
HDL Compiler™

for VHDL
User Guide
Version D-2010.03, March 2010

HDL Compiler for VHDL User Guide, version D-2010.03 ii

Copyright Notice and Proprietary Information
Copyright © 2010 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, Design Compiler,
DesignWare, Formality, HDL Analyst, HSIM, HSPICE, Identify, Leda, MAST, ModelTools, NanoSim, OpenVera, PathMill,
Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG, SolvNet, Syndicated, Synplicity, Synplify,
Synplify Pro, Synthesis Constraints Optimization Environment, TetraMAX, the Synplicity logo, UMRBus, VCS, Vera, and
YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Confirma, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, Galaxy Custom Designer, HANEX, HAPS, HapsTrak, HDL Compiler, Hercules, Hierarchical Optimization

Technology, High-performance ASIC Prototyping System, HSIM
plus

, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter,
Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk,
Milkyway, ModelSource, Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, Saturn, Scirocco, Scirocco-i, Star-RCXT, Star-SimXT, StarRC, System Compiler, System Designer, Taurus,
TotalRecall, TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Contents

What’s New in This Release . xiv

About This Reference Manual . xiv

Customer Support. xvii

1. Introduction to HDL Compiler for VHDL

Reading VHDL Designs . 1-2

Summary of Reading Methods . 1-3

Using the analyze and elaborate Commands . 1-3

Using the read Command . 1-4

Reading Designs With Dependencies Automatically . 1-5
Reading, Analyzing, and Elaborating Designs . 1-6
Reading and Analyzing Designs Without Elaboration 1-6
File Dependency Support . 1-7
Supported Variables . 1-7
Examples . 1-8

Automatic Detection of RTL Language From File Extensions 1-8

Elaboration Reports . 1-9

Reporting Elaboration Errors . 1-10

Methodology . 1-11

Example. 1-12

hdlin_elab_errors_deep FAQs . 1-16

Parameterized Models (Generics) . 1-19

Configuration Support. 1-21
iii

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 1: Bind Entity to Architecture . 1-23

Example 2: Use Architectures From the Same Library 1-24

Example 3: Use Architectures From Different Libraries 1-26

Example 4: Configuration With a Component Inside a Concurrent Block 1-28

Example 5: Generic in a Configuration . 1-30

Example 6: Port Map in a Configuration . 1-31

Example 7: Nested Configurations . 1-32

Example 8: Indirectly Nested Configurations. 1-34

Example 9: Embedded Configurations . 1-34

Example 10: Multiple Architectures in Embedded Configurations -
Last Chosen as Default . 1-38

Example 11: Combinations of Embedded, Nested, and
Stand-Alone Configurations Require Elaborate with a Configuration Identifier 1-40
Tool Behavior When Using Elaborate With the Entity Name 1-48

Design Libraries . 1-49

Predefined Design Libraries . 1-49

Creating User-Defined Design Libraries . 1-50

User-Defined Design Library Example . 1-51

Using Design Units From Design Libraries . 1-52

Design Library Reports . 1-52

Package Support . 1-52

Array Naming Variables . 1-53

Licenses . 1-54

2. General Coding Considerations

Creating Relative Placement in Hardware Description Languages 2-2

Directives for Specifying Relative Placement. 2-2

Creating Groups Using rp_group and rp_endgroup . 2-3

Specifying Subgroups, Keepouts, and Instances Using rp_place 2-4

Placing Cells Automatically Using rp_fill . 2-5

Specifying Placement for Array Elements Using rp_array_dir 2-6

Specifying Cell Alignment Using rp_align . 2-7

Specifying Cell Orientation Using rp_orient. 2-8

Ignoring Relative Placement Using rp_ignore and rp_endignore 2-8

Relative Placement Example. 2-9
Contents iv

HDL Compiler for VHDL User Guide Version D-2010.03
Declarative Region in generate Statements . 2-12

Design Units . 2-13

Direct Instantiation of Components . 2-13

Default Component Port Assignments. 2-14

Component Name Restrictions . 2-15

Component Sources . 2-15

Component Port Consistency . 2-15

Instantiating Technology-Independent Components . 2-16

Component Architecture . 2-17

Package Names. 2-18

Procedures and Functions as Design Components . 2-18

Data Types and Data Objects . 2-21

Globally Static Expressions in Port Maps . 2-22

Aliases . 2-22

Deferred Constants . 2-23

Aggregates in Constant Record Declarations . 2-25

Enumerated Types in the for and for-generate Constructs 2-26

Groups . 2-27

Integer Data Types. 2-27

Overloading an Enumeration Literal . 2-28

Enumeration Encoding . 2-28

Constant Floating-Point Support . 2-29
Syntax and Declarations. 2-29
Operators and Expressions . 2-30
Guidelines. 2-31

math_real Package Support . 2-32
Unsupported Constructs and Operators. 2-32
Using the math_real Package. 2-32
Arithmetic Functions . 2-32
Usage Examples. 2-33

Operands . 2-34

Operand Bit-Width . 2-34

Array Slice Names . 2-35

Computable and Noncomputable Operands . 2-35

Indexed Name Targets. 2-37

Modeling Considerations . 2-37
Chapter 1: Contents
1-vContents v

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Concatenation . 2-38

Unconstrained Type Ports . 2-39

Input Ports Associated With the Keyword open. 2-39

Multiple Events in a Single Process. 2-40

Keeping Signal Names . 2-40

Controlling Structure . 2-41

Resolution Functions . 2-42

Asynchronous Designs . 2-43

Using Don’t Care Values . 2-44

Finite State Machines . 2-44
Variables and Commands Specific to FSM Inference. 2-44
FSM Coding Requirements . 2-45
FSM Example and Inference Report . 2-46
State Vector Attribute . 2-48

Multibit Inference . 2-49
Multibit Inference Overview . 2-49
Controlling Multibit Inference . 2-50
infer_multibit Attribute Examples . 2-50

Simulation/Synthesis Mismatch Issues. 2-52

Type Mismatches . 2-53

Set and Reset Signals . 2-53

Z Values in Expressions . 2-53

Don’t Care Values in Comparisons . 2-53

Ordering of Enumerated Types Using the
ENUM_ENCODING attribute . 2-54

Sensitivity Lists . 2-54

Delay Specifications. 2-55

3. Modeling Combinational Logic

Synthetic Operators . 3-2

Logic and Arithmetic Operator Implementation . 3-4

Propagating Constants . 3-5

Bit-Truncation Coding for DC Ultra Datapath Extraction . 3-5

Multiplexing Logic . 3-8

SELECT_OP Inference . 3-8

MUX_OP Inference . 3-10
Contents vi

HDL Compiler for VHDL User Guide Version D-2010.03
Variables That Control MUX_OP Inference . 3-12

MUX_OP Inference Examples . 3-14

MUX_OP Inference Limitations . 3-16

Unintended Latches and Feedback Paths in
Combinational Logic . 3-17

4. Modeling Sequential Logic

Generic Sequential Cells (SEQGENs) . 4-2

Inference Reports for Flip-Flops and Latches . 4-4

Register Inference Variables. 4-5

Register Inference Attributes . 4-6

Inferring D and Set/Reset (SR) Latches . 4-7

Inferring SR Latches . 4-8

Inferring D Latches . 4-9
Overview—Latch Inference . 4-9
Basic D Latch . 4-10
D Latch With Asynchronous Set . 4-11
D Latch With Asynchronous Reset . 4-12
D Latch With Asynchronous Set and Reset . 4-13

Limitations of D Latch Inference . 4-14

Inferring D Flip-Flops . 4-15

Overview—Inferring D Flip-Flops . 4-16

Enabling Conditions in if Statements . 4-17

Positive-Edge-Triggered D Flip-Flop . 4-17

Negative-Edge-Triggered D Flip-Flop . 4-19

D Flip-Flop With Asynchronous Set. 4-20

D Flip-Flop With Asynchronous Reset. 4-21

D Flip-Flop With Asynchronous Set and Reset . 4-22

D Flip-Flop With Synchronous Set. 4-23

D Flip-Flop With Synchronous Reset. 4-24

D Flip-Flop With Complex Set/Reset Signals . 4-26

D Flip-Flop With Synchronous and Asynchronous Load 4-27

Multiple Flip-Flops: Asynchronous and Synchronous Controls 4-28

Inferring JK Flip-Flops. 4-30

Basic JK Flip-Flop . 4-30
Chapter 1: Contents
1-viiContents vii

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
JK Flip-Flop With Asynchronous Set and Reset . 4-32

Inferring Master-Slave Latches . 4-33

Master-Slave Latch Overview . 4-33

Master-Slave Latch: Single Master-Slave Clock Pair. 4-34

Master-Slave Latch: Multiple Master-Slave Clock Pairs. 4-34

Master-Slave Latch: Discrete Components . 4-36

Limitations of Register Inference . 4-37

Unloaded Sequential Cell Preservation . 4-38

5. Inferring Three-State Logic

Inference Report for Three-State Devices . 5-2

Inferring a Basic Three-State Driver . 5-2

Inferring One Three-State Buffer From a Single Process . 5-3

Inferring Two Three-State Buffers . 5-4

Three-State Buffer With Registered Enable . 5-6

Three-State Buffer With Registered Data . 5-7

Understanding the Limitations of Three-State Inference . 5-9

6. Directives, Attributes, and Variables

Directives . 6-2

keep_signal_name. 6-2

template . 6-3

translate_off and translate_on . 6-3

synthesis_off and synthesis_on . 6-3

resolution_method . 6-3

rp_group and rp_endgroup . 6-3

rp_place. 6-4

rp_fill . 6-4

rp_array_dir . 6-5

rp_align . 6-5

rp_orient . 6-5

rp_ignore and rp_endignore . 6-6

map_to_entity and return_port_name . 6-6
Contents viii

HDL Compiler for VHDL User Guide Version D-2010.03
dc_tcl_script_begin and dc_tcl_script_end . 6-7

Attributes. 6-8

Synopsys Defined Attributes . 6-8

IEEE Predefined Attributes . 6-14

Variables . 6-14

7. Write Out Designs in VHDL Format

Netlist Writer Variables . 7-2

Writing Out VHDL Files. 7-2

VHDL Write Variables . 7-3

Bit and Bit-Vector Variables . 7-5

Resolution Function Variables . 7-6

Types and Type Conversion Variables . 7-7

Architecture and Configuration Variables . 7-8

Preserving Port Types. 7-9

VHDL Netlister Coding Considerations. 7-11

Built-In Type Conversion Function . 7-11

How the Netlister Handles Custom Types . 7-12

Case Sensitivity . 7-13

Appendix A. Examples

Read-Only Memory. A-2

Waveform Generator. A-4

Definable-Width Adder-Subtracter . A-6

Count Zeros—Combinational Version. A-7

Count Zeros—Sequential Version. A-9

Soft Drink Machine—State Machine Version . A-11

Soft Drink Machine—Count Nickels Version. A-14

FSM Example: Moore Machine . A-16

FSM Example: Mealy Machine . A-18
Chapter 1: Contents
1-ixContents ix

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Carry-Lookahead Adder . A-20

Carry Value Computations. A-20

Implementation . A-25

Serial-to-Parallel Converter—Counting Bits . A-26

Input Format . A-26

Implementation Details . A-27

Serial-to-Parallel Converter—Shifting Bits . A-31

Programmable Logic Arrays . A-33

Appendix B. Predefined Libraries

std_logic_1164 . B-2

built_in Pragmas . B-2

std_logic_arith . B-4

std_logic_arith Package Overview. B-4

Modifying the std_logic_arith Package . B-6

std_logic_arith Data Types. B-7
UNSIGNED. B-7
SIGNED . B-7

Conversion Functions . B-8

Arithmetic Functions . B-9

Comparison Functions. B-12

Shift Functions . B-14
Multiplication Using Shifts. B-15

numeric_std . B-15

Unsupported Constructs and Operators . B-16

Using the numeric_std Package . B-16

numeric_std Data Types . B-16

Conversion Functions . B-17

Resize Functions . B-17

Arithmetic Functions . B-18

Comparison Functions. B-19

Defining Logical Operators Functions . B-22

Shift and Rotate Functions . B-23

Shift and Rotate Operators . B-24

std_logic_misc . B-26
Contents x

HDL Compiler for VHDL User Guide Version D-2010.03
Standard Package . B-27

Data Type BOOLEAN . B-28

Data Type BIT . B-28

Data Type CHARACTER . B-29

Data Type INTEGER . B-29

Data Type NATURAL . B-29

Data Type POSITIVE . B-29

Data Type STRING . B-29

Data Type BIT_VECTOR . B-29

Synopsys Package—ATTRIBUTES . B-30

Appendix C. VHDL Constructs

VHDL Construct Support . C-2

Configurations . C-2

Design Units . C-2

Data Types. C-3

Declarations. C-4

Specifications. C-5

Names . C-6

Operators. C-7

Operands and Expressions . C-9

Sequential Statements. C-10

Concurrent Statements . C-11

Lexical Elements . C-12
Specifics of Identifiers. C-12
Specifics of Extended Identifiers. C-12

Predefined Language Environment . C-13

VHDL Reserved Words. C-13

Glossary

Index
Chapter 1: Contents
1-xiContents xi

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Contents xii

Preface

This preface includes the following sections:

• What’s New in This Release

• About This Reference Manual

• Customer Support
xiii

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
What’s New in This Release

Information about new features, enhancements, and changes, along with known problems,
limitations, and resolved Synopsys Technical Action Requests (STARs), is available in the
HDL Compiler Release Notes in SolvNet.

To see the HDL Compiler Release Notes,

1. Go to the Download Center on SolvNet located at the following address:

 https://solvnet.synopsys.com/DownloadCenter

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to register with SolvNet.

2. Select HDL Compiler, and then select a release in the list that appears.

About This Reference Manual

HDL Compiler translates a VHDL hardware language description into a GTECH netlist that
is used by the Design Compiler tool to create an optimized netlist. This manual describes
the following:

• Modeling combinational logic, synchronous logic, three-state buffers, and multibit cells
with HDL Compiler

• Using HDL Compiler Synthesis directives, attributes, and variables

Audience

The HDL Compiler for VHDL User Guide is written for logic designers and electronic
engineers who are familiar with Design Compiler. Knowledge of the VHDL language is
required, and knowledge of a high-level programming language is helpful.

Related Publications

For additional information about HDL Compiler, see Documentation on the Web, which is
available through SolvNet at the following address:

https://solvnet.synopsys.com/DocsOnWeb

You might also want to refer to the documentation for the following related Synopsys
products:
Preface
What’s New in This Release xiv

HDL Compiler for VHDL User Guide Version D-2010.03
• Design Compiler

• DesignWare

• Library Compiler

• VHDL System Simulator
Chapter 1: Preface
About This Reference Manual 1-xv
Preface
About This Reference Manual xv

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax,
such as object_name. (A user-defined value that is
not Synopsys syntax, such as a user-defined value
in a Verilog or VHDL statement, is indicated by
regular text font italic.)

Courier bold Indicates user input—text you type verbatim—in
Synopsys syntax and examples. (User input that is
not Synopsys syntax, such as a user name or
password you enter in a GUI, is indicated by regular
text font bold.)

[] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one of
three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term by
the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as holding
down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
Preface
About This Reference Manual xvi

HDL Compiler for VHDL User Guide Version D-2010.03
Customer Support

Customer support is available through SolvNet online customer support and through
contacting the Synopsys Technical Support Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. SolvNet also gives you access to a wide
range of Synopsys online services including software downloads, documentation on the
Web, and “Enter a Call to the Support Center.”

To access SolvNet, go to the SolvNet Web page at the following address:

https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name
and password, follow the instructions to register with SolvNet.

If you need help using SolvNet, click HELP in the top-right menu bar or in the footer.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

• Open a call to your local support center from the Web by going to
http://solvnet.synopsys.com (Synopsys user name and password required), and then
clicking “Enter a Call to the Support Center.”

• Send an e-mail message to your local support center.

• E-mail support_center@synopsys.com from within North America.

• Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

• Telephone your local support center.

• Call (800) 245-8005 from within the continental United States.

• Call (650) 584-4200 from Canada.

• Find other local support center telephone numbers at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
Chapter 1: Preface
Customer Support 1-xvii
Preface
Customer Support xvii

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Preface
Customer Support xviii

1
Introduction to HDL Compiler for VHDL 1

The Synopsys Design Compiler tool uses the HDL Compiler tool to read designs written in
the VHDL hardware description language.

This chapter contains the following sections:

• Reading VHDL Designs

• Elaboration Reports

• Reporting Elaboration Errors

• Parameterized Models (Generics)

• Configuration Support

• Design Libraries

• Package Support

• Array Naming Variables

• Licenses
1-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Reading VHDL Designs

When HDL Compiler reads a VHDL design, it checks the code for correct VHDL syntax and
builds the generic technology (GTECH) netlist that Design Compiler uses to optimize the
design. You can use the read command to do both functions automatically, or you can use
the analyze and elaborate commands to do each function separately. It is recommended
that you use the analyze and elaborate commands instead of the read command,
because

• The elaborate command includes the functionality of the link command, which
resolves design references.

• For parameterized designs, the read command builds a design only with the default
generic value; if you want to build a new design with a nondefault value, you must use
analyze and elaborate. See “Parameterized Models (Generics)” on page 1-19.

• The read command ignores stand-alone configurations.

HDL Compiler supports automatic linking of mixed language libraries. In Verilog, the default
library is the work directory, and you cannot have multiple libraries. In VHDL, however, you
can have multiple design libraries.

If you want to read a VHDL netlist, use the specialized VHDL netlist reader instead of HDL
Compiler. The VHDL netlist reader reads netlists faster and uses less memory.

Important:
To enable the VHDL netlist reader, you must set enable_vhdl_netlist_reader to true
(the default is false) and use the netlist reading commands shown in Table 1-1 on
page 1-3.

If the file is not a VHDL netlist or if enable_vhdl_netlist_reader is set to false, HDL
Compiler reads the design.

This section contains the following subsections:

• Summary of Reading Methods

• Using the analyze and elaborate Commands

• Using the read Command

• Reading Designs With Dependencies Automatically

• Automatic Detection of RTL Language From File Extensions
Chapter 1: Introduction to HDL Compiler for VHDL
Reading VHDL Designs 1-2

HDL Compiler for VHDL User Guide Version D-2010.03
Summary of Reading Methods
The recommended and alternative reading commands are shown in Table 1-1.

Using the analyze and elaborate Commands
When you are elaborating a design, the last analyzed architecture is used if you do not
specify an architecture.

To understand how to use the analyze and elaborate commands, consider Example 1-1,
which represents a single design with no user-defined libraries.

Example 1-1 Design dff_pos
library IEEE ;
use IEEE.std_logic_1164.all;

entity dff_pos is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_pos;

architecture rtl of dff_pos is
begin
process (CLK) begin
 if (rising_edge (CLK)) then

Table 1-1 Reading Commands

Type of input Reading method

RTL Recommended reading method
analyze -format vhdl { files }
elaborate <topdesign>

Alternative reading method
read_vhdl { files } (tcl)
read_file -format vhdl { files } (tcl)

 Gate-level netlists Recommended reading method
set enable_vhdl_netlist_reader true
read_vhdl -netlist { files } (tcl)
or
set enable_vhdl_netlist_reader true
read_file -format vhdl -netlist { files } (tcl)

Alternative reading method
Any RTL-reading command also works for reading netlists, but is slower and
uses more memory than the specialized gate-level netlist reader.
Chapter 1: Introduction to HDL Compiler for VHDL
Reading VHDL Designs 1-3
Chapter 1: Introduction to HDL Compiler for VHDL
Reading VHDL Designs 1-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 Q <= DATA;
 end if;
end process;
end rtl;

Example 1-2 through Example 1-4 show various reading methods.

Example 1-2
--The analyze and elaborate commands read design dff_pos which is
contained
--in a single file, dff_entity_arch.vhd.

dc_shell> analyze -format vhdl dff_entity_arch.vhd
dc_shell> elaborate dff_pos

Example 1-3
--Design dff_pos is contained in two files, dff_entity.vhd and
dff_arch.vhd.
--Each file is analyzed by a separate analyze command and then the
--dff_pos design is elaborated.

dc_shell> analyze -format vhdl dff_entity.vhd
dc_shell> analyze -format vhdl dff_arch.vhd
dc_shell> elaborate dff_pos

Example 1-4
--Design dff_pos is contained in two files, dff_entity.vhd and
dff_arch.vhd.
--Both files are analyzed using a single analyze command, and then
elaborated.

dc_shell> analyze -format vhdl {dff_entity.vhd dff_arch.vhd}
dc_shell> elaborate dff_pos

Using the read Command
For you to use any read command, all your entity and architecture definitions must be
contained in a single read. The entity and architecture definitions may be contained in
separate files. Table 1-2 on page 1-5 shows various reading examples.

When you use the read command, you must also use the current_design command, to
specify the working design, and the link command, to resolve design references, before
optimizing the design. These operations are automatically done by the elaborate
Chapter 1: Introduction to HDL Compiler for VHDL
Reading VHDL Designs 1-4

HDL Compiler for VHDL User Guide Version D-2010.03
command. If you have configurations, you must use analyze. The read command ignores
configurations and has limited supported for generics. See “Configuration Support” on
page 1-21 and “Parameterized Models (Generics)” on page 1-19.

Reading Designs With Dependencies Automatically
HDL Compiler analyzes and can elaborate designs and any files dependent on them in the
correct order automatically when you use the -autoread option with the analyze or
read_file commands. The -autoread option reads in the source files of a design,
analyzes them, and, when you use the read_file command, it elaborates the design
starting at the specified top-level design. It retains the resulting GTECH representation in
memory. During sequential analyze -autoread and read_file -autoread calls, HDL
Compiler analyzes and elaborates only the files that were changed and the files that depend
on them. The -autoread option is cross language compatible.

You can specify the -autoread option with the read_file command or the analyze
command. Specifying read_file -autoread elaborates the top design, while specifying
analyze -autoread does not perform elaboration. The following sections describe how to
use the -autoread option. The sections also highlight required and recommended
arguments and variables. For a complete list of options, see the read_file and analyze
man pages.

Table 1-2 read Command Examples

Example Description

dc_shell-t> read_file -format vhdl ALU.vhd The read_file command reads the single
design in the ALU.vhd file.

dc_shell-t> read_vhdl ALU.vhd The read_vhdl command reads the single
design in the ALU.vhd file.

dc_shell-t> read_vhdl {ALU_subblock.vhd
ALU_top.vhd}

The read_vhdl command reads a design
consisting of two files: ALU_subblock.vhd and
ALU_top.vhd.

dc_shell-t> read_vhdl ALU_subblock.vhd
dc_shell-t> read_vhdl ALU_top.vhd

Two read_vhdl commands read a design
consisting of two files: ALU_subblock.vhd and
ALU_top.vhd.
Chapter 1: Introduction to HDL Compiler for VHDL
Reading VHDL Designs 1-5
Chapter 1: Introduction to HDL Compiler for VHDL
Reading VHDL Designs 1-5

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Reading, Analyzing, and Elaborating Designs
To automatically read a file with dependencies, analyze the files, and elaborate the design
starting at the specified top-level design, enter the following command at the tool prompt:

dc_shell> read_file -autoread file_or_dir_list -top design_name

You must specify the file_or_dir_list argument, which lists the files to be analyzed. The
-autoread option locates the source files by expanding each file or directory in the
file_or_dir_list list. You must specify the -top design_name argument, which
identifies the top design.

You can exclude a file by specifying the -exclude argument or the
hdlin_autoread_exclude_extensions variable. For more information about the
hdlin_autoread_exclude_extensions variable, see “Supported Variables” on page 1-7.

If a directory is used as an argument, the -autoread option collects the files from the
directory, and, if you specify the -recursive option, it also collects the files from its
subdirectories. The option then infers which files are RTL source files based on the file
extension. If you specify the -format option, only files with the specified extensions for that
format are collected. The default file extensions for VHDL are .vhd and .vhdl and the default
extension for Verilog is .v.

Reading and Analyzing Designs Without Elaboration
To automatically read a file with dependencies and analyze the files without elaborating the
design, enter the following command at the tool prompt:

dc_shell> analyze -autoread file_or_dir_list -top design_name

You must specify the file_or_dir_list argument, which lists the files to be analyzed. The
-autoread option locates the source files by expanding each file or directory in the
file_or_dir_list list. The -top option is not required. If you specify -top, HDL Compiler
analyzes only the RTL source files that the top design depends on. If you do not specify
-top, HDL Compiler analyzes all the RTL source files that the -autoread option finds.

You can exclude a file by specifying the -exclude argument or the
hdlin_autoread_exclude_extensions variable. For more information about the
hdlin_autoread_exclude_extensions variable, see “Supported Variables” on page 1-7.

If a directory is used as an argument, the -autoread option collects the files from the
directory, and, if you specify the -recursive option, it also collects the files from its
subdirectories. The option then infers which files are RTL source files based on the file
extension. If you specify the -format option, only files with the specified extensions for that
format are collected. The default file extensions for VHDL are .vhd and .vhdl and the default
extension for Verilog is .v.
Chapter 1: Introduction to HDL Compiler for VHDL
Reading VHDL Designs 1-6

HDL Compiler for VHDL User Guide Version D-2010.03
File Dependency Support
A dependency occurs when a file, for example file A, requires or uses language constructs
that were defined in another file, for example file B. When you use the -autoread option,
HDL Compiler automatically analyzes and, when you use the read_file command,
elaborates the files with the following dependencies in the correct order:

• Analyze dependency

If file B defines entity E in VHDL and file A defines the architecture of entity E, file A
depends on file B. Therefore, file A must be analyzed after file B. This is known as an
analyze dependency. Entity and architecture definitions are exclusive language
constructions of VHDL. They do not exist in Verilog.

• Link dependency

If module X creates instances of module Y in Verilog, there is no need to analyze them in
a specific order. However, both must have been analyzed before elaborating and linking
the design. Otherwise, the missing module is considered a black box. This is known as a
link dependency. This is an exclusive language construction of Verilog. It does not exist
in VHDL.

• Include dependency

If a file X defines a macro that is used in file Y in Verilog, then file X and file Y must be
analyzed in the same unit of compilation and in that order, meaning that they must be
included with the same analyze command. The effect is the same as having included file
X in file Y. This is known as an include dependency. This is an exclusive language
construction of Verilog. It does not exist in VHDL.

HDL Compiler detects Verilog macro usage and definition and reorders files to ensure
that they are analyzed in the correct order. However, this is not always possible, for
example when a macro is defined several times in different files.

Supported Variables
 The following variables are available for the -autoread option for Verilog:

• hdlin_autoread_exclude_extensions

Defines which files to exclude from the analyze process, based on the file extension.

• hdlin_autoread_verilog_extensions

Defines which files to infer as Verilog files, based on the file extension. The default file
extension for Verilog is .v.

• hdlin_autoread_vhdl_extensions

Defines which files to infer as VHDL files, based on the file extension. The default file
extensions for VHDL are .vhd and .vhdl.
Chapter 1: Introduction to HDL Compiler for VHDL
Reading VHDL Designs 1-7
Chapter 1: Introduction to HDL Compiler for VHDL
Reading VHDL Designs 1-7

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Examples
In the following example, the current directory is the source directory. HDL Compiler reads
the source files, analyzes them, and elaborates the design starting at the specified top-level
design:

dc_shell> read_file {.} -autoread -recursive -top E1

The following example specifies extensions for VHDL files that are different than the default
(.vhd and .vhdl) and sets the -source list and the exclude list. Lastly, it runs read_file
-autoread, specifying the top-level design. HDL Compiler includes only files with VHDL
extensions.

dc_shell> set hdlin_autoread_vhdl_extensions {.vhdx .vhdlang}
dc_shell> set my_sources {entities/src archs/src}
dc_shell> set my_excludes {entities/src/no_hdl_* archs/src/docs/}
dc_shell> read_file $my_sources -recursive -exclude $my_excludes -autoread \

-f vhdl -top TOP

Note that excluding directories explicitly is useful if files inside those directories have the
same extensions as the source files but you do not want HDL Compiler to use them.

Automatic Detection of RTL Language From File Extensions
You can specify a file format with the read_file command by using the -format option. If
you do not specify a format, read_file infers the format based on the file extension. If the
file extension in unknown, the format is assumed to be .ddc. The file extensions in Table 1-3
are supported for automatic inference:

The supported extensions are not case sensitive. All formats except .ddc can be
compressed in gzip (.gz) format.

If you specify a file format that is not supported, Design Compiler generates an error
message. For example, if you specify read_file test.vh, Design Compiler issues the
following DDC-2 error message:

Error: Unable to open file 'test.vh' for reading. (DDC-2)

Table 1-3 Supported File Extensions for Automatic Inference

Format File extensions

ddc .ddc

db .db, .sldb, .sdb, .db.gz, .sldb.gz, .sdb.gz

VHDL .vhd, .vhdl, . vhd.gz, .vhdl.gz
Chapter 1: Introduction to HDL Compiler for VHDL
Reading VHDL Designs 1-8

HDL Compiler for VHDL User Guide Version D-2010.03
Elaboration Reports

You can control the type and the amount of information that is included in elaboration reports
by setting the hdlin_reporting_level variable to basic, comprehensive, verbose, or
none. Table 1-4 shows what is included in the report based on each setting. In the table, true
indicates that the information will be included in the report, false indicates that it will not be
included in the report, and verbose indicates that the report will include detailed information.
If you do not specify a setting, hdlin_reporting_level is set to basic by default.

In addition to the basic settings, you can also specify the add (+) or subtract (-) options to
customize a report. For example, if you want a report to include floating net-to-ground
connections, synthetic cells, inferred state variables, and verbose information for inferred
sequential elements, but you do not want to include MUX_OPs or inferred three-state
elements, you can set the hdlin_reporting_level variable to the following setting:

set hdlin_reporting_level verbose-mux_op-tri_state

As another example, if you set the hdlin_reporting_level variable to the following
setting,

Table 1-4 Basic hdlin_reporting_level Variable Settings

Information included in report none basic comprehensive verbose

floating_net_to_ground

Reports the floating net to ground
connections.

false false true true

fsm

Prints a report of inferred state variables.

false false true true

inferred_modules

Prints a report of inferred sequential
elements.

false true true verbose

mux_op

Prints a report of MUX_OPs.

false true true true

syn_cell

Prints a report of synthetic cells.

false false true true

tri_state

Prints a report of inferred three-state
elements.

false true true true
Chapter 1: Introduction to HDL Compiler for VHDL
Elaboration Reports 1-9
Chapter 1: Introduction to HDL Compiler for VHDL
Elaboration Reports 1-9

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
set hdlin_reporting_level basic+floating_net_to_ground+syn_cell+fsm

HDL Compiler issues a report that is equivalent to set hdlin_reporting_level
comprehensive, meaning that the elaboration report will include comprehensive
information for all the information listed in the first column in Table 1-4.

Reporting Elaboration Errors

HDL Compiler elaborates designs in a top-down hierarchical order. The elaboration failure
of a top-level module prohibits the elaboration of all associated submodules. The
hdlin_elab_errors_deep variable allows the elaboration of submodules even if the
top-level module elaboration fails, enabling HDL Compiler to report more elaboration, link,
and VER-37 errors and warnings in a hierarchical design during the first elaboration run.

To understand how the hdlin_elab_errors_deep variable works, consider the four-level
hierarchical design in Figure 1-1 on page 1-10. This design has elaboration (ELAB) errors
as noted in the figure.

Figure 1-1 Hierarchical Design

TOP

B C

E

A
ELAB-368
ELAB-298

D
ELAB-298

F

G

Level 1

Level 2

Level 3

Level 4
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-10

HDL Compiler for VHDL User Guide Version D-2010.03
Under default conditions, when you elaborate the design, HDL Compiler reports only the
errors in the first level (ELAB-368 and ELAB-298 in module A). To find the second-level error
(ELAB-298 in submodule D), you need to fix the first-level errors and elaborate again.

When you use the hdlin_elab_errors_deep variable, you only need to elaborate once to
find the errors in module A and submodule D.

The next section describes the hdlin_elab_errors_deep variable and provides
methodology, examples, and a list of frequently asked questions (FAQ).

Methodology
Use the following methodology to enable HDL Compiler to report elaboration, link, and
VER-37 errors across the hierarchy during a single elaboration run.

1. Identify and fix all syntax errors in the design.

2. Set hdlin_elab_errors_deep to true.

When you set the hdlin_elab_errors_deep variable to true, HDL Compiler reports the
following:

 “Presto compilation run in rtl debug mode.”

Important:
HDL Compiler does not create designs when you set hdlin_elab_errors_deep to
true. The tool reports warnings if you try to use commands that require a design. For
example, if you run list_design, the tool reports the following:

“Warning: No designs to list. (UID-275)”

3. Elaborate your design using the elaborate command.

4. Fix any elaboration, link, and VER-37 errors. Review the warnings and fix errors as
needed.

5. Set hdlin_elab_errors_deep to false.

6. Elaborate your error-free design.

7. Proceed with your normal synthesis flow.

The next section provides examples showing HDL Compiler reporting all errors across the
hierarchy, reducing the need for multiple elaboration runs.
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-11
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-11

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example
This section uses a design to show the HDL Compiler hierarchical error reporting capability,
which is available through the hdlin_elab_errors_deep variable. Figure 1-2 on page 1-12
shows the block diagram for design Top; Example 1-5 on page 1-12 shows the RTL code.
The design errors are noted in the figure.

Figure 1-2 Hierarchical Design

Example 1-5 VHDL RTL for Design Top
-- entity top
entity top is
port (clk, a, b : in bit;
 c, o: out bit);
end entity top;

architecture A1 of top is
component sub1 is
port (a, b : in bit;
 o : out bit);
end component sub1;
component sub2 is
port (a, b : in bit;
 o : out bit);
end component sub2;
begin
 sub1_inst: sub1 port map (a, b, c);

Top

Sub 2Sub 1
ELAB-368
ELAB-306

Foo
ELAB-368

Bar
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-12

HDL Compiler for VHDL User Guide Version D-2010.03
 sub2_inst: sub2 port map (a, b, o);
end A1;

-- entity sub1
library IEEE;
use IEEE.std_logic_1164.all;
entity sub1 is
port (a, b : in bit;
 o : out bit);
end entity sub1;
architecture A1 of sub1 is
component foo is
port (a, b : in bit;
 o : out bit);
end component foo;
 signal r : bit_vector(1 downto 0);
 signal temp, sig, sig1 : std_logic;
 constant icon : integer := 5;
begin

 temp <= TO_STDULOGIC(a or b);
 temp <= ’1’; -- ELAB-368 error
 temp <= sig and ’Z’; -- ELAB-306 error

 foo_inst: foo port map (a, b, o);
end A1;

-- entity foo
library IEEE;
use IEEE.std_logic_1164.all;
entity foo is
port (a, b : in bit;
 o : out bit);
end entity foo;
architecture A1 of foo is
component bar is
port (a, b : in bit;
 o : out bit);
end component bar;
signal temp : bit;
begin
 temp <= a and b;
 temp <= ’1’; -- ELAB-368 error
 bar_inst: bar port map(a, b, o);
end A1;

-- entity bar
entity bar is
port (a, b : in bit;
 o : out bit);
end entity bar;
architecture A1 of bar is
begin
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-13
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-13

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 o <= not b;
end A1;

-- entity sub2
entity sub2 is
port (a, b : in bit;
 o : out bit);
end entity sub2;
architecture A1 of sub2 is
begin
 o <= a or b;
end A1;

When you elaborate the Top design with hdlin_elab_errors_deep set to false, the
default behavior, HDL Compiler reports the first-level errors in sub1 (ELAB-368 and
ELAB-306) but does not report the ELAB-368 error in submodule foo. Example 1-6 shows
the session log.

Example 1-6 Session Log
analyze -f vhdl test.vhd
Running PRESTO HDLC
Compiling Entity Declaration TOP
Compiling Architecture A1 of TOP
Compiling Entity Declaration SUB1
Compiling Architecture A1 of SUB1
Compiling Entity Declaration FOO
Compiling Architecture A1 of FOO
Compiling Entity Declaration BAR
Compiling Architecture A1 of BAR
Compiling Entity Declaration SUB2
Compiling Architecture A1 of SUB2
Presto compilation completed successfully.
Loading db file ’/.../lsi_10k.db’
1
elaborate top
Loading db file ’/.../gtech.db’
Loading db file ’/.../standard.sldb’
 Loading link library ’lsi_10k’
 Loading link library ’gtech’
Running PRESTO HDLC
Presto compilation completed successfully.
Elaborated 1 design.
Current design is now ’top’.
Information: Building the design ’sub1’. (HDL-193)
Error: ./test.vhd:39: Net ’temp’, or a directly connected net, is driven
by
more than one source, and at least one source is a constant net.
(ELAB-368)
Error: ./test.vhd:40: Illegal use of tristate value (HDL-140).
(ELAB-306)
*** Presto compilation terminated with 2 errors. ***
Information: Building the design ’sub2’. (HDL-193)
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-14

HDL Compiler for VHDL User Guide Version D-2010.03
Presto compilation completed successfully.
Warning: Unable to resolve reference ’sub1’ in ’top’. (LINK-5)
1
current_design
Current design is ’top’.
{top}
list_design
sub2 top (*)
1

When you elaborate the Top design with hdlin_elab_errors_deep set to true, HDL
Compiler reports errors across the hierarchy, as shown in Example 1-7.

Important:
HDL Compiler does not create designs when hdlin_elab_errors_deep is set to true.
If you run list_design, HDL Compiler reports the following:

“Warning: No designs to list. (UID-275)”

Example 1-7 Example With Errors
set hdlin_elab_errors_deep TRUE
TRUE
analyze -f vhdl test.vhd
Running PRESTO HDLC
Compiling Entity Declaration TOP
Compiling Architecture A1 of TOP
Compiling Entity Declaration SUB1
Compiling Architecture A1 of SUB1
Compiling Entity Declaration FOO
Compiling Architecture A1 of FOO
Compiling Entity Declaration BAR
Compiling Architecture A1 of BAR
Compiling Entity Declaration SUB2
Compiling Architecture A1 of SUB2
Presto compilation completed successfully.
Loading db file ’/.../lsi_10k.db’
1
elaborate top
Loading db file ’/.../gtech.db’
Loading db file ’/.../standard.sldb’
 Loading link library ’lsi_10k’
 Loading link library ’gtech’
Running PRESTO HDLC
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
Elaborated 1 design.
Current design is now ’top’.
Information: Building the design ’sub1’. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Error: ./test.vhd:39: Net ’temp’, or a directly connected net, is driven
by
more than one source, and at least one source is a constant net.
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-15
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-15

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
(ELAB-368)
Error: ./test.vhd:40: Illegal use of tristate value (HDL-140).
(ELAB-306)
*** Presto compilation terminated with 2 errors. ***
*** Presto compilation run with backup flow. ***
Information: Building the design ’sub2’. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
Information: Building the design ’foo’. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Error: ./test.vhd:60: Net ’temp’, or a directly connected net, is driven
by
more than one source, and at least one source is a constant net.
(ELAB-368)
*** Presto compilation terminated with 1 errors. ***
*** Presto compilation run with backup flow. ***
Information: Building the design ’bar’. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
1
current_design
Error: Current design is not defined. (UID-4)
list_design
Warning: No designs to list. (UID-275)
0

The hdlin_elab_errors_deep variable is designed to save you time in finding design
elaboration and linking errors. For VHDL design Top, under default conditions, only the
top-level errors are identified:

• ELAB-368 and ELAB-306 in sub1

To find the ELAB-368 error in submodule foo, you need to fix all the errors in sub1 and
elaborate again. However, if you set hdlin_elab_errors_deep to true, all errors across
the hierarchy are identified in one elaboration run. HDL Compiler reports the following:

• ELAB-368 and ELAB-306 in sub1

• ELAB-368 in submodule foo

hdlin_elab_errors_deep FAQs

1. Why should I use the hdlin_elab_errors_deep variable?

This variable enables HDL Compiler to report elaboration, linking, and VER-37 errors and
warnings across hierarchical designs in a single elaboration run.
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-16

HDL Compiler for VHDL User Guide Version D-2010.03
2. Why isn’t the hdlin_elab_errors_deep variable set to true by default?

If the variable were true by default, no designs could be saved. To prevent designs with
errors from being propagated, HDL Compiler does not save designs when
hdlin_elab_errors_deep is set to true.

3. Why can’t HDL Compiler save only the designs that don’t have errors when
hdlin_elab_errors_deep is set to true?

When hdlin_elab_errors_deep is set to true, HDL Compiler elaborates lower-level
designs even if the top-level design has errors. Occasionally, errors in the top level cause
lower-level errors that are not reported; the lower-level appears to be error free but isn’t.

4. What types of errors does hdlin_elab_errors_deep report?

ELAB errors and warnings, LINK errors and warnings, and the VER-37 internal error.

5. How does HDL Compiler handle parameterized designs that do not have parameters
specified?

HDL Compiler reports these as errors during analyze.

6. Why do I have to fix my syntax errors before elaborating?

After doing analyze, HDL Compiler creates an intermediate design that the elaborate
command uses to elaborate the design. This intermediate file is created only after all
syntax errors are fixed. If you do not fix all the syntax errors, there is no intermediate file
to elaborate.

7. I want to use the read_file command. What happens if I set
hdlin_elab_errors_deep to true and use read_file?

The read_file command is not supported for use with hdlin_elab_errors_deep
because read_file does not include the functionality of the link command. The
elaborate command includes the functionality of the link command. The read_file
command does not allow command-line parameter specification; the elaborate
command allows this.

8. How much longer does elaboration take when I set hdlin_elab_errors_deep to true?

There is a very small increase in elaboration time.

9. Does capacity drop when I set hdlin_elab_errors_deep to true? Is there a
recommended number of errors I can tell HDL Compiler to stop at? If I have lots of errors,
will it hang?

No noticeable difference in performance has been noted.

10. Can I compile when hdlin_elab_errors_deep is true?

No design is created when hdlin_elab_errors_deep is true. Even if the design
appears to be error free, no design will be created. You cannot compile because there is
no design to compile.
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-17
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-17

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
11. When hdlin_elab_errors_deep is true, will all errors be valid?

In most cases, all reported errors are valid.

12. The hdlin_elab_errors_deep command seems like a very helpful feature. Why didn’t
you do it earlier?

Designs are getting bigger and to accommodate these larger designs, more hierarchy is
being created. Thus the need for hdlin_elab_errors_deep developed over time.

13. Can I use the -clock_gate option with the elaborate command when
hdlin_elab_errors_deep is set to true?

No. You cannot create clock gating with the
elaborate -clock_gating command. The tool will error out.

14. Can I get incorrect logic when using hdlin_elab_errors_deep?

No, because a design is not created.

15. Is hdlin_elab_errors_deep a lint tool?

No, HDL Compiler does not include a lint tool. The Design Compiler tool provides the
check_design command, which provides the lint function.

16. What happens if I set hdlin_elab_errors_deep to true and analyze a design with
syntax errors?

The syntax errors are reported (same as default behavior).

17. What happens when I have multiple instances of erroneous designs when
hdlin_elab_errors_deep is set to true?

There is no behavior change. HDL Compiler reports ELAB errors when elaborating the
design (module declaration), not the instantiation. The error messages do not get
multiplied by the number of instances. This is the same as the default behavior.

18. Does HDL Compiler report all syntax errors when I use the analyze command? Are all
syntax errors reported at once, or do I need to do multiple analyze commands?

One analyze command reports all the syntax errors.

19. What happens if I read in some designs and later set the hdlin_elab_errors_deep
variable to true?

Previously read-in designs will still be in memory, but it is better to remove the designs
before setting hdlin_elab_errors_deep to true.
Chapter 1: Introduction to HDL Compiler for VHDL
Reporting Elaboration Errors 1-18

HDL Compiler for VHDL User Guide Version D-2010.03
Parameterized Models (Generics)

HDL Compiler fully supports generic declarations. Generics enable you to assign unique
parameter values to each model instance when you elaborate your design.

The model in Example 1-8 uses a generic declaration to determine the bit-width of a register
input; the default width is declared as 2.

Example 1-8 Generic Register Model
LIBRARY IEEE, SYNOPSYS;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_MISC.ALL;
USE SYNOPSYS.ATTRIBUTES.ALL;

entity DFF is
 generic(N : INTEGER := 2); --flip flop is N bits wide
 port(input : in STD_LOGIC_VECTOR (N - 1 downto 0);
 clock : in STD_LOGIC;
 output : out STD_LOGIC_VECTOR (N - 1 downto 0));
end DFF;

architecture RTL of DFF is
begin

entry : process (clock)
 variable tmp: STD_LOGIC_VECTOR (N - 1 downto 0);
begin
 if (clock = '0') then
 tmp := input;
 else
 if (clock = '1') then
 output <= tmp;
 end if;
 end if;
end process;
end RTL;

To analyze the model in Example 1-8 on page 1-19 and store the analyzed results in a
user-specified design library, mylib, use the analyze command with the -library option,
as follows (assume that the file name for the model in Example 1-8 on page 1-19 is
n-register.vhd.):

dc_shell-t> analyze -format vhdl n-register.vhd -library
mylib

If you want an instance of the register model to have a bit-width of 3, use the elaborate
command to specify this as follows:

dc_shell-t> elaborate DFF -parameters N=3
Chapter 1: Introduction to HDL Compiler for VHDL
Parameterized Models (Generics) 1-19
Chapter 1: Introduction to HDL Compiler for VHDL
Parameterized Models (Generics) 1-19

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
The list_designs command shows the design, as follows:

dc_shell-t> list_designs
 Design

* DFF_N3

Using the read command with generics is not recommended, because you can build only
the default value of the generic. If you do not specify a default generic value, HDL Compiler
reports the following:

Warning: filename:line: Generic N does not have default
value. (ELAB-943).

In addition, you need to either set the variable hdlin_auto_save_templates to true or
insert the --synopsys template directive in the entity declaration, as follows:

entity DFF is
 generic(N : INTEGER := 2); --flip flop is N bits wide
 port(input : in STD_LOGIC_VECTOR (N - 1 downto 0);
 clock : in STD_LOGIC;
 output : out STD_LOGIC_VECTOR (N - 1 downto 0));
 -- synopsys template
end DFF;

The variables described in Table 1-5 control the naming of designs based on generic
models. To list their current values, enter the following:

dc_shell-t> printvar template_*

Table 1-5 Template Naming Variables

 Variable Description

template_naming_style Controls how templates (VHDL generics) are named. The default
value is %s_%p, where %s is the name of the source design and
%p is the parameter list. By default, the design name and the
parameter list are separated by an underscore (_). The naming
style for the parameter list is the value of the
template_separator_style variable.

template_separator_style Provides a separator character for multiple parameters in a
template name. The default value is an underscore (_).
Chapter 1: Introduction to HDL Compiler for VHDL
Parameterized Models (Generics) 1-20

HDL Compiler for VHDL User Guide Version D-2010.03
Configuration Support

To enable configuration support, set hdlin_enable_configurations to true. The default
is false.

Configurations bind entity design units to architecture design units. To specify a
configuration, you must use the analyze command. For example, if file.vhdl contains the
configuration my_configuration, read the design as follows:

 analyze -f vhdl file.vhdl
 elaborate my_configuration

Although VHDL allows different entities to have different architecture definitions of the same
name, for example,

arch RTL1 of entity1 is
....
arch RTL1 of entity2 is
...

the same does not hold for configurations, for example,

configuration CNFG1 of entity1 is
....
configuration CNFG1 of entity2 is
...

is not supported. HDL Compiler binds the last read definition of CNFG1 to both entities.
Therefore, configuration names for different entities must be unique. There is no
configuration/entity pair concept. If configurations for different entities have the same name
and they are analyzed sequentially, only the last one remains, as shown:

template_parameter_style Controls how template parameters are named. The default value is
%s%d, where %s is the name of a parameter and %d is the value
of that parameter. By default, the parameter name and value are
not separated. If there are two or more parameters, each
parameter name or value pair is separated by the value of the
template_separator_style variable.

Table 1-5 Template Naming Variables (Continued)

 Variable Description
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-21
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-21

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
entity conf_0_vhdl is
 port(x: in BIT; y: out BIT);
end conf_0_vhdl;

architecture design_0_vhdl of conf_0_vhdl is
 begin
 y <= x;
end design_0_vhdl;

configuration trivial_config of work.conf_0_vhdl is

 for design_0_vhdl
 end for;

end trivial_config;

 Example 1-9 shows the dc_shell log output.

Example 1-9 dc_shell log output
dc_shell> elaborate trivial_config
Running PRESTO HDLC
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/standard.sldb'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/gtech.db'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/lsi_10k.db'
format: vhdl
Presto compilation completed successfully.
Current design is now 'conf_0_vhdl'

This following subsections describe HDL Compiler support for configurations:

• Example 1: Bind Entity to Architecture

• Example 2: Use Architectures From the Same Library

• Example 3: Use Architectures From Different Libraries

• Example 4: Configuration With a Component Inside a Concurrent Block

• Example 5: Generic in a Configuration

• Example 6: Port Map in a Configuration

• Example 7: Nested Configurations

• Example 8: Indirectly Nested Configurations

• Example 9: Embedded Configurations

• Example 10: Multiple Architectures in Embedded Configurations - Last Chosen as
Default

• Example 11: Combinations of Embedded, Nested, and Stand-Alone Configurations
Require Elaborate with a Configuration Identifier
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-22

HDL Compiler for VHDL User Guide Version D-2010.03
Example 1: Bind Entity to Architecture
Example 1-10 uses configurations to bind components C1 and C2 to specific entity/
architecture combinations.

Example 1-10 Binding Entities to Architectures
entity a_bar_b is
 port(a, b: in bit; c: out bit);
end a_bar_b;

architecture struct of a_bar_b is
 begin
 c <= not(a) and b;
end struct;

entity a_b_bar is
 port(a, b: in bit; c: out bit);
end a_b_bar;

architecture struct of a_b_bar is
 begin
 c <= a and not(b);
end struct;

entity conf_1_vhdl is
 port(a, b: in bit; c: out bit);
end conf_1_vhdl;

architecture struct of conf_1_vhdl is
 component a_bar_b port(a, b: in bit; c :out bit); end component;
 component a_b_bar port(a, b: in bit; c :out bit); end component;

 signal a_not_b, not_a_b: bit;
 begin
 C1: a_bar_b port map(a, b, not_a_b);
 C2: a_b_bar port map(a, b, a_not_b);

 c <= not_a_b or a_not_b;

end struct;

configuration config_example1 of conf_1_vhdl is
 for struct -- of conf_1_vhdl
 for C1: a_bar_b
 use entity work.a_bar_b(struct);
 end for;
 for C2: a_b_bar
 use entity work.a_b_bar(struct);
 end for;
 end for;
end config_example1;
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-23
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-23

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 1-11 shows the dc_shell log output.

Example 1-11 dc_shell Log Output
dc_shell> elaborate config_example1
Running PRESTO HDLC
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/standard.sldb'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/gtech.db'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/lsi_10k.db'
Component WORK.STRUCT/CONF_1_VHDL.STRUCT.C1 has been configured to use
the
following implementation:
 Work Library: WORK
 Design Name: A_BAR_B
 Architecture Name: STRUCT
Component WORK.STRUCT/CONF_1_VHDL.STRUCT.C2 has been configured to use
the
following implementation:
 Work Library: WORK
 Design Name: A_B_BAR
 Architecture Name: STRUCT
Presto compilation completed successfully.
Information: Building the design 'A_BAR_B'. (HDL-193)
Running PRESTO HDLC
Presto compilation completed successfully.
Information: Building the design 'A_B_BAR'. (HDL-193)
Running PRESTO HDLC
Presto compilation completed successfully.
Current design is now 'conf_1_vhdl'

Example 2: Use Architectures From the Same Library
Example 1-12 uses configurations to bind two instances of the same component to different
architectures of the same entity. The component C1 is implemented using architecture
struct1, while C2 is implemented using architecture struct2.

Example 1-12 Using Architectures From the Same Library
entity a_bar_b is
 port(a, b: in bit; c: out bit);
end a_bar_b;

architecture struct1 of a_bar_b is
begin
 c <= not(a) and b;
end struct1;

architecture struct2 of a_bar_b is
begin
 c <= a and not(b);
end struct2;
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-24

HDL Compiler for VHDL User Guide Version D-2010.03
entity conf_2_vhdl is
 port(a, b: in bit; c: out bit);
end conf_2_vhdl;

architecture struct of conf_2_vhdl is
 component a_bar_b port(a, b: in bit; c :out bit); end component;

 signal a_not_b, not_a_b: bit;
begin
 C1: a_bar_b port map(a, b, not_a_b);
 C2: a_bar_b port map(a, b, a_not_b);

 c <= not_a_b or a_not_b;

end struct;

configuration config_example2 of conf_2_vhdl is
 for struct -- of conf_2_vhdl
 for C1: a_bar_b
 use entity work.a_bar_b(struct1);
 end for;
 for C2: a_bar_b
 use entity work.a_bar_b(struct2);
 end for;
 end for;
end config_example2;

Example 1-13 shows the dc_shell log output.

Example 1-13 dc_shell Log Output
dc_shell> elaborate config_example2
Running PRESTO HDLC
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/standard.sldb'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/gtech.db'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/lsi_10k.db'
Component WORK.STRUCT/CONF_2_VHDL.STRUCT.C1 has been configured to use
the
following implementation:
 Work Library: WORK
 Design Name: A_BAR_B
 Architecture Name: STRUCT1
Component WORK.STRUCT/CONF_2_VHDL.STRUCT.C2 has been configured to use
the
following implementation:
 Work Library: WORK
 Design Name: A_BAR_B
 Architecture Name: STRUCT2
Presto compilation completed successfully.
Information: Building the design 'A_BAR_B'. (HDL-193)
Running PRESTO HDLC
Presto compilation completed successfully.
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-25
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-25

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Information: Building the design 'A_BAR_B'. (HDL-193)
Running PRESTO HDLC
Presto compilation completed successfully.
Current design is now 'conf_2_vhdl'

Example 3: Use Architectures From Different Libraries
Example 1-14 shows how to use a configuration to do the following:

• Bind architecture struct1 in library lib1 to an instantiation C1 of component a_bar_b

• Bind architecture struct2 in library lib2 to an instantiation C2 of component a_bar_b

Example 1-14 Using Architectures From Different Libraries
--File config3.1.vhdl

 entity a_bar_b is
 port(a, b: in bit; c: out bit);
end a_bar_b;

architecture struct1 of a_bar_b is
begin
 c <= not(a) and b;
end struct1;

File config3.2.vhdl

entity a_bar_b is
 port(a, b: in bit; c: out bit);
end a_bar_b;

architecture struct2 of a_bar_b is
begin
 c <= a and not(b);
end struct2;

--File config3.3.vhdl

library lib1, lib2;
use lib1.all;
use lib2.all;

entity conf_3_vhdl is
 port(a, b: in bit; c: out bit);
end conf_3_vhdl;

architecture struct of conf_3_vhdl is
 component a_bar_b port(a, b: in bit; c :out bit); end component;

 signal a_not_b, not_a_b: bit;
begin
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-26

HDL Compiler for VHDL User Guide Version D-2010.03
 C1: a_bar_b port map(a, b, not_a_b);
 C2: a_bar_b port map(a, b, a_not_b);

 c <= not_a_b or a_not_b;

end struct;

configuration config_example3 of conf_3_vhdl is
 for struct -- of conf_3_vhdl
 for C1: a_bar_b
 use entity lib1.a_bar_b(struct1);
 end for;
 for C2: a_bar_b
 use entity lib2.a_bar_b(struct2);
 end for;
 end for;
end config_example3;

Example 1-15 shows the script file.

Example 1-15 Script File
sh mkdir ./lib1
sh mkdir ./lib2
define_design_lib lib1 -path ./lib1
define_design_lib lib2 -path ./lib2

analyze -f vhdl config3.1.vhdl -lib lib1
analyze -f vhdl config3.2.vhdl -lib lib2
analyze -f vhdl config3.3.vhdl
elaborate config_example3

Example 1-16 shows the dc_shell log output.

Example 1-16 dc_shell Log Output
dc_shell> analyze -f vhdl config3.1.vhdl -lib lib1
Running PRESTO HDLC
Input files:
/TEST_DIRECTORY/config3.1.vhdl
Compiling Entity Declaration A_BAR_B
Compiling Architecture STRUCT1 of A_BAR_B
Presto compilation completed successfully.
1
dc_shell> analyze -f vhdl config3.2.vhdl -lib lib2
Running PRESTO HDLC
Input files:
config3.2.vhdl
Compiling Entity Declaration A_BAR_B
Compiling Architecture STRUCT2 of A_BAR_B
Presto compilation completed successfully.
1
dc_shell> analyze -f vhdl config3.3.vhdl
Running PRESTO HDLC
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-27
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-27

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Input files:
config3.3.vhdl
Compiling Entity Declaration CONF_3_VHDL
Compiling Architecture STRUCT of CONF_3_VHDL
Compiling Configuration CONFIG_EXAMPLE3 of CONF_3_VHDL
Presto compilation completed successfully.
1
dc_shell> elaborate config_example3
Running PRESTO HDLC
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/standard.sldb'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/gtech.db'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/lsi_10k.db'
Component WORK.STRUCT/CONF_3_VHDL.STRUCT.C1 has been configured to use
the
following implementation:
 Work Library: LIB1
 Design Name: A_BAR_B
 Architecture Name: STRUCT1
Component WORK.STRUCT/CONF_3_VHDL.STRUCT.C2 has been configured to use
the
following implementation:
 Work Library: LIB2
 Design Name: A_BAR_B
 Architecture Name: STRUCT2
Presto compilation completed successfully.
Information: Building the design 'A_BAR_B'. (HDL-193)
Running PRESTO HDLC
Presto compilation completed successfully.
Information: Building the design 'A_BAR_B'. (HDL-193)
Running PRESTO HDLC
Presto compilation completed successfully.
Current design is now 'conf_3_vhdl'

Example 4: Configuration With a Component Inside a Concurrent
Block
Example 1-17 shows how to configure a component inside a concurrent block.

Example 1-17 Configuration With a Component Inside a Concurrent Block
entity my_or is
port (a, b: bit; z:out bit);
end entity my_or;

architecture beh of my_or is
begin
 z <= a or b;
end;

entity conf_4_vhdl is
 port(A, B: BIT; Z: out BIT);
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-28

HDL Compiler for VHDL User Guide Version D-2010.03
end;

architecture BEH of conf_4_vhdl is
 component MY_AND
 port(A, B: BIT;
 Z: out BIT);
 end component;

begin

 Z <= A;

 L1: for I in 3 downto 0 generate
 L2: for J in I downto 0 generate
 L3: if J < I generate
 U1: MY_AND port map (A, B, Z);
 end generate;
 end generate;
 end generate;
end;

configuration config_example4 of conf_4_vhdl is
 for beh
 for L1
 for L2
 for L3
 for U1: MY_AND
 use entity work.my_or (beh);
 end for;
 end for;
 end for;
 end for;
 end for;
end config_example4;

Example 1-18 shows the dc_shell log output.

Example 1-18 dc_shell Log Output
dc_shell> elaborate config_example4
Running PRESTO HDLC
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/standard.sldb'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/gtech.db'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/lsi_10k.db'
Component WORK.BEH/CONF_4_VHDL.BEH.L1.L2.L3.U1 has been configured to use
the
following implementation:
 Work Library: WORK
 Design Name: MY_OR
 Architecture Name: BEH
Presto compilation completed successfully.
Information: Building the design 'MY_OR'. (HDL-193)
Running PRESTO HDLC
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-29
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-29

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Presto compilation completed successfully.
Current design is now 'conf_4_vhdl'

Example 5: Generic in a Configuration
Example 1-19 shows a component configuration used with a generic. Notice that the
MY_AND component is configured to use the MY_OR (width = 8) implementation.

Example 1-19 Generic in a Configuration
entity my_or is
generic (width : integer);
port (a, b: in bit_vector (width - 1 downto 0);
 z: out bit_vector (width - 1 downto 0));
end entity my_or;

architecture beh of my_or is
begin
 z <= a or b;
end;

entity conf_5_vhdl is
 port(A, B: in BIT_VECTOR (7 downto 0);
 Z: out BIT_VECTOR (7 downto 0));
end;

architecture BEH of conf_5_vhdl is
 component MY_AND
 generic (width: integer := 5);
 port(A, B: in BIT_VECTOR (width - 1 downto 0);
 Z: out BIT_VECTOR (width - 1 downto 0));
 end component;

begin

 Z <= A;

 L1: for I in 3 downto 0 generate
 U1: MY_AND port map (A, B, Z);
 end generate;
end;

configuration config_example5 of conf_5_vhdl is
 for beh
 for L1
 for U1: MY_AND
 use entity work.my_or (beh) generic map (width => 8);
 end for;
 end for;
 end for;
end config_example5;
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-30

HDL Compiler for VHDL User Guide Version D-2010.03
Example 1-20 shows the dc_shell log output.

Example 1-20 dc_shell Log Output
dc_shell> elaborate config_example5

Running PRESTO HDLC
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/

standard.sldb'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/gtech.db'
Loading db file '/SYNOPSYS_ROOT_DIRECTORY/libraries/syn/lsi_10k.db'
Component WORK.BEH/CONF_5_VHDL.BEH.L1.U1 has been configured to use

the
following implementation:

 Work Library: WORK
 Design Name: MY_OR
 Architecture Name: BEH
Presto compilation completed successfully.
Information: Building the design 'MY_OR' instantiated from design

'conf_5_vhdl' with the parameters "width=8". (HDL-193)
Running PRESTO HDLC
Presto compilation completed successfully.
Current design is now 'conf_5_vhdl'

Example 6: Port Map in a Configuration
Example 1-21 uses a port map in the configuration.

Example 1-21 Port Map in a Configuration
library ieee;
use ieee.std_logic_1164.all;
use std.standard.time;

entity INVERTER is
port (IN1 : in BIT; OUT1 : out BIT);
end INVERTER;

architecture STRUCT_I of INVERTER is
 begin
 out1 <= not in1;
 end STRUCT_I;

entity CONFIG_TEST1_VHDL is end CONFIG_TEST1_VHDL;

architecture STRUCT_T of CONFIG_TEST1_VHDL is
 signal S1, S2 : BIT := '1';

component INV_COMP is

 port (IN_A : in BIT; OUT_A : out BIT);
end component;

 begin
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-31
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-31

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 lh : inv_comp port map (S1, S2);
end STRUCT_T;

configuration CONFIG_INV of CONFIG_TEST1_VHDL is
for STRUCT_T
 for LH : INV_COMP
 use entity WORK.INVERTER (STRUCT_I)
 generic map (PropTime => TimeH)
 port map (IN1 => IN_A, OUT1 => OUT_A);
 end for;
end for;
end CONFIG_INV;

Example 7: Nested Configurations
Example 1-22 uses a configuration inside a configuration.

Example 1-22 Nested Configurations
entity MY_AND is
port (A, B : in bit;
 O : out bit);
end entity MY_AND;

architecture STRUCT1 of MY_AND is
begin
O <= A and B;
end STRUCT1;

entity MY_XOR is
port (A, B : in bit;
 O : out bit);
end entity MY_XOR;

architecture STRUCT1 of MY_XOR is
component MY_AND is
port (A, B : in bit;
 O: out bit);
end component;
begin
 U1: MY_AND port map (A, B, O);
end STRUCT1;

architecture STRUCT2 of MY_XOR is
signal S1, S2, S3, S4 : bit;
begin
S1 <= A and (not B);
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-32

HDL Compiler for VHDL User Guide Version D-2010.03
S2 <= (not A) and B;
O <= S1 or S2;
end STRUCT2;

entity CONFIG_FLOW_VHDL is
port (A1, A2, A3, A4, A5, B1, B2, B3, B4, B5 : in bit;
 O1, O2, O3, O4, O5 : out bit);
end CONFIG_FLOW_VHDL;

architecture A1 of CONFIG_FLOW_VHDL is
component MY_XOR_COM is
port (A, B : in bit;
 O : out bit);
end component;
component MY_AND is
port (A, B : in bit;
 O : out bit);
end component ;
begin
U1 : MY_XOR_COM port map (A1, B1, O1);
U2 : MY_XOR_COM port map (A2, B2, O2);
U3 : MY_XOR_COM port map (A3, B3, O3);
U4 : MY_XOR_COM port map (A4, B4, O4);
V1 : MY_AND port map (A5, B5, O5);
end A1;

configuration TEST_CONFIG of MY_XOR is
 for STRUCT1
 for U1: MY_AND
 use entity WORK.MY_AND;
 end for;
 end for;
end TEST_CONFIG;

configuration MY_CONFIG of CONFIG_FLOW_VHDL is
use WORK.all;
for A1
 for U1, U2 : MY_XOR_COM
 use entity WORK.MY_XOR (STRUCT1);
 end for;
 for U3 : MY_XOR_COM
 use entity WORK.MY_XOR (STRUCT2);
 end for;
 for U4 : MY_XOR_COM
 use configuration WORK.TEST_CONFIG;
 end for;
 for V1 : MY_AND
 -- Use default
 end for;
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-33
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-33

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
end for;
end MY_CONFIG;

Example 8: Indirectly Nested Configurations
A directly nested configuration is a nested configuration that configures its subdesign by
using a “use configuration subconfigure” clause, as shown in Example 1-23; an indirectly
nested configuration is a nested configuration that configures its subdesign by using a “for”
clause, as shown in Example 1-24.

Example 1-23 Directly Nested Configuration
configuration conf_in_conf_configuration of conf_in_conf is
 for test
 for all : conf_test
 use configuration WORK.TEST_CONFIG; -- nested configuration
 end for;
 end for;
end conf_in_conf_configuration;

Example 1-24 Indirectly Nested Configuration
configuration conf_in_conf_configuration of conf_in_conf is
 for test
 for all : conf_test
 use entity work.conf_test(test);
 for test -- here is the nested configuration
 for all : multi_and -- component name multi_and
 use entity lib1.multiand(rtl); -- configured entity name
multiand
 end for;
 end for;
 end for;
 end for;
end conf_in_conf_configuration;

Example 9: Embedded Configurations
The HDL Compiler tool supports embedded configurations. To enable this feature, set
hdlin_enable_configurations to true. Example 1-25 shows an embedded
configuration.

Example 1-25 Embedded Configuration
entity Buf is
 port (Input_pin: in Bit;Output_pin: out Bit);
end Buf;

architecture DataFlow of Buf is begin
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-34

HDL Compiler for VHDL User Guide Version D-2010.03
 Output_pin <= Input_pin;
end DataFlow;

entity Test_Bench is
end Test_Bench;

architecture Structure of Test_Bench is
 component Buf is
 port (Comp_I: in Bit; Comp_O: out Bit);
 end component;
 -- A binding indication; generic and port map aspects
within a
 -- binding indication associate actuals (Comp_I, etc.)
with
 -- formals of the entity declaration (Input_pin, etc.):

 for UUT: Buf
 use entity Work.Buf(DataFlow)
 port map (Input_pin => Comp_I,
Output_pin=> Comp_O);

 signal S1,S2: Bit;
begin
 -- A component instantiation statement; generic and port
map aspects
 -- within a component instantiation statement associate
actuals
 -- (S1, etc.) with the formals of a component (Comp_I,
etc.):
 UUT: Buf
 port map (Comp_I => S1, Comp_O => S2);
 -- A block statement; generic and port map aspects within
the
 -- block header of a block statement associates actuals
(in this
 -- case, 4, with the formals defined in the block header:

 B: block
 begin
 end block;
end Structure;

You can use an embedded configuration in only one for construct in one component, as
shown in Example 1-26. However, as a stand-alone configuration, you can use embedded
configurations in multi-nested configurations and in several for keywords, as shown in
Example 1-27.

Example 1-26 Embedded Configuration
for u1: embed_shift use entity work.embed_shift;
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-35
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-35

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 1-27 Stand-Alone Configuration
configuration embed_top_config of embed_top is

for arch1
for swap_exp1 : work.components.swap_exp

use entity work.swap_exp(comb_seq)
generic map (width1 => width + 1);

for comb_seq
for seq_gen

for all: work.components.sync_async
use entity work.sync_async(sync_logic)
generic map (width2 => width1 + 1);
…

To read designs with embedded configurations, use the standard VHDL reading methods of
read_vhld plus link or analyze and elaborate using the entity name. To help understand
how the tool processes embedded configurations, consider the design in Example 1-28.
When you read the RTL using read_vhdl and link, the tool creates the log shown in
Example 1-29; if you use analyze and elaborate, the tool creates the log shown in
Example 1-30.

Note:
If you have multiple embedded architectures, you need to follow the usage guidelines
described in “Example 10: Multiple Architectures in Embedded Configurations - Last
Chosen as Default” on page 1-38.

Example 1-28 Module config_simple_embed.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity embed_shift is
 generic (width: integer := 4);
 port (
 a : in bit_vector(0 to width - 1);
 b : in integer;
 o : out bit_vector(0 to width - 1)
);
end entity embed_shift;

architecture tmp1 of embed_shift is
 begin
 o <= a sll b;
end architecture tmp1;

entity mix_embed_config is
 port (
 a : in bit_vector(0 to 7);
 b : in integer;
 o : out bit_vector(0 to 7)
);
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-36

HDL Compiler for VHDL User Guide Version D-2010.03
end entity mix_embed_config;
architecture tmp of mix_embed_config is
 component my_shift is
 generic (width: integer := 8);
 port (
 a : in bit_vector(0 to width - 1);
 b : in integer;
 o : out bit_vector(0 to width - 1)
);
 end component my_shift;
 for u1: my_shift use entity work.embed_shift;
-- use an embedded configuration because the component name is different
than the
-- library name
 begin
 u1: my_shift
 port map (a, b, o);
end architecture tmp;

Example 1-29 HDL Compiler Report Log for read_vhdl and link
dc_shell> read_vhdl config.support_embedded.config_2.vhd
Loading db file '.../libraries/syn/lsi_10k.db'
Loading db file '.../libraries/syn/gtech.db'
Loading db file '.../libraries/syn/standard.sldb'
 Loading link library 'lsi_10k'
 Loading link library 'gtech'
Loading vhdl file './config_simple_embed.vhd'
Running PRESTO HDLC
Compiling Entity Declaration EMBED_SHIFT
Compiling Architecture TMP1 of EMBED_SHIFT
Compiling Entity Declaration MIX_EMBED_CONFIG
Compiling Architecture TMP of MIX_EMBED_CONFIG
Component WORK.TMP/MIX_EMBED_CONFIG.TMP.U1 has been configured to use the
following
implementation:
 Work Library: WORK
 Design Name: EMBED_SHIFT
Presto compilation completed successfully.
Current design is now './embed_shift.db:embed_shift'
Loaded 2 designs.
Current design is 'embed_shift'.
embed_shift mix_embed_config
dc_shell> link

 Linking design 'embed_shift'
 Using the following designs and libraries:

 embed_shift ./embed_shift.db
 lsi_10k (library) .../libraries/syn/lsi_10k.db
 mix_embed_config ./mix_embed_config.db

1

Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-37
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-37

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 1-30 HDL Compiler Report Log for Analyze and Elaborate With Entity Name
analyze -f vhdl config_simple_embed.vhd
Running PRESTO HDLC
Compiling Entity Declaration EMBED_SHIFT
Compiling Architecture TMP1 of EMBED_SHIFT
Compiling Entity Declaration MIX_EMBED_CONFIG
Compiling Architecture TMP of MIX_EMBED_CONFIG
Presto compilation completed successfully.
1
elaborate mix_embed_config
Loading db file '.../libraries/syn/gtech.db'
Loading db file '.../libraries/syn/standard.sldb'
 Loading link library 'gtech'
Running PRESTO HDLC
Component WORK.TMP/MIX_EMBED_CONFIG.TMP.U1 has been configured to use the
following
implementation:
 Work Library: WORK
 Design Name: EMBED_SHIFT
Presto compilation completed successfully.
Elaborated 1 design.
Current design is now 'mix_embed_config'.
Information: Building the design 'EMBED_SHIFT' instantiated from design
'mix_embed_config'
with

the parameters "width=8". (HDL-193)
Presto compilation completed successfully.
1

Example 10: Multiple Architectures in Embedded Configurations -
Last Chosen as Default
If you have multiple architectures defined for an entity and you instantiate that entity without
a specific binding to a specific architecture, the tool chooses the last architecture that is read
as the architecture for that entity. Consider Example 1-31 on page 1-39 in which the
MY_AND entity is instantiated by the U2 component. The tool by default will associate the
last architecture read, STRUCT4, with U2 and generate a warning shown in Example 1-32
on page 1-39.

To avoid this warning, you need to tell the tool which architecture to choose by specifying the
binding in the embedded configuration. If you have several nested designs, you can create
a stand-alone configuration to connect the correct working library(s) to the appropriate
components/configurations. In HDL Compiler, you can select a configuration identifier and
use it to elaborate. To ensure your design intent is correctly read, elaborate with the
configuration identifier, as described in the next section.
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-38

HDL Compiler for VHDL User Guide Version D-2010.03
Example 1-31 Default Architecture for U2 Component is STRUCT4
entity MY_AND is
 port (O : out bit);
end entity MY_AND;

architecture STRUCT3 of MY_AND is
begin
 O <= '1';
end STRUCT3;

architecture STRUCT4 of MY_AND is
begin
 O <= '0';
end STRUCT4;

entity E1 is
 port (O : out bit);
end E1;

architecture A1 of E1 is
 component MY_AND is -- same name as a previously found entity
 port(O : out bit);
 end component;

begin
 U2 : MY_AND port map (O);
end A1;

Example 1-32 Tool Warns When Multiple Architectures are Associated With an Entity
dc_shell> read_vhdl test.vhd
Loading db file '.../libraries/syn/gtech.db'
Loading db file '.../libraries/syn/standard.sldb'
 Loading link library 'gtech'
Loading vhdl file '.../test.vhd'
Running PRESTO HDLC
Compiling Entity Declaration MY_AND
Compiling Architecture STRUCT3 of MY_AND
Compiling Architecture STRUCT4 of MY_AND
Compiling Entity Declaration E1
Compiling Architecture A1 of E1
Warning: The entity 'MY_AND' has multiple architectures defined. The
last defined
architecture 'STRUCT4' will be used to build the design by default.
(VHD-6)
Presto compilation completed successfully.
Current design is now './MY_AND.db:MY_AND'
Loaded 2 designs.
Current design is 'MY_AND'.
MY_AND E1
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-39
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-39

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 11: Combinations of Embedded, Nested, and
Stand-Alone Configurations Require Elaborate with a
Configuration Identifier
In order for the tool to correctly read your design when it contains a combination of
embedded, nested, and stand-alone configurations, you must elaborate with the
configuration identifier instead of with the entity name. To help understand this requirement,
consider the design in Example 1-34 through Example 1-38 on page 1-44. In this design, if
you want the tool to select the “swap_seq of swap_exp” architecture, you must elaborate the
design using the configuration identifier, as shown in Example 1-33.

Example 1-33 Correct Way to Read the Design with Embedded, Nested, and Stand-Alone
Configurations - Use the Configuration Identifier

…
analyze -f vhdl config_nested_sync_async.vhd
analyze -f vhdl config_nested_swap_exp.vhd
analyze -f vhdl embed_nested_standalone_top.vhd
elaborate embed_top_config
write -f ddc -h -o t.ddc
…

If you elaborate with the entity name (or use read_vhdl), the tool chooses the last defined
architecture it sees, which is “comb_seq of swap_exp” for this design. The tool does not see
the configuration defined in embed_nest_standalone_top.vhd. When you use the
configuration identifier (embed_top_config) to elaborate, the tool reads both the architecture
and configuration code and will use the embedded and standalone configuration's
declarations for its library and it will choose the correct components.

Example 1-34 Top Module in embed_nest_standalone_top.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity embed_top is
-- generic (width:integer:= 3);
generic (width:integer:= 2);
port (

clk : in std_logic;
rst : in std_logic;
din : in std_logic_vector(0 to width);
d2 : in std_logic_vector(0 to width);

 dout : out std_logic_vector(0 to width)
);

end entity embed_top;
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-40

HDL Compiler for VHDL User Guide Version D-2010.03
architecture arch1 of embed_top is
signal tmp_data1, tmp_data2 : std_logic_vector(0 to width);

for swap_exp2 : work.components.swap_exp use entity
work.swap_exp(swap_seq)
generic map (width1 => 3);

begin
swap_exp1 : component work.components.swap_exp
 port map (clk => clk, rst => rst, din1 => din, din2 => d2, dout

=> tmp_data1);
swap_exp2 : component work.components.swap_exp
 port map (clk => clk, rst => rst, din1 => tmp_data1, din2 => d2,

dout =>
tmp_data2);

swap_exp3 : component work.components.swap_exp
 port map (clk => clk, rst => rst, din1 => tmp_data2, din2 => d2,

dout => dout);
end architecture arch1;

configuration embed_top_config of embed_top is
 for arch1
 for swap_exp1 : work.components.swap_exp

 use entity work.swap_exp(comb_seq) generic map (width1 => width +
1);

 for comb_seq
 for seq_gen
 for all: work.components.sync_async

 use entity work.sync_async(sync_logic) generic map (width2
=> width1
+ 1);

 for sync_logic
for next_level : work.components.and_or
 use entity work.and_or(and_of_logic);

 end for;
 end for;
 end for;

 end for;
 end for;

 end for;

-- for swap_exp2 : is simple so it embeds on architecture

 -- for sawp_exp3 : work.components.sync_async
 -- use entity work.sync_async(comb_seq);

 for swap_exp3 : work.components.swap_exp
 use entity work.swap_exp(comb_seq);

 for comb_seq
 for seq_gen
 for all : work.components.sync_async
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-41
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-41

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 use entity work.sync_async(async_logic);
 end for;
 end for;
 end for;

 end for;
 end for;
end configuration embed_top_config;

Example 1-35 Sub-module in config_nested_swap_exp.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
library work;
use work.components.all;

entity swap_exp is
-- generic (width1 : integer := 4);
generic (width1 : integer := 3);
port (clk : in std_logic;
 rst : in std_logic;
 din1 : in std_logic_vector(0 to width1 - 1);
 din2 : in std_logic_vector(0 to width1 - 1);

 dout : out std_logic_vector(0 to width1 - 1));
end entity swap_exp;

architecture swap_seq of swap_exp is
signal int_data : std_logic_vector (0 to width1 - 1);
begin

swap : process (din1) is
begin
 int_data(2) <= din1(0);
 int_data(1) <= din1(1);
 int_data(0) <= din1(2);
end process swap;

seq : process (clk, rst) is
begin
 if clk'event and clk = '1' then

if (rst ='0') then
 -- dout <= 0;
 dout <= (others => '0');
else
 dout <= int_data;
end if;

 end if;
end process seq;

end architecture swap_seq;

architecture comb_seq of swap_exp is
signal int_data : std_logic_vector (0 to 3);
begin

comb : process (din1, din2) is
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-42

HDL Compiler for VHDL User Guide Version D-2010.03
begin
 int_data(2) <= not(din1(0) or din2(0));
 int_data(1) <= din1(2) xor din2(1);
 int_data(0) <= din1(1) and din2(2);
end process comb;

-- seq_gen: for i in 0 to 3 generate
seq_gen: for i in 0 to 2 generate
begin
 reg : component work.components.sync_async
 port map (clk => clk, rst => rst, d1 => int_data(i), d2 =>

int_data(i),
q => dout(i));

end generate seq_gen;

end architecture comb_seq;

Example 1-36 Sub-Module in config_nested_sync_async.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity sync_async is
generic (width2 : integer := 8);
port (clk : in std_logic;
 rst : in std_logic;
 d1 : in std_logic;
 d2 : in std_logic;

 q : out std_logic);
end entity sync_async;

architecture sync_logic of sync_async is
 signal tmp_data1, tmp_data2 : std_logic_vector(0 to width2-1);
 begin

next_level : component work.components.and_or
 port map (a => d1, b => d2, o => tmp_data1(0));

reg: process (clk, rst) is
begin
 if (clk'event and clk ='1') then

if (rst = '0') then
 q <= '0';
else
 q <= tmp_data1(0);
end if;

 end if;
report ("in SYNC");
end process reg;

end architecture sync_logic;

architecture async_logic of sync_async is
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-43
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-43

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 signal tmp_data1, tmp_data2 : std_logic_vector(0 to width2-1);
 begin

process (clk, rst) is
begin
 if rst = '0' then
 q <= '0';
 elsif clk'event and clk = '1' then
 q <= d1;
 end if;
report ("in ASYNC");
end process;

end architecture async_logic;

Example 1-37 Sub-module in config_nested_and_or.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity and_or is
port (a : in std_logic;
 b : in std_logic;
 o : out std_logic);

end entity and_or;

architecture and_of_logic of and_or is
begin
 o <= a and b;

end architecture and_of_logic;

architecture or_of_logic of and_or is
begin
 o <= a or b;

end architecture or_of_logic;

Example 1-38 Sub-module in config_nested_pkg.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

package components is

 component and_or is
port (a : in std_logic;
 b : in std_logic;
 o : out std_logic);

 end component and_or;

 component sync_async is
port (clk : in std_logic;
 rst : in std_logic;
 d1 : in std_logic;
 d2 : in std_logic;
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-44

HDL Compiler for VHDL User Guide Version D-2010.03
 q : out std_logic);
 end component sync_async;

 component swap_exp is
port (clk : in std_logic;
 rst : in std_logic;
 din1 : in std_logic_vector(0 to 2);
 din2 : in std_logic_vector(0 to 2);
 dout : out std_logic_vector(0 to 2));

 end component swap_exp;

end package components;

Example 1-39 HDL Compiler Log Report
analyze -f vhdl config_nested_and_or.vhd
Running PRESTO HDLC
Compiling Entity Declaration AND_OR
Compiling Architecture AND_OF_LOGIC of AND_OR
Compiling Architecture OR_OF_LOGIC of AND_OR
Warning: The entity 'and_or' has multiple architectures defined. The
last defined
architecture 'or_of_logic' will be used to build the design by default.
(VHD-6)
Presto compilation completed successfully.
1
analyze -f vhdl config_nested_pkg.vhd
Running PRESTO HDLC
Compiling Package Declaration COMPONENTS
Presto compilation completed successfully.
1
analyze -f vhdl config_nested_sync_async.vhd
Running PRESTO HDLC
Compiling Entity Declaration SYNC_ASYNC
Compiling Architecture SYNC_LOGIC of SYNC_ASYNC
Compiling Architecture ASYNC_LOGIC of SYNC_ASYNC
Warning: The entity 'sync_async' has multiple architectures defined. The
last defined
architecture 'async_logic' will be used to build the design by default.
(VHD-6)
Presto compilation completed successfully.
1
analyze -f vhdl config_nested_swap_exp.vhd
Running PRESTO HDLC
Compiling Entity Declaration SWAP_EXP
Compiling Architecture SWAP_SEQ of SWAP_EXP
Compiling Architecture COMB_SEQ of SWAP_EXP
Warning: The entity 'swap_exp' has multiple architectures defined. The
last defined
architecture 'comb_seq' will be used to build the design by default.
(VHD-6)
Presto compilation completed successfully.
1
analyze -f vhdl embed_nest_standalone_top.vhd
Running PRESTO HDLC
Compiling Entity Declaration EMBED_TOP
Compiling Architecture ARCH1 of EMBED_TOP
Compiling Configuration EMBED_TOP_CONFIG of EMBED_TOP
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-45
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-45

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Presto compilation completed successfully.
1
elaborate embed_top_config
Loading db file '.../libraries/syn/gtech.db'
Loading db file '.../libraries/syn/standard.sldb'
 Loading link library 'gtech'
Running PRESTO HDLC
Component WORK.ARCH1/EMBED_TOP.ARCH1.SWAP_EXP1 has been configured to use
the
following
implementation:
 Work Library: WORK
 Design Name: SWAP_EXP
 Architecture Name: COMB_SEQ
Component WORK.ARCH1/EMBED_TOP.ARCH1.SWAP_EXP2 has been configured to use
the
following
implementation:
 Work Library: WORK
 Design Name: SWAP_EXP
 Architecture Name: SWAP_SEQ
Component WORK.ARCH1/EMBED_TOP.ARCH1.SWAP_EXP3 has been configured to use
the
following
implementation:
 Work Library: WORK
 Design Name: SWAP_EXP
 Architecture Name: COMB_SEQ
Presto compilation completed successfully.
Elaborated 1 design.
Current design is now 'embed_top'.
Information: Building the design 'SWAP_EXP' instantiated from design
'embed_top' with
the parameters "width1=3". (HDL-193)
Component WORK.COMB_SEQ/SWAP_EXP.COMB_SEQ.SEQ_GEN.REG has been configured
to use the
following implementation:
 Work Library: WORK
 Design Name: SYNC_ASYNC
 Architecture Name: SYNC_LOGIC
 Configuration Name :
WORK.EMBED_TOP_CONFIG.ARCH1.SWAP_EXP1.COMB_SEQ.SEQ_GEN.REG
Presto compilation completed successfully.
Information: Building the design 'SWAP_EXP' instantiated from design
'embed_top' with
the parameters "width1=3". (HDL-193)

Inferred memory devices in process
in routine swap_exp_width13 line 28 in file

'../vhdl_rtl/config_nested_swap_exp.vhd'.
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| dout_reg | Flip-flop | 3 | Y | N | N | N | N | N | N |
===
Presto compilation completed successfully.
Warning: Design 'swap_exp_width13' was renamed to 'swap_exp_width13_1' to
avoid
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-46

HDL Compiler for VHDL User Guide Version D-2010.03
a conflict with another design that has the same name but different
parameters.
(LINK-17)
Information: Building the design 'SWAP_EXP' instantiated from design
'embed_top' with
the parameters "width1=3". (HDL-193)
Component WORK.COMB_SEQ/SWAP_EXP.COMB_SEQ.SEQ_GEN.REG has been configured
to use the
following implementation:
 Work Library: WORK
 Design Name: SYNC_ASYNC
 Architecture Name: ASYNC_LOGIC
 Configuration Name :
Presto compilation completed successfully.
Warning: Design 'swap_exp_width13' was renamed to 'swap_exp_width13_2' to
avoid a
conflict
with another design that has the same name but
different parameters. (LINK-17)
Information: Building the design 'SYNC_ASYNC' instantiated from design
'swap_exp_width13'
with the parameters "width2=4". (HDL-193)
Component WORK.SYNC_LOGIC/SYNC_ASYNC.SYNC_LOGIC.NEXT_LEVEL has been
configured to use
the following implementation:
 Work Library: WORK
 Design Name: AND_OR
 Architecture Name: AND_OF_LOGIC
 Configuration Name :
'report' output: in SYNC

Inferred memory devices in process
in routine sync_async_width24 line 22 in file

'../vhdl_rtl/config_nested_sync_async.vhd'.
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| q_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===
Presto compilation completed successfully.
Information: Building the design 'SYNC_ASYNC' instantiated from design
'swap_exp_width13_2' with the parameters "width2=8". (HDL-193)
'report' output: in ASYNC

Inferred memory devices in process
in routine sync_async_width28 line 38 in file

'../vhdl_rtl/config_nested_sync_async.vhd'.
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
===
Presto compilation completed successfully.
Information: Building the design 'AND_OR'. (HDL-193)
Presto compilation completed successfully.
1

Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-47
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-47

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Tool Behavior When Using Elaborate With the Entity Name
As noted in the previous sections, under certain conditions you need to elaborate using the
configuration identifier. This section describes the problems that arise when you elaborate
with the entity name.

Example 1-40 and Example 1-41 show incorrect ways to read the design described in
Example 1-34 on page 1-40 through Example 1-38 on page 1-44. Recall that for this design
you want the tool to select the “swap_seq of swap_exp” architecture. An explanation of the
tool behavior follows the examples.

Example 1-40 Incorrect Way to Read When Using the Stand-Alone Configuration: Elaborate
with the Entity Name

…
analyze -f vhdl config_nested_sync_async.vhd
analyze -f vhdl config_nested_swap_exp.vhd
analyze -f vhdl embed_nested_standalone_top.vhd
elaborate embed_top
write -f ddc -h -o t.ddc
...

Example 1-41 Incorrect Way to Read When Using Stand-Alone Configurations: read_vhdl and
link

…
read_vhdl config_nested_sync_async.vhd
read_vhdl config_nested_swap_exp.vhd
read_vhdl embed_nested_standalone_top.vhd
link
write -f ddc -h -o t.ddc
...

If you use the reading style in Example 1-40 or Example 1-41, HDL Compiler only checks
the contents from the architecture_body in the embed_nest_standalone_top.vhd file. It will
ignore the rest of the RTL code in that module. In this case, it will ignore the entire
configuration portion of the top module even if you declare the configuration in the RTL.

The design architecture contains three components: swap_exp1, swap_exp2, and
swap_exp3.

For the first component, swap_exp1, HDL Compiler ignores whatever you code in the
configuration declarative section. Instead, the tool picks up the last defined architecture
(comb_seq of swap_exp) by default and will not select the “swap_seq of swap_exp”
architecture in the config_nested_swap_exp.vhd module, which is declared in the
architecture statements part in the top module. Next, since the architecture “comb_seq of
swap_exp” has its own library declared, the tool will search for the last defined architecture
in the module of config_nested_sync_async.vhd, which is the architecture “async_logic of
sync_async”, and will use it by default instead of other architecture(s) in that module.
Chapter 1: Introduction to HDL Compiler for VHDL
Configuration Support 1-48

HDL Compiler for VHDL User Guide Version D-2010.03
For the second component, swap_exp2, the tool will be referred by the embedded
configuration and will link to the architecture “swap_seq of swap_exp” in the
config_nested_swap_exp.vhd module, where it clearly states “use entity
work.swap_exp(swap_seq)” as the embedded configuration in the architecture body.

For the last component, swap_exp3, the tool chooses the last defined architecture
“async_logic of sync_async” by default, for the same reasons as described earlier for
swap_exp1.

Design Libraries

This section contains the following subsections:

• Predefined Design Libraries

• Creating User-Defined Design Libraries

• User-Defined Design Library Example

• Using Design Units From Design Libraries

• Design Library Reports

Predefined Design Libraries
The following packages are analyzed for you:

• std_logic_1164

• std_logic_arith

• numeric_std

• std_logic_misc

• Standard package

• Synopsys ATTRIBUTES package

These packages are contained in the logical libraries IEEE, WORK, DEFAULT, and
SYNOPSYS, which are defined during installation. Their default physical locations are
defined in the .synopsys_vss.setup file, located in the Synopsys synthesis root
installation subdirectory. These packages are described in Appendix B, “Predefined
Libraries.”
Chapter 1: Introduction to HDL Compiler for VHDL
Design Libraries 1-49
Chapter 1: Introduction to HDL Compiler for VHDL
Design Libraries 1-49

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Packages defined in these libraries can be used by your VHDL source code and are found
automatically. Example 1-42 shows how to use the predefined std_logic_1164 package
from the IEEE library.

Example 1-42 Using Predefined Libraries
 library IEEE;
use IEEE.std_logic_1164.all;
 .
 .
 .

Unlike all the other predefined packages, the Standard package does not require a use
clause to enable your design to use the functions with the package.

Note:
These predefined packages are compatible only with the software version they are
released with; they are not compatible with other releases of the software. A version
number is stored in the intermediate format file, and the file can be read in only by the
version in which it was created.

Creating User-Defined Design Libraries
When designs or packages are analyzed, the analyzed results are stored in the WORK
library by default. If you want to store the results in a user-defined library, for example,
MYLIB, with a physical location of MYLIB_LOC, you can use one of two methods. In the first
method, you use the define_design_lib variable; in the second, you use the
.synopsys_vss.setup file. These two methods are described in Table 1-6.

Table 1-6 Methods for Creating User-Defined Libraries

 Method Description

define_design_lib Use the define_design_lib command to specify the library name and
location; for example,
define_design_lib MYLIB -path ./MYLIB_LOC

Then analyze your design to MYLIB, for example,
analyze -library MYLIB -format vhdl {{....design}}

.synopsys_vss.setup Add the user-specified library name and mapping to your
.synopsys_vss.setup file; for example,

 MYLIB: ./ MYLIB_LOC

Then, analyze your design to MYLIB, for example,

 analyze -library MYLIB -format vhdl <{....design}>
Chapter 1: Introduction to HDL Compiler for VHDL
Design Libraries 1-50

HDL Compiler for VHDL User Guide Version D-2010.03
User-Defined Design Library Example
The following steps show you how to store the analysis of two packages in a user-defined
library named COMMON-TLS and use these packages in the ALU design.

1. Define a logical library called “COMMON-TLS” and map it to a physical location, using
the define_design_lib command; for example,

dc_shell-t> define_design_lib COMMON-TLS -path ./COMMON

2. Store the analysis of the package files in the user-defined library COMMON-TLS (the
packages reside in the files types.vhd and functions.vhd):

dc_shell> analyze -format vhdl -library COMMON-TLS
{types.vhd functions.vhd}

The -library option indicates the library name where the analyzed file should be stored.

Declare the COMMON-TLS library in the ALU code:

library COMMON-TLS;
use COMMON-TLS.types.all;
use COMMON-TLS.functions.all;

Example 1-43 shows the complete flow using the analyze and elaborate commands.
(Design ALU is defined in the files ALU_entity.vhd and ALU_arch.vhd.)

Example 1-43 Flow for User-Defined Library Using analyze
dc_shell> define_design_lib WORK -path ./work
dc_shell> define_design_lib COMMON-TLS -path ./COMMON
dc_shell> analyze -format vhdl -library COMMON-TLS {types.vhd
functions.vhd}
dc_shell> analyze -format vhdl {ALU_entity.vhd ALU_arch.vhd}
dc_shell> elaborate ALU_top

Example 1-44 shows the flow using the read command.

Example 1-44 Flow for User-Defined Library Using read
dc_shell> define_design_lib WORK -path ./work
dc_shell> define_design_lib COMMON-TLS -path ./COMMON
dc_shell-t> read_vhdl -library COMMON-TLS {types.vhd functions.vhd}
dc_shell-t> read_vhdl {ALU_subblock.vhd ALU_top.vhd}
dc_shell-t> current_design ALU_top
dc_shell-t> link
Chapter 1: Introduction to HDL Compiler for VHDL
Design Libraries 1-51
Chapter 1: Introduction to HDL Compiler for VHDL
Design Libraries 1-51

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Using Design Units From Design Libraries
Design libraries contain analyzed designs and packages used when you

• Elaborate designs—During elaboration, subdesigns are first linked by a search through
designs in memory. HDL Compiler then searches the current design library for
preexisting analyzed files of the subdesigns. The .db files in the search path are also
automatically linked during elaboration of a top-level design. See the elaborate man
page for syntax details.

• Instantiate design units—Design units from design libraries can be instantiated into other
designs. For example, you can instantiate the design adder by using

U1: entity adder (adder_arch)
 generic map (N => 16)
 port map (A,B,Z);

• Call a package in a library with the use clause—The use clause allows an entity to use a
package from a library. Reference these packages in the declaration section of the entity
description.

Design Library Reports
To get a complete list of design libraries, use the report_design_lib -libraries
command. To view the contents of an individual library, such as the IEEE library, use
report_design_lib IEEE. To find out a library’s physical location, use the
get_design_lib_path command.

See the man pages for command details.

Package Support

HDL Compiler supports the following packages:

• IEEE Package—std_logic_1164

• IEEE Package—std_logic_arith

• IEEE Package—numeric_std (IEEE Standard 1076.3)

• IEEE Package—std_logic_misc

• Standard Package

• Synopsys Package—ATTRIBUTES
Chapter 1: Introduction to HDL Compiler for VHDL
Package Support 1-52

HDL Compiler for VHDL User Guide Version D-2010.03
See Appendix B for package details.

Array Naming Variables

The three variables described in Table 1-7 affect how array elements are named. To list their
current values, run the following command:

dc_shell-t> printvar bus*style

Table 1-7 Array Naming Variables

 Variable Description

bus_naming_style Describes how to name the bits in port, cell, and net arrays. When
a multiple-bit array is read in, it is converted to a set of individual
single-bit names. The value is a string containing the characters
%s and %d, which are replaced by the array name and the bit
(element) index, respectively. The default is "%s[%d]".

Example:

Array X_ARRAY is indexed from 0 to 7 and has bus_naming_style
= "%s.%d"; HDL Compiler names the third element of X_ARRAY
as X_ARRAY.2.

Note: It is recommended that you do not change this default value
if the netlist will be written out in Verilog format.

bus_dimension_separator_styl
e

Specifies the style to use in separating multidimensional array
indexes. The default is "][".

bus_minus_style Describes how to represent negative indexes in port, cell, and net
names. The value is a string containing the characters %d
(replaced by the absolute value of a negative index). The default is
"–%d".

Example:

If bus_minus_style = "M%d", the index value of negative 3 is
represented as "M3".
Chapter 1: Introduction to HDL Compiler for VHDL
Array Naming Variables 1-53
Chapter 1: Introduction to HDL Compiler for VHDL
Array Naming Variables 1-53

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Licenses

The reading and writing license requirements are listed in Table 1-8.

Table 1-8 License Requirements

Reader
Reading
License required?

Writing
License required?

RTL Netlist RTL Netlist

HDL Compiler Yes Yes Not applicable Not applicable

VHDL netlist reader Not
applicable

No No No
Chapter 1: Introduction to HDL Compiler for VHDL
Licenses 1-54

2
General Coding Considerations 2

This chapter discusses coding issues specific to HDL Compiler, in the following sections:

• Creating Relative Placement in Hardware Description Languages

• Declarative Region in generate Statements

• Design Units

• Data Types and Data Objects

• Operands

• Modeling Considerations

• Simulation/Synthesis Mismatch Issues
2-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Creating Relative Placement in Hardware Description Languages

Relative placement allows you to create structures in which you specify the relative column
and row positions of instances. During placement and optimization, these structures are
preserved and the cells in each structure are placed as a single entity.

Relative placement is usually applied to datapaths and registers, but you can apply it to any
cells in your design, controlling the exact relative placement topology of gate-level logic
groups and defining the circuit layout. You can use relative placement to explore QoR
benefits, such as shorter wire lengths, reduced congestion, better timing, skew control,
fewer vias, better yield, and lower dynamic and leakage power.

Relative placement information embedded within the Verilog or VHDL description allows you
to specify and modify relative placement information with greater flexibility, no longer
requiring you to update the location of many of the cells in the design. Using embedded
compiler directives, these relative placement constraints can be placed in an RTL design, a
GTECH netlist, or a mapped netlist. The following sections describe how to specify relative
placement data for RTL designs, GTECH netlists, or mapped netlists.

Relative placement constraints can also be added inside the shell using Tcl commands. For
more information, see the “Using Design Compiler Topographical Technology” chapter in the
Design Compiler User Guide.

Directives for Specifying Relative Placement
You can specify relative placement information by using the following compiler directives:

• rp_group and rp_endgroup

See “Creating Groups Using rp_group and rp_endgroup” on page 2-3.

• rp_place

See “Specifying Subgroups, Keepouts, and Instances Using rp_place” on page 2-4.

• rp_fill

See “Placing Cells Automatically Using rp_fill” on page 2-5.

• rp_array_dir

See “Specifying Placement for Array Elements Using rp_array_dir” on page 2-6.

• rp_align

See “Specifying Cell Alignment Using rp_align” on page 2-7.
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-2

HDL Compiler for VHDL User Guide Version D-2010.03
• rp_orient

See “Specifying Cell Orientation Using rp_orient” on page 2-8.

• rp_ignore and rp_endignore

See “Ignoring Relative Placement Using rp_ignore and rp_endignore” on page 2-8.

Creating Groups Using rp_group and rp_endgroup
The rp_group and rp_endgroup directives allow you to specify a relative placement group.
The directives are available for RTL designs and netlist designs. For netlist designs, you
must place all cell instances between the directives to declare them as members of the
specified group. For RTL designs, you must specify the directives inside a process block for
leaf-level relative placement groups. Higher-level hierarchical groups must be specified
within an architecture.

The VHDL syntax for RTL and netlist designs is as follows:

-- synopsys rp_group (group_name {num_cols num_rows})
-- synopsys rp_endgroup ({group_name})

You can determine the size of the group by using the num_cols and num_rows optional
arguments to specify the number of rows and columns. If you specify the size, HDL Compiler
checks the location of the instances that are placed in the group to verify that none of the
instances are placed beyond the group’s size limits; HDL Compiler generates an error
message if a size violation occurs.

The following example shows that the inferred registers belong to a relative placement group
named rp_grp1:

…
process (CLK)
 -- synopsys (rp_group1)
 …
 -- synopsys rp_endgroup (rp_group1)
 begin
 if (CLK'event and CLK = '1') then
…

Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-3
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Specifying Subgroups, Keepouts, and Instances Using rp_place
The rp_place directive allows you to specify a subgroup at a specific hierarchy, a keepout
region, or an instance to be placed in the current relative placement group. When you use
the rp_place directive to specify a subgroup at a specific hierarchy, you must instantiate the
subgroup’s instances outside of any group declarations in the module. This directive is
available for RTL designs and netlist designs.

The VHDL syntax for RTL and netlist designs is as follows:

-- synopsys rp_place (hier group_name col row)
-- synopsys rp_place (keep keepout_name col row width height)
-- synopsys rp_place ({leaf} [inst_name] col row)

You can use the col and row optional arguments to specify absolute row or column
locations in the group’s grid or locations that are relative to the current pointer value. To
represent locations relative to the current pointer, enclose the column and row values in
angle brackets (<>), as shown in the following example:

-- synopsys rp_place (my_group_1 0 0)
-- synopsys rp_place (my_group_2 0 <1>)

The example shows that group my_group_1 is placed at location (0,0) in the grid, and group
my_group_2 is placed at the next row position (0,1).

If you do not specify the col and row arguments, objects are automatically placed in the
current group’s grid, filling empty slots. Each time a new instance is declared that is not
explicitly placed, it is inserted into the grid at the location indicated by the current value of
the pointer. After the instance is placed, the pointer is updated and the process is ready to
be repeated.

The following example shows a relative placement group named my_rpg that includes four
subgroups that are placed at the following locations, respectively: (0,0), (0,1), (1, *), and (1,
) The wildcard character () indicates that HDL Compiler can choose any value.

-- synopsys rp_group(my_rpg)
-- synopsys rp_place(hier rp_group1 0 0)
-- synopsys rp_place(hier rp_group2 0 1)
-- synopsys rp_place(hier rp_group3 1 *)
-- synopsys rp_place(hier rp_group4 1 *)
-- synopsys rp_endgroup(my_rpg)
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-4

HDL Compiler for VHDL User Guide Version D-2010.03
Placing Cells Automatically Using rp_fill
The rp_fill directive automatically places the cells at the location specified by a pointer.
Each time a new instance is declared that is not explicitly placed, it is inserted into the grid
at the location indicated by the current value of the pointer. After the instance is placed, the
pointer is updated incrementally and the process is ready to be repeated. This directive is
available for RTL designs and netlist designs.

The rp_fill arguments define how the pointer is updated. The col and row parameters
specify the initial coordinates of the pointer. These parameters can represent absolute row
or column locations in the group’s grid or locations that are relative to the current pointer
value. To represent locations relative to the current pointer, enclose the column and row
values in angle brackets (<>). For example, assume the current pointer location is (3,4). In
this case, specifying rp_fill <1> 0 initializes the pointer to (4,0) and that is where the next
instance is placed. Absolute coordinates must be non-negative integers; relative
coordinates can be any integer.

The pattern option determines how the pointer is incrementally updated. The option’s pat
argument is a string that provides the following symbols to control placement:

The control string is read one character at a time, and the pointer is adjusted based on the
symbols that are defined. If HDL Compiler reads an X in the string, the instance placement
is complete and the next instance can be placed in the grid. When HDL Compiler reaches
the end of the control string, the pattern interpretation continues at the first character. For
example, the pattern UX inserts cells one after another up a column; this is the default
pattern. The pattern UUX creates a column of instances with an empty grid cell between
each pair of instances, and the pattern RX fills a row with instances.

In addition to the symbols that control placement, the pattern option’s pat argument can
include integers and square brackets. Square brackets around the argument, [pat], create
a control string. When an integer is included in the string, it applies to the next control

Symbol Definition

U up

D down

R right

L left

X stop
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-5
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-5

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
symbol or control string in the current pattern. For example, the pattern 4UX fills every fourth
cell of a column. The pattern 31[UX]31DRX fills a 32-cell high column and then advances
one column to the right and resumes filling from the bottom of the column.

If no pattern is specified, the incremental operation uses the last pattern string that is
defined, beginning with the first character in the string. If the row and column parameters are
not specified, HDL Compiler does not initialize the fill pointer, and it keeps the value it had
before the rp_fill directive was read. If HDL Compiler encounters a group declaration, the
fill pointer is initialized to (0,0) and the pattern is set to UX.

The VHDL syntax for RTL and netlist designs is as follows:

--synopsys rp_fill ({col row} {pattern pat})

The following example shows the R and U patterns:

--synopsys rp_group (group_x)
--synopsys rp_fill (0 0 UX)
Cell C1 (...);
Cell C2 (...);
Cell C3 (...);
--synopsys rp_fill (0 <1> RX) // move up a row to the far left, fill to R
Cell c4 (...);
Cell C5 (...);
Cell C6 (...);
--synopsys rp_endgroup (group_x)

Specifying Placement for Array Elements Using rp_array_dir
Note:

This directive is available for RTL designs only.

The rp_array_dir directive specifies whether the elements of an array are placed upward,
from the least significant bit to the most significant bit, or downward, from the most
significant bit to the least significant bit.

The VHDL syntax for RTL designs is as follows:

--synopsys rp_array_dir (up|down)
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-6

HDL Compiler for VHDL User Guide Version D-2010.03
The following VHDL example shows array elements that are placed downward, from the
most significant bit to the least significant bit:

…
process (CLK)
 -- synopsys (rp_group1)
 -- synopsys rp_fill (0 0 UX)
 -- synopsys rp_array_dir(down)
 -- synopsys rp_endgroup (rp_group1)
 begin
 if (CLK'event and CLK = '1') then
 …

Specifying Cell Alignment Using rp_align
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_align directive explicitly specifies the alignment of the placed instance within the
grid cell when the instance is smaller than the cell. If you specify the optional inst instance
name argument, the alignment applies only to that instance; however, if you do not specify
an instance, the new alignment applies to all subsequent instantiations within the group until
HDL Compiler encounters another rp_align directive. If the instance straddles cells, the
alignment takes place within the straddled region. The alignment value is sw (southwest) by
default. The instance is snapped to legal row and routing grid coordinates.

Use the following syntax for netlist designs:

-- synopsys rp_align (n|s|e|w|nw|sw|ne|se|pin=name { inst })

You must specify either the alignment value or the pin name. In the following example, the
rp_align directive causes the cell C1 to be placed at the north-east corner.

-- synopsys rp_group (group_x)
-- synopsys rp_fill (0 0 RX)
-- synopsys rp_align (NE C1)
Cell C1 ...
Cell C2 ...
Cell C3 ...
-- synopsys rp_fill (0 <1> RX)
Cell C4 ...
Cell C5 ...
Cell C6 ...
-- synopsys rp_endgroup (group_x)
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-7
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-7

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Specifying Cell Orientation Using rp_orient
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_orient directive allows you to control the orientation of library cells placed in the
current group. When you specify a list of possible orientations, HDL Compiler chooses the
first legal orientation for the cell.

Use the following syntax for netlist designs:

-- synopsys rp_orient ({N|W|S|E|FN|FW|FS|FE}* { inst })
-- synopsys rp_orient ({N|W|S|E|FN|FW|FS|FE}* group_name [inst])

If you specify an instance value using the inst argument shown in the first (nonhierarchical)
syntax format, the orientation applies only to that instance. If you do not specify an instance,
the orientation applies to all subsequent instances until another orientation is specified.

If you specify the group_name inst syntax format, HDL Compiler applies the orientation to
the specified instance, and the rest of the group remains unchanged. The default orientation
for a group declaration is N, which stands for noflip nomirror, where flip refers to a rotation at
the horizontal axis and mirror is a rotation at the vertical axis. The F value stands for flip;
therefore, FN, FW, FS, and FE refer to flip north, flip west, flip south, and flip east, respectively.

In the following example, cell C1 is oriented westwards:

-- synopsys rp_group (group_x)
...
-- synopsys rp_orient (W C1)
Cell C0 ...
Cell C1 ...
...

Ignoring Relative Placement Using rp_ignore and rp_endignore
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_ignore and rp_endignore directives allow you to ignore specified lines in the input
file. Any lines between the two directives are omitted from relative placement. The include
and define directives, variable substitution, and cell mapping are not ignored.

The rp_ignore and rp_endignore directives allow you to include the instantiation of
submodules in a relative placement group close to the rp_place hier group(inst)
location to place relative placement array.
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-8

HDL Compiler for VHDL User Guide Version D-2010.03
Use the following syntax for netlist designs:

-- synopsys rp_ignore
-- synopsys rp_endignore

In the following example, the directive -- synopsys rp_fill (0 <1> RX) is ignored.
However, the other directives are included:

-- synopsys rp_group (group_x)
-- synopsys rp_fill (0 0 RX)
Cell C1 ...
Cell C2 ...
Cell C3 ...
 -- synopsys rp_ignore
-- synopsys rp_fill (0 <1> RX)
 -- synopsys rp_endignore
Cell C4 ...
Cell C5 ...
Cell C6 ...
-- synopsys rp_endgroup (group_x)

Relative Placement Example
Example 2-1 shows VHDL relative placement directives applied to several register banks in
a design.

Example 2-1 Relative Placement Using rp_group, rp_place, rp_fill, and rp_array_dir Directives
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity dff_sync_reset is
 port (DATA, CLK, RESET : in std_logic;
 DATA1, DATA2, DATA3, DATA4 : in std_logic_vector (7 downto 0);
 Q1, Q2, Q3, Q4 : out std_logic_vector (7 downto 0));
 attribute sync_set_reset of RESET : signal is "true";
end dff_sync_reset;

architecture rtl of dff_sync_reset is
-- synopsys rp_group(my_rpg)
-- synopsys rp_place(hier rp_group1 * 0)
-- synopsys rp_place(hier rp_group2 * 0)
-- synopsys rp_endgroup(my_rpg)

begin
 process (CLK)
 -- synopsys rp_group (rp_group1)
 -- synopsys rp_fill (0 0 UX)
 -- synopsys rp_array_dir(down)
 -- synopsys rp_endgroup (rp_group1)
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-9
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-9

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 begin
 if (CLK'event and CLK = '1') then
 if (RESET = '0') then
 Q1 <= (others => '0');
 else
 Q1 <= DATA1;
 end if;
 end if;
 end process;

 process (CLK)
 -- synopsys rp_group (rp_group2)
 -- synopsys rp_fill (0 0 UX)
 -- synopsys rp_array_dir(down)
 -- synopsys rp_endgroup(rp_group2)

 begin
 if (CLK'event and CLK = '1') then
 if (RESET = '0') then
 Q2 <= (others => '0');
 else
 Q2 <= DATA2;
 end if;
 end if;
 end process;

 process (CLK) begin
 if (CLK'event and CLK = '1') then
 if (RESET = '0') then
 Q3 <= (others => '0');
 else
 Q3 <= DATA3;
 end if;
 end if;
 end process;

 process (CLK) begin
 if (CLK'event and CLK = '1') then
 if (RESET = '0') then
 Q4 <= (others => '0');
 else
 Q4 <= DATA4;
 end if;
 end if;
 end process;

end rtl;
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-10

HDL Compiler for VHDL User Guide Version D-2010.03
Figure 2-1 shows the layout of Example 2-1 after running Design Compiler topographical.
Note that the register banks that were controlled with relative placement directives have a
well structured layout, while the register banks that were not controlled with relative
placement directives are not placed together.

Figure 2-1 Layout With Relative Placement Specified on Several Register Banks
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-11
Chapter 2: General Coding Considerations
Creating Relative Placement in Hardware Description Languages 2-11

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Declarative Region in generate Statements

HDL Compiler allows declarations within generate statements. Each iteration of the
generate statement declares new copies of the objects in the declarative region. Consider
Example 2-2, which describes four AND gates and four inverters. This code produces four
independent signals named “S”. HDL Compiler distinguishes these signals using a
user-specified naming convention. This convention is determined by the
hdlin_generate_naming_style and hdlin_generate_separator_style variables. See
the man pages for information about these variables.

Example 2-2 Signal Declarations Within generate Statements
G: for I in 0 to 3 generate
 signal S: BIT;
 begin
 S <= A(I) and B(I);
 Z(I) <= not S;
 end generate;

Signals are not the only objects that can be declared within a generate statement. Consider
Example 2-3.

Example 2-3 Function Declarations Within Generate Statements
G: for I in 0 to 3 generate
 function F (X: in BIT_VECTOR(0 to I)) return BIT is
 variable R: BIT := '1';
 begin
 for J in X'RANGE loop
 R := R and x(j);
 end loop;
 return R;
 end function;
 begin
 z(i) <= f (a(0 to i));
 end generate;

Here, four versions of the function “f” are created, one for each iteration of the generate loop.
Because the function is declared in the generate declarative region, it can only be called
from the generate body.
Chapter 2: General Coding Considerations
Declarative Region in generate Statements 2-12

HDL Compiler for VHDL User Guide Version D-2010.03
Design Units

Design unit requirements specific to HDL Compiler are discussed in the following
subsections:

• Direct Instantiation of Components

• Default Component Port Assignments

• Component Name Restrictions

• Component Sources

• Component Port Consistency

• Instantiating Technology-Independent Components

• Component Architecture

• Package Names

• Procedures and Functions as Design Components

Direct Instantiation of Components
HDL Compiler allows components to be directly instantiated in the design without a
component declaration. This is a VHDL-93 feature that provides a more concise method of
instantiating subdesigns. The following notation is used:

instance_label: entity entity_name (architecture_name)
 generic map (...) port map (...);

HDL Compiler always picks the last architecture analyzed for synthesis.

In the following examples, design1 (Example 2-4) is analyzed into a library called
DESIGN1_LIB and design2 instantiates design1 (Example 2-5 on page 2-14).

Example 2-4 Design 1 RTL
-- design1 is contained in the design1.vhd file
-- ===
entity design1 is
 port (a: in bit;
 z: out bit);
end;

architecture rtl of design1 is
begin
 z <= a;
end;
Chapter 2: General Coding Considerations
Design Units 2-13
Chapter 2: General Coding Considerations
Design Units 2-13

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
HDL Compiler supports the direct instantiation of design1 without a component declaration
as shown in Example 2-5. Notice that design2 now requires fewer lines of code.

Example 2-5 Design 2 Instantiates Design 1
-- design2 is contained in the design2-presto.vhd file
-- ===
library DESIGN1_LIB;
use DESIGN1_LIB.all;

entity design2 is
 port (b: in bit;
 y: out bit);
end;

architecture rtl of design2 is
begin
 u1: entity DESIGN1_LIB.design1(rtl)
 port map (a => b, z => y);
end;

Default Component Port Assignments
HDL Compiler supports the use of default assignments for component port declarations as
shown in Example 2-6. This simplifies coding by allowing ports with default assignments to
be omitted during component instantiation.

Note:
Default assignments for entity port declarations will be parsed but ignored by HDL
Compiler.

Example 2-6 Default Port Assignments
component AND3 is
 port (A: in bit;
 B: in bit;
 C: in bit:= '1'; -- default assignment to component port
 Z : out bit
);
end component;
.
.
.
 U1 : AND3
 port map (A => A1,
 B => B1,
 Z => Z1
);
Chapter 2: General Coding Considerations
Design Units 2-14

HDL Compiler for VHDL User Guide Version D-2010.03
Component Name Restrictions
You cannot name components with keywords, identifiers from any Synopsys or IEEE
package, or the GTECH_ prefix.

Component Sources
A declared component can come from

• The same VHDL source file

• A different VHDL source file

• Another format, such as EDIF, state table, or programmable logic arrays (PLAs)

• A component from a technology library

• A Verilog source file

A component that is not in one of the current VHDL source files must already have been
compiled by Design Compiler and must reside either in memory or in a .db file in the search
path. HDL Compiler searches for previously compiled components by name, in the following
order:

1. In the current design in memory.

2. In the directories and files identified in the Design Compiler link path (link_library
variable). These files can include previously compiled designs or technology libraries
(libraries of technology-specific components).

3. In the directories and files identified in the Design Compiler search path (search_path
variable).

Component Port Consistency
HDL Compiler checks for consistent port mapping between all loaded designs. For RTL
designs that are not VHDL or Verilog, the port names are taken from the original design
description, as follows:

• For PLAs or state tables, the port names are the input and output names.

• For components in a technology library, the port names are the input and output pin
names.

• For EDIF designs, the port names are the EDIF port names.

The bit-widths of each port must match.
Chapter 2: General Coding Considerations
Design Units 2-15
Chapter 2: General Coding Considerations
Design Units 2-15

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
• For VHDL components, HDL Compiler verifies matching.

• For components from other sources, Design Compiler checks matching when linking the
component to the VHDL description.

Instantiating Technology-Independent Components
You can directly instantiate GTECH components in your RTL. The GTECH library contains
the following technology-independent logical components:

• AND, OR, and NOR gates (2, 3, 4, 5, and 8)

• 1-bit adders and half adders

• 2-of-3 majority

• Multiplexers

• Flip-flops and latches

• Multiple-level logic gates, such as AND-NOT, AND-OR, and AND-OR-INVERT

Caution:
Instantiating GTECH components should be used with caution because it restricts the
optimization of logic and might result in a degradation of design quality of results (QoR).

When you instantiate GTECH components, you can set the map_only attribute to prevent
Design Compiler from ungrouping the GTECH component and selecting a similar cell from
the target library. When this attribute is applied, Design Compiler does not optimize the
gates; instead, the gates are only mapped to the target technology. The set_map_only
command in Example 2-7 sets the map_only attribute on each cell returned by the find
command (all cells in the design RIPPLE_CARRY that reference a GTECH_ADD_ABC
cell). If you use your own library with attributes already set in that library, you do not have to
set the map_only attribute.
Chapter 2: General Coding Considerations
Design Units 2-16

HDL Compiler for VHDL User Guide Version D-2010.03
Example 2-7 GTECH Component Instantiation
library GTECH;
library ieee;
use IEEE.STD_LOGIC_1164.all;
use gtech.gtech_components.all;

entity RIPPLE_CARRY is
 generic(N: NATURAL);

 port(a, b : in std_logic_vector(n-1 downto 0);
 carry_in: in std_logic;
 sum : out std_logic_vector(n-1 downto 0);
 carry_out: out std_logic);
end RIPPLE_CARRY;

architecture TECH_INDEP of RIPPLE_CARRY is

 signal CARRY: std_logic_vector(N downto 0);

-- synopsys dc_tcl_script_begin
-- set_map_only [get_cells * -filter "ref_name==GTECH_ADD_ABC"]
-- synopsys dc_tcl_script_end
begin
 CARRY(0) <= CARRY_IN;

 GEN: for I in 0 to N-1 generate
 U1: GTECH_ADD_ABC port map(
 A => A(I),
 B => B(I),
 C => CARRY(I),
 S => SUM(I),
 COUT => CARRY(I+1)
);

 end generate GEN;

 CARRY_OUT <= CARRY(N);
end TECH_INDEP;

To link this design in Design Compiler, you must have the GTECH.db library in your
link_library variable.

Component Architecture
HDL Compiler uses the following two rules to select which entity and architecture to
associate with a component instantiation:

1. Each component declaration must have an entity—a VHDL entity, a design entity from
another source or format, or a library component—with the same name. This entity is
used for each component instantiation associated with the component declaration.
Chapter 2: General Coding Considerations
Design Units 2-17
Chapter 2: General Coding Considerations
Design Units 2-17

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
2. If a VHDL entity has more than one architecture, HDL Compiler uses the last architecture
analyzed. You can override this selection by using configurations. See “Configuration
Support” on page 1-21.

Package Names
Synopsys supports different packages with the same name if they exist in different libraries.

Procedures and Functions as Design Components
Procedures and functions are represented by gates and cannot exist as entities
(components) unless you use the directive map_to_entity, which causes HDL Compiler to
implement a function or a procedure as a component instantiation. Procedures and
functions that use map_to_entity are represented as components in designs where they
are called.

When you add a map_to_entity directive to a subprogram definition, HDL Compiler
assumes the existence of an entity with the identified name and the same interface.

HDL Compiler and Design Compiler do not check this assumption until they link the parent
design. The matching entity must have the same input and output port names. If the
subprogram is a function, you must also provide a return_port_name directive where the
matching entity has an output port of the same name.

These two directives are called component implication directives:

-- synopsys map_to_entity entity_name
-- synopsys return_port_name port_name

Insert these directives after the function or procedure definition, as in the following example:

 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)
 return TWO_BIT is

-- synopsys map_to_entity MUX_ENTITY
-- synopsys return_port_name Z
...

When HDL Compiler encounters the map_to_entity directive, it parses but ignores the
contents of the subprogram definition.

The matching entity (entity_name) does not need to be written in VHDL. It can be in any
format Design Compiler supports.
Chapter 2: General Coding Considerations
Design Units 2-18

HDL Compiler for VHDL User Guide Version D-2010.03
Note:
Be aware that the behavioral description of the subprogram is not checked against the
functionality of the entity overloading it. Pre-synthesis and post-synthesis simulation
results might not match if differences in functionality exist between the VHDL subprogram
and the overloaded entity.

Example 2-8 shows a function that uses component implication directives. Figure 2-2 on
page 2-20 illustrates the corresponding design.

Example 2-8 Using Component Implication Directives on a Function
package MY_PACK is

subtype TWO_BIT is BIT_VECTOR(1 to 2);
function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return

TWO_BIT;
end;

package body MY_PACK is

function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return
TWO_BIT is

-- synopsys map_to_entity MUX_ENTITY
-- synopsys return_port_name Z

-- contents of this function are ignored but should match the
-- functionality of the entity MUX_ENTITY, so pre- and post
-- simulation will match
begin

if(C = ’1’) then
return(A);

else
return(B);

end if;
end;

end;

use WORK.MY_PACK.ALL;
entity TEST is

port(A: in TWO_BIT; C: in BIT; TEST_OUT: out TWO_BIT);
end;

architecture ARCH of TEST is
begin

cal_func: process (a, c)
begin

TEST_OUT <= MUX_FUNC(not A, A, C);
 -- Component implication call

end process;
end;

use WORK.MY_PACK.ALL;

-- the following entity ’overloads’ the function MUX_FUNC above

entity MUX_ENTITY is
port(A, B: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
Chapter 2: General Coding Considerations
Design Units 2-19
Chapter 2: General Coding Considerations
Design Units 2-19

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
end;

architecture ARCH of MUX_ENTITY is
begin

process (a, b)
begin

case C is
when ’1’ => Z <= A;
when ’0’ => Z <= B;

end case;
end process;

end;

Figure 2-2 Schematic Design With Component Implication Directives

Example 2-9 shows the same design as Example 2-8, but without the creation of an entity
for the function. The component implication directives have been removed. Figure 2-3 on
page 2-21 illustrates the corresponding design.

Example 2-9 Using Gates to Implement a Function
package MY_PACK is

subtype TWO_BIT is BIT_VECTOR(1 to 2);
function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)

return TWO_BIT;
end;

package body MY_PACK is

function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)
return TWO_BIT is

begin
if(C = ’1’) then

return(A);
else

return(B);
end if;

end;
end;
Chapter 2: General Coding Considerations
Design Units 2-20

HDL Compiler for VHDL User Guide Version D-2010.03
use WORK.MY_PACK.ALL;
entity TEST is

port(A: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of TEST is
begin

process (a, c)
begin

Z <= MUX_FUNC(not A, A, C);
end process;

end;

Figure 2-3 Schematic Design Without Component Implication Directives

Data Types and Data Objects

Data type and data object requirements specific to HDL Compiler are discussed in the
following subsections:

• Globally Static Expressions in Port Maps

• Aliases

• Deferred Constants

• Aggregates in Constant Record Declarations

• Enumerated Types in the for and for-generate Constructs

• Groups

• Integer Data Types

• Overloading an Enumeration Literal
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-21
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-21

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
• Enumeration Encoding

• Constant Floating-Point Support

• math_real Package Support

Globally Static Expressions in Port Maps
HDL Compiler supports globally static expressions in port maps as shown in Example 2-10.

Example 2-10 HDL Compiler Supports Globally Static Expressions in Port Maps
component C is
 port (A, B: in BIT; Z: out BIT);
 end component;
 . . .
 signal X, Y: BIT
 . . .
 U1: C port map (X, '1', Y);

Aliases
HDL Compiler supports all alias types except labels, loop parameters, and generate
parameters—these cannot be aliased per the VHDL language reference manual.
Example 2-11 shows alias code that is supported in HDL Compiler.

Example 2-11 HDL Compiler Supported Alias
entity e is
 port (a, c: in bit;
 z: out bit);
end;

architecture a of e is
 alias b is c;
begin
 z <= a and b;
end;

HDL Compiler alias support includes the following:

• Aliases without an explicit subtype indication as shown in Example 2-12 on page 2-23

• Aliases with an explicit subtype indication

• Aliases to non-objects (that is, types) as shown in Example 2-13 on page 2-23

• Aliases to subprograms as shown in Example 2-14 on page 2-23
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-22

HDL Compiler for VHDL User Guide Version D-2010.03
Example 2-12 Alias Without an Explicit Subtype Indication
signal S: BIT_VECTOR (0 to 7);
 . . .
 alias A is S;

In this case, A will have the same type as S.

Example 2-13 Alias to a Type
alias SLV is STD_LOGIC_VECTOR;

Example 2-14 shows an alias to a subprogram. This is a convenient way to refer to a specific
subprogram in a package.

Example 2-14 Aliases to Subprograms
library IEEE;
 use IEEE.STD_LOGIC_1164.all;
 use IEEE.STD_LOGIC_SIGNED.all;
 use IEEE.STD_LOGIC_UNSIGNED.all;
 . . .
 alias SLV_TO_SINT is
 STD_LOGIC_SIGNED.CONV_INTEGER;
 alias SLV_TO_UINT is
 STD_LOGIC_UNSIGNED.CONV_INTEGER;

Subprogram aliases can also contain a signature. This makes it possible to distinguish
among the various interpretations of an overloaded subprogram name as shown in
Example 2-15.

Example 2-15 Subprogram Alias Containing a Signature
library IEEE;
 use IEEE.STD_LOGIC_1164.all;
 . . .
 alias BV_TO_SLV is To_StdLogicVector
 [BIT_VECTOR return STD_LOGIC_VECTOR];

 . . .
 x <= BV_TO_SLV ("1101");

Deferred Constants
Constants defined in packages are useful for declaring a set of global design parameters
that can be shared by multiple design entities. Example 2-16 shows how a constant
declared in a global package DEFS is used to define the active edge for the clocks in the
design. The value of “1” means that the flip-flops will be clocked on the rising edge of the
clock.
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-23
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-23

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 2-16 shows a deferred constant declaration in a package.

Example 2-16 Deferred Constants
-- defs_pkg.vhd
-- ============
library ieee;
use ieee.std_logic_1164.all;

package defs is
constant CLOCK_ACTIVE_EDGE: std_logic := '1';
end;

design1.vhd
===========
library ieee, mylib;
use ieee.std_logic_1164.all;
use mylib.defs.all;

...
 process (clk) is
 begin
 if (clk'event and clk = CLOCK_ACTIVE_EDGE) then
 Q <= D;
 end if;
 end process;
...

One of the limitations of normal constant declarations in packages is that if the constant
value in the package is changed, then all the designs making use of that package must be
reanalyzed in order to use the new constant value. In the above example, this means that if
you want to change to a negative clock edge, you need to modify the
CLOCK_ACTIVE_EDGE from “1” to “0” in defs_pkg.vhd and reanalyze all the files that
reference this package.

With deferred constants, the constant is declared in the package without initializing its value.
The initialization of the constant is deferred to the package body declaration. Now if the
constant value is changed in the package body, only the package body needs to be
reanalyzed, followed by a re-elaboration of the top-level design. Example 2-17 shows how a
deferred constant declaration can be used to define the active edge for the clocks in the
design.
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-24

HDL Compiler for VHDL User Guide Version D-2010.03
Example 2-17 Deferred Constant Declaration
defs_pkg.vhd
============
package DEFS is
constant CLOCK_ACTIVE_EDGE: std_logic;
end DEFS;

defs_pkg_body.vhd
=================
package body DEFS is
constant CLOCK_ACTIVE_EDGE: std_logic := '1';
end;

Now if you want to change from a positive-edge-triggered to a negative-edge-triggered
behavior, you only need to modify and reanalyze the package body, in defs_pkg_body.vhd,
and, re-elaborate the top-level design to implement the change. This allows for a more
flexible and manageable design flow.

Aggregates in Constant Record Declarations
HDL Compiler supports the use of aggregates in constant record declarations as shown in
Example 2-18.

Example 2-18 Aggregates in Constant Record Declarations
type rec_type is
 record
 A : bit_vector(1 downto 0);
 B : bit_vector(1 downto 0);
 end record;

constant reset_rec : rec_type := (
 A => (others => '0'),
 B => (others => '0')
);
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-25
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-25

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Enumerated Types in the for and for-generate Constructs
HDL Compiler supports the use of enumerated types as indexes in the for and for-generate
constructs. Example 2-19 uses an enumerated type as an index in a for loop.

Example 2-19 Enumerated Types As Index in for Construct
package Defs is
type color is (RED, GREEN, BLUE);
subtype col_val is bit_vector (7 downto 0);
type pixel is array (color range RED to BLUE) of col_val;
function pix_fn (A1, A2: col_val) return col_val;
end Defs;

package body Defs is
 function pix_fn (A1, A2: col_val) return col_val is
 begin
 return (A1 xor A2);
 end pix_fn;
end Defs;

use work.Defs.all;
entity pix is
 port (A, B: in pixel;
 Z: out pixel
);
end pix;

architecture rtl of pix is
begin
 process (A, B)
 begin
 for I in RED to BLUE loop -- enumerated type used here
 Z(I) <= pix_fn(A(I),B(I));
 end loop;
 end process;
end rtl;
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-26

HDL Compiler for VHDL User Guide Version D-2010.03
Groups
HDL Compiler supports VHDL-93 group declarations as shown in Example 2-20. This
feature allows you to create groups of named entities. One useful application of this feature
is that you can apply attributes to the group as a whole instead of referencing individual
signals.

Example 2-20 Group Declarations
package Defs is
group sig_grp is (signal<>);
end Defs;

library Synopsys;
use Synopsys.attributes.all;
use work.Defs.all;

entity top is
port (A, B: in bit;
 Z: out bit
);
end top;

architecture RTL of top is

group sig3_grp is (signal,signal,signal);

group inputs: sig_grp (A, B);
group all_ports: sig3_grp (A, B, Z);

-- input delay of 1.5 will be applied to A & B signals
attribute ARRIVAL of inputs: group is 1.5;

begin
 Z <= A or B;
end RTL;

Integer Data Types
Multidigit numbers in VHDL can include underscores (_) to make them easier to read.

HDL Compiler encodes an integer value as a bit vector whose length is the minimum
necessary to hold the defined range and encodes integer ranges that include negative
numbers as 2’s-complement bit vectors.
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-27
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-27

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Overloading an Enumeration Literal
You can overload an enumeration literal by including it in the definition of two or more
enumeration types. When you use such an overloaded enumeration literal, HDL Compiler is
usually able to determine the literal’s type. However, under certain circumstances,
determination might be impossible. In such cases, you must qualify the literal by explicitly
stating its type. Example 2-21 shows how you can qualify an overloaded enumeration literal.

Example 2-21 Enumeration Literal Overloading
type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
type PRIMARY_COLOR is (RED, YELLOW, BLUE);
signal A : COLOR;
...
A <= COLOR’(RED);

Enumeration Encoding
Enumeration literals are synthesized into the binary equivalent of their positional value. By
default, the first enumeration literal is assigned the value 0, the next enumeration literal is
assigned the value 1, and so forth.

HDL Compiler automatically encodes enumeration values into bit vectors that are based on
each value’s position. The length of the encoding bit vector is the minimum number of bits
required to encode the number of enumerated literals. For example, an enumeration type
with five values would have a 3-bit encoding vector.

Example 2-22 shows the default encoding of an enumeration type with five values.

Example 2-22 Automatic Enumeration Encoding
type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

The enumeration values are encoded as follows:

RED = "000"
GREEN = "001"
YELLOW = "010"
BLUE = "011"
VIOLET = "100"

The colors can be compared according to their encoded values; the results of a comparison
are

 RED < GREEN < YELLOW < BLUE < VIOLET.
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-28

HDL Compiler for VHDL User Guide Version D-2010.03
You can override the automatic enumeration encodings and specify your own enumeration
encodings with the ENUM_ENCODING attribute. This interpretation is specific to HDL Compiler,
and overriding might result in a simulation/synthesis mismatch. See “ENUM_ENCODING
Attribute” on page 6-12.

Constant Floating-Point Support
This section describes constant floating-point support, in the following subsections:

• Syntax and Declarations

• Operators and Expressions

• Guidelines

Syntax and Declarations
 Floating-point syntax:

constant identifier_list : real_subtype [:= expression] ;

You can declare constant floating-point objects in

• Entities (except for generic maps)

• Architectures

• Processes

• Blocks

• Functions (as an argument, a return value, or a declarative part)

• Procedures (as an argument or a declarative part)

The following types can consist of constant floating-point objects:

• Scalar

• Array

• Record

Example 2-23 shows various constant floating-point declarations.

Example 2-23
-- real scalar
 constant my_const1: real := 4.3 ;
 constant my_const2: real := aa + 1.2 ;
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-29
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-29

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
-- real array(subscript op)
 type REAL_ARRAY_T is array (3 downto 0) of real;
 constant my_const3: REAL_ARRAY_T := (4.4, 3.3, 2.2, 1.1);

-- real array with range(vector op)
 type REAL_ARRAY_T2 is array (integer range<>) of real;
 constant my_const4: REAL_ARRAY_T2(3 downto 0) := (4.4, 3.3, 2.2,
1.1);
 constant my_const5: REAL_ARRAY_T2(1 downto 0) := aa(2 downto 1);

-- real record(field op)
 type RECORD_T is record
 rec1: integer;
 rec2: string(3 downto 1);
 rec3: real;
 end record;
 constant my_rec: RECORD_T := (5, "mmm", 3.14);

-- constant floating point can also be argument and return value
-- of functions and procedures.
 function func1(aa : real;
 a, b : in bit) return bit;
 function func2(aa, bb : real) return real;
 procedure proc1(aa : real;
 a, b : in bit;
 z : out bit);

Operators and Expressions
The following operators are supported for constant floating-point type:

• Adding, signing, multiplying, and absolute value operators

• ** (power) operator (<real_data> ** <integer_data>)

• Relational operators (>, <, =, /=, >=, <=)

• Subscript and vector operators (array)

• Field operator (record)

Example 2-24 shows various expressions that contain constant floating-types. In
Example 2-24, my_const1 and my_const2 are constant floating-point types; my_rec is a
constant record type; rec1 is an element of my_rec.

Example 2-24
my_const1 + 3.14
my_const1/(-my_const2)
abs(-my_const1)
my_const1 ** 5
my_const1 >= my_const2
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-30

HDL Compiler for VHDL User Guide Version D-2010.03
my_const1(3), my_const1(2 downto 0)
my_rec.rec1

Expressions can contain floating-point numbers and constants, but these expressions are
only allowed at the following locations:

• Constant floating-point initialization

• Comparison (relational operation)

The value of an expression that contains a constant floating point must be resolvable at
elaboration time.

In Example 2-25, the floating-point constant, my_const1 (3.14), is smaller than 5.6, so the
condition in the if statement is true. This causes HDL Compiler to elaborate the first clause
of the if statement and ignore the second clause. HDL Compiler assigns bb to false,
because my_const1 (equaling 3.14) is known at elaboration time.

Example 2-25
constant my_const1 : real :=3.14;
 ...
 if (my_const1 <= 5.6) then
 state <= a;
 else
 state <= b;
 endif;
 ...
 bb <= (my_const1/=3.14); -- bb is BOOLEAN type
 ...

Guidelines
• Floating-point objects are supported on Linux platforms, 32-bit sparc/hp platforms, and

64-bit sparc/hp platforms.

• Floating-point signal and variable objects are not supported, and can not be synthesized;
only constant floating point objects are supported.

• Floating-point objects in the generic map of an entity are not supported.

• The floating-point range is -1.0e38 to 1.0e38 inclusive, the same as the float type in C.

• The floating-point object initialization expression must be present and its value must be
resolvable at the time of elaboration, or an error is reported.
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-31
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-31

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
math_real Package Support
This section describes HDL Compiler support for the IEEE standard VHDL math_real
package, which defines arithmetic functions using REAL type arguments.

This section contains the following:

• Unsupported Constructs and Operators

• Using the math_real Package

• Arithmetic Functions

• Usage Examples

Unsupported Constructs and Operators
HDL Compiler does not support the following components:

• Is_X() function is a simulation rather than synthesis construct; it is ignored in synthesis

• REAL signals

• REAL types with ranges

Using the math_real Package
The math_real package is typically installed in the Synopsys root directory. Access it with
the following statement in your VHDL code:

Library IEEE;
Use IEEE.math_real.all;

NOTE : Operations on REAL type data are only supported for constant evaluation.

Arithmetic Functions
The math_real package provides arithmetic functions for use with the REAL data type.
These functions can be used in synthesis for constant calculations. Example 2-26 shows the
declaration of these functions.

Example 2-26
function "**" (X : in INTEGER; Y : in REAL) return REAL;
function "**" (X : in REAL; Y : in REAL) return REAL;
function "MOD" (X, Y : in REAL) return REAL;
function ARCCOS (X : in REAL) return REAL;
function ARCCOSH (X : in REAL) return REAL;
function ARCSIN (X : in REAL) return REAL;
function ARCSINH (X : in REAL) return REAL;
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-32

HDL Compiler for VHDL User Guide Version D-2010.03
function ARCTAN (Y : in REAL) return REAL;
function ARCTAN (Y : in REAL; X : in REAL) return REAL;
function ARCTANH (X : in REAL) return REAL;
function CBRT (X : in REAL) return REAL;
function CEIL (X : in REAL) return REAL;
function COS (X : in REAL) return REAL;
function COSH (X : in REAL) return REAL;
function EXP (X : in REAL) return REAL;
function FLOOR (X : in REAL) return REAL;
function LOG (X : in REAL) return REAL;
function LOG (X : in REAL; BASE : in REAL) return REAL;
function LOG10 (X : in REAL) return REAL;
function LOG2 (X : in REAL) return REAL;
function REALMAX (X, Y : in REAL) return REAL;
function REALMIN (X, Y : in REAL) return REAL;
function ROUND (X : in REAL) return REAL;
function SIGN (X : in REAL) return REAL;
function SIN (X : in REAL) return REAL;
function SINH (X : in REAL) return REAL;
function SQRT (X : in REAL) return REAL;
function TAN (X : in REAL) return REAL;
function TANH (X : in REAL) return REAL;
function TRUNC (X : in REAL) return REAL;
procedure UNIFORM(variable SEED1, SEED2 : inout POSITIVE; variable X :

out REAL);

Usage Examples
See Example 2-27 and Example 2-28 on page 2-34.

Example 2-27 Constant Evaluation of Parameters

library IEEE;
use IEEE.math_real.all;

entity test1 is
 generic (
 param1 : real := 1.1;
 param2 : real := 2.2;
 param3 : real := 3.3;
 param4 : real := 4.4
);

…

architecture rtl of test1 is

 constant p1 : real := REALMAX(param1, param2);
 constant p2 : real := REALMIN(param3, param4);
 constant p3 : real := ARCTAN(param2);
constant rp4 : real := ROUND(param4);
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-33
Chapter 2: General Coding Considerations
Data Types and Data Objects 2-33

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
constant i1 : integer := integer(param4);

Example 2-28 User Defined Functions
function realtodb(val : real) return real is
begin
return 20.0*(log10(val));
end function;

CONSTANT Ar : real := 1.375;
CONSTANT Ar_db : real := realtodb(Ar);

Operands

Operand requirements specific to HDL Compiler are discussed in the following subsections:

• Operand Bit-Width

• Array Slice Names

• Computable and Noncomputable Operands

• Indexed Name Targets

Operand Bit-Width
HDL Compiler uses the bit-width of the largest operand to determine the bit-width needed to
implement an operator in a circuit. For example, an INTEGER operand is 32 bits wide by
default. An addition of two INTEGER operands causes HDL Compiler to build a 32-bit adder.

To use hardware resources efficiently, always indicate the bit-width of numeric operands. For
example, use a subrange of INTEGER when declaring types, variables, or signals.

type ENOUGH: INTEGER range 0 to 255;
variable WIDE: INTEGER range -1024 to 1023;
signal NARROW: INTEGER range 0 to 7;
Chapter 2: General Coding Considerations
Operands 2-34

HDL Compiler for VHDL User Guide Version D-2010.03
Array Slice Names
Slice names identify a sequence of consecutive elements of an array variable or signal. The
syntax is

identifier (expression direction expression)

identifier

The identifier is the name of a signal or variable of an array type. Each expression must
return a value within the array’s index range and must be computable (see “Computable
and Noncomputable Operands” on page 2-35).

direction

The direction must be either to or downto. The direction of a slice must be the same as
the direction of an identifier’s array type. If the left and right expressions are equal, they
define a single element.

The value returned to an operator is a subarray containing the specified array elements.

Computable and Noncomputable Operands
A computable operand is one whose value can be determined by HDL Compiler at compile
time, that is, the operand value is constant and doesn’t depend on any inputs.
Noncomputable operand values depend on inputs that are known only at runtime. Because
the operand value varies according to inputs, HDL Compiler needs to build additional logic
to determine what the value is at runtime.

Following are examples of computable operands:

• Literal values

• for...loop parameters, when the loop’s range is computable

• Variables assigned a computable expression

• Aggregates that contain only computable expressions

• Function calls whose return value is computable

• Expressions with computable operands

• Qualified expressions when the expression is computable

• Type conversions when the expression is computable
Chapter 2: General Coding Considerations
Operands 2-35
Chapter 2: General Coding Considerations
Operands 2-35

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
• The value of the and or nand operators when one of the operands is a computable ’0’

• The value of the or operator or the nor operator when one of the operands is a
computable ’1’

Additionally, a variable is given a computable value if it is an OUT or INOUT parameter of a
procedure that assigns it a computable value.

Typically, the following are noncomputable operands:

• Signals

• Ports

• Variables assigned different computable values that depend on a noncomputable
condition

• Variables assigned noncomputable values

Example 2-29 shows some definitions and declarations, followed by several computable
and noncomputable expressions.

Example 2-29 Computable and Noncomputable Expressions
signal S: BIT;
. . .
function MUX(A, B, C: BIT) return BIT is
begin
 if (C = ’1’) then
 return(A);
 else
 return(B);
 end if;
end;

procedure COMP(A: BIT; B: out BIT) is
begin
 B := not A;
end;

process(S)
 variable V0, V1, V2: BIT;
 variable V_INT: INTEGER;

 subtype MY_ARRAY is BIT_VECTOR(0 to 3);
 variable V_ARRAY: MY_ARRAY;
begin
 V0 := ’1’; -- Computable (value is ’1’)
 V1 := V0; -- Computable (value is ’1’)
 V2 := not V1; -- Computable (value is ’0’)

 for I in 0 to 3 loop
 V_INT := I; -- Computable (value depends on iteration)
Chapter 2: General Coding Considerations
Operands 2-36

HDL Compiler for VHDL User Guide Version D-2010.03
 end loop;

 V_ARRAY := MY_ARRAY’(V1, V2, ’0’, ’0’);
 -- Computable ("1000")
 V1 := MUX(V0, V1, V2); -- Computable (value is ’1’)
 COMP(V1, V2);
 V1 := V2; -- Computable (value is ’0’)
 V0 := S and ’0’; -- Computable (value is ’0’)
 V1 := MUX(S, ’1’, ’0’);-- Computable (value is ’1’)
 V1 := MUX(’1’, ’1’, S);-- Computable (value is ’1’)

 if (S = ’1’) then
 V2 := ’0’; -- Computable (value is ’0’)
 else
 V2 := ’1’; -- Computable (value is ’1’)
 end if;
 V0 := V2; -- Noncomputable; V2 depends on S
 V1 := S; -- Noncomputable; S is a nonfixed signal
 V2 := V1; -- Noncomputable; V1 is no longer computable
end process;

Indexed Name Targets
The syntax for an assignment to an indexed name (identifier) target is

identifier(index_expression) := expression; -- Variable assignment
identifier(index_expression) <= expression; -- Signal assignment

The identifier is the name of an array type signal or variable.

The index_expression must evaluate to an index value for the identifier array’s index type
and bounds. It does not have to be computable, but more hardware is synthesized if it is not.
See “Computable and Noncomputable Operands” on page 2-35.

The assigned expression must have the array’s element type.

Modeling Considerations

Modeling requirements specific to HDL Compiler are discussed in the following subsections:

• Concatenation

• Unconstrained Type Ports

• Input Ports Associated With the Keyword open

• Multiple Events in a Single Process

• Keeping Signal Names
Chapter 2: General Coding Considerations
Modeling Considerations 2-37
Chapter 2: General Coding Considerations
Modeling Considerations 2-37

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
• Controlling Structure

• Resolution Functions

• Asynchronous Designs

• Using Don’t Care Values

• Finite State Machines

• Multibit Inference

Concatenation
Both the 87 and 93 VHDL language reference manual (LRM) definitions of the
concatenation operator are supported by the HDL Compiler tool. The default support is for
the 93 LRM definition. To enable the 87 LRM definition, set hdlin_vhdl93_concat to false.
To help understand the difference between the two definitions, consider Example 2-30. In
this example, constant k3 and k4 are defined using concatenation with constants k1 and k2.
The value of k3 and k4 will differ according to what VHDL language standard you use:
VHDL-87 or VHDL-93.

If you use VHDL-93, the value of K3'left to K3'right is the same as K4'left to K4'right. To
determine this value, the tool counts from 0 to 3 and the value does not depend on the K1
and K2 start positions.

If you use VHDL-87, the value of K3'left to K3'right, which is from 0 to 3, is different from
K4'left to K4'right, which is from 1 down to -2, because concatenation in VHDL-87 defines
the position count from the start position of the left operand K1 position (1) and the
procedure (downto) instead of starting from the 0 position, as is the case in the VHDL-93
language standard.

Example 2-30 Understanding Concatenation in VHDL-93 and VHDL-87
constant c1 : bit_vector(0 to 3) := "1101";
 constant c2 : bit_vector(0 to 3) := "0010";

 -- value of "c3" is "11010010"
 constant c3 : bit_vector(0 to 7) := c1 & c2;

 -- value of "c4" is "11101"
 constant c4 : bit_vector(0 to 4) := '1' & c1;

 -- value of "c5" is "01"
 constant c5 : bit_vector(0 to 1) := '0' & '1';

type r is 0 to 7;
 type r_vector is array (r <> range) of bit;

 constant k1 : r_vector(1 downto 0) := "10";
Chapter 2: General Coding Considerations
Modeling Considerations 2-38

HDL Compiler for VHDL User Guide Version D-2010.03
 constant k2 : r_vector(0 to 1) := "01";
 constant k3 : r_vector := k2 & k1;
 constant k4 : r_vector := k1 & k2;

Example 2-31 shows the values of constants k2, k3, k4, and k5 when interpreted using
VHDL-87 and VHDL-93 definitions.

Example 2-31
type r1 is range 0 to 7;
type r2 is range 7 downto 0;
type t1 is array (r1 range <>) of bit;
type t2 is array (r2 range <>) of bit;

subtype s1 is t1(r1);
subtype s2 is t2(r2);

constant k2: t1 := k1(1 to 3) & k1(3 to 4);
 -- 93 concat: k2'left = 0 and k2'right = 4
 -- 87 concat: K2'left = 1 and k2'right = 5

constant k3: t1 := k1(5 to 7) & k1(1 to 2);
 -- 93 concat: k3'left = 0 and k3'right = 4
 -- 87 concat: k3'left = 5 and k3'right = 9

constant k5: t2 := k4(3 downto 1) & k1(3 to 4);
 -- 93 concat: k5'left = 0 and k5'right = 4
 -- 87 concat: k5'left = 3 and k5'right = -1

Unconstrained Type Ports
HDL Compiler supports the usage of unconstrained type ports when the type of the ports
can be deduced. In these cases, you must use the analyze and elaborate commands to
read your design. The read command does not support type conversion on formal ports.

Input Ports Associated With the Keyword open
If you associate an input port with the reserved keyword open, you must initialize it with a
default expression, or the analyze command will report an error. HDL Compiler connects the
open port with the default expression after elaboration.
Chapter 2: General Coding Considerations
Modeling Considerations 2-39
Chapter 2: General Coding Considerations
Modeling Considerations 2-39

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Multiple Events in a Single Process
HDL Compiler supports multiple events in a single process as shown in Example 2-32.

Example 2-32
process
begin
 wait until CLOCK’event and CLOCK = ’1’;
 if (CONDITION) then
 X <= A;
 else
 wait until CLOCK’event and CLOCK = ’1’;
 end if;
end process;

Keeping Signal Names
When a signal is in a path to an output port, HDL Compiler usually keeps the signal’s name
if the signal isn’t removed during optimizations, such as removing redundant code. You can
give HDL Compiler guideline information for keeping a signal name by using the
hdlin_keep_signal_name variable and the keep_signal_name directive. The default is
all_driving. Table 2-1 describes the variable options.

Note:
When a signal has no driver, the tool assumes logic 0 (ground) for the driver

To prevent signals from being removed during optimizations, use the keep_signal_name
directive, as shown in Example 2-33 and Example 2-34. Note that this directive works
together with the hdlin_keep_signal_name variable. For the examples, this variable is set
to user. Review the variable options and set this variable to your specific requirements
before reading your design.

Table 2-1 hdlin_keep_signal_name Variable Options

Option Description

user This option works with the keep_signal_name directive. HDL Compiler attempts to
preserve a signal if the signal isn’t removed by optimizations and that signal is labeled
with the keep_signal_name directive. Both dangling and driving nets are considered.
Although not guaranteed, HDL Compiler typically keeps the specified signal for this
configuration.

all_driving
(default)

HDL Compiler attempts to preserve a signal if the signal isn’t removed by
optimizations and the signal is in an output path. Only driving nets are considered.
This option does not guarantee a signal is kept.
Chapter 2: General Coding Considerations
Modeling Considerations 2-40

HDL Compiler for VHDL User Guide Version D-2010.03
Example 2-33 Keep Signal tmp
entity bus_name is
 port (
 in1 : in bit_vector (1 downto 0) ;
 in2 : in bit_vector (1 downto 0) ;
 z : out bit_vector (1 downto 0));
end bus_name ;

architecture imp of bus_name is
-- synopsys keep_signal_name "tmp"
 signal tmp : bit_vector (1 downto 0);
begin
 process(in1, in2)
 begin
 tmp <= in1 and in2;
 z <= in1;
 end process ;
end imp;

Example 2-34 Keep Signal tmp1 and tmp2
entity test is

port (a, b : in bit; z: out bit);
end;

architecture imp of test is
-- synopsys keep_signal_name "tmp1, tmp2"

signal tmp1 : bit;
signal tmp2 : bit;

begin
process (a, b)
begin
 tmp1 <= a and b;
 tmp2 <= a or b;
 z <= b;
end process;

end imp; ;

Controlling Structure
You can use parentheses to force the synthesis of parallel hardware. For example, (A + B)
+ (C + D) builds an adder for A+B, an adder for C+D, and an adder to add the result. Design
Compiler preserves the subexpressions dictated by the parentheses, but this restriction on
Design Compiler optimizations might lead to less-than-optimum area and timing results.
Chapter 2: General Coding Considerations
Modeling Considerations 2-41
Chapter 2: General Coding Considerations
Modeling Considerations 2-41

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Parentheses can also be helpful in coding for late-arriving signals. For example, if you are
adding three signals—A, B, and C—and A is late arriving, then A+(B+C) can be useful in
handling the late-arriving signal A. Note that Design Compiler will also try to create a
structure to allow the late-arriving signal to meet timing. Any restriction on Design Compiler
optimizations might lead to less-than-optimum area and timing results.

Resolution Functions
The resolution function and the coding style determine the choice of wired logic. Synthesis
neither checks for nor resolves possible data collisions on a synthesized three-state bus. It
is the responsibility of the designer to ensure that the three-state enablers for a common
bused line are not active at the same time.

Synopsys has modified the resolution function in std_logic_1164, by adding to it the
resolution_method_three_state directive which enables you create multiply-driven
signals of type std_logic and std_logic_vector that will synthesize into three-state gates
when the appropriate coding style is used. If you want wired-and or wired-or gates
synthesized, you must write your own package, as shown in Example 2-35.

HDL Compiler does not support arbitrary resolution functions. Only wired AND, wired OR,
and three-state functions are allowed. HDL Compiler requires that you mark all resolution
functions with a directive indicating the kind of resolution being performed.

HDL Compiler considers the directive only when creating hardware. The body of the
resolution function is parsed but ignored.

Do not connect signals that use different resolution functions. HDL Compiler supports only
one resolution function per network.

The three resolution function directives are

• synopsys resolution_method wired_and

• synopsys resolution_method wired_or

• synopsys resolution_method three_state

Pre-synthesis and post-synthesis simulation results might not match if the body of the
resolution function the simulator uses does not match the directive the synthesizer uses.

Example 2-35 shows how to create and use a resolved signal and how to use compiler
directives for resolution functions. The signal’s base type is the predefined type BIT.
Figure 2-4 shows the design.
Chapter 2: General Coding Considerations
Modeling Considerations 2-42

HDL Compiler for VHDL User Guide Version D-2010.03
Example 2-35 Resolved Signal and Its Resolution Function
package RES_PACK is
 function RES_FUNC(DATA: in BIT_VECTOR) return BIT;
 subtype RESOLVED_BIT is RES_FUNC BIT;
end;

package body RES_PACK is
 function RES_FUNC(DATA: in BIT_VECTOR) return BIT is
 -- synopsys resolution_method wired_and
 begin
 -- The code in this function is ignored by Presto VHDL
 -- but parsed for correct VHDL syntax

 for I in DATA’range loop
 if DATA(I) = ’0’ then
 return ’0’;
 end if;
 end loop;
 return ’1’;
 end;
end;

use work.RES_PACK.all;

entity WAND_VHDL is
 port(X, Y: in BIT; Z: out RESOLVED_BIT);
end WAND_VHDL;

architecture WAND_VHDL of WAND_VHDL is
begin
 Z <= X;
 Z <= Y;
end WAND_VHDL;

Figure 2-4 Design Using Resolved Signal

Asynchronous Designs
If you use asynchronous design techniques—that is, nonclocked designs—synthesis and
simulation results might not agree. Because Design Compiler does not issue warning
messages for asynchronous designs, you are responsible for verifying the correctness of
your circuit. See the Synopsys Timing Constraints and Optimization User Guide for
additional information.

X
Y

AN2
Z

Chapter 2: General Coding Considerations
Modeling Considerations 2-43
Chapter 2: General Coding Considerations
Modeling Considerations 2-43

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Using Don’t Care Values
HDL Compiler always evaluates comparisons to don’t care values to false. This behavior is
different from simulation behavior. To prevent a synthesis/simulation mismatch, always use
the IEEE 1076.3-1997 STD_MATCH function when using don’t care values in comparisons.
See “Don’t Care Values in Comparisons” on page 2-53.

Finite State Machines
HDL Compiler automatically infers finite state machines (FSMs). For FSM optimization
details, see the Design Compiler Reference Manual: Optimization and Timing Analysis.

This section includes the following subsections:

• Variables and Commands Specific to FSM Inference

• FSM Coding Requirements

• FSM Example and Inference Report

• State Vector Attribute

See Appendix A for additional FSM examples.

Variables and Commands Specific to FSM Inference
The variables and commands listed in Table 2-2 are specific to FSM inference.

For more information about these variables and commands, see the man pages.

Table 2-2 Variables and Commands Specific to FSM Inference

Variables/Commands Description

hdlin_reporting_level Default is basic.
Variable enables and disables FSM inference reports. When set to
comprehensive, FSM inference reports are generated when HDL Compiler
reads the code. By default, FSM inference reports are not generated. For
more information, including valid values, see “Elaboration Reports” on
page 1-9.

fsm_auto_inferring Default is false.
Option determines whether or not Design Compiler automatically extracts
the FSM during compile. This option controls Design Compiler extraction. In
order to automatically infer and extract an FSM, fsm_auto_inferring must
be true. See the Design Compiler Reference Manual: Optimization and
Timing Analysis and the man page for additional information.
Chapter 2: General Coding Considerations
Modeling Considerations 2-44

HDL Compiler for VHDL User Guide Version D-2010.03

e

t

s
FSM Coding Requirements
Follow the coding guidelines in Table 2-3 to enable HDL Compiler to infer an FSM.

Table 2-3 RTL Requirements for Automatic Detection of FSMs

Item Description

Registers To infer a register as an FSM state register, the register

Must never be assigned a value other than the defined state values.

Must always be inferred as a flip-flop (not a latch).

Must never be a design port, function port, or task port. This would make the encoding
visible to the outside.

Inside expressions, FSM state registers can be used only as an operand of "==" or "/="
comparisons or as the expression in a case statement that is an implicit comparison to th
label expressions, such as "case (cur_state) ...". FSM state registers are not allowed to
occur in other expressions—this would make the encoding explicit.

Function There can be only one FSM design per entity. State variables cannot drive a port.
State variables cannot be indexed.

Ports All ports of the initial design must be either input ports or output ports. Inout ports are no
supported.

Combinational
feedback loops

Combinational feedback loops are not supported, although combinational logic that does
not depend on the state vector is accurately represented.

Clocks FSM designs can include only a single clock and an optional synchronous or asynchronou
reset signal.
Chapter 2: General Coding Considerations
Modeling Considerations 2-45
Chapter 2: General Coding Considerations
Modeling Considerations 2-45

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
FSM Example and Inference Report
When you set the hdlin_reporting_level variable to comprehensive, HDL Compiler
creates an FSM inference report, as shown in Example 2-37 on page 2-48. The report
describes the FSM state encoding that HDL Compiler created from the RTL. Example 2-36
on page 2-47 shows the FSM RTL code, and Figure 2-5 shows an FSM state diagram based
on that code. For more information about the hdlin_reporting_level variable, see
“Elaboration Reports” on page 1-9.

Figure 2-5 FSM State Diagram

set0

hold1 hold0

y = 0

x != 0 / y = 1

y = 0

x == 0 / y = 0

set1
y = 0

 S0

 S1

 S2

 S3
Chapter 2: General Coding Considerations
Modeling Considerations 2-46

HDL Compiler for VHDL User Guide Version D-2010.03
Example 2-36 FSM RTL Code
library IEEE;
use IEEE.std_logic_1164.all;

entity FSM is
 port(CLK : in std_logic;
 X : in std_logic;
 Y : out std_logic);
end FSM;

architecture STATE_MACHINE_VIEW of FSM is
 -- Declare an enum type for the state
 type STATE_TYPE is (S0, S1, S2, S3);
 signal STATE : STATE_TYPE;
 signal NEXT_STATE : STATE_TYPE;
 begin
 -- This process sets the next state on the clock edge.
 SET_STATE: process(CLK, NEXT_STATE) begin
 if (CLK'event and CLK = '1') then
 STATE <= NEXT_STATE;
 end if;
 end process SET_STATE;

 -- This process determines the next state and output
 -- values based on the current state and input values.
 SET_NEXT_STATE: process(STATE,X) begin
 -- SET defaults for NEXT_STATE and all outputs.
 Y <= '0';
 NEXT_STATE <= S0;
 case STATE is
 when S0 =>
 Y <= '0';
 NEXT_STATE <= S1;
 when S1 =>
 if (X = '0') then
 Y <= '0';
 NEXT_STATE <= S1;
 else
 Y <= '1';
 NEXT_STATE <= S2;
 end if;
 when S2 =>
 Y <= '0';
 NEXT_STATE <= S3;
 when S3 =>
 Y <= '0';
 NEXT_STATE <= S0;
 end case;
 end process SET_NEXT_STATE;
end STATE_MACHINE_VIEW;
Chapter 2: General Coding Considerations
Modeling Considerations 2-47
Chapter 2: General Coding Considerations
Modeling Considerations 2-47

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 2-37 Finite State Machine Inference Report
statistics for FSM inference:
 state register: STATE
 states
 ======
 S0: 00
 S1: 01
 S2: 10
 S3: 11

State Vector Attribute
When inferring FSMs, always check your FSM inference report to verify that HDL Compiler
correctly inferred the FSM. If you want to change a state encoding, you can do so by using
the STATE_VECTOR attribute in the architecture to specify state vectors for your design in the
RTL.

When writing a state machine in VHDL, you can use a STATE_VECTOR attribute to provide
information to Design Compiler. Use a STATE_VECTOR attribute in the architecture; the
attribute value is the name of the state signal. Use only one STATE_VECTOR attribute for an
architecture, as shown in Example 2-38.

Example 2-38 Using STATE_VECTOR Attribute in Architecture
entity FSM1_ST is
 port(clk : in BIT; toggle : in BIT; op1 : out BIT);
end FSM1_ST;

architecture STATE_MACHINE_VIEW of FSM1_ST is
 -- Declare an enum type for the state
 type STATE_TYPE is (ZERO, ONE);
 signal STATE : STATE_TYPE;
 signal NEXT_STATE : STATE_TYPE;
 -- Set the state vector attribute
 attribute STATE_VECTOR : STRING;
 attribute STATE_VECTOR of STATE_MACHINE_VIEW :
 architecture is "STATE";

See the Design Compiler Reference Manual: Optimization and Timing Analysis for more
information on specifying and encoding state machines.
Chapter 2: General Coding Considerations
Modeling Considerations 2-48

HDL Compiler for VHDL User Guide Version D-2010.03
Multibit Inference
HDL Compiler can infer multibit components. These components reduce area and power
consumption in a design, but their primary benefits are the creation of a more uniform
structure for layout during place and route.

This section contains the following:

• Multibit Inference Overview

• Controlling Multibit Inference

• infer_multibit Attribute Examples

Multibit Inference Overview
Multibit inference allows you to map registers, multiplexers, and three-state cells to regularly
structured logic or multibit library cells. Multibit library cells (the macrocells, such as a 16-bit
banked flip-flop, in the library) have these advantages:

• Smaller area and delay, due to shared transistors (as in select or set/reset logic) and
optimized transistor-level layout

In the use of 1-bit components, the select or set/reset logic is repeated in each 1-bit
component.

• Reduced clock skew in sequential gates, because the clock paths are balanced internally
in the hard macro implementing the multibit component.

• Lower power consumption by the clock in sequential banked components, due to
reduced capacitance driven by the clock net

• Better performance due to the optimized multibit layout

• Improved regular layout of the datapath

Multibit components might not be efficient in the following instances:

• As state machine registers

• In small bused logic that would benefit from single-bit design
Chapter 2: General Coding Considerations
Modeling Considerations 2-49
Chapter 2: General Coding Considerations
Modeling Considerations 2-49

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Controlling Multibit Inference
HDL Compiler infers as multibit components only register, multiplexer, and three-state cells
that have identical structures for each bit.

To direct HDL Compiler to infer multibit components, do one of the following:

• Embed the attribute, infer_multibit, in the HDL source.

The attribute gives you control over individual case statements. Set the infer_multibit
attribute to true on signals and variables to infer them as multibit components. See
Example 2-39 on page 2-51.

• Use the dc_shell variable, hdlin_infer_multibit.

This variable controls multibit inference for all bused registers, multiplexers, and
three-state cells you input in the same dc_shell session. The options are

• default_none: Infers multibit components for signals that have the infer_multibit
attribute set to true in the VHDL RTL. This is the default.

• default_all: Infers multibit components for all bused registers, multiplexers, and
three-state cells. To disable multibit mapping for certain signals, set infer_multibit
to false in the VHDL code on those signals.

• never: Does not infer multibit components, regardless of the attributes or directives in
the HDL source.

To adjust the design after layout, use the following commands:

• create_multibit: Infers multibit components in a mapped design.

• remove_multibit: Removes multibit components from a mapped design.

For more information on how Design Compiler handles multibit components in a mapped
design, see the Design Compiler Reference Manual: Optimization and Timing Analysis.

infer_multibit Attribute Examples
In Example 2-39, the infer_multibit attribute—highlighted in bold—is set on signal q.
Example 2-40 shows the inference report. In this report, the column MB indicates that the
component is inferred as a multibit component.
Chapter 2: General Coding Considerations
Modeling Considerations 2-50

HDL Compiler for VHDL User Guide Version D-2010.03
Example 2-39 Inferring a Multibit 4-Bit Latch With Asynchronous Reset
library IEEE, Synopsys;
use IEEE.std_logic_1164.all;
use Synopsys.attributes.all;
entity d_latch_async_reset_4 is
port (enable, reset : in std_logic;

data : in std_logic_vector(3 downto 0);
q : out std_logic_vector(3 downto 0));

end d_latch_async_reset_4;

architecture rtl of d_latch_async_reset_4 is
attribute async_set_reset of reset : signal is "true";
attribute infer_multibit of q : signal is "true";
begin

proc1 : process (enable, data, reset)
begin
if (reset = ’1’) then
q <= "0000";
elsif (enable = ’1’) then
q <= data;
end if;

end process proc1;
end rtl;

Example 2-40 Inference Report for a 4-Bit Latch With Asynchronous Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| q_reg | Latch | 4 | Y | Y | Y | N | - | - | - |
===

Example 2-41 shows the same VHDL code but illustrates how to prevent multibit inference
of signal q. Bold highlights the infer_multibit attribute. The inference report is shown in
Example 2-42. In this report, the column MB indicates that the component is not inferred as
a multibit component.
Chapter 2: General Coding Considerations
Modeling Considerations 2-51
Chapter 2: General Coding Considerations
Modeling Considerations 2-51

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 2-41 Latch With Asynchronous Reset Without Multibit Inference
library IEEE, Synopsys;
use IEEE.std_logic_1164.all;
use Synopsys.attributes.all;
entity d_latch_async_reset_4_nomb is
port (enable, reset : in std_logic;

data : in std_logic_vector(3 downto 0);
q : out std_logic_vector(3 downto 0));

end d_latch_async_reset_4_nomb;
architecture rtl of d_latch_async_reset_4_nomb is
attribute async_set_reset of reset : signal is "true";
attribute infer_multibit of q : signal is "false";
begin

proc1 : process (enable, data, reset)
begin
if (reset = ’1’) then
q <= "0000";
elsif (enable = ’1’) then
q <= data;
end if;

end process proc1;
end rtl;

Example 2-42 Inference Report for a Latch Without Multibit Inference
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| q_reg | Latch | 4 | Y | N | Y | N | - | - | - |
===

Simulation/Synthesis Mismatch Issues

This following sections describe simulation/synthesis mismatch issues:

• Type Mismatches

• Set and Reset Signals

• Z Values in Expressions

• Don’t Care Values in Comparisons

• Ordering of Enumerated Types Using the ENUM_ENCODING attribute

• Sensitivity Lists

• Delay Specifications
Chapter 2: General Coding Considerations
Simulation/Synthesis Mismatch Issues 2-52

HDL Compiler for VHDL User Guide Version D-2010.03
Type Mismatches
The numeric_std package and the std_logic_arith package have overlapping operations.
Use of these two packages simultaneously during analysis could cause type mismatches.

Set and Reset Signals
A simulation/synthesis mismatch can occur if the set/reset signal is masked by an X during
initialization in simulation. Use of the sync_set_reset directive reduces mismatches. For
examples, see “D Flip-Flop With Synchronous Set” on page 4-23 and “D Flip-Flop With
Synchronous Reset” on page 4-24.

Z Values in Expressions
The use of the z value in an expression always evaluates to false and can cause a
simulation/synthesis mismatch. For details, see “Understanding the Limitations of
Three-State Inference” on page 5-9.

Don’t Care Values in Comparisons
To prevent simulation/synthesis mismatch, do not use don’t care values in comparisons
unless you use the IEEE 1076.3-1997 STD_MATCH function.

Don’t care types are treated differently in simulation than they are in synthesis. To a
simulator, a don’t care value is a distinct value, different from a 1 or a 0. In synthesis,
however, a don’t care value becomes a 0 or a 1. When a don’t care value is used in a
comparison, HDL Compiler always evaluates the comparison to false. Because of this
difference in treatment, there is the potential for a simulation/synthesis mismatch whenever
a comparison is made with a don't care value.

For example,

if X = ’-’ then
...

is synthesized as

if FALSE then

The following case statement causes a synthesis/simulation mismatch because the
simulator evaluates 1- to match 11 and 10 but the synthesis tool evaluates 1- to false; the
same hold true for the 0- evaluation.
Chapter 2: General Coding Considerations
Simulation/Synthesis Mismatch Issues 2-53
Chapter 2: General Coding Considerations
Simulation/Synthesis Mismatch Issues 2-53

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
case (A)
 1- : -- you want 1- to match 11 and 10 but
 -- Presto VHDL always evaluates this comparison
 -- to false
 0- : -- you want 0- to match 00 and 01 but
 -- Presto VHDL always evaluates this comparison
 -- to false
 default :
endcase

To fix this mismatch problem, always use the STD_MATCH function; for example, rewrite the
code above by using if statements, as follows:

if (STD_MATCH (A, "1,-"))
.....
elseif (STD_MATCH (A, "0,-"))
.....
else

HDL Compiler issues a warning similar to the following when it synthesizes such
comparisons:

Warning: A partial don’t-care value was read in routine test
line 24 in file ’test.vhd’ This may cause simulation to
disagree with synthesis. (HDL-171)

Ordering of Enumerated Types Using the
ENUM_ENCODING attribute
If you set the encoding of your enumerated types by using the ENUM_ENCODING attribute,
the ordering operators compare your encoded value ordering, not the declaration ordering.
Because this interpretation is specific to HDL Compiler, it might cause a mismatch with the
VHDL simulator, which uses the declaration’s order of enumerated types. See “Enumeration
Encoding” on page 2-28 and “ENUM_ENCODING Attribute” on page 6-12.

Sensitivity Lists
HDL Compiler generates a warning if all the signals read by the process are not listed in the
sensitivity list. The circuit HDL Compiler synthesizes is sensitive to all signals the process
reads. To guarantee the same results from a VHDL simulator, follow these guidelines when
developing the sensitivity list:

• For sequential logic, include the clock signal and all asynchronous control signals in the
sensitivity list.

• For combinational logic, all inputs must be in the sensitivity list.
Chapter 2: General Coding Considerations
Simulation/Synthesis Mismatch Issues 2-54

HDL Compiler for VHDL User Guide Version D-2010.03
HDL Compiler checks sensitivity lists for completeness and issues a warning message for
any signal that is read inside a process but is not in the sensitivity list. An error message is
issued if a clock signal is read as data in a process.

Note:
The IEEE VHDL standard does not allow a sensitivity list if the process has a wait
statement. If your code has this condition, HDL Compiler will issue a warning and ignores
the code.

Delay Specifications
Delays are ignored for synthesis; their use may cause a synthesis/simulation mismatch.
Chapter 2: General Coding Considerations
Simulation/Synthesis Mismatch Issues 2-55
Chapter 2: General Coding Considerations
Simulation/Synthesis Mismatch Issues 2-55

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Chapter 2: General Coding Considerations
Simulation/Synthesis Mismatch Issues 2-56

3
Modeling Combinational Logic 3

This chapter describes coding guidelines specific to HDL Compiler that are useful in
combinational logic synthesis.

This chapter contains the following sections:

• Synthetic Operators

• Logic and Arithmetic Operator Implementation

• Propagating Constants

• Bit-Truncation Coding for DC Ultra Datapath Extraction

• Multiplexing Logic

• Unintended Latches and Feedback Paths in Combinational Logic
3-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Synthetic Operators

Synopsys provides a collection of IP, referred to as the DesignWare Basic IP Library, as part
of the HDL Compiler products. Basic IP provide basic implementations of common
arithmetic functions that can be referenced by HDL operators in your VHDL or Verilog
source code.

The DesignWare paradigm is built on a hierarchy of abstractions. HDL operators (either
built-in operators like + and *, or HDL functions and procedures) are associated with
synthetic operators, which are bound in turn to synthetic modules. Each synthetic module
can have multiple architectural realizations, called implementations. When you use the HDL
addition operator “+” in a design description, HDL Compiler infers the need for an adder
resource, and puts an abstract representation of the addition operation into your circuit
netlist. The same holds true when you instantiate a DesignWare component. For example,
an instantiation of DW01_add will be mapped to the synthetic operator associated with it.
See Figure 3-1.

A synthetic library contains definitions for synthetic operators, synthetic modules, and
bindings. It also contains declarations that associate synthetic modules with their
implementations.

For more information about DesignWare synthetic operators, modules, and libraries, see the
Synopsys DesignWare documentation.
Chapter 3: Modeling Combinational Logic
Synthetic Operators 3-2

HDL Compiler for VHDL User Guide Version D-2010.03
Figure 3-1 DesignWare Hierarchy

Implementations

Bindings

map_to_operator pragma

 HDL Operator HDL Operator Definition

Synthetic Operator

Synthetic Modules

Implementation

Declarations

ADD_UNS_OP

proprietarycarry-lookaheadripple

ALUADDADD_SUB

HDL Operators

Synthetic Library

Design Library

Z <= X + Y
Chapter 3: Modeling Combinational Logic
Synthetic Operators 3-3
Chapter 3: Modeling Combinational Logic
Synthetic Operators 3-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Logic and Arithmetic Operator Implementation

When HDL Compiler elaborates a design, it maps HDL operators to synthetic (DesignWare)
operators that appear in the generic netlist. When Design Compiler optimizes the design, it
maps these operators to DesignWare synthetic modules and chooses the best
implementation, based on constraints, option settings, and wire-load models.

A Design Compiler license includes a DesignWare-Basic license that enables the
DesignWare synthetic modules listed in Table 3-1. These modules support common logic
and arithmetic HDL operators. By default, adders and subtracters must be more than 4 bits
wide to be mapped to these modules. If they are smaller, the operators are mapped to
combinational logic.

Synopsys creates numerous DesignWare synthetic modules in addition to the basic
modules. The DesignWare Building Block IP (formally called Foundation Library) is a
collection of reusable intellectual property blocks that are integrated into the Synopsys
synthesis environment. This library contains high-performance implementations of Basic
Library IP plus many IP that implement more advanced arithmetic and sequential logic
functions. For more information about DesignWare synthetic modules, see the DesignWare
documentation.

Table 3-1 Operators Supported by a DesignWare-Basic License

HDL operator Linked to DesignWare synthetic module

Comparison (> or <) DW01_cmp2

Absolute value (abs) DW01_absval

Addition (+) DW01_add

Subtraction (-) DW01_sub

Addition or Subtraction (+ or -) DW01_addsub

Incrementer (+) DW01_inc

Decrementer (-) DW01_dec

Incrementer or decrementer
(+ or -)

DW01_incdec

Multiplier (*) DW02_mult
Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Operator Implementation 3-4

HDL Compiler for VHDL User Guide Version D-2010.03
Propagating Constants

Constant propagation is the compile-time evaluation of expressions containing constants.
HDL Compiler uses constant propagation to reduce the amount of hardware required to
implement operators. For example, a "+" operator with a constant 1 as an input causes an
incrementer, rather than a general adder, to be built. If both adder arguments are constants,
no hardware is constructed, because the expression’s value is calculated by HDL Compiler
and inserted directly in the circuit.

Other operators that benefit from constant propagation include comparators and shifters.
Shifting a vector by a constant amount requires no logic to implement; it requires only a
reshuffling (rewiring) of bits.

Bit-Truncation Coding for DC Ultra Datapath Extraction

Datapath design is commonly used in applications that contain extensive data manipulation,
such as 3-D, multimedia, and digital signal processing (DSP). Datapath extraction
transforms arithmetic operators, such as addition, subtraction, and multiplication, into
datapath blocks to be implemented by a datapath generator.
The DC Ultra tool enables datapath extraction after timing-driven resource sharing and
explores various datapath and resource-sharing options during compile.

As of release T-2002.05, DC Ultra datapath optimization supports datapath extraction of
expressions containing truncated operands unless both of the following two conditions exist:

• The operands have upper bits truncated.

• The width of the resulting expression is greater than the width of the truncated operand.

Both conditions must be true to prevent extraction. For lower-bit truncations, the datapath is
extracted in all cases.
Chapter 3: Modeling Combinational Logic
Propagating Constants 3-5
Chapter 3: Modeling Combinational Logic
Propagating Constants 3-5

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Bit truncation can be either explicit or implicit. Table 3-2 describes both types of truncation.

To see how bit truncation affects datapath extraction, consider the code in Example 3-1.

In this example, d has the upper bit truncated, but e is only 8-bits so this code is extracted.

Example 3-1 Design test1: Truncated Operand Is Extracted
 library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.std_logic_unsigned.all;
 entity test1 is
 port (a,b,c : in std_logic_vector(7 downto 0);
 e : out std_logic_vector(7 downto 0)); -- e is 8-bits wide
 end test1;
 architecture rtl of test1 is
 signal d : std_logic_vector(15 downto 0); -- d is 16-bits wide
 begin
 d <= a * b;
 e <= c + d (7 downto 0); -- explicit upper bit truncation
 end rtl;

Table 3-2 Explicit and Implicit Bit Truncation

Truncation type Description

Explicit bit truncation An explicit upper-bit truncation is one in which you specify the bit
range for truncation.

The following code indicates explicit upper-bit truncation of operand
A:

signal A = std_logic_vector (i downto 0);

z <= A (j downto 0); -- where j < i

Implicit bit truncation An implicit upper-bit truncation is one that occurs through
assignment. Unlike explicit upper-bit truncation, here you do not
explicitly define the range for truncation.

The following code indicates implicit upper-bit truncation of operand
Y:

signal A,B = std_logic_vector (7 downto 0);

signal C,Y = std_logic_vector (8 downto 0);

 Y = A + B + C;

Because A and B are each 8 bits wide, the return value of A+B will
be 8 bits wide. However, because Y, which is 9 bits wide, is assigned
to be the 9-bit wide addition (A+B)+C, the most significant bit (MSB)
of the addition (A+B) is implicitly truncated. In this example, the MSB
is the carryout.
Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction 3-6

HDL Compiler for VHDL User Guide Version D-2010.03
In Example 3-2, d is truncated to 8-bits and in an expression assigned to e which is 9-bits.
This code is not extracted.

Example 3-2 Design test2: Truncated Operand Is Not Extracted
 library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.std_logic_unsigned.all;
 entity test2 is
 port (a,b,c : in std_logic_vector(7 downto 0);
 e : out std_logic_vector(8 downto 0)); -- e is 9-bits wide
 end test2;
 architecture rtl of test2 is
 signal d : std_logic_vector(15 downto 0); -- d is 16-bit wide
 begin
 d <= a * b;
 e <= '0'&c + d(7 downto 0); -- explicit upper bit truncation
 end rtl;

In Example 3-3, the expression assigned to e contains implicit upper-bit truncation and the
width of e is greater than the width of the implicitly truncated operand, so the code is not
extracted.

Example 3-3 Design test3: Truncated Operand Is Not Extracted
 library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.std_logic_unsigned.all;
 entity test3 is
 port (a,b : in std_logic_vector(7 downto 0);
 e : out std_logic_vector(7 downto 0)); -- e is 8-bits wide

 end test3;

 architecture rtl of test3 is
 signal d : std_logic_vector(15 downto 0);
 begin
 d <= a * b;
 e <= a + b + d(7 downto 0); -- implicit upper bit truncation
 end rtl;

In Example 3-4, there is lower-bit truncation but no upper-bit truncation so this code is
extracted.

Example 3-4 Design test4: Truncated Operand is Extracted
 library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.std_logic_unsigned.all;
 entity test4 is
 port (a,b : in std_logic_vector(7 downto 0);
 e : out std_logic_vector(7 downto 0));
 end test4;
 architecture rtl of test4 is
 signal d : std_logic_vector(15 downto 0); -- d is 16-bit wide
 begin
 d <= a * b; -- no implicit upper bit truncation of d
 e <= d(15 downto 8); -- explicit lower bit truncation of d
 end rtl;
Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction 3-7
Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction 3-7

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Multiplexing Logic

Multiplexers are commonly modeled with if and case statements. To implement this logic,
HDL Compiler uses SELECT_OP cells, which Design Compiler maps to combinational logic
or multiplexers in the technology library. If you want Design Compiler to preferentially map
multiplexing logic to multiplexers—or multiplexer trees—in your technology library, you must
infer MUX_OP cells.

 The following sections describe multiplexer inference:

• SELECT_OP Inference

• MUX_OP Inference

• Variables That Control MUX_OP Inference

• MUX_OP Inference Examples

• MUX_OP Inference Limitations

SELECT_OP Inference
By default, HDL Compiler uses SELECT_OP components to implement conditional
operations implied by if and case statements. An example SELECT_OP cell implementation
for an 8-bit data signal is shown in Figure 3-2.
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-8

HDL Compiler for VHDL User Guide Version D-2010.03
Figure 3-2 SELECT_OP Implementation for an 8-bit Data Signal

SELECT_OPs behave like one-hot multiplexers; the control lines are mutually exclusive, and
each control input allows the data on the corresponding data input to pass to the output. To
determine which data signal is chosen, HDL Compiler generates selection logic, as shown
in Figure 3-3.

output

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

CONT

DATA8

CONT

CONT

CONT

CONT

CONT

CONT

CONT

Note that for an 8-bit data signal, 8 selection bits are
needed - this is called a one-hot implementation.

data signals

select signals

DATA1
z_
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-9
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-9

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Figure 3-3 HDL Compiler Output—SELECT_OP and Selection Logic

Depending on the design constraints, Design Compiler will implement the SELECT_OP with
either combinational logic or multiplexer cells from the technology library.

MUX_OP Inference
If you want Design Compiler to preferentially map multiplexing logic in your RTL to
multiplexers—or multiplexer trees—in your technology library, you need to infer MUX_OP
cells. These cells are hierarchical generic cells optimized to use the minimum number of
select signals. They are typically faster than the SELECT_OP cell, which uses a one-hot
implementation. Although MUX_OP cells improve design speed, they also might increase
area. During optimization, Design Compiler preferentially maps MUX_OP cells to
multiplexers—or multiplexer trees—from the technology library, unless the area costs are
prohibitive, in which case combinational logic is used. See the Design Compiler Reference
Manual: Optimization and Timing Analysis for information about how Design Compiler maps
MUX_OP cells to multiplexers in the target technology library.

Figure 3-4 shows a MUX_OP cell for an 8-bit data signal. Notice that the MUX_OP cell only
needs three control lines to select an output; compare this with the SELECT_OP which
needed eight control lines.

selection logicselect signals
SELECT_OP

data signals output
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-10

HDL Compiler for VHDL User Guide Version D-2010.03
Figure 3-4 MUX_OP Generic Cell for an 8-bit Data Signal

The MUX_OP cell contains internal selection logic to determine which data signal is chosen;
HDL Compiler does not need to generate any selection logic, as shown in Figure 3-5.

Figure 3-5 HDL Compiler Output—MUX_OP Generic Cell for 8-Bit Data

Use the following methods to infer MUX_OP cells:

• To generate MUX_OP cells for a specific case or if statement, use the infer_mux
attribute or the --synopsys infer_mux directive in the VHDL description.

• Attach the infer_mux attribute to a case statement, by using the following syntax:
case var is --synopsys infer_mux

data signals

select signals

Note that for an 8-bit word, only 3
selection bits are needed.

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

S0

DATA8

S1

z_0

S2

select signals
MUX_OP

data signals output
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-11
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-11

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
• Attach the infer_mux directive, as follows:

 case SEL3 is -- synopsys infer_mux
 when "00" => DOUT3 <= DIN3(0);
 when "01" => DOUT3 <= DIN3(1);
 when "10" => DOUT3 <= DIN3(2);
 when "11" => DOUT3 <= DIN3(3);

• To generate MUX_OP cells for all case statements in a block, set the infer_mux attribute
on the block.

• Attach the infer_mux attribute to a process, by using the following syntax:

attribute infer_mux of process_label : label is "true";

• To generate MUX_OP cells for all case and if statements, use the hdlin_infer_mux
variable.

Variables That Control MUX_OP Inference
The variables that control MUX_OP cell inference are listed in Table 3-3.

Table 3-3 MUX_OP Inference Variables

Variable Description

hdlin_infer_mux This variable controls MUX_OP inference for all designs you input
in the same Design Compiler session.

Options:
• default—Infers MUX_OPs for case and if statements in

processes that have the infer_mux directive or attribute
attached.

• none—Does not infer MUX_OPs, regardless of the directives
set in the VHDL description. HDL Compiler generates a
warning if hdlin_infer_mux = none and infer_mux are used
in the RTL.

• all—Infers MUX_OPs for every case and if statement in your
design for which one can be used. This can negatively affect
the quality of results, because it might be more efficient to
implement the MUX_OPs as random logic instead of using a
specialized multiplexer structure.
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-12

HDL Compiler for VHDL User Guide Version D-2010.03
hdlin_mux_size_limit This variable sets the maximum size of a MUX_OP that HDL
Compiler can infer. The default value is 32. If you set this variable
to a value greater than 32, HDL Compiler may take an unusually
long elaboration time.

If the number of branches in a case statement exceeds the
maximum size specified by this variable, HDL Compiler generates
the following message:

Warning: A mux was not inferred because case statement
%s has a very large branching factor. (HDL-383)

hdlin_mux_size_min Sets the minimum number of data inputs for a MUX_OP inference.
Default value is 2.

hdlin_mux_oversize_
ratio

Defined as the ratio of the number of MUX_OP inputs to the unique
number of data inputs. When this ratio is exceeded, a MUX_OP will
not be inferred and the circuit will be generated with
SELECT_OPs. Default value is 100.

hdlin_mux_size_only To ensure that MUX_OP cells are mapped to MUX technology
cells, you must apply a size_only attribute to the cells to prevent
logic decomposition in later optimization steps. You can set the
size_only attribute on each MUX_OP manually or allow the tool
to set it automatically. The automatic behavior can be controlled by
the hdlin_mux_size_only variable.

Options:
• 0–Specifies that no cells receive the size_only attribute.

• 1–Specifies that MUX_OP cells that are generated with the
RTL infer_mux pragma and that are on set/reset signals
receive the size_only attribute. This is the default setting.

• 2–Specifies that all MUX_OP cells that are generated with the
RTL infer_mux pragma receive the size_only attribute.

• 3–Specifies that all MUX_OP cells on set/reset signals receive
the size_only attribute: for example, MUX_OP cells that are
generated by setting the hdlin_infer_mux variable to all.

• 4–Specifies that all MUX_OP cells receive the size_only
attribute: for example, MUX_OP cells that are generated by the
hdlin_infer_mux variable set to all.

By default, the hdlin_mux_size_only variable is set to 1, meaning
that MUX_OP cells that are generated with the RTL infer_mux
pragma and that are on set/reset signals receive the size_only
attribute.

Table 3-3 MUX_OP Inference Variables (Continued)

Variable Description
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-13
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-13

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
MUX_OP Inference Examples
In Example 3-5, two MUX_OPs and one SELECT_OP are inferred, as follows:

• In the process proc1, a MUX_OP is inferred for the case statement, because the
infer_mux attribute is placed on proc1.

• In the process proc2, there are two case statements.

• For the first case statement, a SELECT_OP is inferred. This is the default inference.

• However, the second case statement in proc2 has the infer_mux pragma set on it
which causes HDL Compiler to infer the MUX_OP cell.

Example 3-6 shows the inference report for the MUX_OPs. Figure 3-6 shows a
representation of the HDL Compiler implementation.

Example 3-5 Two MUX_OPs and One SELECT_OP Inferred
library ieee, synopsys;
use ieee.std_logic_1164.all;
use synopsys.attributes.all;

entity test is
 port (DIN1 : in std_logic_vector (7 downto 0);
 DIN2 : in std_logic_vector (7 downto 0);
 DIN3 : in std_logic_vector (3 downto 0);
 SEL1 : in std_logic_vector (2 downto 0);
 SEL2 : in std_logic_vector (2 downto 0);
 SEL3 : in std_logic_vector (1 downto 0);
 DOUT1 : out std_logic;
 DOUT2 : out std_logic;
 DOUT3 : out std_logic
);
end test;

architecture rtl of test is

attribute infer_mux of proc1 : label is "TRUE";

begin

 -- A MUX_OP for DOUT1 will be inferred from the
 -- infer_mux attribute set on proc1

 proc1 : process (SEL1, DIN1)
 begin
 case SEL1 is
 when "000" => DOUT1 <= DIN1(0);
 when "001" => DOUT1 <= DIN1(1);
 when "010" => DOUT1 <= DIN1(2);
 when "011" => DOUT1 <= DIN1(3);
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-14

HDL Compiler for VHDL User Guide Version D-2010.03
 when "100" => DOUT1 <= DIN1(4);
 when "101" => DOUT1 <= DIN1(5);
 when "110" => DOUT1 <= DIN1(6);
 when "111" => DOUT1 <= DIN1(7);
 when others => DOUT1 <= DIN1(0);
 end case;
 end process;

 proc2 : process (SEL2, SEL3, DIN2, DIN3)
 begin

 -- A SELECT_OP will be generated for DOUT2
 -- in the absence of an infer_mux attribute

 case SEL2 is
 when "000" => DOUT2 <= DIN2(0);
 when "001" => DOUT2 <= DIN2(1);
 when "010" => DOUT2 <= DIN2(2);
 when "011" => DOUT2 <= DIN2(3);
 when "100" => DOUT2 <= DIN2(4);
 when "101" => DOUT2 <= DIN2(5);
 when "110" => DOUT2 <= DIN2(6);
 when "111" => DOUT2 <= DIN2(7);
 when others => DOUT2 <= DIN2(0);
 end case;

 -- A MUX_OP will be inferred for DOUT3 from the
 -- infer_mux pragma placed on this case statement

 case SEL3 is -- synopsys infer_mux
 when "00" => DOUT3 <= DIN3(0);
 when "01" => DOUT3 <= DIN3(1);
 when "10" => DOUT3 <= DIN3(2);
 when "11" => DOUT3 <= DIN3(3);
 when others => DOUT3 <= DIN3(0);
 end case;
 end process;

end rtl;

Example 3-6 shows the MUX_OP inference report for the code in Example 3-5. The tool
displays inference reports by default. If you do not want these reports displayed, you can
turn them off using the hdlin_reporting_level variable. For more information about the
hdlin_reporting_level variable, see “Elaboration Reports” on page 1-9.
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-15
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-15

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 3-6 Inference Report for the Process in Example 3-5
 Statistics for MUX_OPs
===
| block name/line | Inputs | Outputs | # sel inputs | MB |
===
| proc1/24 | 8 | 1 | 3 | N |
| proc2/55 | 4 | 1 | 2 | N |
===

Figure 3-6 HDL Compiler Implementation

MUX_OP Inference Limitations
HDL Compiler does not infer MUX_OP cells for

• case statements in while loops

• case statements embedded in if-then-else statements, unless the case statement
appears in an if (CLK’event...) or in an elsif (CLK’event...) branch in the VHDL description

MUX_OP cells are inferred for incompletely specified case statements, such as case
statements that

• Contain an if statement or an others clause that covers more than one value

• Have a missing case statement branch or a missing assignment in a case statement
branch

MUX_OP

MUX_OP

SELECT_OP

DIN1

DIN2

DIN3

SEL2

SEL1

SEL3

DOUT3

DOUT2

DOUT1

selection logic
Chapter 3: Modeling Combinational Logic
Multiplexing Logic 3-16

HDL Compiler for VHDL User Guide Version D-2010.03
• Contain don’t care values (X or "-")

• Are in an elsif (CLK’event...) branch

but the logic might be nonoptimum, because other optimizations are disabled when you infer
MUX_OP cells under these conditions. For example, HDL Compiler optimizes default
branches by default. If the infer_mux attribute is on the case statement, this optimization is
not done.

When inferring a MUX_OP for an incompletely specified case statement, HDL Compiler
generates the following ELAB-304 warning:

Warning: Case statement has an infer_mux attribute and a
default branch or incomplete mapping. This can cause

nonoptimal logic if a mux is inferred. (ELAB-304)

Unintended Latches and Feedback Paths in
Combinational Logic

HDL Compiler infers a latch when a signal or variable in a combinational process (one
without a wait or if signal’event statement) is not fully specified in the VHDL description. A
variable or signal is fully specified when it is assigned under all possible conditions. A
variable or signal is not fully specified when a condition exists under which the variable is not
assigned.

Example 3-7 shows several variables. A, B, and C are fully specified; X is not.

Example 3-7 Variable X Is Not Fully Specified
process (COND1)
 variable A, B, C, X : BIT;
begin
 A := ’0’ -- A is fully specified
 C := ’0’ -- C is fully specified

 if (COND1) then
 B := ’1’; -- B is assigned when COND1 is TRUE
 C := ’1’; -- C is already fully specified
 X := ’1’; -- X is assigned when COND1 is TRUE
 else
 B := ’0’; -- B is assigned when COND1 is FALSE
 end if;

 -- B is assigned under all branches of if (COND1),
 -- that is, both when COND1 is TRUE and when
 -- COND1 is FALSE, so B is fully specified.

 -- C is assigned regardless of COND1, so C is fully
 -- specified. (The second assignment to C does
Chapter 3: Modeling Combinational Logic
Unintended Latches and Feedback Paths in Combinational Logic 3-17
Chapter 3: Modeling Combinational Logic
Unintended Latches and Feedback Paths in Combinational Logic 3-17

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 -- not change this.)

 -- X is not assigned under all branches of
 -- if (COND1), namely, when COND1 is FALSE,
 -- so X is not fully specified.
end process;
...

The conditions of each if and else statement are considered independent in Example 3-7.

In Example 3-8, variable A is not fully specified.

Example 3-8 Variable A Is Not Fully Specified
if (COND1) then
 A <= ’1’;
end if;

if (not COND1) then
 A <= ’0’;
end if;

A variable or signal that is not fully specified is considered conditionally specified, and HDL
Compiler infers a latch to store the variable value. You can conditionally assign a variable,
but you cannot read a conditionally specified variable. You can, however, both conditionally
assign and read a signal.

If a fully specified variable is read before its assignment statements, combinational feedback
might exist. For example, the following fragment synthesizes combinational feedback for
VAL.

process(D, LOAD)
 variable VAL: BIT;
begin
 if (LOAD = '1') then
 VAL := D;
 else
 VAL := VAL;
 end if;
 VAL_OUT <= VAL;
end process;

In a combinational process, you can ensure that a variable or signal is fully specified, by
providing an initial (default) assignment to the variable at the beginning of the process. This
default assignment ensures that the variable is always assigned a value, regardless of
conditions. Subsequent assignment statements can override the default. A default
assignment is made to variables A and C in
Example 3-7.
Chapter 3: Modeling Combinational Logic
Unintended Latches and Feedback Paths in Combinational Logic 3-18

HDL Compiler for VHDL User Guide Version D-2010.03
Another way to ensure that you do not imply combinational feedback is to use a sequential
process (one with a wait or if signal’event statement). In such a case, variables and signals
are registered. The registers break the combinational feedback loop.

HDL Compiler infers latches for incompletely specified case statements that use an others
clause, where the others clause covers more than one value. To avoid latch inference, use
a default statement before the case statements.
Chapter 3: Modeling Combinational Logic
Unintended Latches and Feedback Paths in Combinational Logic 3-19
Chapter 3: Modeling Combinational Logic
Unintended Latches and Feedback Paths in Combinational Logic 3-19

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Chapter 3: Modeling Combinational Logic
Unintended Latches and Feedback Paths in Combinational Logic 3-20

4
Modeling Sequential Logic 4

This chapter contains the following sections, which describe how to infer latches and
flip-flops:

• Generic Sequential Cells (SEQGENs)

• Inference Reports for Flip-Flops and Latches

• Register Inference Variables

• Register Inference Attributes

• Inferring D and Set/Reset (SR) Latches

• Inferring D Flip-Flops

• Inferring JK Flip-Flops

• Inferring Master-Slave Latches

• Limitations of Register Inference

• Unloaded Sequential Cell Preservation
4-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Generic Sequential Cells (SEQGENs)

When HDL Compiler reads a design, it uses generic sequential cells (SEQGENs), shown in
Figure 4-1, to represent inferred flip-flops and latches.

Figure 4-1 SEQGEN Cell and Pin Assignments

To illustrate how HDL Compiler uses SEQGENs to implement a flip-flop, consider
Example 4-1. This code infers a D flip-flop with an asynchronous reset.

Example 4-1 D Flip-Flop With Asynchronous Reset
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async_reset is
 port (DATA, CLK, RESET : in std_logic;
 Q : out std_logic);
end dff_async_reset;

architecture rtl of dff_async_reset is
begin
process (CLK, RESET) begin
 if (RESET = '1') then
 Q <= '0';
 elsif (CLK'event and CLK = '1') then
 Q <= DATA;
 end if;
end process;

end rtl;

SEQGEN

synch_toggle

synch_preset

synch_enable

synch_clear

preset

next_state

enable

data_in

clocked_on

clear

QN

Q

Chapter 4: Modeling Sequential Logic
Generic Sequential Cells (SEQGENs) 4-2

HDL Compiler for VHDL User Guide Version D-2010.03
Figure 4-2 shows the SEQGEN implementation.

Figure 4-2 D Flip-flop With an Asynchronous Reset: HDL Compiler SEQGEN Implementation

After Design Compiler compiles the design, SEQGENs are mapped to the appropriate latch
or flip-flop in the technology library. Figure 4-3 shows an example implementation after
compile.

Figure 4-3 D Flip-flop with an Asynchronous Reset: Design Compiler Implementation

Note:
If the technology library does not contain the specific inferred flip-flop or latch, Design
Compiler creates combinational logic for the missing function, if possible. For example, if
you infer a D flip-flip with a synchronous set but your target technology library does not
contain this type of flip-flop, Design Compiler will create combinational logic for the
synchronous set function. Design Compiler cannot create logic to duplicate an
asynchronous preset/reset. Your library must contain the sequential cell with the
asynchronous control pins.

synch_toggle

synch_preset

synch_enable

synch_clear

preset

next_state

enable

data_in

clocked_on

clear

Q

RESET

CLK

DATA

Q

Logic 0

Logic 1

SEQGEN

QN

Q_reg

data_in

clocked_on

clear
Q

RESET

CLK
Q

DATA
Chapter 4: Modeling Sequential Logic
Generic Sequential Cells (SEQGENs) 4-3
Chapter 4: Modeling Sequential Logic
Generic Sequential Cells (SEQGENs) 4-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Inference Reports for Flip-Flops and Latches

HDL Compiler provides inference reports that describe each inferred flip-flop or latch. You
can enable or disable the generation of inference reports by using the
hdlin_reporting_level variable. By default, hdlin_reporting_level is set to basic.
When hdlin_reporting_level is set to basic or comprehensive, HDL Compiler
generates a report similar to Example 4-2. This basic inference report shows only which
type of register was inferred.

Example 4-2 Inference Report for a D Flip-Flop With Asynchronous Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
===

In the report, the columns are abbreviated as follows:

• MB represents multibit cell

• AR represents asynchronous reset

• AS represents asynchronous set

• SR represents synchronous reset

• SS represents synchronous set

• ST represents synchronous toggle

A “Y” in a column indicates that the respective control pin was inferred for the register; an
“N” indicates that the respective control pin was not inferred for the register. For a D flip-flop
with an asynchronous reset, there should be a “Y” in the AR column. The report also
indicates the type of register inferred, latch or flip-flop, and the name of the inferred cell.

When the hdlin_reporting_level variable is set to verbose, the report indicates how
each pin of the SEQGEN cell is assigned, along with which type of register was inferred.
Example 4-3 shows a verbose inference report.

Example 4-3 Verbose Inference Report for a D Flip-Flop With Asynchronous Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
===

Sequential Cell (Q_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: RESET
Chapter 4: Modeling Sequential Logic
Inference Reports for Flip-Flops and Latches 4-4

HDL Compiler for VHDL User Guide Version D-2010.03
Async Set: 0
Async Load: 0
Sync Clear: 0
Sync Set: 0
Sync Toggle: 0
Sync Load: 1

If you do not want inference reports, set hdlin_reporting_level to none. For more
information about the hdlin_reporting_level variable, see “Elaboration Reports” on
page 1-9.

Register Inference Variables

The variables in Table 4-1 control register inference. These are set before the design is read
and apply to all applicable cells in the design. Use of these variables may have unintended
consequences. For example, when the hdlin_ff_always_sync_set_reset variable is set
to true, HDL Compiler treats every signal in every process as though the sync_set_reset
directive is attached to it. Therefore, it checks all processes for all constant (0 or 1)
assignments for a register input. The control for these constant-assigned signals becomes
part of the set/reset logic.

Table 4-1 Variables That Control Register Inference

Variable Description

hdlin_keep_feedback
(Default is false.)

When this variable is true, HDL Compiler keeps all flip-flop feedback
loops.

When this variable is false, HDL Compiler removes all flip-flop feedback
loops. For example, HDL Compiler removes feedback loops inferred
from a statement such as Q=Q. Removing the state feedback from a
simple D flip-flop creates a synchronous loaded flip-flop.

hdlin_ff_always_
sync_set_reset
(Default is false.)

When this variable is true, HDL Compiler attempts to infer synchronous
set and reset conditions for all flip-flops.

hdlin_ff_always_
async_set_reset
(Default is false.)

When this variable is true, HDL Compiler attempts to infer asynchronous
set and reset conditions for all flip-flops.
Chapter 4: Modeling Sequential Logic
Register Inference Variables 4-5
Chapter 4: Modeling Sequential Logic
Register Inference Variables 4-5

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Register Inference Attributes

Use the attributes in Table 4-2 to direct HDL Compiler to the type of sequential device you
want inferred. Attributes are added to the RTL on specific processes.

Table 4-2 Attributes for Controlling Register Inference

Attribute Description

async_set_reset When a single-bit signal has this attribute set to true, HDL Compiler
searches for a branch that uses the signal as a condition and then checks
whether the branch contains an assignment to a constant value. If the
branch does, the signal becomes an asynchronous reset or set. See
Example 4-4 on page 4-8, Example 4-11 on page 4-12, and
Example 4-13 on page 4-13. Attach this attribute to 1-bit signals by using
the following syntax:

attribute async_set_reset of signal_name_list : signal is "true";

async_set_reset_local VHDL Compiler treats listed signals in the specified process as if they
have the async_set_reset attribute set to true.

Attach this attribute to a process label by using the following syntax:
attribute async_set_reset_local of process_label : label is
"signal_name_list";

async_set_reset_local_a
ll

VHDL Compiler treats all signals in the specified processes as if they
have the async_set_reset attribute set to true.

Attach this attribute to process labels by using the following syntax:
attribute async_set_reset_local_all of process_label_list :
label is "true";

sync_set_reset When a single-bit signal has this attribute set to true, HDL Compiler
checks the signal to determine whether it synchronously sets or resets a
register in the design. See Example 4-33 on page 4-23 and
Example 4-35 on page 4-25. Attach this attribute to 1-bit signals by using
the following syntax:

attribute sync_set_reset of signal_name_list : signal is "true";

sync_set_reset_local VHDL Compiler treats listed signals in the specified process as if they
have the sync_set_reset attribute set to true.

Attach this attribute to a process label by using the following syntax:
attribute sync_set_reset_local of process_label : label is
"signal_name_list";
Chapter 4: Modeling Sequential Logic
Register Inference Attributes 4-6

HDL Compiler for VHDL User Guide Version D-2010.03
Inferring D and Set/Reset (SR) Latches

This section describes how to infer SR and D latches, in the following subsections:

• Inferring SR Latches

• Inferring D Latches

• Limitations of D Latch Inference

sync_set_reset_local
_all

VHDL Compiler treats all signals in the specified processes as if they
have the sync_set_reset attribute set to true.

Attach this attribute to process labels by using the following syntax:
attribute sync_set_reset_local_all of process_label_list :
label is "true";

one_cold
one_hot

These attributes prevent HDL Compiler from implementing
priority-encoding logic for the set and reset signals and are useful if you
know your design has a one-hot or one-cold implementation. See
Example 4-15 on page 4-14, Example 4-31 on page 4-22, and
Example 4-43 on page 4-32. Attach the attributes to set or reset signals
on sequential devices by using the following syntax:

attribute one_cold signal_name_list : signal is "true";
or
attribute one_hot signal_name_list : signal is "true";

You might want to add an assertion to the VHDL code to ensure that the
group of signals has a one-cold or one-hot implementation. HDL
Compiler does not produce any logic to check this assertion.

clocked_on_also This attribute is set with the set_signal_type command in an
embedded Design Compiler script and used for master-slave inference.
See “Inferring Master-Slave Latches” on page 4-33.

Table 4-2 Attributes for Controlling Register Inference (Continued)

Attribute Description
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-7
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-7

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Inferring SR Latches
Use SR latches with caution, because they are difficult to test. Design Compiler does not
ensure that the logic driving the inputs is hazard-free, so you must verify that the inputs are
hazard-free and do not glitch. Example 4-4 provides the VHDL code that implements the SR
latch described in the truth table in Table 4-3. Example 4-5 shows the inference report
generated by HDL Compiler.

Example 4-4 SR Latch
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity sr_latch is
 port (SET, RESET : in std_logic;
 Q : out std_logic);
 attribute async_set_reset of SET, RESET :
 signal is "true";
end sr_latch;

architecture rtl of sr_latch is
begin
process (SET, RESET) begin
 if (SET = '0') then
 Q <= '1';
 elsif (RESET = '0') then
 Q <= '0';
 end if;
end process;

end rtl;

Example 4-5 Inference Report for an SR Latch
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | Y | Y | - | - | - |

Table 4-3 SR Latch Truth Table (NAND Type)

Set Reset y

0 0 Not stable

0 1 1

1 0 0

1 1 y
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-8

HDL Compiler for VHDL User Guide Version D-2010.03
===

Sequential Cell (Q_reg)
 Cell Type: Latch
 Multibit Attribute: N
 Clock: 0
 Async Clear: RESET'
 Async Set: SET'
 Async Load: 0

Inferring D Latches
The following sections provide code examples and inference reports for D latches:

• Overview—Latch Inference

• Basic D Latch

• D Latch With Asynchronous Set

• D Latch With Asynchronous Reset

• D Latch With Asynchronous Set and Reset

Overview—Latch Inference
When you do not specify a variables value under all conditions, such as an incompletely
specified if statement, HDL Compiler infers a D latch.

For example, the if statement in Example 4-6 infers a D latch, because there is no else
clause. The resulting value for output Q is specified only when input enable has a logic 1
value. As a result, output Q becomes a latched value.

Example 4-6 Latch Inference
process(DATA, GATE) begin
 if (GATE = ’1’) then
 Q <= DATA;
 end if;
end process;

To avoid latch inference, assign a value to the signal under all conditions, as shown in
Example 4-7.
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-9
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-9

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-7 Fully Specified Signal: No Latch Inference
process(DATA, GATE) begin
 if (GATE = ’1’) then
 Q <= DATA;
 else
 Q <= ’0’;
 end if;
end process;

Variables declared locally within a subprogram do not hold their value over time, because
each time a subprogram is called, its variables are reinitialized. Therefore, HDL Compiler
does not infer latches for variables declared in subprograms. In Example 4-8, HDL Compiler
does not infer a latch for output Q.

Example 4-8 Function: No Latch Inference
function MY_FUNC(DATA, GATE : std_logic) return std_logic is
 variable STATE: std_logic;
begin
 if (GATE = ’1’) then
 STATE := DATA;
 end if;
 return STATE;
end;
. . .
Q <= MY_FUNC(DATA, GATE);

Basic D Latch
When you infer a D latch, make sure you can control the gate and data signals from the
top-level design ports or through combinational logic. Controllable gate and data signals
ensure that simulation can initialize the design.

Example 4-9 provides the VHDL template for a D latch. HDL Compiler generates the
verbose inference report shown in
Example 4-10.
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-10

HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-9 Basic D Latch
library IEEE;
use IEEE.std_logic_1164.all;

entity d_latch is
 port (GATE, DATA: in std_logic;
 Q : out std_logic);
end d_latch;

architecture rtl of d_latch is
begin
process (GATE, DATA) begin
 if (GATE = '1') then
 Q <= DATA;
 end if;
end process;

end rtl;

Example 4-10 Verbose Inference Report for a D Latch
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | N | N | - | - | - |
===

Sequential Cell (Q_reg)
 Cell Type: Latch
 Multibit Attribute: N
 Clock: 0
 Async Clear: 0
 Async Set: 0
 Async Load: GATE

D Latch With Asynchronous Set
Use the async_set_reset attribute to specify the asynchronous set or reset controls. HDL
Compiler examines the polarity of the constants assigned to the signals with the
async_set_reset attribute to determine if the signal is an AR (’0’) or an AS (’1’).

Example 4-11 provides the VHDL template for a D latch with an asynchronous set. HDL
Compiler generates the verbose inference report shown in Example 4-12.
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-11
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-11

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-11 D Latch With Asynchronous Set
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async_set is
 port (GATE, DATA, SET : in std_logic;
 Q : out std_logic);
 attribute async_set_reset of SET :
 signal is "true";
end d_latch_async_set;

architecture rtl of d_latch_async_set is
begin
process (GATE, DATA, SET) begin
 if (SET = '0') then
 Q <= '1';
 elsif (GATE = '1') then
 Q <= DATA;
 end if;
end process;

end rtl;

Example 4-12 Verbose Inference Report for a D Latch With Asynchronous Set
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | N | Y | - | - | - |
===

Sequential Cell (Q_reg)
 Cell Type: Latch
 Multibit Attribute: N
 Clock: 0
 Async Clear: 0
 Async Set: SET'
 Async Load: GATE

D Latch With Asynchronous Reset
Use the async_set_reset attribute to specify asynchronous set or reset controls.

Example 4-13 provides the VHDL template for a D latch with an asynchronous reset. HDL
Compiler generates the verbose inference report shown in Example 4-14.
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-12

HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-13 D Latch With Asynchronous Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async_reset is
 port (GATE, DATA, RESET : in std_logic;
 Q : out std_logic);
 attribute async_set_reset of RESET :
 signal is "true";
end d_latch_async_reset;

architecture rtl of d_latch_async_reset is
begin
process (GATE, DATA, RESET) begin
 if (RESET = '0') then
 Q <= '0';
 elsif (GATE = '1') then
 Q <= DATA;
 end if;
end process;
end rtl;

Example 4-14 Inference Report for D Latch With Asynchronous Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | Y | N | - | - | - |
===

Sequential Cell (Q_reg)
 Cell Type: Latch
 Multibit Attribute: N
 Clock: 0
 Async Clear: RESET'
 Async Set: 0
 Async Load: GATE

D Latch With Asynchronous Set and Reset
Example 4-15 provides the VHDL template for a D latch with an active-low asynchronous
set and reset. This template uses the async_set_reset attribute to direct HDL Compiler to
the asynchronous signals in the process.

The template in Example 4-15 uses the one_cold attribute to prevent priority encoding of
the set and reset signals. If you do not specify the one_cold attribute, the set signal has
priority, because it is used as the condition for the if clause. Use one_cold for active-low
signals and one_hot for active-high signals. Example 4-16 shows the verbose inference
report.
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-13
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-13

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-15 D Latch With Asynchronous Set and Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;
entity d_latch_async is
 port (GATE, DATA, SET, RESET :in std_logic;
 Q : out std_logic);
 attribute one_cold of SET, RESET :
 signal is "true";
end d_latch_async;
architecture rtl of d_latch_async is
 attribute async_set_reset of SET, RESET :
 signal is "true";
begin
process (GATE, DATA, SET, RESET) begin
 if (SET = '0') then
 Q <= '1';
 elsif (RESET = '0') then
 Q <= '0';
 elsif (GATE = '1') then
 Q <= DATA;
 end if;
end process;
end rtl;

Example 4-16 Inference Report for D Latch With Asynchronous Set and Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | Y | Y | - | - | - |
===

Sequential Cell (Q_reg)
 Cell Type: Latch
 Multibit Attribute: N
 Clock: 0
 Async Clear: RESET'
 Async Set: SET'
 Async Load: GATE

Limitations of D Latch Inference
A variable must always have a value before it is read. As a result, you cannot read a
conditionally assigned variable after the if statement in which it is assigned. A conditionally
assigned variable is assigned a new value under some, but not all, conditions. Example 4-17
shows an invalid use of the conditionally assigned variable VALUE.
Chapter 4: Modeling Sequential Logic
Inferring D and Set/Reset (SR) Latches 4-14

HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-17 Invalid Use of a Conditionally Assigned Variable
signal X, Y : std_logic;
. . .
process
 variable VALUE : std_logic;
begin

 if (condition) then
 VALUE := X;
 end if;

 Y <= VALUE; -- Invalid read of variable VALUE
end;

Inferring D Flip-Flops

The following subsections describe various types of D flip-flop inference:

• Overview—Inferring D Flip-Flops

• Enabling Conditions in if Statements

• Positive-Edge-Triggered D Flip-Flop

• Negative-Edge-Triggered D Flip-Flop

• D Flip-Flop With Asynchronous Set

• D Flip-Flop With Asynchronous Reset

• D Flip-Flop With Asynchronous Set and Reset

• D Flip-Flop With Synchronous Set

• D Flip-Flop With Synchronous Reset

• D Flip-Flop With Complex Set/Reset Signals

• D Flip-Flop With Synchronous and Asynchronous Load

• Multiple Flip-Flops: Asynchronous and Synchronous Controls
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-15
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-15

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Overview—Inferring D Flip-Flops
HDL Compiler infers a D flip-flop whenever the condition of a wait or if statement uses an
edge expression. Use the following syntax to describe a rising edge:

SIGNAL’event and SIGNAL = ’1’

Use the following syntax to describe a falling edge:

SIGNAL’event and SIGNAL = ’0’

If you are using the IEEE std_logic_1164 package, you can use the following syntax to
describe a rising edge and a falling edge:

if (rising_edge (CLK)) then

if (falling_edge (CLK)) then

You can use the following syntax for a bused clock. You can also use a member of a bus as
a signal.

sig(3)’event and sig(3) = ’1’

rising_edge (sig(3))

If possible, use the if statement, because it provides greater control over the inferred
registers. Only one wait statement per process is allowed.

In a process that models sequential logic, HDL Compiler allows statements to precede or to
follow the if statement as long as no statement following the if statement tries to write a value
that is assigned within the if statement. See Example 4-18.

Example 4-18 HDL Compiler Supports Statements Preceding and Following if ck'EVENT
P: process (ck)
 variable X, Y: BIT;
 begin
 Y := not D; -- assignment before the if statement
 if ck'EVENT and ck = '1' then
 X := D;
 end if;
 Q <= X and Y; -- assignment after the if statement
 end process;

There are cases in which statements appearing before the if statement would make the
code unsynthesizable. Specifically, when the statements preceding the if statement writes to
a variable that was also written to within the if body, as shown in Example 4-19, the code
would not be synthesizable.
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-16

HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-19 Code Cannot Be Synthesized—if ck'EVENT Statement Writes to a Variable
Written to in Body

P: process (ck)
 variable X: BIT;
 begin
 X := D1;
 if ck'EVENT and CK = '1' then
 X := D2; -- conflicts with previous assignment
 end if;
 Q <= X;
 end process;

Enabling Conditions in if Statements
HDL Compiler allows conditions in the test of the if statement that are not part of the clock
edge test. When other conditions appear in the test, HDL Compiler synthesizes them by
assuming they are enable conditions. HDL Compiler also recognizes permutations of the
conditions in the if statement. Example 4-20 shows the coding style supported by HDL
Compiler.

Example 4-20 HDL Compiler Supports Enabling Expressions in if Statements
process (ck)
begin
 if (ck = ’1’ and en = ’1’ and ck'EVENT) then
 --sequential_statements
 end if;
end process;

Positive-Edge-Triggered D Flip-Flop
When you infer a D flip-flop, make sure you can control the clock and data signals from the
top-level design ports or through combinational logic. Controllable clock and data signals
ensure that simulation can initialize the design. If you cannot control the clock and data
signals, infer a D flip-flop with asynchronous reset or set, or with synchronous reset or set.

Example 4-21 uses the 'event attribute and Example 4-22 uses the rising_edge function to
code a positive-edge-triggered D flip-flop. Example 4-23 shows the verbose inference
report.

Example 4-21 Positive-Edge-Triggered D Flip-Flop Using ‘event Attribute
library IEEE ;
use IEEE.std_logic_1164.all;

entity dff_pos is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_pos;
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-17
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-17

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
architecture rtl of dff_pos is
begin
process (CLK) begin
 if (CLK'event and CLK = '1') then
 Q <= DATA;
 end if;
end process;
end rtl;

Example 4-22 Positive-Edge-Triggered D Flip-Flop Using rising_edge
library IEEE ;
use IEEE.std_logic_1164.all;

entity dff_pos is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_pos;
architecture rtl of dff_pos is
begin
process (CLK) begin
 if (rising_edge (CLK)) then
 Q <= DATA;
 end if;
end process;
end rtl;

Example 4-23 Inference Report for Positive-Edge-Triggered D Flip-Flop
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
==

Sequential Cell (Q_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: 0
Async Set: 0
Async Load: 0
Sync Clear: 0
Sync Set: 0
Sync Toggle: 0
Sync Load: 1
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-18

HDL Compiler for VHDL User Guide Version D-2010.03
Negative-Edge-Triggered D Flip-Flop
Example 4-24 uses the ‘event attribute and Example 4-25 uses the falling_edge function to
code a negative-edge-triggered D flip-flop.

HDL Compiler generates the verbose inference report shown in Example 4-26.

Example 4-24 Negative-Edge-Triggered D Flip-Flop Using ‘event
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_neg is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_neg;

architecture rtl of dff_neg is
begin
process (CLK) begin
 if (CLK'event and CLK = '0') then
 Q <= DATA;
 end if;
end process;
end rtl;

Example 4-25 Negative-Edge-Triggered D Flip-Flop Using falling_edge
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_neg is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_neg;

architecture rtl of dff_neg is
begin
process (CLK) begin
 if (falling_edge (CLK)) then
 Q <= DATA;
 end if;
end process;

end rtl;

Example 4-26 Inference Report for Negative-Edge-Triggered D Flip-Flop
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-19
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-19

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Sequential Cell (Q_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK'
Async Clear: 0
Async Set: 0
Async Load: 0
Sync Clear: 0
Sync Set: 0
Sync Toggle: 0
Sync Load: 1

D Flip-Flop With Asynchronous Set
Example 4-27 provides the VHDL template for a D flip-flop with an asynchronous set. HDL
Compiler generates the verbose inference report shown in Example 4-28.

Example 4-27 D Flip-Flop With Asynchronous Set
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async_set is
 port (DATA, CLK, SET : in std_logic;
 Q : out std_logic);
end dff_async_set;

architecture rtl of dff_async_set is
begin
process (CLK, SET) begin
 if (SET = '0') then
 Q <= '1';
 elsif (CLK'event and CLK = '1') then
 Q <= DATA;
 end if;
end process;
end rtl;

Example 4-28 Inference Report for a D Flip-Flop With Asynchronous Set
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop| 1 | N | N | N | Y | N | N | N |
===

Sequential Cell (Q_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: 0
Async Set: SET'
Async Load: 0
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-20

HDL Compiler for VHDL User Guide Version D-2010.03
Sync Clear: 0
Sync Set: 0
Sync Toggle: 0
Sync Load: 1

D Flip-Flop With Asynchronous Reset
Example 4-29 provides the VHDL template for a D flip-flop with an asynchronous reset. HDL
Compiler generates the verbose inference report shown in Example 4-30.

Example 4-29 D Flip-Flop With Asynchronous Reset
library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async_reset is
 port (DATA, CLK, RESET : in std_logic;
 Q : out std_logic);
end dff_async_reset;

architecture rtl of dff_async_reset is
begin
process (CLK, RESET) begin
 if (RESET = '1') then
 Q <= '0';
 elsif (CLK'event and CLK = '1') then
 Q <= DATA;
 end if;
end process;

end rtl;

Example 4-30 Inference Report for a D Flip-Flop With Asynchronous Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
===

Sequential Cell (Q_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: RESET
Async Set: 0
Async Load: 0
Sync Clear: 0
Sync Set: 0
Sync Toggle: 0
Sync Load: 1
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-21
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-21

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
D Flip-Flop With Asynchronous Set and Reset
Example 4-31 provides the VHDL template for a D flip-flop with active-high asynchronous
set and reset pins.

The template in Example 4-31 uses the one_hot attribute to prevent priority encoding of the
set and reset signals. If you do not specify the one_hot attribute, the reset signal has priority,
because it is used as the condition for the if clause. The one_cold attribute would be used
instead of the one_hot if you had active-low signals. HDL Compiler generates the verbose
inference report shown in Example 4-32.

Example 4-31 D Flip-Flop With Asynchronous Set and Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;
entity dff_async is
 port (DATA, CLK, SET, RESET : in std_logic;
 Q : out std_logic);
 attribute one_hot of SET, RESET : signal is "true";
end dff_async;

architecture rtl of dff_async is
begin
process (CLK, SET, RESET) begin
 if (RESET = '1') then
 Q <= '0';
 elsif (SET = '1') then
 Q <= '1';
 elsif (CLK'event and CLK = '1') then
 Q <= DATA;
 end if;
end process;
end rtl;

Example 4-32 Inference Report for a D Flip-Flop With Asynchronous Set and Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | Y | Y | N | N | N |
===

Sequential Cell (Q_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: RESET
Async Set: SET
Async Load: 0
Sync Clear: 0
Sync Set: 0
Sync Toggle: 0
Sync Load: 1
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-22

HDL Compiler for VHDL User Guide Version D-2010.03
D Flip-Flop With Synchronous Set
Use the sync_set_reset pragma to infer a D flip-flop with a synchronous set/reset. When
you compile your design, the SEQGEN inferred by HDL Compiler will be either

• Mapped to a flip-flop in the technology library with a synchronous set/reset pin or

• Mapped to a regular D flip-flop. In this case, Design Compiler builds synchronous set/
reset logic in front of the D pin.

The choice depends on which method provides a better optimization result.

It is important to use the sync_set_reset pragma to label the set/reset signal. This pragma
tells Design Compiler that the signal should be kept as close to the register as possible
during mapping, preventing a simulation/synthesis mismatch which can occur if the set/
reset signal is masked by an X during initialization in simulation.

Example 4-33 shows the recommended coding style for a synchronous set/reset
flip-flop,using the sync_set_reset pragma. HDL Compiler generates the verbose inference
report shown in Example 4-34

Example 4-33 D Flip-Flop With Synchronous Set
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity dff_sync_set is
 port (DATA, CLK, SET : in std_logic;
 Q : out std_logic);
 attribute sync_set_reset of SET : signal is "true";
end dff_sync_set;

architecture rtl of dff_sync_set is
begin
process (CLK) begin
 if (CLK'event and CLK = '1') then
 if (SET = '1') then
 Q <= '1';
 else
 Q <= DATA;
 end if;
 end if;
end process;

end rtl;
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-23
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-23

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-34 Inference Report for a D Flip-Flop With Synchronous Set
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | N | Y | N |
==

Sequential Cell (Q_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: 0
Async Set: 0
Async Load: 0
Sync Clear: 0
Sync Set: SET
Sync Toggle: 0
Sync Load: 1

D Flip-Flop With Synchronous Reset
Use the sync_set_reset pragma to infer a D flip-flop with a synchronous set/reset. When
you compile your design, the SEQGEN inferred by HDL Compiler will be mapped to a
flip-flop in the technology library with a synchronous set/reset pin or Design Compiler will
use a regular D flip-flop and build synchronous set/reset logic in front of the D pin. The
choice depends on which method provides a better optimization result.

It is important to use the sync_set_reset pragma to label the set/reset signal. This pragma
tells Design Compiler that the signal should be kept as close to the register as possible
during mapping, preventing a simulation/synthesis mismatch which can occur if the set/
reset signal is masked by an X during initialization in simulation.

Example 4-35 shows the recommended coding style for a synchronous set/reset flip-flop
using the sync_set_reset pragma. HDL Compiler generates the verbose inference report
shown in Example 4-36.
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-24

HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-35 D Flip-Flop With Synchronous Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity dff_sync_reset is
 port (DATA, CLK, RESET : in std_logic;
 Q : out std_logic);
 attribute sync_set_reset of RESET :
 signal is "true";
end dff_sync_reset;

architecture rtl of dff_sync_reset is
begin
process (CLK) begin
 if (CLK'event and CLK = '1') then
 if (RESET = '0') then
 Q <= '0';
 else
 Q <= DATA;
 end if;
 end if;
end process;

end rtl;

Example 4-36 Inference Report for a D Flip-Flop With Synchronous Reset
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | Y | N | N |
==

Sequential Cell (Q_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: 0
Async Set: 0
Async Load: 0
Sync Clear: RESET'
Sync Set: 0
Sync Toggle: 0
Sync Load: 1
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-25
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-25

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
D Flip-Flop With Complex Set/Reset Signals
While many set/reset signals are simple signals, some include complex logic. To enable
HDL Compiler to generate a clean set/reset (that is, one attached to only the appropriate
set/reset pin), use the following coding guidelines:

• Apply the appropriate set/reset attribute (sync_set_reset or async_set_reset) to
the set/reset signal. For example,

entity data is
 port (DATA : in std_logic;
 CLK : in std_logic;
 RESET: in std_logic;
 ENABLE : in std_logic;
 Q : out std_logic);
 attribute async_set_reset of RESET :
 signal is "true";
end data;

• Use no more than two operands in the set/reset logic expression conditional.

• Use the set/reset signal as the first operand in the set/reset logic expression conditional.

This coding style supports usage of the negation operator on the set/reset signal and the
logic expression. The logic expression can be a simple expression or any expression
contained inside parentheses. However, any deviation from these coding guidelines will not
be supported. For example, the following coding styles are not supported: using a
subscripted value as reset, using a more complex expression other than the OR of two
expressions, or using a rst (or ~rst) that does not appear as the first argument in the
expression.

Examples:

process(...)
 if (rst='1' OR logic_expression)
 q <= 0;

 else ...
 else ...

...

a <= rst OR NOT(a | b & c);
process(...)
if (a)
q = 0;
else ...;
else ...;
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-26

HDL Compiler for VHDL User Guide Version D-2010.03
...

process(...)
if (NOT rst OR NOT (a OR b OR c))
q = 0;
else ...
else ...

D Flip-Flop With Synchronous and Asynchronous Load
To infer a component with both synchronous and asynchronous controls, you must check
the asynchronous conditions before you check the synchronous conditions.

Example 4-37 provides the VHDL template for a D flip-flop with a synchronous load (called
SLOAD) and an asynchronous load (called ALOAD). HDL Compiler generates the verbose
inference report shown in Example 4-38.

Example 4-37 D Flip-Flop With Synchronous and Asynchronous Load

library IEEE;
use IEEE.std_logic_1164.all;

entity dff_a_s_load is
port(SLOAD, ALOAD, ADATA, SDATA,CLK : in std_logic; Q : out std_logic);
end dff_a_s_load;

architecture rtl of dff_a_s_load is

signal asyn_rst, asyn_set :std_logic ;
begin
asyn_set <= ALOAD AND (ADATA);
asyn_rst <= ALOAD AND NOT(ADATA);

process (CLK,asyn_set, asyn_rst)
begin
if (asyn_set ='1') then
Q <= '1';
elsif (asyn_rst ='1') then
q <= '0';
elsif (clk'event and clk ='1' and SLOAD = '1') then Q <= SDATA ; end if;
end process;

end rtl;

Example 4-38 Inference Report for a D Flip-Flop With Synchronous and Asynchronous Load
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS |ST |
===
| Q_reg | Flip-flop | 1 | N | N | Y | Y | N | N | N |
===
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-27
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-27

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Sequential Cell (Q_reg)
 Cell Type: Flip-Flop
 Multibit Attribute: N
 Clock: CLK
 Async Clear: ADATA' ALOAD
 Async Set: ADATA ALOAD
 Async Load: 0
 Sync Clear: 0
 Sync Set: 0
 Sync Toggle: 0
 Sync Load: SLOAD

Multiple Flip-Flops: Asynchronous and Synchronous Controls
If a signal is synchronous in one process but asynchronous in another, set both the
sync_set_reset and async_set_reset attributes on the signal.

In Example 4-39, the infer_sync process uses the reset signal as a synchronous reset and
the infer_async process uses the reset signal as an asynchronous reset. Example 4-40
shows the verbose inference report.

Example 4-39 Multiple Flip-Flops: Asynchronous and Synchronous Controls
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity multi_attr is
 port (DATA1, DATA2, CLK, RESET, SLOAD : in std_logic;
 Q1, Q2 : out std_logic);
end multi_attr;

architecture rtl of multi_attr is
 attribute async_set_reset of RESET :
 signal is "true";
 attribute sync_set_reset of RESET :
 signal is "true";
begin

infer_sync: process (CLK) begin
 if (CLK'event and CLK = '1') then
 if (RESET = '0') then
 Q1 <= '0';
 elsif (SLOAD = '1') then
 Q1 <= DATA1;
 end if;
 end if;
end process infer_sync;

infer_async: process (CLK, RESET) begin
 if (RESET = '0') then
 Q2 <= '0';
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-28

HDL Compiler for VHDL User Guide Version D-2010.03
 elsif (CLK'event and CLK = '1' and SLOAD = '1') then
 Q2 <= DATA2;
 end if;
end process infer_async;

end rtl;

Example 4-40 Inference Reports for Example 4-39
Inferred memory devices in process

in routine multi_attr line 17 in file
'/remote/vhdl_example/multi_attr.vhd'.

==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q1_reg | Flip-flop | 1 | N | N | N | N | Y | N | N |
==

Inferred memory devices in process
in routine multi_attr line 27 in file

'/remote/vhdl_example/multi_attr.vhd'.
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q2_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
==

Sequential Cell (Q1_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: 0
Async Set: 0
Async Load: 0
Sync Clear: RESET'
Sync Set: 0
Sync Toggle: 0
Sync Load: SLOAD

Sequential Cell (Q2_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: RESET'
Async Set: 0
Async Load: 0
Sync Clear: 0
Sync Set: 0
Sync Toggle: 0
Sync Load: SLOAD
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-29
Chapter 4: Modeling Sequential Logic
Inferring D Flip-Flops 4-29

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Inferring JK Flip-Flops

This section contains code examples and inference reports for the following types of JK
flip-flops:

• Basic JK Flip-Flop

• JK Flip-Flop With Asynchronous Set and Reset

Basic JK Flip-Flop
When you infer a JK flip-flop, make sure you can control the J, K, and clock signals from the
top-level design ports to ensure that simulation can initialize the design.

Example 4-41 provides the VHDL code that implements the JK flip-flop described in the
truth table in Table 4-4.

In the JK flip-flop, the J and K signals act as active-high synchronous set and reset. Use the
sync_set_reset attribute to indicate that the J and K signals are the synchronous set and
reset for the design.

Example 4-42 on page 4-31 shows the verbose inference report generated by HDL
Compiler.

Table 4-4 Truth Table for JK Flip-Flop

J K CLK Qn+1

0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising not (Qn)

X X Falling Qn
Chapter 4: Modeling Sequential Logic
Inferring JK Flip-Flops 4-30

HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-41 JK Flip-Flop
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity jk is
 port(J, K, CLK : in std_logic;
 Q_out : out std_logic);
 attribute sync_set_reset of J, K :
 signal is "true";
end jk;

architecture rtl of jk is
 signal Q : std_logic;
begin
process
 variable JK : std_logic_vector (1 downto 0);
begin
 wait until (CLK'event and CLK = '1');
 JK := (J & K);
 case JK is
 when "01" => Q <= '0';
 when "10" => Q <= '1';
 when "11" => Q <= not (Q);
 when "00" => Q <= Q;
 when others => Q <= 'X';
 end case;
end process;

Q_out <= Q;
end rtl;

Example 4-42 Inference Report for a JK Flip-Flop
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | Y | Y | N |
==

Sequential Cell (Q_reg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: 0
Async Set: 0
Async Load: 0
Sync Clear: J' K
Sync Set: J K'
Sync Toggle: 0
Sync Load: K
Chapter 4: Modeling Sequential Logic
Inferring JK Flip-Flops 4-31
Chapter 4: Modeling Sequential Logic
Inferring JK Flip-Flops 4-31

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
JK Flip-Flop With Asynchronous Set and Reset
Example 4-43 provides the VHDL template for a JK flip-flop with asynchronous set and
reset. Use the sync_set_reset attribute to indicate the JK function. Use the one_hot
attribute to prevent priority encoding of the set and reset signals. HDL Compiler generates
the verbose inference report shown in Example 4-44.

Example 4-43 JK Flip-Flop With Asynchronous Set and Reset
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity jk_async_sr is
 port (SET, RESET, J, K, CLK : in std_logic;
 Q_out : out std_logic);
 attribute sync_set_reset of J, K :
 signal is "true";
 attribute one_hot of SET,RESET : signal is "true";
end jk_async_sr;

architecture rtl of jk_async_sr is
 signal Q : std_logic;
begin
process (CLK, SET, RESET)
 variable JK : std_logic_vector (1 downto 0);
begin
 if (RESET = '1') then
 Q <= '0';
 elsif (SET = '1') then
 Q <= '1';
 elsif (CLK'event and CLK = '1') then
 JK := (J & K);
 case JK is
 when "01" => Q <= '0';
 when "10" => Q <= '1';
 when "11" => Q <= not(Q);
 when "00" => Q <= Q;
 when others => Q <= 'X';
 end case;
 end if;
end process;

Q_out <= Q;
end rtl;

Example 4-44 Inference Report for a JK Flip-Flop With
Asynchronous Set and Reset

==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | Y | Y | Y | Y | N |
==

Sequential Cell (Q_reg)
Chapter 4: Modeling Sequential Logic
Inferring JK Flip-Flops 4-32

HDL Compiler for VHDL User Guide Version D-2010.03
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: RESET
Async Set: SET
Async Load: 0
Sync Clear: J' K
Sync Set: J K'
Sync Toggle: 0
Sync Load: K

Inferring Master-Slave Latches

This section contains the following subsections:

• Master-Slave Latch Overview

• Master-Slave Latch: Single Master-Slave Clock Pair

• Master-Slave Latch: Multiple Master-Slave Clock Pairs

• Master-Slave Latch: Discrete Components

Master-Slave Latch Overview
Design Compiler infers master-slave latches by using the clocked_on_also attribute.

In your VHDL description, describe the master-slave latch as a flip-flop, using only the slave
clock. Specify the master clock as an input port, but do not connect it. In addition, set the
clocked_on_also attribute on the master clock port (called MCK in these examples).

This coding style requires that cells in the target technology library contain slave clocks
defined with the clocked_on_also attribute. The clocked_on_also attribute defines the
slave clocks in the cell’s state declaration. For more information about defining slave clocks
in the target technology library, see the Library Compiler User Guide.

If Design Compiler does not find any master-slave latches in the target technology library,
the tool leaves the master-slave generic cell (MSGEN) unmapped. Design Compiler does
not use D flip-flops to implement the equivalent functionality of the cell.

Note:
Although the vendor’s component behaves as a master-slave latch, Library Compiler
supports only the description of a master-slave flip-flop.
Chapter 4: Modeling Sequential Logic
Inferring Master-Slave Latches 4-33
Chapter 4: Modeling Sequential Logic
Inferring Master-Slave Latches 4-33

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Master-Slave Latch: Single Master-Slave Clock Pair
Example 4-45 provides the VHDL template for a master-slave latch.

See “dc_tcl_script_begin and dc_tcl_script_end” on page 6-7 for more information on the
dc_tcl_script_begin and dc_tcl_script_end compiler directives. HDL Compiler
generates the verbose inference report shown in Example 4-46.

Example 4-45 Master-Slave Latch
library IEEE;
use IEEE.std_Logic_1164.all;

entity mslatch is
 port(MCK, SCK, DATA : in std_logic;
 Q : out std_logic);
end mslatch;

architecture rtl of mslatch is
begin

--synopsys dc_tcl_script_begin
--set_attribute -type string MCK signal clocked_on_also
--set_attribute -type boolean MCK level_sensitive true
--synopsys dc_tcl_script_end

process(SCK, DATA) begin
 if (SCK'event and SCK= '1') then
 Q <= DATA;
 end if;
end process;

end rtl;

Example 4-46 Inference Report for a Master-Slave Latch
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===

Master-Slave Latch: Multiple Master-Slave Clock Pairs
If the design requires more than one master-slave clock pair, you must specify the
associated slave clock in addition to the clocked_on_also attribute. Example 4-47
illustrates the use of clocked_on_also with the associated_clock option.
Example 4-48 shows the verbose inference reports.
Chapter 4: Modeling Sequential Logic
Inferring Master-Slave Latches 4-34

HDL Compiler for VHDL User Guide Version D-2010.03
Example 4-47 Inferring Master-Slave Latches With Two Pairs of Clocks
library IEEE;
use IEEE.std_Logic_1164.all;

entity mslatch2 is
 port(SCK1, MCK1, DATA1, SCK2, MCK2, DATA2 : in std_logic;
 Q1, Q2 : out std_logic);
end mslatch2;

architecture rtl of mslatch2 is
begin

--synopsys dc_tcl_script_begin
--set_attribute -type string MCK1 signal clocked_on_also
--set_attribute -type boolean MCK1 level_sensitive true
--set_attribute -type string MCK1 associated_clock SCK1
--set_attribute -type string MCK2 signal clocked_on_also
--set_attribute -type boolean MCK2 level_sensitive true
--set_attribute -type string MCK2 associated_clock SCK2
--synopsys dc_tcl_script_end

process (SCK1, DATA1) begin
 if (SCK1'event and SCK1 = '1') then
 Q1 <= DATA1;
 end if;
end process;

process (SCK2, DATA2) begin
 if (SCK2'event and SCK2 = '1') then
 Q2 <= DATA2;
 end if;
end process;

end rtl;

Example 4-48 Inference Reports for Master-Slave Latch: Multiple Clock Pairs
Inferred memory devices in process
 in routine mslatch2 line 21 in file
 '../rtl/ch4.ex4.47.master.slave.latch.2clks.vhd'
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q1_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
==

Inferred memory devices in process
 in routine mslatch2 line 27 in file
 '../rtl/ch4.ex4.47.master.slave.latch.2clks.vhd'
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q2_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
==
Chapter 4: Modeling Sequential Logic
Inferring Master-Slave Latches 4-35
Chapter 4: Modeling Sequential Logic
Inferring Master-Slave Latches 4-35

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Master-Slave Latch: Discrete Components
If your target technology library does not contain master-slave latch components, you can
infer two-phase systems using two D latches. Example 4-49 shows a simple two-phase
system with clocks MCK and SCK. Example 4-50 shows the verbose inference reports.

Example 4-49 Two-Phase Clocks
library IEEE;
use IEEE.std_Logic_1164.all;

entity LATCH_VHDL is
 port(MCK, SCK, DATA: in std_logic;
 Q : out std_logic);
end LATCH_VHDL;

architecture rtl of LATCH_VHDL is
 signal TEMP : std_logic;
begin
process (MCK, DATA) begin
 if (MCK = '1') then
 TEMP <= DATA;
 end if;
end process;

process (SCK, TEMP) begin
 if (SCK = '1') then
 Q <= TEMP;
 end if;
end process;

end rtl;

Example 4-50 Inference Reports for Two-Phase Clocks
Inferred memory devices in process
 in routine LATCH_VHDL line 10 in file
 '/remote/vhdl_example/latch_vhdl.vhd'.
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| TEMP_reg | Latch | 1 | N | N | N | N | - | - | - |
===

Inferred memory devices in process
 in routine LATCH_VHDL line 15 in file
 '/remote/vhdl_example/latch_vhdl.vhd'.
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | N | N | - | - | - |
===
Chapter 4: Modeling Sequential Logic
Inferring Master-Slave Latches 4-36

HDL Compiler for VHDL User Guide Version D-2010.03
Sequential Cell (TEMP_reg)
 Cell Type: Latch
 Multibit Attribute: N
 Clock: 0
 Async Clear: 0
 Async Set: 0
 Async Load: MCK

Sequential Cell (Q_reg)
 Cell Type: Latch
 Multibit Attribute: N
 Clock: 0
 Async Clear: 0
 Async Set: 0
 Async Load: SCK

Limitations of Register Inference

For best results when inferring registers, restrict each process to inferring a single type of
memory cell, use the templates provided in this chapter, and understand the following
inference limitations.

HDL Compiler cannot infer the following components. You must instantiate them in your
VHDL description.

• Flip-flops and latches with three-state outputs

• Flip-flops with bidirectional pins

• Flip-flips with multiple clock inputs

• Multiport latches

• Register banks

Note:
Although you can instantiate flip-flops with bidirectional pins, Design Compiler
interprets these cells as black boxes.

If you use an if statement to infer D flip-flops, your design must meet the following
requirements:

• The edge expression, such as CLK’event rising_edge (CLK), must be the only condition
of an if or an elsif clause.

The following if statement is invalid, because it has multiple conditions in the if clause:

 if (edge and RST = ’1’)
Chapter 4: Modeling Sequential Logic
Limitations of Register Inference 4-37
Chapter 4: Modeling Sequential Logic
Limitations of Register Inference 4-37

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
• You can have only one edge expression in an if clause, and the if clause must not have
an else clause.

The following if statement is invalid, because you cannot include an else clause when
using an edge expression as the if or elsif condition:

if X > 5 then
 sequential_statement;
elsif edge then
 sequential_statement;
else
 sequential_statement;
end if;

• An edge expression cannot be part of another logical expression or be used as an
argument.

The following function call is invalid, because you cannot use the edge expression as an
argument:

 any_function(edge);

• If you are using only wait statements for sequential inferencing, only one wait statement
is allowed in a process. Coding styles using multiple wait statements, such as FSMs
using multiple wait statements, are not supported. The tool generates the following error
message if you use multiple wait statements in a process:

Presto does not support processes with multiple event
statements. (ELAB-336)

Unloaded Sequential Cell Preservation

HDL Compiler does not automatically keep unloaded or undriven flip-flops or latches in a
design. These cells are determined to be unnecessary and are removed during
optimization. You can use the hdlin_preserve_sequential variable to control which cells
to preserve:

• To preserve unloaded/undriven flip-flops and latches in your GTECH netlist, set
hdlin_preserve_sequential to all.

• To preserve all unloaded flip-flops only, set hdlin_preserve_sequential to ff.

• To preserve all unloaded latches only, set hdlin_preserve_sequential to latch.

• To preserve all unloaded sequential cells, including unloaded sequential cells that are
used solely as loop variables, set hdlin_preserve_sequential to
all+loop_variables.

• To preserve flip-flop cells only, including unloaded sequential cells that are used solely as
loop variables, set hdlin_preserve_sequential to ff+loop_variables.
Chapter 4: Modeling Sequential Logic
Unloaded Sequential Cell Preservation 4-38

HDL Compiler for VHDL User Guide Version D-2010.03
• To preserve unloaded latch cells only, including unloaded sequential cells that are used
solely as loop variables, set hdlin_preserve_sequential to latch+loop_variables.

Example 4-51 and Example 4-52 indicate which components are saved when
hdlin_preserve_sequential is set to all (the default is none). For more details about
hdlin_preserve_sequential, see the man page.

Important:
To preserve unloaded cells through compile, you also need to set
compile_delete_unloaded_sequential_cells to false (the default is true); otherwise,
Design Compiler will optimize them away.

Example 4-51 has hdlin_preserve_sequential set to all to save the unloaded cell sum2
and the combinational logic preceding it; note that the combinational logic after it is not
saved. If you also want to save the combinational logic after sum2, you need to recode the
design as shown in Example 4-52.

Example 4-51 Preserves an Unloaded Cell (sum2) and Two Adders
set hdlin_preserve_sequential = all
.
.
.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity seq_cell_ex2 is
 port(
 in1, in2, in3 : in std_logic_vector(1 downto 0);
 out_z : out std_logic_vector(1 downto 0);
 clk : in std_logic);
end seq_cell_ex2;

architecture rtl of seq_cell_ex2 is
 signal sum1, sum2 : std_logic_vector(1 downto 0);
 signal save : std_logic_vector(1 downto 0);
begin
process (clk) begin
 if (clk'event and clk = '1') then
 sum1 <= in1 + in2;
 sum2 <= in1 + in2 + in3; -- sum2 reg is saved

 end if;
end process;

out_z <= not sum1;
Chapter 4: Modeling Sequential Logic
Unloaded Sequential Cell Preservation 4-39
Chapter 4: Modeling Sequential Logic
Unloaded Sequential Cell Preservation 4-39

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
end rtl;

Example 4-52 preserves the sum2 register and all combinational logic before it.

Example 4-52 Preserves an Unloaded Cell (save) and Three Adders
set hdlin_preserve_sequential = all
.
.
.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity seq_cell_ex3 is
 port(
 in1, in2, in3 : in std_logic_vector(1 downto 0);
 out_z : out std_logic_vector(1 downto 0);
 clk : in std_logic);
end seq_cell_ex3;

architecture rtl of seq_cell_ex3 is

signal sum1, sum2 : std_logic_vector(1 downto 0);
signal save : std_logic_vector(1 downto 0);
begin
process (clk) begin
 if (clk'event and clk = '1') then
 sum1 <= in1 + in2;
 sum2 <= in1 + in2 + in3; -- this combinational logic
 -- is saved
 end if;
end process;

out_z <= not sum1;

process (clk) begin
 if (clk'event and clk = '1') then
 save <= sum1 + sum2; -- this combinational logic is saved
 end if;
end process;
end rtl;

Note:
By default, the hdlin_preserve_sequential variable does not preserve variables used
in for loops as unloaded registers. To preserve these variables, you must set
hdlin_preserve_sequential to ff+loop_variables.
Chapter 4: Modeling Sequential Logic
Unloaded Sequential Cell Preservation 4-40

HDL Compiler for VHDL User Guide Version D-2010.03
Note:
The tool does not distinguish between unloaded cells (those not connected to any output
port) and feedthroughs. See Example 4-53 for an example of a feedthrough.

Example 4-53 Feedthrough Example
entity reg1 is
 port (
 d0, clk : in bit;
 q0: out bit);
end entity reg1;

architecture behave of reg1 is
begin -- behave
 storage: process (clk)
 variable temp1, temp2 : bit;
 begin
 if clk'event and clk = '1' then
 temp1 := d0;
 temp2 := temp1;
 end if;
 q0 <= temp2;
 end process storage;
end behave;

With hdlin_preserve_sequential set to ff, HDL Compiler builds two registers: one for
the feedthrough cell temp1 and the other for the loaded cell temp2, as shown in the following
memory inference report:

Example 4-54 Feedthrough Register temp1
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| temp1_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
| temp2_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
==
Chapter 4: Modeling Sequential Logic
Unloaded Sequential Cell Preservation 4-41
Chapter 4: Modeling Sequential Logic
Unloaded Sequential Cell Preservation 4-41

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Chapter 4: Modeling Sequential Logic
Unloaded Sequential Cell Preservation 4-42

5
Inferring Three-State Logic 5

HDL Compiler infers a three-state buffer when you assign the value of Z to a signal or
variable. The Z value represents the high-impedance state. HDL Compiler infers one
three-state buffer per process. You can assign high-impedance values to single-bit or bused
signals (or variables). HDL Compiler does not provide any variables, attributes, or directives
to control the inference.

This chapter includes the following sections:

• Inference Report for Three-State Devices

• Inferring a Basic Three-State Driver

• Inferring One Three-State Buffer From a Single Process

• Inferring Two Three-State Buffers

• Three-State Buffer With Registered Enable

• Three-State Buffer With Registered Data

• Understanding the Limitations of Three-State Inference
5-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Inference Report for Three-State Devices

The hdlin_reporting_level variable determines whether HDL Compiler generates a
three-state inference report. If you do not want inference reports, set
hdlin_reporting_level to none. The default is basic, meaning that a report will be
generated. Example 5-1 shows a three-state inference report:

Example 5-1 Three-State Inference Report
Inferred tri-state devices in process

in routine three_state_basic line 11 in file
’/remote/..../tristate-basic.vhd’.

===
| Register Name | Type | Width | MB |
===
| OUT1_tri | Tri-State Buffer | 1 | N |
===
Presto compilation completed successfully.

The first column of the report indicates the name of the inferred three-state device. The
second column indicates the type of inferred device. The third column indicates the width of
the inferred device. The fourth column indicates whether the device is multibit.

HDL Compiler generates the same report for the default and verbose reports for three-state
inference. For more information about the hdlin_reporting_level variable, see
“Elaboration Reports” on page 1-9.

Inferring a Basic Three-State Driver

Example 5-2 provides the VHDL template for a basic three-state buffer. HDL Compiler
generates the inference report shown in Example 5-3. Figure 5-1 shows the compiled
output.

Example 5-2 Basic Three-State Buffer
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
entity three_state_basic is
port(IN1, ENABLE : in std_logic;
 OUT1 : out std_logic);
end;

architecture rtl of three_state_basic is
begin

process (IN1, ENABLE) begin
 if (ENABLE = ’1’) then
 OUT1 <= IN1;
 else
Chapter 5: Inferring Three-State Logic
Inference Report for Three-State Devices 5-2

HDL Compiler for VHDL User Guide Version D-2010.03
 OUT1 <= ’Z’; -- assigns high-impedance state
 end if;
end process;

end rtl;

Example 5-3 Inference Report for a Basic Three-State Buffer
===
| Register Name | Type | Width | MB |
===
| OUT1_tri | Tri-State Buffer | 1 | N |
===

Figure 5-1 A Basic Three-State Buffer

Inferring One Three-State Buffer From a Single Process

Example 5-4 provides an example of placing all high-impedance assignments in a single
process. In this case, the data is gated and HDL Compiler infers a single three-state buffer.
Example 5-5 shows the inference report.

Example 5-4 Inferring One Three-State Buffer From a Single Process
library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
 port (A, B, SELA, SELB : in std_logic ;
 T : out std_logic);
end three_state;

architecture rtl of three_state is
begin
infer : process (SELA, A, SELB, B) begin
 T <= ’Z’;
 if (SELA = ’1’) then
 T <= A;
 elsif (SELB = ’1’) then
Chapter 5: Inferring Three-State Logic
Inferring One Three-State Buffer From a Single Process 5-3
Chapter 5: Inferring Three-State Logic
Inferring One Three-State Buffer From a Single Process 5-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 T <= B;
 end if;
end process infer;

end rtl;

Example 5-5 Single Process Inference Report
===
| Register Name | Type | Width | MB |
===
| T_tri | Tri-State Buffer | 1 | N |
===

Inferring Two Three-State Buffers

Example 5-6 provides an example of placing each high-impedance assignment in a
separate process. In this case, HDL Compiler infers multiple three-state buffers.
Example 5-7 shows the inference report. Figure 5-2 shows the design.

Example 5-6 Inferring Two Three-State Buffers
library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
 port (A, B, SELA, SELB : in std_logic ;
 T : out std_logic);
end three_state;

architecture rtl of three_state is
begin
infer1 : process (SELA, A) begin
 if (SELA = ’1’) then
 T <= A;
 else
 T <= ’Z’;
 end if;
end process infer1;

infer2 : process (SELB, B) begin
 if (SELB = ’1’) then
 T <= B;
 else
 T <= ’Z’;
 end if;
end process infer2;

end rtl;
Chapter 5: Inferring Three-State Logic
Inferring Two Three-State Buffers 5-4

HDL Compiler for VHDL User Guide Version D-2010.03
Example 5-7 Inference Report for Two Three-State Buffers
===
| Register Name | Type | Width | MB |
===
| T_tri | Tri-State Buffer | 1 | N |
===

===
| Register Name | Type | Width | MB |
===
| T_tri2 | Tri-State Buffer | 1 | N |
===

Figure 5-2 Two Three-State Buffers
Chapter 5: Inferring Three-State Logic
Inferring Two Three-State Buffers 5-5
Chapter 5: Inferring Three-State Logic
Inferring Two Three-State Buffers 5-5

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Three-State Buffer With Registered Enable

When a variable, such as THREE_STATE in Example 5-8, is assigned to a register and
defined as a three-state buffer within the same process, HDL Compiler also registers the
enable pin of the three-state gate. Example 5-8 shows an example of this type of code, and
Example 5-9 shows the inference report. Figure 5-3 shows the schematic generated by the
code, a three-state buffer with a register on its enable pin.

Example 5-8 Inferring a Three-State Buffer With Registered Enable
library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
 port (DATA, CLK, THREE_STATE : in std_logic ;
 OUT1 : out std_logic);
end three_state;

architecture rtl of three_state is
begin
infer : process (THREE_STATE, CLK) begin
 if (THREE_STATE = ’0’) then
 OUT1 <= ’Z’;
 elsif (CLK’event and CLK = ’1’) then
 OUT1 <= DATA;
 end if;
end process infer;

end rtl;

Example 5-9 Inference Report for a Three-State Buffer With Registered Enable
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS
| ST |
===
| OUT1_reg | Flip-flop | 1 | N | N | N | N | N | N
| N |
|OUT1_tri_enable_reg| Flip-flop | 1 | N | N | N | N | N | N |
N |
===

===
| Register Name | Type | Width | MB |
===
| OUT1_tri | Tri-State Buffer | 1 | N |
===
Chapter 5: Inferring Three-State Logic
Three-State Buffer With Registered Enable 5-6

HDL Compiler for VHDL User Guide Version D-2010.03
Figure 5-3 Three-State Buffer With Registered Enable

Three-State Buffer With Registered Data

Example 5-10 uses two processes to instantiate a three-state buffer, with a flip-flop on the
input pin. Example 5-11 shows the inference report. Figure 5-4 shows the schematic
generated by the code.

Example 5-10 Three-State Buffer With Registered Data
library IEEE;
use IEEE.std_logic_1164.all;

entity ff_3state2 is
 port (DATA, CLK, THREE_STATE : in std_logic ;
 OUT1 : out std_logic);
end ff_3state2;

architecture rtl of ff_3state2 is
 signal TEMP : std_logic;
begin

process (CLK) begin
 if (CLK’event and CLK = ’1’) then
Chapter 5: Inferring Three-State Logic
Three-State Buffer With Registered Data 5-7
Chapter 5: Inferring Three-State Logic
Three-State Buffer With Registered Data 5-7

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 TEMP <= DATA;
 end if;
end process;

process (THREE_STATE, TEMP) begin
 if (THREE_STATE = ’0’) then
 OUT1 <= ’Z’;
 else
 OUT1 <= TEMP;
 end if;
end process;

end rtl;

Example 5-11 Inference Report for a Three-State Buffer With Registered Data
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS
| ST |
===
| TEMP_reg | Flip-flop | 1 | N | N | N | N | N | N
| N |
===

===
| Register Name | Type | Width | MB |
===
| OUT1_tri | Tri-State Buffer | 1 | N |
===

Figure 5-4 Three-State Buffer With Registered Data
Chapter 5: Inferring Three-State Logic
Three-State Buffer With Registered Data 5-8

HDL Compiler for VHDL User Guide Version D-2010.03
Understanding the Limitations of Three-State Inference

You can use the Z value as

• A signal assignment

• A variable assignment

• A function call argument

• A return value

• An aggregate definition

You cannot use the z value in an expression, except for concatenation and comparison with
z, such as in

if (IN_VAL = ’Z’) then y<=0 endif;

This is an example of permissible use of the z value in an expression, but it always evaluates
to false. So it is also a simulation/synthesis mismatch.

This code

OUT_VAL <= (’Z’ and IN_VAL);

is an example of an incorrect use of the z value in an expression. It is incorrect because it is
not a comparison expression. This code generates an error because HDL Compiler cannot
compute any expressions that use ’Z’ as an input.

Be careful when using expressions that compare with the z value. Design Compiler always
evaluates these expressions to false, and the pre-synthesis and post-synthesis simulation
results might differ. For this reason, HDL Compiler issues a warning when it synthesizes
such comparisons.
Chapter 5: Inferring Three-State Logic
Understanding the Limitations of Three-State Inference 5-9
Chapter 5: Inferring Three-State Logic
Understanding the Limitations of Three-State Inference 5-9

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Chapter 5: Inferring Three-State Logic
Understanding the Limitations of Three-State Inference 5-10

6
Directives, Attributes, and Variables 6

This chapter describes the directives, attributes, and HDL read variables supported by HDL
Compiler in the following sections:

• Directives

• Attributes

• Variables
6-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Directives

HDL Compiler directives are special comments that affect the actions of the Synopsys HDL
Compiler and Design Compiler. These comments are ignored by other VHDL tools. They
begin with two hyphens (--) and are followed by pragma or synopsys.

Note:
HDL Compiler displays a syntax error if an unrecognized directive is encountered after
--synopsys or --pragma.

This section describes the following directives:

• keep_signal_name

• template

• translate_off and translate_on

• synthesis_off and synthesis_on

• resolution_method

• rp_group and rp_endgroup

• rp_place

• rp_fill

• rp_array_dir

• rp_align

• rp_orient

• rp_ignore and rp_endignore

• map_to_entity and return_port_name

• dc_tcl_script_begin and dc_tcl_script_end

keep_signal_name
You can give HDL Compiler guideline information for keeping a signal name by using the
hdlin_keep_signal_name variable (default is all_driving) and the keep_signal_name
directive. For details, see “Keeping Signal Names” on page 2-40.
Chapter 6: Directives, Attributes, and Variables
Directives 6-2

HDL Compiler for VHDL User Guide Version D-2010.03
template
The template directive is used to read a design with a generic given that the generic default
is specified. See “Parameterized Models (Generics)” on page 1-19.

translate_off and translate_on
The code contained within these directives is ignored and treated as comments.

synthesis_off and synthesis_on
The code contained within these directives is ignored and treated as comments.

resolution_method
Resolution directives determine the resolution function associated with resolved signals.
HDL Compiler does not support arbitrary resolution functions. It only supports the following
three resolution methods:

-- synopsys resolution_method wired_and
-- synopsys resolution_method wired_or
-- synopsys resolution_method three_state

For more details, see “Resolution Functions” on page 2-42.

rp_group and rp_endgroup
The rp_group and rp_endgroup directives allow you to specify a relative placement group.
All cell instances declared between the rp_group and rp_endgroup directives are
members of the specified group. These directives are available for RTL designs and netlist
designs.

The VHDL syntax for RTL and netlist designs is as follows:

-- synopsys rp_group (group_name {num_cols num_rows})
-- synopsys rp_endgroup ({group_name})

For more information and an example, see “Creating Groups Using rp_group and
rp_endgroup” on page 2-3.
Chapter 6: Directives, Attributes, and Variables
Directives 6-3
Chapter 6: Directives, Attributes, and Variables
Directives 6-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
rp_place
The rp_place directive allows you to specify a subgroup at a specific hierarchy, a keepout
region, or an instance to be placed in the current relative placement group. When you use
the rp_place directive to specify a subgroup at a specific hierarchy, you must instantiate the
subgroup’s instances outside of any group declarations in the module. This directive is
available for RTL designs and netlist designs.

The VHDL syntax for RTL and netlist designs is as follows:

--synopsys rp_place (hier group_name col row)
--synopsys rp_place (keep keepout_name col row width height)
--synopsys rp_place ({leaf} [inst_name] col row)

For more information and an example, see “Specifying Subgroups, Keepouts, and Instances
Using rp_place” on page 2-4.

rp_fill
The rp_fill directive automatically places the cells at the location specified by a pointer.
Each time a new instance is declared that is not explicitly placed, it is inserted into the grid
at the location indicated by the current value of the pointer. After the instance is placed, the
pointer is updated incrementally and the process is ready to be repeated. This directive is
available for RTL designs and netlist designs.

The rp_fill arguments define how the pointer is updated. The col and row parameters
specify the initial coordinates of the pointer. These parameters can represent absolute row
or column locations in the group’s grid or locations that are relative to the current pointer
value. To represent locations relative to the current pointer, enclose the column and row
values in angle brackets (<>). For example, assume the current pointer location is (3,4). In
this case, specifying rp_fill <1> 0 initializes the pointer to (4,0) and that is where the next
instance is placed. Absolute coordinates must be non-negative integers; relative
coordinates can be any integer.

The VHDL syntax for RTL and netlist designs is as follows:

--synopsys rp_fill ({col row} {pattern pat})

For more information and an example, see “Placing Cells Automatically Using rp_fill” on
page 2-5.
Chapter 6: Directives, Attributes, and Variables
Directives 6-4

HDL Compiler for VHDL User Guide Version D-2010.03
rp_array_dir
Note:

This directive is available for RTL designs only.

The rp_array_dir directive specifies whether the elements of an array are placed upward,
from the least significant bit to the most significant bit, or downward, from the most
significant bit to the least significant bit.

The VHDL syntax for RTL designs is as follows:

--synopsys rp_array_dir (up|down)

For more information and an example, see “Specifying Placement for Array Elements Using
rp_array_dir” on page 2-6.

rp_align
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_align directive explicitly specifies the alignment of the placed instance within the
grid cell when the instance is smaller than the cell. If you specify the optional inst instance
name argument, the alignment applies only to that instance; however, if you do not specify
an instance, the new alignment applies to all subsequent instantiations within the group until
HDL Compiler encounters another rp_align directive. If the instance straddles cells, the
alignment takes place within the straddled region. The alignment value is sw (southwest) by
default. The instance is snapped to legal row and routing grid coordinates.

Use the following syntax for netlist designs:

--synopsys rp_align (n|s|e|w|nw|sw|ne|se|pin=name { inst })

For more information and an example, see “Specifying Cell Alignment Using rp_align” on
page 2-7.

rp_orient
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_orient directive allows you to control the orientation of library cells placed in the
current group. When you specify a list of possible orientations, HDL Compiler chooses the
first legal orientation for the cell.
Chapter 6: Directives, Attributes, and Variables
Directives 6-5
Chapter 6: Directives, Attributes, and Variables
Directives 6-5

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Use the following syntax for netlist designs:

--synopsys rp_orient ({N|W|S|E|FN|FW|FS|FE}* { inst })
--synopsys rp_orient ({N|W|S|E|FN|FW|FS|FE}* { group_name inst }))

For more information and an example, see “Specifying Cell Orientation Using rp_orient” on
page 2-8.

rp_ignore and rp_endignore
Note:

This directive is available for creating relative placement in netlist designs only.

The rp_ignore and rp_endignore directives allow you to ignore specified lines in the input
file. Any lines between the two directives are omitted from relative placement. The include
and define directives, variable substitution, and cell mapping are not ignored.

The rp_ignore and rp_endignore directives allow you to include the instantiation of
submodules in a relative placement group close to the rp_place hier group(inst)
location to place relative placement array.

Use the following syntax for netlist designs:

--synopsys rp_ignore
--synopsys rp_endignore

For more information and an example, see “Ignoring Relative Placement Using rp_ignore
and rp_endignore” on page 2-8.

map_to_entity and return_port_name
Component implication directives map VHDL subprograms onto existing components or
VHDL entities.

Synopsys supports the following component implication directives:

 -- synopsys map_to_entity entity_name
 -- synopsys return_port_name port_name

See “Procedures and Functions as Design Components” on page 2-18. Other directives,
such as map_to_operator, are used to drive inference of HDL operators such as *, +, and
–. See the DesignWare Developer Guide for more information about synthetic comments.
Chapter 6: Directives, Attributes, and Variables
Directives 6-6

HDL Compiler for VHDL User Guide Version D-2010.03
dc_tcl_script_begin and dc_tcl_script_end
You can embed Tcl commands that set design constraints and attributes within the RTL by
using the dc_tcl_script_begin and dc_tcl_script_end directives, as shown in
Example 6-1.

Example 6-1 Using the dc_tcl_script_begin and dc_tcl_script_end Directives
...
-- synopsys dc_tcl_script_begin
-- set_max_area 0.0
-- set_drive -rise 1 port_b
-- set_max_delay 0.0 port_z
-- synopsys dc_tcl_script_end
...

Design Compiler interprets the statements embedded between the dc_tcl_script_begin
and the dc_tcl_script_end directives. If you want to comment out part of your script, use
the # comment character.

The following items are not supported in embedded Tcl scripts:

• Hierarchical constraints

• Wildcards

• List commands

• Multiple-line commands

Following are guidelines for using embedded Tcl scripts:

• You cannot embed Tcl scripts outside an entity or architecture; they must be embedded
inside an entity or architecture.

• Constraints and attributes declared inside an entity or architecture apply only to the
enclosing entity or architecture.

• Any dc_shell scripts embedded in functions apply to the whole module.

• Include only commands that set constraints and attributes. Do not use action commands
such as compile, gen, and report. The tool ignores these commands and issues a
warning or error.

• The constraints or attributes set in the embedded script go into effect after the read
command is executed. Therefore, variables that affect the read process itself are not in
effect before the read. For example, if you set the hdlin_no_latches variable to true in
the embedded script, this variable does not influence latch inference in the current read.

• Design Compiler performs error checking after the read command finishes. Syntactic
and semantic errors in dc_shell strings are reported at this time.
Chapter 6: Directives, Attributes, and Variables
Directives 6-7
Chapter 6: Directives, Attributes, and Variables
Directives 6-7

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
• You can have more than one dc_tcl_script_begin / dc_tcl_script_end pair per file or
entity/architecture. The compiler does not issue an error or warning when it sees more
than one pair. Each pair is evaluated and set on the applicable code.

• An embedded dc_shell script does not produce any information or status messages
unless there is an error in the script.

• If you use embedded Tcl scripts while running in dcsh mode, Design Compiler issues the
following error message:
Error: Design 'MID' has embedded Tcl commands which are ignored in EQN
mode. (UIO-162)

• Usage of built-in Tcl commands is not recommended.

• Usage of output redirection commands is not recommended.

Attributes

This section describes the following:

• Synopsys Defined Attributes

• IEEE Predefined Attributes

Synopsys Defined Attributes
The Synopsys defined attributes are listed in Table 6-1. When you use these attributes,
insert the following line in your VHDL description, just before the entity declaration.

use SYNOPSYS.ATTRIBUTES.all;

These attributes are included in the ATTRIBUTES package.

Table 6-1 Attributes Supported by HDL Compiler

Attribute Description

arrival See Table 6-2 on page 6-10.

async_set_reset See Table 4-2 on page 4-6.

async_set_reset_local See Table 4-2 on page 4-6.

async_set_reset_local_all See Table 4-2 on page 4-6.

dont_touch See Table 6-2 on page 6-10.
Chapter 6: Directives, Attributes, and Variables
Attributes 6-8

HDL Compiler for VHDL User Guide Version D-2010.03
dont_touch_network See Table 6-2 on page 6-10.

drive_strength See Table 6-2 on page 6-10.

enum_encoding See “Synopsys Defined Attributes” on page 6-8.

equal See Table 6-2 on page 6-10.

fall_arrival See Table 6-2 on page 6-10.

fall_drive See Table 6-2 on page 6-10.

infer_multibit See “Multibit Inference” on page 2-49.

infer_mux See “MUX_OP Inference” on page 3-10.

load See Table 6-2 on page 6-10.

logic_one See Table 6-2 on page 6-10.

logic_zero See Table 6-2 on page 6-10.

max_area See Table 6-2 on page 6-10.

max_delay See Table 6-2 on page 6-10.

max_fall_delay See Table 6-2 on page 6-10.

max_rise_delay See Table 6-2 on page 6-10.

max_transition See Table 6-2 on page 6-10.

min_delay See Table 6-2 on page 6-10.

min_fall_delay See Table 6-2 on page 6-10.

min_rise_delay See Table 6-2 on page 6-10.

one_cold See Table 4-2 on page 4-6.

one_hot See Table 4-2 on page 4-6.

opposite See Table 6-2 on page 6-10.

Table 6-1 Attributes Supported by HDL Compiler (Continued)

Attribute Description
Chapter 6: Directives, Attributes, and Variables
Attributes 6-9
Chapter 6: Directives, Attributes, and Variables
Attributes 6-9

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
The design attributes are described in Table 6-2.

rise_arrival See Table 6-2 on page 6-10.

rise_drive See Table 6-2 on page 6-10.

sync_set_reset See Table 4-2 on page 4-6.

sync_set_reset_local See Table 4-2 on page 4-6.

sync_set_reset_local_all See Table 4-2 on page 4-6.

unconnected See “Synopsys Defined Attributes” on page 6-8.

Table 6-2 Design Attributes

 Attribute Type Description

Input port Attributes

MAX_AREA real -- Maximum desired area, in technology library

 -- area units.
attribute MAX_AREA of EXAMPLE : entity is 500.0;

MAX_TRANSITION real -- Maximum allowable transition time for any

 -- network in the design, in technology library

 -- time units.
attribute MAX_TRANSITION of EXAMPLE : entity is 3.0;

ARRIVAL real -- Expected signal arrival time, in technology

 -- library time units. Sets both RISE_ARRIVAL and

 -- FALL_ARRIVAL.

attribute ARRIVAL of A : signal is 1.5;

DRIVE_STRENGTH real -- Input signal’s drive strength, in technology

 -- library load units. Sets both RISE_DRIVE and

 -- FALL_DRIVE.

attribute DRIVE_STRENGTH of A, B : signal is 0.01;

Table 6-1 Attributes Supported by HDL Compiler (Continued)

Attribute Description
Chapter 6: Directives, Attributes, and Variables
Attributes 6-10

HDL Compiler for VHDL User Guide Version D-2010.03
RISE_ARRIVAL real -- Input signal’s rise time.

attribute RISE_ARRIVAL of C : signal is 1.5;

FALL_ARRIVAL real -- Input signal’s fall time.

attribute FALL_ARRIVAL of A, B : signal is 1.5;

 FALL_DRIVE real -- Input signal’s drive strength while falling.

attribute FALL_DRIVE of B : signal is 0.01;

RISE_DRIVE real -- Input signal’s drive strength while rising.

attribute RISE_DRIVE of A : signal is 0.01;

EQUAL boolean -- Applied to pairs of input ports; true

 -- if both ports are logically equal.

attribute EQUAL of A, B : signal is TRUE;

The attributes EQUAL and OPPOSITE are used only for pairs
of single-bit ports (signals).

OPPOSITE boolean -- Applied to pairs of input ports; true

 -- if the two ports are logically opposite.

attribute OPPOSITE of A, B: signal is TRUE;

LOGIC_ONE boolean -- True if the input port is always at logic one.

attribute LOGIC_ONE of A : signal is TRUE;

LOGIC_ZERO boolean -- True if the input port is always at logic zero

attribute LOGIC_ZERO of A, B: signal is TRUE;

DONT_TOUCH_NETWO
RK

boolean -- True if the network connected to the input

 -- port is to be excluded from optimization

attribute DONT_TOUCH_NETWORK of A : signal is TRUE;

Output Port Attributes

LOAD real -- Loading on output port, in library load units.

attribute LOAD of Y, Z : signal is 5.0;

UNCONNECTED boolean -- May be set to true if the output port is not

 -- connected to external circuitry.

attribute UNCONNECTED of X : signal is TRUE;

Table 6-2 Design Attributes (Continued)

 Attribute Type Description
Chapter 6: Directives, Attributes, and Variables
Attributes 6-11
Chapter 6: Directives, Attributes, and Variables
Attributes 6-11

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
ENUM_ENCODING Attribute

You can override the automatic enumeration encodings and specify your own enumeration
encodings with the ENUM_ENCODING attribute. This interpretation is specific to HDL Compiler.
This attribute allows HDL Compiler to interpret your logic correctly. Place the synthesis
attribute ENUM_ENCODING on your primary logic type.

MIN_RISE_DELAY real -- Minimum allowable delay time before

 -- the output port’s signal rises.attribute MIN_RISE_DELAY of
X : signal is 5.0;

MIN_FALL_DELAY real -- Minimum allowable delay time before

 -- the output port’s signal falls.

attribute MIN_FALL_DELAY of Y : signal is 5.0;

MAX_DELAY real -- Maximum allowable delay time, from any

 -- input signal connected to the output

 -- port, in technology library time units.

 -- Sets both MAX_RISE_DELAY and MAX_FALL_DELAY.

attribute MAX_DELAY of X : signal is 20.0;

MAX_RISE_DELAY real -- Maximum allowable delay time before

 -- the output port’s signal rises.

attribute MAX_RISE_DELAY of Z : signal is 20.0;

MAX_FALL_DELAY real -- Maximum allowable delay time before

 -- the output port’s signal falls.

attribute MAX_FALL_DELAY of X, Y : signal is 20.0;

MIN_DELAY real -- Minimum allowable delay time, from any

 -- input signal connected to the output

 -- port, in technology library time units.

 -- Sets both MIN_RISE_DELAY and MIN_FALL_DELAY

attribute MIN_DELAY of X, Z : signal is 5.0;

Cell attributes

DONT_TOUCH boolean -- True if the instance is not to be optimized.
attribute DONT_TOUCH of INSTANCE : label is TRUE;
A dont_touch attribute cannot be set to false.

Table 6-2 Design Attributes (Continued)

 Attribute Type Description
Chapter 6: Directives, Attributes, and Variables
Attributes 6-12

HDL Compiler for VHDL User Guide Version D-2010.03
The ENUM_ENCODING attribute must be a string containing a series of vectors, one for each
enumeration literal in the associated type. The encoding vector is specified by ’0’s, ’1’s, ’D’s,
’U’s, and ’Z’s, separated by blank spaces.

The possible encoding values for the ENUM_ENCODING attribute are ’0’, ’1’, ’D’, ’U’, and ’Z’
and are described in Table 6-3.

The first vector in the attribute string specifies the encoding for the first enumeration literal,
the second vector specifies the encoding for the second enumeration literal, and so on. The
ENUM_ENCODING attribute must immediately follow the type declaration.

Example 6-2 illustrates how the default encodings from Example 2-22 on page 2-28 can be
changed with the ENUM_ENCODING attribute.

Example 6-2 Using the ENUM_ENCODING Attribute
attribute ENUM_ENCODING: STRING;
 -- Attribute definition

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
attribute ENUM_ENCODING of
 COLOR: type is "010 000 011 100 001";
 -- Attribute declaration

The enumeration values are encoded as follows:

Table 6-3 Encoding Values for the ENUM_ENCODING Attribute

Encoding value Description

’0’ Bit value ’0’.

’1’ Bit value ’1’.

’D’ Don’t care (can be either ’0’ or ’1’). To use don’t care information, see “Don’t
Care Inference” on page 9-35.

’U’ Unknown. If ’U’ appears in the encoding vector for an enumeration, you cannot
use that enumeration literal except as an operand to the = and /= operators. You
can read an enumeration literal encoded with a ’U’ from a variable or signal, but
you cannot assign it.

For synthesis, the = operator returns false and /= returns true when either of the
operands is an enumeration literal whose encoding contains ’U’.

’Z’ High impedance. See “Three-State Inference” on page 6-2 for more information.
Chapter 6: Directives, Attributes, and Variables
Attributes 6-13
Chapter 6: Directives, Attributes, and Variables
Attributes 6-13

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
RED = "010"
GREEN = "000"
YELLOW = "011"
BLUE = "100"
VIOLET = "001"

The result is GREEN < VIOLET < RED < YELLOW < BLUE.

Note:
The interpretation of the ENUM_ENCODING attribute is specific to HDL Compiler. Other
VHDL tools, such as simulators, use the standard encoding (ordering).

IEEE Predefined Attributes
See “Names” on page C-6 for the IEEE predefined attributes supported by HDL Compiler.

Variables

HDL Compiler read variables are described in Table 6-4.

Table 6-4 Variables

Name Default Description

hdlin_elab_errors_deep false Allows the elaboration of submodules even if
the top-level module elaboration fails,
enabling HDL Compiler to report more
elaboration, link, and VER-37 errors and
warnings in a hierarchical design during the
first elaboration run. See “Reporting
Elaboration Errors” on page 1-10.

hdlin_enable_configurations False Enables configuration support.

hdlin_generate_separator_style _ Specifies the separator string for instances
generated in multiple- nested loops.
This is a VHDL only supported variable.
Verilog generate naming follows the Verilog
LRM standard, so this variable is not
required.

hdlin_infer_enumerated_types False Infers enumerated types.

hdlin_infer_function_local_latches False Allows latches to be inferred for function-
and procedure-scope variables.
Chapter 6: Directives, Attributes, and Variables
Variables 6-14

HDL Compiler for VHDL User Guide Version D-2010.03
hdlin_keep_signal_name all_driving Attempts to keep a signal name if there is
path from the signal to an output port. This
includes preserving cells between the signal
and the output port.

hdlin_mux_oversize_ratio 100 Defined as the ratio of the number of MUX
inputs to the unique number of data inputs.
When this ratio is exceeded, a MUX will not
be inferred and the circuit will be generated
with SELECT_OPs.

hdlin_mux_size_min 2 Sets the minimum number of data inputs for
MUX inference.

hdlin_mux_size_only 1 Controls which MUX_OP cells receive the
size_only attribute. By default, MUX_OP
cells that are generated with the RTL
infer_mux pragma and that are on set/reset
signals receive the size_only attribute. For
more information and a complete list of
options, see Table 3-3 on page 3-12.

hdlin_no_sequential_mapping False Prevents sequential mapping.

hdlin_one_hot_one_cold_on True Optimizes according to one_hot and
one_cold attributes.

hdlin_optimize_array_references True Optimizes constant offsets in array
references.

hdlin_optimize_enum_types False Simplifies comparisons based on
enumerated type information.

Table 6-4 Variables (Continued)

Name Default Description
Chapter 6: Directives, Attributes, and Variables
Variables 6-15
Chapter 6: Directives, Attributes, and Variables
Variables 6-15

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
hdlin_preserve_sequential none Preserves unloaded sequential cells
(latches or flip-flops) that would otherwise
be removed during optimization by HDL
Compiler. The following options are
supported:
• none or false–No unloaded sequential

cells are preserved. This is the default
behavior.

• all or true–All unloaded sequential
cells are preserved, excluding unloaded
sequential cells that are used solely as
loop variables.

• all+loop_variables or
true+loop_variables–All unloaded
sequential cells are preserved, including
unloaded sequential cells that are used
solely as loop variables.

• ff–Only flip-flop cells are preserved,
excluding unloaded sequential cells that
are used solely as loop variables.

• ff+loop_variables–Only flip-flop cells
are preserved, including unloaded
sequential cells that are used solely as
loop variables.

• latch–Only unloaded latch cells are
preserved, excluding unloaded
sequential cells that are used solely as
loop variables.

• latch+loop_variables–Only unloaded
latch cells are preserved, including
unloaded sequential cells that are used
solely as loop variables.

Important: To preserve unloaded cells
through compile, you must set
compile_delete_unloaded_sequential_
cells to false.

See “Unloaded Sequential Cell
Preservation” on page 4-38.

hdlin_prohibit_nontri_multiple_drivers True Issues an error when a non-tri net is driven
by more than one process or continuous
assignment.

Table 6-4 Variables (Continued)

Name Default Description
Chapter 6: Directives, Attributes, and Variables
Variables 6-16

HDL Compiler for VHDL User Guide Version D-2010.03
hdlin_support_subprogram_var_init True Controls whether or not HDL Compiler
honors the initial value given to a variable.
When this variable is set to false, the default,
HDL Compiler issues a warning that the
initial value given to a variable is ignored.

hdlin_vhdl_87 False When true, directs HDL Compiler to use the
VHDL-87 standard.

Table 6-4 Variables (Continued)

Name Default Description
Chapter 6: Directives, Attributes, and Variables
Variables 6-17
Chapter 6: Directives, Attributes, and Variables
Variables 6-17

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Chapter 6: Directives, Attributes, and Variables
Variables 6-18

7
Write Out Designs in VHDL Format 7

While using Design Compiler, you can write out any design in a variety of formats, including
VHDL. Existing gate-level netlists, sets of logic equations, or technology-specific circuits can
be automatically converted to a VHDL description. The resulting VHDL description can
serve as documentation of the original design, and you can use it as a starting point for
reimplementation in a new technology. In addition, you can give the VHDL description to a
VHDL simulator to provide circuit timing information.

The following sections discuss how to write out designs in VHDL format.

• Netlist Writer Variables

• Writing Out VHDL Files

• VHDL Write Variables

• Bit and Bit-Vector Variables

• Resolution Function Variables

• Types and Type Conversion Variables

• Architecture and Configuration Variables

• Preserving Port Types

• VHDL Netlister Coding Considerations
7-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Netlist Writer Variables

The netlist writer variables discussed in this chapter are listed in Table 7-1.

Writing Out VHDL Files

To write out VHDL design files, use the write command.

dc_shell> write -format vhdl -output my_file.vhdl

The write -format vhdl command is valid whether or not the current design originated
as a VHDL source file. You can write out any design, regardless of initial format (equation,
netlist, and so on), as a VHDL design.

For more information about the write command, see the Design Compiler Command-line
Interface Guide.

Table 7-1 Variable Summary

 Group Attributes/Directives/Variables

Write variables vhdlout_dont_create_dummy_nets, vhdlout_equations,
vhdlout_follow_vector_direction, vhdlout_separate_scan_in
vhdlout_local_attributes, vhdlout_upcase,
vhdlout_use_packages, vhdl, out_write_architecture,
vhdlout_write_components, vhdlout_write_entity,
vhdlout_write_top_configuration

Bit and bit-vector variables vhdlout_three_state_name, vhdlout_unknown_name,
vhdlout_zero_name, vhdlout_bit_type,
vhdlout_bit_vector_type, vhdlout_one_name

Resolution function
variables

vhdlout_three_state_res_func,
vhdlout_wired_and_res_func, vhdlout_wired_or_res_func

Types and type conversion
variables

vhdlout_package_naming_style,
vhdlout_preserve_hierarchical_types, vhdlout_single_bit

Architecture and
configuration variables

vhdlout_top_configuration_arch_name,
vhdlout_top_configuration_entity_name,
vhdlout_top_configuration_name
Chapter 7: Write Out Designs in VHDL Format
Netlist Writer Variables 7-2

HDL Compiler for VHDL User Guide Version D-2010.03
VHDL Write Variables

Several dc_shell variables affect how designs are written out as VHDL files. These variables
must be set before you write out the design. They can be set interactively or in your
.synopsys_dc.setup file.

The variables described below affect writing out VHDL (vhdlout_variables). To list them,
enter

dc_shell> man vhdlio_variables

vhdlout_dont_create_dummy_nets

Controls whether the VHDL writer creates dummy nets for connecting unused pins or
ports.

By default, this variable is set to false and the VHDL writer creates dummy nets.

Set this variable to true to disable dummy net creation.

vhdlout_equations

When set to true, this variable determines that combinational logic is written with
technology-independent Boolean equations, sequential logic is written with
technology-independent wait and if statements, and three-state drivers are written with
technology-independent code.

By default, this variable is set to false and all mapped logic is written with
technology-specific netlists.

Set this variable to true to force the VHDL writer to write technology-independent logic.

vhdlout_follow_vector_direction

Controls how the VHDL writer determines the array range direction.

By default, this variable is false and the VHDL writer uses ascending array range values,
regardless of the original array range direction.

Set this variable to true to force the VHDL writer to determine the array range direction
from the original design.

vhdlout_local_attributes

This variable is obsolete. Use the write_script command instead (see the
write_script man page).

vhdlout_separate_scan_in

Controls how the scan chain is written out in VHDL.

By default, this variable is false and the VHDL writer writes the scan chain in the same file
as the design. In this case, the scan chain is not visible in the testbench and parallel-load
simulation is not possible.
Chapter 7: Write Out Designs in VHDL Format
VHDL Write Variables 7-3
Chapter 7: Write Out Designs in VHDL Format
VHDL Write Variables 7-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Set this variable to true to force the VHDL writer to write the scan chain as a separate
package to enable parallel-load simulation.

vhdlout_upcase

Determines, when set to true, that identifiers are written out in uppercase to the VHDL
file.

When this variable is set to false, identifiers are written out with their Design Compiler
names. The default is false.

vhdlout_use_packages

This variable is a list of package names. A use clause is written into the VHDL file for
each of these packages for all entities; library clauses are also written out as needed.

If this variable is not set or is set to an empty list ({ }), it has no effect on the write
command.

To use packages from specific libraries, you can prefix the library to the package name.
For example,

vhdlout_use_packages = {IEEE.std_logic_1164, \
IEEE.std_logic_arith, \
VENDOR.PARTS.FFD}

becomes

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use VENDOR.PARTS.FFD;

vhdlout_write_architecture

When this variable is set to true (the default), an architecture definition is written out to
the VHDL file.

vhdlout_write_components

This variable controls whether component declarations for cells mapped to a technology
library are written out (if set to true) or not (false).

Component declarations are required by VHDL. If you set this variable to false, make
sure a package containing the necessary component declarations is listed in
vhdlout_use_packages.

The default is true. See also the vhdlout_use_packages variable.

vhdlout_write_entity

When this variable is set to true (the default), an entity definition is written out to the
VHDL file and to any conversion packages as necessary.

vhdlout_write_top_configuration

When this variable is set to true, a top-level configuration definition is written out to the
VHDL file.
Chapter 7: Write Out Designs in VHDL Format
VHDL Write Variables 7-4

HDL Compiler for VHDL User Guide Version D-2010.03
The default is false.

Bit and Bit-Vector Variables

Bit and bit-vector variables, whose descriptions follow, define the names of bits, bit vectors,
and the associated types.

vhdlout_bit_type

The name of the bit type used for writing out single-bit values, used with the following
variables:

vhdlout_one_name
vhdlout_three_state_name
vhdlout_zero_name
vhdlout_bit_vector_type

The default is std_logic. For example, a simulator uses a bit type of t_logic, defined as

type t_logic is (U, D, Z, ..., F0, F1, ...);
and a bit vector type of t_logic_vector, defined as

type t_logic_vector is array (integer range <>) of
t_logic;

The following dc_shell commands define the appropriate bit and bit vector types and
values to write.

vhdlout_bit_type = t_logic
vhdlout_bit_vector_type = t_logic_vector
vhdlout_one_name = F1
vhdlout_zero_name = F0
vhdlout_three_state_name = Z

When writing a generic three-state model, Design Compiler displays an error if
vhdlout_bit_type is set to its default value of a bit. Set vhdlout_bit_type to a bit type
that includes a high-impedance value (’Z’). For more information about inferred
three-state devices, see Chapter 5, “Inferring Three-State Logic.”

vhdlout_bit_vector_type

The name of the bit vector type used for writing multiple-bit values, used with the
vhdlout_bit_type, vhdlout_one_name, and vhdlout_zero_name variables.

The default is std_logic_vector. For an example, see the description of
vhdlout_bit_type.

vhdlout_one_name

The name of the enumeration literal that represents a logic 1.

The default is ’1’. For an example, see the description of vhdlout_bit_type.
Chapter 7: Write Out Designs in VHDL Format
Bit and Bit-Vector Variables 7-5
Chapter 7: Write Out Designs in VHDL Format
Bit and Bit-Vector Variables 7-5

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
vhdlout_three_state_name

The name of the high-impedance bit value used for three-state device values.

The default is ’Z’.

vhdlout_unknown_name

The value used to drive a signal to the unknown state, usually a character literal or an
enumeration name.

The default is ’X’.

vhdlout_zero_name

The name of the enumeration literal that represents a logic 0.

The default is ’0’. For an example, see the description of vhdlout_bit_type.

Resolution Function Variables

The resolution function variables, whose descriptions follow, name resolution functions that
are written out.

vhdlout_three_state_res_func

Names a three-state resolution function to use instead of the default function. You must
supply this function in a package listed in vhdlout_use_packages.

If the variable is set to " " (the default), a resolution function is written out if needed.

vhdlout_wired_and_res_func

Names a wired AND resolution function to use instead of the default function. You must
supply this function in a package listed in vhdlout_use_packages.

If the variable is set to " " (the default), a resolution function is written out if needed.

vhdlout_wired_or_res_func

Names a wired OR resolution function to use instead of the default. You must supply this
function in a package listed in vhdlout_use_packages.

If the variable is set to " " (the default), a resolution function is written out if needed.
Chapter 7: Write Out Designs in VHDL Format
Resolution Function Variables 7-6

HDL Compiler for VHDL User Guide Version D-2010.03
Types and Type Conversion Variables

The following types and type conversion variables define type conversion functions and how
the VHDL writer writes out types.

vhdlout_package_naming_style

This variable controls how packages of conversion functions are named. The default
value is "CONV_PACK_%d", where %d is a number that is incremented as necessary to
produce a unique name. By default, the package name and the number are separated by
underscores (_).

vhdlout_preserve_hierarchical_types

This variable affects how ports on lower-level designs are written out. Top-level design
ports are controlled by vhdlout_single_bit. (A design is considered lower-level if it is
instantiated by any of the designs being written out.)

When this variable is set to USER, all ports on lower-level designs are written with their
original data types. This option affects only designs that are read in VHDL format.

When set to VECTOR, all ports on lower-level designs are written with their ports bused;
ports keep their names. These bused ports contrast to ports that are bit-blasted.
Bit-blasting is the term for breaking down a bus to its individual bus members. The port
types are defined by vhdlout_bit_vector_type or by vhdlout_bit_type, in the case
of single-bit ports. This setting is likely to give the most efficient description for simulation.
The default is VECTOR. You must ensure that vhdlout_bit_vector_type is an array
type whose elements are of vhdlout_bit_type.

When this variable is set to BIT, typed ports are bit-blasted. If the type of a port is N bits
wide, it is written to the VHDL file as N separate ports. Each port is given the type defined
by vhdlout_bit_type. This variable has no effect if you set vhdlout_single_bit to
BIT. vhdlout_preserve_hierarchical_types is then ignored, and the whole design
hierarchy is written out bit-blasted.

This variable cannot take on a higher value than the current setting of
vhdlout_single_bit. The descending order is {USER, VECTOR, BIT}. Thus, the
combination of vhdlout_single_bit set to VECTOR and
vhdlout_preserve_hierarchical_types set to USER is not possible.

vhdlout_single_bit

This variable affects how ports on the top-level design are written out. Lower-level design
ports are controlled by vhdlout_preserve_hierarchical_types. A design is
considered lower-level if it is instantiated by any of the designs being written out.

When this variable is set to USER, all ports on the top-level design are written with their
original data types. This option affects only designs that are read in VHDL format. The
default is USER.
Chapter 7: Write Out Designs in VHDL Format
Types and Type Conversion Variables 7-7
Chapter 7: Write Out Designs in VHDL Format
Types and Type Conversion Variables 7-7

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
When this variable is set to VECTOR, all ports on the top-level design are written with
their ports bused. Ports keep their names (in contrast to bit-blasted ports). Port types are
defined by vhdlout_bit_vector_type or by vhdlout_bit_type, in the case of
single-bit ports. For buses, the range always starts with 0 and goes in ascending order,
regardless of what the range definition was in the HDL source. Ensure that
vhdlout_bit_vector_type is an array type whose elements are of vhdlout_bit_type.

When this variable is set to BIT, typed ports are bit-blasted. If the type of a port is N bits
wide, it is written to the VHDL file as N separate ports. Each port is given the type defined
by vhdlout_bit_type.

To determine the current value of this variable, use the list vhdlout_single_bit
command.

Architecture and Configuration Variables

The following architecture and configuration variables control the names of the
architectures, configurations, and entities written to the VHDL file.

vhdlout_top_configuration_arch_name

Determines the architecture name that is written out in a configuration definition. The
default value is "A".

vhdlout_top_configuration_entity_name

Determines the entity name that is written out in a configuration definition. The default
value is "E".

vhdlout_top_configuration_name

Determines the configuration name that is written out in a configuration definition. The
default value is "CFG_TB_E".
Chapter 7: Write Out Designs in VHDL Format
Architecture and Configuration Variables 7-8

HDL Compiler for VHDL User Guide Version D-2010.03
Preserving Port Types

Example 7-1 shows how to write out the current design in VHDL format with port types
(vector or record types) preserved.

Example 7-1 Preserving Port Types When Writing VHDL
-- The design must originate in VHDL format
dc_shell> read_vhdl my_design.vhdl

-- Set the variable that causes the port types to be
preserved

dc_shell> set vhdlout_single_bit user

-- Now write the current design in VHDL format
dc_shell> write -format vhdl -output design_out.vhdl

Example 7-2 shows a VHDL input file. Example 7-3 and
Example 7-4 show the corresponding output files.

Example 7-2 Original VHDL Input File
library IEEE;
use IEEE.std_logic_1164.all;

entity test_vhdl is
port (a: in std_logic_vector (3 downto 0);
 b: out std_logic_vector (3 downto 0));
end test_vhdl;

architecture structural of test_vhdl is
begin
 b <= not a;
end structural;

The dc_shell commands in Example 7-3 use the default values of the vhdlout_variables
(described in “VHDL Write Variables” on page 7-3) to generate the test_vhdl output file.
Chapter 7: Write Out Designs in VHDL Format
Preserving Port Types 7-9
Chapter 7: Write Out Designs in VHDL Format
Preserving Port Types 7-9

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 7-3 TEST_VHDL Written Out in Default VHDL Format
library IEEE;

use IEEE.std_logic_1164.all;

package CONV_PACK_test_vhdl is

-- define attributes
attribute ENUM_ENCODING : STRING;

end CONV_PACK_test_vhdl;

library IEEE;

use IEEE.std_logic_1164.all;

use work.CONV_PACK_test_vhdl.all;

entity test_vhdl is

 port(a : in std_logic_vector (3 downto 0); b : out std_logic_vector
(3
 downto 0));

end test_vhdl;

architecture SYN_structural of test_vhdl is

 component GTECH_NOT
 port(A : in std_logic; Z : out std_logic);
 end component;

begin

 I_0 : GTECH_NOT port map(A => a(3), Z => b(3));
 I_1 : GTECH_NOT port map(A => a(2), Z => b(2));
 I_2 : GTECH_NOT port map(A => a(1), Z => b(1));
 I_3 : GTECH_NOT port map(A => a(0), Z => b(0));

end SYN_structural;

If you set vhdlout_single_bit to bit, the output file generated is shown in Example 7-4.
Chapter 7: Write Out Designs in VHDL Format
Preserving Port Types 7-10

HDL Compiler for VHDL User Guide Version D-2010.03
Example 7-4 TEST_VHDL Written Out With Port Types in VHDL Format
library IEEE;

use IEEE.std_logic_1164.all;

entity test_vhdl is

 port(a_3_port, a_2_port, a_1_port, a_0_port : in std_logic;
b_3_port,
 b_2_port, b_1_port, b_0_port : out std_logic);

end test_vhdl;

architecture SYN_structural of test_vhdl is

 component GTECH_NOT
 port(A : in std_logic; Z : out std_logic);
 end component;

begin

 I_0 : GTECH_NOT port map(A => a_3_port, Z => b_3_port);
 I_1 : GTECH_NOT port map(A => a_2_port, Z => b_2_port);
 I_2 : GTECH_NOT port map(A => a_1_port, Z => b_1_port);
 I_3 : GTECH_NOT port map(A => a_0_port, Z => b_0_port);

end SYN_structural;

VHDL Netlister Coding Considerations

To understand how the VHDL netlister writes out designs, you need to be familiar with the
following coding considerations:

• Built-In Type Conversion Function

• How the Netlister Handles Custom Types

• Case Sensitivity

These issues are discussed in the nest sections.

Built-In Type Conversion Function
The VHDL netlister does not use packages and does not check for type equivalence. If you
do not provide your own type conversion functions, the VHDL netlister translates only the
logic values 0 and 1. Example 7-5 shows the VHDL netlister’s built-in type conversion
function that converts from type std_logic_vector to type my_bit.
Chapter 7: Write Out Designs in VHDL Format
VHDL Netlister Coding Considerations 7-11
Chapter 7: Write Out Designs in VHDL Format
VHDL Netlister Coding Considerations 7-11

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example 7-5 Type Conversion Function
-- User-defined type declaration
attribute ENUM_ENCODING : STRING;
type my_bit is (A, B, C) ;
attribute ENUM_ENCODING of my_bit : type is “00 01 11";

-- std_logic_vector to enum type function
function std_logic_vector_to_my_bit(arg : in std_logic_vector (1 to 2))
return my_bit is
-- synopsys built_in SYN_FEED_THRU;
begin

case arg is
when "00" => return A;
when "01" => return B;
when "11" => return C;
when others => assert FALSE -- this should not happen.

report "un-convertible value"
severity warning;
return A;

end case;
end;

How the Netlister Handles Custom Types
All types you use should be resolved. If types are not resolved, the VHDL netlister uses
built-in resolution functions to resolve conflicts between multiple drivers on the same signal.
Use the following functions to specify your own resolution function to the VHDL netlister:

vhdlout_three_state_res_func
vhdlout_wired_and_res_func
vhdlout_wired_or_res_func

Example 7-6 shows the resolution function the VHDL netlister writes out. This resolution
function is used to resolve the value for multiple sources driving a signal, port, or pin.

Example 7-6 VHDL Resolution Function
function X(inputs : in vhdlout_bit_vector_type) return vhdlout_bit_type is
-- synopsys resolution_method three_state
variable retval: vhdlout_bit_type;
begin
 retval := vhdlout_three_state_name;

for i in inputs’range loop
 if inputs(i) /= vhdlout_three_state_name then
 if (retval = vhdlout_three_state_name) then

retval := inputs(i);
else

 retval := vhdlout_unknown_name
exit;

end if;
end if;

end loop;
return retval;
end X;
Chapter 7: Write Out Designs in VHDL Format
VHDL Netlister Coding Considerations 7-12

HDL Compiler for VHDL User Guide Version D-2010.03
Example 7-7 shows a simplified description of the process flow for the resolution function in
Example 7-6.

In this example, the vhdlout_three_state_name and vhdlout_unknown_name variables
use the default values z and x, respectively, for brevity. You can set the values for both of
these variables.

Example 7-7 Pseudocode of VHDL Resolution Function
if the only logic values are ’z’

return ’z’
if there are ’z’s and another logic value

return the other logic value
if there are non-’z’ logic values that are different

return ’x’
else

return the common logic value

Case Sensitivity
The VHDL netlist writer is case insensitive. For example, \A and \a are considered to be
unique identifers; however, the VHDL netlist writer considers them to be the same identifier.

Note that the VHDL netlist reader is case sensitive and supports the VHDL 93 standard.
Chapter 7: Write Out Designs in VHDL Format
VHDL Netlister Coding Considerations 7-13
Chapter 7: Write Out Designs in VHDL Format
VHDL Netlister Coding Considerations 7-13

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Chapter 7: Write Out Designs in VHDL Format
VHDL Netlister Coding Considerations 7-14

A
Examples A

Source files for examples demonstrating the use of VHDL are typically in the /synopsys/syn/
examples/vhdl directory. These examples are included in the following sections:

• Read-Only Memory

• Waveform Generator

• Definable-Width Adder-Subtracter

• Count Zeros—Combinational Version

• Count Zeros—Sequential Version

• Soft Drink Machine—State Machine Version

• Soft Drink Machine—Count Nickels Version

• FSM Example: Moore Machine

• FSM Example: Mealy Machine

• Carry-Lookahead Adder

• Serial-to-Parallel Converter—Counting Bits

• Serial-to-Parallel Converter—Shifting Bits

• Programmable Logic Arrays
A-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Read-Only Memory

Example A-1 on page A-3 shows how you can define a read-only memory in VHDL. The
ROM is defined as an array constant, ROM. Each line of the constant array specification
defines the contents of one ROM address. To read from the ROM, index into the array.

The number of ROM storage locations and bit-width is easy to change. The subtype
ROM_RANGE specifies that the ROM contains storage locations 0 to 7. The constant
ROM_WIDTH specifies that the ROM is 5 bits wide.

After you define a ROM constant, you can index into that constant many times to read many
values from the ROM. If the ROM address is computable, no logic is built and the
appropriate data value is inserted. If the ROM address is not computable, logic is built for
each index into the value. For this reason, consider resource sharing when using a ROM. In
Example A-1 on page A-3, ADDR is not computable, so logic is synthesized to compute the
value.

HDL Compiler does not actually instantiate a typical array-logic ROM, such as those
available from ASIC vendors. Instead, it creates the ROM from random logic gates (AND,
OR, NOT, and so on). This type of implementation is preferable for small ROMs and for
ROMs that are regular. For very large ROMs, consider using an array-logic implementation
supplied by your ASIC vendor.

Example A-1 on page A-3 shows the VHDL source code and the synthesized circuit
schematic.
Appendix A: Examples
Read-Only Memory A-2

HDL Compiler for VHDL User Guide Version D-2010.03
Example A-1 Implementation of a ROM in Random Logic
package ROMS is
 -- declare a 5x8 ROM called ROM
 constant ROM_WIDTH: INTEGER := 5;
 subtype ROM_WORD is BIT_VECTOR (1 to ROM_WIDTH);
 subtype ROM_RANGE is INTEGER range 0 to 7;
 type ROM_TABLE is array (0 to 7) of ROM_WORD;
 constant ROM: ROM_TABLE := ROM_TABLE’(
 ROM_WORD’("10101"), -- ROM contents
 ROM_WORD’("10000"),
 ROM_WORD’("11111"),
 ROM_WORD’("11111"),
 ROM_WORD’("10000"),
 ROM_WORD’("10101"),
 ROM_WORD’("11111"),
 ROM_WORD’("11111"));
end ROMS;
use work.ROMS.all; -- Entity that uses ROM
entity ROM_5x8 is
 port(ADDR: in ROM_RANGE;
 DATA: out ROM_WORD);
end;
architecture BEHAVIOR of ROM_5x8 is
begin
 DATA <= ROM(ADDR); -- Read from the ROM
end BEHAVIOR;
Chapter A: Examples
Read-Only Memory A-3
Appendix A: Examples
Read-Only Memory A-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Waveform Generator

The waveform generator example shows how to use the previous ROM example to
implement a waveform generator.

Assume that you want to produce the waveform output shown in Figure A-1.

1. First, declare a ROM wide enough to hold the output signals (4 bits) and deep enough to
hold all time steps (0 to 12, for a total
of 13).

2. Next, define the ROM so that each time step is represented by an entry in the ROM.

3. Finally, create a counter that cycles through the time steps (ROM addresses), generating
the waveform at each time step.

Figure A-1 Waveform Example

 0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

Appendix A: Examples
Waveform Generator A-4

HDL Compiler for VHDL User Guide Version D-2010.03
Example A-2 shows an implementation for the waveform generator. It consists of a ROM, a
counter, and some simple reset logic.

Example A-2 Implementation of a Waveform Generator
package ROMS is
 -- a 4x13 ROM called ROM that contains the waveform
 constant ROM_WIDTH: INTEGER := 4;
 subtype ROM_WORD is BIT_VECTOR (1 to ROM_WIDTH);
 subtype ROM_RANGE is INTEGER range 0 to 12;
 type ROM_TABLE is array (0 to 12) of ROM_WORD;
 constant ROM: ROM_TABLE := ROM_TABLE’(
 "1100", -- time step 0
 "1100", -- time step 1
 "0100", -- time step 2
 "0000", -- time step 3
 "0110", -- time step 4
 "0101", -- time step 5
 "0111", -- time step 6
 "1100", -- time step 7
 "0100", -- time step 8
 "0000", -- time step 9
 "0110", -- time step 10
 "0101", -- time step 11
 "0111"); -- time step 12
end ROMS;

use work.ROMS.all;
entity WAVEFORM is -- Waveform generator
 port(CLOCK: in BIT;
 RESET: in BOOLEAN;
 WAVES: out ROM_WORD);
end;

architecture BEHAVIOR of WAVEFORM is
 signal STEP: ROM_RANGE;
begin

 TIMESTEP_COUNTER: process -- Time stepping process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 if RESET then -- Detect reset
 STEP <= ROM_RANGE’low; -- Restart
 elsif STEP = ROM_RANGE’high then -- Finished?
 STEP <= ROM_RANGE’high; -- Hold at last value
 -- STEP <= ROM_RANGE’low; -- Continuous wave
 else
 STEP <= STEP + 1; -- Continue stepping
 end if;
 end process TIMESTEP_COUNTER;

 WAVES <= ROM(STEP);
end BEHAVIOR;
Chapter A: Examples
Waveform Generator A-5
Appendix A: Examples
Waveform Generator A-5

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
When the counter STEP reaches the end of the ROM, STEP stops, generates the last value,
then waits until a reset. To make the sequence automatically repeat, remove the following
statement:

STEP <= ROM_RANGE’high; -- Hold at last value

Use the following statement instead (commented out in Example A-2 on page A-5):

STEP <= ROM_RANGE’low; -- Continuous wave

Definable-Width Adder-Subtracter

VHDL lets you create functions for use with array operands of any size. This example shows
an adder-subtracter circuit that, when called, is adjusted to fit the size of its operands.

Example A-3 shows an adder-subtracter defined for two unconstrained arrays of bits (type
BIT_VECTOR) in a package named MATH. When an unconstrained array type is used for
an argument to a subprogram, the actual constraints of the array are taken from the actual
parameter values in a subprogram call.

Example A-3 MATH Package for Example A-4 on page A-7
package MATH is
 function ADD_SUB(L, R: BIT_VECTOR; ADD: BOOLEAN)
 return BIT_VECTOR;
 -- Add or subtract two BIT_VECTORs of equal length
end MATH;

package body MATH is
 function ADD_SUB(L, R: BIT_VECTOR; ADD: BOOLEAN)
 return BIT_VECTOR is
 variable CARRY: BIT;
 variable A, B, SUM:
 BIT_VECTOR(L’length-1 downto 0);
 begin
 if ADD then
 -- Prepare for an "add" operation
 A := L;
 B := R;
 CARRY := ’0’;
 else

 -- Prepare for a "subtract" operation
 A := L;
 B := not R;
 CARRY := ’1’;
 end if;

 -- Create a ripple carry chain; sum up bits
 for i in 0 to A’left loop
Appendix A: Examples
Definable-Width Adder-Subtracter A-6

HDL Compiler for VHDL User Guide Version D-2010.03
 SUM(i) := A(i) xor B(i) xor CARRY;
 CARRY := (A(i) and B(i)) or
 (A(i) and CARRY) or
 (CARRY and B(i));
 end loop;
 return SUM; -- Result
 end;
end MATH;

Within the function ADD_SUB, two temporary variables, A and B, are declared. These
variables are declared to be the same length as L (and necessarily, R) but have their index
constraints normalized to L’length-1 downto 0. After the arguments are normalized, you can
create a ripple carry adder by using a for loop.

No explicit references to a fixed array length are in the function ADD_SUB. Instead, the
VHDL array attributes ’left and ’length are used. These attributes allow the function to work
on arrays of any length.

Example A-4 shows how to use the adder-subtracter defined in the MATH package. In this
example, the vector arguments to functions ARG1 and ARG2 are declared as
BIT_VECTOR(1 to 6). This declaration causes ADD_SUB to work with 6-bit arrays.

Example A-4 Implementation of a 6-Bit Adder-Subtracter
use work.MATH.all;

entity EXAMPLE is
 port(ARG1, ARG2: in BIT_VECTOR(1 to 6);
 ADD: in BOOLEAN;
 RESULT : out BIT_VECTOR(1 to 6));
end EXAMPLE;

architecture BEHAVIOR of EXAMPLE is
begin
 RESULT <= ADD_SUB(ARG1, ARG2, ADD);
end BEHAVIOR;

Count Zeros—Combinational Version

The count zeros—combinational example, Example A-5 on page A-8, illustrates a design
problem in which an 8-bit-wide value is given and the circuit determines two things:

• That no more than one sequence of zeros is in the value.

• The number of zeros in that sequence (if any). This computation must be completed in a
single clock cycle.

The circuit produces two outputs: the number of zeros found and an error indication.
Chapter A: Examples
Count Zeros—Combinational Version A-7
Appendix A: Examples
Count Zeros—Combinational Version A-7

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
A valid input value can have at most one consecutive series of zeros. A value consisting
entirely of ones is defined as a valid value. If a value is invalid, the zero counter resets to 0.
For example, the value 00000000 is valid and has eight zeros; value 11000111 is valid and
has three zeros; value 00111100 is invalid.

Example A-5 shows the VHDL description for the circuit. It consists of a single process with
a for loop that iterates across each bit in the given value. At each iteration, a temporary
INTEGER variable (TEMP_COUNT) counts the number of zeros encountered. Two
temporary Boolean variables (SEEN_ZERO and SEEN_TRAILING), initially false, are set to
true when the beginning and end of the first sequence of zeros are detected.

If a zero is detected after the end of the first sequence of zeros (after SEEN_TRAILING is
true), the zero count is reset (to 0), ERROR is set to true, and the for loop is exited.

Example A-5 shows a combinational (parallel) approach to counting the zeros. The next
example shows a sequential (serial) approach.

Example A-5 Count Zeros—Combinational
entity COUNT_COMB_VHDL is
 port(DATA: in BIT_VECTOR(7 downto 0);
 COUNT: out INTEGER range 0 to 8;
 ERROR: out BOOLEAN);
end;

architecture BEHAVIOR of COUNT_COMB_VHDL is
begin
 process(DATA)
 variable TEMP_COUNT : INTEGER range 0 to 8;
 variable SEEN_ZERO, SEEN_TRAILING : BOOLEAN;
 begin
 ERROR <= FALSE;
 SEEN_ZERO := FALSE;
 SEEN_TRAILING := FALSE;
 TEMP_COUNT := 0;
 for I in 0 to 7 loop
 if (SEEN_TRAILING and DATA(I) = ’0’) then
 TEMP_COUNT := 0;
 ERROR <= TRUE;
 exit;
 elsif (SEEN_ZERO and DATA(I) = ’1’) then
 SEEN_TRAILING := TRUE;
 elsif (DATA(I) = ’0’) then
 SEEN_ZERO := TRUE;
 TEMP_COUNT := TEMP_COUNT + 1;
 end if;
 end loop;

 COUNT <= TEMP_COUNT;
 end process;
Appendix A: Examples
Count Zeros—Combinational Version A-8

HDL Compiler for VHDL User Guide Version D-2010.03
end BEHAVIOR;

Count Zeros—Sequential Version

The count zeros—sequential example, Example A-6 on page A-10, shows a sequential
(clocked) variant of the preceding design (Count Zeros—Combinational Version).

The circuit now accepts the 8-bit data value serially, 1 bit per clock cycle, by using the DATA
and CLK inputs. The other two inputs are

• RESET, which resets the circuit

• READ, which causes the circuit to begin accepting data bits

The circuit’s three outputs are

• IS_LEGAL, which is true if the data was a valid value

• COUNT_READY, which is true at the first invalid bit or when all 8 bits have been
processed

• COUNT, the number of zeros (if IS_LEGAL is true)

Note:
The output port COUNT is declared with mode BUFFER so that it can be read inside
the process. OUT ports can only be written to, not read in.
Chapter A: Examples
Count Zeros—Sequential Version A-9
Appendix A: Examples
Count Zeros—Sequential Version A-9

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example A-6 Count Zeros—Sequential
entity COUNT_SEQ_VHDL is
 port(DATA, CLK: in BIT;
 RESET, READ: in BOOLEAN;
 COUNT: buffer INTEGER range 0 to 8;
 IS_LEGAL: out BOOLEAN;
 COUNT_READY: out BOOLEAN);
end;
architecture BEHAVIOR of COUNT_SEQ_VHDL is
begin
 process
 variable SEEN_ZERO, SEEN_TRAILING: BOOLEAN;
 variable BITS_SEEN: INTEGER range 0 to 7;
 begin
 wait until CLK’event and CLK = ’1’;

 if(RESET) then
 COUNT_READY <= FALSE;
 IS_LEGAL <= TRUE; -- signal assignment
 SEEN_ZERO := FALSE; -- variable assignment
 SEEN_TRAILING := FALSE;
 COUNT <= 0;
 BITS_SEEN := 0;
 else
 if (READ) then
 if (SEEN_TRAILING and DATA = ’0’) then
 IS_LEGAL <= FALSE;
 COUNT <= 0;
 COUNT_READY <= TRUE;
 elsif (SEEN_ZERO and DATA = ’1’) then
 SEEN_TRAILING := TRUE;
 elsif (DATA = ’0’) then
 SEEN_ZERO := TRUE;
 COUNT <= COUNT + 1;
 end if;

 if (BITS_SEEN = 7) then
 COUNT_READY <= TRUE;
 else
 BITS_SEEN := BITS_SEEN + 1;
 end if;

 end if; -- if (READ)
 end if; -- if (RESET)
 end process;
end BEHAVIOR;
Appendix A: Examples
Count Zeros—Sequential Version A-10

HDL Compiler for VHDL User Guide Version D-2010.03
Soft Drink Machine—State Machine Version

The soft drink machine—state machine example, Example A-7, is a control unit for a soft
drink vending machine.

The circuit reads signals from a coin input unit and sends outputs to a change dispensing
unit and a drink dispensing unit.

Here are the design parameters for Example A-7 and Example A-8 on page A-14:

• This example assumes that only one kind of soft drink is dispensed.

• This is a clocked design with CLK and RESET input signals.

• The price of the drink is 35 cents.

• The input signals from the coin input unit are NICKEL_IN (nickel deposited), DIME_IN
(dime deposited), and QUARTER_IN (quarter deposited).

• The output signals to the change dispensing unit are NICKEL_OUT and DIME_OUT.

• The output signal to the drink dispensing unit is DISPENSE (dispense drink).

The first VHDL description for this design uses a state machine description style. The
second VHDL description is in Example A-8 on page A-14.

Example A-7 Soft Drink Machine—State Machine
library synopsys; use synopsys.attributes.all;

entity DRINK_STATE_VHDL is
 port(NICKEL_IN, DIME_IN, QUARTER_IN, RESET: BOOLEAN;
 CLK: BIT;
 NICKEL_OUT, DIME_OUT, DISPENSE: out BOOLEAN);
end;

architecture BEHAVIOR of DRINK_STATE_VHDL is
 type STATE_TYPE is (IDLE, FIVE, TEN, FIFTEEN,
 TWENTY, TWENTY_FIVE, THIRTY, OWE_DIME);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
 attribute STATE_VECTOR : STRING;
 attribute STATE_VECTOR of BEHAVIOR : architecture is

"CURRENT_STATE";

attribute sync_set_reset of reset : signal is "true";
begin

 process(NICKEL_IN, DIME_IN, QUARTER_IN,
 CURRENT_STATE, RESET, CLK)
 begin
 -- Default assignments
 NEXT_STATE <= CURRENT_STATE;
Chapter A: Examples
Soft Drink Machine—State Machine Version A-11
Appendix A: Examples
Soft Drink Machine—State Machine Version A-11

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 NICKEL_OUT <= FALSE;
 DIME_OUT <= FALSE;
 DISPENSE <= FALSE;

 -- Synchronous reset
 if(RESET) then
 NEXT_STATE <= IDLE;
 else

 -- State transitions and output logic
 case CURRENT_STATE is
 when IDLE =>
 if(NICKEL_IN) then
 NEXT_STATE <= FIVE;
 elsif(DIME_IN) then
 NEXT_STATE <= TEN;
 elsif(QUARTER_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 end if;

 when FIVE =>
 if(NICKEL_IN) then
 NEXT_STATE <= TEN;
 elsif(DIME_IN) then
 NEXT_STATE <= FIFTEEN;
 elsif(QUARTER_IN) then
 NEXT_STATE <= THIRTY;
 end if;
 when TEN =>
 if(NICKEL_IN) then
 NEXT_STATE <= FIFTEEN;
 elsif(DIME_IN) then
 NEXT_STATE <= TWENTY;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 end if;
 when FIFTEEN =>
 if(NICKEL_IN) then
 NEXT_STATE <= TWENTY;
 elsif(DIME_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 NICKEL_OUT <= TRUE;
 end if;
 when TWENTY =>
 if(NICKEL_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 elsif(DIME_IN) then
 NEXT_STATE <= THIRTY;
 elsif(QUARTER_IN) then
Appendix A: Examples
Soft Drink Machine—State Machine Version A-12

HDL Compiler for VHDL User Guide Version D-2010.03
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;
 end if;

 when TWENTY_FIVE =>
 if(NICKEL_IN) then
 NEXT_STATE <= THIRTY;
 elsif(DIME_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;
 NICKEL_OUT <= TRUE;
 end if;

 when THIRTY =>
 if(NICKEL_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 elsif(DIME_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 NICKEL_OUT <= TRUE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= OWE_DIME;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;
 end if;

 when OWE_DIME =>
 NEXT_STATE <= IDLE;
 DIME_OUT <= TRUE;

 end case;
 end if;
 end process;

 -- Synchronize state value with clock
 -- This causes it to be stored in flip-flops
 process
 begin
 wait until CLK’event and CLK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process;
end BEHAVIOR;
Chapter A: Examples
Soft Drink Machine—State Machine Version A-13
Appendix A: Examples
Soft Drink Machine—State Machine Version A-13

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Soft Drink Machine—Count Nickels Version

The soft drink machine—count nickels example, Example A-8, uses the same design
parameters as the preceding Example A-7 on page A-11 (Soft Drink Machine—State
Machine Version), with the same input and output signals. In this version, a counter counts
the number of nickels deposited. This counter is incremented by 1 if the deposit is a nickel,
by 2 if it is a dime, and by 5 if it is a quarter.

Example A-8 Soft Drink Machine—Count Nickels
entity DRINK_COUNT_VHDL is
 port(NICKEL_IN, DIME_IN, QUARTER_IN, RESET: BOOLEAN;
 CLK: BIT;
 NICKEL_OUT, DIME_OUT, DISPENSE: out BOOLEAN);
end;

architecture BEHAVIOR of DRINK_COUNT_VHDL is
 signal CURRENT_NICKEL_COUNT,
 NEXT_NICKEL_COUNT: INTEGER range 0 to 7;
 signal CURRENT_RETURN_CHANGE, NEXT_RETURN_CHANGE : BOOLEAN;
begin

 process(NICKEL_IN, DIME_IN, QUARTER_IN, RESET, CLK,
 CURRENT_NICKEL_COUNT, CURRENT_RETURN_CHANGE)
 variable TEMP_NICKEL_COUNT: INTEGER range 0 to 12;
 begin
 -- Default assignments
 NICKEL_OUT <= FALSE;
 DIME_OUT <= FALSE;
 DISPENSE <= FALSE;
 NEXT_NICKEL_COUNT <= 0;
 NEXT_RETURN_CHANGE <= FALSE;

 -- Synchronous reset
 if (not RESET) then
 TEMP_NICKEL_COUNT := CURRENT_NICKEL_COUNT;

 -- Check whether money has come in
 if (NICKEL_IN) then
 -- NOTE: This design will be flattened, so
 -- these multiple adders will be optimized
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT + 1;
 elsif(DIME_IN) then
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT + 2;
 elsif(QUARTER_IN) then
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT + 5;
 end if;

 -- Enough deposited so far?
 if(TEMP_NICKEL_COUNT >= 7) then
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT - 7;
 DISPENSE <= TRUE;
 end if;

 -- Return change
 if(TEMP_NICKEL_COUNT >= 1 or
Appendix A: Examples
Soft Drink Machine—Count Nickels Version A-14

HDL Compiler for VHDL User Guide Version D-2010.03
 CURRENT_RETURN_CHANGE) then
 if(TEMP_NICKEL_COUNT >= 2) then
 DIME_OUT <= TRUE;
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT - 2;
 NEXT_RETURN_CHANGE <= TRUE;
 end if;
 if(TEMP_NICKEL_COUNT = 1) then
 NICKEL_OUT <= TRUE;
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT - 1;
 end if;
 end if;

 NEXT_NICKEL_COUNT <= TEMP_NICKEL_COUNT;
 end if;
 end process;

 -- Remember the return-change flag and
 -- the nickel count for the next cycle
 process
 begin
 wait until CLK’event and CLK = ’1’;
 CURRENT_RETURN_CHANGE <= NEXT_RETURN_CHANGE;
 CURRENT_NICKEL_COUNT <= NEXT_NICKEL_COUNT;
 end process;

end BEHAVIOR;
Chapter A: Examples
Soft Drink Machine—Count Nickels Version A-15
Appendix A: Examples
Soft Drink Machine—Count Nickels Version A-15

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
FSM Example: Moore Machine

Figure A-2 is a diagram of a simple Moore finite state machine. It has one input (X), four
internal states (S0 to S3), and one output (Z).

Figure A-2 Moore Machine Specification

The VHDL code implementing this finite state machine is shown in Example A-9.

The machine description includes two processes. One process defines the synchronous
elements of the design (state registers); the other process defines the combinational part of
the design (state assignment case statement).

Example A-9 Implementation of a Moore Machine
entity MOORE is -- Moore machine
 port(X, CLOCK: in BIT;
 Z: out BIT);
end;

architecture BEHAVIOR of MOORE is
 type STATE_TYPE is (S0, S1, S2, S3);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begin

 -- Process to hold combinational logic
 COMBIN: process(CURRENT_STATE, X)
 begin
 case CURRENT_STATE is
 when S0 =>

 S0

 S1

 S3

 S2

0

1 1

0

0

1

1

0

1

0

1

0
 Present Next Output
 state state (Z)
 X=0 X=1
 S0 S0 S2 0

S1 S0 S2 1
S2 S2 S3 1

S3 S3 S1 0
Appendix A: Examples
FSM Example: Moore Machine A-16

HDL Compiler for VHDL User Guide Version D-2010.03
 Z <= ’0’;
 if X = ’0’ then
 NEXT_STATE <= S0;
 else
 NEXT_STATE <= S2;
 end if;
 when S1 =>
 Z <= ’1’;
 if X = ’0’ then
 NEXT_STATE <= S0;
 else
 NEXT_STATE <= S2;
 end if;
 when S2 =>
 Z <= ’1’;
 if X = ’0’ then
 NEXT_STATE <= S2;
 else
 NEXT_STATE <= S3;
 end if;
 when S3 =>
 Z <= ’0’;
 if X = ’0’ then
 NEXT_STATE <= S3;
 else
 NEXT_STATE <= S1;
 end if;
 end case;
 end process;

 -- Process to hold synchronous elements (flip-flops)
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process;
end BEHAVIOR;
Chapter A: Examples
FSM Example: Moore Machine A-17
Appendix A: Examples
FSM Example: Moore Machine A-17

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
FSM Example: Mealy Machine

Figure A-3 is a diagram of a simple Mealy finite state machine. The VHDL code for
implementing this finite state machine is shown in Example A-10. The machine description
includes two processes, as in the previous Moore machine example.

Figure A-3 Mealy Machine Specification

Example A-10 Implementation of a Mealy Machine
entity MEALY is -- Mealy machine
 port(X, CLOCK: in BIT;
 Z: out BIT);
end;

architecture BEHAVIOR of MEALY is
 type STATE_TYPE is (S0, S1, S2, S3);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begin

 -- Process to hold combinational logic.
 COMBIN: process(CURRENT_STATE, X)
 begin
 case CURRENT_STATE is
 when S0 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S0;
 else
 Z <= ’1’;

 S0

 S1

 S3

 S2

0/1

1/1

1/0

0/0

1/1

0/0

1/0

0/0
 Present Next Output
 state state (Z)
 X=0 X=1 X=0 X=1
 S0 S0 S2 0 1

S1 S0 S2 0 0
S2 S2 S3 1 0

S3 S3 S1 0 1
Appendix A: Examples
FSM Example: Mealy Machine A-18

HDL Compiler for VHDL User Guide Version D-2010.03
 NEXT_STATE <= S2;
 end if;
 when S1 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S0;
 else
 Z <= ’0’;
 NEXT_STATE <= S2;
 end if;
 when S2 =>
 if X = ’0’ then
 Z <= ’1’;
 NEXT_STATE <= S2;
 else
 Z <= ’0’;
 NEXT_STATE <= S3;
 end if;
 when S3 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S3;
 else
 Z <= ’1’;
 NEXT_STATE <= S1;
 end if;
 end case;
 end process;
 -- Process to hold synchronous elements (flip-flops)
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process;
end BEHAVIOR;
Chapter A: Examples
FSM Example: Mealy Machine A-19
Appendix A: Examples
FSM Example: Mealy Machine A-19

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Carry-Lookahead Adder

This example uses concurrent procedure calls to build a 32-bit carry-lookahead adder. The
adder is built by partitioning of the 32-bit input into eight slices of 4 bits each. Each of the
eight slices computes propagate and generate values by using the PG procedure.

Propagate (output P from PG) is ’1’ for a bit position if that position propagates a carry from
the next-lower position to the next-higher position. Generate (output G) is ’1’ for a bit position
if that position generates a carry to the next-higher position, regardless of the carry-in from
the next lower position. The carry-lookahead logic reads the carry-in, propagate, and
generate information computed from the inputs. The logic computes the carry value for each
bit position and makes the addition operation an XOR of the inputs and the carry values.

Carry Value Computations
The carry values are computed by a three-level tree of 4-bit carry-lookahead blocks.

• The first level of the tree computes the 32 carry values and the eight group-propagate
and generate values. Each of the first-level group-propagate and generate values tells if
that 4-bit slice propagates and generates carry values from the next-lower group to the
next-higher group. The first-level lookahead blocks read the group carry computed at the
second level.

• The second-level lookahead blocks read the group-propagate and generate information
from the four first-level blocks and then compute their own group-propagate and generate
information. The second-level lookahead blocks also read group carry information
computed at the third level to compute the carries for each of the third-level blocks.

• The third-level block reads the propagate and generate information of the second level to
compute a propagate and generate value for the entire adder. It also reads the external
carry to compute each second-level carry. The carry-out for the adder is ’1’ if the
third-level generate is ’1’ or if the third-level propagate is ’1’ and the external carry is ’1’.

The third-level carry-lookahead block is capable of processing four second-level blocks.
But because there are only two second-level blocks, the high-order 2 bits of the computed
carry are ignored; the high-order 2 bits of the generate input to the third-level are set to
0, "00", and the propagate high-order bits are set to "11". These settings cause the
unused portion to propagate carries but not to generate them. Figure A-4 shows the
overall structure for the carry-lookahead adder.
Appendix A: Examples
Carry-Lookahead Adder A-20

HDL Compiler for VHDL User Guide Version D-2010.03
Figure A-4 Carry-Lookahead Adder Block Diagram

CIN COUT 27:24

P
G

GP
GG

CLA

CIN COUT 23:20

P
G

GP
GG

CLA

CIN COUT 19:16

P
G

GP
GG

CLA

CIN COUT 31:28

P
G

GP
GG

CLA

0

A 27:24
B 27:24

P
G

PG

A 31:28
B 31:28

P
G

PG

A 23:20
B 23:20

P
G

PG

A 19:16
B 19:16

P
G

PG

CIN

P
G

COUT

GP
GG

CLA

CIN

P
G

COUT

GP
GG

CLA

7
7

4
4

6
6

5
5

1

CIN COUT 11:8

P
G

GP
GG

CLA

CIN COUT 7:4

P
G

GP
GG

CLA

CIN COUT 3:0

P
G

GP
GG

CLA

CIN COUT 15:12

P
G

GP
GG

CLA

A 11:8
B 11:8

P
G

PG

A 15:12
B 15:12

P
G

PG

A 7:4
B 7:4

P
G

PG

A 3:0
B 3:0

P
G

PG

CIN

P
G

COUT

GP
GG

CLA

3
3

0
0

2
2

1
1

0

1

GGGG or (GGGP and CIN)

GC 7:4

GC 3:0
GGGP

GGGG

GGC

CIN
B A

XOR

S

"00"

3:2
"11"

3:2

Third-Level

Second-Level

First-Level

1

0

COUT

GP 7:4

GP 3:0

GG 7:4

GG 3:0

GGP

GGG

7

6

5

4

1

2

3

0

 Blocks

 Blocks

 Block
Chapter A: Examples
Carry-Lookahead Adder A-21
Appendix A: Examples
Carry-Lookahead Adder A-21

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
The VHDL implementation of the design in Figure A-4 is accomplished with the following
procedures:

CLA

Names a 4-bit carry-lookahead block.

PG

Computes first-level propagate and generate information.

SUM

Computes the sum by adding the XOR values to the inputs with the carry values
computed by CLA.

BITSLICE

Collects the first-level CLA blocks, the PG computations, and the SUM. This procedure
performs all the work for a 4-bit value except for the second- and third-level lookaheads.

Example A-11 shows a VHDL description of the adder.

Example A-11 Carry-Lookahead Adder
package LOCAL is
 constant N: INTEGER := 4;

 procedure BITSLICE(
 A, B: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 signal S: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT);
 procedure PG(
 A, B: in BIT_VECTOR(3 downto 0);
 P, G: out BIT_VECTOR(3 downto 0));
 function SUM(A, B, C: BIT_VECTOR(3 downto 0))
 return BIT_VECTOR;
 procedure CLA(
 P, G: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 C: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT);
end LOCAL;

package body LOCAL is

 -- Compute sum and group outputs from a, b, cin

 procedure BITSLICE(
 A, B: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 signal S: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT) is

 variable P, G, C: BIT_VECTOR(3 downto 0);
 begin
 PG(A, B, P, G);
Appendix A: Examples
Carry-Lookahead Adder A-22

HDL Compiler for VHDL User Guide Version D-2010.03
 CLA(P, G, CIN, C, GP, GG);
 S <= SUM(A, B, C);
 end;

 -- Compute propagate and generate from input bits

 procedure PG(A, B: in BIT_VECTOR(3 downto 0);
 P, G: out BIT_VECTOR(3 downto 0)) is

 begin
 P := A or B;
 G := A and B;
 end;

 --
 -- Compute sum from the input bits and the carries
 --

 function SUM(A, B, C: BIT_VECTOR(3 downto 0))
 return BIT_VECTOR is

 begin
 return(A xor B xor C);
 end;

 -- 4-bit carry-lookahead block

 procedure CLA(
 P, G: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 C: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT) is
 variable TEMP_GP, TEMP_GG, LAST_C: BIT;
 begin
 TEMP_GP := P(0);
 TEMP_GG := G(0);
 LAST_C := CIN;
 C(0) := CIN;

 for I in 1 to N-1 loop
 TEMP_GP := TEMP_GP and P(I);
 TEMP_GG := (TEMP_GG and P(I)) or G(I);
 LAST_C := (LAST_C and P(I-1)) or G(I-1);
 C(I) := LAST_C;
 end loop;

 GP <= TEMP_GP;
 GG <= TEMP_GG;
 end;
end LOCAL;

use WORK.LOCAL.ALL;

Chapter A: Examples
Carry-Lookahead Adder A-23
Appendix A: Examples
Carry-Lookahead Adder A-23

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
-- A 32-bit carry-lookahead adder

entity ADDER is
 port(A, B: in BIT_VECTOR(31 downto 0);
 CIN: in BIT;
 S: out BIT_VECTOR(31 downto 0);
 COUT: out BIT);
end ADDER;
architecture BEHAVIOR of ADDER is

 signal GG,GP,GC: BIT_VECTOR(7 downto 0);
 -- First-level generate, propagate, carry
 signal GGG, GGP, GGC: BIT_VECTOR(3 downto 0);
 -- Second-level gen, prop, carry
 signal GGGG, GGGP: BIT;
 -- Third-level gen, prop

begin
 -- Compute Sum and 1st-level Generate and Propagate
 -- Use input data and the 1st-level Carries computed
 -- later.
 BITSLICE(A(3 downto 0),B(3 downto 0),GC(0),
 S(3 downto 0),GP(0), GG(0));
 BITSLICE(A(7 downto 4),B(7 downto 4),GC(1),
 S(7 downto 4),GP(1), GG(1));
 BITSLICE(A(11 downto 8),B(11 downto 8),GC(2),
 S(11 downto 8),GP(2), GG(2));
 BITSLICE(A(15 downto 12),B(15 downto 12),GC(3),
 S(15 downto 12),GP(3), GG(3));
 BITSLICE(A(19 downto 16),B(19 downto 16),GC(4),
 S(19 downto 16),GP(4), GG(4));
 BITSLICE(A(23 downto 20),B(23 downto 20),GC(5),
 S(23 downto 20),GP(5), GG(5));
 BITSLICE(A(27 downto 24),B(27 downto 24),GC(6),
 S(27 downto 24),GP(6), GG(6));
 BITSLICE(A(31 downto 28),B(31 downto 28),GC(7),
 S(31 downto 28),GP(7), GG(7));

 -- Compute first-level Carries and second-level
 -- generate and propagate.
 -- Use first-level Generate, Propagate, and
 -- second-level carry.
 process(GP, GG, GGC)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GP(3 downto 0), GG(3 downto 0), GGC(0), TEMP,
 GGP(0), GGG(0));
 GC(3 downto 0) <= TEMP;
 end process;

 process(GP, GG, GGC)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GP(7 downto 4), GG(7 downto 4), GGC(1), TEMP,
 GGP(1), GGG(1));
 GC(7 downto 4) <= TEMP;
 end process;
Appendix A: Examples
Carry-Lookahead Adder A-24

HDL Compiler for VHDL User Guide Version D-2010.03
 -- Compute second-level Carry and third-level
 -- Generate and Propagate
 -- Use second-level Generate, Propagate and Carry-in
 -- (CIN)
 process(GGP, GGG, CIN)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GGP, GGG, CIN, TEMP, GGGP, GGGG);
 GGC <= TEMP;
 end process;

 -- Assign unused bits of second-level Generate and
 -- Propagate
 GGP(3 downto 2) <= "11";
 GGG(3 downto 2) <= "00";

 -- Compute Carry-out (COUT)
 -- Use third-level Generate and Propagate and
 -- Carry-in (CIN).
 COUT <= GGGG or (GGGP and CIN);
end BEHAVIOR;

Implementation
In the carry-lookahead adder implementation, procedures perform the computation of the
design. The procedures can also be in the form of separate entities and used by component
instantiation, producing a hierarchical design. HDL Compiler does not collapse a hierarchy
of entities, but it does collapse the procedure call hierarchy into one design.

The keyword signal is included before some of the interface parameter declarations. This
keyword is required for the out formal parameters when the actual parameters must be
signals.

The output parameter C from the CLA procedure is not declared as a signal; thus, it is not
allowed in a concurrent procedure call. Only signals can be used in such calls. To overcome
this problem, subprocesses are used, declaring a temporary variable TEMP. TEMP receives
the value of the C parameter and assigns it to the appropriate signal (a generally useful
technique).
Chapter A: Examples
Carry-Lookahead Adder A-25
Appendix A: Examples
Carry-Lookahead Adder A-25

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Serial-to-Parallel Converter—Counting Bits

This example shows the design of a serial-to-parallel converter that reads a serial,
bit-stream input and produces an 8-bit output.

The design reads the following inputs:

SERIAL_IN

The serial input data.

RESET

The input that, when it is ’1’, causes the converter to reset. All outputs are set to 0, and
the converter is prepared to read the next serial word.

CLOCK

The value of RESET and SERIAL_IN, which is read on the positive transition of this clock.
Outputs of the converter are also valid only on positive transitions.

The design produces the following outputs:

PARALLEL_OUT

The 8-bit value read from the SERIAL_IN port.

READ_ENABLE

The output that, when it is ’1’ on the positive transition of CLOCK, causes the data on
PARALLEL_OUT to be read.

PARITY_ERROR

The output that, when it is ’1’ on the positive transition of CLOCK, indicates that a parity
error has been detected on the SERIAL_IN port. When a parity error is detected, the
converter halts until restarted by the RESET port.

Input Format
When no data is being transmitted to the serial port, keep it at a value of ’0’. Each 8-bit value
requires 10 clock cycles to read it. On the 11th clock cycle, the parallel output value can be
read.

In the first cycle, a ’1’ is placed on the serial input. This assignment indicates that an 8-bit
value follows. The next 8 cycles transmit each bit of the value. The most significant bit is
transmitted first. The 10th cycle transmits the parity of the 8-bit value. It must be ’0’ if an even
number of ’1’ values are in the 8-bit data, and ’1’ otherwise. If the converter detects a parity
error, it sets the PARITY_ERROR output to ’1’ and waits until the value is reset.
Appendix A: Examples
Serial-to-Parallel Converter—Counting Bits A-26

HDL Compiler for VHDL User Guide Version D-2010.03
On the 11th cycle, the READ_ENABLE output is set to ’1’ and the 8-bit value can be read
from the PARALLEL_OUT port. If the SERIAL_IN port has a ’1’ on the 11th cycle, another
8-bit value is read immediately; otherwise, the converter waits until SERIAL_IN goes to ’1’.

Figure A-5 shows the timing of this design.

Figure A-5 Sample Waveform Through the Converter

Implementation Details
The implementation of the converter is as a four-state finite-state machine with synchronous
reset. When a reset is detected, the converter enters a WAIT_FOR_START state.
Description of the states follow.

WAIT_FOR_START

Stay in this state until a ’1’ is detected on the serial input. When a ’1’ is detected, clear the
PARALLEL_OUT registers and go to the READ_BITS state.

READ_BITS

If the value of the current_bit_position counter is 8, all 8 bits have been read. Check the
computed parity with the transmitted parity. If it is correct, go to the ALLOW_READ state;
otherwise, go to the PARITY_ERROR state.

If all 8 bits have not yet been read, set the appropriate bit in the PARALLEL_OUT buffer
to the SERIAL_IN value, compute the parity of the bits read so far, and increment the
current_bit_position.

CLOCK

SERIAL_IN

RESET

PARALLEL_OUT

READ_ENABLE

PARITY_ERROR

XX 2D XX
Chapter A: Examples
Serial-to-Parallel Converter—Counting Bits A-27
Appendix A: Examples
Serial-to-Parallel Converter—Counting Bits A-27

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
ALLOW_READ

This is the state where the outside world reads the PARALLEL_OUT value. When that
value is read, the design returns to the WAIT_FOR_START state.

PARITY_ERROR_DETECTED

In this state, the PARITY_ERROR output is set to ’1’ and nothing else is done.

This design has four values stored in registers:

CURRENT_STATE

Remembers the state as of the last clock edge.

CURRENT_BIT_POSITION

Remembers how many bits have been read so far.

CURRENT_PARITY

Keeps a running XOR of the bits read.

CURRENT_PARALLEL_OUT

Stores each parallel bit as it is found.

The design has two processes: the combinational NEXT_ST containing the combinational
logic and the sequential SYNCH that is clocked.

NEXT_ST performs all the computations and state assignments. The NEXT_ST process
starts by assigning default values to all the signals it drives. This assignment guarantees
that all signals are driven under all conditions. Next, the RESET input is processed. If
RESET is not active, a case statement determines the current state and its computations.
State transitions are performed by assignment of the next state’s value you want to the
NEXT_STATE signal.

The serial-to-parallel conversion itself is performed by these two statements in the
NEXT_ST process:

NEXT_PARALLEL_OUT(CURRENT_BIT_POSITION) <= SERIAL_IN;
NEXT_BIT_POSITION <= CURRENT_BIT_POSITION + 1;

The first statement assigns the current serial input bit to a particular bit of the parallel output.
The second statement increments the next bit position to be assigned.

SYNCH registers and updates the stored values previously described. Each registered
signal has two parts, NEXT_... and CURRENT_... :

NEXT_...

Signals hold values computed by the NEXT_ST process.
Appendix A: Examples
Serial-to-Parallel Converter—Counting Bits A-28

HDL Compiler for VHDL User Guide Version D-2010.03
CURRENT_...

Signals hold the values driven by the SYNCH process. The CURRENT_... signals hold
the values of the NEXT_... signals as of the last clock edge.

Example A-12 shows a VHDL description of the converter.

Example A-12 Serial-to-Parallel Converter—Counting Bits
-- Serial-to-Parallel Converter, counting bits

package TYPES is
 -- Declares types used in the rest of the design
 type STATE_TYPE is (WAIT_FOR_START,
 READ_BITS,
 PARITY_ERROR_DETECTED,
 ALLOW_READ);
 constant PARALLEL_BIT_COUNT: INTEGER := 8;
 subtype PARALLEL_RANGE is INTEGER
 range 0 to (PARALLEL_BIT_COUNT-1);
 subtype PARALLEL_TYPE is BIT_VECTOR(PARALLEL_RANGE);
end TYPES;

use WORK.TYPES.ALL; -- Use the TYPES package

entity SER_PAR is -- Declare the interface
 port(SERIAL_IN, CLOCK, RESET: in BIT;
 PARALLEL_OUT: out PARALLEL_TYPE;
 PARITY_ERROR, READ_ENABLE: out BIT);
end;

architecture BEHAVIOR of SER_PAR is
 -- Signals for stored values
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
 signal CURRENT_PARITY, NEXT_PARITY: BIT;
 signal CURRENT_BIT_POSITION, NEXT_BIT_POSITION:
 INTEGER range PARALLEL_BIT_COUNT downto 0;
 signal CURRENT_PARALLEL_OUT, NEXT_PARALLEL_OUT:
 PARALLEL_TYPE;
begin
NEXT_ST: process(SERIAL_IN, CURRENT_STATE, RESET,
 CURRENT_BIT_POSITION, CURRENT_PARITY,
 CURRENT_PARALLEL_OUT)
 -- This process computes all outputs, the next
 -- state, and the next value of all stored values
 begin
 PARITY_ERROR <= ’0’; -- Default values for all
 READ_ENABLE <= ’0’; -- outputs and stored values
 NEXT_STATE <= CURRENT_STATE;
 NEXT_BIT_POSITION <= 0;
 NEXT_PARITY <= ’0’;
 NEXT_PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

 if (RESET = ’1’) then -- Synchronous reset
 NEXT_STATE <= WAIT_FOR_START;
 else
 case CURRENT_STATE is -- State processing
 when WAIT_FOR_START =>
Chapter A: Examples
Serial-to-Parallel Converter—Counting Bits A-29
Appendix A: Examples
Serial-to-Parallel Converter—Counting Bits A-29

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 if (SERIAL_IN = ’1’) then
 NEXT_STATE <= READ_BITS;
 NEXT_PARALLEL_OUT <=
 PARALLEL_TYPE’(others=>’0’);
 end if;
 when READ_BITS =>
 if (CURRENT_BIT_POSITION =
 PARALLEL_BIT_COUNT) then
 if (CURRENT_PARITY = SERIAL_IN) then
 NEXT_STATE <= ALLOW_READ;
 READ_ENABLE <= ’1’;
 else
 NEXT_STATE <= PARITY_ERROR_DETECTED;
 end if;
 else
 NEXT_PARALLEL_OUT(CURRENT_BIT_POSITION) <=
 SERIAL_IN;
 NEXT_BIT_POSITION <=
 CURRENT_BIT_POSITION + 1;
 NEXT_PARITY <= CURRENT_PARITY xor
 SERIAL_IN;
 end if;
 when PARITY_ERROR_DETECTED =>
 PARITY_ERROR <= ’1’;
 when ALLOW_READ =>
 NEXT_STATE <= WAIT_FOR_START;
 end case;
 end if;
 end process;

 SYNCH: process
 -- This process remembers the stored values
 -- across clock cycles
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 CURRENT_BIT_POSITION <= NEXT_BIT_POSITION;
 CURRENT_PARITY <= NEXT_PARITY;
 CURRENT_PARALLEL_OUT <= NEXT_PARALLEL_OUT;
 end process;

 PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

end BEHAVIOR;
Appendix A: Examples
Serial-to-Parallel Converter—Counting Bits A-30

HDL Compiler for VHDL User Guide Version D-2010.03
Serial-to-Parallel Converter—Shifting Bits

This example describes another implementation of the serial-to-parallel converter in the last
example. This design performs the same function as the previous one but uses a different
algorithm to do the conversion.

The previous implementation used a counter to indicate the bit of the output that was set
when a new serial bit was read. In this implementation, the serial bits are shifted into place.
Before the conversion occurs, a ’1’ is placed in the least-significant bit position. When that
’1’ is shifted out of the most significant position (position 0), the signal NEXT_HIGH_BIT is
set to ’1’ and the conversion is complete.

Example A-13 shows the listing of the second implementation. The differences are
highlighted in bold. The differences relate to the removal of the ..._BIT_POSITION signals,
the addition of ..._HIGH_BIT signals, and the change in the way NEXT_PARALLEL_OUT is
computed.

Example A-13 Serial-to-Parallel Converter—Shifting Bits
package TYPES is
 -- Declares types used in the rest of the design
 type STATE_TYPE is (WAIT_FOR_START,
 READ_BITS,
 PARITY_ERROR_DETECTED,
 ALLOW_READ);
 constant PARALLEL_BIT_COUNT: INTEGER := 8;
 subtype PARALLEL_RANGE is INTEGER
 range 0 to (PARALLEL_BIT_COUNT-1);
 subtype PARALLEL_TYPE is BIT_VECTOR(PARALLEL_RANGE);
end TYPES;

use WORK.TYPES.ALL; -- Use the TYPES package

entity SER_PAR is -- Declare the interface
 port(SERIAL_IN, CLOCK, RESET: in BIT;
 PARALLEL_OUT: out PARALLEL_TYPE;
 PARITY_ERROR, READ_ENABLE: out BIT);
end;

architecture BEHAVIOR of SER_PAR is
 -- Signals for stored values
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

 signal CURRENT_PARITY, NEXT_PARITY: BIT;
 signal CURRENT_HIGH_BIT, NEXT_HIGH_BIT: BIT;
 signal CURRENT_PARALLEL_OUT, NEXT_PARALLEL_OUT:
 PARALLEL_TYPE;
begin

NEXT_ST: process(SERIAL_IN, CURRENT_STATE, RESET,
 CURRENT_HIGH_BIT, CURRENT_PARITY,
 CURRENT_PARALLEL_OUT)
 -- This process computes all outputs, the next
Chapter A: Examples
Serial-to-Parallel Converter—Shifting Bits A-31
Appendix A: Examples
Serial-to-Parallel Converter—Shifting Bits A-31

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
 -- state, and the next value of all stored values
 begin
 PARITY_ERROR <= ’0’; -- Default values for all
 READ_ENABLE <= ’0’; -- outputs and stored values
 NEXT_STATE <= CURRENT_STATE;
 NEXT_HIGH_BIT <= ’0’;
 NEXT_PARITY <= ’0’;
 NEXT_PARALLEL_OUT <= PARALLEL_TYPE’(others=>’0’);
 if(RESET = ’1’) then -- Synchronous reset
 NEXT_STATE <= WAIT_FOR_START;
 else
 case CURRENT_STATE is -- State processing
 when WAIT_FOR_START =>
 if (SERIAL_IN = ’1’) then
 NEXT_STATE <= READ_BITS;
 NEXT_PARALLEL_OUT <=
 PARALLEL_TYPE’(others=>’0’);
 end if;
 when READ_BITS =>
 if (CURRENT_HIGH_BIT = ’1’) then
 if (CURRENT_PARITY = SERIAL_IN) then
 NEXT_STATE <= ALLOW_READ;
 READ_ENABLE <= ’1’;
 else
 NEXT_STATE <= PARITY_ERROR_DETECTED;
 end if;
 else
 NEXT_HIGH_BIT <= CURRENT_PARALLEL_OUT(0);
 NEXT_PARALLEL_OUT <=
 CURRENT_PARALLEL_OUT(
 1 to PARALLEL_BIT_COUNT-1) &
 SERIAL_IN;
 NEXT_PARITY <= CURRENT_PARITY xor
 SERIAL_IN;
 end if;
 when PARITY_ERROR_DETECTED =>
 PARITY_ERROR <= ’1’;
 when ALLOW_READ =>
 NEXT_STATE <= WAIT_FOR_START;
 end case;
 end if;
 end process;

 SYNCH: process
 -- This process remembers the stored values
 -- across clock cycles
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 CURRENT_HIGH_BIT <= NEXT_HIGH_BIT;
 CURRENT_PARITY <= NEXT_PARITY;
 CURRENT_PARALLEL_OUT <= NEXT_PARALLEL_OUT;
 end process;

 PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

end BEHAVIOR;
Appendix A: Examples
Serial-to-Parallel Converter—Shifting Bits A-32

HDL Compiler for VHDL User Guide Version D-2010.03
Note:
The synthesized schematic for the shifter implementation is much simpler than that of the
previous count implementation in Example A-12 on page A-29. It is simpler because the
shifter algorithm is inherently easier to implement.

With the count algorithm, each of the flip-flops holding the PARALLEL_OUT bits needed
logic that decoded the value stored in the BIT_POSITION flip-flops to see when to route in
the value of SERIAL_IN. Also, the BIT_POSITION flip-flops needed an incrementer to
compute their next value.

In contrast, the shifter algorithm requires neither an incrementer nor flip-flops to hold
BIT_POSITION. Additionally, the logic in front of most PARALLEL_OUT bits needs to read
only the value of the previous flip-flop or ’0’. The value depends on whether bits are currently
being read. In the shifter algorithm, the SERIAL_IN port needs to be connected only to the
least significant bit (number 7) of the PARALLEL_OUT flip-flops.

These two implementations illustrate the importance of designing efficient algorithms. Both
work properly, but the shifter algorithm produces a faster, more area-efficient design.

Programmable Logic Arrays

This example shows a way to build programmable logic arrays (PLAs) in VHDL. The PLA
function uses an input lookup vector as an index into a constant PLA table and then returns
the output vector specified by the PLA.

The PLA table is an array of PLA rows, where each row is an array of PLA elements. Each
element is either a one, a zero, a minus, or a space (’1’, ’0’, ’–’, or ’ ’). The table is split
between an input plane and an output plane. The input plane is specified by 0s, 1s, and
minuses. The output plane is specified by 0s and 1s. The two planes’ values are separated
by a space.

In the PLA function, the output vector is first initialized to be all 0s. When the input vector
matches an input plane in a row of the PLA table, the 1s in the output plane are assigned to
the corresponding bits in the output vector. A match is determined as follows:

• If a 0 or 1 is in the input plane, the input vector must have the same value in the same
position.

• If a minus is in the input plane, it matches any input vector value at that position.

The generic PLA table types and the PLA function are defined in a package named LOCAL.
An entity PLA_VHDL that uses LOCAL needs only to specify its PLA table as a constant,
then call the PLA function.
Chapter A: Examples
Programmable Logic Arrays A-33
Appendix A: Examples
Programmable Logic Arrays A-33

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
The PLA function does not explicitly depend on the size of the PLA. To change the size of
the PLA, change the initialization of the TABLE constant and the initialization of the
constants INPUT_COUNT, OUTPUT_COUNT, and ROW_COUNT. In Example A-14, these
constants are initialized to a PLA equivalent to the ROM shown previously (Example A-1 on
page A-3). Accordingly, the synthesized schematic is the same as that of the ROM, with one
difference: in Example A-1, the DATA output port range is 1 to 5; in Example A-14, the
OUT_VECTOR output port range is 4 down to 0.

Example A-14 shows the capabilities of VHDL. It is more efficient to define the PLA directly
by using the PLA input format. See the Design Compiler Reference Manual: Optimization
and Timing Analysisfor more information about the PLA input format.

Example A-14 Programmable Logic Array
package LOCAL is
 constant INPUT_COUNT: INTEGER := 3;
 constant OUTPUT_COUNT: INTEGER := 5;
 constant ROW_COUNT: INTEGER := 6;
 constant ROW_SIZE: INTEGER := INPUT_COUNT +
 OUTPUT_COUNT + 1;
 type PLA_ELEMENT is (’1’, ’0’, ’-’, ’ ’);
 type PLA_VECTOR is
 array (INTEGER range <>) of PLA_ELEMENT;
 subtype PLA_ROW is
 PLA_VECTOR(ROW_SIZE - 1 downto 0);
 subtype PLA_OUTPUT is
 PLA_VECTOR(OUTPUT_COUNT - 1 downto 0);
 type PLA_TABLE is
 array(ROW_COUNT - 1 downto 0) of PLA_ROW;

 function PLA(IN_VECTOR: BIT_VECTOR;
 TABLE: PLA_TABLE)
 return BIT_VECTOR;
end LOCAL;

package body LOCAL is

 function PLA(IN_VECTOR: BIT_VECTOR;
 TABLE: PLA_TABLE)
 return BIT_VECTOR is
 subtype RESULT_TYPE is
 BIT_VECTOR(OUTPUT_COUNT - 1 downto 0);
 variable RESULT: RESULT_TYPE;
 variable ROW: PLA_ROW;
 variable MATCH: BOOLEAN;
 variable IN_POS: INTEGER;

 begin
 RESULT := RESULT_TYPE’(others => BIT’(’0’));

 for I in TABLE’range loop
Appendix A: Examples
Programmable Logic Arrays A-34

HDL Compiler for VHDL User Guide Version D-2010.03
 ROW := TABLE(I);

 MATCH := TRUE;
 IN_POS := IN_VECTOR’left;

 -- Check for match in input plane
 for J in ROW_SIZE - 1 downto OUTPUT_COUNT loop
 if(ROW(J) = PLA_ELEMENT’(’1’)) then
 MATCH := MATCH and
 (IN_VECTOR(IN_POS) = BIT’(’1’));
 elsif(ROW(J) = PLA_ELEMENT’(’0’)) then
 MATCH := MATCH and
 (IN_VECTOR(IN_POS) = BIT’(’0’));
 else
 null; -- Must be minus ("don’t care")
 end if;
 IN_POS := IN_POS - 1;
 end loop;

 -- Set output plane
 if(MATCH) then
 for J in RESULT’range loop
 if(ROW(J) = PLA_ELEMENT’(’1’)) then
 RESULT(J) := BIT’(’1’);
 end if;
 end loop;
 end if;
 end loop;

 return(RESULT);
 end;
end LOCAL;

use WORK.LOCAL.all;

entity PLA_VHDL is
 port(IN_VECTOR: BIT_VECTOR(2 downto 0);
 OUT_VECTOR: out BIT_VECTOR(4 downto 0));
end;

architecture BEHAVIOR of PLA_VHDL is
 constant TABLE: PLA_TABLE := PLA_TABLE’(
 PLA_ROW’("--- 10000"),
 PLA_ROW’("-1- 01000"),
 PLA_ROW’("0-0 00101"),
 PLA_ROW’("-1- 00101"),
 PLA_ROW’("1-1 00101"),
 PLA_ROW’("-1- 00010"));

begin
 OUT_VECTOR <= PLA(IN_VECTOR, TABLE);
end BEHAVIOR;
Chapter A: Examples
Programmable Logic Arrays A-35
Appendix A: Examples
Programmable Logic Arrays A-35

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Appendix A: Examples
Programmable Logic Arrays A-36

B
Predefined Libraries B

This appendix describes the following packages that are included in a HDL Compiler
installation:

• std_logic_1164

• std_logic_arith

• numeric_std

• std_logic_misc

• Standard Package

• Synopsys Package—ATTRIBUTES
B-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
std_logic_1164

The std_logic_1164 package is typically installed in the $SYNOPSYS/packages/IEEE/src/
std_logic_1164.vhd subdirectory of the Synopsys root directory. The std_logic_1164.vhd file
has been updated with Synopsys synthesis directives, such as the built_in pragma
described below. HDL Compiler automatically uses the built_in pragmas to improve
performance. You can also write your own built_in pragmas.

built_in Pragmas
The Synopsys IEEE std_logic_1164 package contains the following built_in functions that
enable HDL Compiler to quickly and easily interpret your code:

• SYN_AND

• SYN_OR

• SYN_NAND

• SYN_NOR

• SYN_XOR

• SYN_XNOR

• SYN_NOT

• SYN_BUF

These functions are automatically enabled by HDL Compiler for the respective operators in
your code and you do not have to use these in your code. If you want to create your own
built_in functions, label them with the built_in pragma. When you use a built_in
pragma, HDL Compiler parses but ignores the body of the function and directly substitutes
the appropriate logic for the function.

Create a built_in function by using the built_in pragma as shown in Example B-1. HDL
Compiler interprets a comment as a directive if the first word of the comment is pragma.
Example B-1 shows the XOR built_in function.

Example B-1 XOR built_in Function
function "XOR" (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
 -- pragma built_in SYN_XOR
 begin
 if (L = ’1’) xor (R = ’1’) then
 return ’1’;
 else
 return ’0’;
 end if;
end "XOR";
Appendix B: Predefined Libraries
std_logic_1164 B-2

HDL Compiler for VHDL User Guide Version D-2010.03
Example B-2 shows the SYN_AND built_in function.

Example B-2 SYN_AND built_in Function
function "AND" (L, R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR is
 -- pragma built_in SYN_AND
 variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);
 variable MY_R: STD_LOGIC_VECTOR (L’length-1 downto 0);
 variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);
begin
 assert L’length = R’length;
 MY_L := L;
 MY_R := R;
 for i in RESULT’range loop
 if (MY_L(i) = ’1’) and (MY_R(i) = ’1’) then
 RESULT(i) := ’1’;
 else
 RESULT(i) := ’0’;
 end if;
 end loop;
 return RESULT;
end "AND";

Example B-3 shows the SYN_NOT built_in function.

Example B-3 SYN_NOT built_in Function
function "NOT" (L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
 -- pragma built_in SYN_NOT
 variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);
 variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);
begin
 MY_L := L;
 for i in result’range loop
 if (MY_L(i) = ’0’ or MY_L(i) = ’L’) then
 RESULT(i) := ’1’;
 elsif (MY_L(i) = ’1’ or MY_L(i) = ’H’) then
 RESULT(i) := ’0’;
 else
 RESULT(i) := ’X’;
 end if;
 end loop;
 return RESULT;
end "NOT";

Example B-4 shows the SYN_FEED_THRU built_in function which performs type
conversion between unrelated types. The synthesized logic from SYN_FEED_THRU wires
the single input of a function to the return value.
Chapter B: Predefined Libraries
std_logic_1164 B-3
Appendix B: Predefined Libraries
std_logic_1164 B-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example B-4 SYN_FEED_THRU built_in Function
type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is "01 10 11";
...

function COLOR_TO_BV (L: COLOR) return BIT_VECTOR is
 -- pragma built_in SYN_FEED_THRU
begin
 case L is
 when RED => return "01";
 when GREEN => return "10";
 when BLUE => return "11";
 end case;
end COLOR_TO_BV;

std_logic_arith

This section contains the following subsections:

• std_logic_arith Package Overview

• Modifying the std_logic_arith Package

• std_logic_arith Data Types

• UNSIGNED

• SIGNED

• Conversion Functions

• Arithmetic Functions

• Comparison Functions

• Shift Functions

• Multiplication Using Shifts

std_logic_arith Package Overview
The std_logic_arith package is typically installed in the $SYNOPSYS/packages/IEEE/src/
std_logic_arith.vhd subdirectory of the Synopsys root directory. To use this package in a
VHDL source file, include the following lines at the beginning of the source file:

library IEEE;
use IEEE.std_logic_arith.all;
Appendix B: Predefined Libraries
std_logic_arith B-4

HDL Compiler for VHDL User Guide Version D-2010.03
Functions defined in the std_logic_arith package provide conversion to and from the
predefined VHDL data type INTEGER, arithmetic, comparison, and BOOLEAN operations.
This package lets you perform arithmetic operations and numeric comparisons on array
data types. The package defines some arithmetic operators (+, -, *, ABS) and the relational
operators (<, >, <=, >=, =, /=). (IEEE VHDL does not define arithmetic operators for arrays
and defines the comparison operators in a manner inconsistent with an arithmetic
interpretation of array values.)

The package also defines two major data types of its own: UNSIGNED and SIGNED (see
“std_logic_arith Data Types” on page B-7 for details). The std_logic_arith package is legal
VHDL; you can use it for both synthesis and simulation.

You can configure the std_logic_arith package to work on any array of single-bit types. You
encode single-bit types in 1 bit with the ENUM_ENCODING attribute.

You can make the vector type (for example, std_logic_vector) synonymous with either
SIGNED or UNSIGNED. This way, if you plan to use mostly UNSIGNED numbers, you do
not need to convert your vector type to call UNSIGNED functions. The disadvantage of
making your vector type synonymous with either UNSIGNED or SIGNED is that it causes
redefinition of the standard VHDL comparison functions (=, /=, <, >, <=, >=).

Table B-1 shows that the standard comparison functions for BIT_VECTOR do not match the
SIGNED and UNSIGNED functions.

Table B-1 UNSIGNED, SIGNED, and BIT_VECTOR Comparison
Functions

ARG1 op ARG2 UNSIGNED SIGNED BIT_VECTOR

"000" = "000" true true true

"00" = "000" true true false

"100" = "0100" true false false

"000" < "000" false false false

"00" < "000" false false true

"100" < "0100" false true false
Chapter B: Predefined Libraries
std_logic_arith B-5
Appendix B: Predefined Libraries
std_logic_arith B-5

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Modifying the std_logic_arith Package
The std_logic_arith package is written in standard VHDL. You can modify or add to it. When
you change the content, you must reanalyze the package.

For example, to convert a vector of multivalued logic to an INTEGER, you can write the
function shown in Example B-5. This MVL_TO_INTEGER function returns the integer value
corresponding to the vector when the vector is interpreted as an unsigned (natural) number.
If unknown values are in the vector, the return value is –1.

Example B-5 New Function Based on a std_logic_arith Package Function
library IEEE;
use IEEE.std_logic_1164.all;

function MVL_TO_INTEGER(ARG : MVL_VECTOR)
 return INTEGER is
 -- pragma built_in SYN_FEED_THRU
 variable uns: UNSIGNED (ARG’range);
begin
 for i in ARG’range loop
 case ARG(i) is
 when ’0’ | ’L’ => uns(i) := ’0’;
 when ’1’ | ’H’ => uns(i) := ’1’;
 when others => return -1;
 end case;
 end loop;
 return CONV_INTEGER(uns);
end;

Note the use of the CONV_INTEGER function in Example B-5.

Design Compiler performs almost all synthesis directly from the VHDL descriptions.
However, several functions are hard-wired for efficiency. They can be identified by the
following comment in their declarations:

-- pragma built_in

This statement marks functions as special, causing the body of the function to be ignored.
Modifying the body does not change the synthesized logic unless you remove the built_in
comment. If you want new functionality, write it by using the built_in function; this is more
efficient than removing the built_in function and modifying the body of the function.
Appendix B: Predefined Libraries
std_logic_arith B-6

HDL Compiler for VHDL User Guide Version D-2010.03
std_logic_arith Data Types
The std_logic_arith package defines two data types: UNSIGNED and SIGNED.

type UNSIGNED is array (natural range <>) of std_logic;
type SIGNED is array (natural range <>) of std_logic;

These data types are similar to the predefined VHDL type BIT_VECTOR, but the
std_logic_arith package defines the interpretation of variables and signals of these types as
numeric values.

UNSIGNED
The UNSIGNED data type represents an unsigned numeric value. HDL Compiler interprets
the number as a binary representation, with the farthest-left bit being most significant. For
example, the decimal number 8 can be represented as

UNSIGNED’("1000")

When you declare variables or signals of type UNSIGNED, a larger vector holds a larger
number. A 4-bit variable holds values up to decimal 15, an 8-bit variable holds values up to
255, and so on. By definition, negative numbers cannot be represented in an UNSIGNED
variable. Zero is the smallest value that can be represented.

Example B-6 illustrates some UNSIGNED declarations. The most significant bit is the
farthest-left array bound, rather than the high- or low-range value.

Example B-6 UNSIGNED Declarations
variable VAR: UNSIGNED (1 to 10);
 -- 10-bit number
 -- VAR(VAR’left) = VAR(1) is the most significant bit

signal SIG: UNSIGNED (5 downto 0);
 -- 6-bit number
 -- SIG(SIG’left) = SIG(5) is the most significant bit

SIGNED
The SIGNED data type represents a signed numeric value. HDL Compiler interprets the
number as a 2’s-complement binary representation, with the farthest-left bit as the sign bit.
For example, you can represent decimal 5 and –5 as

SIGNED’("0101") -- represents +5
SIGNED’("1011") -- represents -5

When you declare SIGNED variables or signals, a larger vector holds a larger number. A
4-bit variable holds values from –8 to 7; an 8-bit variable holds values from –128 to 127. A
SIGNED value cannot hold as large a value as an UNSIGNED value with the same bit-width.
Chapter B: Predefined Libraries
std_logic_arith B-7
Appendix B: Predefined Libraries
std_logic_arith B-7

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example B-7 shows some SIGNED declarations. The sign bit is the farthest-left bit, rather
than the highest or lowest.

Example B-7 SIGNED Declarations
variable S_VAR: SIGNED (1 to 10);
 -- 10-bit number
 -- S_VAR(S_VAR’left) = S_VAR(1) is the sign bit

signal S_SIG: SIGNED (5 downto 0);
 -- 6-bit number
 -- S_SIG(S_SIG’left) = S_SIG(5) is the sign bit

Conversion Functions
The std_logic_arith package provides three sets of functions to convert values between its
UNSIGNED and SIGNED types and the predefined type INTEGER. This package also
provides the std_logic_vector. Example B-8 shows the declarations of these conversion
functions, with BIT and BIT_VECTOR types.

Example B-8 Conversion Functions
subtype SMALL_INT is INTEGER range 0 to 1;
function CONV_INTEGER(ARG: INTEGER) return INTEGER;
function CONV_INTEGER(ARG: UNSIGNED) return INTEGER;
function CONV_INTEGER(ARG: SIGNED) return INTEGER;
function CONV_INTEGER(ARG: STD_ULOGIC) return SMALL_INT;

function CONV_UNSIGNED(ARG: INTEGER;
 SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: UNSIGNED;
 SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: SIGNED;
 SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: STD_ULOGIC;
 SIZE: INTEGER) return UNSIGNED;

function CONV_SIGNED(ARG: INTEGER;
 SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: UNSIGNED;
 SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: SIGNED;
 SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: STD_ULOGIC;
 SIZE: INTEGER) return SIGNED;

function CONV_STD_LOGIC_VECTOR(ARG: INTEGER;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: UNSIGNED;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: SIGNED;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;
Appendix B: Predefined Libraries
std_logic_arith B-8

HDL Compiler for VHDL User Guide Version D-2010.03
function CONV_STD_LOGIC_VECTOR(ARG: STD_ULOGIC;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;

There are four versions of each conversion function. The VHDL operator overloading
mechanism determines the correct version from the function call’s argument types.

The CONV_INTEGER functions convert an argument of type INTEGER, UNSIGNED,
SIGNED, or STD_ULOGIC to an INTEGER return value. The CONV_UNSIGNED and
CONV_SIGNED functions convert an argument of type INTEGER, UNSIGNED, SIGNED, or
STD_ULOGIC to an UNSIGNED or SIGNED return value whose bit width is SIZE.

The CONV_INTEGER functions have a limitation on the size of operands. VHDL defines
INTEGER values as being between –2147483647 and 2147483647. This range
corresponds to a 31-bit UNSIGNED value or a 32-bit SIGNED value. You cannot convert an
argument outside this range to an INTEGER.

The CONV_UNSIGNED and CONV_SIGNED functions each require two operands. The
first operand is the value converted. The second operand is an INTEGER that specifies the
expected size of the converted result. For example, the following function call returns a
10-bit UNSIGNED value representing the value in sig.

ten_unsigned_bits := CONV_UNSIGNED(sig, 10);

If the value passed to CONV_UNSIGNED or CONV_SIGNED is smaller than the expected
bit-width (such as representing the value 2 in a 24-bit number), the value is bit-extended
appropriately. HDL Compiler places 0s in the more significant (left) bits for an UNSIGNED
return value, and it uses sign extension for a SIGNED return value.

You can use the conversion functions to extend a number’s bit-width even if conversion is not
required. For example,

CONV_SIGNED(SIGNED’("110"), 8) -> "11111110"

An UNSIGNED or SIGNED return value is truncated when its bit-width is too small to hold
the ARG value. For example,

CONV_SIGNED(UNSIGNED’("1101010"), 3) -> "010"

Arithmetic Functions
The std_logic_arith package provides arithmetic functions for use with combinations of the
Synopsys UNSIGNED and SIGNED data types and the predefined types STD_ULOGIC
and INTEGER. These functions produce adders and subtracters.

There are two sets of arithmetic functions: binary functions having two arguments, such as
A+B or A*B, and unary functions having one argument, such as –A. Example B-9 and
Example B-10 show the declarations for these functions.
Chapter B: Predefined Libraries
std_logic_arith B-9
Appendix B: Predefined Libraries
std_logic_arith B-9

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example B-9 Binary Arithmetic Functions
function "+"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: SIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: SIGNED) return SIGNED;
function "+"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: INTEGER) return UNSIGNED;
function "+"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: INTEGER) return SIGNED;
function "+"(L: INTEGER; R: SIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: STD_ULOGIC) return SIGNED;
function "+"(L: STD_ULOGIC; R: SIGNED) return SIGNED;

function "+"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: SIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: SIGNED) return SIGNED;
function "-"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: INTEGER) return UNSIGNED;
function "-"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: INTEGER) return SIGNED;
function "-"(L: INTEGER; R: SIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: STD_ULOGIC) return SIGNED;
function "-"(L: STD_ULOGIC; R: SIGNED) return SIGNED;

function "-"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;

function "*"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "*"(L: SIGNED; R: SIGNED) return SIGNED;
function "*"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "*"(L: UNSIGNED; R: SIGNED) return SIGNED;
Appendix B: Predefined Libraries
std_logic_arith B-10

HDL Compiler for VHDL User Guide Version D-2010.03
Example B-10 Unary Arithmetic Functions
function "+"(L: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED) return SIGNED;
function "-"(L: SIGNED) return SIGNED;
function "ABS"(L: SIGNED) return SIGNED;

The binary and unary arithmetic functions in Example B-9 and Example B-10 determine the
width of their return values, as follows:

1. When only one UNSIGNED or SIGNED argument is present, the width of the return value
is the same as that argument’s.

2. When both arguments are either UNSIGNED or SIGNED, the width of the return value is
the larger of the two argument widths. An exception is that when an UNSIGNED number
is added to or subtracted from a SIGNED number that is the same size or smaller, the
return value is a SIGNED number 1 bit wider than the UNSIGNED argument. This size
guarantees that the return value is large enough to hold any (positive) value of the
UNSIGNED argument.

Table B-2 illustrates the number of bits returned by addition (+) and subtraction (–).

signal U4: UNSIGNED (3 downto 0);
signal U8: UNSIGNED (7 downto 0);
signal S4: SIGNED (3 downto 0);
signal S8: SIGNED (7 downto 0);

In some circumstances, you might need to obtain a carry-out bit from the addition or
subtraction operation. To do this, extend the larger operand by 1 bit. The high bit of the
return value is the carry, as illustrated in Example B-11.

Table B-2 Number of Bits Returned by Addition and Subtraction

+ or - U4 U8 S4 S8

U4 4 8 5 8

U8 8 8 9 9

S4 5 9 4 8

S8 8 9 8 8
Chapter B: Predefined Libraries
std_logic_arith B-11
Appendix B: Predefined Libraries
std_logic_arith B-11

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example B-11 Using the Carry-Out Bit
process
 variable a, b, sum: UNSIGNED (7 downto 0);
 variable temp: UNSIGNED (8 downto 0);
 variable carry: BIT;
begin
 temp := CONV_UNSIGNED(a,9) + b;
 sum := temp(7 downto 0);
 carry := temp(8);
end process;

Comparison Functions
The std_logic_arith package provides functions for comparing UNSIGNED and SIGNED
data types with each other and with the predefined type INTEGER. HDL Compiler compares
the numeric values of the arguments, returning a BOOLEAN value. For example, the
following expression evaluates true.

UNSIGNED’("001") > SIGNED’("111")

The std_logic_arith comparison functions are similar to the built-in VHDL comparison
functions. The only difference is that the std_logic_arith functions accommodate signed
numbers and varying bit-widths. The predefined VHDL comparison functions perform
bitwise comparisons and do not have the correct semantics for comparing numeric values
(see “Ordering of Enumerated Types Using the ENUM_ENCODING attribute” on
page 2-54).

These functions produce comparators. The function declarations are listed in two groups:
ordering functions ("<", "<=", ">", ">="), shown in Example B-12, and equality functions ("=",
"/="), shown in Example B-13.
Appendix B: Predefined Libraries
std_logic_arith B-12

HDL Compiler for VHDL User Guide Version D-2010.03
Example B-12 Ordering Functions
function "<"(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function "<"(L: SIGNED; R: SIGNED) return BOOLEAN;
function "<"(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function "<"(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function "<"(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function "<"(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function "<"(L: SIGNED; R: INTEGER) return BOOLEAN;
function "<"(L: INTEGER; R: SIGNED) return BOOLEAN;

function "<="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function "<="(L: SIGNED; R: SIGNED) return BOOLEAN;
function "<="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function "<="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function "<="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function "<="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function "<="(L: SIGNED; R: INTEGER) return BOOLEAN;
function "<="(L: INTEGER; R: SIGNED) return BOOLEAN;

function ">"(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function ">"(L: SIGNED; R: SIGNED) return BOOLEAN;
function ">"(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function ">"(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function ">"(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function ">"(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function ">"(L: SIGNED; R: INTEGER) return BOOLEAN;
function ">"(L: INTEGER; R: SIGNED) return BOOLEAN;

function ">="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function ">="(L: SIGNED; R: SIGNED) return BOOLEAN;
function ">="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function ">="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function ">="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function ">="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function ">="(L: SIGNED; R: INTEGER) return BOOLEAN;
function ">="(L: INTEGER; R: SIGNED) return BOOLEAN;
Chapter B: Predefined Libraries
std_logic_arith B-13
Appendix B: Predefined Libraries
std_logic_arith B-13

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Example B-13 Equality Functions
function "="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function "="(L: SIGNED; R: SIGNED) return BOOLEAN;
function "="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function "="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function "="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function "="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function "="(L: SIGNED; R: INTEGER) return BOOLEAN;
function "="(L: INTEGER; R: SIGNED) return BOOLEAN;

function "/="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function "/="(L: SIGNED; R: SIGNED) return BOOLEAN;
function "/="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function "/="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function "/="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function "/="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function "/="(L: SIGNED; R: INTEGER) return BOOLEAN;
function "/="(L: INTEGER; R: SIGNED) return BOOLEAN;

Shift Functions
The std_logic_arith package provides functions for shifting the bits in SIGNED and
UNSIGNED numbers. These functions produce shifters. Example B-14 shows the shift
function declarations. For a list of shift and rotate operators, see “Operators” on page C-7.

Example B-14 Shift Functions
function SHL(ARG: UNSIGNED;
 COUNT: UNSIGNED) return UNSIGNED;
function SHL(ARG: SIGNED;
 COUNT: UNSIGNED) return SIGNED;

function SHR(ARG: UNSIGNED;
 COUNT: UNSIGNED) return UNSIGNED;
function SHR(ARG: SIGNED;
 COUNT: UNSIGNED) return SIGNED;

The SHL function shifts the bits of its argument ARG left by COUNT bits. SHR shifts the bits
of its argument ARG right by COUNT bits.

The SHL functions work the same for both UNSIGNED and SIGNED values of ARG, shifting
in zero bits as necessary. The SHR functions treat UNSIGNED and SIGNED values
differently. If ARG is an UNSIGNED number, vacated bits are filled with 0s; if ARG is a
SIGNED number, the vacated bits are copied from the ARG sign bit.

Example B-15 shows some shift function calls and their return values.
Appendix B: Predefined Libraries
std_logic_arith B-14

HDL Compiler for VHDL User Guide Version D-2010.03
Example B-15 Shift Operations
variable U1, U2: UNSIGNED (7 downto 0);
variable S1, S2: SIGNED (7 downto 0);
variable COUNT: UNSIGNED (1 downto 0);
. . .
U1 := "01101011";
U2 := "11101011";

S1 := "01101011";
S2 := "11101011";

COUNT := CONV_UNSIGNED(ARG => 3, SIZE => 2);
. . .
SHL(U1, COUNT) = "01011000"
SHL(S1, COUNT) = "01011000"
SHL(U2, COUNT) = "01011000"
SHL(S2, COUNT) = "01011000"

SHR(U1, COUNT) = "00001101"
SHR(S1, COUNT) = "00001101"
SHR(U2, COUNT) = "00011101"
SHR(S2, COUNT) = "11111101"

Multiplication Using Shifts
You can use shift operations for simple multiplication and division of UNSIGNED numbers if
you are multiplying or dividing by a power of 2.

For example, to divide the following UNSIGNED variable U by 4, use this syntax:

variable U: UNSIGNED (7 downto 0) := "11010101";

variable quarter_U: UNSIGNED (5 downto 0);

quarter_U := SHR(U, "01");

numeric_std

This section describes HDL Compiler support for the numeric_std, the IEEE Standard VHDL
Synthesis Package, which defines numeric types and arithmetic functions.

This section contains the following:

• Unsupported Constructs and Operators

• Using the numeric_std Package

• numeric_std Data Types
Chapter B: Predefined Libraries
numeric_std B-15
Appendix B: Predefined Libraries
numeric_std B-15

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
• Conversion Functions

• Resize Functions

• Arithmetic Functions

• Comparison Functions

• Defining Logical Operators Functions

• Shift and Rotate Functions

• Shift and Rotate Operators

Caution:
The numeric_std package and the std_logic_arith package have overlapping operations.
Use of these two packages simultaneously during analysis could cause type
mismatches.

Unsupported Constructs and Operators
HDL Compiler does not support the following numeric_std package component:

• TO_01 function as a simulation construct

Using the numeric_std Package
The numeric_std package is typically installed in the Synopsys root directory. Access it with
the following statement in your VHDL code:

library IEEE;
use IEEE.numeric_std.all;

numeric_std Data Types
The numeric_std package defines the following two data types in the same way that the
std_logic_arith package does:

• USIGNED

type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
See “UNSIGNED” on page B-7 for more information.

• SIGNED

 type SIGNED is array (NATURAL range <>) of STD_LOGIC;
See “SIGNED” on page B-7 for more information.
Appendix B: Predefined Libraries
numeric_std B-16

HDL Compiler for VHDL User Guide Version D-2010.03
Conversion Functions
The numeric_std package provides functions to convert values between its UNSIGNED and
SIGNED types. Table B-3 shows the declarations of these conversion functions.

TO_INTEGER, TO_SIGNED, and TO_UNSIGNED are similar to CONV_INTEGER,
CONV_SIGNED, and CONV_UNSIGNED in std_logic_arith (see “Conversion Functions” on
page B-8).

Resize Functions
The resize function numeric_std supports is shown in the declarations in Table B-4.

Table B-3 numeric_std Conversion Functions

 Parameters

Operator Arg Size Return type

TO_INTEGER UNSIGNED NATURAL

TO_INTEGER SIGNED INTEGER

TO_UNSIGNED INTEGER NATURAL UNSIGNED

TO_SIGNED INTEGER NATURAL SIGNED

Table B-4 numeric_std Resize Functions

 Parameters

Operator Arg Size Return type

RESIZE NATURAL NATURAL SIGNED

RESIZE NATURAL NATURAL UNSIGNED
Chapter B: Predefined Libraries
numeric_std B-17
Appendix B: Predefined Libraries
numeric_std B-17

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Arithmetic Functions
The numeric_std package provides arithmetic functions for use with combinations of
Synopsys UNSIGNED and SIGNED data types and the predefined types STD_ULOGIC
and INTEGER. These functions produce adders and subtracters.

There are two sets of arithmetic functions, which the numeric_std package defines in the
same way the std_logic_arith package does (see “Arithmetic Functions” on page B-9 for
more information):

• Binary functions having two arguments, such as

A+B

A*B

Table B-5 shows the declarations for these functions.

• Unary functions having one argument, such as

–A

abs A

Table B-5 numeric_std Binary Arithmetic Functions

 Parameters

Operator L R Return type

"+" UNSIGNED UNSIGNED UNSIGNED

"+" SIGNED SIGNED SIGNED

"+" UNSIGNED NATURAL UNSIGNED

"+" NATURAL UNSIGNED UNSIGNED

"+" INTEGER SIGNED SIGNED

"+" SIGNED INTEGER SIGNED

"–" UNSIGNED UNSIGNED UNSIGNED

"–" SIGNED SIGNED SIGNED

"–" UNSIGNED NATURAL UNSIGNED

"–" NATURAL UNSIGNED UNSIGNED
Appendix B: Predefined Libraries
numeric_std B-18

HDL Compiler for VHDL User Guide Version D-2010.03
Table B-6 shows the declarations for unary functions.

Comparison Functions
The numeric_std package provides functions to compare UNSIGNED and SIGNED data
types with each other and with the predefined type INTEGER. HDL Compiler compares the
numeric values of the arguments and returns a BOOLEAN value.

These functions produce comparators. The function declarations are listed in two groups:

• Ordering functions ("<", "<=", ">", ">=")

• Equality functions ("=", "/=")

"–" SIGNED INTEGER SIGNED

"–" INTEGER SIGNED SIGNED

"*" UNSIGNED UNSIGNED UNSIGNED

"*" SIGNED SIGNED SIGNED

"*" UNSIGNED NATURAL UNSIGNED

"*" NATURAL UNSIGNED UNSIGNED

"*" SIGNED INTEGER SIGNED

"*" INTEGER SIGNED SIGNED

Table B-6 numeric_std Unary Arithmetic Functions

Operator Arg Return Type

"abs" SIGNED SIGNED

"–" SIGNED SIGNED

Table B-5 numeric_std Binary Arithmetic Functions (Continued)

 Parameters

Operator L R Return type
Chapter B: Predefined Libraries
numeric_std B-19
Appendix B: Predefined Libraries
numeric_std B-19

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Table B-7 shows the ordering functions.

Table B-7 numeric_std Ordering Functions

 Parameters

Operator L R Return type

">" UNSIGNED UNSIGNED BOOLEAN

">" SIGNED SIGNED BOOLEAN

">" NATURAL UNSIGNED BOOLEAN

">" INTEGER SIGNED BOOLEAN

">" UNSIGNED NATURAL BOOLEAN

">" SIGNED INTEGER BOOLEAN

"<" UNSIGNED UNSIGNED BOOLEAN

"<" SIGNED SIGNED BOOLEAN

"<" NATURAL UNSIGNED BOOLEAN

"<" INTEGER SIGNED BOOLEAN

"<" UNSIGNED NATURAL BOOLEAN

"<" SIGNED INTEGER BOOLEAN

"<=" UNSIGNED UNSIGNED BOOLEAN

"<=" SIGNED SIGNED BOOLEAN

"<=" NATURAL UNSIGNED BOOLEAN

"<=" INTEGER SIGNED BOOLEAN

"<=" UNSIGNED NATURAL BOOLEAN

"<=" SIGNED INTEGER BOOLEAN

">=" UNSIGNED UNSIGNED BOOLEAN

">=" SIGNED SIGNED BOOLEAN
Appendix B: Predefined Libraries
numeric_std B-20

HDL Compiler for VHDL User Guide Version D-2010.03
Table B-8 shows the equality functions.

">=" NATURAL UNSIGNED BOOLEAN

">=" INTEGER SIGNED BOOLEAN

">=" UNSIGNED NATURAL BOOLEAN

">=" SIGNED INTEGER BOOLEAN

Table B-8 numeric_std Equality Functions

 Parameters

Operator L R Return type

"=" UNSIGNED UNSIGNED BOOLEAN

"=" SIGNED SIGNED BOOLEAN

"=" NATURAL UNSIGNED BOOLEAN

"=" INTEGER SIGNED BOOLEAN

"=" UNSIGNED NATURAL BOOLEAN

"=" SIGNED INTEGER BOOLEAN

"/=" UNSIGNED UNSIGNED BOOLEAN

"/=" SIGNED SIGNED BOOLEAN

"/=" NATURAL UNSIGNED BOOLEAN

"/=" INTEGER SIGNED BOOLEAN

"/=" UNSIGNED NATURAL BOOLEAN

"/=" SIGNED INTEGER BOOLEAN

Table B-7 numeric_std Ordering Functions (Continued)

 Parameters

Operator L R Return type
Chapter B: Predefined Libraries
numeric_std B-21
Appendix B: Predefined Libraries
numeric_std B-21

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Defining Logical Operators Functions
The numeric_std package provides functions that define all of the logical operators: NOT,
AND, OR, NAND, NOR, XOR, and XNOR. These functions work just like similar functions in
std_logic_1164, except that they operate on SIGNED and UNSIGNED values rather than on
STD_LOGIC_VECTOR values. Table B-9 shows these function declarations.

Table B-9 numeric_std Logical Operators Functions

 Parameters

Operator L R Return type

"not" UNSIGNED UNSIGNED

"and" UNSIGNED UNSIGNED UNSIGNED

"or" UNSIGNED UNSIGNED UNSIGNED

"nand" UNSIGNED UNSIGNED UNSIGNED

"nor" UNSIGNED UNSIGNED UNSIGNED

"xor" UNSIGNED UNSIGNED UNSIGNED

"xnor" UNSIGNED UNSIGNED UNSIGNED

"not" SIGNED SIGNED

"and" SIGNED SIGNED SIGNED

"or" SIGNED SIGNED SIGNED

"nand" SIGNED SIGNED SIGNED

"nor" SIGNED SIGNED SIGNED

"xor" SIGNED SIGNED SIGNED

"xnor" SIGNED SIGNED SIGNED
Appendix B: Predefined Libraries
numeric_std B-22

HDL Compiler for VHDL User Guide Version D-2010.03
Shift and Rotate Functions
The numeric_std package provides functions for shifting the bits in UNSIGNED and
SIGNED numbers. These functions produce shifters. Table B-10 shows the shift function
declarations.

The SHIFT_LEFT function shifts the bits of its argument ARG left by COUNT bits.
SHIFT_RIGHT shifts the bits of its argument ARG right by COUNT bits.

The SHIFT_LEFT functions work the same for both UNSIGNED and SIGNED values of
ARG, shifting in zero bits as necessary. The SHIFT_RIGHT functions treat UNSIGNED and
SIGNED values differently:

• If ARG is an UNSIGNED number, vacated bits are filled with 0s.

• If ARG is a SIGNED number, the vacated bits are copied from the ARG sign bit.

Example B-17 on page B-26 shows some shift function calls and their return values.

The ROTATE_LEFT and ROTATE_RIGHT functions are similar to the shift functions.
Example B-16 on page B-25 shows some rotate function declarations.

Table B-10 numeric_std Shift and Rotate Functions

 Parameters

Operator Arg Count Return type

SHIFT_LEFT UNSIGNED NATURAL UNSIGNED

SHIFT_RIGHT UNSIGNED NATURAL UNSIGNED

SHIFT_LEFT SIGNED NATURAL SIGNED

SHIFT_RIGHT SIGNED NATURAL SIGNED

ROTATE_LEFT UNSIGNED NATURAL UNSIGNED

ROTATE_RIGHT UNSIGNED NATURAL UNSIGNED

ROTATE_LEFT SIGNED NATURAL SIGNED

ROTATE_RIGHT SIGNED NATURAL SIGNED
Chapter B: Predefined Libraries
numeric_std B-23
Appendix B: Predefined Libraries
numeric_std B-23

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Shift and Rotate Operators
The numeric_std package provides shift operators and rotate operators, which work in the
same way that shift functions and rotate functions do. The shift operators are sll, srl, sla, and
sra. Table B-11 shows some shift and rotate operator declarations. Example B-16 on
page B-25 includes some shift and rotate operators.

Table B-11 numeric_std Shift and Rotate Operators

 Parameters

Operator Arg Count Return type

"sll" UNSIGNED INTEGER UNSIGNED

"sll" SIGNED INTEGER SIGNED

"srl" UNSIGNED INTEGER UNSIGNED

"srl" SIGNED INTEGER SIGNED

"rol" UNSIGNED INTEGER UNSIGNED

"rol" SIGNED INTEGER SIGNED

"ror" UNSIGNED INTEGER UNSIGNED

"ror" SIGNED INTEGER SIGNED
Appendix B: Predefined Libraries
numeric_std B-24

HDL Compiler for VHDL User Guide Version D-2010.03
Example B-16 Some numeric_std Shift and Rotate Functions
and Shift and Rotate Operators

Variable U1, U2: UNSIGNED (7 downto 0);
Variable S1, S2: SIGNED (7 downto 0);
Variable COUNT: NATURAL;
...
U1 := "01101011";
U2 := "11101011";
S1 := "01101011";
S2 := "11101011";
COUNT := 3;
...
SHIFT_LEFT (U1, COUNT) = "01011000"
SHIFT_LEFT (S1, COUNT) = "01011000"
SHIFT_LEFT (U2, COUNT) = "01011000"
SHIFT_LEFT (S2, COUNT) = "01011000"

SHIFT_RIGHT (U1, COUNT) = "00001101"
SHIFT_RIGHT (S1, COUNT) = "00001101"
SHIFT_RIGHT (U2, COUNT) = "00011101"
SHIFT_RIGHT (S2, COUNT) = "11111101"

ROTATE_LEFT (U1, COUNT) = "01011011"
ROTATE_LEFT (S1, COUNT) = "01011011"
ROTATE_LEFT (U2, COUNT) = "01011111"
ROTATE_LEFT (S2, COUNT) = "01011111"

ROTATE_RIGHT (U1, COUNT) = "01101101"
ROTATE_RIGHT (S1, COUNT) = "01101101"
ROTATE_RIGHT (U2, COUNT) = "01111101"
ROTATE_RIGHT (S2, COUNT) = "01111101"

U1 sll COUNT = "01011000"
S1 sll COUNT = "01011000"
U2 sll COUNT = "01011000"
S2 sll COUNT = "01011000"

U1 srl COUNT = "00001101"
S1 srl COUNT = "00001101"
U2 srl COUNT = "00011101"
S2 srl COUNT = "11111101"

U1 rol COUNT = "01011011"
S1 rol COUNT = "01011011"
U2 rol COUNT = "01011111"
S2 rol COUNT = "01011111"

U1 ror COUNT = "01101101"
S1 ror COUNT = "01101101"
U2 ror COUNT = "01111101"
S2 ror COUNT = "01111101"
Chapter B: Predefined Libraries
numeric_std B-25
Appendix B: Predefined Libraries
numeric_std B-25

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
std_logic_misc

The std_logic_misc package is typically installed in the $SYNOPSYS/packages/IEEE/src/
std_logic_misc.vhd directory. It declares the primary data types that the Synopsys VSS
tools support.

Boolean reduction functions take one argument (an array of bits) and return a single bit. For
example, the AND reduction of "101" is "0", the logical AND of all 3 bits.

Several functions in the std_logic_misc package provide Boolean reduction operations for
the predefined type STD_LOGIC_VECTOR. Example B-17 shows the declarations of these
functions.

Example B-17 Boolean Reduction Functions
function AND_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function NAND_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function OR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function NOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function XOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function XNOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function AND_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function NAND_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function OR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function NOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function XOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function XNOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;

These functions combine the bits of the STD_LOGIC_VECTOR, as the name of the function
indicates. For example, XOR_REDUCE returns the XOR of all bits in ARG. Example B-18
shows some reduction function calls and their return values.

Example B-18 Boolean Reduction Operations
AND_REDUCE("111") = ’1’
AND_REDUCE("011") = ’0’

OR_REDUCE("000") = ’0’
OR_REDUCE("001") = ’1’

XOR_REDUCE("100") = ’1’
XOR_REDUCE("101") = ’0’

NAND_REDUCE("111")= ’0’
NAND_REDUCE("011")= ’1’

NOR_REDUCE("000") = ’1’
NOR_REDUCE("001") = ’0’

XNOR_REDUCE("100")= ’0’
XNOR_REDUCE("101")= ’1’
Appendix B: Predefined Libraries
std_logic_misc B-26

HDL Compiler for VHDL User Guide Version D-2010.03
Standard Package

The STANDARD package of data types is included in all VHDL source files by an implicit use
clause.

HDL Compiler implements the synthesizable subset of the STANDARD package listed in
Example B-19.

Example B-19 HDL Compiler STANDARD Package
package STANDARD is

 type BOOLEAN is (FALSE, TRUE);

 type BIT is (’0’, ’1’);

 type CHARACTER is (
 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
 BS, HT, LF, VT, FF, CR, SO, SI,
 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
 CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

 ’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ’’’,
 ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,
 ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
 ’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,

 ’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
 ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,
 ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,
 ’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,

 ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’,
 ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,
 ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’,
 ’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, DEL);

 type INTEGER is range -2147483647 to 2147483647;

 subtype NATURAL is INTEGER range 0 to 2147483647;

 subtype POSITIVE is INTEGER range 1 to 2147483647;

 type STRING is array (POSITIVE range <>)
 of CHARACTER;

 type BIT_VECTOR is array (NATURAL range <>)
 of BIT;
end STANDARD;
Chapter B: Predefined Libraries
Standard Package B-27
Appendix B: Predefined Libraries
Standard Package B-27

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
This section describes the following sythesizable data types:

• Data Type BOOLEAN

• Data Type BIT

• Data Type CHARACTER

• Data Type INTEGER

• Data Type NATURAL

• Data Type POSITIVE

• Data Type STRING

• Data Type BIT_VECTOR

Data Type BOOLEAN
The BOOLEAN data type is actually an enumerated type with two values, false and true,
where false < true. Logical functions, such as equality (=) and comparison (<) functions,
return a BOOLEAN value.

Convert a BIT value to a BOOLEAN value as follows:

BOOLEAN_VAR := (BIT_VAR = ’1’);

Data Type BIT
The BIT data type represents a binary value as one of two characters, ’0’ or ’1’. Logical
operations such as “and” can take and return BIT values.

Convert a BOOLEAN value to a BIT value as follows:

if (BOOLEAN_VAR) then
 BIT_VAR := ’1’;
else
 BIT_VAR := ’0’;
end if;
Appendix B: Predefined Libraries
Standard Package B-28

HDL Compiler for VHDL User Guide Version D-2010.03
Data Type CHARACTER
The CHARACTER data type enumerates the ASCII character set. Nonprinting characters
are represented by a three-letter name, such as NUL for the null character. Printable
characters are represented by themselves, in single quotation marks, as follows:

variable CHARACTER_VAR: CHARACTER;
. . .
CHARACTER_VAR := ’A’;

Data Type INTEGER
The INTEGER data type represents positive and negative whole numbers.

Data Type NATURAL
The NATURAL data type is a subtype of INTEGER that is used for representing natural
(nonnegative) numbers.

Data Type POSITIVE
The POSITIVE data type is a subtype of INTEGER that is used for representing positive
(nonzero, nonnegative) numbers.

Data Type STRING
The STRING data type is an unconstrained array of characters. A STRING value is enclosed
in double quotation marks, as follows:

variable STRING_VAR: STRING(1 to 7);
. . .
STRING_VAR := "Rosebud";

Data Type BIT_VECTOR
The BIT_VECTOR data type represents an array of BIT values.
Chapter B: Predefined Libraries
Standard Package B-29
Appendix B: Predefined Libraries
Standard Package B-29

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Synopsys Package—ATTRIBUTES

The ATTRIBUTES package declares all supported synthesis attributes; the source code is
typically installed in the Synopsys libraries $SYNOPSYS/packages/synopsys/src/
attributes.vhd directory. Supported attributes include

• Design Compiler constraint attributes, described in “Synopsys Defined Attributes” on
page 6-8

• State vector attribute, described in “State Vector Attribute” on page 2-48

• Enumeration encoding attribute, described in “Enumeration Encoding” on page 2-28

Reference this package when you use synthesis attributes:

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;
Appendix B: Predefined Libraries
Synopsys Package—ATTRIBUTES B-30

C
VHDL Constructs C

Many VHDL language constructs, although useful for simulation and other stages in the
design process, are not relevant to synthesis. Because these constructs cannot be
synthesized, HDL Compiler does not support them.

This appendix provides a list of synthesizable VHDL language constructs, with the level of
support for each, followed by a list of VHDL reserved words.

This appendix includes the following sections:

• VHDL Construct Support

• Predefined Language Environment

• VHDL Reserved Words
C-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
VHDL Construct Support

A construct can be fully supported, ignored, or unsupported. Ignored and unsupported
constructs are defined as follows:

• Ignored means that the construct is allowed in the VHDL source but is ignored by HDL
Compiler.

• Unsupported means that the construct is not allowed in the VHDL source and that HDL
Compiler flags it as an error. If errors are in a VHDL description, the description is not
read.

The following subsections describe the constructs:

• Configurations

• Design Units

• Data Types

• Declarations

• Specifications

• Names

• Operators

• Operands and Expressions

• Sequential Statements

• Concurrent Statements

• Lexical Elements

Configurations
The HDL Compiler tool supports standalone, nested, and embedded configurations. For
details, see “Configuration Support” on page 1-21.

Design Units
entity

The entity statement part is ignored.

Default values for ports are ignored.
Appendix C: VHDL Constructs
VHDL Construct Support C-2

HDL Compiler for VHDL User Guide Version D-2010.03
generics

In addition to supporting integer-type generics, HDL Compiler adds support for the
following types: bit, bit_vector, std_ulogic, std_ulogic_vector, std_logic, std_logic_vector,
signed, and unsigned. HDL Compiler also supports integer arrays and strings as
generics.

architecture

Multiple architectures are allowed. Global signal interaction between architectures is
unsupported.

configuration

Configuration declarations and block configurations are supported, but only to specify the
top-level architecture for a top-level entity. See “Configuration Support” on page 1-21.

The use clauses and attribute specifications are unsupported.

package

Packages are fully supported.

library

Libraries and separate compilation are supported.

subprogram

Default values for parameters are unsupported. Assigning to indexes and slices of
unconstrained out parameters is unsupported, unless the actual parameter is an
identifier.

Subprogram recursion is unsupported if the recursion is not bounded by a static value.

Resolution functions are supported for wired-logic and three-state functions only.

Subprograms can be declared only in packages and in the declaration part of an
architecture.

Data Types
enumeration

Enumeration is fully supported.

real

Constant real data types are fully supported.

integer

Infinite-precision arithmetic is unsupported.
Chapter C: VHDL Constructs
VHDL Construct Support C-3
Appendix C: VHDL Constructs
VHDL Construct Support C-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Integer types are automatically converted to bit vectors whose width is as small as
possible to accommodate all possible values of the type’s range. The type’s range can be
either in unsigned binary for nonnegative ranges or in 2’s-complement form for ranges
that include negative numbers.

physical

Physical type declarations are ignored. The use of physical types is ignored in delay
specifications.

floating

Floating-point type declarations are ignored. The use of floating-point types is
unsupported except for floating-point constants used with Synopsys defined attributes.

array

Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are supported.

record

Record data types are fully supported.

access

Access type declarations are ignored, and the use of access types is unsupported.

file

File type declarations are ignored, and the use of file types is unsupported.

incomplete type declarations

Incomplete type declarations are unsupported.

Declarations
constant

Constant declarations are supported except for deferred constant declarations.

signal

Register and bus declarations are unsupported. Resolution functions are supported for
wired and three-state functions only. Declarations other than from a globally static type
are unsupported. Initial values are unsupported.

variable

Declarations other than from a globally static type are unsupported. Initial values are
unsupported.

shared variable

Variable shared by different processes. Shared variables are fully supported.
Appendix C: VHDL Constructs
VHDL Construct Support C-4

HDL Compiler for VHDL User Guide Version D-2010.03
file

File declarations are unsupported.

interface

Buffer and linkage are translated to out and inout, respectively.

alias

Alias declarations are supported.

component

Component declarations that list a name other than a valid entity name are unsupported.
However, HDL Compiler allows components to be directly instantiated in the design
without a component declaration. See “Direct Instantiation of Components” on
page 2-13.

attribute

Attribute declarations are fully supported, but the use of user-defined attributes is
unsupported.

group

HDL Compiler supports VHDL-93 group declarations. This allows you to create groups of
named entities. One useful application of this feature is that you can apply attributes to
the group as a whole instead of referencing individual signals. See “Groups” on
page 2-27.

Specifications
attribute

HDL Compiler supports the `leftof, `rightof, pos, val, succ, and pred attributes for enum
data types. HDL Compiler supports the pos, val, succ, and pred attributes for integer and
range data types. HDL Compiler supports the 'high(n),'low(n),'left(n),'right(n), and
‘length(n) attributes on multidimensional arrays. Others and all are unsupported in
attribute specifications. User-defined attributes can be specified, but the use of
user-defined attributes is unsupported.

configuration

Configuration specifications are unsupported.

disconnection

Disconnection specifications are unsupported. Attribute declarations are fully supported,
but the use of user-defined attributes is unsupported.
Chapter C: VHDL Constructs
VHDL Construct Support C-5
Appendix C: VHDL Constructs
VHDL Construct Support C-5

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
Names
simple

Simple names are fully supported.

selected

Selected (qualified) names outside a use clause are unsupported. Overriding the scopes
of identifiers is unsupported.

operator symbol

Operator symbols are fully supported.

indexed

Indexed names are fully supported, with one exception: Indexing an unconstrained out
parameter in a procedure is unsupported.

slice

Slice names are fully supported, with one exception: Using a slice of an unconstrained
out parameter in a procedure is unsupported unless the actual parameter is an identifier.

attribute

Only the following predefined attributes are supported: base, left, right, high, low,
range, reverse_range, length, and ascending. The event and stable attributes are
supported only as described with the wait and if statements. User-defined attribute
names are unsupported. The use of attributes with selected names
(name.name’attribute) is unsupported.

Table C-1 shows the values of some array attributes for the variable MY_VECTOR in
Example C-1.

Table C-1 Array Index Attributes

Attribute Expression Value

MY_VECTOR’left 5

MY_VECTOR’right –5

MY_VECTOR’high 5

MY_VECTOR’low –5

MY_VECTOR’length 11

MY_VECTOR’range (5 downto –5)

MY_VECTOR’reverse_range (–5 to 5)
Appendix C: VHDL Constructs
VHDL Construct Support C-6

HDL Compiler for VHDL User Guide Version D-2010.03
Example C-1 Unconstrained Array Type Definition
type BIT_VECTOR is array(INTEGER range <>) of BIT;
 -- An unconstrained array definition
. . .
variable MY_VECTOR : BIT_VECTOR(5 downto -5);

See Table 6-2 on page 6-10 for Synopsys defined attributes.

Operators
logical

Logical operators are fully supported.

relational

Relational operators are fully supported.

addition

Concatenation and arithmetic operators are fully supported. The default concatenation
support is for the 93 LRM definition. To enable the 87 LRM definition, see
“Concatenation” on page 2-38.

signing

Signing operators are fully supported.

divide, mod, rem

The / (division), mod, and rem operators are fully supported in the std_logic_arith and
the numeric_std packages.

multiply

The * multiply operator is fully supported.

exponentiation

The ** operator is supported only when both operands are constant or when the left
operand is 2. HDL Compiler predefines the exponentiation operator for all integer types.

absolute value

The abs operator is fully supported. HDL Compiler predefines the absolute value
operator for all integer types.

operator overloading

Operator overloading is fully supported.

short-circuit operation

The short-circuit behavior of operators is not supported.

Shift and rotate operators
Chapter C: VHDL Constructs
VHDL Construct Support C-7
Appendix C: VHDL Constructs
VHDL Construct Support C-7

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
You can define shift and rotate operators for any one-dimensional array type whose element
type is either of the predefined types, BIT or Boolean. The right operand is always of type
integer. The type of the result of a shift operator is the same as the type of the left operand.
The shift and rotate operators are included in the list of VHDL reserved words in Table C-2
on page C-13. There is more information about the shift and rotate operators that
numeric_std supports in “Shift and Rotate Functions” on page B-23. The shift operators are

sll

Shift left logical

srl

Shift right logical

sla

Shift left arithmetic

sra

Shift right arithmetic

The rotate operators are

rol

Rotate left logical

ror

Rotate right logical

Example C-2 illustrates the use of shift and rotate operators.

Example C-2 Use of Shift and Rotate Operators
architecture arch of shft_op is
begin

a <= "01101";
q1 <= a sll 1; -- q1 = "11010"
q2 <= a srl 3; -- q2 = "00001"
q3 <= a rol 2; -- q3 = "10101"
q4 <= a ror 1; -- q4 = "10110"
q5 <= a sla 2; -- q5 = "10100"
q6 <= a sra 1; -- q6 = "00110"

end;

XNOR Operator
Appendix C: VHDL Constructs
VHDL Construct Support C-8

HDL Compiler for VHDL User Guide Version D-2010.03
You can define the binary logical operator XNOR for predefined types BIT and Boolean as
well as for any one-dimensional array type whose element type is BIT or Boolean. The
operands must be the same type and length. The result also has the same type and length.
The XNOR operator is included in the list of VHDL reserved words in Table C-2 on
page C-13.

Example C-3 Showing Use of XNOR Operator
a <= "10101";
b <= "11100";
c <= a xnor b; -- c = "10110"

Operands and Expressions
based literal

Based literals are fully supported.

null literal

Null slices, null ranges, and null arrays are unsupported.

physical literal

Physical literals are ignored.

string

Strings are fully supported.

aggregate

The use of types as aggregate choices is supported. Record aggregates are supported.

function call

Function calls are supported. Function conversions on input ports are supported,
because type conversions on formal ports in a connection specification (port map) are
supported. HDL Compiler supports the usage of unconstrained type ports when the type
of the ports can be deduced. In these cases, you must use analyze/elaborate to read
your design. The read command does not support type conversion on formal ports.

qualified expression

Qualified expressions are fully supported.

type conversion

Type conversion is fully supported.

allocator

Allocators are unsupported.

static expression

Static expressions are fully supported.
Chapter C: VHDL Constructs
VHDL Construct Support C-9
Appendix C: VHDL Constructs
VHDL Construct Support C-9

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
universal expression

Floating-point expressions are unsupported, except in a Synopsys-recognized attribute
definition. Infinite-precision expressions are not supported. Precision is limited to 32 bits;
all intermediate results are converted to integers.

Sequential Statements
wait

The wait statement is unsupported unless it is in one of the following forms:

 wait until clock = VALUE;
 wait until clock’event and clock = VALUE;
 wait until not clock’stable and clock = VALUE;

Where, VALUE is ’0’, ’1’, or an enumeration literal whose encoding is 0 or 1. A wait
statement in this form is interpreted to mean “wait until the falling (VALUE is ’0’) or rising
(VALUE is ’1’) edge of the signal named clock.” You cannot use wait statements in
subprograms or for-loop statements. If any path through the logic has a wait statement,
all the paths must have a wait statement. HDL Compiler supports only one wait statement
per process.

assert

Assert statements are treated like display statements. An code snippet is shown below.

Assert (c) report "...";

-- is the same as

If (!c)
 $display ("...");

report

Report statements are ignored.

statement label

Statement labels are ignored.

signal

Guarded signal assignment is unsupported. The transport and after signals are ignored.
Multiple waveform elements in signal assignment statements are unsupported.

variable

Variable statements are fully supported.

procedure call

Type conversion on formal parameters is unsupported. Assignment to single bits of
vectored ports is unsupported.
Appendix C: VHDL Constructs
VHDL Construct Support C-10

HDL Compiler for VHDL User Guide Version D-2010.03
if

The if statements are fully supported.

case

The case statements are fully supported.

loop

The for loops are supported, with two constraints: The loop index range must be globally
static, and the loop body must not contain a wait statement. The while loops are
supported, but the loop body must contain at least one wait statement. Combinational
while loops are supported if the iterative bound is statically determinable.The loop
statements with no iteration scheme (infinite loops) are supported, but the loop body
must contain at least one wait statement.

next

Next statements are fully supported.

exit

Exit statements are fully supported.

return

Return statements are fully supported.

null

Null statements are fully supported.

Concurrent Statements
block

Guards on block statements are supported. Ports and generics in block statements are
unsupported.

process

Sensitivity lists in process statements are ignored.

concurrent procedure call

Concurrent procedure call statements are fully supported.

concurrent assertion

Concurrent assertion statements are ignored.

concurrent signal assignment

The guarded keyword is supported. The transport keyword is ignored. Multiple
waveforms are unsupported.
Chapter C: VHDL Constructs
VHDL Construct Support C-11
Appendix C: VHDL Constructs
VHDL Construct Support C-11

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
component instantiation

Type conversion on formal ports of a connection specification is supported. HDL
Compiler supports the usage of unconstrained type ports when the type of the ports can
be deduced. In these cases, you must use analyze/elaborate to read your design. The
read command does not support type conversion on formal ports.

generate

The generate statements are fully supported.

Lexical Elements
An identifier in VHDL is a user-defined name for any of these: constant, variable, function,
signal, entity, port, subprogram, parameter, or instance.

Specifics of Identifiers
The characteristics of identifiers are as follows:

• They can be composed of letters, digits, and the underscore character (_).

• Their first character must be a letter, unless it is an extended identifier (see Example C-4
on page C-13).

• They can be of any length.

• They are case-insensitive.

• All of their characters are significant.

Specifics of Extended Identifiers
The characteristics of extended identifiers are as follows:

• Any of the following can be defined as one:

• Identifiers that contain special characters

• Identifiers that begin with numbers

• Identifiers that have the same name as a keyword

• They start with a backslash character (\), followed by a sequence of characters, followed
by another backslash (\).

• They are case-sensitive.

Example C-4 shows some extended identifiers.
Appendix C: VHDL Constructs
VHDL Construct Support C-12

HDL Compiler for VHDL User Guide Version D-2010.03
Example C-4 Sample Extended Identifiers
\a+b\ \3state\
\type\ \(a&b)|c\

Predefined Language Environment

severity_level type

The severity_level type is unsupported.

time type

The time type is ignored if time variables and constants are used only in after clauses. In
the following two code fragments, both the after clause and TD are ignored:

constant TD: time := 1.4 ns;
X <= Y after TD;

X <= Y after 1.4 ns;

now function

The now function is unsupported.

TEXTIO package

The TEXTIO package is unsupported. The TEXTIO package defines types and
operations for communication with a standard programming environment (terminal and
file I/O). This package is not needed for synthesis; therefore, HDL Compiler does not
support it.

predefined attributes

These predefined attributes are supported: base, left, right, high, low, range,
reverse_range, ascending, and length. The event and stable attributes are
supported only in the if and wait statements.

VHDL Reserved Words

Table C-2 lists the words that are reserved for the VHDL language and cannot be used as
identifiers:

Table C-2 VHDL Reserved Words

abs access after alias all and

architecture array assert attribute begin block

body buffer bus case component configuration
Chapter C: VHDL Constructs
Predefined Language Environment C-13
Appendix C: VHDL Constructs
Predefined Language Environment C-13

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
constant disconnect downto else elsif end

entity exit file for function generate

generic group guarded if impure in

inertial inout is label library linkage

literal loop map mod nand new

next nor not null of on

open or others out package port

postponed procedure process pure range record

register reject rem report return rol

ror select severity shared signal sla

sll sra srl subtype then to

transport type unaffected units until use

variable wait when while with xnor

xnor

Table C-2 VHDL Reserved Words (Continued)
Appendix C: VHDL Constructs
VHDL Reserved Words C-14

Glossary GL

anonymous type
A predefined or underlying type with no name, such as a universal integer.

architecture body
The VHDL description of the internal organization or operation of a design entity.

ASIC
Application-specific integrated circuit.

behavioral view
The set of VHDL statements that describe the behavior of a design by using sequential
statements. These statements are similar in expressive capability to those found in
many other programming languages. See also data flow view, sequential statement,
and structural view.

bit-width
The width of a variable, signal, or expression in bits. For example, the bit-width of the
constant ”5” is 3 bits.

character literal
Any value of type CHARACTER in single quotation marks.

computable
Any expression whose (constant) value can be determined.

concurrent statements
VHDL statements that execute asynchronously in no defined relative order.
Concurrent statements make up the data flow and structural views in VHDL.

configuration body
The VHDL description of how component instances are bound to design entities to
form a complete, linked design.

constraints
The designer’s specification of design performance goals. Design Compiler uses
constraints to direct the optimization of a design to meet area and timing goals.
GL-1

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
convert
To change one type to another. Only integer types and subtypes are convertible, along
with same-size arrays of convertible element types.

data flow view
The set of VHDL statements that describe the behavior of a design by using
concurrent statements. These descriptions are usually at the level of Boolean
equations combined with other operators and function calls. See also behavioral view,
concurrent statements, and structural view.

Design Compiler
The Synopsys tool that synthesizes and optimizes ASIC designs from multiple input
sources and formats.

design constraints
See constraints.

design entity
In VHDL, the combination of an entity declaration and one or more architectural bodies
constitute a design entity.

flip-flop
An edge-sensitive memory device.

HDL
Hardware Description Language.

identifier
A sequence of letters, underscores, and numbers. An identifier cannot be a VHDL
reserved word, such as type or loop. An identifier must begin with a letter or an
underscore.

latch
A level-sensitive memory device.

netlist
A network of connected components that together define a design.

optimization
The modification of a design in an attempt to improve some performance aspect of the
design. Design Compiler optimizes designs and tries to meet specified design
constraints for area and speed.

package
A collection of declarations that is available to more than one design entity.

port
A signal declared in the interface list of an entity.

reduction operator
An operator that takes an array of bits and produces a single-bit result, namely the
result of the operator applied to each successive pair of array elements.
Glossary GL-2

HDL Compiler for VHDL User Guide Version D-2010.03
register
A memory device containing one or more flip-flops or latches used to hold a value.

resource sharing
The assignment of similar VHDL operations, such as +, to a common netlist cell.
Netlist cells are the resources—they are equivalent to built hardware.

RTL
Register transfer level, a set of structural and data flow statements.

sequential statement
The set of VHDL statements that execute in sequence.

signal
An electrical quantity that can be used to transmit information. A signal is declared with
a type and receives its value from one or more drivers. Signals are created in VHDL
through either signal or port declarations.

signed value
A value that can be positive, 0, or negative.

structural view
The set of VHDL statements used to instantiate primitive and hierarchical components
in a design. A VHDL design at the structural level is also called a netlist. See also
behavioral view and data flow view.

subtype
A type declared as a constrained version of another type.

synthesis
The creation of optimized circuits from a high-level description.

technology library
A library of ASIC cells available to Design Compiler during the synthesis process. A
technology library can contain area, timing, and functional information on each ASIC
cell.

translation
The mapping of high-level language constructs onto a lower-level form.

type
In VHDL, the mechanism by which objects are restricted in the values they are
assigned and the operations that can be applied to them.

unsigned
A value that can be only positive or 0.

variable
A VHDL object local to a process or subprogram that has a single current value.

VHDL
VHSIC Hardware Description Language, used to describe discrete systems.
Chapter GL:
GL-3Glossary GL-3

HDL Compiler for VHDL User Guide D-2010.03HDL Compiler for VHDL User Guide Version D-2010.03
VHSIC
Very-high-speed integrated circuit, a high-technology program of the United States
Department of Defense.
Glossary GL-4

Index

Symbols
” - ” operator 3-4
” + ” operator 3-4
”* ” operator C-7
”**” operator C-7
”<=” operator B-12
”<” operator 3-4
”>=” operator B-12
”>” operator 3-4, B-12
”⁄” operator C-7

A
adders

carry-lookahead adder A-20
Definable-Width Adder-Subtracter A-6
numeric_std package B-18

adder-subtracter (example) A-6
aggregates C-9
alias declarations

supported C-5
architecture

consistency
component instantiation 2-18

arithmetic functions
numeric_std

unary B-18

numeric_std package
binary B-18

assert statement C-10
assignment statement

indexed name target 2-37
asynchronous processes 2-54
attribute declarations C-5
attributes

ascending C-6
ENUM_ENCODING 6-12
event C-6
high C-6
infer_mux 6-9
left C-6
length C-6
load 6-9
logic_one 6-9
logic_zero 6-9
low C-6
map_only 2-16
max_area 6-9
max_delay 6-9
max_fall_delay 6-9
max_rise_delay 6-9
max_transition 6-9
min_delay 6-9
min_fall_delay 6-9
min_rise_delay 6-9
IN-1
IN-1

HDL Compiler for VHDL User Guide Version D-2010.03
one_cold 6-9
one_hot 6-9
opposite 6-9
range C-6
reverse_range C-6
right C-6
rise_arrival 6-10
rise_drive 6-10
stable C-6
STATE_VECTOR 2-48
sync_set_reset 6-10
Synopsys-defined C-7
unconnected 6-10
VHDL

ENUM_ENCODING 2-29, 6-12
ENUM_ENCODING values 6-13

ATTRIBUTES package 1-52, B-1, B-30

B
binary arithmetic functions

example B-10
numeric_std package B-18

bit name
variable type 7-5

bit vectors
variable type 7-5

BIT_VECTOR type B-5, B-27
bit-blasting 7-7
bit-width (of operands) 2-34
Boolean reduction functions B-26
built_in directive

logic functions B-2
type conversion B-3
using B-2

built_in pragma
example of using B-2

bused clock
syntax 4-16

C
carry-out bit

example of using B-12
case statements

embedded in if-then-else statements, unless
the case statement appears in an if
(CLK’event...) 3-16

FSM coding requirements 2-45
generate MUX_OP cells 3-11
hdlin_infer_mux 3-12
hdlin_mux_size_limit 3-13
in an elsif (CLK’event...) branch 3-16, 3-17
in while loops 3-16
infer multibit components 2-50
infer MUX_OP cells 3-11
infer_mux attribute 3-11
infer_mux directive 3-12
missing assignment in a case statement

branch 3-16
SELECT_OP Inference 3-8
supported constructs C-11
used in multiplexing logic 3-8

clock, bused 4-16
combinational feedback

paths 3-17
comparison functions

numeric_std B-19
component

declaration
writing out 7-4

implication
three-state driver 5-1

instantiation
search order 2-15

mapping subprogram to 2-18
component declarations C-5
computable operands 2-35
conditionally assigned variable 4-14
conditionally specified signal 3-18
constant declaration

supported C-4
IN-2
Index IN-2

HDL Compiler for VHDL User Guide Version D-2010.03
constant propagation 3-5
continuous assignments

hdlin_prohibit_nontri_multiple_drivers 6-16
control unit (example)

counting A-14
state machine A-11

Controlling Register Inference 4-5
conversion functions

arithmetic
binary B-9

numeric_std package
TO_INTEGER B-17
TO_SIGNED B-17
TO_UNSIGNED B-17

std_logic_arith package B-8

D
data type

abstract
BOOLEAN B-28

array attributes
index C-6

BIT B-28
BIT_VECTOR B-29
BOOLEAN B-28
CHARACTER B-29
integer

defined B-29
supported C-3
SYNOPSYS

std_logic_signed 2-27
data types

numeric_std
SIGNED B-16
UNSIGNED B-16

dc_script_end directive 6-7
dc_shell variables

vhdlout_ 7-3
vhdlout_bit_type 7-5
vhdlout_bit_vector_type 7-5
vhdlout_dont_create_dummy_nets 7-3

vhdlout_equations 7-3
vhdlout_follow_vector_direction 7-3
vhdlout_local_attributes 7-3
vhdlout_one_name 7-5
vhdlout_preserve_hierarchical_types 7-7
vhdlout_separate_scan_in 7-3
vhdlout_single_bit 7-7
vhdlout_three_state_name 7-6
vhdlout_three_state_res_func 7-6
vhdlout_unknown_name 7-6
vhdlout_upcase 7-4
vhdlout_use_packages 7-4
vhdlout_wired_and_res_func 7-6
vhdlout_wired_or_res_func 7-6
vhdlout_write_components 7-4
vhdlout_zero_name 7-6
write variables 7-3

Design Compiler 2-43
component instantiation 2-15
write command 7-2

directives
built_in 7-12, B-6

identifying B-6
dc_script_begin 6-7
dc_script_end 6-7
keep_signal_name 2-40
map_to_entity 2-18, 6-6
resolution_method 2-42
return_port_name 2-18, 6-6
rp_align 2-7, 6-5
rp_array_dir 2-6, 6-5
rp_endgroup 2-3, 6-3
rp_endignore 2-8, 6-6
rp_fill 2-5, 6-4
rp_group 2-3, 6-3
rp_ignore 2-8, 6-6
rp_orient 2-8, 6-5
rp_place 2-4, 6-4
using 2-42

don’t care 3-17
don’t care inference

simulation versus synthesis 2-53
IN-3
Index IN-3

HDL Compiler for VHDL User Guide Version D-2010.03
don’t cares
encoding values for the ENUM_ENCODING

attribute 6-13
in case statements 3-17
simulation/synthesis mismatch 2-53

E
edge expression 4-37
elaboration reports 1-9
embedding constaints and attributes

dc_script_end 6-7
embedding constraints and attributes

dc_script_begin 6-7
encoding

values
ENUM_ENCODING attribute 6-13

entity
consistency

component instantiation 2-17
ENUM_ENCODING attribute 2-29, 6-12

values 6-13
vectors 6-13

enumerated types
ordering 2-54

enumeration data type
encoding

ENUM_ENCODING attribute 2-29, 6-12
ENUM_ENCODING value 6-13
literal value 2-28

example
encoding 2-28

literal, overloaded 2-28
equality functions

example B-14
errors 6-7, 6-16
escaped identifier.See extended identifier
examples

adder-subtracter A-6
asynchronous design

incorrect 2-43
carry-lookahead adder A-20

component implication 2-19
control unit

counting A-14
state machine A-11

count zeros
combinational A-7
sequential A-9

Mealy finite state machine A-18
Moore finite state machine A-16
PLA A-33
ROM A-2
serial-to-parallel converter

counting bits A-26
shifting bits A-31

three-state component
registered input 5-7

two-phase clocked design 4-36
waveform generator

simple A-4
writing out port types 7-9

Explicit bit-truncation 3-6
extended identifier C-12

F
falling_edge 4-19
feedback paths 3-17
file declarations C-5
file formats, automatic detection of 1-8
finite state machine 2-44

automatic detection 2-44
finite state machines

automatic detection 2-44
coding guidelines 2-45
fsm_auto_inferring 2-44
Inference Report 2-48
Mealy finite state machine A-18
Moore finite state machine A-16
STATE_VECTOR attribute 2-48

flip 1-19, 4-37
flip-flop
IN-4
Index IN-4

HDL Compiler for VHDL User Guide Version D-2010.03
async_set_reset 4-6
clocked_on_also 4-7
clocked_on_also attribute 4-33
creating parameterized models 1-19
D Flip-Flop With Asynchronous Reset 4-21
D Flip-Flop With Asynchronous Set 4-20
D Flip-Flop With Asynchronous Set and

Reset 4-22
D Flip-Flop With Synchronous and

Asynchronous Load 4-27
D Flip-Flop With Synchronous Reset 4-24
D Flip-Flop With Synchronous Set 4-23
forcing specific GTECH components 2-16
hdlin_ff_always_ async_set_reset 4-5
hdlin_ff_always_ sync_set_reset 4-5
hdlin_keep_feedback 4-5
if (falling_edge (CLK)) then 4-16
if (rising_edge (CLK)) then 4-16
If the technology library does not contain the

specific inferred flip-flop 4-3
infer a register as an FSM state register 2-45
infer as multibit 2-49
inference design requirements 4-37
Inference Report for a D Flip-Flop With

Asynchronous Reset 4-21
Inference Report for a D Flip-Flop With

Asynchronous Set 4-20
Inference Report for a D Flip-Flop With

Asynchronous Set and Reset 4-22
Inference Report for a D Flip-Flop With

Synchronous and Asynchronous Load
4-27

Inference Report for a D Flip-Flop With
Synchronous Reset 4-25

Inference Report for a D Flip-Flop With
Synchronous Set 4-24

Inference Report for a JK Flip-Flop 4-31
Inference Report for a JK Flip-Flop With

Asynchronous Set and Reset 4-32
Inference Report for Negative-Edge-

Triggered D Flip-Flop 4-19

Inference Report for Positive-Edge-Triggered
D Flip-Flop 4-18

Inferring D Flip-Flops 4-16
JK Flip-Flop With Asynchronous Set and

Reset 4-32
JK flip-flops 4-30
master-slave latches 4-33
Multiple Flip-Flops with Asynchronous and

Synchronous Controls 4-28
Negative-Edge-Triggered D Flip-Flop 4-19
Negative-Edge-Triggered D Flip-Flop Using

‘event 4-19
Negative-Edge-Triggered D Flip-Flop Using

falling_edge 4-19
on the input pin of a three-state buffer 5-7
one_cold 4-7
Positive-Edge-Triggered D Flip-Flop 4-17
Positive-Edge-Triggered D Flip-Flop Using

‘event Attribute 4-17
Positive-Edge-Triggered D Flip-Flop Using

rising_edge 4-18
Register banks 4-37
SEQGENs 4-2
SIGNAL’event and SIGNAL = ’0’ 4-16
sync_set_reset 4-6
unmapped master-slave generic cell

(MSGEN) 4-33
used to describe the master-slave latch 4-33
using the IEEE std_logic_1164 package 4-16
with bidirectional pins 4-37
with multiple clock inputs 4-37
with three-state outputs 4-37

FSM inference report 2-46
fully specified

signal 3-17
variable 3-17

function
resolution

example 2-43
functions 6-7

implementations
mapped to gates 2-20
IN-5
Index IN-5

HDL Compiler for VHDL User Guide Version D-2010.03
G
GTECH.db generic library

component instantiation
structural design 2-16

link_library variable
Design Compiler 2-17

guard
on block statement C-11

guarded keyword C-11

H
hdlin_infer_enumerated_types 6-14
hdlin_infer_function_local _latches 6-14
hdlin_infer_function_local_latches 6-14
hdlin_infer_mux 3-12
hdlin_keep_signal_name variable 2-40
hdlin_mux_oversize_ratio 3-13, 6-15
hdlin_mux_size_limit 3-13
hdlin_mux_size_min 3-13, 6-15
hdlin_mux_size_only variable 3-13, 6-15
hdlin_no_sequential_mapping 6-15
hdlin_one_hot_one_cold_on 6-15
hdlin_optimize_array_references 6-15
hdlin_optimize_enum_types 6-15
hdlin_preserve_sequential variable 4-38
hdlin_prohibit_nontri_multiple _drivers 6-16
hdlin_reporting_level directive 2-44
hdlin_reporting_level variable 1-9, 2-46, 4-4,

5-2
hierarchy

preserving types 7-7
high impedance state 5-1

I
identifiers

characteristics C-12
extended C-12

if statements

D flip-flop inference requirements 4-37
hdlin_infer_mux 3-12
in an invalid use of a conditionally assigned

variable 4-14
in case statements 3-16
incompletely specified 4-9
infer MUX_OP cells 3-11
infers a D flip-flop 4-16
infers a D latch 4-9
support for the event and stable attributes

C-6
supported construct C-11

Implicit bit-truncation 3-6
incompletely specified case statement 3-17
incompletely specified signals and variables

3-17
indexed name target 2-37
infer_mux 3-11, 3-12
inference report

description 5-2
inference reports 4-4, 5-2
inferred registers

limitations 4-37
instantiation

component
search order 2-15

integer data type
encoding 2-27
subrange 2-27

K
keep_signal_name directive 2-40
Keeping Signal Names 2-40

L
language constructs, VHDL

concurrent statements
assertion C-11
block C-11
IN-6
Index IN-6

HDL Compiler for VHDL User Guide Version D-2010.03
generate C-12
procedure call C-11
process C-11
signal assignment C-11

data types
access C-4
array C-4
enumeration C-3
file C-4
floating C-4
incomplete type declarations C-4
integer C-3
physical C-4
record C-4

declaration
attribute C-5
component C-5
constant C-4
file C-5
interface C-5
signal C-4
variable C-4

design units
architecture C-3
configuration C-3
entity C-2
library C-3
package C-3
subprogram C-3

expressions
aggregate C-9
allocator C-9
based literal C-9
function call C-9
null literal C-9
physical literal C-9
static expression C-9
string C-9
type conversion C-9
universal expression C-10

names
attribute C-6

indexed C-6
operator symbol C-6
selected C-6
simple C-6
slice C-6

operands
aggregate C-9
allocator C-9
based literal C-9
function call C-9
null literal C-9
physical literal C-9
static expression C-9
string C-9
type conversion C-9
universal expression C-10

operators
addition C-7
logical C-7
miscellaneous C-7
multiplying C-7
relational C-7
short-circuit operation C-7
signing C-7

predefined language environment
now function C-13
predefined attributes C-13
severity_level type C-13
TEXTIO package C-13
time type C-13

reserved words C-13
sequential statements

assertion C-10
case C-11
exit C-11
if C-11
loop C-11
next C-11
null C-11
procedure call C-10
report C-10
return C-11
IN-7
Index IN-7

HDL Compiler for VHDL User Guide Version D-2010.03
signal C-10
statement labels C-10
variable C-10
wait C-10

specifications
attribute C-5
configuration C-5
disconnection C-5

latches
async_set_reset attribute 4-11
clocked_on_also 4-33
D latch inference 4-10
D latch with an asynchronous reset 4-12
D Latch With Asynchronous Set 4-11
generic sequential cells (SEQGENs) 4-2
hdlin_infer_block_local_latches 6-14
If the technology library does not contain the

specific inferred latch 4-3
infer multibit components 2-50
Inference Report for an SR Latch 4-8
Inference Report for D Latch With

Asynchronous Set 4-12
master-slave latches 4-33
Multiport latches 4-37
one_cold attribute 4-13
read a conditionally assigned variable 4-14
Register banks 4-37
SR latch inference 4-8
Unintended Latches in Combinational Logic

3-17
variables declared in subprograms 4-10
Verbose Inference Report for a D Latch 4-11
with three-state outputs 4-37

license requirements 1-54
loops

case statements
in while loops 3-16

combinational feedback loop 3-19
create a ripple carry adder A-7
enumerated types as indexes 2-26
for...loop parameters 2-35
generate loop 2-12

hdlin_keep_feedback 4-5
support in Presto VHDL C-11
that iterates across each bit in the given

value A-8
using wait statements in for-loop statements

C-10

M
map_only attribute 2-16
map_to_entity directive 2-18
math_real package support 2-32
Mealy finite state machine (example) A-18
Moore finite state machine (example) A-16
multiplexing logic

case statements embedded in if-then-else
statements 3-16

case statements in an elsif (CLK’event...)
3-17

case statements in while loops 3-16
case statements that contain an if statement

3-16
case statements that contain don’t care

values 3-17
case statements that have a missing case

statement branch 3-16
Design Compiler implementation 3-10
hdlin_infer_mux variable 3-12
hdlin_mux_oversize_ ratio 3-13
hdlin_mux_oversize_ratio 6-15
hdlin_mux_size_limit 3-13
hdlin_mux_size_min 3-13, 6-15
implement conditional operations implied by

if and case statements 3-8
incompletely specified case statement 3-17
infer MUX_OP cells 3-10
infer_mux attribute 3-11, 6-9
inference report for MUX_OPs 3-14
MUX_OP cells 3-8
MUX_OP Inference Limitations 3-16
preferentially map multiplexing logic to

multiplexers 3-8
IN-8
Index IN-8

HDL Compiler for VHDL User Guide Version D-2010.03
SELECT_OP cells 3-8
--synopsys infer_mux directive 3-11
warning message 3-17
with if and case statements 3-8

multiplication using shifts B-15
MUX_OP cells, setting the size_only attribute

3-13
MUX_OP Inference 3-10

N
names

slice names 2-35
N-bit adder

declaration
example, ripple-carry 2-17
ripple-carry design 2-16

noncomputable operands 2-36
numeric_std package

accessing B-16
arithmetic functions

binary B-18
unary B-18

comparison functions
ordering B-19

data types
UNSIGNED B-16

IEEE documentation 1-52, B-1
location B-16
logical operators

AND B-22
NAND B-22
NOR B-22
NOT B-22
OR B-22
XNOR B-22
XOR B-22

resize function B-17
rotate

functions B-23
operators B-24

shift

functions B-23
operators B-24

use with std_logic_arith package B-15

O
operands

bit-width 2-34
computable 2-35

operators
ordering

and enumerated types 2-54
rotate

numeric_std package B-24
shift

numeric_std package B-24
optimization 2-44
ordering

functions
example B-13

overloading
enumeration

literal 2-28

P
PLA (example) A-33
ports

bit-blasting 7-7
pragmas.See directives
predefined attributes

supported C-13
processes

asynchronous 2-54
sensitivity lists 2-55
synchronous 2-54

R
read_file -format command 1-8
register inference

D latch 4-9
IN-9
Index IN-9

HDL Compiler for VHDL User Guide Version D-2010.03
edge expressions 4-16
if versus wait 4-16
signal edge 4-16
SR latch 4-8
wait versus if 4-16

relative placement
creating groups 2-3, 6-3
example 2-9
figure 2-11
ignoring 2-8, 6-6
placing cells automatically 2-5, 6-4
specifying cell alignment 2-7, 6-5
specifying cell orientation 2-8, 6-5
specifying placement 2-6, 6-5
specifying subgroups, keepouts, and

instances 2-4, 6-4
report statement C-10
resize function

numeric_std package B-17
resolution function

directives
resolution_method three_state 2-42
resolution_method wired_and 2-42
resolution_method wired_or 2-42

writing out 7-6
vhdlout_wired_and_res_func 7-6
vhdlout_wired_or_res_func 7-6

resolution_method
three_state directive 2-42
wired_and directive 2-42
wired_or directive 2-42

rising_edge 1-3, 4-18
ROM (example) A-2
rotate

functions
numeric_std package B-23

operators C-8
numeric_std package B-24

S
SELECT_OP 3-8

sensitivity lists 2-55
serial-to-parallel converter (example)

shifting bits A-31
set_map_only command 2-16
shared variable C-4
shift

functions
example B-14
numeric_std B-23

operations B-15
operators

numeric_std package B-24
signals

edge detection 4-16
supported C-4

SIGNED data type
defined B-7

simulation
don’t care values 2-53

state machine (example)
controller A-11
Mealy A-18
Moore A-16

state vector
attribute 2-48

STATE_VECTOR attribute 2-48
statement

assignment
indexed name target, syntax 2-37

statement labels C-10
std_logic_1164 package B-2
std_logic_arith package

”<=” function B-12
”>=” function B-12
”>” function B-12
arithmetic functions B-9
Boolean reduction functions B-26
built_in functions B-6
comparison functions B-12
conversion functions B-9
data types B-7
IN-10
Index IN-10

HDL Compiler for VHDL User Guide Version D-2010.03
modifying the package B-6
ordering functions B-12
shift function B-14
using the package B-4

std_logic_misc package B-26
subprogram

mapping to components
example 2-19
matching entity 2-18

subrange
integer data type 2-27

SYN_FEED_THRU
example of using B-4

synchronous
processes 2-54

Synopsys packages
std_logic_misc B-26

Synopsys-defined VHDL attributes C-7
synthetic comments.See directives

T
three-state

gate 5-6
registered enable 5-7
without registered enable 5-7

inference 5-1
registered drivers 5-6, 5-7
registered input 5-7
vhdlout_three_state_name variable 7-6

time type C-13
transport keyword C-11
two-phase design 4-36
type

conversion variable
functions 7-7

variable
preserving hierarchy 7-7

U
unary

arithmetic functions
example B-11
numeric_std B-18

unconstrained arrays
example using A-6

unloaded sequential cell preservation 4-38
UNSIGNED data type

defined B-7
numeric_std package B-16

V
variables

conditionally assigned 4-14
hdlin_keep_signal_name 2-40
vhdlout_top_configuration_arch_name 7-8
vhdlout_top_configuration_entity_name 7-8
vhdlout_top_configuration_name 7-8

VHDL
BIT data type B-28
BIT_VECTOR data type B-29
BOOLEAN data type B-28
CHARACTER data type B-29
component

implication 2-18
concurrent statements

supported C-11
data type, supported

enumeration C-3
data type, unsupported

integer C-3
declarations C-4
design

units C-2
writing out 7-2

expressions, supported C-9
integer data type 2-27, B-29
names C-6
NATURAL subtype B-29
operators
IN-11
Index IN-11

HDL Compiler for VHDL User Guide Version D-2010.03
supported C-7
package

composition 2-17
ports, writing out 7-7
POSITIVE subtype B-29
predefined

language environment C-13
sensitivity lists 2-55
sequential statements, supported C-10
specifications C-5
STRING type B-29
three-state components 5-1
writing out 7-2

VHDL assertions 4-8
VHDL Compiler

attributes
Synopsys C-6
write_script command 7-3

component
instantiation, entities 2-17

don’t care information 2-44
enumeration encoding 2-28
integer encoding 2-27
sensitivity lists 2-55
STATE_VECTOR attribute 2-48

vhdlout_ variables 7-3
vhdlout_bit_type variable 7-5
vhdlout_bit_vector_type variable 7-5
vhdlout_dont_create_dummy_nets variable

7-3
vhdlout_equations variable 7-3
vhdlout_follow_vector_direction variable 7-3
vhdlout_local_attributes variable 7-3

vhdlout_one_name variable 7-5
vhdlout_package_naming_style 7-7
vhdlout_preserve_hierarchical_types variable

7-7
vhdlout_separate_scan_in variable 7-3
vhdlout_single_bit variable 7-7
vhdlout_three_state_name variable 7-6
vhdlout_three_state_res_func variable 7-6
vhdlout_top_configuration_arch_name 7-8
vhdlout_top_configuration_entity_name

variable 7-8
vhdlout_top_configuration_name variable 7-8
vhdlout_unknown_name variable 7-6
vhdlout_upcase variable 7-4
vhdlout_use_packages variable 7-4
vhdlout_wired_and_res_func variable 7-6
vhdlout_wired_or_res_func variable 7-6
vhdlout_write_architecture variable 7-4
vhdlout_write_components variable 7-4
vhdlout_write_entity variable 7-4
vhdlout_write_top_configuration variable 7-4
vhdlout_zero_name variable 7-6

W
warnings

asynchronous designs 2-43
waveform generator (example)

simple A-4
write command 7-2
writing out VHDL 7-2
IN-12
Index IN-12

	Preface
	Introduction to HDL Compiler for VHDL
	Reading VHDL Designs
	Summary of Reading Methods
	Using the analyze and elaborate Commands
	Using the read Command
	Reading Designs With Dependencies Automatically
	Reading, Analyzing, and Elaborating Designs
	Reading and Analyzing Designs Without Elaboration
	File Dependency Support
	Supported Variables
	Examples

	Automatic Detection of RTL Language From File Extensions

	Elaboration Reports
	Reporting Elaboration Errors
	Methodology
	Example
	hdlin_elab_errors_deep FAQs

	Parameterized Models (Generics)
	Configuration Support
	Example 1: Bind Entity to Architecture
	Example 2: Use Architectures From the Same Library
	Example 3: Use Architectures From Different Libraries
	Example 4: Configuration With a Component Inside a Concurrent Block
	Example 5: Generic in a Configuration
	Example 6: Port Map in a Configuration
	Example 7: Nested Configurations
	Example 8: Indirectly Nested Configurations
	Example 9: Embedded Configurations
	Example 10: Multiple Architectures in Embedded Configurations - Last Chosen as Default
	Example 11: Combinations of Embedded, Nested, and Stand-Alone Configurations Require Elaborate with a Configuration Identifier
	Tool Behavior When Using Elaborate With the Entity Name

	Design Libraries
	Predefined Design Libraries
	Creating User-Defined Design Libraries
	User-Defined Design Library Example
	Using Design Units From Design Libraries
	Design Library Reports

	Package Support
	Array Naming Variables
	Licenses

	General Coding Considerations
	Creating Relative Placement in Hardware Description Languages
	Directives for Specifying Relative Placement
	Creating Groups Using rp_group and rp_endgroup
	Specifying Subgroups, Keepouts, and Instances Using rp_place
	Placing Cells Automatically Using rp_fill
	Specifying Placement for Array Elements Using rp_array_dir
	Specifying Cell Alignment Using rp_align
	Specifying Cell Orientation Using rp_orient
	Ignoring Relative Placement Using rp_ignore and rp_endignore
	Relative Placement Example

	Declarative Region in generate Statements
	Design Units
	Direct Instantiation of Components
	Default Component Port Assignments
	Component Name Restrictions
	Component Sources
	Component Port Consistency
	Instantiating Technology-Independent Components
	Component Architecture
	Package Names
	Procedures and Functions as Design Components

	Data Types and Data Objects
	Globally Static Expressions in Port Maps
	Aliases
	Deferred Constants
	Aggregates in Constant Record Declarations
	Enumerated Types in the for and for-generate Constructs
	Groups
	Integer Data Types
	Overloading an Enumeration Literal
	Enumeration Encoding
	Constant Floating-Point Support
	Syntax and Declarations
	Operators and Expressions
	Guidelines

	math_real Package Support
	Unsupported Constructs and Operators
	Using the math_real Package
	Arithmetic Functions
	Usage Examples

	Operands
	Operand Bit-Width
	Array Slice Names
	Computable and Noncomputable Operands
	Indexed Name Targets

	Modeling Considerations
	Concatenation
	Unconstrained Type Ports
	Input Ports Associated With the Keyword open
	Multiple Events in a Single Process
	Keeping Signal Names
	Controlling Structure
	Resolution Functions
	Asynchronous Designs
	Using Don’t Care Values
	Finite State Machines
	Variables and Commands Specific to FSM Inference
	FSM Coding Requirements
	FSM Example and Inference Report
	State Vector Attribute

	Multibit Inference
	Multibit Inference Overview
	Controlling Multibit Inference
	infer_multibit Attribute Examples

	Simulation/Synthesis Mismatch Issues
	Type Mismatches
	Set and Reset Signals
	Z Values in Expressions
	Don’t Care Values in Comparisons
	Ordering of Enumerated Types Using the ENUM_ENCODING attribute
	Sensitivity Lists
	Delay Specifications

	Modeling Combinational Logic
	Synthetic Operators
	Logic and Arithmetic Operator Implementation
	Propagating Constants
	Bit-Truncation Coding for DC Ultra Datapath Extraction
	Multiplexing Logic
	SELECT_OP Inference
	MUX_OP Inference
	Variables That Control MUX_OP Inference
	MUX_OP Inference Examples
	MUX_OP Inference Limitations

	Unintended Latches and Feedback Paths in Combinational Logic

	Modeling Sequential Logic
	Generic Sequential Cells (SEQGENs)
	Inference Reports for Flip-Flops and Latches
	Register Inference Variables
	Register Inference Attributes
	Inferring D and Set/Reset (SR) Latches
	Inferring SR Latches
	Inferring D Latches
	Overview-Latch Inference
	Basic D Latch
	D Latch With Asynchronous Set
	D Latch With Asynchronous Reset
	D Latch With Asynchronous Set and Reset

	Limitations of D Latch Inference

	Inferring D Flip-Flops
	Overview-Inferring D Flip-Flops
	Enabling Conditions in if Statements
	Positive-Edge-Triggered D Flip-Flop
	Negative-Edge-Triggered D Flip-Flop
	D Flip-Flop With Asynchronous Set
	D Flip-Flop With Asynchronous Reset
	D Flip-Flop With Asynchronous Set and Reset
	D Flip-Flop With Synchronous Set
	D Flip-Flop With Synchronous Reset
	D Flip-Flop With Complex Set/Reset Signals
	D Flip-Flop With Synchronous and Asynchronous Load
	Multiple Flip-Flops: Asynchronous and Synchronous Controls

	Inferring JK Flip-Flops
	Basic JK Flip-Flop
	JK Flip-Flop With Asynchronous Set and Reset

	Inferring Master-Slave Latches
	Master-Slave Latch Overview
	Master-Slave Latch: Single Master-Slave Clock Pair
	Master-Slave Latch: Multiple Master-Slave Clock Pairs
	Master-Slave Latch: Discrete Components

	Limitations of Register Inference
	Unloaded Sequential Cell Preservation

	Inferring Three-State Logic
	Inference Report for Three-State Devices
	Inferring a Basic Three-State Driver
	Inferring One Three-State Buffer From a Single Process
	Inferring Two Three-State Buffers
	Three-State Buffer With Registered Enable
	Three-State Buffer With Registered Data
	Understanding the Limitations of Three-State Inference

	Directives, Attributes, and Variables
	Directives
	keep_signal_name
	template
	translate_off and translate_on
	synthesis_off and synthesis_on
	resolution_method
	rp_group and rp_endgroup
	rp_place
	rp_fill
	rp_array_dir
	rp_align
	rp_orient
	rp_ignore and rp_endignore
	map_to_entity and return_port_name
	dc_tcl_script_begin and dc_tcl_script_end

	Attributes
	Synopsys Defined Attributes
	IEEE Predefined Attributes

	Variables

	Write Out Designs in VHDL Format
	Netlist Writer Variables
	Writing Out VHDL Files
	VHDL Write Variables
	Bit and Bit-Vector Variables
	Resolution Function Variables
	Types and Type Conversion Variables
	Architecture and Configuration Variables
	Preserving Port Types
	VHDL Netlister Coding Considerations
	Built-In Type Conversion Function
	How the Netlister Handles Custom Types
	Case Sensitivity

	Examples
	Read-Only Memory
	Waveform Generator
	Definable-Width Adder-Subtracter
	Count Zeros-Combinational Version
	Count Zeros-Sequential Version
	Soft Drink Machine-State Machine Version
	Soft Drink Machine-Count Nickels Version
	FSM Example: Moore Machine
	FSM Example: Mealy Machine
	Carry-Lookahead Adder
	Carry Value Computations
	Implementation

	Serial-to-Parallel Converter-Counting Bits
	Input Format
	Implementation Details

	Serial-to-Parallel Converter-Shifting Bits
	Programmable Logic Arrays

	Predefined Libraries
	std_logic_1164
	built_in Pragmas

	std_logic_arith
	std_logic_arith Package Overview
	Modifying the std_logic_arith Package
	std_logic_arith Data Types
	UNSIGNED
	SIGNED

	Conversion Functions
	Arithmetic Functions
	Comparison Functions
	Shift Functions
	Multiplication Using Shifts

	numeric_std
	Unsupported Constructs and Operators
	Using the numeric_std Package
	numeric_std Data Types
	Conversion Functions
	Resize Functions
	Arithmetic Functions
	Comparison Functions
	Defining Logical Operators Functions
	Shift and Rotate Functions
	Shift and Rotate Operators

	std_logic_misc
	Standard Package
	Data Type BOOLEAN
	Data Type BIT
	Data Type CHARACTER
	Data Type INTEGER
	Data Type NATURAL
	Data Type POSITIVE
	Data Type STRING
	Data Type BIT_VECTOR

	Synopsys Package-ATTRIBUTES

	VHDL Constructs
	VHDL Construct Support
	Configurations
	Design Units
	Data Types
	Declarations
	Specifications
	Names
	Operators
	Operands and Expressions
	Sequential Statements
	Concurrent Statements
	Lexical Elements
	Specifics of Identifiers
	Specifics of Extended Identifiers

	Predefined Language Environment
	VHDL Reserved Words

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

