously, L TZ1 is represented by 

D

ƒ
WM

‚
2 

DWQ2 

ETZ A C ATZ E D 
Σ

ETQ ; ATQ 
Σ 

Σ 
0  M1 

ˇ 
Σ

ETQ ; ATQ 
ΣT

 

„ ƒ‚    … 
„  ƒ

1 
‚  … 

„  ƒ‚  … 

 
DWM2 
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• linear combinations ˛Z1 C ̌ Z2 can be traced back to 

˛Z C ˇZ D ŒQ  ; Q  ] 

Σ 
˛M1    0 

ˇ 

ŒQ  ; Q  ]T
 

„ 
D

ƒ
W

‚
Q3 

… 
„

 
0   ˇ 

D

ƒ
WM

‚
3 … 

„ 
D

ƒ
WQ

‚
T  

… 

• finally, scalar products are easily computed using the trace of matrices by 

Z TZ2 D trace.ZTZ2/ D trace.Z1Z2/: 

 

This shows that in principle Krylov subspace methods can be set up such that all 

iterates are represented by symmetric low-rank matrices. 

 

 
5.3.2 Low-Rank Cholesky Factor Preconditioning 

 
If we wish to supplement a Krylov subspace solver with an additional precondi- 

tioner, then in the worst case the low-rank structure of the single iterates is lost. 

This holds even for the simple example of diagonal preconditioning. Instead the 

preconditioner has to be adapted such that the low-rank structure is inherited. The 

natural choice for a preconditioner in this case is obtained from the LRCF-ADI 

method. Given Z1 D Q1M1QT , we can apply t steps of the LRCF-ADI method from 

Sect. 5.2.2 starting with a right hand side Cholesky factor B WD Q1. This way we 

  
 

Q1M1Q
T —! B WD Q1 

LRCF-ADI 

—! 

for B D Q1 

Rt —! Rt .It ˝ M1/ R
T : 

 

Using ADI we obtain in a canonical way that the composed system 

 

Rt .It ˝ M1/ RT ÷ Q2M2QT
 

 

 
(5.8) 

 

is again a symmetric low-rank matrix. By construction, Q2M2QT could be equiva- 

lently computed by applying t steps of the usual ADI method starting with initial 

guess X0     0 and right hand side    Q1M1QT . 

There are several structure-preserving Krylov subspace methods for (gener- 

alized) Lyapunov equations which are essentially based on the (block-) Krylov 

subspace 
 

spanfB; AB; A2B;:::; Ak—1Bg; 

Rj  jD1;:::;t 
which in turn yield a symmetric  low-rank obtain the LRCF-ADI factors 

matrix 
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see, e.g. [19–21, 23, 29, 41]. Krylov-subspace methods in conjunction with ADI 

preconditioning are frequently used [7, 17, 22], whereas the preservation of the low- 

rank structure of the iterates is not employed. Structure preservation of the GMRES 

and FGMRES methods [36] with LRCF-ADI preconditioning is further discussed 

in [9]. In [24] one can find a generalization of low-rank Krylov subspace methods 

for up to d-dimensional tensors. 

 

 
5.3.3 Low-Rank Pseudo Arithmetic 

 
The elementary matrix and vector operations preserve the symmetric low-rank 

format but numerically concatenation of symmetric low-rank matrices such as the 

linear combination may significantly increase the numerical rank of the iterates.  

To bypass this problem we need to introduce a pseudo arithmetic similar to the 

approach that is used for hierarchical matrices [15]. Let Z WMWT with an 

additional inner small symmetric matrix M Rl;l be given. Z may have  been 

obtained from one of the elementary operations described in Sect. 5.3.1. Then Z   

is compressed as follows: 

1. We compute W       QR˘ T , where Q      Rn;r, R      Rr;l  and ˘      Rl;l  using the 

QR decomposition with column pivoting [14]. To determine the rank using this 

QR decomposition has to be handled with care and should include the recent 

modifications suggested in [8], which is the case for LAPACK release 3.2 or 

higher. After truncation we obtain W      Q1R1˘ T . 
2. Next  we  determine  the  eigenvalue  decomposition  T          U˙UT   of  T 

R1˘ TM˘ RT  and reduce U, ˙  to matrices U1, ˙1 of lower rank whenever the 

diagonal entries of ˙ are sufficiently small in modulus. 

3. This finally yields the  truncated W .Q1U1/˙1.Q1U1/T ,   which  is  computed 

after each elementary operation, resp. after a sequence of elementary operations. 

With respect to Krylov subspace methods we usually apply the iterative solver 

for solving LX  B until the norm of the residual   B   L Xj   2  6 ". Here " 

may be an absolute or relative tolerance and may include contributions from B. For 

generalized Lyapunov equations this condition reads as 
 

T T T   T 

kEXjA C AXjE   C PlBB  Pl kF 6 " 
 

and certainly any low-rank decomposition of Rj need not be significantly more 

accurate than ". Whenever EXjAT  C AXjET C PlBBTPT  ÷ WjMjWT is compressed 

to lower rank, it is enough to compute a truncated QR˘  decomposition. To do so 

assume that 
 

Wj D QjRj˘ T 
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D 
B
B
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jr11j > ··· > jrppj > k @ :: 

rn;i 

A k2; 

D C 

k @ :: 

rn;i 

6 tol : (5.9) 
A k2 r 

j ~ 

D j j 

D 

D 2 2 2 

0 0 

2 

: : 
: 

: : 

Σ 
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such that 
0

B 
r11  ··· r1p    r1;pC1   ···   r1;l   

1

C
 

. Σ 
B
B : : :   

: : : C
C

 

Rj D 
R11 R12 

0  R22 

0 rpp   rp;pC1   ··· rp;l 

B
B 

rpC1;pC1 ··· rpC1;l 

C
C
C
C 

: 

@
B 

0 : : 
C
A 

rn;pC1   ··· rnl 

The QR decomposition with column pivoting ensures that 

0

B 
rpC1;i 

1

C
 

 
 
 

for all i   p    1; : : : ;  l. To make sure that the residual is accurate enough we may 

use a threshold tolr, which should be chosen one order of magnitude less than " and 

terminate the QR˘ decomposition as soon as 

0

B 
rpC1;i 

1

C
 

 
 
 

This requires only a minor change to the QR˘  decomposition which is truncated 

as  soon as  the threshold is  reached. Q1; R1  are then obtained by taking the first   

p  columns of  Qj  and  the leading p    l  block .R11; R12/  of Rj  multiplied by  ˘ T . 

In a similar way all other iterates of the low-rank Krylov subspace solver will be 

truncated to lower rank. To summarize our truncation strategy we give a small error 

analysis. 

Lemma 5.3.1 Let Z WMWT Rn;n such that W Rn;l, M Rl;l for some l  >  0. 

Suppose that the truncated QR˘  decomposition of W       QR˘ T  truncates the 

matrix R in (5.9) for some tolr " r11 . Discarding R22, the approximate 

factorization 

 
ZQ D Q 

. 
R11 

 
R12 

Σ 

˘ TM˘ 

. 
R11 

 
T 

R12 QT 

 

satisfies 

kZ — ZQ k2 6 2
p

l — p "kMk2kWk2 C O ."2/: 

max 
iDpC1;:::;l 

0 0 
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Moreover, suppose that 

T WD 
. 
R11 

 

 
R12 

Σ 
˘ T M˘ 

. 
R11 

 

 

 
T 

R12 
 

is decomposed as 

T D U˙UT D .U1; U2/ 

. 
˙1   0  

Σ 

.U1; U2/
T

 

 

such that U     Rp;p is orthogonal, ˙1      diag.o1; : : : ; or/, ˙2      diag.orC1; : : : ; op/,  

o1 > > op and oi 6 " o1 for all i > r, then the approximate low rank 

factorization 

ZO D .Q 

. 
Ip 

Σ 

U  / ˙   .Q 

. 
Ip 

Σ 

U  /T
 

 

satisfies 

0 
1 1 

0 
1 

kZ — ZO k2 6 .2
p

l — p C 1/"kMk2kWk2 C O ."2/: 
 

Proof  We first note that 

 
jr11j D 

j 
max 

l 
kRejj 6 max kRxk2 D kRk2 D kWk2: 

D1;:::; kxk2D1 

Conversely, using (5.9) we obtain 

kR22k2 D max kR22yk2 D max k 
X 

R22eiyik2 

kyk2D1 

 
l—p 

kyk2D1 
i>p 

6  max R22ei   2  yi 

kyk2D1  
iD1

 

 
6 max 

kyk2D1 

l—p 

 
iD1 

kR22eik
2
 

1=2 l—p 

 
iD1 

jyij
2

 

!1=2 

1=2    p 

6 
.
.l — p/"2jr11j

2
Σ 

6 l — p "kWk : 
 

It follows that 

 
Z — ZQ  D Q 

 

 

0  0 

0 R22 

Σ 

˘ T MWT C WM˘ 

 

 

 
T 

0  0 
QT 

0 R22 

 
0  0 

C 
0 R22 

Σ 

˘ TM˘ 

T 

0  0 

0 R22 

 
QT : 

. 

. 

扫码可进资料分享群



2 2 0 
2 2 

0 
2 2 

2 

2 

2 

k   —   k  ≤  k k 

5    LRCF Krylov Subspace Methods for Lyapunov Equations 167 

Thus bounding the norm of Z — ZQ yields 

kZ — ZQ k2 6 2kR22k2kMk2 kWk2 C kR22k2kMk2 6 2
p

l — p "kMk2kWk2 C O ."2/: 
2 2 

 

Next observe that kTk2 D jo1j and we can bound kTk2 by 

kTk2 6 kMk2 k 
. 

R11 R12 

Σ 
k2 6 kMk2 kWk2: 
2 2 

 

If we now further truncate T, then 
 

kZ — ZO k2 6 kZ — ZQ k2 C kZQ — ZO k2 

6 2
p

l — p "kMk kWk2 C O ."2/ C k.Q 

. 
Ip 

Σ 

U /˙ .Q 

. 
Ip 

Σ 

U /T k 

6 2
p

l — p "kMk2kWk2 C k˙2k2 C O ."2/ 

6 2
p

l — p "kMk2kWk2 C "jo1jC O ."2/ 

6 .2
p

l — p C 1/"kMk2kWk2 C O ."2/; 
 

which completes the proof. 

Although we may have kZk2 < kMk2kWk2 we consider this situation as rare in 
practice. Furthermore, the factor 

p
l — p is 

2 

of technical nature. Therefore using 
more 

some "Q of one order of magnitude less than ", we expect the truncation strategy to 

be in practice satisfactory in order to obtain   Z     ZO  2     "  Z  2. In Sect. 5.4 we will 

demonstrate the effectiveness of our approach. 

To accommodate the preservation of symmetric low-rank matrices during 

elementary operations with the truncation to lower rank, a  library  LR-BLAS 

(Low Rank-Basic Linear Algebra Subroutines) is designed which is summarized in 

Table 5.1. 

The introduction of low-rank BLAS allows for the easy truncation to lower rank 

after an elementary operation is performed. We indicate and control whether only a 

concatenation of matrices is built or if rank compression is required. Even when the 

rank is to be reduced we can internally distinguish between only using the truncated 

QR˘  decomposition or reducing the rank further with the help of an eigenvalue 

decomposition. Also, we can handle the case when one of the symmetric low-rank 

 

Table 5.1 Overview 

LR-BLAS library 
Operation Function reference 

Y       Y C ̨ X lraxpy 

Y   ˛LX C ˇY   lrgemv 

Y      ˛Y lrscal 

˛ kY k lrnorm 

˛ .Y ; X / lrdot 
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input matrices (X  or Y ) already consists of orthonormal factors X  QMQT such 

that QTQ  I. In this case one can simplify the amount of work when applying the 

QR decomposition. Internally, it is more convenient to represent a low-rank matrix 

X    QRMRTQT rather than X    QMQT . For the sequel of this article we will skip 

this detail. 

The introduction of a low-rank pseudo arithmetic has immediate consequences 

when being used for generalized projected Lyapunov equations. While concatena- 

tion of symmetric low-rank matrices does not require any additional safe guard 

strategy, the situation changes as soon as the rank is compressed. After each rank 

compression with thresholds larger than the machine precision, the projectors Pl and 

Pr have to be applied again. In particular iterates such as the approximate solution 

Xk = RkMkRT require a projection step Xk ! PrRkMkRT PT D XO k while iterates like 

the residual have to be treated differently. Recall that we have 
 

EXO kAT C AXO kE
T C PlBBT PT  D Pl.EXO kAT C AXO kE

T C BBT /PT
 

l l 

= SkNkSk ; 
 

thus here we obviously need to project with Pl to ensure that the iterates are mapped 

back  to  the  correct invariant subspace associated  with  the  finite  eigenvalues of 

.E; A/. 

 

 
5.3.4 Approximate LRCF-ADI Preconditioning 

 
Independent of the use of a low-rank pseudo arithmetic in Sect. 5.3.3, the explicit 

projection of the preconditioned iterate Rt from (5.8) gives the opportunity to replace 

the explicit inverses .E  ˙jA/—1 by an approximate inverse, e.g., using incomplete 

LU factorizations. Recall that when t steps of LRCF-ADI preconditioning are 

applied to a right hand side B     PlB, then each iterate Rj, j     1; 2; : : : ;  t satisfies 

Rj PrRj. This is certainly not longer fulfilled when .E ˙jA/—1 is replaced by an 

approximation. If in doubt, in any LRCF-ADI preconditioning step substitutes 

 

.E C ̇ jA/—1 ! Pr.E C ̇ jA/—1
 

and explicitly projects the approximate solution back. In Sect. 5.4 we will demon- 

strate the effect of replacing the exact LU  factorization of E    ˙jA  by an  ILU.    

At this point we like to stress that (low-rank) Krylov subspace methods are much 

less sensitive to the use of an ILU for E ˙jA while the usual ADI method is much 

more affected. 
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5.3.5 Selected Low-Rank Krylov Subspace Methods 

 
We now give some examples of preconditioned Krylov subspace methods adapted 

for generalized, projected Lyapunov equations using CFADI preconditioning. The 

most popular method, at least when E and A are symmetric and positive definite,   

is the conjugate gradient method. We will demonstrate the changes for this method 

first. 
Suppose we wish to solve a system LX D B with a symmetric positive definite 

matrix  L  and  a  symmetric  positive definite  preconditioner LQ 

preconditioned CG method reads as given in Algorithm 5.2. 

= L . Then the 

Now for symmetric and positive definite E  and A  we   have Pl Pr and the 

generalized projected Lyapunov equation 
 

EXA C AXE C PlBBPT  D 0 where X  D PTXPr 

 

induces the following preconditioned low-rank version Algorithm 5.3 with CFADI 

preconditioning and given shifts ˙1;:::  ; ˙t. 

We will formally assume that each iterate Y is represented as Y  D QYMYQT  for 

suitable matrices QY and symmetric MY . 

While the LR-BLAS internally apply rank compression and projection with Pl, 

for the preconditioning step one has to mention this explicitly to be consistent.      

A compression and projection step of P looks as follows. 
 

P D Rt.It ˝ MR/RT ÷ QPMPQT
 

 

by simple concatenation. Next the rank compression as described in Sect. 5.3.3 is 

performed and we obtain 
 

.QP; MP/ ! .Q ; M /: 

 
 

Algorithm 5.2 Preconditioned CG method 
 

Let X0 2 Rn be initial guess 

R0 D —B — L X0 

P D LQ—1R0 

for k D 1; 2; 3::: do 
ˇold D ˇ 
Z  D LP  

˛ D .RTR/=.PT Z / 

X D X C ˛P 

R D R 
Q
—
— 

˛Z 

Z  D L 1R 

ˇ D RTZ 

ˇ ˇ=ˇold 

P Z ˇP 

end for 
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Algorithm 5.3 LR-CG for Lyapunov equations with CFADI preconditioning 

 

X0 D 0, R0 D —.PlB/.PlB/T 
Compute P D Rt.It ˝ MR /R

T using t steps of LRCF-ADI applied to B D QR 
0      t 0 

Compress and project P 

ˇ trace.RP/ using lrdot 
for k 1; 2; 3 : : :  do 

ˇold    ˇ 

Z EPA APE using lrgemv 

˛ R F = trace.PZ/ using lrnorm and lrdot 

X X ˛P using lraxpy 

R R ˛Z using lraxpy 

Compute Z Rt.It      MR/Rt  using t steps of LRCF-ADI applied to B QR 

Compress and project Z 

ˇ trace.RZ/ using lrdot 

ˇ ˇ=ˇold 

P Z ˇP using lrscal and lraxpy 
end for 

 

Eventually Pl is applied, which yields 

 
QP ! PlQP ÷ QP  : 

One may or may not add another rank compression step to QP as a result of the 

projection. But this would have to be done accurately with respect to the machine 

precision. 

The conjugate gradient method is designed for symmetric positive definite 

problems. This in turn only requires Pl. In general one has to distinguish which 

projection has to be applied. We demonstrate that in Algorithm 5.4 for the 

preconditioned GMRES method [37]. 

We point out that the use of LR-BLAS allows to only concatenate matrices or to 

compress the rank. Similarly, the projection need not always be applied. We have 

formulated the algorithms in this more general form to indicate which projection 

Pl  or  Pr  is  used.  The  basic  operation  V.1/    R=ˇ  usually  does  neither  require 

rank compression nor projection. But if B would not have been projected before,   

a projection would be required at this point. Similarly, rank compression would 

usually not be used as long as B does not have a rank much less than the number of 

columns. For the preconditioning step using t steps of LRCF-ADI, formally there is 

no need to project W at the end, except if the rank were compressed. Numerically 

however, applying the projection may reduce the influence of rounding errors from 

previous preconditioning steps j, j D 1; : : :  ; t. 
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Algorithm 5.4 LR-GMRES for Lyapunov equations with CFADI preconditioning 

 

X0 D 0, R0 D .PlB/.PlB/T 

ˇ D kRkF using lrnorm 

V.1/ D R=ˇ using lrscal(Pl ) 

for k D 1; 2; 3::: ; m do 

Compute W D Rt.It ˝ M /RT using t steps of LRCF-ADI applied to B D Q 

Compress and project W by Pr 

Z EWAT      AWET using lrgemv(Pl ) 
for l 1; 2; 3 : : :  ; k do 

hlk     trace.V.l/Z/ using lrdot 

Z Z hlkV
.l/ using lraxpy(Pl ) 

end for 

hkC1;k D kZkF using lrnorm 

V.kC1/ D Z=hkC1;k using lrscal(Pl ) 

Solve kˇe1 — Hmyk2 D minŠ, where Hm D 
.
hij

Σ 
iD

j 
1;:::;mC

m 
1 

Z V.1/y1 V.m/ym using lraxpy(Pl ) 

Compute W Rt.It      MZ /R
T using t steps of LRCF-ADI applied to B QZ 

Compress and project W by Pr 

X D X C W using  lraxpy(Pr ) 

 

The GMRES method can be slightly modified to obtain the flexible GMRES 

method (FGMRES, [35]). In this case, W would be replaced by W.l/ and be kept. 

Then X is directly computed from W.1/;::: ; W.m/ via 
 

X  D X C W.1/y1 C ··· C W.m/ym using lraxpy.Pr/: 

FGMRES allows for variable preconditioning. This implies that the rank in 

W.1/;::: ; W.m/ can be truncated with a larger tolerance tolp than for the other iterates. 

 

 
5.3.6 Reduced Lyapunov Equation 

 
Several Arnoldi- and GMRES-like methods for Lyapunov equations essentially rely 

on the (block-) Krylov subspace span B; AB; A2B;::: ; Ak—1B (see, e.g., [19–23]). 

These methods compute subspaces which replace the generalized Lyapunov equa- 

tion (5.7) by a reduced equation 
 

.WET/ XQ .WAT/T C .WAT/ XQ .WET/T C WPlBBT PT WT  D 0: 

The  resulting  approximate  solution  could  be  obtained  from  Xk         PrTXQ TTPT . A 

similar approach would be possible as by product of the FGMRES method       in 

order to obtain an alternative approximate solution. Suppose that the Arnoldi 

V 
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method applied to the Lyapunov operator L leads to the following equation 

 
LWm D VmC1H m; 

 

where Vm 2 Rn ;m has orthonormal columns, H m 2 RmC1;m is upper Hessenberg 

and  the  approximate FGMRES  solution  is  given by  Xm   D  X0 C Wms  for 

Wm  2  Rn  ;m.  For the  flexible GMRES  method the columns of Wm  are   usually 

preconditioned counter parts of Vm, except that the preconditioner may vary from 

step to step. Minimizing the norm of the residual B L Xm for the standard 
GMRES method is equivalent to the minimization of 

 
kH my — kR0k2 · e1k2 D minŠ (5.10) 

Here one uses the property that the first column of Vm is chosen as a scalar multiple 

of the initial residual R0 D B — L X0. The Arnoldi vectors Vmek are rewritten 

in terms of symmetric low-rank matrices V.k/  D Q   M   .Q   /T , k  D 1; : : :  ; m. 

Similarly, during the FGMRES method approximations to column k of Wk are 

represented by W.k/ D Q    M    .Q    /T from the CFADI preconditioning step. Then 

the numerical solution in low-rank format is a linear combination 

Xk D X0 C 
X 

yk Q
.k/

M
.k/

.Q
.k/

/T ; 

where the parameters y D .y1; : : : ; ym/T are taken from the mini.mizat̊ion of t.he leåst 

  

could be used to compute an alternative approximate solution XO k. 

Suppose that we compute a QR decomposition with column pivoting [14] to 

obtain 
 

ŒQ
.1/

; : : : ; Q
.m/

] D QV RV ̆  T ;  ŒQ
.1/

; : : : ; Q
.m/

] D QW RW ̆  T ; 
 

where rankRV     rV , rankRW     rW . Similar to the compression to lower rank at   

other parts of the Krylov subspace method here one could work with lower accuracy 

as well. Let r D maxfrV ; rW g, then the numerical solution Xk can be rewritten as 
 

.1/ 
W 

Xk D X0 C QW SQT ;  where S D RW ̆  T B@ 

 
: : :

 

 
0 

C 
˘ RT : 

 

 
 

QV and QW can be alternatively used to construct a reduced r-dimensional Lyapunov 

equation. Let 
 

EQ D QTEQW ; AQ D QT AQW 

0 smM.m/ 
W 

and squares problem (5.10). Alternatively the computed matrices 

kD1 

k 
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and compute S as numerical solution of the reduced equation 

EQ S AT  C AQ S ET  C QT R0QK  D 0; 

 
where R0   EX0AT   AX0ET    BBT . For small r  this could be computed with   

standard methods [2]. We obtain 
 

XO m D X0 C QWSQT
 

as approximate solution of a reduced Lyapunov equation. In Sect. 5.4 we will 

demonstrate the effectiveness of this approach. 

In summary the low-rank Krylov subspace methods introduced in Sect. 5.3 allow 

for structured iterative methods. If .PlEPr; PlAPr/ is already symmetric and PlEPr 

positive semidefinite, one could use a low-rank version of the simplified QMR 

(SQMR) method [12] for symmetric indefinite problems. If even PlAPr is positive 

definite, then the low-rank CG method can be applied. Low-rank CG and low-rank 

SQMR can make use of the CFADI preconditioning approach while at the same 

time low-rank structures and symmetry of the Lyapunov operator is preserved. In the 

general case we could easily introduce low-rank Krylov subspace methods such as 

low-rank BiCGStab, low-rank QMR and other methods (cf. [36]). 

 

 
5.4    Numerical Results 

 
In this section we will demonstrate the effectiveness of our approach. We will  

start with the sensitivity of low-rank Krylov subspace methods with respect to the 

shifts used for the CFADI preconditioning step and compare them with the usual 

LRCF-ADI method. Next we will demonstrate different low-rank Krylov subspace 

methods such as (F)GMRES, QMR and BICGSTAB for projected, generalized 

Lyapunov equations to evaluate their strengths and their weaknesses. We will further 

investigate replacing the direct solver for the single iterates .E ˙jA/—1 by an 

approximate factorization to compare the sensitivity of ADI and Krylov subspace 

methods with respect to incomplete factorizations. Here we use as approximate 

factorization the multilevel ILU factorization from the software package1 ILUPACK 

which is described in detail in [5]. Further numerical results will discuss the use of 

the reduced equation from Sect. 5.3.6 for the numerical solution. We will finally 

demonstrate how parallel direct solvers can accelerate the process of solving large- 

scale projected Lyapunov equations. 

 

 

 
 

1Matthias Bollhöfer and Yousef Saad. ILUPACK - preconditioning software package. Available 

online at http://ilupack.tu-bs.de/.ReleaseV2.4,June2011. 
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Some of our experiments use the software package PABTEC, see [33] and  Sect. 

2.6, which has been designed for the model order reduction of descriptor systems 

arising from circuit simulation. Here we replaced the default LRCF-ADI method 

by preconditioned low-rank Krylov subspace methods such as (F)GMRES, QMR 

and BICGSTAB and adapted the interfaces to allow for complete simulation runs 

based on Krylov subspace techniques. 

 

 
5.4.1 Model Problems 

 
In the following part we like to  introduce three model problems which we  will 

use for demonstration. The first two are examples arise from descriptor systems 

modeling circuit-equations while the third one is a more academic parabolic partial 

differential equation. All these examples illustrate the applicability of low-rank 

Krylov subspace methods. 

As our first two examples we discuss linear RLC networks of the following type, 

modeled using the modified nodal analysis (MNA). Let e be the vector of node 

potentials, vV , vI be the voltages of the voltage sources, respectively of the current 

sources. Denote by iL; iV ; iI the currents through the inductors, voltage sources and 

current sources. We define the state vector x, the vector of inputs u and the output 

vector y via 

0 
e 

1 

iV 

 
iI 

vV    

;  y D 

 
vI    :

 
iV 

 

Then the circuit equations can be written as 

 
ExP D Ax C Bu 

y D —BT x; 

where E; A and B are given by 

0 
ACCAT 0 0 

1
 

0 
—ARGAT —AL —AV 

1
 

0 
—AI 0 

1
 

E D @ 0 L 0 ; A D T
 

0 0 0 T
 

0 0 ;  B D 

0 0 

0 0 : 

0  —I 
 

Here AC; AR; AL; AV ; AI refer to the incidence matrices with respect to the 

capacitors, resistors, inductors, as well as with respect to the voltage sources and 

current sources. C, L, G denote the capacitance matrix, the inductance matrix and 

the conductivity matrix. The differential-algebraic equations which we discuss here 

are of differentiation index 1 (cf. [6]). 
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Table 5.2  Large-scale RC circuits 

 
 

RC1 2353 1393 109 974 

RC2 3065 5892 21 3272 

RC3 9999 9999 3 10; 002 

RC4 12; 025 53; 285 78 29; 961 

 

 
Example 5.4.1 As a first example we consider a RC high pass circuit provided by 

NEC Laboratories Europe. It consists of 2002 conductors, 2003 resistors and three 

voltage sources. Using the MNA this leads to a system of dimension 2007 with three 

inputs and three outputs. 

Example 5.4.2 We consider further test2 examples of several RC circuits. For some 

details we refer to [18]. Here we restrict ourselves to examples of following sizes, 

reported in Table 5.2. 

The circuits in Table 5.2 are of differentiation index 2. Since we like to 

demonstrate the applicability of low-rank Krylov subspace methods for index-1 

systems we remove several voltage sources which are responsible for the higher 

index. After removing these voltage sources we have for circuit RC1, six voltage 

sources and for each circuit RC2, RC3 and RC4, one voltage source. Furthermore, 

we artificially add resistors with average conductivity to ARGAT to make this matrix 

positive definite. We are aware of changing the original shape of these circuits. 

However, our main goal is the demonstration of low-rank Krylov subspace methods 

using the PABTEC software as framework. 

For both problem classes of RC circuits in Examples 5.4.1 and 5.4.2 we use the 

technology as provided by the software package PABTEC (see Sect. 2.6 and [33]) 

to demonstrate solving an associated projected algebraic Riccati equation with the 

help of Newton’s method. Here in every Newton iteration step (cf. Algorithm 2.7 in 

Chap. 2) a projected, generalized Lyapunov equation has to be solved. 

Example 5.4.3 The final example we will use in our numerical experiments is the 

parabolic partial differential equation 

 

vt D ˝v C Bu ÷ vxx C vyy C vzz C Bu; 

where v  v.x; y; z; t/, .x; y; z/  ˝  Œ0; 1]3 and t  0. We assume that we have 

some initial value v.x; y; z; 0/ and homogeneous Dirichlet boundary conditions. 

To keep the discussion simple, we consider an academic control B such that after 

discretization in space using a seven-point discretization stencil, the control reduces 

to the vector with all ones. Suppose that we have an equidistant mesh with mesh 

size  h D 1 

NC1 
.  This  leads  to  a  total  system  size  of  n  D  N3  unknowns. The 

 
 

 

2http://sites.google.com/site/rionutiu2/research/software. 
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semi-discretized ordinary differential equation is of type 

 
wP  D —Aw C Bu; 

where A is the discretized Laplacian operator in three spatial dimensions. We  

apply model order reduction to these semi-discretized equations using balanced 

truncation. For symmetry reasons we simply compute the associated Gramian as 

the solution of the Lyapunov equation 

 

XA C AX D BBT ; 

meaning N6 unknowns for the referring Lyapunov operator. Since A is symmetric 

and positive definite, the Lyapunov equation X. A/  . A/X  BBT 0 is stable 

and therefore balanced truncation can be applied. We know that the spectrum of A 

lies inside the interval .3ı2; 12 /. This allows for a simple computation of the optimal 

ADI shift-parameters introduced by Wachspress [47]. 

We use this example in order to illustrate a low-rank version of the conjugate 

gradient method. Furthermore, a parallel sparse direct solver for solving the shifted 

systems .A ˙iI/x b is used to examine the scalability. Finally, this example 

demonstrates the advantages of using multilevel incomplete factorizations rather 

than direct solvers within the CFADI method. 

In the sequel all computations were conducted on a 64 GB Linux workstation 

with four Intel Xeon E7440 Quadcore processors using Matlab Release R2008b. 

 

 
5.4.2 Different Krylov Subspace Methods and Their Efficiency 

with Respect to the Selection of Shifts 

 
In the following experiments we will compare how flexible GMRES [35], GMRES 

[37], QMR [13] and BICGSTAB [46] can be used to solve projected generalized 

Lyapunov equations. We will describe how different choices of shifts affect the 

LRCF-ADI method and low-rank Krylov subspace methods. For this purpose we 

consider Examples 5.4.1 and 5.4.2. Here it is necessary to use the heuristic approach 

(referred to as “Algorithm 1” in [32]) for calculating the shift parameters. As part 

of the passivity-preserving balanced truncation we will solve the projected Riccati 

equations from (5.4), (5.5) up to a tolerance of 10—4. The same accuracy is used 

for truncating the Hankel singular values for Balanced Truncation. As a heuristic 

approach we decided to solve each Lyapunov equation up a relative residual norm 

of 10—6. One benefit of our class of Krylov subspace methods is that we can use 

the norm provided by our Krylov-subspace method and do not need to explicitly 

evaluate the residual-norm within the LRCF-ADI algorithm. We  vary the number  

t of calculated shift parameters from 4, 5, 10, 20 finally to 30. For the low-rank 

Krylov methods we use a tolerance of 10—8 for truncating the ranks which is  two 
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Fig. 5.1  Number of ADI steps and runtime for Example 5.4.1 
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Fig. 5.2  Number of ADI steps and runtime for circuit RC1 from Example 5.4.2 

 
 

orders of magnitude smaller than the desired residual. The number of ADI steps we 

display in Figs. 5.1, 5.2, 5.3, 5.4 and 5.5 refer to the accumulated sum of all shifted 

systems that were solved using Newton’s method. 

As can be seen from Figs. 5.1, 5.2, 5.3, 5.4, and 5.5, there is neither a method 

that is always fastest nor is there a method always requiring the smallest number  

of ADI solving steps. Comparing flexible GMRES with standard GMRES, the 

difference in the number of ADI iterations can be explained by the different nature of 

these approaches. While the number of Krylov subspace iteration steps is the same, 

standard GMRES requires one additional solving step at the end of each restart.   

In contrast to this, flexible GMRES stores the preconditioned residuals explicitly 

and does not require an additional preconditioning step. The slightly improved 

computation time of flexible GMRES with respect to GMRES is obtained by using 

twice as many vectors in low-rank format. When working with restarts this is an 

acceptable tradeoff so we prefer to use flexible GMRES over standard GMRES in 

low-rank arithmetic. 
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Fig. 5.3  Number of ADI steps and runtime for circuit RC2 from Example 5.4.2 
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Fig. 5.4  Number of ADI steps and runtime for circuit RC3 from Example 5.4.2 

 
 

BICGSTAB and QMR require in each iteration step that either the matrix is 

applied twice (BICGSTAB) or the transposed matrix is used in addition (QMR). 

The same holds for the application of the preconditioner. Often BICGSTAB is 

comparable to GMRES with respect to time while QMR is typically the slowest 

method. 

We emphasize that the number of inner iteration steps for the projected Lyapunov 

equations is small, when a larger number of shifts is used. When using t      20 or   

t   30 shifts, the number of inner iteration steps is typically less than ten steps.    

We illustrate the relation between inner ADI solving steps and outer Newton steps 

in Fig. 5.6 for the case of the LRCF-ADI method and LR-FGMRES and different 

numbers of shifts for Example 5.4.1. 

The two graphics at the top of Fig. 5.6 refer to the use of four shifts while the 

two graphics at the bottom of Fig. 5.6 refer to the use of ten shifts. On the left of 

Fig. 5.6 we find the LRCF-ADI method, on the right LR-FGMRES is    displayed. 
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Fig. 5.5  Number of ADI steps and runtime for circuit RC4 from Example 5.4.2 

 
 

The meaning of the three-coded numbers of type a-b-c in Fig. 5.6 is explained in the 

legend just below the graphics. 

The solid red line in Fig. 5.6 reveals the norm of the nonlinear residual in 

Newton’s method. The other lines display the convergence history of the residuals 

during the inner solves. In particular we observe that both methods, LRCF-ADI and 

LR-FGMRES reach the threshold 10—4 of the nonlinear residual after four outer 

steps. It can also be observed that LRCF-ADI using four shifts exceeds the limit 

100 of inner iteration steps for solving the projected Lyapunov equation without 

converging. In spite of misconvergence, the outer Newton method in this case still 

converged to the desired accuracy. 

 

 
5.4.3 Truncated QR˘ Decomposition 

 
In this section we will demonstrate the difference in using the regular QR decom- 

position with column pivoting as implemented in LAPACK (also used inside 

MATLAB) with a truncated version that stops the decomposition as soon as the 

desired accuracy for the truncation is reached (for details cf. Sect. 5.3.3). 

In Example 5.4.1 the main time for performing the Balanced Truncation algo- 

rithm is consumed when solving the Riccati equation. In Table 5.3 the computation 

time of the LR-FGMRES method using PABTEC for different numbers of shifts 

using the full QR˘ decomposition versus the truncated QR˘ is stated. 

As solver for the Lyapunov equation we use LR-FGMRES. As in Sect. 5.4.2 

both relative rank tolerances were set to 10—8 whereas we are solving the Lyapunov 

equations with accuracy 10—6. The gain observed for using the truncated QR˘ was 

approximately in the range of about 5–8% in overall runtime of the LR-FGMRES 

method. 
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a number of outer Newton steps 

b number of inner ADI solving steps 

c if c is a number, then c denotes the number of FGMRES steps 

if c = I, then the inner solver terminated after the number of iteration steps is exceeded 

if c =  R, then ADI converged with a sufficiently small residual 

 

Fig. 5.6 Comparison of LRCF-ADI and LR-FGMRES using four (top line) and ten (bottom line) 

shifts 
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  Iteration steps    Iteration steps   
 

# Shifts Standard QR˘ (s) Truncated QR˘ (s) 

4 19:25 18:43 

5 7:33 6:90 

10 4:03 3:90 

20 3:95 3:79 

30 4:24 4:20 
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The improvement using the truncated QR˘ decomposition can not only be used 

in low-rank Krylov subspace methods, but it can also have a beneficial impact of 

the LRCF-ADI method. When solving the projected Riccati equations using LRCF- 

ADI, at each Newton step we have to concatenate the current approximate low- 

rank solution Z  D  QZQT  of the Riccati equation and the recent low-rank update  

P D QPQT from solving the projected Lyapunov equation to obtain 

Z C P D 
Σ 

Q Q  
ΣΣ 

Q
 

Q 
ΣT 

rank 

—! Q. new/.Q.new//T : 

Usually we would apply a slim QR decomposition 

Σ 
QZ  QP 

Σ 
D

Š  
QR 

such that Q has as many columns as QZ QP . After that we would apply a singular 

value decomposition 

R D Ur˙rV
T

 

 
to truncate the rank of R to some r and obtain 

 

Q
.new/ 

D QUr˙r: 

When  we  use  the  truncated  QR˘   decomposition  instead,  we  can  already 

compute approximately 

Σ 
QZ  QP 

Σ 
D

Š  
QsRs˘ T C E 

 

such that kEk is small and Qs and RT may already have significantly less columns s than 
Σ 

QZ QP 

Σ
. Next a singular value decomposition only needs to be applied to the 

s 
 

already reduced system  

Rs D 

 

 
Ur˙rV

T : 
 

Thus, the truncated QR˘  decomposition may not only save time during the QR˘ 

decomposition of   QZ  QP  , but the singular value decomposition is also applied   

to system of smaller size and may lead to additional improvements. To illustrate 

this effect we compare the LRCF-ADI method for Examples 5.4.1 and 5.4.2. 

Although the total computation time is not drastically improved, at least the time 

of the rank compression is moderately improved. In Figs. 5.7 and 5.8 we illustrate 

the computation times of both rank compression techniques, accumulated over all 

Newton steps. 

Z Z 

compression 
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Fig. 5.7   Computation time QR plus SVD version truncated QR˘ plus SVD for Example 5.4.1 
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Fig. 5.8   Computation  time  regular  QR  plus  SVD  implementation  versus  truncated  QR˘  plus 

SVD for Example 5.4.2 
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We can observe a moderate to significant gain in particular when using a smaller 

number of shifts. When only using a smaller number of shifts, the total number    

of ADI steps significantly increases since the LRCF-ADI method  needs more 

steps to converge. This in turn results in a higher pseudo rank caused by simple 

concatenation. Here the gain is most significant. 

 

 
5.4.4 Evolution of the Rank Representations 

in the Low-Rank CG Method 

 
We will now report for the preconditioned LR-CG method from Algorithm 5.3 

how ranks of the symmetric low-rank matrices X, R and P behave during the 

iterative process. To illustrate their behaviour we select Example 5.4.3 since we 

believe that the LR-CG method is the easiest low-rank Krylov subspace method and 

this example allows for the use of the preconditioned LR-CG method. We  select  

as discretization parameter N 60 which lead to a sparse symmetric positive  

definite matrix A of size n      N3      216; 000. The associated Lyapunov  equation 

X.  A/  .  A/X  BBT  0 is numerically solved to obtain a low-rank symmetric  

positive semidefinite solution X   Rn;n. In the experiment we use a residual norm  

of 10—6 as termination criterion for the preconditioned LR-CG method. Since A is 
symmetric and positive definite we are able to use the optimal Wachspress   shifts 

[47] for CFADI preconditioning. We demonstrate the behaviour of the ranks of X, 

R and P when using t 4; 6; 8 and t 10 shifts. For any of these shift values the LR-

CG method only requires a few steps to converge (see Table 5.4). 

In Fig. 5.9 we illustrate the behaviour of the ranks of X, R and P in the LR-CG 

method, when we use a truncation tolerance of 10—8. 

The solid lines in Fig. 5.9 refer to the situation where X, R and P are updated and 

truncated to lower rank in the LR-CG method, i.e., whenever the operations 

 
X D X C ˛P using lraxpy 

R D R — ˛Z using lraxpy 

:::  

P D Z C ˇP using lrscal and lraxpy 

are completed within Algorithm 5.3. For X the dashed lines indicate the intermediate 

rank before the lraxpy routine compresses the rank. Similarly, for R the dashed 

line indicates the pseudo rank before and after the rank truncation of Z in the 

 
 

Table 5.4     Number of shifts and number of preconditioned LR-CG steps for Example 5.4.3 and 

N D 60 
 

Number of shifts 4 6 8 10 

Number of LR-CG steps 7 5 4 3 
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Fig. 5.9  Evolution of ranks for different selected vectors in LR-CG for N D 60 

 
lrgemv routine that computes Z XA AX and the situation before and after 

lraxpy compresses the rank for R   R   ˛Z. Finally, the dashed line that is used 

for P includes the pseudo rank from the CFADI preconditioning step followed by 

its rank compression, as well as the additional rank compression, when P    Z  ˇP 

is computed. We can observe for X; R and P that the intermediate ranks can be 

significantly higher than the rank that is obtained when lraxpy is completed.  

As we would expect, at the end of each rank compression step, the rank of X      

and P tends towards a constant rank, while the R the rank of the residual becomes 

small or even 0 when the LR-CG method converges. The general behaviour of the 

ranks, in particular that ranks first increase and then decrease again has also been 

observed in other low-rank Krylov subspace methods and applications [25]. The 

intermediate increase of the rank can be interpreted as another justification for using 

the truncated QR˘ decomposition to improve the performance of low-rank Krylov 

subspace methods as already illustrated in Sect. 5.4.3. 
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Fig. 5.10 Norm of the 

residuals for LR-FGMRES 

using different number of 

shift parameters. Comparison 

of usual LR-FGMRES versus 

approximation via the 

reduced system 
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5.4.5 Numerical Solution Based on Reduced Lyapunov 

Equations 

 
The LR-FGMRES method computes orthonormal Arnoldi vectors that  can  be 

used to define a reduced projected Lyapunov equation (see Sect. 5.3.6). However, 

although having this reduced Lyapunov equation available, the additional informa- 

tion we can extract from solving this reduced equation does not necessarily improve 

the low-rank solution computed via LR-GMRES. To illustrate this effect we will 

consider Example 5.4.1 using different number of shift parameters. Here we simply 

examine solving a simple Lyapunov equation using a tolerance of 10—10 for the 

residual and a truncation threshold for the rank of 10—12. 

The results are shown in Fig. 5.10, where the norm of the residual at the end of 

m steps LR-FGMRES is compared with the version that uses the information of the 

reduced system instead. 

As we can see from Fig. 5.10 using the approximate solution from the reduced 

system does not necessarily improve the residual. Moreover, the computational 

overhead should not be overlooked. Solving the reduced system requires to solve a 

small projected generalized Lyapunov equation using a method such as the Bartels- 

Stewart algorithm. This increases the computational amount of work. For further 

details we refer to [9]. 

 

 
5.4.6 Incomplete LU Versus LU 

 
We  now examine numerically how replacing the direct solver for .E   ˙jA/—1  by  

the multilevel ILU from ILUPACK influences the LRCF-ADI method and the LR- 

FGMRES method with LRCF-ADI preconditioning. First we use Example 5.4.1 to 

compare both methods inside the model order reduction software package PABTEC. 

Both iterative methods replace the direct solver by the ILU with a default threshold 
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Fig. 5.11 Norm of the 

residuals for LRCF-ADI and 

LR-FGMRES, both using 

incomplete CFADI 

preconditioning with 15 shifts 
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of 10—2 for discarding small entries. In addition, in our experiments the iterative 

solver inside ILUPACK [which is by default GMRES(30)] uses as termination 

criterion a relative residual of 10—4, 10—8 and 10—12 to illustrate different accuracy 

of the multilevel ILU solver. 

The results in Fig. 5.11 demonstrate that in principle low-rank Krylov subspace 

methods can use approximate factorizations rather than direct factorization methods 

while the usual LRCF-ADI method encounters convergence problems which are 

caused by solving .E     ˙iA/x      b with lower relative accuracy. 
The convergence for the results in Fig. 5.11 is slightly delayed for LR-FGMRES 

while LRCF-ADI does not converge anymore. A drawback of the use of approxi- 

mate factorizations that we observed in the numerical experiments is that the rank 

of the single iterates significantly increases [10]. This reduces the advantages of 

incomplete factorizations at least for these kind of examples where direct solvers are 

a natural alternative. The source of this increase will be subject to future research. 

As second example we consider Example 5.4.3 where direct solvers quickly 

reach their limit  because of the complexity and the spatial  dimension. Besides,  

the Lyapunov equations in this case can be numerically solved using the pre- 

conditioned LR-CG method. Firstly we will compare the memory consumption. 

For the comparison we will use MATLAB’s chol function that computes a 

Cholesky decomposition in combination with symamd which initially reorders the 

system using the symmetric approximate minimum degree algorithm [1] in order 

to save fill-in. In the sequel we will  refer to  this version as  “MATLAB”.  Next  

we use for comparison the software package3 PARDISO [39, 40] and its Cholesky 

decomposition. For the incomplete factorization we will again use ILUPACK and 

its inverse-based multilevel incomplete Cholesky factorization with the additional 

option to preserve the vector with all entries equal to 1 exactly. The latter is 

recommended since the underlying matrix refers to a discretized elliptic partial 

differential equation. Since the matrix is symmetric positive definite we again 

 

 
3http://www.pardiso-project.org. 
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Table 5.5  Number of ADI shifts depending on N and tolw 
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Fig. 5.12 Memory requirement illustrated by the relative fill-in of the Cholesky factor with respect 

to the given matrix 

 

 

use the Wachspress shifts, similar to Sect. 5.4.4. Depending on the discretization 

parameter N these shifts are computed with respect to a given tolerance tolw  for  

the desired accuracy of CFADI approximation (for details we refer to the parameter 

"1 in [28]). In Table 5.5 we give the explicit relation between the number of shifts 

depending on N and tolw . 

In Fig. 5.12 we display how the relative fill-in nnz.LCLT / of the nonzero entries of 

the Cholesky factor L relative to the nonzero entries of A behaves with respect to the 

discretization size N for tolw    10—1 and tolw  10—2. 

As is well-known for problems in three spatial dimensions, the relative fill-in  

of direct solvers drastically increases when the size of the problem increases with 

PARDISO being significantly better than MATLAB. In contrast to that ILUPACK 

yields an almost constant relative fill-in for each tolw and also only mildly increases 

when tolw is decreased (i.e., when the number of shifts is increased). The increase in 

the amount of fill-in is significantly sublinear! We illustrate this effect for N 60. 

Since we need to factorize Fi   A    ˙iI, for i    1; 2; : : : ;  t for each shift ˙i, the  

system Fi is almost equivalent to A, as long as a relatively small shift ˙i is chosen. 

Increasing the shift ˙i in magnitude, as it is happening in the computation of the 

optimal ADI shift parameters, makes Fi more and more diagonal dominant. When 

Fi is almost equivalent to A, the multilevel ILU requires more fill-in and more 

levels, since in this case a multigrid-like approximation is required. With increasing 

diagonal dominance of Fi, the multilevel ILU gets sparser and requires less fill-in, 

adapting automatically to the underlying system. This explains why even increasing 

the number of shifts does not necessarily  result in a linear increase of memory  or 
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Table 5.6 Performance of 

ILUPACK’s multilevel ILU 

when four optimal shifts are 

prescribed, N D 60, 

tolw D 10—1
 

 

 
 

computation time. In Table 5.6 we state the computation time for computing the 

multilevel ILU for a system of size N3 216; 000 depending on the value of the shift. 

We have chosen tolw 10—1, which gives four shifts ˙1;:::  ; ˙4. For a large 

absolute value of ˙1    26; 999:996 the system is strictly diagonal dominant. Thus 

only 1 level is required, the computation time is small and the relative fill-in is 

approximately twice as much as that of the original system. With such a large shift, 

solving a single system with the multilevel ILU is not only fast because of the sparse 

approximation, but it also requires the fewest number of iteration steps (in this case 

8 steps of preconditioned CG for a single right hand side). When the shift decreases 

in magnitude, the diagonal dominance becomes less, the number of levels increases 

and ILUPACK’s multilevel ILU behaves more and more like an algebraic multilevel 

method. This can be verified by the increasing number of levels, the increasing fill-in 

and the slightly increasing number of CG steps. 

The sublinear behaviour of the multilevel ILU is also a significant advantage with 

respect to the computation time when solving the Lyapunov equations using LR-CG 

with CFADI preconditioning. We state the computation time in Table 5.7. 

As we can see from Table 5.7, the computation time behaves differently for dif- 

ferent solvers when increasing the number shifts. Using more shifts result frequently 

in working with higher ranks also already seen in Fig. 5.9. This is because increasing 

the number of shifts only mildly increases the fill-in while at the same time the 

convergence speed is improved. Here ILUPACK is by far the fastest numerical 

solver for computing systems with Fi    A    ˙iI. Looking at Table 5.7 we can also 

see that the computation time of the direct solvers scales significantly better than 

their memory requirement which is cause by sparse elimination technologies, such 

as the elimination tree, super nodes, Level-3-BLAS and cache optimization. These 

are techniques that are hardly applicable to incomplete factorization techniques. 

 

 
5.4.7 Parallel Approach 

 
We finally illustrate how the computation can be reduced for large-scale examples 

when the direct solver is replaced by a multi-threaded direct solver which can make 

use of several cores during the factorization and the solution phase. Here we use the 

direct solver PARDISO [39, 40] and demonstrate the different computation times 

when using several threads. For this purpose we again chose Example 5.4.3  since 

Shift value 

—26; 999:996 
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tfactor (s) 
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Table 5.7 Computation time LR-CG in (s) using CFADI preconditioning with different inner 

solvers (MATLAB/PARDISO 1 cpu/ILUPACK) 
 

Dimension N # Shifts MATLAB PARDISO(1) ILUPACK 

20 3 8.5 3.5 3:5 

 4 9.3 3.8 3:1 

 8 12.8 4.7 2:8 

40 3 596.6 144.9 75:8 

 5 575.1 137.0 59:3 

 9 673.8 156.6 48:4 

60 4 9236.6 1564.4 375:8 

 6 10,847.2 1717.4 284:3 

 10 11,273.8 1879.9 271:2 

80 4 78,870.4 10,562.7 1312:7 

 6 – 10,475.9 1137:9 

100 4 – 43,255.3 3653:7 

100 6 – – 2647:5 

120 4 – – 7551:8 

120 7 – – 6232:5 

140 4 – – 15; 311:4 

140 7 – – 10; 201:0 

 
 

here we are able to adjust/increase the dimension of the equation. As solver we use 

the LR-CG method since we know in this case the equivalent linear system would 

be symmetric and positive definite. We increase the size of the matrix A from 203 

8000 to 1003 1; 000; 000. Remember that the corresponding Lyapunov equation 

would even have squared size. We will solve the Lyapunov equation up to a residual 

norm of 10—6. For this example optimal shift parameters can be computed [47]. 

The number of shifts are computed according to a tolerance tolw which refers to the 

convergence speed of the ADI method. Here we choose tolw 10—1, tolw 10—2
 

and tolw 10—4  as tolerances. The number of shifts can be seen in    the second 

column of Table 5.8. 

The values are always ordered from tolw   10—1 down to tolw    10—4 (cf. also 

Table 5.5). For N  > 80 we skipped tolw    10—4  and for N  > 100 we skipped     

tolw   10—2 additionally for reasons of memory consumption. 

Beside the computation time in Table 5.8 we point out that the number of LR-CG 

steps only depends on the size of tolw. Numerically it is advantageous to have a 

larger value of tolw and to use more LR-CG steps since this significantly saves 

memory and occasionally is even the fastest version as can be seen from Table 5.8. 

Using the multithreaded parallel solver PARDISO we observe a significant 

speedup which is close to linear for larger N. It can also be seen that using 4 threads 

or 8 threads leads to an optimal performance on our machine. We observed that 

for maximum possible number of 16 threads the amount of computational time 

increased drastically. We blame this issue to problems of the dense linear   algebra 
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Table 5.8 Computation time LR-CG in (s) using CFADI preconditioning with a multithreaded 

version of PARDISO 

 
 

20 3 3:5 3:2 3:2 8:9 

 4 3:8 3:4 3:4 10:2 

 8 4:7 4:1 4:1 11:8 

40 3 144:9 87:5 77:2 124:0 

 5 137:0 79:4 66:3 118:6 

 9 156:6 88:0 73:5 131:4 

60 4 1564:4 704:2 464:4 983:5 

 6 1717:4 735:4 504:2 1064:3 

 10 1879:9 794:8 622:8 1160:1 

80 4 10; 562:7 4121:1 2585:0 6448:1 

 6 10; 475:9 4032:2 2702:0 6432:6 

100 4 43; 255:3 15; 363:7 9767:2 24; 577:4 
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Fig. 5.13 Computation time LR-CG in (s) versus problem size N for various inner solvers of 

shifted linear systems within CFADI preconditioning 

 

 

kernels with the multicore architecture. In a multicore processor the processes have 

to share the cache if more than one thread is  assigned to a  socket. We  believe  

that this might be an explanation for the numerical observations. Although the 

multithreaded parallel direct solver PARDISO improves the numerical solution of 

the LR-CG method with CFADI preconditioning, for larger sizes N the multilevel 

ILU is still superior although not yet being parallelized. This can be concluded from 

the comparison in Fig. 5.13 for tolw D 10—1 and tolw D 10—2. 
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5.5 Conclusions 

 
In this article we have demonstrated the benefits of low-rank Krylov subspace 

methods. When computing the approximate solution of generalized, projected 

Lyapunov equations, these novel low-rank Krylov subspace comprise the benefits of 

Krylov subspace methods and the low-rank Cholesky factor representation similar 

to LRCF-ADI methods. While the superiority of low-rank Krylov subspace methods 

is not always confirmed in the numerical experiments, their high potential has been 

illustrated. We have  also  shown  that techniques of  early  compressing the  rank 

to the desired accuracy is beneficial for low-rank Krylov subspace methods. The 

results have demonstrated the applicability in model order reduction techniques,  

in particular for those problems arising from circuit simulation. We have further 

outlined the wide range of their usage for other problems such as parabolic partial 

differential equations. We believe that this numerical case study helps understanding 

when and how low-rank Krylov subspace methods can be used as a technique for 

model order reduction. 

 
Acknowledgements The work reported in this paper was supported by the German Federal 

Ministry of Education and Research (BMBF), grant no. 03BOPAE4. Responsibility for the contents 

of this publication rests with the authors. 

 
 
 

References 

 
1. Amestoy, P., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. 

SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996) 

2. Bartels, R., Stewart, G.: Solution of the matrix equation AX XB C. Commun. ACM 15(9), 

820–826 (1972) 

3. Benner, P.: Advances in balancing-related model reduction for circuit simulation. In: Roos, J., 

Costa, L.R.J. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics 

in Industry, vol. 14, pp. 469–482. Springer, Berlin/Heidelberg (2010) 

4. Benner, P., Li, J.R., Penzl, T.: Numerical solution of large-scale Lyapunov equations, Riccati 

equations, and linear-quadratic optimal control problems. Numer. Linear Algebra Appl. 15(9), 

755–777 (2008) 

5. Bollhöfer, M., Saad, Y.: Multilevel preconditioners constructed from inverse–based ILUs. 

SIAM J. Sci. Comput. 27(5), 1627–1650 (2006) 

6. Brenan, K.E., Campbell, S.L., Petzold, L.R.: The Numerical Solution of Initial-Value Problems 

in Differential-Algebraic Equations. Classics in Applied Mathematics, vol. 14. SIAM, 

Philadelphia (1996) 

7. Damm, T.: Direct methods and ADI preconditioned Krylov subspace methods for generalized 

Lyapunov equations. Numer. Linear Algebra Appl. 15(9), 853–871 (2008) 

8. Drmač, Z., Bujanović, Z.: On the failure of rank-revealing QR factorization software – a case 

study. ACM Trans. Math. Softw. 35(2), 12:1–12:28 (2008) 

9. Eppler, A.K., Bollhöfer, M.: An alternative way of solving large Lyapunov equations. Proc. 

Appl. Math. Mech. 10(1), 547–548 (2010) 

扫码可进资料分享群



192 M. Bollhöfer and A.K. Eppler 

 

10. Eppler, A.K., Bollhöfer, M.: Structure-preserving GMRES methods for solving large Lyapunov 

equations.  In: Günther, M., Bartel, A., Brunk, M., Schoeps, S., Striebel, M. (eds.) Progress  

in Industrial Mathematics at ECMI 2010. Mathematics in Industry, vol. 17, pp. 131–136. 

Springer, Berlin (2012) 

11. Freund, R.W.: SPRIM:  structure-preserving  reduced-order  interconnect  macromodeling.  

In: Proceedings of the International Conference on Computer Aided Design (ICCAD), pp. 80– 

87. IEEE Computer Society, San Jose (2004) 

12. Freund, R., Jarre, F.: A QMR–based interior–point algorithm for solving linear programs. 

Math. Program. Ser. B 76(1), 183–210 (1997) 

13. Freund, R., Nachtigal, N.: QMR: a quasi-minimal residual method for non-hermitian linear 

systems. Numer. Math. 60, 315–339 (1991) 

14. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in Mathematical 

Sciences, 3rd edn. The Johns Hopkins University Press, Baltimore (1996) 

15. Hackbusch, W.: Hierarchische Matrizen. Springer, Berlin/Heidelberg (2009) 

16. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear 

dynamical systems: error estimates and suboptimal control. In: Dimension Reduction of Large- 

Scale Systems. Lecture Notes in Computational Sience and Engineering, vol. 45, Chap. 10, 

pp. 261–306. Springer, Berlin/Heidelberg (2005) 

17. Hochbruck, M., Starke, G.: Preconditioned krylov subspace methods for lyapunov matrix 

equations. SIAM J. Matrix Anal. Appl. 16(1), 156–171 (1995) 
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