
D o c u m e n t a t i o n

Verilog HDL RTL Design Style Checks
Conforming STARC Specification v. 2.0

w w w . a l d e c . c o m

http://www.aldec.com/

This page is intentionally left blank.

Table of Contents
Chapter 1 Basic Design Constraints ... 8

1.1.1 Basic naming conventions ... 8
STARC_VLOG 1.1.1.1 ... 8
STARC_VLOG 1.1.1.2 ... 10
STARC_VLOG 1.1.1.3 ... 12
STARC_VLOG 1.1.1.4 ... 13
STARC_VLOG 1.1.1.5 ... 14
STARC_VLOG 1.1.1.6 ... 15
STARC_VLOG 1.1.1.7 ... 16
STARC_VLOG 1.1.1.8 ... 18
STARC_VLOG 1.1.1.9 ... 20
STARC_VLOG 1.1.1.10 ... 22

1.1.2 Naming conventions of circuit and port names should be considered by the hierarchy 23
STARC_VLOG 1.1.2.1 ... 23
STARC_VLOG 1.1.2.2 ... 25

1.1.3 Give meaningful names for signals .. 26
STARC_VLOG 1.1.3.1 ... 26

1.1.4 Naming conventions of include file, parameter and `define (different from VHDL) 27
STARC_VLOG 1.1.4.1 ... 27
STARC_VLOG 1.1.4.2 ... 31
STARC_VLOG 1.1.4.3 ... 33
STARC_VLOG 1.1.4.4 ... 34
STARC_VLOG 1.1.4.5 ... 36

1.1.5 Naming should consider clock systems ... 38
STARC_VLOG 1.1.5.1 ... 38

1.2.1 Clock synchronous design ... 40
STARC_VLOG 1.2.1.1 ... 40
STARC_VLOG 1.2.1.2 ... 42
STARC_VLOG 1.2.1.3 ... 44

1.3.1 Use asynchronous reset for initial reset ... 47
STARC_VLOG 1.3.1.2 ... 47
STARC_VLOG 1.3.1.3 ... 49
STARC_VLOG 1.3.1.5 ... 51
STARC_VLOG 1.3.1.6 ... 52

1.3.2 Reset line hazards ... 54
STARC_VLOG 1.3.2.1 ... 54
STARC_VLOG 1.3.2.2 ... 56

1.4.3 Gated clocks should be used with special care ... 58
STARC_VLOG 1.4.3.2 ... 58
STARC_VLOG 1.4.3.4 ... 60
STARC_VLOG 1.4.3.5 ... 64
STARC_VLOG 1.4.3.6 ... 67

1.5.1 Consider metastable issues in signals between asynchronous clocks 69
STARC_VLOG 1.5.1.1 ... 69
STARC_VLOG 1.5.1.2 ... 75
STARC_VLOG 1.5.1.3 ... 78

1.7.1 Considerations for using both ASICs and FPGAs ... 80
STARC_VLOG 1.7.1.1 ... 80

Chapter 2 RTL Description Techniques .. 82
2.1.1 Use always constructs and function statements correctly .. 82

STARC_VLOG 2.1.1.2 ... 82
2.1.2 Define combinational circuits using the function statement ... 84

STARC_VLOG 2.1.2.1 ... 84

Verilog HDL RTL Design Style Checks 3 of 334

STARC_VLOG 2.1.2.2 ... 85
STARC_VLOG 2.1.2.3 ... 86
STARC_VLOG 2.1.2.4 ... 87
STARC_VLOG 2.1.2.5 ... 88

2.1.3 In a function statement , be careful to check arguments and bit width 89
STARC_VLOG 2.1.3.1 ... 89
STARC_VLOG 2.1.3.2 ... 91
STARC_VLOG 2.1.3.4 ... 93
STARC_VLOG 2.1.3.5 ... 95

2.1.4 Instructions for equation level descriptions (different from VHDL) 97
STARC_VLOG 2.1.4.5 ... 97
STARC_VLOG 2.1.4.6 ... 98

2.1.5 Use a conditional operator ((A)?B:C) only once (Verilog only) .. 99
STARC_VLOG 2.1.5.1 ... 99
STARC_VLOG 2.1.5.3 ... 100

2.1.6 Specifying the range of an array .. 101
STARC_VLOG 2.1.6.1 ... 101
STARC_VLOG 2.1.6.2 ... 102
STARC_VLOG 2.1.6.3 ... 103
STARC_VLOG 2.1.6.4 ... 104
STARC_VLOG 2.1.6.5 ... 105

2.2.1 Avoid the risk of generating latches ... 106
STARC_VLOG 2.2.1.1 ... 106

2.2.2 Define every input signal in an always construct in the sensitivity list 108
STARC_VLOG 2.2.2.1 ... 108
STARC_VLOG 2.2.2.2 ... 110
STARC_VLOG 2.2.2.3 ... 111

2.2.3 Initial value description in always constructs (Verilog only) ... 112
STARC_VLOG 2.2.3.1 ... 112
STARC_VLOG 2.2.3.2 ... 113
STARC_VLOG 2.2.3.3 ... 114

2.3.1 Unify the description style of FF inferences ... 115
STARC_VLOG 2.3.1.1 ... 115
STARC_VLOG 2.3.1.3 ... 116
STARC_VLOG 2.3.1.4 ... 117
STARC_VLOG 2.3.1.5 ... 119
STARC_VLOG 2.3.1.6 ... 121
STARC_VLOG 2.3.1.7 ... 124

2.3.2 Circuits will vary with non-blocking and blocking assignment statements (Verilog only) .. 126
STARC_VLOG 2.3.2.2 ... 126

2.3.3 Do not mix descriptions that have different edges ... 127
STARC_VLOG 2.3.3.1 ... 127
STARC_VLOG 2.3.3.2 ... 128

2.3.4 Do not specify an initial FF value in a description (different from VHDL) 130
STARC_VLOG 2.3.4.1 ... 130
STARC_VLOG 2.3.4.2 ... 131

2.3.5 Do not use descriptions which generate FFs having fixed input values 132
STARC_VLOG 2.3.5.1 ... 132

2.3.6 Do not mix FF inferences with and without asynchronous resets 133
STARC_VLOG 2.3.6.1 ... 133
STARC_VLOG 2.3.6.2 ... 135

2.4.1 Clearly distinguish a latch inference from a combinational circuit 137
STARC_VLOG 2.4.1.1 ... 137
STARC_VLOG 2.4.1.2 ... 138
STARC_VLOG 2.4.1.3 ... 140
STARC_VLOG 2.4.1.4 ... 142
STARC_VLOG 2.4.1.5 ... 144

2.5.1 Create modules for tri-state buffers ... 146

4 of 334 Verilog HDL RTL Design Style Checks

STARC_VLOG 2.5.1.1 ... 146
STARC_VLOG 2.5.1.2 ... 148
STARC_VLOG 2.5.1.4 ... 150
STARC_VLOG 2.5.1.5 ... 152
STARC_VLOG 2.5.1.6 ... 154
STARC_VLOG 2.5.1.7 ... 155
STARC_VLOG 2.5.1.8 ... 156
STARC_VLOG 2.5.1.9 ... 157

2.5.2 Consider high-impedance propagation in tri-state buses ... 158
STARC_VLOG 2.5.2.1 ... 158

2.6.1 Describe taking the circuit structure into account .. 160
STARC_VLOG 2.6.1.2 ... 160
STARC_VLOG 2.6.1.3 ... 161
STARC_VLOG 2.6.1.4 ... 163

2.6.2 Avoid defining multiple output signals in a single always construct 164
STARC_VLOG 2.6.2.1 ... 164
STARC_VLOG 2.6.2.2 ... 167

2.7.1 if statements create prioritized circuits ... 168
STARC_VLOG 2.7.1.3 ... 168

2.7.2 Reduce conditional expressions of if statements with the same contents 169
STARC_VLOG 2.7.2.1 ... 169
STARC_VLOG 2.7.2.2 ... 170
STARC_VLOG 2.7.2.3 ... 171

2.7.3 Decrease the number of if statement nests ... 172
STARC_VLOG 2.7.3.1 ... 172
STARC_VLOG 2.7.3.4 ... 174

2.7.4 Always surround multiple statements using block statements (begin-end) (Verilog only) 176
STARC_VLOG 2.7.4.3 ... 176

2.8.1 case statements facilitate decoder/encoder description .. 177
STARC_VLOG 2.8.1.3 ... 177
STARC_VLOG 2.8.1.4 ... 179
STARC_VLOG 2.8.1.5 ... 180
STARC_VLOG 2.8.1.6 ... 181

2.8.2 Divide using if statement, etc. to avoid creating large tables ... 183
STARC_VLOG 2.8.2.1 ... 183
STARC_VLOG 2.8.2.2 ... 185

2.8.3 Use default clauses ... 186
STARC_VLOG 2.8.3.1 ... 186
STARC_VLOG 2.8.3.4 ... 188
STARC_VLOG 2.8.3.5 ... 190
STARC_VLOG 2.8.3.6 ... 191
STARC_VLOG 2.8.3.7 ... 193

2.8.4 Do not use complex casex statements (Verilog only) .. 194
STARC_VLOG 2.8.4.3 ... 194
STARC_VLOG 2.8.4.4 ... 195

2.8.5 Description relying on parallel_case is prohibited (Verilog only) 198
STARC_VLOG 2.8.5.1 ... 198
STARC_VLOG 2.8.5.2 ... 199
STARC_VLOG 2.8.5.3 ... 200
STARC_VLOG 2.8.5.4 ... 201

2.8.6 Beware of nesting in which if statements and case statements coexist (2.8.4 in the VHDL
version) ... 202

STARC_VLOG 2.8.6.1 ... 202
2.9.1 Do not use for statements other than for simple repeating statements 204

STARC_VLOG 2.9.1.1 ... 204
STARC_VLOG 2.9.1.2 ... 205

2.9.2 Limiting loop-variable operation in for statements ... 207
STARC_VLOG 2.9.2.1 ... 207

Verilog HDL RTL Design Style Checks 5 of 334

STARC_VLOG 2.9.2.2 ... 209
STARC_VLOG 2.9.2.3 ... 211
STARC_VLOG 2.9.2.4 ... 213

2.10.1 Order of operators and assignment of 'x' ... 214
STARC_VLOG 2.10.1.4 ... 214
STARC_VLOG 2.10.1.5 ... 215
STARC_VLOG 2.10.1.6 ... 216

2.10.3 Match the bit width of the left side and the right side (Verilog only) 217
STARC_VLOG 2.10.3.1 ... 217
STARC_VLOG 2.10.3.2 ... 218
STARC_VLOG 2.10.3.3 ... 220
STARC_VLOG 2.10.3.4 ... 221
STARC_VLOG 2.10.3.5 ... 222
STARC_VLOG 2.10.3.6 ... 223
STARC_VLOG 2.10.3.7 ... 224

2.10.4 Take note of the different data types between the left and right sides (Verilog only) 225
STARC_VLOG 2.10.4.1 ... 225
STARC_VLOG 2.10.4.3 ... 226
STARC_VLOG 2.10.4.5 ... 228
STARC_VLOG 2.10.4.6 ... 229

2.10.5 Do not share resources in speed critical circuits .. 230
STARC_VLOG 2.10.5.3 ... 230
STARC_VLOG 2.10.5.5 ... 232

2.10.6 Notes on arithmetic operations .. 233
STARC_VLOG 2.10.6.1 ... 233
STARC_VLOG 2.10.6.2 ... 234
STARC_VLOG 2.10.6.3 ... 236
STARC_VLOG 2.10.6.4 ... 237
STARC_VLOG 2.10.6.6.v1 .. 238
STARC_VLOG 2.10.6.6 ... 239

2.10.7 Take share items out of conditional branches ... 241
STARC_VLOG 2.10.7.1 ... 241

2.10.8 Division descriptions .. 242
STARC_VLOG 2.10.8.1 ... 242
STARC_VLOG 2.10.8.2 ... 244
STARC_VLOG 2.10.8.3 ... 245
STARC_VLOG 2.10.8.4 ... 246

Chapter 3 RTL Design Methodology ... 247
3.1.3 Standardize description order of module I/O ports .. 247

STARC_VLOG 3.1.3.2 ... 247
3.1.4 Consider RTL description readability ... 250

STARC_VLOG 3.1.4.4 ... 250
STARC_VLOG 3.1.4.5 ... 251

3.2.2 Define global parameters in separate files (different from VHDL) 252
STARC_VLOG 3.2.2.4 ... 252
STARC_VLOG 3.2.2.5 ... 254

3.2.3 Connect ports by name for component instantiations .. 255
STARC_VLOG 3.2.3.1 ... 255
STARC_VLOG 3.2.3.2 ... 256

3.2.4 Use # (value) when overwriting parameters from an upper level (different from VHDL) . . 258
STARC_VLOG 3.2.4.3 ... 258

3.3.1 Clocks and resets for DFT ... 259
STARC_VLOG 3.3.1.1 ... 259
STARC_VLOG 3.3.1.2 ... 261
STARC_VLOG 3.3.1.3 ... 264
STARC_VLOG 3.3.1.4 ... 265

3.3.2 Dealing with hardmacros and asynchronous circuits ... 267
STARC_VLOG 3.3.2.2 ... 267

6 of 334 Verilog HDL RTL Design Style Checks

STARC_VLOG 3.3.2.3 ... 270
3.3.3 Constraints on the use of flip-flops .. 272

STARC_VLOG 3.3.3.1 ... 272
STARC_VLOG 3.3.3.2 ... 273

3.3.5 DFT in clock lines .. 274
STARC_VLOG 3.3.5.2 ... 274
STARC_VLOG 3.3.5.3 ... 276
STARC_VLOG 3.3.5.4 ... 279
STARC_VLOG 3.3.5.5 ... 281
STARC_VLOG 3.3.5.6 ... 284
STARC_VLOG 3.3.5.7 ... 287

3.3.6 DFT in reset lines .. 290
STARC_VLOG 3.3.6.1 ... 290
STARC_VLOG 3.3.6.2 ... 292
STARC_VLOG 3.3.6.3 ... 296
STARC_VLOG 3.3.6.4 ... 298

3.3.7 Handling of different clocks .. 300
STARC_VLOG 3.3.7.2 ... 300

3.3.8 DFT for tri-state circuits ... 303
STARC_VLOG 3.3.8.1 ... 303
STARC_VLOG 3.3.8.2 ... 304
STARC_VLOG 3.3.8.3 ... 307

3.4.1 Low-power design using gated clocks .. 309
STARC_VLOG 3.4.1.1 ... 309

3.5.3 Define necessary information for file headers ... 311
STARC_VLOG 3.5.3.3 ... 311

3.5.6 Use comments often .. 316
STARC_VLOG 3.5.6.3 ... 316
STARC_VLOG 3.5.6.4 ... 319
STARC_VLOG 3.5.6.7 ... 320

Chapter 4 Verification Techniques .. 321
4.1.2 Use basic test vector descriptions ... 321

STARC_VLOG 4.1.2.3 ... 321
4.1.4 Avoid assigning from multiple initial constructs (different from VHDL) 322

STARC_VLOG 4.1.4.1 ... 322
STARC_VLOG 4.1.4.2 ... 324

4.1.8 Descriptions where results do not differ due to simulators (different from VHDL) 325
STARC_VLOG 4.1.8.1 ... 325
STARC_VLOG 4.1.8.4 ... 326

4.2.3 Pay due attention to task I/O arguments (different from VHDL) 328
STARC_VLOG 4.2.3.2 ... 328
STARC_VLOG 4.2.3.4 ... 330

Verilog HDL RTL Design Style Checks 7 of 334

Chapter 1 Basic Design
Constraints

1.1 Naming conventions

1.1.1 Basic naming conventions

STARC_VLOG 1.1.1.1
RULE NAME File names should be as follows: ”<module name>.v”.

MESSAGE

Single file should contain single topmost-level module with the same name.
DETAIL-1 Name “{TopName}” of the topmost-level module differs from the file

“{FileName}” name.
DETAIL-2 Name of the topmost-level module “{TopName}” matches to file name, but this

module is described along with another topmost-level modules. Multiple
modules can be included in a file only in case when they have a tree
hierarchical structure.

DETAIL-3 Topmost-level module “{TopName}” is detected.
DETAIL-4 Topmost-level module “{TopName}” is detected. Multiple modules can be

included in a file only in case when they have a tree hierarchical structure.

PROBLEM
DESCRIPTION

Names that make debugging more efficient should be carefully chosen. They help to understand
project structure because if different naming conventions are used by different designers, circuits
that were divided into sections by multiple designers will be difficult to understand when they are
integrated.
A single file should contain a single module, but this is unfit for a large design with many files
since it becomes difficult to handle. In this case, multiple modules can be included in a file, but
modules which have no relation to one another should not be included in the same file. A single
file should include modules which have a tree hierarchical structure. The top module name and
file name should be the same.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects all topmost-level modules between described in the translation unit hierarchy:
– if there is a single topmost-level module in the translation unit and its name differs from

the name of the file => violation (detail-2);
– if primary module is described along with another topmost-level module(s) in the

translation unit:
– if one of topmost-level modules has the same name as translation unit => violation

(detail-2 + detail-3);
– if there is no topmost-level module with the name that is equal to the translation unit

name => violation (detail-4).
Note-1: translation unit is a source file specified for compilation session (for example: alog ram.v)
and it can include another files (content of such files is considered as part of current translation
unit).
Note-2: name comparison is case sensitive.

8 of 334 Verilog HDL RTL Design Style Checks

EXAMPLE-1: [1] file name is the same as top-most module name;
[2] file contains `include directive in the global scope;
[3] included file contains definition of module with another name => violation(detail-2 + detail-3)

//file top1.v

`include “top2.v”
module top1;

...

endmodule

//file top2.v

module top2;
...

end

EXAMPLE-2: [1] file contains two modules;
[2] one module is instantiated in another => hierarchical structure presents;
[3] name of the top-most level is the same as file name => no violation.

//file top.v

module top (...);
...

ff ff (.clk(clk), .d(d), .q(q))

endmodule
module ff (clk, d, q);

...

end

Verilog HDL RTL Design Style Checks 9 of 334

Single f ile should contain single -level module w ith the same name.

Name of the topmost-level module “top1” matches to f ile name, but this
module is described along w ith another topmost-level modules.
Multiple modules can be included in a f ile only in case w hen they have
a tree hierarchical structure.

Topmost-level module “top2” is detected.

STARC_VLOG 1.1.1.2
RULE NAME

Only alphanumeric characters and the underscore ’_’ should be
used, and the first character should be a letter of the alphabet

MESSAGE-1
{ObjectClass} name “{ObjectName}” violates basic naming convention. Only
alphanumeric characters and the underscore '_' should be used, and the first
character should be a letter of the alphabet.

MESSAGE-2 {ObjectClass} name “{ObjectName}” is an escaped identifier. Try not to use
escaped identifiers in pure Verilog designs.

MESSAGE-3 {ObjectClass} name “{ObjectName}” matches forbidden pattern “{RegExp}”.
MESSAGE-4 {ObjectClass} name “{ObjectName}” does not match legal pattern “{RegExp}”.

PROBLEM
DESCRIPTION

Object identifiers must facilitate understanding the function of the underlying HDL description
especially if multiple designers work on a project. Therefore, it is recommended to use consistent
naming conventions.
In case of Verilog-HDL, any characters or keywords can be used if an escaped identifier is used.
However, it is impossible in VHDL(87) and problems may occur later in the design flow. That is
why it is not recommended to use symbols other than alphanumeric characters and the
’_’(underscore) or to use escaped identifiers.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies names of each object and provides built-in checks which activated via
DEFAULT_CHECKS parameter:

– if DEFAULT_CHECKS == “1” built-in checks are activated:
– if the name does not satisfy requirements that only alphanumeric characters and

the underscore '_' should be used, and the first character is a letter and it is not an
escaped identifier => violation (message-1);

– if the name is an escaped identifier => violation (message-2);
– if DEFAULT_CHECKS == “0” built-in checks are not performed.

Checker provides also mechanism for regular expression-based checking:
– if REGEXP_MATCH == “deny” and object name matches forbidden pattern => violation

(message-3);
– if REGEXP_MATCH == “allow” and object name does not match legal pattern =>

violation (message-4).
Note-1: if an escaped identifier is a simple identifier and is not a Verilog keyword => no violation.
Note-2: following parameters are supported by the checker:

– parameter DEFAULT_CHECKS defines whether to perform standard checks: “1” means
yes (default), “0” means no;

– parameter REGEXP_MATCH controls custom regular expressions checking:
– “deny” - warnings are issued on matched identifiers;
– “allow” - warnings are on unmatched identifiers;
– empty string (“”) - do not perform regular expression matching (default);

– REGEXP defines the regular expression for matching against identifiers;
– REGEXP_CASE_SENSITIVE controls the mode of regular expression matching:

– “1” - case sensitivity (default);
– “0” - case insensitivity.

Note-3: {ObjectClass} is defined by the following table:

Verilog construction {ObjectClass}

module module

cell (module marked with `celldefine directive) cell

10 of 334 Verilog HDL RTL Design Style Checks

RULE NAME
Only alphanumeric characters and the underscore ’_’ should be
used, and the first character should be a letter of the alphabet

Verilog construction {ObjectClass}

module port (input/output/inout) port

signal (reg or net of any type, including
implicitly declared wires)

signal

parameter parameter

task task

function function

task or function port port

`define MACRO macro_value defined macro

named block block

module instantiation instance

concatenation concatenation

constant expression constant expression

non-constant expression expression

EXAMPLE-1: [1] module name does not satisfy described condition => violation (message-1)

module 1top$;
...

endmodule

EXAMPLE-2: [1] parameter name is an escaped identifier => violation (message-2)

parameter [8:0] \~!@#$%^&:-);

EXAMPLE-3: [1] parameter name is an escaped identifier that does not contain prohibited symbols but is
Verilog-HDL keyword => violation (message-2)

reg \reg ;

EXAMPLE-4: [1] parameter name is an escaped identifier but it is a simple identifier => no violation

wire [1:0] \non_esc_name ;

EXAMPLE-5: [1] parameter REGEXP_MATCH == “deny”;
[2] parameter REGEXP = “^denied”;
[3] signal name matches forbidden pattern => violation (message-3).

reg denied_name;

Verilog HDL RTL Design Style Checks 11 of 334

Parameter name “\~!@#$%^&:-)” is an escaped identif ier. Try not to
use escaped identif iers in pure Verilog designs.

Parameter name “\reg” is an escaped identif ier. Try not to use
escaped identif iers in pure Verilog designs.

Module name "_top$" violates basic naming convention. Only alphanumeric
characters and the underscore '_' should be used, and the f irst character
should be a letter of the alphabet.

Signal name “denied_name” matches forbidden pattern “^denied”.

STARC_VLOG 1.1.1.3
RULE NAME

Only alphanumeric characters and the underscore ’_’ should be
used, and the first character should be a letter of the alphabet

MESSAGE-1 {ObjectClass} name "{ObjectName}" violates basic naming convention. Name
belongs to keywords category "{CategoryName}".

MESSAGE-2 {ObjectClass} name "{ObjectName}" violates basic naming convention. Lower-
case version of the name corresponds to Verilog-HDL keyword "{Keyword}".

PROBLEM
DESCRIPTION

Object identifiers must facilitate understanding the function of the underlying HDL description.
Verilog is a case sensitive language. Consequently, the designer is allowed to use reserved
language identifiers for object names that differ only by letter case: e.g., INPUT, Reg. However,
this is not recommended because it could lead to confusion.
Moreover, in addition to Verilog-keywords, VHDL and software keywords should not be used
(problems may occur later in the design flow). There are no particular problems with EDIF, SDF
and Windows keywords, but for safety they should also be avoided in descriptions.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies that name of each object does not belong to one of the restricted sets of
keywords:

– if name belongs to Verilog set (built-in) => violation (message-2)
– if name belongs to VHDL/EDIF/SDF/Windows set => violation (message-1)

Note-1: sets of keywords are defined in the configuration file:
– additional sets can be defined, for example:

– KEYWORD_CATEGORIES = ["EDIF", "SDF", "Windows", "PSL",
"SYSTEM_VERILOG"]

– each set (except built-in Verilog) can be extended with any keywords necessary for the
target design (using configuration file), for example:
– KEYWORD_LIST_WINDOWS = ["CON", "AUX", "COM1", "COM2", ...]

Note-2: see rule 1.1.1.2 for {ObjectClass} substitution table

EXAMPLE-1: [1] module name belongs to Verilog-keywords category => violation (message-2)

module Task;
...

endmodule

EXAMPLE-2: [1] wire name belongs to Windows-keywords category => violation (message-1)

wire [8:0] COM1;

12 of 334 Verilog HDL RTL Design Style Checks

Module name "Task" violates basic naming convention. Low er-case
version of the name corresponds to Verilog-HDL keyw ord "task".

Signal name "COM1" violates basic naming convention. Name belongs
to keyw ords category "Window s".

STARC_VLOG 1.1.1.4
RULE NAME

Names containing "VDD ", "VSS", "VCC", "GND" or "VREF" must
not be used (upper case or lower case or mixed case)

MESSAGE {ObjectClass} name "{ObjectName}" violates basic naming convention. It
contains erroneous part(s): {list_of_violated_name_fragments}.

PROBLEM
DESCRIPTION

Names containing "VDD", "VSS", "VCC", "GND", "VREF" must not be used (uppercase or
lowercase).

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies object names:
– if there is any fragment from the restricted set => violation

Matching algorithm is case-insensitive.
Note-1: set of fragments is configurable
Note-2: see rule 1.1.1.2 for {ObjectClass} substitution table

EXAMPLE-1: [1] register name is equal to the restricted fragment "GND" => violation

reg GND;

EXAMPLE-2: [1] wire name includes restricted fragment "VCC" => violation

wire NetToVcc;

EXAMPLE-3: [1] port name includes two restricted fragments: "VREF" and "VSS" => violation
[2] note: "VREF" is specified twice, but displayed once in the violation message

input VREF_vss2Vref;

Verilog HDL RTL Design Style Checks 13 of 334

Signal name "GND" violates basic naming convention. It contains
erroneous part(s): ["GND"]

Signal name "NetToVcc" violates basic naming convention. It contains
erroneous part(s): ["VCC"]

Port name "VREF_vss2Vref" violates basic naming convention. It
contains erroneous part(s): ["VREF", "VSS"]

STARC_VLOG 1.1.1.5
RULE NAME

Do not distinguish names by using upper or lower case English
letters (Abc, abc)

MESSAGE-1

{ObjectClass} name “{ObjectName}” has duplicates which differ only by letter
case. Such naming style should be avoided.

DETAIL {ObjectClass} name “{ObjectName}” differs only by letter case.

MESSAGE-2

{ObjectClass} name “{ObjectName}” has duplicates. Avoid naming different
objects with the same identifier.

DETAIL Duplicate identifier: {ObjectClass} name “{ObjectName}”.

PROBLEM
DESCRIPTION

Semiconductor naming conventions often limit the usage of upper case or lower case letters.
Such naming modifications may alter some of the names distinguished only by letter case quite
significantly and post-layout verifications becomes very difficult to understand. So all names
should not be distinguished only by the cases of the letters used (e.g. abc vs. ABC).

LEVEL RULE

CHECKER
BEHAVIOR

Checker search in each scope and all upper scopes for:
– all identifiers differ only by case of the letters => violation (message-1)
– all equal identifiers => violation (message-2)

Note-1: if any identifiers are in parallel scopes => no rule violation.
Note-2: details messages are produced for all duplications or differs only by letter case identifiers.
Note-3: see 1.1.1.2 for {ObjectClass} description.

EXAMPLE-1: [1] module name differs only by letter case from task declared in this module i.e. in sub-scope =>
violation (message-1);
[2] the same module name is equal to the name of signal declared in one of lower level of scope
hierarchy => violation (message-2);
[3] name of the first module is equal to the name of signal declared in another module (top2), i.e.
in parallel scope => no violation.

module top1;

 ...
 task Res;
 ...
 begin : block1

 reg top1;
 ...
 end
 endtask

 task Top1;
 ...
 endtask

 ...
endmodule
module top2 (in1, out1);
 ...
 reg top1;
 ...

endmodule

14 of 334 Verilog HDL RTL Design Style Checks

Task name “Top1” dif fers only by letter case.

Module name “top1” has duplicates w hich dif fer only by letter case. Such
naming style should be avoided.

Module name “top1” has duplicates. Avoid naming dif ferent objects w ith the
same identif ier.

Duplicate identif ier: Signal name “top1”.

STARC_VLOG 1.1.1.6
RULE NAME

Do not use an '_'(underscore) at the end of the primary port name
or module name , and do not use '_' consecutively

MESSAGE {ObjectClass} name “{ObjectName}” ends with underscore('_') or contains
consecutive underscores.

PROBLEM
DESCRIPTION

In VHDL there is a convention which states that the final character must not be underscore (’_’).
Also this character is sometimes used in gate level verification by VITAL. So it is recommended
to avoid using underscore at the end of modules and primary port names to avoid problems in
mixed-language projects.
When two or more underscores are used consecutively it is often difficult to define exact number
of underscore characters. Such situation may lead to identifiers mismatching so it is
recommended to avoid it too.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker collects identifiers of all modules and primary ports.
– if identifier ends with underscore or contain two and more underscores consecutively =>

violation
Note-1: see 1.1.1.2 for {ObjectClass} description.

EXAMPLE-1: [1] module name ends with underscore => violation;
[2] name of primary port contains two underscores consecutively => violation

module top_ (in__1);
...

endmodule

EXAMPLE-2: [1] module name contain only one underscore character => no violation;
[2] identifier contain two underscores consecutively, but parameter is not included in list of
checking object => no violation;
[3] Input of task violates current restrictions for identifiers, but it is not primary port => no violation.

module to_p;

...
parameter para___m = 1'b0;
...

task task1;

input in__1;
...

endtask
...

endmodule

Verilog HDL RTL Design Style Checks 15 of 334

Port name “in__1” ends w ith underscore('_') or contains consecutive
underscores.

Module name “top_” ends w ith underscore('_') or contains consecutive
underscores.

STARC_VLOG 1.1.1.7

RULE NAME
Add an identifying symbol at the end of the name so the polarity of
negative logic signals is clearly identified (”_X” , ”_N”, for
example).

MESSAGE-1

Declaration of control signal “{SignalName}” intends it to be used as {LogicType}
logic signal, but both polarities are used.

DETAIL Signal is used as {LogicType} logic.

MESSAGE-2
Active low control signal “{SignalName}” violates basic naming convention. Add
an identifying symbol (”_X” or ”_N”) at the end of the name so the polarity of
negative logic signals is clearly identified.

MESSAGE-3
Active high control signal “{SignalName}” violates basic naming convention.
Identifying symbol (”_X” or ”_N”) should be added only at the end of the negative
logic signal name to identify its polarity clearly.

PROBLEM
DESCRIPTION

To make design easier to understand add an identifying symbol (”_X”, ”_N”, for example) at the
end of negative logic signals (suffix). If an identifier is added at the beginning of signal name
(prefix), like ”X_”, it becomes difficult to distinguish it from identifiers of hierarchies or identifiers of
delimiting function. Therefore, to identify negative logic signals, delimit with ”_”(underscore) at the
end followed by identifying characters such as ’X’ or ’N’. If adding an identifier of clock system at
the end, an identifier of negative logic signal can be used just before it, for example:
“SIG_X_CLK1”.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker verifies control signals:
– actual polarity (AP) of each control signal X is detected:

– for clock signals AP is detected by sensitivity list;
– for other controls (asynchronous/synchronous reset, set and enable) AP is detected

by conditional branch;
– detect the intended polarity (IP) from the control signal declaration (by the regular

expression “\w+_[NX](\w+)?“)
– if AP is not the same in all usage cases:

– if parameter CHECK_MIXED_EDGE_SIGNALS == “1”
– if AP != IP => violation (message-1 + detail per each improper usage)

– else if AP is the same for all usage cases:
– if IP is positive and AP != IP => violation (message-2)
– if IP is negative and AP != IP => violation (message-3)

Note: parameter CHECK_MIXED_EDGE_SIGNALS defines whether to check signals both
polarities of which are used: "1" means yes, "0" means no (default value is “0”).

EXAMPLE-1: [1] clock signal – AP = positive, IP = positive => no violation;
[2] asynchronous reset signal – AP(detected by conditional branch) = negative, IP = positive =>
violation (message-2);
[3] synchronous set signal – AP(detected by conditional branch) = negative, IP = positive =>
violation (message-3).

module ff (clk,rst,set_n,d,q);
input clk
input rst;
input set_n;
input d;
output reg q;

16 of 334 Verilog HDL RTL Design Style Checks

Active low control signal “rst” violates basic naming convention. Add
an identifying symbol (”_X” or ”_N”) at the end of the name so the
polarity of negative logic signals is clearly identif ied.

Active high control signal “set_n” violates basic naming convention.
Identifying symbol (”_X” or ”_N”) should be added only at the end of
the negative logic signal name to identify its polarity clearly.

always @(posedge clk, negedge rst)
if (!rst)

q <= 1'b0;
else if (set_n)

q <= 1'b1;
else

q <= d;
endmodule

EXAMPLE-2: [1] clock signal – IP = positive;
[2] the signal is used in different processes with different polarity;
[3] parameter CHECK_MIXED_EDGE_SIGNALS value is set to “1” => violation(message-1).

module ff (clk,d1,d2,q1,q2);
input clk;
input d1,d2;
output reg q1,q2;
always @(posedge clk)

q1 <= d1;

always @(*)
if (!clk)

q2 = d2;
endmodule

Verilog HDL RTL Design Style Checks 17 of 334

Declaration of control signal “clk” intends it to be used as positive logic
signal, but both polarities are used.

 Signal is used as positive logic.

 Signal is used as negative logic.

STARC_VLOG 1.1.1.8

RULE NAME
Instance names should basically be the module names. Instance
names that are used more than once should be ”<module
name>_<quantity>”.

MESSAGE-1

Instance names should be based on the module name or <module_quantity> if
multiple instances exist.
DETAIL-1 Instance name “{InstanceName}” does not correspond to module name

“{ModuleName}”.
DETAIL-2 Module “{ModuleName}” is instantiated multiple times but instantiation names

do not correspond to <module_quantity> template.

MESSAGE-2

Instance names within 'generate' statement should be based on the module name
or <module_quantity> if multiple instances exist.
DETAIL-1 Instance name “{InstanceName}” does not correspond to module name

“{ModuleName}”.
DETAIL-2 Module “{ModuleName}” is instantiated multiple times but instantiation names

do not correspond to <module_quantity> template.

PROBLEM
DESCRIPTION

Instance names should be based on the module name. If multiple instances exist name them in
such a way: ”<module name>_<quantity>”. Giving meaningful names to instances makes a
design hierarchy description clearly structured and facilitate understanding the project.
If an instance name that does not conform to this naming convention is used, explicitly describe it
in the document.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans modules and checks module instantiation statements:
– for modules that are instantiated only once:

– if instantiation name differs from the following format: ModuleName => violation
(detail-1);

– for modules that are instantiated more than once:
– if instantiation name differs from the following format:

ModuleName_IntegerNumber => violation (detail-2).
Note-1: main message is defined by the context of instantiations:

– within global scope of currently scanned module => message-1;
– within 'generate' block => message-2.

Note-2: instantiation names of built-in primitives are not considered.
Note-3: UDP and arrays of instances are checked under common conditions (array is checked as
a single instance).

EXAMPLE-1: [1] module is instantiated only once;
[2] instantiation name differs from the module name => violation (message-1 + detail-1).

module top;
...

latch latch_inst (...);

...

endmodule

18 of 334 Verilog HDL RTL Design Style Checks

Instance name “latch_inst” does not correspond to module name “latch”.

Instance names should be based on the module name or <module_quantity>
if multiple instances exist.

EXAMPLE-2: [1] module is instantiated two times;
[2] instantiation names differ from the format: ModuleName_IntegerNumber => violation
(message-1 + detail-2).

module top;
...

ff ff_inst1 (...);
ff ff_inst2 (...);

...

endmodule

EXAMPLE-3: [1] module is instantiated within 'generate' statement;
[2] instantiation names differ from the module name => violation (message-2 + detail-1).

generate for (i = 0; i < 8; i = i + 1)
begin: gen_ff

ff ff_inst (...);

end

Verilog HDL RTL Design Style Checks 19 of 334

Instance names should be based on the module name or <module_quantity>
if multiple instances exist.

Module “f f ” is instantiated multiple times but instantiation names do not
correspond to <module_quantity> template.

Instance names w ithin 'generate' statement should be based on the module
name or <module_quantity> if multiple instances exist.

Instance name “f f ” does not correspond to module name “latch”.

STARC_VLOG 1.1.1.9

RULE NAME
At the top level, module names and port names should consist of
16 or fewer characters and should not be distinguished by upper or
lower case alphabet letters

MESSAGE-1
{ObjectClass} name "{ObjectName}" has {NameLength} characters. Length of top
level module and port names should be 16 or fewer characters to use design as
the IP core.

MESSAGE-2
Name "{ObjectName}" of top level module violates basic naming convention. It
should consist only of alphabetical letters and numbers to use design as the IP
core.

MESSAGE-3
{ObjectClass} name "{ObjectName}" violates basic naming convention. Top level
module and port names should use only upper case or lower case to support
systems that are not case sensitive.

MESSAGE-4
Name "{ObjectName}" of top level port violates basic naming convention. It
should consist only of alphabetical letters, numbers and underscores to use
design as the IP core.

MESSAGE-5
Top level port name "{ObjectName}" violates basic naming convention.
Underscores should not be used consecutively and at the beginning/ending of
the port name to use design as the IP core.

PROBLEM
DESCRIPTION

In order to use design as an IP core, set of following rules should be considered when describing
top-level unit:

– module name should use only alphabetical letters or numbers and be 16 or fewer
characters in length

– port names should use only alphabetical letters, numbers and underscores (it is
prohibited to use underscores at the beginning/ending of the name or to use them
consecutively)

– to support case-insensitive systems, module and port names should consist of
upper/lower case only (cases should not be mixed)

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker verifies each module specified as top-level for elaboration. Object names are checked in
the following order:

– module name:
– if length is greater than 16 => violation (message-1)
– else if non-alphabetical letters or underscores are used => violation (message-2)
– else if letter cases are mixed => violation (message-3)

– each port name:
– if length is greater than 16 => violation (message-1)
– else if non-alphabetical letters, numbers or underscores are used => violation

(message-4)
– else if underscores specified at the beginning/end or used consecutively =>

violation (message-5)
– else if letter cases are mixed => violation (message-3)

EXAMPLE-1: [1] module name contains a digit => violation (message-2);
[2] port name contains consecutive underscores => violation (message-5);

20 of 334 Verilog HDL RTL Design Style Checks

module top3(SAMPLE__CLK, ...);
...

endmodule

EXAMPLE-2: [1] module name contains letters having different cases => violation (message-3);
[2] port name has more than 16 characters in length => violation (message-1);
[3] note: port name also contains underscore at the beginning, but no violation is displayed for it
(checker consecutively verifies constraints and if the previous one is broken, the next one is not
checked);

module TopLevel(_serial_argument_ input);
...

endmodule

Verilog HDL RTL Design Style Checks 21 of 334

Name "top3" of top level module violates basic naming convention. It should
consist only of alphabetical letters and numbers to use design as the IP core.

Top level port name "SAMPLE__CLK" violates basic naming convention.
Underscores should not be used consecutively and at the beginning/ending
of the port name to use design as the IP core.

Module name "TopLevel" violates basic naming convention. Top level
module and port names should use only upper case or low er case to
support systems that are not case sensitive.

Port name "_serial_argument_input" has 22 characters. Length of top
level module and port names should be 16 or few er characters to use
design as the IP core.

STARC_VLOG 1.1.1.10
RULE NAME

Do not use the same instance name or cell name as the ASIC library
being used

MESSAGE-1 {ObjectClass} name "{ObjectName}" violates basic naming convention. Name
corresponds to library name "{LibraryName}".

MESSAGE-2 {ObjectClass} name "{ObjectName}" violates basic naming convention. Name
corresponds to attached library "{LibraryName}".

PROBLEM
DESCRIPTION

Naming conventions are specified by the used semiconductor technology flow. These limitations
can be quite different depending on the vendor, but there are two common requirements: names
of instances and cells should not correspond to the name of ASIC library being used. Also, it is
required to avoid names that are the same as libraries used by the simulator.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies the name of each instance or cell:
– if it corresponds to the name of the ASIC library being used => violation (message-1)

– list of ASIC libraries is configurable through configuration file parameter LIB_LIST
("GTECH", "LVT", "HVT" – by default)

– if it corresponds to the name of attached library => violation (message-2)
– attached libraries are specified with the "l" switch (for example, "vlog test.v -l STD

-alint" invokes checking of the source file "test.v" with attached library "STD")
Note: cell is a module marked with a pair of directives `celldefine - `endcelldefine
Note: letter cases are ignored

EXAMPLE-1: [1] the name of the instance corresponds to the ASIC library "GTECH" => violation (message-1)

FPU_UNIT Gtech(.SEL(SEL), ...);

EXAMPLE-2: [1] name of the cell corresponds to the attached library "STD" ("-l STD" is specified for compilation)
=> violation (message-2)

`celldefine
module std(...);

...
endmodule

`endcelldefine

22 of 334 Verilog HDL RTL Design Style Checks

Instance name "Gtech" violates basic naming convention. Name
corresponds to library name "GTECH".

Cell name "std" violates basic naming convention. Name corresponds
to library name "STD".

1.1.2 Naming conventions of circuit and port names should be
considered by the hierarchy

STARC_VLOG 1.1.2.1
RULE NAME

Module names and instance names should be between 2 and 32
characters in length

MESSAGE-1
{ObjectClass} name “{ObjectName}” has {NameLength} characters. Module
names and instance names should be between {MIN_LENGTH} and
{MAX_LENGTH} characters in length.

PROBLEM
DESCRIPTION

Logic synthesis tools may change module or instance names if they exceed 32 characters. Also
there are ASIC vendors limitations which states allowable length between 2 and 32 characters for
such identifiers. According to the constraints, module and instance names should be between 2
and 32 characters in length.

LEVEL RULE

MESSAGE-2 {ObjectClass} name “{ObjectName}” has {NameLength} characters. A length of
{MAX_LENGTH_RECOMMEND} or fewer characters is recommended.

PROBLEM
DESCRIPTION

Long instance names decrease readability when objects (signals, functions etc.) from lower
levels of hierarchy are used. Instance names of 16 or fewer characters is recommended.

LEVEL RECOMMENDED 2

MESSAGE-3 {ObjectClass} name “{ObjectName}” has {NameLength} characters. Instance
names with hierarchy should be less than {MAX_LENGTH_HIER} characters.

PROBLEM
DESCRIPTION

A hierarchy may be flattened by some tool which is used at later stages. It leads to difficulties if
instance names are long and hierarchy is deep. Therefore, it is recommended that an instance
names including module hierarchy should be 128 or fewer characters.

LEVEL RECOMMENDED 3

CHECKER
BEHAVIOR

1) Checker verifies all module and instance names
– if length is less than MIN_LENGTH or greater than MAX_LENGTH characters =>

violation (message-1).
1) Checker verifies all instance names

– if length is greater than MAX_LENGTH_RECOMMEND characters => violation
(message-2).

3) Checker verifies all hierarchical instance names (identifiers connected via hierarchy separator)
– if accumulated hierarchical identifier length is greater than MAX_LENGTH_HIER

characters => violation (message-3).
Note-1: values of parameters MIN_LENGTH, MAX_LENGTH, MAX_LENGTH_RECOMMEND,
MAX_LENGTH_HIER are defined in configuration file.
Note-2: see 1.1.1.2 for {ObjectClass} description.

EXAMPLE-1: [1] module name is only one character in length (shorter than MIN_LENGTH) => violation
(message-1);
[2] instance name longer then recommended length => violation (message-2)

module t;
...
submod too_long_instance_name(...);

...
endmodule

Verilog HDL RTL Design Style Checks 23 of 334

Module name “t” has 1 characters. Module names and instance names should
be betw een 2 and 32 characters in length.

Instance name “too_long_instance_name” has 22. characters. A length of 16
or few er characters is recommended.

EXAMPLE-2: [1] instance name is longer than MAX_LENGTH => violation (message-1);
[2] note: only one message is produced.

module top;
...
submod very_long_and_unreadable_instance_name(...);

...
endmodule

24 of 334 Verilog HDL RTL Design Style Checks

Instance name “very_long_and_unreadable_instance_name” has 38
characters. Module names and instance names should be betw een 2 and 32
characters in length.

Instance name “very_long_and_unreadable_instance_name” has 38
characters. A length of 16 or few er characters is recommended.

STARC_VLOG 1.1.2.2
RULE NAME

Output port names and the connected net names should be the
same

MESSAGE

There is name inconsistency between port(s) and connected net(s) in the module
instantiation statement. Net name of the upper level to which a port name is
connected should be the same.

DETAIL Net name "{SignalName}" differs from the port name "{PortName}".

PROBLEM
DESCRIPTION

It is best that the net name of the upper level to which an output signal name is connected and
the input signal name are the same. The output signal name is used for an input signal name
even when the output signal is input to multiple blocks. Such naming conventions makes it easier
to trace signal values because output signals are more important for debugging purposes.
When using multiple instances of the same module hierarchy identification characters should be
added to the net names.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects module instances on each level of project hierarchy:
– if module is instantiated two and more times on the same level instantiation statements

of the module are not checked
– for modules instantiated only once every port name and connected net name are

checked
– if the names are different => violation

Note-1: both ordered and named port connection types are checked
Note-2: expressions on port map are ignored

EXAMPLE-1: [1] module mod1 instantiation statement contains net name which differs from port name (ordered
port connection is used, one port is unconnected but it is allowed) => violation;
[2] module mod2 instantiation statement contains net name which differs from port name (named
and implicit port connection is used) => violation;
[3] module mod3 instantiation statement contains net name which differs from port name, but the
module is instantiated more then once => no violation;

module mod1 (in1, in2, out1, out2);
 ...
endmodule
module mod2 (a, b ,c);
 ...
endmodule
module mod3 (x, y);
 ...
endmodule

module top;
 ...
 mod1 inst1 (in, in2, out1,);
 mod2 inst2 (.a(out1), .*);
 mod3 inst3 (.x(xxx), .y(y));
 mod3 inst4 (.*);
endmodule

Verilog HDL RTL Design Style Checks 25 of 334

There is name inconsistency betw een port(s) and connected net(s) in
the module instantiation statement. Net name of the upper level to
w hich a port name is connected should be the same.

Net name "in" dif fers f rom the port name "in1".

There is name inconsistency betw een port(s) and connected net(s) in
the module instantiation statement. Net name of the upper level to
w hich a port name is connected should be the same.

Net name "in" dif fers f rom the port name "in1".

1.1.3 Give meaningful names for signals

STARC_VLOG 1.1.3.1
RULE NAME

Signal names, port names, parameter names, `define names and
function names should be between 2 and 40 characters in length

MESSAGE-1 {ObjectClass} name “{ObjectName}” has {NameLength} characters. It should be
between {MIN_LENGTH} and {MAX_LENGTH} characters in length.

PROBLEM
DESCRIPTION

The number of characters in signal names, port names, parameter names and function names is
recommended to be between 2 and 40 to make project code easy to read and understand.

LEVEL MANDATORY

MESSAGE-2 {ObjectClass} name “{ObjectName}” has {NameLength} characters. The length of
{MAX_LENGTH_RECOMMEND} or fewer characters is recommended.

PROBLEM
DESCRIPTION

A tool used at a later stage might convert a signal name which is too long. Although a long signal
name is more understandable than a short one, an overly long name makes it unreadable.
Therefore, the recommended basis for signal name is up to 24 characters in length.

LEVEL RECOMMEND 2

CHECKER
BEHAVIOR

1) Checker verifies signal, port, parameter, function names
– if length is less than MIN_LENGTH or greater than MAX_LENGTH characters =>

violation (message-1)
2) Checker verifies signal and port names

– if length is greater than MAX_LENGTH_RECOMMEND characters => violation
(message-2)

Note-1: values of parameters MIN_LENGTH, MAX_LENGTH, MAX_LENGTH_RECOMMEND
are defined in configuration file.
Note-2: for signal or port name only one message (message-1 or message-2) is produced.
Note-3: see 1.1.1.2 for {ObjectClass} description

EXAMPLE-1: [1] parameter name is shorter than MIN_LENGTH => violation (message-1).

parameter p;

EXAMPLE-2: [1] port name is longer than recommended => violation (message-2);
[2] signal name is longer than MAX_LENGTH => violation (message 1).

module top (difficult_to_read_such_port_name);
...

reg very_difficult_to_read_so_long_signal_name;

...
endmodule

26 of 334 Verilog HDL RTL Design Style Checks

Parameter name “p” has 1 characters. It should be betw een 2 and 40
characters in length.

Signal name “very_dif f icult_to_read_so_long_signal_name” has 42
characters. It should be betw een 2 and 40 characters in length.

Port name “dif f icult_to_read_such_port_name” has 32 characters. The length
of 24 or few er characters is recommended.

Port name “very_dif f icult_to_read_so_long_signal_name” has 42 characters.
The length of 24 or few er characters is recommended.

1.1.4 Naming conventions of include file, parameter and `define
(different from VHDL)

STARC_VLOG 1.1.4.1
RULE NAME Do not use parameters with the same name for different modules

MESSAGE

Module “{ModuleName}” has “{ParamName}” parameter, which name is equal to
parameter(s) declared in module(s) from other hierarchy(ies). Current description
may lead to confusion with duplicated parameters, because it is recommended to
put data to be used as parameters into `include files to make it easy to change
parameter values.

DETAIL-1 Module “{ModuleName}” has parameter with the same name
“{ParamName}”.

DETAIL-2 Instance “{InstanceName}” of module “{ModuleName}”.

PROBLEM
DESCRIPTION

Whenever possible, data to be used as parameters should be put into include files, thus making it
easy to change parameter values. But care should be taken with parameter names to avoid
confusing when including file with parameters declarations. Distinguish parameters used for the
overall design from parameters used only under particular hierarchies, and place each one into a
separate include file.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker verifies modules from the library:
– if there are modules in the design that contain parameter declarations with equal names:

– for each hierarchy level (hierarchy begins from top-level – in other words, multiple
hierarchies are possible in case of multiple top-levels in the design) and parameter
name:
– if parameter with the same name exists in any instance (of another module)

that is neither a child, nor a parent of the analyzed instance => violation
example #1: parameters with same name in modules from different levels of
parallel hierarchies, bur upper level module also has parameter with the name
=> no violation

– example #2: parameters with same name in modules from 2nd levels in one of
parallel hierarchies and from both levels of other, there are no common upper
level module which also has parameter with the name => violation

Verilog HDL RTL Design Style Checks 27 of 334

P1

P1

P1

parallel
hierarchy

parallel
hierarchy

hierarchy
levels

1

2

3

RULE NAME Do not use parameters with the same name for different modules

Note: displaying of detail message #2 is controlled by “DISPLAY_INSTANCES” rule parameter.
“0” means “do not display”, “1” means “display” (default value is “0”).

EXAMPLE-1: [1] consider structure described at the picture below;
[2] parameters with same names declared within two modules;
[3] the modules instantiated at the same hierarchy level = > violation.
Note: parameter DISPLAY_INSTANCES value is set to “1” => detail messages 2 are displayed.

//top module declaration
module top (...);

...

mod1 inst1 (...);
mod1 inst2 (...);
mod2 mod2 (...);

endmodule
//sub-modules declaration
module mod1(...);

parameter p1 = 32;
...

endmodule
module mod2(...);

parameter p1 = 8;
...

endmodule

28 of 334 Verilog HDL RTL Design Style Checks

Instance “top”. Module “mod1” has “p1” parameter, w hich name is
equal to parameter(s) declared in module(s) f rom other hierarchy(ies).
Current description may lead to confusion w ith duplicated parameters,
because it is recommended to put data to be used as parameters into
`include f iles to make it easy to change parameter values.

P1 P1

parallel
hierarchy

parallel
hierarchy

hierarchy
levels

1

2

3

Instance “top.inst1” of module “mod1”.

Instance “top.inst2” of module “mod1”.

Module “mod2” has parameter w ith the same name “p1”.

Instance “top.mod2” of module “mod2”.

top

inst1 mod2

hierarchy
levels

1

2 inst2

EXAMPLE-2: [1] consider structure described at the picture below;
[2] parameters with same names declared within both top-level module and instantiated modules
=> no violation.

//first top module declaration
module top1 (...);

parameter p1 = 2;
...

mod1 mod1 (...);
mod2 mod2 (...);

endmodule
//sub-modules declaration
module mod1(...);

parameter p1 = 32;
...

endmodule
module mod2(...);

parameter p1 = 8;
...

endmodule

EXAMPLE-3: [1] consider structure described at the picture below;
[2] parameters with same names declared within two modules;
[3] the modules instantiated at the same hierarchy level, but to different top-level modules (belongs
to different hierarchies scanned separately) => no violation.

//first top module declaration
module top1 (...);

...

mod1 mod1 (...);

endmodule

Verilog HDL RTL Design Style Checks 29 of 334

top1

mod1

hierarchy
levels

1

2 mod2

top1

mod1

hierarchy
levels

1

2

top2

mod2

//second top module declaration
module top2 (...);

...

mod2 mod2 (...);

endmodule
//sub-modules declaration
module mod1(...);

parameter p1 = 32;
...

endmodule
module mod2(...);

parameter p1 = 8;
...

endmodule

30 of 334 Verilog HDL RTL Design Style Checks

STARC_VLOG 1.1.4.2
RULE NAME

Use `define definitions declared in the same module only (Verilog
only)

MESSAGE

Macro "{MacroID}" is used in module "{ModuleName}" {UsageCount} time(s). Use
`define definitions declared only in the current module to enable separate
generation of each module by the logic synthesis tool.

DETAIL Global macro used

PROBLEM
DESCRIPTION

It is recommended not to use macro defined with `define directive on the global position or
defined in other modules. When globally defined macro is used, generation of logic circuit for
each module separately becomes impossible.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker verifies each 'text_macro_id' statement:
– if it is not defined in the current module => violation

Note-1: to be defined in the current module means to be defined after the 'module' keyword
Note-2: 'text_macro_id' statement refers to the definition created with the `define directive

EXAMPLE-1: [1] module accesses macro "LENGTH" is not defined in the current module => violation

`define LENGTH 8
module tb;

wire[`LENGTH - 1: 0]
...

endmodule

EXAMPLE-2: [1] module accesses macro "COMB" defined outside the module => violation (message-2,
because it is defined in the included file "defines.h")

`include "defines.h"
module dev8(...);

`ifdef COMB
...
`ifdef COMB

`endif
...

endmodule

EXAMPLE-3: [1] module accesses macro "COMB" defined in the included file "defines.h" => no violation
("defines.h" is included locally)

module dev8(...);
`include "defines.h"
...
`ifdef COMB

...
`ifdef COMB

`endif
...

endmodule

EXAMPLE-4: [1] module accesses macro "COMB" that is not defined in current file (neither globally nor
included) => no violation

Verilog HDL RTL Design Style Checks 31 of 334

Macro "LENGTH" is used in module "tb" 1 time(s). Use `def ine
def initions declared only in the current module to enable separate
generation of each module by the logic synthesis tool.

Global macro used

Global macro used

Macro "COMB" is used in module "dev8" 2 time(s). Use `def ine
def initions declared only in the current module to enable separate
generation of each module by the logic synthesis tool.

module dev8(...);
`ifdef COMB

...
`endif

endmodule

32 of 334 Verilog HDL RTL Design Style Checks

STARC_VLOG 1.1.4.3
RULE NAME Fixed values should not be connected directly to output ports

MESSAGE-1 Constant is directly connected to output port "{ObjectName}". It may cause
problems during logic equivalence checks.

PROBLEM
DESCRIPTION

Fixed values should not be connected directly to output ports. After synthesis optimization is
applied from the upper levels of the hierarchy, ports that are directly connected to fixed values
can become unconnected. Such situation causes problems during the logic equivalence checks.

LEVEL RECOMMENDATION 1

MESSAGE-2

Constant is assigned to {PortCount} port(s) of lower layer module
"{ModuleName}". Some redundant logic may remain after applying synthesis
optimization.

DETAIL-1 Constant is assigned to instance port

PROBLEM
DESCRIPTION

When fixed values are connected to ports of lower hierarchy level, another problem tends to
occur there. Some redundant logic might remain after applying of the synthesis optimization =>
gate count will be increased.

LEVEL REFERENCE

CHECKER
BEHAVIOR

1) Checker scans output/inout port drivers (continuous and procedural assignment statements) in
synthesizable context:

– if constant/parameter is assigned => violation (message-1)
2) Checker verifies list of port connections in the module instantiation statements:

– if constant/parameter is connected to the input port => violation (message-2)

EXAMPLE-1: [1] 'assign' statement connects constant to output port => violation (message-1);
[2] note: constant is member of concatenation;

output [1:0] TRAN_A;
...
reg SAMPLE;
...
assign TRAN_A = { 1'b0, SAMPLE };

EXAMPLE-2: [1] parameter is connected to the input port of the component => violation (message-2);

module circ(input [1:0] SAMPLE, output AL);
...

endmodule
...
module top;

parameter [1:0] STOP_B;
...

circ CIRC_8t(.SAMPLE(STOP_B), .AL(...))
...

endmodule

Verilog HDL RTL Design Style Checks 33 of 334

Constant is directly connected to output port "TRAN_A[1]". It may
cause problems during logic equivalence checks.

Constant is assigned to 1 port(s) of low er layer module "circ". Some
redundant logic may remain af ter applying synthesis optimization.

Constant is assigned to instance port

STARC_VLOG 1.1.4.4
RULE NAME

Clarify <value>'b, 'h, 'd, 'o specification for parameters (Verilog
only)

MESSAGE-1 Parameter "{ObjectName}" is initialized with value "{ParamValue}" without base
specifier. Describe 'b, 'h, 'd or 'o clearly when initializing a parameter.

MESSAGE-2

Parameter "{ObjectName}" is initialized with expression which contains
{IllegalConstCount} constant(s) without base specifier. Describe 'b, 'h, 'd or 'o
clearly when using constants for parameter initialization.

DETAIL-1 Base is not specified for constant "{ConstValue}"

MESSAGE-3 Parameter is initialized with value "{ParamValue}" without base specifier.
Describe 'b, 'h, 'd or 'o clearly when initializing a parameter.

MESSAGE-4

Parameter is initialized with expression which contains {IllegalConstCount}
constant(s) without base specifier. Describe 'b, 'h, 'd or 'o clearly when using
constants for parameter initialization.

DETAIL-1 Base is not specified for constant "{ConstValue}"

PROBLEM
DESCRIPTION

It is strongly recommended to describe the base specification clearly for parameter numeric
values greater than 8 ('b, 'h', 'o, 'd). If base is not specified, there is a possibility to introduce a
mistake (for example, 11 is not 'h11). Moreover, descriptions without base specifiers are harder
to maintain.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker verifies statements containing parameter initialization with numeric value:
– parameter / localparam
– component instantiation
– defparam

Numeric value can be assigned with:
– single constant (violation when base is not specified and value is greater than 8):

– message-1 (when parameter name is known)
– message-3 (when parameter name is unknown)

– expression (operations with another constants or parameters) => each numeric constant
is checked (violation when base is not specified and value is greater than 8):
– message-2 (when parameter name is known)
– message-4 (when parameter name is unknown)

EXAMPLE-1: [1] numeric value (greater than 8) without base specifier initialize parameter => violation
(message-1, because there is no expression, and parameter name is known)

parameter PARAM = 32;

EXAMPLE-2: [1] instantiated component "generic_divider" is not compiled to the working library yet => port
names are unknown;
[2] parameter is overridden at instance "CLK_DIV_10" with a single constant "10" without base
specifier => violation (message-3, due to unknown parameter name);

generic_divider #(10) CLK_DIV_10(...);

34 of 334 Verilog HDL RTL Design Style Checks

Parameter "PARAM" is initialized w ith value "32" w ithout base
specif ier. Describe 'b, 'h, 'd or 'o clearly w hen initializing a parameter.

Parameter is initialized w ith value "32" w ithout base specif ier.
Describe 'b, 'h, 'd or 'o clearly w hen initializing a parameter.

EXAMPLE-3: [1] instantiated component "generic_divider" is not compiled to the working library yet => port
names are unknown;
[2] parameter is overridden at instance "CLK_DIV_20" with an expression containing another
parameter and numeric value "20" without base specifier => violation (message-4, due to
expression and known parameter name, since naming connection is used);
[3] note: there is no warning for declaration of parameter "BASE" – it is initialized with value
without base specifier – but it is not greater than 8;

parameter BASE = 8;
...
generic_divider #(.FACTOR(BASE + 20)) CLK_DIV_20(...);

Verilog HDL RTL Design Style Checks 35 of 334

Parameter is initialized w ith expression w hich contains 1 constant(s)
w ithout base specif ier. Describe 'b, 'h, 'd or 'o clearly w hen using
constants for parameter initialization.

Base is not specif ied for constant "20"

STARC_VLOG 1.1.4.5
RULE NAME Specify bit width if it is greater than 32 bits

MESSAGE-1
Parameter “{ObjectName}” is initialized with value “{ParamValue}” without width
specifier. Specify bit width directly when declaring parameters greater than
{CHECK_BIT_WIDTH_GREATER_THAN} bits.

MESSAGE-2

Parameter “{ObjectName}” is initialized with expression which contains
{IllegalConstCount} constant(s) without width specifier. Specify bit width directly
when declaring parameters greater than {CHECK_BIT_WIDTH_GREATER_THAN}
bits.

DETAIL Bit width is not specified for constant “{ConstValue}”.

MESSAGE-3
Parameter is initialized with value “{ParamValue}” without width specifier.
Specify bit width directly when declaring parameters greater than
{CHECK_BIT_WIDTH_GREATER_THAN} bits.

MESSAGE-4

Parameter is initialized with expression which contains {IllegalConstCount}
constant(s) without width specifier. Specify bit width directly when declaring
parameters greater than {CHECK_BIT_WIDTH_GREATER_THAN} bits.

DETAIL Bit width is not specified for constant “{ConstValue}”.

MESSAGE-5
Decimal constant greater than 32 bits is truncated by compiler. Specify bit width
directly when declaring parameters greater than
{CHECK_BIT_WIDTH_GREATER_THAN} bits.

PROBLEM
DESCRIPTION

Parameters with no width specified have bit width 32. When parameter exceeds 32-bit capacity
and bit width is not specified parameter may be trimmed by the compiler. So it is recommended
to specify bit width if it is greater than 32.

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects all parameter initialization expressions :
– parameter or localparam initialization
– parameter redefinition in module instantiation statement
– parameter redefinition in defparam statement

Checker verifies constants in detected expressions:
– if constant does not have width specifier <integer_literal>{ 'b |'h | 'd | 'o } and constant

width is greater than rule parameter CHECK_BIT_WIDTH_GREATER_THAN =>
violation

– if the expression contains only one constant => message-1
in case of XREF => message-3

– if expression contains operation(s) with constants => message-2 (detail
message per each constant)
in case of XREF => message-4

Note-1: value of parameter CHECK_BIT_WIDTH_GREATER_THAN is defined in a configuration
file.
Note-2: decimals longer than 32 bits are trimmed to 32 by VCP, and so cannot be checked with
default setting => there is a special warning message-5

EXAMPLE-1: [1] bit width is 44 and is not specified in parameter declaration statement => violation
(message-1);

parameter BW = 'h50077766677;

36 of 334 Verilog HDL RTL Design Style Checks

Parameter "BW" is initialized w ith value "'h50077766677" w ithout w idth
specif ier. Specify bit w idth directly w hen declaring parameters greater
than 32 bits.

EXAMPLE-2: [1] bit width of decimal parameter is 39 => violation (message-5);

parameter BW = 'd500777666777;

EXAMPLE-2: [1] bit width of decimal parameter is 32, but value of rule parameter
CHECK_BIT_WIDTH_GREATER_THAN is changed by configuration file to 30 => violation
(message-1);

parameter BW = 'd4278255360;

Verilog HDL RTL Design Style Checks 37 of 334

Decimal constant greater than 32 bits is truncated by compiler. Specify
bit w idth directly w hen declaring parameters greater than 32 bits.

Parameter "BW" is initialized w ith value "4278255360" w ithout w idth
specif ier. Specify bit w idth directly w hen declaring parameters greater
than 30 bits.

1.1.5 Naming should consider clock systems

STARC_VLOG 1.1.5.1

RULE NAME
Basically, use “CLK” or “CK” for clock signal names, “RST_X” or
“RESET_X” for reset signal names and “EN” for enable signal
names. Add identifiers to the end of these basic names.

MESSAGE-1

{SignalType} signal “{SignalName}” violates basic naming convention. Use
“CLK” or “CK” for clock signal names, “RST” or “RESET” for reset signal names
and “EN” for enable signal names. Add up to {IDENT_CHAR_NUMBER}
identifying characters to the end of these basic names if multiple
{SignalTypeLower} signals exist.

MESSAGE-2 {SignalType} signal “{SignalName}” matches forbidden pattern “{RegExp}”.
MESSAGE-3 {SignalType} signal “{SignalName}” does not match legal pattern “{RegExp}”.

PROBLEM
DESCRIPTION

In order to improve the readability of a description, a signal name based on the clock system can
be used. First, decide the basic signal name for the clock signal, reset signal and enable signal.
Then add an identifier to the end of the basic signal name when more than one signals of the
same kind exist.
It is recommended to use basic signal names of “CLK” or “CK” for a clock signal, “RST_X” or
“RESET_X” for a reset signal and “EN” for an enable signal. For example, if multiple clocks exist,
add one to three characters to the end of “CLK” or “CK” like “CLK2”, “CLKD” or “CLK_CPU”, etc.
Names which suggest a clock system can be given by adding the name of the clock signal
source, to the end of the signal name (ex.”_CLKM").
It would be overly verbose to add clock identification to signals for the entire design. However,
knowing which clock each signal is dependent upon is important in systems that employ two-
phase or three-phase latch based designs or use asynchronous transfer. A clock name should be
added when designing such circuits.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker detects clock, reset and enable signals in each process:
– identifiers of each detected signal should match the pattern:

– clock – CL?K(_[XN])?(_?[a-zA-Z0-9]{1,IDENT_CHAR_NUMBER})?
– reset –

(RST | RESET)(_[XN])?(_?[a-zA-Z0-9]{1,IDENT_CHAR_NUMBER})?
– enable – EN (_[XN])?(_?[a-zA-Z0-9]{1,IDENT_CHAR_NUMBER})?

– if identifier does not match corresponding pattern => violation (message-1)
Note-1: see 1.1.1.2 for details about messages 2,3 and custom regular expressions.
Note-2: parameter IDENT_CHAR_NUMBER configures number of identifying characters allowed
to be specified at the end of signal name (default value is 3).

EXAMPLE-1: [1] reset signal does not match the pattern (basic name is inappropriate) => violation (message-1);
[2] enable signal does not match the pattern (number of identifying characters specified after basic
name exceeds allowed number) => violation (message-1).
Note: parameter IDENT_CHAR_NUMBER value is default (IDENT_CHAR_NUMBER = 3).

always @(posedge clk123 or negedge rs_x_123)
if (rs_clk123)

q <= 1'b0;

38 of 334 Verilog HDL RTL Design Style Checks

Reset signal “rs_x_123” violates basic naming convention. Use “CLK”
or “CK” for clock signal names, “RST” or “RESET” for reset signal
names and “EN” for enable signal names. Add up to 3 identifying
characters to the end of these basic names if multiple reset signals
exist.

else if (enable)
q <= d;

Verilog HDL RTL Design Style Checks 39 of 334

Enable signal “enable” violates basic naming convention. Use “CLK” or
“CK” for clock signal names, “RST” or “RESET” for reset signal names
and “EN” for enable signal names. Add up to 3 identifying characters
to the end of these basic names if multiple enable signals exist.

1.2 Synchronous design

1.2.1 Clock synchronous design

STARC_VLOG 1.2.1.1
RULE NAME Designs should use a single clock/single edge as much as possible

MESSAGE-1

Module "{ModuleName}" uses {CLKCount} different clock lines. Designs should
use a single clock as much as possible.

DETAIL-1 Process infers FF(s) with clock signal “{CLKName}” from {FFCount}
signal(s)

MESSAGE-2

Module "{ModuleName}" uses {CLKCount} different clock lines. Currently
allowed clock domains = {CLOCK_DOMAINS_ALLOWED}.

DETAIL-1 Process infers FF(s) with clock signal “{CLKName}” from {FFCount}
signal(s)

PROBLEM
DESCRIPTION

When dealing with really large designs, the circuit operation speed is analyzed using static timing
analysis tools instead of logic simulation. If the clock system is complex, such analysis becomes
very difficult: system is represented as a few smaller systems operating with a single clock and a
single edge.
So it is recommended not to use multiple clock lines. In cases, when multiple clocks are
necessary, their count should be reduced as much as possible.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker collects clock signals (by extracting them from a flip-flops inferred in the current
module):

– if not all flip-flops are using the same clock signal => violation:
– message-1, if parameter CLOCK_DOMAINS_ALLOWED is equal to 1 (default)
– message-2, if parameter CLOCK_DOMAINS_ALLOWED is greater than 1

Note: parameter CLOCK_DOMAINS_ALLOWED can be set up for designs where multiple clocks
are required
Note: clock edges are checked in rule 1.4.3.6

EXAMPLE-1: [1] two 'always' processes infer flip-flops having different clock signals => violation (message-1)

module trn(...);
...
always @(posedge CLK_1) begin

REG_A <= OP_STATE;
end
...
always @(posedge CLK_2) begin

if(RESET)
REG_B <= 1'b0;

else
REG_B <= TS_STATE;

end
...

endmodule

40 of 334 Verilog HDL RTL Design Style Checks

Module "trn" uses 2 dif ferent clock lines. Designs should use a single
clock as much as possible.

Process infers FF(s) w ith clock signal “CLK_1” from 1 signal(s)

Process infers FF(s) w ith clock signal “CLK_2” from 1 signal(s)

EXAMPLE-2: [1] three 'always' processes infer flip-flops having different clock signals whereas parameter
CLOCK_DOMAINS_ALLOWED = 2 => violation (message-2);
 [2] note: reducing clocks number here to the two eliminates violation;

module trn(...);
...
always @(posedge CLK_1) begin

REG_A <= OP_STATE;
end
...
always @(posedge CLK_2) begin

if(RESET)
REG_B <= 1'b0;

else
REG_B <= TS_STATE;

end
...
always @(negedge CLK_3) begin

REG_C <= PS_STATE_0;
REG_D <= PS_STATE_1;

end
endmodule

Verilog HDL RTL Design Style Checks 41 of 334

Process infers FF(s) w ith clock signal “CLK_1” from 1 signal(s)

Process infers FF(s) w ith clock signal “CLK_2” from 1 signal(s)

Module "trn" uses 3 dif ferent clock lines. Currently allow ed clock
domains = 2

Process infers FF(s) w ith clock signal “CLK_3” from 2 signal(s)

STARC_VLOG 1.2.1.2
RULE NAME

Do not create an RS latch or FF using standard primitive cell such
as AND, OR.

MESSAGE-1
Detected combinational description of the circuit that is similar to RS latch. Avoid
describing latches with standard primitive cells because timing analysis tools
can treat it as feedbacks in combinational circuits.

MESSAGE-2

Detected combinational description of the circuit that is similar to RS latch. Avoid
describing latches with standard primitive cells because timing analysis tools
can treat it as feedbacks in combinational circuits.

DETAIL-1 Asynchronous loop propagates through combinational logic.
DETAIL-2 Asynchronous loop propagates through combinational logic line

“{LineName}”.
DETAIL-3 Asynchronous loop propagates through submodule instance

“{InstanceName}” from port “{InputPortName}” to “{OutputPortName}”.

PROBLEM
DESCRIPTION

FF or latch can be created by using primitive cells (as D-latch
described by primitives shown at the picture), but this could be
treated by the timing analysis tool as feedback to a combinational
circuit (see also 1.2.1.3).

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans net list for the presence one of the following feedback types
(described at the picture):

– if connection and feedback between two gates (either direct or inverter)
is present => violation

Note: parameter DETAILED_PROPAGATION_CHAIN configures displaying
message (see 1.2.1.3 for information about messages displaying).

EXAMPLE-1: [1] D-latch is described using primitives (see picture in “PROBLEM DESCRIPTION” section);
[2] feedback of mentioned type is detected => violation
Note: parameter DETAILED_PROPAGATION_CHAIN is set to 0.

module top (c, d, out);
input c;
input d;
output out;
wire cd, ccd;
wire nout;
nand (cd, c, d);
nand (ccd, c, cd);
nand (out, cd, nout);
nand (nout, ccd, out);

endmodule

42 of 334 Verilog HDL RTL Design Style Checks

Detected combinational description of the circuit that is similar to RS
latch. Avoid describing latches w ith standard primitive cells because
timing analysis tools can treat it as feedbacks in combinational circuits.

D
Q

EXAMPLE-2: [1] FF is described using primitives (see picture below);
[2] two feedbacks are detected => two violations
Note: parameter DETAILED_PROPAGATION_CHAIN is set to 1 => message-2 is used.

module top (clk, d, Q);
input clk;
input d;
output Q;

wire nQ;

wire cd, ccd;
wire qcd;
wire nclk;
wire rqcd, snqccd;

nand (cd, clk, d);
nand (ccd, clk, cd);
nand (qcd, cd, ~(ccd & qcd));
not (nclk, clk);
nand (rqcd, qcd, ~clk);
nand (snqccd, ~(ccd & qcd), ~clk);
nand (Q, rqcd, nQ);
nand (nQ, snqccd, Q);

endmodule

Verilog HDL RTL Design Style Checks 43 of 334

Detected combinational description of the circuit that is similar to RS
latch. Avoid describing latches w ith standard primitive cells because
timing analysis tools can treat it as feedbacks in combinational circuits.

Asynchronous loop propagates through combinational logic line "qcd".

Asynchronous loop propagates through combinational logic.

Asynchronous loop propagates through combinational logic.

Detected combinational description of the circuit that is similar to RS
latch. Avoid describing latches w ith standard primitive cells because
timing analysis tools can treat it as feedbacks in combinational circuits.

Asynchronous loop propagates through combinational logic line "Q".

Asynchronous loop propagates through combinational logic line "nQ".

d

clk Q

nQ

cd

ccd

qcd rqcd

snqccd

STARC_VLOG 1.2.1.3
RULE NAME Do not use feedback in combinational circuits

MESSAGE-1

Combinational feedback is detected on line “{FeedbackLineName}”. Do not use
feedbacks in combinational circuits to avoid the effect of a feedback loop during
the timing analysis
Combinational feedback is detected. Do not use feedbacks in combinational
circuits to avoid the effect of a feedback loop during the timing analysis

DETAIL-1 Asynchronous loop propagates through combinational logic

DETAIL-2 Asynchronous loop propagates through combinational logic line
“{LineName}”

DETAIL-3 Asynchronous loop propagates through {ObjectType}
“{SignalName}” {PortType} input

DETAIL-4 Asynchronous loop propagates through submodule instance
“{InstanceName}” from port “{InputPortName}” to “{OutputPortName}”

PROBLEM
DESCRIPTION

Static timing analysis tools are used to analyze the circuit operation
speed for large designs. Combinational circuit feedbacks carry into
the effect of a feedback loop during timing analysis and should be
avoided.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans the design hierarchy to detect feedbacks that are propagated through
combinational paths:

– each signal is propagated through subsequent combinational paths in order to detect
the feedback
– a combinational path is a path that allows asynchronous propagation of signal (see

Note-1 for feedback signal propagation rules)
– if there is such a path in the design hierarchy (through which propagated signal will

asynchronously return to its source) => combinational feedback loop is detected and
violation message is displayed (see Note-2 for message displaying rules)

Note-1: following rules are imposed on propagation of signal through the design hierarchy:
– propagation stops on following objects (picture at

the right side shows stop of propagation for the
“SIG” signal):
– synchronous inputs of flip-flops / latches
– black boxes

– propagation resumes from outputs of objects that stopped the propagation before
(picture below shows that propagation is resumed for signal “SIG” after it has been
stopped with data input of the latch “L”)

Note-2: violation message is displayed regarding the line for which feedback is detected
– feedback is an intermediate line (it is not explicitly specified in the description, but it is

implied to be generated by the logic synthesis tool – see the example below) =>
violation message #2 is displayed (*)

44 of 334 Verilog HDL RTL Design Style Checks

COMB_LOGIC

LD
«L»

SIG
SIG

SIG

Propagation
stops

L.SIG

New
propagation

LDSIG

COMB_LOGIC

“SIG”
propagation

starts

“SIG”
propagation

stops

“L.SIG”
propagation

stops

“L.SIG”
propagation

starts

Feedback on
“L.SIG” is
detected

SIG
SIG

L.SIGL.SIG

L.SIG

L.SIG

– feedback is not an intermediate line (see the example below) => violation message #1 is
displayed (*)

– (*) two modes are provided to display details for violation message (depending on state
of the parameter):
– parameter DETAILED_PROPAGATION_CHAIN is equal to “0” (default)

– violation is reported in short form: no details displayed (see the example #1)
– parameter DETAILED_PROPAGATION_CHAIN is equal to “1”

– violation is reported in full form: details describe the path through which
combinational feedback is propagated (see the example #2)
– when combinational feedback is propagated through an intermediate line,

detail #1 is displayed
– when combinational feedback is propagated through a line that is not

intermediate, detail #2 is displayed
– when combinational feedback is propagated through flip-flops or latches,

detail #3 is displayed followed by a list of possible objects ({ObjectType})
and ports corresponding to them ({PortType}):

{ObjectType} {PortType}

FF
latch

asynchronous reset

asynchronous set

– when combinational feedback propagates through a submodule instance,
detail #4 is displayed

EXAMPLE: [1] violation is reported in the detailed form: feedback propagation path is described
(DETAILED_PROPAGATION_CHAIN = 1)
[2] consider the design hierarchy at the picture below
[3] note, that all possible paths of feedback propagation are demonstrated:

– through the submodule instance
– through the flip-flop and latch
– through the combinational logic line
– through the intermediate combinational logic line

Verilog HDL RTL Design Style Checks 45 of 334

A
B
C Q

Feedback on
line «Q»

is detected

LD
«FK»

G

X2

X1
Y1

f_and

f_or

y1

f7k

FK

fm754

A

B

C

f7k_o
L_e

FF
«Q1»

CLK

Propagation
through instance

Propagation
through flip-flop

Propagation
through intermediate

line

Propagation
through logic line

Propagation
through latch

FF
«Q1»

FF
«Q2»

Feedback on
intermediate line

is detected

module fm754(A, B, C, CLK, FK);
 input A, B, C, CLK;
 output FK;
 reg FK;
 wire f7k_o, RST, L_e;
 reg Q1;
 always @(A or L_e)
 if(L_e)
 FK = A;

 always @(posedge CLK or negedge FK)
 if(!FK)
 Q1 <= 1'b0;
 else
 Q1 <= B;

 f7k CMB_I0(.x2(A & Q1), .x1(C), .y1(f7k_o));

 assign L_e = f7k_o & A;
endmodule
module f7k(x1, x2, y1);
 input x1, x2;
 output y1;
 wire f_and, f_or;
 assign f_and = x1 & x2;
 assign f_or = ~x1 | f_and;
 assign y1 = f_and ^ f_or;
endmodule

46 of 334 Verilog HDL RTL Design Style Checks

Instance "fm754". "STARC 1.2.1.3" Combinational feedback is
detected. Do not use feedbacks in combinational circuits to avoid the
ef fect of a feedback loop during the timing analysis.

Asynchronous loop propagates through combinational logic

Asynchronous loop propagates through combinational logic line "L_e"

Asynchronous loop propagates through latch "FK" enable input

Asynchronous loop propagates through FF "Q1" asynchronous reset
input.

Asynchronous loop propagates through combinational logic

Asynchronous loop propagates through submodule instance
"fm754.CMB_I0" f rom port "x2" to "y1"

1.3 Initial reset

1.3.1 Use asynchronous reset for initial reset

STARC_VLOG 1.3.1.2

RULE NAME

It is safer to use asynchronous reset for initial reset to a register.
- Reset tree synthesis at layout is easy.
- Values may not be fixed in a gate-level simulation with
synchronous reset.

MESSAGE-1
Global reset “{GlResetSignalName}” is connected to FF “{FFName}”
synchronous {ControlType} input. Initial reset should be connected to
asynchronous control input to avoid problems with simulation.

MESSAGE-2
[INFO]

None of the specified reset signals was found, auto-detect mode is used. Detected
reset signals: {GlResetSignalNameList}.

MESSAGE-3
[INFO]

None of the specified reset signals was found, auto-detect mode is used. No global
resets detected.

MESSAGE-4
[INFO]

Specified global reset signal “{SignalName}” could not be found in the design.

MESSAGE-5
[INFO]

Info: No reset signals specified, auto-detect mode is used. Detected reset signals:
{GlResetSignalNameList}.

MESSAGE-6
[INFO]

No reset signals specified, auto-detect mode is used. No global resets detected.

PROBLEM
DESCRIPTION

In some kinds of circuits (for example, state machine which depends on the previous state) using
synchronous reset may cause simulation problems. In the beginning of simulation reset is used to
clear all registers, but in case of synchronous reset previous state is unknown and may block
propagation of the reset to synchronous input, registers are not cleared and simulation result is
not valid. So it is recommended to use asynchronous reset for initial reset of a register.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker detects signals that are used as synchronous set/reset for FF(s).:
– if signal has 'global_reset' attribute => violation (message-1).

Note: see 1.4.3.4 for details about info messages 2-6.

EXAMPLE-1: [1] signal top.greset has attribute 'global_reset' (-alint_grst top.greset);
[2] the signal is used as synchronous control => violation.

module top(clk, greset, data, out1, out2);

input clk;
input data;
input greset;

output out1;
output out2;

dff_synch DFF1(.D (data), .RESET(greset), .CLK(clk), .Q(out1));
dff_async DFF2(.D (data), .RESET(greset), .CLK(clk), .Q(out2));

endmodule

module dff_sync(D, RESET, CLK, Q);

Verilog HDL RTL Design Style Checks 47 of 334

input D;
input CLK;
input RESET;

output reg Q;

always @(posedge CLK)

if (RESET)

Q <= 1'b0;

else

Q <= D;

endmodule

module dff_async(D, SET, CLK, Q);
input D;
input CLK;
input SET;

output reg Q;
always @(posedge CLK, negedge RESET)

if (!RESET)

Q <= 1'b0;

else

Q <= D;

endmodule

48 of 334 Verilog HDL RTL Design Style Checks

Instance ''top.DFF1'' Global reset “top.greset” is connected to FF
“Q” synchronous reset input. Initial reset should be connected to
asynchronous control input to avoid problems w ith simulation.

STARC_VLOG 1.3.1.3
RULE NAME

Do not use asynchronous set/reset pins for anything other than
initial reset

MESSAGE-1
Global reset “{GlResetSignalName}” is connected to {ObjectType}
“{ObjectName}” {PortType} input. Global reset should be connected directly to
initial reset pins of flip-flops or latches.

MESSAGE-2
Global reset “{GlResetSignalName}” is connected to {ObjectType} {PortType}
input. Global reset should be connected directly to initial reset pins of flip-flops
or latches.

MESSAGE-3
[INFO]

Specified global reset signal “{SignalName}” could not be found in the design.

MESSAGE-4
[INFO]

None of the specified reset signals was found, auto-detect mode is used. No global
resets detected.

MESSAGE-5
[INFO]

None of the specified reset signals was found, auto-detect mode is used. Detected
reset signals: {GlResetSignalNameList}.

MESSAGE-6
[INFO]

No reset signals specified, auto-detect mode is used. No global resets detected.

MESSAGE-7
[INFO]

No reset signals specified, auto-detect mode is used. Detected reset signals:
{GlResetSignalNameList}.

PROBLEM
DESCRIPTION

When combinational circuit generates an asynchronous reset signal, there are
situations possible in which hazards will occur as result of optimization by logic
synthesis tool. Therefore, signals other than initial resets are forbidden for
asynchronous control pins of flip-flops.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker propagates reset signal(s) through the design hierarchy and restricts its connection to
pins other than FF/latch asynchronous control pins:

– see the rule 1.4.3.4 (behavior of this checker is almost the same(*))
– (*) the main difference between these checkers is:

– 1.3.1.4 restricts connection of global clock signal(s) (specified with -alint_gclk
switch) to pins other than FF clock pins

– 1.2.3.3 restricts connection of global reset signal(s) (specified with -alint_grst
switch) to pins other than FF asynchronous control pins

Note-1: violation message is displayed per each object with improperly mapped reset (see the
table from Note-2 for list of possible objects and their pins)
Note-2: following table defines set of strings that are possible for the {ObjectType} token (different
from 1.4.3.4):

{ObjectType} {PortType}

FF

clock

data

enable

latch
data

enable

multiplexer select

tri-state buffer Enable

Verilog HDL RTL Design Style Checks 49 of 334

EXAMPLE-1: [1] global reset is specified with “-alint_grst” switch
(for example in command line like this: alint -alint_grst top.RESET -asim top);
[2] module 'tristate' infers a tri-state buffer;
[3] module 'top' creates instance of 'tristate' with global reset signal 'RESET' connected to enable
input of instantiated tri-state.

module top(RESET, D_IN, D_OUT); // -alint_grst top.RESET
 input RESET;
 input D_IN;

 output D_OUT;
 tristate TRISTATE1 (.in1(D_IN), .en(RESET), .out1(D_OUT));

endmodule
module tristate(in1, en, out1);
 input in1;
 input en;
 output out1;
 assign out1 = (en)? in1 : 1'bz;
endmodule

EXAMPLE-2: [1] global resets are auto-detected from signals 'RESET' and 'SET' that are mapped to
asynchronous control pins of flip-flop “DATA_OUT” (note, that special message #7 is displayed to
indicate the list of reset signals that are auto-detected);
[2] global reset signal 'RESET' is also connected to combinational logic that is mapped to flip-flop
'DATA_OUT' clock pin => violation (message #1 is displayed).

module top(CLK, RESET, SET, DATA_IN, DATA_OUT);
 input CLK, DATA_IN, RESET, SET;
 output reg DATA_OUT;

 and(CLK_gated, CLK, RESET);

 always @(posedge CLK_gated or negedge RESET or negedge SET)
 if(RESET)
 DATA_OUT <= 1'b0;
 else if(SET)
 DATA_OUT <= 1'b1;
 else
 DATA_OUT <= DATA_IN;
endmodule

50 of 334 Verilog HDL RTL Design Style Checks

Instance “top.TRISTATE1”. Global reset “top.RESET” is connected
to tri-state buffer “out1” enable input. Global reset should be
connected directly to initial reset pins of f lip-f lops or latches.

No reset signals specif ied, auto-detect mode is used. Detected reset
signals: RESET, SET.

STARC_VLOG 1.3.1.5
RULE NAME

Do not use synchronous reset directives for a particular logic
synthesis tool

MESSAGE

Do not use reset directives that depend on particular logic synthesis tool. Such
directives can not guarantee that RTL and post-synthesis results will always
match - it is recommended to avoid such directives by using an additional
hierarchy with encapsulated control logic.

PROBLEM
DESCRIPTION

In some circuit (like mentioned in 1.3.1.2) the value
of the FF becomes unknown state X. Guaranteeing a
known reset state can be achieved by creating a
separate module containing a FF with an AND gate
as seen in the picture. By creating this extra
hierarchical module, the RTL description will not
generate logic which is put in an indeterminate state
upon reset.
If you add the Design Compiler specific directive ”//synopsys sync_set_reset” you could assure a
value with synchronous reset without using a hierarchical FF. Therefore, if you are not using an
additional hierarchy, this directive should be added. However, as this is only effective with Design
Compiler, it will not be possible to use this RTL description if other logic synthesis tools are used
in the future. Also, because this Synopsys directive is implemented in comment lines, syntax
cannot be checked, and it is recognized as a simple comment statement even if only one
character is wrong. This method cannot guarantee that a tool always generates a circuit as
illustrated above. To ensure that synchronous reset defines value at gate simulation, there is no
other way but the use of hierarchy method as above.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker catches following directives in the module:
– // synopsys sync_set_reset
– // synopsys async_set_reset
– // synopsys async_set_reset_local
– // synopsys sync_set_reset_local
– // cadence sync_set_reset
– // cadence async_set_reset
– // ambit synthesis set_reset asynchronous
– // ambit synthesis set_reset synchronous
– (* synthesis, async_set_reset *)
– (* synthesis, sync_set_reset *)

EXAMPLE-1: [1] synopsys sync_set_reset directive is detected => violation

//synopsys sync_set_reset "set"
always @(posedge CLK)

if (SET)

Q <= 1'b1;

else

Q <= DATA;

Verilog HDL RTL Design Style Checks 51 of 334

FF

RST_N

Logic
ff_sync

Do not use reset directives that depend on particular logic synthesis
tool. Such directives can not guarantee that RTL and post-synthesis
results w ill alw ays match - it is recommended to avoid such directives
by using an additional hierarchy w ith encapsulated control logic.

STARC_VLOG 1.3.1.6
RULE NAME

Do not have both asynchronous reset and synchronous reset on
the same reset line

MESSAGE

Signal “{SigName}” is used both for synchronous and asynchronous reset
line(s). Do not mix synchronous and asynchronous resets in one reset line to
avoid problems with logic synthesis and layout.

DETAIL-1 Connection to asynchronous control pin of flipflop “{FFName}” is
detected.

DETAIL-2 Connection to synchronous control pin of flipflop “{FFName}” is detected.

DETAIL-3 Signal "{SigName}" is also used both for synchronous and asynchronous
reset line(s) in the same connections.

PROBLEM
DESCRIPTION

If one reset line has both synchronous reset and asynchronous reset, synthesis may not be
performed properly. The asynchronous reset line sometimes forms a tree-structure during the
layout process. To avoid accidentally inserting a buffer or logical operand during logic synthesis
with Design Compiler, set_ideal_net directive may be put on this reset line. This directive means
that the specified net is excluded from the limitation of the logic synthesis, the timing analysis,
and the design rule. Then, if this reset line is also
input to a FF's synchronous input, that part will
not be synthesized and synthesis will fail as a
result. In addition to this, having both
asynchronous reset and synchronous reset may
cause other problems during logic synthesis and
layout, so they should not be mixed.

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects signals that are used simultaneously as both asynchronous set/reset and
synchronous set/reset in the design:

– if such signals detected => violation
– connection to asynchronous reset pin => detail-1
– connection to synchronous reset pin => detail-2

– if several signals drive simultaneously both asynchronous set/reset and synchronous
set/reset pins => only one main message is displayed for all of them (selected by
name), and detail-3 per each other driver-signal.

EXAMPLE-1: [1] signal is used simultaneously as asynchronous reset and synchronous reset => violation
(message-1 + detail-1/detail-2).

module top(DATA, CLK, RST, Q1, Q2);
input CLK;
input RST;
input [1:0] DATA;

output reg Q1;
output reg Q2;

always @(negedge CLK) begin

if (!RST)

Q1 <= 1'b0;
else

Q1 <= DATA[0];
end
always @(negedge CLK or posedge RST) begin

if (!RST)

52 of 334 Verilog HDL RTL Design Style Checks

Signal “RST” is used both for synchronous and asynchronous reset
line(s). Do not mix synchronous and asynchronous resets in one
reset line to avoid problems w ith logic synthesis and layout.

FF FFDATA

RST_N

Connection to synchronous control pin of f lipf lop “Q1” is detected.

Q2 <= 1'b0;
else

Q2 <= DATA[1];
end

endmodule

EXAMPLE-1: [1] two signals drive simultaneously asynchronous reset and synchronous reset pins => violation
(message-1 + detail-1/detail-2 + detail-3).

module top(DATA, CLK, RST_N_1, RST_N_2, Q1, Q2);
input CLK;
input RST_N_1, RST_N_2;
input [1:0] DATA;

output reg Q1;
output reg Q2;
wire TMP;
assign TMP = RST_N_1 ^ RST_N_2;

always @(negedge CLK) begin

if (!TMP)
Q1 <= 1'b0;

else
Q1 <= DATA[0];

end
always @(negedge CLK or negedge TMP) begin

if (!TMP)
Q2 <= 1'b0;

else
Q2 <= DATA[1];

end

endmodule

Verilog HDL RTL Design Style Checks 53 of 334

Connection to asynchronous control pin of f lipf lop “Q2” is detected.

Signal “RST_N_1” is used both for synchronous and asynchronous
reset line(s). Do not mix synchronous and asynchronous resets in
one reset line to avoid problems w ith logic synthesis and layout.

Signal "RST_N_2" is also used both for synchronous and
asynchronous reset line(s) in the same connections.

Connection to synchronous control pin of f lipf lop “Q1” is detected.

Connection to asynchronous control pin of f lipf lop “Q2” is detected.

FF FF
DATA

RST_N_1

RST_N_2

1.3.2 Reset line hazards

STARC_VLOG 1.3.2.1

RULE NAME

Do not insert logical operands in a reset line at the local module. In
addition, circuits that supply reset lines should be separated into
an individual module.
- Logic order may be replaced by synthesis.
- Hazards cannot be prevented in the RTL description.

MESSAGE

Combinational logic is connected to asynchronous {ControlType} of flip-flop
“{FFName}”. Do not insert logical operands in a reset line at the local module to
avoid problems with optimization of this logic by synthesis tools. It is
recommended to separate into individual modules such circuits that supply reset
lines.

PROBLEM
DESCRIPTION

An asynchronous reset signal may be supplied as synchronized and additional logic may be
inserted in reset line to prevent unstable operation. Also, logic circuits may be inserted so that a
system reset can be selected. When logic is needed on a reset line, combine that reset line logic
together in the top level (see picture below) as much as possible and directly input the same
signal input to all FFs. By creating modules for reset generation, it will also become easier to
apply synthesis constraints.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker verifies connections to each asynchronous control input of each FF:
– if any logic is connected to such control and this logic is defined within the same module

=> violation
Note: following objects are skipped (not treated as logic):

– buffers / inverters;
– multiplexers;
– tri-states;
– latches / FFs.

EXAMPLE-1: [1] consider picture below;
[2] logic is connected to asynchronous control input of FF;
[3] the logic is defined within the same module => violation

module top (clk, rst_n, ctrl, cnt, d, q);
input clk, rst_n, ctrl, d;
input [3:0] cnt;
output reg q;
wire [3:0] cnt16;
assign cnt16 = ~(& cnt) | ctrl;

54 of 334 Verilog HDL RTL Design Style Checks

RST_N

FF

COUNT

CTRL

Logic

RST_GEN

top

FF

assign rcnt_n = rst_n & cnt16;
always @(posedge clk or negedge rcnt_n)

if(!rcnt_n)
q <= 1'b0;

else
q <= d;

endmodule

Verilog HDL RTL Design Style Checks 55 of 334

d

clk

FF

cnt

rst_n

ctrl

4

q

Logic to asynchronous
reset input

Combinational logic is connected to asynchronous reset of f lip-f lop
“q”. Do not insert logical operands in a reset line at the local module to
avoid problems w ith optimization of this logic by synthesis tools. It is
recommended to separate into individual modules such circuits that
supply reset lines.

STARC_VLOG 1.3.2.2
RULE NAME

Do not insert signals other than initial reset to FF asynchronous
reset pins

MESSAGE-1

Signal(s) other than global reset(s) is connected to asynchronous control pin(s)
of flip-flop “{FFSignalName}”. Initial reset should be input for global
asynchronous reset to avoid path analysis problems with logic synthesis and
static timing tools.

DETAIL Asynchronous control signal is other than global reset.
MESSAGE-2

[INFO]
Specified global reset signal “{SignalName}” could not be found in the design.

MESSAGE-3
[INFO]

None of the specified reset signals was found, auto-detect mode is used. No global
resets detected.

MESSAGE-4
[INFO]

None of the specified reset signals was found, auto-detect mode is used. Detected
reset signals: {GlResetSignalNameList}.

MESSAGE-5
[INFO]

No reset signals specified, auto-detect mode is used. No global resets detected.

MESSAGE-6
[INFO]

No reset signals specified, auto-detect mode is used. Detected reset signals:
{GlResetSignalNameList}.

PROBLEM
DESCRIPTION

Signals other than initial reset should not be input for asynchronous reset pins, because
it is difficult to analyze the paths which the asynchronous reset and set pass through
during the timing analysis (such timing paths are cut off without taking into account –
see the picture below for example).

Therefore, avoid such descriptions when using logic synthesis tools or static timing
analysis tools to perform timing analysis.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker restricts signal that is connected to asynchronous control pin of flip-flop to be global
reset signal:

– global reset signal(s) (specified with -alint_grst switch or auto-detected) is propagated
through the design hierarchy

– asynchronous control pin(s) of each flip-flop should be connected to global reset (it
means that propagation reached this pin)

– if propagation does not reach asynchronous control pin => violation message #1 is
displayed (per FF signal assignment) with detail message (per appropriate
asynchronous control branch)

– see 1.4.3.4 for details:
– rules for auto-detection (during the auto-detection, each signal that is connected to

asynchronous control pin of flip-flop is considered as reset signal)
– rules for global reset propagation (global reset propagates through buffers /

inverters / combinational logic / multiplexers data / tri-state inputs)
– rules for displaying info-messages (indicate the list of auto-detected clock or report

about reset signals that are specified with -alint_gclk but could not be found)

56 of 334 Verilog HDL RTL Design Style Checks

FF

FF

COMB_LOGIC

FF
COMB_LOGIC

COMB_LOGIC

FF

RESET

Timing
Analysis
cut off

EXAMPLE-1: [1] consider the design hierarchy at the picture below;
[2] signal “grst” is considered as global reset signal because it is directly connected to
asynchronous control pin of flip-flop “out2” (and other reset signal(s) is not specified with '-
alint_grst' command line switch);
[3] output of multiplexer is connected to asynchronous control pin of flip-flop “out1” => violation
message is displayed (there is no global reset signal at inputs of the MUX).

module top (clk1, clk2, grst, data1, data2, out1, out2);
 input clk1, clk2;
 input grst;
 input data1, data2;
 output out1, out2;
 wire muxout;
 wire bboxout1;
 wire bboxout2;

 assign muxout = (grst) ? bboxout1 : bboxout2;

 dff DFF_INSTANCE1 (.D(data1), .CLK(clk1), .RESET(grst), .Q(out1));
 dff DFF_INSTANCE2 (.D(data2), .CLK(clk2), .RESET(muxout), .Q(out2));

 blackbox BBOX_INSTANCE (.out1(bboxout1), .out2(bboxout2));

endmodule
module dff(D, CLK, RESET, Q);
 input D;
 input CLK;
 input RESET;

 output Q;
 reg Q;

 always @(posedge CLK or posedge RESET)
 if (RESET)
 Q <= 1'b0;
 else
 Q <= D;

endmodule
module blackbox(out1, out2);
 output out1, out2;
endmodule

Verilog HDL RTL Design Style Checks 57 of 334

0

1
FF

grst

clk2

data2

clk1

FFdata1

Black box

out1

out2

“grst” is considered as
global reset signal

Signal other than initial
reset is connected to FF

asynchronous control pin

Instance “top.DFF_INSTANCE2”. Signal(s) other than global
reset(s) is connected to asynchronous control pin(s) of f lip-f lop "Q".
Initial reset should be input for global asynchronous reset to avoid
path analysis problems w ith logic synthesis and static timing tools.

Asynchronous control signal is other than global reset.

1.4 Clocks

1.4.3 Gated clocks should be used with special care

STARC_VLOG 1.4.3.2
RULE NAME Do not input a FF output pin to other FF clock pins

MESSAGE

The clock pin of flip-flop "{DrivenFFName}" is driven by the output of another
flip-flop. CTS tool will not be able to take the clock line balancing into
consideration.

DETAIL Clock pin is driven with the output of flip-flop "{DriverFFHierName}"

PROBLEM
DESCRIPTION

Clock Tree Synthesis (CTS) tools are used to synthesize and
route clock lines after the placement of each FF in the layout.
When output pin of some flip-flop is supplied to clock pin of
other flip-flop, the CTS tool will not be able to take the clock line
balancing into consideration.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans the design hierarchy for flip-flops that have output of another flip-flop supplied to
their clock pins:

– back-propagation is performed from clock pin of each flip-flop to define its driver (See
Note-1 for backward propagation rules)
– clock pin driver is a signal on which backward propagation stops

– if the driver is the output of another flip-flop (as shown on image in the “Problem
description” section) => violation is reported (main message points at the process that
infers the driven flip-flop, whereas detail message points at the assignment of signal that
infers the driving flip-flop)

Note-1: the following rules are imposed on backward propagation from the signal through the
design hierarchy:

– backward propagation starts from driven signal, passes through instances and stops on
any except of following objects:
– inverters
– buffers
– direct connections (wires)

– driver is a signal at which propagation stops

EXAMPLE-1: [1] two modules infer flip-flops (the first flip-flop has an asynchronous reset, the second one does
not have one);
[2] rule violation at the third (top-level) module: output of first flip-flop is mapped to the clock pin of
the second one;

module chain(I_A, I_B, I_C, I_D, I_RST, I_CLK, O_A, O_B);
input I_A, I_B, I_C, I_D, I_RST, I_CLK;
output O_A, O_B;
 M_FF1 U0 (.I_A(I_A), .I_CLK (I_CLK), .I_RST(I_RST), .O_A(O_A));
 M_FF2 U1 (.I_A(I_A), .I_CLK (O_A), .O_A(O_B));
endmodule
module M_FF1 (I_A, I_CLK, I_RST, O_A);
input I_A, I_CLK, I_RST;
output reg O_A;

58 of 334 Verilog HDL RTL Design Style Checks

FF FF
Violation

 always@(posedge I_CLK or negedge I_RST) begin
 if (!I_RST) begin
 O_A <= 1'b0;
 end
 else begin
 O_A <= I_A; // detail: output pin of flip-flop “test_1_4_3_2.U0.O_A”
 // is a driver for clock pin of “test_1_4_3_2.U1.O_A”
 //
 end
 end
endmodule
module M_FF2 (I_A, I_CLK, O_A);
input I_A, I_CLK;
output reg O_A;

always@(posedge I_CLK) begin // main message: clock pin of flip-flop
 O_A <= I_A; // “test_1_4_3_2.U1.O_A” is driven by
 // output pin of flip-flop “test_1_4_3_2.U0.O_A”
end
endmodule

Verilog HDL RTL Design Style Checks 59 of 334

Instance "chain.U1". The clock pin of f lip-f lop "test_1_4_3_2.U1.O_A"
is driven by the output of another f lip-f lop. CTS tool w ill not be able to
take the clock line balancing into consideration.

Clock pin is driven w ith the output of f lip-f lop "test_1_4_3_2.U0.O_A"

STARC_VLOG 1.4.3.4
RULE NAME

Do not supply clock signals to pins other than FF clock input pins
(such as D input)

MESSAGE-1

Do not connect clock signal to the pin other than to the FF clock input pin, it may
lead to the incorrect timing analysis

DETAIL-1 Global clock signal(s) “{GlClkSignalNameList}” is connected to the
{ObjectType} “{ObjectName}” {PortType} input

DETAIL-2 Global clock signal(s) “{GlClkSignalNameList}” is connected to the
multiplexer select input

MESSAGE-2
[INFO]

Specified global clock signal “{SignalName}” could not be found in the design.

MESSAGE-3
[INFO]

None of the specified clock signals was found, auto-detect mode is used. No global
clocks detected.

MESSAGE-4
[INFO]

None of the specified clock signals was found, auto-detect mode is used. Detected
clock signals: {GlCLKSignalNameList}.

MESSAGE-5
[INFO]

No clock signals specified, auto-detect mode is used. No global clocks detected.

MESSAGE-6
[INFO]

No clock signals specified, auto-detect mode is used. Detected clock signals:
{GlCLKSignalNameList}.

PROBLEM
DESCRIPTION

Clock signals should not be connected to
input pins other than clock pins of flip-flops.
Paths having clock lines connected to
latches, enabling logic of multiplexers and
tri-states, non-clocking pins of flip-flops are
extremely dangerous (consider the picture
at the right side): it is impossible to analyze
timing correctly for them.
Additionally, logic synthesis tools will not perform any optimizations for such paths.

LEVEL RULE

CHECKER
BEHAVIOR

Checker propagates clock signal(s) through the design hierarchy and restricts its connection to
pins other than FF clock input pins:

– correct case is shown on the picture at the right side of the page
– propagation of each clock signal through the design hierarchy

(see Note-1 for clock signals determination and Note-2 for clock
signals propagation) restricts clock signal connection to:
– flip-flop : it is not allowed to supply clock signal to pins other than clock pin;
– latch : it is not allowed to supply clock signal to any pin;
– multiplexer : it is not allowed to supply clock signal to select pin(s);
– tri-state : it is not allowed to supply clock signal to enable pin;

– violation message is displayed for each case where any of upper options is not true
– see Note-3 for list of possible objects ({ObjectType}) and ports corresponding to

them ({PortType}).
Note-1: there are two routines provided to detect clock signal(s):

– clock signal(s) is specified with -alint_gclk command line switch
(example: alint -alint_gclk top.clk1 -asim top);

– clock signal(s) is determined automatically (when there is no clock(s) specified with
-alint_gclk switch):

– each signal (*) connected to clock pin of any flip-flop in the design hierarchy is

60 of 334 Verilog HDL RTL Design Style Checks

CLK
FF

LD 0

1
CLK

COMB COMB COMB

FF

RULE NAME
Do not supply clock signals to pins other than FF clock input pins
(such as D input)

considered as a clock signal (picture below demonstrates that “SOME_SIG”
considered as a clock because of its connection to the clock pin of flip-flop)

– (*) following requirements are imposed on such signal:
– it should be the input port of the top-level module
– it should not be connected through the combinational logic (except buffers

and inverters)
– information message-2 is displayed if automatic mode is enabled

Note-2: following rules are used to propagate clock signal(s) through the design hierarchy:
– clock signal is propagated through:

– combinational logic (logic gates);
– multiplexer data inputs;

– clock signal is not propagated through:
– flip-flops;
– latches;
– tri-states.

Note-3: following cases are possible {ObjectType} and {PortType} that are displayed in the
violation message:

{ObjectType} {PortType}

FF

data

enable

asynchronous set

asynchronous reset

synchronous set

synchronous reset

latch

data

enable

asynchronous set

asynchronous reset

multiplexer select

tri-state buffer enable

Note-4: this checker displays special messages (#2 – #6, severity = note) when there are some
problems with detection of global clock signal(s) in the design:

– alint_gclk switch is specified:
– when any signal from the list of global clocks could not be found in the design (but

at least one of specified signals is found) => message #2 is displayed per each
signal that could not be found;

– when all signal(s) from the list of global clocks could not be found in the design:
– if no clock signals are auto-detected => message #3 is displayed;

Verilog HDL RTL Design Style Checks 61 of 334

SOME_SIG

SOME_SIG LD

SOME_SIG

FF

RULE NAME
Do not supply clock signals to pins other than FF clock input pins
(such as D input)

– if some clock signals are auto-detected => message #4 is displayed (contains
the list of auto-detected clocks);

– alint_gclk switch is not specified:
– if no any clock signals are auto-detected => message #5 is displayed;
– if some clock signals are auto-detected => message #6 is displayed (contains

the list of auto-detected clocks).

EXAMPLE-1: [1] consider design hierarchy that is represented on the picture below: common violation cases are
considered (clock propagation routine is marked with orange color);
[2] clock is specified with “-alint_gclk” switch (alint -alint_gclk top.CLK -asim top).

module top (en, sel, CLK, data, rev, res_q1, res_q2);
 input en, sel, CLK, data, rev;
 output res_q1, res_q2;

 reg res_q1, res_q2;

 wire buf_to_i1, buf_to_dff;
 wire g_to_en;
 wire ld_to_tri;

 mux_n_buf i1 (.sel(sel),
 .in1(CLK),
 .in2(data),
 .out1(buf_to_i1),
 .out2(buf_to_dff));

 always @(posedge CLK)
 res_q2 <= buf_to_dff;

 ld_n_and i2 (.L_I(buf_to_dff),
 .L_E(en),
 .rev(rev),
 .L_O(ld_to_tri),
 .g_to_en(g_to_en));

 always @(g_to_en, ld_to_tri)
 if (g_to_en)
 res_q1 <= 1'bz;
 else
 res_q1 <= ld_to_tri;

62 of 334 Verilog HDL RTL Design Style Checks

Do not connect clock signal to the pin other than to the FF clock input
pin, it may lead to the incorrect timing analysis

Do not connect clock signal to the pin other than to the FF clock input
pin, it may lead to the incorrect timing analysis

Global clock signal(s) "top.CLK" is connected to the FF "top.res_q2"
data input

Global clock signal(s) "top.CLK" is connected to the tristate buffer
"top.res_q1" enable input

0

1

LD LD

FF

SEL

CLK

DATA

REV

RES_Q1

RES_Q2

EN

CLK-alint_gclk
top.CLK

Propagation
stops

Global clock “ top.CLK”
connected to latch

“top.i1.L_OS ”
data input

Global clock “ top .CLK”
connected to FF
“top.RES_Q2”

data input

Global clock“ top .CLK”
connected to tristate buffer

“top.RES_Q1”
enable

top

i1

i2

endmodule
module mux_n_buf (sel, in1, in2, out1, out2);
 input sel, in1, in2;
 output out1, out2;
 reg mux_out;

 always @(sel, in1, in2)
 if (sel == 1'b0)
 mux_out <= in1;
 else if (sel == 1'b1)
 mux_out <= in2;

 buf (out1, out2, mux_out);
endmodule
module ld_n_and (L_I, L_E, rev, L_O, g_to_en);
 input L_I, L_E, rev;
 output L_O, g_to_en;
 reg L_O;

 reg L_OS;

 always @(L_E, L_I)
 if (L_E)
 L_OS <= L_I;

 always @(L_E, L_OS)
 if (L_E)
 L_O <= L_OS;

 and (g_to_en, L_I, rev);
endmodule

Verilog HDL RTL Design Style Checks 63 of 334

Do not connect clock signal to the pin other than to the FF clock input
pin, it may lead to the incorrect timing analysis

Global clock signal(s) "top.CLK" is connected to the latch
"top.i1.L_OS" data input

STARC_VLOG 1.4.3.5
RULE NAME

Clock signals should not be connected to black boxes, bi-
directional pins or reset lines

MESSAGE-1
Global clock signal “{GlCLKName}” is connected to black box “{ObjectName}”.
Do not connect clocks to black-boxes, bi-directional terminals and reset lines to
avoid problems with test tools including the BIST insertion.

MESSAGE-2

Global clock signal “{GlCLKName}” is connected to bi-directional port
“{PortName}” of “{ObjectName}”. Bi-directional terminals must be controlled as
either inputs or as outputs during a simulation. Do not connect clocks to black-
boxes, bi-directional terminals and reset lines to avoid problems with test tools
including the BIST insertion.

MESSAGE-3

Global clock signal “{GlCLKName}” is connected to asynchronous control line of
FF “{ObjectName}”. Do not connect clocks to black-boxes, bi-directional
terminals and reset lines to avoid problems with test tools including the BIST
insertion.

PROBLEM
DESCRIPTION

Clock signals should not be connected to input pins other than clock pins of flip-flops:
When clock line is connected to black box, ATPG tool could fail to insert test scan and
generate test patterns (see 3.3.2.2 for details).
Also, do not connect clocks to bi-directional terminals. Bi-directional terminals must be
controlled as either inputs or as outputs during a simulation. Test tools, including the
BIST insertion tool, cannot determine the direction of these bi-directional terminals.
Signals other than initial reset (for example – clock) should not be connected to
asynchronous reset to avoid problems when using logic synthesis tools or static timing
analysis tools(see 1.3.2.2 for details).

LEVEL Recommendation 3

CHECKER
BEHAVIOR

Checker scans the design hierarchy to analyze input lines of:
• black-boxes
• bi-directional ports (inout ports)
• asynchronous set/reset of flip-flops

If any of these lines is connected to clock signal(s) (signal specified via -alint_gclk command
line switch) – a respective warning message is issued.
Note: refer to 1.4.3.4 for details about -alint_gclk switch and clock auto detection.

EXAMPLE 1: [1] consider design hierarchy that is represented on the picture below (clock propagation routine is
marked with orange color)
[2] clock “top.CLK_1” is specified with -alint_gclk switch (alint -alint_gclk top.CLK_1 -asim top)

64 of 334 Verilog HDL RTL Design Style Checks

0

1

FF
OUT1

RESET

TEST

COMB

COMB

CLK_1

DATA

Global clock signal
“CLK_1” is
connected to
asynchronous control
line of FF “Q” .

top

module top(TST, RESET, RESET_EN, DATA, CLK_1, CLK_2, CLK_EN, OUT1);
 input TST, DATA,
 inout CLK_1,
 input CLK_2, CLK_EN, RESET, RESET_EN;

 output OUT1;

 wire mux_to_res;

 assign mux_to_res = (TST) ? ((CLK_1 & CLK_EN) | (CLK_2 & CLK_EN))

 : (RESET & RESET_EN);

 dff DFF_INSTANCE (.D(DATA), .CLK(CLK_1), .RESET(mux_to_res), .Q(OUT1));

endmodule
module dff(D, CLK, RESET, Q);
 input D, CLK, RESET;

 output reg Q;

 always @(posedge CLK or posedge RESET)

 if (RESET)
 Q <= 1'b0;
 else
 Q <= D;
endmodule

EXAMPLE 2: [1] consider design hierarchy that is represented on the picture below
[2] clock “top.CLK_1” is specified with -alint_gclk switch (alint -alint_gclk top.CLK_1 -asim top)

module top(DATA_1, DATA_2, CLK_1, CLK_2, OUT1);
 input DATA_1, DATA_2, CLK_1, CLK_2;

 output OUT1;

 modwithinout

MOD_INST(.DATA_1(DATA_1),.DATA_2(DATA_2),.CLK_1(CLK_1),.CLK_2(CLK_2),.OUT1(OUT1));

endmodule
module modwithinout(DATA_1, DATA_2, CLK_1, CLK_2, OUT1);
 input DATA_1, DATA_2;
 inout CLK_1;
 input CLK_2;

 output OUT1;

Verilog HDL RTL Design Style Checks 65 of 334

Global clock signal "top.CLK_1" is connected to asynchronous control
line of FF "Q".

Global clock signal "top.CLK_1" is connected to bi-directional port
"CLK_1" of "MOD_INST"

DATA_2

Global clock signal
“{GlCLKName}” is connected to
bi-directional port “ {PortName}”
of “{ObjectName}”

FF

FF

OUT1

CLK_2

DATA_1

CLK_1

modwithinout

top

 reg Q1, Q2;

 assign OUT1 = Q1;

 assign CLK_1 = Q2;

 always @(posedge CLK_1)

 Q1 <= DATA_1;

 always @(posedge CLK_2)

 Q2 <= DATA_2;

endmodule

66 of 334 Verilog HDL RTL Design Style Checks

STARC_VLOG 1.4.3.6
RULE NAME Do not use FFs with inverted edges

MESSAGE-1

Module "{ModuleName}" uses clock signal with posedge for
{PosedgeCLKFFCount} FF signal(s) and negedge for {NegedgeCLKFFCount} FF
signal(s). Inverted edge is: {InvertedEdge}. Do not use FFs with inverted edges.

DETAIL-1 Process infers flip-flops with inverted edge on a clock signal for {FFCount}
FF signal(s)

MESSAGE-2

Module "{ModuleName}" uses clock signal "{CLKName}" with posedge for
{PosedgeCLKFFCount} FF signal(s) and negedge for {NegedgeCLKFFCount} FF
signal(s). Inverted edge is: {InvertedEdge}. Do not use FFs with inverted edges.

DETAIL-1 Process infers flip-flops with inverted edge on a clock signal for {FFCount}
FF signal(s)

PROBLEM
DESCRIPTION

Depending on the ASIC library used, there may be two types of FFs: those that work on a
positive clock edge and those that work on a negative clock edge. When the two types of FFs are
mixed in a circuit, scan register insertion becomes problematic. It is best not to use FFs that work
on an inverted clock.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker collects clock signals (by extracting them from a flip-flops inferred in the current
module):

– if parameter CHECK_CLOCK_DOMAINS is disabled (OFF) => all clock signals should
use the same edge:
– if edges are inverted for any of clock signals => violation (message-1)

– if parameter CHECK_CLOCK_DOMAINS is enabled (ON) => each clock signal must
use the same edge:
– if some of clock signals uses inverted edges => violation (message-2)

Note: field {InvertedEdge} in the warning message is defined by the less used clock edge (if
number of positive and negative edges is equal, negedge is treated as inverted)

EXAMPLE-1: [1] multiple (2) clocks are used in the module, these clocks have different edges and parameter
CHECK_CLOCK_DOMAINS is disabled => violation (message-1);
[2] note: 'posedge' is inverted edge here (it is less used)

module sl_dec(...)
always @(negedge CLK_2)

read_state <= read_finish;

always @(posedge CLK_1)
if(RESET)

return_slot <= P_INITIAL;
else

return_slot <= ssm_sto_slot;

always @(negedge CLK_2)
end_byte <= ds_end_byte;

endmodule

EXAMPLE-2: [1] multiple (2) clocks are used in the module, these clocks have different edges and parameter
CHECK_CLOCK_DOMAINS is enabled => violation (message-2, only per clock with different
edges);
[2] note: 'negedge' is inverted edge here (number of positive and negative edges is equal);

module sl_dec(...)
always @(posedge CLK_1)

if(RESET)
return_slot <= P_INITIAL;

Verilog HDL RTL Design Style Checks 67 of 334

Module "sl_dec" uses clock signal w ith posedge for 1 FF signal(s)
and negedge for 2 FF signals(s). Inverted edge is: posedge. Do not
use FFs w ith inverted edges.

Module "sl_dec" uses clock signal "CLK_2" w ith posedge in 1 FF(s)
and negedge in 1 FF(s). Inverted edge is: negedge. Do not use FFs
w ith inverted edges.

Process infers f lip-f lops w ith inverted edge on a clock signal for 1 FF
signal(s)

else
return_slot <= ssm_sto_slot;

always @(posedge CLK_1)
start_byte <= ds_start_byte;

always @(negedge CLK_2) begin
read_state <= read_finish;
write_state <= write_setup;

end
always @(posedge CLK_2)

end_byte <= ds_end_byte;
endmodule

68 of 334 Verilog HDL RTL Design Style Checks

Process infers f lip-f lops w ith inverted edge on a clock signal for 2 FF
signal(s)

1.5 Handling of asynchronous circuits

1.5.1 Consider metastable issues in signals between
asynchronous clocks

STARC_VLOG 1.5.1.1
RULE NAME

To avoid metastable conditions, do not locate combinational logic
between asynchronous clock domains

MESSAGE

FF “{FFName}” obtains data from another clock domain through combinational
logic. Combinational logic should not be located between asynchronous clock
domains, because it significantly increases the risk to propagate incorrect value
to downstream logic and cause functional errors.

DETAIL-1 “{ClockName}” is the origin clock of the source domain.
DETAIL-2 “{ClockName}” is the origin clock of the target domain.
DETAIL-3 Signal “{SignalName}” derived from global clock(s) with circuit “{Circuit}”

is the origin clock of the source domain.
DETAIL-4 Signal “{SignalName}” derived from global clock(s) with circuit “{Circuit}”

is the origin clock of the target domain.
PROBLEM

DESCRIPTION
Metastability problem should be considered carefully during data transmission between different
clock domains.
The picture below illustrates that input signal value could be changed during a flip-flop setup/hold
time – metastable value (glitch) could be sampled and propagated from a flip-flop to the logic
circuits.

It is quite difficult to detect such kind of problems before circuit is fabricated. Therefore, it is highly
important to prevent metastability-related issues by enforcing effectiveness-proven
methodologies during the RTL design.
To understand the rule 1.5.1.1, consider simple synchronizer. A simple synchronizer comprises
two flip-flops in series without any combinational circuitry between them. This approach ensures
that the first flip-flop exits its metastable state and its output settles before the second flip-flop
samples it. For proper work of such synchronization, the signal crossing a clock domain should
pass from flip-flop in the original clock domain to the first flip-flop of the synchronizer without
passing through any combinational logic.
First flip-flop of a synchronizer is sensitive to glitches that combinational logic produces (glitch
that occurs at the correct time could meet the setup-and-hold requirements of the first flip-flop in

Verilog HDL RTL Design Style Checks 69 of 334

CLK_1

DATA_1

CLK_2

DATA_2

Clocked signal
DATA_2 is initially

metastable

… and might still be metastable
at the next rising edge of CLK_2

CLK_2 samples
DATA_1 while it

is changing

FF
CLK_1

FF
CLK_2

DATA_1

DATA_2

RULE NAME
To avoid metastable conditions, do not locate combinational logic
between asynchronous clock domains
the synchronizer, causing the synchronizer to pass a pseudo-valid signal to the rest of the logic in
the target clock domain).
Therefore, combination logic should not be located between asynchronous clock domains,
because it significantly increases the risk to propagate pseudo-valid value to downstream logic.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans design hierarchy against combinational logic between different asynchronous
clock domains (*):

– those flip-flops that have data input driven by combinational logic are validated:
– violation is issued if another clock domain drives this combinational logic

– (*) Clock domains are auto-detected – the following algorithm defines clock domains
extracting principles:
– global clocks are detected (external port(s) that is/are directly connected to FF clock

input – see 1.4.3.4 for details)
– each global clock creates separate clock domain:

– global clock is propagated through design hierarchy by common principles (through
combinational logic and multiplexers – see 1.4.3.4 for details about clock
propagation)
– note: feedbacks on clock signal path are not considered (no backward

propagation is performed);
– note: latches on clock signal propagation path are transparent

– each FF which has global clock signal connected to the clock pin is added to the
corresponding clock domain;
– note: if the FF clock input is driven by the output of a FF/latch/tristate that

belongs to a clock domain "A", this FF is correspondingly added to a clock
domain "A";

– if two or more clock signals are propagated through the same combinational logic or
multiplexer (clock domains crossing) then output of this logic / mux derives new clock
signal – resulting in new clock domain for subsequent connections;

70 of 334 Verilog HDL RTL Design Style Checks

DOMAIN_1
[X MHz]

DOMAIN_2
[Y MHz]

FF FF
COMB_LOGIC

COMBINATIONAL LOGIC SHOULD
NOT BE LOCATED BETWEEN

CLOCK DOMAINSSOURCE DOMAIN TARGET DOMAIN

FFDATA

CLK_1
FF_1

BELONGS TO
D O MA IN_ 1

BEC AU SE OF
C LK_ 1

FF_2

BELONGS TO
D OMAIN_1

BECAUSE OF
FF_1

RULE NAME
To avoid metastable conditions, do not locate combinational logic
between asynchronous clock domains

– if clock signal is connected to the select pin of multiplexer then its output derives new
clock signal – resulting in new clock domain for subsequent connections;

– note: after splitting process is over:
– if there is no clock domain detected, then whole design is considered to be in

single (default) clock domain – CDC-related checks are not performed on
whole design;

– if there is at least one clock domain detected and some FF(s) still do not
belong to any clock domain, then this/these FF(s) is/are considered to be in
default domain – CDC-related checks are not performed on this/these FF(s);

Note-1: source points for violation messages (see "problem description" for explanation of terms
"source" and "target"):

– main message points to the target FF;
– detail-1/2 – points to clock declaration of source/target domain (global clock(s));
– detail-3/4 – points to clock crossing (**) of source/target domain (derived clock(s));

– (**): token {Circuit} indicates elementary circuit that derives new clock signal; the
following four alternatives are possible:

{Circuit}

1 gate_type (g_clk1 | gate_type (...), ...)

2 multiplexer (g_clk1, ...)

3 arithmetic_type (g_clk1 | arithmetic_type, ...)
(adder, subtractor, multiplier, divider, left/right shifter)

4 complex logic (g_clk1, ...)

– consider examples (numbers correspond to alternatives from the table above):
1. clock signals are crossed within combinational logic (length of such "chain"

should not exceed 2, otherwise it will be considered as complex logic – see
example-4 below):

Verilog HDL RTL Design Style Checks 71 of 334

0

1

DOMAIN_1

DOMAIN_2
(DERIVED) FF

BELON GS TO
D O MA IN _2

FF
BELON GS TO

D O MA IN _1

DOMAIN_1

DOMAIN_2

DOMAIN_3
(DERIVED)

FF
BELON GS TO

D O MA IN_ 2

FF
BELON GS TO

D O MA IN_ 1
COMB_LOGIC

COMB_LOGIC

FF
BELON GS TO

D O MA IN_ 3

RULE NAME
To avoid metastable conditions, do not locate combinational logic
between asynchronous clock domains

2. clock signals are crossed within multiplexer:

3. clock signals are crossed in arithmetic circuit (length of such "chain" should
not exceed 2, otherwise it will be considered as complex logic – see example-4
below):

4. all other cases are considered to be complex logic:

72 of 334 Verilog HDL RTL Design Style Checks

0

1DOMAIN_1
[CLK1]

DOMAIN_3
(DERIVED) FF

BELON GS TO
D O M A IN_ 3

DOMAIN_2
[CLK2]

{Circuit} = complex logic (CLK1, CLK2)

DOMAIN_1
[CLK1]

DOMAIN_2
[CLK2]

DOMAIN_4
(DERIVED)

{Circuit} = left shifter (adder(CLK1, CLK2), CLK3)

+
SHLDOMAIN_3

[CLK3]

0

1DOMAIN_1
[CLK1]

DOMAIN_3
(DERIVED) FF

BELON G S TO
D O M A IN_ 3

DOMAIN_2
[CLK2]

{Circuit} = multiplexer (CLK1, CLK2)

0

1DOMAIN_1
[CLK1]

DOMAIN_2
(DERIVED) FF

BELO N G S TO
D O MA IN _ 2

{Circuit} = multiplexer (CLK1)

DOMAIN_1
[CLK1]

DOMAIN_2
[CLK2]

DOMAIN_4
(DERIVED)

{Circuit} = xor(and(CLK2, CLK3), CLK1)

DOMAIN_3
[CLK3]

RULE NAME
To avoid metastable conditions, do not locate combinational logic
between asynchronous clock domains

EXAMPLE-1: [1] consider sample circuit at the picture below – there are two clock domains (driven by global
clocks 'CLK_1' and 'CLK_2';
[2] combinational logic (multiplexer) is located between these domains => violation;

// alint -alint_gclk add_sub.CLK_1 -alint_gclk add_sub.CLK_2

`define BIT_LENGTH 1
module add_sub(CLK_1, CLK_2, ADD_SUB, ARG_A, ARG_B, RES);
 input CLK_1, CLK_2;
 input ADD_SUB;
 input [`BIT_LENGTH-1:0] ARG_A, ARG_B;

 output [`BIT_LENGTH-1:0] RES;

 wire [`BIT_LENGTH-1:0] res_add, res_sub, trnsmt;

 adder adder(
 .CLK(CLK_1),
 .A (ARG_A),
 .B (ARG_B),
 .RES(res_add)
);

 subtractor subtractor(
 .CLK(CLK_1),
 .A (ARG_A),
 .B (ARG_B),
 .RES(res_sub)
);

Verilog HDL RTL Design Style Checks 73 of 334

DOMAIN_1
[CLK1]

DOMAIN_2
[CLK2]

DOMAIN_4
(DERIVED)

{Circuit} = complex logic (CLK1, CLK2, CLK3)

DOMAIN_3
[CLK3]

"add_sub.CLK_1" is the origin clock of the source domain.

"add_sub.CLK_2" is the origin clock of the target domain.

DOMAIN_1

subtractor

DOMAIN_1

adder DOMAIN_2

div2

CLK_1

CL:K_2

Combinational logic
between clock domains

0

1

 div2 div2(
 .CLK(CLK_2),
 .ARG(trnsmt),
 .RES(RES)
);

 assign trnsmt = (ADD_SUB)? res_add : res_sub;
endmodule
module adder(CLK, A, B, RES);
 input CLK;
 input [`BIT_LENGTH-1:0] A, B;
 output [`BIT_LENGTH-1:0] RES;
 reg [`BIT_LENGTH-1:0] RES;
 always @(posedge CLK)
 RES = A + B;

endmodule
module subtractor(CLK, A, B, RES);
 input CLK;
 input [`BIT_LENGTH-1:0] A, B;
 output [`BIT_LENGTH-1:0] RES;
 reg [`BIT_LENGTH-1:0] RES;

 always @(posedge CLK)
 RES = A - B;

endmodule
module div2(CLK, ARG, RES);
 input CLK;
 input [`BIT_LENGTH-1:0] ARG;
 output [`BIT_LENGTH-1:0] RES;
 reg [`BIT_LENGTH-1:0] RES;

 wire [`BIT_LENGTH-1:0] stable_arg;

 simple_sync simple_sync(
 .CLK (CLK),
 .DATA_IN (ARG),
 .DATA_OUT(stable_arg)
);

 always @(posedge CLK)
 RES = stable_arg >> 1;

endmodule
module simple_sync(CLK, DATA_IN, DATA_OUT);
 input CLK;
 input [`BIT_LENGTH-1:0] DATA_IN;
 output [`BIT_LENGTH-1:0] DATA_OUT;
 reg [`BIT_LENGTH-1:0] DATA_OUT;

 reg [`BIT_LENGTH-1:0] first_stage_ff;

 always @(posedge CLK)
 first_stage_ff = DATA_IN;

 always @(posedge CLK)
 DATA_OUT = first_stage_ff;

endmodule

74 of 334 Verilog HDL RTL Design Style Checks

Instance "add_sub.div2.sim ple_sync". FF "f irst_stage_ff" obtains
data from another clock domain through combinational logic.
Combinational logic should not be located betw een asynchronous
clock domains, because it signif icantly increases the risk to propagate
incorrect value to dow nstream logic and cause functional errors.

STARC_VLOG 1.5.1.2
RULE NAME

To avoid metastable conditions, do not locate combinational logic
between first-stage FF and the next synchronizing FF.

MESSAGE

Combinational logic is detected between the adjacent flip-flops of basic
synchronizer "{FirstFFName}"-"{SecondFFName}". Glitches produced by
combinational logic increase the risk to propagate incorrect value to downstream
logic. For proper synchronization, the basic synchronizer cell should contain two
pure flip-flops.

PROBLEM
DESCRIPTION

Basic approach to solving a metastable problem (metastability is explained in 1.5.1.1) is based
on simple synchronizer comprising two flip-flops.
If combinational logic is located between these two synchronizing flip-flops, the second flip-flop
becomes sensitive to glitches produced by combinational logic – a possibility to propagate
pseudo-valid value to downstream logic increases significantly and synchronizer could become
useless:

Thus, it is not recommended to locate combinational logic between the adjacent flip-flops of basic
synchronizer.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans design hierarchy against combinational logic between adjacent flip-flops of each
basic synchronizer:

– each target clock domain (*) is considered:
– the first two flip-flops are treated as basic synchronizer;
– the violation is issued if there is a circuitry between them (see figure above);

– note: violation message:
– the main violation message points to the second flip-flop;
– special detail messages are also displayed in order to indicate origin

clocks of source and target domains (see 1.5.1.1 for details);
– (*) see 1.5.1.1 for details about clock domains detection;

EXAMPLE-1: [1] consider sample circuit at the picture below – there are two clock domains (source domain is
driven by derived clock 'multiplexer(CLK_1, CLK_2)', target domain is driven by global clock
'CLK_3');
[2] combinational logic is located between the adjacent flip-flops of simple synchronizer in the
target domain => violation;

Verilog HDL RTL Design Style Checks 75 of 334

TARGET DOMAIN
CLOCK

1st FF
OF BASIC

SYNCHRONIZER
LOGIC

COMBINATIONAL LOGIC BETWEEN ADJACENT
FLIP-FLOPS OF BASIC SYNCHRONIZER

TARGET DOMAIN

2nd FF
OF BASIC

SYNCHRONIZER

SIGNAL FROM THE
SOURCE DOMAIN

TARGET DOMAIN
LOGIC

// alint -alint_gclk add_sub.CLK_1 -alint_gclk add_sub.CLK_2 -alint_gclk add_sub.CLK_3
`define BIT_LENGTH 1
module sub(CLK_1, CLK_2, CLK_3, CLK_SEL, ARG_A, ARG_B, RES);
 input CLK_1, CLK_2, CLK_SEL;
 input CLK_3;
 input [`BIT_LENGTH-1:0] ARG_A, ARG_B;

 output [`BIT_LENGTH-1:0] RES;

 wire [`BIT_LENGTH-1:0] res_sub;
 wire cur_clk;

 assign cur_clk = (CLK_SEL)? CLK_1 : CLK_2;
 subtracter subtracter(
 .CLK(cur_clk),
 .A (ARG_A),
 .B (ARG_B),
 .RES(res_sub)
);

 div2 div2(
 .CLK(CLK_3),
 .ARG(res_sub),
 .RES(RES)
);

endmodule

//Subtracter
module subtracter(CLK, A, B, RES);
 input CLK;
 input [`BIT_LENGTH-1:0] A, B;
 output [`BIT_LENGTH-1:0] RES;
 reg [`BIT_LENGTH-1:0] RES;

 always @(posedge CLK)
 RES = A - B;

endmodule

//Divider
module div2(CLK, ARG, RES);
 input CLK;
 input [`BIT_LENGTH-1:0] ARG;
 output [`BIT_LENGTH-1:0] RES;
 reg [`BIT_LENGTH-1:0] RES;

 wire [`BIT_LENGTH-1:0] stable_arg;

76 of 334 Verilog HDL RTL Design Style Checks

Signal “sub.cur_clk” derived from global clock(s) w ith circuit
“multiplexer(sub.CLK_1, sub.CLK_2)” is the origin clock of the source
domain.

"sub.CLK_3" is the origin clock of the target domain.

DOMAIN_2DOMAIN_1

CLK_1

CLK_3

1st FF
OF B A S IC

S Y NCHR ONIZE R

C O MB _ L O G IC

COMBINATIONAL LOGIC BETWEEN ADJACENT
FLIP-FLOPS OF BASIC SYNCHRONIZER

2nd FF
OF B A S IC

S Y NCHRONIZE R

DOMAIN_2
LOGIC

DOMAIN_1
LOGIC

subtractor div2

CLK_2

 simple_sync simple_sync(
 .CLK (CLK),
 .DATA_IN (ARG),
 .DATA_OUT(stable_arg)
);

 always @(posedge CLK)
 RES = stable_arg >> 1;

endmodule

//Synchronizer
module simple_sync(CLK, DATA_IN, DATA_OUT);
 input CLK;
 input [`BIT_LENGTH-1:0] DATA_IN;
 output [`BIT_LENGTH-1:0] DATA_OUT;
 reg [`BIT_LENGTH-1:0] DATA_OUT;

 reg [`BIT_LENGTH-1:0] first_stage_ff;
 reg [`BIT_LENGTH-1:0] second_stage_ff;
 wire [`BIT_LENGTH-1:0] custom_gate;

 assign custom_gate = first_stage_ff & (~CLK);
 assign DATA_OUT = second_stage_ff;
 always @(posedge CLK)
 first_stage_ff = DATA_IN;

 always @(posedge CLK)
 second_stage_ff = custom_gate;

endmodule

Verilog HDL RTL Design Style Checks 77 of 334

Instance "sub.div2.sim ple_sync". Combinational logic is detected
betw een the adjacent f lip-f lops of basic synchronizer
"sub.div2.simple_sync.f irst_stage_ff"-"sub.div2.simple_sync.second_
stage_ff". Glitches produced by combinational logic increase the risk
to propagate incorrect value to dow nstream logic. For proper
synchronization, the basic synchronizer cell should contain tw o pure
f lip-f lops.

STARC_VLOG 1.5.1.3
RULE NAME

Do not have a feedback loop at the first-stage FF after transfers
between asynchronous clocks

MESSAGE

Feedback loop is detected in the first-stage of basic synchronizer
"{FirstFFName}"-"{SecondFFName}". The metastable state on the synchronizer
input might affect the latched value and result in circuit malfunction. Even if the
placement of logic between the adjacent flip-flops of synchronizer can not be
avoided, feedback should not be used.

PROBLEM
DESCRIPTION

Basic approach to solving a metastable problem (metastability is explained in 1.5.1.1) is based
on simple synchronizer containing two flip-flops.
If operating frequencies of source and target clock domains are low, it is not an issue if some
logic is located between adjacent flip-flops of basic synchronizer. However, there will be
problems if there is a feedback to the flip-flop to latch data – the metastable state might affect the
latched value and result in circuit malfunction. Thus, even if the placement of some logic between
the adjacent flip-flops of synchronizer can not be avoided, feedback should not be used.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans design hierarchy against a feedback loop at the first-stage of each basic
synchronizer:

– each target clock domain (*) is considered:
– the first two flip-flops are treated as basic synchronizer;
– the violation is issued if there is a feedback at the first of them (see figure above);

– note: violation message:
– the main message points to the line at which the feedback is detected;
– special detail messages are also displayed in order to indicate origin

clocks of source and target domains (see 1.5.1.1 for details);
– additional detail messages could be also displayed in order to indicate the

feedback propagation path (depends on value of parameter
DETAILED_PROPAGATION_CHAIN – see 1.2.1.3 for details);

– (*) see 1.5.1.1 for details about clock domains detection;

EXAMPLE-1: [1] consider sample circuit at the picture below – there are two clock domains (source domain is
driven by clock 'CLK_1', target domain is driven by clock 'CLK_2';
[2] there is a feedback loop at the first flip-flop of basic synchronizer – right after the transfer
between asynchronous clocks => violation;

78 of 334 Verilog HDL RTL Design Style Checks

TA R G ET D OMAIN
C LOC K

1st FF
OF BASIC

SYNCHRONIZER

FEEDBACK LOOP AT THE FIRST-STAGE FF AFTER
TRANSFER BETWEEN ASYNCHRONOUS CLOCKS

TARGET DOMAIN

2nd FF
OF BASIC

SYNCHRONIZER

SIGN AL FR OM TH E
SO U R C E D OMAIN TARGET DOMAIN

LOGIC

S
IG

N
AL

 F
R

O
M

 T
H

E
TA

R
GE

T
D

O
M

AI
N

// alint -alint_gclk top.CLK_1 -alint_gclk top.CLK_2 -alint_blackbox bb2 -alint_blackbox bb3

module top(CLK_1, CLK_2, RST, DI1, DI2, DO);
 input CLK_1, CLK_2, RST;
 input DI1, DI2;
 output DO;
 reg clk_div2, sync_1st, sync_2nd, samp_di1, samp_di2;
 wire data_src, data_cd1;
 bb2 BlackBox2(sync_1st, proc_bb2);
 bb3 BlackBox3(sync_2nd, DO, contr_bb3);

 assign data_src = (contr_bb3)? data_cd1 : sync_1st | proc_bb2;
 assign data_cd1 = samp_di1 ^ samp_di2;
 always @(posedge CLK_2)
 sync_1st = data_src;

 always @(posedge CLK_2)
 sync_2nd = sync_1st;

 always @(posedge CLK_1)
 if(RST)
 clk_div2 = 0;
 else
 clk_div2 = ~clk_div2;

 always @(posedge clk_div2)
 if(RST)
 samp_di1 = 0;
 else
 samp_di1 = DI1;

 always @(posedge CLK_1)
 if(RST)
 samp_di2 = 0;
 else
 samp_di2 = DI2;

endmodule
module bb2(PIN, POUT) /* black box */;
 input PIN;
 output POUT;
endmodule
module bb3(PIN, POUT_1, POUT_2) /* black box */;
 input PIN;
 output POUT_1, POUT_2;
endmodule

Verilog HDL RTL Design Style Checks 79 of 334

"top.CLK_2" is the origin clock of the target domain.

SOURCE DOMAIN TARGET DOMAIN

1st FF
OF BASIC

SYNCHRONIZER

2nd FF
OF BASIC

SYNCHRONIZER

bb2
[BLACK BOX]

bb3
[BLACK BOX]

CLK_2

DFF

DFF

DFF

CLK_1

"top.CLK_1" is the origin clock of the source domain.

Instance "top". Feedback loop is detected in the f irst-stage of basic
synchronizer "top.sync_1st"-"top.sync_2nd". The metastable state on
the synchronizer input might af fect the latched value and result in
circuit malfunction. Even if the placement of logic betw een the
adjacent f lip-f lops of synchronizer can not be avoided, feedback
should not be used.

1.7 FPGAs

1.7.1 Considerations for using both ASICs and FPGAs

STARC_VLOG 1.7.1.1
RULE NAME Don't use gated clocks in an FPGA

MESSAGE
Global clock “{GClkName}” passes through the gate logic. Gated clocks should
not be used in FPGAs wherever possible, because it becomes difficult to fine-
tune clock delays and skew.

PROBLEM
DESCRIPTION

Using gated clocks is a popular way to decrease circuit power consumption by reducing the clock
network power dissipation. This mechanisms is often used for ASIC design, but there are some
problems of implementing gated clocks for FPGA design.
FPGAs have pre-synthesized clock trees for providing synchronized clock to the finite number of
flip-flops and memories across the chip. When additional logic is applied to the clock signal in the
RTL, the logic translates into physical gates outside the pre-synthesized balanced clock tree,
through which the clock signal passes, thus causing large clock skews between registers of
theFPGA.
Gated clocks should not be used in FPGAs wherever possible. If you still want to use gated
clocks, clock gating logic should be put in a separate FPGA and separate FPGAs should be used
for each clock domain (see the picture below).

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOUR

Checker collects signals that are detected as global clocks (auto-detected or specified with
-alint_gclk switch):

– if the signal from the set is connected directly (*) to some gate
– if the output of the gate is connected directly (*) to FF clock pin => violation
– (*) for this rule, signal that is directly connected may be connected directly or

through buffers/inverters

EXAMPLE-1: [1] consider the picture below;
[2] global clock CLK (auto-detect mode is used) is directly connected to AND gate;
[3] output of the gate is directly connected to FF clock pin => violation.

module top(CLK, CTRL, D1, D2, OUT1, OUT2);

input CLK;
input CTRL, D1, D2;
output OUT1, OUT2;

assign and_clk = CTRL & CLK;
dff DFF1 (.CLK(and_clk), .D(D1), .Q(OUT1));

80 of 334 Verilog HDL RTL Design Style Checks

FPGA 1CLK

CTRL2

CTRL2

CTRL1

Clock generating FPGA

FPGA 2

FPGA 3

Instance ''top''. Global clock “CLK” passes through the gate logic. Gated
clocks should not be used in FPGAs w herever possible, because it becomes
dif f icult to f ine-tune clock delays and skew .

dff DFF2 (.CLK(CLK), .D(D2), .Q(OUT2));

endmodule
//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule

Verilog HDL RTL Design Style Checks 81 of 334

FF

CLK

CLK

FF

CTRL

D1

D2

OUT1

OUT2

top

Chapter 2 RTL Description
Techniques

2.1 Combinational logic

2.1.1 Use always constructs and function statements correctly

STARC_VLOG 2.1.1.2
RULE NAME Describe every case statement expressions in a function statement

MESSAGE-1

Function “{FuncName}” is not defined in all cases. The results of RTL and post-
synthesis simulation will not match.

DETAIL-1 “{Variable}” is not defined in all cases.

DETAIL-2 Function result is assigned with “{Variable}” which is not defined in all
cases.

MESSAGE-2

“{FuncBit}” bit of function result is not defined in all cases. The results of RTL
and post-synthesis simulation will not match.

DETAIL-1 “{Variable}” is not defined in all cases.

DETAIL-2 Function result is assigned with “{Variable}” which is not defined in all
cases.

MESSAGE-3

{BitCount} bits of function “{FuncName}” are not defined in all cases. The results
of RTL and post-synthesis simulation will not match.

DETAIL-1 “{Variable}” is not defined in all cases.

DETAIL-2 Function result depends on a value of “{Variable}”, which is not defined in
all cases.

PROBLEM
DESCRIPTION

The function statement is a sub-program that can return only one value. In hardware it is
implemented as a combinational circuit. In function statements, latches are not generated even if
the conditions are not completely defined. In such situation, function returns an undefined value
during simulation, but synthesis tool will assign the value of 0 or 1.
Therefore, it is required to describe full 'case'/'if' statements (value of each signal is defined in
each branch) in functions. Otherwise, there is a danger of mismatches between the RTL and
post-synthesis simulation results.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans function statements:
– if function output is not defined (return value is not assigned) in any possible case =>

violation
– if function result is a scalar or the whole vector violates the rule =>

message-1
– if function result is a vector and only one bit violates the rule => message-2
– if function result is a vector and only some bits (>1, but not all) violate the rule =>

message-3

82 of 334 Verilog HDL RTL Design Style Checks

RULE NAME Describe every case statement expressions in a function statement
Note-1: intermediate variables are taken into account (if some variable is not completely assigned
in some conditional statement, and later is being assigned to function return value, then function
is treated as not defined in all cases)
Note-2: rule is parameter-dependent (elaboration-time checking is required)

EXAMPLE-1: [1] 'case' statement is described in the 'function' statement;
[2] function output is assigned in all branches but case is not full (not all possible branches are
described and 'default' clause is not specified)=> violation (message-1);

function [1:0] res;
input [2:0] sel;
 begin
 case (sel)
 3'b011: res = 2'b00;
 3'b100: res = 2'b01;
 3'b101: res = 2'b10;
 endcase
 end
endfunction

EXAMPLE-2: [1] 'if' statement is described in the 'function' statement;
[2] intermediate variable is used to assign function output;
[3] intermediate variable is not assigned in all branches of 'if' statement;
[4] only one bit of vector function output is assigned => violation (message-2)

function [1:0] res;
input [2:0] sel;
input [2:0] data;
reg c;
reg d;
 begin
 if (sel) c = data[0]
 else d = data[1];
 res = c;
 end
endfunction

Verilog HDL RTL Design Style Checks 83 of 334

Function “res” is not def ined in all cases. The results of RTL and post-
synthesis simulation w ill not match.

“res” is not def ined in all cases.

“res[1]” bit of function result is not def ined in all cases. The results of
RTL and post-synthesis simulation w ill not match.

Function result depends on a value of “c”, w hich is not def ined in all
cases.

2.1.2 Define combinational circuits using the function statement

STARC_VLOG 2.1.2.1
RULE NAME

The function statement shouldn't be used for asynchronous reset
line logic in an always construct for FF inference

MESSAGE The function statement should not be used for asynchronous reset line logic in
an 'always' construct for FF inference.

PROBLEM
DESCRIPTION

Some synthesis tools cannot recognize the type of reset signal (posedge or negedge) if function
call is used instead of simple expression in the asynchronous control condition branch.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans 'always' statements inferring flip-flops with an asynchronous control:
– condition of the 'if' statement for asynchronous control is analyzed

– if function is called here => violation
Note: see checker 2.3.1.6 for asynchronous control description

EXAMPLE-1: [1] function is called in the asynchronous control line => violation;
[2] function is called in the clock enable line => no violation

input PRESET_DATA;
...
function invert;

input arg;
begin

invert = ~arg;
end
endfunction
...
always @(posedge CLK or negedge RESET) begin

if(invert(RESET))
Q <= PRESET_DATA;

else if(invert(EN))
Q <= DATA;

end

EXAMPLE-2: [1] function is called in the synchronous control line => no violation

input PRESET_DATA;
...
function invert;

input arg;
begin

invert = ~arg;
end
endfunction
...
always @(posedge CLK) begin

if(invert(RESET))
Q <= 1'b0;

else if(invert(EN))
Q <= DATA;

end

84 of 334 Verilog HDL RTL Design Style Checks

The function statement should not be used for asynchronous reset
line logic in an 'alw ays' construct for FF inference.

STARC_VLOG 2.1.2.2
RULE NAME

A non-blocking assignment (<=) should not be used in function
statements (Verilog only)

MESSAGE

Function contains {NBA_Count} non-blocking assignment statement(s). The
results of RTL and post-synthesis simulation may not match.

DETAIL Non-blocking assignment inside the function

PROBLEM
DESCRIPTION

Usage of a non-blocking assignment for a function return value must not be performed.
Descriptions using such assignments will not result in the expected behavior. During the RTL
simulation, change of the return value occurs after whole right-hand-side of non-blocking
assignment is evaluated whereas synthesis tool will generate a correct circuit. It causes
mismatch between RTL and gate level simulation.

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects non-blocking assignments inside the function statements.

EXAMPLE-1: [1] function statement contains non-blocking assignments => violation

function ADD_SUB;
input [7:0] ARG_1;
input [7:0] ARG_2;
input OP_SEL;
reg RES;

begin
if(OP_SEL == 1'b1)

RES <= ARG_1 + ARG_2;
else

RES <= ARG_1 - ARG_2;

ADD_SUB = RES;
end
endfunction

Verilog HDL RTL Design Style Checks 85 of 334

Function contains 2 non-blocking assignment statement(s). The
results of RTL and post-synthesis simulation may not match.

Non-blocking assignment inside the function

Non-blocking assignment inside the function

STARC_VLOG 2.1.2.3
RULE NAME All arguments are defined as function statement inputs

MESSAGE

Function "{FunctionName}" uses {ObjectCount} signal(s) not declared as
function inputs or local variables. The results of RTL and post-synthesis
simulation may not match.

DETAIL Signal "{ObjectName}" is not declared as function input or local variable

PROBLEM
DESCRIPTION

Description of the 'function' statement must declare inputs for all input signals used inside the
'function' statement. When using the signal which is not declared as input and a signal of the
same name exists somewhere in the module, the global signal is taken. But function does not
execute if the global signal value changes. Such description leads to mismatches between the
RTL and gate level simulation.

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects the signals that have ever been read in the following expressions (inside the
function):

– right-hand-side of an assignments
– conditional expressions ('if', 'for', ternary conditional operator)
– another function calls

If the signal is read but it is defined neither as function input nor as local variable => violation
Note: if signal is not local, but it is 'for' loop variable =>no violation

EXAMPLE-1
:

[1] signal is read in the conditional expression of an 'if' statement and it is not defined as function
input or local variable => violation

function ADD_SUB;
input [7:0] ARG_1;
input [7:0] ARG_2;
reg RES;

begin
if(OP_SEL == 1'b1)

RES <= ARG_1 + ARG_2;
else

RES <= ARG_1 - ARG_2;

ADD_SUB = RES;
end
endfunction

EXAMPLE-1
:

[1] if signal is not local, but it is 'for' loop variable => no violation

integer i;
function BW_ADD;

input [7:0] ARG_1;
input [7:0] ARG_2;

begin
for (i = 0; i <=7; i = i + 1)

BW_ADD <= ARG_1[i] + ARG_2[i];
end
endfunction

86 of 334 Verilog HDL RTL Design Style Checks

Function "ADD_SUB" uses 1 signal(s) not declared as function inputs
or local variables. The results of RTL and post-synthesis simulation
may not match.

Signal "OP_SEL" is not declared as function input or local variable

STARC_VLOG 2.1.2.4
RULE NAME Task statements should not be used (Verilog only)

MESSAGE

Module "{ModuleName}" contains {TaskStatementsCount} 'task' enable
statement(s). Usage of 'task' statements in RTL description is not recommended.

DETAIL 'task' enable statement detected

PROBLEM
DESCRIPTION

It is recommended not to use 'task' statements in the RTL descriptions because of two problems:
– multiple outputs can be described in 'task' statements
– values can be retained by 'reg' variables

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker detects task enable statements and if any are detected it issues one violation per
module.

EXAMPLE-1: [1] module "d32_ang" contains 2 task enable statements => violation

module d32_ang(...);
task swap;

...
endtask
always @(...) begin

swap(SR, DR);
swap(MR, LR);

end
endmodule

Verilog HDL RTL Design Style Checks 87 of 334

Module "d32_ang" contains 2 'task' enable statement(s). Usage of
'task' statements in RTL description is not recommended.

'task' enable statement detected

'task' enable statement detected

STARC_VLOG 2.1.2.5
RULE NAME

Clock edge descriptions should not be used in task statements
(Verilog only)

MESSAGE

Task "{TaskName}" contains {EventControlStatementCount} event control
statement(s). Event control statements should not be used in 'task' statements.

DETAIL Event control statement detected

PROBLEM
DESCRIPTION

Clock edge descriptions in 'task' statements cannot be synthesized by logic synthesis tools.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans body of a 'task' statement. If event control statement is present => violation.

EXAMPLE-1: [1] task "light" contains an event control statement => violation

task light;
output COLOR;
input [31:0] TICS;

begin
repeat(TICS) @(posedge CLOCK);
COLOR = OFF;

end
endtask

88 of 334 Verilog HDL RTL Design Style Checks

Task "light" contains 1 event control statement(s). Event control
statements should not be used in 'task' statements.

Event control statement detected

2.1.3 In a function statement , be careful to check arguments and
bit width

STARC_VLOG 2.1.3.1
RULE NAME

Match the argument bit width with the bit width of the function
statement input declaration (Verilog only)

MESSAGE-1

Argument bit width does not match to bit width of the function port declaration.
Match bit widths exactly to avoid loss or misalign of input signal bit values.

DETAIL-1 Argument width is "{ArgBitWidth}" while port "{InputName}" width is
"{InputBitWidth}"

MESSAGE-2

Argument bit width does not match to bit width of the task port declaration.
Match bit widths exactly to avoid loss or misalign of input/output signal bit
values.

DETAIL-1 Argument width is "{ArgBitWidth}" while port "{InputName}" width is
"{InputBitWidth}"

PROBLEM
DESCRIPTION

When function statement is described, bit width of the input/output arguments must be
considered with special care: the bit width of the function input declaration should match to bit
width of the input argument. If bit widths doesn't match, value of input signal can be misaligned or
lost.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies each function/task call:
– each input/output should be mapped with signal/expression having the same bit width,

Note: for decimal constants violation is issued only if they are wider than arguments
(narrower decimal constants are allowed);

– violation is issued if bit widths are different; messages are displayed according to the
following principles:
– message-1 is displayed for functions
– message-2 is displayed for tasks

Note-1: this rule can be dependent on parameters or hierarchical references => elaboration-time
checking is required for such cases
Note-2: bit widths of decimal constants is defined by their values (“1” – 1 bit (1'b1); “7” – 3 bits
(2'b111)); sign bit is taken into account when unary sign (+ / -) is specified (“1“ or “+1” – 1 bit
(1'b1); “-1” – 2 bits (2'11))

EXAMPLE-1: [1] function "INV" with 1-bit input is described;
[2] function argument is a concatenation that results in 2-bit value => violation (message-1);

wire ST_SSM;
wire ST_SSK;
...
function INV;

input arg;
begin

INV = ~arg;
end
endfunction
...
assign rev_slot = INV({ ST_SSM, ST_SSK });

Verilog HDL RTL Design Style Checks 89 of 334

Argument bit w idth does not match to bit w idth of the function port
declaration. Match bit w idths exactly to avoid loss or misalign of input
signal bit values.

Argument w idth is "2" w hile port "arg" w idth is "1"

EXAMPLE-2: [1] task "copy8to16" is described with 8-bit input and 16-bit output;
[2] input is assigned with signal having less bit width (4), output is assigned with signal having
greater bit width (32) => violation (message-2, detail per each port);

reg [3:0] sample_k_bus;
reg [31:0] transn_k_bus;
...
task copy8to16;

input [7:0] src_arg;
output [15:0] dest_arg;

begin
dest_arg = { 8'b00000000, src_arg };

end
endtask
...
always @(*) begin

...
copy8to16(sample_k_bus, transn_k_bus);
...

end

90 of 334 Verilog HDL RTL Design Style Checks

Argument bit w idth does not match to bit w idth of the task port
declaration. Match bit w idths exactly to avoid loss or misalign of
input/output signal bit values.

Argument w idth is "4" w hile port "src_arg" w idth is "8"

Argument w idth is "32" w hile port "dest_arg" w idth is "16"

STARC_VLOG 2.1.3.2
RULE NAME

Match the return value bit width with the bit width of the
assignment destination signal (Verilog only)

MESSAGE-1
Function return value bit width "{RetValBitWidth}" is less than bit width
"{DestBitWidth}" of the assignment destination. Upper bits of the assignment
destination will be filled with zeroes. Match bit widths exactly.

MESSAGE-2
Function return value bit width "{RetValBitWidth}" is greater than bit width
"{DestBitWidth}" of the assignment destination. Upper bits of the function return
value will be truncated. Match bit widths exactly.

PROBLEM
DESCRIPTION

Function return value should match the bit width of assignment destination signal. When bit width
of right-hand-side it greater than bit width of assignment destination => upper bits of right-hand-
side are truncated. Otherwise, when bit width of right-hand-side is less than bit width of
assignment destination => upper bits of destination are filled with zeros.
Descriptions with different bit widths may be made inadvertently – they are implicit and readability
of the description drops. Concatenations/part-selections should be used to describe
filling/truncation explicitly.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies each assignment (=, <=, assign) where right-hand-side is pure function call:
– bit width of function return value should be the same as bit width of assignment

destination
– message-1 is displayed when target of assignment has greater bit width than bit width of

function return value
– message-2 is displayed when target of assignment has less bit width than bit width of

function return value
Note-1: this rule can be dependent on parameters or hierarchical references => elaboration-time
checking is required for such cases
Note-2: this checker verifies only cases where right-hand-side is pure function call. This is made
intentionally, since checker 2.10.3.3 verifies cases where right-hand-side is not simple function
call (for example, an expression with function call as one of its members)

EXAMPLE-1: [1] function "SHL" is called in "true" branch of ternary conditional operator (it is pure call);
[2] bit width of function return value is greater than bit width of assignment destination => violation
(message-2)

wire [7:0] TS_VAL;
wire [7:0] L_PIPE;
...
function [7:0] SHL;

input [7:0] arg;
begin

SHL = arg << 1;
end
endfunction
...
assign L_PIPE[5:0] = (SEL)? SHL(TS_VAL) : 6'b000001;

EXAMPLE-2: [1] function "SHL" is called in a right-hand 'always' statement (it is pure call);
[2] bit width of function return value is less than bit width of assignment destination => violation
(message-1);

wire [7:0] TS_VAL;
reg [9:0] L_PIPE;
...
function [7:0] SHL;

input [7:0] arg;

Verilog HDL RTL Design Style Checks 91 of 334

Function return value bit w idth "8" is greater than bit w idth "6" of the
assignment destination. Upper bits of the function return value w ill be
truncated. Match bit w idths exactly.

begin
SHL = arg << 1;

end
endfunction
...
always @(TS_VAL)

L_PIPE = SHL(TS_VAL);

EXAMPLE-3: [1] bit width of function return value is greater than bit width of assignment destination, but right-
hand-side is not pure function call (function is member of an expression) => no violation (this is
case for 2.10.3.3)

wire [7:0] TS_VAL;
wire [7:0] L_PIPE;
...
function [7:0] SHL;

input [7:0] arg;
begin

SHL = arg << 1;
end
endfunction
...
assign L_PIPE[5:0] = SHL(TS_VAL) + 8'b01010101;

92 of 334 Verilog HDL RTL Design Style Checks

Function return value bit w idth "8" is less than bit w idth "10" of the
assignment destination. Upper bits of the assignment destination w ill
be f illed w ith zeroes. Match bit w idths exactly.

STARC_VLOG 2.1.3.4
RULE NAME A function statement should end with a return value assignment

MESSAGE

Function does not end with a return value assignment in every execution path.
Return value assignment should be the last statement for any function execution
path

DETAIL-1 Return value assignment is not performed in this execution path
DETAIL-2 Redundant statements after the return value assignment

PROBLEM
DESCRIPTION

The function statement should end by return value assignment to function statement. Statements
following the return value in a function statement will not be executed (logic synthesis and
simulation ignore these lines)

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans every execution path in a function statement to verify that each execution path is
finished by return value assignment (RVA):

– lower scopes are not checked if RVA is found in the current scope
– if RVA is present at least in one branch of 'case' statement – checkers treats it as if all

'case' branches have RVA (completeness of 'case' in a function is checked by rule
2.1.1.2)

– execution path is good if last statement of this execution path has/is RVA

EXAMPLE-1: [1] function doesn't have RVA in one of execution paths => violation (DETAIL-1);
[2] redundant statements after RVA in another one execution path => violation (DETAIL-2);

function FUNC;
input a;
input b;
reg t;

begin
if(a) begin

FUNC = a | b;
t = a;

end
else begin

b = ~b;
a = ~ a ;

end
end
endfunction;

EXAMPLE-2: [1] lower level execution path is not full, but there is no violation due to RVA in the upper level
execution path;
[2] case statement is treated as if all branches has RVA, because RVA is present in at least one of
the branches => no violation;
[3] RVA is not present in the last execution path => violation (DETAIL-1);

function FUNC;
input a;
input b;
reg t;

begin
if(a) begin

if(b) begin
t = a;

end
FUNC = a | b;

Verilog HDL RTL Design Style Checks 93 of 334

Function does not end w ith a return value assignment in every
execution path. Return value assignment should be the last statement
for any function execution path.

Redundant statements af ter the return value assignment

Return value assignment is not performed in this execution path

Function does not end w ith a return value assignment in every
execution path. Return value assignment should be the last statement
for any function execution path.

This execution path “i f(b)” is not full, but upper level execution path
“i f(a)” contains RVA => no violation

end
else

case(b)
1'b0: FUNC = ~b;
1'b1: a = ~a;

endcase
if(b) begin

t = b;
end

end
endfunction;

EXAMPLE-3: [1] function includes execution path that is not full, but the last statement in global execution path is
full => no violation

function FUNC;
input a;
input b;
reg t;

begin
if(a) begin

t = a;
FUNC = a | b;

end
else

t = b;

if(t)
FUNC = t;

else
FUNC = ~t;

end
endfunction

94 of 334 Verilog HDL RTL Design Style Checks

One branch contains RVA => case is full => no violation

Return value assignment is not performed in this execution path (RVA
is not performed neither in this execution path “i f(b)” nor at the
upper level execution path “begin ... end”)

This execution path “else” does not have RVA, but the last statement
“i f(t)” in the upper level execution path “begin ... end” has RVA =>
no violation

STARC_VLOG 2.1.3.5
RULE NAME

In a function statement, global signal assignment should not be
performed

MESSAGE

Function “{FuncName}” assigns values to outer signals. In a function statement,
global signal assignment should not be performed.

DETAIL Signal “{ObjectName}” is assigned in a function.

PROBLEM
DESCRIPTION

If only global signal is assigned within function statement it makes assignment which has function
call in RHS unnecessary because an empty value is returned. However, the description, which
invokes the function statement, necessary. If function statement is not invoked global signal,
assigned within function body, do not change its value.
If an assignment is performed to both a function name and a global signal inside the same
function statement, the description becomes complicated and easily leads to mistakes.
When executing logic synthesis tools, if multiple outputs are described by one function statement,
redundant logic tends to be generated and circuit quality decreases. So do not assign global
signals in function statements.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans function statements:
– if assignment to external (not local to function) is detected => violation

Note: if global signal is for loop variable => no violation

EXAMPLE-1: [1] global signal is assigned in function statement => violation

module top;
 ...

 reg glbl;

 function func1;

 input a;
 input b;

 begin
 if (a)
 func1 = b;
 else
 glbl = a;
 ...
 end
 endfunction

...

endmodule

EXAMPLE-2: [1] global signal is assigned in the function statement but it is for loop variable => no violation

module top;
 ...

 integer glbl;

 function [3:0] bw_or;

 input [3:0] a;
 input [3:0] b;

Verilog HDL RTL Design Style Checks 95 of 334

Function “func1” assigns values to outer signals. In a function
statement, global signal assignment should not be performed.

Signal “glbl” is assigned in a function.

 begin
 for(glbl = 0; glbl < 4; glbl = glbl + 1)
 bw_or[glbl] = a[glbl] || b[glbl];

...

 end
 endfunction

...

endmodule

96 of 334 Verilog HDL RTL Design Style Checks

2.1.4 Instructions for equation level descriptions (different from
VHDL)

STARC_VLOG 2.1.4.5
RULE NAME Logical operator should not be used for vector (Verilog only)

MESSAGE Logical operator has vector argument(s). Use bit-wise operators for multi-bit
arguments and logical operators only for 1-bit arguments.

PROBLEM
DESCRIPTION

Logical operators (!, &&, ||) treat argument as FALSE if it is 0 or as TRUE in other case and return
1-bit result. Bit-wise operators process arguments bit by bit. Results of calculations are the same
for logical and bit-wise operators only if arguments are of 1-bit width. For other arguments results
are different. So it is recommended to use logical operators only with 1-bit arguments to avoid
mistakes.

LEVEL RECOMMENDED 1

CHECKER
BEHAVIOR

Checker detects all logical operators (!, &&, ||):
– if width of any argument (signal or constant) is more than 1 bit => violation.

Note: only one message is produced per one operator.

EXAMPLE-1: [1] one argument of logical operator is 2-bit width => violation.

reg one_bit_reg;
parameter [1:0] two_bits_param = 2'b01;
assign out_reg = one_bit_reg && two_bits;

Verilog HDL RTL Design Style Checks 97 of 334

Logical operator has vector argument(s). Use bit-w ise operators for multi-bit
arguments and logical operators only for 1-bit arguments.

STARC_VLOG 2.1.4.6
RULE NAME

Caution is advised with bit width for reduction operators (Verilog
HDL only)

MESSAGE-1 Argument bit width of reduction operator “{ReductOp}” is equal to one bit. Such
description is not recommended since no operation will be performed.

MESSAGE-2

Argument bit width “{ArgBitWidth}” of reduction operator “{ReductOp}” is too
large. It is recommended to use arguments less than or equal to
“{MAX_ARGUMENT_WIDTH}” bits to avoid performing functions with many
operational steps.

PROBLEM
DESCRIPTION

Reduction operators are available only in Verilog HDL. Reduction operators are efficient,
however, if the bit widths of the values to be executed are too large, functions with many
operational steps are created by a synthesis tool. When bit width is one bit, no operation is
performed. Thus, caution is advised with bit width for reduction operators

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker detects reduction operators (&, ~&, |, ~|, ^, ~^):
– if bit width of argument is equal to 1 bit => violation (message- 1)
– if bit width of argument is greater than MAX_ARGUMENT_WIDTH => violation

(message-2)
Note: parameter MAX_ARGUMENT_WIDTH is defined in configuration file (default value is 8)

EXAMPLE-1: [1] argument 'a' of the reduction operator is one bit width => violation (message-1)
[2] bit width of argument 'b' of the reduction operator is greater then recommended => violation
(message-2)

reg a;
reg [15:0] b;
assign c = &a + |b;

98 of 334 Verilog HDL RTL Design Style Checks

Argument bit w idth of reduction operator “&” is equal to one bit. Such
description is not recommended since no operation w ill be performed.

Argument bit w idth “16” of reduction operator “|” is too large. It is
recommended to use arguments less than or equal to “8” bits to avoid
performing functions w ith many operational steps.

2.1.5 Use a conditional operator ((A)?B:C) only once (Verilog only)

STARC_VLOG 2.1.5.1
RULE NAME Use nesting of a conditional operator (?) only once (Verilog only)

MESSAGE-1
Ternary conditional operator contains {NestedCount} nested conditional
operators. It is recommended to use this operator only once to improve
readability of the description and decrease possibility of nesting mistakes.

PROBLEM
DESCRIPTION

The conditional operator can be nested, but since readability of the description decreases and
nesting mistakes are more likely, it is recommended that a conditional operation be used only
once. When two or more ? exist the nesting relationship is difficult to verify, whether it is an if-if
nest or an else-if nest. Therefore, using an if statement within an always construct is
recommended.

LEVEL RECOMMENDATION 3

MESSAGE-2
Ternary conditional operator contains {NestedCount} nested conditional
operators. Nesting is limited by {MAX_NESTING_LEVEL} level(s) when it cannot
be avoided.

PROBLEM
DESCRIPTION

When nesting of conditional operators cannot be avoided number of levels should be minimized.
Recommended limit of nested operators is 10.

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects ternary conditional operators:
– if conditional operator contains another (nested) ternary conditional operators

=> violation (message- 1)
– if count (excluding the parent one) of nested ternary operators is greater than value of

parameter MAX_NESTING_LEVEL => violation (message-2)
Note: parameter MAX_NESTING_LEVEL is defined in configuration file (default value is 10)

EXAMPLE-1: [1] conditional operator contains nested conditional operator => violation (message- 1)

S_OUT = (SEL_1 - SEL_2)? A : (SEL_1 | SEL_2)? D : B + D;

EXAMPLE-1: [1] conditional operator contains 4 nested conditional operators;
[2] parameter MAX_NESTING_LEVEL has value 3 => violation (message-2)

assign S_OUT = (SEL_1 - SEL_2)? A :
 (SEL_1 + SEL_2)? C :
 (SEL_1 | SEL_2)? B :
 (SEL_1 & SEL_2)? D :
 (SEL_1 ^ SEL_2)? E : F;

Verilog HDL RTL Design Style Checks 99 of 334

Ternary conditional operator contains 1 nested conditional operators.
It is recommended to use this operator only once to improve readability
of the description and decrease possibility of nesting mistakes.

Ternary conditional operator contains 4 nested conditional operators.
Nesting is limited by 3 level(s) w hen it cannot be avoided.

STARC_VLOG 2.1.5.3
RULE NAME

In the conditional expression of an if statement or the conditional
operator (?) the result should not be a vector (Verilog only)

MESSAGE The result of conditional expression is {CondExpBW} bits wide. The result of
conditional expression should be 1 bit.

PROBLEM
DESCRIPTION

The conditional expression of an if statement or the ternary operator should be judged as being
true or false. It is clearly for 1 bit expression result when it is 1 (true) or 0 (false). The vector
expression result may easily lead to confusions, so the result of a conditional expression should
be 1 bit.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker verifies conditional expression of the if statements and the ternary operator (?):
– if expression bit width is greater then 1 => violation

EXAMPLE-1: [1] result of selection expression has width greater then 1 => violation

input [7:0] sel;

 ...

 always @(...) begin

 if(sel)

 ...

 end

EXAMPLE-2: [1] selection expression contains equality operator so result bit width is 1 => no violation

input [7:0] sel;
input [7:0] in_a,in_b;
reg [15:0] res;

 ...

 always @(...) begin

 res[15:8] = (sel == 8'b01010101)? in_a : in_b;

 ...

 end

100 of 334 Verilog HDL RTL Design Style Checks

The result of conditional expression is 8 bits w ide. The result of
conditional expression should be 1 bit.

2.1.6 Specifying the range of an array

STARC_VLOG 2.1.6.1
RULE NAME

Specification of an array should be [MSB:LSB], if it is one-
dimensional

MESSAGE

Module “{ModuleName}” contains {IllegalDeclCount} vector range declaration(s)
that does not correspond to [MSB:LSB] style. Such style is recommended to
avoid problems with arithmetic operations which are based on [MSB:LSB]
assumption.

DETAIL Vector “{VecName}” range declaration does not correspond to [MSB:LSB]
specification.

PROBLEM
DESCRIPTION

Arithmetic operations are based on the assumption of [MSB:LSB] and if a reverse vector is used,
it is necessary to convert it for arithmetic operations otherwise operation result is incorrect. It is
recommended to specify [MSB:LSB], even if the array does not perform arithmetic operations.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker scans vector declarations (function return value range, function / task ports are also
considered) and checks range declaration [MSB:LSB]:

– if (MSB < LSB) => violation
Note-1: array of vectors declaration are skipped
Note-2: array range may be parameter-dependent => elaboration time checks required

EXAMPLE-1: [1] within vector declaration MSB > LSB => violation

module top;
 reg [0:31] tmp;

 ...

endmodule

EXAMPLE-2: [1] within array of vectors declaration MSB > LSB => no violation

module top;
 reg [0:5] mem [3:0];

 ...

endmodule

Verilog HDL RTL Design Style Checks 101 of 334

Vector “tmp” range declaration does not correspond to [MSB:LSB]
specif ication.

Module “top” contains 1 vector range declaration(s) that does not
correspond to [MSB:LSB] style. Such style is recommended to avoid
problems w ith arithmetic operations w hich are based on [MSB:LSB]
assumption.

STARC_VLOG 2.1.6.2
RULE NAME The LSB of an array should be 0

MESSAGE Least significant bit of vector “{VecName}” is “{LSBValue}”. It is recommended
to specify “{RECOMMENDED_LSB}” for LSB of vector.

PROBLEM
DESCRIPTION

The specification of a vector should be [MSB:LSB] and LSB should be 0. By using same style for
vector declarations code is simplified, readability is improved and possibility of mistakes
decreases (see also 2.1.6.1).

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans vector declarations (function return value range, function / task ports are also
considered) and detect LSB in range declaration expression:

– if (LSB != RECOMMENDED_LSB) => violation
Note-1: array of vectors declaration are skipped
Note-2: array range may be parameter-dependent => elaboration time checks required
Note-3: parameter RECOMMENDED_LSB value is described in configuration file and may be
used to tune vector declarations style (by default RECOMMENDED_LSB == 0).

EXAMPLE-1: [1] within vector declaration LSB != RECOMMENDED_LSB (RECOMMENDED_LSB == 0) =>
violation

module top;
 reg [15:31] tmp;

 ...

endmodule

EXAMPLE-2: [1] within array of vectors declaration LSB != RECOMMENDED_LSB (RECOMMENDED_LSB ==
0) => no violation

module top;
 reg [15:7] mem [3:0];

 ...

endmodule

102 of 334 Verilog HDL RTL Design Style Checks

Least signif icant bit of vector “tmp” is “15”. It is recommended to
specify “0” for LSB of vector.

STARC_VLOG 2.1.6.3
RULE NAME The index of an array should be simple signal names only

MESSAGE
Operation(s) is detected within index expression of vector “{VectorName}”. It is
recommended to use simple signal names in vector indexes to avoid generation
of redundant logic.

PROBLEM
DESCRIPTION

By using signal names in a vector index, code is simplified and readability is improved. However,
for descriptions using signal names in a vector index, many levels of logic gates is generated by
logic synthesis in the case of a complex circuit description. Also, depending on the logic
synthesis tool, even if usage of a signal name for a index is supported, highly redundant logic
gates may be generated. Therefore, a vector index should simply consist of signal names only,
and operations should not be included in it. However, it is not a problem if index consists of an
operation with a loop variable (see 2.9.2.1)

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans vector references described in synthesizable context:
– if vector index is not a simple signal => violation

Note-1: index is simple signal when it does not contain any operators (concatenations are
allowed)
Note-2: operators are allowed when operands are loop variable and constant (see 2.9.2.1)

EXAMPLE-1: [1] bit selection in used for function input;
[2] vector index is not a simple signal, it contains arithmetic operation => violation

assign out1 = res (in1 [sel * 2 : 0] , sel);

EXAMPLE-2: [1] concatenation is used for part selection => no violation

assign out1 = in2[{sel, sel} : 0];

Verilog HDL RTL Design Style Checks 103 of 334

Operation(s) is detected w ithin index expression of vector “in1”. It is
recommended to use simple signal names in vector indexes to avoid
generation of redundant logic.

STARC_VLOG 2.1.6.4
RULE NAME The range of an array index should be appropriately specified

MESSAGE-1
Array “{ArrayName}” is referenced by constant index value “{IndexVal}” that is
out of array range [{ArrMSB}:{ArrLSB}]. Pay attention to the MSB and LSB values
and specify array indexes carefully to avoid unexpected simulation results.

MESSAGE-2

Array “{ArrayName}” is referenced by variable index value. Values possible for
index ({IndexMin} : {IndexMax}) are out of array range [{ArrMSB}:{ArrLSB}]. Pay
attention to the MSB and LSB values and specify array indexes carefully to avoid
unexpected simulation results.

PROBLEM
DESCRIPTION

Attention should be paid to the MSB and LSB values of an array, as well as to the range of the
signals specified in the array index. If values that exceed the MSB value or index value which are
lower than LSB are specified, unexpected results may occur. Many simulators give results of 'x'
when a value exceeding MSB is assigned and 'z' when a value less than LSB is assigned.
Depending on the simulator, output values will vary and logic synthesis tools will not generate
appropriate circuits.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker scans array references within 'always' and 'assign' synthesizable statements:
– if any of indexes (constant or variable) used in references does not fit to declared range:

– if array index is constant and index > MSB or index < LSB => violation
(message-1);

– if array index is variable and maximum possible value is greater than MSB or/and
minimum possible value is less then LSB => violation (message-2).

Note-1: initial assignments are not checked.
Note-2: array can be referenced by loop constant index. Loop constant index is an expression of
statically countable loops (see 2.9.1.2), that contain only constants, loop variables, unary, binary
and ternary operation (in this case index range is counted by values). If expression has non-loop
variables, concatenation, it is simple expression (in this case index range is counted by bit-width
of operands).

EXAMPLE-1: [1] an index of array reference in constant;
[2] constant value does not lie in the range [MSB:LSB] => violation (message-1).

reg [31:0] in1 [10:0];
assign data = in1[8'h10];

EXAMPLE-2: [1] an index of array reference in variable;
[2] maximal index value is grater then MSB (15 > 3) and LSB > 0 => violation (message-2).

reg [31:0] in1 [3:2];
reg [7:0] sel;
assign data = in1[sel[3:0]];

104 of 334 Verilog HDL RTL Design Style Checks

Array “in1” is referenced by constant index value “16” that is out of
array range [10:0]. Pay attention to the MSB and LSB values and
specify array indexes carefully to avoid unexpected simulation results.

Array “in1” is referenced by variable index value. Values possible for
index (0 :15) are out of array range [3:2]. Pay attention to the MSB and
LSB values and specify array indexes carefully to avoid unexpected
simulation results.

STARC_VLOG 2.1.6.5
RULE NAME For an array index, 'x' and 'z' should not be used

MESSAGE Unknown value in the index: {ObjectValue}. Incorrect synthesis results may be
generated.

PROBLEM
DESCRIPTION

An error does not occur during simulation if unknown value is used as index. But error may occur
in the logic synthesis tool or an incorrect circuit may be generated. So do not use 'x' or 'z' for an
array index in RTL descriptions.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies bit-selection or part-selection index expression which evaluates to a constant:
– if value of index contain unknown bits ('x' or 'z') => violation

EXAMPLE-1: [1] bit selection expression contains unknown ('z') value => violation

assign out1 = { in1[1'bz], in2[30:0] };

EXAMPLE-2: [1] reference to memory contains unknown 'x' value => violation

always @(mem) begin
out1 = mem[3'b1x1]

end

Verilog HDL RTL Design Style Checks 105 of 334

Unknown value in the index: 1'bz. Incorrect
synthesis results may be generated.

Unknown value in the index: 3'b1x1. Incorrect synthesis results may be generated.

2.2 always construct description in combinational logic

2.2.1 Avoid the risk of generating latches

STARC_VLOG 2.2.1.1
RULE NAME

Latches are generated unless all conditions have been described.
Care should be taken not to create latches

MESSAGE
Possible latch inference for {LatchSigCount} signal(s)

DETAIL Signal "{SignalName}" is not assigned in all cases

PROBLEM
DESCRIPTION

When describing a process for a combinational circuit, each signal should be defined in all
execution paths of the process. It usually means that assignment to the signal should be
performed in each branch of any conditional statement ('if', 'case') inside the process. Otherwise,
logic synthesis tools will recognize that output signal must be retained for certain condition. As a
result, latch will be generated to maintain output value.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans 'always' statements in order to detect the latches. Following requirements are
imposed on each signal assigned in an 'always' construct:

– if signal is assigned in some branch of 'if'/'case' statement, it must be also assigned in
all other branches of this statement (i.e. signal assignment should be complete)

– if there is no 'else' branch in 'if' statement => all conditions must be covered by existing
branches (i.e. 'if' statement should be complete)

– if there is no 'default' clause in 'case' statement => all conditions must be covered by
existing clauses (i.e. 'case' statement should be complete)

Consecutively, latch is inferred if one of the above restrictions is broken.
So, violation message is displayed when 'always' block describes latches only and one from the
two following cases is true:

– 'if'/'case' statement is complete, but signal is not assigned in all branches
– the signal is assigned in all branches, but 'if'/'case' statement is incomplete

Note-1: when completeness of 'case'/'if' statement depends on parameter => elaboration-time
checking is required (warning message will include instance name)
Note-2: detail-message for vector can be either single (if latches are inferred by all elements of
the vector) or multiple (if latches are inferred only by some bits)

EXAMPLE-1: [1] 'if' is complete ('else' branch is present) but one of two signals is not assigned in all branches

always @(S, A, B) begin
if(S == 2'b00) begin

F1 <= A | B;
F2 <= 1'b0;

end
else if(S == 2'b01) begin

F1 <= 1'b0;
F2 <= 1'b1;

end
else if(S == 2'b10) begin

F1 <= 1'b0;
end
else begin

F1 <= 1'b0;
F2 <= A & B;

end
end

106 of 334 Verilog HDL RTL Design Style Checks

Possible latch inference for 1 signal(s)

Signal "F2" is not assigned in all cases

EXAMPLE-2: [1] 'case' is incomplete ('default' clause is not specified and case clauses don't cover all possible
conditions) => violation for each signal;
[2] note, that signal "F2" is not assigned in all branches, whereas signal "F1" is assigned in all
branches

always @(S, A, B) begin
case(S)

2'b00: begin
F1 <= A | B;
F2 <= 1'b0;

end
2'b01: begin

F1 <= 1'b0;
F2 <= 1'b1;

end
2'b10: begin

F2 <= A & B;
end

endcase
end

EXAMPLE-3: [1] casex is incomplete (completeness of depends on parameter => elaboration-time checking
required);
[2] assigned signal "F" is 2-bit vector (single warning issued for it – due to incomplete 'case' – all
bits will infer latches)

parameter [1:0] param = 2'b01;
always @(S, A, B) begin

case x (S)
2'bx0: begin

F[0] <= A | B;
F[1] <= 0;

end
param: begin

F[0] <= 1;
F[1] <= A & B;

end
endcase

end

Verilog HDL RTL Design Style Checks 107 of 334

Signal "F1" is not assigned in all cases

Possible latch inference for 1 signal(s)

Signal "F" is not assigned in all cases

Possible latch inference for 2 signal(s)

Signal "F2" is not assigned in all cases

2.2.2 Define every input signal in an always construct in the
sensitivity list

STARC_VLOG 2.2.2.1

RULE NAME
All signals at the right of the conditional expression and the
assignment statement in the always construct of the combinational
circuit must be defined in the sensitivity list

MESSAGE

The sensitivity list of always statement is incomplete. Differences between RTL
and post-synthesis simulation results are possible.

DETAIL Signal “{ObjectName}” is read, but is not included in the sensitivity list.

PROBLEM
DESCRIPTION

Logic synthesis tools ignore sensitivity lists in combinational circuits assuming that always
construct executes if any of reading signal changes. When any signal read in the process is not
included in sensitivity list – differences between RTL and gate level simulation may occur.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies all signals which are read in combinational always block:
– signals on the right side of procedural assignment
– condition expression of the if-statement
– selection expression of the case-statement
– input arguments of function/task calls

If any of detected signals is not included in sensitivity list of current always block => violation.
Checker skips following objects:

– initial constructs
– internally declared signals
– delay expressions
– event control statements
– always constructs if there is an edge description in sensitivity list
– blocks without sensitivity list
– incremental statement of loop variable is not checked.
– loop variables as index
– intermediate variables (variables that are assigned and read in this process).

Note: elaboration-time checks are possible when needed.

EXAMPLE-1: [1] signal is used on the right side of procedural assignment and is not included in sensitivity list =>
violation

always @(in1, in2) begin

 out1 = in1 & in2 & in3;

end

108 of 334 Verilog HDL RTL Design Style Checks

The sensitivity list of alw ays statement is incomplete. Dif ferences
betw een RTL and post-synthesis simulation results are possible.

Signal “in3” is read, but is not included in the sensitivity list.

EXAMPLE-2: [1] signal is used for bit selection and is not included in sensitivity list => violation
[2] loop variable is used for bit selection => no violation

always @(in1, in2) begin

 for(i = 0; i < 10; i = i + 1) begin
 out1 = in1[i] && in2[in3];
 end
 ...

 end

Verilog HDL RTL Design Style Checks 109 of 334

The sensitivity list of alw ays statement is incomplete. Dif ferences
betw een RTL and post-synthesis simulation results are possible.

Signal “in3” is read, but is not included in the sensitivity list.

STARC_VLOG 2.2.2.2
RULE NAME

Do not define constants and unnecessary signals in the sensitivity
list

MESSAGE

Constant(s) or unnecessary signal(s) detected in the sensitivity list. Differences
between RTL and post-synthesis simulation results are possible.

DETAIL-1 Constant “{ObjectName}” is included in the sensitivity list.

DETAIL-2 Signal “{ObjectName}” is included in the sensitivity list, but is not
referenced.

DETAIL-3 Parameter “{ObjectName}” is included in the sensitivity list.

DETAIL-4 Signal "{ObjectName}" is unnecessary because it is used only as a loop
variable.

DETAIL-5 Signal "{ObjectName}" is unnecessary because it is used only as an
intermediate variable.

PROBLEM
DESCRIPTION

Logic synthesis tools ignore sensitivity lists in combinational circuits assuming that always
construct executes if any of reading signal changes. Unnecessary signals described in sensitivity
list may cause extra cycles of 'always' block execution and differences between RTL and gate
level simulation may occur as a result. So do not define constants and unnecessary signals in the
sensitivity list

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker verifies sensitivity lists of combinational always block:
– if a constant is included in the sensitivity list => violation (detail-1)
– if a parameter is included in the sensitivity list => violation (detail-3)
– if a signal is included in the sensitivity list is not referenced within current 'always' block

(considering enabled tasks) => violation (detail-2)
– if signal which is overridden in a named block is included in the sensitivity list =>

violation (detail-2)
– if a global loop variable is included in the sensitivity list => violation (details-4)
– if an intermediate variable is specified in sensitivity list => violation (detail-5)

Note: see 2.2.2.1 for context that is skipped.

EXAMPLE-1: [1] signal is used on the right side of procedural assignment and is not included in sensitivity list =>
violation

always @(in1, in2) begin

 out1 = in1 & in2 & in3;

end

EXAMPLE-2: [1] signal is used for bit selection and is not included in the sensitivity list => violation
[2] loop variable is used for bit selection => no violation

always @(in1, in2) begin

 for(i = 0; i < 10; i = i + 1) begin
 out1 = in1[i] && in2[in3];
 end
 ...
end

110 of 334 Verilog HDL RTL Design Style Checks

The sensitivity list of alw ays statement is incomplete. Dif ferences
betw een RTL and post-synthesis simulation results are possible.

Signal “in3” is read, but is not included in the sensitivity list.

The sensitivity list of alw ays statement is incomplete. Dif ferences
betw een RTL and post-synthesis simulation results are possible.

Signal “in3” is read, but is not included in the sensitivity list.

STARC_VLOG 2.2.2.3
RULE NAME

Multiple event expressions should not be described with always (at
least one event expression is required)

MESSAGE-1

'always' block contains {NumberOfEventControlStatements} event control
statements. Such description style is rarely synthesizable. One event control
statement is required.

DETAIL-1 Event control statement detected.
DETAIL-2 Task contains event control statement(s).

MESSAGE-2 'always' block does not contain any event control statement. Infinite loop is
possible during simulation. One event control statement is required.

PROBLEM
DESCRIPTION

If multiple event expressions are described in an 'always' construct, logic synthesis might be
impossible (except some specific cases). Also, description without any event control statement is
hazardous (it has the risk of infinite loop during the simulation)

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans 'always' statements:
– if multiple event control statements are detected => violation (message-1)
– if no event control statement is detected => violation (message-2)

EXAMPLE-1: [1] 'always' block contains multiple event expressions => violation (message-1);

always @ (CLK) begin
if(RESET = '1')

@ (posedge CLK)
F <= 1'b0;

else
F <= Y1 ^ Y2;

end

EXAMPLE-2: [1] 'always' block doesn't contains event control expressions => violation (message-2)

always begin
if(RESET = '1')

F <= 1'b0;
else

F <= Y1 ^ Y2;
end

EXAMPLE-3: [1] 'always' block contains multiple event control expressions => violation (message-1)

always @ (posedge CLK) begin
Y <= A & B;

@ (negedge CLK)
Y <= A | B;

end

Verilog HDL RTL Design Style Checks 111 of 334

'alw ays' block contains 2 event control statements. Such description
style is rarely synthesizable. One event control statement is required.

Event control statement detected

Event control statement detected

'alw ays' block does not contain any event control statement. Inf inite
loop is possible during simulation. One event control statement is
required.

'alw ays' block contains 2 event control statements. Such description
style is rarely synthesizable. One event control statement is required.

Event control statement detected

Event control statement detected

2.2.3 Initial value description in always constructs (Verilog only)

STARC_VLOG 2.2.3.1
RULE NAME

Do not mix blocking assignments (=) and non-blocking
assignments (<=) in combinational always construct

MESSAGE
Always construct for combinational circuit contains a mixture of blocking (=) and
non-blocking (<=) assignments. It is safer to use only one type of assignments in
the same 'always' block.

PROBLEM
DESCRIPTION

Assignment of a value to the signal with non-blocking assignment takes place after the evaluation
of all assignment statements in the always block. When the blocking assignment is performed,
the assignment is already completed at the time this line is evaluated, so the assigned values on
the lines after that are certainly valid. Mixture of assignment types may easily lead to mistakes.
Moreover simulation results may differ depending on Verilog-HDL simulators. It is safer to use
only one type of assignments in the same always block.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verify types of assignments in always block:
– if both type of assignments (blocking and non-blocking) are used => violation

EXAMPLE-1: [1] assignments of both types are used => violation

always
 begin
 case (in1)
 1'b1 : out1 = in2;
 1'b0 : out1 = in3;
 default : out1 <= 1'b0;
 endcase

...

 end

112 of 334 Verilog HDL RTL Design Style Checks

Alw ays construct for combinational circuit contains a mixture of
blocking (=) and non-blocking (<=) assignments. It is safer to use only
one type of assignments in the same 'alw ays' block.

STARC_VLOG 2.2.3.2
RULE NAME

Do not assign over the same signal using a non-blocking
assignment for combinational circuits

MESSAGE
Multiple non-blocking assignments over the same signal "{SignalName}" are
detected on the same execution path in the 'always' construct for a
combinational circuit. Final signal value is undetermined.

PROBLEM
DESCRIPTION

In non-blocking assignment statements, the left hand side members are assigned after all of the
right hand side expressions are evaluated. So, multiple non-blocking assignments over the same
signal (in same execution path) will result in undefined value.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans combinational 'always' statements in order to find signals that are assigned with
non-blocking assignments:

– if signal(*) is assigned multiple times under the same execution path(es) =>
violation
(*) if separate bits of the same signal are assigned – compacting is performed

Note: 'always' for combinational circuit for this checker is such 'always' statement, where all
signals are described without edges in the sensitivity list

EXAMPLE-1: [1] multiple non-blocking assignments over the same signal "Y1" (in the same execution path) =>
violation;
[2] multiple non-blocking assignments over the same signal "Y2" (execution path is not the same)
=> no violation;

always @(CLK. SEL, A, B) begin
Y1 <= 1'b0;
if(SEL) begin

Y1 <= A | B;
Y2 <= A & B;

end
else begin

Y1 <= A & B;
Y2 <= A | B;

end
end

EXAMPLE-2: [1] 2-bit vector is assigned with full assignment and with partial assignment => violation for bit that
is assigned multiple times

always @(CLK, SEL, A, B) begin
Q <= 2'b00;
case(SEL)

1'b0: Q[0] <= A | B;
1'b1: Q[0] <= A & B;

endcase
end

EXAMPLE-3: [1] multiple non-blocking assignment over the same signal "Q" in sequential circuit => no violation
(this is case for 2.2.3.3)

always @(posedge CLK) begin
if(RESET)

Q <= 1'b0;
else begin

Q <= DATA1;
Q <= DATA2;

end
end

Verilog HDL RTL Design Style Checks 113 of 334

Multiple non-blocking assignments over the same signal "Y1" are
detected on the same execution path in the 'alw ays' construct for a
combinational circuit. Final signal value is undetermined.

Multiple non-blocking assignments over the same signal "Q[0]" are
detected on the same execution path in the
'alw ays' construct for a combinational circuit. Final signal value is
undetermined.

STARC_VLOG 2.2.3.3
RULE NAME

Do not assign over the same signal in an always construct for
sequential circuits

MESSAGE
'always' construct for sequential circuit contains multiple assignments to the
signal "{SignalName}" in the same execution path. This may lead to malfunctions
and is difficult to debug.

PROBLEM
DESCRIPTION

Descriptions with overwrite assignment to the same signal are prone to causing race problems
during simulation. The best practice is to avoid such descriptions whenever it is possible (even
when making blocking assignments).

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans body of the 'always' statement for sequential circuit and finds assigned signals
(with blocking or nonblocking assignments either):

– if signal(*) (for which FF or latch is inferred) is assigned more than once in single
execution path(es) => violation
(*) if separate bits of the same signal are assigned – compacting is performed

Note: 'always' for sequential circuit for this checker is such 'always' statement, where all signals
are described with edges in the sensitivity list

EXAMPLE-1: [1] multiple assignments (blocking and non-blocking) over the same signal "outx[0]" in sequential
circuit (in the same execution path) => violation;

always @(posedge clk or negedge rst_n)
if(~rst_n)

outx <= 4'h0;

else begin
outx <= #1 outx << 1;
outx[0] <= #1 in0;

end

114 of 334 Verilog HDL RTL Design Style Checks

'alw ays' construct for sequential circuit contains multiple assignments
to the signal "outx[0]" in the same execution path. This may lead to
malfunctions and is dif f icult to debug.

2.3 FF inferences

2.3.1 Unify the description style of FF inferences

STARC_VLOG 2.3.1.1
RULE NAME Use non-blocking assignment in FF inferences

MESSAGE

'always' construct infers {FFCount} flip-flop(s) assigned with blocking
assignment(s) (=). Use non-blocking assignments (<=) in FF inferences.

DETAIL-1 FF inference for signal "{ObjectName}", {BACount} blocking
assignment(s):

DETAIL-2 Blocking assignment to FF signal "{ObjectName}".

PROBLEM
DESCRIPTION

With standard blocking assignments (=), evaluation timing of the right-hand side and assignment
timing of the left-hand side are done at the same time, but in the case of non-blocking
assignments, assignment to the left-hand side is performed after evaluation of the right-hand side
is completely finished. For that reason, it is possible to avoid race conditions using non-blocking
assignment.

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects always constructs which infer FFs and all signals for which FFs are inferred :
– if signal is assigned with blocking (=) assignment => violation

EXAMPLE-1: [1] always construct infer FF for one signal but it is assigned with non blocking assignment (in two
branches) => violation

always @(posedge CLK or negedge RESET)

 begin

 if(RESET)

 Q = 1'b0;

 else

 Q = DATA;

end

EXAMPLE-2: [1] blocking assignment is used but process does not infer FF => no violation

always @(CLK or D)
 if (CLK) Q = D;

Verilog HDL RTL Design Style Checks 115 of 334

'alw ays' construct infers 1 f lip-f lop(s) assigned w ith blocking
assignment(s) (=). Use non-blocking assignments (<=) in FF
inferences.

FF inference for signal "Q", 2 blocking assignment(s):

Blocking assignment to FF signal "Q".

Blocking assignment to FF signal "Q".

STARC_VLOG 2.3.1.3
RULE NAME Set delay values for FF inference

MESSAGE

Delay is not specified for FF inference. It is recommended to insert delay values
into assignment expressions for signals to avoid racing problems.

DETAIL FF signal "{SignalName}" is assigned without delay {AssignCount} times.

PROBLEM
DESCRIPTION

There is no particular problem if the design consists of a single clock, but when multiple clocks
are present with a gated clock, etc., the racing problem tends to occur. One possible decision is
to set delay values only during D input assignment and not to put them in an assignment during
an asynchronous reset. In any case, inserting delay values at the time of assignment is to
prevent the racing problem during RTL simulation (delay values are ignored during synthesis).
Therefore, it is recommended to insert delay values into assignment expressions for FF signals.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker detects 'always' which infers FFs and signals for witch FF is inferred:
– if delay for FF signal assignment is not specified (Q <= D) => violation

Note: FF signal assignments made under asynchronous control are not checked

EXAMPLE-1: [1] delay is not specified for FF signal assignment under asynchronous control (reset) => no
violation;
[2] delay is not specified for FF signal assignment under synchronous control (set) => violation;
[3] delay is not specified for FF signal assignment expression => violation;

always @(posedge CLK or negedge rst) begin
 if(!rst)
 Q1 <= 1'b0;
 else if (set)
 Q1 <= 1'b1;
 else
 Q1 <= D2;

end

EXAMPLE-2: [1] delay is not specified for signal assignment, but no FF is inferred by the description => no
violation

always @(CLK) begin

 Q <= DATA;

end

116 of 334 Verilog HDL RTL Design Style Checks

Delay is not specif ied for FF inference. It is recommended to insert
delay values into assignment expressions for signals to avoid racing
problems.

FF signal "Q1" is assigned w ithout delay 2 times.

STARC_VLOG 2.3.1.4
RULE NAME

Do not use delay values which infer FFs except in an always
constructs

MESSAGE-1

It is recommended not to use delay values otherwise than for a flip-flop signal
assignments. RTL and post-synthesis simulation results may not match.
However, if delay is necessary here, use parameters to enable modification
depending on differences in target technologies.

MESSAGE-2 It is recommended not to use delay values otherwise than for a flip-flop signal
assignments. RTL and post-synthesis simulation results may not match.

PROBLEM
DESCRIPTION

Inserting delay values at the time of assignment prevents the racing problem during RTL
simulation. Delay values are ignored during synthesis. Delay values may be specified in FF
assignment expressions, but they should not be specified in other description blocks
(combinational circuits, etc.). If delay values are specified in a combinational circuit, you risk
having the simulation become dependent on those delay values.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans 'always' and 'assign' statements for delays:
– if delay is specified for FF signal assignment (Q <= #DELAY D) => no violation
– if delay is specified in other part of the description (not for FF signal assignment)

– if delay is specified with literal constant => violation (message-1)
– if delay is parametrized (specified with parameter) => violation (message-2)

Note: FF signal (for this rule) – such signal that is:
– assigned within edge-controlled 'always' block and

– it is referenced from the multiple description blocks
– or it is not an intermediate variable
– or it is module output

EXAMPLE-1: [1] delay is specified for FF signal assignment => no violation

always @(negedge CLK) begin

 Q <= #1 DATA;

end

EXAMPLE-2: [1] delay is specified not as intra-assignment, but as common delay;
[2] delay is specified with literal constant => violation (message-1)

always @(negedge CLK) begin

 #1 Q <= DATA;

end

EXAMPLE-3: [1] process is combinational;
[2] delay is specified with parameter => violation (message-2)

parameter DELAY = 1;

Verilog HDL RTL Design Style Checks 117 of 334

It is recommended not to use delay values otherw ise than for a f lip-
f lop signal assignments. RTL and post-synthesis simulation results
may not match. How ever, if delay is necessary here, use
parameters to enable modif ication depending on dif ferences in target
technologies.

always @(CLK or DATA) begin

 Q <= #DELAY DATA && CLK;

end

118 of 334 Verilog HDL RTL Design Style Checks

It is recommended not to use delay values otherw ise than for a f lip-
f lop signal assignments. RTL and post-synthesis simulation results
may not match.

STARC_VLOG 2.3.1.5
RULE NAME

Specify delay values with integral numbers and do not use negative
delay values

MESSAGE-1 Specify delay values with integral numbers in flip-flop inferences

MESSAGE-2 Negative delay value "{DelayVal}" is detected. Specify delay values with positive
numbers in flip-flop inferences.

PROBLEM
DESCRIPTION

In general, it is recommended to insert delay values into assignment expressions for signals in
order to prevent the racing problem during the RTL simulation. Consider following section to find
out more details about the racing problem:
 always @(CLK or EN) begin

 GATED_CLK <= CLK & EN;
 end
 always @(posedge CLK) begin

 REG_B <= DATA;
 end
 always @(posedge GATED_CLK) begin

 REG_A <= REG_B;
 end
Gated clock is described here (clock signal CLK and enable signal EN are anded together =>
gated clock GATED_CLK is generated). Note, that guaranteed relationship is required between
the CLK and EN (if EN changes while CLK is active => GATED_CLK pulse => malfunction).

Malfunction can occur either during gate simulation or RTL simulation. Upper drawing displays
circuit diagram that is generated from the description above. Think about events order at CLK
rise: it is unclear what signal will change first – GATED_CLK or REG_B (if GATED_CLK is first
=> REG_A will be assigned with old value from REG_B, otherwise – with updated one).
So, such problem doesn't necessarily occur – it depends on simulator. But, it is strongly
recommended to insert delay values into assignment expressions for signals: such style helps to
avoid a lot of problems with simulation dependency on some particular tool). As a result, solution
to the racing problem will depend on particular device only.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans 'always' statements that infer flip-flops and for each detected intra-assignment
delay (Q <= #DELAY D) – verifies following:

– delay should be specified with integral number (integral numbers are:
constants/parameters of integer/reg/time type), if number is not integral => violation with
message-1

– delay should be positive (in case of parametrized delay – elaboration-time checking is
required)

Note-1: if delay is not integral, it will not be checked that it is positive (in other words, only one
message will be displayed for non-integral negative delay)
Note-2: delay can be specified with integral expression (integral expression is such that consists
of integral constants/parameters only)

Verilog HDL RTL Design Style Checks 119 of 334

REG_B REG_A
DATA

CLK

GATED_CLK

EN

EXAMPLE-1: [1] delay is specified with positive integral number (parameter) => no violation

parameter DELAY = 10;
always @(posedge CLK) begin

Q <= #DELAY DATA;
end

EXAMPLE-2: [1] delay is specified with integral expression;
[2] expression consist of parameter and constant;
[3] expression is evaluated to negative delay => violation (elaboration-time warning-2);

parameter DELAY = 10;
always @(posedge CLK) begin

if(RESET)
Q <= 1'b0;

else
Q <= #(DELAY – 20) DATA;

end

EXAMPLE-3: [1] delay is specified with non-integral constant => violation (message-1)

always @(posedge CLK) begin
if(RESET)

Q <= #(7) 1'b0;
else

Q <= #(7.7) DATA;
end

EXAMPLE-4: [1] delay is not specified (such case is for rule 2.3.1.3 – "set delay values for FF inferences") => no
violation

always @(posedge CLK) begin
Q <= DATA;

end

EXAMPLE-5: [1] delay value is negative in first intra-assignment and non-integral in the second one (but they are
specified not in the flip-flop inference) => no violation

always @(CLK) begin
if(RESET)

Q <= #(-1) 1'b0;
else

Q <= #(7.7) DATA;
end

120 of 334 Verilog HDL RTL Design Style Checks

Negative delay value "-10" is detected. Specify delay values w ith
positive numbers in f lip-f lop inferences.

Specify delay values w ith integral numbers in f lip-f lop inferences.
(note, if specify delay value "-7.7" here => warning message will be
single and same)

STARC_VLOG 2.3.1.6
RULE NAME

In FF inference with asynchronous reset, pay attention to the
negedge or the posedge of the reset signal

MESSAGE-1

Polarity of asynchronous control signal "{SignalName}" does not match the edge
described in the sensitivity list. In FF inference with asynchronous control, pay
attention to the negedge or the posedge of the control signal.

DETAIL Polarity violation in the condition for asynchronous control

MESSAGE-2

Polarity of asynchronous control signal(s) cannot be detected because operator
“{OpName}” is used in asynchronous control expression. Define asynchronous
control clearly - with signal or its negation - to avoid problems with most of logic
synthesis tools.

MESSAGE-3

Polarity of asynchronous control signal(s) cannot be detected because relational
operator “{OpName}” is used in asynchronous control expression. Such
descriptions are not synthesizable with most of synthesis tools. Use equality
operators (=, !=) to compare asynchronous control signal with constant when
testing the polarity.

MESSAGE-4

Polarity of asynchronous control signal(s) cannot be detected because
comparison is performed with non-constant value. Such descriptions are not
synthesizable with most of synthesis tools. Compare asynchronous control
signal with constant when testing the polarity.

MESSAGE-5

Polarity of asynchronous control signal(s) cannot be detected because function
“{FuncName}” is called on asynchronous reset line. Define asynchronous control
clearly - with signal or its negation - to avoid problems with most of logic
synthesis tools.

MESSAGE-6

Polarity of asynchronous control signal(s) cannot be detected because
sensitivity list contains multiple-bit signal “{SigName}”. Such descriptions are
not synthesizable. Use single-bit signals to define edge-sensitive 'always'
constructs.

MESSAGE-7

Polarity of asynchronous control signal(s) cannot be detected because the
asynchronous control logic does not match a standard flip-flop description.
Define asynchronous control clearly - with signal or its negation - to avoid
problems with most of logic synthesis tools.

PROBLEM
DESCRIPTION

Asynchronous reset edge should be considered carefully when describing flip-flop inferences.
Descriptions where edge in the sensitivity list differs from the polarity in the 'if' conditional branch,
can not be synthesized with most logic synthesis tools (it is possible for some tools: unintentional
synchronous reset flip-flops will be generated).

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans 'always' statements that infer flip-flops and verifies asynchronous reset controls:
– for each asynchronous reset control signal: edge described in the sensitivity list should

correspond to polarity in the 'if' branch when it is possible to define polarity
– polarity can be detected if following constructs are used in conditions of 'if' branch:

– logical / bitwise 'or' (||, |), concatenations({}), logical / bitwise negation (!, ~)
Note-1: negation of ORed signals is not allowed (it is not the same that
ORing of negated signals)
Note-2: vector in an asynchronous condition is the same as ORing of all its bits
Note-3: ternary operators are allowed and restrictions for “()?” condition are
similar to restrictions for 'if' conditions

– comparisons of following format: <signal / concatenation COMP constant>,

Verilog HDL RTL Design Style Checks 121 of 334

RULE NAME
In FF inference with asynchronous reset, pay attention to the
negedge or the posedge of the reset signal

where COMP is one of equality operators (!=, ==, !==, ===)
– when it is impossible to define the polarity of asynchronous reset following checks

are performed:
– if expression, that includes asynchronous control signal, contains an operator

that does not belongs to set of allowed operators => violation (message-2)
– if expression, that includes asynchronous control signal, contains an

comparison that does not belongs to set of allowed comparisons
– if comparison contains operator that does not belongs to allowed

comparison operators => violation (message-3)
– if one side of comparison is not signal / constant / concatenation =>

violation (message-7)
– if asynchronous control signal is compared not with constant => violation

(message-6)
– if asynchronous control expression contains function call => violation

(message-7) (along with 2.1.2.1 that restricts function calls on
asynchronous reset lines)

– if sensitivity list contains vector / part select => violation (message-6)
– in other cases => violation (message-7)
– Note-4: when at least one problem is detected it is reported and checking is

stopped
Note-5: asynchronous control is signal that meets following set of requirements:

– 'posedge' or 'negedge' of this signal is specified in the sensitivity list
– there is an 'if' branch that includes this signal (signal itself, its logical negation or its

comparison with constant of 0/1) and FF signal is assigned inside this branch

EXAMPLE-1: [1] polarity of asynchronous reset control differs from specified in the sensitivity list => violation

always @(posedge CLK or negedge RESET)

begin

if(RESET)
Q <= 1'b0;

else
Q <= DATA;

end

EXAMPLE-2: [1] polarity of asynchronous reset control is parameter-dependent and it differs from specified in
the sensitivity list => violation;
[2] elaboration time checking is required => message will include instance name.

parameter RESET_POLARITY = 0;
always @(posedge CLK or posedge RESET)

begin

if(RESET == RESET_POLARITY)
Q <= 1'b0;

else
Q <= DATA;

end

122 of 334 Verilog HDL RTL Design Style Checks

Polarity of asynchronous control signal "RESET" does not match the
edge described in the sensitivity list. In FF inference w ith
asynchronous control, pay attention to the negedge or posedge of the
control signal.

Polarity violation in the condition for asynchronous control.

Polarity violation in the condition for asynchronous control.

Polarity of asynchronous control signal "RESET" does not match the
edge described in the sensitivity list. In FF inference w ith
asynchronous control, pay attention to the negedge or posedge of the
control signal.

EXAMPLE-3: [1] expression, that includes asynchronous control signal, contains an operator '+' that does not
belongs to set of allowed operators => violation (message-2);
[2] expression, that includes asynchronous control signal, contains an operator '-' that does not
belongs to set of allowed operators => violation (message-2).
Note: only one warning is expected in the second case.

always @(negedge CLK or posedge RESET1 or negedge RESET2)
begin
 if(RESET1 + RESET2)
 Q1 <= 1'b0;
 else if((RESET1 - 1) % 2)
 Q1 <= 1'b0;
 else
 Q1 <= DATA;
end

Verilog HDL RTL Design Style Checks 123 of 334

Polarity of asynchronous control signal(s) cannot be detected
because operator “+” is used in asynchronous control expression.
Def ine asynchronous control clearly - w ith signal or its
negation - to avoid problems w ith most of logic synthesis tools.

STARC_VLOG 2.3.1.7
RULE NAME Do not use both asynchronous set and reset

MESSAGE

{AsynchControlCount} asynchronous set/reset signals for FF "{ObjectName}".
Do not use both asynchronous set and reset in FF inferences.

DETAIL-1 Asynchronous set/reset control
DETAIL-2 Asynchronous reset control
DETAIL-3 Asynchronous set control

PROBLEM
DESCRIPTION

Flip-flops with both asynchronous set and asynchronous reset should not be described. Consider
following example:
 always @(posedge CLK or negedge RESET or negedge SET) begin
 if(!RESET)
 Q <= 4'b0000;
 else if(!SET)
 Q <= 4'b1111;
 else
 Q <= DATA;
 end
such description means Q will be realized with asynchronous reset/set flip-flops (while RESET is
active – 4'b0000 occurs on Q, while SET is active – 4'b1111). But, consider following description:
 always @(posedge CLK or negedge RESET or negedge SET) begin
 if(!RESET)
 Q <= 4'b0000;
 else if(!SET)
 Q <= 4'b1010;
 else
 Q <= DATA;
 end
it means Q cannot be realized with a simple asynchronous control set/reset flip-flops (while
RESET is active – 4'b0000 occurs on Q, while SET is active – 4'b1010). Such description
requires logic circuit to be generated in the asynchronous reset line! Moreover, FF may not be
inferred correctly (depending on logic synthesis tool).
So, multiple asynchronous controls should not be used.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans 'always' statements that infer flip-flops and verifies number of asynchronous
control signals:

– it is allowed to use only one asynchronous control signal
Note-1: see 2.3.1.6: asynchronous control signal description.
Note-2: if any other signal (asynchronous input) is used as control signal for FF output
assignment, it is treated as presence of 2 asynchronous controls: both set and reset.

EXAMPLE-1: [1] flip-flop with asynchronous reset and synchronous set is described => no violation
(asynchronous control is single)

always @(posedge CLK or negedge RESET) begin
if(!RESET)

Q <= 1'b0;
else if(SET)

Q <= 1'b1;
else

Q <= DATA;
end

124 of 334 Verilog HDL RTL Design Style Checks

EXAMPLE-2: [1] flip-flop with two asynchronous controls => violation with 2 details; [2] first asynchronous control
is simple reset line => detail-2; [3] second asynchronous control is asynchronous input => detail-1

always @(posedge CLK or negedge RESET or negedge SET) begin
if (! RESET)

Q <= 1'b0;

else if (!SET)
Q <= ASYNC_INPUT;

else
Q <= DATA;

end

Verilog HDL RTL Design Style Checks 125 of 334

2 asynchronous reset/set signals for FF "Q". Do not use both
asynchronous set and reset in FF inferences.

Asynchronous set/reset control

Asynchronous reset control

2.3.2 Circuits will vary with non-blocking and blocking assignment
statements (Verilog only)

STARC_VLOG 2.3.2.2
RULE NAME

Do not mix blocking and non-blocking assignments in FF inference
always construct

MESSAGE
Detected a mixture of non-blocking (<=) and blocking (=) assignments in the
'always' construct for sequential circuit. Such description style may not
synthesize.

PROBLEM
DESCRIPTION

Coexistence of blocking assignment statements (=) and non-blocking assignment statements
(<=) within a single 'always' construct doesn't cause syntax error and it is allowed by the
language specification. But, such description style must be avoided since it risks to cause errors
when using logic synthesis tools.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans 'always' statements for sequential circuits:
– if 'always' construct contains mixture of blocking (=) and non-blocking (<=) assignment

statements => violation
Note: "always for sequential circuit" is 'always' statement where all signals are described with
edges in the sensitivity list

EXAMPLE-1: [1] sequential 'always' block is described (all signals in the sensitivity list are specified with edges);
[2] blocking and non-blocking assignments are mixed within the 'always' body => violation

always @(posedge CLK or negedge RESET) begin
if(!RESET)

Q = 1'b0;
else

Q <= DATA;
end

EXAMPLE-2: [1] combinational 'always' block is described (signals in the sensitivity list are specified without
edges);
[2] blocking and non-blocking assignments are mixed within the 'always' body => no violation.

always @(A or B or SEL or RESET) begin
Y = 0;
if(!RESET)

Y <= 1'b0;
else if(SEL)

Y <= A && B;
end

126 of 334 Verilog HDL RTL Design Style Checks

Detected a mixture of non-blocking (<=) and blocking (=) assignments
in the 'alw ays' construct for sequential circuit. Such description style
may not synthesize.

2.3.3 Do not mix descriptions that have different edges

STARC_VLOG 2.3.3.1
RULE NAME

Do not use two or more different clock edges within a single always
construct

MESSAGE-1

Different edges are used in {EventControlCount} event control statement(s) for
signal "{SignalName}" in an 'always' construct for a sequential circuit. Such
description style is not synthesizable and should be avoided.

DETAIL {EdgeType} {SignalName}

MESSAGE-2 Edges are mixed with levels in one event control statement. Do not use such
descriptions because they are not synthesizable and should be avoided.

MESSAGE-3 Different edges are used for noncontrol signals within single event control
statement. Such description style is not synthesizable and should be avoided.

PROBLEM
DESCRIPTION

From the syntax point of view, it is not restricted to have both rising and falling clock edges
together in a single 'always' construct. But it is prohibited in the real hardware description, since it
is non-synthesizable (it is difficult to implement such description in actual hardware: flip-flops that
allow data reading for both clock edges do not exist independently).

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects 'always' statements which contain event control statements with edge specifiers
(negedge, posedge):

– if not the same edges are used for all non-control signals within single event control
expression => violation (message-3)
Note: 'control' for 'always' process is a signal which is used in the conditional expression
inside a process

– if edge-sensitive signals are mixed with level-sensitive within single event control
expression => violation (message-2)

– if same signals are used with different edges in different event control statements =>
violation (message-1)

EXAMPLE-1: [1] same signals are used with different edges in different event control statements => violation
(message-1)

always @(posedge CLK) begin
Y <= A ^ B;

@(negedge CLK)
Y <= A & B;

end

EXAMPLE-2: [1] same signals are used with different edges in different event control statements => violation
(message-1)

always @(posedge CLK or negedge RESET) begin
Y <= A ^ B;

@(negedge CLK)
Y <= A & B;

end

Verilog HDL RTL Design Style Checks 127 of 334

Dif ferent edges are used in 2 event control statements for signal
"CLK" in an 'alw ays' construct for a sequential circuit. Such
description style is not synthesizable and should be avoided.

posedge CLK

negedge CLK

Dif ferent edges are used in 2 event control statements for signal
"CLK" in an 'alw ays' construct for a sequential circuit. Such
description style is not synthesizable and should be avoided.

posedge CLK

negedge CLK

STARC_VLOG 2.3.3.2
RULE NAME

Do not use two or more identical clock edges within a single always
construct

MESSAGE-1

Identical edges are used in {EventControlCount} event control statements for
signal "{SignalName}" in an 'always' construct for a sequential circuit. Such
description style may be not synthesizable and should be avoided.

DETAIL {EdgeType} {SignalName}

MESSAGE-2
Event control statement described in 'always' construct after 'begin' keyword.
Logic synthesis may be impossible for some tools. Specify event control
statement at the top of an 'always' construct.

PROBLEM
DESCRIPTION

In actual hardware, it is difficult to implement flip-flops controlled by a multiple clock signals.
Some logic synthesis tools will generate implicit state machine circuit controlling edges change
order (such practice should not be used: state machine is not defined in the HDL description, but
it is generated by logic synthesis tool => such HDL description is not concise).
Additionally, event control description should be specified at the top of an 'always' construct (to
enable logic synthesis for some tools).

LEVEL RULE

CHECKER
BEHAVIOR

1) Checker detects 'always' statements which contain event control statements with edge
specifiers (negedge, posedge):

– if not same edge is used in all event controls => violation (message-1)
2) Checker detects 'always' statements where is no event control statement at the top of the
construct (message-2)

EXAMPLE-1: [1] two event controls are used (sets are the same, two edges are different) => no violation; [2] no
event control statement described at the top of 'always' construct => violation (message-2)

always begin
@(posedge CLK)

Y <= A ^ B;
@(negedge CLK)

Y <= A & B;
end

EXAMPLE-2: [1] two event controls are used (sets are same, edges are the same) => violation

always @(posedge CLK) begin
Y <= A ^ B;

@(posedge CLK)
Y <= A & B;

end

EXAMPLE-3: [1] three event controls are used (sets are the same, edges are not same for all signals) =>
violation (for signals with same edges)

always @(posedge CLK or negedge RESET) begin
Y <= A ^ B;

@(posedge CLK or posedge RESET)
Y <= A & B;

128 of 334 Verilog HDL RTL Design Style Checks

Event control statement described in 'alw ays' construct af ter 'begin'
keyw ord. Logic synthesis may be impossible for some tools. Specify
event control statement at the top of an 'alw ays' construct.

Identical edges are used in 2 event control statements for signal
"CLK" in an 'alw ays' construct for a sequential circuit. Such
description style may be not synthesizable and should be avoided.

posedge CLK

posedge CLK

Identical edges are used in 3 event control statements for signal
"CLK" in an 'alw ays' construct for a sequential circuit. Such
description style may be not synthesizable and should be avoided.

posedge CLK

posedge CLK

@(posedge CLK or posedge RESET)
Y <= A | B;

end

Verilog HDL RTL Design Style Checks 129 of 334

posedge CLK

2.3.4 Do not specify an initial FF value in a description (different
from VHDL)

STARC_VLOG 2.3.4.1
RULE NAME Do not specify FF initial values explicitly in initial constructs

MESSAGE

Signal “{SignalName}”, for which FF is inferred, is assigned {AssignmentsCount}
time(s) in {InitialCount} 'initial' construct(s). 'initial' construct is ignored by
synthesis tools, use reset signal to initialize FF.

DETAIL-1 FF output is assigned in the 'initial' construct.

PROBLEM
DESCRIPTION

It is common case to assign FF initial value in an 'initial' construct. This value will function as
initial value during the RTL simulation. But logic synthesis ignores 'initial' construct and such
"reset" will not be defined.

LEVEL RULE

CHECKER
BEHAVIOR

Checker collects FF signals from 'always' statements and verifies that these signals are not
assigned in an 'initial' constructs
Note: FF signal is such signal for which flip-flop is inferred

EXAMPLE-1: [1] flip-flop is inferred for signal "Q"; [2] signal "Q" is assigned in an 'initial' construct => violation

initial
Q <= 1'b0;

always @(posedge CLK) begin
Q <= DATA;

end

EXAMPLE-2: [1] latch is inferred for signal "Q"; [2] signal "Q" is assigned in an 'initial' construct => no violation

initial
Q <= 1'b0;

always @(CLK) begin
if(CE)

Q <= DATA;
end

130 of 334 Verilog HDL RTL Design Style Checks

Signal "Q", for w hich FF is inferred, is assigned 1 time(s) in 1 'initial'
construct(s). 'initial' construct is ignored by synthesis tools, use reset
signal to initialize FF.

FF output is assigned in the 'initial' construct

STARC_VLOG 2.3.4.2
RULE NAME Logic synthesis ignores initial constructs, so it should not be used

MESSAGE

Module “{ModuleName}” contains {InitialStatementsCount} 'initial' statement(s).
An 'initial' statement cannot be used in an RTL description.

DETAIL An 'initial' statement detected.

PROBLEM
DESCRIPTION

A value assigned in an initial block is available in the RTL description, but such an initial value
cannot be used at the gale level because logic synthesis tools ignore the initial construct.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans each module:
– if initial blocks are detected => violation

EXAMPLE-1: [1] module contains the initial construct => violation

module top
 ...
 initial
 tmp = 0;

 always
 ...

 tmp <= tmp + 1;

endmodule

Verilog HDL RTL Design Style Checks 131 of 334

Module “top” contains one 'initial' statement. An 'initial' statement
cannot be used in an RTL description.

An 'initial' statement detected.

2.3.5 Do not use descriptions which generate FFs having fixed
input values

STARC_VLOG 2.3.5.1
RULE NAME

Do not use descriptions which to generate FFs having fixed input
values

MESSAGE Inferred FF “{ObjectName}” will have constant input. Do not use descriptions
which infer FFs with fixed input values.

PROBLEM
DESCRIPTION

Fixed input values in FF become untestable and fault detection rate drops extremely

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans 'always' statements that infer flip-flops and displays violation if FF signal is
assigned with constant/parameter within all execution paths of the process
Note: violation is displayed for the first assignment

EXAMPLE-1: [1] flip-flop is inferred for signal "Q";
[2] signal "Q" is assigned a constant value in all execution paths => violation

parameter RESET_LEVEL = 1'b0;
always @(posedge CLK) begin

if(RESET)
Q <= RESET_LEVEL;

else
Q <= 1'b1;

end

EXAMPLE-2: [1] flip-flop is not inferred for signal "Q";
[2] signal "Q" is assigned with constants in all execution paths => no violation

always @(CLK) begin
if(RESET)

Q <= 1'b0;
else if(SET)

Q <= 1'b1;
end

132 of 334 Verilog HDL RTL Design Style Checks

Inferred FF "Q" w ill have a constant input. Do not use descriptions
w hich infer FFs w ith f ixed input values.

2.3.6 Do not mix FF inferences with and without asynchronous
resets

STARC_VLOG 2.3.6.1
RULE NAME

Do not mix FF inference with and without asynchronous resets in
the same always construct

MESSAGE

Do not mix FF inferences with and without or different asynchronous set/reset
signals in the same 'always' construct.

DETAIL-1 "{SignalName}" is a FF without asynchronous control.
DETAIL-2 "{SignalName}" is a FF with {AsyncControlsCount} asynchronous

control(s).

PROBLEM
DESCRIPTION

Descriptions that combine FF inference with and without asynchronous reset are misleading and
understanding the behavior becomes difficult during debug. Consider following example:
 always @(posedge CLK or negedge RESET) begin
 if(!RESET)
 Q <= 4'b0000;
 else begin
 Q <= DATA;
 K <= DATA;
 end
 end
In the example FF inference which has an asynchronous reset (for signal Q) and a FF inference
without an asynchronous reset (signal K) are described in the same always construct.
Since some synthesis tools may not perform synthesis correctly, the description should be
written in such a way that the always construct is divided as in following description:
 always @(posedge CLK or negedge RESET) begin
 if(!RESET)
 Q <= 4'b0000;
 else
 Q <= DATA;
 end
 always @(posedge CLK) begin
 K <= DATA;
 end

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker detects always statements which infer FFs and contain an asynchronous reset signal:
– if some FF signal is not assigned in an if/case branch for asynchronous reset signal =>

violation

EXAMPLE-1: [1] each of 2 bits of same signal are inferred to be FF, but only one of them has asynchronous
reset => violation

reg [1:0] Q;

always @(negedge CLK or negedge RESET) begin
 if(!RESET) begin
 Q[0] <= 1'b0;
 end
 else begin
 Q[0] <= DATA1;
 Q[1] <= DATA2;
 end
end

Verilog HDL RTL Design Style Checks 133 of 334

Do not mix FF inferences w ith and w ithout or dif ferent asynchronous
set/reset signals in the same 'alw ays' construct.

"Q[0]" is a FF w ith1 asynchronous control(s).

"Q[1]" is a FF w ithout asynchronous control.

EXAMPLE-2: [1] two FFs are inferred by the description, both signals are reset => no violation

always @(negedge CLK or negedge RESET) begin
 if(!RESET) begin
 Q1 <= 1'b0;
 Q2 <= 1'b0;
 end
 else begin
 Q1 <= DATA1;
 Q2 <= DATA2;
 end
end

EXAMPLE-3: [1] two FFs are inferred by the description, only one signal is reset, but synchronous reset control
is used => no violation

always @(negedge CLK) begin
 if(!RESET) begin
 Q1 <= 1'b0;
 end
 else begin
 Q1 <= DATA1;
 Q2 <= DATA2;
 end
end

134 of 334 Verilog HDL RTL Design Style Checks

STARC_VLOG 2.3.6.2
RULE NAME

Asynchronous resets are only one bit and active low specified by
negedge

MESSAGE

Hazardous description of asynchronous reset is detected. Asynchronous control
signal(s) should be one bit only and specified by 'negedge' to avoid problems
with logic synthesis.
DETAIL-1 Asynchronous control “{SigName}” is active high. It is recommended to use

resets that are active low and specified by negedge. Negative logic is used for
asynchronous reset pins of all ASIC vendors - invert the input to match the FF
in a semiconductor library.

DETAIL-2 Asynchronous control signal(s) ({List_Of_Signals}) is used in expression
together with synchronous signal(s). It is recommended to use certain signals
at asynchronous control lines. Otherwise, be unable to define the kind of reset
for output circuit.

DETAIL-3 Asynchronous control signal(s) is used in expression together with another
asynchronous control(s). It is recommended to split them between different
conditional branches to avoid reset line hazards that tend to occur when logic
is described at asynchronous reset lines.

DETAIL-4 “{SigName}” is multiple-bit asynchronous control signal. It is recommended to
use one-bit signals for asynchronous control lines to avoid errors at logic
synthesis stage.

PROBLEM
DESCRIPTION

All ASIC vendors use negative logic for asynchronous reset pins. So in RTL description, the reset
input should be inverted to match the FF in a semiconductor library. There is no problem with
logic synthesis even if asynchronous reset is specified by posedge, however inverter cells will be
inserted into FF reset line during ASIC layout. It is better if logic cells were not inserted in reset
lines and so all asynchronous resets should be integrated by a negedge.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scan 'always' statements which infer flip-flops with asynchronous controls and verify
conditional branch inclusive at least one asynchronous control:

– if asynchronous control is active high (sensitivity list is checking) => violation (detail-1);
– if asynchronous control is used in an expression with another synchronous signals =>

violation (detail-2);
– if asynchronous control is used in an expression with another asynchronous signals =>

violation (detail-3);
– if multiple-bit signal is tested as asynchronous control => violation (detail-4).

Note: this checker does not trigger in cases with polarity violation (see 2.3.1.6 for polarity
violations)

EXAMPLE-1: [1] 'always' statement infers flip-flop with asynchronous control;
[2] synchronous control is active high => violation (detail-1).

always @(posedge CLK or posedge RESET)
begin

if(RESET)

Q <= 1'b0;
else

Q <= DATA;
end

Verilog HDL RTL Design Style Checks 135 of 334

Hazardous description of asynchronous reset is detected.
Asynchronous control signal(s) should be one bit only and specif ied
by 'negedge' to avoid problems w ith logic synthesis.

Asynchronous control “Q” is active high. It is recommended to use
resets that are active low and specif ied by negedge. Negative logic is
used for asynchronous reset pins of all ASIC vendors - invert the
input to match the FF in a semiconductor library.

EXAMPLE-2: [1] 'always' statement infers flip-flop with asynchronous control;
[2] asynchronous control is used in an expression with another synchronous signals => violation
(detail-2);
[3] asynchronous control is used in an expression with another asynchronous signals => violation
(detail-3).

always @(posedge CLK or negedge RST1 or negedge RST2)
begin

if(~RST2 || RST4 || ~RST1 || RST3)

 Q1 <= 1'b0;

else

 Q1 <= DATA;

end

136 of 334 Verilog HDL RTL Design Style Checks

Hazardous description of asynchronous reset is detected.
Asynchronous control signal(s) should be one bit only and specif ied
by 'negedge' to avoid problems w ith logic synthesis.

Asynchronous control signal(s) (RST1, RST2) is used in expression
together w ith synchronous signal(s). It is recommended to use certain
signals at asynchronous control lines. Otherw ise, be unable to def ine
the kind of reset for output circuit.

Asynchronous control signal(s) is used in expression together w ith
another asynchronous control(s). It is recommended to split them
betw een dif ferent conditional branches to avoid reset line hazards
that tend to occur w hen logic is described at asynchronous reset
lines.

2.4 Latch inferences

2.4.1 Clearly distinguish a latch inference from a combinational
circuit

STARC_VLOG 2.4.1.1
RULE NAME

Clearly distinguish a latch inference from the logic in other
combinational circuits

MESSAGE

Possible latch inference for {LatchSigCount} signal(s). Clearly distinguish a latch
inference from the other combinational logic.

DETAIL Signal "{SignalName}" is not assigned in all cases

PROBLEM
DESCRIPTION

In general, latches are very similar to the typical combinational circuits in a description. It is not
easy to distinguish latches from combinational circuit => it is recommended to describe latches
separately from other descriptions.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans 'always' statements:
– if there is latch inference and some other logic within one block => violation

Note-1: see 2.2.1.1: latches inference principles
Note-2: elaboration time checking is required for cases where latch inference depends on
parameter (main warning will contain instance name)

EXAMPLE-1: [1] 'always' construct infers a latch for signal "Q";
[2] construct also contains another combinational logic (assignment to a signal "Y1" does not infer
a latch) => violation;

always @(CLK, DATA, START, G) begin
if(G)

Q <= DATA;

Y1 <= DATA | START;
end

EXAMPLE-2: [1] 'always' construct infers latches for all signals being assigned => no violation

always @(DATA, START, G) begin
if(G)

Q <= DATA;
else

Y1 <= DATA | START;
end

Verilog HDL RTL Design Style Checks 137 of 334

Possible latch inference for 1 signal(s). Clearly distinguish a latch
inference from the other combinational logic.

Signal "Q" is not assigned in all cases

STARC_VLOG 2.4.1.2
RULE NAME Create latch only blocks and infer latches in these blocks only

MESSAGE

Module “{ModuleName}” contains latchbased description mixed with other
combinational logic. It is recommended to place latches in hierarchical modules
and keep them separate from other descriptions to avoid the risk of generation
an unintentional gated clock circuit.
DETAIL-1 Process infers latch(es) mixed with other logic. Combinational logic should be

described separately.
DETAIL-2 Process infers pure latch(es). If latches are necessary, process could be

placed in the separate hierarchical module.

PROBLEM
DESCRIPTION

If complex logic is described in a latch-inferring 'if' statement, an unintentional gated clock circuit
may be generated by the logic synthesis tool. To avoid this problem, latches should be placed in
hierarchical modules, and kept separate from other descriptions. Moreover, latch inference can
not be easily distinguished from combinational logic and there is a risk of unintentional latch
generating in this case (see 2.4.1.1). Therefore, it is safer to use latch by instantiating appropriate
module.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans modules which infer at least one latch in any process ('always' or 'assign'):
– if there are inferences of combinational logic (within same or other processes) =>

violation:
– if process infers latches mixed with another logic => detail-1;
– if process infers pure latches => detail-2.

Note: latches within instantiated modules are treated as those which do not belong to currently
scanned module.

EXAMPLE-1: [1] module infers latch in the one of processes;
[2] there is an inference of combinational logic in another process => violation (detail-2).

module top (Q1, D1, G, a, b, c);
...

always @(D1 or G)

if (G)
Q1 <= D1;

always @*
if (G)

c = a;
else

c = b;

endmodule

EXAMPLE-2: [1] module infers latch in one of process;
[2] the other processes infer sequential logic => no violation.

module top (G, D1, Q1, Q2);
...

always @(D1 or G)

if (G)

138 of 334 Verilog HDL RTL Design Style Checks

Module “top” contains latchbased description mixed w ith other
combinational logic. It is recommended to place latches in hierarchical
modules and keep them separate from other descriptions to avoid the
risk of generation an unintentional gated clock circuit.

Process infers pure latch(es). If latches are necessary, process
could be placed in the separate hierarchical module.

Q1 <= D1;

always @ (posedge G)
if (G)

Q2 <= D1;

endmodule

Verilog HDL RTL Design Style Checks 139 of 334

Sequential process, f lip-f lop is inferred.

STARC_VLOG 2.4.1.3
RULE NAME Do not use latches with an asynchronous set/reset

MESSAGE

{AsynchControlCount} asynchronous control signal(s) for latch "{ObjectName}"
is detected. Do not use latches with asynchronous control.

DETAIL-1 Asynchronous set/reset control
DETAIL-2 Asynchronous reset control
DETAIL-3 Asynchronous set control

PROBLEM
DESCRIPTION

Latches with asynchronous set/reset are are unavailable at the most of ASIC vendors libraries.
Additionally, inference of asynchronously controlled latch depends on logic synthesis tool =>
such descriptions should be avoided as much as possible.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans 'always' statements that infer latches. Violation is issued if asynchronous reset/set
signal is present. Following conditions are true for such a signal:

– it is used in the condition (ternary condition in the 'assign' construct or 'if'/'case'
condition)

– constant/parameter is assigned to latch signal under this condition:
– violation (detail-1): {'x', 'z', '?'} is assigned
– violation (detail-2): '0' is assigned
– violation (detail-3): '1' is assigned

Note-1: see chapter 2.2.1.1: latches inference principles
Note-2: when reset/set detection depends on parameter => elaboration-time checking is required
(message will contain instance name)

EXAMPLE-1: [1] 'always' block describes latch with both asynchronous reset and set => violation;
[2] SET signal is specially omitted in the sensitivity list (synthesis tools ignore sensitivity lists and
latch with asynchronous reset/set will be synthesized either with specified SET or omitted);

always @(RESET, G, SET) begin
if(RESET)

Q <= 1'b0;
else if (SET)

Q <= 1'b1;
else if (G)

Q <= DATA;

end

EXAMPLE-2: [1] 'assign' describes latch with an asynchronous reset => violation

assign Q = (RESET)? 1'b0 : (G)? DATA;

140 of 334 Verilog HDL RTL Design Style Checks

2 asynchronous control signal(s) for latch "Q" is detected. Do not use
latches w ith asynchronous control

Asynchronous set control

1 asynchronous control signal(s) for latch "Q" is detected. Do not use
latches w ith asynchronous control

Asynchronous reset control

Asynchronous reset control

EXAMPLE-3: [1] parameter is equal to 'x' and it is assigned in the asynchronous control branch => violation
(elab-time, detail-1 – synthesis tool can map it either to preset or clear terminal of the latch);
[2] non-constant/parameter is assigned to the latch signal in another asynchronous control branch
=> no violation (such description will be synthesized using multiplexer-logic)

parameter RESET_LEVEL = 1'bx;
always @(RESET, G, SET) begin

if(RESET)
Q <= RESET_LEVEL;

else if(SET)
Q <= ASYNC_INP;

else if (G)
Q <= DATA;

end

Verilog HDL RTL Design Style Checks 141 of 334

Asynchronous reset control

2 asynchronous control signal(s) for latch "Q" is detected. Do not use
latches w ith asynchronous control

STARC_VLOG 2.4.1.4
RULE NAME Avoid combinational feedback loops which contain latches

MESSAGE-1

Asynchronous feedback containing latch(es) is detected on line
“{FeedbackLineName}”. Do not use feedback loops to avoid problems with
timing analysis tools.
Asynchronous feedback containing latch(es) is detected. Do not use feedback
loops to avoid problems with timing analysis tools.

DETAIL-1 Asynchronous loop propagates through combinational logic

DETAIL-2 Asynchronous loop propagates through combinational logic line
“{LineName}”

DETAIL-3 Asynchronous loop propagates through {ObjectType}
“{SignalName}” {PortType} input

DETAIL-4 Asynchronous loop propagates through submodule instance
“{InstanceName}” from port “{InputPortName}” to “{OutputPortName}”

PROBLEM
DESCRIPTION

During the period when gate signal is not active, latch
becomes transparent and data from the D input goes
through a latch towards to the output. So, if combinational
feedback loop contains a latch, it means that asynchronous
loop exists.
Static timing analysis tools are used to analyze the circuit
operation speed for large designs. Combinational circuit feedbacks carry into the effect of
asynchronous feedback loop and create problems with timing analysis.
Therefore, circuits like this should be avoided regardless they could be acceptable in terms of
their behavior.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans the design hierarchy to detect feedbacks that are propagated through
combinational paths and/or latch(es):

– see the rule 1.2.1.3 (behavior of this checker is almost the same(*))
– (*) the difference between these checkers is:

– 2.4.1.4 triggers only on asynchronous loop that has latches in the propagation path
– 1.2.1.3 triggers on any asynchronous loop

EXAMPLE: [1] violation is reported in the detailed form: feedback propagation path is described
(DETAILED_PROPAGATION_CHAIN = 1);
[2] consider the design hierarchy at the picture below;
[3] note, that all possible paths (see 1.2.1.3) of feedback propagation are demonstrated:

– through the submodule instance
– through the flip-flop and latch
– through the combinational logic line
– through the intermediate combinational logic line

142 of 334 Verilog HDL RTL Design Style Checks

COMB_LOGIC

LD

module fm754(A, B, C, CLK, FK);
 input A, B, C, CLK;
 output FK;
 reg FK;
 wire f7k_o, RST, L_e;
 reg Q1;
 always @(A or L_e)
 if(L_e)
 FK = A;

 always @(posedge CLK or negedge FK)
 if(!FK)
 Q1 <= 1'b0;
 else
 Q1 <= B;

 f7k CMB_I0(.x2(A & Q1), .x1(C), .y1(f7k_o));

 assign L_e = f7k_o & A;
endmodule
module f7k(x1, x2, y1);
 input x1, x2;
 output y1;
 wire f_and, f_or;
 assign f_and = x1 & x2;
 assign f_or = ~x1 | f_and;
 assign y1 = f_and ^ f_or;
endmodule

Verilog HDL RTL Design Style Checks 143 of 334

LD
«FK»

G

X2

X1
Y1

f_and

f_or

y1

f7k

FK

fm754

A

B

C

f7k_o
L_e

FF
«Q1»

CLK

Propagation
through instance

Propagation
through flip-flop

Propagation
through intermediate

line

Propagation
through logic line

Propagation
through latch

Instance "fm754". "STARC 2.4.1.4" Asynchronous feedback
containing latch(es) is detected. Do not use feedback loops to avoid
problems w ith timing analysis tools.

Asynchronous loop propagates through FF "Q1" asynchronous reset
input.

Asynchronous loop propagates through combinational logic

Asynchronous loop propagates through submodule instance
"fm754.CMB_I0" f rom port "x2" to "y1".

Asynchronous loop propagates through combinational logic line "L_e"

Asynchronous loop propagates through latch "FK" enable input

Asynchronous loop propagates through combinational logic

STARC_VLOG 2.4.1.5
RULE NAME

In the same phase clock, do not use more than two layers of
latches

MESSAGE

Sequence of latches that have the same clock phase with latch "{LatchName}" is
detected. Connect latches so that none of the successive ones have clock
signals of the same phase to avoid errors in data transfers.

DETAIL Latch “{HierLatchName}” has the same clock phase.

PROBLEM
DESCRIPTION

The use of latches should be restricted because it complicates timing analysis. But there are
many cases where latches are used to solve the setup/hold time assurance problem
(synchronous RAM, transmitting between asynchronous clocks).
In latch-based designs, transfers are usually executed serially in clocks of different phases as
shown at the picture. But note that more than two latches triggered by the same phase clock
should not be connected in series. Because setup and hold time of latches connected in the
sequence is not ensured in case of same enable signal. So the reason of latch usage (to solve
the setup/hold time assurance problem) is not meet.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOUR

Checker scans design hierarchy for latches and verifies lines that are mapped to the gate pin:
– if there are two latches that are connected (Q -> D) in series(*)

(*) combinational logic placed between latches is not considered and latches are treated
as sequentially placed (series of latches)
– if latch enable signals are the same and have equal polarity => violation.

EXAMPLE-1: [1] if there are two latches that are connected in series;
[2] latch enable signals are the same and have equal polarity (~CLK) => violation.

module top(CLK1, CLK2, D, Q);

input CLK1, CLK2;
input [7:0] D;
output [7:0] Q;
assign clk_n = ~ CLK1;

dff DFF_CLK1 (.CLK(CLK1), .D(bb1_clk1_out), .Q(ff_clk1_out));

dff DFF_CLK2 (.CLK(CLK2), .D(latch2_out), .Q(ff_clk2_out));

latch LD1 (.G (clk_n), .D (ff_clk1_out), .Q (latch1_out));

latch LD2 (.G (clk_n), .D (latch1_out), .Q (latch2_out));

bb1 BB1 (.CLK(CLK1), .D(D), .Q(bb1_clk1_out));

bb2 BB2 (.CLK(CLK2), .D(ff_clk2_out), .Q(Q));

endmodule
//D flop-flop
module dff(CLK, D, Q);

144 of 334 Verilog HDL RTL Design Style Checks

LD LD LD LD

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule
//D-latch
module latch(G, D, Q);

input G, D;
output reg Q;
always @(G, D)

if (G)
Q <= D;

endmodule
// BB1 interface definition
module bb1 (CLK, D, Q);

input CLK;
input [7:0] D;
output Q;

endmodule

// BB2 interface definition
module bb2 (CLK, D, Q);

input CLK;
input D;
output [7:0] Q;

endmodule

Verilog HDL RTL Design Style Checks 145 of 334

Instance "top.LD1". Sequence of latches that have the same clock phase
w ith latch "Q" is detected. Connect latches so that none of the successive
ones have clock signals of the same phase to avoid errors in data transfers.

Latch "top.LD2.Q" has the same clock phase.

FF FFLD LD

BB1 BB2

CLK1

CLK2

D

8
Q8

2.5 Tri-state buffers

2.5.1 Create modules for tri-state buffers

STARC_VLOG 2.5.1.1
RULE NAME Create modules for tri-state buffers

MESSAGE-1

Module “{ModuleName}” contains tristate inference mixed with other logic.
Create a simple hierarchical module without any other logic to separate the tri-
state descriptions from other code to avoid inconsistencies with timing analysis
tools.

DETAIL Tri-state buffer is inferred.

MESSAGE-2 Module “{ModuleName}” contains inferences of tri-state buffers from different
signals. Describe different tristates in separate hierarchical modules.

PROBLEM
DESCRIPTION

When tri-state buffers are used in the description, there are cases where paths, which do not
require timing analysis, are analyzed. To avoid this problem, the tri-state buffer should be made
in a hierarchical module and delays for it should be specified. A tri-state buffer module should be
created and then instantiated as shown in the picture below.

The following order is recommended for synthesis of design containing tri-state buffers:
1. compile the tri-state buffer block by itself first;
2. before synthesis of the design, specify input and output delays of the tri-state that has

become a gate;
3. synthesize the design.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans each module for tri-state inferences:
– if single tri-state is described along with any other non-tri-state logic or/and with

combinational logic on tri-state output => violation (message-1);
– if multiple tri-state buffers are described (tri-states inferred from signals that are not

members of single vector) => violation (message-2);
– if multiple tri-state buffers are described along with non-tri-state logic or/and

combinational logic on tri-state(s) output => violation (message-1 + message-2).

146 of 334 Verilog HDL RTL Design Style Checks

Logic A

Logic B

tri-mod1

tri-mod2

Logic A

Logic B

enb1

enb2
top

enb

data tri_outtri_mod

enb1

enb2

1) Create hierarchical
module for tri-state

buffer

2) Instantiate module
with description of

tri-state buffer

top

EXAMPLE-1: [1] module contains tristate inference;
[2] module also contains FF inference;
[3] FF output is connected to tristate input => violation (message-1).

module top (din, enb, clk, dout);
input din, enb, clk;
output dout;
reg tmp;
wire wtmp;
always @ (posedge clk)

tmp <= din;

assign wtmp = tmp;
assign dout = enb ? wtmp : 1'bz;

endmodule

EXAMPLE-2: [1] module contains tristate inference for different signals => violation (message-2).

module top (in1, in2, in3, in4, enb,dout1,dout2);
input in1,in2,in3,in4,enb;
output [1:0] dout1;
output [1:0] dout2;
assign {dout1, dout2} = enb ? {in1, in2, in3, in4} : 4'bz;

endmodule

EXAMPLE-3: [1] module contains tristate inference along with another logic;
[2] combinational logic is connected to the inputs of the tristate => no violation.

module top (in1, in2, enb1, enb2, dout);
input din1,din2,enb1,rnb2;
output dout;
assign dout = (enb1 | enb2) ? (din1 & din2) : 1'bz;

endmodule

Verilog HDL RTL Design Style Checks 147 of 334

Module “top” contains tristate inference mixed w ith other logic. Create
a simple hierarchical module w ithout any other logic to separate the
tri-state descriptions from other code to avoid inconsistencies w ith
timing analysis tools.

Tri-state buffer is inferred.

Module “top” contains inferences of tri-state buffers f rom dif ferent
signals. Describe dif ferent tristates in separate hierarchical modules.

STARC_VLOG 2.5.1.2
RULE NAME Do not describe logic in conditional expressions to infer tri-state

MESSAGE-1
Logic is detected at the control input of tri-state “{ThreeStateName}”. It is
recommended to describe only simple scalar signals in conditional expressions
for tri-state inferences to avoid malfunctions during the logic synthesis.

MESSAGE-2
Control input of tristate “{ThreeStateName}” is signal, that is driven by logic. It is
recommended to describe only simple scalar signals in conditional expressions
for tri-state inferences to avoid malfunctions during the logic synthesis.

PROBLEM
DESCRIPTION

Logic should not be described at the control of tri-state because there is a risk that the output is
not able to be turned on and off with the proper timing due to potential changes to the logic
sequence in logic synthesis. If a hazard enters the tri-state buffer selector signal logic, the output
will collide with other output drives which could cause malfunctions or increase power
consumption. Vector control is treated as logic too, because logic is synthesized to transform
vector signal to one-bit tri-state control Therefore, use only simple scalar signal names in the tri-
state buffer selection signal.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker scans conditional statements of if / case / ternary constructs that infer tri-state buffers:
– if conditional expression contains any logic

– expression contains arithmetic / logical operators or it is a vector => violation
(message-1)

– expression contains simple signal, but it is driven by another logic => violation
(message-2)

Checker scans built-in primitives (bufif0, bufif1, notif0, notif1):
– if parameter which corresponds to control signal contains any logic => violation (same

requirements for displaying message-1 or message-2)
Note-1: buffers and inverters are not considered as logic
Note-2: when two types of violation (with same tri-state) occurs in single case => only one
violation (message-1)

EXAMPLE-1: [1] 'if' construct infer tri-state;
[2] selection expression contains logical operator => violation (message-1)

always @ (enb1 or enb2 or in1)

 if (enb1 & enb2)
 out1<=1'bz;
 else
 out1<=in1;

EXAMPLE-2: [1] 'if' construct infer tri-state;
[2] selection expression contains simple signal, but it is driven by another logic => violation
(message-2)

always @ (enb1 or enb2 or in1)
 begin
 enb <= enb1 & enb2;

 if (enb)
 out1<=in1;
 else
 out1<=1'bz;
 end

148 of 334 Verilog HDL RTL Design Style Checks

Logic is detected at the control input of tri-state “out1”. It is
recommended to describe only simple scalar signals in conditional
expressions for tri-state inferences to avoid malfunctions during the
logic synthesis.

Control input of tristate “out1” is signal, that is driven by logic. It is
recommended to describe only simple scalar signals in conditional
expressions for tri-state inferences to avoid malfunctions during the
logic synthesis.

EXAMPLE-3: [1] built-in primitives bufif0 is used;
[2] parameter which corresponds to control signal is vector, but it is truncated when instantiated =>
no violation

module top (..., enb1, ...);

 ...

 input [1:0] enb1;
 bufif0 Buff1 (out1, in1, enb1) ;
 ...

endmodule

Verilog HDL RTL Design Style Checks 149 of 334

STARC_VLOG 2.5.1.4
RULE NAME Specify up to five tri-state buffer connectors at most

MESSAGE

{ObjectClass} “{ObjectName}” is driven by {ThreeStateCount} tri-state buffers.
Output drivers connected to tri-state buses should be
{TRISTATE_DRIVER_COUNT} or less to avoid heavily loading.

DETAIL Tri-state driver is detected.

PROBLEM
DESCRIPTION

In the case of a net with many connections and when
connecting long distance with bidirectional buses, the current
layout tools tend to drastically increase wire area. Even if it
seems to be possible using of a shorter wire, the tools
significantly increase the wire area.
For performance purposes it is highly recommended to design
single-direction wires, without a bidirectional bus which usually
has a heavy load. Circuit overheat danger also occurs if all tri-
states become enabled in the same time. When it is necessary
to use a bidirectional bus, output drivers count connected to the
tri-state bus should be five or less. This should avoid allowing
the bidirectional bus to become heavily loaded.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker verifies object's drivers:
– if object has multiple tri-state drivers:

– if tri-states count is greater then TRISTATE_DRIVER_COUNT => violation.
Note-1: parameter TRISTATE_DRIVER_COUNT value is defined in configuration file (default
value is 5).
Note-2: {ObjectClass} is defined by the following table:

{ObjectClass}
module port of 'output' mode Module output port

module of 'inout' mode Module inout port

net Wire

EXAMPLE-1: [1] consider an example shown at the picture below;
[2] all described tri-states considered as directly connected to the bus which spans over hierarchy;
[3] top level module output has 5 tri-state drivers connected from instances and tri-state described
at the top level => violation;
[4] second instance contains two tri-state connected to the same output and two tri-state outputs
come from first instance => violation.

module top (data1, data2, data3, data4, data5, data6, enb1, enb2, enb3, enb4, enb5, dout);
input data1, data2, data3, data4, data5, enb1,enb2,enb3,enb4,enb5;
output dout;
wire net1;
tri_mu_connect inst_A (.data1(data1), .data2(data2),

 .enb1(enb1), .enb2(enb2), .tri_out(net1));

150 of 334 Verilog HDL RTL Design Style Checks

Bus becomes heavily loaded
when number of connected

tri-states grows up

tri_mul_connect_mixed inst_B (.data1(data3), .data2(data4),
 .enb1(enb3),.enb2(enb4), .tri_out(d_out), .in_wire(net1));

assign d_out = enb5 ? data5 : 1'bz;

endmodule

module tri_mul_connect (data1, data2, enb1, enb2, tri_out);
input data1,data2,enb1,enb2;
output tri_out;
assign tri_out = enb1 ? data1 : 1'bz;
assign tri_out = enb2 ? data2 : 1'bz;

endmodule

module tri_mul_connect_mixed (data1, data2, in_wire, enb1, enb2, tri_out);
input data1, data2, enb1, enb2, in_wire;
output tri_out;
assign tri_out = enb1 ? data1 : 1'bz;
assign tri_out = enb2 ? data2 : 1'bz;
assign tri_out = in_wire;

endmodule

Verilog HDL RTL Design Style Checks 151 of 334

inst_Binst_A

top

Instance “top”. Module output
port is driven by 5 tri-state buffers.

Instance “top.inst_B”. Module
output port “tri_out” is driven
by 4 tri-state buffers.

3 tri-state drivers Tri-state
driver

2 tri-state
drivers

Tri-state
driver

Instance “top”. Module output port “d_out” is driven by 5 tri-state
buffers. Output drivers connected to tri-state buses should be 3 or
less to avoid heavily loading.

Tri-state driver is detected.

Tri-state driver is detected.

Tri-state driver is detected.

Tri-state driver is detected.

Instance “top”. Module output port “d_out” is driven by 5 tri-state
buffers. Output drivers connected to tri-state buses should be 3 or
less to avoid heavily loading.

Tri-state driver is detected.

Tri-state driver is detected.

Tri-state driver is detected.

STARC_VLOG 2.5.1.5
RULE NAME

Do not connect two or more outputs other than tri-state buffers
even under the same conditions

MESSAGE

{ObjectClass} “{ObjectName}” is driven by {DriverCount} non-tri-state drivers.
Two or more output drivers other than tri-state ones should not be used in the
RTL description.

DETAIL Non-tri-state driver is detected.

PROBLEM
DESCRIPTION

To strengthen the drive capacity of the output, the two cells of BUF, INV or AND, etc. are
sometimes connected simultaneously to the same net. Such an adjustment should be done
during layout stage, and the descriptions which connect two or more output drivers other than tri-
state ones should not be included in the RTL model.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies object drivers:
– if object has multiple non-tri-state drivers => violation

Note: for {ObjectClass} table see 2.5.1.4.

EXAMPLE-1: [1] consider an example shown at the picture below;
[2] all non-tri-states drivers considered as directly connected to the common bus bus which spans
over hierarchy and is analyzed at each hierarchy level;
[3] top level module output has 3 non-tri-state drivers connected from instances and from the top
module input => violation;
[4] first instance (“mul_connect”) contains two inputs directly connected to the same output =>
violation;
[5] second instance (“mul_connect_tri”) contains two tri-state connected to the same output and
multiconnection of two non-tri-state outputs come from first instance => violation.

module top (in1, in2, in3, in4, in5, enb1, enb2, glbl_out);
input in1, in2, in3, in4, in5, enb1, enb2;
output glbl_out;

wire mul_out;

mul_connect (.in1(in1), .in2(in2), .mul_out1(net1));

mul_connect_tri mul_connect_tri (.in1(in3), .enb1(enb1), .in2(in4), .enb2(enb2),
 .in3(mul_out), .mul_tri_out(glbl_out));

assign glbl_out = in5;
endmodule

152 of 334 Verilog HDL RTL Design Style Checks

Logic

Module output port “glbl_out” is driven by 3 non-tri-state drivers. Tw o
or more output drivers other than tri-state ones should not be used in
the RTL description.

Non-tri-state driver is detected.

Non-tri-state driver is detected.

module mul_connect(in1, in2, mul_out);
input in1,in2;
output mul_out;

 assign mul_out = in1;
 assign mul_out = in2;
endmodule

module mul_connect_tri (in1, enb1, in2, enb2, in3, mul_tri_out);
input in1, enb1, in2, enb2, in3;
output mul_tri_out;
assign mul_tri_out = enb1?in1:1'bz;
assign mul_tri_out = enb2?in2:1'bz;

assign mul_tri_out = in3;

endmodule

Verilog HDL RTL Design Style Checks 153 of 334

mul_connect_tri

top

mul_connect

glbl_out

Instance “top”. Module
port “glbl_out” is driven
by 3 non-tri-state drivers.

Non-tri-state
driver

Non-tri-state
driver

Instance “top.mul_connect”.
Module port “mul_tri_out” is
driven by 2 non-tri-state drivers.

Non-tri-state
driver

Instance “top.mul_connect_tri”.
Module port “mul_out” is driven by
2 non-tri-state drivers.

Non-tri-state driver

Module output port “mul_out” is driven by 2 non-tri-state drivers. Tw o
or more output drivers other than tri-state ones should not be used in
the RTL description.

Non-tri-state driver is detected.

Module output port “mul_out” is driven by 2 non-tri-state drivers. Tw o
or more output drivers other than tri-state ones should not be used in
the RTL description.

Non-tri-state driver is detected.

STARC_VLOG 2.5.1.6
RULE NAME inout should not directly be connected to input/output

MESSAGE-1 Inout port “{ObjectName}” should not be directly connected to input port
“{PortName}”.

MESSAGE-2 Inout port “{ObjectName}” should not be directly connected to output port
“{PortName}”.

PROBLEM
DESCRIPTION

Do not connect a port declared as inout to ports with direct input or output declarations. Paths
that do not exist in the RTL description are generated after logic synthesis is performed, and
inconsistencies will occur in simulation results in RTL and at the gate level.

LEVEL RULE

MESSAGE--3 Submodule output port “{OutputPortName}” is driven by input port
“{InputPortName}”. Avoid meaningless port connections.

MESSAGE--4 Submodule output port “{OutputPortName}” is driven by constant. Avoid
meaningless port connections.

MESSAGE--5 Submodule output port “{OutputPortName}” is driven by expression. Avoid
meaningless port connections.

PROBLEM
DESCRIPTION

Connections of an input port, a constant or an expression is meaningless, but could be made by
a mistake. Such connections lead to unexpected design behavior and should be avoided.
Note: this extension is added by Aldec, Inc.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

1) Checker scans description for assignments from input port to inout:
– if any assignments are detected => violation (message-1)

2) Checker scans description for assignments from inout port to output port:
– if any assignments are detected => violation (message-2)

3) Extension: checker external ports mapped to ports in instance port maps:
– if input drives output => violation (message-3);
– if constant is connected to output => violation (message-4);
– if expression is connected to output => violation (message-5).

Note-1: checker verifies the following assignment types:
– continuous assignments (assign)
– procedural assignments (=, <=)

Note-2: checker verifies the following assignment structure:
– direct assignments:

inout = input
– assignments through temporary signal(s), such as:

temp1 = input;
temp2 = temp1;
...
inout = tempN;

EXAMPLE-1: [1] input is assigned to the inout throw the temporary signals => violation (message-1)

module top (in, io, out);
input in;
inout io;
output out;

154 of 334 Verilog HDL RTL Design Style Checks

wire w;
assign io = w;
assign w = in;
assign out = in;
...

endmodule

EXAMPLE-2: [1] inout is directly assigned to output port => violation (message-2)

module top (clk, din, dout);
input clk;
inout din;
output reg dout;
always @(posedge clk)
 dout = din;

endmodule

EXAMPLE-3: [1] if input port drives output port => violation (message-3) ;
[2] expression is connected to output port => violation (message-5).

module top(I1, I2, O1, O2);
 input [3:0] I1, I2;
 output [3:0] O1, O2;

 sub instance_1 (
 .I1(0),
 .I2(I2),
 .O1(I1),
 .O2(O1)
);

 sub instance_2 (
 .I1(0),
 .I2(I2),
 .O1(I1 & I2),
 .O2(O2)
);

endmodule

// Submodule declaration
module sub(I1, I2, O1, O2);
 input [3:0] I1, I2;
 output [3:0] O1, O2;

...

endmodule

Verilog HDL RTL Design Style Checks 155 of 334

Inout port “io” should not be directly connected to input port “in”.

Inout port “din” should not be directly connected to output port “dout”.

Submodule output port “O1” is driven by input port “I1”. Avoid
meaningless port connections.

Submodule output port “O1” is driven by expression. Avoid
meaningless port connections.

STARC_VLOG 2.5.1.7
RULE NAME

Tri-state output should not be used in a conditional expression of
an if statement

MESSAGE Signal "{SignalName}" is driven by the output of tri-state. It is not recommended
to use tri-state signals for conditional expression of 'if' statements.

PROBLEM
DESCRIPTION

For tri-state signals, propagation of ’x’ should be considered in order to match simulation results
in RTL and gate level. When a signal value that includes ’z’ is used in a conditional expression of
if statements, else item is executed. Normally, value ’z’ becomes an ’x’ after passing through a
logic gate, but in this case it becomes a fixed value. Therefore, inconsistencies can occur
between RTL and gate level with the propagation of 'x'. Avoid using tri-state signals for
conditional expression of if statements.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects all tri-states in the module:

– if tri-state output is described in the conditional expression of 'if' statements =>
violation

EXAMPLE-1: [1] tri-state is inferred by built-in primitive 'notif1';
[2] tri-state output is described in the conditional expression of 'if' statements => violation

notif1 Buff1 (out1,in1,enb);
always @ (out1)

 if (out1)
 out2<=1'b0;
 else
 out2<=1'b1;

156 of 334 Verilog HDL RTL Design Style Checks

Signal “out1” is driven by the output of tri-state. It is not recommended
to use tri-state signals for conditional expression of 'if ' statements.

STARC_VLOG 2.5.1.8
RULE NAME

Tri-state output should not be used in a selection expression of a
case statement that is not assigned ’x’ as the default clause

MESSAGE-1

Signal "{ThreeStateSignalName}" is driven by the output of tri-state whereas
'default' clause is not specified. If it is necessary to use tri-state output in 'case'
selection expression, assign 'x'-es in the 'default' clause to enable 'z'-value
propagation.

MESSAGE-2

Signal "{ThreeStateSignalName}" is driven by the output of tri-state whereas not
all signals are assigned with 'x'-es in the 'default' clause. If it is necessary to use
tri-state output in 'case' selection expression, assign 'x'-es in the 'default' clause
to enable 'z'-value propagation.

DETAIL Signal “{SignalName}” is not assigned with 'x'(-es) in 'default' clause.

PROBLEM
DESCRIPTION

For tri-state signals, propagation of ’x’ should be considered in order to match simulation results
in RTL and gate level. When a tri-state signal is entered in a selection expression of a case
statement that is not assigned 'x' in the default clause, 'x' is not propagated. Avoid using tri-state
signals for selection expression of case statements.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects all tri-states in the module and scans description for 'case' statements:
– if any signal is assigned under control of tri-state output from 'case' branch

– if there is no 'default' clause => violation (message-1)
– if 'default' clause is specified, but not all signals are assigned 'x'-es within

the clause => violation (message-2)

EXAMPLE-1: [1] signal is assigned under control of tri-state output from 'case' branch;
[2] there is no 'default' clause at the 'case' statement => violation (message-1)

always @(in1 or enb)
 out1 <= enb ? in1 : 1'bz;

always @ (out1)

 case(out1)
 0: out2 <= 1'b0;
 1: out2 <= 1'b1;
 endcase

EXAMPLE-2: [1] signal is assigned under control of tri-state output from the 'case' branch;
[2] 'default' clause is specified, but one bit of the signal is assigned with 'x'-es within the clause =>
violation (message-2)

reg [1:0] out2, tmp1, tmp2;
always @(in1 or enb)
 out1 <= enb ? in1 : 1'bz;

always @ (out1)

 case(out1)
 0: out2 <= tmp1;
 1: out2 <= tmp2;
 default: out2[0] <= 1'bx;
 endcase

Verilog HDL RTL Design Style Checks 157 of 334

Signal “out1” is driven by the output of a tri-state w hereas 'default'
clause is not specif ied. If it is necessary to use tri-state output in
'case' selection expression, assign 'x'-es in the 'default' clause to
enable 'z'-value propagation.

Signal “out1” is driven by the output of tri-state w hereas not all
signals are assigned 'x'-es in the 'default' clause. If it is necessary to
use tristate output in 'case' selection expression, assign 'x'-es in the
'default' clause to enable 'z'-value propagation.

Signal “out2[1]” is not assigned 'x'(-es) in 'default' clause.

STARC_VLOG 2.5.1.9
RULE NAME

Tri-state output should not be entered in the selection expression
of casex or casez statements

MESSAGE

Selection expression of 'casex(z)' statement contains signal
"{ThreeStateSignalName}" that is driven by the output of tri-state. Such
description is recognized as don't care and should not be used to avoid
difficulties with 'x'-value propagation.

PROBLEM
DESCRIPTION

When tri-state output is entered in a selection expression of 'casex' or 'casez' statements, 'z' is
recognized as don't-care and it is difficult to propagate 'x'. Tri-state output should not be used for
selection expression of 'casex' and 'casez' statements.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects all tri-states in the module:
– if tri-state output is described in the selection expression of 'casex' or 'casez'

statements => violation

EXAMPLE-1: [1] case statement infer tri-state;
[2] tri-state output is described in the selection expression of 'casez' => violation

case (enb)
 0: out2<=in1;
 1: out2<=1'bz;
 default:out2<=1'bx;
endcase

casez(out1)
 3'b000: out2<=in1;
 3'b011: out2<=1'b1;
 default: out2<=1'bx;
endcase

158 of 334 Verilog HDL RTL Design Style Checks

Selection expression of 'casex(z)' statement contains signal “out2”
that is driven by the output of a tri-state. Such description is
recognized as don't care and should not be used to avoid dif f iculties
w ith 'x'-value propagation.

2.5.2 Consider high-impedance propagation in tri-state buses

STARC_VLOG 2.5.2.1
RULE NAME

Create a block for a tri-state buffer and a block for an input cell
connected directly from a bidirectional bus

MESSAGE

Inout port "{PortName}" is directly connected to control line(s). Create a block for
an input cell that is connected directly from a bidirectional bus to prevent 'x'
propagation.

DETAIL-1 Inout port is directly connected to {PortType} input of {ObjectType}
“{ObjectName}”.

DETAIL-2 Inout port is directly connected to select input of multiplexer.

PROBLEM
DESCRIPTION

Bidirectional buses with tri-state buffers may become 'z' momentarily. In that case, RTL code is
optimized to block the propagation of 'z' by additional logic. Consequently, the RTL simulation
result and the synthesized gate level simulation result may differ. For example (see the picture
below), a circuit description using an AND gate to control propagation is added to prevent ‘z’
propagation in the RTL. As a result of synthesis however, the logic circuit containing the AND
gate is optimized, the logic for preventing 'z' propagation is changed to OR, and propagation of
unknown value 'x' may occur, without 'z' propagation being prevented. Since the logic connected
to the control signal may be changed as a result of optimization, some problems may occur.
Therefore, it is necessary to separate the description of this logic from the tri-state bus
description, as well as from the description of the tri-state bus readers, by encapsulating this logic
into its own separate module. This should prevent risky synthesis optimization.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker scans 'inout' ports:
– if port is connected to:

– clock input and asynchronous control inputs of FF;
– asynchronous control inputs of latch;
– enable input of a tri-state;
– select input of MUX;

– and if the port is connected:
– directly (including the connection through instances, buffers and inverters) =>

violation
– through combinational logic on the same hierarchy level (*) with the port =>

violation

– (*) to be on the same hierarchy level means to be described in the same module
where 'inout' port is declared:
– logic on the same hierarchy level:

Verilog HDL RTL Design Style Checks 159 of 334

FF
'0'

'z'
'0'

'0'

'z'
FF

'0' or '1'

'x'

FF
top

RULE NAME
Create a block for a tri-state buffer and a block for an input cell
connected directly from a bidirectional bus

– logic on another hierarchy level:

Note-1: in case of violation per multiplexer – detail-2 is displayed.
Note-2: possible values for {ObjectType} and {PortType} strings:

{ObjectType} {PortType}

FF

enable

asynchronous reset

asynchronous set

clock

latch

enable

asynchronous reset

asynchronous set

tri-state buffer enable

EXAMPLE-1: [1] consider the picture below;
[2] 'inout' port is connected directly to select input of MUX => violation.

module top (clk1, clk2, sel, d, q);
input clk1, clk2, d;
inout sel;
output reg q;
wire sel_clk;
assign sel_clk = sel ? clk1 : clk2;
always @ (posedge sel_clk)

q <= d;

endmodule

160 of 334 Verilog HDL RTL Design Style Checks

Instance "top". Inout port "sel" is directly connected to control
line(s). Create a block for an input cell that is connected directly f rom
a bidirectional bus to prevent 'x' propagation.

FF
top

and_mod

 Inout port is directly connected to select input of multiplexer.

FF

0

1
clk1

q

clk2

d

top

2.6 always construct description that takes circuit
structure into account

2.6.1 Describe taking the circuit structure into account

STARC_VLOG 2.6.1.2
RULE NAME

Use intermediate variables when the same logic is used in more
than two places

MESSAGE

The same selection condition ({SelCondition}) is detected {ExpressionsCount}
times in different conditional statements. Use intermediate variables to share the
same logic between different constructs to avoid generation of the same logic
several times with logic synthesis tools.

DETAIL Exactly the same selection condition is detected.

PROBLEM
DESCRIPTION

To decrease the number of output signals in one always construct, selection conditions with
exactly the same contents are described in two or more always constructs. This logic should be
shared using an intermediate variable, except for simple logic. Especially, when using an
arithmetic operator with 5 or more bits or a relational operator for conditional expressions – a
logic synthesis tool may not share it. By describing it twice in two always constructs, the area will
be doubled in size. Therefore, equal logic should be used with caution. It is recommended to
assign the shared logic output to an intermediate variable, and then use it in both processes.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker verifies conditional expressions from 'if' and ternary conditional statements within current
module:

– if there are two and more equal conditional expressions within different statements =>
violation

Note-1: context for the rule is following: 'always' statements, continuous assignments and module
instantiations.
Note-2: commutative operators are considered properly: &&, ||, +, *, ==, !=, ===, !==, &, |, ^ (for
example: expressions 'a && b' and 'b && a' are equal).

EXAMPLE-1: [1] there are two equal conditional expressions within different statements => violation.
Note: operator “|” is commutative.

always @(*)
begin

if (ctrl1 | ctrl2)
...

end
assign tmp = (ctrl2 | ctrl1) ? ...

EXAMPLE-2: [1] there are two equal conditional expressions within the same statement => no violation.

always @(*)
begin

if (ctrl1 | ctrl2)
...

else if (ctrl1 | ctrl2)
end

Verilog HDL RTL Design Style Checks 161 of 334

The same selection condition (ctrl1 | ctrl2) is detected 2 times in
dif ferent conditional statements. Use intermediate variables to share
the same logic betw een dif ferent constructs to avoid generation of
the same logic several times w ith logic synthesis tools.

Exactly the same selection condition is detected.

STARC_VLOG 2.6.1.3

RULE NAME
The number of signal outputs from one always construct should be
five or less, if possible. The number of outputs should be limited to
15 at most

MESSAGE-1
'always' construct has {OutputsCount} outputs. The number of signal outputs
from one 'always' construct should be {OUTPUTS_RECOMMENDED} or less, if
possible.

MESSAGE-2 'always' construct has {OutputsCount} outputs. The number of signal outputs
from one 'always' construct should be limited to {OUTPUTS_MAX} at most.

MESSAGE-3
Number of 'always' construct outputs exceeds recommended one. The number of
signal outputs from one 'always' construct should be
{OUTPUTS_RECOMMENDED} or less, if possible.

MESSAGE-4
Number of 'always' construct outputs exceeds maximum recommended one. The
number of signal outputs from one 'always' construct should be limited to
{OUTPUTS_MAX} at most.

PROBLEM
DESCRIPTION

It is not recommended to describe too many output signals in a single always construct. If
possible, five or less is recommended. If such restriction cannot be kept the number of outputs
should be limited to 15 at most. However, it is not problematic to describe any number of
(numerous) descriptions within the same always construct without any logic or signals which
generate the same logic.
RTL descriptions must be checked when unintended simulation results are obtained. If the output
signal structure of each always construct is understood, descriptions that consider the circuit
structure facilitate checking of the signal flow by proceeding with the debugging while monitoring
it.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker counts the number of signals assigned (with blocking or non-blocking assignment type)
in the synthesized 'always' construct:

– if COUNT_OUTPUT_NUM = “1”
– if number is greater than OUTPUTS_RECOMMENDED => violation

(message-1);
– if number is greater than OUTPUTS_MAX => violation (message-2);

– if COUNT_OUTPUT_NUM = “0”
– if number is greater than OUTPUTS_RECOMMENDED => violation (message-3);
– if number is greater than OUTPUTS_MAX => violation (message-4)

Context:
– for edge-controlled always, signal is treated as output if it is:

– output port of a module
– read before assignment
– read in another process

– for level-controlled always, signal is treated as output if it is:
– output port of a module
– read in another process and it is an assignment with logic or inside a statement

Note-1: when vector is assigned only bits treated as output are counted.
Note-2: bits of vector defined as outputs are compacted to slices if they are consecutive and
every slice is counted as separate output.
Note-3: values of parameters OUTPUTS_RECOMMENDED and OUTPUTS_MAX are
defined in configuration file (default values are 5 and 15 respectively).

162 of 334 Verilog HDL RTL Design Style Checks

EXAMPLE-1: [1] number of outputs from the first 'always' construct exceeds OUTPUTS_RECOMMENDED
parameter value;
[2] parameter COUNT_OUTPUT_NUM is set to 1 => violation (message-1);
[3] number of outputs from the second 'always' construct is equal to
OUTPUTS_RECOMMENDED parameter value => no violation.
Note: parameter OUTPUTS_RECOMMENDED is set to 2 to simplify the example.

module top(clk,d1,d2,d3,in1,in2,in3,in4,q1,q2,q3);
input clk,d2,d3,in1,in2,in3,in4;
input [1:0] d1;
output reg [1:0] q1;
output reg q2,q3;
reg tmp1,tmp2,tmp3,sel,en;
always @(posedge clk)

begin
q1 <= d1; //module output
q2 <= en ? d2 : d3; //module output
en <= sel ? tmp1 : tmp2; //signal is read before assignment

end
//green comments mark signals not treated as process outputs
always @(*)

begin
q3 = in1 + in2; //module output
sel = in1 | in2; //signal is read in another process and assigned with logic
tmp1 = in3; //signal is read in another process but assigned without logic
tmp2 = in4; //signal is read in another process but assigned without logic
tmp3 = in1 * in2; //signal is neither a port, nor read in another process

end
endmodule

Verilog HDL RTL Design Style Checks 163 of 334

'alw ays' construct has 3 outputs. The number of signal outputs f rom
one 'alw ays' construct should be 2 or less, if possible.

STARC_VLOG 2.6.1.4
RULE NAME

The number of lines in an always construct should be up to 20.
2000 lines at most.

MESSAGE-1
'always' statement has “{LinesCount}” lines. Recommended number of lines is
{MAX_LINES_RECOMMENDED} or less with the exceptional case of
{MAX_LINES_ALLOWED} at most.

PROBLEM
DESCRIPTION

One always construct should be a single execution unit and should not contain a large number of
lines. The logic size to be generated is not in proportion to the number of lines in an always
construct. However, the number of lines should be 300 or less with the exceptional case of 2000
at most to increase description readability.

LEVEL RECOMMENDATION 3

MESSAGE-2 'always' statement has “{LinesCount}” lines. The number of lines should be
limited by {MAX_LINES_ALLOWED}.

PROBLEM
DESCRIPTION

If describing large number of lines in one 'always' construct can not be avoided the number
should be 2000 at most.

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects number of lines in an 'always' statements by following subtraction:
“SourcePointrer(last token in an 'always' statement) - SourcePointer('always' keyword) + 1”:

– if number of lines is greater than MAX_LINES_RECOMMENDED and less than
MAX_LINES_ALLOWED parameter => violation (message-1);

– if number of lines is greater than parameter MAX_LINES_ALLOWED=> violation
(message-2).

Note: values of parameters MAX_LINES_RECOMMENDED and MAX_LINES_ALLOWED are
specified in configuration file (300 and 2000 by default).

EXAMPLE-1: [1] 'always' statement has 7 lines;
[2] the number is greater than MAX_LINES_RECOMMENDED parameter value => violation
(message-1).
Note: MAX_LINES_RECOMMENDED parameter value is set to 5 to simplify the example.

always @(*) begin // line #7
// define AND
Y1 = A & B;
// define OR
Y2 = A | B;

end // line #13

164 of 334 Verilog HDL RTL Design Style Checks

'alw ays' statement has “7” lines. Recommended number of lines is 5
or less w ith the exceptional case of 2000 at most.

2.6.2 Avoid defining multiple output signals in a single always
construct

STARC_VLOG 2.6.2.1
RULE NAME Do not describe more than one if or case in one always construct

MESSAGE

Do not describe more than one 'if' statement or 'case' statement in a single
'always' block

DETAIL-1 'if' statement in the 'always' block
DETAIL-2 'if' statement in the same 'always' block
DETAIL-3 'case' statement in the 'always' block
DETAIL-4 'case' statement in the same 'always' block

PROBLEM
DESCRIPTION

Following example describes a complex 'always' statement:
 always @(SEL or X_IN or Z_IN) begin
 if(SEL)
 TMP_STORAGE = X_IN & Z_IN;
 else
 TMP_STORAGE = X_IN | Z_IN;
 LO_B = TMP_STORAGE[31];
 if(TMP_STORAGE[7:0] == 8'b00001111)
 Z_REG = 1'b0;
 else
 Z_REG = 1'b1;
 if(LO_B == 1'b1 && Z_REG == 1'b0)
 X_REG = 1'b1;
 else
 X_REG = 1'b0;
 R_REG = TMP_STORAGE[30:0];
 end
This description mixes several 'if' constructs and the following is a set of "minor" disadvantages:

– relationships between the signals are not clear
– debugging efficiency is extremely low
– it is very easy to make a mistake

And the following is a possible and very important mistake:
– unnecessary priority circuit can be generated. The reason is:

– 'always' block contains description of the sequential process. Signal assigned at
block (2) and block (3) are used in the conditional expression if the 'if' statement at
the block (4) => blocks (2) and (3) have to be executed before block (4). It is
evidently, that execution order is unimportant for (2) and (3). But a priority circuit
may be generated to maintain such parallel operations described within a
sequential block.

Therefore, descriptions using multiple 'if' or 'case' statements must not be used in order to avoid
the problems described above. It is much better to write the same code using separate blocks:
 assign LO_B = TMP_STORAGE[31];

 assign R_REG = TMP_STORAGE[30:0];

 always @(SEL or X_IN or Z_IN) begin
 if(SEL)
 TMP_STORAGE = X_IN & Z_IN;
 else
 TMP_STORAGE = X_IN | Z_IN;
 end
 always @(TMP_STORAGE) begin
 if(TMP_STORAGE[7:0] == 8'b00001111)

Verilog HDL RTL Design Style Checks 165 of 334

block (1)

b lock (2)

b lock (3)

b lock (4)

b lock (5)

b lock (2)

b lock (5)

b lock (1)

b lock (3)

 Z_REG = 1'b0;
 else
 Z_REG = 1'b1;
 end
 always @(LO_B or Z_REG)
 if(LO_B == 1'b1 && Z_REG == 1'b0)
 X_REG = 1'b1;
 else
 X_REG = 1'b0;
 end

LEVEL RULE

CHECKER
BEHAVIOR

Checker restricts usage of more than one 'if'/'case' statement in the single 'always' block:
– following descriptions violate the rule:

– two or more 'if' statements in the same scope
– two or more 'case' statements in the same scope
– 'if' and 'case' in the same scope

– the following descriptions do not violate the rule:
– one 'if' inside an 'if'/'case' branch
– one 'case' inside an 'if'/'case' branch

Note: in case of violation first 'detail' is displayed without the word "same" (1, 3), whereas all
following – with word "same" (2, 4)

EXAMPLE-1: [1] 'always' block contains multiple (3) if statements in the same scope => violation;
[2] 1st 'if' statement at global scope of the 'always' block contains embedded 'if' => no violation (it is
single within scope of the 1st 'if')

always @(SEL or X_IN or Z_IN) begin
if(SEL)

TMP_STORAGE = X_IN & Z_IN;
if(X_IN == 1'b1)

INTERNAL = 1'b1;
else begin

TMP_STORAGE = X_IN | Z_IN;
INTERNAL = 1'b1;

end
LO_B = TMP_STORAGE[31] ^ INTERNAL;
if(TMP_STORAGE[7:0] == 8'b00001111)

Z_REG = 1'b0;
else

Z_REG = 1'b1;
if(LO_B == 1'b1 && Z_REG == 1'b0)

X_REG = 1'b1;
else

X_REG = 1'b0;
R_REG = TMP_STORAGE[30:0];

end

EXAMPLE-2: [1] 'always' block contains both 'if' statement and 'case' statement in the same scope => violation;
[2] 1st 'case' branch contains embedded 'if' => no violation (it is single within scope of the 1st 'case'
branch)

always @(SEL or X_IN or Z_IN) begin
case(SEL) begin

1'b1: begin
TMP_STORAGE = X_IN & Z_IN;
if(X_IN == 1'b1)

INTERNAL = 1'b1;
else

166 of 334 Verilog HDL RTL Design Style Checks

block (4)

Do not describe more than one 'if ' statement or 'case' statement in a
single 'alw ays' block

'if ' statement in the 'alw ays' block

'if ' statement in the same 'alw ays' block

'if ' statement in the same 'alw ays' block

Do not describe more than one 'if ' statement or 'case' statement in a
single 'alw ays' block

'case' statement in the 'alw ays' block

INTERNAL = 1'b0;
end
1'b0: TMP_STORAGE = X_IN | Z_IN;

endcase
if(TMP_STORAGE[7:0] == 8'b00001111)

Z_REG = 1'b0;
else

Z_REG = 1'b1;
end

Verilog HDL RTL Design Style Checks 167 of 334

'if ' statement in the same 'alw ays' block

STARC_VLOG 2.6.2.2
RULE NAME

Signals assigned in always construct should not be described on
the sensitivity list in the same always construct

MESSAGE

Sensitivity list of the 'always' block contains signals which were assigned in the
same 'always' block.

DETAIL Sensitivity list signal “{SignalName}” is assigned.

PROBLEM
DESCRIPTION

If signal is assigned in always block and included in sensitivity list it may mean that the always
construct is executed repeatedly and limitless. Such description is hazardous and should be
avoided.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies signals assigned in the synthesized always block or mapped to an output/inout
of task, called from this always block:

– if any of signals is defined in sensitivity list of current always block => violation

EXAMPLE-1: [1] sensitivity list signal is assigned in the always block => violation

always @(in1, in2, in3, tmp) begin
 out1 = in1 & in2 & in3;
 tmp = in1 ^ in2 ^ in3;

end

EXAMPLE-2: [1] signal bit is included in sensitivity list another bit of the same signal is assigned in the always
block => no violation

always @(in1, in2, tmp[1]) begin

 tmp[7] = in1 & in2 ^ tmp[1];

end

168 of 334 Verilog HDL RTL Design Style Checks

Sensitivity list of the 'alw ays' block contains signals w hich w ere
assigned in the same 'alw ays' block.

Sensitivity list signal “tmp” is assigned.

2.7 if statements

2.7.1 if statements create prioritized circuits

STARC_VLOG 2.7.1.3
RULE NAME if statement in combinational circuit ends with else (not with else if)

MESSAGE
When describing combinational circuits using 'always' construct, 'else' item
should be used at the end of the 'if' statement to avoid generation of erroneous
latches.

PROBLEM
DESCRIPTION

When combinational circuit is described with an 'always' construct, it is recommended to use
'else' item at end of 'if statement. It helps to avoid generation of latches.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans 'always' statements that describe combinational logic:
– each 'if' statement should contain 'else' item at the end

Note: for this case, combinational 'always' statements are such 'always' statements that
described without edges in the sensitivity list

EXAMPLE-1: [1] 'always' statement contains 'if' statement without 'else' item (latch is inferred) => violation

always @(DATA or G or DATA) begin
if(G)

Q = DATA;
end

EXAMPLE-2: [1] combinational 'always' contains 'if'-'else if' statement => violation; [2] 'else if' branch contains
embedded 'if' statement without an 'else' item => violation

always @(SEL1 or SEL2 or EN or DATA) begin
if(SEL1)

Q = DATA[0];
else if(SEL2)

if(EN)
Q = DATA[1];

end

Verilog HDL RTL Design Style Checks 169 of 334

When describing combinational circuits using 'alw ays' construct,
'else' item should be used at the end of the 'if ' statement to avoid
generation of erroneous latches.

When describing combinational circuits using 'alw ays' construct, 'else'
item should be used at the end of the 'if ' statement to avoid generation
of erroneous latches.

When describing combinational circuits using 'alw ays' construct,
'else' item should be used at the end of the 'if ' statement to avoid
generation of erroneous latches.

2.7.2 Reduce conditional expressions of if statements with the
same contents

STARC_VLOG 2.7.2.1
RULE NAME

Reduce conditional expressions of if statement with the same
contents

MESSAGE

Branches of the 'if' statement contain {NumberOfBranches} equivalent
subexpressions: “{Subexpression}”. Reduce the comparison logic to clearly
designate comparison priorities.

DETAIL Duplicated subexpression: “{Subexpression}”

PROBLEM
DESCRIPTION

Conditional expressions with the same contents generate compare circuits for each conditional
expression. Typically, they are optimized during the structuring process of logic synthesis, but
size of initially synthesized circuits is quite big and performance drops. Conditional expressions
with same contents should be avoided.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans expressions in the conditional branches of 'if' statements:
– if similar parts of expressions present => violation

Note: as long as possible chains are detected.

EXAMPLE-1: [1] two branches contain duplicated subexpressions => violation;
[2] order of subexpression items is different.

always @(A, B, C) begin
if(A == 1'b0 && B ==1'b1 && C == 1'b0)

Y = 3'b101;
else if(C == 1'b0 && A == 1'b0 && B == 1'b0)

Y = 3'b110;
else

Y = 3'b100;
end

EXAMPLE-2: [1] two branches contain duplicated subexpressions => violation;
[2] branches of embedded 'if' contain subexpressions that duplicate subexpressions of the upper-
level 'if' => violation (recursive search of duplicated items).

always @(A, B) begin
if((A == 10) && (B != 7))

if(B != 7)
Y = A;

else if(A == 10)
Y = B;

else if((A < 7) || (A == 10))
Y = A ^ B;

end

170 of 334 Verilog HDL RTL Design Style Checks

Branches of the 'if ' statement contain 2 equivalent subexpressions:
“C==1'b0&&A==1'b0”. Reduce the comparison logic to clearly
designate comparison priorities.

Duplicated subexpression: "C==1'b0&&A==1'b0"

Branches of the 'if ' statement contain 3 equivalent subexpressions:
“A==10”. Reduce the comparison logic to clearly designate
comparison priorities.

Duplicated subexpression: "A==10"

Branches of the 'if ' statement contain 2 equivalent subexpressions:
“B!=7”. Reduce the comparison logic to clearly designate comparison
priorities.

Duplicated subexpression: "B!=7"

Duplicated subexpression: "A==10"

STARC_VLOG 2.7.2.2
RULE NAME Avoid describing conditions that will not be executed

MESSAGE-1

'{StatementName}' statement contains branches that will not be executed. Avoid
describing such conditions.

DETAIL Branch will not be executed.

PROBLEM
DESCRIPTION

If you include lines that will never be executed, you might make mistakes in coding other lines.
Condition expressions should be coded carefully and describing conditions that will not be
executed should be avoided.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker analyzes 'if', 'case', 'casez' and 'casex' statements:
– if there are redundant branches or branches that will never be executed => violation

Note-1: if there are nested statements they are checked regarding that conditions of external
statement are executable.
Note-2: statement is not checked in case if it is nested in the branch that will never be executed.
Note-3: {StatementName} may be either “if” or “case”.

EXAMPLE-1: [1] if statement contains branch that will never be executed => violation.

if (ctrl)
q = data1;

else if (~ctrl)
q = ~data1;

else
q = data2;

EXAMPLE-2: [1] first case item contains logical OR of two constants;
[2] second item is the came constant as the result of previous item so this branch will never be
executed => violation.

reg [1:0] sel;
reg [1:0] data;
always @(sel, data)

case (in)
2'b01 || 2'b10 : q <= data[0]; //result of operation is 'b1
2'b01 : q <= data[1]; //item is not selected when sel = 2'b01
default : q <= 2'bxx;

endcase

Verilog HDL RTL Design Style Checks 171 of 334

'if ' statement contains branches that w ill not be executed. Avoid
describing such conditions.

Branch w ill not be executed.

'case' statement contains branches that w ill not be executed. Avoid
describing such conditions.

Branch w ill not be executed.

STARC_VLOG 2.7.2.3
RULE NAME Avoid null condition expressions

MESSAGE

'{StatementName}' statement contains condition expression(s) with null
statements. Missing statements in any condition expression of 'if' or 'case'
statement may cause mistakes in coding other condition expressions.

DETAIL Statement for condition expression is missing.

PROBLEM
DESCRIPTION

You can use an 'always' block to code combinational logic, but if the 'if' or 'case' statement has
any null condition expression (a branch without any statement), a latch is most likely to be
generated. Thus, you should describe only the necessary condition expressions and avoid null
expressions. Even for an 'always' block that causes flip-flops to be inferred, if there is any null
condition expression, you might make mistakes in coding other condition expressions. Condition
expressions should be coded carefully.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker verifies condition branches of 'if', 'case', 'casex', 'casez' statements:
– if there is no statement in this branch => violation.

EXAMPLE-1: [1] there is no statement in 'else if' branch => violation

if (ctrl1)
q = d1;

else if (ctrl2)
begin
end

else
q = d2;

EXAMPLE-2: [1] there is no statement in one of the 'case' branches => violation

case (sel)
2'b00 : q = d1;
2'b01 : q = d2;
2'b10 : ;
2'b11 : q = d3;
default : q = 1'bx;

172 of 334 Verilog HDL RTL Design Style Checks

'if ' statement contains condition expression(s) w ith null statements.
Missing statements in any condition expression of 'if ' or 'case'
statement may cause mistakes in coding other condition expressions.

Statement for condition expression is missing.

'case' statement contains condition expression(s) w ith null
statements. Missing statements in any condition expression of 'if ' or
'case' statement may cause mistakes in coding other condition
expressions.

2.7.3 Decrease the number of if statement nests

STARC_VLOG 2.7.3.1
RULE NAME

The number of nests for if-if and else if is best at five or less. The
number of nests for if-if and else if should be 10 at most

MESSAGE-1

'if' operator is nested {NestedCount} times. It is recommended to use nesting
{RECOMMENDED_NESTING_LEVEL} or less time(s) to avoid generation of
complicated prioritized logic and decrease overall circuit size. When nesting
cannot be avoided, it should be limited to {MAX_NESTING_LEVEL} time(s) at
most.

MESSAGE-2

'if'-'else if'-... conditions chain contains {NestedCount} branches. It is
recommended to use {RECOMMENDED_NESTING_LEVEL} or fewer branch(es) to
improve readability of the description and decrease possibility of nesting
mistakes. When nesting cannot be avoided, it should be limited to
{MAX_NESTING_LEVEL} time(s) at most.

PROBLEM
DESCRIPTION

Within a conditional expression of an if statement, a combinational circuit is predictable. As the
number of nests in an if statement increases, prioritized logic is added to this circuit automatically
by logic synthesis. Therefore, when an if statement is too deep, the generated prioritized logic
becomes complicated and overall circuit size increases significantly. As practice shows, nesting
should be limited to seven levels. When deep nesting cannot be avoided number of levels should
be 15 at most.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans 'if' statements recursively from the top level to bottom and calculate the number
of:

– cascaded 'if'-'if' nests (at the same level chain with most depth is chosen)
– if calculated number for current 'if' statement is greater than

RECOMMENDED_NESTING_LEVEL => violation (message-1) (lower level "if-if"
statements are not scanned more)

– parallel 'else'-'if' nests (from single level only)
– if calculated number for current 'if' statement is greater than

RECOMMENDED_NESTING_LEVEL => violation (message-2)
Note: values of parameters RECOMMENDED_NESTING_LEVEL and MAX_NESTING_LEVEL
are defined in configuration file (default values are 7 and 15 respectively)

EXAMPLE-1: [1] number of nested 'if' statements is greater then RECOMMENDED_NESTING_LEVEL (value of
the parameter is set to 2 to simplify the example) => violation (message-1);
[2] there are two chains of nested statements the longest one is chosen;

if(...)
 begin
 if(...) begin // 2nd nested
 if(...) // 3rd nested
 end
 if(...) begin // 2nd nested
 if(...) // 3rd nested
 if(...) // 4th nested
 end
 end

Verilog HDL RTL Design Style Checks 173 of 334

'if ' operator is nested 4 times. It is recommended to use nesting 2 or
less time(s) to avoid generation of complicated prioritized logic and
decrease overall circuit size. When nesting cannot be avoided, it
should be limited to 15 time(s) at most.

EXAMPLE-2: [1] number of nested 'else'-'if' statements is greater then RECOMMENDED_NESTING_LEVEL=2
=> violation (message-2);
[1] number of nested 'if' statements in one of 'else'-'if' branches is greater then
RECOMMENDED_NESTING_LEVEL=2 => violation (message-1);

if(...) // 1st "else-if" nested
else if(...) // 2nd "else-if" nested, 1st "if" nested
 if(...) // 2nd "if" nested
 if(...) // 3rd "if" nested
 if(...) // 4th "if" nested
else if(...) // 3rd "else-if" nested

174 of 334 Verilog HDL RTL Design Style Checks

'if ' operator is nested 4 times. It is recommended to use nesting 2 or
less time(s) to avoid generation of complicated prioritized logic and
decrease overall circuit size. When nesting cannot be avoided, it
should be limited to 15 time(s) at most.

'if '-'else if '-... conditions chain contains 3 branches. It is recommended
to use 2 or few er branch(es) to improve readability of the description
and decrease possibility of nesting mistakes. When nesting cannot be
avoided, it should be limited to 15 time(s) at most.

STARC_VLOG 2.7.3.4
RULE NAME Unify if statements which can be merged.

MESSAGE

This scope contains {IfStmtCount} nested 'if-if' statement(s) that could be merged
into one plain 'if-else if' statement. Merging is recommended because it improves
the performance of generated circuit (it depends on number of 'if' statement
nests – the fewer the better).

DETAIL This 'if' statement should be merged with the upper level branch.

PROBLEM
DESCRIPTION

It is difficult for 'if' statements with deep nesting to precisely comprehend associations with 'else'
items. Generally speaking, indents are used to clarify associations with 'if' statements and 'else'
items when coding. However, the number of indents increases with 'if' statements that have deep
nesting. To improve description try to merge 'if' statements in the way shown below when it is
possible. In this case the number of nests for the 'if' statement becomes less, which brings an
improvement in comprehension and readability.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans 'if' statements recursively from the bottom level to top and verifies 'if' branches
which contain only 'if' statement(s) (no other statements):

– if nested 'if' statement(s) exists:
– NM_NESTED (number of conditional branches inferred by currently scanned

nested 'if' statement + 1) is calculated:
// NM_NESTED = 1 (current branch) + 2 (1st level nested)
if(A) begin // currently scanned branch (+ 1 conditional
branch)

...
if(B) // 1st level nested (+ 1 conditional branch)

if(X) // 2nd level nested (is not considered)
...

else if(Y)
...

else if(C) // 1st level nested (+ 1 conditional branch)
...

else if(D)
...
end

– current branch of 'if' statement is virtually transformed to equivalent 'if-else if'
construction (whole 'if' of upper level will be also transformed) and
NM_TRANSFORMED (number of conditional branches inferred by virtually
transformed branch) is calculated

– if (NM_TRANSFORMED <= NM_NESTED) => violation
consider an example:
// 'if' with nested statements – NM_NESTED = 4
//main message
if(A) begin

if(B) begin // detail-message #1
statements1;

end
else if(C) begin

statements2;
end
if(D) // detail-message #2

statements3;
end

Verilog HDL RTL Design Style Checks 175 of 334

RULE NAME Unify if statements which can be merged.
// transformed statement – NM_TRANSFORMED = 4
if(A && B && D) begin

statements1;
statements3;

end
else if(A && B && !D) begin

statements1;
end
else if(A && !B && C && D) begin

statements2;
statements3;

end
else if(A && !B && C && !D) begin

statements2;
end

EXAMPLE-1: [1] 'if' branch which contains only 'if' statement is detected;
[2] NM_NESTED = 3; NM_TRANSFORMED = 2 => violation.

if (a)
if (b)

res1 <= c | d;

else if (c && !a) //branch will never be executed, and after merge it is case for 2.7.2.2
res1 <= c & d;

EXAMPLE-2: [1] 'if' branch statement which contains only 'if' statement is detected;
[2] but assignment is also detected within current branch => no violation.

if (a) begin
if (c)

res1 <= a | b;
res1 <= a & b;

end

176 of 334 Verilog HDL RTL Design Style Checks

This scope contains 1 nested 'if -if ' statement(s) that could be merged
into one plain 'if -else if ' statement. Merging is recommended because it
improves the performance of generated circuit (it depends on number
of 'if ' statement nests – the few er the better).

This 'if ' statement should be merged w ith the upper level branch.

2.7.4 Always surround multiple statements using block
statements (begin-end) (Verilog only)

STARC_VLOG 2.7.4.3
RULE NAME Do not use fork-join in RTL descriptions (Verilog only)

MESSAGE-1

'always' statement contains {ForkJoinBlocksCount} 'fork-join' block(s). 'fork-join'
blocks cannot be used in RTL descriptions.

DETAIL 'fork-join' block detected.

MESSAGE-2

'task' statement contains {ForkJoinBlocksCount} 'fork-join' block(s). 'fork-join'
blocks cannot be used in RTL descriptions.

DETAIL 'fork-join' block detected.

PROBLEM
DESCRIPTION

There are sequential (begin-end) and parallel (fork-join) blocks in Verilog-HDL. But logic
synthesize tools support only sequential blocks, so do not use fork-join statement.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies always blocks and task statements:
– if there is fork-join statement => violation

EXAMPLE-1: [1] always block contains embedded fork-join statements => violation (message-1)

always @(in1 or in2)

 begin : seq_exec

 fork : sequential_fork

 #5 temp1 = 2;

 fork : to_invoke_next_sequential

 #10 temp1 = temp1 + 1;

 join

 begin : sequential_zone_invoke_from_parallel

 @temp1 #1 temp1 = temp1 + 1;
 #10 temp1 = temp1 - 1;

 end

 join

 end

EXAMPLE-2: [1] task contain fork-join statement => violation (message-2)

task fork_task;

...

 fork
 ...
 join

endtask

Verilog HDL RTL Design Style Checks 177 of 334

'alw ays' statement contains 2 'fork-join' block(s). 'fork-join' blocks
cannot be used in RTL descriptions.

'fork-join' block detected.

'fork-join' block detected.

'task' statement contains 1 'fork-join' block(s). 'fork-join' blocks cannot
be used in RTL descriptions.

'fork-join' block detected.

2.8 case statements

2.8.1 case statements facilitate decoder/encoder description

STARC_VLOG 2.8.1.3
RULE NAME Avoid the overlapping of case items

MESSAGE

Case statement contains {TotalOverlapCount} overlapped case clause(s). Avoid
the overlapping of case items.

DETAIL '{CaseItem}' is overlapped.

PROBLEM
DESCRIPTION

Since the case statement compares from the top, overlapping values are permitted. When there
are overlapping values of clauses, the first selection expression is executed first. If there are
duplications in the case statements, the logic synthesis tool synthesizes priority circuits with a
similar priority as the if statement, but if there are no overlaps in the branch conditions, then a
circuit that compares values in parallel is synthesized. Logic synthesis tools automatically judge
branch overlaps, but it is also possible to clearly define that there are no overlaps of directives as
the comment ”//synopsys parallel_case”. If coding is limited so that values do not overlap in case
statements, "//synopsys parallel_case" can be used to gain advantages in area and speed.
However, if using parallel_case when values overlap, the RTL simulation result and the
simulation result of logic gates generated by logic synthesis differ. Therefore, it should never be
done.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

1) Checker verifies case statements:
– if there is a duplication of case items:

– if the length of selection expression is 'n' and some of the case items have length
'm':
– 'm' < 'n'

– if the lowest 'm' bits of case items with length 'n' are duplicated by case
items with length 'm' and all the rest bits are '0' => violation

– 'm' > 'n'
– if the the lowest 'n' bits of case items with length 'm' are duplicated by

case items with length 'n' => violation
2) Checker verifies casex statements:

– if there is duplication of case items that do not contain don't care conditions ('x' or '?'):
– if the length of selection expression is 'n' and some of the case items have length

'm':
– 'm' < 'n'

– if the lowest 'm' bits of case items with length 'n' are duplicated by case
items with length 'm' and all the rest bits are '0' => violation

– 'm' > 'n'
– if the the lowest 'n' bits of case items with length 'm' are duplicated by

case items with length 'n' => violation
3) Checker verifies casez statements:

– if there is a duplication or overlapping of case items:
– if the length of selection expression is 'n' and some of the case items have length

'm':
– 'm' < 'n'

– if the lowest 'm' bits of case items with length 'n' are duplicated or

178 of 334 Verilog HDL RTL Design Style Checks

RULE NAME Avoid the overlapping of case items
overlapped by case items with length 'm' and all the rest bits are '0' or 'z'
statement) => violation

– 'm' > 'n'
– if the the lowest 'n' bits of case items with length 'm' are duplicated or

overlapped by case items with length 'n' => violation
Note: If there are parameters (in case items) then all warnings are shown during the elaboration
stage

EXAMPLE-1: [1] case statement contains duplicated items => violation

case (sel)
 4'b0001 : out1 = 2'b00;
 4'b0010 : out1 = 2'b01;
 4'b0010 : out1 = 2'b10;
 4'b1000 : out1 = 2'b11;
 default : out1 = 2'bxx;
endcase

EXAMPLE-2: [1] casez statement contains overlapped items => violation

casez (sel)
 4'b0001 : out1 = 2'b00;
 4'b0010 : out1 = 2'b01;
 4'b0100 : out1 = 2'b10;
 4'b000z : out1 = 2'b11;
 default : out1 = 2'bxx;
endcase

EXAMPLE-3: [1] casez statement contains 'x' in one of the items, but no overlapping in such situation => no
violation

casez (sel)
 4'b0001 : out1 = 2'b00;
 4'b0010 : out1 = 2'b01;
 4'b0100 : out1 = 2'b10;
 4'bxxxx : out1 = 2'b11;
 default : out1 = 2'bxx;
endcase

EXAMPLE-4: [1] casex statement has overlapped items, that contains don't care value ('?') => no violation

casex (sel)
 4'b0001 : out1 = 2'b00;
 4'b0010 : out1 = 2'b01;
 4'b0100 : out1 = 2'b10;
 4'b???? : out1 = 2'b11;
 default : out1 = 2'bxx;
endcase

Verilog HDL RTL Design Style Checks 179 of 334

Case statement contains 2 overlapped case clause(s). Avoid the
overlapping of case items.

'4'b0010' is overlapped.

'4'b0010' is overlapped.

Case statement contains 2 overlapped case clause(s). Avoid the
overlapping of case items.

'4'b0001' is overlapped.

'4'b000z' is overlapped.

STARC_VLOG 2.8.1.4
RULE NAME Always add default clauses
MESSAGE Always add 'default' clauses.

PROBLEM
DESCRIPTION

The default clause of case statement is executed if all comparisons of selection expression and
case items fail, so always add default clause to avoid situation when nothing executes.

LEVEL RECOMMEND 1

CHECKER
BEHAVIOR

Checker verifies case, casex, casez statements
– if there is no default clause => violation.

EXAMPLE-1: [1] case statement do not contain default clause => violation.

case (sel)
 4'b0001 : out1 = 2'b00;
 4'b0010 : out1 = 2'b01;
 4'b0100 : out1 = 2'b10;
 4'b1000 : out1 = 2'b11;
endcase

EXAMPLE-2: [1] case statement contain default clause => no violation.
Note: such description do not violate current rule but may cause other problems (see 2.8.3.5)

case (sel_expr)
 2'b10 : out1 <= 1'b1;
 default : out1 <= 1'bx;
 2'b01 : out1 <= 1'b0;

endcase

180 of 334 Verilog HDL RTL Design Style Checks

Alw ays add 'default' clauses.

STARC_VLOG 2.8.1.5
RULE NAME

Do not force full_case for case statement directives that depend on
a particular logic synthesis tool (Verilog only)

MESSAGE Do not force 'full_case' directives that depend on particular logic synthesis tool.
RTL and post-synthesis simulation results will differ.

PROBLEM
DESCRIPTION

Design Compiler has a directive called //synopsys full_case. If the directive is specified in
a case statement, in which not all the case clauses are described, and the default clause is
absent – it is assumed that all the case clauses are described. However, when this directive is
used, the simulation results for missing cases will differ in the RTL and gate-level models.
Therefore, “synopsys full_case” should never be used.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies case, casex, casez statements:
– if directive //synopsys full_case is present => violation

EXAMPLE-1: [1] directive //synopsys full_case is used => violation

case (data) //synopsys full_ case
 8'b00000001 : code =0;
 8'b00000010 : code =1;
 8'b00000100 : code =2;
 8'b00001000 : code =3;
 8'b00010000 : code =4;
 8'b00100000 : code =5;
 8'b01000000 : code =6;
 8'b10000000 : code =7;
endcase

Verilog HDL RTL Design Style Checks 181 of 334

Do not force 'parallel_case' directives that depend on particular logic
synthesis tool. RTL and post-synthesis simulation results may dif fer.

STARC_VLOG 2.8.1.6
RULE NAME

Pay attention to the selective range of case statement and bit width
of each item (Verilog only)

MESSAGE-1
Bit width of the 'case' selection expression is not defined. To avoid simulation
and synthesis difficulties, exactly match bit widths of the 'case' selection
expression and the 'case' items.

MESSAGE-2
Bit width "{SelExpWidth}" of the 'case' selection expression does not match the
bit width "{ItemsBitWidth}" of all 'case' item(s). Match bit widths exactly to avoid
simulation and synthesis difficulties.

MESSAGE-3

Bit width "{SelExpWidth}" of the 'case' selection expression does not match the
bit width of 'case' item(s). Match bit widths exactly to avoid simulation and
synthesis difficulties.

DETAIL-1 Bit width of 'case' item is "{ItemBitWidth}".
DETAIL-2 Bit width of 'case' item is undefined.
DETAIL-3 Bit width of 'case' item will be defined at elaboration time.

PROBLEM
DESCRIPTION

It is allowed in the syntax of Verilog HDL that some items exceed the range of the signal
specified in the selection expression of the case statement. However, this line is ignored by
simulation and logic synthesis tools. When item bit width is less then bit width of selection
expression, upper bits of items is filled with zeros and compared, but such situation can cause
duplication of case items. To avoid difficulty pay attention to the selective range of case
statement and bit width of each item.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects case, casex, casez statements and calculates bit width of selection expression:
– if bit width of case selection expression cannot be defined (part-selection with variable

index is used) => violation (message-1),
note: all branches of this case statement are checked for presence of another case
statements;

Checker collects bit widths of case items:
– if all items has equal bit width and it is different from bit width of the selection expression

=> violation (message-2)
– if there are case item(s) with different bit widths => violation (message-3)
– if there is at least one case item, bit width of which can be defined only at elaboration-

time:
– if bit widths of all 'case' items can be defined only at elaboration-time only

elaboration-time message is issued
– if bit widths of some 'case' items can be defined at compilation-time, whereas

another items of this 'case' can be defined only at elaboration-time:
– compilation-time violation for elaboration-time items (message-3 + detail-3)
– compilation-time violation for compilation-time items (message-3 + detail-1)

and elaboration-time check are scheduled for them
Note-1: if the width can not be calculated (case item is a part-selection with variable index)
detail-2 is used.
Note-2: bit widths of decimal constants are defined by their values. Violation is displayed only if
constant width is greater than required (narrower decimal constants are allowed).

182 of 334 Verilog HDL RTL Design Style Checks

EXAMPLE-1: [1] bit width of case selection expression cannot be defined (ternary operator is used and
arguments have different bit widths) => violation (message-1)

reg [8:0] a;
reg [16:0] b;
case(sel ? a : b)
 16'b01 : tmp = 0;
 8'b01 : tmp = 1;
endcase

EXAMPLE-2: [1] bit width of case selection expression is different from bit widths of case items => violation
(message-3)
[2] first case item bit width can be defined at the compilation stage => detail-1
[3] second case item bit width can not be defined at the compilation stage (parametrized) =>
detail-3

reg [1:0] sel_expr;
parameter cparam = 1;
case(sel_expr)
 4'b01 : tmp = 1;
 cparam : tmp = 0;
endcase

Verilog HDL RTL Design Style Checks 183 of 334

Bit w idth of the 'case' selection expression is not def ined. To avoid
simulation and synthesis dif f iculties, exactly match bit w idths of the
'case' selection expression and the 'case' items.

Bit w idth "2" of the 'case' selection expression does not match the bit
w idth of 'case' item(s). Match bit w idths exactly to avoid simulation
and synthesis dif f iculties.

Bit w idth of 'case' item w ill be def ined at elaboration time.

Bit w idth of 'case' item is "4".

2.8.2 Divide using if statement, etc. to avoid creating large tables

STARC_VLOG 2.8.2.1
RULE NAME

As a rule of thumb, divide large tables if they have more than 32
I/Os. (input: 20, output: 12)

MESSAGE

'case' statement defines a table with “{InputCount}” inputs and “{OutputCount}”
outputs. It is recommended to limit the table size to
{RECOMMENDED_INPUT_COUNT} inputs and
{RECOMMENDED_OUTPUT_COUNT} outputs.

PROBLEM
DESCRIPTION

A table is correspond to each 'case' statement. The size of a 'case' statement table is determined
by the number of inputs. When the number of inputs grows, table size grows correspondingly.
Large tables cause size increasing and speed decreasing of generated circuit.
However, output count still should be considered. If the number of outputs increases and every
logic is not very similar, area may be increased. In the case of a small table, which has five or
fewer clauses or four or fewer inputs, the output number is not necessary to consider, but for
other cases attention should be paid to the number of outputs.
Therefore, specifying 'case' statements with a large bit width of inputs and outputs causes the
synthesis run time to increase and may further worsen the synthesis results. It is recommended
that the 'case' statement has up to 32 bits including input and output.
'case' statement with large number of inputs may be simplified by dividing the statement into
smaller ones and using 'if' statement. Consider following description example (let's assumes that
recommended number of inputs is equal to 4, to simplify the example):

// initial description
case (data)
 8'b00000001 : code =0;
 8'b00000010 : code =1;
 8'b00000100 : code =2;
 8'b00001000 : code =3;
 8'b00010000 : code =4;
 8'b00100000 : code =5;
 8'b01000000 : code =6;
 8'b10000000 : code =7;
endcase
//simplified description
if (data [7:4] == 4'b0000)

case (data[3:0])
4'b0001 : code =0;

 4'b0010 : code =1;
4'b0100 : code =2;

 4'b1000 : code =3;
endcase;

else if (data [3:0] == 4'b0000)
case (data[7:4])

4'b0001 : code =4;
 4'b0010 : code =5;

4'b0100 : code =6;
 4'b1000 : code =7;

endcase;
LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker detects case, casex, casez statements:
– if number of case clauses is greater than SMALL_CASE_CLAUSE_COUNT => checker

counts NI – number of inputs(*):
– (*) number of inputs is defined by number of different signals in case selection

expression (each bit in multiple-bit signals is considered as separate input),
note: if 'case' items are variable NI is defined taking those signals into account;

184 of 334 Verilog HDL RTL Design Style Checks

RULE NAME
As a rule of thumb, divide large tables if they have more than 32
I/Os. (input: 20, output: 12)

– if NI > SMALL_CASE_INPUT_COUNT => checker counts NO – number of outputs:
– (*) number of outputs defined by number of different signals that are assigned

under control of all case clauses (each bit in multiple-bit signals is considered
as separate output),
note: outputs of nested 'case' constructions are also considered;

– if (NI > RECOMMENDED_INPUT_COUNT) or (NO >
RECOMMENDED_OUTPUT_COUNT) => violation

Note: parameters SMALL_CASE_CLAUSE_COUNT, SMALL_CASE_INPUT_COUNT,
RECOMMENDED_INPUT_COUNT, RECOMMENDED_OUTPUT_COUNT values are defined in
configuration file (default values are 5, 4, 20, 12 respectively).

EXAMPLE-1: [1] 'case' statement contains 6 clauses;
[2] selection expression bit width is 32 => violation

reg [31:0] sel;
...

case (sel)
32'b00000001 : dout = din[0];
32'b00000010 : dout = din[1];
32'b00000100 : dout = din[2];
32'b00001000 : dout = din[3];
32'b00010000 : dout = din[4];
32'b00100000 : dout = din[5];
default : dout = 1b'x;

endcase

EXAMPLE-2: [1] 'case' statement contains 2 inputs and 40 outputs;
[2] there only 4 'case' clauses => no violation.

reg [1:0] sel;
reg [31:0] din;
reg [7:0] dout1;
reg [15:0] dout2;

...

case (sel)
2'b00 : dout1 = din[7:0];
2'b01 : dout2[3:0] = din[11:8];
2'b10 : dout2[3:0] = din[15:12];
2'b11 : dout2 = din;

endcase

Verilog HDL RTL Design Style Checks 185 of 334

Detected 'case' statement def ines table w ith “32” inputs and “1”
outputs. Recommended is limit table size to 20 inputs and 12 outputs.

STARC_VLOG 2.8.2.2
RULE NAME The number of case items should be up to 200

MESSAGE
Case statement contains {CaseItemsCount} case item expressions. Avoid using
case statements with more than {MAX_CASE_ITEM_EXPRESSIONS} case item
expressions.

PROBLEM
DESCRIPTION

With the current logic synthesis tool capacity, area and speed increase at exponential
rates when exceeding approximately 200 clauses. Therefore, number of clauses of a
case statement should not exceed 200. However, in case of a table where randomness
is high such as with a SIN function, dividing a table, (for example with 8 bits of both
input and output and 256 clauses by if statement) will result in the decrease of
description readability only, so there is no advantage in circuit generation. In this
particular situation, a case statement with 256 clauses has to be created, but the
number of clauses should not exceed 300.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker detects case, casex, casez statements:
– if number of case items expressions is greater than MAX_CASE_ITEM_EXPRESSIONS

=> violation
Note: parameter MAX_CASE_ITEM_EXPRESSIONS value is defined in configuration file

EXAMPLE-1: [1] number of case items is greater than value specified with MAX_CASE_ITEM_EXPRESSIONS
(the value is set to 4 to simplify an example) => violation (message)

case (data)
 8'b00000001 : code =0;
 8'b00000010 : code =1;
 8'b00000100 : code =2;
 8'b00001000 : code =3;
 8'b00010000 : code =4;
 8'b00100000 : code =5;
 8'b01000000 : code =6;
 8'b10000000 : code =7;
endcase

186 of 334 Verilog HDL RTL Design Style Checks

Case statement contains 8 case item expressions. Avoid using case
statements w ith more than 4 case item expressions.

2.8.3 Use default clauses

STARC_VLOG 2.8.3.1

RULE NAME
The don't-care condition is defined by using 'x' as the default
clause (only for default clauses, the extensive use of don't-care is
recommended)

MESSAGE

It is recommended to specify 'x' to the output of the 'default' clause. "Don't-care"
condition allows optimization and size of the circuit will be decreased more than
setting a determined value.

DETAIL Signal "{SignalName}" is assigned with determined value.

PROBLEM
DESCRIPTION

The 'default' clause is executed if the selection expression specified by the case statement does
not match to any item. Constant value may be specified as the default assignment. But if the
unknown value ’x’ is assigned to the output in the 'default' clause, it is considered as “don’t-care”
and a synthesis tool selects the best assignment (either '0' or '1') to the output during the
optimization. Therefore, setting a non-determined value can usually decrease the size of the
generated circuit.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans 'case', 'casex', 'casez' statements:
– check signals being assigned in the 'default' clause:

– if any signal is assigned with non-'x' value in the 'default' clause => violation
– note: being assigned with 'x' value means following for this rule: right-hand side of

assignment is a constant/parameter containing 'x'-es
– note: 'default' clause may contain embedded constructions:

– embedded 'case': new check is started
– other constructions: assignments are considered as being performed in the

'default' clause
– exception: 'default' clauses that are redundant are skipped (for example, when

'case' is full)
– context: synthesizable 'always' constructs

Note: elaboration-time checks are performed when right-hand side of assignment cannot be
evaluated at compile-time.

EXAMPLE-1: [1] 'case' statement has signal assignment in the default clause;
[2] signal is assigned with non-'x' value => violation

always @(...)
case (sel)

4'b0001: res = data1;
4'b0010: res = data2;
4'b0100: res = data3;
4'b1000: res = data4;
default: res = 1'b0;

endcase

EXAMPLE-2: [1] 'case' statement has signal assignment in the default clause;
[2] signal is assigned with non-'x' value;
[3] 'case' is full and optimization is performed => no violation

always @(...)
case (sel)

2'b00: res = data1;

Verilog HDL RTL Design Style Checks 187 of 334

It is recommended to specify 'x' to the output of the 'default' clause.
"Don't-care" condition allow s optimization and size of the circuit w ill be
decreased more than setting a determined value.

Signal "res" is assigned w ith determined value.

2'b01: res = data2;
2'b10: res = data3;
2'b11: res = data4;
default: res = 1'b0;

endcase

188 of 334 Verilog HDL RTL Design Style Checks

STARC_VLOG 2.8.3.4
RULE NAME

Do not use the signal to which a don't care condition is assigned
for a conditional expression of an 'if' statement

MESSAGE-

Conditional expression in the 'if' statement uses signal “{SignalName}” that is
assigned with don't care 'x' condition. It is recommended to avoid such
descriptions because after the logic synthesis is completed, it is unknown
whether it becomes '0' or '1'.

DETAIL-1 Signal “{DrivenSignalName}” is driven by another signal
“{DriverSignalName}” that is assigned with don't care 'x' condition.

DETAIL-2 Don't care 'x' condition is assigned to signal “{SignalName}”.

PROBLEM
DESCRIPTION

Situation when signal to which a don't care condition is assigned is used in conditional
expression of an 'if' statement may lead to the differences in results between simulation of
behavioral and RTL models: during simulation of behavioral model 'else' branch is executed or
none of the branches are executed (if there is no 'else' branch) and after the logic synthesis is
completed, it is undefined whether it becomes '1' or '0' => different conditions may be executed.
Consecutively, signals to which 'x' is assigned in 'default' clause of a 'case' statement should not
be used in a conditional expression of an 'if' statement.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker detects drivers for signals used in 'if' conditional expression:
– if some signal is driven by don't care value => violation:

– if driver is explicit => detail-2;
– if driver is implicit => detail-1.

Note: signal is driven by don't care value in case of:
– explicit assignment: 'x'-value is assigned to the signal in the 'default' clause of 'case'

/ 'casex' /'casez' statement;
– implicit assignment: the signal is assigned with other signal(s) driven by don't care;

following statements are considered as possible don't care drivers:
– assign, '=', '<=' (only direct assignments propagate don't care value);
– function call (with only direct assignments within don't care value propagation

path).

EXAMPLE-1: [1] signal "tmp" is used in the 'if' conditional expression;
[2] the signal is driven by don't care value ('x'-value is assigned to the signal in the 'default' clause
of 'case' statement) => violation (detail-2).

always @(...)
case(sel)

...
default : tmp = 1'bx;

endcase
always @(tmp)

if(tmp == 1'b1)
...

else
...

EXAMPLE-2: [1] 'case' statement assigns 'x'-es in the 'default' clause to an output of the "task_case" task;
[2] task "task_case" returns the value to the variable "tmp" that is also an input of the "task_if" task;
[3] task "task_if" uses this input in conditional expression of the 'if' statement => violation (detail-2).

Verilog HDL RTL Design Style Checks 189 of 334

Conditional expression in the 'if ' uses signal “tmp” that is assigned
w ith don't care 'x' condition. It is recommended to avoid such
descriptions because after the logic synthesis is completed, it is
unknow n w hether it becomes '0' or '1'.

Don't care 'x' condition is assigned to signal “tmp”.

task task_case;
...
output t_out1;
begin

case(t_sel)
...
default : t_out1 = (t_in1 == 2'b11) ? 1'b1 : 1'bx;

endcase
end

endtask
task task_if;

input t_in1;
...

begin
if(t_in1 == 2'b00)

...
end

endtask
always @(...)

begin
task_case (..., tmp);
task_if (tmp, ...)

end

EXAMPLE-3: [1] signal "tmp" is used in the 'if' conditional expression;
[2] the signal is assigned with another signal (“res”) driven by don't care value=>violation (detail1 +
detail-2).

always @(sel)
case(sel)

...
default : res = 1'bx;

endcase
always @(tmp)

tmp = res;
if(tmp == 1'b1)

...
else

...

EXAMPLE-4: [1] signal "tmp_1" as used in the conditional expression;
[2] the signal is driven by don't care value ('x'-value is assigned to the signal in the 'default' clause
of 'case' statement);
[2] signal "tmp_1" is used not as a simple signal it is an operand of an adding operation => no
violation ('x'-es is not propagated).

always @(...)
case(sel)

...
default : tmp_1 = 1'bx;

endcase
assign tmp_2 = ~ in1;
always @(tmp)

if(tmp_1 + tmp_2 == 1'b1)
...

190 of 334 Verilog HDL RTL Design Style Checks

Conditional expression in the 'if ' uses signal “tmp” that is assigned
w ith don't care 'x' condition. It is recommended to avoid such
descriptions because after the logic synthesis is completed, it is
unknow n w hether it becomes '0' or '1'.

Don't care 'x' condition is assigned to signal “tmp”.

Conditional expression in the 'if ' uses signal “tmp” that is assigned
w ith don't care 'x' condition. It is recommended to avoid such
descriptions because after the logic synthesis is completed, it is
unknow n w hether it becomes '0' or '1'.

Signal “tmp” is driven by another signal “res” that is assigned w ith
don't care 'x' condition.

Don't care 'x' condition is assigned to signal “res”.

STARC_VLOG 2.8.3.5
RULE NAME Describe a default clause at the end of a case statement
MESSAGE Describe a 'default' clause at the end of a 'case' statement.

PROBLEM
DESCRIPTION

Case items which are defined after default clause are not handled during simulation. That is why
it is recommended to describe default clause at the end of a case statement to avoid unexpected
simulation results.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies case, casex, casez statements which contain default clause
– if default clause is not the last item => violation.

EXAMPLE-1: [1] case statement contain default clause but it is not the last item => violation.

case (sel_expr)
 2'b10 : out1 <= 1'b1;
 default : out1 <= 1'bx;
 2'b01 : out1 <= 1'b0;
endcase

Verilog HDL RTL Design Style Checks 191 of 334

Describe a 'default' clause at the end of a 'case' statement.

STARC_VLOG 2.8.3.6

RULE NAME
Do not use the signal to which a don't care condition is assigned
for selection expression of a case statement which does not assign
'x' in the default clause

MESSAGE-1

Selection expression of a 'case' statement uses signal “{SignalName}” that is
assigned with don't care 'x' condition. After the logic synthesis is completed, it is
unknown whether it becomes '0' or '1'. It is recommended to avoid using such
signals in selection expressions of 'case' statements that do not assign 'x'-es in
the 'default' clause.

DETAIL-1 Signal “{DrivenSignalName}” is driven by another signal
“{DriverSignalName}” that is assigned with don't care 'x' condition.

DETAIL-2 Don't care 'x' condition is assigned to signal “{SignalName}”.

PROBLEM
DESCRIPTION

When unknowns are generated because of don't care ('x') usage in RTL description simulation, it
is treated as a bug in a design. If signal to which a don't care condition is assigned is used for a
selection expression of a 'case' statement it is recommended to add default clause which assigns
'x' values. In such case 'x' value is propagated and it is easy to find bug. If the default clause
either assign fixed value or does not exist then it is difficult to find bug.
Signals to which 'x' is assigned in the 'default' clause of a 'case' statement should not be used in
a selection expression of a 'case' statement if there is no don't care default clause.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker detects drivers for signals used in 'case' selection expression:
– if some signal is driven by don't care value:

– if 'x'-es are not assigned to all signals in the 'default' clause => violation:
– if driver is explicit => detail-2;
– if driver is implicit => detail-1.

Note: see 2.8.3.4 for more information about signals driven by don't care value.

EXAMPLE-1: [1] signal "sel_2" is used in the selection expression of "case_2";
[2] the signal is driven by don't care value from "case_2" => violation (detail-2).

always @(...)
case(sel_1) // case_1

...
default : sel_2 = 1'bx;

endcase
always @(tmp)

case(sel_2) // case_2
...

default: ... = 8'b10101010;
...

EXAMPLE-2: [1] signal "sel" is used in the selection expression of 'case' statement;
[2] the signal is driven by don't care value from function => violation (detail-1 + detail-2).

function res;
...
begin

case(f_sel)
...
default : res = 1'bx;

endcase
end

192 of 334 Verilog HDL RTL Design Style Checks

'x' is assigned to signal “sel_2”

Selection expression of a 'case' uses signal “sel_2” that is assigned
w ith don't care 'x' condition. After the logic synthesis is completed, it
is unknow n w hether it becomes '0' or '1'. It is recommended to avoid
using such signals in selection expressions of 'case' statements that
do not assign 'x'-es in the 'default' clause.

'x' is assigned to signal “res” w hich is a driver to the signal “tmp”

Note: if this 'default' assign 'x'-es => there will be no violation for
2.8.3.6

endfunction

always @(...)

begin
sel = res(in1);
case(sel)

...
endcase

end

Verilog HDL RTL Design Style Checks 193 of 334

Selection expression of a 'case' uses signal “sel” that is assigned
w ith don't care 'x' condition. After the logic synthesis is completed, it
is unknow n w hether it becomes '0' or '1'. It is recommended to avoid
using such signals in selection expressions of 'case' statements that
do not assign 'x'-es in the 'default' clause.

Signal “sel” is driven by another signal “res” that is assigned w ith
don't care 'x' condition.

STARC_VLOG 2.8.3.7
RULE NAME

Do not use the signal to which a don't care condition is assigned
for selection expression of a casex statement

MESSAGE-1

Selection expression of a 'casex' statement uses signal “{SignalName}” that is
assigned with don't care 'x' condition. The signal to which a don't care condition
is assigned, should not be used in the selection expression of a 'casex'
statement even with 'x'-es assigned in the 'default' clause.

DETAIL-1 Signal “{DrivenSignalName}” is driven by another signal
“{DriverSignalName}” that is assigned with don't care 'x' condition.

DETAIL-2 Don't care 'x' condition is assigned to signal “{SignalName}”.

PROBLEM
DESCRIPTION

'x' values are regarded in 'casex' statement as don't care values (either '0' or '1'). Using the signal
to which a don't care condition is assigned for selection expression of a 'casex' statement may
lead to the differences between RTL and gate-level simulation. And it is also difficult to find bug in
such situation even if 'casex' statement has don't care 'default' clause.
Signals to which 'x' is assigned in the 'default' clause of a 'case' statement should not be used in
a selection expression of a 'casex' statement.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker detects drivers for signals used in 'casex' selection expression:
– if some signal is driven by don't care value => violation:

– if driver is explicit => detail-2;
– if driver is implicit => detail-1.

Note: see 2.8.3.4 for more information about signals driven by don't care value.

EXAMPLE-1: [1] signal “sel_2” is used in the selection expression of 'casex' statement;
[2] signal “sel_2” is driven by signal “tmp” witch is driven by don't care value within default clause
of 'case' statement => violation (detail-1 + detail-2).

always @(...)
case(sel_1)

...
default tmp <= 'bx;

assign sel_1 <= enb ? data : tmp;
always @(...)

casex(sel_2)
...
default ... <= 'bx;

194 of 334 Verilog HDL RTL Design Style Checks

Selection expression of a 'casex' statement uses signal “sel_2” that is
assigned w ith don't care 'x' condition. The signal to w hich a don't care
condition is assigned, should not be used in the selection expression
of a 'casex' statement even w ith 'x'-es assigned in the 'default'
clause.

Don't care 'x' condition is assigned to signal “tmp”.

Signal “sel_2” is driven by another signal “tmp” that is assigned w ith
don't care 'x' condition.

2.8.4 Do not use complex casex statements (Verilog only)

STARC_VLOG 2.8.4.3
RULE NAME

It is best to avoid using casex statements and casez statements
(Verilog only)

MESSAGE Avoid using 'casex' and 'casez' statements.

PROBLEM
DESCRIPTION

With a casex statement or a casez statement, the value indicated by ’x’ (by 'z' for casez) of the
branch conditions is defined as don’t-care. Don’t-care indicates that it does not matter whether
the value is ’1’ or ’0’. Using don't-care condition in case items should be performed with great
attention because may easily lead to overlapping or duplication of items and as a result to
worsening the circuit quality. So It is best to avoid using casex statements and casez statements.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans Verilog module:
– if casex or casez statements are present => violation

EXAMPLE-1: [1] casex statement is used => violation

casex (sel)
 4'bx0x0: out1 = a;
 4'b0010: out1 = b;
 4'b0100: out1 = c;
 4'b1000: out1 = d;
 default: out1 = 1'bx;
endcase

Verilog HDL RTL Design Style Checks 195 of 334

Avoid using 'casex' and 'casez' statements.

STARC_VLOG 2.8.4.4
RULE NAME Do not indiscriminately describe 'x' of casex statement for each bit

MESSAGE-1

Casex statement contains {TotalOverlapCount} overlapped case clause(s). Use
'do not care' condition carefully to avoid the duplication of case items.

DETAIL '{CaseItem}' is overlapped.

MESSAGE-2
Casex statement contains items that may cause the generation of additional logic
that decreases circuit quality. Describe priority logic with triangular form of 'do
not care' conditions in case items.

PROBLEM
DESCRIPTION

With a 'casex' statement or a 'casez' statement, the value indicated by ’x’ of the branch conditions
is defined as “don’t-care”. “Don’t-care” indicates that it does not matter whether the value is ’1’ or
’0’. Descriptions in which the “don’t-care” condition differs for each bit invite the duplication of
clauses and risks worsening the circuit quality. When using a 'casex' statement, describe so the
don’t-care ’x’ specification range has a distinct range. Prioritized logic is often described with the
help of don't care value. Consider the example below. If the least significant bit is '1' the first
branch will be executed, if the bit is '0' matching continues.
casex (sel)

4'bxxx1: ...
4'bxx10: ...
4'bx100: ...
4'b1000: ...

endcase
LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker detects 'casex' statements:
– if there are duplications or overlapping of case items that contain don't-care conditions

('x', 'z' or '?') => violation (message-1):
– If the length of a case item is not equal to the length of the selection expression –

the case item is either truncated of filled with zeroes ('0') to the length of the
selection expression. Thus, an unexpected duplication or overlapping may occur.
Example:
parameter MASK1 = 5'b100x1;
parameter MASK2 = 3'd3;
...
casex (A[3:0])

MASK1 : ...
4'b0x11 : ...
MASK2 : ...
...

endcase
After parameter substitution, items will virtually look like this:
casex (A[3:0])

5'b100x1 : ... // will be truncated to 4'b00x1
 4'b0x11 : ...
 3'b011 : ... // will be extended to 4'b0011
...

endcase
After normalization to 4 bits, items will actually look like this (overlapping occurs):
casex (A[3:0])

4'b00x1 : ... // 5'b100x1 truncated to 4 bits
4'b0x11 : ...
4'b0011 : ... // 3'b011 extended to 4 bits

196 of 334 Verilog HDL RTL Design Style Checks

RULE NAME Do not indiscriminately describe 'x' of casex statement for each bit
...

endcase

– if there is no duplication or overlapping, case items are considered as matrix, and it is
checked whether it could be transformed to the triangular form, i.e. it may be virtually
presented (by replacing columns, if needed) as a structure like this:

casex (A[7:0])
8'bxxxxxxx0 :
8'bxxxxxx01 :
8'bxxxxx011 :
...
8'bx0111111 :

endcase
– if such structure cannot be obtained (if there are columns that have the same

number of don't care conditions) => violation (message-2);
Note: If there are some bits that have don't care conditions in all case items
than they are cut off and are not regarded.

Note-1: parameter MIN_CASE_SELECTION_WIDTH defines minimal length for case selection
expression to activate the mechanism for second case (when there is no overlapping).
Note-2: elaboration-time checks are performed for parameter-dependent cases.

EXAMPLE-1: [1] there is a 'casex' statement within description;
[2] there is an overlapping of 'case' items that contain don't care conditions ('x') => violation
(message-1).

reg [3:0] sel;
...
casex (sel)

4'bxx00: ...
4'bx001: ...
4'bx011: ...
4'bx100: ...
default: ...

endcase

EXAMPLE-2: [1] there is a 'casex' statement within description;
[2] there is no duplication or overlapping of 'case' items;
[3] triangle structure cannot be obtained (fourth and sixth columns have the same number of don't
care conditions – two ones) => violation (message-2).

reg [5:0] sel;
...
casex (sel)

6'bxxxx00: ...
6'bxxx011: ...
6'bxx0111: ...
6'bx0111x: ...
default : ...

endcase

Verilog HDL RTL Design Style Checks 197 of 334

Casex statement contains 2 overlapped case clause(s). Use 'do not
care' condition carefully to avoid the duplication of case items.

'4'bxx00' is overlapped.

'4'bx100' is overlapped.

Casex statement contains items that may cause the generation of
additional logic that decreases circuit quality. Describe priority logic
w ith triangular form of 'do not care' conditions in case items.

EXAMPLE-3: [1] there is a 'casex' statement within description;
[2] there is no duplication or overlapping of 'case' items;
[3] triangle structure can be obtained (by columns replacing) => violation (message-2).

reg [5:0] sel;
...
casex (sel)

6'bxxxxx0: ...
6'bxxx0x1: ...
6'bxx01x1: ...
6'b0x11x1: ...
6'b1x1101: ...
6'b101111: ...
default : ...

endcase
/* could be virtually transformed to
casex ({sel[4], sel[1], sel[5], sel[3:2], sel[0]})
 6'bxxxxx0: ...

6'bxxxx01: ...
6'bxxx011: ...
6'bxx0111: ...
6'bx01111: ...
6'b011111: ...
default : ...

endcase
*/

198 of 334 Verilog HDL RTL Design Style Checks

2.8.5 Description relying on parallel_case is prohibited (Verilog
only)

STARC_VLOG 2.8.5.1

RULE NAME
Do not force parallel_case in a case statement directive that
depends on
a particular logic synthesis tool (Verilog only)

MESSAGE Do not force 'parallel_case' directives that depend on particular logic synthesis
tool. RTL and post-synthesis simulation results may differ.

PROBLEM
DESCRIPTION

In Verilog-HDL syntax, case statements are processed in order from the top line by a sequential
process. If there are no overlaps in the clause described in the case statement, the logic
synthesis tool interprets the values to be parallel and generates a circuit with no priority. If there
is a duplicated value of clauses, the values are interpreted as a sequential process and a circuit
with a priority is generated. If Design Compiler directive //synopsys parallel_case is
specified, values will be forcibly treated as parallel case even if there are overlapping values.
Therefore, there is a possibility of the RTL simulation results and gate level simulation results
differing. So it is not recommended to use the directive.
If the circuit is to be operated in parallel, a case statement without overlapping items should be
used. If it is to be operated in priority, process should be described with help of an if-else-if
construction.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker verifies case, casex, casez statements:
– if pragma //synopsys parallel_case presents => violation

EXAMPLE-1: [1] pragma //synopsys parallel_case is used => violation

casex (sel) //synopsys parallel_case
 4'bx0x0: out1 = a;
 4'b0010: out1 = b;
 4'b0100: out1 = c;
 4'b1000: out1 = d;
 default: out1 = 1'bx;
endcase

Verilog HDL RTL Design Style Checks 199 of 334

Do not force 'parallel_case' directives that depend on particular logic
synthesis tool. RTL and post-synthesis simulation results may dif fer.

STARC_VLOG 2.8.5.2
RULE NAME

Do not describe fixed values in the selection expression of a case
statement

MESSAGE Selection expression of the case statement should not be constant.

PROBLEM
DESCRIPTION

Constant selection expression is used with variable case clauses to get priority decoders. But
variable case items violates rule 2.8.5.3. If selection expression and case clauses are constants
then description does not have sense because same branch is always executed and case
statement is optimized by synthesis tool.

LEVEL RECOMMENDED 1

CHECKER
BEHAVIOR

Checker verifies case, casex, casez statements
– if selection expression is constant (or constant expression) => violation

EXAMPLE-1: [1] selection expression of case statement is constant (parameter expression) => violation.

parameter tmp1 = 2'b10;
parameter tmp2 = 2'b10;

always

...
case (tmp1 & tmp2)

...

endcase

200 of 334 Verilog HDL RTL Design Style Checks

Selection expression of the case statement should not be constant.

STARC_VLOG 2.8.5.3
RULE NAME

Do not describe variables (or the expression a + b) in the clause of a
case statement

MESSAGE
Case statement contains variable case clauses.
DETAIL Case clause expression is not constant: “{CaseClauseExpr}”.

PROBLEM
DESCRIPTION

Variable case clauses may easily lead to items overlapping. In such situation case can not be
treated as parallel and circuit with priority is generated by synthesis tool.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies case, casex, casez statements
– if case item is variable => violation.

EXAMPLE-1: [1] case statement contains variable case clauses => violation;
[2] there are two variable case items: signal is used as case item, expression with signal and
parameter (result of expression is variable).

reg tmp;
parameter tmp_param;

always

...
case (selection)

tmp : ...
tmp & tmp_param : ...

...

endcase

Verilog HDL RTL Design Style Checks 201 of 334

Selection expression of the case statement should not be constant.

Case clause expression is not constant: “tmp”.

Case clause expression is not constant: “tmp&tmp_param”.

STARC_VLOG 2.8.5.4
RULE NAME

Do not describe logical operations and arithmetic operations in the
selection expression of a case statement (Verilog only)

MESSAGE Do not describe logical operations and arithmetic operations in the selection
expression of a 'case' statement.

PROBLEM
DESCRIPTION

Logical or arithmetic operations in 'case' selection expression make it less obvious and take more
time to debug and understand. Moreover, such operations may affect the length of the result. For
example, logical operation with vectors returns one-bit result, while using logical operation can be
simply a misprint. It is safer to assign the expression to some temporary signal with explicitly
defined width (bit widths in assignments are checked by another rules), and then use this signal
solely as the condition for a 'case' selection expression.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker verifies selection expression of case statements:
– if arithmetic and logical operations is detected => violation

Note: index (bit- or part-selection) expressions are excluded from checking

EXAMPLE-1: [1] logical operation is used in selection expression of case statement => violation

case(sel1 || sel2)

 1'b0: out1 = in1;
 1'b1: out1 = in2;

endcase

EXAMPLE-2: [1] bit-wise operation is used in selection expression => no violation

case(sel1 | sel2)

 1'b0: out1 = in1;
 1'b1: out1 = in2;

endcase

EXAMPLE-3: [1] logical and arithmetic operations are used in selection expression => violation
Note: only one message generated for one case statement

case(sel1 && sel2 + sel3)

 1'b0: out1 = in1;
 1'b1: out1 = in2;

endcase

202 of 334 Verilog HDL RTL Design Style Checks

Do not describe logical operations and arithmetic operations in the
selection expression of a 'case' statement.

Do not describe logical operations and arithmetic operations in the
selection expression of a 'case' statement.

2.8.6 Beware of nesting in which if statements and case
statements coexist (2.8.4 in the VHDL version)

STARC_VLOG 2.8.6.1

RULE NAME
When complex nested if statements and case statements co-exist, it
is more advantageous to have fewer conditionals with multiple
matches than fewer matches with multiple conditionals

MESSAGE

'case' statement contains multiple 'if' statements with the same structure -
possibility of generating a redundant and larger circuit exists. Description of one
'if' statement with multiple conditional branches, containing one 'case' statement
per branch, is recommended (state machine description is an exception).

PROBLEM
DESCRIPTION

With nesting where 'if' statements and case statements coexist, it is more advantageous to have
fewer 'if' conditionals with multiple matches in 'case' statements. When starting the description,
try to describe using this structure if possible. There is chance that both descriptions (with
multiple 'case' statements and with multiple 'if' statements) will infer the same optimal circuit. But
when describing one 'case' statement, containing 'if' statement with multiple conditional branches
per each item possibility of generating redundant logic increases. However, in cases where
coding in this manner might increase the amount of code, it would result in an increased number
of input signals. This could result in worse circuit performance. Circuit structure should be kept in
mind when creating descriptions.
In the case of state machines, following the recommendation lowers readability, thus making
debugging difficult. State machines are an exception to this recommendation; following it also
lowers the quality of results, especially area.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker detects detect 'case', 'casex', casez' statements:
– if statements satisfy following conditions:

– every 'case' item contains only one 'if' statement;
– 'if' statements have same branch structure;
– note: if 'case' statement has 'default' clause:

– if default clause is optimized => the clause is not verified at all;
– default clause is not optimized:

– 'default' contains only 'if' statement with the same structure => the clause
is considered as item;

– otherwise => the clause is not considered;
– number of case items is calculated (CASE_ITEM_COUNT) calculate the number 'if'

branches (IF_BRANCH_COUNT):
– if CASE_ITEM_COUNT belongs to [CASE_ITEM_MIN:CASE_ITEM_MAX] range

and IF_BRANCH_NUM belongs to [IF_BRANCH_MIN:IF_BRANCH_MAX] range
=> violation

– exception: if 'if' statements has parallel structure (exclusive conditions) => such
situations are skipped:
if (A && !B) statement1 else if (B && !A) statement2;

Note: parameters CASE_ITEM_MIN, CASE_ITEM_MAX, IF_BRANCH_MIN, IF_BRANCH_MAX
define ranges (of 'case' items number and 'if' branch number) to be verified by the checker.
Default parameters values:

– CASE_ITEM_MIN = 8;
– CASE_ITEM_MAX = 0;
– IF_BRANCH_MIN = 1;
– IF_BRANCH_MAX = 4.

Verilog HDL RTL Design Style Checks 203 of 334

RULE NAME
When complex nested if statements and case statements co-exist, it
is more advantageous to have fewer conditionals with multiple
matches than fewer matches with multiple conditionals
'0' (or negative) value means that bound is not set.

EXAMPLE-1: [1] every 'case' item contains only one 'if' statement;
[2] every 'if' statement has the same branch structure;
[3] CASE_ITEM_COUNT = 4 (belongs to [0:4]), IF_BRANCH_NUM = 3 (belongs to [1:4]) =>
violation.
Note: parameters values are default ones except CASE_ITEM_MIN, its value is set to 4 to simplify
the example.

case (sel)
2'b00: if (a) statement1 else if (b) statement2 else statement3;
2'b01: if (a) statement4 else if (b) statement5 else statement6;
2'b10: if (a) statement7 else if (b) statement8 else statement9;
2'b11: if (a) statement10 else if (b) statement11 else statement12;

endcase

EXAMPLE-2: [1] every 'case' item contains only one 'if' statement;
[2] every 'if' statement has the same branch structure;
[3] 'default' clause contains 'if' statement with same structure, but 'default' is optimized (all possible
values of signal sel are listed within 'case' items);
[3] CASE_ITEM_COUNT = 4 (does not belong to [0:5]) => no violation.
Note: parameters values are default ones except CASE_ITEM_MIN, its value is set to 5 to simplify
the example.

reg [1:0] sel;
case (sel)

2'b00: if (a) statement1 else statement2;
2'b01: if (a) statement3 else statement4;
2'b10: if (a) statement5 else statement6;
2'b11: if (a) statement7 else statement8;
default: if (a) statement9 else statement10;

endcase

204 of 334 Verilog HDL RTL Design Style Checks

'case' statement contains multiple 'if ' statements w ith the same
structure - possibility of generating a redundant and larger circuit
exists. Description of one 'if ' statement w ith multiple conditional
branches, containing one 'case' statement per branch, is
recommended (state machine description is an exception).

2.9 for statements

2.9.1 Do not use for statements other than for simple repeating
statements

STARC_VLOG 2.9.1.1
RULE NAME

Do not use for statements other than for simple repeating
statements.

MESSAGE
'for' statement infers cascade logic. Such descriptions are dangerous because
logic synthesis tools could create improper balanced tree structure. It is
recommended to avoid 'for' statements other than simple repeating statements.

PROBLEM
DESCRIPTION

'for' statement should be used only for simple repeating. When parity check circuit is described,
balanced tree structure is inferred according to the timing constraints. In case when sets of
assignment source and target intersect (see the examples below) cascade logic is generated.
Balanced tree structure would be inferred depending on the timing constraints of the logic
synthesis tool, but if this series is too long, it is uncertain whether the tree structure would be
inferred properly.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker scans blocking procedural assignments ('=') within 'for' loops:
– if in the same procedural assignment the set of right-hand side (RHS) signals (after loop

unrolling) intersects with the set of left-hand side (LHS) signals => violation
Note: if the RHS of an expression is single signal or the signal from the same iteration => no
violation:

for (i = 0; i <=3; i = i + 1)
out = out;

EXAMPLE-1: [1] the set of RHS signals intersects with the set of LHS signals (index from another iteration is
used) => violation

for (i = 0; i <= 3; i = i + 1)
out[i] = out[i+1];

EXAMPLE-2: [1] the set of RHS signals intersects with the set of LHS signals (variable itself is used as RHS and
LHS) => violation

for (i = 0; i <= 3; i = i + 1)
out = out ^ some_sig[i];

EXAMPLE-3: [1] the set of RHS signals does not intersect with the set of LHS signals => no violation.

for (i = 0; i <= 7; i = i + 2) //loop variable increment is 2 => even bits are in set of LHS
out[i] = out[i+1]; //shift in RHS is 1 => odd bits are in set of RHS

Verilog HDL RTL Design Style Checks 205 of 334

'for' statement infers cascade logic. Such descriptions are dangerous
because logic synthesis tools could create improper balanced tree
structure. It is recommended to avoid 'for' statements other than
simple repeating statements.

'for' statement infers cascade logic. Such descriptions are dangerous
because logic synthesis tools could create improper balanced tree
structure. It is recommended to avoid 'for' statements other than
simple repeating statements.

STARC_VLOG 2.9.1.2
RULE NAME

Initial value and conditions of for statement should be constant, in
addition do not change the values within a loop variable

MESSAGE-1

Initial value, condition and increment of the 'for' statement should be constant
DETAIL-1 Loop variable initialization value is not a constant
DETAIL-2 Conditional expression does not contain a comparison operator
DETAIL-3 Loop variable must be compared with a constant
DETAIL-4 Loop step expression does not contain an arithmetic operator
DETAIL-5 Loop step expression must operate with the loop variable and a constant

MESSAGE-2 Loop variable is not the same in all parts of the 'for' statement, while it should be
the same.

MESSAGE-3 Loop variable is modified within a 'for' statement. It is allowed to modify loop
variable only in the incremental part of the 'for' statement.

PROBLEM
DESCRIPTION

'For' statements define loop iteration by numerically increasing the index variable. It is described
by using following form:
 for(initialization_expression; conditional_expression; loop_step_expression)
 begin
 // statement body
 end
that should be described carefully to synthesize a good circuit. Following rules should be
considered when describing 'for' statement:

– loop variable should be initialized with a constant in the initialization expression
– loop iteration conditional expression should be comparison with a constant
– loop step increment should be an expression with arithmetic operator operating with

loop variable and constant
– loop variable should be the same in all parts of 'for' statement
– loop variable should not be modified within a 'for' statement body

Using these principles minimize possible problems with synthesis tools, since violation of these
principles leads either to synthesis failure or inappropriate results.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies all constraints of this problem:
– initial value, condition and increment should be constant

– if initialization value is not a constant => violation message-1 and detail-1
– if conditional expression doesn't contains comparison operator => violation

message-1 and detail-2
– if conditional expression is comparison, but not of the loop variable and constant =>

violation message-1 and detail-3
– if loop step expression doesn't contains an arithmetic operator => violation

message-1 and detail-4
– if loop step expression contains an arithmetic operator but operates not with loop

variable and constant => violation message-1 and detail-5
– if loop variable is not same in all parts of 'for' statement => violation message-2

– loop variable is variable assigned in the initialization expression
– if loop variable is modified within 'for' statement body => violation message-3

206 of 334 Verilog HDL RTL Design Style Checks

EXAMPLE-1: [1] loop variable initialization value is not a constant => violation (message-1, detail-1);

for(i = REG_A; i < 100; i = i + 1) begin
ACCUM = ACCUM + i;

end

EXAMPLE-2: [1] conditional expression doesn't contains comparison operator => violation (message-1, detail-2);

for(i = 0; i + 100; i = i + 1) begin
ACCUM = ACCUM + i;

end

EXAMPLE-3: [1] loop variable is compared not with a constant => violation (message-1, detail-3)

for(i = 0; i < REG_A; i = i + 1) begin
ACCUM = ACCUM + i;

end

EXAMPLE-4: [1] loop step expression doesn't contains an arithmetic operator => violation (message-1, detail-4);
[2] loop variable is modified within the loop body => violation (message-3);
[3] loop variable is compared with parameter in the conditional expression => no violation

parameter N = 100;

for(i = 0; i < N; i = i) begin
ACCUM = ACCUM + i;
i = i + 1;

end

EXAMPLE-5: [1] loop step expression operates with loop variable and not a constant => violation (message-1,
detail-5)

for(i = 0; i < 100; i = i + REG_A) begin
ACCUM = ACCUM + i;

end

EXAMPLE-6: [1] loop variable is not the same in initialization and loop step expression => violation (message-3)

for(i = 0; i < 100; j = i + 1) begin
ACCUM = ACCUM + i;

end

Verilog HDL RTL Design Style Checks 207 of 334

initial value, condition and increment of the 'for' statement should be
constant

Loop variable must be compared w ith a constant

initial value, condition and increment of the 'for' statement should be
constant

Loop step expression doesn't contain an arithmetic operator

initial value, condition and increment of the 'for' statement should be
constant

Loop variable is modif ied w ithin a 'for' statement. It is allow ed to
modify loop variable only in the incremental part of the 'for' statement.

Loop step expression must operate w ith the loop variable and a
constant

Loop variable is not the same in all parts of the 'alw ays' statement,
w hile should be the same

Loop variable initialization value is not a constant

initial value, condition and increment of the 'for' statement should be
constant

Conditional expression does not contain a comparison operator

2.9.2 Limiting loop-variable operation in for statements

STARC_VLOG 2.9.2.1
RULE NAME

Do not describe any arithmetic operations other than with loop
variable and constant

MESSAGE

Argument of an arithmetic operation inside the loop is not a loop variable or a
constant.

DETAIL {ObjectClass} "{ObjectName}" is not a loop variable or a constant

PROBLEM
DESCRIPTION

Consider following code:
 for(i = 0; i <= 15; i = i + 1) begin
 REG_Z[i] = REG_A + REG_B;
 end
'for' statement contains an arithmetic operation not with loop variable. Descriptions defined in 'for'
statements are copied for the number of specified loops. Therefore, additional circuits are created
to execute "REG_A + REG_B" 16 times, as defined by the loop => area is increased. Following
code describes arithmetic operation outside 'for' statement:
 TMP = REG_A + REG_B;
 for(i = 0; i <= 15; i = i + 1) begin
 REG_Z[i] = TMP;
 end
Area increase problem (described above) will not occur if executing an arithmetic operations with
loop variable and constant values only. In general, common statements should be kept outside
'for' statements as much as possible.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans 'for'-loops and detects an arithmetic operations (+, -, *, /, %, **) within them:
– if any argument of arithmetic operation is not a loop variable or constant => violation

Note-1: violation is generated for whole vector in case of bit-selections and slices with non-
constant indexes
Note-2: loop variable is such signal (or signals which comprise a concatenation) that is assigned
in the initialization expression of the 'for' statement (and all upper-level 'for' statements in case of
their nesting).

EXAMPLE-1: [1] 'for' loop contains an arithmetic operation with loop variable and parameter => no violation

parameter INC = 1;
for(i = 0; i < 8; i = i + 1) begin

RES[i] = i + INC;
end

EXAMPLE-2: [1] 'for' loop contains an arithmetic operation with signals (neither loop variable nor constant) =>
violation;
[2] different classes "{ObjectClass}" are demonstrated (port and signal)

input [3:0] INP_A;
reg [3:0] REG_B;

...
for(i = 0; i < 8; i = i + 1) begin

RES[i] = INP_A * REG_B;

end

208 of 334 Verilog HDL RTL Design Style Checks

Argument of an arithmetic operation inside the loop is not a loop
variable or a constant.

Port "INP_A" is not a loop variable or a constant

Signal "REG_B" is not a loop variable or a constant

EXAMPLE-3: [1] embedded 'for' contains an arithmetic operation with upper-level loop variable and constant =>
no violation;
[2] upper-level 'for' contains an expression with arithmetic and non-arithmetic operators =>
violation for arguments (that are not loop variables or constants) of arithmetic operators only

for(i = 0; i < 8; i = i + 1) begin
RES[i] = A | B | C + i;
for(j = 0; j < 4; j = j + 1) begin

TMP[j] = i + j - 1;
end

end

Verilog HDL RTL Design Style Checks 209 of 334

Argument of an arithmetic operation inside the a loop is not a loop
variable or a constant

Signal "C" is not a loop variable or a constant

STARC_VLOG 2.9.2.2
RULE NAME

Do not describe any logical or relational operations other than with
loop variables and constants

MESSAGE

Argument of a {OperationType} operation inside the loop is not a loop variable or
a constant. Such descriptions should be avoided because they could lead to
decrease of the circuit operation speed.

DETAIL {ObjectClass} "{ObjectName}" is not a loop variable or a constant.

PROBLEM
DESCRIPTION

Consider following code:
for(i = 0; i <= 8; i = i + 1) begin

if (i <= sel)
q[i] <= data[i];

end
'for' statement contains a relational operation not with loop variable. If a relational operator exists
in 'for' statement, a comparison circuit is created for loop count in the same way as an arithmetic
operation thereby resulting in a degradation of circuit quality. Even if loop count is limited,
generated circuits may be lined up in a series according to the loop count in a 'for' statement and
operation speed decreases in the circuit in this case. Therefore, it is recommended to avoid
describing relational operations and logical operation in 'for' statement.
Description which contains relational operations may be rewritten using 'case' statement to avoid
described problems. Considered example may be rewritten in the following way:

case (sel)
3'b000 : q[0] <= data[0];
3'b001 : q[1:0] <= data[1:0];
3'b010 : q[2:0] <= data[2:0];
3'b011 : q[3:0] <= data[3:0];
3'b100 : q[4:0] <= data[4:0];
3'b101 : q[5:0] <= data[5:0];
3'b110 : q[6:0] <= data[6:0];
3'b111 : q[7:0] <= data[7:0];

default : q <= 8'bxxxxxxxx;
endcase

If logical operation exist within 'for' statement degradation of circuit quality may be avoided by
using 'case' statement in the described way. Also such common expression may be kept outside
'for' statement (see 2.9.2.1 for details).

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans for loops and detects expressions, where relational ('>', '<', '>=', '<=') or logical
('&&', '||', '!') operation is used::

– if any argument of this operation is not a loop variable or constant => violation.
Note-1: see rule 2.9.2.1 for loop variable definition.
Note-2: see rule 1.1.1.2 for {ObjectClass} substitution table.
Note-3: {OperationType} is defined by the following table:

{OperationType}

logical

relational

logical/relational

210 of 334 Verilog HDL RTL Design Style Checks

EXAMPLE-1: [1] logical operation detected within 'for' loop;
[2] both arguments of the operation are signals => violation.

reg [8:0] A;
reg [8:0] B;
for(i = 0; i < 8; i = i + 1) begin

RES[i] = A[i] || B[i];
end

EXAMPLE-2: [1] relational operation detected within 'for' loop;
[2] arguments of the operation are loop variable and parameter => no violation.

parameters max_size = ...;
for(i = 0; i < 4; i = i + 1) begin

if (i <= max_size)
RES[i] = A[i];

end

Verilog HDL RTL Design Style Checks 211 of 334

Argument of a logical operation inside the loop is not a loop variable or
a constant. Such descriptions should be avoided because they could
lead to decrease of the circuit operation speed.

Signal "B" is not a loop variable or a constant.

Signal "A" is not a loop variable or a constant.

STARC_VLOG 2.9.2.3
RULE NAME

The range of the number of loops is up to 10 if operating logically
or relationally other then with loop variables and constants

MESSAGE-1
The range of the number of loops is {LoopNumber}. When 'for' loop description
infers comparison circuit, it is recommended to limit the loop variable to up to
{LOOP_NUMBER} times to avoid a decrease in circuit quality.

MESSAGE-2
The range of the number of loops could be greater than recommended value
{LOOP_NUMBER}. When 'for' loop description infers a comparison circuit, it is
recommended to limit the loop variable to avoid a decrease in circuit quality.

PROBLEM
DESCRIPTION

If a relational operator exists in 'for' statement, a comparison circuit is created for loop count in
the thereby resulting in a degradation of circuit quality. The same situation occurs with arithmetic
operations. If description using such operations can not be rewritten, limit the loop variable to up
to 10 times in order to avoid a decrease in circuit quality (see also 2.9.2.2).

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans 'for' loops for relational or logical operations other than with loop variables and
constants (see 2.9.2.2):

– if it is possible to calculate the range between initial value and iteration condition:
– if the range is greater than LOOP_NUMBER parameter value => violation

(message-1);
– if the initial value or the iteration condition are expressions with signals, variables =>

violation (message-2).
Note-1: value of LOOP_NUMBER parameter is defined in configuration file (default value is 10).
Note-2: this checker triggers concurrently with 2.9.2.2.

EXAMPLE-1: [1] relational operation detected within 'for' loop;
[2] arguments of the operation are loop variable and signal;
[3] range between initial value and iteration condition is greater than LOOP_NUMBER parameter
value (by default) => violation (message-1).

reg [15:0] A;
for(i = 0; i < 16; i = i + 1)

begin
if (i <= B)

RES[i] = A[i];
end

EXAMPLE-2: [1] relational operation detected within 'for' loop;
[2] arguments of the operation are loop variable and signal;
[3] range between initial value and iteration condition is 8 (loop variable step is 2), this number is
less than LOOP_NUMBER parameter value (by default) => no violation.

reg [15:0] A;
for(i = 0; i < 16; i = i + 2)

begin
if (i <= B)

RES[i] = A[i];
end

EXAMPLE-2: [1] logical operation detected within 'for' loop;
[2] both arguments of the operation are signals;
[3] range between initial value and iteration can not be calculated => violation (message-2).
Note: LOOP_NUMBER parameter value is set to 5.

212 of 334 Verilog HDL RTL Design Style Checks

The range of the number of loops is 16. When 'for' loop description
infers comparison circuit, it is recommended to limit the loop variable to
up to 10 times to avoid a decrease in circuit quality.

reg [8:0] A;
reg [8:0] B;
reg loop_range;
for(i = 0; i < loop_range; i = i + 1)

begin
RES[i] = A[i] || B[i];

end

Verilog HDL RTL Design Style Checks 213 of 334

The range of the number of loops could be greater than recommended
value 5. When 'for' loop description infers a comparison circuit, it is
recommended to limit the loop variable to avoid a decrease in circuit
quality.

STARC_VLOG 2.9.2.4
RULE NAME Use for-loop separately from the reset part and the logic part

MESSAGE

Detected use of the asynchronous reset and logic parts in the same for loop
statement. Use for loop statement separately from the reset and the logic parts,
because such description may not be supported by synthesis tools.

DETAIL 'for' statement includes asynchronous reset and logic parts.

PROBLEM
DESCRIPTION

Describing flip-flops with asynchronous controls within the same 'for' loop statement is not
recommended. Such style is not supported by all synthesis tools and may lead to undesirable
circuit to be generated. To fix the problem control and logic part should be put to different 'for'
statements.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans 'always' statements those infer flip-flops and include 'for' loops:
– if asynchronous set/reset condition is used inside the same 'for' loop statement with

synchronous part => violation

EXAMPLE-1: [1] reset part and logic part are in the same 'for' loop => violation.

always @(posedge clk or posedge rst)
for (i = 0; i <= 3; i = i + 1)

begin
if (rst)

out[i] <= 1'b0;
else

out[i] <= data[i];
end

EXAMPLE-2: [1] separate 'for' loops with reset and logic parts => no violation.

always @(posedge clk or posedge rst)
begin

if (rst)
for (i = 0; i <= 3; i = i + 1) // separate loop

out[i] <= 1'b0;
else

for (i = 0; i <= 3; i = i + 1) // separate loop
out[i] <= data[i];

end

214 of 334 Verilog HDL RTL Design Style Checks

Detected use of the asynchronous reset and logic parts in the same
for loop statement. Use for loop statement separately f rom the reset
and the logic parts, because such description may not be supported
by synthesis tools.

'for' statement includes asynchronous reset and logic parts.

2.10 Operator description

2.10.1 Order of operators and assignment of 'x'

STARC_VLOG 2.10.1.4
RULE NAME Do not compare with 'x' or 'z'
MESSAGE Comparison operand contains: {ExprValue}. Do not compare with 'x' or 'z'.

PROBLEM
DESCRIPTION

Comparison operators may return 1 if the expression is true and 0 if the expression is false. But if
there are any 'x' or 'z' bits in the operands the the result becomes unknown and expression takes
the value 'x'. So do not compare with 'x' or 'z' to get correct comparison results. Moreover,
comparison with 'x' is ignored in logic synthesis tools.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans comparison operators ==, !=, <, <=, >, >= and verifies only expressions that
contain signals on one of the sides (pure constant expressions are optimized at the compilation
or elaboration stage):

– if another side contains constants, which includes 'x' or 'z' bits (3'bxxx, 'bz, 2'bx0, etc)
=> violation

EXAMPLE-1: [1] signal is compared with value containing one 'z' bit => violation

if (tmp == 2'b1z)

 ...

EXAMPLE-2: [1] loop variable is compared with 32 bits in length unknown value => violation

for (i = 0; i <= 'bx; i = i + 1)

 ...

Verilog HDL RTL Design Style Checks 215 of 334

Comparison operand contains:2'b1z. Do not compare w ith 'x' or 'z'.

Comparison operand contains:
32'bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.
Do not compare w ith 'x' or 'z'.

STARC_VLOG 2.10.1.5
RULE NAME Do not assign 'x' except for the default clause of a case statements

MESSAGE An assignment with an 'x' in the right-hand side is detected. The results of RTL
and post-synthesis simulation may not match.

PROBLEM
DESCRIPTION

Assigning 'x' is treated as don’t-care, and logic synthesis tools generate a circuit with an unknown
value (either 0 or 1). This leads to a simulation result mismatch between RTL and gate-level. This
kind of description is risky and should be avoided. The exception is the use of case statements
and default clauses. If the unknown value ’x’ is assigned to the output of the default clause, it is
regarded as don’t-care and a non-determined value is output due to the optimization result.
Setting a non-determined value can usually decrease the size of the circuit more than setting a
fixed value in the default clause does. From the simulation point of view, assignment of 'x' in the
default clause helps to find missing case clauses and bad case selection expression values ('x'
propagation).

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans Verilog assignments:
– procedural: blocking (=), non-blocking (<=);
– continuous: assign, force statement;
– initialization assignments

Checker verifies detected assignments:
– if right hand side contain only constants and unknown value ('x' or 'z') is used =>

violation

EXAMPLE-1: [1] unknown value is used in continuous assignment => violation

assign {out1,out2} = {in1, {2{1'bx}}, in2}

EXAMPLE-2: [1] unknown value is used in assignment in case item => violation

case (sel)
 2'b01 : out1 = 2'0x;
 2'b10 : out1 = 2'11;
 default : out1 = 2'00;
endcase

EXAMPLE-3: [1] unknown value is assigned in default clause => no violation

case (sel)
 2'b01 : out1 = 2'00;
 2'b10 : out1 = 2'11;
 default : out1 = 2'xx;
endcase

216 of 334 Verilog HDL RTL Design Style Checks

An assignment w ith an 'x' in the right-hand side is detected. The
results of RTL and post-synthesis simulation may not match.

An assignment w ith an 'x' in the right-hand side is detected. The
results of RTL and post-synthesis simulation may not match.

STARC_VLOG 2.10.1.6
RULE NAME Do not use values including 'x' or 'z'
MESSAGE Illegal constant: {ExprValue}. Do not use values containing 'x' or 'z'.

PROBLEM
DESCRIPTION

A value that includes 'x' or 'z' is correct in terms of syntax, but errors will occur when using logic
synthesis tools because value is unknown (may be 0 or 1). So do not use such values.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans description for constant operands containing 'x' or 'z' values:
– if pure constant assignment => no violation (see 2.10.1.5)
– if comparison operators (==, !=, <, <=, >, >=) => no violation (see 2.10.1.4)
– if case equality operators (===, !==) => violation
– if increment/decrement loop variable => violation
– if non-constant assignment (containing signals in RHS) => violation

Note-1: expressions in initialization assignments are also checked.
Note-2: implicit comparison operators are also considered (it is allowed by Verilog language to
specify pure constant expression in the if condition, case selection expression, ternary condition)

EXAMPLE-1: [1] unknown value is used in the expression assigned in default clause of case statement (second
argument is signal) => violation;
[2] pure constant expression (only one constant) which contains unknown values is assigned =>
no violation;
[3] pure constant expression (constant and parameter) which contains unknown values is
assigned => no violation

parameter p = 3'b101;
reg tmp;
...
case (sel)
 1'b0: out1 <= 3'bxxx;
 1'b1: out1 <= 3'bzzz & p;
 default: out1 <= tmp + 3'bxxx;
endcase

EXAMPLE-2: [1] increment loop variable expression contains unknown value => violation

integer i;
for (i = 0; i < 7; i = i + 1'bx)
 ...

EXAMPLE-3: [1] unknown value is used in the expression in initialization assignment => violation

reg [1:0] tmp1;
reg [1:0] tmp2 = 2'b1x & tmp1;

EXAMPLE-4: [1] implicit comparison with one bit unknown value => violation

assign out1 = (1'bx) ? in1 : in2 ;

Verilog HDL RTL Design Style Checks 217 of 334

Illegal constant: 2'b1x. Do not use values containing 'x' or 'z'.

Illegal constant: 3'bxxx. Do not use values containing 'x' or 'z'.

Illegal constant: 1'bx. Do not use values containing 'x' or 'z'.

Illegal constant: 1'bx. Do not use values containing 'x' or 'z'.

2.10.3 Match the bit width of the left side and the right side
(Verilog only)

STARC_VLOG 2.10.3.1
RULE NAME

Clearly match the bit widths of the right side and the left side of
relational operators (Verilog only)

MESSAGE
Right side bit width "{RHSWidth}" of relational operator "{OpName}" does not
match to bit width "{LHSWidth}" of the left side. Use equal bit widths to avoid
confusion.

PROBLEM
DESCRIPTION

When two operands of different bit lengths are used and one or both of the operands is unsigned,
the smaller operand is zero filled on the most significant bit side to extend to the size of the larger
operand. Such extension may easily lead to mistakes or misunderstanding. Clearly match the bit
widths of the right side and the left side of relational operators to avoid any confusions.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects relational operators (<, >, <=, >=):
– if argument bit width at the right side do not match to bit width of argument at the left

side => violation.
Note: bit widths of decimal constants are defined by their values; violation is issued only for
decimal constants that are wider than other side of comparison (narrower decimal constants are
allowed).

EXAMPLE-1: [1] argument bit width at the right side do not match to bit width of argument at the left side =>
violation

wire [7:0] W_SLOT_A;
wire [5:0] W_SLOT_B;
wire [7:0] W_SLOT_C;
wire [7:0] W_OR;
assign W_OR = (W_SLOT_A < W_SLOT_B) ? (W_SLOT_A | W_SLOT_B) : (W_SLOT_A | W_SLOT_C)

218 of 334 Verilog HDL RTL Design Style Checks

Right side bit w idth “6” of relational operator “<” does not match to bit
w idth “8” of the lef t side. Use equal bit w idths to avoid confusion.

STARC_VLOG 2.10.3.2
RULE NAME

Match the bit width of the assignment signal and the operand of
logical operators (Verilog only)

MESSAGE-1

Bit-wise expression width "{ExprWidth}" is {CompareResult} than bit width
"{DestWidth}" of the assignment destination. Match bit widths exactly when
using bit-wise operators.

DETAIL Bit width of the argument is "{ArgBitWidth}"

MESSAGE-2

Bit-wise expression arguments have different bit width. Match bit widths exactly
when using bit-wise operators.

DETAIL Bit width of the argument is "{ArgBitWidth}"

PROBLEM
DESCRIPTION

Logical operator bit width should match to bit width of assignment destination. When bit width of
right-hand-side it greater than bit width of assignment destination => upper bits of right-hand-side
are truncated. Otherwise, when bit width of right-hand-side is less than bit width of assignment
destination => upper bits of destination are filled with zeros.
Descriptions with different bit widths may be made inadvertently – they are implicit and readability
of the description drops. Concatenations/part-selections should be used to describe
filling/truncation explicitly.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker verifies each assignment ('=', '<=', 'assign') where right-hand-side is expression with bit-
wise operators only:

– bit width of each operand should be the same as bit width of assignment destination:
– if bit width of whole right-hand-side expression is greater than bit width of

assignment target => violation (message-1: {CompareResult} = "greater", detail per
each argument with erroneous bit width)

– if bit width of whole right-hand-side expression is less than bit width of assignment
target => violation (message-1: {CompareResult} = "less", detail per each argument
with erroneous bit width)

– if bit width of whole right-hand-side expression is equal to bit width of assignment
target => each argument of the expression is verified if it has less bit width than
assignment destination (message-2 is displayed in case of violation with one detail
per each erroneous argument)

Note-1: this rule can be dependent on parameters or hierarchical references => elaboration-time
checking is required for such cases
Note-2: this checker verifies only cases where right-hand-side is an expression with bit-wise
operators only. This is made intentionally, since checker 2.10.3.3 verifies cases where right-
hand-side is expression of other type (for example, an expression with bit-wise and arithmetical
operators)

EXAMPLE-1: [1] right-hand-side expression contains bit-wise operators only;
[2] bit width of whole expression is greater than assignment destination bit width => violation
(message-1);
[3] note: expression includes operands with equal, greater and less bit widths either;

wire [7:0] W_SLOT_A;
wire [9:0] W_SLOT_B;
wire [5:0] W_SLOT_C;
wire [7:0] W_OR;

assign W_OR = W_SLOT_A | W_SLOT_B | W_SLOT_C;

Verilog HDL RTL Design Style Checks 219 of 334

Bit-w ise expression w idth "10" is greater than bit w idth "8" of the
assignment destination. Match bit w idths exactly w hen using bit-w ise
operators.

Bit w idth of the argument is "10"

Bit w idth of the argument is "6"

EXAMPLE-2: [1] right-hand-side expression contains bit-wise operators only;
[2] bit width of whole expression is less than assignment destination bit width => violation
(message-1);

wire [5:0] W_SLOT_B;
wire [6:0] W_SLOT_C;
wire [7:0] W_OR;

assign W_OR = W_SLOT_B | W_SLOT_C;

EXAMPLE-3: [1] right-hand-side expression contains bit-wise operators only;
[2] bit width of whole expression is equal to assignment destination bit width, but it contains
operand with less bit width => violation (message-2);

wire [5:0] W_SLOT_B;
wire [7:0] W_SLOT_C;
wire [7:0] W_OR;

assign W_OR = W_SLOT_B | W_SLOT_C;

EXAMPLE-4: [1] right-hand-side expression contains not only bit-wise operators => no violation of this rule even
for operands with erroneous bit width (this is case for 2.10.3.3)

wire [7:0] W_SLOT_A;
wire [5:0] W_SLOT_B;
wire [8:0] W_SLOT_C;
wire [7:0] W_OR;
assign W_OR = W_SLOT_B | W_SLOT_C + W_SLOT_A;

220 of 334 Verilog HDL RTL Design Style Checks

Bit w idth of the argument is "6"

Bit w idth of the argument is "7"

Bit-w ise expression w idth "7" is less than bit w idth "8" of the
assignment destination. Match bit w idths exactly w hen using bit-w ise
operators.

Bit w idth of the argument is "6"

Bit-w ise expression arguments have dif ferent bit w idth. Match bit
w idths exactly w hen using bit-w ise operators.

STARC_VLOG 2.10.3.3
RULE NAME

The bit width of the right-hand side of an assignment should not be
wider than the left-hand side of the assignment (Verilog only)

MESSAGE
Assignment source bit width "{SourceWidth}" is greater than destination bit
width "{DestWidth}". Upper bits of the right-hand side will be truncated. Match bit
widths exactly to improve the readability of the description.

PROBLEM
DESCRIPTION

When bit width of right-hand-side it greater than bit width of assignment destination => upper bits
of right-hand-side are truncated. Otherwise, when bit width of right-hand-side is less than bit
width of assignment destination => upper bits of destination are filled with zeros.
Descriptions with different bit widths may be made inadvertently – they are implicit and readability
of the description drops. Concatenations/part-selections should be used to describe
filling/truncation explicitly.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker verifies each assignment ('=', '<=', 'assign') where right-hand-side expression doesn't
belong to the following set:

– pure function call (it is case for 2.1.3.2)
– signal/expression of integer type (it is case for 2.10.4.3)
– expression including bit-wise operators only (it is case for 2.10.3.2)
– signal/expression of signed type (it is case for 2.10.6.2)

Checker works for all another cases (bit width of right hand side should be the same as bit width
of assignment destination):

– if bit width of right-hand-side expression is greater than bit width of assignment target =>
violation

Note-1: this rule can be dependent on parameters or hierarchical references => elaboration-time
checking is required for such cases

EXAMPLE-1: [1] right-hand-side doesn't belong to the set (described in the ""checker behavior" section);
[2] right-hand-side is wider than assignment target => violation

wire [7:0] W_SLOT_A;
wire [5:0] W_SLOT_B;
wire [8:0] W_SLOT_C;
wire [7:0] W_OR;
assign W_OR = W_SLOT_B | W_SLOT_C + W_SLOT_A;

EXAMPLE-2: [1] right-hand-side is wider than assignment target;
[2] right-hand-side belongs to the set (described in the "checker behavior" section): it is pure
integer expression => no violation (it is case for 2.10.4.3);

integer SLOT_A;
integer SLOT_B;
reg [15:0] R_SUM;
assign R_SUM = SLOT_A + SLOT_B;

Verilog HDL RTL Design Style Checks 221 of 334

Assignment source bit w idth "9" is greater than destination bit w idth
"8". Upper bits of the right-hand side w ill be truncated. Match bit
w idths exactly to improve the readability of the description.

STARC_VLOG 2.10.3.4
RULE NAME

The bit width of the right-hand side of an assignment should not be
narrower than the left-hand side of the assignment (Verilog only)

MESSAGE
Assignment source bit width "{SourceWidth}" is less than destination bit width
"{DestWidth}". Upper bits of the right-hand side will be filled with zeroes. Match
bit widths exactly to improve the readability of the description.

PROBLEM
DESCRIPTION

When bit width of a right-hand side is less than bit width of the assignment destination => upper
bits of destination are filled with zeros.
Descriptions with different bit widths may be made inadvertently – they are implicit and readability
of the description drops. Concatenations should be used to describe filling explicitly.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker verifies each assignment ('=', '<=', 'assign') where right-hand-side expression doesn't
belong to the following set:

– pure function call (it is case for 2.1.3.2)
– signal/expression of integer type (it is case for 2.10.4.3)
– expression including bit-wise operators only (it is case for 2.10.3.2)
– signal/expression of signed type (it is case for 2.10.6.2)

Checker works for all another cases:
– if bit width of right-hand-side expression is less than bit width of assignment target =>

violation
Note-1: this rule can be dependent on parameters or hierarchical references => elaboration-time
checking is required for such cases.
Note-2: bit widths of decimal constants are defined by their values; violation is issued only for
decimal constants that are wider than RHS of an assignment (narrower decimal constants are
allowed).

EXAMPLE-1: [1] bit width of RHS of continuous assignment is less then LHS => violation

input [3:0] in1;
output [3:0] out2;
assign out1 = in1[3:2];

EXAMPLE-2: [1] bit width of RHS, described in true condition part of ternary operator, is less then LHS =>
violation

input [3:0] in1;
input [7:0] in2;
output [7:0] out;
assign out = (in1 > in2) ? in1 : in2;

EXAMPLE-3: [1] bit width of RHS is less then LHS, but pure function call is used => no violation (2.1.3.2)

wire [32:0] a;
wire [32:0] b;

 function [31:0] func;
 input integer a;
 ...
 endfunction
assign b = func(a);

222 of 334 Verilog HDL RTL Design Style Checks

Assignment source bit w idth "2" is less than destination bit w idth "2".
Upper bits of the right-hand side w ill be f illed w ith zeroes. Match bit
w idths exactly to improve the readability of the description.

Assignment source bit w idth "4" is less than destination bit w idth "8".
Upper bits of the right-hand side w ill be f illed w ith zeroes. Match bit
w idths exactly to improve the readability of the description.

STARC_VLOG 2.10.3.5
RULE NAME

Specify base format (‘d,’b,’h,’o) for constants and keep them in
mind (Verilog only)

MESSAGE Base is not specified for “{ConstValue}”. It is recommended to specify base
format ('d, 'b, 'h, 'o) for all the numeric values.

PROBLEM
DESCRIPTION

If constant base format is not clearly specified it may be difficult to see whether it is decimal,
hexadecimal, octal or binary number. If the numeric value is between 1 and 7, there is no
problem, as value does not change regardless of the numeral system. Yet, as a practice, it is
recommended to specify base format (’d, ’b, ’h, ’o) for all the numeric values in Verilog HDL.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

1) Checker detects literal constants:

– if base format ('d, 'b, 'o, or 'h) is not specified for constant = > violation
2) Checker skips following cases:

– cases for checker 1.1.4.8
– comparison in for statement
– index expressions
– delay expressions

EXAMPLE-1: [1] constant without base specifier is a part of RHS of assignment => violation

assign D = (A ^ 2'b11) / 2'16;

Verilog HDL RTL Design Style Checks 223 of 334

Base is not specif ied for “16”. It is recommended to specify base
format ('d, 'b, 'h, 'o) for all the numeric values.

STARC_VLOG 2.10.3.6
RULE NAME

Specify bit width for constants used in conditional expressions
(Verilog only)

MESSAGE Bit width is not specified for the constant: {ObjectValue}.

PROBLEM
DESCRIPTION

When arguments have different bit widths unexpected comparison results may be obtain. To
avoid mistakes in conditional expressions using constants it is recommended to specify their bit
widths explicitly.

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects all conditional expressions:
– conditional expression in if, case, for statements
– case statement clauses
– conditional expression in ternary operator ?:
– arguments of comparison operators (<, <=, >=, >, ==, !=, ===, !==)

Checker verifies constants in detected expressions
– if bit width is not specified => violation

Note: for if conditional expression if integer argument is compared with decimal constant width
specifier is not required

EXAMPLE-1: [1] constant without bit width specified is used in conditional expression of if statement=> violation

reg in1;
always @(in1)
 if (in1 == 'd1)
 out1 = 1'b0;
 else
 out1 = 1'b1;

EXAMPLE-2: [1] decimal constant without bit width specified is used in conditional expression of if statement,
but compared argument has integer type => no violation

integer in1;
always @(in1)
 if (in1 == 'd1)
 out1 = 1'b0;
 else
 out1 = 1'b1;

224 of 334 Verilog HDL RTL Design Style Checks

Bit w idth is not specif ied for the constant: 1.

STARC_VLOG 2.10.3.7
RULE NAME

Match the bit width of the value with the base number part (2'b)
(Verilog only)

MESSAGE

Bit width "{ConstantWidth}" of the value "{Value}" does not match the bit width
"{BaseWidth}" of base number part. It is recommended to match bit widths
clearly for all the constants and parameters unless there is a special reason not
to do so.

PROBLEM
DESCRIPTION

If the value specified in the constant bit width definition part is less than value bit width, upper bits
of the constant are truncated and information is lost. If it is less – upper bits of constant are filled
with zeros, it is not really a problem but still care should be taken. Therefore, when specifying a
constant, it is better to match the value of the bit width definition part(2'b) and the bit width of
value properly.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker scans literal constant values defined with base number part:
– if constant bit width does not match to base number part => violation

Length of each digit in the constant is defined by its base:
– hexadecimal: 4 bits per digit
– octal: 3 bits per digit

Note:for decimal constants violation is issued only when specified constant has greater
bit width than base number part

EXAMPLE-1: [1] constant 'b10' bit width matches to base number part 2 => no violation;
[2] constant 'd10' bit width does not match to base number part 2 => violation;

tmp = (in1 ^ 2'b10) + 2'd10

EXAMPLE-2: [1] constant 'b0' bit width matches to base number part 4 => violation;

assign out1 = {4'b0, in1}

Verilog HDL RTL Design Style Checks 225 of 334

Bit w idth “4” of the value “d10” does not match the bit w idth “2” of
base number part. It is recommended to match bit w idths clearly for all
the constants and parameters unless there is a special reason not to
do so.

Bit w idth “1” of the value “b0” does not match the bit w idth “4” of base
number part. It is recommended to match bit w idths clearly for all the
constants and parameters unless there is a special reason not to do
so.

2.10.4 Take note of the different data types between the left and
right sides (Verilog only)

STARC_VLOG 2.10.4.1
RULE NAME Do not use data types other than reg, wire and integer

MESSAGE

Module "{ModuleName}" uses data types other than reg, wire and integer. It is
not allowed in RTL description.

DETAIL {ObjectClass} "{ObjectName}" has type: {TypeName}.

PROBLEM
DESCRIPTION

Synthesis of different data types required special libraries and conversion functions. Moreover, it
is not supported by all synthesis tools. It is recommended to use only reg, wire and integer data
types to avoid unexpected synthesis results.

LEVEL RULE

CHECKER
BEHAVIOR

1) Checker verifies signal and function declarations:
– if type is other than reg, wire or integer => violation

2) Checker verifies parameters:
– if parameter is not a vector (i.e. has real type) => violation

Note: vectors of reg/wire, arrays of reg/wire/integer, memories (array of vector of reg) do not
violate rule.

EXAMPLE-1: [1] signal is declared with time type => violation
[2] parameter is declared with real type => violation

module top;

 time time_signal;
 parameter real param1 = 10.32;

 ...

endmodule

226 of 334 Verilog HDL RTL Design Style Checks

Parameter "param1" has type: real.

Module "top" uses data types other than reg, w ire and integer. It is not
allow ed in RTL description.

Signal "time_signal" has type: time.

STARC_VLOG 2.10.4.3
RULE NAME

Pay attention to bit widths when assigning an integer to reg or wire
(Verilog only)

MESSAGE-1
Right hand side of the assignment is 32-bit integer that is less than bit width
"{DestWidth}" of left hand side. Upper bits of the left hand side will be filled with
zeroes. It is recommended to match bit widths exactly.

MESSAGE-2
Right hand side of the assignment is 32-bit integer that is greater than bit width
"{DestWidth}" of left hand side. Upper bits of the right hand side will be
truncated. It is recommended to match bit widths exactly.

PROBLEM
DESCRIPTION

Integers are 32-bit values. Close attention should be paid when assigning them to regs or wires.
When bit width of right-hand-side it greater than bit width of assignment destination => upper bits
of right-hand-side are truncated. Otherwise, when bit width of right-hand-side is less than bit
width of assignment destination => upper bits of destination are filled with zeros.
Descriptions with different bit widths may be made inadvertently – they are implicit and readability
of the description drops. Concatenations/part-selections should be used to describe
filling/truncation explicitly.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker verifies each assignment ('=', '<=', 'assign') where:
– right-hand-side expression contains:

– signals of integer type
– parameters of integer type
– literal constants

– assignment target is reg or wire
Bit width of right hand side should be the same as bit width of assignment destination:

– if bit width of right-hand-side expression is less than bit width of assignment target =>
violation (message-1)

– if bit width of right-hand-side expression is greater than bit width of assignment target =>
violation (message-2)

Note-1: this rule can be dependent on parameters or hierarchical references => elaboration-time
checking is required for such cases

EXAMPLE-1: [1] right-hand-side is an expression with integer and literal constant members; [2] right-hand-side is
less than assignment target => violation (message-1);

integer SLOT_A;
integer SLOT_B;
reg [63:0] R_SUM;
always @(SLOT_A, SLOT_B)

R_SUM = SLOT_A + SLOT_B + 1;

EXAMPLE-2: [1] right-hand-side is an expression with integer and literal constant members; [2] right-hand-side is
wider than assignment target => violation (message-2);

integer SLOT_A;
integer SLOT_B;
reg [15:0] R_SUM;
assign R_SUM = SLOT_A + SLOT_B;

Verilog HDL RTL Design Style Checks 227 of 334

Right hand side of the assignment is 32-bit integer that is less than bit
w idth "64" of lef t hand side. Upper bits of the lef t hand side w ill be
f illed w ith zeroes. It is recommended to match bit w idths exactly.

Right hand side of the assignment is 32-bit integer that is greater than
bit w idth "16" of lef t hand side. Upper bits of the right hand side w ill
be truncated. It is recommended to match bit w idths exactly.

EXAMPLE-3: [1] right-hand-side is an expression with integer and literal constant members; [2] length of right-
hand-side is equal to assignment target => no violation;

integer SLOT_A;
integer SLOT_B;
reg [31:0] R_SUM;
assign R_SUM = SLOT_A + SLOT_B;

228 of 334 Verilog HDL RTL Design Style Checks

STARC_VLOG 2.10.4.5
RULE NAME Do not assign negative value to integer
MESSAGE A negative value is assigned to a variable of 'integer' type: {ExprValue}.

PROBLEM
DESCRIPTION

Integers are defined as 32-bit values. Assigning negative numbers to integers is possible, but
unexpected results may be obtained when assigning with the reg variable. For example, when
assigning to variables larger than 32 bits, even if the sign of the top bit of the integer is negative,
what is assigned to the upper bits depends on the tool used (it may become a positive value).

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies procedural (blocking (=) and non-blocking (<=)) assignment statements to the
signals of an integer type:

– if right-hand side of this assignment evaluates to negative value => violation

EXAMPLE-1: [1] negative value is assigned to the integer signal => violation

integer int_var;
always @ (...)

 int_var = -2;

EXAMPLE-2: [1] expression result is negative
[2] target of assignment has integer type => violation
Note: the violation is detected at the elaboration stage

parameter integer p_int = -10;
parameter signed [31:0] p_sig = 5;
integer int_res;
always @ (...)

 int_res = p_int + p_sig;

...

Verilog HDL RTL Design Style Checks 229 of 334

A negative value is assigned to a variable of 'integer' type: -2.

A negative value is assigned to a variable of 'integer' type: -5.

STARC_VLOG 2.10.4.6
RULE NAME

Do not assign a negative value to signals, which are declared with
reg or wire

MESSAGE A negative value “{ExprValue}” is assigned to a variable of 'reg' or 'wire' type.

PROBLEM
DESCRIPTION

Negative values can be assigned to reg variables. If assigning a negative value, it is regarded as
the variable with a sign and value assigned. However, some logic synthesis tools may not
generate a correct circuit, so use of negative values is not recommended.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects procedural and continuous assignments to signals of unsigned reg/wire type:
– if right-hand side of this assignment evaluates to negative value => violation

EXAMPLE-1: [1] negative integer value is assigned to the integer signal of the reg type => violation.

reg tmp;
always @ (...)

 tmp = -1;

EXAMPLE-2: [1] target of assignment is a signal of wire type;
[2] leftmost bit of signed constant is '1' => violation.

wire tmp;
assign tmp = 3'sb101;

EXAMPLE-3: [1] target of assignment is a signal of wire type;
[2] leftmost bit of signed constant is '0', because it is not specified implicitly => no violation.

wire tmp;
assign tmp = 4'sb101;

230 of 334 Verilog HDL RTL Design Style Checks

A negative value “-1” is assigned to a variable of 'reg' or 'w ire' type.

A negative value “-3” is assigned to a variable of 'reg' or 'w ire' type.

2.10.5 Do not share resources in speed critical circuits

STARC_VLOG 2.10.5.3
RULE NAME Do not describe three or more shared arithmetic operations

MESSAGE

Arithmetic operation "{Operation}" is used in {BranchCount} conditional
branches. If resource sharing is expected by a logic synthesis tool, circuit speed
may degrade. Do not describe {OperationCount} or more shared arithmetic
operations

DETAIL Operator may be shared

PROBLEM
DESCRIPTION

Resources sharing uses the same operators for
multiple operations to reduce the resources necessary
for simultaneous operations. Following is description
where operations are not shared:
 if(SEL == 1'b0)
 RES = REG_A + REG_B;
 else
 RES = REG_A + REG_C;
Structure at the right side corresponds to case when
each branch operation is executed and operation
result is selected by multiplexer.
Note, that conditional branches of the 'if' statement are not executed simultaneously.
Consecutively, "+" operator can be shared (operands are placed on the input side of multiplexer
and operators are shared by a single element).
Manually, such effect can be reached by following
description:
 if(SEL == 1'b0)
 TMP = REG_B;
 else
 TMP = REG_C;
 RES = TMP + REG_A;
Of course, logic synthesis tools perform automatic
resource sharing with consideration given to timing. The
problem is following: resources cannot always be
shared properly => it is unsafe for resource timing to be
dependent on the sharing. In general, it is
recommended not to share resources between more than three arithmetic operations (when
automatic sharing is performed for many operators, circuit speed may degrade – a lot of logic is
required for it). Moreover, if necessary structure is already known, it should be described clearly.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans branches in the following constructs:
– 'if' statement
– 'case' statement
– ternary operator (?:)

List of used arithmetic operations (+, -, *, /, **, %) is collected for each branch:
– process is recursive: while collecting the list for current branch, arithmetic operations

from all nested branches are collected too
When arithmetic operations are collected for all branches, backward process started:

– for each arithmetic operation, all parallel branches with same operation are detected.
Violation message is displayed when number of such branches is greater than value of
the parameter SHARED_OPERATION_BRANCHES_ALLOWED (it can be changed
from the configuration file):
– parallel branch is such branch that not nested and belongs to the currently scanned

construct

Verilog HDL RTL Design Style Checks 231 of 334

MUX

REG_B

REG_A

REG_C

+

+

SEL

RES

MUXREG_B

REG_A

REG_C

SEL

RES
+

– in case of violation, details are displayed for all (even nested) arithmetic operations
(it is impossible to predict which from nested operators will participate in sharing – it
depends on synthesis tool)

– warning template: {OperationCount} =
SHARED_OPERATION_BRANCHES_ALLOWED

EXAMPLE-1: [1] 'if' statement contains more than two arithmetic operators that may be shared => violation
(default configuration allows two shared operations);
[2] note, that total count of operations is 4, but warning is issued only since 3 operations in the
parallel branches (first branch contains nested 'if' statement with two operations, but they are
issued as one operation within first branch);

if(SEL == 3'b111) then
if(EN)

RES <= REG_A * REG_B;
else

RES <= REG_A * REG_E;
else if(SEL == 3'b101)

RES <= REG_A * REG_C;
else if(SEL == 3'b001)

RES <= REG_B * REG_C;

EXAMPLE-2: [1] SHARED_OPERATION_BRANCHES_ALLOWED = 4;
[2] 'case' contains five operations that may be shared => violation;

case(SEL)
3'b111: RES_1 = REG_A – REG_B;
3'b101: RES_2 = REG_B – REG_C;
3'b011: RES_1 = REG_C + REG_D;
3'b001: RES_1 = REG_C – REG_D;
3'b100: RES_2 = REG_C – REG_D;
default: begin

RES_1 = REG_A – REG_D;
RES_2 = REG_B + REG_C;

end
endcase

EXAMPLE-3: [1] ternary operator contains three operations possible to be shared => violation

assign RES = (SEL == 3'b111)?
REG_A % REG_B:
(SEL == 3'b101)?

REG_B % REG_D:
(SEL == 3'b001)?
 REG_B + REG_D:
 REG_X % REG_Z;

232 of 334 Verilog HDL RTL Design Style Checks

Arithmetic operation is used in 3 conditional branches. If resource
sharing is expected by a logic synthesis tool, circuit speed may
degrade. Do not describe 3 or more shared arithmetic operations

Operator may be shared

Operator may be shared

Operator may be shared

Arithmetic operation is used in 5 conditional branches. If resource
sharing is expected by a logic synthesis tool, circuit speed may
degrade. Do not describe 5 or more shared arithmetic operations

Operator may be shared

Operator may be shared

Operator may be shared

Operator may be shared

Arithmetic operation is used in 3 conditional branches. If resource
sharing is expected by a logic synthesis tool, circuit speed may
degrade. Do not describe 3 or more shared arithmetic operations

Operator may be shared

Operator may be shared

STARC_VLOG 2.10.5.5

RULE NAME
Do not describe arithmetic operations with conditional operators
(?) in an assignment statement (resource sharing will not be
performed)

MESSAGE

Arithmetic operator "{ArithOp}" is used in multiple conditional branches of a
ternary operator in an 'assign' statement. Some tools do not perform resource
sharing on 'assign' statements. Use 'always' statements with "if-else"
descriptions if resource sharing is expected by a logic synthesis tool.

PROBLEM
DESCRIPTION

Sharing arithmetic operator resources can be supported even when conditional operators are
used within assign statements. However, there are tools that do not perform resource sharing on
assign statements. Therefore, if resource sharing is expected by a logic synthesis tool, use
always statements with if-else descriptions (see 2.10.5.3 for more details about resource
sharing).

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects continuous assign statements with the ternary operator and scans the right-hand
side for arithmetical operators (+, -, *, /, %, **):

– if arithmetic operator is used in different branches of ternary operator => violation

EXAMPLE-1: [1] division is used in both branches of ternary operator => violation

assign ARITH_1 = (SEL)? A / B - C : C / A + B;

EXAMPLE-2: [1] division is used in both branches of ternary operator, but operator is specified in an always
block => no violation

always (SEL, A, B, C)
 ARITH_1 = (SEL)? A / B - C : C / A + B;

Verilog HDL RTL Design Style Checks 233 of 334

Arithmetic operator "/" is used in multiple conditional branches of a
ternary operator in an 'assign' statement. Some tools do not perform
resource sharing on 'assign' statements. Use 'alw ays' statements
w ith "if -else" descriptions if resource sharing is expected by a logic
synthesis tool.

Arithmetic operator "/" is used in multiple conditional branches of a
ternary operator in an 'assign' statement. Some tools do not perform
resource sharing on 'assign' statements. Use 'alw ays' statements
w ith "if -else" descriptions if resource sharing is expected by a logic
synthesis tool.

2.10.6 Notes on arithmetic operations

STARC_VLOG 2.10.6.1
RULE NAME

Carry-out should be considered for bit widths of signals to which
operation results will be assigned.

MESSAGE

Bit width “{DestBitWidth}” of assignment destination takes into account
{CarryBits}-bit carry-out that is possible for assignment source. When it is
necessary to consider the carry-out, it is recommended to describe carry-out
logic separately from arithmetic expressions.

PROBLEM
DESCRIPTION

In arithmetic operations, bit width should be specified correctly keeping carry-out output in mind.
Usually it is not recommended to adjust target width considering possible carry-out. But to avoid
date lost you should describe carry-out logic separate from an arithmetic operation as shown in
the example:

reg a,b,c,res;
assign res = a + b; //result of arithmetic operation
assign c = a & b; //carry-out signal

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans assignment expressions which contains arithmetic operator (“+” or ”-”):
– bit-widths of the assignment source (S_BW) and destination (D_BW) are calculated,

then
– source bit width that considers carry overflow is also calculated (SO_BW)

– if (SO_BW != S_BW), and
– if (SO_BW == D_BW) => violation

Note: assignments to be checked:
– continuous ('assign');
– procedural (blocking/non-blocking);
– conditional (?:).

EXAMPLE-1: [1] arithmetic operation (“+”) is detected;
[2] SO_BW = 2, S_BW = 1 => SO_BW != S_BW;
[3] D_BW = 2 => SO_BW == D_BW => violation.

reg a,b;
wire [1:0] res;
assign res = a + b;

EXAMPLE-2: [1] arithmetic operation (“+”) is detected within expression;
[2] SO_BW = 3, S_BW = 2 => SO_BW != S_BW;
[3] D_BW = 3 => SO_BW == D_BW => violation.

reg a;
reg [1:0] b,c;
reg d,e,f;
wire res1;
wire [2:0] res2;

assign res2 = a * f | c & d + c;

assign res1 = a * b || c ^ d + e; //result is always 1 bit => no violation

234 of 334 Verilog HDL RTL Design Style Checks

Bit w idth “2” of assignment destination takes into account 1-bit carry-
out that is possible for assignment source. When it is necessary to
consider the carry-out, it is recommended to describe carry-out logic
separately f rom arithmetic expressions.

Bit w idth “3” of assignment destination takes into account 1-bit carry-
out that is possible for assignment source. When it is necessary to
consider the carry-out, it is recommended to describe carry-out logic
separately f rom arithmetic expressions.

STARC_VLOG 2.10.6.2
RULE NAME

Beware on the sign extension and adjust bit widths in signed
operations

MESSAGE-1

Signed expression width "{ExprWidth}" is {CompareResult} than bit width
"{DestWidth}" of the assignment destination. It is necessary to match exactly the
bit widths of signed operands and assignment destination.

DETAIL Bit width of the argument is "{ArgBitWidth}"

MESSAGE-2

Signed expression arguments have different bit width. Match bit widths exactly
when using signed operations.

DETAIL Bit width of the argument is "{ArgBitWidth}"

PROBLEM
DESCRIPTION

In case of signed operations, bit width of assignment target should match to bit width of each
argument. Sign bit should be expanded to the upper bits and bit widths should be made the
same. Signed operations can introduce bit width mistakes. Descriptions with different bit widths
may be made inadvertently – they are implicit and readability of the description drops.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker verifies each assignment ('=', '<=', 'assign') where right-hand-side is signed expression
with "+" and "-" operators only:

– bit widths of each operand should be the same and equal to bit width of assignment
destination:
– if bit width of whole right-hand-side expression is greater than bit width of

assignment target => violation (message-1: {CompareResult} = "greater", detail per
each argument with erroneous bit width)

– if bit width of whole right-hand-side expression is less than bit width of assignment
target => violation (message-1: {CompareResult} = "less", detail per each argument
with erroneous bit width)

– if bit width of whole right-hand-side expression is equal to bit width of assignment
target => each argument of the expression is verified if it has less bit width than
assignment destination (message-2 is displayed in case of violation with one detail
per each erroneous argument)

Note-1: this rule can be dependent on parameters or hierarchical references => elaboration-time
checking is required for such cases
Note-2: this checker verifies only cases where right-hand-side is a signed expression with "+" or
"-" operators only. This is made intentionally, since checker 2.10.3.3 verifies cases where right-
hand-side is expression of other type (for example, an unsigned expression or expression with
another operators)

EXAMPLE-1: [1] right-hand-side is an signed expression;
[2] only "+" and "-" operators are used;
[3] right-hand-side expression has greater bit width than assignment destination => violation
(message-1, {CompareResult = greater});

input signed [7:0] P_1;
input signed [7:0] P_2
output [7:0] OP_Z;
...

assign OP_Z = P_1 + P_2 – 1;

EXAMPLE-2: [1] right-hand-side is an signed expression;
[2] only "-" operators are used;
[3] right-hand-side expression has same bit width as assignment destination, but one of the
arguments has less bit width => violation (message-2);

Verilog HDL RTL Design Style Checks 235 of 334

Signed expression w idth "32" is greater than bit w idth "8" of the
assignment destination. It is necessary to match exactly the bit w idths
of signed operands and assignment destination.

Bit w idth of the argument is "32"

input signed [7:0] P_1;
input signed [7:0] P_2
output [7:0] OP_Z;
reg signed [3:0] INTRNL;
...
assign OP_Z = P_1 - P_2 – INTRNL;

236 of 334 Verilog HDL RTL Design Style Checks

Signed expression arguments have dif ferent bit w idth. Match bit
w idths exactly w hen using signed operations.

Bit w idth of the argument is "4"

STARC_VLOG 2.10.6.3
RULE NAME

Signed operations and unsigned operations should not be mixed in
one statement

MESSAGE
Pay extra attention when operating signed and unsigned signals. It is
recommended to distinguish clearly between signed and unsigned arithmetic
operations to avoid problems with bit width adjusting.

PROBLEM
DESCRIPTION

When adjusting the bit widths of the right-hand side and left-hand side of an equation, a signed
signal will extend the top bit (sign extension). With unsigned signals, it is not necessary to adjust
the bit widths to be the same. When performing operations like this, it will not be possible to
distinguish whether it is an operation of signed and unsigned signals, or it is an operation of
signed signals with wrong bit widths. Therefore, an extra attention should be payed when
operating signed and unsigned signals. And it is not recommended to use mixture of signed and
unsigned operation in one statement.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker detects expressions which contain an arithmetic operations (+, -, *, /, %, **):
– if operands are not all signed or all unsigned simultaneously => violation

EXAMPLE-1: [1] arithmetic operation is used;
[2] first argument is of unsigned type;
[3] second argument is negative constant of integer type => violation.

reg arg;
reg dest;
always @(...)

dest = arg - 1;

EXAMPLE-2: [1] arithmetic operation is used within task enable statement;
[2] one of the arguments is of unsigned type, another – of signed => violation.

reg arg1;
reg signed arg2;
always @(...)

task1 (arg1 * arg2, ...)

EXAMPLE-3: [1] arithmetic operation is used;
[2] first argument is of unsigned type but it is converted to signed by system function;
[3] second argument is of integer type, so it is signed => violation.

reg arg1;
integer arg2;
integer dest;
always @(...)

dest = $signed (arg1) - arg2 ;

Verilog HDL RTL Design Style Checks 237 of 334

Pay extra attention w hen operating signed and unsigned signals. It is
recommended to distinguish clearly betw een signed and unsigned
arithmetic operations to avoid problems w ith bit w idth adjusting.

Pay extra attention w hen operating signed and unsigned signals. It is
recommended to distinguish clearly betw een signed and unsigned
arithmetic operations to avoid problems w ith bit w idth adjusting.

STARC_VLOG 2.10.6.4
RULE NAME

Do not infer large multipliers by the RTL description but describe
the contents of multipliers by logical operation.

MESSAGE
Multiplier with {MultBW}-bit output is inferred. It is recommended to use libraries
with high performance multipliers or describe them in a logical operation (when
multiplier output is greater than {MAX_MULTIPLIER_WIDTH} bits).

PROBLEM
DESCRIPTION

Large scale multiplier can not be obtained from logic synthesis tools. For multiplier with greater
than 16 bit output, purchase and use of libraries with high performance multipliers should be
considered or multipliers should be described in a logical operation. Also, multipliers generated
by a specific tool (such as Module Compiler) can be used. It is recommended to obtain multipliers
by using external means or use gate level circuits.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker detects multiplier inferences in the source code:
– if bit width of operation result is greater then MAX_MULTIPLIER_WIDTH parameter

value => violation
Note-1: parameter MAX_MULTIPLIER_WIDTH defines maximum bit width which is allow for the
result of multiplication operation (default value is “16”).
Note-2: see 2.10.6.6 (note-1) for details about context.
Note-3: elaboration-time checks are supposed for parameter-dependent expressions.

EXAMPLE-1: [1] two multiplication operations are detected;
[2] result of both operations is 32 bits => two violations.

reg [15:0] a,b,c,d;
reg [63:0] res;
assign res = a * b + c * d;

EXAMPLE-2: [1] multiplication operation is detected;
[2] bit width of first operand (sum) is 8 bits, result of multiplication is 16 bits in width => no violation.

reg [3:0] a,b
reg [8:0] c;
reg [63:0] res;
assign c = (a + b) * c;

238 of 334 Verilog HDL RTL Design Style Checks

Multiplier w ith 32-bit output is inferred. It is recommended to use
libraries w ith high performance multipliers or describe them in a logical
operation (w hen multiplier output is greater than 16 bits).

Multiplier w ith 32-bit output is inferred. It is recommended to use
libraries w ith high performance multipliers or describe them in a logical
operation (w hen multiplier output is greater than 16 bits).

STARC_VLOG 2.10.6.6 .v1
Note: This rule was actually removed from the Second Version (April 25, 2006) of STARC “RTL
Design Style Guide for Verilog HDL”, and a new 2.10.8 section about dividers was added, because the
latest implementation technologies and synthesis tools support "divider" elements. We decided to
keep this rule renumbered to 2.10.6.6.v1, because not everybody, especially FPGA designers, will
have the possibility to synthesize division as "divider" element. Thus, current 2.10.6.6 rule is the
former 2.10.6.7 that became 2.10.6.6 in the Second Version of the Guide. This is the only exception in
STARC rules numbering.

RULE NAME
Do not use division
 - Exception in the case of division by power of 2

MESSAGE-1 Divisor == {ObjectValue}. Do not use division, except in the case of division by
the power of 2.

MESSAGE-2 Divisor expression is not constant. Do not use division, except in the case of
division by the power of 2.

MESSAGE-3 Divisor == {ObjectValue}. Do not use modulus, except in the case of division by
the power of 2.

MESSAGE-4 Divisor expression is not constant. Do not use modulus, except in the case of
division by the power of 2.

PROBLEM
DESCRIPTION

Most logic synthesis tools do not support division (/) so do not use division, except in the case of
division by the power of 2 (or you may use your own divider circuit implementation). In case of
division for the power of 2, such as 2, 4, 8, 16, the operation is just a shift operation and therefore
division can be used.

LEVEL RULE

CHECKER
BEHAVIOR

1) Checker detects expressions, where arithmetic division operation (/) is used:
– if divisor value is not equal to the power of 2 (divisor is a literal constant, parameter or

constant expression) => violation (message-1)
– if divisor is a signal or an expression that contains signal => violation (message-2)

2) Checker detects expressions, where modulus operation (%) is used:
– if divisor value is not equal to the power of 2 (divisor is a literal constant, parameter or

constant expression) => violation (message-3)
– if divisor is a signal or an expression that contains signal => violation (message-4)

Note: expressions which cause circuit inference (where dividend is a signal) are checked

EXAMPLE-1: [1] arithmetic division operation is used;
[2] divisor value (divisor is a literal constant) is not equal to the power of 2 => violation
(message-1)

assign out1 = in1 / 3;

EXAMPLE-2: [1] modulus operation is used;
[2] divisor is an expression that contains signal => violation (message-4)

assign out1 = in1 % (in2 + 2);

Verilog HDL RTL Design Style Checks 239 of 334

Divisor == 3. Do not use division, except in the case of division by the
pow er of 2.

Divisor expression is not constant. Do not use modulus, except in the
case of division by the pow er of 2.

STARC_VLOG 2.10.6.6
Note: This rule actually had the 2.10.6.7 number in the First Version (December 25, 2003) of STARC
“RTL Design Style Guide for Verilog HDL”. Former 2.10.6.6 rule was removed from the Second
Version, and a new 2.10.8 section about dividers was added, because the latest implementation
technologies and synthesis tools support "divider" elements. We decided to keep former 2.10.6.6. as
2.10.6.6.v1, because not everybody, especially FPGA designers, will have the possibility to synthesize
division as "divider" element. Thus, former 2.10.6.7 rule became 2.10.6.6 in the Second Version of
Guide and it is the current rule. The 2.10.6.6.v1 is the only exception in STARC_VLOG rules
numbering.

RULE NAME
Do not describe more than one arithmetic operation in one line
(except for carry-in A+B+CIN(1bit))

MESSAGE

{ArithOperCount} arithmetic operators are described within the same expression.
When more than one operation is performed in one expression, arithmetic
operators will be synthesized in a linear fashion. In general, it is not
recommended to describe more than one arithmetic operation in one line (except
for carry-in A+B+CIN(1bit)).

PROBLEM
DESCRIPTION

Describing more then one arithmetic operation per single expression may cause 2 and more bits
to carry around the end. Bit width on the two sides of an assignment is different in this case, and
it is not be recommended. Also, when more than one operation is performed in one expression,
arithmetic operators will be created in a linear fashion. To clarify the order of operations, this kind
of operation should be described as one operation per statement.
However, there is an exception to this recommendation. Consider an example below:

reg [1:0] a;
reg [1:0] b;
assign res = a + b + c;

In this case, when the third term is 1 bit, there is no problem because an adder with a carry-in
input is generated.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans expressions which contain arithmetic operator (“+” or ”-”):
– if more then one arithmetic operators is described:

– more than 2 operators => violation;
– exactly 2 operators:

– scan their operands for single-bit
– if it is detected => no violation;
– otherwise => issue violation.

Note-1: following objects are considered as separate scopes and are checked separately:
– concatenation element: { A + B, C + D };
– function/procedure argument: function_call(A + B, C + D);
– module instantiation statement FF INST_1(.PORT_A(A + B), .PORT_B(C + D));
– ternary conditional branches: assign RES = (SEL)? A + B : C + D;
– always sensitivity list element: always @(A + B, C + D);
– comma-separated objects: assign A = B + C, E = F + G.

Note-2: when expression contains operation other then “+” or ”-” it is processed from bottom to
top and each subexpression is checked separately:

//operators checked first are marked with green
//operators checked second are marked with blue
c * b * a + e * c - d * (a + b + d)

240 of 334 Verilog HDL RTL Design Style Checks

EXAMPLE-1: [1] two arithmetic operations (“+”) are detected within the first concatenation element;
[2] expression contains one-bit operand => no violation;
[3] one arithmetic operation (“-”) is detected within second element => no violation;

reg [7:0] a,b,d,e;
reg c;
assign res = { a + b + c, d - e };

EXAMPLE-2: [1] two arithmetic operations (“+”) are detected in every two branches of conditional operator;
[2] first branch does not contain one-bit operands => violation-1;
[3] second branch does not contain one-bit operands => violation-2
Note: separate violation per every branch.

reg [7:0] a,b,c,d,e,f;
assign sum = sel ? a + b + c : d + e + f;

EXAMPLE-3: [1] one arithmetic operation (“+”) is detected within subexpression in parentheses => no violation;
[2] two operations (“+” and ”-”) are detected within expression on top level and it does not contain
one-bit operands => violation.

reg [7:0] a,b,c,d,e,f;
assign res = a * b * (c + d) / 2 – e + f;

Verilog HDL RTL Design Style Checks 241 of 334

2 arithmetic operators are described w ithin the same expression.
When more than one operation is performed in one expression,
arithmetic operators w ill be synthesized in a linear fashion. In general,
it is not recommended to describe more than one arithmetic operation
in one line (except for carry-in A+B+CIN(1bit)).

2 arithmetic operators are described w ithin the same expression.
When more than one operation is performed in one expression,
arithmetic operators w ill be synthesized in a linear fashion. In general,
it is not recommended to describe more than one arithmetic operation
in one line (except for carry-in A+B+CIN(1bit)).

2 arithmetic operators are described w ithin the same expression.
When more than one operation is performed in one expression,
arithmetic operators w ill be synthesized in a linear fashion. In general,
it is not recommended to describe more than one arithmetic operation
in one line (except for carry-in A+B+CIN(1bit)).

2.10.7 Take share items out of conditional branches

STARC_VLOG 2.10.7.1
RULE NAME

Do not use arithmetic operation in the conditional expression of if
statements

MESSAGE-1 An arithmetic operation is detected in the conditional expression of an 'if'
statement. Prefer using intermediate variables to share resources

MESSAGE-2 An arithmetic operation is detected in the conditional expression of an ternary
operator. Prefer using intermediate variables to share resources

PROBLEM
DESCRIPTION

Arithmetic operations within conditional expressions of 'if' statements or ternary operators are not
participating in the automatic resource sharing:
 always @(INP_A or INP_B or INP_C)
 if(INP_A - INP_B > 4'b0101)
 RES = 4'b0000;
 else if(INP_A - INP_B - INP_C > 4'b1000)
 RES = 4'b0110;
 else
 RES = 4'b1111;
 end
Intermediate variables should be used in such cases (it is recommended to use 'assign'
statement):
 assign TMP = INP_A – INP_B;
 always @(INP_A or INP_B or INP_C)
 if(TMP > 4'b0101)
 RES = 4'b0000;
 else if(TMP - INP_C > 4'b1000)
 RES = 4'b0110;
 else
 RES = 4'b1111;
 end

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans conditional expressions of 'if' statements and ternary operators:
– if at least one arithmetic operation detected => violation:

– for 'if' statements => message-1
– for ternary operators => message-2

– index expressions (loop variable and constant) are not scanned

EXAMPLE-1: [1] arithmetic operation is used in the conditional expression of 'if' statement => violation

always @(A or B or C)
if(A + B > C)

RES = 1'b1;
else

RES = 1'b0;

EXAMPLE-2: [1] arithmetic operation is used within index expression => no violation (only loop variable and
constant are used)

for(i = 0; i < 31; i = i + 1)
if(REG_A[i+1] > REG_A[i]) begin

TMP = REG_A[i+1];
REG_A[i+1] = REG_A[i];
REG_A[i] = TMP;

end

242 of 334 Verilog HDL RTL Design Style Checks

An arithmetic operation is detected in the conditional expression of
an 'if ' statement. Prefer using intermediate variables to share
resources

2.10.8 Division descriptions

STARC_VLOG 2.10.8.1
RULE NAME

Don’t use arithmetic and logical expressions at the right and left
sides of the division or modulus operator

MESSAGE Do not use arithmetic and logical expressions at the right and left sides of the
division or modulus operator.

PROBLEM
DESCRIPTION

Divider and modulus logic is even slower than multipliers; so care should be taken about the bit
width of a divider. If there is a shift operation at the right or left side of the division or modulus
operator, the logic synthesis tool can not determine the bit width. Consequently, a 32-bit divider
might be inferred.
In order to ensure a deterministic divider width, arithmetic and relational operators should not be
used at the right and left sides of the division and modulus operators. Use of logical expressions
cause the divider width to be deterministic. But divider and modulus logic is complicated and
slow. So you should code divider and modulus logic separately from logical operations.
It should be taken into account that some logic synthesis tools generate an error if the bit width at
the right side of an operator is greater than that of the left side. There are logic synthesis tools
that support resource sharing between division and modulus logic. However, resource sharing is
not achieved unless the bit widths of the right and left sides of an operator and the variable to
which the result is assigned are identical.

LEVEL RULE

CHECKER
BEHAVIOR

1) Checker scans division (/) and modulus (%) operators in a synthesis context:
– context for search

– always processes
– assign (continuous, including assignment in net declaration)
– synthesize task/function
– task/function call arguments
– instance port map
– index of bit-selection

– if arguments (both left and right side) contains any of operators mentioned below =>
violation
– forbidden operations:

– arithmetic operations (+, -, *, /, %, **, <<, >>, <<<, >>>)
– logical operations (!, &&, ||, ==, !=, ===, !==)
– relational operations (<, <=, >, >=)

Note: following constructs are not checked:
– initial processes
– parameter definitions
– parameter redefinition (generic map, defparam)
– initialization assignment to reg
– conditional expression of for statements
– index of part-selection
– index of signal declaration
– delay and event control statement expression

EXAMPLE-1: [1] arithmetic operation is used in the left side of division operation => violation

assign res = (a + b) / c;

Verilog HDL RTL Design Style Checks 243 of 334

Do not use arithmetic and logical expressions at the right and lef t
sides of the division or modulus operator.

EXAMPLE-2: [1] logic operation is used in the right sides of division and modulus operations in port map of gate
instantiation => violation

and (a, b / (c == d), b % (c == d));

244 of 334 Verilog HDL RTL Design Style Checks

Do not use arithmetic and logical expressions at the right and lef t
sides of the division or modulus operator.

STARC_VLOG 2.10.8.2
RULE NAME Keep the left side of the division or modulus operator within 12 bits

MESSAGE
Left side of the division or modulus operator is {LeftArgWidth} bits wide. Keep
the left side of the division or modulus operator within
{LEFT_ARGUMENT_WIDTH_MAX} bits.

PROBLEM
DESCRIPTION

Divider and modulus logic is complicated and slow. Circuit size and complexity increases with bit
width of left side argument. So it is recommended to keep the left side of division and modulus
operator within 12 bits.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans division (/) and modulus (%) operators in a synthesis context:
– context for search (see 2.10.8.1)
– if the left argument is greater than LEFT_ARGUMENT_WIDTH_MAX parameter =>

violation
Note-1: LEFT_ARGUMENT_WIDTH_MAX parameter (maximum bit width of the dividend) is
defined in the rule configuration (default is 12)
Note-2: if argument's width cannot be defined at the compilation stage – it is checked at the
elaboration stage

EXAMPLE-1: [1] the left argument of division operator is greater than LEFT_ARGUMENT_WIDTH_MAX
parameter (default 12) => violation

reg [15:0] a;
reg [7:0] b;
reg [7:0] c;
assign c = a / b;

Verilog HDL RTL Design Style Checks 245 of 334

Left side of the division or modulus operator is 16 bits w ide. Keep the
lef t side of the division or modulus operator w ithin 12 bits.

STARC_VLOG 2.10.8.3
RULE NAME

Keep the right side of the division or modulus operator within 8 bits
(except powers of 2)

MESSAGE
Right side of the division or modulus operator is {RightArgWidth} bits wide. Keep
the right side of the division or modulus operator within
{RIGHT_ARGUMENT_WIDTH_MAX} bits.

PROBLEM
DESCRIPTION

It should be taken into account that the area and delay of a divider increase more rapidly with an
increase in the bit width of the right side of an operator than that of the left side. So keep the right
side of the division or modulus operator within 8 bits. When the right side of the division or
modulus operator is a power of two, a shifter is inferred by logic synthesis tools. In this case,
there is no limit to the bit width.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans division (/) and modulus (%) operators in a synthesis context:
– context for search (see 2.10.8.1)
– if the right argument is greater than RIGHT_ARGUMENT_WIDTH_MAX parameter =>

violation
– if the right argument is a power of 2 its width is not checked

Note-1: RIGHT_ARGUMENT_WIDTH_MAX parameter (maximum bit width of the divisor) is
defined in the rule configuration (default is 8)
Note-2: if the argument width cannot be defined at the compilation stage – it is checked at the
elaboration stage

EXAMPLE-1: [1] right argument is greater than RIGHT_ARGUMENT_WIDTH_MAX parameter (changed to 4 in
rule configuration) => violation

reg [7:0] a;
reg [7:0] b;
reg [7:0] c;
assign c = a % b;

EXAMPLE-2: [1] right argument is greater than RIGHT_ARGUMENT_WIDTH_MAX parameter (default 8) but it
is parameter with value equal to power of 2 => no violation
Note: elaboration phase is required to judge it is no violation

reg [7:0] a;
reg [7:0] c;
parameter [32:0] b = 32;
assign c = a % b;

246 of 334 Verilog HDL RTL Design Style Checks

Right side of the division or modulus operator is 8 bits w ide. Keep the
right side of the division or modulus operator w ithin 4 bits.

STARC_VLOG 2.10.8.4
RULE NAME

Minimize the bit widths at the right and left sides of the division and
modulus operators

MESSAGE
Minimize the bit widths at the right and left sides of the division and modulus
operators. Recommended argument bit widths: left =
{LEFT_ARGUMENT_WIDTH}, right = {RIGHT_ARGUMENT_WIDTH}.

PROBLEM
DESCRIPTION

Divider does not operate at a high frequency even when the left side of the division operator is 12
bits and the right side is 8 bits. So the bit widths of a divider should be minimized even when they
are less than it is set in rules 2.10.8.2 and 2.10.8.3. If the division and modulus do not run at a
desired frequency, you need to break it into two or three stages (using pipelined units) or use
some function library of an arithmetic operation.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans division (/) and modulus (%) operators in a synthesizable context:
– context for search (see 2.10.8.1)
– if left argument is greater than LEFT_ARGUMENT_WIDTH parameter => violation
– if right argument is greater than RIGHT_ARGUMENT_WIDTH parameter => violation
– if right argument is a power of 2 its width is not checked

Note-1: LEFT_ARGUMENT_WIDTH and RIGHT_ARGUMENT_WIDTH parameters (maximum
bit width of the dividend and divisor) are defined in the rule configuration (default are 12 and 8
respectively)
Note-2: if argument's width can not be defined at the compilation stage – it is checked at the
elaboration stage

EXAMPLE-1: [1] left argument is greater than LEFT_ARGUMENT_WIDTH parameter (default 12) and right
argument is greater than RIGHT_ARGUMENT_WIDTH (default 8) parameter => violation

reg [15:0] a;
reg [15:0] b;
reg [15:0] c;
assign c = a % b;

EXAMPLE-2: [1] left argument is greater than LEFT_ARGUMENT_WIDTH parameter (default 12) => violation

reg [15:0] a;
reg [3:0] b;
reg [15:0] c;
assign c = a % b;

Verilog HDL RTL Design Style Checks 247 of 334

Minimize the bit w idths at the right and lef t sides of the division and
modulus operators. Recommended argument bit w idths: lef t = 12, right
= 8.

Minimize the bit w idths at the right and lef t sides of the division and
modulus operators. Recommended argument bit w idths: lef t = 12, right
= 8.

Chapter 3 RTL Design
Methodology

3.1 Create function libraries

3.1.3 Standardize description order of module I/O ports

STARC_VLOG 3.1.3.2
RULE NAME

The port description order should be clock, reset, input, output,
inout

MESSAGE-1

Module “{ModuleName}” has not desirable order of port declaration. Following
port description order is recommended: {DESIRED_PORT_ORDER}.

DETAIL Port “{PortName}” is {PortType}.

MESSAGE-2
[INFO]

Rule configuration parameter "DESIRED_PORT_ORDER" has improper value.
Default value will be used. See help for details.

PROBLEM
DESCRIPTION

Defining the port description order according to convention makes it possible to reduce errors
when calling the function library from an upper level. The port description should be in order of
basic control signals such as clock, reset, and enable, then input, output and inout. There is no
particular description order within input, output and inout, but collecting signals according to
application whenever possible will contribute to error reduction. It is recommended to describe I/O
ports for the module instantiation in the same order as its module declaration.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker scans port list:
– port declaration order should be the following:

– clock signals (FF);
– controls:

– reset/set signals (asynchronous, synchronous) (FF, latch);
– enable signals (FF, latch, tri-state);

– other signals of 'input' mode;
– signals of 'output' mode;
– signals of 'inout' mode;

– if described order is not hold => violation
Note-1: port order is described by parameter DESIRED_PORT_ORDER and can be configure
(default value is {“clock”, “reset”, “enable”, “input”, “output”, “inout”}). Only noticed keywords may
be used to describe port order and each word may be specified only once (or may be omitted).
Note-2: if input port is detected with more then one type (clock, set, reset or enable) it should be
treated as type which is the earliest in the list.
Note-3: elaboration-time checks are supposed when port type can not be detected at compilation
stage.

248 of 334 Verilog HDL RTL Design Style Checks

EXAMPLE-1: [1] port order does not corresponds to parameter DESIRED_PORT_ORDER value (port of type
'input' is described at the very beginning) => violation.
Note: there is no any port of type 'inout', but it does not have any affect (such situation is correct).

module ff_rst_syncset (
d,
clk,
rst_x,
set,
en,
q);

input clk,rst_x,set,en,d;
output reg q;
always @(posedge clk, negedge rst_x)

begin
if (!rst_x)

q <= 1'b0;
else if (set)

q <= 1'b1;
else if (en)

q <= d;
end

endmodule

EXAMPLE-2: [1] port 'c' is used as enable and clock signal, but clock is earlier in the list so port 'c' is treated as
clock;
[2] port order does not corresponds to parameter DESIRED_PORT_ORDER value ({ “reset”,
“clock”, “enable”, “input”, “output”, “inout”}) => violation.
Note: no port of 'reset' type, but it does not have any affect (such situation is correct).

module top (
c,
set,
d1,
d2,
d3,
q1,
q2);

input c,set,d1,d2,d3;
output q1;
output reg q2;
assign q1 = c ? d1 : q1;
assign and_res = d2 & d3;
always @(posedge c, posedge set)

Verilog HDL RTL Design Style Checks 249 of 334

Module “f f_rst_syncset” has not desirable order of port declaration.
Follow ing port description order is recommended: {“clock”, “reset”,
“enable”, “input”, “output”, “inout”}.

Port “d” is input.

Port “clk” is clock.

Port “rst_x” is reset.

Port “set” is set.

Port “en” is enable.

Port “q” is output.

Module “top” has not desirable order of port declaration. Follow ing
port description order is recommended: { “reset”, “clock”, “enable”,
“input”, “output”, “inout”}.

Port “c” is clock.

Port “set” is set.

Port “d1” is input.

Port “d2” is input.

Port “d3” is input.

Port “q1” is output.

Port “q2” is output.

if (set)
q2 <= 1'b1;

else
q2 <= and_res;

endmodule

EXAMPLE-3: [1] port order corresponds to parameter DESIRED_PORT_ORDER value ({“clock”, “reset”,
“enable”, “input”, “output”, “inout”}) => no violation.
Note: ports of some types are skipped, but it does not have any affect (such situation is correct).

module ff(clk, d, q);
input clk,d;
output reg q;
always @(posedge clk)

q <= d;

endmodule

250 of 334 Verilog HDL RTL Design Style Checks

3.1.4 Consider RTL description readability

STARC_VLOG 3.1.4.4
RULE NAME Do not describe multiple assignments in one line

MESSAGE Multiple statements are described in the single line. Describe one statement per
line to improve RTL description readability.

PROBLEM
DESCRIPTION

Describing multiple assignments per line is not recommended from standpoint of readability
(especially comma-separated assignments). But inserting more then one statement in the same
line also makes description difficult to read and to understand. Therefore, it is better to place only
one statement per a single line.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans Verilog constructs description:
– if there are one or more statement or declaration in the single line with another

statement:
– if there are only hierarchically dependent statements (in descending order) => no

violations
– statements which can hierarchically include nested statements:

– conditional statement (if-else);
– case statement (case, casex, casez);
– looping statements (forever, repeat, while, for);
– procedural timing controls (#, @);
– block statements (begin-end, fork-join);
– structured procedures (initial construct, always construct, task, function)

– otherwise => violation
always @(posedge CLK) begin // hierarchically-dependent statements

Q1 <= DATA_1; Q2 <= DATA_2;// hierarchically-independent
 // statements
end

– exception: net/variable declaration assignment does not violate the rule
reg a = 1'b1;

EXAMPLE-1: [1] hierarchically dependent statements exists;
[2] assignment in 'if' branch is one level lower then 'else' branch (ascending order) => violation.

if (en) q = d; else q = 1'bz;

EXAMPLE-2: [1] hierarchically dependent statements exists;
[2] dependency only in descending order => no violation.

always @(posedge clk) q <= #10 d;

EXAMPLE-3: [1] multiple declarations per line => no violation;
[2] multiple assignments => violation.

reg a,b;
assign a = in1 | in2, b = in1 & in2;

Verilog HDL RTL Design Style Checks 251 of 334

Multiple statements are described in the single line. Describe one
statement per line to improve RTL description readability.

Multiple statements are described in the single line. Describe one
statement per line to improve RTL description readability.

STARC_VLOG 3.1.4.5
RULE NAME

The maximum number of characters in one line should be about
110

MESSAGE

Source file contains line entries that exceed the recommended length of
{MAX_NUM_OF_CHARACTERS} characters per line.
DETAIL Number of characters in this line is “{CharactersCount}”.

PROBLEM
DESCRIPTION

The number of characters per line should provide the line to be completely displayed. Such style
increases description readability. If the number of lines is too great, wrapping occurs and
readability decreases. Therefore, it is better to limit the number of characters in per line to about
110.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans source code in current file for lines which have number of characters greater than
parameter MAX_NUM_OF_CHARACTERS:

– when first of such lines is detected => violation
Note-1: value of MAX_NUM_OF_CHARACTERS parameter is specified in configuration file
(default value is 110).
Note-2: one warning message is issued per file.

EXAMPLE-1: [1] there is a line which length is greater than MAX_NUM_OF_CHARACTERS parameter in the
file => violation.
Note: MAX_NUM_OF_CHARACTERS parameter value is changed to 50 to simplify the example.

assign res = ctrl ? data1 : data2; //very long and important comment

252 of 334 Verilog HDL RTL Design Style Checks

Source f ile contains line entries that exceed the recommended length
of 50 characters per line.

Number of characters in this line is “68”.

3.2 Using function libraries

3.2.2 Define global parameters in separate files (different from
VHDL)

STARC_VLOG 3.2.2.4
RULE NAME

File names specified by `include should be made into relative paths
(../include/common.h)

MESSAGE-1

File “{FileName}” is detected in the current directory. Inclusion by simple file
name is necessary when included file exists in the directory specified by +incdir
+<directory_name>. Otherwise, files specified by `include directive should return
to the directory that is one level higher (../one_level_higher/file_to_include).
Executions of simulation and logic synthesis are usually performed in separate
directories and such style allows to distinguish files that are necessary for
particular stage.

MESSAGE-2

Files specified by `include directive should return to the directory that is one
level higher (../one_level_higher/file_to_include). Executions of simulation and
logic synthesis are usually performed in separate directories files that are
necessary for particular stage.

PROBLEM
DESCRIPTION

Design data require many files in addition to RTL and test bench files. If these files are all saved
in the same directory, it will become impossible to distinguish between necessary and
unnecessary files. Executions of simulation and logic synthesis are done in separate directories,
that is why it is unsafe if simply using <file_name.h> since another file may be invoked. For the
file specified by `include directive, its path should be described as a relative path, which returns
to the directory that is 1 level higher.
In a large scale design, RTL descriptions are stored in predefined locations. With this type of
design, there is a limit in specifying the file using a relative path. In this case, options of each tool
can be used to specify the file name. Specifying location of including files by +incdir+<directory
name> is allowed by most Verilog simulators.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker detects file inclusion compiler directive and scans filename specified:
– if name (absolute/relative path) does not return to the directory that is one level higher

=> violation (message-2)
– if filename is simple name (does not have absolute/relative path specified) and file

specified by this name exists in the current directory => violation (message-1)

EXAMPLE-1: [1] simple file name is specified within 'include directive;
[2] file with specified name exists in current directory => violation (message-1).

`include "definitions.h"

Verilog HDL RTL Design Style Checks 253 of 334

File “def initions.h” is detected in the current directory. Inclusion by
simple f ile name is necessary w hen included f ile exists in the
directory specif ied by +incdir+<directory_name>. Otherw ise, f iles
specif ied by `include directive should return to the directory that is
one level higher (../one_level_higher/f ile_to_include). Executions of
simulation and logic synthesis are usually performed in separate
directories and such style allow s to distinguish f iles that are
necessary for particular stage.

EXAMPLE-2: [1] file name within 'include directive is specified by relative path;
[2] relative path does not return to the directory that is one level higher => violation (message-2).

`include "../definitions.h"

254 of 334 Verilog HDL RTL Design Style Checks

Files specif ied by `include directive should return to the directory that
is one level higher (../one_level_higher/f ile_to_include). Executions of
simulation and logic synthesis are usually performed in separate
directories f iles that are necessary for particular stage.

STARC_VLOG 3.2.2.5
RULE NAME Do not nest text macros

MESSAGE

Nested definition is used for “{MacroName}” text macro. Do not nest text macros,
because such description is difficult to read and error-prone.
DETAIL Declaration of nested macro “{NestedMacroName}”.

PROBLEM
DESCRIPTION

`define definitions are subject to text replacement, and syntax checks are not performed. If
nested `define definitions is used (especially in case of more then one nesting level), it is difficult
to keep in mind the final result of text substituting and errors may easily occur. It is extremely
risky to allow nested `define definitions without some sort of constraint, therefor it is
recommended not to nest them.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects text macro definitions (definitions made with `define directive):
– if defined macro text contains any other text macros => violation

EXAMPLE-1: [1] text macro definition contains usage of another macros => violation.

`define delay1 10
`define delay2 20
`define delay3 `delay1 + `delay2;

Verilog HDL RTL Design Style Checks 255 of 334

Nested def inition is used for “{MacroName}” text macro. Do not nest
text macros, because such description is dif f icult to read and error-
prone.

Declaration of nested macro “delay1”.

Declaration of nested macro “delay1”.

3.2.3 Connect ports by name for component instantiations

STARC_VLOG 3.2.3.1
RULE NAME

For component instantiations, connect ports by name connections,
not by ordered list

MESSAGE Ordered port connections are used for component instantiation. Prefer named
port connections to avoid port position mistakes.

PROBLEM
DESCRIPTION

The connection of ports by name clearly describes the correlation between the component port
and the connected net name. Such description is easier to understand since it is possible to
match upper net names with the port names. The second is the connection of ports by ordered
list that describes the net in the port description order of the lower components. It is easer to
describe, but incorrect connections may result. So it is recommended to connect ports by names.

LEVEL RULE

CHECKER
BEHAVIOR

Checker verifies component instantiations:
– if order port connection is used => violation

EXAMPLE-1: [1] ordered port connection is used => violation

submod inst1 (in1, in2, out1);

256 of 334 Verilog HDL RTL Design Style Checks

Ordered port connections are used for component instantiation.
Prefer named port connections to avoid port position mistakes.

STARC_VLOG 3.2.3.2
RULE NAME

Match the bit width of the component port and the bit width of the
net to be connected

MESSAGE

Bit width of {PortCount} lower port(s) does not match the bit width of the
connected net(s) in the instantiation of component "{CompName}". Match the bit
widths exactly.

DETAIL-1 Bit width of the net "{NetName}" is "{NetWidth}" while bit width of the port
"{PortName}" is "{PortWidth}"

DETAIL-2 Bit width of the connection is "{NetWidth}" while bit width of the port
"{PortName}" is "{PortWidth}"

PROBLEM
DESCRIPTION

When bit width of connected net it greater than bit width of component port => upper bits of the
net are truncated. Otherwise, when bit width of the net is less than bit width of component port =>
upper bits of port are filled with zeros. Data can be misaligned or lost.
Descriptions with different bit widths may be made inadvertently – they are implicit and readability
of the description drops. Concatenations/part-selections should be used to describe
filling/truncation explicitly.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans component instantiations (either ordered or named):
– bit width of each port should match to bit width of the connected net
– if bit widths doesn't match => violation is issued and details are displayed due to

following conditions:
– detail-1: for simple connections (name of the net can be determined)
– detail-2: for complex connections (name of the net cannot be defined: for example,

when connection is represented by concatenation, hierarchical reference, constant,
etc.)

Note-1: this rule can be dependent on elaboration-time references => elaboration-time checking
will be performed for such cases
Note-2: instantiations of language built-in components (gates and switches) is not verified by this
checker
Note-3: unconnected ports are skipped by checker (special Design Compiler command exists to
eliminate unconnected ports)

EXAMPLE-1: [1] ordered connection is described;
[2] bit width of component port is less than bit width of simple net connected to it => violation
(detail-1);

module and3(I1, I2, I3, O);
input [7:0] I1, I2, I3;
output [7:0] O;
...

endmodule
module top(..., R_OUT, ...);

output [7:0] R_OUT;
...
wire [4:0] ARG1;
wire [7:0] ARG2;
wire [7:0] ARG3;
...
and3 INST_000(ARG1, ARG2, ARG3, R_OUT);
...

endmodule

Verilog HDL RTL Design Style Checks 257 of 334

Bit w idth of 1 low er port(s) does not match to bit w idth of the
connected net(s) in the instantiation of component "and3". Match the
bit w idths exactly.

Bit w idth of the net "ARG1" is "5" w hile bit w idth of the port "I1" is "8"

EXAMPLE-2: [1] named connection is described;
[2] bit width of one component port is greater than bit width of simple net connected to it =>
violation (detail-1);
[3] bit width of another one component port is greater than bit width of complex net connected to it
=> violation (detail-2);

module and3(I1, I2, I3, O);
input [7:0] I1, I2, I3;
output [7:0] O;
...

endmodule
module top(..., R_OUT, ...);

output [7:0] R_OUT;
...
wire [4:0] ARG1_a;
wire [4:0] ARG1_b;
wire [8:0] ARG2;
wire [7:0] ARG3;
...
and3 INST_000(.I1({ ARG1_a, ARG1_b }),
 .I2(ARG2), .I3(ARG3), .O(R_OUT));
...

endmodule

258 of 334 Verilog HDL RTL Design Style Checks

Bit w idth of 2 low er port(s) does not match to bit w idth of the
connected net(s) in the instantiation of component "and3". Match the
bit w idths exactly.

Bit w idth of the connection is "10" w hile bit w idth of the port "I1" is "8"

Bit w idth of the net "ARG2" is "9" w hile bit w idth of the port "I1" is "8"

3.2.4 Use # (value) when overwriting parameters from an upper
level (different from VHDL)

STARC_VLOG 3.2.4.3
RULE NAME Do not use defparam statements

MESSAGE Do not use 'defparam' statements. Some logic synthesis tools do not support
'defparam'.

PROBLEM
DESCRIPTION

defparam can be used for rewriting parameters by hierarchical parameter names. If a defparam
assignment conflicts with a module instance parameter, the parameter in the module takes the
value specified by the defparam. While defparam has such benefit of replacing the parameter
values, it should not be used because some logic synthesis tools do not support defparam.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans Verilog description:
– if defparam statement is present => violation

EXAMPLE-1: [1] defparam statement is used => violation

module my_module(a, b, c);
 parameter [1:0] param1 = 2'b00;
 defparam top.param1 = 2'b11;

 ...

endmodule
module top(in1, in2, out1);
 ...

 parameter [1:0] param1 = 2'b00;
 my_module inst (.a(in1), .b(in2), .c(out1));
endmodule

Verilog HDL RTL Design Style Checks 259 of 334

Do not use 'defparam' statements. Some logic synthesis tools do not
support 'defparam'.

3.3 Design for Test (DFT)

3.3.1 Clocks and resets for DFT

STARC_VLOG 3.3.1.1
RULE NAME

The clocks must be able to be controlled directly from external
input ports

MESSAGE
Clock input of FF “{FFName}” is not directly controlled from external input port.
The clocks must be able to be controlled directly from external input ports,
otherwise scan insert tool will exclude FF from the scan.

PROBLEM
DESCRIPTION

When DFT scan chains are inserted, the most important is to consider structure of the circuit in
such way, that will enable safe scan shift during the scan test.
When clock pin of flip-flop cannot be directly controlled from an external input port, scan chain
insertion tool excludes such flip-flop from the scan chain. Such exclusion disables faults detection
by ATPG tools for any parts for which scans have not been inserted.

When it is impossible to control the clock signal from an external port, switching circuitry should
be used to enable direct control in the test mode.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans the design hierarchy for flip-flops and verifies the signal that is mapped to the
clock pin of each flip-flop:

– if there is a multiplexer that is directly(*)connected to the clock pin of an FF => no
violation (case for 3.3.1.3)
(*) directly or through buffers/inverters
– if there is a situation that is not covered by following rules => violation:

– OR with two inputs is connected to the clock pin (3.3.5.3, 3.3.5.6);
– AND with two inputs is connected to the clock pin (3.3.5.4, 3.3.5.5);
– latch output is connected to the clock pin of FF (3.3.5.7).

EXAMPLE-1: [1] module 'dff' which infers flip-flop with a clock signal controlled from an external input;
[2] module instantiation statements create two named instances:

– the external signal is mapped to the clock signal in instance 'u_dff_1';
– the output of combinational logic is mapped to the clock signal in instance 'u_dff_2' =>

violation.

module dff(clk, data, q);
 input clk, data;
 output q;
 reg q;

 always @(posedge clk)
 q <= data;

endmodule

260 of 334 Verilog HDL RTL Design Style Checks

Clock input of FF “u_dff_2.out” is not directly controlled from external
input port. The clocks must be able to be controlled directly f rom
external input ports, otherw ise scan insert tool w ill exclude FF from
the scan.

FF
FF

COMB_LOGIC

CLK

Violation

module top(clk, gate, data1, data2, out1, out2);
 input clk, data1, data2;
 output out1, out2;
 wire clk_gate;
 assign clk_gate = clk ^ gate;
 dff u_dff_1 (.clk(clk), .data(data1), .q(out1));

 dff u_dff_2 (.clk(clk_gate), .data(data2), .q(out2));

endmodule

Verilog HDL RTL Design Style Checks 261 of 334

STARC_VLOG 3.3.1.2
RULE NAME

When there is a choice between two different clock systems, one
clock system must be selected throughout testing

MESSAGE

Selection between clock systems is not controllable from an external port. The
single clock system must be selected throughout testing otherwise it is
impossible to insert scan.
DETAIL-1 Alternative clock system: “{HierClockName}”.
DETAIL-2 Alternative clock system.

PROBLEM
DESCRIPTION

When DFT scan chains are inserted, the most important is to consider structure of the circuit in
such way, that will enable safe scan shift during the scan test. When clock pin of flip-flop cannot
be directly controlled from an external input port, scan chain insertion tool excludes such flip-flop
from the scan chain. Such exclusion disables faults detection by ATPG tools for any parts for
which scans have not been inserted.
But even if the clocks can be controlled from an external input port, if, as shown at the picture, it
is possible to switch between two clocks, it will still not be possible to insert a scan. A test signal
to control the select signal for the selector must be used so that, during testing, the same clock
will be selected throughout the entire process (see the picture).

LEVEL RULE

CHECKER
BEHAVIOUR

Checker scans the design hierarchy for multiplexers that have output connected to the FF clock
pin:

– if the multiplexer select signal is an output of combinational logic that has at least one
external port connected to the gate ('and', 'or', 'nand', 'nor') before select pin => no
violation;

– if the select pin is controlled directly from external port => no violation;

– otherwise => violation.

262 of 334 Verilog HDL RTL Design Style Checks

FF
0

1

Logic

CLK1

CLK2

TST

MUX select signal is fixed
to ‘1’ for testing

FF
0

1

CLK1

CLK2

TST

FF
0

1

Logic

CLK1

CLK2

TST

RULE NAME
When there is a choice between two different clock systems, one
clock system must be selected throughout testing

EXAMPLE-1: [1] multiplexer has output connected to the FF clock pin;
[2] multiplexer select signal is an output of another FF (can not be controlled from external input)
=> violation.
Note: signals 'top.CLK1' and 'top.CLK2' are defined as global clocks with -alint_gclk switch.

module top(CLK1, CLK2, CLK3, SEL, D, Q1, Q2);

input CLK1,CLK2,CLK3,SEL;
input D;
output Q1, Q2;

dff DFF1 (.CLK(mux_out), .D(~D), .Q(Q1));

dff DFF2 (.CLK(mux_out), .D(D), .Q(Q2));

dff DFF3 (.CLK(CLK3), .D(SEL), .Q(ff_out));

mux2x1 MUX (.IN1(CLK1), .IN2(CLK2), .SEL(ff_out), .Q(mux_out));

endmodule
//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule
// Multiplexer
module mux2x1(IN1, IN2, SEL, Q);

input SEL;
input IN1,IN2;
output reg Q;
always @(*)

if (SEL)
Q = IN1;

else
Q = IN2;

endmodule

Verilog HDL RTL Design Style Checks 263 of 334

Instance ''top''. Selection betw een clock systems is not controllable from an
external port. The single clock system must be selected throughout testing
otherw ise it is impossible to insert scan.

FF
0

1

Logic

CLK1

CLK2

Alternative clock system: “top.CLK2”.

Alternative clock system: “top.CLK1”.

264 of 334 Verilog HDL RTL Design Style Checks

FF

FF

FF

0

1

CLK2

CLK1

CLK3
SEL

D
Q1

Q2

top

STARC_VLOG 3.3.1.3
RULE NAME The output of random logic should not be used as a clock

MESSAGE

The output of random logic is used as clock for flip-flop “{FFSigName}”. Such
circuit structure is unsafe for scan shift during the scan test. It is recommended
to insert a selector at the final output of the random logic to make it possible to
select an external port.

PROBLEM
DESCRIPTION

As it shown on the picture above, if the output of random logic is to be used as a clock,
insert a selector at the final output of the random logic to make it possible to select an
external clock.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans the design hierarchy for flip-flops and verifies the signal that is mapped to the
clock pin of each flip-flop:

– if there is a multiplexer that is directly(*) connected to the clock pin of an FF and at least
one input is external => no violation
(*) directly or through buffers/inverters
– if there is a situation that is not covered by following rules => violation:

– OR with two inputs is connected to the clock pin (3.3.5.3, 3.3.5.6);
– AND with two inputs is connected to the clock pin (3.3.5.4, 3.3.5.5);
– latch output is connected to the clock pin of FF (3.3.5.7).

EXAMPLE-1: [1] output of random logic multiplexer is connected to clock pin of flip-flop “Q";
[2] both multiplexers inputs are internally generated signals => violation.

module ffg_c(CLK, SEL, CTRL1, CTRL2, DATA, Q);
input DATA, CTRL1, CTRL2, CLK, SEL;
output reg Q;
assign int_clk1 = CLK & CTRL1;
assign int_clk2 = CLK & CTRL2;
assign int_clk = SEL ? int_clk2 : int_clk1;

always @(posedge int_clk)

Q <= DATA;

endmodule

Verilog HDL RTL Design Style Checks 265 of 334

0

1CLK

FF
S O M E_ S IG

RAND_LOGIC

Direct
control

Direct
control

FF
RAND_LOGIC

No direct
control

The output of random logic is used as clock for f lip-f lop “Q”. Such
circuit structure is unsafe for scan shif t during the scan test. It is
recommended to insert a selector at the f inal output of the random
logic to make it possible to select an external port.

FF

0

1CLK

CTRL1

CTRL2

SEL

D Q

STARC_VLOG 3.3.1.4
RULE NAME

The reset for the FFs must be able to be controlled directly from an
external input port

MESSAGE

Asynchronous control logic of FF “{FFName}” is not directly controlled from
external input ports. Asynchronous controls must be able to be directly
controlled from external input ports, otherwise it will become impossible for
ATPG tools to detect faults on control lines.

DETAIL Asynchronous {ControlType} control is not directly controlled from
external input port.

PROBLEM
DESCRIPTION

DFT requires paying special attention to the clock systems when inserting scans
(3.3.1.1). Along with clocks, the reset lines should be considered with special care: DFT
requires that there is no reset could be applied during the scan shift (it would cause the
data loss).

ATPG tools will also not be able to detect faults at reset lines that are not directly
controlled from an external input ports.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans the design hierarchy for flip-flops and verifies the signal that is mapped to an
asynchronous control pin(s) of each flip-flop:

– this signal must be directly controlled by an external input port (*) of the design
– (*) see the rule 3.3.1.1 for details about external input ports

– if signal is not controlled by an external input => violation message is reported (message
points on flip-flop signal assignment, detail points on appropriate asynchronous control)
– following is the list of possible strings for the {ControlType} token in the detail

message:
– reset
– set
– set/reset

EXAMPLE-1: [1] module 'dff' which infers a flip-flop with the reset signal controlled from an external input;
[2] module instantiation statements create two named instances:

– the external signal is mapped to the reset signal in instance 'u_dff_1';
– the output of combinational logic is mapped to the reset signal in instance 'u_dff_2' =>

violation.
module dff(clk, rst, data, q);
 input clk, data;
 output q;
 reg q;

 always @(posedge clk or posedge rst)
 if (rst)
 q <= 1'b0;
 else
 q <= data;

endmodule

266 of 334 Verilog HDL RTL Design Style Checks

Asynchronous control logic of FF "top.u_dff_2" is not directly
controlled from external input ports. Asynchronous controls must be
able to be directly controlled from external input ports, otherw ise it w ill
become impossible for ATPG tools to detect faults on control lines.

Asynchronous reset control is not directly controlled from an external
input port.

FF

RST

FF
COMB_LOGIC

Violation

module top(clk, rst, gate, data1, data2, out1, out2);
 input clk, rst, data1, data2;
 output out1, out2;
 wire rst_gate;
 assign rst_gate = rst & gate;
 dff u_dff_1 (.clk(clk), .rst(rst), .data(data1), .q(out1));

 dff u_dff_2 (.clk(clk), .rst(rst_gate), .data(data2), .q(out2));

endmodule

Verilog HDL RTL Design Style Checks 267 of 334

3.3.2 Dealing with hardmacros and asynchronous circuits

STARC_VLOG 3.3.2.2
RULE NAME

Do not connect clock pins, reset pins, or tristate outputs to black
boxes

MESSAGE-1

Global {GlControlType} “{GlControlName}” is connected to input of black box
“{BboxName}”. Do not connect clock pins, reset pins or tri-state outputs to black
boxes. Such descriptions could make impossible the insertion of scan chains
and test patterns generation with ATPG tools.

MESSAGE-2

Output of tri-state “{TriStateName}” is connected to input of black box
“{BboxName}”. Do not connect clock pins, reset pins or tri-state outputs to black
boxes. Such descriptions could make impossible the insertion of scan chains
and test patterns generation with ATPG tools.

PROBLEM
DESCRIPTION

There are some cases when hard macro library does not exist when LSI design data
are generated. When clock/reset line or output of tri-state buffer is connected to black
box, ATPG tool could fail to insert test scan and generate test patterns.
When black box should be used, it is recommended to generate RTL code wherein only
the inputs and outputs are defined or get a library from the vendor.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans the design hierarchy for black boxes and verifies lines that are mapped to input
pins of each black box:

– if input line is driven by global reset/clock (*) or directly driven (**) by tri-state => violation
is detected and appropriate warning message is displayed:
– message #1 if line is driven by global clock / reset

– following is set of string that are possible for {GlControlType} token: clock /
reset

– message #2 if line is driven by tri-state
– the token {TriStateName} is not displayed if tri-state line is generated

intermediately
– (*) see 1.4.3.4 for details:

– rules for auto-detection (during the auto-detection, each signal that is connected to
asynchronous control pin of flip-flop is considered as reset signal)

– rules for global reset propagation (global reset propagates through buffers /
inverters / combinational logic / multiplexers data / tri-state inputs)

– rules for displaying info-messages (indicate the list of auto-detected clock or report
about reset signals that are specified with -alint_gclk but could not be found)

– (**) direct driver means that output of tri-state buffer is connected directly or through
inverters / buffers.

Note: following types of modules are considered as black boxes:
– empty (interface);
– compiled without elab-time data (no -alint_elabchecks switch);
– specified with -alint_blackbox switch.

268 of 334 Verilog HDL RTL Design Style Checks

EXAMPLE-1: [1] consider design hierarchy that is represented on the picture below;
[2] there are two violations:

– global clock “gclk” (specified with 'alint_gclk' attribute) reaches black box
“BBOX_INSTANCE1” through combinational logic => rule violation with message #1

– tri-state buffer “sst_to_bbox” is directly connected to black box “BBOX_INSTANCE2” =>
rule violation with message #2

[3] note, that signal “top.gclk” is set as global clock for this design with command line switch '-
alint_gclk'.

module top(data, gclk, en, latch_en, out1, out2);

 input data, gclk, en, latch_en;
 output out1, out2;
 wire stt_to_bbox, latch_to_stt;
 wire comblogic_to_bbox;

 assign stt_to_bbox = (en) ? latch_to_stt : 1'bz;

 comblogic CL_INSTANCE (.in1(gclk), .in2(en), .out1(comblogic_to_bbox));
 latch LATCH_INSTANCE (.D (data), .G (latch_en), .Q (latch_to_stt));

 blackbox BBOX_INSTANCE1 (.in1(comblogic_to_bbox), .out1(out1));
 blackbox BBOX_INSTANCE2 (.in1(stt_to_bbox), .out1(out2));

endmodule
module latch(D, G, Q);
 input D, G;
 output reg Q;
 always @(G)
 if(G)
 Q = D;

endmodule
module comblogic(in1, in2, out1);
 input in1, in2;
 output out1;

 assign out1 = in1 & in2;
endmodule
module blackbox(in1, out1);

Verilog HDL RTL Design Style Checks 269 of 334

BBOX_INSTANCE1

LD

BBOX_INSTANCE1

data

latch_en

en

gclk
COMB_LOGIC

CL_INSTANCE

OUT1

OUT2

global clock is
connected

tri-state buffer is
connected

-alint_gclk
top.gclk

Instance “top”. Global clock “top.gclk” is connected to input of black
box “BBOX_INSTANCE1”. Do not connect clock pins, reset pins or tri-
state outputs to black boxes. Such descriptions could make
impossible the insertion of scan chains and test patterns generation
w ith ATPG tools.

Instance “top”. Output of tri-state “sst_to_bbox” is connected to
input of black box “BBOX_INSTANCE2”. Do not connect clock pins,
reset pins or tri-state outputs to black boxes. Such descriptions could
make impossible the insertion of scan chains and test patterns
generation w ith ATPG tools.

 input in1;
 output out1;
endmodule

270 of 334 Verilog HDL RTL Design Style Checks

STARC_VLOG 3.3.2.3
RULE NAME

Do not connect the outputs of a black box to clock pins, reset pins,
or tristate-enable pins (Prepare the hard macro library)

MESSAGE

Problem(s) with black box “{BBoxName}” output(s) connection is detected. Do
not connect the outputs of black box to clock pins, reset pins or tri-state enable
pins. Such descriptions could make impossible the insertion of scan chains and
test patterns generation with ATPG tools.

DETAIL Output of black box is connected to {ObjectType}
“{ObjectName}” {PortType} pin

PROBLEM
DESCRIPTION

Modules that generate control signals should not be left as black boxes. Even if it
comes to macro cells such as PLLs, obtain the library for macro cell from the vendor.
Note that even there is a clock switching circuit for the test mode for the PLL, when the
PLL is left as black box, it maybe impossible to detect whether or not the clock signal
could be controlled from an external pin of the LSI. Such situations makes impossible to
insert the scan and generate test patterns using the ATPG tool.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans the design hierarchy for black boxes (see 3.3.2.2) and verifies connections of
their output lines:

– if output line directly drives (*) FF clock/reset or tri-state enable pin => violation is
detected:
– main message #1 is displayed per black box
– detail message #2 is displayed per each erroneously mapped output

– following table defines set of strings that are possible for {ObjectType}-
{PortType} tokens:

{ObjectType} {PortType}

FF

clock

asynchronous reset

asynchronous set

latch
asynchronous reset

asynchronous set

tri-state buffer enable

– (*) direct drive means that output of black box is connected directly or through inverters /
buffers.

EXAMPLE-1: [1] consider design hierarchy that is represented on the picture below;
[2] violation message is displayed with 2 details: outputs of black box are connected to clock pin of
FF and enable pin of tri-state buffer.

Verilog HDL RTL Design Style Checks 271 of 334

OUT1
BBOX_INSTANCE1

FF

black box is connected
to FF clock pin

black box is connected
to tri-state enable pin

module top(out1);
 output out1;

 wire bbox_to_clk, bbox_to_data;
 wire bbox_to_stt_en, ff_to_stt;

 blackbox BBOX_INSTANCE(.out1(bbox_to_stt_en), .out2(bbox_to_data), .out3(bbox_to_clk));
 dff DFF_INSTANCE (.D(bbox_to_data), .CLK(bbox_to_clk), .Q(ff_to_stt));

 assign out1 = (bbox_to_stt_en) ? ff_to_stt : 1'bz;

endmodule
module dff(D, CLK, Q);
 input D, CLK;
 output reg Q;

 always @(posedge CLK)
 Q <= D;

endmodule
module blackbox(out1, out2, out3);

 output out1;
 output out2;
 output out3;

endmodule

272 of 334 Verilog HDL RTL Design Style Checks

Instance “top”. Problem(s) w ith black box “BBOX_INSTANCE”
output(s) connection is detected. Do not connect the outputs of black
box to clock pins, reset pins or tri-state enable pins. Such
descriptions could make impossible the insertion of scan chains and
test patterns generation w ith ATPG tools.

Output of black box is connected to tri-state buffer “out1” enable pin

Output of black box is connected to FF “Q” clock pin

3.3.3 Constraints on the use of flip-flops

STARC_VLOG 3.3.3.1
RULE NAME A clock must not be connected to the D input of a FF

MESSAGE
Clock signal(s) “{GlClkSignalNameList}” is connected to the FF “{FFName}” data
input. Such connection may lead to the risk of generating incorrect test pattern
because of the racing problem. Do not connect clock signals to the FF data input.

PROBLEM
DESCRIPTION

Inputting a clock into the D pin of a FF runs a tremendous risk of an incorrect test pattern
generation. (ATPG tools generate test patterns performing the simulation with zero delays =>
tremendous risk that racing problem will occur).
When it is impossible to avoid clock connection to the data input, selector circuitry should be
added to switch to external input in the test mode.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans the design hierarchy for flip-flops and verifies the signal that is mapped to the
data input of each flip-flop that is detected:

– this signal must not be a clock (*) for the design
– (**) see 1.4.3.4 for definition of clock signal in the design: clock(s) could be directly

specified (with -alint_gclk switch) or auto-detected (signal that is connected to
clock pin of flip-flop will be considered as clock)

– if this is clock signal => violation message is reported (it points on flip-flop signal
assignment)

EXAMPLE-1: [1] 'clk' signal is auto-detected as a clock signal (it is connected to the clock pin of FF 'out1');
[2] clock signal propagates through 'and' gate ('clk_gate') and through a multiplexer ('mux_out');
[3] signal 'mux_out' is connected to the data input of FF 'out1' => violation;
[4] signal 'clk_gate' is connected to the set control input of FF 'out1' => no violation;

module top(clk, gate, sel, data, out1);
 input clk, data, sel;
 output out1;
 reg out1;
 wire clk_gate;
 reg mux_out;
 assign clk_gate = clk & gate;
 always @(sel, clk_gate, data)
 case (sel)
 1'b0 : mux_out <= data;
 1'b1 : mux_out <= clk_gate;
 default : mux_out <= 1'bx;
 endcase
 always @(posedge clk or negedge clk_gate)
 if (clk_gate)
 out1 <= 1'b1;
 else
 out1 <= mux_out;

endmodule

Verilog HDL RTL Design Style Checks 273 of 334

Clock signal(s) “clk” is connected to the FF “out1” data input. Such
connection may lead to the risk of generating incorrect test pattern
because of the racing problem. Do not connect clock signals to the FF
data input.

STARC_VLOG 3.3.3.2
RULE NAME Do not connect the input of a FF to VDD or GND

MESSAGE
Fixed value is connected to the FF “{FFName}” input port(s).

DETAIL {LineType} line is connected to FF {FFInput} port.

PROBLEM
DESCRIPTION

Do not describe flip-flops where the input is fixed to a given
voltage level (if input is fixed, ATPG tool will include such flip-flops
in the list of undetected paths during fault coverage measuring).
Moreover, fixed flip-flops are redundant and not necessary for the
synchronous circuits design: it just can form an asynchronous
circuit where enable signal is connected to the clock pin.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker scans the design hierarchy for flip-flops and verifies signal that is mapped to an input of
each flip-flop that is detected:

– backward propagation performed from flip-flop data input (see 1.4.3.2 for details
regarding the backward propagation)

– if backward propagation stops at a constant(*) (VDD is '1', GND is '0') => violation
message is reported (message points to 'always' process inferring flip-flop, detail points
to flip-flop signal assignment: {LineType} could be VDD or GND, see Note-1 regarding
possible cases for {FFInput} token)
– (*) following are the notes regarding constants determination:

– direct assignment to the signal or mapping to some input port;
– unmapped signals are supplied with GND;
– signals without drivers are supplied with GND;

Note: possible values for {LineType} are GND and VDD; for {FFInput} are data, clock, enable,
asynchronous reset, asynchronous set, synchronous reset, synchronous set.

EXAMPLE-1: [1] instance of flip-flop has unmapped data input port => violation (note, that unmapped port is
treated as GND)

module dff(clk, data, q);
 input clk, data;
 output q;

 always @(posedge clk)
 q <= data;

endmodule

module top(data, out1);
 input data;
 output out1;
 dff u_dff_1 (.clk(), .data(data1), .q(out1));

endmodule

274 of 334 Verilog HDL RTL Design Style Checks

Fixed value is connected to the FF “u_dff_1.q” input port(s).

GND line is connected to FF clock port.

FF

FF

GND

VDD

3.3.5 DFT in clock lines

STARC_VLOG 3.3.5.2
RULE NAME When the output of a FF is used as a clock, switch using a selector

MESSAGE

The clock pin of flip-flop "{DrivenFFName}" is driven by the output of another
flip-flop. Such description is not compatible with ATPG tools, because scan
insertion could not be performed. For such kind of circuit it is recommended to
insert a selector to switch to a clock that is input from the outside during testing.

DETAIL Clock pin is driven with the output of flip-flop "{DriverFFHierName}"

PROBLEM
DESCRIPTION

In case when output of flip-flop is used as a clock, the clock pin of that flip-flop could not
be controlled directly from an external input port. Such description is not compatible
with scan insertion and it makes impossible faults detection with ATPG tools.

During the testing, it is recommended to insert a selector to switch to a clock that is
input from the outside (consider the picture above).

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans the design hierarchy for flip-flops and verifies the signal that is mapped to the
clock pin of each flip-flop:

– if this signal is output of another flip-flop, it should be connected through selector

EXAMPLE-1: [1] consider design hierarchy that is represented on the picture below;
[2] output of flip-flop is connected to clock pins of two another flip-flops:

– direct connection => violation
– connection through selector => correct

module top(IN1, IN2, IN3, CLK, CLK_EXT, TEST, OUT1, OUT2);

 input IN1, IN2, IN3;
 input CLK, CLK_EXT;
 input TEST;

Verilog HDL RTL Design Style Checks 275 of 334

0

1 FF

FF
OUT2

OUT1

selector allows to switch
to an external input port

FF

CLK_EXT

TEST

CLK

IN1

output of FF is
used as a clock

0

1CLK

FFFFFF

FF

TST

 output OUT1, OUT2;

 wire ff1_to_ff2;
 wire mux_to_ff3;

 assign mux_to_ff3 = (TEST) ? (ff1_to_ff2) : (CLK_EXT);

 dff DFF_INSTANCE_1 (.D(IN1), .CLK(CLK), .Q(ff1_to_ff2));
 dff DFF_INSTANCE_2 (.D(IN2), .CLK(ff1_to_ff2), .Q(OUT1));
 dff DFF_INSTANCE_3 (.D(IN3), .CLK(mux_to_ff3), .Q(OUT2));

endmodule
module dff(D, CLK, Q);
 input D, CLK;
 output reg Q;

 always @(posedge CLK)
 Q <= D;

endmodule

276 of 334 Verilog HDL RTL Design Style Checks

Instance “top.DFF_INSTANCE2”. The clock pin of f lip-f lop "Q" is
driven by the output of another f lip-f lop. Such description is not
compatible w ith ATPG tools, because scan insertion could not be
performed. For such kind of circuit it is recommended to insert a
selector to sw itch to a clock that is input f rom the outside during
testing.

Clock pin is driven w ith the output of f lip-f lop
"top.DFF_INSTANCE_1.Q"

STARC_VLOG 3.3.5.3
RULE NAME

Circuits that use OR gating of clocks and internally generated
signals should be tied to a specific voltage level using an AND gate

MESSAGE
Clock “{GClkName}” passes through the OR gate logic. Internally generated
signals, connected to other pins of this OR gate, must be controlled by an
external port via the AND gate.

PROBLEM
DESCRIPTION

Ability to control clock pins from an external inputs is essential for DFT (see 3.3.1.1). Those
clocks that cannot be controlled directly from the outside require switching to an external clock
during testing. From this point of view use of gated clocks should be avoided, however use of
gated clocks may be unavoidable in efforts to reduce power consumption.
There are two techniques for gated clocks. The first is the method of enabling the clock line
through the use of an OR gate, and the second is that of enabling the clock line through the use
of an AND gate (see 3.3.5.4). In addition, there are also methods that use latches (see 3.3.5.5)
and FFs (see 3.3.5.6) to produce gated clocks.
Consider the picture below. When OR gating is used, when the clock enable signal goes to ’1’ at
the time of the scan shift, the clock will no longer be input into the flip-flop, so the scan shift will
not be performed properly (the top part of the picture). At the bottom part DFT correct circuit is
shown. At the time of the scan shift, the clock enable signal must be tied to ’0’ by the test signal
that is input from outside of the LSI. As shown at the picture, the clock enable input of OR gate
can be fixed to a specific voltage by inserting an AND gate in the stage prior to the OR gate and
then inputting ’0’ into one side by external TST_N signal.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker collects collect external signals and verifies whether these signals are directly (*)
connected to an OR gate that feeds directly(*) clock pin of an FF:

– if other input of OR gate is external => no violation;
– else if other input is internal:

– if it is supplied with AND gate with at least one input connected directly(*) to an
external port;

– else if there is no such AND gate => violation.
– (*) for this rule, signal that is directly connected may be connected directly or through

buffers/inverters.
Note-1: OR gates with two inputs only are considered.
Note-2: if an OR gate is driven by an FF then this checker is not regard the situation (for more
details see 3.3.5.6).

Verilog HDL RTL Design Style Checks 277 of 334

FFCLK

Logic

CLK

Clock enable is controlled
by an internally generated

signal

FF

CLK

FF
CLK

Logic

TST_N
Clock enable can be

controlled by an external
signal during the scan

FF

EXAMPLE-1: [1] global clock signal 'CLK' is directly connected to an OR gate;
[2] other input of OR gate is internal and it is not supplied with AND gate => violation.

module top(CLK, EN1, EN2, D1, D2, OUT1, OUT2);

input CLK;
input EN1, EN2, D1, D2;
output OUT1, OUT2;

assign or_clk = bb_out | CLK;

bb BB (.IN1(EN1), .IN2(EN2), .OUT(bb_out));

dff DFF1 (.CLK(or_clk), .D(D1), .Q(OUT1));

dff DFF2 (.CLK(CLK), .D(D2), .Q(OUT2));

endmodule
//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule
// BB interface definition
module bb (input IN1, IN2, output OUT);
endmodule

EXAMPLE-2: [1] global clock signal 'CLK' is directly connected to an OR gate;
[2] other input of the gate is driven by FF (inverter is not taken into account) => no violation (case
for 3.3.5.6).

module top(CLK, EN_X, D1, D2, OUT1, OUT2);

input CLK;
input EN_X, D1, D2;
output OUT1, OUT2;

assign or_clk = !en_ff_out | CLK;

dff DFF1 (.CLK(CLK), .D(EN_X), .Q(en_ff_out));

dff DFF2 (.CLK(or_clk), .D(D1), .Q(OUT1));

dff DFF3 (.CLK(CLK), .D(D2), .Q(OUT2));

endmodule

278 of 334 Verilog HDL RTL Design Style Checks

Instance “top”. Clock “CLK” passes through the OR gate logic. Internally
generated signals, connected to other pins of this OR gate, must be controlled
by an external port via the AND gate.

FF

CLK

CLK

FF

EN1

D1

D2

OUT1

OUT2

BB
EN2

//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule

Verilog HDL RTL Design Style Checks 279 of 334

FF

CLK

CLK

FF

FF

EN_X

D1

D2

OUT1

OUT2

STARC_VLOG 3.3.5.4
RULE NAME

Circuits that use AND gating of clocks and internally generated
signals should be tied to a specific voltage level using an OR gate

MESSAGE
Clock “{GClkName}” passes through the AND gate logic. Internally generated
signals, connected to other pins of this AND gate, must be controlled by an
external port via the OR gate.

PROBLEM
DESCRIPTION

Ability to control clock pins from an external inputs is essential for DFT (see 3.3.1.1). Those
clocks that cannot be controlled directly from the outside require switching to an external clock
during testing. From this point of view use of gated clocks should be avoided, however use of
gated clocks may be unavoidable in efforts to reduce power consumption.
There are two techniques for gated clocks. The first is the method of enabling the clock line
through the use of an OR gate (see 3.3.5.3), and the second is that of enabling the clock line
through the use of an AND gate. In addition, there are also methods that use latches (see
3.3.5.5) and FFs (see 3.3.5.6) to produce gated clocks.
In AND gating an inverted clock serves as the base. At the picture the enable signal will be the
output of a FF using an inverted clock. So that half cycle is available to generate enable signal.
When gating is performed on a positive clock signal, a hazard will be produced on the clock line,
causing a malfunction. An inversion may also be added after AND gate to obtain design in which
everything operates on a inverted clock.
Consider the picture below. When AND gating is used, if the clock enable signal goes to ’0’ at the
time of the scan shift, the clock will no longer be input into the flip-flop, so the scan shift will not
be performed properly (the top part of the picture). At the bottom part DFT correct circuit is
shown. At the time of the scan shift, the clock enable signal must be tied to ’1’ by the test signal
that is input from outside of the LSI. As shown at the picture, the clock enable input of AND gate
can be fixed to a specific voltage by inserting an OR gate in the stage prior to the AND gate and
then inputting ’1’ into one side by external TST signal.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker collects collect external signals and verifies whether these signals are directly (*)
connected to an AND gate that feeds directly(*) clock pin of an FF:

– if other input of AND gate is external => no violation;
– else if other input is internal:

– if it is supplied with OR gate with at least one input connected directly(*) to an
external port;

– else if there is no such OR gate => violation.
– (*) for this rule, signal that is directly connected may be connected directly or through

280 of 334 Verilog HDL RTL Design Style Checks

FFCLK

Logic

CLK

Clock enable is controlled
by an internally generated

signal

FF

CLK

FFCLK

Logic

TST

Clock enable can be
controlled by an external
signal during the scan

FF

Inverted
clock edge

RULE NAME
Circuits that use AND gating of clocks and internally generated
signals should be tied to a specific voltage level using an OR gate

buffers/inverters.
Note-1: AND gates with two inputs only are considered.
Note-2: if an AND gate is driven by a latch then this checker is not regard the situation (for more
details see 3.3.5.5).

EXAMPLE-1: [1] CLK signal is directly connected to an AND gate that feeds directly clock pin of an FF;
[2] the other input of AND gate is supplied with OR gate;
[3] both inputs of OR gate are internally generated (they are outputs of black boxes) => violation.

module top(CLK, IN1, IN2, IN3, IN4, D1, D2, OUT1, OUT2);

input CLK;
input IN1, IN2, IN3, IN4;
input D1, D2;
output OUT1, OUT2;

assign and_clk = (bb1_out | bb2_out) & CLK;
dff DFF1 (.CLK(and_clk), .D(D1), .Q(OUT1));

dff DFF2 (.CLK(CLK), .D(D2), .Q(OUT2));

bb1 BB1 (.IN1(IN1), .IN2(IN2), .OUT(bb1_out));

bb2 BB2 (.IN1(IN3), .IN2(IN4), .OUT(bb2_out));

endmodule

//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule

// BB1 interface definition
module bb1 (input IN1, IN2, output OUT);
endmodule

// BB2 interface definition
module bb2 (input IN1, IN2, output OUT);
endmodule

Verilog HDL RTL Design Style Checks 281 of 334

Instance “top”. Clock “CLK” passes through the AND gate logic. Internally
generated signals, connected to other pins of this AND gate, must be
controlled by an external port via the OR gate.

FF

CLK

CLK FF

IN1

D1

D2

OUT1

OUT2

BB1

IN3 BB2
IN4

IN2

STARC_VLOG 3.3.5.5

RULE NAME
Circuits in which gating is performed on clocks and latch outputs
should have an OR performed on the scan select and the stage
prior to the latches

MESSAGE

Latch (“{LatchName}”) is used for gating clock line and its output is not fixed to
'1'. Use OR gate with external signal fixed to high voltage prior to the latch to
provide clock to the FFs during scan shift.

DETAIL The output of the latch is used for gating with clock “{ClkName}”.

PROBLEM
DESCRIPTION

Ability to control clock pins from an external inputs is essential for DFT (see 3.3.1.1). Those
clocks that cannot be controlled directly from the outside require switching to an external clock
during testing. From this point of view use of gated clocks should be avoided, however use of
gated clocks may be unavoidable in efforts to reduce power consumption.
There are two techniques for gated clocks. The first is the method of enabling the clock line
through the use of an OR gate (see 3.3.5.3), and the second is that of enabling the clock line
through the use of an AND gate (see 3.3.5.4). In addition, there are also methods that use
latches and FFs (see 3.3.5.6) to produce gated clocks.
When a latch of an inverted clock is placed prior to the AND gate latch output does not change
when the clock is a high pulse. The latch goes to a through state when the pulse goes low after
the falling edge, at which time the value of an enable signal propagates to the latch output.
Consequently, if the AND with the clock signal is performed after the enable signal passes
through the latch (as shown at the picture), then the enable signal will be accepted at the next
rising edge of the clock. Such scheme of clock gating provides more stability then scheme
described in 3.3.5.4.
Gated clocks using latches such as this normally fix latch output by inserting OR gate prior to the
latch (bottom part of the picture). An OR is performed on the SCAN_SEL signal, which is used to
switch the circuit to the test mode. When SCAN_SEL is ’1’ (at the time of the scan shift), the
output of the OR is always ’1’, so a ’1’ is always input into the AND. As a result, the CLK signal is
used to synchronize the FF during the scan shift.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker collects collect external signals and verifies whether these signals are directly (*)
connected to an AND gate that feeds directly(*) clock pin of an FF:

– if a latch is connected to an AND gate:
– if its input pin is directly(*) driven by an OR gate with one external input => no

violation

282 of 334 Verilog HDL RTL Design Style Checks

FF
CLK

LogicCLK

Latch is driven by an
internally generated signal

FF

Inverted
clock edge

LD

FFCLK

LogicCLK

 Latch output can be fixed by an
external signal during the scanFF

LD

SCAN_SEL

RULE NAME
Circuits in which gating is performed on clocks and latch outputs
should have an OR performed on the scan select and the stage
prior to the latches

– else if there is no such a gate => violation
– (*) for this rule, signal that is directly connected may be connected directly or through

buffers/inverters.
Note-1: AND gates with two inputs only are considered.
Note-2: if there is no latch connected to AND gate, then this checker is not regard the situation
(for more details see 3.3.5.4).

EXAMPLE-1: [1] external signal is directly connected to AND gate which feeds FF clock pin;
[2] latch is connected to the other input of AND gate;
[3] latch input pin is driven by OR gate;
[4] OR gate inputs are both internally generated signals => violation.

module top(CLK, IN1, IN2, IN3, IN4, D, OUT);

input CLK;
input IN1, IN2, IN3, IN4, D;
output OUT;

assign bb_or = bb1_out | bb2_out;
assign clk_and = latch_out & CLK;

dff DFF (.CLK(clk_and), .D(D), .Q(OUT));

latch LD (.G(~CLK), .D(bb_or), .Q(latch_out));

bb1 BB1 (.IN1(IN1), .IN2(IN2), .OUT(bb1_out));

bb2 BB2 (.IN1(IN3), .IN2(IN4), .OUT(bb2_out));

endmodule

//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule

//D-latch
module latch(G, D, Q);

input G, D;
output reg Q;
always @(G, D)

if (G)
Q <= D;

endmodule
// BB1 interface definition
module bb1 (input IN1, IN2, output OUT);
endmodule

Verilog HDL RTL Design Style Checks 283 of 334

Instance “top.LD” Latch (“Q”) is used for gating clock line and its output is
not f ixed to '1'. Use OR gate w ith external signal f ixed to high voltage prior to
the latch to provide clock to the FFs during scan shif t.

The output of the latch is used for gating w ith clock “CLK”.

// BB2 interface definition
module bb2 (input IN1, IN2, output OUT);
endmodule

EXAMPLE-2: [1] external signal is directly connected to AND gate which feeds FF clock pin;
[2] there is no latch connected to the other AND gate input => no violation.
Note: this is the case for rule 3.3.5.4.

module top(CLK, EN, D, OUT);

input CLK, EN;
input D;
output OUT;
assign clk_and = ff_out & CLK;

dff DFF1 (.CLK(~CLK), .D(EN), .Q(ff_out));

dff DFF2 (.CLK(clk_and), .D(D), .Q(OUT));

endmodule

//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule

284 of 334 Verilog HDL RTL Design Style Checks

FF

CLK

CLK

LD

BB1

BB1

IN1

IN2

IN3

IN4

D

OUT

top

FF

CLK

CLK

FF
EN

D
OUT

top

STARC_VLOG 3.3.5.6
RULE NAME

When gating a clock and the output of a FF, tie to a specific voltage
level by performing AND gating with the stage after the FF

MESSAGE

Detected FF (“{FFName}”) using for gating clock without output tied to a specific
voltage. Use AND gate with external signal fixed to low voltage after the FF to
provide clock to the FFs without stopping during scan shift.

DETAIL The output of the FF is used for gating with clock “{ClkName}”.

PROBLEM
DESCRIPTION

Ability to control clock pins from an external inputs is essential for DFT (see 3.3.1.1). Those
clocks that cannot be controlled directly from the outside require switching to an external clock
during testing. From this point of view use of gated clocks should be avoided, however use of
gated clocks may be unavoidable in efforts to reduce power consumption.
There are two techniques for gated clocks. The first is the method of enabling the clock line
through the use of an OR gate (see 3.3.5.3), and the second is that of enabling the clock line
through the use of an AND gate (see 3.3.5.4). In addition, there are also methods that use
latches (see 3.3.5.5) and FFs to produce gated clocks.
When OR gating is used, a FF is used as the previous stage, rather than a latch (3.3.5.5). Clock
enable signal must arrive within a half-cycle interval, otherwise the clock pulse width will be
different, and the circuit will not function safely. OR gating with FF provides more stability then
scheme described in 3.3.5.3, because enable signal changes only by clock edge. But for DFT
purposes when OR gating is performed, an AND gate with one external input should be inserted
in the previous stage. So that, during the test a ’0’ may be input into one side of the AND gate
causing the output of the AND go to '0' and as a result a stable clock is supplied to the FF (the
bottom part of the picture).

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOUR

Checker collects collect external signals and verifies whether these signals are directly (*)
connected to an OR gate that feeds directly(*) clock pin of an FF:

– if another input of OR gate is driven by FF => violation;
– else if it is driven by an AND gate:

– if one of the inputs of AND gate is driven by FF and another is directly(*) connected
to external port => no violation

– otherwise => violation
– else if other input of OR gate is driven by anything else => situation for 3.3.5.3
– (*) for this rule, signal that is directly connected may be connected directly or through

buffers/inverters.
Note-1: AND gates with two inputs only are considered.

Verilog HDL RTL Design Style Checks 285 of 334

FF

CLK

CLK
FF FF

Logic

Clock enable can not be
controlled by an external

signal during the scan

FFCLK

CLK
FF FF

Logic

TST_N

Clock enable can be
controlled by an external

signal during the test mode

EXAMPLE-1: [1] external signal is directly connected to OR gate which feeds FF clock pin;
[2] FF is connected to the other input of OR gate;
[3] FF data input is not driven by OR gate => violation.

module top(CLK, EN_X, D, OUT);

input CLK,EN_X;
input D;
output OUT;

assign or_clk = ff2_out | CLK;
dff DFF1 (.CLK(CLK), .D(EN_X), .Q(ff1_out));

dff DFF2 (.CLK(CLK), .D(ff1_out), .Q(ff2_out));

dff DFF3 (.CLK(or_clk), .D(D), .Q(OUT));

endmodule
//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule

EXAMPLE-2: [1] external signal is directly connected to OR gate which feeds FF clock pin;
[2] FF is not connected to the other input of OR gate => no violation.
Note: this is the case for rule 3.3.5.3.

module top(CLK, EN1, EN2, D, OUT);

input CLK;
input EN1, EN2, D;
output OUT;

assign or_clk = bb_out | CLK;

dff DFF (.CLK(or_clk), .D(D), .Q(OUT));

bb BB (.IN1(EN1), .IN2(EN2), .OUT(bb_out));

endmodule
//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule

286 of 334 Verilog HDL RTL Design Style Checks

Instance “top.DFF2” Detected FF (“Q”) using for gating clock w ithout output
tied to a specif ic voltage. Use AND gate w ith external signal f ixed to low
voltage after the FF to provide clock to the FFs w ithout stopping during scan
shif t.

FF

CLK

CLK

FF FF
EN_X

OUT

top

The output of the FF is used for gating w ith clock “CLK”.

// BB interface definition
module bb (input IN1, IN2, output OUT);
endmodule

Verilog HDL RTL Design Style Checks 287 of 334

FF

CLK

CLK

EN1

OUT

top
BB

EN2

D

STARC_VLOG 3.3.5.7
RULE NAME

When the output of the latch is used as a clock, tie to a specific
voltage level by performing OR gating with the latch clock input

MESSAGE
Clock “{GClkName}” passes through the latch “{LatchName}” but the enable
input is not set to a specific voltage. Use OR gating with test signal to tie the
clock pin to '1', to provide continual pass of the clock signal to FFs.

PROBLEM
DESCRIPTION

Ability to control clock pins from an external inputs is essential for DFT (see 3.3.1.1). Those
clocks that cannot be controlled directly from the outside require switching to an external clock
during testing. From this point of view use of gated clocks should be avoided, however use of
gated clocks may be unavoidable in efforts to reduce power consumption.
There are two techniques for gated clocks. The first is the method of enabling the clock line
through the use of an OR gate (see 3.3.5.3), and the second is that of enabling the clock line
through the use of an AND gate (see 3.3.5.4). In addition, latches (see 3.3.5.5) and FFs (see
3.3.5.6) may be added to gating circuit to produce gated clocks.
There are also methods to control the clock lines where a latch is used instead of a gated clock.
Such methods are not recommended because they are not desirable in terms of timing analysis.
If this method is being used to control the clock lines, signal that is input into the clock pin for the
latch to should be able to set to '1' during the test mode. At the picture below the test input and
the latch clock input are being tied to a specific value through the use of an OR gate so that the
signal always passes through the latch.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOUR

Checker collects collect external signals and verifies whether any of these signals is connected
directly (*) to data pin of latch:

– if latch output is connected to the clock pin of FF:
– if the enable input of latch is an external port or it is supplied with OR gate with at

least one external signal => no violation;
– otherwise => violation

– (*) for this rule, signal that is directly connected may be connected directly or through
buffers/inverters.

Note: OR gates with two inputs only are considered.

EXAMPLE-1: [1] external signal CLK directly connected to data pin of the latch;
[2] latch output is connected to the clock pin of FF;
[3] latch enable input is is supplied with OR gate with internal signals => violation.

module top(CLK, IN1, IN2, IN3, IN4, D, OUT);

input CLK;
input IN1, IN2, IN3, IN4, D;
output OUT;

assign bb_or = bb1_out | bb2_out;

dff DFF (.CLK(latch_out), .D(D), .Q(OUT));

288 of 334 Verilog HDL RTL Design Style Checks

FF
CLK

CLK
LD

Logic

FF

CLK

CLK
LD

Logic

TST

Latch is gated with an
internally generated signal

Latch enable can be
controlled by an
external signal

latch LD (.G (bb_or), .D (CLK), .Q (latch_out));

bb1 BB1 (.IN1(IN1), .IN2(IN2), .OUT(bb1_out));

bb2 BB2 (.IN1(IN3), .IN2(IN4), .OUT(bb2_out));

endmodule
//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule
//D-latch
module latch(G, D, Q);

input G, D;
output reg Q;
always @(G, D)

if (G)
Q <= D;

endmodule
// BB1 interface definition
module bb1 (input IN1, IN2, output OUT);
endmodule

// BB2 interface definition
module bb2 (input IN1, IN2, output OUT);
endmodule

EXAMPLE-2: [1] external signal CLK directly connected to data pin of the latch;
[2] latch output is connected to the clock pin of FF;
[3] latch enable input is an external signals => no violation.

module top(CLK, G, D, OUT);

input CLK, G;
input D;
output OUT;

dff DFF (.CLK(latch_out), .D(D), .Q(OUT));

latch LD (.G (G), .D (CLK), .Q (latch_out));

endmodule

Verilog HDL RTL Design Style Checks 289 of 334

Instance “top”. Clock “CLK” passes through the latch “Q” but the enable
input is not set to a specif ic voltage. Use OR gating w ith test signal to tie the
clock pin to '1', to provide continual pass of the clock signal to FFs.

FFCLK

CLK

IN1
OUT1

BB1

IN3 BB2
IN4

IN2

LD

D

top

//D flop-flop
module dff(CLK, D, Q);

input CLK, D;
output reg Q;
always @(posedge CLK)

Q <= D;

endmodule
//D-latch
module latch(G, D, Q);

input G, D;
output reg Q;
always @(G, D)

if (G)
Q <= D;

endmodule

290 of 334 Verilog HDL RTL Design Style Checks

FFCLK

CLK

OUT1

G

LD

D
top

3.3.6 DFT in reset lines

STARC_VLOG 3.3.6.1
RULE NAME

When the output of random logic is applied to an asynchronous set
or reset pin, block the propagation of the random logic output

MESSAGE

The output of random logic is used as asynchronous control for flip-flop
“{FFSigName}”. Such circuit structure is unsafe for scan shift during the scan
test. It is recommended to insert a selector at the final output of the random logic
to make it possible to select an external port.

PROBLEM
DESCRIPTION

DFT for reset lines requires that they should be structured so that no reset is applied to a FF
during the scan shift, otherwise some data will be lost. It is necessary for the reset lines to be
controlled directly from external input ports (see 3.3.1.4).
If an output from random logic is connected to an asynchronous set or reset pin or gated with a
reset input, you need to ensure the propagation of the random logic output is blocked during
testing to make it possible for the ATPG tool to detect faults in the reset lines.

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans the design hierarchy for flip-flops and verifies the signal that is mapped to the
asynchronous control pin of each flip-flop:

– this signal must be controlled by an external input port (*)

– (*) for this rule, signal that is controlled by an external input port is a signal that is
connected directly or through buffers/inverters/MUXes to any external input port of the
design

– if signal is not controlled by an external input port => violation (message points to flip-
flop signal assignment).

EXAMPLE-1: [1] consider the picture below;
[2] MUX's output signal that is mapped to the asynchronous control of the flip-flop;
[3] data inputs of the MUX are the outputs of combination logic;
[4] MUX control is connected to the external port, but MUX output is still treated as random logic;
[5] propagation of random logic output is not blocked and FF reset cannot be directly controlled
from an external input => violation.

module top(ext, tst_x, rst_x, in1, in2, clk, data1, out1);

input ext;
input tst_x;
input rst_x;
input in1;
input in2;
input clk;
input data1;

output out1;

wire or_out;

Verilog HDL RTL Design Style Checks 291 of 334

FF

RAND_LOGIC

No direct
control

FF

RAND_LOGIC

0

1
reset

Direct
control

Direct
control

wire and_out;
wire mux_out;
wire ff1_out;

assign and_out = tst_x & rst_x;

assign or_out = in1 | in2;

assign mux_out = (ext) ? and_out : or_out;

dff_r DFF_INSTANCE1 (.DATA(data1), .CLK (clk), .RES(mux_out), .Q(out1));

endmodule
module dff_r(DATA, CLK, RES, Q);

input DATA;
input CLK;
input RES;

output Q;
reg Q;

always @(posedge CLK or negedge RES)

if (!RES)

Q <= 1'b0;

else

Q <= DATA;

endmodule

292 of 334 Verilog HDL RTL Design Style Checks

top.DFF_INSTANCE2. The output of random logic is used as
asynchronous control for f lip-f lop “Q”. Such circuit structure is unsafe
for scan shif t during the scan test. It is recommended to insert a
selector at the f inal output of the random logic to make it possible to
select an external port.

FF

in1

data

in2

clk

tst_x

rst_x

out1

Signal “ top.ext” connected
to asynchronous reset of

“top.dff_instance1”

0

1

ext

STARC_VLOG 3.3.6.2
RULE NAME Do not mix clock lines and reset lines

MESSAGE

Signal “{SigName}” is used both for clock and reset. Do not mix clock and reset
lines to avoid problems with DFT. In such descriptions all lines to which clock
signal is connected will be excluded from scanning.

DETAIL-1 Connection to clock pin of flip-flop “{FFName}” is detected.

DETAIL-2 Connection to asynchronous control pin of flipflop “{FFName}” is
detected.

DETAIL-3 Signal “{SigName}” is also used both for clock and reset in the same
connections.

PROBLEM
DESCRIPTION

In circuits where clock lines and reset lines are mixed, all FFs to which
the CLK signal is connected will be excluded from scanning.
Normally, clock lines and reset lines are not mixed in a design.
However, there are some rare cases that use circuitry as shown in the
picture. But this type of design is risky and should not be used, even
when no scan is to be inserted.

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects signals that are used simultaneously as clock and reset for FF:
– if such signals are detected => violation (main message per signal declaration +

appropriate detail (detail-2/detail-3) per each connection to FF);
– if several signals drive same FF pin (clock/reset) => violation (only one message for all

of them + detail-4 per each another driver-signal);
Note: analysis starts from asynchronous control pin of each FF and backward
propagation is performed (propagation rules are the same as for global reset/clock, see
1.4.3.4) to detect “forks” that could be connected to clock pin(s) of other/same FF(s).

EXAMPLE-1: [1] consider the picture below;
[2] signal top.clk1 is used simultaneously as clock (top.dff_instance1) and reset (top.dff_instance1)
=> violation (detail-1 + detail-2).
Note: signal is propagated through the MUXes.

module top(in1, in2, in3, clk1, clk2, reset, sel, out1, out2);

input in1;
input in2;
input in3;
input clk1;
input clk2;
input reset;
input sel;

output out1;
output out2;

wire mux_to_ff1;
wire mux_to_ff2;

assign mux_to_ff2 = (sel) ? clk1 : in3;

mux MUX_INSTANCE (.in1(clk1), .in2(in2), .sel(sel), .out1(mux_to_ff1));

dff DFF_INSTANCE1 (.D(in1), .CLK(mux_to_ff1), .RESET(reset), .Q(out1));

Verilog HDL RTL Design Style Checks 293 of 334

Instance “top”. Signal “clk1” is used both for clock and reset. Do not
mix clock and reset lines to avoid problems w ith DFT. In such
descriptions all lines to w hich clock signal is connected w ill be
excluded from scanning.

FF

FF

CLK

dff DFF_INSTANCE2 (.D(in1), .CLK(clk2), .RESET(mux_to_ff2), .Q(out2));

endmodule

module dff(D, CLK, RESET, Q);
input D;
input CLK;
input RESET;

output Q;
reg Q;

always @(posedge CLK or posedge RESET)

if (RESET)

Q <= 1'b0;

else

Q <= D;

endmodule

module mux(in1, in2, sel, out1);

input in1;
input in2;
input sel;

output out1;

assign out1 = (sel) ? in1 : in2;

endmodule

294 of 334 Verilog HDL RTL Design Style Checks

Connection to clock pin of f lip-f lop “Q” is detected.

Connection to asynchronous control pin of f lipf lop “Q” is detected.

FF

FF

0

1

clk1

in2

sel

in1

in3

clk2

reset

0

1

out1

out2

Signal “ top.clk1”
connected to MUX

data input

Signal “ top.clk1” connected to
asynchronous reset of
“top.dff_instance2”

Signal “ top.clk1” connected
to MUX data input

“top.mux_instance”

Signal “ top.clk1”
connected to clock pin of

“top.dff_instance1”

EXAMPLE-2: [1] consider the picture below;
[2] if several signals (in1, in2) drive the same FF pin (clock and reset) => violation (detail-1 +
detail-2 + detail-4).

module top(in1, in2, clk, data1, data2, out1, out2);
input in1;
input in2;
input clk;
input data1;
input data2;

output out1;
output out2;

wire and_out;

assign and_out = in1 & in2;

dff DFF_INSTANCE2 (.D(data1), .CLK(and_out), .Q(out1));

dff_r DFF_INSTANCE1 (.D(data2), .CLK(clk), .RESET(and_out), .Q(out2));

endmodule

module dff(D, CLK, Q);
input D;
input CLK;
output Q;
reg Q;

always @(posedge CLK)

Q <= D;

endmodule

module dff_r(D, CLK, RESET, Q);
input D;
input CLK;
input RESET;

output Q;
reg Q;

always @(posedge CLK or posedge RESET)

if (RESET)

Q <= 1'b0;

else

Q <= D;

endmodule

Verilog HDL RTL Design Style Checks 295 of 334

Signal “in1” is used both for clock and reset. Do not mix clock and
reset lines to avoid problems w ith DFT. In such descriptions all lines to
w hich clock signal is connected w ill be excluded from scanning.

Signal “in2” is also used both for clock and reset in the same
connections.

Connection to clock pin of f lip-f lop “Q” is detected.

Connection to asynchronous control pin of f lipf lop “Q” is detected.

296 of 334 Verilog HDL RTL Design Style Checks

FF

FF

in2

in1

data1

data2

clk

out1

out2

Signal “ top.and_out” connected to
asynchronous reset of “ top.dff_instance1”

Signal “ top.and_out” connected
to clock pin of “ top.dff_instance2”

STARC_VLOG 3.3.6.3
RULE NAME

Do not connect the output of a FF directly to the asynchronous set
or reset pin of a FF

MESSAGE

The asynchronous control pin(s) of flip-flop "{DrivenFFName}" is driven by the
output of another flip-flop. Insert selector to switch to a reset signal controlled
directly from an external port to avoid malfunctions with DFT and ATPG tools.

DETAIL Asynchronous {ControlName} pin is driven with the output of flip-flop
"{DriverFFHierName}"

PROBLEM
DESCRIPTION

Problems with Automatic Test Pattern Generation (ATPG) tools occur when flip-flop clock pin is
driven by output of another flip-flop. If a synchronized reset signal is necessary, prefer to insert
the selector that will allow to switch to a reset signal that can be directly controlled from an
external port of LSI (see the picture below)

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans the design hierarchy for flip-flops that have output of another flip-flop supplied to
their asynchronous control pins:

– backward-propagation is performed from each asynchronous control pin of each flip-flop
to define its driver (See rule 1.4.3.2 for details regarding backward propagation)

– if driver is output of another flip-flop => violation is reported (main message points on
process that infers driven flip-flop, whereas detail message points on assignment of
signal that infers driver flip-flop)
– following is list of possible controls ({ControlName}) for the “detail” violation

message:
– reset
– set
– set/reset

EXAMPLE-1: [1] inverted output of first flip-flop is connected to asynchronous set of second flip-flop

module top (CLK, D, SET, RESET, Q, Qn) ;
 input CLK;
 input D;
 input SET;
 input RESET;
 output Q;
 output Qn;
 wire CTRL_from_FF1_out;
 wire WIRE_from_FF1_out;
 dff U1 (.CLK(CLK), .D(D), .SET(SET), .RESET(RESET),
 .Q(WIRE_from_FF1_out), .Qn(CTRL_from_FF1_out));
 dff U2 (.CLK(CLK), .D(WIRE_from_FF1_out), .SET(CTRL_from_FF1_out), .RESET(RESET),
 .Q(Q), .Qn(Qn));

Verilog HDL RTL Design Style Checks 297 of 334

FF

FF

FF

FF

0

1
RST

TST

endmodule
module dff(D, CLK, SET, RESET, Q, Qn);
 input D;
 input CLK;
 input SET;
 input RESET;

 output Q;
 reg Q;
 output Qn;

 always @(posedge CLK or posedge SET or negedge RESET)

 if(SET)
 Q <= 1'b1;
 else if(!RESET)
 Q <= 1'b0;
 else
 Q <= D;

 assign Qn = ~Q;
endmodule

298 of 334 Verilog HDL RTL Design Style Checks

Instance "top.U2". The asynchronous control pin(s) of f lip-f lop "Q" is
driven by the output of another f lip-f lop. Insert selector to sw itch to a
reset signal controlled directly f rom an external port to avoid
malfunctions w ith DFT and ATPG tools.

Asynchronous set pin is driven w ith the output of f lip-f lop "top.U1.Q"

STARC_VLOG 3.3.6.4
RULE NAME

Do not connect the output of a latch directly to the asynchronous
set or reset pin of a FF

MESSAGE

The asynchronous control pin(s) of flip-flop "{DrivenFFName}" is driven by the
output of latch. Add logic enabling to place the latch in a through mode and
control reset directly from an external port to avoid malfunctions with DFT and
ATPG tools.

DETAIL Asynchronous {ControlName} pin is driven with the output of flip-flop
"{DriverFFHierName}"

PROBLEM
DESCRIPTION

Latch on a clock line will cause an errors in the DFT and ATPG tools. If such type of circuitry
cannot be avoided, add special gate to place the latch in a through mode, as it shown on the
image below:

LEVEL RULE

CHECKER
BEHAVIOR

Checker scans the design hierarchy for flip-flops that have output of latch supplied to their
asynchronous control pins:

– backward-propagation is performed from each asynchronous control pin of each flip-flop
to define its driver (See rule 1.4.3.2 for details regarding backward propagation)

– if driver is output of latch => violation is reported (main message points on process that
infers driven flip-flop, whereas detail message points on assignment of signal that infers
driver latch)
– see 3.3.6.3 for list of possible controls ({ControlName}) for the “detail” violation

message

EXAMPLE-1: [1] latch output is directly connected to asynchronous set input of flip-flop => violation;
[2] note, that output of the same latch is connected to reset input of the same flip-flop, but there is
no violation because backward propagation stops at logic gate 'or' (ORing of multiple
asynchronous controls);

module dff_rs_async(D, CLK, RESET, SET, Q, Q1);
 input D;
 input CLK;
 input RESET;
 input SET;
 output Q;
 reg Q;
 output Q1;
 reg Q1;

 wire CTRL_from_FF_out;

 // output of LATCH "Q" is line "CTRL_from_FF_out"
 assign CTRL_from_FF_out = Q;

 // output of LATCH "Q" connected to set pin of flip-flop "Q1"
 always @(posedge CLK or posedge CTRL_from_FF_out or negedge RESET)

Verilog HDL RTL Design Style Checks 299 of 334

LD
«L»

FF

RST LD
«L»

FF

RST

RST

 if(CTRL_from_FF_out)
 Q1 <= 1'b1;
 else if(!RESET)
 Q1 <= 1'b0;
 else
 Q1 <= D;

 always @(CLK or SET or RESET)
 if(SET)
 Q <= 1'b1;
 else if(!RESET)
 Q <= 1'b0;
 // LATCH "Q" is inferred
 else if (CLK)
 Q <= D;

endmodule

300 of 334 Verilog HDL RTL Design Style Checks

Instance "df f_rs_async". The asynchronous control pin(s) of f lip-f lop
"Q1" is driven by the output of latch. Add logic enabling to place the
latch in a through mode and control reset directly f rom an external
port to avoid malfunctions w ith DFT and ATPG tools.

 Asynchronous set pin is driven w ith the output of latch
"df f_rs_async.Q"

3.3.7 Handling of different clocks

STARC_VLOG 3.3.7.2
RULE NAME

Insert a latch with an inverted clock when transmitting between
asynchronous clocks

MESSAGE-1

Data transfer without using a latch is detected. For structuring a single scan
chain it is recommended to insert a latch with an inverted clock between the
adjacent flip-flops that are in different clock domains.

DETAIL-1 Data is sent by the FF “{FFName}” that belongs to the clock domain
“{HierClockName}”.

DETAIL-2 Data is accepted by the FF “{FFName}” that belongs to the clock domain
“{HierClockName}”.

MESSAGE-2

Multiple clock domains transfer data through a single latch (“{LatchName}”). For
structuring scan chains it is recommended to insert a latch with an inverted clock
between the each pair of adjacent flip-flops that are in different clock domains.

DETAIL-1 Data is sent by the FF “{FFName}” that belongs to the clock domain
“{HierClockName}”.

DETAIL-2 Data is accepted by the FF “{FFName}” that belongs to the clock domain
“{HierClockName}”.

MESSAGE-3

Incorrect enable polarity is used to switch the latch "{LatchName}" to a
transparent state. Polarity should be inverted relatively to the driving flip-flop
from the source clock domain (for structuring a single scan chain it is
recommended to insert a latch with an inverted clock between the adjacent flip-
flops that are in different clock domains).

DETAIL-1 Data is sent by the FF “{FFName}” that belongs to the clock domain
“{HierClockName}”.

DETAIL-2 Data is accepted by the FF “{FFName}” that belongs to the clock domain
“{HierClockName}”.

PROBLEM
DESCRIPTION

It is important to handle multiple clock domains with care. An attention to clock skew is important:
during the scan testing it is easy to meet setup-timing requirements because scan clock
frequency is slow, whereas hold-time problems are common.
Potential hold-time problems could be avoided by ensuring that a scan chain consists only of flip-
flops from the same clock domain. If this is not feasible, latch with an inverted clock should be
added between the adjacent flip-flops on a scan chain that are in different clock domains.

The data will be held during the high level of clocking signal and transmitted during the low level
of clocking signal (transparent state of the latch). If skew value in the clock line is less than ½ of a
clock cycle, then it is not necessary to ensure the hold.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans interconnections between different asynchronous clock domains (see 1.5.1.1 for
details about clock domains detection):

Verilog HDL RTL Design Style Checks 301 of 334

DOMAIN_1

FF FF LATCH

DOMAIN_2

FF FF

RULE NAME
Insert a latch with an inverted clock when transmitting between
asynchronous clocks

– violations are issued for the following cases:
– there is no latch and data transfer is performed from the single domain (as it is

shown at the picture above) => message-1;
– there is no latch and data transfer is performed from multiple domains =>

message-2;

– there is a latch, but its edge is not inverted relatively to the edge of the driving flip-
flop from the source domain => message-3 (see correct cases at the figure below);

Note: details are similar for all cases; also there are special detail messages to indicate origin
clocks of source and target domains (see 1.5.1.1 for details)

EXAMPLE-1: [1] consider sample circuit at the picture below – latch ld_out is properly located between the
asynchronous clock domains DOMAIN_1 and DOMAIN_2, but its enable input is active at the
same clock phase as flip-flops from the DOMAIN_1 => violation (message-3);
[2] note that clocks are auto-detected.

module top (clk1, clk2, data, out);
 input clk1, clk2, data;
 output reg out;
 reg ff_out, ld_out;
 always @(posedge clk1)
 ff_out <= data;

 always @(clk1 or ff_out)

302 of 334 Verilog HDL RTL Design Style Checks

SOURCE
DOMAIN

LATCH
DRIVING

FF

SOURCE
DOMAIN

LATCH
DRIVING

FF

Data is sent by the FF "top.f f_out" that belongs to the clock domain "clk1".

"clk1" is the origin clock of the source domain.

Data is accepted by the FF "top.out" that belongs to the clock domain
"clk2".

"clk2" is the origin clock of the target domain.

DOMAIN_1

FF

DOMAIN_3

FF FF

DOMAIN_2

FF FF

FF

 if (clk1)
 ld_out <= ff_out;

 always @(posedge clk2)
 out <= ld_out;

endmodule

Verilog HDL RTL Design Style Checks 303 of 334

Instance "top". Incorrect enable polarity is used to sw itch the latch
"ld_out" to a transparent state. Polarity should be inverted relatively to the
driving f lip-f lop from the source clock domain (for structuring a single
scan chain it is recommended to insert a latch w ith an inverted clock
betw een the adjacent f lip-f lops that are in dif ferent clock domains).

304 of 334 Verilog HDL RTL Design Style Checks

DOMAIN_1 DOMAIN_2

clk1 clk2

Enable input is not
inverted

LATCH
«ld_out»

3.3.8 DFT for tri-state circuits

STARC_VLOG 3.3.8.1
RULE NAME

Tristate enable signals should be able to be fixed from an external
input port

MESSAGE
Tristate enable input is not directly controlled from external input port. The
tristates must be able to be controlled directly from external input ports,
otherwise ATPG tools will encounter problems.

PROBLEM
DESCRIPTION

If tristate design takes DFT into consideration, it must enable direct control of tristate buffers from
outside of the LSI (such description will be correct for ATPG tools).

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker scans the design hierarchy for tristates and verifies the signal that is mapped to an
enable pin of each tristate that is detected:

– this signal must be an external (*) signal for the design
– (*) external signal is such signal that can be directly controlled from an external port

(it doesn't pass through any kind of logic except of buffers and inverters)
– if signal is not external => violation message is reported (message points on tristate

signal assignment)

EXAMPLE-1: [1] MUX switches between signals en1 and en2 to control tristate enable signal;
[2] internal signal (MUX out) is connected to the enable signal of tristate => violation;

module top(clk, sel, en1, en2, out1);
 input clk, en1, en2;
 output out1;
 reg int_en, mux_out, ff_out;
 always @(sel, en1, en2)
 case (sel)
 1'b0 : int_en <= en1;
 1'b1 : int_en <= en2;
 default : int_en <= 1'bx;
 endcase
 always @(posedge clk)
 ff_out <= mux_out;

 assign out1 = int_en ? ff_out : 1'bz;
endmodule

Verilog HDL RTL Design Style Checks 305 of 334

Tristate enable input is not directly controlled from external input port.
The tristates must be able to be controlled directly f rom external input
ports, otherw ise ATPG tools w ill encounter problems.

STARC_VLOG 3.3.8.2

RULE NAME
Tristate enable signals should be able to be controlled directly from
the outside or should be controlled by a decoder that is controlled
directly from the outside

MESSAGE

Tri-state "{ThreeStateName}" enable pin can not be controlled directly from the
outside or can not be controlled by a decoder that is controlled directly from the
outside. Such circuit structure is unsafe for scan shift during the scan test. It is
recommended to insert a selector at the final output of the random logic to make
it possible to select an external port or insert a decoder to reduce number of
external pins.

PROBLEM
DESCRIPTION

Tristate design that takes DFT into consideration is, ideally, a design wherein all of the enable
signals can be controlled individually from outside of the LSI (see picture below). With such
circuitry, there will be no problems with ATPG tools.

In LSIs containing many tristate circuits, it is, as a practical matter, impossible to provide enable
signals to all of the tristate elements from outside of the LSI. In such cases, one method that is
used widely to decrease a number of required input pins is designs using decoders to control the
tristate elements internally. This method is considered at the picture below.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans the design hierarchy for tri-state and verify the line that is mapped to the enable
control pins:

– allowed cases:
– tri-state enable control pin is driven by an external signal (see 3.3.8.1 for details)
– tri-state enable control pin is driven by an abstract decoder
– all inputs of abstract decoder must be connected directly(*) from an external port

– (*): direct connection in this case means that only buffers and inverters are
allowed – MUX inputs are not allowed)

306 of 334 Verilog HDL RTL Design Style Checks

0

1

0

1

0

1

0

1

TST _EN2

TST

TST _EN1 decoder

0

1

0

1

0

1

0

1

TST_EN3

TST

TST _EN1

TST_EN4

TST_EN2

RULE NAME
Tristate enable signals should be able to be controlled directly from
the outside or should be controlled by a decoder that is controlled
directly from the outside

– tri-state enable control also must be connected directly(**) to an abstract decoder
output
– (**): direct connection in this case means that only buffers and inverters are

allowed – MUX inputs are allowed)
– note: cascade logic is possible for decoders – such cases are considered

– all another cases are not allowed and violate the rule.
Note: abstract decoder scheme means scheme which consist of MUX that has constants
mapped to inputs; so, the following definitions are set:

– MUX select pins are inputs of abstract decoder
– MUX output pins are outputs of abstract decoder
– MUX input pins are mapped nowhere, they are a constants.

EXAMPLE-1: [1] tri-state enable signals are controlled by the decoder;
[2] one of the decoder inputs is controlled from external port through “and” gate => violation.
Note: violation is expected per every bit of vector Q, only one message is mentioned here to
minimize number of callouts. The only difference between the messages is a name of tri-state
enable pin.

module top(data, in1, in2, in3, out1);
input [3:0] data;
input in1;
input in2;
input in3;

output [3:0] out1;
wire and_out;
wire [3:0] decoder_out;
assign and_out = in1 & in2;
decoder2to4 DC_INST (.in ({in3, and_out}), .out (decoder_out));

tristate TS_INST (.EN (decoder_out), .DATA(data), .Q (out1));

endmodule

module decoder2to4(in, out);

input [1:0] in;

output [3:0] out;
reg [3:0] out;

always @(in)
case (in)

2'b00 : out <= 4'b0001;
2'b01 : out <= 4'b0010;
2'b10 : out <= 4'b0100;
2'b11 : out <= 4'b1000;
default : out <= 4'b0000;

Verilog HDL RTL Design Style Checks 307 of 334

DC_INST TS_INST

in1

in2
4in3

data

4

DATA

EN

endcase
endmodule

module tristate(DATA, EN, Q);
input [3:0] DATA;
input [3:0] EN;

output [3:0] Q;

assign Q = (EN) ? DATA : 4'bz;

endmodule

308 of 334 Verilog HDL RTL Design Style Checks

top.TS_INST. Tri-state "Q[0]" enable pin can not be controlled directly
f rom the outside or can not be controlled by a decoder that is
controlled directly f rom the outside. Such circuit structure is unsafe
for scan shif t during the scan test. It is recommended to insert a
selector at the f inal output of the random logic to make it possible to
select an external port or insert a decoder to reduce number of
external pins.

STARC_VLOG 3.3.8.3
RULE NAME External bidirectional pins should be set during the scan shift

MESSAGE-1

Non-tri-state logic is detected on bidirectional bus "{PortName}". Connect tri-
states to inout port to set the direction of the port during the scan shift.

DETAIL-1 Non-tri-state element drives the bidirectional bus.
DETAIL2 Non-tri-state element is driven by the bidirectional bus.

MESSAGE-2
Control inputs of tri-states on bidirectional bus "{PortName}" are driven
incorrectly. Use a single external port and its inversion for tri-states control
inputs to set the inout port to input or output during the scan shift.

PROBLEM
DESCRIPTION

Bidirectional ports should drive tri-state for output
mode and should be driven by tri-state for input
mode. To avoid situations when value is written and
is read from the port at the same time, tri-state
enable signal is used in the way shown at the
picture. For DFT there should be a possibility to set
the external bidirectional ports of the LSI as inputs
during the scan shift, and the mode should be controlled from an external port.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scan the current module and for each port declared as inout checks its actual mode (in
case of vector – every bit is checked separately):

– if the actual mode is 'unused' or 'input' => no violations
– if the actual mode is 'inout':

– analyzes all local drivers of the 'inout' port and all lines that are driven by the 'inout'
port:
– if one or more local drivers is not a tri-state or if 'inout' port drives non-tri-state

=> violation (message-1 + detail-1 (per each non-tristate driver object) / detail-2
(per each non-tristate driven object));
– in any other case checker collects:

– all enable inputs of tristates that drive 'inout' ports (OUTBUF)
– all enable inputs of tristates which are driven (INBUF) by 'inout' port

– OUTBUF and INBUF must be driven by the same external port
(CONTROL) inversely, i.e. this signal should satisfy a following condition:
– if CONTROL drives OUTBUF, !CONTROL should drive INBUF;
– if !CONTROL drives OUTBUF, CONTROL should drive INBUF;

– otherwise => violation (message-2) and the analysis is stopped (for the
currently analyzed 'inout' port).

EXAMPLE-1: [1] actual mode of inout port is 'inout';
[2] local driver is not a tri-state and 'inout' port drives non-tri-state => violation (message-1 +
detail-1/detail-2).

module top (in, out, io);
input in;
output out;
inout io;
assign io = in;
assign out = io;

endmodule

Verilog HDL RTL Design Style Checks 309 of 334

Non-tri-state logic is detected on bidirectional bus "io". Connect tri-
states to inout port to set the direction of the port during the scan
shif t.

SCAN_EN

Non-tri-state element drives the bidirectional bus.

Non-tri-state element is driven by the bidirectional bus.

EXAMPLE-2: [1] actual mode of inout port is 'inout';
[2] local driver is a tri-state and 'inout' port drives tri-state;
[3] OUTBUF and INBUF are driven by the same signal (“enb”);
[4] safety condition is not achieved (“enb” drives both INBUF and OUTBUF)=> violation
(message-2).

module top (in1, enb, out, io);
input in,enb;
output out;
inout io;
assign io = enb1 ? 1'bz : in;
assign out = enb1 ? 1'bz : io;

endmodule

310 of 334 Verilog HDL RTL Design Style Checks

Control inputs of tri-states on bidirectional bus "io" are driven
incorrectly. Use a single external port and its inversion for tri-states
control inputs to set the inout port to input or output during the scan
shif t.

3.4 Low-power design

3.4.1 Low-power design using gated clocks

STARC_VLOG 3.4.1.1
RULE NAME

In the design of standard ASICs, gated clocks can be used only in
the top level.

MESSAGE-1
Global clock "{ClkName}" is gated locally. In the design of standard ASICs, the
gated clocks should only be located in the clock generator module at the top
level so as to gate the clocks to each functional block.

PROBLEM
DESCRIPTION

One of the most effective approaches to reduce power dissipation is to use gated clocks or
divided clocks. It means clocks could be stopped when they are not needed.
Following figure illustrates the most common method of clock gating – through the use of a latch
and a gate:

When the CLK is in its low phase, the latch is transparent (propagation of the control input which
actually indicates whether to gate the clock or not). So, if the control input is high, the output of
the latch is high during the low phase (it remains in this state until the next CLK low phase). In
such situation, AND gate is enabled when the posedge CLK arrives.
In the design of standard ASICs, the gated clocks should only be located in the clock generator
module at the top level so as to gate the clocks to each functional block. When gated clocks are
used at local level, there will be many incorrect cells in the clock tree (when the clock tree is
generated by synthesis tool). Thus, fixing clock skew will be more difficult. Moreover, when gated
clocks are used only in the clock generator module, it becomes easier to insert a DFT circuits.

LEVEL RULE

CHECKER
BEHAVIOR

Checker detects each gated clocks in the design:
– violation is issued in case if clock is gated locally (correct case – separate module at top

level);

EXAMPLE-1: [1] sample contains two locally gated submodules => violations;
[2] the figure below illustrates an approach to fix this problem – gated clocks are separated from
another logic and located separately in the clock generator module.

module cmp(CLK, RST, CH_EN1, CH_EN2, ARG_A, ARG_B, RES);
 input ARG_A, ARG_B;
 input CLK, RST, CH_EN1, CH_EN2;
 output [1:0] RES;
 wire wA, wB;

Verilog HDL RTL Design Style Checks 311 of 334

EN_1

EN _2

CLK

Q

QSET

CLR

D

Q

QSET

CLR

D

FUNCTION BLOCK 2

FUNCTION BLOCK 1
CLOCK GENERATOR MODULE

 assign wA = ARG_A & ARG_B;
 assign wB = ARG_A | ARG_B;
 gated_ff GATED_FF_CH_A
 (
 .RST_X(RST),
 .CLK (CLK),
 .DI (wA),
 .EN (CH_EN1),
 .DO (RES[0])
);

 gated_ff GATED_FF_CH_B
 (
 .RST_X(RST),
 .CLK (CLK),
 .DI (wB),
 .EN (CH_EN2),
 .DO (RES[1])
);

endmodule
module gated_ff(DI, RST_X, EN, CLK, DO);
 input DI;
 input RST_X, EN, CLK;
 output DO;
 reg DO;

 reg d_latch;
 wire gated_clk;

 always @(CLK, EN) begin
 if(CLK)
 d_latch = EN;
 end

 assign gated_clk = d_latch & CLK;

 always @(posedge gated_clk or negedge RST_X) begin
 if(!RST_X)
 DO <= 1'b0;
 else
 DO <= DI;
 end

endmodule

312 of 334 Verilog HDL RTL Design Style Checks

Instance "cmp.GATED_FF_CH_A". Global clock "cmp.CLK" is gated
locally. In the design of standard ASICs, the gated clocks should only be
located in the clock generator module at the top level so as to gate the
clocks to each functional block.

Instance "cmp.GATED_FF_CH_B". Global clock "cmp.CLK" is gated
locally. In the design of standard ASICs, the gated clocks should only be
located in the clock generator module at the top level so as to gate the
clocks to each functional block.

LOCALLY GATED
MODULE A

LOCALLY GATED
MODULE B

MODULE A

MODULE B

CLK

CH_EN2

CH_EN1

CLOCK
GENERATOR

MODULE

CLK

CH_EN 1

CH_EN2

3.5 Source codes and design data management

3.5.3 Define necessary information for file headers

STARC_VLOG 3.5.3.3
RULE NAME Standardize file headers

MESSAGE-1
Token "{TokenRegExp}" ({Token}) is not expected according to the grammar
defined by the rule configuration. Possible token(s) to use:
{ExpectedTokenRegExpAndToken}.

MESSAGE-2 Token "{TokenRegExp}" ({Token}) is not expected. End of file header is reached
according to the current grammar defined by the current rule configuration.

MESSAGE-3
Unexpected end of file header. Possible token(s):
{ExpectedTokenRegExpAndToken} according to the grammar defined by the rule
configuration.

MESSAGE-4 File header is missed. It is recommended to add standard header for each file to
improve readability.

MESSAGE-5
[ERROR]

Incorrect grammar description. There is a choice between values “{Values}” and
empty set for nonterminal symbol “{SymbolName}”. Use '[]' to define optional
values.

MESSAGE-6
[ERROR]

Incorrect grammar description. Symbol “{SymbolName}” is not defined as
neither nonterminal symbol nor token.

MESSAGE-7
[ERROR]

Incorrect grammar description. Left recursion is detected in description of
nonterminal symbol “{SymbolName}”. Use '{ }' to define repeated values.

PROBLEM
DESCRIPTION

Necessary information should be defined within the file header. Define the file, and include when
the file was modified by whom and for what purpose it was created. Following this
recommendation makes it possible to improve readability when the description is reused by
designers other than the original designer.
In the example, the file header, file names, circuit type, function, modifier, originator, and revision
are all defined. Any other sections should also be added when necessary. Readability decreases
if the file headers’ formats differ among designers, so all designers should follow standardized
header format.
Example:
/*---
-- --
-- FILE_NAME : my_circuit.v --
-- --
-- TYPE : circuit --
-- --
-- FUNCTION : data decoding with Gray code --
-- --
-- AUTHOR : First_Name Last_Name --
-- --
-- EDIT : Bob --
-- --
-- REV_DATE : 1.0 01/02/08 --
-- 1.1 02/02/08 --
-- --
-- Some detail text about the function of the --
-- circuit, data flow, data transformation, etc. --
-- --
---*/

LEVEL RECOMMENDATION 1

Verilog HDL RTL Design Style Checks 313 of 334

RULE NAME Standardize file headers
CHECKER
BEHAVIOR

Checker detect file header(*):
– if file header does not satisfy standard defined in the configuration file or grammar

description does not specified properly(**) => violation:
(*) file header is a continuous sequence of commented lines until first line with code is
reached. Considering of empty lines is tune by CONSIDER_END_LINE parameter (“0”
means not to consider, “1” – to consider; default value is “0”).
(**)Creation of new grammar should satisfy next rules:
– there should be the main nonterminal symbol with the rule of its representation;
– each nonterminal symbol (from the rule for main nonterminal symbol) must have

grammatical rules showing how it is made out of simpler constructs;
– the simplest nonterminal symbol should be represented with terminal one (token), if

some of the nonterminal symbol could not be represented with token, then the
grammar is not full, and it is impossible to provide correct analysis.

– if token unexpected by the rule is specified => message-1;
– if file header ends according to the grammar but comments continue =>

message-2;
– if comments end but file header continues according to the grammar =>

message-3;
– if there is no file header => message-4;
– if choice between some object and empty set is specified within configuration =>

message-5;
– if some symbol is not defined within configuration => message-6;
– if left recursion is used within configuration => message-7.

Note-1: BNF points (according to the standard ISO/IEC 14977 : 1996(E)):
– [– start-option-symbol end-option-symbol –]
– { – start-repeat-symbol end-repeat-symbol – }
– | – definition-separator-symbol
– # – instead of second-quote-symbol “ to define terminal symbols.

Note-2: in should be mentioned that definition separator symbol (|) can not be used inside of
option ([]) or repeat ({ }) constructs.
Note-3: grammar is defined by with two parameters GRAMMAR and TOKENS. Default values of
them are following:
GRAMMAR = [

“content ::= LINE content_item LINE”,

“content_item ::= empty_line
file_name_string [{additional_string}]
empty_line
author_string [{additional_string}]
empty_line
type_string [{additional_string}]
empty_line
function_string [{additional_string}]
empty_line
edit_string [{additional_string}]
empty_line
rev_date_string [{additional_string}]
empty_line [{additional_string} empty_line]”,

“file_name_string ::= MARGIN FILE_NAME SEPARATION_CHAR STRING MARGIN”,

“author_string ::= MARGIN AUTHOR SEPARATION_CHAR STRING MARGIN”,

314 of 334 Verilog HDL RTL Design Style Checks

RULE NAME Standardize file headers
“type_string ::= MARGIN TYPE_NAME SEPARATION_CHAR STRING MARGIN”,

“function_string ::= MARGIN FUNCTION_NAME SEPARATION_CHAR STRING MARGIN”,

“edit_string ::= MARGIN EDIT_NAME SEPARATION_CHAR STRING MARGIN”,

“rev_date_string ::= MARGIN REV_DATE_NAME SEPARATION_CHAR STRING MARGIN”,

“empty_line ::= MARGIN MARGIN”,

“additional_string::= MARGIN STRING MARGIN”

]

TOKENS = [
“FILE_NAME ::= #FILE NAME#”,
“AUTHOR ::= #AUTHOR#”,
“TYPE_NAME ::= #TYPE#”,
“FUNCTION_NAME ::= #FUNCTION#”,
“EDIT_NAME ::= #EDIT#”,
“REV_DATE_NAME ::= #REV, DATE#”,
“INE ::= #-{3,}#”,
“SEPARATION_CHAR ::= #:#”,
“MARGIN ::= #--#”

]
Note-4: IDENTIFIER, END_LINE – is a hard coded tokens, they cannot be changed by user.
END_LINE – is processed if parameter CONSIDER_END_LINE is active (is equal to '1').

EXAMPLE-1: [1] default configuration is used;
[2] field FUNCTION is missed from header => violation (message-1).

/*---
-- --
-- FILE_NAME : clk_gen.v --
-- --
-- AUTHOR : Robert --
-- --
-- TYPE : CIRCUIT --
-- --
-- EDIT : Bob --
-- --
-- REV_DATE : 1.0 04/01/08 --
-- 1.1 02/02/08 --
-- --
-- clock frequency is defined by parameter --
-- CLK_PERIOD --
-- --
---*/

module clk_gen (...);
...

endmodule

EXAMPLE-2: [1] default configuration is used;
[2] file header ends according to the grammar but commented lines continue => violation
(message-2);
Note: empty line between multi-line and one-line comments is skipped.

/*---
-- --
-- FILE_NAME : clk_gen.v --
-- --

Verilog HDL RTL Design Style Checks 315 of 334

Unexpected token: "EDIT" (EDIT_NAME). Expected token: "FUNCTION"
(FUNCTION_NAME). Standardize the format of f ile header to increase
the readability of code.

-- AUTHOR : Robert --
-- --
-- TYPE : CIRCUIT --
-- --
-- FUNCTION : generate clock signal --
-- --
-- EDIT : Bob --
-- --
-- REV_DATE : 1.0 04/01/08 --
-- 1.1 02/02/08 --
-- --
-- clock frequency is defined by parameter --
-- CLK_PERIOD --
-- --
---*/

//top module declaration
module clk_gen (...);

...
endmodule

EXAMPLE-3: [1] custom grammar description is used;
[2] header satisfies requirements described with grammar => no violation.

#configuration
RULE_CFG STARC_VLOG.3.5.3.3
{

GRAMMAR = [
 "content ::= LINE content_item LINE",
 "content_item ::= cvs_tag LINE

model_name_block LINE
owner_block LINE
file_description",

 "cvs_tag ::= FIRST_SYMBOL ID_TAG string",
 "model_name_block ::= {FIRST_SYMBOL string}",
 "owner_block ::= {empty_line} {FIRST_SYMBOL string [{empty_line}]}

 copyright_item {empty_line}",
 "copyright_item ::= LINE FIRST_SYMBOL [{LINE}] COPYRIGHT company [LINE]

 FIRST_SYMBOL [LINE] ALL RIGHTS RESERVED [LINE]
 [FIRST_SYMBOL LINE] {empty_line}",

 "company ::= string",
 "file_description ::= filename_str empty_line description_str empty_line",
 "filename_str ::= FIRST_SYMBOL FILE_NAME string",
 "description_str ::= FIRST_SYMBOL DESCRIPTION string",
 "string ::= {IDENTIFIER}",
 "empty_line ::= FIRST_SYMBOL"

]

TOKENS = [
 "ID_TAG ::= #\$Id:#",
 "FILE_NAME ::= #Filename:#",
 "DESCRIPTION ::= #Description:#",
 "COPYRIGHT ::= #Copyright#",
 "ALL ::= #All#",
 "RIGHTS ::= #rights#",
 "RESERVED ::= #reserved.#",
 "LINE ::= #*{2,}#",
 "FIRST_SYMBOL ::= #*#"
]

}

316 of 334 Verilog HDL RTL Design Style Checks

Unexpected token: "any_ASCII_characters" (IDENTIFIER). End of f ile
header according to the current grammar is reached. Standardize the
format of f ile header to increase the readability of code.

/**
 * $Id: multiplier.v,v 1.2 2008/01/01 00:00:00 bob Exp $
 **
 * Multiplier - Verilog Behavioural Model
 **
 *
 *
 * This File is owned and controlled by My_vendor and must be used solely
 * for design, simulation, implementation and creation of design files
 * limited to My_vendor devices or technologies.
 *
 *
 * *******************************
 * ** Copyright My_Vendor, Inc. **
 * ** All rights reserved. **
 * *******************************
 *
 *

 * Filename: multiplier.v
 *
 * Description: The Verilog behavioural model for the multiplier
 *

 */

`timescale 1ns/10ps
...

EXAMPLE-4: [1] custom grammar description is used;
[2] token TOKEN_B is used within grammar description, but it is not defined => error (message-6).

#configuration
RULE_CFG STARC_VLOG.3.5.3.3
{

GRAMMAR = [
 “content ::= LINE content_item LINE”,
 “content_item ::= TOKEN_A TOKEN_B TOKEN_C”
]

TOKENS = [
“TOKEN_A ::= #string_A#”,
“TOKEN_C ::= #string_B#”,
“LINE ::= #*{2,}#”,

]
}

Verilog HDL RTL Design Style Checks 317 of 334

Incorrect grammar description. Symbol “TOKEN_B” is not def ined as
neither nonterminal symbol nor token.

3.5.6 Use comments often

STARC_VLOG 3.5.6.3
RULE NAME

Describe the I/O ports and declarations in one line and always add
comments

MESSAGE-1

Detected {ObjectType}s declaration that are not followed by a comment. It is
recommended to add comments in the same line per understanding and
readability of the code.
DETAIL-1 {DirectionType} port “{PortName}” does not have corresponding comment in

the same line.
DETAIL-2 {SignalVariable} “{ObjectName}” does not have corresponding comment in

the same line.

MESSAGE-2

Some objects are declared in the single line. It is recommended to write the
declaration of each port in a separate line and follow it with the corresponding
comments in the same line per each declaration in order to improve
understanding and readability of the code.

DETAIL {ObjectTypeObjectNameList} are declared in the single line.

MESSAGE-3

Detected comment(s) written before declaration of {ObjectType}. It is
recommended to declare {ObjectType} followed with comments.

DETAIL Comment is written before declaration. Write each declaration in single line
followed by the comment.

PROBLEM
DESCRIPTION

The frequent use of comments improves readability of the source code. As a result, it becomes
easier to understand and maintain the source code, and this in turn leads to improved reuse
efficiency. Recommended volume of comments is generally should to be about 20 to 40% of the
source code.
Comments indicating the purpose and functionality should be added to operators and statements
in the description. Moreover, the I/O port or internal register declarations should be described in
one line for each signal or register, and comments should always be added.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker detects port declarations in each module:
– if the comment is written before declaration => violation (message-3);
– else if ports are declared in separate lines and some declaration is not followed by a

comments => violation (message -1 + detail-1);
– else if ports are declared within the same line => violation (message-2 + detail).

Checker detects signal/variable declarations of any type within module scope:
– if the comment is written before declaration => violation (message-3);
– else if signals are declared in separate lines and some declaration is not followed by a

comments => violation (message -1 + detail-2);
– else if signals are declared within the same line => violation (message-2 + detail).

Note-1: an empty comment is treated as it is no comment at all
Note-2: port declarations are verified both within module declaration and module item.

318 of 334 Verilog HDL RTL Design Style Checks

EXAMPLE-1: [1] all of the ports are declared within the same line => violation (message-2 + detail).

module dff (input clk, rst, d, output q); // module interface declaration

...

endmodule

Verilog HDL RTL Design Style Checks 319 of 334

Some objects are declared in the single line. It is recommended to
w rite the declaration of each port in a separate line and follow it w ith
the corresponding comments in the same line per each declaration in
order to improve understanding and readability of the code.

EXAMPLE-2: [1] two ports are declared in separate lines and both declaration are not followed by a comments
=> violation (message -1 + detail-1);
[2] four ports are declared within the same line => violation (message-2 + detail).

module (ctrl, d1, d2, q1, q2);
input [1:0] ctrl;
input d1,d2;
output q1,q2; reg tmp;
...

endmodule

EXAMPLE-3: [1] comment is written before nets declaration => violation (message-3);
[2] generate loop variable is declared followed by a comment => no violation.

module top (...);

/*dffs outputs */ net dff1_out, dff2_out;
genvar i; //generate loop variable
...

endmodule

320 of 334 Verilog HDL RTL Design Style Checks

Port(s) “d1, d2, d3, d4” are declared in the single line.

Some objects are declared in the single line. It is recommended to
w rite the declaration of each port in a separate line and follow it w ith
the corresponding comments in the same line per each declaration in
order to improve understanding and readability of the code.

Detected ports declaration that are not follow ed by a comment. It is
recommended to add comments in the same line per understanding
and readability of the code.

Input port “ctrl” does have corresponding comment in the same line.

Detected comment(s) w ritten before declaration of port(s). It is
recommended to declare port(s) follow ed w ith comments.

Comment is w ritten before declaration. Write each declaration in
single line follow ed by the comment.

Port(s) “q1, q2”, variable(s) “tmp” are declared in the single line.

STARC_VLOG 3.5.6.4
RULE NAME Provide the comments in English as much as possible

MESSAGE Detected character in a comment that has ASCII code out of range [0:127]. It is
recommended to provide comments using characters from basic ASCII table.

PROBLEM
DESCRIPTION

It is preferable to provide comments in English, if possible, because design resources may be
used internationally and English is the most popular language in the area of high technologies.
Also, there are many EDA tools that do not support proper operation by source codes using
languages other than English. However, if it is hard to provide comments in English, sometimes
the comments become inadequate and the number of comments decreases. It is acceptable to
write the comments in a language other than English if writing the comments in English is too
difficult. Always be sure that detailed comments are added to the greatest extent possible. If
possible, it is ideal to create tools that automatically delete comments in languages other than
English before using any EDA tool.

LEVEL RECOMMENDATION 2

CHECKER
BEHAVIOR

Checker scans source file for comments:
– if there is at least one character that has ASCII code out of range [0:127] in current

comment => violation

EXAMPLE-1: [1] two commented strings have characters which ASCII code out of range [0:127] => two violation

Verilog HDL RTL Design Style Checks 321 of 334

Detected character a comment that has ASCII code out of range
[0:127]. It is recommended to provide comments using characters
from basic ASCII table.

Detected character a comment that has ASCII code out of range
[0:127]. It is recommended to provide comments using characters
from basic ASCII table.

STARC_VLOG 3.5.6.7
RULE NAME Comments should start with “//”
MESSAGE It is recommended to use single line comments starting with “//”.

PROBLEM
DESCRIPTION

The frequent use of comments improves readability of the source code. As a result, it becomes
easier to understand and maintain the source code, and this in turn leads to improved reuse
efficiency. Recommended volume of comments is generally should to be about 20 to 40% of the
source code.
At a minimum, insert comments in all I/O signal and register signal names names (see 3.5.6.3). It
is best to comment each meaningful line in 'always' blocks, 'assign' statements, sub-programs
and other constructs, adding a comment just next to the line. In all the cases comment should be
applied as one line comment and start with “//”.
always @(posedge CLK or posedge RST) //FSM clear after reset or next state

begin
if (RST == 1'b1) //reset condition, global reset

STATE <= FIRST_STATE; //initial of FSM variable
else //FSM state moves at CLK positive edge

STATE <= NEXT_STATE; //moves next state
end

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker scans source file for comments:
– if multi-line comment detected =>violation

exception: multi-line comments within file header are skipped (see 3.5.3.3)

EXAMPLE-1: [1] multi-line comment is used => violation

always @ (C or D)
/*latch inference*/
if (C)

Q = D;

322 of 334 Verilog HDL RTL Design Style Checks

It is recommended to use single line comments starting w ith “//”.

Chapter 4 Verification
Techniques

4.1 Test bench description

4.1.2 Use basic test vector descriptions

STARC_VLOG 4.1.2.3
RULE NAME The number of lines in fork-join should be a maximum of 5

MESSAGE
'Fork-join' block has 'fork-join' contents to a maximum of
{MAX_LINES_RECOMMENDED} concurrent branches to avoid simulation speed
slowdown.

PROBLEM
DESCRIPTION

'fork-join' statement is a syntax that supports simultaneous execution. When 'fork-join' is used
effectively, improved flexibility in description is possible and this is convenient. However, 'fork-
join' also slows down simulation speed. Moreover, when there are too many assign statements in
'fork-join' the readability declines. So it is recommended to limit the fork-join contents to a
maximum of five execution lines.

LEVEL RECOMMENDATION 3

CHECKER
BEHAVIOR

Checker counts number of concurrent branches in fork-join blocks:
– if count of execution lines is greater than MAX_LINES_RECOMMENDED => violation

Note-1: concurrent line is top-level (executed in parallel) statement in fork-join block:
 fork
 if(...) begin // execution line #1
 ...
 end
 a = b; c = d; // execution lines #2, #3
 join
Note-2: value of MAX_LINES_RECOMMENDED parameter is defined in configuration file (5 is
default value).

EXAMPLE-1: [1] 'fork-join' block contains 4 execution lines which is greater than MAX_LINES_RECOMMENDED
parameter value => violation.
Note: MAX_LINES_RECOMMENDED parameter value is set to 3 to simplify the example.

always @(...) begin
fork

case (sel) //execution line #1
 1'b0 : ...;
 1'b1 : ...;
 default : ...;

endcase
fork //execution line #2

...
join
data1 <= ~tmp1; data2 <= ctrl ? res1 : res2; //execution lines #3 and #4

join
end

Verilog HDL RTL Design Style Checks 323 of 334

'Fork-join' block has 'fork-join' contents to a maximum of 3 concurrent
branches to avoid simulation speed slow dow n.

4.1.4 Avoid assigning from multiple initial constructs (different
from VHDL)

STARC_VLOG 4.1.4.1
RULE NAME

Avoid assigning from multiple initial constructs to the same signal
(Verilog only)

MESSAGE-1

Signal "{ObjectName}" is assigned in {AlwaysCount} 'always' constructs. Avoid
assignments to the same signal from multiple 'always' or 'initial' constructs.

DETAIL-1 {AssignmentsCount} assignment(s) to signal "{ObjectName}" in this
description block

MESSAGE-2

Signal "{ObjectName}" is assigned in {InitialCount} 'initial' constructs. Avoid
assignments to the same signal from multiple 'always' or 'initial' constructs.

DETAIL-1 {AssignmentsCount} assignment(s) to signal "{ObjectName}" in this
description block

PROBLEM
DESCRIPTION

It is unsafe to assign value to the same signal from multiple 'initial' constructs at the same time –
there is no guarantee what value will be assigned (it depends on simulator being used). Consider
following description:
initial begin
 SIM = 1;
 #(CLK_PERIOD * 512) SIM = 2;
end
initial begin
 #(CLK_PERIOD * 10);
 #(LOAD_DELAY);
 for(i = 0; i < STIMULUS_COUNT; i = i + 1)
 #(A2B_DOMAIN) SIM = SIM * 2;
 end
 #(CLK_PERIOD * 77);
end
It is not clear in what order values are assigned to "SIM". Moreover, racing problem tends to
occur (there could be multiple assignment simultaneously). Avoid assignments to the same signal
either from multiple 'initial' or 'always' constructs.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker collects all signals being assigned in the current module:
– it is allowed to assign signal in the single 'initial' or 'always' construct (task statements

are taken into account)
– if signal is assigned from multiple 'initial' or 'always' constructs => violation (main

message (1, 2) – on signal declaration, detail (1) – on each construct that assigns the
signal):
– message-1: if signal is assigned in multiple 'always' constructs
– message-2: if signal is assigned in multiple 'initial' constructs

EXAMPLE-1: [1] signal "Y" is assigned from the multiple 'always' and 'initial' constructs => violation (message-3)

reg Y;
...
always @(A or B or C) begin

Y = A & B & C;
#(PATH_DELAY);
Y = A | B | C;

end
always begin

324 of 334 Verilog HDL RTL Design Style Checks

Signal "Y" is assigned in 2 'alw ays' constructs. Avoid assignments to
the same signal f rom multiple 'alw ays' or 'initial' constructs.

2 assignment(s) to signal "Y" in this description block

#(CLK_PERIOD * 10);
Y = A | B;

end

Verilog HDL RTL Design Style Checks 325 of 334

1 assignment(s) to signal "Y" in this description block

STARC_VLOG 4.1.4.2
RULE NAME Define one signal using one description block (Verilog only)

MESSAGE

Description block assigns {SigCount} signals. Defining one signal inside one
description block makes the pattern definition easier to comprehend.

DETAIL Signal “{SignalName}” is assigned in this description block

PROBLEM
DESCRIPTION

Defining multiple signals inside one description block tends to unsafe (racing problem tends to
occur) and hard to comprehend descriptions. It is recommended to define one signal per one
description block.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans 'initial' and 'always' description blocks:
– if more than one signal are assigned into one block => violation

Note-1: different bits of the same vector are treated as the same signal
Note-2: if there is any task enabled => checker verifies this tasks assigns same signal as
description block

EXAMPLE-1: [1] two different signals assigned in one 'always' description block => violation

always @(A or B or C) begin
Y1 = A || B || C;
Y2 = A && B && C;

end

EXAMPLE-2: [1] different bits of the same signal are assigned in one 'initial' description block => no violation

initial begin
Y[0] = A || B || C;
Y[1] = A && B && C;

end

EXAMPLE-3: [1] two different signals assigned in one 'initial' description block => violation;
[2] note, that one of signals is assigned as output of the 'task' statement;

task sum(input a, input b, output res);
res = a + b;

endtask
initial begin

Y1 = A + B - C;
#(CLK_PERIOD * 5);
sum(A, B, Y2);

end

326 of 334 Verilog HDL RTL Design Style Checks

Description block assigns 2 signals. Def ining one signal inside one
description block makes the pattern def inition easier to comprehend.

Signal “Y1” is assigned in this description block

Signal “Y2” is assigned in this description block

Description block assigns 2 signals. Def ining one signal inside one
description block makes the pattern def inition easier to comprehend.

Signal “Y1” is assigned in this description block

Signal “Y2” is assigned in this description block

4.1.8 Descriptions where results do not differ due to simulators
(different from VHDL)

STARC_VLOG 4.1.8.1
RULE NAME Shift the observation point of a signal from an assignment point

MESSAGE

Edge-sensitive 'always' process contains assignment(s) that is not delayed from
the referenced signal observation point. It is recommended to delay
assignment(s) of observed signals from the moment of their observation.

DETAIL Blocking assignment without intra-assignment delay is detected.

PROBLEM
DESCRIPTION

When signal is shared between the different blocks (simultaneously updated in first one and read
in another one), result becomes simulator-dependent, thus undefined.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker detects edge-sensitive 'always' processes (each signal in the sensitivity list has an edge
specifier) and scans them for blocking assignment without intra-assignment delay

– if RHS of such assignment contains signal => violation
Note: other assignments after first violation is detected are not scanned

EXAMPLE-1: [1] edge-sensitive 'always' process is described;
[2] blocking assignment without intra-assignment delay is specified => violation;
Note: no violation for the second blocking assignment without intra-assignment delay

always @(posedge CLK or posedge RESET) begin

 Q1 = DATA;
 #10;
 Q2 = RESET;

end

EXAMPLE-2: [1] edge-sensitive 'always' process is described;
[2] non-blocking assignment without intra-assignment delay is specified => no violation

always @(posedge CLK) begin

 Q3 <= DATA;

end

Verilog HDL RTL Design Style Checks 327 of 334

Edge-sensitive 'alw ays' process contains assignment(s) that is not
delayed from the referenced signal observation point. It is
recommended to delay assignment(s) of observed signals f rom the
moment of their observation.

Blocking assignment w ithout intra-assignment delay is detected.

STARC_VLOG 4.1.8.4
RULE NAME

Avoid using edges other than clock signals to the greatest extent
possible

MESSAGE

Module "{ModuleName}" contains {DogCount} event control statement(s) using
{IllegalSigCount} signal(s) other than clock(s): {ListOfClocks}. Avoid using edges
other than clock signals to the greatest extent possible.

DETAIL Signal "{SignalName}" is not a clock

PROBLEM
DESCRIPTION

Making testbench dependent on the same clock(s) as UUT reduces the risk of race conditions,
especially if delays and clock phases are properly ordered. However, Verilog does not define
process execution order and simultaneous events on clock and non-clock signals can cause
unexpected results. Either some clock-dependent process inside a UUT will react first, or some
non-clock-dependent process in a testbench. Thus, wrong value could be written to or read from
UUT.
It is better to synchronize whole model (testbench + UUT) by the same clock(s) to avoid such
race conditions.

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker collects list of clock signals (per module) by extracting clocks from:
– flip-flop inferences
– ports/regs/nets with synthesis attribute “(* synthesis, clock *)” specified

Note: since FF inferences are rare in testbench code, clock signal has to be specified somehow.
Checker provides support for (* synthesis, clock *) custom non-standard attribute to specify clock
signal in testbench. Setting this attribute in Verilog description is up to designer.
Checker then verifies all event control statements:

– any signal in these controls should be a clock signal
– in case of violation, main message is displayed for module and one detail per each non-

clock signal

EXAMPLE-1: [1] all event control expressions are synchronized by clock "SYNC" => no violation;
[2] note: clock "SYNC" is extracted from flip-flop inference;
[3] note: either 'SYNC' or 'negedge/posedge SYNC' are treated as correct clocks;

always @(posedge SYNC)
RES <= #DELAY DATA;

end
initial begin

TMP = 0;
...
@(SYNC)

TMP = #DELAY TMP + 1;
...
@(negedge SYNC)

TMP = #DELAY TMP + REG_SUM;
end

EXAMPLE-2: [1] all event control expressions are synchronized by clock "SYNC" => no violation;
[2] note: clock "SYNC" is extracted from port declared with attribute;

(* synthesis, clock *) input SYNC;
always @(SYNC)

RES <= #DELAY DATA;
end
initial begin

TMP = 0;

328 of 334 Verilog HDL RTL Design Style Checks

...
@(posedge SYNC)

TMP = #DELAY TMP + 1;
...
@(negedge SYNC)

TMP = #DELAY TMP + REG_SUM;
end

EXAMPLE-3: [1] module has two clocks: "CLK" and "SYNC" (extracted from the attributes);
[2] 3 event control statements using 2 non-clock signals => violation;

module tb;
(* synthesis, clock *) wire SYNC;
(* synthesis, clock *) wire CLK;
always @(posedge CLK) begin

#DELAY;
COUNT = #DELAY COUNT + 1;
...

end
always @(negedge SYNC or posedge RESET or posedge CLK) begin

...
end
initial begin

#DELAY;
@(posedge START);
...
@(RESET or START or CLK);
...

end
endmodule

EXAMPLE-4: [1] module has a clock: "CLK" (extracted from the attribute);
[2] enabled task contains 2 event control statements using 2 non-clock signals => violation;

module tb;
(* synthesis, clock *) wire CLK;
 wire SYNC_1;
 wire SYNC_2;
task wait_for_edges;
begin

@(posedge SYNC_1);
@(negedge SYNC_2);

end
endtask
always @(posedge CLK) begin

...
wait_for_edges;
...

end
endmodule

Verilog HDL RTL Design Style Checks 329 of 334

Module "tb" contains3 event control statement(s) using 2 signal(s)
other than clock(s): CLK, SYNC. Avoid using edges other than clock
signals to the greatest extent possible.

Signal "RESET" is not a clock

Signal "START" is not a clock

Signal "START" is not a clock

Module "tb" contains2 event control statement(s) using 2 signal(s)
other than clock(s): CLK. Avoid using edges other than clock signals
to the greatest extent possible.

Signal "SYNC_1" is not a clock

Signal "SYNC_2" is not a clock

4.2 Task description

4.2.3 Pay due attention to task I/O arguments (different from
VHDL)

STARC_VLOG 4.2.3.2
RULE NAME

Do not define output arguments when generating test vectors using
task

MESSAGE

Task "{TaskName}" has both timing control(s) and assignment(s) to output(s).
Such description has risk that necessary values will not be delivered to outputs,
because task modifies outputs after the end of its execution only. It is not
recommended to define output task arguments when generating test vectors
using tasks.

DETAIL The first of {AssignmentsCount} assignment(s) to output argument
"{OutputName}".

PROBLEM
DESCRIPTION

Verilog language defines following rules for 'task' statements: input values are transferred to the
task at start of its execution; output values are returned only after the task is complete. This
property of output values makes impossible to generate simulation-time-dependent test vectors
on task outputs:
 task GenSequence;
 input [1:0] ADDR;
 input [7:0] DATA;
 output [1:0] A;
 output [7:0] DIN;
 begin
 @(posedge CLK);
 A = ADDR; //
 DIN = DATA[7:4]; //
 @(posedge CLK);
 A = ADDR; //
 DIN = DATA[3:0]; //
 end
 endtask
Example above describes the task that generates simulation-time-dependent test vectors (there
are two timing control statement). Changes that will never appear on the task outputs, are
marked with red "// -" comment, whereas changes that will appear on the tasks outputs are
marked with green "// -" comment.
Consecutively, in order to avoid the problem described above, task should assigned global
signals only or does not contains timing control statement.
Hint: to generate simulation-time-dependent test vectors with task, do not define outputs, but
assign globally defined signals instead:
 reg [1:0] A;
 reg [7:0] DIN;
 ...
 task GenSequence;
 input [1:0] ADDR;
 input [7:0] DATA;
 begin
 @(posedge CLK);
 A = ADDR; //
 DIN = DATA[7:4]; //
 @(posedge CLK);
 A = ADDR; //
 DIN = DATA[3:0]; //
 end
 endtask

330 of 334 Verilog HDL RTL Design Style Checks

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans 'task' statements that meet following criteria:
– at least one output is defined
– at least one timing control statement is specified.

Each assigned task output is rule violation.
Note-1: intra-assignment delay is not timing control in this context.
Note-2: when output argument is vector, assignment to its bit / slice is the same that assignment
to whole vector.

EXAMPLE-1: [1] task "GenSequence" has two event control statements and two outputs are defined;
[2] output "A" is assigned once => violation;
[3] output "DIN" is assigned two times (part select is used) => violation

task GenSequence ;
output [1:0] A;
output [7:0] DIN;

begin
@(posedge CLK);
A = ADDR;
DIN = DATA[7:4];
@(posedge CLK);
DIN = DATA[3:0];

end
endtask

EXAMPLE-2: [1] task "GenSequence_1" has two event control statements, delay and two outputs are defined;
[2] output "A" is assigned 2 times => violation;
[3] output "DIN" is assigned once => violation

integer TMP;
...
task GenSequence_1 ;

output [1:0] A;
output [7:0] DIN;

begin
A = ADDR + 1;
@(posedge CLK);
TMP = 0;
#DLY_TRAN;
TMP = 1;
@(posedge CLK);
A = ADDR + 2;
DIN = DATA[3:0];

end
endtask

Verilog HDL RTL Design Style Checks 331 of 334

Task "GenSequence" has both timing control(s) and assignment(s) to
output(s). Such description has risk that necessary values w ill not be
delivered to outputs, because task modif ies outputs af ter the end of
its execution only. It is not recommended to def ine output task
arguments w hen generating test vectors using tasks.

The f irst of 1 assignment(s) to output argument "A".

The f irst of 2 assignment(s) to output argument "DIN".

Task "GenSequence_1" has both timing control(s) and assignment(s)
to output(s). Such description has risk that necessary values w ill not
be delivered to outputs, because task modif ies outputs af ter the end
of its execution only. It is not recommended to def ine output task
arguments w hen generating test vectors using tasks.

The f irst of 2 assignment(s) to output argument "A".

The f irst of 1 assignment(s) to output argument "DIN".

STARC_VLOG 4.2.3.4
RULE NAME

Do not define as input arguments when regularly observing the
signals inside a task

MESSAGE

Task "{TaskName}" has both timing control(s) and reference(s) to input
argument(s). Such description has risk that necessary values will not be read
from inputs, because inputs are passed to the task only when task is called. It is
not recommended to define input task arguments when regularly observing them
inside a task.

DETAIL The first of {ReferencesCount} reference(s) to input argument
"{InputName}".

PROBLEM
DESCRIPTION

Verilog language defines following rules for 'task' statements: input values are transferred to the
task at start of its execution only; output values are returned after the task is complete. This
property of input values makes impossible to perform simulation-time-dependent observation of
task inputs:
 task GenSequence;
 input [1:0] ADDR;
 input [7:0] DATA;
 begin
 A = ADDR; //
 DIN = DATA; //
 ...
 @(posedge CLK);
 A = ADDR; //
 DIN = DATA; //
 ...
 end
 endtask
Example above describes the task that observes simulation-time-dependent signals (there are
two timing control statement). Green "// +" comment marks input references that got an actual
value of input signal, whereas red "// -" comment marks input references that got an obsolete
value of input signal. So, it is not always possible to observe the signal values using the task
input signal.
Consecutively, in order to avoid the problem described above, task should referenced global
signals only or does not contains timing control statement.
Hint: to observe simulation-time-dependent signals in a task, do not define inputs but observe
globally defined signals instead:
 wire [1:0] ADDR;
 wire [7:0] DATA;
 ...
 task GenSequence;
 begin
 A = ADDR; //
 DIN = DATA; //
 ...
 @(posedge CLK);
 A = ADDR; //
 DIN = DATA; //
 ...
 end
 endtask

LEVEL RECOMMENDATION 1

CHECKER
BEHAVIOR

Checker scans 'task' statements that meet following criteria:
– at least one input is defined
– at least one timing control statement is specified.

Each referenced task input is a rule violation.
Note-1: intra-assignment delay is not timing control in this context.
Note-2: when input argument is vector, reference to its bit / slice is the same that whole vector is

332 of 334 Verilog HDL RTL Design Style Checks

referenced.

EXAMPLE-1: [1] task "GenSequence_1" has two event control statements and two inputs referenced;
[2] input "ADDR" is referenced once => violation;
[3] input "DATA" is referenced two times => violation

task GenSequence_1 ;
input [1:0] ADDR;
input [7:0] DATA;

begin
@(posedge CLK);
A = ADDR;
DIN = DATA;
@(posedge CLK);
DIN = DATA;

end
endtask

EXAMPLE-2: [1] task "GenSequence_2" has a delay statement and two inputs referenced;
[2] input "ADDR" is referenced two times => violation;
[3] input "DATA" is referenced once => violation

integer TMP;
...
task GenSequence_2 ;

input [1:0] ADDR;
input [7:0] DATA;

begin
A = ADDR;
DIN = DATA[3:0];
TMP = 0;
#DLY_TRAN;
TMP = 1;
A = ADDR;

end
endtask

Verilog HDL RTL Design Style Checks 333 of 334

Task "GenSequence_1" has both timing (s) and reference(s) to input
argument(s). Such description has risk that necessary values w ill not
be read from inputs, because inputs are passed to the task only w hen
task is called. It is not recommended to def ine input task arguments
w hen regularly observing them inside a task.

The f irst of 1 reference(s) to input argument "ADDR".

The f irst of 2 reference(s) to input argument "DATA".

Task "GenSequence_2" has both timing (s) and reference(s) to input
argument(s). Such description has risk that necessary values w ill not
be read from inputs, because inputs are passed to the task only w hen
task is called. It is not recommended to def ine input task arguments
w hen regularly observing them inside a task.

The f irst of 2 reference(s) to input argument "ADDR".

The f irst of 1 reference(s) to input argument "DATA".

N O T E S

Aldec, Inc.
Corporate Headquarters
2260 Corporate Circle
Henderson, NV 89074

Tel: +1 702 990 4400
Toll Free: +1 800 487 8743
Fax: +1 702 990 4414

Riviera-PROTM is a trademark of Aldec, Inc.
All other trademarks or registered trademarks are property of their respective owners.

	Chapter 1 Basic Design Constraints
	1.1.1 Basic naming conventions
	STARC_VLOG 1.1.1.1
	STARC_VLOG 1.1.1.2
	STARC_VLOG 1.1.1.3
	STARC_VLOG 1.1.1.4
	STARC_VLOG 1.1.1.5
	STARC_VLOG 1.1.1.6
	STARC_VLOG 1.1.1.7
	STARC_VLOG 1.1.1.8
	STARC_VLOG 1.1.1.9
	STARC_VLOG 1.1.1.10

	1.1.2 Naming conventions of circuit and port names should be considered by the hierarchy
	STARC_VLOG 1.1.2.1
	STARC_VLOG 1.1.2.2

	1.1.3 Give meaningful names for signals
	STARC_VLOG 1.1.3.1

	1.1.4 Naming conventions of include file, parameter and `define (different from VHDL)
	STARC_VLOG 1.1.4.1
	STARC_VLOG 1.1.4.2
	STARC_VLOG 1.1.4.3
	STARC_VLOG 1.1.4.4
	STARC_VLOG 1.1.4.5

	1.1.5 Naming should consider clock systems
	STARC_VLOG 1.1.5.1

	1.2.1 Clock synchronous design
	STARC_VLOG 1.2.1.1
	STARC_VLOG 1.2.1.2
	STARC_VLOG 1.2.1.3

	1.3.1 Use asynchronous reset for initial reset
	STARC_VLOG 1.3.1.2
	STARC_VLOG 1.3.1.3
	STARC_VLOG 1.3.1.5
	STARC_VLOG 1.3.1.6

	1.3.2 Reset line hazards
	STARC_VLOG 1.3.2.1
	STARC_VLOG 1.3.2.2

	1.4.3 Gated clocks should be used with special care
	STARC_VLOG 1.4.3.2
	STARC_VLOG 1.4.3.4
	STARC_VLOG 1.4.3.5
	STARC_VLOG 1.4.3.6

	1.5.1 Consider metastable issues in signals between asynchronous clocks
	STARC_VLOG 1.5.1.1
	STARC_VLOG 1.5.1.2
	STARC_VLOG 1.5.1.3

	1.7.1 Considerations for using both ASICs and FPGAs
	STARC_VLOG 1.7.1.1

	Chapter 2 RTL Description Techniques
	2.1.1 Use always constructs and function statements correctly
	STARC_VLOG 2.1.1.2

	2.1.2 Define combinational circuits using the function statement
	STARC_VLOG 2.1.2.1
	STARC_VLOG 2.1.2.2
	STARC_VLOG 2.1.2.3
	STARC_VLOG 2.1.2.4
	STARC_VLOG 2.1.2.5

	2.1.3 In a function statement , be careful to check arguments and bit width
	STARC_VLOG 2.1.3.1
	STARC_VLOG 2.1.3.2
	STARC_VLOG 2.1.3.4
	STARC_VLOG 2.1.3.5

	2.1.4 Instructions for equation level descriptions (different from VHDL)	
	STARC_VLOG 2.1.4.5
	STARC_VLOG 2.1.4.6

	2.1.5 Use a conditional operator ((A)?B:C) only once (Verilog only)
	STARC_VLOG 2.1.5.1
	STARC_VLOG 2.1.5.3

	2.1.6 Specifying the range of an array
	STARC_VLOG 2.1.6.1
	STARC_VLOG 2.1.6.2
	STARC_VLOG 2.1.6.3
	STARC_VLOG 2.1.6.4
	STARC_VLOG 2.1.6.5

	2.2.1 Avoid the risk of generating latches
	STARC_VLOG 2.2.1.1

	2.2.2 Define every input signal in an always construct in the sensitivity list
	STARC_VLOG 2.2.2.1
	STARC_VLOG 2.2.2.2
	STARC_VLOG 2.2.2.3

	2.2.3 Initial value description in always constructs (Verilog only)
	STARC_VLOG 2.2.3.1
	STARC_VLOG 2.2.3.2
	STARC_VLOG 2.2.3.3

	2.3.1 Unify the description style of FF inferences
	STARC_VLOG 2.3.1.1
	STARC_VLOG 2.3.1.3
	STARC_VLOG 2.3.1.4
	STARC_VLOG 2.3.1.5
	STARC_VLOG 2.3.1.6
	STARC_VLOG 2.3.1.7

	2.3.2 Circuits will vary with non-blocking and blocking assignment statements (Verilog only)
	STARC_VLOG 2.3.2.2

	2.3.3 Do not mix descriptions that have different edges
	STARC_VLOG 2.3.3.1
	STARC_VLOG 2.3.3.2

	2.3.4 Do not specify an initial FF value in a description (different from VHDL)
	STARC_VLOG 2.3.4.1
	STARC_VLOG 2.3.4.2

	2.3.5 Do not use descriptions which generate FFs having fixed input values
	STARC_VLOG 2.3.5.1

	2.3.6 Do not mix FF inferences with and without asynchronous resets
	STARC_VLOG 2.3.6.1
	STARC_VLOG 2.3.6.2

	2.4.1 Clearly distinguish a latch inference from a combinational circuit
	STARC_VLOG 2.4.1.1
	STARC_VLOG 2.4.1.2
	STARC_VLOG 2.4.1.3
	STARC_VLOG 2.4.1.4
	STARC_VLOG 2.4.1.5

	2.5.1 Create modules for tri-state buffers
	STARC_VLOG 2.5.1.1
	STARC_VLOG 2.5.1.2
	STARC_VLOG 2.5.1.4
	STARC_VLOG 2.5.1.5
	STARC_VLOG 2.5.1.6
	STARC_VLOG 2.5.1.7
	STARC_VLOG 2.5.1.8
	STARC_VLOG 2.5.1.9

	2.5.2 Consider high-impedance propagation in tri-state buses
	STARC_VLOG 2.5.2.1

	2.6.1 Describe taking the circuit structure into account
	STARC_VLOG 2.6.1.2
	STARC_VLOG 2.6.1.3
	STARC_VLOG 2.6.1.4

	2.6.2 Avoid defining multiple output signals in a single always construct
	STARC_VLOG 2.6.2.1
	STARC_VLOG 2.6.2.2

	2.7.1 if statements create prioritized circuits
	STARC_VLOG 2.7.1.3

	2.7.2 Reduce conditional expressions of if statements with the same contents
	STARC_VLOG 2.7.2.1
	STARC_VLOG 2.7.2.2
	STARC_VLOG 2.7.2.3

	2.7.3 Decrease the number of if statement nests
	STARC_VLOG 2.7.3.1
	STARC_VLOG 2.7.3.4

	2.7.4 Always surround multiple statements using block statements (begin-end) (Verilog only)
	STARC_VLOG 2.7.4.3

	2.8.1 case statements facilitate decoder/encoder description
	STARC_VLOG 2.8.1.3
	STARC_VLOG 2.8.1.4
	STARC_VLOG 2.8.1.5
	STARC_VLOG 2.8.1.6

	2.8.2 Divide using if statement, etc. to avoid creating large tables
	STARC_VLOG 2.8.2.1
	STARC_VLOG 2.8.2.2

	2.8.3 Use default clauses
	STARC_VLOG 2.8.3.1
	STARC_VLOG 2.8.3.4
	STARC_VLOG 2.8.3.5
	STARC_VLOG 2.8.3.6
	STARC_VLOG 2.8.3.7

	2.8.4 Do not use complex casex statements (Verilog only)
	STARC_VLOG 2.8.4.3
	STARC_VLOG 2.8.4.4

	2.8.5 Description relying on parallel_case is prohibited (Verilog only)
	STARC_VLOG 2.8.5.1
	STARC_VLOG 2.8.5.2
	STARC_VLOG 2.8.5.3
	STARC_VLOG 2.8.5.4

	2.8.6 Beware of nesting in which if statements and case statements coexist (2.8.4 in the VHDL version)
	STARC_VLOG 2.8.6.1

	2.9.1 Do not use for statements other than for simple repeating statements
	STARC_VLOG 2.9.1.1
	STARC_VLOG 2.9.1.2

	2.9.2 Limiting loop-variable operation in for statements
	STARC_VLOG 2.9.2.1
	STARC_VLOG 2.9.2.2
	STARC_VLOG 2.9.2.3
	STARC_VLOG 2.9.2.4

	2.10.1 Order of operators and assignment of 'x'
	STARC_VLOG 2.10.1.4
	STARC_VLOG 2.10.1.5
	STARC_VLOG 2.10.1.6

	2.10.3 Match the bit width of the left side and the right side (Verilog only)
	STARC_VLOG 2.10.3.1
	STARC_VLOG 2.10.3.2
	STARC_VLOG 2.10.3.3
	STARC_VLOG 2.10.3.4
	STARC_VLOG 2.10.3.5
	STARC_VLOG 2.10.3.6
	STARC_VLOG 2.10.3.7

	2.10.4 Take note of the different data types between the left and right sides (Verilog only)
	STARC_VLOG 2.10.4.1
	STARC_VLOG 2.10.4.3
	STARC_VLOG 2.10.4.5
	STARC_VLOG 2.10.4.6

	2.10.5 Do not share resources in speed critical circuits
	STARC_VLOG 2.10.5.3
	STARC_VLOG 2.10.5.5

	2.10.6 Notes on arithmetic operations
	STARC_VLOG 2.10.6.1
	STARC_VLOG 2.10.6.2
	STARC_VLOG 2.10.6.3
	STARC_VLOG 2.10.6.4
	STARC_VLOG 2.10.6.6.v1
	STARC_VLOG 2.10.6.6

	2.10.7 Take share items out of conditional branches
	STARC_VLOG 2.10.7.1

	2.10.8 Division descriptions
	STARC_VLOG 2.10.8.1
	STARC_VLOG 2.10.8.2
	STARC_VLOG 2.10.8.3
	STARC_VLOG 2.10.8.4

	Chapter 3 RTL Design Methodology
	3.1.3 Standardize description order of module I/O ports
	STARC_VLOG 3.1.3.2

	3.1.4 Consider RTL description readability
	STARC_VLOG 3.1.4.4
	STARC_VLOG 3.1.4.5

	3.2.2 Define global parameters in separate files (different from VHDL)
	STARC_VLOG 3.2.2.4
	STARC_VLOG 3.2.2.5

	3.2.3 Connect ports by name for component instantiations
	STARC_VLOG 3.2.3.1
	STARC_VLOG 3.2.3.2

	3.2.4 Use # (value) when overwriting parameters from an upper level (different from VHDL)
	STARC_VLOG 3.2.4.3

	3.3.1 Clocks and resets for DFT
	STARC_VLOG 3.3.1.1
	STARC_VLOG 3.3.1.2
	STARC_VLOG 3.3.1.3
	STARC_VLOG 3.3.1.4

	3.3.2 Dealing with hardmacros and asynchronous circuits
	STARC_VLOG 3.3.2.2
	STARC_VLOG 3.3.2.3

	3.3.3 Constraints on the use of flip-flops
	STARC_VLOG 3.3.3.1
	STARC_VLOG 3.3.3.2

	3.3.5 DFT in clock lines
	STARC_VLOG 3.3.5.2
	STARC_VLOG 3.3.5.3
	STARC_VLOG 3.3.5.4
	STARC_VLOG 3.3.5.5
	STARC_VLOG 3.3.5.6
	STARC_VLOG 3.3.5.7

	3.3.6 DFT in reset lines
	STARC_VLOG 3.3.6.1
	STARC_VLOG 3.3.6.2
	STARC_VLOG 3.3.6.3
	STARC_VLOG 3.3.6.4

	3.3.7 Handling of different clocks
	STARC_VLOG 3.3.7.2

	3.3.8 DFT for tri-state circuits
	STARC_VLOG 3.3.8.1
	STARC_VLOG 3.3.8.2
	STARC_VLOG 3.3.8.3

	3.4.1 Low-power design using gated clocks
	STARC_VLOG 3.4.1.1

	3.5.3 Define necessary information for file headers
	STARC_VLOG 3.5.3.3

	3.5.6 Use comments often
	STARC_VLOG 3.5.6.3
	STARC_VLOG 3.5.6.4
	STARC_VLOG 3.5.6.7

	Chapter 4 Verification Techniques
	4.1.2 Use basic test vector descriptions
	STARC_VLOG 4.1.2.3

	4.1.4 Avoid assigning from multiple initial constructs (different from VHDL)
	STARC_VLOG 4.1.4.1
	STARC_VLOG 4.1.4.2

	4.1.8 Descriptions where results do not differ due to simulators (different from VHDL)
	STARC_VLOG 4.1.8.1
	STARC_VLOG 4.1.8.4

	4.2.3 Pay due attention to task I/O arguments (different from VHDL)
	STARC_VLOG 4.2.3.2
	STARC_VLOG 4.2.3.4

