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The Theory of Bandpass Sampling 
Rodney G. Vaughan, Member, IEEE, Neil L. Scott, and D. Rod White 

Abstruct-The sampling of bandpass signals is discussed with 
respect to band position, noise considerations, and parameter 
sensitivity. For first-order sampling, the acceptable and unac- 
ceptable sample rates are presented, with specific discussion of 
the practical rates which are nonminimum. The minimum sam- 
pling rate is pathological in that any imperfection in the imple- 
mentation will cause aliasing. The susceptibility of the accept- 
able sampling rates to aliasing decreases with increasing guard- 
band size from the minimum sampling rate. 

In applying bandpass sampling to relocate signals to a base- 
band position, the signal-to-noise ratio is not preserved owing 
to the out-of-band noise being aliased. The degradation in sig- 
nal-to-noise ratio is quantified in terms of the position of the 
bandpass signal. 

For the construction of a bandpass signal from second-order 
samples, the cost of implementing the interpolant (dynamic 
range and length) depends on Kohlenberg's sampling factor k, 
the relative delay between the uniform sampling streams. An 
elaboration on the disallowed discrete values of k shows that 
some allowed values are better than others for implementation. 
Optimum values of k correspond to the quadrature sampling 
values with the band being either integer or half-integer posi- 
tioned. 

0 f s  f l  f c  fu  

Fig. 1, The bandpass situation as an analog signal spectrum. The sampling 
rate is expressed as A Hz and the band is located at ( f r ,  A,). Only the 
positive frequencies are shown. 

I. INTRODUCTION 
HE subject of bandpass sampling is an aspect of dig- T ital signal processing which has relevance to a variety 

of disciplines including, for example, optics [ 11, radar [2], 
sonar [3], communications [4], biomedical signals [ 5 ] ,  
power measurement [6], and general instrumentation, 
such as sampling oscilloscopes. 

Historically, Cauchy seems to have been the first to hy- 
pothesize the bandpass sampling requirement [7]. Nyquist 
[8] and Gabor [9] also alluded to the bandpass case. Koh- 
lenberg [ 101 introduced second-order sampling and pro- 
vided the basic interpolation formula, which was then re- 
ported in the texts by Goldman [ 111 and Middleton [ 121. 

The bandpass situation is depicted in Fig. 1, where the 
sampling rate is expressed asfy Hz and the bandpass sig- 
nal is located between f L  Hz and f u  Hz. The signal band- 
width B is less than f u  - f L ,  and the positive frequency 
band can be expressed as the interval ( f L ,  f u ) .  

The bund position refers to the fractional number of 
bandwidths from the origin at which the lower band edge 
resides. A special case is integer bund positioning, which 
holds when the band is located at an integral number of 
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(b) 
Fig. 2. Examples of (a) integer band positioning for c = 3, and (b) half- 

integer band positioning for c = 3. 

bandwidths from the origin, i.e.,  f L  = c ( f u  - f L ) ,  c = 0 ,  
+1, +2, * * , . and c = 0 is the low-pass case. Fig. 2(a) 
indicates integer band positioning, for c = 3. 

Another special case is half-integer positioning, when 
fr. = ( (2c  + 1)/2)(fu - f L ) ,  Fig. 2(b) shows an example 
of half-integer positioning for c = 2. These cases of band 
positioning are useful for illustrating aspects of aliasing, 
and are particularly important in the application of sam- 
pling to the effective relocation of signals between band- 
pass and low-pass positions. 

The classical bandpass theorem for uniform sampling 
states that the signal can be reconstructed if the sampling 
rate is at leastff""") = 2 f u / n ,  where n is the largest integer 
within f u / B ,  denoted by n = I,[ f,/B]. 

This minimum rate for uniform sampling is of interest 
from a theoretical viewpoint, but for practical applica- 
tions this rate is often presented in a misleading way. Fig. 
3 from Feldman and Bennett [ 161, also reproduced in sev- 
eral texts (e.g., [13]-[15]), illustrates the minimum uni- 
form sampling rate for bandpass signals. The theoretical 
minimum rate f, = 2 B is seen to apply only for integer 
band positioning. The skew lines represent the minimum 
uniform rate required when the passband is not located in 
an integer position. The vertical lines, which represent a 
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Fig. 3. Minimum sampling frequency for band of width B [ 161 

discontinuity, traverse disallowed values of the sampling 
frequency, a point elucidated in Section 11. Gregg's 1171 
version of Fig. 3 displays more clearly the discontinuity 
in the function by using dotted lines for the vertical sec- 
tions. 

Note that f, = 2 B is a valid uniform sampling rate only 

to be applied independent of the band position. The tech- 
nique is second order in that two interleaved uniform sam- 
ple sequences are applied. Each sequence is of rate B (i.e., 
sampling every 1 / B  s), and the sequence separation is 
denoted by k s. 

Using the samples to construct a signal f ( t )  at ( fL .  f u ) ,  
the interpolation is given by 

+ f 6 + k )  S ( - t  + + k ) ]  ( I )  

in which p is the sample number index and the interpolant 
is 

S(0  = so(0 + sI(0 (2)  

where 

cos [27r(rb - fL)t - rnBk] - cos [27rfLt - r7rBkI 
2n  Bt sin r 7r Bk SOW = (3) 

(4)  
cos [27r( f L  + B)t - ( r  + l )nBk]  - cos [2n(rB - h)t - ( r  + l )nBk]  

27rBt sin ( r  + 1)aBk S,(t> = 

if there is no signal component at the frequencies f L  o r i , .  
This is analogous to the anomaly of the low-pass case (cf. 
Shannon's theorem) where the equality in f ,  L 2fu can 
hold only if there is no signal component atL,, i.e., the 
signal is band limited to less than B and the signal occu- 
pies the interval (0, id). I Kida and Kuroda [ 181 discuss the 
disallowed signal components for higher order sampling. 

The theoretical minimum sampling rate is pathological 
in the sense that any engineering imperfections in an im- 
plementation will cause aliasing. This illustrates the need 
to sample at above the theoretical minimum rate or, al- 
ternatively stated, guard-bands need to be included. Gregg 
[ 171 states without elaboration that rates between f I""") and 
2fu (the low-pass case rate) are not, in general, valid. 
These rates correspond to the region above the function 
in Fig. 3. Nevertheless, some authors mistakenly inter- 
pret figures such as Fig. 3 to mean that no aliasing will 
occur as long asf ,  > 4B. Gaskell [ I ]  gives an expression 
(see (16)) for the valid rates, but otherwise there is little 
information regarding bandpass sampling at rates above 
the theoretical minimum but still well below the frequen- 
cies of the signal being sampled. In Section 11, this sub- 
ject is discussed and results are depicted graphically. The 
existing information is clarified and the cases for band- 
pass sampling at above the minimum rate are reviewed. 
The discussion includes sensitivity of sampling rates and 
offers a practical guide to bandpass uniform sampling. 

The theoretical minimum uniform sampling rate fF = 
2 B  can be applied only when the band is integer posi- 
tioned. Kohlenberg's [ 101 second-order sampling theorem 
allows the minimum rate, in the form of an average rate, 

'The low-pass case is exceptional in  that the component atfi = 0 can be 
recovered because i t  contains trivial phase information 

and r is an integer given by the band position such that 

2fL 2h 
-I r < - + 1. 
B B ( 5 )  

The right-hand side of ( 5 )  can be expressed in terms of 
the center frequency f c ,  

Geometrically, there are at least r - 1 bandwidths be- 
tween the two-sided spectrum, i.e.,  between -& and +&. 
The interpolant has the properties that S(0)  = 1 ,  S ( p / B )  
= 0 f o r p  # 0, and S( p / B  + k )  = 0,  and in general it 
has extrema which are larger than unity. 

In the general case when the equality of ( 5 )  does not 
hold, the value of k may not take on the discrete values 

(7)  kBr, kB(r + 1 )  = 0,  1 ,  2 ,  * - 
for which the interpolant blows up. k is otherwise unre- 
stricted, but implementation difficulty using finite word- 
length machines is affected by the choice of k .  This sen- 
sitivity is discussed in Section 111. 

When the equality in ( 5 )  holds, the first term of the 
interpolant, So(t) ,  is zero, and the restrictions kBr # 0, 
1, 2 ,  * * on k are removed. The situation now corre- 
sponds to either integer band positioning ( r  even) or half- 
integer band positioning ( r  odd) and for these conditions 
there are exactly r bandwidths between -fL and +fL.* 
Three special cases are noteworthy: 

'An alternative definition for r in ( 5 )  is to place the equality with the 
right-hand term instead of the left-hand term. This causes a swap in the 
above meaning of odd and even r ,  and a swap of the term that drops out of 
the interpolant when the equality holds. For this alternative definition, r 
cannot be zero and the low-pass case corresponds to r = 1 .  

1 I 
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i) The low-pass case is f L  = 0 and r = 0 for which the 
interpolant reduces to 

COS ( 2 ~ B t  - nBk) - COS TBk 
. (8) 2nBt sin nBk SLP(t) = 

ii) The special case of k = 1 / 2  B corresponds to uni- 
form rate sampling, with its well-known sinc ( 2 n B t )  in- 
terpolant, which, as mentioned above, requires integer 
band positioning. 

iii) The quadrature sampling case has 

( 9 )  

and the simplified interpolant 

sin nBt  
nBt 

S,(t) = ___ cos 2nfct .  

Quadrature sampling is important because, as the name 
indicates, the in-phase and quadrature components are 
sampled explicitly from the bandpass signal. This is seen 
by denoting the bandpass signal in the usual way: 

f ( t )  = Z(t) cos a c t  - Q(t)  sin o,t (1 1) 

where Z(t) and Q ( t )  are quadrature components of the cen- 
ter angular frequency U, rad/s. 

To extract Z(t)  directly from f ( t ) ,  i.e., 

requires sampling at times 

P ac tp  =pa,  i.e., tp = - 2fc ’  p = 0,  k, *2, * . 

( 1 3 )  
Similarly, to obtain Q ( t )  

whence 

f ( t i )  = -Q($>. (15) 

The signals Z(t) and Q(t )  are band limited to the interval 
(0,  B / 2 )  so that each stream requires sampling at a rate 
B.  

Grace and Pitt [ 3 ]  drew attention to this special case of 
Kohlenberg’s sampling scheme. Rice and Wu [19 ]  ap- 
plied the special case of uniform sampling combined with 
the band being integer positioned, which is a form of 
quadrature sampling in that k = 1 /2  B = 1 /4 fc + m / 2  fc 

where m = 2 / r (  = 2 for integer band positioning). They 
used the fact that Z(t)  and Q(t)  are a Hilbert transform pair 
to derive the required interpolation weights used for time 
aligning the samples. Their innovation was to “decimate 
by two” the samples before applying the Hilbert trans- 
form interpolator. Waters and Jarrett [4] implemented 
quadrature sampling using the m = 0 case and also used 
decimation before the interpolation filter. Jackson and 

Matthewson [ 2 ]  also discussed implementation of quad- 
rature sampling. 

The spectrum of a sampled signal is periodic. When- 
ever a band-pass signal is reproduced at a baseband po- 
sition by sampling, the noise from all the aliased bands is 
combined into the baseband. Even with an ideal antialias- 
ing filter, the signal-to-noise ratio (SNR) is not preserved 
for bandpass sampling owing to (postfilter) thermal noise 
contributions from the aliased spectra. This has clear im- 
plications for communications and radar receivers where 
bandpass sampling is applied to relocate the signal effec- 
tively to a low(er) pass position. This is in contrast to 
analog complex mixing (i.e., using an image rejecting 
mixer), in which the signal-to-noise ratio is ideally pre- 
served. The degradation in signal-to-noise ratio does not 
seem to have been discussed to date, despite its ubiqui- 
tous presence in less critical applications, such as sam- 
pling oscilloscopes. Section IV describes and quantifies 
the signal-to-noise ratio degradation, with a simple ex- 
periment to demonstrate the effect. Also, the aliasing noise 
resulting from using typical bandpass filters is presented 
in terms of a signal-to-(aliasing) distortion ratio. This es- 
timates the effect of applying “acceptable” sampling rates 
with practical, instead of ideal, rectangular bandpass fil- 
ters. 

11. UNIFORM SAMPLING 
The conditions for acceptable uniform sampling rates 

can be written [ l ]  

2fu 2.h -5fSs-  
n n - 1  

where n is the integer given by 

1 s  n 5 lgk]. (17)  

The equality conditions of (16) hold only if the band is 
confined to the interval (fL, h): a frequency component 
at f = f L  orf = f u  will be aliased, as discussed in Section 
I and by Kida and Kuroda [ 181. 

Equations ( 1  6 )  and ( 17) are depicted graphically in Fig. 
4. The sampling frequency, normalized by B ,  is on the 
ordinate, and the abscissa represents the band position 
f u / B .  Fig. 4 is a corrected and extended version of Fig. 
3 .  The areas inside the wedges are the allowed zones for 
sampling without aliasing. The shaded area represents 
uniform sampling rates that result in aliasing. The low- 
pass casefs 2 2fu,  given by n = 1 ,  corresponds to the 
large wedge to the left of the figure. Each wedge across 
the figure corresponds to a successive value of n .  

The theoretical minimum sampling rate f, = 2 B ,  cor- 
responding to integer band positioning, occurs at the tips 
of the wedges, and these rates are clearly dangerous points 
for implementation, since any engineering imperfection 
will move the sampling rate into the disallowed area. In 
a sampling system, the allowed sampling rates are repre- 
sented by a vertical line within the allowed areas and 
above the band position given on the abscissa. 
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Fig. 4. The allowed and disallowed (shaded areas) uniform sampling rates versus the band position. The figure is an extension 
of Fig. 3 ,  to show the practical areas of nonminimum sampling rates. The right-hand ordinate is the total guard-band (sum of 
upper and lower guard-bands). f, is the sampling rate, B is the bandwidth, and the band is located at (fL, f,). 

Brown [20] has pointed out that for symmetric double 
sideband signals, the spectra can “fold over” each other 
without loss of information, allowing a theoretical mini- 
mum sampling rate of 1 /B for a band-limited signal where 
the total bandwidth (both sidebands) is B .  This case would 
have an allowed operating “region” in Fig. 4 of straight 
lines bisecting the disallowed areas between the parallel 
borders. The case also represents a pathological condi- 
tion, because any sampling rate variation will not only 
cause aliasing, but will also cause the signal to become 
folded incorrectly with a likely loss of otherwise retriev- 
able information. 

Sampling at nonminimum rates is equivalent to aug- 
menting the signal band with a guard-band. In fact, any 
allowed operating point away from the tips of the wedges 
of Fig. 4 can be interpreted as having a guard-band be- 
tween positions where the spectrum will be aliased. The 
total guard-band is given by B G T  = f, - 2 B Hz, which is 
labelled on the right-hand ordinate of Fig. 4. 

To find the relation between the guard-bands and the 
sampling frequency, the order of the wedge n is required. 
This is found from the overall bandwidth (signal band- 
width plus total guard-band) 

W = B + B G T  (18) 

and its location (ft, f ; ) ,  where 

wedge is then given by 

Fig. 5 is an expansion of Fig. 4 ,  showing the nth wedge 
with the guard-bands and the sampling frequency toler- 
ance. 

The allowable range of sampling frequencies is 

and this range is divided into values above and below a 
nominal operating point (see Fig. 5 )  

Ah = Af,U + ALL (23) 

giving the lower and upper guard-bands as 

n’ - 1 
B G L  = Afsu Yy- 

Note that symmetric guard-bands imply asymmetric sam- 
pling frequency tolerances. However, the asymmetry de- 
creases with increasing n. 

If the operating point is the vertical midpoint of the 
wedge, then the sampling rate is 

(26) f ;  =f, + BGu (20) 

and B G L  and B G u  are the lower and upper guard-bands, 
respectively, with B G T  = B G L  + B G u .  The lower order and the guard-bands become 

1 I 
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&l BGL+ BGU 
f; fL f" fi 

Fig. 5 .  Parameters in the nth wedge from Fig. 4. BGL and B,, represent guard-bands against aliasing of the signal occupying 
bandwidth B,  and Afsu and AfsL represent the allowable upward and downward range of the sampling frequency from its nominal 
value. 

n' - 1 
BGL = Ah 4 

n' 
4 BGu = 

An example illustrates the use of the equations. If a 
25-kHz signal is allocated symmetric 2.5-kHz guard- 
bands so that the overall band is (10.7, 10.703 MHz), 
then n' = 1,[10703/30] = 356 and the sampling rate has 
limits of 2(10703)/356 = 60.130 kHz to 2(10700)/355 
= 60.282 kHz, i.e., an allowable range of Ah = 152 Hz. 
The theoretical minimum sampling rate (for the signal 
without guard-bands), corresponding to a zero allowable 
sampling rate range, is on the lower edge of the nth 
wedge, where n = 1,[10702.5/25] = 428, and isf4min) = 
2(10702.5)/428 = 50.017 kHz. 

Note, for this example, that in moving from the theo- 
retical minimum rate to a rate which includes the guard- 
bands, a total of 428 - 356 = 72 separate ranges of dis- 
allowed sampling rates have been traversed. This illus- 
trates the pitfall of arbitrarily increasing the sampling rate 
from its theoretical minimum value for band-pass sam- 
pling. 

The relative precision of the minimum sampling rate 
required to avoid aliasing clearly increases with the in- 
creasing separation of the band-pass signal and the origin, 
i.e., increasing n. If an operating point is within the nth 
wedge, above (i.e., infinitesimally to the left of) the tip 
of the (n + 1)th wedge, then the difference between the 
minimum and maximum allowed sampling rates is 

(29) 
2(f, - B) - 2f, 

n - 1  Ah = n 

so that the relative precision required offs is 

AA - I ('r - n )  = 0 ($) (30) 
2 B  n(n - 1) B 

i.e.,  related to the inverse square of the separation of the 
band from the origin. (For the above-mentioned points, 
f , /  B - n = 1.) For the example with n = 428, the rel- 
ative frequency precision required of the sampling rate is 
1/(428 * 427) = 5 ppm. This sensitivity corresponds to 
the vertical locus within the 428th wedge, above the tip 
of the 429th wedge. Moving to lower order wedges 
(smaller n) ,  while remaining above the tip of the 428th 
wedge (samef, / B )  will relax the sampling oscillator pre- 
cision requirements and increase the guard-band, but of 
course requires higher sampling rates. 

The relative precision required of the sampling oscil- 
lator is depicted in Fig. 6 as the line I / (n (n  - 1)). This 
line gives the relative precision required of the sampling 
rate when operating with f,/B - n = 1 as a function of 
n. The positions of a typical crystal and RC oscillator are 
indicated to give a feel for practical requirements. With 
the inclusion of larger guard-bands by operating in the 
various nth wedges, the line interpolating the various 
Af,/2B = l /n ' (n '  - l)(f,/B - n')  runs above thef,/B 
- n = 1 line. For example, for n' = n + 10, the line 
would be an order of magnitude in A h / 2  B higher than 
and parallel to the f ,B - n = 1 line in Fig. 6. Varying 
an operating point within a given wedge corresponds to a 
positive slope locus in Fig. 6 which steepens as f ,  / B  de- 
creases. After intersecting the f,/B - n = l line, the 
locus approaches a vertical line at f,/B = n as Ah ap- 
proaches zero at the tip of the wedge. 

The f , / B  - n = 1 line represents operating with the 
minimum allowed set of sampling rates and the maximum 
available guard-band. The guard-band size decreases with 
increasing n,  and the line is -0( l /n2) .  If the relative 
guard-band is now held at a constant size, then the rela- 
tive precision of the sampling rate becomes, from (24) 
and (25), Afs/2B = BGT/B * l / n ' .  This demonstrates 
the tradeoff between the precision required of the sam- 
pling rate and the guard-band size. For practical situa- 
tions, a modest increase in the sampling rate permits a 
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For second-order sampling, the spectra resulting from 
each of the two interleaved sampling sequences applied 
to the bandpass signal are [21]  

FA(f> = F(f) * B 6(f - pB)  (31)  

F B ( f )  = F ( f )  * c Be-JZTBkp 6 (f - P 4  (32)  
P 

where F( f )  is the analog spectrum, * denotes convolu- 
tion, and p is a spectral position index. From here on, the 
explicit frequency dependence of FA and FB is dropped. 
Equations (31 )  and (32 )  show that the sampled spectrum 
is a series of analog spectra located B Hz apart and scaled 
by B .  For FE, there is a progressive phase change of 27r Bk 
imposed on F( f )  at successive spectral locations, caused 
by the sampling stream being delayed by k seconds. 

Fig. 7, which is an elaboration of Linden’s [21]  Fig. 
3 ,  illustrates the geometric aliasing relations. There are 
two regions in the band in which the aliasing arises from 
different aliases of the negative frequencies from the 
analog spectrum. These regions correspond to where the 
So(t) and S , ( t )  terms of the interpolant (see (2)) are ap- 
plied, and are 

I 
Ro: f L  I f I rB - f L  (33)  

1 0  
1 10 100 1000 

lL 
B 

Fig. 6 .  The relative precision of the set of minimum allowed uniform sam- 
pling rates. The line is an interpolation of the operating points correspond- 
ing tof,/B - n = 1.  In terms of Fig. 4, these operating points are within 
the nth wedge at a position above the tip of the (n + 1)th wedge. 

realizable precision requirement, as shown in the example 
above. 

In addressing sampling rate variation, it must be borne 
in mind that so far the discussion has been limited to 
avoiding aliasing in the sampling process. Exact 
(re)construction of the bandpass analog waveform re- 
quires exact implementation of the sampling parameters 
used in the interpolant computation, a point addressed 
within the following section. 

and 
R I :  rB - f L  s f  I f L  + B.  (34)  

Note that from the choice of definition for r,  Ro cannot 
encompass the band whereas RI  can encompass the band, 
whence S( t )  = S , ( t ) ,  i.e., integer or half-integer band po- 
sitioning. 

The spectra resulting from the two sampling sequences 
are 

Ro: FA = F ( f )  + F(-fb) (35)  

(36)  

RI: FA = F ( f )  + F ( - f ; )  (37)  

(38)  

F~ = F(f) + eJZeoF(-fb) 

and 

FB = F ( f )  + e-j2”F(-f;)  

111. INTERPOLATION IN SECOND-ORDER SAMPLING where 

Kohlenberg’s second-order sampling result gives a the- 
oretical minimum average sampling rate which would 
correspond to the straight line fs = 2 B  on Fig. 4 .  The 
interest in second-order sampling has been not only from 
the theoretical viewpoint of maintaining a constant mini- 
mum average sampling rate independent of the band po- 
sition, but also from its practical application in the sim- 
plified form of quadrature sampling a bandpass signal. 

This section concerns aspects of bandpass signal con- 
struction using various k;  specifically, the required range 
(number of bits in the coefficients) and length (number of 
coefficients) for realizing the interpolant as a finite im- 
pulse response filter, and the sampling rate sensitivity. 
The application is the generation of a band-pass, signal 
from second-order samples. 

Ro: Bo = nBkr (39)  

R I :  e l  = nBk(r + 1 )  (40)  

and 

Ro: f b  = f + 2fL - rB (41)  

R,: (42)  

The scaling factor B in (3  1) and (32 )  is omitted in (35) -  
(38 )  and hereon. 

The aliased contribution (the term containing F( - f ’)) 
is the same for FA and FE, except for a phase shift which 
is constant throughout each region. The phase shifts are, 
however, different for each of the Ro and each of the RI  
in the aliased spectra. 

f ;  = f + 2fL - ( r  + l )B .  

1 
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phase factor 
O = e x p  I- jZflBkI 

1 (0' F A +  F E )  In R, k or?,-, (6"' FA I F a )  m R I  

F l f l  = 

Fig. 7. The geometric relations for aliasing in second-order bandpass sampling and general band position. F(f) is the analog 
spectrum, and F A ( f )  and F B ( f )  are the spectra from each of the two interleaved (by k s) uniform sample sequences. The aliased 
bands are progressively phase shifted relative to the analog band as indicated by the notation y' = e-J2Bi1. For integer and half- 
integer band positioning, the region Ro becomes zero. 

The bandpass signal construction is (cf. ( 1 ) )  As already noted for integer and half-integer band po- 
sitioning, 2 f L / B  = r and R, becomes zero. Further sim- 
plification in the signal construction occurs if e-'"' = 
-1, i.e., for quadrature sampling, in which case 

(e - . i 2 0 0 ~ ~  - F ~ )  (43) 
1 

Ro: F(f) = @8" - 

1 
F ( f )  = e - ~ 2 0 1  - ( e J 2 ' l F A  - FB) (44) F(f) = ;(FA + FE). (50) 

so the disallowed values fork  are This occurs when 

(51) m 
rB' 

Ro: k = -. m = 0,  + I ,  f 2 ,  . - e  (45) j2nkB(r  + 1 )  = b ' ( 2 m  + 1)a 

which are unique except when k = 0, 1 / B ,  2 / B ,  
whence the sampling sequences coincide. 

In Fig. 7 ,  the phase factor notation 

; 

(47) ~ e - ~ 2 ~ B k r  - - e - J m  

is used for brevity. Considerable insight into the inter- 
polant can be gained by expressing it in terms of the fre- 
quencies in Fig. 7. Using the angular frequencies w, = 
2af,, wL = 2nfL ,  wB = 2 n B  and w, = 27r(rB - fL) which 
is the common border of R, and RI in the analog spec- 
trum, and noting that Ro: arg (y") = -200, R , :  arg (y"") 
= -281: 

(48) 

(49) 

cos (w,t - e,) - cos (WLI - e,) 
w B t  sin Bo 

-cos (w, t  - 0,) + cos ( a u t  - e,) 
w B t  sin 0, 

So@) = 

SI(t) = 

which shows the composition of the interpolant in the 
same form as the low-pass case of (8).  

i.e., 

2m + 1 
2B(r + 1) 

k =  

(53)  

sincef,. = ( r  + 1 / 2 ) B ,  so that these values of k indeed 
correspond to quadrature samples. 

As k approaches its disallowed values, construction of 
the bandpass signal becomes more difficult to implement 
since the interpolant becomes larger. Both the dynamic 
range (number of bits required for the filter coefficients) 
and the length (number of filter taps) required for the in- 
terpolant contribute to the cost of an implementation. The 
general interpolant form ( 2 )  predominantly resembles a 
modulated (byf,) sinc function, so the dynamic range and 
the length are related, although the relation is not simple. 
The dynamic range is a minimum for quadrature sampling 
when the interpolant assumes its maximum value at t = 
0, as evident in (10). In this case, the filter length is also 
clearly defined for a given coefficient size as long as 5. 
>> B ,  i.e., for the narrow-band situation. When k de- 

l 
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viates from the values corresponding to quadrature sam- 
pling, both the dynamic range and the length of the inter- 
polant increase. 

The low-pass case illustrates the increase in interpolant 
length with a poor choice of k .  Assuming integer band 
positioning, the low-pass interpolant can be written, from 
(8), in the form 

sin2 a B t  sin 2nBt 
nBt  2nBt ’ 

S,p(t) = -Cot TBk ~ + ~ (54)  

The first term decays as 1 / n  Bt whereas the second term 
decays as 1 / 2 n  Bt.  For a given dynamic range and coef- 
ficient word size, the magnitude of the first term should 
be minimized, or at least kept small with respect to the 
second term, for minimum filter length. Consequently, 
uniform sampling where k = 1 / 2 B  (corresponding to 
quadrature sampling since fc = B / 2 ) ,  is optimum in this 
case. For baseband interpolation of a sampled bandpass 
signal, configuring the system such that the signal is in- 
teger positioned and applying uniform sampling is the 
simplest arrangement. In an implementation, it should be 
borne in mind that half-integer band positions alias to be 
spectrally inverted at the low-pass position. 

In a nonuniformly sampled low-pass system, the alter- 
native to applying the interpolant of (54 )  directly is to 
generate uniform samples and interpolate with sinc 2 n  Bt.  
The required resampling is a shift of one of the sample 
sequences using the sinc 2 n  Bt interpolant on alternate 
samples. 

Further expense in the implementation of bandpass sig- 
nal construction may arise because of the need to include 
“guard bits” in the sampled signal and the interpolant 
coefficients. This is because errors in the measurement or 
generation process of FA and FE, such as those due to 
quantization, may in turn create errors in the recon- 
structed signal. The effect of the choice of k on the re- 
sulting uncertainty in the constructed signal is of interest, 
and is estimated here using a sensitivity analysis in the 
frequency domain. The specific aim is to get an idea of 
the cost of a poor choice of k .  

Progress can be made by assuming that the variations 
of corresponding (same analog frequency) components in 
FA and FB are uncorrelated. The variance of a component 
in F can then be written in terms of its magnitude: 

where aiA and aiB are the variances of the components of 
FA and FE. For correlated variations, caused for example 
by k becoming very small, a; will increase, so (55 )  rep- 
resents a best case. The units of a i  are watts/hertz and 
the noise power in the constructed signal is found by in- 
tegrating over the band of F .  

Letting a’ = aiA = ait?, and using (43 )  and (44) in (55 )  
and integrating, the noise power in F is 

where 

(57) A r = r - -  2fL 
B 

denotes the extent of the Ro portion of the band and 0 I 
A r  < 1 ,  The minimum noise power is a 2 B / 2 ,  and from 
the choice of definition of r ,  occurs for A r  = 0 and e l  = 
n / 4  + mn,  m = 0 ,  f l ,  5 2 ,  . ; i.e., for integer or 
half-integer band positioning and quadrature sampling. 

For general values of A r  and eo, 8 , ;  the noise power 
relative to its minimum value can be expressed as the 
number of bits of resolution irrecoverably lost in calcu- 
lating F; viz., 

’ I 2  

(59)  
A r  

= log2 (- sin2 eo + e) sin el  . 

In terms of an implementation, (59 )  indicates for poor 
choices of k ,  how the errors in the sampled data magnify 
during the construction of an analog bandpass signal. Nb 
is plotted against k normalized by B in Fig. 8(a) for the 
example where r = 9 and A r  = 0 (half-integer band po- 
sitioning); and in Fig. 8(b) for r = 10 and A r  = 0.5. The 
functions are symmetric about k = 0 and k = 1 / 2  B .  The 
asymptotes correspond to the disallowed values if k ;  viz., 
k = m / l O B ,  m = 0 to 10, for Fig. 8(a); and both k = 
m /  10B and k = m /  11B for Fig. 8(b). For the half-integer 
band positioning case, the quadrature sampling values 

1 3  -~ - . . .  . - m 
9 + 1  20B’ 20B ’ 

k =  l +  
4 r + ) B  2 ( 1 )  

are located at the function minima of Fig. 8(a). The uni- 
form sampling case is given by k = 1 / 2  B and, as already 
noted, it is only possible to apply this in the special case 
of integer band positioning ( r  even and A r  = 0) and is 
clearly not viable (i.e., k = 1 / 2  B is a disallowed value) 
in Fig. 8(a) and (b). The interpolant is simplified and is 
the same for each of the quadrature sampling values (NB: 
(10) is independent of k ) .  This is evident in Fig. 8(a) 
where any choice of quadrature sampling gives the opti- 
mum k with respect to sensitivity of the signal construc- 
tion to uncertainty in the sampled data. Since the quad- 
rature sampling locations are at the minima, small 
perturbations (relative to l / r )  of k from the quadrature 
values do not result in a large penalty in the uncertainty 
caused by constructing an analog bandpass signal. This is 
particularly clear for the low-pass case, where there is only 
one quadrature sampling location which is at k = 1 / 2  B .  

In Fig. 8(b), the quadrature sampling points are at k = 
1 / 2  1 B ,  3 / 2  1 B ,  ; and these do not occur at the func- 
tion minima. For constructing a bandpass signal whose 
band is not integer or half-integer positioned, it is unwise 
to use an arbitrary choice of quadrature sampling since 
the construction process could well give rise to an error 

1 I 
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Fig. 8. An estimate of the equivalent number of bits of resolution irrecov- 
erably lost in interpolating a bandpass signal using uncertain baseband rate 
samples, as a function of k .  The graphs represent a cost of a poor choice 
of k in the second-order bandpass sampling process. The average sample 
rate is ( A )  = 2 B .  (a) r = 9, A r  = 0 (half-integer band positioning). The 
minima correspond to cases of quadrature sampling. (b) r = 10, A r  = 0.5 
(neither integer nor half-integer band positioning). The minima do not, in 
general, correspond to quadrature sampling. 

in the signal. However, the first quadrature sampling value 
is close to the first minimum of the function, which is the 
global minimum. In this case of general band positioning, 
optimum quadrature sampling requires the minimum k ,  
i.e., k = 1 /4fc. The best general value of k occurs at the 
first function minimum (or the last minimum, which 
amounts to the same sampling sequence interleaving), and 
so the configuration of the optimum general sampling sys- 
tem requires finding this minimum. This disadvantage, as 
well as the need here for a complicated interpolant, make 
it worthwhile arranging the band to be integer or half- 
integer positioned. 

The accurate construction of the bandpass signal from 
its samples also depends on the accuracy of the sampling 
rate and k .  If the sample sequences are interleaved by k, 
and the interpolant implementation features k = k, + A k ,  
thenlthe constructed spectrum of interest F ( f )  and its al- 
ias F( -f') in terms of the wanted spectrum is, expressed 
here for R, only, 

where el, = -nk,(r + l)B. For small A k  

which approximates how the degree to which the alias is 
suppressed depends on the difference of k and k,. The rel- 
ative difference between the constructed spectrum and the 
wanted spectrum can be expressed as 

a result which is also readily obtained from time domain 
considerations. 

As r increases, the timing error A k  becomes increas- 
ingly critical. For large values of r pertinent to commu- 
nications or radar, etc., the demands on A k  become con- 
siderable. For the previous example (in Section 11, using 
guard-bands) with r = 356 and B = 30 kHz, andfL = 
10.7 MHz, and an alias suppression of 40 dB, the re- 
quired accuracy of the sample sequence interleaving is 

1 A k = - * -  
357 ~ 3 0 ( 1 0 ) ~  

i .e.,  A k  - 0.3  ns. For lower intermediate frequencies in 
communications, such as 455 kHz, the requirement is 
correspondingly simpler, viz., A k  - 7 ns ( r  = 15). 

IV. NOISE IN BANDPASS SAMPLED SIGNALS 
Noise considerations are important not only where the 

signal-to-noise ratio is important, such as in communi- 
cation receivers, but also in the measurement of noise it- 
self, such as in noise power measurements. In a sampling 
system, the periodicity of the spectrum means that wide- 
band noise, such as the thermal noise introduced by the 
relevant hardware, is all combined into each of thefs/2 
bands. 

In applying bandpass sampling to relocate a bandpass 
signal to a low-pass position, the resulting signal-to-noise 
ratio will be poorer than that from an equivalent analog 
system (i.e., an ideal image-rejecting mixer), in which 
the signal-to-noise ratio is preserved. 

Consider a system with a bandpass signal of spectral 
power density S ,  in-band noise power density of Np, and 
out-of-band noise power density No. The analog signal- 
to-noise ratio is thus SIN,. The signal-to-noise ratio for 
the sampled signal becomes degraded by at least the noise 
aliased from the bands between dc and the passband, and 
is thus 
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Often, Np >> No and the signal-to-noise ratio is estab- 
lished before sampling. However, if Np = No, and assum- 
ing n >> 1, then the degradation of the signal-to-noise 
ratio in decibels is simply 

D s N R  z 10 log II. (64) 
Equivalently, the effective noise temperature is increased 
by at least n. Note that this analysis assumes a flat analog 
noise spectrum, ideal filters, and an infinitesimally small 
sampling aperture. 

For the example with B = 30 kHz located at the integer 
position n = r / 2  = 30(fu - 455 kHz), or n = 356(fu - 10.7 MHz), then the increase in the noise power is at 
least 15 and 25 dB, respectively. 

In the case where the noise spectrum is not uniform, a 
conservative estimate of the noise power density in each 
of the bands in the sampled spectrum can be obtained by 
equating the noise power before and after sampling. De- 
noting N E A  as the equivalent noise spectral density 
(ENSD) and B E ,  as the equivalent noise bandwidth 
(ENBW) of the analog signal; and NEs as the ENSD of 
the sampled signal with 2 B the sampling rate (it is known 
[22] that the ENBW of a sampled system cannot exceed 
B), then 

NEABEA = N E s B .  (65) 

The degradation in a signal-to-noise ratio is N E s / N E A  

which, in decibels, is then at least 

A simple experiment using a noise source and a sam- 
pling oscilloscope demonstrates the effect. The test signal 
was a 10.95-kHz carrier amplitude-modulated by a 200-Hz 
sine wave. A Bruel and Kjaer 0-20 kHz noise source sig- 
nal was added to the test signal. The resultant signal was 
sampled at 125 kHz, windowed using a minimum 3-term 
Blackman-Harris function, and the spectra calculated by 
FFT on a LeCroy oscilloscope. The average of 10 power 
spectra is shown in Fig. 9(a). The signal-to-noise ratio is 
about 38 dB. The signal was then sampled at 1250 Hz 
giving a Nyquist bandwidth of 625 Hz, and n = 
20 000/625 32. The average spectra is shown in Fig. 
9(b), with the signal-to-noise ratio now being -21 dB. 
The observed degradation is thus about 17 dB. 

The minimum degradation given by (64) is 10 log 32, 
i.e., about 15 dB. Recall that this minimum is given by 
considering only the aliased noise from the noise source, 
and assumes that B E ,  is 20 kHz, while in practice it is a 
little greater. 

In general, the potential for signal-to-noise degradation 
in bandpass sampling systems is considerable, even when 
the analog spectrum contains only thermal noise. In most 
communications systems, for example, the out-of-band 
power (adjacent band signals, etc.) has similar, or even 
higher levels, than that in the band of interest, so an anti- 
aliasing filter is necessary. 

To get a feel for the filter requirements, the signal dis- 
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Fig 9 Averaged sampled spectra of a 10 9-kHz carrier amplitude modu- 
lated by a 200-Hz sinusoid in the presence of white noise The sampling 
rate is (a) 125 kHz, giving a sampled spectra SNR of about 38 dB, and (b) 
1250 Hz, giving a sampled spectra SNR of about 21 dB 

tortion ratio (SDR) [24] is a useful metric. It is the ratio 
of the mean-square aliasing error and the total signal 
power passed through the filter and can be interpreted as 
a signal-to-noise ratio. It is here defined for the bandpass 
case [23] as 

som “ ) I 2  do 

where H(o) is the filter transfer function andf, is the arith- 
metic center frequency of the upper and lower 3-dB points. 
The limits are chosen so that the wanted signal band oc- 
cupies a Nyquist bandwidth. In practice, this requires se- 
lectingf, such that the band is integer or half-integer po- 
sitioned. 

This signal distortion ratio offers only a rough guide for 
trading off the filter requirements against sampling rate 
and is only one of many factors contributing to the effec- 
tive signal-to-noise ratio [23]. This is because of the as- 
sumption in (67) that the signal power at the filter input 
is constant across the spectrum. In practice, the presence 
of guard-bands will normally ensure this will not be the 
case at the edges of the filter. On the other hand, adjacent 
channel power levels may be tens of decibels above the 
power level in the channel of interest. In radio commu- 
nications cases, the filter H(o) not only represents the 
antialiasing filter, but also the receiver front end, includ- 
ing the antenna. Nevertheless, the antialiasing filter will 
normally be the dominant effect on the signal distortion 
ratio. 

Fig. 10 [23] shows the signal distortion ratio for two 
filter types against the sampling rate normalized to the 

1 
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Fig. I O .  The signal distortion ratio (SDR) as defined for the bandpass case 
for second-order and eighth-order Buttenvorth and Chebychev filters. The 
envelope edges for each curve represent Q = 1 and Q = 200 1231. 

3-dB bandwidth of the filter Because of the selection 
of fs mentioned above, there are only discrete points on 
the curves which are valid. The envelopes enclose the 
curves for filters with Q values from 1 to 200. The param- 
eter Q = fc/B3dB is related to the band position parameter 
r = 2fL/B (for integer band positioning) by Q = ( r  + 
1). In the example with a 25-kHz band at 455 kHz, i.e., 
r = 36, a signal distortion ratio of 37 dB requires a sam- 
pling rate off , /&& = 2 (i.e.,f,  = 50 ksamples/s) with 
a filter equivalent to an eighth-order Chebychev with Q 
= 16. 

The definition of the signal distortion ratio in (67) can 
perhaps be more easily related to a signal power to “dis- 
tortion power” ratio if the integration in the numerator is 
over the 3-dB bandwidth only, i.e., the denominator cor- 
responds to the signal power only rather than total power. 
For such a definition, however, the curves of Fig. 10 
change by less than a couple of decibels. Strictly speak- 
ing, only interleaved portions of the filter “stop band” 
contribute to the aliasing distortion, but again, this defi- 
nition does not appreciably shift the curves of Fig. 10. 
This matter is discussed in [23]. In applying Fig. 10, it 
should be borne in mind that the signal distortion ratio is 
only an approximation to the effective signal-to-noise ra- 
tio caused by the aliasing. 

V .  CONCLUSION 
For practical bandpass sampling, there is a need to 

sample at above the theoretical minimum rate. Care must 
be taken when increasing the sampling rate from its min- 
imum value because there are bands of rates for which 
aliasing will occur. Operating at a nonminimum sampling 
rate is equivalent to the introduction of guard-bands or a 
corresponding tolerance to variations in the sampling rate. 
The relations between the sampling rate tolerance, the 
guard-band size, and the various allowed nonminimum 
sampling rates give practical design choices. 

For sampling an analog bandpass signal in order to pro- 

cess digitally the signal, the simplest system is to con- 
figure the band to be integer positioned and apply uniform 
(which is also quadrature) sampling. 

In the sampling process, the signal becomes degraded 
owing to aliasing of the noise (introduced after any band- 
pass antialiasing filter) between dc and at least the original 
bandpass spectral position. This degradation is unavoid- 
able and a simple estimate for the minimum degradation 
is available in terms of the band position. 

For constructing an analog bandpass signal from its 
second-order samples, it is wise to configure the system 
such that the band is integer or half-integer positioned. 
The advantages are a simplified interpolant and the poten- 
tial to apply quadrature sampling with the flexibility to 
use several values for the sequence spacing. Quadrature 
sampling represents the optimum sample sequence inter- 
leaving in the sense that it requires the shortest filter length 
(least number of taps) for interpolant implementation 
using a given coefficient word size, and displays the least 
sensitivity to error propagation in the construction of a 
bandpass signal from its samples. 

For cases where the band is not integer of half-integer 
positioned, the optimum sampling sequence interleaving 
for bandpass signal construction is not trivial to find. 
Here, quadrature sampling spacing should not be applied 
in general, owing to possible error propagation from im- 
perfect samples, although the minimum quadrature spac- 

k = 1 /4fc is usually close to the optimum. 
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