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Preface

The area of VLSI design has gained enormous popularity over the past few decades 
due to the rapid advancements in integrated circuit (IC) design and technology. 
The ability to produce miniaturized circuits with high performance in terms of 
power and speed is the reason for its popularity. Low production cost and advanced 
techniques for reduced time-to-market adds to the ever-growing demand for ICs. 
The two major IC design flows – FPGA and ASIC have their own advantages and 
disadvantages. FPGAs are widely used for quick prototyping and also implementation 
of various multimedia applications by compromising power, area and speed 
performance with substantially reduced time-to-market and cost factors. Using 
ASIC technology, it has been possible to develop high performance multi-core 
processors. Verification and testing of such complex designs is a critical and 
challenging task to ensure the quality of the resulting circuits. The advances in EDA 
software and CAD tools alleviate the effort necessary to carry out the cumbersome 
design and verification process of ICs.

As we understand that the subject of VLSI design is vast, it is quite complex to 
find and comprehend the complete details about the design process. This book VLSI 
Design: A practical guide for FPGA and ASIC implementations provides an insight 
into practical design of VLSI circuits with minimal theoretical arguments. While 
this publication is not a complete text book on VLSI design, it is intended to serve 
as supplementary or reference material on practical design and implementation of 
VLSI circuits. The content of the book is focused for novice VLSI designers and 
other enthusiasts who would like to understand the VLSI practical design flows. The 
designs are demonstrated using industry standard software from MATLAB®, Mentor 
Graphics®, Xilinx®, Synopsys® and Cadence®.

I encourage you to send any errata or feedback for improving the quality of this 
book to vikramac@ieee.org.
Thank you,

Adelaide, Australia  Vikram Arkalgud Chandrasetty
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The demand for electronic and multimedia devices is increasing exponentially. This 
demand in-turn has propelled the need for memory chips to process instructions, 
store data and other multimedia content. Some of the most common memory 
structures used for faster data and program memory access are Static (SRAM) and 
Dynamic (DRAM) memory.

In this chapter, a 6 Transistor CMOS based SRAM memory chip of 1 KB capacity 
is designed and simulated. The complete chip along with SRAM cells array and circuit 
elements is designed using SPICE program. Simulations for the design are done using 
LTspice. Schematic and Layout for a single SRAM cell is also designed using Cadence 
Schematic and Virtuoso tool respectively. An estimation of parasitic resistance 
and capacitance values for the layout drawn for the SRAM cell is extracted Vituoso.

The prerequisite to approach this chapter would be an adequate background of 
CMOS digital circuits, Spice programming and basic knowledge of IC layout design.

1.1  Design of CMOS SRAM Cell and Array

1.1.1  Plan of SRAM Cell and Array

Static Random Access Memory (SRAM) is a type of semiconductor memory. The 
word static indicates that the memory retains its contents as long as power remains 
applied. ‘Random Access’ means that the location in the memory can be written to 
or read from in any order regardless of the memory location that was last accessed 
[1]. The SRAM cell has the capability to store one bit data as long as the power is 
continuously applied. Hence SRAM’s are volatile memory devices. An array of 
eight SRAM cells can store 1 byte of data. Considering this unit of 8-bit SRAM 
array, a number of these structures can be replicated to build a large memory block. 
In this chapter, an SRAM memory of 1 KB is designed using 6 Transistor (6T) 
CMOS SRAM cell.

Chapter 1
CMOS Digital Design
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1.1.2  Design of 6 Transistor SRAM Cell

An SRAM cell can store one bit data on four transistors that form two cross-coupled 
inverters [1]. This storage cell has two stable states which are used to denote 0 and 1. 
Two additional access transistors serve to control the access to storage cell during 
read and write operations. Thus, a combination of 6 transistors is used to store one 
bit data.

Access to the cell is enabled by the word line (WL) which controls the two 
access transistors. They are used to transfer data for both read and write operations 
by connecting the bit lines (BL and BL bar). Although the two bit lines are not 
necessary, both the signal and its inverse are typically provided since it improves 
noise margins. The symmetric structure of SRAM’s allows for differential signaling, 
which makes small voltage swings more easily detectable. A schematic of 6T 
CMOS SRAM cell is shown in Fig. 1.1.

1.1.3  Simulations of SRAM Cell

An SRAM cell has three different states of operation: standby when the circuit is 
idle, reading when the data has been requested and writing when updating the 
contents. Each states are discussed with respect to the Fig. 1.1 as follows [2]:

Standby:
If the word line is not asserted, the access transistors M5 and M6 disconnect the cell 
from bit lines. The two cross coupled inverters formed by M1–M4 will continue to 
reinforce each other as long as they are disconnected from the outside world.

Reading:
Assuming that the content of memory is 1, when the word line is asserted, the state 
stored in the cell is transferred to the bit line which is then read on the data output 
port. If the memory content was a 0, the opposite would happen.

Fig. 1.1 6T CMOS SRAM cell
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Writing:
The start of a write cycle begins by applying the value to be written to the bit lines. 
The word line is asserted to store the input data on to the cell. The bit line input 
drivers are designed to be much stronger than the relatively weak transistors in the 
cell itself, so that they can easily override the previous state of the cross-coupled 
inverters. Careful sizing of the transistors in the SRAM cell is needed to ensure 
proper operation.

The spice simulation for SRAM cell Read operation is shown in Fig. 1.2.
The spice simulation for SRAM cell Write operation is shown in Fig. 1.3.

1.1.4  Layout of SRAM Cell

The layout for SRAM cell is drawn using Cadence Virtuoso for 180 nm technology. 
The layout is successfully completed with Design Rule Checks (DRC) and Layout 
versus Schematic (LVS) evaluation as well. A snapshot of the layout of SRAM cell 
is shown in Fig. 1.4. The resistance and capacitance parasitic parameters are 
extracted from the layout using Cadence Virtuoso.

Fig. 1.2 Spice simulations for SRAM cell read operation

Fig. 1.3 Spice simulations for SRAM cell write operation
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1.1.5  Design of SRAM Array

For this design, 1 KB SRAM chip with 8-bit data I/O is required. Since one bit data 
can be stored in a single SRAM cell, an array of 8 cells should satisfy the require-
ment. Hence 1,024 such arrays are required to build 1 KB memory chip. A block 
diagram representing an 8-bit memory SRAM array is shown in Fig. 1.5.

1.1.6  Simulation of SRAM Array

An SRAM array (8-bit) is selected or activated by the row and column decoder 
based on the input address. The spice simulation for SRAM array section is shown 
in Fig. 1.6.

Fig. 1.4 Layout of 6T SRAM cell

Fig. 1.5 Block diagram of 8-bit SRAM array
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1.2  Design of SRAM Chip Circuit Elements

1.2.1  SRAM Chip Circuit Elements

The 6T CMOS SRAM chip requires various circuit elements to execute the desired 
memory operations. In this section, a complete SRAM chip circuitry elements such 
as, address decoder, sense amplifier, pre-charge circuit and data I/O control logic is 
designed using LTspice. The detailed design, schematic and simulation of these 
circuit elements are discussed in the following sections:

1.2.1.1  Address Decoder

The Address Decoder is nothing but a simple logic circuitry used to select and 
enable the memory cells in the SRAM array corresponding to the input address 
value. In this section, 1 KB SRAM is required to be designed. Hence it requires 10 
address bits to cover entire 1 KB memory area. A 5:32 NAND based decoder is 
designed as row decoder to access 32 bytes of memory area and another 5:32 
decoder is used as column decoder in order to access 32 such 32 bytes of memory 
areas. There by achieving the desired access to 1 KB memory. The schematic of 
NAND based 5:32 decoder is shown in Fig. 1.7.

The 5:32 NAND based decoder is designed and simulated using LTspice [3]. The 
simulation results for 5:32 NAND based decoder are shown in Fig. 1.8.

1.2.1.2  Sense Amplifier

A Sense amplifier is an essential circuit in memory chips to speed up the Read 
operation. Due to large arrays of SRAM cells, the resulting signal in the event of 
Read operation has a much lower voltage swing [4]. To compensate for that swing, 
a sense amplifier is used to amplify voltage coming off Bit Line and ~Bit Line. The 
voltage coming out of sense amplifier has a full swing voltage of (0–1.8 V). Sense 
Amplifier also helps reduce the delay times and power dissipation in the overall 

Fig. 1.6 Spice simulations for section of SRAM array
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SRAM chip. There are many versions of sense amplifier used in memory chips. The 
one that is designed in this chapter is a Cross-coupled Sense Amplifier. The sche-
matic of the same is shown in Fig. 1.9.

The Cross-coupled/Feedback Sense amplifier is designed and simulated using 
LTspice. The LTspice simulations for the same are shown in Fig. 1.10.

Fig. 1.7 Schematic of 
NAND based 5:32 row/
column decoder

Fig. 1.8 Spice simulations of 5:32 NAND based row/column decoder
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1.2.1.3  Pre-Charge Circuit

Safe read and write operations require a modification of the memory array and tim-
ing sequence based on a pre-charge circuit [5]. The schematic of a pre-charge circuit 
is shown in Fig. 1.11. The usual voltage of pre-charge is VDD/2. Before reading or 

Fig. 1.9 Schematic of 
cross-coupled sense amplifier

Fig. 1.10 Spice simulations of cross-coupled sense amplifier

Fig. 1.11 Schematic of a 
pre-charge circuit
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writing to the memory, the bit lines are tied to VDD/2 using appropriate pass gates. 
When reading, the BL and ~BL diverge from VDD/2 and reach the “1” or “0” levels 
after a short time. As the SRAM cells are based on active devices, the memories 
usually provide the fastest read and write access times. A simple pre-charge circuit 
consists of a NMOS or PMOS. The drain is connected to VDD/2 and the source to 
the bit line. The pre-charging on bit lines is done whenever a Reset is triggered. The 
Read cycle using pre-charge circuit is shown in Fig. 1.12 [5].

1.2.1.4  Data I/O Control Logic

The Data Input/Output control logic block is responsible for latching Input data to 
the SRAM memory cells and also latching the data that needs to be read on the 
output data ports from the specified address in the SRAM.

The Input data control block is basically a data routing block. Data from the 
input pins is passed into the block and then transferred to the memory cell array via 
the buffer circuit and a pass transistor. The pass transistor controls the flow of data 
into the memory cell array.

The Output data control block is a simple controlled buffer circuit. A tri-state 
inverter is used to control the flow of data to the Data Out pins on the SRAM chip. 
When Read is enabled, the tri-state transistors are turned off and prevent data from 
entering in to the SRAM chip to write. The data is accessed at the specified address 
on SRAM and latched on the data output pins via Sense amplifier. The I/O control 
logic block is shown in Fig. 1.13.

1.2.2  Design of Complete SRAM Chip

An SRAM chip with 1 KB memory can be built using 32 blocks of 32 bytes array. 
The design of circuit elements required to support the operation of SRAM chip is 

Fig. 1.12 Read cycle using pre-charge circuit
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discussed in Sect. 1.2.1. Using these memory cell arrays and circuit elements, a 
complete 1 KB CMOS based SRAM chip can be designed. In this section, 6T 
CMOS 1 KB SRAM chip is designed as per the plan shown in Fig. 1.14.

Fig. 1.13 Block diagram of I/O control logic block for 1 KB SRAM chip

Fig. 1.14 Complete plan of 1 KB SRAM chip
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The approximate chip area required for the designed 1 KB CMOS based SRAM 
chip including circuitry elements can be calculated as follows:

No. of MOSFET used in the design (Approx.) = 56,000
Area of a single MOSFET [NMOS/PMOS – average] (Approx.)  = 20 m²
Total area = 56,000 × 20 m²  = 1,120,000 m²
Estimated chip area for the designed 1 KB SRAM chip  = 1.12 mm²

1.2.3  Simulations of Complete SRAM Chip

The complete 1 KB SRAM chip is designed and simulated using LTspice [6]. The 
LTspice simulations for the same are shown in Fig. 1.15.

1.2.4  Delay Extraction for SRAM Chip Write/Read Operation

The Write delay and Read access times are extracted for the designed SRAM chip 
from the simulations.

The Write delay time is measured when Write is enabled until when the data 
appears on the data bit lines. From the LTspice simulations shown in Fig. 1.16, it 
can be inferred that the Write delay time is 0.24 ns.

The Read Access time is measured from when Read is enabled until when the 
data appears on the data output lines. From the LTspice simulations shown in 
Fig. 1.17, it can be inferred that the Read Access time is 0.16 ns.

1.2.5  Re-Design of SRAM Chip for Low Power Consumption

The power consumption is very important factor that needs to be considered while 
designing a chip. It is evident that the SRAM chip is operational whenever the 

Fig. 1.15 Spice simulations for complete SRAM chip operation
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word-line is asserted for read/write operation. The current passes through the cell 
during read/write operation as long as the word-line is asserted. Hence the power 
consumption in the chip is directly proportional to the time during which the word-
line is asserted.

Based on the above hypothesis, certain measures can be taken by implementing 
appropriate logic to optimize the power consumption. One of the approaches to the 
solution for the above mentioned problem is to incorporate clock based assertion of 
word-line. The word-line may be asserted only for a short and optimized duration 
for which the write or read operation can be performed completely. Hence the power 
consumption can be reduced to a certain extent.

The pre-charge voltage that is applied on the bit lines also can be optimized to 
minimize the power consumption. The duration for which the charge applied on the 
bit lines may be optimized so that it is just sufficient enough for the sense amplifiers 
to sense the voltage levels at the shortest time.

Various other measures may be taken based on the floor plan of the transistor, 
layout, dimensions of transistors, and other factors etc. to optimize power consump-
tion. Additional circuitry also may be incorporated to obtain an optimized and lowest 
power consuming SRAM chips.

Fig. 1.16 Spice simulation of SRAM chip to measure write delay time

Fig. 1.17 Spice simulation of SRAM chip to measure read access time
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In wired or wireless communication systems, the information that needs to be 
transmitted is not only required to reach the destination but it should be error free 
and should make efficient use of the channel bandwidth available. Various DSP 
based encoding/decoding algorithms, data compression and noise filtering tech-
niques have been developed to achieve effective and efficient data transmission 
with the help of FPGAs for hardware implementation. FPGA based implementa-
tions provide the flexibility of re-programming and quick delivery of the product to 
the market.

This chapter demonstrates the design of a simple DS-SS system including the 
basic building blocks such as, PN sequence generator, BPSK modulator/demodulator, 
BOOTH multiplier, Low Pass Filter and convolutional coding. The system is 
designed using Verilog HDL, simulation and functional verification of the design 
is performed using ModelSim® XE III 6.0d, and synthesis using Xilinx® ISE. The 
design is implemented and tested on Xilinx® Spartan 2E FPGA.

This chapter also demonstrates some of the algorithms and techniques used to 
accomplish data integrity and channel bandwidth efficiency in a communication 
system such as, Low Pass FIR filter using efficient Distributed Arithmetic (DA) 
architecture, Discrete Cosine Transform (DCT) using Scaled DCT architecture and 
Convolution coding and Viterbi decoding techniques. The Low Pass-Finite Impulse 
Response (LP-FIR) filter coefficients are calculated using MatLab FDA tool based 
on the given specification of the filter. The systems are designed using Verilog HDL, 
simulation and functional verification of the design is done using ModelSim® XE II 
6.0d and synthesis using Xilinx® ISE. The designs are implemented on Xilinx® 
Spartan 2E FPGA.

The prerequisites for approaching this chapter would be an adequate background 
of basic digital communication system.

Chapter 2
FPGA Application Design
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2.1  Design of Direct Sequence-Spread Spectrum System

Direct Sequence-Spread Spectrum (DS-SS) is a transmission technique in which a 
pseudo-noise code, independent of the information data is employed as a modula-
tion waveform to “spread” the signal energy over a bandwidth much greater than the 
signal information bandwidth. At the receiver the signal is de-spread using a syn-
chronized replica of the pseudo-noise code. The spreading sequence in DS-SS is 
often called as PN sequence.

In this section, the spread signal is modulated using Binary Phase Shift keying 
(BPSK) modulation technique in the transmitter and on the receiver side the modu-
lated signal is recovered using BPSK demodulation technique.

The basic building blocks of DS-SS system are shown in Fig. 2.1 [1].

2.1.1  PN Sequence Generator

2.1.1.1  Overview of PN Sequence Generator

A Pseudo-random Noise (PN) sequence/code is a binary sequence that exhibits 
randomness properties but has a finite length and is therefore deterministic. PN 
generators are heart of every spread spectrum systems. Each symbol or bit in the 
sequence is called as Chip [2].

PN generators are based on Linear Feedback Shift Registers (LFSR). The contents 
of the registers are shifted right by one position at each clock cycle. The feedback 
from predetermined registers or taps to the left most register are XNOR-ed 
together.

LFSRs have several variables:

The number of stages in the shift registers•	
The number of taps in the feedback path•	
The position of each tap in the shift registers stage•	
The initial starting condition of the shift register often referred to as the “FILL” •	
state

Fig. 2.1 Basic building blocks of DS-SS system
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The longer the number of stages of shift registers in the PN generator, longer the 
duration of the PN sequence before it repeats. For a shift register of fixed length N, 
the number and duration of the sequences that it can generate are determined by the 
number and position of taps used to generate the parity feedback bit.

A maximum length sequence (L) for a shift register of length N is referred to as 
m-sequence and is defined as [3]:

 = −NL 2 1,  

E.g. an eight stage LFSR will have a set of m-sequences of length 255.
Some of the most popular types of PN Sequence generators are:

m-sequence codes•	
Barker codes•	
Gold codes•	

2.1.1.2  Design of PN Sequence Generator

Design

Specifications:

Clock frequency for PN sequence generator system, F•	
pn

 = 100 KHz.
LFSR length, N = 4.•	
LFSRs are of D-FF type.•	
X-NOR gate is used for linear parity feedback to the system.•	
FPGA board clock frequency, F•	

b
 = 50 MHz (assumption)

Procedure:

A clock frequency of 100 KHz for PN Sequence generator is designed using a •	
divider of 500 clock cycles of F

b
.

Clock divider = F
b
/F

pn
 = 50 MHz/100 KHz = 500

Maximum length sequence, N = 4 corresponds to 4 D-FF to realize LFSRs of the •	
PN generator system.

Since N = 4, the maximum sequence length L = 24 − 1 = 15.
Hence the sequence repeats every 15 clock cycles.

The Chip rate for the PN sequence generator system is calculated as follows:•	
Chip period, T

c
 = 1/100 KHz = 10 ms

Chip rate, F
c
 = 100 KHz

The bit period for the input data signal is calculated as follows:•	
Data bit period, T

d
 = Max. sequence Length (L) × Chip period (Tc)

For the system, T
d
 = 15 × 10 ms

Hence, the input data bit period for the system is, T
d
 ³ 150 ms.
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Block Diagram

The block diagram of a PN sequence generator for the design specification is shown 
in Fig. 2.2.

2.1.1.3  Properties of PN Sequence

Merits of using PN sequence [4]:

 1. Balance property: In each period of the sequence the number of binary ones differ 
from the number of binary zeros by at most one digit (when LFSR stage length 
is odd)

 = + + + − − + − = +Pn 1 1 1 1 1 1 1 1  

 2. Run-length Distribution: A run is a sequence of a single type of binary digits. 
Among the sequence of ones and zeros in each period it is desirable that one-half 
the runs of each type are of length 1, about one-fourth are of length 2, one-eight 
are of length 3 and so on.

 3. Autocorrelation: The origin of the name pseudo-noise is that the digital signal 
has an autocorrelation function which is very similar to that of a white noise 
signal. For PN sequences the autocorrelation has a large peaked maximum 
for perfect synchronization of two identical sequences (like white noise). The 
synchronization of receiver is based on this property.

 4. Cross-correlation: Cross-correlation is the measure of agreement between two 
different codes pn

1
 and pn

2
. When Cross-correlation is zero the codes are called 

Orthogonal. In CDMA multiple users occupy the same RF bandwidth and 
transmit simultaneously. When the user codes are orthogonal, there is no 

Fig. 2.2 Block diagram of a PN sequence generator
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interference between the users after dispreading and the privacy of the com-
munication of each user is protected.

Demerits of using PN sequence [4]:

 1. Synchronization: The most sensitive aspect of DS-SS system is the synchroniza-
tion of the transmitter’s PN sequence to that of the receiver where an offset of 
even one PN chip can result in noise rather than a de-spread symbol sequence.

 2. Increased Bandwidth: As the data signal is spread using PN codes at higher fre-
quency, there is an increase in bandwidth used in the process.

 3. Complexity: There is an increased complexity and computational load both in the 
receiver and the transmitter to spread/de-spread the signal.

2.1.1.4  Simulation Results for PN Sequence Generator

The PN sequence generator is designed using Verilog HDL. Functional verification 
and simulation is performed using ModelSim.

The simulation results for PN sequence generator is shown in Fig. 2.3.

2.1.2  Transmitter for Direct Sequence-Spread Spectrum System

2.1.2.1  Overview of DS-SS Transmitter System

In DS-SS transmitter, the input data bits are spread by PN sequence generator. The 
spreading is actually done by multiplying the data bits with that of the PN sequence 
code generated. The frequency of PN sequence is higher than the Data signal. After 
spreading, the Data signal is modulated and transmitted. There are several schemes 
available for modulation, viz. BPSK, QPSK, M-QAM etc. The most widely used 
modulation scheme is the BPSK. In this design, BPSK modulation is used to modu-
late and transmit the spread signal.

The basic building blocks of a simple DS-SS transmitter system are shown in 
Fig. 2.4.

Fig. 2.3 Simulation results for PN sequence generator
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2.1.2.2  Design of DS-SS Transmitter

Multiplier Design

Specifications:

PN sequence Chip rate, Tc = 10 •	 ms.
Data signal Bit rate, Tb •	 ³ 150 ms.

Let the data signal be m(t) and PN sequence p(t). The two signals are multiplied 
and the multiplied output is the spread signal. Truth table for the multiplier s(t) = m(t). 
p(t) is shown in Table 2.1.

From the truth table, it can be inferred that an XNOR gate can act as a multiplier 
to spread the data signal with the PN signal. Hence the block diagram for the multi-
plier is shown in Fig. 2.5.

Oscillator Design

Specification:

PN sequence Chip rate, Tc = 10 •	 ms.
Carrier frequency, Fc •	 ³ 5 times Chip rate.

Design:

The oscillator carrier sampling rate is designed•	
Let the Sampling rate of sine wave be Fs = 25 MHz.

Table 2.1 Truth table for the multiplier

m(t) p(t) s(t)

0 0 1
0 1 0
1 0 0
1 1 1

Fig. 2.4 Block diagram of a DS-SS transmitter system
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Number of samples for a full cycle of sine wave is designed•	
Let the number of samples for a full cycle be N = 36.

The oscillator is designed to generate sine wave of carrier frequency Fc•	
( ) ( )≥ = =CFc 5 1 / T 5 1 /10 s 500KHz.µ

For the above design with sampling rate 25 MHz and 36 samples per cycle, the 
carrier frequency, Fc = 25 MHz/36 » 700 KHz. The oscillator is implemented using 
a Look-Up-Table (LUT) of nine samples and the logic is design in order to oscillate 
generating a sine wave.

The block diagram of the oscillator as per the design is shown in Fig. 2.6.

BPSK Modulator Design

Specification:

Spread binary sequence is the input to the system•	
Oscillator carrier sine wave of frequency, Fc •	 » 700 KHz

Fig. 2.5 Block diagram of a data and PN sequence multiplier

Fig. 2.6 Block diagram of an oscillator
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Design:

The BPSK modulator is designed using the spread binary sequence as the input to 
the system and the carrier frequency F

c
. The logic is implemented in such a way that 

the phase of the sine wave is shifted by 180° whenever the input binary bit 
changes.

The block diagram of the BPSK Modulator as per the design is shown in 
Fig. 2.7.

2.1.2.3  Simulation Results for DS-SS Transmitter

The DS-SS transmitter is designed using Verilog HDL. Functional verification and 
simulation is done using ModelSim. The simulation results for DS-SS transmitter is 
shown in Fig. 2.8.

2.1.3  Receiver for Direct Sequence-Spread Spectrum System

2.1.3.1  Overview of DS-SS Receiver System

In DS-SS receiver, the input to the system is the BPSK modulated signal. This signal 
would have been affected by noise and other interference in the communication 
channel. The DS-SS receiver should be designed carefully to reproduce the data 
signal with least error.

Fig. 2.7 Block diagram of BPSK modulator

Fig. 2.8 Simulation results for DS-SS transmitter system
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The BPSK modulated input signal is multiplied by the locally generated carrier 
wave by the oscillator. The multiplied signal is then passed through the low pass 
filter to get low frequency components only. A decision device is used to approxi-
mate the signal to binary sequence. This binary sequence is the spread sequence of 
the data signal.

The most sensitive part of the DS-SS receiver is the synchronization of the 
locally generated PN sequence and the sequence obtained from the decision device 
[3]. Even a single bit mismatch may lead to noise instead of the data signal. Suitable 
technique is used to achieve synchronization and multiply the local PN sequence 
code with that of the received PN code. The Data signal is obtained after the multi-
plication process.

In this design, since transmitter and receiver uses common clock on the same 
FPGA board, the delay in the receiver is considered and modeled appropriately. 
No specific synchronization technique is used.

The block diagram of a simple DS-SS receiver system is shown in Fig. 2.9.

2.1.3.2  Design of DS-SS Receiver

BPSK Demodulator Design

Specifications:

BPSK modulated signal is the input to the system•	
Oscillator carrier sine wave of frequency, Fc •	 » 700 KHz

The input BPSK signal is multiplied with the carrier sine wave generated from 
the local oscillator. The design and implementation of the signed BOOTH multi-
plier is discussed in the following section.

The multiplied output will have higher frequency components and channel noise 
as well. The high frequency components are eliminated using a suitable Low Pass 
Filter. Design of rectangular window Low-Pass FIR filter is also discussed in the 
following section.

The filtered low frequency component will have distortion in the signal. Hence a 
suitable ‘Decision Device’ is used to smoothen to binary sequence.

Fig. 2.9 Block diagram of a DS-SS receiver system
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BOOTH Multiplier Design

The BPSK modulated input signal is multiplied with the carrier sine wave generated 
using the local oscillator. A signed multiplier is designed using BOOTH multiplier 
algorithm [5].

The BOOTH algorithm used to implement the signed multiplier is as follows:

The multiplicand X and multiplier Y is loaded into a register. Bit adjustment is •	
made with X and Y so that bits length of X and Y are equal. Bit ‘0’ is padded in 
order to achieve it
An accumulator is used to store the result. The length of the accumulator should •	
be twice the length of multiplicand or multiplier. A = 2X or 2Y
The multiplicand X is loaded into the accumulator from LSB•	
A dummy bit of 0 is appended with the accumulator A at the LSB•	
During the multiplication operation, the pair of LSB of the accumulator and the •	
dummy bit is considered to follow further arithmetic operations
Depending on the bit pair obtained in the previous step, following operations are •	
performed:

“00” – Arithmetic shift right of the Accumulator. ○
“01” – Add multiplier Y to the Accumulator A (from MSB of A) and  ○
Arithmetic shift right of Accumulator.
“10” – Subtract multiplier Y from the Accumulator A (from MSB of A) and  ○
Arithmetic shift right of Accumulator.
“11” – Arithmetic shift right of the Accumulator. ○

Shift operations are performed along with dummy bit.
The above operations are continued till MSB of multiplicand X is shifted off •	
from the accumulator A.

In this section, 5-bit signed BOOTH multiplier is designed and implemented.

Low Pass Filter and Decision Device Design

Specifications:

The multiplied output from the BPSK demodulator is the input to this system•	
A Low Pass Filter with cutoff frequency, f = 105 KHz•	
Oscillator carrier wave sampling rate, Fs = 25 MHz•	

Design:

A Rectangular window FIR filter is designed with a cutoff frequency, f = 105 KHz.
Let the length of impulse response for the filter, N = 2.
The desired response of the ideal Low-pass filter is given by,
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 = ≤ ≤jw
dH (e ) 1, 0 f 105 KHz, otherwise 0  

The normalized angular frequency, w
c
 = 2pF/Fs = 8.4p × 10−3

 = ≤ ≤ ≤ ≤jw
d c cH (e ) 1,0 ; 0,ω ω ω ω π  

The filter coefficients are given by,

 
−= × ≠3

dh (n) sin(8.4 10  N) / ( N), where N 0.π π  

Therefore, the filter coefficients are,

 
− −= × = ×3 3h(0) 8.40 10 and h(1) 8.39 10  

In this design, one sample of the signal is stored in a register and then it’s added 
with the next sample. The filtered output samples obtained is then processed by the 
Decision Device. The output of the Decision Device is held High (1) when the out-
put of the filter is non-negative otherwise it’s made Low (0).

2.1.3.3  Noise Models and Synchronization

Noise models [1]:

•	 Multi Path Channels: In wireless channels there exists often multi path propaga-
tion. Since there are more than one path from the transmitter to the receiver. 
Such multi paths may be due to (a) atmospheric reflection or refraction (b) 
Reflections from ground, buildings or other objects. Corrective actions are taken 
to eliminate noise due to multi path channels using appropriate synchronization 
techniques.

•	 Jamming: The goal of the jammer is to disturb the communication of his adver-
sary. Protection against jamming waveforms is provided by purposely making 
the information-beating signal occupy a bandwidth far in excess of the minimum 
bandwidth necessary to transmit it. This has the effect of making the transmitted 
signal assume a noise-like appearance so as to blend into background. The trans-
mitted signal thus enabled to propagate through the channel undetected by 
anyone who may be listening. Spread spectrum is a method of “camouflaging” 
the information bearing signal.

In this design, the noise effect is not modeled as the transmitter and receiver is on 
the same FPGA board without any air interface.

Synchronization techniques [1]:

For proper operation of DS-SS system, the locally generated PN sequence in the 
receiver is synchronized to the PN sequence of the transmitter generator in both its 
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rate and position. A slight misalignment in the sequence results in noise instead of 
data signal.

The process of synchronizing the locally generated PN sequence with the 
received PN sequence is usually accomplished in two steps. The first step called 
acquisition consists of bringing the two spreading signals into coarse alignment 
with one another. Once the received PN sequence has been acquired, the second 
step called tracking takes over and continuously maintains the best possible wave-
form fine alignment by means of a feedback loop. This is essential to achieve high-
est correlation power and thus highest processing gain (SNR) at the receiver.

In this design, synchronization technique is not modeled since the same clock 
and PN sequence for receiver and transmitter is implemented on the same FPGA 
board. A delay of one clock pulse is modeled while multiplying the PN code in the 
receiver to compensate the filtering delay of one sample.

2.1.3.4  Simulation Results for DS-SS Receiver

The DS-SS receiver is designed using Verilog HDL [6]. Functional verification and 
simulation is done using ModelSim.

The simulation results for DS-SS receiver is shown in Fig. 2.10.
The simulation results for DS-SS modem is shown in Fig. 2.11. The synthesis 

report obtained from Xilinx ISE is also shown in Fig. 2.12. The modem can operate 
at a maximum frequency of 64 MHz on Xilinx Spartan 2E FPGA.

Fig. 2.10 Simulation results for DS-SS receiver system

Fig. 2.11 Simulation results for DS-SS modem



292.2 FIR Filter Design

2.2  FIR Filter Design

2.2.1  Concepts of FIR Filter

A discrete-time filter produces a discrete-time output sequence for the discrete-time 
input sequence. In the Finite Impulsive Response (FIR) system, the impulse response 
sequence is of finite duration, i.e. it has a finite number of non-zero terms and hence 
the filter coefficients are also constant. The response of the FIR filter depends only 
on the present and past input samples (a causal system). Thus making the system 
always stable.

The difference equation for length ‘M’ FIR filter is given by [4],

−= × + × − + × − + × − +… × − +0 1 2 3 M 1y(n) b (n) b (n 1) b (n 2) b (n 3) ..b (n M 1)  

×∑M-1

K=0 kY(n)= b (n-K)  

where, [b
k
] is the set of filter coefficients.

Some of the important characteristics of FIR digital filter are as follows [4]:

They can have an exact linear phase•	
They are always stable•	
The design methods are generally linear•	
They can be realized efficiently in hardware•	
The filter start-up transients have finite duration•	
The filter coefficients are constant for the given order of the filter•	

Fig. 2.12 Synthesis report for DS-SS modem
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In this section a Low-Pass FIR filter is designed using MatLab FDA tool for the 
given specifications. Simulated using ModelSim® and implemented using Xilinx® 
2E FPGA.

2.2.2  Low Pass FIR Filter Design

The Low Pass FIR (LPF) specifications given in the assignment are,

F•	
pass

 = 1 KHz, F
stop

 = 1.3 KHz
Pass band ripple = 3 dB, Stop band ripple = 60 dB•	

Assuming,

Sampling frequency of the input signal, F•	
s
 = 3 KHz.

FIR Filter design method: Equiripple with density factor 16.•	

The filter coefficients are obtained using MatLab FDA tool for the given specifica-
tion. The order of the filter, N = 16. The filter coefficients h(n) are as shown in Table 2.2. 
The frequency response for the given filter specification is shown in Fig. 2.13

Table 2.2 Filter coefficients for LP FIR filter with order 16

Transfer function Coefficients Transfer function Coefficients

h(0) 0.0328 h(8) 0.5763
h(1) 0.0816 h(9) −0.0550
h(2) −0.0065 h(10) −0.0694
h(3) −0.0047 h(11) 0.0847
h(4) 0.0847 h(12) −0.0047
h(5) −0.0694 h(13) −0.0065
h(6) −0.0550 h(14) 0.0816
h(7) 0.5763 h(15) 0.0328

Fig. 2.13 Frequency response (Magnitude) for the designed LP FIR filter
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2.2.3  Distributed Arithmetic Architecture

Distributed Arithmetic (DA) is an important technique to implement digital signal 
processing functions in FPGAs. DA provides an approach for multiplier-less imple-
mentation of DSP systems. It is an algorithm that can perform multiplication with 
Look-Up Table (LUT) based schemes. DA specifically targets the sum of products 
(also referred to as the vector dot product) computation that is found in many of the 
important DSP filtering and frequency transforming functions [7].

In this section, LP FIR filter is designed and implemented using DA architecture. 
By observing the filter coefficients in Table 2.2, the second half (8–15) of filter coef-
ficients are mirror image of the first half (0–7). Hence the SOP for second half can 
be accessed from the first half by re-ordering the input bits appropriately. The first 
half (0–7) coefficients can be broken into two parts and SOP can be calculated and 
stored in two different blocks. Hence, two LUTs of length 16 are sufficient to store 
the SOP for the obtained filter coefficients.

The basic functional operation of DA architecture is shown in Fig. 2.14.

2.2.4  Simulation and Synthesis Results

The LP FIR filter is designed using Verilog HDL. The design is simulated using 
ModelSim®. The impulse response for the LP FIR filter system is shown in Fig. 2.15. 
In this design, fixed point representations of real numbers are used. Filtered output 

Fig. 2.14 Block diagram to illustrate the functional operation of DA architecture
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values have lower 8 bits representing decimal part. Hence the exact filtered output 
values from the simulation results are calculated as follows:

 ( )= − − − − − − − − 8Y 8,22, 2, 12,22, 18, 13,148,148, 13, 18,22, 12, 2,22,8 / 2  

= − − − −
− − − −

Y (0.0312,0.8593, 0.0078, 0.0468,0.8593, 0.0703, 0.0507,0.5781,

0.5781, 0.0507, 0.0703,0.8593, 0.0468, 0.0078,0.8593,0.0312)
 

The design is synthesized and implemented on Xilinx® Spartan 2E FPGA. The 
HDL synthesis report is shown in Fig. 2.16.

2.3  Discrete Cosine Transform Algorithms

2.3.1  Concepts of DCT

The Discrete Cosine Transform (DCT) is a technique that converts a spatial 
domain waveform into its constituent frequency components as represented by a set 

Fig. 2.16 HDL synthesis report for LP FIR filter design

Fig. 2.15 Simulation results for impulse response for the LP FIR filter system
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of coefficients. The process of reconstructing a set of spatial domain samples is 
called the Inverse Discrete Cosine Transform (IDCT). The equation for 1-D N-point 
DCT is given by [8],

 

−

=

+
= ≤ ≤ −∑

1

0

(2 1)
( ) ( ) ( )cos[ ] 0 1

2

N

n

n k
X k k x n k N

N

π
α  

where,

 
α α= = ≤ ≤ −1 2

(0) , ( ) 1 1k for k N
N N  

One-Dimensional DCT has most often been used in two-dimensional DCT by 
employing the row-column decomposition which makes it suitable for hardware 
implementation. Typically the DCT coefficients produced have most of the block’s 
energy in a few frequency domain elements and hence quantization and coding is 
applied after DCT to provide lossless as well as lossy actual compression [8].

For data compression of image/video frames, usually a block of data is converted 
from spatial domain samples to another domain (usually frequency domain) which 
offers more compact representation. DCT technique is used in a wide range of signal 
and image processing applications. Some of the most popular applications are [8],

JPEG and JPEG2000 image compression standards•	
MPEG digital video standards•	
H.261 and H.263 video conferencing standards•	
Progressive Image Transmission (PIT) systems: teleconferencing, medical diag-•	
nostic imaging and security services

2.3.2  DCT Architectures on FPGA

The DCT can be implemented on FPGA using various architectures. Some of the 
popular one’s reported in [9] are discussed below:

•	 Distributed Arithmetic: The N-points DCT can be considered as N parallel filters. 
The DCT on the array requires N shift registers for parallel-to-serial conversion, 
N LUT memories and N shift-accumulators. All the N memories receive the 
same address. One shift-register and a shift-accumulator are each mapped to an 
add-shift cluster, while the LUT is mapped to a part of a memory cluster.

Area usage: 8 shift registers + 8 ROMs + 8 Accumulators
•	 Mixed ROM: The 8-point 1D-DCT can be expressed as the product of an 8 × 8 

matrix by an eight element column vector. Through algebraic manipulations, this 
matrix can be reduced to 4 × 4 matrix. Hence, the number of words per ROM is 
reduced to only 16 but some overhead has been incurred in the form of adders to 
calculate the address of the ROMs.

Area usage: 4 adders + 4 subtractions + 8 shift registers + 8 accumulators + 8 
ROMs
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•	 CORDIC Rotator based: The DCT computation is done using CORDIC rotator 
[10]. Since the memory is an integral part of the DA, and ROM size increases 
exponentially with respect to vector size N. Many techniques have been devel-
oped for reducing the size of ROM. The CORDIC algorithm reformulates the 
1-D DCT so that the ROM size is reduced to a fix size of four words, independent 
of the bandwidth of the input data. The DA functionality is implemented by 
converting parallel data to serial through shift registers and using this data to 
formulate the address of the memories. This implementation requires 6-CORDIC 
and 16 butterfly adders for an 8-point 1-D DCT. The CORDIC rotators are imple-
mented through ROM and shift accumulators, while butterfly adders are imple-
mented through add-shift clusters [11].

Area usage: 8 adders + 8 subtractions + 8 shift registers + 12 accumulators + 12 
ROMs

•	 Skew circular convolution: This technique starts with re-ordering the input 
sequences. Then skew circular convolutions are performed on the reordered 
inputs, which give odd-indexed transformed sequence. The transformed 
sequences are re-ordered for the proper output sequences.

Area usage: 4 adders + 4 subtractions + 8 shift registers + 8 accumulators + 8 
ROMs

2.3.3  Scaled 1-D 8-Point DCT Architecture

Since using LUTs results in a very efficient and regular structure suitable for VLSI 
implementation, especially on the FPGAs, there has been great interest in develop-
ing similar kind of LUT based DCT architecture. The Scaled DCT architecture is 
also a LUT based design. The architecture is primarily designed by making mathe-
matical and trigonometric manipulation using 1-D 8-point DCT equation on eight 
input data samples. In this design, LUT based Distributed Arithmetic architecture is 
used. The basic building blocks of this architecture are [9]:

20 butterfly adders•	
12 shift registers•	
10 LUTs•	

The constant scale factor (Y0 and Y4) is not considered in this implementation 
as that can be combined with the quantization constants without requiring any addi-
tional hardware such as LUTs. The simplified 1-D 8-point DCT equations are as 
shown below:

0 0 1 2 3 4 5 6 7Y 2 (X X X X X X X X ) / 4 = √ × + + + + + + +   

[ ]= − × + − × + − × + − ×1 0 7 1 6 2 5 3 4Y (X X ) A (X X ) B (X X ) C (X X ) D / 2  

[ ]= + − − × + + − − ×2 0 7 3 4 1 6 2 5Y (X X X X ) E (X X X X ) F / 2  
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[ ]= − × + − × + − × + − ×3 0 7 6 1 5 2 4 3Y (X X ) B (X X ) D (X X ) A (X X ) C / 2  

 = √ × − − + + − − + 4 0 1 2 3 4 5 6 7Y 2 (X X X X X X X X ) / 2  

[ ]= − × + − × + − × + − ×5 0 7 6 1 2 5 3 4Y (X X ) C (X X ) A (X X ) D (X X ) B / 2  

[ ]= + − − × + + − − ×6 0 7 3 4 2 5 1 6Y (X X X X ) F (X X X X ) E / 2  

[ ]= − × + − × + − × + − ×7 0 7 6 1 2 5 4 3Y (X X ) D (X X ) C (X X ) B (X X ) A / 2  

For N = 8,
A = cos(p/16)
B = cos(3p/16)
C = cos(5p/16)
D = cos(7p/16)
E = cos(p/8)
F = cos(3p/8)

The constant values A, B, C, D, E and F that is required to be multiplied with 
input X is performed by LUT based Distributed Arithmetic architecture. The block 
diagram of Scaled DCT architecture for 1-D 8-point samples is shown in Fig. 2.17.

2.3.4  Simulation and Synthesis Results

In this section, 1-D 8-point DCT is designed using Scaled DCT architecture and 
coded in Verilog HDL. The design is simulated using ModelSim®. The DCT for the 
input samples, X = (4, 2, 8, 4, 4, 6, 6, 6) is as shown in Fig. 2.18.

Fig. 2.17 Block diagram of scaled DCT architecture
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 Y (5120 / 2, 544, 58, 372, 512 / 2,404,807,439)= √ − − − − √  

In this design, fixed point representations of real numbers are used. DCT output 
values have lower eight bits representing decimal part of DCT output. Hence the 
exact DCT output values from the simulation results are calculated as follows:

8Y (5120 / 2, 544, 58, 372, 512 / 2,404,807,439) / 2= √ − − − − √  

 Y (14.1421, 2.0882, 0.2242, 1.4221, 1.4142,1.6011,3.1543,1.7475)= − − − −  

This design is implemented on Xilinx® Spartan 2E FPGA. The HDL [13] syn-
thesis report is shown in Fig. 2.19.

2.4  Convolution Codes and Viterbi Decoding

2.4.1  Concepts of Convolution Codes

Forward Error Correction (FEC) technique is used to improve the capacity of chan-
nel by adding some carefully designed redundant information to the data that is 
transmitted over the communication channel. The process of adding this redundant 
information is known as channel coding.

Fig. 2.18 Simulation results for 1-D 8-point DCT
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Convolutional coding and Block coding are the two major forms of channel 
coding. Convolutional codes operate on serial data, one or a few bits at a time. 
Block codes operate on relatively large message blocks. There are a variety of use-
ful convolutional and block codes, and a variety of algorithms for decoding the 
received coded information sequences to recover the original data. Convolutional 
encoding with Viterbi decoding is a FEC technique that is particularly suited to a 
channel in which the transmitted signal is corrupted mainly by Additive White 
Gaussian Noise (AWGN) [12].

The technique of convolutional coding transforms a binary message into a 
sequence of symbols to be transmitted. Upon reception, the received information 
must be related back to the original message bits. If there are no errors the process 
of decoding is readily accomplished. In general, convolutional coding techniques 
are applied to very long messages, such as the continuous stream of data from a 
satellite television transmitter.

A convolutional encoder with two shift registers is shown in Fig. 2.20.

Fig. 2.19 HDL synthesis report for 1-D 8-point DCT

Fig. 2.20 Block diagram of convolutional encoder for a rate ½., constraint length K = 3
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The system block diagram can be expressed with the following equations:

 A(n) x(n)  x(n 1)  x(n 2)= + − + −  

 B(n) x(n)  x(n 2)= + −  

The basic building components of the convolutional encoder are flip-flops 
comprising the shift registers and Exclusive-OR gates comprising the associated 
Modulo-Two adders. The number of shift registers in the encoder generating the 
encoded sequence determines the capability of the decoder to detect and correct num-
ber of bit errors received on the receiver in the obtained encoded sequence of data.

In this encoder, data bits are provided at a rate of ‘k’ bits per second. Channel 
symbols are output at the rate of n = 2k symbols per second. The constraint length 
K = 3 is the length of convolutional encoder, i.e., how many k-bit stages are avail-
able to feed the combinatorial logic that produces the output symbols. The input bit 
is stable during the encoder cycle. The encoder cycle starts when an input clock 
edge occurs. When the input clock edge occurs, the output of the left-hand flip-flop 
is clocked into the right-hand flip-flop, the previous input bit is clocked into the left-
hand flip-flop and a new input bit becomes available. Then the outputs of the upper 
and lower modulo-two adders become stable. The output selector cycles through 
two states. In the first state, it selects and outputs the output of the upper modulo-two 
adder. In the second state, it selects and outputs the output of the lower modulo-
two adder.

The state transition table that lists the channel output symbols, given the current 
state and the input data is shown in Table 2.3.

2.4.2  Viterbi Decoder

A Viterbi decoder uses the Viterbi algorithm for decoding bit stream that has been 
encoded using Convolutional codes. There are other algorithms for decoding a con-
volutional encoded stream (Ex: Fanon algorithm). The Viterbi algorithm is the most 
resource-consuming but it does the maximum likelihood decoding [12]. Viterbi 
decoding has the advantage that it has a fixed decoding time. It is well suited for 
hardware decoder implementation. But its computational requirements grow expo-
nentially as a function of constraint length. So it is usually limited in practice to 
constraint lengths of K £ 10.

Current state
Output symbols,  
if input = 0

Output symbols,  
if input = 1

00 00 11
01 11 00
10 10 01
11 01 10

Table 2.3 State transition 
table for the convolutional 
encoder
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The most important concept to aid in understanding the Viterbi algorithm is the 
Trellis diagram. The Trellis diagram for the convolutional encoder rate ½, constraint 
length K = 3 is shown in Fig. 2.21.

The four possible states of the encoder are depicted as four rows of horizontal 
dots. There is one column of four dots for the initial state of the encoder and one for 
each time instant during the message. For a 4-bit message with two encoder mem-
ory flushing bits, there are six time instants in addition to t = 0, which represents the 
initial condition of the encoder. The solid lines connecting dots in the diagram rep-
resent state transitions when the input bit is a one. The dotted lines represent state 
transitions when the input bit is a zero. The expanded version of the transition 
between one time instant to the next is shown in Fig. 2.22. Notice the correspon-
dence between the arrows in the Trellis diagram and the state transition diagram. 
Since the initial condition of the encoder is State 00, and the two memory flushing 
bits are zeros, the arrows start out at State 00 and end up at the same state [12].

Each time when a pair of channel symbols is received, the metric- Hamming dis-
tance between the received channel symbol pair and the possible channel symbol pairs 
is calculated for each state. The Hamming distance is computed by simply counting 
how many bits are different between the received channel symbol pair and the possible 

Fig. 2.21 Trellis diagram for Viterbi decoding with encoder rate ½ and K = 3

Fig. 2.22 State transitions 
from one state to the next 
state
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channel symbol pairs. The results can only be zero, one, or two. The metrics computed 
at each time instant for the paths between the states at the previous time instant and the 
sates at the current time instant are called branch metrics. For the first time instant, the 
results are stored as “accumulated error metric” values associated with the states. For 
the second time instant onwards, the accumulated error metrics will be computed by 
adding the previous accumulated error metrics to the current branch metrics. The 
process is continued for k + m symbols (for k bits message and m shift registers). The 
smallest accumulated error metric in the final state indicates how many channel sym-
bol errors occurred. This survival path which has the least accumulated error metric is 
selected. Original message bits are recreated by interpreting the bits from the solid 
and dotted arrows from the survival path in the Trellis diagram. The two flushing bits 
at the end are discarded from the recreated message bits.

In this section, Viterbi decoder for 4-bit message is designed using Viterbi 
algorithm [12].

Four registers of 6-bit width are used to store the survival path at each state •	
transition.
Four registers of 4-bit width are used to store the accumulated error metrics at •	
each state.
At the end of the last state, the survival path having the least accumulated error •	
metrics is used to reproduce the estimated input message bits from the survival 
path register.

2.4.3  Simulation and Synthesis Results

In this section, Convolutional encoder is designed using two shift-registers and 
Viterbi decoder is designed using Accumulated Error Metrics algorithm. The design 
is simulated using ModelSim®.

Assuming the input data to the convolutional encoder is x = (1001), the encoded 
sequence is, e = (11 10 11 11 10 11). Following different cases are simulated to test 
the Viterbi decoder design:

 1. No error in the received data from the channel. The simulation result for this case 
is shown in Fig. 2.23.
Received data: 11 10 11 11 10 11

 2. One bit error in the received data from the channel. The simulation result for this 
case is shown in Fig. 2.24.

Fig. 2.23 Simulation results for Viterbi decoding with no error in received channel data
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Received data: 11 11 11 11 10 11
 3. Two bits error in the received data from the channel. The simulation result for 

this case is shown in Fig. 2.25.
Received data: 11 11 11 11 11 11

This design is implemented on Xilinx® Spartan 2E FPGA. The HDL synthesis 
report is shown in Fig. 2.26.

Fig. 2.24 Simulation results for Viterbi decoding with one bit error in received channel data

Figure 2.25 Simulation results for Viterbi decoding with two bits error in received channel data

Fig. 2.26 HDL synthesis report for convolutional encoder and Viterbi decoder
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The evolution in the VLSI industry contributing to the rapid technology changes, 
tremendous competition among vendors and demand in the market for ICs all these 
factors have led to consider the time to market factor with utmost importance. With 
maximum performance and least turnaround time, ASIC seems to be the best option 
to meet the ever growing demands for quality chips.

In this chapter, a comprehensive study on the ASIC design flow with various 
constraints is done along with an implementation of two simple systems to demon-
strate the concept. SRAM architecture is designed and implemented using ASIC 
synthesis tools. Also, a Systolic Array Matrix multiplier is designed and modeled 
using Verilog HDL, Synthesized using Synopsys Design Compiler, Static Timing 
Analysis of the designs using Prime Time, Formal Verification using Formality and 
functional simulation of the synthesized net-list using ModelSim.

This chapter also demonstrates the Physical design process for Systolic Array 
Matrix multiplier. Synopsys Astro is used for the Physical design process. ModelSim 
and Prime Power are used as supplementary tools for power analysis of the design.

The pre-requisite to approach this chapter would be an adequate knowledge of 
ASIC design flow, concepts of physical design, CAD tools, Verilog HDL and basics 
of digital electronics.

3.1  ASIC Front-End Memory Design

3.1.1  Introduction

The explosive growth of the internet has increased the demand for high speed data 
communications systems that require fast processors and high-speed interfaces to 
peripheral components. While the processors in these systems have improved in 
performance, Static RAM (SRAM) performance has not kept pace. New SRAM 
architectures are evolving to support the throughput requirements of current systems [1]. 
Some of the well-known architectures are discussed in the following sections.

Chapter 3
ASIC Design
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3.1.2  Memory Architecture and Specifications

The Dual clock synchronous SRAM architecture uses two independent clocks with 
two different address buses for write and read operations [2]. The functional block 
diagram of this architecture is shown in Fig. 3.1.

The Dual clock synchronous SRAM architecture is used to increase the through-
put of the system. Since two independent address buses is used for write and read 
operations controlled by two clocks, the read and write operations can be performed 
simultaneously and independently, hence enhancing the overall efficiency of the 
system in memory operations [3].

In this section, Dual clock synchronous SRAM architecture is chosen to design 
and implement the design. A memory bank of 128 bytes is designed with two syn-
chronous read and write clocks, synchronous read and write enable control signal 
and a synchronous reset for the entire design. Data bus of 8 bits wide for input and 
output is used for write and read operations respectively. Address bus of 7 bits wide 
is used each for read and write operations.

3.1.3  Implementation and Simulations

The Dual clock synchronous SRAM is designed and implemented using Verilog 
HDL. Functional simulations are carried out using ModelSim. The design is synthe-
sized using Synopsys Design Compiler [4] and Static Timing Analysis (STA) is 
done using Prime Time. Synopsis Design Constraints (SDC) file is also generated 
from Prime Time for this design. Formal verification on the generated net-list is 
performed using Formality tool.

The functional simulation of the design using ModelSim is shown in Fig. 3.2.

Fig. 3.1 Functional block diagram of dual clock synchronous SRAM architecture
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3.1.4  Results Analysis and Conclusion

The dual clock synchronous SRAM design is loaded to Prime Time for Static 
Timing Analysis. Following results have been analyzed for the design:

 1. The end point slack analysis for the design with the selection of a maximum of 
100 endpoints and 8 bins is represented by the histogram shown in Fig. 3.3.

 2. The path slack analysis for the design with the selection of a maximum of 100 
paths and 8 bins is represented by the histogram shown in Fig. 3.4.

 3. The net capacitance analysis for the design with the selection of a maximum of 
100 nets and 8 bins is represented by the histogram shown in Fig. 3.5.

Fig. 3.2 Simulation of dual clock synchronous SRAM

Fig. 3.3 End point slack histogram for dual clock synchronous SRAM
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Fig. 3.4 Path slack histogram for dual clock synchronous SRAM

Fig. 3.5 Net capacitance slack histogram for dual clock synchronous SRAM
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The reports obtained from the synthesis and static timing analysis of the design 
are as follows:

 1. Timing Analysis
Clock Read = 3.2 ns with Setup Slack = 0 ns and Hold Slack = 0.86 ns
Clock Write = 2 ns with Setup Slack = 0 ns and Hold Slack = 0.99 ns

 2. Area Report
Total Area = 131324.37 mm²
Combinational Area = 121873 mm²
Sequential Area = 7575.50 mm²
Net Interconnect Area = 1875.87 mm²

 3. Power Report
Total Dynamic Power = 917.97 mW
Cell Internal Power = 328.32 mW
Net Switching Power = 589.64 mW
Cell Leakage Power = 68.81 mW

 4. Components Report
Number of Ports = 35
Number of Nets = 1593
Number of Cells = 1559
Number of References = 39

Conclusion:

The Dual clock synchronous SRAM is designed for a memory bank of 128 bytes 
only. The same design can be enhanced for larger memory bank using the same 
architecture. The existing architecture makes use of two independent read and write 
clocks which increases the throughput compared to the traditional single clock archi-
tectures. This Dual clock architecture can be further enhanced by using a single clock 
with positive edge triggering for read operation and negative edge triggering for 
write operation, making the design to work with a single clock. But in this case, extra 
clock period is provided for write operation which may not be necessary.

3.2  ASIC Front-End Matrix Multiplier Design

3.2.1  Introduction

The computational speed greatly matters in high-end designs where multiplication 
is incorporated. As multiplication is one of the high resource consuming process, 
the matrix multiplier is one such process which involves multiplication. Various 
architectures and designs are proposed in order to optimize the efficiency of the 
multipliers. This section discusses on design and implementation of one such matrix 
multiplier architecture.
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3.2.2  Problem Statement

In this section a matrix multiplier is designed and implemented with the following 
specifications:

Systolic Array architecture is used to design the multiplier•	
Single clock is used to control the entire design•	
Two matrices of order 3 × 3 to be multiplied is designed•	
The matrix multiplier design is hierarchical•	
The data width is four for each of the input matrix elements•	
The multiplier accepts the data stored in memory•	
A positive slack of around 15% of the clock is ensured•	
Full Scan Chain DFT methodology is incorporated to make the design Observable •	
and Controllable

3.2.3  Matrix Multiplier Design

The Systolic Array architecture is used to design the 3 × 3 matrix multiplier system. 
This architecture consists of Data Processing Units (DPU) arranged in the form of 
an array. The DPU is nothing but a Multiplier and Accumulate (MAC) unit which 
processes each data entering the system. This kind of architecture incorporates par-
allel processing and pipelining mechanism, hence increasing the throughput and 
latency of the system [5]. The functional block diagram of Systolic Array matrix 
multiplier is shown in Fig. 3.6.

The schematic of Systolic array blocks generated by Synopsys Design Compiler is 
shown in Fig. 3.7. The matrix A and B that needs to be multiplied is fed in to the mul-
tiplier with row and columns of the matrices arranged with single clock delays. At the 
end of 7 clock cycles, the value in the accumulator of DPUs itself is the final multi-
plied values of matrix A and B. Hence the latency of the system is 7 clock cycles.

3.2.4  Implementation and Simulations

The Systolic array matrix multiplier of order 3 × 3 is designed and modeled using 
Verilog HDL. The pre-synthesis functional verification of the design is simulated 
and tested using ModelSim. The synthesis is carried out using Synopsys Design 
Compiler (DC) [6]. A script is used to automate DC for synthesis process. 
 Full multiplexed scan DFT is incorporated to make the system Testable, 
Controllable and Observable. The synthesized design is ported to Prime Time for 
Static Timing Analysis. For the optimized design obtained, Synopsys Design 
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Constraints (SDC) file and Verilog net-list is generated using DC. Formal verification 
of the generated net-list across the designed Verilog code is done using Formality 
tool. The verified net-list is then finally simulated for functional verification. The 
functional simulation of the generated net-list for the design using ModelSim is 
shown in Fig. 3.8.

From the Fig. 3.8 it can be noted that the inputs to the system are 3 × 3 matrices 
A and B, clock, reset and DFT inputs test_si and test_se. The functional verification 
of the net-list is carried out for the following input vectors and the simulated output 

Fig. 3.6 Functional block diagram of systolic array matrix multiplier

Fig. 3.7 Schematic of systolic array blocks generated by synopsys design compiler
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C is verified. The DFT scan is disabled by forcing the input of DFT test input and 
enable signal to zero. The output ports EA and EB are used to register elements of 
matrices A and B that are pushed out of the systolic array after the multiplication. 
These ports may be extended to increase the order of the array and also used for 
debugging the system.

A × B = C

 

     
     × =     
          

3 2 1 1 2 3 6 12 18

3 2 1 1 2 3 6 12 18

3 2 1 1 2 3 6 12 18  

3.2.5  Analysis of Results and Conclusion

The Systolic Array matrix multiplier design is loaded to Prime Time for Static 
Timing Analysis. Following results have been analyzed for the design:

 1. The end point slack analysis for the design with the selection of a maximum of 
100 endpoints and 8 bins is represented by the histogram is shown in Fig. 3.9.

 2. The path slack analysis for the design with the selection of a maximum of 100 
paths and 8 bins is represented by the histogram is shown in Fig. 3.10.

Fig. 3.8 Simulation of ystolic array multiplier using the generated net-list from DC
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Fig. 3.9 End point slack histogram for matrix multiplier

Fig. 3.10 Path slack histogram for matrix multiplier
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Fig. 3.11 Net capacitance slack histogram for matrix multiplier

 3. The net capacitance analysis for the design with the selection of a maximum of 
100 nets and 8 bins is represented by the histogram is shown in Fig. 3.11.

From the results of synthesis process and static timing analysis of the design, the 
following results have been analyzed:

 1. Timing Analysis
Clock Period = 4 ns, with clock uncertainty constraints of 0.3 ns (setup) and 
0.2 ns (hold)
Setup Slack = 0.85 ns
Hold Slack = 0.30 ns

 2. Area Report
Total Area = 620566.37 mm²
Combinational Area = 616889.25 mm²
Sequential Area = 2084.75 mm²
Net Interconnect Area = 1592.35 mm²

 3. Power Report
Total Dynamic Power = 1.2764 W
Cell Internal Power = 1.2733 W
Net Switching Power = 3.1787 mW
Cell Leakage Power = 53.4279 mW
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 4. Test Coverage Report
Test Coverage = 100% for Full Scan Multiplexed DFT
Total Faults = 15078
Detectable Faults = 14997
Undetectable Faults = 81

 5. Components Report
Number of Ports = 182
Number of Nets = 2524
Number of Cells = 2422
Number of References = 90

Conclusion:

The matrix multiplier design can be optimized for better power, area and timing 
performances by incorporating DFT in RTL design itself instead of using DFT flip-
flops. The design can also be extended from 3 × 3 to a higher order by reusing the 
systolic data processing unit in the chain of arrays. For the current design, it is also 
ensured to have a setup slack of 0.85 ns to take care of uncertainties in the physical 
design and fabrication process.

3.3  Physical Design of Matrix Multiplier

3.3.1  Introduction to Systolic Array Matrix Multiplier

The Physical design of the Systolic array matrix multiplier design is carried out in 
this section. Various inputs and configurations are required in the physical design 
flow to obtain error free and optimized layout of the design.

The physical design process requires information of:

•	 Standard cells: A standard cell is a group of transistor and interconnects struc-
tures, which provides a Boolean logic function such as, NAND, NOR, Inverters, 
etc. or a storage function like flip-flop or latch

•	 IO cells: The IO cell consists of Input and Output circuits (pads) to interface with 
the core logic and external world

•	 Special cells: These cells are macros to serve special purpose such as memory, 
PLL, etc.

All these library cells are technology dependent. The technology file is an important 
input to the physical design process. It consists of following parameters:

Metal Layer definitions•	
Via definitions•	
Process design rules (minimum width, spacing, etc.)•	
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TLU parasitic capacitance models•	
Preferred routing directions•	
GUI display info (color and fill of layers)•	
Units (time, capacitance, distance)•	

In Synopsys Astro, technology file is recognized in “.tf” format and in Cadence 
SOC Encounter it is in “.lef” format. In this section, Synopsys Astro with 130 nm 
technology is used to implement the matrix multiplier design.

Depending on the technology, the number of metal layers is also defined. Metal 
layer characterization is absolutely necessary to perform clean routing of cells with 
least congestion [7]. The characterization for metal layers in 130 nm technology is 
shown in Table 3.1.

The Physical design process requires certain basic inputs in-order to generate 
desired results. The list of inputs required is as follows:

 1. Verilog netlist for the design (*.v)
 2. Timing libraries (*.lib)
 3. Technology file (*.tf or *.lef)
 4. TDF / IO assignment file (*.io or *.tdf)
 5. Timing constraints file (*.sdc)

The Physical design process generates certain outputs and reports to analyze 
the design. Some of the most important outputs/reports generated are as follows:

 1. Post layout Verilog netlist
 2. SDF
 3. SPEF
 4. DSPF
 5. SPICE
 6. LEF/DEF
 7. GDS II
 8. Timing reports
 9. Skew reports
 10. DRC/ERC/LVS reports

The physical design process flow consists of various steps [8]. The detailed flow 
is shown in Fig. 3.12.

Table 3.1 Metal layer characterization in 130 nm technology

Metal layer Metal layer ID Alignment Color

1 14 Horizontal Blue
2 18 Vertical Yellow
3 22 Horizontal Red
4 26 Vertical Green
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3.3.2  Physical Design Flow

The Physical design for the Systolic Array matrix multiplier is done using Synopsys 
Astro [9]. The procedure is discussed in the following sections. A 3 × 3 4-bit matrix 
multiplier is designed with Systolic array architecture using Verilog and the opti-
mized netlist is generated using Design Compiler. The netlist generated is a flatten 

Fig. 3.12 Physical design 
flow
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design with constraints mentioned in the SDC file. The design consists of scan 
chains and it also has pads inserted to the ports. The synthesis is carried out using 
130 nm TSMC library. The static timing analysis is carried out using Prime Time 
and formal verification is done using Formality tools. The error free netlist obtained 
is used as primary input to the physical design process.

3.3.2.1  Design Setup

The Design setup is done to load library data and design data to the tool.

Library Data consists of:

•	 Technology file: Loaded from – /home/Master_Files/tech/cb13_4m_tlu.tf
•	 Reference Libraries: Loaded from – /home/Master_Files/ref_lib/*.lib

Design Data consists of:

•	 Netlist file: Gate level design
•	 Top Design Format (TDF) file: The TDF for the matrix multiplier design consists 

of a total of 164 pads including 16 pairs of VDD-VSS pads. The design makes 
use of all the four sides of the cell to place the pads with 41 ports on each side.

Once the library and design data is loaded on to the tool, hierarchy preservation of the 
netlist is done using the command “astInitHierPreservation”. Hierarchy preservation 
is done to retain pin name, number and functionality so the existing test bench can be 
reused for post layout gate level simulations. It extracts necessary information from 
the original hierarchical netlist and writes it into the flattened top cell. This informa-
tion is represented in the form of objects recorded in the database. Flattened cell name 
is stored with *.EXP and Hierarchical Top cell name is stored with *.NETL extension 
files. Astro makes use of Milky Way database to store the information.

After loading the TDF file, the netlist is bind with the layout to create a top cell 
for the Verilog input data using the command “axgBindNetlist”. The cell is created 
and opened for viewing the layout. The snapshot of the TDF loaded cell is shown in 
Fig. 3.13.

3.3.2.2  Floor Planning

In the floor planning stage, following setups and configurations are done:

Creating core and pad area•	

Core Utilization = 0.6, which is the ratio of area of the core to total area of the  ○
cell. This is selected as per the assignment specification.
Aspect ratio = 0.65, which is the ratio of Height to the Width of the core. ○
Core Aspect = 1. ○
Core to Pad distance is maintained with 60  ○ mm.
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Creating standard cell rows•	

Row to Core ratio = 1, It is the ratio of total row area to the area of the core. ○
A value of  ³ 1 is used for channel-less rows.
A value of <1 is used for rows with channel.

Horizontal row is selected to obtain rows aligned horizontally for place- ○
ment of cells.
Flip first row double back option is used to utilize the power rails by merging  ○
them and even to save the area.

Placing Macros in the core area•	
The macro available in the design is placed in to the core area in this stage. In the 
matrix multiplier design, there are no macros. Hence this step is ignored.

The matrix multiplier design consists of elements, as reported by Astro at the 
floor planning stage:

No. of signal ports: 132•	
No. of Nets: 2237•	
No. of Ports: 2203•	

Fig. 3.13 Snapshot of TDF loaded cell
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The snapshot of the cell after floor planning stage is shown in Fig. 3.14.
The snapshot of the core area of the cells with a close-up view of the alignment 

of the rows- flip first and double back is shown in Fig. 3.15.

3.3.2.3  Power Planning

Power planning is the stage where Power/Ground network is implemented in the 
design. The Systolic Array matrix multiplier is a flattened design without any macros. 

Fig. 3.14 Snapshot of cell 
after floor planning stage

Fig. 3.15 Snapshot of 
alignment of rows in the core 
area
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Hence bottom-up approach is followed in power planning. Power planning consists 
of following steps:

•	 Power Budget
The estimation of total dynamic core power is computed using VCD file and 
Prime Power. The method followed to do the same is shown in Fig. 6.6.

Total dynamic power for the design = 474.6 mW
Operating voltage for 130 nm technology = 1.08 V
Total dynamic core current = 440 mA

•	 Power/Ground Pads
The design consists of 132 ports. All the four sides of the cell are made use for 
port distribution. Considering that VDD/GND pairs of pad are required for every 
eight signal pads for a normal design, the number of VDD/GND pairs of pad 
required for Matrix multiplier design is,

VDD/GND pairs of pad = Total number of signal pads (132) ∕ 8 » 16
Four pairs of VDD/VSS pads are incorporated on each side of the cell.

•	 Pad to Core Trunk Width
The pad to core trunk width is given by,

W
pc

 = (Total dynamic core current) ÷ (No. of sides × J
max

)
Where, J

max =
 Maximum current density of the metal

J
max

 for Metal layer 3 = 19.3 mA/mm
J

max
 for Metal layer 4 = 49.5 mA/mm

W
pc

 for Metal layer 3 = 5.7 mm
W

pc
 for Metal layer 4 = 2.2 mm

•	 Pad and Core Ring
The pad ring is added to the design in-order to make the power/ground connec-
tions for IO pads. The core ring with power/ground connections are made with a 
metal width of 2 mm and offset from the core of 1 mm.

•	 Straps/Trunks placement
In Systolic Array matrix multiplier design, since macros are not there, straps or 
trunks are incorporated. Only power/ground rails (axgPrerouteStandardCells) 
are used for connecting the standard cells.

The snapshot of cell after power planning stage is shown in Fig. 3.16.

3.3.2.4  Timing Setup

In the Timing setup stage, the timing information is provided to the tool to optimize 
placement and routing with required timing. It also performs Static Timing Analysis 
for the timing constraint applied to the design. The SDC is loaded to the tool using 
the command “ataLoadSDC”.

Astro uses a congestion-based coupling model and TLU + capacitance tables 
to accurately model the pre-routing capacitance for nets prior to routing. 
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This methodology eliminates the questionable derivation of the linear capacitance 
co-efficient and improves the accuracy of the model by taking into account increases 
in coupling capacitance due to increased congestion in different regions of the chip. 
The ITF is converted to TLU + format using the command “cmItfToTLUPlus”. The 
snapshot of ITF to TLU + conversion is shown in Fig. 3.17.

Additional timing setup is carried out using the command “atTimingSetup”. The 
following options are used in the timing setup for Matrix multiplier design:

 1. Environment Setup
Default options

 2. Optimization Setup
Target Setup Slack = 0.9
Target Hold Slack = 0.2

 3. Library Setup
Default options

 4. Parasitic Setup
Parasitic Source: LPE

Fig. 3.16 Snapshot of cell after power planning stage
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LPE mode: Auto
Operating condition: Max
Capacitance model: TLU+

 5. Model Setup
Operating condition: Max
Net Delay Modes: Medium Effort

 6. Xtalk Setup
Default options, as noise or cross talk is not modeled in this design.

The snapshot of timing report after loading the raw SDC is shown in Fig. 3.18. 
The report shows that both setup and hold slack are violated. In further stages 
optimization needs to be done to meet the slack.

Fig. 3.17 Snapshot of ITF to TLU + successful conversion

Fig. 3.18 Snapshot of timing report after loading the SDC for the design
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3.3.2.5  Placement

In the Placement stage, the standard cells are placed in the core area. The placement 
process flow after floor planning is shown in Fig. 3.19 [8].

The common options for Placement are selected with the following modes or 
constraints. The Astro commands used for each of the Placement options are pro-
vided in the brackets.

•	 Optimization modes:

 – Congestion: Distributes cell placement for minimum congestion,
 – Timing: Places cells to meet timing requirements.

Fig. 3.19 Placement process 
flow after floor planning
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•	 Location Constraints:

 – Consider pre-route types: PG ring, PG pin; Astro recognizes the pre-routed 
nets of the types selected.

 – No cells under pre-route of M3 & M4; Astro doesn’t place cells under the pre-
routed nets on the metal layers selected.

 – No cells under via V34; Astro doesn’t place cells under the vias specified.
 – Short checking at pre-route of M3 & M4; Astro doesn’t place cells under the pre-

routed nets on the layers specified if a short occurs or if it cannot access pins.

After the placement common options are selected, actual placement of cells is carried 
out in three different steps before CTS. The steps followed are discussed below:

•	 Pre-Placement (astPrePS)
The Pre-Placement Optimization performs overall timing improvement. The 
goal of pre-place optimization is to correctly setup the design for placement of 
cells. This includes the handling of high fan-out nets, design cleanup and some 
optimization.

•	 In-Placement (astAutoPlace)
The standard cell instances are actually placed in the core for the design. It fol-
lows the optimized placement solution obtained in Pre-placement optimization. 
Search and Refine option may be used to improve the cell placement by evaluat-
ing the current placement, determining congestion in the design and by changing 
the placement of cells within congestion areas.

•	 Post-Placement (astPostPS1)
Post-Placement Optimization (PPO1) is performed after placement of cells. 
Additional optimization techniques are used to obtain best results. The goal of 
this step is to clean up some high fanout nets after placement, to fix timing 
constraints such as maximum capacitance, transition and also to prevent 
crosstalk.

The snapshot of timing report after Placement and optimization stage is shown 
in Fig. 3.20. The report shows that hold slack is positive but setup slack still 
violates. An evident improvement in setup slack can be noticed as compared to 
that of SDC loaded report.

The snapshot of the cell after the Placement stage is shown in Fig. 3.21.

Fig. 3.20 Snapshot of timing report after placement and optimization stage
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3.3.2.6  Clock Tree Synthesis

In this stage, the clock tree is synthesized to meet the timing requirements and avoid 
blockages and correlation problems between pre-routing and post-routing. Clock 
Tree Synthesis (CTS) is basically done for zero skew. It may add multi-level buffer 
trees according to the clock specification – skew and insertion delay. The CTS pro-
cess may result in more buffers added, movement of cells, increase in congestion 
and even introduction of new timing and max capacitance/transition violations. The 
flow for CTS process is shown in Fig. 3.22 [8].

The CTS common options (astClockOptions) are selected before actually CTS is 
performed for the Matrix multiplier design. The options selected are as follows:

Conditions: •	 worst
Skew type: •	 Global
Synthesis Effort: •	 Two
Gated clock tree: •	 True
Clock nets: “clk”; added from the loaded SDC (root clock)•	
Target skew and insertion delay options are untouched as it takes from SDC•	

Fig. 3.21 Snapshot of cell after placement stage
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The clock tree is marked to set and propagate variable route rules before running 
CTS. This is done to prevent slacks from being disturbed during CTS. The following 
options are selected for marking clock tree (astMarkClockTree):

Clock net name: •	 clk
Fix – clock tree and flip flops•	

Once the CTS common options are selected and the clock tree is marked, the design 
is ready for CTS (astCTS). The following options are selected to perform CTS:

Conditions: •	 worst
Skew type: •	 Global
Design level: •	 Block

After performing CTS, Post-Placement Optimization (PPO2) is done to obtain better 
timing. Post-Placement Optimization has several differences from Pre-Placement 
Optimization. During Post-Place Optimization, the placement engine is still active 
in order to accurately take into account any changes in the design. This is important 
when cells are either sized or moved, as this impacts the timing of the design based 
on the new placement information.

All of the optimization techniques employed during post-place optimization 
takes into account all sizing, cell-moving, cell-bypassing, buffer and inverter inser-
tions, gate-duplication and net-splitting. Logical-remapping and area recovery are 
optional techniques which can be added to PPO. The following options are selected 
for PPO2 (astPostPS):

•	 Setup Fixing: to fix the setup slack violation
•	 Max Tran Fixing: to fix maximum transition violation

Fig. 3.22 Clock tree 
synthesis flow after 
placement
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•	 Max Cap Fixing: to fix maximum capacitance violation
•	 Logic-Remapping: used during setup slack optimization. It also attempts to 

reduce the number of stages in a critical path for overall timing improvement.

Even after PPO2, the setup slack was violated. In order to eliminate/reduce the 
violation, “pdsCROptimization” command is used. It performs timing optimization 
to further reduce the total negative slack of the design to isolate the most critical 
paths which are hard to optimize. The Clock Tree Optimization (astCTO) is carried 
out to reduce or pull down the skew to zero.

The snapshot of timing report after CTS and CTO for Matrix multiplier design is 
shown in Fig. 3.23. From the report it can be inferred that only setup slack and max 
capacitance violation exists.

The clock global skew analysis report for the Matrix multiplier design is shown 
in Fig. 3.24.

Fig. 3.23 Snapshot of timing report after CTS and CTO

Fig. 3.24 Clock global skew report for the matrix multiplier design
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3.3.2.7  Routing

In the Routing stage, the metal layers are drawn for all interconnects complying 
Design Rule Checks (DRC). It is also made sure that circuit timing, clock skew, 
signal net transition and capacitance limits are maintained in acceptable limits. The 
design flow used in the Routing process is shown in Fig. 3.25 [8].

The following procedure is followed for routing the Matrix multiplier design:

 1. Check design for Route (axgCheckDesignForRoute)
It performs a check for optimization in order to substantiate any errors in the 
design that might need to be fixed. It checks for pin access points, cell instance 
wire tracks, pin out of boundaries, min-grid and pin design rules and blockages 
to ensure they meet the design requirements. An error cell will be generated if 

Fig. 3.25 Routing flow after 
CTS
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the design has some errors or violations. The error cell wasn’t generated for the 
Matrix multiplier design indicating that the design is error free.

 2. Define rules for metal layers (axgDefineVarRule)
It specifies a set of rules for variable routing and defines minimum width of 
objects on a layer, spacing between objects on a layer and size of array to use 
with a contact. The values are verified with that in the technology file. Typical 
values of these parameters used in this design for 130 nm technologies are shown 
in Table 3.2.

 3. Setting Net constraint (axgSetNetConstraint)
It sets constraints of variable-route rules, layer, timing-driven, spacing, and top-
layer probe constraints for nets. The following options are set for the design:

Net Names From: •	 All clock nets
Default options•	

4. Setting Route Options (axgSetRouteOptions)
Certain routing options are selected for Global routing, Track Assign and Detail 
routing. The options selected for the Matrix multiplier design is as follows:

Global Routing Options

Timing Driven with weight of four•	
Congestion Driven with weight of four•	
Clock Routing: •	 Balanced; depending upon the pin distribution of each clock net, 
the global router automatically decides whether or not to use single-trunk

Track Assign

Timing Driven with weight of one•	

Detail Routing

Connect open nets•	
Timing Driven•	
Single-row/column via array: •	 center; places the contact center at the corner 
where the router changes routing layers. This result in a “T” shaped corner

Library cells and Design Rules

Poly Pin Access: •	 auto; connects poly pins if poly pins exist in the design
DRC Distance: •	 Manhattan; checks in the X and Y directions. Both X and Y 
spacing must be greater than the minimum spacing rule
Same Net Notch: •	 check and fix; Attempts to fix same net notch violations

Table 3.2 Typical values of metal layer parameters for 130 nm technology

Metal layer Min width (mm) Min spacing (mm) Min area (mm²) Pitch (mm)

1 0.16 0.18 0.122 0.41
2 0.20 0.21 0.144 0.41
3 0.20 0.21 0.144 0.515
4 0.44 0.46 0.562 0.97
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Fat Wire Checking: •	 merge then check; Tries to merge thin wires to form fat 
wires for fat-wire spacing rule checking
Merge Fat wire on: •	 signal routing too; Merges all types of wires to form fat 
wires
Wire/Contact End-of-line Rule: •	 check and fix; instructs the router to not con-
nect to “cross-vias” with wrong way wires to avoid end-of-line rule violations

5. Routing Net Group (axgRouteGroup)
It Routes the nets specified in this group. The routing replaces any previous 
routing. In this design clock net is selected for routing. The following options are 
used to route the clock nets:

Net Names from: •	 All clock nets
Phase: global, track assign, detail•	
Search Repair Loop: •	 Five
Dangling wires: •	 discard; the router discards or removes all the dangling wires 
or contacts before starting to connect nets that are broken.
Optimize routing pattern•	

The snapshot of the cell showing the routed clock net from the IO pad to the core 
logic is shown in Fig. 3.26.

 6. Automatic Routing (axgAutoRoute)
Automatic routing is done to sequentially run Global routing, Track assignment, 
Detail routing and Search & Repair steps followed by Post-Route Optimization 
to optimize the detail routed design. Each of these steps is described as follows:

Global Routing (•	 axgGlobalRoute)
Global router uses a three-dimensional array of global routing cells to model the 
demand and capacity of the global routing. Astro assigns nets to the global rout-
ing cells through which they pass. For each global routing cell, the routing 
capacity is calculated according to the blockages, pins, and routing tracks inside 
the cell. Astro calculates the demand for wire tracks in each global routing cell 
and reports the overflows, the amount of wire tracks still needed after the tool 
assigns nets to the available wire tracks in a global routing cell. It considers spac-
ing and wide-wire variable routing rules, as well as shielding variable routing 
rules when calculating congestion.

There was no congestion while routing Matrix multiplier design. Hence 
no congestion maps were generated.
Track Assignment (•	 axgAssignToTracks)
Before Detail routing, Track Assignment is done to specify the tracks within 
each global routing cell to be used for each net. Track assignment operates on 
the entire design at once; it can make long routes straight and reduce the num-
ber of vias, whereas the detail router routes small area at a time.
Detail Routing (•	 axgDetailRoute)
After Track assignment, all nets are routed but not very carefully. There may be 
many violations particularly where the routing connects to pins. The detail 
router works to correct the violations and detail routing is done for the design.
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Search & Repair (•	 axgSearchRepair)
After Detail routing, Search & Repair is done on the design for searching 
DRC violations and rerouting wires in order to fix or avoid violations.

Search & Repair is done on the Matrix multiplier design with a loop 
count of five.
Post-Route Optimization (•	 astPostRouteOpt)
Post-Route Optimization is done to fix setup, hold, max capacitance, max 
transition violations, and maximum lengths by netlist changes and routing 
modifications at various stages of routing.

In Matrix multiplier design, only setup slack and max capacitance viola-
tions were present. The above options were used in the optimization stage to 
eliminate the violations.

The snapshot of a section of the cell after Routing stage is shown in Fig. 3.27.
The Timing Report for the multiplier design after Routing stage is shown in 

Fig. 3.28.

Fig. 3.26 Snapshot of cell showing routed clock net from IO pad



753.3 Physical Design of Matrix Multiplier

3.3.2.8  Design for Manufacturability

DFM is done to address several issues to increase manufacturing yield. Before 
incorporating DFM for the design, DRC, ERC and LVS need to be verified to ensure 
error free design.

Fig. 3.27 Snapshot of a section of the cell after routing stage

Fig. 3.28 Timing report for matrix multiplier design after routing stage
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 1. Design Rule Check (DRC)
DRC is the area of Electronic Design Automation (EDA) that determines 
whether a particular chip design/layout satisfies a series of recommended 
parameters called design rules. A design rule-set specifies certain geometric and 
connectivity restrictions to ensure sufficient margins to account for variability 
in semiconductor manufacturing process, so as to ensure that most of the parts 
work correctly [9].

The DRC is done for the Matrix multiplier design. For the initial round of rule 
check, the tool reported Notch errors. Notch filling is done for the design using the 
command “geNewFillNG”. DRC is again done on the design. DRC error cell is 
not generated for this check, indicating that clean DRC design is obtained [9].

 2. Electrical Rule Check (ERC)
ERC involves checking a design for all well and substrate areas for proper con-
tacts and spacing thereby ensuring correct power and ground connections [9]. 
ERC steps can also involve checks for unconnected inputs or shorted outputs.

 3. Layout Versus Schematic (LVS)
The LVS is the class of EDA verification software that determines whether a 
particular integrated circuit layout corresponds to the original schematic or cir-
cuit diagram of the design [9]. A successful DRC ensures that the layout con-
forms to the rules designed/required for faultless fabrication. However, it does 
not guarantee if it really represents the circuit desired to fabricate. Hence LVS is 
used to ensure the correctness of the design.

The Manufacturability issues that need to be taken care after obtaining DRC 
clear design are as follows:

Gate Oxide Integrity•	
The thin gate oxide may be damaged during the manufacturing process due to 
charge accumulation on the interconnect layers during certain fabrication steps like 
Plasma etching, which creates highly ionized matter to etch [9]. This is also known 
as Antenna effect. A typical Antenna effect scenario is shown in Fig. 3.29 [9].

As length of wire increases during processing, the voltage stressing the gate 
oxide increases leading to Antenna effect. Antenna check rules define acceptable 
length of wires and also insert diodes to clamp the voltage swing. The solutions 
adopted to fix Antenna effect is shown in Fig. 3.30 [9].
Via resistance and reliability•	
Replacing one via contact with multiple contacts without re-routing improves 
both yield and timing. This advantage is due to reduction of series via resistance 
to parallel resistance.
Metal erosion and Liftoff•	
In Chemical Mechanical Polishing process, the wafer is made flat leaving metal 
tops with concave shape (Dishing). This is due to the metal being mechanically 
softer compared to dielectrics. Wide traces with little intervening dielectric is 
called Erosion.
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Conductors and Dielectrics have different coefficients of thermal expansion. 
As stress builds up with temperature cycling, metal can delaminate (lift off) with 
time. A typical Metal erosion and liftoff case is shown in Fig. 3.31 [9].

The solution for this issue is to slot wide wires to reduce metal density. Hence 
minimizing stress buildup and reducing liftoff tendency.
Metal over-etching•	
A narrow metal wire separated from other metal receives a higher density of 
etchant than closely spaced wires. Hence the narrow metal may be over-etched. 
This issue can be controlled by using minimum metal density rules. Filling up 
empty tracks with metal shapes helps in meeting minimum metal density rules. 
But the limitation of this solution is that no further routing or antenna fixing can 
be done.

Fig. 3.29 Typical antenna 
effect scenario

Fig. 3.30 Solutions to fix antenna effect
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3.3.3  Results and Conclusion

In this section, the Physical design process for Systolic Array matrix multiplier is 
carried out using Synopsys Astro design tool. The TSMC 130 nm technology is 
used in the design. The design is verified for DRC errors. The Timing report for 
DRC clean design obtained is shown in Fig. 3.32. The report indicates positive setup 
and hold slack. The SPEF file is generated for the design to analyze and verify the 
power requirements for the design.

The GDS II data file is generated for the design using “auStreamOut” command. 
GDS II is a standard format for physical layout information. This file is used to 
transport physical layout designs between different design environments. A detailed 
summary report for placement and routing of the design cell is generated. The report 
is analyzed for any requirement of further optimization in the design. The design is 
signed off as it meets the expected requirements.

To conclude with the analysis and results obtained, there is enough scope for 
enhancement and improvements in the design and verification carried out in this 
section. A hierarchical design with soft and hard macros may be used to explore the 
advantages of new power/ground network design flow. The technology library used 
may be enhanced to 90 nm or 65 nm to experience the complexity in the design and 
explore possible challenges to meet the power, area and timing requirements.

Fig. 3.31 Metal erosion, dishing and liftoff scenarios

Fig. 3.32 Timing report for DRC clean design
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The demand for Digital processing of data is seamlessly increasing for various day 
to day applications around us. It is because of the easier, faster and cheaper way of 
processing and storing data in digital format, yet efficiently. This in-turn has resulted 
in demand for Mixed Signal processing systems to interface with the analog and 
digital world. The challenges in designing a Mixed Signal system are to suppress 
phase noise, higher switching speeds and optimum conversion capabilities with 
least power dissipation. PLL, OPAMP, DAC, ADC, etc. are some of the key building 
blocks in an Analog and Mixed Signal System.

In this chapter a Two Stage OPAMP is designed and modeled using SPICE based 
on the specifications provided for 180 nm technology. The simulations are carried 
out using LTspice tool to extract and verify the design parameter. A layout is 
designed for the OPAMP. DRC and LVS debug tools are used to verify the design 
rules and connectivity of the layout. Parasitics are also extracted and analyzed for 
the design. All these processes are carried out using Cadence Virtuoso Schematic 
and Layout editor tool for 180 nm technology.

The prerequisite to approach this chapter would be an adequate knowledge of 
CMOS designs in Analog domain and basic knowledge of layout designs and SPICE 
modeling.

4.1  Schematic Design of OPAMP

4.1.1  Introduction

An Operational Amplifier is a DC coupled high gain electronic voltage amplifier 
with differential inputs and usually a single output [1]. A two stage OPAMP consists 
of three major blocks – Differential Amplifier stage, Gain Stage with Compensation 
capacitor to lower the gain at high frequencies and Buffer. An OPAMP is used in a 
variety of applications in linear circuit applications: Differential amplifier, inverting 

Chapter 4
Analog and Mixed Signal Design
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and non-inverting amplifier, Integrator, Differentiator, Comparator, Voltage follower, 
etc. and in non-linear circuit applications: Peak detector, logarithmic, exponential 
outputs, PLL, ADC, DAC, etc. The functional block diagram of a Two Stage OPAMP 
is shown in Fig. 4.1 [2].

4.1.2  Two Stage OPAMP Design

A Two Stage OPAMP is designed and simulated in this section [2]. The design is 
done using SPICE modeling and the simulations are carried out using LTspice to 
extract and verify the design parameters against the designed values. The model file 
obtained from MOSIS-TSMC library for 180 nm technology [3] is used in the 
OPAMP modeling and simulations.

4.1.2.1  Specifications

The Two Stage OPAMP is designed for TSMC 180 nm technology for the following 
specification:

Open Loop Gain, •	 Av >100 V/V (40 dB)
Power Supply, •	 VDD = −VSS = 2.5 V
Gain Bandwidth at −3 dB gain, •	 f3db >5 MHz
Load Capacitance, •	 CL = 10 pF
Slew Rate, •	 SR > 10 V/ms
Output Voltage Swing, •	 Vout = ± 2 V
Input Common Mode Range, •	 ICMR = −1 V to +2 V
Maximum Power Dissipation, •	 Pd £ 2 mW
Phase Margin, •	 Fm ³  60°
Channel Length , •	 L = 180 nm

Fig. 4.1 The functional block diagram of a two stage OPAMP
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For 180 nm technology, the MOS device parameters obtained from MOSIS-TSMC 
fabrication process lab is as follows:

For NMOS:

•	 Kn’ = (m
n
 C

ox
)/2 = 177.2 mA/V²

•	 Vtn = 0.35 V
•	 ln = 0.09/V

For PMOS:

•	 Kp’ = (m
p
 C

ox
)/2 = −35.6 mA/V²

•	 Vtp = −0.39 V
•	 lp = 0.1/V

4.1.2.2  Schematic of OPAMP

The schematic diagram of Two Stage OPAMP for which aspect ratios for MOS 
transistors and compensation capacitance values is required to be calculated is 
shown in Fig. 4.2 [4].

4.1.2.3  Design Calculations

The Two Stage OPAMP is designed as per the specifications listed in Sect. 4.1.2.1. 
The end results of the design calculations are the channel width of each of the MOS 

Fig. 4.2 The schematic diagram of two stage OPAMP
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transistor and Compensation capacitor value for the OPAMP. The design procedure 
followed is mentioned below [4]:

 1. Calculation of Compensation capacitance (Cc):
It is known that placing the output pole 2.2 times higher than the Gain Bandwidth 
permitted a 60° Phase Margin. From the specifications, required Phase Margin is 60°.
Hence we have,

 > LCc (2.2 /10)C  

 > ×Cc (0.22) 10 pF  

 >Cc 2.2 pF   

 =Cc  3pF  

 2. Calculation of Tail Current (Iss):
The tail current, Iss or I

5
 is given by,

 = ×Iss SR  Cc  

 µ= ×Iss 10 V / s  3 pF  

 µ=Iss 30 A  

 3. Calculation of Aspect ratios (W/L)
3
 and (W/L)

4
 for M3 and M4:

The aspect ratio for M3 is calculated based on the ICMR (max) given in the 
specification.

 
( ) ( ) ( ) 2

5 p DD in max tp tn3
W / L 2 I / K ’ V V V V−

 = × − − +   

 
( ) ( ) [ ]26

3
W / L 2 30 10 / 2.5 2 0.39 0.35−= × × − − +  

 =3(W / L) 3.98  

 = =3 4(W / L)  (W / L) 4  

 4. Calculation of Aspect ratios (W/L)
1
 and (W/L)

2
 for M1 and M2:

The aspect ratio for M1 is calculated based on the Gain specification given.

 [ ] 1
2

nAv [2 / ( n p)] (2  K ’  W) / (Iss   L)= + × × × ×λ λ  

Given Specification, Av > 100 V/ V
Substituting and solving the values in the above equation, we get,

 =1(W / L) 7.64  

 = =1 2(W / L)  (W / L) 8  



874.1 Schematic Design of OPAMP

 5. Calculation of Aspect ratios (W/ L)
5
 and (W/ L)

8
 for M5 and M8:

The aspect ratio for M5 is calculated based on ICMR (min) specification.

 
( ) ( )( )ds5 in ss 5 n 1V V min V I / ’ W / L VtnK = − − −   

Substituting the values from the specification data and previous calculations,
We get,

 =ds5V 1.005 V  

 
( ) ( ) ( )2

5 5 n ds5W / L 2 I / ’ VK = × ×   

Substituting the values in the above equation, we get,

 =5(W / L) 0.34  

 = =5 8(W / L)  (W / L) 1  

 6. Calculation of Aspect ratio (W/L)
6
 for M6:

The Transconductance of the input transistor M1 is given by,

 =m1g  (Gain Bandwidth) x (Compensation Capacitance)  

 π −= × × × ×6 12
m1g 2 5 10 3 10  

 µ=m1g 94.25 S  

The Transconductance of the transistor M6 is calculated for the given specifica-
tion of Phase Margin ³ 60°

≥gm6 10gm1 

 µ=gm6 942.5 S  

The aspect ratio for M6 is calculated as follows:

 ( )6 m6 p ds6 W / L g / K ’ V (sat) = ×   

Substituting values in the above equation, we get,

 =6(W / L) 54  

 7. Calculation of Aspect ratio (W/L)
7
 for M7:

The current flowing through transistor M6 is given by

 6 m6 p 6I (g ) / 2 K ’  (W / L) = × ×   
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Substituting the values in the equation,

 µ=6I 230 A  

The aspect ratio for M7 is given by the following equation:

 = ×7 5 6 5(W / L)  (W / L) (I / I )  

Substituting values in the above equation, we get,

 7(W / L) 8=  

4.1.2.4  Design Calculation Results

The maximum power dissipation for the design is verified against the specification 
as follows:

Power Dissipation,

 = + × +5 6Pd(max) (I I )  (VDD | VSS |)  

 µ µ= + × + −Pd(max) (30 230 ) (2.5 | 2.5 |)  

 =Pd(max) 1.3 mW  

Max. power dissipation for the design is less than the specified limit of 2 mW.
The channel width required for each of the MOS transistors for the OPAMP 

designed is calculated from the aspect ratios. For 180 nm process technology the 
channel width is tabulated as shown in Table 4.1

Other important parameters calculated in the design steps are as follows:

Compensation Capacitance, •	 Cc = 3 pF
Load Resistance (Arbitrary value), •	 RL = 100 kW
Current flowing through M5 (Tail Current), •	 I5 = 30 mA
Current flowing through M6, •	 I6 = 230 mA

Table 4.1 Channel width of MOS transistors designed for 180 nm technology OPAMP

MOS transistor Aspect ratio (W/L) Channel width (mm)

M1 8 1.44
M2 8 1.44
M3 4 0.72
M4 4 0.72
M5 1 0.4
M6 1 0.4
M7 54 9.72
M8 8 1.44
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4.1.2.5  Definition of Design Parameters

Definition of design parameters that are extracted from the simulation of TS-OPAMP 
are as follows:

 1. Open Loop Gain: The Gain of the OPAMP for the input at positive input terminal 
without feedback and negative terminal input grounded

 2. Gain Bandwidth: The frequency Bandwidth of the system at which the gain 
drops to −3 dB gain

 3. Phase Margin: It is the difference measured in degrees between the absolute 
phase angle of OPAMP output signal and 180°

 4. Input Common Mode Range (ICMR): The range of input voltage where the 
OPAMP has approximately unity gain

 5. Input Offset Voltage: The input required to make the output of the OPAMP to 
zero volts

 6. Output Voltage Swing: The range of the maximum voltage points till which the 
OPAMP output can swing

 7. Slew Rate: It is the maximum rate of change of output signal at any point of 
time

 8. Transfer Function: It is a function of Output of the OPAMP with respect to the 
Input

 9. Output Impedance: The Impedance offered by the OPAMP at the output 
terminal

 10. Power Dissipation: The total power dissipated by the OPAMP during its 
operation

4.1.2.6  Simulations and Verification

The Two Stage OPAMP designed for 180 nm process technology is simulated using 
LT Spice and the design specifications are verified against the extracted values [5]. 
The model file obtained from MOSIS-TSMC library for 180 nm technology is used 
in the OPAMP modeling and simulations.

Extraction of Open Loop Gain, Gain Bandwidth and Phase Margin at 0db Gain•	
AC analysis done to extract the above mentioned parameters. The simulation 
waveform obtained (Bode Plot) is shown in Fig. 4.3.

Configuration: Open Loop (Extracted parameters at 0 dB gain)
 – Gain: 28 dB
 – Bandwidth: 4 MHz
 – Phase Margin: (180° + F) = 180° – 102° = 78°

Extraction of Open Loop Gain, Gain Bandwidth and Phase Margin at -3db Gain•	
AC analysis done to extract the above mentioned parameters. The simulation 
waveform obtained (Bode Plot) is shown in Fig. 4.4.
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Configuration: Open Loop (Extracted parameters at −3 dB gain)
 – Gain: 28 dB
 – Bandwidth: 5.5 MHz
 – Phase Margin: (180° + F) = 180° – 108° = 72°

Extraction of ICMR•	
The simulation waveform obtained to extract ICMR is shown in Fig. 4.5.

Configuration: Unity Gain Feedback
 – ICMR: −1.2 V to +2.1 V

Extraction of Input Offset Voltage•	
The simulation waveform obtained to extract Input Offset Voltage is shown in 
Fig. 4.6.

Fig. 4.3 Simulation of TS-OPAMP to extract AC analysis parameters at 0 dB gain

Fig. 4.4 Simulation of TS-OPAMP to extract AC analysis parameters at 3 dB gain

Fig. 4.5 Simulation of TS-OPAMP to extract ICMR for the design
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Configuration: Open Loop
 – IOV: −92 mV

Extraction of Output Voltage Swing•	
The simulation waveforms obtained to extract Output Voltage Swing is shown in 
Fig. 4.7.

Configuration: Open Loop
 – OVS: −1.1 V to 2.1 V

Extraction of Transfer function and Output Impedance•	
The simulation results obtained to extract Transfer function and Output Impedance 
of the design is shown in Fig. 4.8.

Fig. 4.6 Simulation of TS-OPAMP to extract input offset voltage for the design

Fig. 4.7 Simulation of TS-OPAMP to extract output voltage Swing

Fig. 4.8 Snapshot of the transfer function computed for TS-OPAMP design
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Configuration: Open Loop
Transfer Function: 12.795 –
Output Impedance: 8.6 –  kW

Extraction of Maximum Power Dissipation•	
The simulation waveform obtained to extract maximum Power Dissipation of the 
TS-OPAMP designed is shown in Fig. 4.9.

Configuration: Unity Gain Feedback
Max. Power Dissipation, –

 µ µ= + × + −dP (38.8 A 122 A) (2.5 V | 2.5 V |)   

 =dP 0.804 mW  

Extraction of Slew Rate•	
The simulated waveform obtained to extract Slew Rate for the design is shown 
in Fig. 4.10.

Configuration: Unity Gain Feedback
Slew Rate (SR) = (V –

2
 – V

1
)/ (T

2
 – T

1
)

 ( ) ( )µ µ = − − − SR 0.94V 0.79V / 100.23 s 100.01 s
 

 µ≈SR  8V / s  

Fig. 4.9 Simulation of TS-OPAMP to extract max. Power dissipation of the design

Fig. 4.10 Simulation of TS-OPAMP to extract slew rate for the design
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4.1.3  Results

The result obtained from the simulations carried out for TS-OPAMP is verified 
against the specification. The comparison results are tabulated as in Table 4.2.

4.2  Layout Design of OPAMP

4.2.1  Introduction

The Two Stage OPAMP designed in Sect. 4.1 is implemented to obtain the layout 
with optimal area and least parasitics for 180 nm technology. A schematic of 
TS-OPAMP is also drawn along with the layout. Cadence Virtuoso tool is used to 
draw schematic and layout for the design. After obtaining the layout with clean 
DRC and LVS, the netlist along with the parasitics is extracted with the help of the 
tool. Post layout simulation is carried out using this netlist to verify the design 
specifications.

4.2.2  Layout Design

In this section, the procedure for schematic and layout design of TS-OPAMP is 
illustrated.

Table 4.2 Comparison of design specification against results obtained for TS-OPAMP design

Parameters Design specification Results obtained

Open loop gain (Av) 100 V/V (40 dB) 28 dB
Band width (BW) at
0 dB – 4 MHz
3 dB 5 MHz 5.5 MHz
Phase margin (F) at
0 dB – 72°
3 dB ³ 60° 78°
ICMR −1 V to +2 V −1.2 V to + 2.1 V
Slew rate 10 V/ms 8V/ms
Output voltage swing −2 V to +2 V −1.1 V to +2.1V
Input offset voltage – −92 mV
Max. power dissipation £ 2 mW 0.804 mW
Transfer function – 12.795
Output impedance – 8.6 kΩ
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4.2.2.1  Schematic Design of OPAMP

The schematic design is required to carry out LVS after drawing the layout section 
to verify the connectivity of the circuit. The screenshot of the schematic design of 
TS-OPAMP is shown in Fig. 4.11. The components are chosen as per the designed 
results available in Table 4.2. Metal plate capacitor is selected for the layout design 
for compensation capacitor.

4.2.2.2  Layout Design of OPAMP

The Layout of OPAMP is drawn as per the schematic in Fig. 4.11. From the Table 4.2 
it can be noted that MOSFET M7 has very large channel width. In order to avoid 
delays and other parasitic effects caused due to large channel width, fingering is 
done to break up the MOSFET into 10 MOSFETs of equal channel width [6]. The 
screenshot of MOSFET M7 with finger – 10 is shown in Fig. 4.12.

Fig. 4.11 Schematic of TS-OPAMP
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Fig. 4.12 Screenshot of MOSFET with finger-10

Since the finger for M7 is 10, the total channel width of 9.8 mm is divided into 10 
MOSFETs with channel width of 0.98 mm each. The Fig. 4.12 shows the alternate 
connections made to the source of MOSFET to connect it to the VDD power line. 
Similarly, alternate connections are done for the drain as well.

The screenshot of completed layout design of TS-OPAMP is shown in 
Fig. 4.13.

The completed layout of TS-OPAMP is verified for DRC. Once the layout is 
DRC clean, LVS is performed against the schematic to verify the connectivity of the 
design. LVS match is obtained for the design. The screenshot of LVS match indica-
tor for the design is shown in Fig. 4.14.

For the LVS matched layout design, the SPICE netlist along with parasitics is 
extracted using RCXT tool in Cadence Virtuoso. Graphical view of the parasitics 
such as, resistance and capacitance in the layout design is also observed. Some of 
the screenshots obtained to illustrate the parasitics in the layout design are shown in 
the following figures.

The screenshot of the complete TS-OPAMP layout with parasitics identified is 
shown in Fig. 4.15.

The parasitics existing at poly of MOSFET having 10 fingers is shown in 
Fig. 4.16.

The parasitics identified in metal plate compensation capacitor is shown in 
Fig. 4.17.
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Fig. 4.13 Screenshot of completed layout design of TS-OPAMP

Fig. 4.14 Screenshot of LVS match for TS-OPAMP design



Fig. 4.15 Screenshot of TS-OPAMP layout with parasitics identified in the design

Fig. 4.16 Screenshot of parasitics in MOSFET layout having 10 fingers in TS-OPAMP layout 
design
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Fig. 4.17 Screenshot of parasitics identified in layout of compensation capacitor

4.2.3  Summary and Results

The DRC clean and LVS match layout design of TS-OPAMP obtained have parasit-
ics that affect the function of the design. Post layout simulation using the generated 
SPICE netlist for the design is carried out in LTspice to verify the specification 
parameters. The layout design has approximately 67 Resistances and 68 Capacitance 
parasitics. The area of the layout of TS-OPAMP is calculated as follows:

 µ=Approximate Height of the Cell (H) 10 m  

 µ=ApproximateWidth of the Cell (W) 12 m  

 µ µ µ= × = × = 2 2Area H W 10 m 12 m 120 m  

The total area used by the TS-OPAMP layout designed cell including unused 
area is approximately 120 m²m²

The layout can be improved by meticulously planning the placement of MOSFETs 
to obtain optimized area with least parasitics. The unused area in the design can be 
effectively used to reduce the area metrics for the layout design. The width of the 
OPAMP cell is an arbitrary value as there is no reference cell with least width avail-
able. This applies also to the height of the OPAMP.



99Appendix

Appendix

A.  SPICE code to verify Open loop gain, Phase margin and Bandwidth using Bode 
plot for the OPAMP
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B. SPICE code to verify ICMR for the OPAMP
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C.  SPICE code to verify Input offset voltage and output impedance for the OPAMP



102 4 Analog and Mixed Signal Design

D. SPICE code to verify Power dissipation for the OPAMP
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E. SPICE code to verify Slew rate for the OPAMP
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