

SpringerBriefs in Electrical and Computer
Engineering

For further volumes:
http://www.springer.com/series/10059

Vikram Arkalgud Chandrasetty

VLSI Design

A Practical Guide for FPGA
and ASIC Implementations

Vikram Arkalgud Chandrasetty
University of South Australia
Adelaide, Australia
vikramac@ieee.org

ISSN 2191-8112 e-ISSN 2191-8120
ISBN 978-1-4614-1119-2 e-ISBN 978-1-4614-1120-8
DOI 10.1007/978-1-4614-1120-8
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011934747

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To
My Family and Friends

vii

Preface

The area of VLSI design has gained enormous popularity over the past few decades
due to the rapid advancements in integrated circuit (IC) design and technology.
The ability to produce miniaturized circuits with high performance in terms of
power and speed is the reason for its popularity. Low production cost and advanced
techniques for reduced time-to-market adds to the ever-growing demand for ICs.
The two major IC design flows – FPGA and ASIC have their own advantages and
disadvantages. FPGAs are widely used for quick prototyping and also implementation
of various multimedia applications by compromising power, area and speed
performance with substantially reduced time-to-market and cost factors. Using
ASIC technology, it has been possible to develop high performance multi-core
processors. Verification and testing of such complex designs is a critical and
challenging task to ensure the quality of the resulting circuits. The advances in EDA
software and CAD tools alleviate the effort necessary to carry out the cumbersome
design and verification process of ICs.

As we understand that the subject of VLSI design is vast, it is quite complex to
find and comprehend the complete details about the design process. This book VLSI
Design: A practical guide for FPGA and ASIC implementations provides an insight
into practical design of VLSI circuits with minimal theoretical arguments. While
this publication is not a complete text book on VLSI design, it is intended to serve
as supplementary or reference material on practical design and implementation of
VLSI circuits. The content of the book is focused for novice VLSI designers and
other enthusiasts who would like to understand the VLSI practical design flows. The
designs are demonstrated using industry standard software from MATLAB®, Mentor
Graphics®, Xilinx®, Synopsys® and Cadence®.

I encourage you to send any errata or feedback for improving the quality of this
book to vikramac@ieee.org.
Thank you,

Adelaide, Australia Vikram Arkalgud Chandrasetty

ix

Contents

1 CMOS Digital Design .. 1
1.1 Design of CMOS SRAM Cell and Array ... 1

1.1.1 Plan of SRAM Cell and Array .. 1
1.1.2 Design of 6 Transistor SRAM Cell 2
1.1.3 Simulations of SRAM Cell ... 2
1.1.4 Layout of SRAM Cell ... 3
1.1.5 Design of SRAM Array .. 4
1.1.6 Simulation of SRAM Array .. 4

1.2 Design of SRAM Chip Circuit Elements .. 5
1.2.1 SRAM Chip Circuit Elements ... 5
1.2.2 Design of Complete SRAM Chip ... 8
1.2.3 Simulations of Complete SRAM Chip 10
1.2.4 Delay Extraction for SRAM Chip Write/Read

Operation ... 10
1.2.5 Re-Design of SRAM Chip for Low Power

Consumption ... 10
Appendix .. 12
References .. 15

2 FPGA Application Design ... 17
2.1 Design of Direct Sequence-Spread Spectrum System 18

2.1.1 PN Sequence Generator .. 18
2.1.2 Transmitter for Direct Sequence-Spread

Spectrum System .. 21
2.1.3 Receiver for Direct Sequence-Spread

Spectrum System .. 24
2.2 FIR Filter Design .. 29

2.2.1 Concepts of FIR Filter .. 29
2.2.2 Low Pass FIR Filter Design .. 30
2.2.3 Distributed Arithmetic Architecture 31
2.2.4 Simulation and Synthesis Results ... 31

x Contents

2.3 Discrete Cosine Transform Algorithms .. 32
2.3.1 Concepts of DCT .. 32
2.3.2 DCT Architectures on FPGA .. 33
2.3.3 Scaled 1-D 8-Point DCT Architecture 34
2.3.4 Simulation and Synthesis Results ... 35

2.4 Convolution Codes and Viterbi Decoding .. 36
2.4.1 Concepts of Convolution Codes .. 36
2.4.2 Viterbi Decoder ... 38
2.4.3 Simulation and Synthesis Results ... 40

Appendix .. 42
References .. 46

3 ASIC Design ... 47
3.1 ASIC Front-End Memory Design ... 47

3.1.1 Introduction ... 47
3.1.2 Memory Architecture and Specifications 48
3.1.3 Implementation and Simulations .. 48
3.1.4 Results Analysis and Conclusion .. 49

3.2 ASIC Front-End Matrix Multiplier Design 51
3.2.1 Introduction ... 51
3.2.2 Problem Statement .. 52
3.2.3 Matrix Multiplier Design .. 52
3.2.4 Implementation and Simulations .. 52
3.2.5 Analysis of Results and Conclusion 54

3.3 Physical Design of Matrix Multiplier ... 57
3.3.1 Introduction to Systolic Array Matrix Multiplier 57
3.3.2 Physical Design Flow .. 59
3.3.3 Results and Conclusion ... 78

Appendix .. 79
References .. 81

4 Analog and Mixed Signal Design .. 83
4.1 Schematic Design of OPAMP ... 83

4.1.1 Introduction ... 83
4.1.2 Two Stage OPAMP Design ... 84
4.1.3 Results ... 93

4.2 Layout Design of OPAMP .. 93
4.2.1 Introduction ... 93
4.2.2 Layout Design ... 93
4.2.3 Summary and Results ... 98

Appendix .. 99
References .. 104

About the Author ... 105

xi

Abbreviations

ADC Analog to Digital Converter
ASIC Application Specific Integrated Circuit
ATM Asynchronous Transfer Mode
AWGN Additive White Gaussian Noise

BJT Bipolar Junction Transistor
BPSK Binary Phase Shift Keying

CAD Computer Aided Design
CDMA Code Division Multiple Access
CDR Clock Data Recovery
CMOS Complementary Metal Oxide Semiconductor
CORDIC Coordinate Rotation Digital Computer
CP Charge Pump
CTO Clock Tree Optimization
CTS Clock Tree Synthesis

DAA Distributed Arithmetic Architecture
DAC Digital to Analog Converter
DCT Discrete Cosine Transform
DEF Design Exchange Format
DFM Design For Manufacturability
DFT Design For Testability
DRAM Dynamic Random Access Memory
DRC Design Rule Check
DSPF Detailed Standard Parasitic Format
DSSS Direct Sequence Spread Spectrum
DTC Divide by Two Circuit
DTFS Deflash Trim Form Singulation
DUT Device Under Test
DWT Discrete Wavelet Transform

xii Abbreviations

EDA Electronic Design Automation
EEPROM Electrically Erasable Programmable Read Only Memory
ERC Electrical Rule Check

FDA Functional Data Analysis
FEC Forward Error Correction Codes
FF Flip Flop
FFT Fast Fourier Transform
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
FSM Finite State Machine

GDS II Graphic Data System II
GUI Graphical User Interface

HDL Hardware Description Language

ICMR Input Common Mode Range
IGFET Insulated Gate Field Effect Transistor
IOV Input Offset Voltage
ITF Interconnect Technology Format
ITRS International Road Map for Semiconductors

JFET Junction Field Effect Transistor
JPEG Joint Photographic Experts Group

LEF Library Exchange Format
LFSR Linear Feedback Shift Register
LP Low Pass
LPE Layout Parasitic Extraction
LSB Least Significant Bit
LUT Look Up Table
LVS Layout Versus Schematic

MAC Multiply And Accumulate
MBE Molecular Beam Epitaxy
MEMS Mico Electro Mechanical System
MOSFET Metal Oxide Semiconductor Field Effect Transistor
MOSIS Metal Oxide Semiconductor Implementation Service
MPEG Moving Picture Experts Group
MSB Most Significant Bit

OVS Output Voltage Swing

PFD Phase Frequency Detector
PG Power Ground
PIT Progressive Image Transmission
PLL Phase Locked Loop
PN Pseudo-random Noise
PPO Post Placement Optimization
PWM Pulse Width Modulation

xiiiAbbreviations

QAM Quadrature Amplitude Modulation
QDR Quad Data Rate
QPSK Quadrature Phase Shift Keying

RC Resistance Capacitance
RF Radio Frequency
ROM Read Only Memory
RTL Register Transfer Level

SDC Synopsys Design Constraint
SDF Standard Delay Format
SNR Signal to Noise Ratio
SOI Silicon On Insulator
SOP Sum Of Products
SPEF Standard Parasitic Exchange Format
SRAM Static Random Access Memory
STA Static Timing Analysis

TDF Top Design Format
TLU Table Look Up
TSMC Taiwan Semiconductor Manufacturing Company
TS-OPAMP Two Stage–Operational Amplifier

USB Universal Serial Bus

VCD Value Change Dump
VCO Voltage Controlled Oscillator

1V.A. Chandrasetty, VLSI Design: A Practical Guide for FPGA and ASIC
Implementations, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-1-4614-1120-8_1, © Springer Science+Business Media, LLC 2011

The demand for electronic and multimedia devices is increasing exponentially. This
demand in-turn has propelled the need for memory chips to process instructions,
store data and other multimedia content. Some of the most common memory
structures used for faster data and program memory access are Static (SRAM) and
Dynamic (DRAM) memory.

In this chapter, a 6 Transistor CMOS based SRAM memory chip of 1 KB capacity
is designed and simulated. The complete chip along with SRAM cells array and circuit
elements is designed using SPICE program. Simulations for the design are done using
LTspice. Schematic and Layout for a single SRAM cell is also designed using Cadence
Schematic and Virtuoso tool respectively. An estimation of parasitic resistance
and capacitance values for the layout drawn for the SRAM cell is extracted Vituoso.

The prerequisite to approach this chapter would be an adequate background of
CMOS digital circuits, Spice programming and basic knowledge of IC layout design.

1.1 Design of CMOS SRAM Cell and Array

1.1.1 Plan of SRAM Cell and Array

Static Random Access Memory (SRAM) is a type of semiconductor memory. The
word static indicates that the memory retains its contents as long as power remains
applied. ‘Random Access’ means that the location in the memory can be written to
or read from in any order regardless of the memory location that was last accessed
[1]. The SRAM cell has the capability to store one bit data as long as the power is
continuously applied. Hence SRAM’s are volatile memory devices. An array of
eight SRAM cells can store 1 byte of data. Considering this unit of 8-bit SRAM
array, a number of these structures can be replicated to build a large memory block.
In this chapter, an SRAM memory of 1 KB is designed using 6 Transistor (6T)
CMOS SRAM cell.

Chapter 1
CMOS Digital Design

2 1 CMOS Digital Design

1.1.2 Design of 6 Transistor SRAM Cell

An SRAM cell can store one bit data on four transistors that form two cross-coupled
inverters [1]. This storage cell has two stable states which are used to denote 0 and 1.
Two additional access transistors serve to control the access to storage cell during
read and write operations. Thus, a combination of 6 transistors is used to store one
bit data.

Access to the cell is enabled by the word line (WL) which controls the two
access transistors. They are used to transfer data for both read and write operations
by connecting the bit lines (BL and BL bar). Although the two bit lines are not
necessary, both the signal and its inverse are typically provided since it improves
noise margins. The symmetric structure of SRAM’s allows for differential signaling,
which makes small voltage swings more easily detectable. A schematic of 6T
CMOS SRAM cell is shown in Fig. 1.1.

1.1.3 Simulations of SRAM Cell

An SRAM cell has three different states of operation: standby when the circuit is
idle, reading when the data has been requested and writing when updating the
contents. Each states are discussed with respect to the Fig. 1.1 as follows [2]:

Standby:
If the word line is not asserted, the access transistors M5 and M6 disconnect the cell
from bit lines. The two cross coupled inverters formed by M1–M4 will continue to
reinforce each other as long as they are disconnected from the outside world.

Reading:
Assuming that the content of memory is 1, when the word line is asserted, the state
stored in the cell is transferred to the bit line which is then read on the data output
port. If the memory content was a 0, the opposite would happen.

Fig. 1.1 6T CMOS SRAM cell

31.1 Design of CMOS SRAM Cell and Array

Writing:
The start of a write cycle begins by applying the value to be written to the bit lines.
The word line is asserted to store the input data on to the cell. The bit line input
drivers are designed to be much stronger than the relatively weak transistors in the
cell itself, so that they can easily override the previous state of the cross-coupled
inverters. Careful sizing of the transistors in the SRAM cell is needed to ensure
proper operation.

The spice simulation for SRAM cell Read operation is shown in Fig. 1.2.
The spice simulation for SRAM cell Write operation is shown in Fig. 1.3.

1.1.4 Layout of SRAM Cell

The layout for SRAM cell is drawn using Cadence Virtuoso for 180 nm technology.
The layout is successfully completed with Design Rule Checks (DRC) and Layout
versus Schematic (LVS) evaluation as well. A snapshot of the layout of SRAM cell
is shown in Fig. 1.4. The resistance and capacitance parasitic parameters are
extracted from the layout using Cadence Virtuoso.

Fig. 1.2 Spice simulations for SRAM cell read operation

Fig. 1.3 Spice simulations for SRAM cell write operation

4 1 CMOS Digital Design

1.1.5 Design of SRAM Array

For this design, 1 KB SRAM chip with 8-bit data I/O is required. Since one bit data
can be stored in a single SRAM cell, an array of 8 cells should satisfy the require-
ment. Hence 1,024 such arrays are required to build 1 KB memory chip. A block
diagram representing an 8-bit memory SRAM array is shown in Fig. 1.5.

1.1.6 Simulation of SRAM Array

An SRAM array (8-bit) is selected or activated by the row and column decoder
based on the input address. The spice simulation for SRAM array section is shown
in Fig. 1.6.

Fig. 1.4 Layout of 6T SRAM cell

Fig. 1.5 Block diagram of 8-bit SRAM array

51.2 Design of SRAM Chip Circuit Elements

1.2 Design of SRAM Chip Circuit Elements

1.2.1 SRAM Chip Circuit Elements

The 6T CMOS SRAM chip requires various circuit elements to execute the desired
memory operations. In this section, a complete SRAM chip circuitry elements such
as, address decoder, sense amplifier, pre-charge circuit and data I/O control logic is
designed using LTspice. The detailed design, schematic and simulation of these
circuit elements are discussed in the following sections:

1.2.1.1 Address Decoder

The Address Decoder is nothing but a simple logic circuitry used to select and
enable the memory cells in the SRAM array corresponding to the input address
value. In this section, 1 KB SRAM is required to be designed. Hence it requires 10
address bits to cover entire 1 KB memory area. A 5:32 NAND based decoder is
designed as row decoder to access 32 bytes of memory area and another 5:32
decoder is used as column decoder in order to access 32 such 32 bytes of memory
areas. There by achieving the desired access to 1 KB memory. The schematic of
NAND based 5:32 decoder is shown in Fig. 1.7.

The 5:32 NAND based decoder is designed and simulated using LTspice [3]. The
simulation results for 5:32 NAND based decoder are shown in Fig. 1.8.

1.2.1.2 Sense Amplifier

A Sense amplifier is an essential circuit in memory chips to speed up the Read
operation. Due to large arrays of SRAM cells, the resulting signal in the event of
Read operation has a much lower voltage swing [4]. To compensate for that swing,
a sense amplifier is used to amplify voltage coming off Bit Line and ~Bit Line. The
voltage coming out of sense amplifier has a full swing voltage of (0–1.8 V). Sense
Amplifier also helps reduce the delay times and power dissipation in the overall

Fig. 1.6 Spice simulations for section of SRAM array

6 1 CMOS Digital Design

SRAM chip. There are many versions of sense amplifier used in memory chips. The
one that is designed in this chapter is a Cross-coupled Sense Amplifier. The sche-
matic of the same is shown in Fig. 1.9.

The Cross-coupled/Feedback Sense amplifier is designed and simulated using
LTspice. The LTspice simulations for the same are shown in Fig. 1.10.

Fig. 1.7 Schematic of
NAND based 5:32 row/
column decoder

Fig. 1.8 Spice simulations of 5:32 NAND based row/column decoder

71.2 Design of SRAM Chip Circuit Elements

1.2.1.3 Pre-Charge Circuit

Safe read and write operations require a modification of the memory array and tim-
ing sequence based on a pre-charge circuit [5]. The schematic of a pre-charge circuit
is shown in Fig. 1.11. The usual voltage of pre-charge is VDD/2. Before reading or

Fig. 1.9 Schematic of
cross-coupled sense amplifier

Fig. 1.10 Spice simulations of cross-coupled sense amplifier

Fig. 1.11 Schematic of a
pre-charge circuit

8 1 CMOS Digital Design

writing to the memory, the bit lines are tied to VDD/2 using appropriate pass gates.
When reading, the BL and ~BL diverge from VDD/2 and reach the “1” or “0” levels
after a short time. As the SRAM cells are based on active devices, the memories
usually provide the fastest read and write access times. A simple pre-charge circuit
consists of a NMOS or PMOS. The drain is connected to VDD/2 and the source to
the bit line. The pre-charging on bit lines is done whenever a Reset is triggered. The
Read cycle using pre-charge circuit is shown in Fig. 1.12 [5].

1.2.1.4 Data I/O Control Logic

The Data Input/Output control logic block is responsible for latching Input data to
the SRAM memory cells and also latching the data that needs to be read on the
output data ports from the specified address in the SRAM.

The Input data control block is basically a data routing block. Data from the
input pins is passed into the block and then transferred to the memory cell array via
the buffer circuit and a pass transistor. The pass transistor controls the flow of data
into the memory cell array.

The Output data control block is a simple controlled buffer circuit. A tri-state
inverter is used to control the flow of data to the Data Out pins on the SRAM chip.
When Read is enabled, the tri-state transistors are turned off and prevent data from
entering in to the SRAM chip to write. The data is accessed at the specified address
on SRAM and latched on the data output pins via Sense amplifier. The I/O control
logic block is shown in Fig. 1.13.

1.2.2 Design of Complete SRAM Chip

An SRAM chip with 1 KB memory can be built using 32 blocks of 32 bytes array.
The design of circuit elements required to support the operation of SRAM chip is

Fig. 1.12 Read cycle using pre-charge circuit

91.2 Design of SRAM Chip Circuit Elements

discussed in Sect. 1.2.1. Using these memory cell arrays and circuit elements, a
complete 1 KB CMOS based SRAM chip can be designed. In this section, 6T
CMOS 1 KB SRAM chip is designed as per the plan shown in Fig. 1.14.

Fig. 1.13 Block diagram of I/O control logic block for 1 KB SRAM chip

Fig. 1.14 Complete plan of 1 KB SRAM chip

10 1 CMOS Digital Design

The approximate chip area required for the designed 1 KB CMOS based SRAM
chip including circuitry elements can be calculated as follows:

No. of MOSFET used in the design (Approx.) = 56,000
Area of a single MOSFET [NMOS/PMOS – average] (Approx.) = 20 m²
Total area = 56,000 × 20 m² = 1,120,000 m²
Estimated chip area for the designed 1 KB SRAM chip = 1.12 mm²

1.2.3 Simulations of Complete SRAM Chip

The complete 1 KB SRAM chip is designed and simulated using LTspice [6]. The
LTspice simulations for the same are shown in Fig. 1.15.

1.2.4 Delay Extraction for SRAM Chip Write/Read Operation

The Write delay and Read access times are extracted for the designed SRAM chip
from the simulations.

The Write delay time is measured when Write is enabled until when the data
appears on the data bit lines. From the LTspice simulations shown in Fig. 1.16, it
can be inferred that the Write delay time is 0.24 ns.

The Read Access time is measured from when Read is enabled until when the
data appears on the data output lines. From the LTspice simulations shown in
Fig. 1.17, it can be inferred that the Read Access time is 0.16 ns.

1.2.5 Re-Design of SRAM Chip for Low Power Consumption

The power consumption is very important factor that needs to be considered while
designing a chip. It is evident that the SRAM chip is operational whenever the

Fig. 1.15 Spice simulations for complete SRAM chip operation

111.2 Design of SRAM Chip Circuit Elements

word-line is asserted for read/write operation. The current passes through the cell
during read/write operation as long as the word-line is asserted. Hence the power
consumption in the chip is directly proportional to the time during which the word-
line is asserted.

Based on the above hypothesis, certain measures can be taken by implementing
appropriate logic to optimize the power consumption. One of the approaches to the
solution for the above mentioned problem is to incorporate clock based assertion of
word-line. The word-line may be asserted only for a short and optimized duration
for which the write or read operation can be performed completely. Hence the power
consumption can be reduced to a certain extent.

The pre-charge voltage that is applied on the bit lines also can be optimized to
minimize the power consumption. The duration for which the charge applied on the
bit lines may be optimized so that it is just sufficient enough for the sense amplifiers
to sense the voltage levels at the shortest time.

Various other measures may be taken based on the floor plan of the transistor,
layout, dimensions of transistors, and other factors etc. to optimize power consump-
tion. Additional circuitry also may be incorporated to obtain an optimized and lowest
power consuming SRAM chips.

Fig. 1.16 Spice simulation of SRAM chip to measure write delay time

Fig. 1.17 Spice simulation of SRAM chip to measure read access time

12 1 CMOS Digital Design

Appendix

13Appendix

14 1 CMOS Digital Design

15Appendix

References

1. Kang S, Leblebici Y (2003) CMOS digital integrated circuits, 3rd edn. Tata McGraw-Hill,
Boston

2. Static Random Access Memory Interface (2007) EE Herald. http://www.eeherald.com/section/
design-guide/esmod15.html. Accessed 4 June 2007

3. LT Spice User Guide (2006) Linear technology. http://LTspice.linear-tech.com/software/scad3.
pdf. Accessed 10 August 2006

4. Mehata K, Zinkovski I (2002) CSE447: Design of 1 KB SRAM chip. The Pennsylvania State
University. http://www.cedcc.psu.edu/khanjan/vlsihome.htm. Accessed 4 June 2007

5. Static RAM Memory (2006) Institut National des Sciences. https://intranet.insa-toulouse.fr/
view/422/content/static_ram.html. Accessed 10 August 2006

6. ECE558: Spice Simulations (2006) University of Massachusetts http://www-unix.ecs.umass.
edu/~zzeng/ece558/spice_www/spice.html. Accessed 10 August 2006

17V.A. Chandrasetty, VLSI Design: A Practical Guide for FPGA and ASIC
Implementations, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-1-4614-1120-8_2, © Springer Science+Business Media, LLC 2011

In wired or wireless communication systems, the information that needs to be
transmitted is not only required to reach the destination but it should be error free
and should make efficient use of the channel bandwidth available. Various DSP
based encoding/decoding algorithms, data compression and noise filtering tech-
niques have been developed to achieve effective and efficient data transmission
with the help of FPGAs for hardware implementation. FPGA based implementa-
tions provide the flexibility of re-programming and quick delivery of the product to
the market.

This chapter demonstrates the design of a simple DS-SS system including the
basic building blocks such as, PN sequence generator, BPSK modulator/demodulator,
BOOTH multiplier, Low Pass Filter and convolutional coding. The system is
designed using Verilog HDL, simulation and functional verification of the design
is performed using ModelSim® XE III 6.0d, and synthesis using Xilinx® ISE. The
design is implemented and tested on Xilinx® Spartan 2E FPGA.

This chapter also demonstrates some of the algorithms and techniques used to
accomplish data integrity and channel bandwidth efficiency in a communication
system such as, Low Pass FIR filter using efficient Distributed Arithmetic (DA)
architecture, Discrete Cosine Transform (DCT) using Scaled DCT architecture and
Convolution coding and Viterbi decoding techniques. The Low Pass-Finite Impulse
Response (LP-FIR) filter coefficients are calculated using MatLab FDA tool based
on the given specification of the filter. The systems are designed using Verilog HDL,
simulation and functional verification of the design is done using ModelSim® XE II
6.0d and synthesis using Xilinx® ISE. The designs are implemented on Xilinx®
Spartan 2E FPGA.

The prerequisites for approaching this chapter would be an adequate background
of basic digital communication system.

Chapter 2
FPGA Application Design

18 2 FPGA Application Design

2.1 Design of Direct Sequence-Spread Spectrum System

Direct Sequence-Spread Spectrum (DS-SS) is a transmission technique in which a
pseudo-noise code, independent of the information data is employed as a modula-
tion waveform to “spread” the signal energy over a bandwidth much greater than the
signal information bandwidth. At the receiver the signal is de-spread using a syn-
chronized replica of the pseudo-noise code. The spreading sequence in DS-SS is
often called as PN sequence.

In this section, the spread signal is modulated using Binary Phase Shift keying
(BPSK) modulation technique in the transmitter and on the receiver side the modu-
lated signal is recovered using BPSK demodulation technique.

The basic building blocks of DS-SS system are shown in Fig. 2.1 [1].

2.1.1 PN Sequence Generator

2.1.1.1 Overview of PN Sequence Generator

A Pseudo-random Noise (PN) sequence/code is a binary sequence that exhibits
randomness properties but has a finite length and is therefore deterministic. PN
generators are heart of every spread spectrum systems. Each symbol or bit in the
sequence is called as Chip [2].

PN generators are based on Linear Feedback Shift Registers (LFSR). The contents
of the registers are shifted right by one position at each clock cycle. The feedback
from predetermined registers or taps to the left most register are XNOR-ed
together.

LFSRs have several variables:

The number of stages in the shift registers•	
The number of taps in the feedback path•	
The position of each tap in the shift registers stage•	
The initial starting condition of the shift register often referred to as the “FILL” •	
state

Fig. 2.1 Basic building blocks of DS-SS system

192.1 Design of Direct Sequence-Spread Spectrum System

The longer the number of stages of shift registers in the PN generator, longer the
duration of the PN sequence before it repeats. For a shift register of fixed length N,
the number and duration of the sequences that it can generate are determined by the
number and position of taps used to generate the parity feedback bit.

A maximum length sequence (L) for a shift register of length N is referred to as
m-sequence and is defined as [3]:

 = −NL 2 1,

E.g. an eight stage LFSR will have a set of m-sequences of length 255.
Some of the most popular types of PN Sequence generators are:

m-sequence codes•	
Barker codes•	
Gold codes•	

2.1.1.2 Design of PN Sequence Generator

Design

Specifications:

Clock frequency for PN sequence generator system, F•	
pn

 = 100 KHz.
LFSR length, N = 4.•	
LFSRs are of D-FF type.•	
X-NOR gate is used for linear parity feedback to the system.•	
FPGA board clock frequency, F•	

b
 = 50 MHz (assumption)

Procedure:

A clock frequency of 100 KHz for PN Sequence generator is designed using a •	
divider of 500 clock cycles of F

b
.

Clock divider = F
b
/F

pn
 = 50 MHz/100 KHz = 500

Maximum length sequence, N = 4 corresponds to 4 D-FF to realize LFSRs of the •	
PN generator system.

Since N = 4, the maximum sequence length L = 24 − 1 = 15.
Hence the sequence repeats every 15 clock cycles.

The Chip rate for the PN sequence generator system is calculated as follows:•	
Chip period, T

c
 = 1/100 KHz = 10 ms

Chip rate, F
c
 = 100 KHz

The bit period for the input data signal is calculated as follows:•	
Data bit period, T

d
 = Max. sequence Length (L) × Chip period (Tc)

For the system, T
d
 = 15 × 10 ms

Hence, the input data bit period for the system is, T
d
 ³ 150 ms.

20 2 FPGA Application Design

Block Diagram

The block diagram of a PN sequence generator for the design specification is shown
in Fig. 2.2.

2.1.1.3 Properties of PN Sequence

Merits of using PN sequence [4]:

 1. Balance property: In each period of the sequence the number of binary ones differ
from the number of binary zeros by at most one digit (when LFSR stage length
is odd)

 = + + + − − + − = +Pn 1 1 1 1 1 1 1 1

 2. Run-length Distribution: A run is a sequence of a single type of binary digits.
Among the sequence of ones and zeros in each period it is desirable that one-half
the runs of each type are of length 1, about one-fourth are of length 2, one-eight
are of length 3 and so on.

 3. Autocorrelation: The origin of the name pseudo-noise is that the digital signal
has an autocorrelation function which is very similar to that of a white noise
signal. For PN sequences the autocorrelation has a large peaked maximum
for perfect synchronization of two identical sequences (like white noise). The
synchronization of receiver is based on this property.

 4. Cross-correlation: Cross-correlation is the measure of agreement between two
different codes pn

1
 and pn

2
. When Cross-correlation is zero the codes are called

Orthogonal. In CDMA multiple users occupy the same RF bandwidth and
transmit simultaneously. When the user codes are orthogonal, there is no

Fig. 2.2 Block diagram of a PN sequence generator

212.1 Design of Direct Sequence-Spread Spectrum System

interference between the users after dispreading and the privacy of the com-
munication of each user is protected.

Demerits of using PN sequence [4]:

 1. Synchronization: The most sensitive aspect of DS-SS system is the synchroniza-
tion of the transmitter’s PN sequence to that of the receiver where an offset of
even one PN chip can result in noise rather than a de-spread symbol sequence.

 2. Increased Bandwidth: As the data signal is spread using PN codes at higher fre-
quency, there is an increase in bandwidth used in the process.

 3. Complexity: There is an increased complexity and computational load both in the
receiver and the transmitter to spread/de-spread the signal.

2.1.1.4 Simulation Results for PN Sequence Generator

The PN sequence generator is designed using Verilog HDL. Functional verification
and simulation is performed using ModelSim.

The simulation results for PN sequence generator is shown in Fig. 2.3.

2.1.2 Transmitter for Direct Sequence-Spread Spectrum System

2.1.2.1 Overview of DS-SS Transmitter System

In DS-SS transmitter, the input data bits are spread by PN sequence generator. The
spreading is actually done by multiplying the data bits with that of the PN sequence
code generated. The frequency of PN sequence is higher than the Data signal. After
spreading, the Data signal is modulated and transmitted. There are several schemes
available for modulation, viz. BPSK, QPSK, M-QAM etc. The most widely used
modulation scheme is the BPSK. In this design, BPSK modulation is used to modu-
late and transmit the spread signal.

The basic building blocks of a simple DS-SS transmitter system are shown in
Fig. 2.4.

Fig. 2.3 Simulation results for PN sequence generator

22 2 FPGA Application Design

2.1.2.2 Design of DS-SS Transmitter

Multiplier Design

Specifications:

PN sequence Chip rate, Tc = 10 •	 ms.
Data signal Bit rate, Tb •	 ³ 150 ms.

Let the data signal be m(t) and PN sequence p(t). The two signals are multiplied
and the multiplied output is the spread signal. Truth table for the multiplier s(t) = m(t).
p(t) is shown in Table 2.1.

From the truth table, it can be inferred that an XNOR gate can act as a multiplier
to spread the data signal with the PN signal. Hence the block diagram for the multi-
plier is shown in Fig. 2.5.

Oscillator Design

Specification:

PN sequence Chip rate, Tc = 10 •	 ms.
Carrier frequency, Fc •	 ³ 5 times Chip rate.

Design:

The oscillator carrier sampling rate is designed•	
Let the Sampling rate of sine wave be Fs = 25 MHz.

Table 2.1 Truth table for the multiplier

m(t) p(t) s(t)

0 0 1
0 1 0
1 0 0
1 1 1

Fig. 2.4 Block diagram of a DS-SS transmitter system

232.1 Design of Direct Sequence-Spread Spectrum System

Number of samples for a full cycle of sine wave is designed•	
Let the number of samples for a full cycle be N = 36.

The oscillator is designed to generate sine wave of carrier frequency Fc•	
() ()≥ = =CFc 5 1 / T 5 1 /10 s 500KHz.µ

For the above design with sampling rate 25 MHz and 36 samples per cycle, the
carrier frequency, Fc = 25 MHz/36 » 700 KHz. The oscillator is implemented using
a Look-Up-Table (LUT) of nine samples and the logic is design in order to oscillate
generating a sine wave.

The block diagram of the oscillator as per the design is shown in Fig. 2.6.

BPSK Modulator Design

Specification:

Spread binary sequence is the input to the system•	
Oscillator carrier sine wave of frequency, Fc •	 » 700 KHz

Fig. 2.5 Block diagram of a data and PN sequence multiplier

Fig. 2.6 Block diagram of an oscillator

24 2 FPGA Application Design

Design:

The BPSK modulator is designed using the spread binary sequence as the input to
the system and the carrier frequency F

c
. The logic is implemented in such a way that

the phase of the sine wave is shifted by 180° whenever the input binary bit
changes.

The block diagram of the BPSK Modulator as per the design is shown in
Fig. 2.7.

2.1.2.3 Simulation Results for DS-SS Transmitter

The DS-SS transmitter is designed using Verilog HDL. Functional verification and
simulation is done using ModelSim. The simulation results for DS-SS transmitter is
shown in Fig. 2.8.

2.1.3 Receiver for Direct Sequence-Spread Spectrum System

2.1.3.1 Overview of DS-SS Receiver System

In DS-SS receiver, the input to the system is the BPSK modulated signal. This signal
would have been affected by noise and other interference in the communication
channel. The DS-SS receiver should be designed carefully to reproduce the data
signal with least error.

Fig. 2.7 Block diagram of BPSK modulator

Fig. 2.8 Simulation results for DS-SS transmitter system

252.1 Design of Direct Sequence-Spread Spectrum System

The BPSK modulated input signal is multiplied by the locally generated carrier
wave by the oscillator. The multiplied signal is then passed through the low pass
filter to get low frequency components only. A decision device is used to approxi-
mate the signal to binary sequence. This binary sequence is the spread sequence of
the data signal.

The most sensitive part of the DS-SS receiver is the synchronization of the
locally generated PN sequence and the sequence obtained from the decision device
[3]. Even a single bit mismatch may lead to noise instead of the data signal. Suitable
technique is used to achieve synchronization and multiply the local PN sequence
code with that of the received PN code. The Data signal is obtained after the multi-
plication process.

In this design, since transmitter and receiver uses common clock on the same
FPGA board, the delay in the receiver is considered and modeled appropriately.
No specific synchronization technique is used.

The block diagram of a simple DS-SS receiver system is shown in Fig. 2.9.

2.1.3.2 Design of DS-SS Receiver

BPSK Demodulator Design

Specifications:

BPSK modulated signal is the input to the system•	
Oscillator carrier sine wave of frequency, Fc •	 » 700 KHz

The input BPSK signal is multiplied with the carrier sine wave generated from
the local oscillator. The design and implementation of the signed BOOTH multi-
plier is discussed in the following section.

The multiplied output will have higher frequency components and channel noise
as well. The high frequency components are eliminated using a suitable Low Pass
Filter. Design of rectangular window Low-Pass FIR filter is also discussed in the
following section.

The filtered low frequency component will have distortion in the signal. Hence a
suitable ‘Decision Device’ is used to smoothen to binary sequence.

Fig. 2.9 Block diagram of a DS-SS receiver system

26 2 FPGA Application Design

BOOTH Multiplier Design

The BPSK modulated input signal is multiplied with the carrier sine wave generated
using the local oscillator. A signed multiplier is designed using BOOTH multiplier
algorithm [5].

The BOOTH algorithm used to implement the signed multiplier is as follows:

The multiplicand X and multiplier Y is loaded into a register. Bit adjustment is •	
made with X and Y so that bits length of X and Y are equal. Bit ‘0’ is padded in
order to achieve it
An accumulator is used to store the result. The length of the accumulator should •	
be twice the length of multiplicand or multiplier. A = 2X or 2Y
The multiplicand X is loaded into the accumulator from LSB•	
A dummy bit of 0 is appended with the accumulator A at the LSB•	
During the multiplication operation, the pair of LSB of the accumulator and the •	
dummy bit is considered to follow further arithmetic operations
Depending on the bit pair obtained in the previous step, following operations are •	
performed:

“00” – Arithmetic shift right of the Accumulator. ○
“01” – Add multiplier Y to the Accumulator A (from MSB of A) and ○
Arithmetic shift right of Accumulator.
“10” – Subtract multiplier Y from the Accumulator A (from MSB of A) and ○
Arithmetic shift right of Accumulator.
“11” – Arithmetic shift right of the Accumulator. ○

Shift operations are performed along with dummy bit.
The above operations are continued till MSB of multiplicand X is shifted off •	
from the accumulator A.

In this section, 5-bit signed BOOTH multiplier is designed and implemented.

Low Pass Filter and Decision Device Design

Specifications:

The multiplied output from the BPSK demodulator is the input to this system•	
A Low Pass Filter with cutoff frequency, f = 105 KHz•	
Oscillator carrier wave sampling rate, Fs = 25 MHz•	

Design:

A Rectangular window FIR filter is designed with a cutoff frequency, f = 105 KHz.
Let the length of impulse response for the filter, N = 2.
The desired response of the ideal Low-pass filter is given by,

272.1 Design of Direct Sequence-Spread Spectrum System

 = ≤ ≤jw
dH (e) 1, 0 f 105 KHz, otherwise 0

The normalized angular frequency, w
c
 = 2pF/Fs = 8.4p × 10−3

 = ≤ ≤ ≤ ≤jw
d c cH (e) 1,0 ; 0,ω ω ω ω π

The filter coefficients are given by,

−= × ≠3

dh (n) sin(8.4 10 N) / (N), where N 0.π π

Therefore, the filter coefficients are,

− −= × = ×3 3h(0) 8.40 10 and h(1) 8.39 10

In this design, one sample of the signal is stored in a register and then it’s added
with the next sample. The filtered output samples obtained is then processed by the
Decision Device. The output of the Decision Device is held High (1) when the out-
put of the filter is non-negative otherwise it’s made Low (0).

2.1.3.3 Noise Models and Synchronization

Noise models [1]:

•	 Multi Path Channels: In wireless channels there exists often multi path propaga-
tion. Since there are more than one path from the transmitter to the receiver.
Such multi paths may be due to (a) atmospheric reflection or refraction (b)
Reflections from ground, buildings or other objects. Corrective actions are taken
to eliminate noise due to multi path channels using appropriate synchronization
techniques.

•	 Jamming: The goal of the jammer is to disturb the communication of his adver-
sary. Protection against jamming waveforms is provided by purposely making
the information-beating signal occupy a bandwidth far in excess of the minimum
bandwidth necessary to transmit it. This has the effect of making the transmitted
signal assume a noise-like appearance so as to blend into background. The trans-
mitted signal thus enabled to propagate through the channel undetected by
anyone who may be listening. Spread spectrum is a method of “camouflaging”
the information bearing signal.

In this design, the noise effect is not modeled as the transmitter and receiver is on
the same FPGA board without any air interface.

Synchronization techniques [1]:

For proper operation of DS-SS system, the locally generated PN sequence in the
receiver is synchronized to the PN sequence of the transmitter generator in both its

28 2 FPGA Application Design

rate and position. A slight misalignment in the sequence results in noise instead of
data signal.

The process of synchronizing the locally generated PN sequence with the
received PN sequence is usually accomplished in two steps. The first step called
acquisition consists of bringing the two spreading signals into coarse alignment
with one another. Once the received PN sequence has been acquired, the second
step called tracking takes over and continuously maintains the best possible wave-
form fine alignment by means of a feedback loop. This is essential to achieve high-
est correlation power and thus highest processing gain (SNR) at the receiver.

In this design, synchronization technique is not modeled since the same clock
and PN sequence for receiver and transmitter is implemented on the same FPGA
board. A delay of one clock pulse is modeled while multiplying the PN code in the
receiver to compensate the filtering delay of one sample.

2.1.3.4 Simulation Results for DS-SS Receiver

The DS-SS receiver is designed using Verilog HDL [6]. Functional verification and
simulation is done using ModelSim.

The simulation results for DS-SS receiver is shown in Fig. 2.10.
The simulation results for DS-SS modem is shown in Fig. 2.11. The synthesis

report obtained from Xilinx ISE is also shown in Fig. 2.12. The modem can operate
at a maximum frequency of 64 MHz on Xilinx Spartan 2E FPGA.

Fig. 2.10 Simulation results for DS-SS receiver system

Fig. 2.11 Simulation results for DS-SS modem

292.2 FIR Filter Design

2.2 FIR Filter Design

2.2.1 Concepts of FIR Filter

A discrete-time filter produces a discrete-time output sequence for the discrete-time
input sequence. In the Finite Impulsive Response (FIR) system, the impulse response
sequence is of finite duration, i.e. it has a finite number of non-zero terms and hence
the filter coefficients are also constant. The response of the FIR filter depends only
on the present and past input samples (a causal system). Thus making the system
always stable.

The difference equation for length ‘M’ FIR filter is given by [4],

−= × + × − + × − + × − +… × − +0 1 2 3 M 1y(n) b (n) b (n 1) b (n 2) b (n 3) ..b (n M 1)

×∑M-1

K=0 kY(n)= b (n-K)

where, [b
k
] is the set of filter coefficients.

Some of the important characteristics of FIR digital filter are as follows [4]:

They can have an exact linear phase•	
They are always stable•	
The design methods are generally linear•	
They can be realized efficiently in hardware•	
The filter start-up transients have finite duration•	
The filter coefficients are constant for the given order of the filter•	

Fig. 2.12 Synthesis report for DS-SS modem

30 2 FPGA Application Design

In this section a Low-Pass FIR filter is designed using MatLab FDA tool for the
given specifications. Simulated using ModelSim® and implemented using Xilinx®
2E FPGA.

2.2.2 Low Pass FIR Filter Design

The Low Pass FIR (LPF) specifications given in the assignment are,

F•	
pass

 = 1 KHz, F
stop

 = 1.3 KHz
Pass band ripple = 3 dB, Stop band ripple = 60 dB•	

Assuming,

Sampling frequency of the input signal, F•	
s
 = 3 KHz.

FIR Filter design method: Equiripple with density factor 16.•	

The filter coefficients are obtained using MatLab FDA tool for the given specifica-
tion. The order of the filter, N = 16. The filter coefficients h(n) are as shown in Table 2.2.
The frequency response for the given filter specification is shown in Fig. 2.13

Table 2.2 Filter coefficients for LP FIR filter with order 16

Transfer function Coefficients Transfer function Coefficients

h(0) 0.0328 h(8) 0.5763
h(1) 0.0816 h(9) −0.0550
h(2) −0.0065 h(10) −0.0694
h(3) −0.0047 h(11) 0.0847
h(4) 0.0847 h(12) −0.0047
h(5) −0.0694 h(13) −0.0065
h(6) −0.0550 h(14) 0.0816
h(7) 0.5763 h(15) 0.0328

Fig. 2.13 Frequency response (Magnitude) for the designed LP FIR filter

312.2 FIR Filter Design

2.2.3 Distributed Arithmetic Architecture

Distributed Arithmetic (DA) is an important technique to implement digital signal
processing functions in FPGAs. DA provides an approach for multiplier-less imple-
mentation of DSP systems. It is an algorithm that can perform multiplication with
Look-Up Table (LUT) based schemes. DA specifically targets the sum of products
(also referred to as the vector dot product) computation that is found in many of the
important DSP filtering and frequency transforming functions [7].

In this section, LP FIR filter is designed and implemented using DA architecture.
By observing the filter coefficients in Table 2.2, the second half (8–15) of filter coef-
ficients are mirror image of the first half (0–7). Hence the SOP for second half can
be accessed from the first half by re-ordering the input bits appropriately. The first
half (0–7) coefficients can be broken into two parts and SOP can be calculated and
stored in two different blocks. Hence, two LUTs of length 16 are sufficient to store
the SOP for the obtained filter coefficients.

The basic functional operation of DA architecture is shown in Fig. 2.14.

2.2.4 Simulation and Synthesis Results

The LP FIR filter is designed using Verilog HDL. The design is simulated using
ModelSim®. The impulse response for the LP FIR filter system is shown in Fig. 2.15.
In this design, fixed point representations of real numbers are used. Filtered output

Fig. 2.14 Block diagram to illustrate the functional operation of DA architecture

32 2 FPGA Application Design

values have lower 8 bits representing decimal part. Hence the exact filtered output
values from the simulation results are calculated as follows:

 ()= − − − − − − − − 8Y 8,22, 2, 12,22, 18, 13,148,148, 13, 18,22, 12, 2,22,8 / 2

= − − − −
− − − −

Y (0.0312,0.8593, 0.0078, 0.0468,0.8593, 0.0703, 0.0507,0.5781,

0.5781, 0.0507, 0.0703,0.8593, 0.0468, 0.0078,0.8593,0.0312)

The design is synthesized and implemented on Xilinx® Spartan 2E FPGA. The
HDL synthesis report is shown in Fig. 2.16.

2.3 Discrete Cosine Transform Algorithms

2.3.1 Concepts of DCT

The Discrete Cosine Transform (DCT) is a technique that converts a spatial
domain waveform into its constituent frequency components as represented by a set

Fig. 2.16 HDL synthesis report for LP FIR filter design

Fig. 2.15 Simulation results for impulse response for the LP FIR filter system

332.3 Discrete Cosine Transform Algorithms

of coefficients. The process of reconstructing a set of spatial domain samples is
called the Inverse Discrete Cosine Transform (IDCT). The equation for 1-D N-point
DCT is given by [8],

−

=

+
= ≤ ≤ −∑

1

0

(2 1)
() () ()cos[] 0 1

2

N

n

n k
X k k x n k N

N

π
α

where,

α α= = ≤ ≤ −1 2

(0) , () 1 1k for k N
N N

One-Dimensional DCT has most often been used in two-dimensional DCT by
employing the row-column decomposition which makes it suitable for hardware
implementation. Typically the DCT coefficients produced have most of the block’s
energy in a few frequency domain elements and hence quantization and coding is
applied after DCT to provide lossless as well as lossy actual compression [8].

For data compression of image/video frames, usually a block of data is converted
from spatial domain samples to another domain (usually frequency domain) which
offers more compact representation. DCT technique is used in a wide range of signal
and image processing applications. Some of the most popular applications are [8],

JPEG and JPEG2000 image compression standards•	
MPEG digital video standards•	
H.261 and H.263 video conferencing standards•	
Progressive Image Transmission (PIT) systems: teleconferencing, medical diag-•	
nostic imaging and security services

2.3.2 DCT Architectures on FPGA

The DCT can be implemented on FPGA using various architectures. Some of the
popular one’s reported in [9] are discussed below:

•	 Distributed Arithmetic: The N-points DCT can be considered as N parallel filters.
The DCT on the array requires N shift registers for parallel-to-serial conversion,
N LUT memories and N shift-accumulators. All the N memories receive the
same address. One shift-register and a shift-accumulator are each mapped to an
add-shift cluster, while the LUT is mapped to a part of a memory cluster.

Area usage: 8 shift registers + 8 ROMs + 8 Accumulators
•	 Mixed ROM: The 8-point 1D-DCT can be expressed as the product of an 8 × 8

matrix by an eight element column vector. Through algebraic manipulations, this
matrix can be reduced to 4 × 4 matrix. Hence, the number of words per ROM is
reduced to only 16 but some overhead has been incurred in the form of adders to
calculate the address of the ROMs.

Area usage: 4 adders + 4 subtractions + 8 shift registers + 8 accumulators + 8
ROMs

34 2 FPGA Application Design

•	 CORDIC Rotator based: The DCT computation is done using CORDIC rotator
[10]. Since the memory is an integral part of the DA, and ROM size increases
exponentially with respect to vector size N. Many techniques have been devel-
oped for reducing the size of ROM. The CORDIC algorithm reformulates the
1-D DCT so that the ROM size is reduced to a fix size of four words, independent
of the bandwidth of the input data. The DA functionality is implemented by
converting parallel data to serial through shift registers and using this data to
formulate the address of the memories. This implementation requires 6-CORDIC
and 16 butterfly adders for an 8-point 1-D DCT. The CORDIC rotators are imple-
mented through ROM and shift accumulators, while butterfly adders are imple-
mented through add-shift clusters [11].

Area usage: 8 adders + 8 subtractions + 8 shift registers + 12 accumulators + 12
ROMs

•	 Skew circular convolution: This technique starts with re-ordering the input
sequences. Then skew circular convolutions are performed on the reordered
inputs, which give odd-indexed transformed sequence. The transformed
sequences are re-ordered for the proper output sequences.

Area usage: 4 adders + 4 subtractions + 8 shift registers + 8 accumulators + 8
ROMs

2.3.3 Scaled 1-D 8-Point DCT Architecture

Since using LUTs results in a very efficient and regular structure suitable for VLSI
implementation, especially on the FPGAs, there has been great interest in develop-
ing similar kind of LUT based DCT architecture. The Scaled DCT architecture is
also a LUT based design. The architecture is primarily designed by making mathe-
matical and trigonometric manipulation using 1-D 8-point DCT equation on eight
input data samples. In this design, LUT based Distributed Arithmetic architecture is
used. The basic building blocks of this architecture are [9]:

20 butterfly adders•	
12 shift registers•	
10 LUTs•	

The constant scale factor (Y0 and Y4) is not considered in this implementation
as that can be combined with the quantization constants without requiring any addi-
tional hardware such as LUTs. The simplified 1-D 8-point DCT equations are as
shown below:

0 0 1 2 3 4 5 6 7Y 2 (X X X X X X X X) / 4 = √ × + + + + + + +

[]= − × + − × + − × + − ×1 0 7 1 6 2 5 3 4Y (X X) A (X X) B (X X) C (X X) D / 2

[]= + − − × + + − − ×2 0 7 3 4 1 6 2 5Y (X X X X) E (X X X X) F / 2

352.3 Discrete Cosine Transform Algorithms

[]= − × + − × + − × + − ×3 0 7 6 1 5 2 4 3Y (X X) B (X X) D (X X) A (X X) C / 2

 = √ × − − + + − − + 4 0 1 2 3 4 5 6 7Y 2 (X X X X X X X X) / 2

[]= − × + − × + − × + − ×5 0 7 6 1 2 5 3 4Y (X X) C (X X) A (X X) D (X X) B / 2

[]= + − − × + + − − ×6 0 7 3 4 2 5 1 6Y (X X X X) F (X X X X) E / 2

[]= − × + − × + − × + − ×7 0 7 6 1 2 5 4 3Y (X X) D (X X) C (X X) B (X X) A / 2

For N = 8,
A = cos(p/16)
B = cos(3p/16)
C = cos(5p/16)
D = cos(7p/16)
E = cos(p/8)
F = cos(3p/8)

The constant values A, B, C, D, E and F that is required to be multiplied with
input X is performed by LUT based Distributed Arithmetic architecture. The block
diagram of Scaled DCT architecture for 1-D 8-point samples is shown in Fig. 2.17.

2.3.4 Simulation and Synthesis Results

In this section, 1-D 8-point DCT is designed using Scaled DCT architecture and
coded in Verilog HDL. The design is simulated using ModelSim®. The DCT for the
input samples, X = (4, 2, 8, 4, 4, 6, 6, 6) is as shown in Fig. 2.18.

Fig. 2.17 Block diagram of scaled DCT architecture

36 2 FPGA Application Design

 Y (5120 / 2, 544, 58, 372, 512 / 2,404,807,439)= √ − − − − √

In this design, fixed point representations of real numbers are used. DCT output
values have lower eight bits representing decimal part of DCT output. Hence the
exact DCT output values from the simulation results are calculated as follows:

8Y (5120 / 2, 544, 58, 372, 512 / 2,404,807,439) / 2= √ − − − − √

 Y (14.1421, 2.0882, 0.2242, 1.4221, 1.4142,1.6011,3.1543,1.7475)= − − − −

This design is implemented on Xilinx® Spartan 2E FPGA. The HDL [13] syn-
thesis report is shown in Fig. 2.19.

2.4 Convolution Codes and Viterbi Decoding

2.4.1 Concepts of Convolution Codes

Forward Error Correction (FEC) technique is used to improve the capacity of chan-
nel by adding some carefully designed redundant information to the data that is
transmitted over the communication channel. The process of adding this redundant
information is known as channel coding.

Fig. 2.18 Simulation results for 1-D 8-point DCT

372.4 Convolution Codes and Viterbi Decoding

Convolutional coding and Block coding are the two major forms of channel
coding. Convolutional codes operate on serial data, one or a few bits at a time.
Block codes operate on relatively large message blocks. There are a variety of use-
ful convolutional and block codes, and a variety of algorithms for decoding the
received coded information sequences to recover the original data. Convolutional
encoding with Viterbi decoding is a FEC technique that is particularly suited to a
channel in which the transmitted signal is corrupted mainly by Additive White
Gaussian Noise (AWGN) [12].

The technique of convolutional coding transforms a binary message into a
sequence of symbols to be transmitted. Upon reception, the received information
must be related back to the original message bits. If there are no errors the process
of decoding is readily accomplished. In general, convolutional coding techniques
are applied to very long messages, such as the continuous stream of data from a
satellite television transmitter.

A convolutional encoder with two shift registers is shown in Fig. 2.20.

Fig. 2.19 HDL synthesis report for 1-D 8-point DCT

Fig. 2.20 Block diagram of convolutional encoder for a rate ½., constraint length K = 3

38 2 FPGA Application Design

The system block diagram can be expressed with the following equations:

 A(n) x(n) x(n 1) x(n 2)= + − + −

 B(n) x(n) x(n 2)= + −

The basic building components of the convolutional encoder are flip-flops
comprising the shift registers and Exclusive-OR gates comprising the associated
Modulo-Two adders. The number of shift registers in the encoder generating the
encoded sequence determines the capability of the decoder to detect and correct num-
ber of bit errors received on the receiver in the obtained encoded sequence of data.

In this encoder, data bits are provided at a rate of ‘k’ bits per second. Channel
symbols are output at the rate of n = 2k symbols per second. The constraint length
K = 3 is the length of convolutional encoder, i.e., how many k-bit stages are avail-
able to feed the combinatorial logic that produces the output symbols. The input bit
is stable during the encoder cycle. The encoder cycle starts when an input clock
edge occurs. When the input clock edge occurs, the output of the left-hand flip-flop
is clocked into the right-hand flip-flop, the previous input bit is clocked into the left-
hand flip-flop and a new input bit becomes available. Then the outputs of the upper
and lower modulo-two adders become stable. The output selector cycles through
two states. In the first state, it selects and outputs the output of the upper modulo-two
adder. In the second state, it selects and outputs the output of the lower modulo-
two adder.

The state transition table that lists the channel output symbols, given the current
state and the input data is shown in Table 2.3.

2.4.2 Viterbi Decoder

A Viterbi decoder uses the Viterbi algorithm for decoding bit stream that has been
encoded using Convolutional codes. There are other algorithms for decoding a con-
volutional encoded stream (Ex: Fanon algorithm). The Viterbi algorithm is the most
resource-consuming but it does the maximum likelihood decoding [12]. Viterbi
decoding has the advantage that it has a fixed decoding time. It is well suited for
hardware decoder implementation. But its computational requirements grow expo-
nentially as a function of constraint length. So it is usually limited in practice to
constraint lengths of K £ 10.

Current state
Output symbols,
if input = 0

Output symbols,
if input = 1

00 00 11
01 11 00
10 10 01
11 01 10

Table 2.3 State transition
table for the convolutional
encoder

392.4 Convolution Codes and Viterbi Decoding

The most important concept to aid in understanding the Viterbi algorithm is the
Trellis diagram. The Trellis diagram for the convolutional encoder rate ½, constraint
length K = 3 is shown in Fig. 2.21.

The four possible states of the encoder are depicted as four rows of horizontal
dots. There is one column of four dots for the initial state of the encoder and one for
each time instant during the message. For a 4-bit message with two encoder mem-
ory flushing bits, there are six time instants in addition to t = 0, which represents the
initial condition of the encoder. The solid lines connecting dots in the diagram rep-
resent state transitions when the input bit is a one. The dotted lines represent state
transitions when the input bit is a zero. The expanded version of the transition
between one time instant to the next is shown in Fig. 2.22. Notice the correspon-
dence between the arrows in the Trellis diagram and the state transition diagram.
Since the initial condition of the encoder is State 00, and the two memory flushing
bits are zeros, the arrows start out at State 00 and end up at the same state [12].

Each time when a pair of channel symbols is received, the metric- Hamming dis-
tance between the received channel symbol pair and the possible channel symbol pairs
is calculated for each state. The Hamming distance is computed by simply counting
how many bits are different between the received channel symbol pair and the possible

Fig. 2.21 Trellis diagram for Viterbi decoding with encoder rate ½ and K = 3

Fig. 2.22 State transitions
from one state to the next
state

40 2 FPGA Application Design

channel symbol pairs. The results can only be zero, one, or two. The metrics computed
at each time instant for the paths between the states at the previous time instant and the
sates at the current time instant are called branch metrics. For the first time instant, the
results are stored as “accumulated error metric” values associated with the states. For
the second time instant onwards, the accumulated error metrics will be computed by
adding the previous accumulated error metrics to the current branch metrics. The
process is continued for k + m symbols (for k bits message and m shift registers). The
smallest accumulated error metric in the final state indicates how many channel sym-
bol errors occurred. This survival path which has the least accumulated error metric is
selected. Original message bits are recreated by interpreting the bits from the solid
and dotted arrows from the survival path in the Trellis diagram. The two flushing bits
at the end are discarded from the recreated message bits.

In this section, Viterbi decoder for 4-bit message is designed using Viterbi
algorithm [12].

Four registers of 6-bit width are used to store the survival path at each state •	
transition.
Four registers of 4-bit width are used to store the accumulated error metrics at •	
each state.
At the end of the last state, the survival path having the least accumulated error •	
metrics is used to reproduce the estimated input message bits from the survival
path register.

2.4.3 Simulation and Synthesis Results

In this section, Convolutional encoder is designed using two shift-registers and
Viterbi decoder is designed using Accumulated Error Metrics algorithm. The design
is simulated using ModelSim®.

Assuming the input data to the convolutional encoder is x = (1001), the encoded
sequence is, e = (11 10 11 11 10 11). Following different cases are simulated to test
the Viterbi decoder design:

 1. No error in the received data from the channel. The simulation result for this case
is shown in Fig. 2.23.
Received data: 11 10 11 11 10 11

 2. One bit error in the received data from the channel. The simulation result for this
case is shown in Fig. 2.24.

Fig. 2.23 Simulation results for Viterbi decoding with no error in received channel data

412.4 Convolution Codes and Viterbi Decoding

Received data: 11 11 11 11 10 11
 3. Two bits error in the received data from the channel. The simulation result for

this case is shown in Fig. 2.25.
Received data: 11 11 11 11 11 11

This design is implemented on Xilinx® Spartan 2E FPGA. The HDL synthesis
report is shown in Fig. 2.26.

Fig. 2.24 Simulation results for Viterbi decoding with one bit error in received channel data

Figure 2.25 Simulation results for Viterbi decoding with two bits error in received channel data

Fig. 2.26 HDL synthesis report for convolutional encoder and Viterbi decoder

42 2 FPGA Application Design

Appendix

43Appendix

44 2 FPGA Application Design

45Appendix

46 2 FPGA Application Design

References

 1. Meel J (1999) Introduction to spread spectrum, Cirius Communications, Belgium
 2. Miller A, Gulotta M (2004) PN generators (XAPP211), Xilinx Inc
 3. An Introduction to Direct Sequence – Spread Spectrum (2003), Maxim Integrated Products Inc
 4. Proakis JG, Manolakis DK (1995) Digital signal processing: principles, algorithm and applica-

tion, 3rd edn. Prentice Hall, Englewood Cliffs
 5. Booth’s Algorithm: Multiplication and Division (2010) http://www.scribd.com/doc/3132888/

Booths-Algorithm-Multiplication-Division. Accessed Oct 2010
 6. Palinitkar S (2003) Verilog HDL: a guide to digital design and synthesis, 2nd edn. Prentice

Hall, Palo Alto
 7. Grover RS, Shang W, Li Q (2002) A faster distributed arithmetic architecture for FPGAs. In:

ACM/SIGDA 10th International symposium on field-programmable gate arrays, Monterey,
CA, USA, 24–26 Feb 2002, pp 31–39

 8. Marshall D (2001) The discrete cosine transform. Cardiff Schoo of Computer Science &
Informatics. http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html. Accessed 10 October 2006

 9. Khawan S, Baloch S, Pai A, Ahmed I, Aydin N, Arslan T, Westall F (2004) Efficient imple-
mentation of mobile video computations on domain-specific reconfigurable arrays. In:
Conference on design, automation and test in Europe, vol 2, Paris, 16–20 Feb 2004, p 21230

 10. Meyer-Baese U (2006) Digital signal processing with field programmable gate arrays, 2nd
edn. Springer, Berlin/New York

 11. Andraka Consulting Group, Inc. (2007) The CORDIC algorithm. http://www.andraka.com/
cordic.htm. Accessed 2 April 2007

 12. Fleming C (2006) A tutorial on convolutional coding with Viterbi decoding. Spectrum applica-
tions. http://home.netcom.com/%7Echip.f/viterbi/tutorial.html. Accessed 10 April 2006

 13. Vahid F, Lysecky R (2007) Verilog for digital design. Wiley, Hoboken

47V.A. Chandrasetty, VLSI Design: A Practical Guide for FPGA and ASIC
Implementations, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-1-4614-1120-8_3, © Springer Science+Business Media, LLC 2011

The evolution in the VLSI industry contributing to the rapid technology changes,
tremendous competition among vendors and demand in the market for ICs all these
factors have led to consider the time to market factor with utmost importance. With
maximum performance and least turnaround time, ASIC seems to be the best option
to meet the ever growing demands for quality chips.

In this chapter, a comprehensive study on the ASIC design flow with various
constraints is done along with an implementation of two simple systems to demon-
strate the concept. SRAM architecture is designed and implemented using ASIC
synthesis tools. Also, a Systolic Array Matrix multiplier is designed and modeled
using Verilog HDL, Synthesized using Synopsys Design Compiler, Static Timing
Analysis of the designs using Prime Time, Formal Verification using Formality and
functional simulation of the synthesized net-list using ModelSim.

This chapter also demonstrates the Physical design process for Systolic Array
Matrix multiplier. Synopsys Astro is used for the Physical design process. ModelSim
and Prime Power are used as supplementary tools for power analysis of the design.

The pre-requisite to approach this chapter would be an adequate knowledge of
ASIC design flow, concepts of physical design, CAD tools, Verilog HDL and basics
of digital electronics.

3.1 ASIC Front-End Memory Design

3.1.1 Introduction

The explosive growth of the internet has increased the demand for high speed data
communications systems that require fast processors and high-speed interfaces to
peripheral components. While the processors in these systems have improved in
performance, Static RAM (SRAM) performance has not kept pace. New SRAM
architectures are evolving to support the throughput requirements of current systems [1].
Some of the well-known architectures are discussed in the following sections.

Chapter 3
ASIC Design

48 3 ASIC Design

3.1.2 Memory Architecture and Specifications

The Dual clock synchronous SRAM architecture uses two independent clocks with
two different address buses for write and read operations [2]. The functional block
diagram of this architecture is shown in Fig. 3.1.

The Dual clock synchronous SRAM architecture is used to increase the through-
put of the system. Since two independent address buses is used for write and read
operations controlled by two clocks, the read and write operations can be performed
simultaneously and independently, hence enhancing the overall efficiency of the
system in memory operations [3].

In this section, Dual clock synchronous SRAM architecture is chosen to design
and implement the design. A memory bank of 128 bytes is designed with two syn-
chronous read and write clocks, synchronous read and write enable control signal
and a synchronous reset for the entire design. Data bus of 8 bits wide for input and
output is used for write and read operations respectively. Address bus of 7 bits wide
is used each for read and write operations.

3.1.3 Implementation and Simulations

The Dual clock synchronous SRAM is designed and implemented using Verilog
HDL. Functional simulations are carried out using ModelSim. The design is synthe-
sized using Synopsys Design Compiler [4] and Static Timing Analysis (STA) is
done using Prime Time. Synopsis Design Constraints (SDC) file is also generated
from Prime Time for this design. Formal verification on the generated net-list is
performed using Formality tool.

The functional simulation of the design using ModelSim is shown in Fig. 3.2.

Fig. 3.1 Functional block diagram of dual clock synchronous SRAM architecture

493.1 ASIC Front-End Memory Design

3.1.4 Results Analysis and Conclusion

The dual clock synchronous SRAM design is loaded to Prime Time for Static
Timing Analysis. Following results have been analyzed for the design:

 1. The end point slack analysis for the design with the selection of a maximum of
100 endpoints and 8 bins is represented by the histogram shown in Fig. 3.3.

 2. The path slack analysis for the design with the selection of a maximum of 100
paths and 8 bins is represented by the histogram shown in Fig. 3.4.

 3. The net capacitance analysis for the design with the selection of a maximum of
100 nets and 8 bins is represented by the histogram shown in Fig. 3.5.

Fig. 3.2 Simulation of dual clock synchronous SRAM

Fig. 3.3 End point slack histogram for dual clock synchronous SRAM

50 3 ASIC Design

Fig. 3.4 Path slack histogram for dual clock synchronous SRAM

Fig. 3.5 Net capacitance slack histogram for dual clock synchronous SRAM

513.2 ASIC Front-End Matrix Multiplier Design

The reports obtained from the synthesis and static timing analysis of the design
are as follows:

 1. Timing Analysis
Clock Read = 3.2 ns with Setup Slack = 0 ns and Hold Slack = 0.86 ns
Clock Write = 2 ns with Setup Slack = 0 ns and Hold Slack = 0.99 ns

 2. Area Report
Total Area = 131324.37 mm²
Combinational Area = 121873 mm²
Sequential Area = 7575.50 mm²
Net Interconnect Area = 1875.87 mm²

 3. Power Report
Total Dynamic Power = 917.97 mW
Cell Internal Power = 328.32 mW
Net Switching Power = 589.64 mW
Cell Leakage Power = 68.81 mW

 4. Components Report
Number of Ports = 35
Number of Nets = 1593
Number of Cells = 1559
Number of References = 39

Conclusion:

The Dual clock synchronous SRAM is designed for a memory bank of 128 bytes
only. The same design can be enhanced for larger memory bank using the same
architecture. The existing architecture makes use of two independent read and write
clocks which increases the throughput compared to the traditional single clock archi-
tectures. This Dual clock architecture can be further enhanced by using a single clock
with positive edge triggering for read operation and negative edge triggering for
write operation, making the design to work with a single clock. But in this case, extra
clock period is provided for write operation which may not be necessary.

3.2 ASIC Front-End Matrix Multiplier Design

3.2.1 Introduction

The computational speed greatly matters in high-end designs where multiplication
is incorporated. As multiplication is one of the high resource consuming process,
the matrix multiplier is one such process which involves multiplication. Various
architectures and designs are proposed in order to optimize the efficiency of the
multipliers. This section discusses on design and implementation of one such matrix
multiplier architecture.

52 3 ASIC Design

3.2.2 Problem Statement

In this section a matrix multiplier is designed and implemented with the following
specifications:

Systolic Array architecture is used to design the multiplier•	
Single clock is used to control the entire design•	
Two matrices of order 3 × 3 to be multiplied is designed•	
The matrix multiplier design is hierarchical•	
The data width is four for each of the input matrix elements•	
The multiplier accepts the data stored in memory•	
A positive slack of around 15% of the clock is ensured•	
Full Scan Chain DFT methodology is incorporated to make the design Observable •	
and Controllable

3.2.3 Matrix Multiplier Design

The Systolic Array architecture is used to design the 3 × 3 matrix multiplier system.
This architecture consists of Data Processing Units (DPU) arranged in the form of
an array. The DPU is nothing but a Multiplier and Accumulate (MAC) unit which
processes each data entering the system. This kind of architecture incorporates par-
allel processing and pipelining mechanism, hence increasing the throughput and
latency of the system [5]. The functional block diagram of Systolic Array matrix
multiplier is shown in Fig. 3.6.

The schematic of Systolic array blocks generated by Synopsys Design Compiler is
shown in Fig. 3.7. The matrix A and B that needs to be multiplied is fed in to the mul-
tiplier with row and columns of the matrices arranged with single clock delays. At the
end of 7 clock cycles, the value in the accumulator of DPUs itself is the final multi-
plied values of matrix A and B. Hence the latency of the system is 7 clock cycles.

3.2.4 Implementation and Simulations

The Systolic array matrix multiplier of order 3 × 3 is designed and modeled using
Verilog HDL. The pre-synthesis functional verification of the design is simulated
and tested using ModelSim. The synthesis is carried out using Synopsys Design
Compiler (DC) [6]. A script is used to automate DC for synthesis process.
 Full multiplexed scan DFT is incorporated to make the system Testable,
Controllable and Observable. The synthesized design is ported to Prime Time for
Static Timing Analysis. For the optimized design obtained, Synopsys Design

533.2 ASIC Front-End Matrix Multiplier Design

Constraints (SDC) file and Verilog net-list is generated using DC. Formal verification
of the generated net-list across the designed Verilog code is done using Formality
tool. The verified net-list is then finally simulated for functional verification. The
functional simulation of the generated net-list for the design using ModelSim is
shown in Fig. 3.8.

From the Fig. 3.8 it can be noted that the inputs to the system are 3 × 3 matrices
A and B, clock, reset and DFT inputs test_si and test_se. The functional verification
of the net-list is carried out for the following input vectors and the simulated output

Fig. 3.6 Functional block diagram of systolic array matrix multiplier

Fig. 3.7 Schematic of systolic array blocks generated by synopsys design compiler

54 3 ASIC Design

C is verified. The DFT scan is disabled by forcing the input of DFT test input and
enable signal to zero. The output ports EA and EB are used to register elements of
matrices A and B that are pushed out of the systolic array after the multiplication.
These ports may be extended to increase the order of the array and also used for
debugging the system.

A × B = C

 × =

3 2 1 1 2 3 6 12 18

3 2 1 1 2 3 6 12 18

3 2 1 1 2 3 6 12 18

3.2.5 Analysis of Results and Conclusion

The Systolic Array matrix multiplier design is loaded to Prime Time for Static
Timing Analysis. Following results have been analyzed for the design:

 1. The end point slack analysis for the design with the selection of a maximum of
100 endpoints and 8 bins is represented by the histogram is shown in Fig. 3.9.

 2. The path slack analysis for the design with the selection of a maximum of 100
paths and 8 bins is represented by the histogram is shown in Fig. 3.10.

Fig. 3.8 Simulation of ystolic array multiplier using the generated net-list from DC

553.2 ASIC Front-End Matrix Multiplier Design

Fig. 3.9 End point slack histogram for matrix multiplier

Fig. 3.10 Path slack histogram for matrix multiplier

56 3 ASIC Design

Fig. 3.11 Net capacitance slack histogram for matrix multiplier

 3. The net capacitance analysis for the design with the selection of a maximum of
100 nets and 8 bins is represented by the histogram is shown in Fig. 3.11.

From the results of synthesis process and static timing analysis of the design, the
following results have been analyzed:

 1. Timing Analysis
Clock Period = 4 ns, with clock uncertainty constraints of 0.3 ns (setup) and
0.2 ns (hold)
Setup Slack = 0.85 ns
Hold Slack = 0.30 ns

 2. Area Report
Total Area = 620566.37 mm²
Combinational Area = 616889.25 mm²
Sequential Area = 2084.75 mm²
Net Interconnect Area = 1592.35 mm²

 3. Power Report
Total Dynamic Power = 1.2764 W
Cell Internal Power = 1.2733 W
Net Switching Power = 3.1787 mW
Cell Leakage Power = 53.4279 mW

573.3 Physical Design of Matrix Multiplier

 4. Test Coverage Report
Test Coverage = 100% for Full Scan Multiplexed DFT
Total Faults = 15078
Detectable Faults = 14997
Undetectable Faults = 81

 5. Components Report
Number of Ports = 182
Number of Nets = 2524
Number of Cells = 2422
Number of References = 90

Conclusion:

The matrix multiplier design can be optimized for better power, area and timing
performances by incorporating DFT in RTL design itself instead of using DFT flip-
flops. The design can also be extended from 3 × 3 to a higher order by reusing the
systolic data processing unit in the chain of arrays. For the current design, it is also
ensured to have a setup slack of 0.85 ns to take care of uncertainties in the physical
design and fabrication process.

3.3 Physical Design of Matrix Multiplier

3.3.1 Introduction to Systolic Array Matrix Multiplier

The Physical design of the Systolic array matrix multiplier design is carried out in
this section. Various inputs and configurations are required in the physical design
flow to obtain error free and optimized layout of the design.

The physical design process requires information of:

•	 Standard cells: A standard cell is a group of transistor and interconnects struc-
tures, which provides a Boolean logic function such as, NAND, NOR, Inverters,
etc. or a storage function like flip-flop or latch

•	 IO cells: The IO cell consists of Input and Output circuits (pads) to interface with
the core logic and external world

•	 Special cells: These cells are macros to serve special purpose such as memory,
PLL, etc.

All these library cells are technology dependent. The technology file is an important
input to the physical design process. It consists of following parameters:

Metal Layer definitions•	
Via definitions•	
Process design rules (minimum width, spacing, etc.)•	

58 3 ASIC Design

TLU parasitic capacitance models•	
Preferred routing directions•	
GUI display info (color and fill of layers)•	
Units (time, capacitance, distance)•	

In Synopsys Astro, technology file is recognized in “.tf” format and in Cadence
SOC Encounter it is in “.lef” format. In this section, Synopsys Astro with 130 nm
technology is used to implement the matrix multiplier design.

Depending on the technology, the number of metal layers is also defined. Metal
layer characterization is absolutely necessary to perform clean routing of cells with
least congestion [7]. The characterization for metal layers in 130 nm technology is
shown in Table 3.1.

The Physical design process requires certain basic inputs in-order to generate
desired results. The list of inputs required is as follows:

 1. Verilog netlist for the design (*.v)
 2. Timing libraries (*.lib)
 3. Technology file (*.tf or *.lef)
 4. TDF / IO assignment file (*.io or *.tdf)
 5. Timing constraints file (*.sdc)

The Physical design process generates certain outputs and reports to analyze
the design. Some of the most important outputs/reports generated are as follows:

 1. Post layout Verilog netlist
 2. SDF
 3. SPEF
 4. DSPF
 5. SPICE
 6. LEF/DEF
 7. GDS II
 8. Timing reports
 9. Skew reports
 10. DRC/ERC/LVS reports

The physical design process flow consists of various steps [8]. The detailed flow
is shown in Fig. 3.12.

Table 3.1 Metal layer characterization in 130 nm technology

Metal layer Metal layer ID Alignment Color

1 14 Horizontal Blue
2 18 Vertical Yellow
3 22 Horizontal Red
4 26 Vertical Green

593.3 Physical Design of Matrix Multiplier

3.3.2 Physical Design Flow

The Physical design for the Systolic Array matrix multiplier is done using Synopsys
Astro [9]. The procedure is discussed in the following sections. A 3 × 3 4-bit matrix
multiplier is designed with Systolic array architecture using Verilog and the opti-
mized netlist is generated using Design Compiler. The netlist generated is a flatten

Fig. 3.12 Physical design
flow

60 3 ASIC Design

design with constraints mentioned in the SDC file. The design consists of scan
chains and it also has pads inserted to the ports. The synthesis is carried out using
130 nm TSMC library. The static timing analysis is carried out using Prime Time
and formal verification is done using Formality tools. The error free netlist obtained
is used as primary input to the physical design process.

3.3.2.1 Design Setup

The Design setup is done to load library data and design data to the tool.

Library Data consists of:

•	 Technology file: Loaded from – /home/Master_Files/tech/cb13_4m_tlu.tf
•	 Reference Libraries: Loaded from – /home/Master_Files/ref_lib/*.lib

Design Data consists of:

•	 Netlist file: Gate level design
•	 Top Design Format (TDF) file: The TDF for the matrix multiplier design consists

of a total of 164 pads including 16 pairs of VDD-VSS pads. The design makes
use of all the four sides of the cell to place the pads with 41 ports on each side.

Once the library and design data is loaded on to the tool, hierarchy preservation of the
netlist is done using the command “astInitHierPreservation”. Hierarchy preservation
is done to retain pin name, number and functionality so the existing test bench can be
reused for post layout gate level simulations. It extracts necessary information from
the original hierarchical netlist and writes it into the flattened top cell. This informa-
tion is represented in the form of objects recorded in the database. Flattened cell name
is stored with *.EXP and Hierarchical Top cell name is stored with *.NETL extension
files. Astro makes use of Milky Way database to store the information.

After loading the TDF file, the netlist is bind with the layout to create a top cell
for the Verilog input data using the command “axgBindNetlist”. The cell is created
and opened for viewing the layout. The snapshot of the TDF loaded cell is shown in
Fig. 3.13.

3.3.2.2 Floor Planning

In the floor planning stage, following setups and configurations are done:

Creating core and pad area•	

Core Utilization = 0.6, which is the ratio of area of the core to total area of the ○
cell. This is selected as per the assignment specification.
Aspect ratio = 0.65, which is the ratio of Height to the Width of the core. ○
Core Aspect = 1. ○
Core to Pad distance is maintained with 60 ○ mm.

613.3 Physical Design of Matrix Multiplier

Creating standard cell rows•	

Row to Core ratio = 1, It is the ratio of total row area to the area of the core. ○
A value of ³ 1 is used for channel-less rows.
A value of <1 is used for rows with channel.

Horizontal row is selected to obtain rows aligned horizontally for place- ○
ment of cells.
Flip first row double back option is used to utilize the power rails by merging ○
them and even to save the area.

Placing Macros in the core area•	
The macro available in the design is placed in to the core area in this stage. In the
matrix multiplier design, there are no macros. Hence this step is ignored.

The matrix multiplier design consists of elements, as reported by Astro at the
floor planning stage:

No. of signal ports: 132•	
No. of Nets: 2237•	
No. of Ports: 2203•	

Fig. 3.13 Snapshot of TDF loaded cell

62 3 ASIC Design

The snapshot of the cell after floor planning stage is shown in Fig. 3.14.
The snapshot of the core area of the cells with a close-up view of the alignment

of the rows- flip first and double back is shown in Fig. 3.15.

3.3.2.3 Power Planning

Power planning is the stage where Power/Ground network is implemented in the
design. The Systolic Array matrix multiplier is a flattened design without any macros.

Fig. 3.14 Snapshot of cell
after floor planning stage

Fig. 3.15 Snapshot of
alignment of rows in the core
area

633.3 Physical Design of Matrix Multiplier

Hence bottom-up approach is followed in power planning. Power planning consists
of following steps:

•	 Power Budget
The estimation of total dynamic core power is computed using VCD file and
Prime Power. The method followed to do the same is shown in Fig. 6.6.

Total dynamic power for the design = 474.6 mW
Operating voltage for 130 nm technology = 1.08 V
Total dynamic core current = 440 mA

•	 Power/Ground Pads
The design consists of 132 ports. All the four sides of the cell are made use for
port distribution. Considering that VDD/GND pairs of pad are required for every
eight signal pads for a normal design, the number of VDD/GND pairs of pad
required for Matrix multiplier design is,

VDD/GND pairs of pad = Total number of signal pads (132) ∕ 8 » 16
Four pairs of VDD/VSS pads are incorporated on each side of the cell.

•	 Pad to Core Trunk Width
The pad to core trunk width is given by,

W
pc

 = (Total dynamic core current) ÷ (No. of sides × J
max

)
Where, J

max =
 Maximum current density of the metal

J
max

 for Metal layer 3 = 19.3 mA/mm
J

max
 for Metal layer 4 = 49.5 mA/mm

W
pc

 for Metal layer 3 = 5.7 mm
W

pc
 for Metal layer 4 = 2.2 mm

•	 Pad and Core Ring
The pad ring is added to the design in-order to make the power/ground connec-
tions for IO pads. The core ring with power/ground connections are made with a
metal width of 2 mm and offset from the core of 1 mm.

•	 Straps/Trunks placement
In Systolic Array matrix multiplier design, since macros are not there, straps or
trunks are incorporated. Only power/ground rails (axgPrerouteStandardCells)
are used for connecting the standard cells.

The snapshot of cell after power planning stage is shown in Fig. 3.16.

3.3.2.4 Timing Setup

In the Timing setup stage, the timing information is provided to the tool to optimize
placement and routing with required timing. It also performs Static Timing Analysis
for the timing constraint applied to the design. The SDC is loaded to the tool using
the command “ataLoadSDC”.

Astro uses a congestion-based coupling model and TLU + capacitance tables
to accurately model the pre-routing capacitance for nets prior to routing.

64 3 ASIC Design

This methodology eliminates the questionable derivation of the linear capacitance
co-efficient and improves the accuracy of the model by taking into account increases
in coupling capacitance due to increased congestion in different regions of the chip.
The ITF is converted to TLU + format using the command “cmItfToTLUPlus”. The
snapshot of ITF to TLU + conversion is shown in Fig. 3.17.

Additional timing setup is carried out using the command “atTimingSetup”. The
following options are used in the timing setup for Matrix multiplier design:

 1. Environment Setup
Default options

 2. Optimization Setup
Target Setup Slack = 0.9
Target Hold Slack = 0.2

 3. Library Setup
Default options

 4. Parasitic Setup
Parasitic Source: LPE

Fig. 3.16 Snapshot of cell after power planning stage

653.3 Physical Design of Matrix Multiplier

LPE mode: Auto
Operating condition: Max
Capacitance model: TLU+

 5. Model Setup
Operating condition: Max
Net Delay Modes: Medium Effort

 6. Xtalk Setup
Default options, as noise or cross talk is not modeled in this design.

The snapshot of timing report after loading the raw SDC is shown in Fig. 3.18.
The report shows that both setup and hold slack are violated. In further stages
optimization needs to be done to meet the slack.

Fig. 3.17 Snapshot of ITF to TLU + successful conversion

Fig. 3.18 Snapshot of timing report after loading the SDC for the design

66 3 ASIC Design

3.3.2.5 Placement

In the Placement stage, the standard cells are placed in the core area. The placement
process flow after floor planning is shown in Fig. 3.19 [8].

The common options for Placement are selected with the following modes or
constraints. The Astro commands used for each of the Placement options are pro-
vided in the brackets.

•	 Optimization modes:

 – Congestion: Distributes cell placement for minimum congestion,
 – Timing: Places cells to meet timing requirements.

Fig. 3.19 Placement process
flow after floor planning

673.3 Physical Design of Matrix Multiplier

•	 Location Constraints:

 – Consider pre-route types: PG ring, PG pin; Astro recognizes the pre-routed
nets of the types selected.

 – No cells under pre-route of M3 & M4; Astro doesn’t place cells under the pre-
routed nets on the metal layers selected.

 – No cells under via V34; Astro doesn’t place cells under the vias specified.
 – Short checking at pre-route of M3 & M4; Astro doesn’t place cells under the pre-

routed nets on the layers specified if a short occurs or if it cannot access pins.

After the placement common options are selected, actual placement of cells is carried
out in three different steps before CTS. The steps followed are discussed below:

•	 Pre-Placement (astPrePS)
The Pre-Placement Optimization performs overall timing improvement. The
goal of pre-place optimization is to correctly setup the design for placement of
cells. This includes the handling of high fan-out nets, design cleanup and some
optimization.

•	 In-Placement (astAutoPlace)
The standard cell instances are actually placed in the core for the design. It fol-
lows the optimized placement solution obtained in Pre-placement optimization.
Search and Refine option may be used to improve the cell placement by evaluat-
ing the current placement, determining congestion in the design and by changing
the placement of cells within congestion areas.

•	 Post-Placement (astPostPS1)
Post-Placement Optimization (PPO1) is performed after placement of cells.
Additional optimization techniques are used to obtain best results. The goal of
this step is to clean up some high fanout nets after placement, to fix timing
constraints such as maximum capacitance, transition and also to prevent
crosstalk.

The snapshot of timing report after Placement and optimization stage is shown
in Fig. 3.20. The report shows that hold slack is positive but setup slack still
violates. An evident improvement in setup slack can be noticed as compared to
that of SDC loaded report.

The snapshot of the cell after the Placement stage is shown in Fig. 3.21.

Fig. 3.20 Snapshot of timing report after placement and optimization stage

68 3 ASIC Design

3.3.2.6 Clock Tree Synthesis

In this stage, the clock tree is synthesized to meet the timing requirements and avoid
blockages and correlation problems between pre-routing and post-routing. Clock
Tree Synthesis (CTS) is basically done for zero skew. It may add multi-level buffer
trees according to the clock specification – skew and insertion delay. The CTS pro-
cess may result in more buffers added, movement of cells, increase in congestion
and even introduction of new timing and max capacitance/transition violations. The
flow for CTS process is shown in Fig. 3.22 [8].

The CTS common options (astClockOptions) are selected before actually CTS is
performed for the Matrix multiplier design. The options selected are as follows:

Conditions: •	 worst
Skew type: •	 Global
Synthesis Effort: •	 Two
Gated clock tree: •	 True
Clock nets: “clk”; added from the loaded SDC (root clock)•	
Target skew and insertion delay options are untouched as it takes from SDC•	

Fig. 3.21 Snapshot of cell after placement stage

693.3 Physical Design of Matrix Multiplier

The clock tree is marked to set and propagate variable route rules before running
CTS. This is done to prevent slacks from being disturbed during CTS. The following
options are selected for marking clock tree (astMarkClockTree):

Clock net name: •	 clk
Fix – clock tree and flip flops•	

Once the CTS common options are selected and the clock tree is marked, the design
is ready for CTS (astCTS). The following options are selected to perform CTS:

Conditions: •	 worst
Skew type: •	 Global
Design level: •	 Block

After performing CTS, Post-Placement Optimization (PPO2) is done to obtain better
timing. Post-Placement Optimization has several differences from Pre-Placement
Optimization. During Post-Place Optimization, the placement engine is still active
in order to accurately take into account any changes in the design. This is important
when cells are either sized or moved, as this impacts the timing of the design based
on the new placement information.

All of the optimization techniques employed during post-place optimization
takes into account all sizing, cell-moving, cell-bypassing, buffer and inverter inser-
tions, gate-duplication and net-splitting. Logical-remapping and area recovery are
optional techniques which can be added to PPO. The following options are selected
for PPO2 (astPostPS):

•	 Setup Fixing: to fix the setup slack violation
•	 Max Tran Fixing: to fix maximum transition violation

Fig. 3.22 Clock tree
synthesis flow after
placement

70 3 ASIC Design

•	 Max Cap Fixing: to fix maximum capacitance violation
•	 Logic-Remapping: used during setup slack optimization. It also attempts to

reduce the number of stages in a critical path for overall timing improvement.

Even after PPO2, the setup slack was violated. In order to eliminate/reduce the
violation, “pdsCROptimization” command is used. It performs timing optimization
to further reduce the total negative slack of the design to isolate the most critical
paths which are hard to optimize. The Clock Tree Optimization (astCTO) is carried
out to reduce or pull down the skew to zero.

The snapshot of timing report after CTS and CTO for Matrix multiplier design is
shown in Fig. 3.23. From the report it can be inferred that only setup slack and max
capacitance violation exists.

The clock global skew analysis report for the Matrix multiplier design is shown
in Fig. 3.24.

Fig. 3.23 Snapshot of timing report after CTS and CTO

Fig. 3.24 Clock global skew report for the matrix multiplier design

713.3 Physical Design of Matrix Multiplier

3.3.2.7 Routing

In the Routing stage, the metal layers are drawn for all interconnects complying
Design Rule Checks (DRC). It is also made sure that circuit timing, clock skew,
signal net transition and capacitance limits are maintained in acceptable limits. The
design flow used in the Routing process is shown in Fig. 3.25 [8].

The following procedure is followed for routing the Matrix multiplier design:

 1. Check design for Route (axgCheckDesignForRoute)
It performs a check for optimization in order to substantiate any errors in the
design that might need to be fixed. It checks for pin access points, cell instance
wire tracks, pin out of boundaries, min-grid and pin design rules and blockages
to ensure they meet the design requirements. An error cell will be generated if

Fig. 3.25 Routing flow after
CTS

72 3 ASIC Design

the design has some errors or violations. The error cell wasn’t generated for the
Matrix multiplier design indicating that the design is error free.

 2. Define rules for metal layers (axgDefineVarRule)
It specifies a set of rules for variable routing and defines minimum width of
objects on a layer, spacing between objects on a layer and size of array to use
with a contact. The values are verified with that in the technology file. Typical
values of these parameters used in this design for 130 nm technologies are shown
in Table 3.2.

 3. Setting Net constraint (axgSetNetConstraint)
It sets constraints of variable-route rules, layer, timing-driven, spacing, and top-
layer probe constraints for nets. The following options are set for the design:

Net Names From: •	 All clock nets
Default options•	

4. Setting Route Options (axgSetRouteOptions)
Certain routing options are selected for Global routing, Track Assign and Detail
routing. The options selected for the Matrix multiplier design is as follows:

Global Routing Options

Timing Driven with weight of four•	
Congestion Driven with weight of four•	
Clock Routing: •	 Balanced; depending upon the pin distribution of each clock net,
the global router automatically decides whether or not to use single-trunk

Track Assign

Timing Driven with weight of one•	

Detail Routing

Connect open nets•	
Timing Driven•	
Single-row/column via array: •	 center; places the contact center at the corner
where the router changes routing layers. This result in a “T” shaped corner

Library cells and Design Rules

Poly Pin Access: •	 auto; connects poly pins if poly pins exist in the design
DRC Distance: •	 Manhattan; checks in the X and Y directions. Both X and Y
spacing must be greater than the minimum spacing rule
Same Net Notch: •	 check and fix; Attempts to fix same net notch violations

Table 3.2 Typical values of metal layer parameters for 130 nm technology

Metal layer Min width (mm) Min spacing (mm) Min area (mm²) Pitch (mm)

1 0.16 0.18 0.122 0.41
2 0.20 0.21 0.144 0.41
3 0.20 0.21 0.144 0.515
4 0.44 0.46 0.562 0.97

733.3 Physical Design of Matrix Multiplier

Fat Wire Checking: •	 merge then check; Tries to merge thin wires to form fat
wires for fat-wire spacing rule checking
Merge Fat wire on: •	 signal routing too; Merges all types of wires to form fat
wires
Wire/Contact End-of-line Rule: •	 check and fix; instructs the router to not con-
nect to “cross-vias” with wrong way wires to avoid end-of-line rule violations

5. Routing Net Group (axgRouteGroup)
It Routes the nets specified in this group. The routing replaces any previous
routing. In this design clock net is selected for routing. The following options are
used to route the clock nets:

Net Names from: •	 All clock nets
Phase: global, track assign, detail•	
Search Repair Loop: •	 Five
Dangling wires: •	 discard; the router discards or removes all the dangling wires
or contacts before starting to connect nets that are broken.
Optimize routing pattern•	

The snapshot of the cell showing the routed clock net from the IO pad to the core
logic is shown in Fig. 3.26.

 6. Automatic Routing (axgAutoRoute)
Automatic routing is done to sequentially run Global routing, Track assignment,
Detail routing and Search & Repair steps followed by Post-Route Optimization
to optimize the detail routed design. Each of these steps is described as follows:

Global Routing (•	 axgGlobalRoute)
Global router uses a three-dimensional array of global routing cells to model the
demand and capacity of the global routing. Astro assigns nets to the global rout-
ing cells through which they pass. For each global routing cell, the routing
capacity is calculated according to the blockages, pins, and routing tracks inside
the cell. Astro calculates the demand for wire tracks in each global routing cell
and reports the overflows, the amount of wire tracks still needed after the tool
assigns nets to the available wire tracks in a global routing cell. It considers spac-
ing and wide-wire variable routing rules, as well as shielding variable routing
rules when calculating congestion.

There was no congestion while routing Matrix multiplier design. Hence
no congestion maps were generated.
Track Assignment (•	 axgAssignToTracks)
Before Detail routing, Track Assignment is done to specify the tracks within
each global routing cell to be used for each net. Track assignment operates on
the entire design at once; it can make long routes straight and reduce the num-
ber of vias, whereas the detail router routes small area at a time.
Detail Routing (•	 axgDetailRoute)
After Track assignment, all nets are routed but not very carefully. There may be
many violations particularly where the routing connects to pins. The detail
router works to correct the violations and detail routing is done for the design.

74 3 ASIC Design

Search & Repair (•	 axgSearchRepair)
After Detail routing, Search & Repair is done on the design for searching
DRC violations and rerouting wires in order to fix or avoid violations.

Search & Repair is done on the Matrix multiplier design with a loop
count of five.
Post-Route Optimization (•	 astPostRouteOpt)
Post-Route Optimization is done to fix setup, hold, max capacitance, max
transition violations, and maximum lengths by netlist changes and routing
modifications at various stages of routing.

In Matrix multiplier design, only setup slack and max capacitance viola-
tions were present. The above options were used in the optimization stage to
eliminate the violations.

The snapshot of a section of the cell after Routing stage is shown in Fig. 3.27.
The Timing Report for the multiplier design after Routing stage is shown in

Fig. 3.28.

Fig. 3.26 Snapshot of cell showing routed clock net from IO pad

753.3 Physical Design of Matrix Multiplier

3.3.2.8 Design for Manufacturability

DFM is done to address several issues to increase manufacturing yield. Before
incorporating DFM for the design, DRC, ERC and LVS need to be verified to ensure
error free design.

Fig. 3.27 Snapshot of a section of the cell after routing stage

Fig. 3.28 Timing report for matrix multiplier design after routing stage

76 3 ASIC Design

 1. Design Rule Check (DRC)
DRC is the area of Electronic Design Automation (EDA) that determines
whether a particular chip design/layout satisfies a series of recommended
parameters called design rules. A design rule-set specifies certain geometric and
connectivity restrictions to ensure sufficient margins to account for variability
in semiconductor manufacturing process, so as to ensure that most of the parts
work correctly [9].

The DRC is done for the Matrix multiplier design. For the initial round of rule
check, the tool reported Notch errors. Notch filling is done for the design using the
command “geNewFillNG”. DRC is again done on the design. DRC error cell is
not generated for this check, indicating that clean DRC design is obtained [9].

 2. Electrical Rule Check (ERC)
ERC involves checking a design for all well and substrate areas for proper con-
tacts and spacing thereby ensuring correct power and ground connections [9].
ERC steps can also involve checks for unconnected inputs or shorted outputs.

 3. Layout Versus Schematic (LVS)
The LVS is the class of EDA verification software that determines whether a
particular integrated circuit layout corresponds to the original schematic or cir-
cuit diagram of the design [9]. A successful DRC ensures that the layout con-
forms to the rules designed/required for faultless fabrication. However, it does
not guarantee if it really represents the circuit desired to fabricate. Hence LVS is
used to ensure the correctness of the design.

The Manufacturability issues that need to be taken care after obtaining DRC
clear design are as follows:

Gate Oxide Integrity•	
The thin gate oxide may be damaged during the manufacturing process due to
charge accumulation on the interconnect layers during certain fabrication steps like
Plasma etching, which creates highly ionized matter to etch [9]. This is also known
as Antenna effect. A typical Antenna effect scenario is shown in Fig. 3.29 [9].

As length of wire increases during processing, the voltage stressing the gate
oxide increases leading to Antenna effect. Antenna check rules define acceptable
length of wires and also insert diodes to clamp the voltage swing. The solutions
adopted to fix Antenna effect is shown in Fig. 3.30 [9].
Via resistance and reliability•	
Replacing one via contact with multiple contacts without re-routing improves
both yield and timing. This advantage is due to reduction of series via resistance
to parallel resistance.
Metal erosion and Liftoff•	
In Chemical Mechanical Polishing process, the wafer is made flat leaving metal
tops with concave shape (Dishing). This is due to the metal being mechanically
softer compared to dielectrics. Wide traces with little intervening dielectric is
called Erosion.

773.3 Physical Design of Matrix Multiplier

Conductors and Dielectrics have different coefficients of thermal expansion.
As stress builds up with temperature cycling, metal can delaminate (lift off) with
time. A typical Metal erosion and liftoff case is shown in Fig. 3.31 [9].

The solution for this issue is to slot wide wires to reduce metal density. Hence
minimizing stress buildup and reducing liftoff tendency.
Metal over-etching•	
A narrow metal wire separated from other metal receives a higher density of
etchant than closely spaced wires. Hence the narrow metal may be over-etched.
This issue can be controlled by using minimum metal density rules. Filling up
empty tracks with metal shapes helps in meeting minimum metal density rules.
But the limitation of this solution is that no further routing or antenna fixing can
be done.

Fig. 3.29 Typical antenna
effect scenario

Fig. 3.30 Solutions to fix antenna effect

78 3 ASIC Design

3.3.3 Results and Conclusion

In this section, the Physical design process for Systolic Array matrix multiplier is
carried out using Synopsys Astro design tool. The TSMC 130 nm technology is
used in the design. The design is verified for DRC errors. The Timing report for
DRC clean design obtained is shown in Fig. 3.32. The report indicates positive setup
and hold slack. The SPEF file is generated for the design to analyze and verify the
power requirements for the design.

The GDS II data file is generated for the design using “auStreamOut” command.
GDS II is a standard format for physical layout information. This file is used to
transport physical layout designs between different design environments. A detailed
summary report for placement and routing of the design cell is generated. The report
is analyzed for any requirement of further optimization in the design. The design is
signed off as it meets the expected requirements.

To conclude with the analysis and results obtained, there is enough scope for
enhancement and improvements in the design and verification carried out in this
section. A hierarchical design with soft and hard macros may be used to explore the
advantages of new power/ground network design flow. The technology library used
may be enhanced to 90 nm or 65 nm to experience the complexity in the design and
explore possible challenges to meet the power, area and timing requirements.

Fig. 3.31 Metal erosion, dishing and liftoff scenarios

Fig. 3.32 Timing report for DRC clean design

79Appendix

Appendix

80 3 ASIC Design

81References

References

1. Balch M (2003) Complete digital design. McGraw-Publishers, New York
2. Memory Design Examples (2007) Altera corporation. http://www.altera.com/support/examples/

exm-memory.html. Accessed 15 May 2007
3. Different RAM types and its uses (2003) http://www.computermemoryupgrade.net/types-of-

computer-memory-common-uses.html. Accessed 15 May 2007
4. Bhatnagar H (2002) Advanced ASIC chip synthesis using Synopsys design compiler, physical

compiler and prime time, 2nd edn. Kluwer Academic Publishers, Boston
5. Lang HW, Flensurg FH (2006) Instruction Systolic Array (ISA). Institut für medieninformatik

und technische informatik. http://www.iti.fh-flensburg.de/lang/papers/isa/index.htm. Accessed
15 May 2007

6. ASIC Premier (2000) LSI Logic Corporation, USA
7. Wong CK, Sarrafzadeh M (1966) An introduction to VLSI physical design. McGraw-Hill, New

York
8. Astro User Guide (2005) Synopsys Inc., USA
9. Cell Based IC Physical Design and Verification with Astro (2003) National Chip Implementation

Center, Taiwan

83V.A. Chandrasetty, VLSI Design: A Practical Guide for FPGA and ASIC
Implementations, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-1-4614-1120-8_4, © Springer Science+Business Media, LLC 2011

The demand for Digital processing of data is seamlessly increasing for various day
to day applications around us. It is because of the easier, faster and cheaper way of
processing and storing data in digital format, yet efficiently. This in-turn has resulted
in demand for Mixed Signal processing systems to interface with the analog and
digital world. The challenges in designing a Mixed Signal system are to suppress
phase noise, higher switching speeds and optimum conversion capabilities with
least power dissipation. PLL, OPAMP, DAC, ADC, etc. are some of the key building
blocks in an Analog and Mixed Signal System.

In this chapter a Two Stage OPAMP is designed and modeled using SPICE based
on the specifications provided for 180 nm technology. The simulations are carried
out using LTspice tool to extract and verify the design parameter. A layout is
designed for the OPAMP. DRC and LVS debug tools are used to verify the design
rules and connectivity of the layout. Parasitics are also extracted and analyzed for
the design. All these processes are carried out using Cadence Virtuoso Schematic
and Layout editor tool for 180 nm technology.

The prerequisite to approach this chapter would be an adequate knowledge of
CMOS designs in Analog domain and basic knowledge of layout designs and SPICE
modeling.

4.1 Schematic Design of OPAMP

4.1.1 Introduction

An Operational Amplifier is a DC coupled high gain electronic voltage amplifier
with differential inputs and usually a single output [1]. A two stage OPAMP consists
of three major blocks – Differential Amplifier stage, Gain Stage with Compensation
capacitor to lower the gain at high frequencies and Buffer. An OPAMP is used in a
variety of applications in linear circuit applications: Differential amplifier, inverting

Chapter 4
Analog and Mixed Signal Design

84 4 Analog and Mixed Signal Design

and non-inverting amplifier, Integrator, Differentiator, Comparator, Voltage follower,
etc. and in non-linear circuit applications: Peak detector, logarithmic, exponential
outputs, PLL, ADC, DAC, etc. The functional block diagram of a Two Stage OPAMP
is shown in Fig. 4.1 [2].

4.1.2 Two Stage OPAMP Design

A Two Stage OPAMP is designed and simulated in this section [2]. The design is
done using SPICE modeling and the simulations are carried out using LTspice to
extract and verify the design parameters against the designed values. The model file
obtained from MOSIS-TSMC library for 180 nm technology [3] is used in the
OPAMP modeling and simulations.

4.1.2.1 Specifications

The Two Stage OPAMP is designed for TSMC 180 nm technology for the following
specification:

Open Loop Gain, •	 Av >100 V/V (40 dB)
Power Supply, •	 VDD = −VSS = 2.5 V
Gain Bandwidth at −3 dB gain, •	 f3db >5 MHz
Load Capacitance, •	 CL = 10 pF
Slew Rate, •	 SR > 10 V/ms
Output Voltage Swing, •	 Vout = ± 2 V
Input Common Mode Range, •	 ICMR = −1 V to +2 V
Maximum Power Dissipation, •	 Pd £ 2 mW
Phase Margin, •	 Fm ³ 60°
Channel Length , •	 L = 180 nm

Fig. 4.1 The functional block diagram of a two stage OPAMP

854.1 Schematic Design of OPAMP

For 180 nm technology, the MOS device parameters obtained from MOSIS-TSMC
fabrication process lab is as follows:

For NMOS:

•	 Kn’ = (m
n
 C

ox
)/2 = 177.2 mA/V²

•	 Vtn = 0.35 V
•	 ln = 0.09/V

For PMOS:

•	 Kp’ = (m
p
 C

ox
)/2 = −35.6 mA/V²

•	 Vtp = −0.39 V
•	 lp = 0.1/V

4.1.2.2 Schematic of OPAMP

The schematic diagram of Two Stage OPAMP for which aspect ratios for MOS
transistors and compensation capacitance values is required to be calculated is
shown in Fig. 4.2 [4].

4.1.2.3 Design Calculations

The Two Stage OPAMP is designed as per the specifications listed in Sect. 4.1.2.1.
The end results of the design calculations are the channel width of each of the MOS

Fig. 4.2 The schematic diagram of two stage OPAMP

86 4 Analog and Mixed Signal Design

transistor and Compensation capacitor value for the OPAMP. The design procedure
followed is mentioned below [4]:

 1. Calculation of Compensation capacitance (Cc):
It is known that placing the output pole 2.2 times higher than the Gain Bandwidth
permitted a 60° Phase Margin. From the specifications, required Phase Margin is 60°.
Hence we have,

 > LCc (2.2 /10)C

 > ×Cc (0.22) 10 pF

 >Cc 2.2 pF

 =Cc 3pF

 2. Calculation of Tail Current (Iss):
The tail current, Iss or I

5
 is given by,

 = ×Iss SR Cc

 µ= ×Iss 10 V / s 3 pF

 µ=Iss 30 A

 3. Calculation of Aspect ratios (W/L)
3
 and (W/L)

4
 for M3 and M4:

The aspect ratio for M3 is calculated based on the ICMR (max) given in the
specification.

() () () 2

5 p DD in max tp tn3
W / L 2 I / K ’ V V V V−

 = × − − +

() () []26

3
W / L 2 30 10 / 2.5 2 0.39 0.35−= × × − − +

 =3(W / L) 3.98

 = =3 4(W / L) (W / L) 4

 4. Calculation of Aspect ratios (W/L)
1
 and (W/L)

2
 for M1 and M2:

The aspect ratio for M1 is calculated based on the Gain specification given.

 [] 1
2

nAv [2 / (n p)] (2 K ’ W) / (Iss L)= + × × × ×λ λ

Given Specification, Av > 100 V/ V
Substituting and solving the values in the above equation, we get,

 =1(W / L) 7.64

 = =1 2(W / L) (W / L) 8

874.1 Schematic Design of OPAMP

 5. Calculation of Aspect ratios (W/ L)
5
 and (W/ L)

8
 for M5 and M8:

The aspect ratio for M5 is calculated based on ICMR (min) specification.

() ()()ds5 in ss 5 n 1V V min V I / ’ W / L VtnK = − − −

Substituting the values from the specification data and previous calculations,
We get,

 =ds5V 1.005 V

() () ()2

5 5 n ds5W / L 2 I / ’ VK = × ×

Substituting the values in the above equation, we get,

 =5(W / L) 0.34

 = =5 8(W / L) (W / L) 1

 6. Calculation of Aspect ratio (W/L)
6
 for M6:

The Transconductance of the input transistor M1 is given by,

 =m1g (Gain Bandwidth) x (Compensation Capacitance)

 π −= × × × ×6 12
m1g 2 5 10 3 10

 µ=m1g 94.25 S

The Transconductance of the transistor M6 is calculated for the given specifica-
tion of Phase Margin ³ 60°

≥gm6 10gm1

 µ=gm6 942.5 S

The aspect ratio for M6 is calculated as follows:

 ()6 m6 p ds6 W / L g / K ’ V (sat) = ×

Substituting values in the above equation, we get,

 =6(W / L) 54

 7. Calculation of Aspect ratio (W/L)
7
 for M7:

The current flowing through transistor M6 is given by

 6 m6 p 6I (g) / 2 K ’ (W / L) = × ×

88 4 Analog and Mixed Signal Design

Substituting the values in the equation,

 µ=6I 230 A

The aspect ratio for M7 is given by the following equation:

 = ×7 5 6 5(W / L) (W / L) (I / I)

Substituting values in the above equation, we get,

 7(W / L) 8=

4.1.2.4 Design Calculation Results

The maximum power dissipation for the design is verified against the specification
as follows:

Power Dissipation,

 = + × +5 6Pd(max) (I I) (VDD | VSS |)

 µ µ= + × + −Pd(max) (30 230) (2.5 | 2.5 |)

 =Pd(max) 1.3 mW

Max. power dissipation for the design is less than the specified limit of 2 mW.
The channel width required for each of the MOS transistors for the OPAMP

designed is calculated from the aspect ratios. For 180 nm process technology the
channel width is tabulated as shown in Table 4.1

Other important parameters calculated in the design steps are as follows:

Compensation Capacitance, •	 Cc = 3 pF
Load Resistance (Arbitrary value), •	 RL = 100 kW
Current flowing through M5 (Tail Current), •	 I5 = 30 mA
Current flowing through M6, •	 I6 = 230 mA

Table 4.1 Channel width of MOS transistors designed for 180 nm technology OPAMP

MOS transistor Aspect ratio (W/L) Channel width (mm)

M1 8 1.44
M2 8 1.44
M3 4 0.72
M4 4 0.72
M5 1 0.4
M6 1 0.4
M7 54 9.72
M8 8 1.44

894.1 Schematic Design of OPAMP

4.1.2.5 Definition of Design Parameters

Definition of design parameters that are extracted from the simulation of TS-OPAMP
are as follows:

 1. Open Loop Gain: The Gain of the OPAMP for the input at positive input terminal
without feedback and negative terminal input grounded

 2. Gain Bandwidth: The frequency Bandwidth of the system at which the gain
drops to −3 dB gain

 3. Phase Margin: It is the difference measured in degrees between the absolute
phase angle of OPAMP output signal and 180°

 4. Input Common Mode Range (ICMR): The range of input voltage where the
OPAMP has approximately unity gain

 5. Input Offset Voltage: The input required to make the output of the OPAMP to
zero volts

 6. Output Voltage Swing: The range of the maximum voltage points till which the
OPAMP output can swing

 7. Slew Rate: It is the maximum rate of change of output signal at any point of
time

 8. Transfer Function: It is a function of Output of the OPAMP with respect to the
Input

 9. Output Impedance: The Impedance offered by the OPAMP at the output
terminal

 10. Power Dissipation: The total power dissipated by the OPAMP during its
operation

4.1.2.6 Simulations and Verification

The Two Stage OPAMP designed for 180 nm process technology is simulated using
LT Spice and the design specifications are verified against the extracted values [5].
The model file obtained from MOSIS-TSMC library for 180 nm technology is used
in the OPAMP modeling and simulations.

Extraction of Open Loop Gain, Gain Bandwidth and Phase Margin at 0db Gain•	
AC analysis done to extract the above mentioned parameters. The simulation
waveform obtained (Bode Plot) is shown in Fig. 4.3.

Configuration: Open Loop (Extracted parameters at 0 dB gain)
 – Gain: 28 dB
 – Bandwidth: 4 MHz
 – Phase Margin: (180° + F) = 180° – 102° = 78°

Extraction of Open Loop Gain, Gain Bandwidth and Phase Margin at -3db Gain•	
AC analysis done to extract the above mentioned parameters. The simulation
waveform obtained (Bode Plot) is shown in Fig. 4.4.

90 4 Analog and Mixed Signal Design

Configuration: Open Loop (Extracted parameters at −3 dB gain)
 – Gain: 28 dB
 – Bandwidth: 5.5 MHz
 – Phase Margin: (180° + F) = 180° – 108° = 72°

Extraction of ICMR•	
The simulation waveform obtained to extract ICMR is shown in Fig. 4.5.

Configuration: Unity Gain Feedback
 – ICMR: −1.2 V to +2.1 V

Extraction of Input Offset Voltage•	
The simulation waveform obtained to extract Input Offset Voltage is shown in
Fig. 4.6.

Fig. 4.3 Simulation of TS-OPAMP to extract AC analysis parameters at 0 dB gain

Fig. 4.4 Simulation of TS-OPAMP to extract AC analysis parameters at 3 dB gain

Fig. 4.5 Simulation of TS-OPAMP to extract ICMR for the design

914.1 Schematic Design of OPAMP

Configuration: Open Loop
 – IOV: −92 mV

Extraction of Output Voltage Swing•	
The simulation waveforms obtained to extract Output Voltage Swing is shown in
Fig. 4.7.

Configuration: Open Loop
 – OVS: −1.1 V to 2.1 V

Extraction of Transfer function and Output Impedance•	
The simulation results obtained to extract Transfer function and Output Impedance
of the design is shown in Fig. 4.8.

Fig. 4.6 Simulation of TS-OPAMP to extract input offset voltage for the design

Fig. 4.7 Simulation of TS-OPAMP to extract output voltage Swing

Fig. 4.8 Snapshot of the transfer function computed for TS-OPAMP design

92 4 Analog and Mixed Signal Design

Configuration: Open Loop
Transfer Function: 12.795 –
Output Impedance: 8.6 – kW

Extraction of Maximum Power Dissipation•	
The simulation waveform obtained to extract maximum Power Dissipation of the
TS-OPAMP designed is shown in Fig. 4.9.

Configuration: Unity Gain Feedback
Max. Power Dissipation, –

 µ µ= + × + −dP (38.8 A 122 A) (2.5 V | 2.5 V |)

 =dP 0.804 mW

Extraction of Slew Rate•	
The simulated waveform obtained to extract Slew Rate for the design is shown
in Fig. 4.10.

Configuration: Unity Gain Feedback
Slew Rate (SR) = (V –

2
 – V

1
)/ (T

2
 – T

1
)

 () ()µ µ = − − − SR 0.94V 0.79V / 100.23 s 100.01 s

 µ≈SR 8V / s

Fig. 4.9 Simulation of TS-OPAMP to extract max. Power dissipation of the design

Fig. 4.10 Simulation of TS-OPAMP to extract slew rate for the design

934.2 Layout Design of OPAMP

4.1.3 Results

The result obtained from the simulations carried out for TS-OPAMP is verified
against the specification. The comparison results are tabulated as in Table 4.2.

4.2 Layout Design of OPAMP

4.2.1 Introduction

The Two Stage OPAMP designed in Sect. 4.1 is implemented to obtain the layout
with optimal area and least parasitics for 180 nm technology. A schematic of
TS-OPAMP is also drawn along with the layout. Cadence Virtuoso tool is used to
draw schematic and layout for the design. After obtaining the layout with clean
DRC and LVS, the netlist along with the parasitics is extracted with the help of the
tool. Post layout simulation is carried out using this netlist to verify the design
specifications.

4.2.2 Layout Design

In this section, the procedure for schematic and layout design of TS-OPAMP is
illustrated.

Table 4.2 Comparison of design specification against results obtained for TS-OPAMP design

Parameters Design specification Results obtained

Open loop gain (Av) 100 V/V (40 dB) 28 dB
Band width (BW) at
0 dB – 4 MHz
3 dB 5 MHz 5.5 MHz
Phase margin (F) at
0 dB – 72°
3 dB ³ 60° 78°
ICMR −1 V to +2 V −1.2 V to + 2.1 V
Slew rate 10 V/ms 8V/ms
Output voltage swing −2 V to +2 V −1.1 V to +2.1V
Input offset voltage – −92 mV
Max. power dissipation £ 2 mW 0.804 mW
Transfer function – 12.795
Output impedance – 8.6 kΩ

94 4 Analog and Mixed Signal Design

4.2.2.1 Schematic Design of OPAMP

The schematic design is required to carry out LVS after drawing the layout section
to verify the connectivity of the circuit. The screenshot of the schematic design of
TS-OPAMP is shown in Fig. 4.11. The components are chosen as per the designed
results available in Table 4.2. Metal plate capacitor is selected for the layout design
for compensation capacitor.

4.2.2.2 Layout Design of OPAMP

The Layout of OPAMP is drawn as per the schematic in Fig. 4.11. From the Table 4.2
it can be noted that MOSFET M7 has very large channel width. In order to avoid
delays and other parasitic effects caused due to large channel width, fingering is
done to break up the MOSFET into 10 MOSFETs of equal channel width [6]. The
screenshot of MOSFET M7 with finger – 10 is shown in Fig. 4.12.

Fig. 4.11 Schematic of TS-OPAMP

954.2 Layout Design of OPAMP

Fig. 4.12 Screenshot of MOSFET with finger-10

Since the finger for M7 is 10, the total channel width of 9.8 mm is divided into 10
MOSFETs with channel width of 0.98 mm each. The Fig. 4.12 shows the alternate
connections made to the source of MOSFET to connect it to the VDD power line.
Similarly, alternate connections are done for the drain as well.

The screenshot of completed layout design of TS-OPAMP is shown in
Fig. 4.13.

The completed layout of TS-OPAMP is verified for DRC. Once the layout is
DRC clean, LVS is performed against the schematic to verify the connectivity of the
design. LVS match is obtained for the design. The screenshot of LVS match indica-
tor for the design is shown in Fig. 4.14.

For the LVS matched layout design, the SPICE netlist along with parasitics is
extracted using RCXT tool in Cadence Virtuoso. Graphical view of the parasitics
such as, resistance and capacitance in the layout design is also observed. Some of
the screenshots obtained to illustrate the parasitics in the layout design are shown in
the following figures.

The screenshot of the complete TS-OPAMP layout with parasitics identified is
shown in Fig. 4.15.

The parasitics existing at poly of MOSFET having 10 fingers is shown in
Fig. 4.16.

The parasitics identified in metal plate compensation capacitor is shown in
Fig. 4.17.

96 4 Analog and Mixed Signal Design

Fig. 4.13 Screenshot of completed layout design of TS-OPAMP

Fig. 4.14 Screenshot of LVS match for TS-OPAMP design

Fig. 4.15 Screenshot of TS-OPAMP layout with parasitics identified in the design

Fig. 4.16 Screenshot of parasitics in MOSFET layout having 10 fingers in TS-OPAMP layout
design

98 4 Analog and Mixed Signal Design

Fig. 4.17 Screenshot of parasitics identified in layout of compensation capacitor

4.2.3 Summary and Results

The DRC clean and LVS match layout design of TS-OPAMP obtained have parasit-
ics that affect the function of the design. Post layout simulation using the generated
SPICE netlist for the design is carried out in LTspice to verify the specification
parameters. The layout design has approximately 67 Resistances and 68 Capacitance
parasitics. The area of the layout of TS-OPAMP is calculated as follows:

 µ=Approximate Height of the Cell (H) 10 m

 µ=ApproximateWidth of the Cell (W) 12 m

 µ µ µ= × = × = 2 2Area H W 10 m 12 m 120 m

The total area used by the TS-OPAMP layout designed cell including unused
area is approximately 120 m²m²

The layout can be improved by meticulously planning the placement of MOSFETs
to obtain optimized area with least parasitics. The unused area in the design can be
effectively used to reduce the area metrics for the layout design. The width of the
OPAMP cell is an arbitrary value as there is no reference cell with least width avail-
able. This applies also to the height of the OPAMP.

99Appendix

Appendix

A. SPICE code to verify Open loop gain, Phase margin and Bandwidth using Bode
plot for the OPAMP

100 4 Analog and Mixed Signal Design

B. SPICE code to verify ICMR for the OPAMP

101Appendix

C. SPICE code to verify Input offset voltage and output impedance for the OPAMP

102 4 Analog and Mixed Signal Design

D. SPICE code to verify Power dissipation for the OPAMP

103Appendix

E. SPICE code to verify Slew rate for the OPAMP

104 4 Analog and Mixed Signal Design

References

1. Gayakwad RA (2000) Op-amps and linear integrated circuits, 3rd edn. Prentice-Hall, Englewood
Cliffs

2. Franco S (1997) Design with operational amplifiers and analog integrated circuits, 2nd edn.
McGraw-Hill Companies, Boston

3. Wafer Electrical Test Data/SPICE Model Parameters (2007) MOSIS integrated circuit fabrication
service. http://www.mosis.com//Technical/Testdata/menu-testdata.html. Accessed 18 July 2007

4. Allen PE, Holberg DR (2002) CMOS analog circuit design. Oxford University Press, New York
5. Kraus AD (1991) Circuit analysis. West Publishing Company, St. Paul
6. Clein D (2000) CMOS IC layout – concepts, methodologies and tools. Newnes Publications,

Boston

105V.A. Chandrasetty, VLSI Design: A Practical Guide for FPGA and ASIC
Implementations, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-1-4614-1120-8, © Springer Science+Business Media, LLC 2011

Vikram Arkalgud Chandrasetty received Bachelor Degree in Electronics and
Communication Engineering from Bangalore University (India) in 2004 and Master
Degree in VLSI System Design from Coventry University (UK) in 2008. He was
working with Core Networks Division at Motorola India as Software Engineer
(2005–2007), where he was part of the billing and call processing R&D team of
Motorola Soft-Switch (MSS) for Mobile Switching Centers (MSC). He also worked
for SoftJin Technologies as Senior Software Engineer (2007–2008) focusing on
Electronic Design Automation (EDA) and FPGA applications design. He was
involved in the design and development of Programmable Synthesis Engine (PSE)
for custom FPGA architectures and structured ASICs. He was also working on soft-
ware modeling and FPGA implementation of Motion Estimation algorithms for
H.264 Advance Video Coder.

Mr. Vikram is currently working towards his doctoral thesis at the School of
Electrical and Information Engineering, University of South Australia. He is explor-
ing low complexity algorithms for decoding LDPC codes and investigating efficient
architectures for hardware implementation. His research is mainly focused on

About the Author

Vikram Arkalgud Chandrasetty

106 About the Author

implementing high performance LDPC decoders on reconfigurable devices. He has
published several refereed research papers and authored two books. He is a member
of Institute of Electrical and Electronics Engineers (IEEE), The Institution of
Engineering and Technology (IET) and Australian Computer Society (ACS). He
is also a reviewer for several international conferences and journals.

	Cover
	SpringerBriefs in Electrical and ComputerEngineering
	VLSI Design
	ISBN 9781461411192
	Preface
	Contents
	Abbreviations

	Chapter 1: CMOS Digital Design
	1.1 Design of CMOS SRAM Cell and Array
	1.1.1 Plan of SRAM Cell and Array
	1.1.2 Design of 6 Transistor SRAM Cell
	1.1.3 Simulations of SRAM Cell
	1.1.4 Layout of SRAM Cell
	1.1.5 Design of SRAM Array
	1.1.6 Simulation of SRAM Array

	1.2 Design of SRAM Chip Circuit Elements
	1.2.1 SRAM Chip Circuit Elements
	1.2.1.1 Address Decoder
	1.2.1.2 Sense Amplifier
	1.2.1.3 Pre-Charge Circuit
	1.2.1.4 Data I/O Control Logic

	1.2.2 Design of Complete SRAM Chip
	1.2.3 Simulations of Complete SRAM Chip
	1.2.4 Delay Extraction for SRAM Chip Write/Read Operation
	1.2.5 Re-Design of SRAM Chip for Low Power Consumption

	Appendix
	References

	Chapter 2: FPGA Application Design
	2.1 Design of Direct Sequence-Spread Spectrum System
	2.1.1 PN Sequence Generator
	2.1.1.1 Overview of PN Sequence Generator
	2.1.1.2 Design of PN Sequence Generator
	Design
	Block Diagram

	2.1.1.3 Properties of PN Sequence
	2.1.1.4 Simulation Results for PN Sequence Generator

	2.1.2 Transmitter for Direct Sequence-Spread Spectrum System
	2.1.2.1 Overview of DS-SS Transmitter System
	2.1.2.2 Design of DS-SS Transmitter
	Multiplier Design
	Oscillator Design
	BPSK Modulator Design

	2.1.2.3 Simulation Results for DS-SS Transmitter

	2.1.3 Receiver for Direct Sequence-Spread Spectrum System
	2.1.3.1 Overview of DS-SS Receiver System
	2.1.3.2 Design of DS-SS Receiver
	BPSK Demodulator Design
	BOOTH Multiplier Design
	Low Pass Filter and Decision Device Design

	2.1.3.3 Noise Models and Synchronization
	2.1.3.4 Simulation Results for DS-SS Receiver

	2.2 FIR Filter Design
	2.2.1 Concepts of FIR Filter
	2.2.2 Low Pass FIR Filter Design
	2.2.3 Distributed Arithmetic Architecture
	2.2.4 Simulation and Synthesis Results

	2.3 Discrete Cosine Transform Algorithms
	2.3.1 Concepts of DCT
	2.3.2 DCT Architectures on FPGA
	2.3.3 Scaled 1-D 8-Point DCT Architecture
	2.3.4 Simulation and Synthesis Results

	2.4 Convolution Codes and Viterbi Decoding
	2.4.1 Concepts of Convolution Codes
	2.4.2 Viterbi Decoder
	2.4.3 Simulation and Synthesis Results

	Appendix
	References

	Chapter 3: ASIC Design
	3.1 ASIC Front-End Memory Design
	3.1.1 Introduction
	3.1.2 Memory Architecture and Specifications
	3.1.3 Implementation and Simulations
	3.1.4 Results Analysis and Conclusion

	3.2 ASIC Front-End Matrix Multiplier Design
	3.2.1 Introduction
	3.2.2 Problem Statement
	3.2.3 Matrix Multiplier Design
	3.2.4 Implementation and Simulations
	3.2.5 Analysis of Results and Conclusion

	3.3 Physical Design of Matrix Multiplier
	3.3.1 Introduction to Systolic Array Matrix Multiplier
	3.3.2 Physical Design Flow
	3.3.2.1 Design Setup
	3.3.2.2 Floor Planning
	3.3.2.3 Power Planning
	3.3.2.4 Timing Setup
	3.3.2.5 Placement
	3.3.2.6 Clock Tree Synthesis
	3.3.2.7 Routing
	3.3.2.8 Design for Manufacturability

	3.3.3 Results and Conclusion

	Appendix
	References

	Chapter 4: Analog and Mixed Signal Design
	4.1 Schematic Design of OPAMP
	4.1.1 Introduction
	4.1.2 Two Stage OPAMP Design
	4.1.2.1 Specifications
	4.1.2.2 Schematic of OPAMP
	4.1.2.3 Design Calculations
	4.1.2.4 Design Calculation Results
	4.1.2.5 Definition of Design Parameters
	4.1.2.6 Simulations and Verification

	4.1.3 Results

	4.2 Layout Design of OPAMP
	4.2.1 Introduction
	4.2.2 Layout Design
	4.2.2.1 Schematic Design of OPAMP
	4.2.2.2 Layout Design of OPAMP

	4.2.3 Summary and Results

	Appendix
	References

	About the Author

