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Preface

 

“In this digital age, who needs continuous-time filters?” Such an obvious question, and
one which deserves an immediate response. True, we do live in a digital age—digital com-
puters, digital communications, digital broadcasting. But, much though digital technology
may bring us advantages over analog systems, at the end of the day a digital system must
interface with the real world—the analog world. For example, to gain the advantages that
digital signal processing can offer, that processing must take place on 

 

bandlimited

 

 signals, if
unwanted aliasing effects are not to be introduced. After the processing, the signals are
returned to the real analog world after passing through a 

 

reconstruction

 

 filter. Both band-
limiting and reconstruction filters are analog filters, operating in 

 

continuous time

 

. This is but
one example—but any system that interfaces with the real world will find use for continu-
ous-time filters.

The term 

 

continuous-time

 

 perhaps needs some explanation. There was the time when ana-
log filters were just that—they processed analog signals in real time, in contrast to digital
filters which performed filtering operations on digital representations of samples of sig-
nals, often not in real time. Then in the 1970s, along came sampled data filters. Sampled
data filters did not work with digital representations of the sampled signal, but operated
on the samples themselves. Perhaps the best known example of such an approach is that of

 

switched-capacitor filters,

 

 which as the name suggests, use switches (usually transistor
switches) together with capacitors and active devices to provide filter functions. Note that
these filters are 

 

discontinuous

 

 in time as a result of the switching which takes place within
the circuits; indeed continuous bandlimiting and reconstruction filters are needed as a
result. Much research took place in the 1970s and 1980s on switched capacitor filters as a
result of the advantages for integrated circuit realization that they promised. There was so
much stress on research in this area that development of the more conventional analog fil-
ters received relatively little attention. However, when switched capacitor filters failed to
provide all the solutions, attention once again turned to the more traditional approaches,
and the name 

 

continuous-time filters

 

 was coined to differentiate them from their digital and
sampled data counterparts.

This book is about continuous-time filters. The classic LCR filters built with inductors,
capacitors, and resistors are such filters, of course, and indeed are still much in use. How-
ever, these filters are unsuitable for implementation in the ubiquitous integrated circuit,
since no satisfactory way of making inductors on chip has been found. That is why so much
attention has been paid to active continuous-time filters over the years. Active filters offer
the opportunity to integrate complex filters on-chip, and do not have the problems that the
relatively bulky, lossy, and expensive inductors bring—in particular their stray magnetic
fields that can provide unwanted coupling in a circuit or system. It is therefore active con-
tinuous-time filters on which we shall concentrate here.

As just mentioned, active filters have been around for some time as a means of overcom-
ing the disadvantages associated with passive filters (of which the use of inductors is one).
It is a sobering realization that the Sallen and Key circuit (which uses a voltage amplifier,
resistors, and capacitors, and is one of the most popular and enduring active-RC filter
“architectures”) has been around for about 40 years, yet research into active filters still pro-
ceeds apace after all that time. Tens of thousands of journal articles and conference papers
must have been published and presented over the years. The reasons are manifold, but two
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particular ones are of note. First, the changes in technology have required new approaches.
Thus as cheap, readily available integrated circuit opamps replaced their discrete circuit
counterparts (early versions of which used vacuum tube technology, mounted in 19”
racks), it became feasible to consider filter circuits using large numbers of opamps, and
new improved architectures emerged. Similarly the development of integrated transcon-
ductance amplifiers (the so-called OTA, or operational transconductance amplifiers) led to
new filter configurations which reduced the number of resistive components, and allowed
with advantage filter solutions to problems using currents as the variables of interest,
rather than voltages. In the limit this gives rise to OTA-C filters, using only active devices
and capacitors, eminently suitable for integration, but not reducing the significance of
active-RC filters which maintain their importance in hybrid realizations. Second, the
demands on filter circuits have become ever more stringent as the world of electronics and
communications has advanced. For example, greater demands on bandwidth utilization
have required much higher performance in filters in terms of their attenuation characteris-
tics, and particularly in the transition region between passband and stopband. This in turn
has required filters capable of exhibiting high “Q,” but having low sensitivity to compo-
nent changes, and offering dynamically stable performance – filters are not meant to oscil-
late! In addition, the continuing increase in the operating frequencies of modern circuits
and systems reflects on the need for active filters that can perform at these higher frequen-
cies; an area where the OTA active filter outshines its active-RC counterpart.

What then is the justification for this new book on continuous-time active filters? For the
newcomer to the field, the literature can be daunting, in both its volume and complexity,
and this book picks a path through the developed field of active filters which highlights the
important developments, and concentrates on those architectures that are of practical sig-
nificance. For the reader who wants to be taken to the frontiers of continuous-time active
filter design, these too are to be found here, with a comprehensive treatment of transcon-
ductance amplifier-based architectures that will take active filter design into the next mil-
lennium. All this material is presented in a context that will enable those readers new to

 

filter design

 

 (let alone continuous-time active filter design) to get up to speed quickly.
This book will be found interesting by practising engineers and students of electronics,

communications or cognate subjects at postgraduate or advanced undergraduate level of
study. It is simply structured. Chapters 1 through 3 cover the basic topics required in intro-
ducing filter design; Chapters 4 through 7 then focus on opamp-based active-RC filters;
finally, Chapters 8 through 12 concentrate on OTA-Capacitor filters (and introduce some
other approaches), taking the reader up to the frontiers of modern active continuous-time
filter design.

A book such as this requires much work on the part of the authors. In this case it is an
achievement of which the authors are particularly proud because it represents the success-
ful collaboration of three engineering academics from quite different cultural back-
ground—Greece, China, and the United Kingdom. The catalyst to this collaboration has
been Nora Konopka from CRC Press in the U.S., to whom all of us are grateful. In addition,
we have many to thank as individuals. Theodore Deliyannis particularly thanks his col-
leagues I. Haritantis, G. Alexiou, and S. Fotopoulos in Patras, Prof. A. G. Constantinides of
Imperial College, London, and the IEE for allowing him to reproduce parts of their com-
mon papers published in the 

 

Proceedings of the IEE

 

. He also expresses his gratitude to Mrs.
V. Boile and his postgraduate student K. Giannakopoulos for their help in preparing the
manuscript. Finally he thanks his wife Myriam for her encouragement and understanding.

Yichuang Sun acknowledges Prof. Barry Jefferies of the University of Hertfordshire,
U.K., for his support, and helpful comments on his work; he is also grateful to Tony Crook
for his help in preparing the manuscript. He also expresses his thanks to his wife, Xiaohui,
and son, Bo, for their support and patience.
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Kel Fidler is particularly grateful to his co-authors Theodore and Yichuang for their
incredibly hard work, and their patience and civility at times when things became a little
quiet! He also thanks all his friends and colleagues in York for their forbearance and under-
standing when they observed that, once again, he had taken on too much! In particular he
thanks Navin Sullivan, without whom, in many complex ways, these authors would never
have come together to write this book.
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Chapter

 

 

 

1

 

Filter Fundamentals

 

1.1 Introduction

 

Continuous-time active filters are active networks (circuits) with characteristics that make
them useful in today’s system design. Their response can be predetermined once their exci-
tation is known, provided that their characteristic function is known or can be derived from
their circuit diagram. Thus, it is important for the filter designer to be familiar with the con-
cepts relevant to filter characterization.

These useful concepts are reviewed in this chapter. For motivation, we deal with the filter
characterization and the possible responses first. In order to pursue these further, we need
to consider certain fundamentals; the analysis of a circuit is explained by means of the
nodal method. The analysis of the circuit gives the mathematical expressions, transfer, or
other functions that describe its characteristics. We examine these functions in terms of
their pole-zero locations in the s-plane and use them to determine the frequency and time
responses of the circuit. The concepts of stability, passivity, activity, and reciprocity, which
are closely associated with the study and the design of the types of networks examined in
this book, are also visited briefly.

 

1.2 Filter Characterization

 

The filters examined in this book are networks that process the signal from a source before
they deliver it to a load. In terms of a block diagram this is shown in Fig. 1.1.

The filter network is considered here to be lumped, linear, continuous-time, time invari-
ant, finite, passive, or active. These terms are clarified in the following section.

 

1.2.1 Lumped

 

In 

 

lumped

 

 networks, we consider the resistance, inductance, or capacitance as symbols or
simple elements concentrated within the boundaries of the corresponding physical ele-
ment, the physical dimensions of which are negligible compared to the wavelength of the
fields associated with the signal. This is in contrast to the 

 

distributed

 

 networks, in which the
physical elements have dimensions comparable to the wavelength of the fields associated
with the signal.



 

©1999 CRC Press LLC

 

1.2.2 Linear

 

Consider the circuit or system shown in Fig. 1.2(a) in block diagram form, where 

 

r

 

1

 

(

 

t

 

) is the
system response to the excitation 

 

e

 

1

 

(

 

t

 

).
The system will be linear (LS) when its response to the excitation 

 

C

 

1

 

e

 

1

 

(

 

t

 

), where 

 

C

 

1

 

 is a
constant, is also multiplied by 

 

C

 

1

 

, i.e., if it is 

 

C

 

1

 

r

 

1

 

(t), as shown in Fig. 1.2(b). This expresses
the principle of proportionality.

For a linear system the principle of superposition holds. This principle is stated as fol-
lows: If the responses to the separate excitations 

 

C

 

1

 

e

 

1

 

(t) and 
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2

 

e

 

2

 

(

 

t

 

) are 
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1
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) and 
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),
respectively, then the response to the excitation 
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) + 
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) will be 
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1
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1
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) + 

 

C

 

2

 

r
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(

 

t

 

), 

 

C

 

1

 

and C
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 both being constants. Some examples of linear circuits are the following:

• An amplifier working in the linear region of its characteristics is a linear circuit.

• A differentiator is a linear circuit. To show this, let 

 

r

 

(

 

t

 

) be the response to the
excitation 

 

e

 

(

 

t

 

).

(1.1)

Then, if 

 

e

 

(

 

t

 

) is multiplied by a constant 

 

C

 

, we will get for the new response 

(1.2)

• Similarly, for an integrator, the response 

 

r

 

(

 

t

 

) to its excitation 

 

e

 

(

 

t

 

) is:

(1.3)

If 

 

e

 

(

 

t

 

) is multiplied by the constant 

 

C

 

, the new response of the integrator will be:

(1.4)

FIGURE 1.1
Block diagram of a filter inserted between the signal source and the load.

FIGURE 1.2
System response to excitation.
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• A time delayer, which introduces the time delay 

 

T

 

 to the signal, also corresponds
to a linear operator, since the response to the excitation 

 

e

 

(

 

t

 

) will be

(1.5)

 

1.2.3 Continuous-Time and Discrete-Time

 

In a continuous-time filter, both the excitation e and the response 

 

r

 

 are continuous functions
of the continuous time 

 

t

 

, i.e.,

 

e

 

 = 

 

e

 

(

 

t

 

)

 

r

 

 = 

 

r

 

(

 

t

 

) (1.6)

In contrast, in a discrete-time or sampled-data filter the values of the excitation and
response are continuous, changing only at discrete instants of time. These are the sampling
instants. Only the values of the excitation and response at the sampling instants are of inter-
est. In this case, we have

 

e

 

 = 

 

e

 

(

 

nT

 

)

 

r

 

 = 

 

r

 

(

 

nT

 

)

where 

 

T

 

 is the sampling period and 

 

n

 

 a positive integer.
Details of continuous-time filters are given in Section 1.6, while further reference to dis-

crete-time filters is not within the scope of this book.

 

1.2.4 Time-Invariant

 

A time-invariant filter is built up from elements whose values do not change with time dur-
ing the operation of the filter. In such a filter, if the excitation 

 

e

 

(

 

t

 

) is delayed by 

 

T

 

, so is its
response 

 

r

 

(

 

t

 

). This is shown by means of Fig. 1.3.

 

1.2.5 Finite

 

The physical dimensions of the filter network are finite; the number of its components is
finite.

 

1.2.6 Passive and Active

 

A simple definition of a passive filter is given in terms of its elements, i.e., if all of its ele-
ments are passive the filter will be passive. Therefore, a passive filter may include among

r t( ) e t T–( )=

FIGURE 1.3
Defining a time-invariant filter.
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its elements resistors, capacitors, inductors, transformers, or ideal gyrators (see Chapter 3).
If the elements of the filter include amplifiers or negative resistances, this will be called
active.

Another more formal definition is the following: A filter is passive if and only if the fol-
lowing conditions are satisfied:

1. If currents and voltages of any waveform are applied to its terminal, the total energy 
supplied to the filter is non-negative.

2. No response appears in the circuit before the application of the excitation.

A filter is active if not passive. Condition 2 is necessary in order to avoid the situation in
which energy has been stored in some elements and appears before the application of the
excitation.

Passivity conditions in terms of network functions are given in Section 1.7.

 

1.3 Types of Filters

 

Ideal transmission of a signal from its source to the receiver requires the following two con-
ditions to be satisfied:

1. The spectrum of the signal remains unchanged.

2. The time differences between the various components of the signal remain 
unchanged.

The latter condition is satisfied if there is no change in the phase of each component dur-
ing the transmission, or if the phase varies linearly with frequency. Since changes in phase
are bound to occur in practice, linearity in phase with frequency is necessary for the Con-
dition 2 to be satisfied.

Thus, the desired transfer function of a transmitting medium should have the following
characteristics. Its magnitude should be:

and its phase

where 

 

T

 

 is a constant with the dimensions of time.
The function in Laplace transform notation, which possesses these two characteristics, is

the following:

However, in real transmission, the signal is usually distorted for various reasons such as
interference by other signals, corruption by noise, etc. Then the distorted signal, before
reaching the receiver, has to be corrected or processed in order to be restored to its initial
form. This can be achieved by means of filters and equalizers.

H jω( ) 1=

H jω( )arg ωT–=

H s( ) e sT–=
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We distinguish the filters according to their frequency response as lowpass, highpass,
bandpass, bandstop, allpass, and arbitrary frequency response (equalizers). The latter are
included here, following the general definition of a filter given at the beginning of this
chapter.

The basic filter frequency responses are as follows:

1.

 

The lowpass filter

 

—The ideal response of a lowpass filter is shown in Fig. 1.4(a).
All frequencies below the cutoff frequency 

 

ω

 

c

 

 pass through the filter without
obstruction. The band of these frequencies is the filter passband. Frequencies
above cutoff are prevented from passing through the filter and they constitute
the filter stopband.

However, for reasons explained in Chapter 2, the ideal lowpass filter response
cannot be realized by a physical circuit. Instead, the practical lowpass filter
response will, in general, be as shown in Fig. 1.4(b). It can be seen that a small
error is allowable in the passband, while the transition from the passband to the
stopband is not abrupt. The width of this transition band 

 

ω

 

s

 

 – 

 

ω

 

c

 

 determines the
filter selectivity. Here 

 

ω

 

s

 

 is considered to be the lowest frequency of the stopband,
in which the gain remains below a specified value.

2.

 

The highpass filter

 

—For reasons similar to those holding for the lowpass filter
the ideal highpass filter response is unrealizable. The amplitude response of the
practical highpass filter will basically be as shown in Fig. 1.5.

In the highpass filter the passband is above the cutoff frequency 

 

ω

 

c

 

, while all 
frequencies below 

 

ω

 

c

 

 are attenuated when passing through the filter.

3.

 

The bandpass filter

 

—The ideal bandpass is again unrealizable and the ampli-
tude response of the practical bandpass filter is as shown in Fig. 1.6. Here the
passband lies between two stopbands, the lower and the upper. Accordingly
there are two transition bands.

FIGURE 1.4
(a) Ideal and (b) practical lowpass fil-
ter amplitude response.

FIGURE 1.5
The basic highpass ideal and practical filter ampli-
tude response.
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4. The bandstop filter—The amplitude response of the practical band-elimination
or bandstop filter is shown in Fig. 1.7, while its ideal response is again unreal-
izable. It can be seen that the filter possesses two passbands separated by a
stopband rejected by the filter. There are also two transition bands.

5. The allpass filter—Ideally this filter passes, without any attenuation, all frequen-
cies (0 to ∞), while its characteristic of concern is the phase response. If its phase
response is linear, then it can operate as an ideal time delayer. In practice the
phase can be linear, within an acceptable error, up to a certain frequency ωc. For
frequencies below ωc the allpass filter operates as a delayer. It is useful in phase
equalization.
It should be noted that allpass filters are not the only ones that may possess
linear phase response. Certain lowpass filters also have similar phase response,
as explained in Chapter 2, and they can be used as time delayers.

6. Amplitude equalizers—The amplitude equalizer has an amplitude response that
does not belong to any of the filter responses considered above. It is used to
compensate for the distortion of the frequency spectrum that the signal suffers
when passing through a system. Its amplitude response is therefore drawn as
complementary to the signal spectrum. In this sense it can be considered arbitrary
being suitable for only one distorted signal.

1.4 Steps in Filter Design

Filter design, in effect, involves three separate processes or steps, these being

1. Analysis of circuits

2. Curve approximation

3. Synthesis of the filter

FIGURE 1.6
Amplitude response of the ideal and practical basic
bandpass filter.

FIGURE 1.7
Amplitude response of the ideal and practical basic
bandstop filter.
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These three steps are explained below to clarify matters.

1. Analysis of circuits—Conventionally, analysis of a circuit is the procedure to
find the characteristics of the filter operation from its diagram and the values of
its components. However, analysis of circuits has a more general meaning here,
namely to determine general types of operational characteristics for various
general types and orders of circuits. These characteristics may be formulated as
rational functions of the complex frequency variable s, with constraints depend-
ing on the circuit type. These rational functions will be referred to here as the
permitted functions.

2. Curve approximation—Based on the knowledge of the characteristics and poten-
tialities of the various types of circuits, we may proceed to try to find the solution
of a certain design problem. Clearly the filter specifications are not given in the
form of rational functions, but as lines or curves that give, for example, maxima
and minima of attenuation. These lines determine the so-called specified curve.
Therefore, the next step in the filter design will necessarily be the determination
of the permitted rational function that best approximates the specified curve,
i.e., that satisfies the conditions set by the specified curve.

Usually the complexity (and consequently the cost) of the circuit increases
with the order of the permitted function that is selected. It is therefore necessary
to determine the simplest permitted function that satisfies the specifications.
Once the suitable permitted function has been found, the basic information is
available for the determination of the corresponding circuit, i.e., the circuit whose
operation characteristics are in agreement with the selected permitted function. 

3. Filter synthesis—Filter synthesis refers to the process for determining a circuit,
i.e., its diagram and the values of its components. Even more ambitiously, we
may find all possible circuits that satisfy the specifications and among them select
the best according to certain criteria (cost, available technologies, power dissipa-
tion, etc.).

1.5 Analysis

For the sake of the reader who is not very familiar with the analysis of a general circuit, we
include this section to explain the nodal analysis of a circuit and use the results in order to
obtain the mathematical relationship(s) connecting its response(s) to the excitation(s).
These relationships will, in the general case, give the types of the permitted functions
which were mentioned in the previous section.

1.5.1 Nodal Analysis

Nodal analysis is usually used to determine the response of an active circuit to a certain
excitation. We will explain the method of nodal analysis by applying it in the case of the
circuit in Fig. 1.8.

Let Vi, i = 1,2,3,4 be the voltages in the corresponding nodes and apply Kirchhoff’s cur-
rent law (KCL) in each node. We may write for node 1:

y12 V1 V2–( ) y13 V1 V3–( ) y14 V1 V4–( )+ + I 1=
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or

(1.7)

where  is the self-admittance of node 1, i.e., the sum of all admittances
connected to node 1, while yij, i, j = 1,2,3,4, with i ≠ j, is the mutual admittance directly con-
necting node i to node j.

Similarly we may write for the other nodes

node 2: –y12V1 + y22V2 – y23V3 – y24V4 = 0 (1.8)

node 3: –y13V1 – y23V2 + y33V3 – y34V4 = 0 (1.9)

node 4: –y14V1 – y24V2 – y34V3 + y44V4 = –I1 (1.10)

where yii, i = 2,3,4 is the self-admittance of node 2,3,4, respectively.
It must be noted that these four equations are not independent. For example, if we add

the first three we will get Eq. (1.10). To get an independent set of equations we arbitrarily
choose one node as the reference node and set its voltage equal to zero. Then, the number
of equations required for the calculation of the voltages at the other nodes will be reduced
by one. In the case of this example, let V4 =0 and obtain the following set of three equations:

y11V1 – y12V2 – y13V3 = I1

–y12V1 + y22V2 – y23V3 = 0 (1.11)

–y12V1 – y23V2 + y33V3 = 0

where yii, i = 1,2,3 are the self admittances of the nodes including, of course, the mutual
admittance connecting the corresponding node to the reference node (node number 4, in
this case). Solution of the set of Eq. (1.11) will give the voltages at nodes 1,2,3 referring to
the voltage at node number 4.

To complete the analysis, the currents in each admittance should be calculated. This can
be easily achieved by applying Ohm’s law at each branch. For example, the current Iij in yij

is the following:

Iij = yij(Vi – Vj) (1.12)

FIGURE 1.8
Circuit illustrating nodal analysis.

y11V1 y12V2– y13V3– y14V4– I 1=

y11 y12 y13 y14+ +=
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In the general case of a circuit with N nodes, the n = N – 1 independent equations, when
the Nth node has been chosen as the reference node, with VN = 0, are as follows:

y11V1 + y12 V2 +....+ y1nVn = I1

y21V1 + y22V2 +....+ y2nVn = I2 (1.13)

. . . . . . . . . . . . . . . . . . . . . . . . . .

yn1V1 + yn2V2 +....+ ynnVn = In

where, in all yij, i ≠ j, the minus sign has been included in the symbol. This set of equations
can be written in matrix form.

(1.14)

or simply 

(1.15)

where

(1.16)

is an n × n matrix, and [V], [I] are column matrices. When the admittances are bilateral, i.e.,
the corresponding currents through them remain the same in magnitude when the applied
voltages change their polarity, it is always yij = yji, and this matrix is symmetric around the
main diagonal. All passive RLC networks are characterized by this property. This is true for
all reciprocal networks (see Section 1.9).

It is important to realize that matrix [y] can be formed by inspection of the circuit once
the nodes have been identified (numbered) and the reference node has been chosen. To this
end, one should remember that each self admittance yii is the sum of all admittances con-
nected to the ith node, while in the symbol for each mutual admittance, yij, i ≠ j, the minus
sign is included. On the other hand, if matrix [y] is known, it can be used to reconstruct the
circuit, following the above observations regarding yii and yij, i ≠ j.

In the above discussion, it was assumed that all independent sources were current
sources, and this is most convenient when applying KCL. However, when some excitations
are applied via voltage sources, these should be transformed to their equivalent current
sources by using Norton’s theorem. According to this theorem, a voltage source, Fig. 1.9(a),
is equivalent to a current source, Fig. 1.13(b), when

y11 y12 … y1n

y21 y22 … y2n

… … … …
yn1 yn2 … ynn

V1

V2

…
Vn

I 1

I 2

…
I n

=

y[ ] V[ ] I[ ]=

y[ ]

y11 y12 … y1n

y21 y22 … y2n

… … … …
yn1 yn2 … ynn

=
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and

In case Vs is ideal (i.e., Zs = 0), we assume that Zs ≠ 0, we carry out the analysis as usual, and
in the final expressions we set Zs = 0.

However, when dependent current or voltage sources are present in the circuit, the y
matrix is not symmetrical, because then some of the yij are not the same as the correspond-
ing yji. In the case of a dependent current source, whether it be current controlled or voltage
controlled (see Section 3.2), this is treated as an independent current source in forming the
corresponding nodal equation, which is then rearranged in the form of Eq. (1.13). In the case
of a dependent voltage source, whether it be voltage controlled or current controlled, this
may be transformed to a current source using Norton’s theorem, as was explained above.

1.5.2 Network Parameters

The y-matrix that was determined above is useful in determining various network param-
eters that express the network behavior. We explain this in the cases of one- and two-port
networks. These are considered linear, lumped, finite and time-invariant, usually denoted
as LLF networks.

1.5.2.1 One-Port Network

A one-port (or two-terminal) network is shown in Fig. 1.10. It is excited by a current source
only. V1 is the response of interest.

FIGURE 1.9
(a) A voltage source and (b) its equivalent current source.

I s

Vs

Zsu

-------=

Zsi Zsu Zs= =

FIGURE 1.10
A one-port network excited by a current source.
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Then matrix [I] in Eq. (1.14) will be as follows:

(1.17)

From these equations, we obtain V1 and consequently Yin. Applying Cramer’s rule, we
will have

(1.18)

and

(1.19)

where ∆y is the determinant of [y], and ∆11 is its cofactor when the first row and first column
are deleted. 

1.5.2.2 Two-Port Network

Consider the two-port network shown in Fig. 1.11. If I1 and I2 are the only independent exci-
tations, we may write, as a consequence of linearity, the following equations:

(1.20)

where

(1.21)

are the so called Z-parameters of the two-port. Here,

I[ ]

I 1

0

…
0

=

V1

∆11

∆y

------- I 1=

Yin
1

Zin

-------
I 1

V1

------
∆y

∆11

-------= = =

FIGURE 1.11
A two-port LLF network.

V1 Z11I 1 Z12I 2+=

V2 Z21I 1 Z22I 2+=

Z11
V1

I 1

------
I 2 0=

= Z12
V1

I 2

------
I 1 0=

= Z21
V2

I 1

------
I 2 0=

= Z22
V2

I 2

------
I 1 0=

=
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means the ratio of V1 and I1 when I2 = 0, and similarly for the rest of Eq. (1.21).
These can be obtained from Eq. (1.14) if we set all current excitations, except I1 and I2,

equal to zero and solve for V1 and V2. The result will be

(1.22)

where ∆ij is the cofactor of the element yij of matrix [y]. Clearly, all Zij have the dimensions
of impedance. 

A corresponding circuit model (equivalent) for the two-port, based on Eq. (1.20), can be
drawn as shown in Fig. 1.12. The symbol for Z12I2 and Z21I1 denotes a dependent voltage
source.

Alternatively, we may write Eq. (1.20) in the following form:

(1.23)

and determine Yij, the so called Y-parameters of the two-port as follows: 

(1.24)

These parameters have the dimensions of admittance and can be obtained from the
Z-parameters that were earlier determined from the [y] matrix of the two-port. The conver-
sion formulas between Z- and Y-parameters are given [2, 3] in Table 1.1.

The equivalent circuit of the two-port based on Eq. (1.23) is shown in Fig. 1.13. The sym-
bol for Y12V2 and Y21V1 denotes a dependent current source.

Similarly, we may obtain sets of hybrid parameters of the two-port defined by the follow-
ing equations:

(1.25)

(1.26)

Z11
V1

I 1

------
I 2 0=

=

Z11
∆11

∆y

-------= Z12
∆12

∆y

-------= Z21
∆21

∆y

-------= Z22
∆22

∆y

-------=

FIGURE 1.12
Equivalent circuit of the two-port using the Z-parameters.

I 1 Y11V1 Y12V2+=

I 2 Y21V1 Y22V2+=

Y11
I 1

V1

------
V2 0=

= Y12
I 1

V2

------
V1 0=

= Y21
I 2

V1

------
V2 0=

= Y22
I 2

V2

------
V1 0=

=

H-parameters: V1 H11I 1 H12V2+= I 2 H21I 1 H22V2, or+=

G-parameters: I 1 G11V1 G12I 2+= V2 G21V1 G22I 2+=
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TABLE 1.1

Matrix Conversion Table [2]

Z11 Z11 Y22/∆Y ∆H/H22 1/G11 a11/a21

Z12 Z12 –Y12/∆Y H12/H22 –G12/G11 ∆A/a21

Z21 Z21 –Y21/∆Y –H21/H22 G21/G11 1/a21

Z22 Z22 Y11/∆Y 1/H22 ∆G/G11 a22/a21

∆Z ∆Z 1/∆Y H11/H22 G22/G11 a12/a21

Y11 Z22/∆Z Y11 1/H11 ∆G/G22 a22/a12

Y12 –Z12/∆Z Y12 –H12/H11 G12/G22 –∆A/a12

Y21 –Z21/∆Z Y21 H21/H11 –G21/G22 –1/a12

Y22 Z11/∆Z Y22 ∆H/H11 1/G22 a11/a12

∆Y 1/∆Z ∆Y H22/H11 G11/G22 a21/a12

H11 ∆Z/Z22 1/Y11 H11 G22/∆G a12/a22

H12 Z12/Z22 –Y12/Y11 H12 –G12/∆G ∆A/a22

H21 –Z21/Z22 Y21/Y11 H21 –G21/∆G –1/a22

H22 1/Z22 ∆Y/Y11 H22 G11/∆G a21/a22

∆H Z11/Z22 Y22/Y11 ∆H 1/∆G a11/a22

G11 1/Z11 ∆Y/Y22 H22/∆H G11 a21/a11

G12 –Z12/Z11 Y12/Y22 –H12/∆H G12 –∆A/a11

G21 Z21/Z11 –Y21/Y22 –H21/∆H G21 1/a11

G22 ∆Z/Z11 1/Y22 H11/∆H G22 a12/a11

∆G Z22/Z11 Y11/Y22 1/∆H ∆G a22/a11

a11 Z11/Z21 –Y22/Y21 –∆H/H21 1/G21 a11

a12 ∆Z/Z21 –1/Y21 –H11/H21 G22/G21 a12

a21 1/Z21 –∆Y/Y21 –H22/H21 G11/G21 a21

a22 Z22/Z21 –Y11/Y21 –1/H21 ∆G/G21 a22

∆A Z12/Z21 Y12/Y21 –H12/H21 –G12/G21 ∆A

FIGURE 1.13
Equivalent circuit of the two-port based on Eq. (1.23).
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Since these hybrid parameters are referred to the same two-port, they must be related to
the previously defined Z- and Y-parameters. Conversions formulas for these parameters
are also given [2, 3] in Table 1.1.

Notice that the hybrid parameters have different dimensions. Thus, H11 and G22 are
impedance functions, H22 and G11 admittance functions, and H12, H21, G12, and G21 are
dimensionless. It is for this reason that the parameters are said to be hybrid.

The hybrid equivalent circuits of the two-port based on Eqs. (1.25) and (1.26) are shown
in Figs. 1.14(a) and (b), respectively. 

Finally, we may write the relationships between port voltages and currents in the follow-
ing form:

(1.27)

and thus obtain the aij, i, j = 1,2 parameters, which form the transmission matrix. These
parameters relate the input voltage and current to the corresponding output voltage and
current and are very useful when studying cascaded two-port networks.

In Eq. (1.27), –I2 is used instead of I2 to keep in agreement with the initial definition of the
aij, i, j = 1,2 parameters, in which I2 was taken flowing out at port 2 rather than flowing in,
as is generally considered.

An equivalent circuit of the two-port based on Eq. (1.27) could also be drawn, but we
leave this to the reader as an exercise. Conversion formulae are given [2, 3] in Table 1.1.

1.5.3 Two-Port Interconnections

In certain cases, the analysis of a complex two-port may be simplified, if this can be decom-
posed into two (or more) subnetworks connected in one of the ways shown below: 

1.5.3.1 Series–Series Connection

This connection is shown in Fig. 1.15.

FIGURE 1.14
(a) The H-parameter and (b) G-parameter equivalent circuits of the two-port.

V1 a11V2 a12 I 2–( )+=

I 1 a21V2 a22 I 2–( )+=
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Since

it can be easily shown that the Z-parameter matrix of the overall two-port is the sum of the
Z-parameter matrices of the individual two-ports, i.e.,

(1.28)

This connection of two-ports is sometimes known as cascode connection.

1.5.3.2 Parallel–Parallel Connection

In this case, the situation is as shown in Fig. 1.16. Observe that

V1 = V1a = V1b V2 = V2a = V2b

and

I1 = I1a + I1b I2 = I2a + I2b

FIGURE 1.15
Series–series connection of two two-ports.

I 1a I 1b=

V1 V1a V1b+=

I 2a I 2b=

V2 V2a V2b+=
and

Z[ ] Z[ ] a Z[ ] b+=

FIGURE 1.16
Parallel–parallel connection.
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It can then be easily shown that 

(1.29)

1.5.3.3 Series Input–Parallel Output Connection

Following similar reasoning, it can be shown that

(1.30)

1.5.3.4 Parallel Input–Series Output Connection

Again, it can similarly be shown that

(1.31)

1.5.3.5 Cascade Connection

This is shown in Fig. 1.17. Since it is very useful on many occasions, we explain it in detail.
It can be seen that

We may then write

If the behavior of the overall network is described by the relationship

we can easily obtain that

 (1.32)

Y[ ] Y[ ] a Y[ ] b+=

H[ ] H[ ] a H[ ] b+=

G[ ] G[ ] a G[ ] b+=

FIGURE 1.17
Cascade connection of two two-ports.

I 2a I 1b–=

V2a V1b=

V1a

I 1a

A[ ] a
V2a

I 2a–
A[ ] a A[ ] b

V2b

I 2b–
= =

V1a

I 1a

A[ ] V2b

I 2b–
=

A[ ] A[ ] a A[ ] b=
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1.5.4 Network Transfer Functions

The five sets of parameters that were introduced in the previous section describe fully the
network behavior toward its port terminations. Using these parameters, one can determine
various functions, e.g., the input impedance or admittance at one port when another
impedance is connected across the other port. Transfer functions are also expressed in
terms of these parameters as shown by the following example.

Consider the circuit in Fig. 1.18, where an LLF network is connected between a signal
source of voltage Eg and internal resistance Rg and a load resistance RL. Let the two-port net-
work be described by its Z-parameters.

The voltages and currents at the two-ports of the network are related by Eq. (1.20), which
is repeated here for convenience.

(1.33)

If we wish to determine the voltage transfer ratio V2/Eg, we may proceed as follows.
Observing that

V2 = –I2RL (1.34)

and substituting for I2 in Eq. (1.33) gives

(1.35)

(1.36)

Solving Eq. (1.36) for I1 and substituting in Eq. (1.35), we get, successively,

(1.37)

and

(1.38)

FIGURE 1.18
A two-port connected between source and load.

V1 Z11I 1 Z12I 2+=

V2 Z21I 1 Z22I 2+=

V1 Z11I 1

Z12

RL

-------V2–=

V2 Z21I 1

Z22

RL

-------V2–=

I 1

RL Z22+
RLZ21

--------------------V2=

V1

Z11 RL Z22+( ) Z12Z21–
RLZ21

------------------------------------------------------V2=
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But

(1.39)

Substituting for I1 from Eq. (1.37) in Eq. (1.39), then equating the sides on the right in Eqs.
(1.38) and (1.39) and solving for V2/Eg, we finally get the following:

(1.40)

Various other transfer functions for different values of Rg and RL are given [1] in Table 1.2
using both the Z- and Y-parameters of the two-port where appropriate.

All the network functions that appear on Table 1.2 are the Laplace transforms of corre-
sponding functions of continuous time. Since in this book we are dealing with filters that
are characterized by this type of functions only, we review the concept of continuous-time
filter functions in the next section in some detail.

TABLE 1.2

Source Load Transfer Function

∞ ∞

0 0

0 ∞

∞ 0

0 RL

∞ RL

Rg ∞

Rg 0

Rg RL

V1 Eg I 1Rg–=

V2

Eg

------
RLZ21

Rg Z11+( ) RL Z22+( ) Z12Z21–
-----------------------------------------------------------------------=

V2

I 1
------ Z21=

I 2

V1
------ Y21=

V2

V1
------

Z21

Z11
--------  

Y21

Y22
--------–= =

I 2

I 1
----

Y21

Y11
--------  

Z21

Z22
--------–= =

I 2

V1
------

Y21 RL⁄
Y22 1 RL⁄+
----------------------------=

V2

I 1
------

Z21RL

Z22 RL+
---------------------=

V2

Eg
------

Z21

Z11 Rg+
---------------------=

I 2

I 1
----

Y21

Y11 1 Rg⁄+
----------------------------=

V2

V1
------

Z21RL

Rg Z11+( ) RL Z22+( ) Z21Z12–
---------------------------------------------------------------------------=
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1.6 Continuous-Time Filter Functions

As was mentioned in Section 1.2, the response of a continuous-time filter to the continuous-
time excitation e(t) is a continuous-time function r(t) given as follows:

(1.41)

where h(t) is the impulse response (see Section 1.6.3) of the filter.
In the frequency domain this equation is written as follows:

(1.42)

where R(s), H(s), E(s) are the Laplace transforms of the time functions r(t), h(t), and e(t)
respectively, and s is the complex frequency variable. H(s) is the filter function, transfer or
driving-point impedance, or admittance function. These are shown in Fig. 1.19 in block dia-
gram form.

For the filters we are concerned with, H(s) will be a rational function of s, i.e., the ratio of
two real and finite polynomials in s. It is written in the following form:

(1.43)

where N(s) and D(s) are the numerator and denominator polynomials, respectively, with
m ≥ n, ai, bi real and bi positive (for stability reasons explained below).

If zi, i = 1,2,...n are the roots of N(s), i.e., the zeros of H(s) and pi, i = 1,2,....,m are the roots
of D(s), i.e., the poles of H(s), then Eq. (1.43) can be written as follows:

(1.44)

If the signal is sinusoidal of frequency ω, in Eqs. (1.43) and (1.44) s is substituted by jω.
Function H(jω) obtained this way is in fact the continuous-time Fourier transform of h(t). It
can then be written in the following form:

(1.45)

i.e., in terms of the magnitude and phase of H(jω).

r t( ) h t τ–( )e τ( ) τd
0

t

∫=

R s( ) H s( )E s( )=

FIGURE 1.19
Block diagram representation of the filter (a) in the time domain and (b) in the frequency domain.

H s( ) N s( )
D s( )
------------

ans
n an 1– sn 1– … a1s ao+ + + +

sm bm 1– sm 1– … b1s bo+ + + +
---------------------------------------------------------------------------= =

H s( ) an

s – zi( )
i 1=

n

∏

s pj–( )
j 1=

m

∏
--------------------------=

H jω( ) H jω( ) ejϕ ω( )=
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Clearly,

(1.46)

It is usual practice to present the magnitude of H(jω) in the form 

(1.47)

and thus express it in dB. This gives the filter gain in dB.
However, in most cases, we talk about the filter attenuation or loss, –A(ω), also in deci-

bels. In some cases, the attenuation is given in nepers obtained as follows:

Attenuation in nepers: (1.48)

In most filter design cases, H(s) represents the ratio of the Laplace transform of the out-
put voltage to the Laplace transform of the input voltage to the filter being thus dimen-
sionless. However, it may also represent ratio of currents, when it will again be
dimensionless, or ratio of output voltage to input current (transimpedance) or output cur-
rent to input voltage (transadmittance) having the dimensions of impedance or admit-
tance, respectively. Finally, it may represent a driving point function, i.e., the ratio of the
voltage to the current in one port of the filter network or vice versa. In these cases, H(s)
will represent either an impedance function or an admittance function, again not being
dimensionless.

1.6.1 Pole-Zero Locations

The roots of N(s), which are the zeros zi of H(s) (because for s = zi H(s) becomes zero), can
be real or complex conjugate, since all of the coefficients of N(s) are real. Each of these zeros
can be located at a unique point in the complex frequency plane as shown in Fig. 1.20. In
case of a multiple zero, all of them are located at the same point in the s-plane.

On the other hand, the roots of D(s), which are the poles pi of H(s) (because for s = pi , H(s)
becomes infinite) can be real or complex conjugate, since D(s) also has real coefficients.
However, their real part can only be negative for reasons of stability. Also, for a network to
be useful as a filter, its transfer function H(s) should not have poles with real part equal to
zero. Thus, the poles of function H(s) should all lie in the left half of the s-plane (LHP)
excluding the jω-axis, while its zeros can lie anywhere in the s-plane, i.e., in the left-half and
in the right-half s-plane (RHP).

ϕ ω( ) H jω( )[ ]arg=

A ω( ) 20 H jω( )log=

α ω( ) H jω( )ln–=

FIGURE 1.20
(a) Possible zero and (b) possible pole locations in the s-plane.
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1.6.2 Frequency Response

Under steady-state conditions (i.e., s = jω) the magnitude of H(jω) and its phase arg[H(jω)],
given by Eqs. (1.47) and (1.46), respectively, as A(ω) and ϕ(ω), constitute the frequency
response of the filter.

To get a good picture of the gain and phase functions of frequency ω, we draw the corre-
sponding plots with the frequency being the independent variable. It is usual in most cases
for the scale in the frequency axis to be logarithmic in order to include as many frequencies
as possible in the plots. The A(ω) axis has a linear scale but, in effect, it is also logarithmic,
since A(ω) is expressed in decibels. Finally, the ϕ(ω) axis is linear, usually expressed in
degrees. However, in some cases, instead of working in terms of ϕ(ω), we work considering
the group delay τg(ω), defined as flows: 

Group delay: (1.49)

This has the dimensions of time and denotes the time delay that the specific frequency com-
ponent in the spectrum of the signal experiences, when this passes through the filter.

Since A(ω) is an even function of ω, its plot against –ω will be symmetrical around the
A(ω) axis of the plot against ω. On the other hand, ϕ(ω) is an odd function of ω; therefore,
its plots against ω and –ω will be antisymmetrical around the ϕ(ω) axis.

To clarify all these terms, let us consider the following example for H(s):

(1.50)

The function has one zero at s = j0 and another at s = j∞ (since it takes zero value at s = j∞).
It is usual to consider these zeros located on the jω-axis in the s-plane. The two poles are

s1 = –0.25 + j0.9682

s2 = –0.25 – j0.9682

They are located in the LHP and are complex conjugate.
To obtain the frequency response, we substitute jω for s in Eq. (1.50) to obtain

(1.51)

Then

(1.52)

and

(1.53)

τg ω( )  
dϕ ω( )

dω
----------------–=

H s( ) s

s2 0.5s 1+ +
------------------------------=

H jω( ) jω
ω2– j0.5ω 1+ +

-----------------------------------------=

H jω( ) ω

1 ω2–( )2
0.25ω2+

-------------------------------------------------=

ϕ ω( ) π
2
--- tan 1––

0.5ω
1 ω2–
---------------=



©1999 CRC Press LLC

The plots of the magnitude in dB [i.e., A(ω) ] and the phase of H(jω) against frequency for
positive ω only are shown in Fig. 1.21(a) and (b), respectively.

1.6.3 Transient Response

In filter design, the specifications are usually given in terms of the frequency response.
However, in cases of pulse transmission, it is useful to know the response of the filter as a
function of time, i.e., its transient response.

In such cases, we usually study the response of the filter to two test functions: the unit
impulse or δ(t) function and the unit step function. The respective impulse response and
step response of the filter are briefly reviewed in what follows.

1.6.3.1 Impulse Response

The impulse response of a filter is its transient response when the excitation is the unit
impulse or δ(t) function, which is defined as follows:

(1.54)

and

δ(t) = 0  for t ≠ 0

According to this definition, we may also write 

(1.55)

with δ(t) being zero for t ≠ T.
Since the Laplace transform of δ(t) is

(1.56)

FIGURE 1.21
(a) Amplitude (magnitude) and (b) phase response of the function given by Eq. (1.50).

δ t( ) td
∞–

+∞

∫ 1=

δ t T–( ) td
∞–

+∞

∫ δ t( ) td

T
–

T
+

∫ 1= =

L δ t( )[ ] 1=
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substituting for E(s) in Eq. (1.42), repeated here for convenience,

(1.42)

we obtain

(1.57)

In other words, the Laplace transform of the filter response to the unit impulse [function
δ(t)] is the transfer function H(s).

Taking the inverse Laplace transform of H(s) to be

(1.58)

we get

(1.59)

Therefore, the impulse response of a filter is the inverse Laplace transform of its transfer
function.

1.6.3.2 Step Response

The step response of a filter is its time response when the excitation is the step function
Ku(t), where K is a constant (voltage or current) and u(t) the unit step function defined as
follows:

(1.60)

with the important property that 

(1.61)

Again, the shifting property holds, i.e.,

(1.62)

Its Laplace transform is

(1.63)

Substituting for E(s) in Eq. (1.42) gives 

R s( ) H s( )E s( )=

R s( ) H s( ) 1⋅ H s( )= =

h t( ) L 1– H s( )[ ]=

r t( ) L 1– R s( )[ ] L 1– H s( )[ ] h t( )= = =

u t( ) 1 t 0>
0 t 0<




=

δ t( ) du t( )
dt

-------------=

u t T–( ) 1 t T>
0 t T<




=

L u t( )[ ] 1
s
---=
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(1.64)

Taking the inverse Laplace transform of R(s) gives the filter step response, i.e.,

(1.65)

The step response for various filter functions, commonly used, is further examined in the
next chapter.

Clearly, since H(s) is the impulse response and H(s)/s the unit step response (K = 1) of a
filter (or system), the unit step response is the time integral of the impulse response; in
other words, the impulse response is the derivative of the step response.

1.6.4 Step and Frequency Response

In Fig. 1.22, a typical step response of a lowpass filter is shown. Characteristic quantities
associated with this response are values of the rise time tr, the delay time τo, the settling time
ts, and the overshoot. These quantities are defined as follows:

• The rise time tr is defined as the time it takes the step response to rise from 10
percent to 90 percent of its final value.

• The delay time τo is the time it takes for the step response to rise to 50 percent
of its final value.

• The settling time ts is the time that elapses between the moment of appearance
of the first peak and the moment beyond which the step response does not differ
by more that 2 percent from its final value.

• The overshoot is the percent of the final value difference between the maximum
and the final value of the step response.

The rise time tr, the settling time ts, and the overshoot are used as figures of merit in com-
paring the transient response of various filters. The delay time τo is equal to the delay the
signal experiences when passing through the filter and is considered again in Section 2.5.

It is interesting to mention here that a very important relationship connects the rise time
tr and the cutoff frequency fc of a lowpass filter, namely,

(1.66)

R s( ) K
H s( )

s
------------=

r t( ) L 1– K
H s( )

s
------------=

FIGURE 1.22
Typical step response of a lowpass filter.

tr f c 0.35≅
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or equivalently,

(1.67)

This relationship is valid for low overshoot values (<5 percent). For higher overshoot, the
constant should increase to a value between 0.35 and 0.5 [1]. Its importance arises from the
fact that in order to reduce the rise time, the filter bandwidth has to increase. Its physical
implication is that if narrow pulses are to be transmitted through the filter without exces-
sive distortion, their duration should be larger than the rise time of the filter. Equivalently,
the filter bandwidth should be larger than the reciprocal of the pulse duration. 

Although Eq. (1.66) is generally considered empirical, it can be easily obtained for a filter
(or system) with the following transfer function:

(1.68)

For a unit step input u(t), the response r(t) can be obtained as follows. Since, per (Eq. 1.42),

R(s) = H(s)E(s)

and

the response will be

(1.69)

Taking the inverse Laplace transform of R(s) gives

(1.70)

with r(∞) = 1, the final value of r(t).
Now referring to Fig. 1.22, for t = t1

from which we get t1 to be

(1.71)

Next, for t = t2,

trωc 2.2≅

H s( )
ωc

s ωc+
--------------=

E s( ) 1
s
---=

R s( )
ωc

s ωc+( )s
----------------------=

r t( ) 1 e
ωct–

t 0>–=

r t 1( ) 0.1r ∞( ) 0.1 1 e
ωct1–

–= = =

t1
0.1
ωc

-------≅

r t 2( ) 0.9r ∞( ) 0.9 1 e
ωct2–

–= = =



©1999 CRC Press LLC

from which t2 is found to be

(1.72)

Therefore,

(1.73)

and

1.7 Stability

Since the main object of this book is the design of active RC filters, and these filters may be
or become unstable under certain conditions, it is appropriate to review the concept of sta-
bility here. Filter stability has already been mentioned in Section 1.6 with reference to the
pole positions of the filter function.

In practical terms, the output voltage or current of a filter must always follow the input
at steady-state, i.e., it should not become uncontrollable. Such an uncontrollable behavior
usually leads either to dc saturation of the output voltage or to the generation of a periodic
waveform independent of the input signal.

In mathematical terms, stability of a linear network in the time domain, strictly speaking,
requires that its impulse response h(t) be absolutely integrable, i.e.,

(1.74)

Consequently, strict stability implies that only terms of the following form are allowed in
the expression for the impulse response [3]:

where A is a real constant, n is a non-negative integer, σ is a positive real number, and ω is
a non-negative real quantity with the dimensions of angular frequency.

For a filter to be useful, it should be strictly stable. Since the impulse response is the
inverse Laplace transform of the pertinent network function, strict stability implies that the
poles of this function should only be of the form

i.e., they should lie in the LH of the s-plane excluding the jω axis.

t2
2.3
ωc

-------≅

tr t2 t1–
2.2
ωc

-------≅ 2.2
2πf c

------------ 0.35
f c

----------= = =

tr f c 0.35≅

h t( )
0

∞

∫ dt M ∞<=

Atne σt– ωt or Atne σt– ωtsincos

σ– jω with σ 0 ω 0≥,>±
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If the network function has poles on the jω-axis also, then its impulse response expres-
sion will include terms of the form Acosωt, Asinωt. The network is considered marginally
stable in this case, but then it cannot be useful as a filter.

A network is unstable if it is not strictly or marginally stable.

1.7.1 Short-Circuit and Open-Circuit Stability

Consider the two-terminal network shown in Fig. 1.23. The
impedance Z(s) appearing across its terminals is the follow-
ing:

(1.75)

If the network is driven by a voltage source (excitation), then
the response will be the current I(s) given by

(1.76)

Clearly, the one-port will be stable if the zeros of Z(s) are all in the LH of the s-plane exclud-
ing the jω-axis. The one-port is then short-circuit stable.

Next, consider the one-port being driven by a current source (excitation). Then the volt-
age V(s) across its terminals (response) will be given from Eq. (1.77) as follows: 

(1.77)

If Z(s) has poles in the LH of the s-plane excluding the jω-axis, it will be open-circuit stable.
Consequently, the position of the zeros and the poles of Z(s) will determine whether the

one-port can be voltage or current driven. If neither the zeros nor the poles of Z(s) lie on the
jω-axis or the RH of the s-plane, the network can be excited by either a voltage source or a
current source. For example, if

(1.78)

the corresponding one-port will be open-circuit unstable.

1.7.2 Absolute Stability and Potential Instability

A linear two-terminal network is absolutely stable if it remains strictly stable under any
passive termination. It is potentially unstable if there is even one passive termination for
which it becomes unstable. Thus, the two-terminal network in Fig. 1.24(a), the impedance
of which is Z(s), will be absolutely stable if the impedance  does not possess a
zero that lies in the RH of the s-plane including the jω-axis for any passive impedance ZA(s),
including short-circuit (ZA = 0) and open-circuit (ZA = ∞). Therefore, a short-circuit or open-
circuit unstable network is not absolutely stable.

FIGURE 1.23
Two-terminal network.

Z s( ) V s( )
I s( )
-----------=

I s( ) 1
Z s( )
-----------V s( )=

V s( ) Z s( )I s( )=

Z s( ) s2 4s 13+ +

s2 6s– 10+
----------------------------=

ZA s( ) Z s( )+
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In a similar manner, we may define an absolutely stable two-port. Consider the situation
in Fig. 1.24(b), where the two-port network with impedance matrix [Z] is terminated at
both its input and output ports by the passive impedances ZA(s) and ZB(s), respectively.

The two-port will be absolutely stable, if the impedance function

(1.79)

or, equivalently

(1.80)

has no zeros in the RH s-plane including the jω-axis, for any pair of passive terminations
ZA and ZB. If this impedance has a zero in the RH or on the jω-axis, the two-port will be
potentially unstable.

The equivalence of Eqs. (1.79) and (1.80) in determining the absolute stability of the two-
port can be shown as follows: 

(1.81)

and

(1.82)

Assuming that

Z12Z21 ≠ 0

the zeros of Z1(s) will be the zeros of 

(ZA + Z11) (Z22 + ZB) – Z12Z21

plus the poles of Z22 + ZB, the latter being always on the LH of the s-plane.
On the other hand, the zeros of Z2(s) will again be the zeros of

(Z22 + ZB) (Z11 + ZA) – Z12Z21

plus the poles of Z11 + ZA, again the latter being always on the LH of the s-plane. Hence, the
equivalence.

FIGURE 1.24
Defining an absolutely stable (a) one-port and (b) two-port.

Z1 s( ) ZA s( ) Zi1 s( )+=

Z2 s( ) ZB s( ) Zi2 s( )+=

Z1 s( ) ZA Z11
Z12Z21

Z22 ZB+
--------------------–+=

Z2 s( ) ZB Z22
Z12Z21

Z11 ZA+
--------------------–+=
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1.8 Passivity Criteria for One- and Two-Port Networks

We introduce here, briefly and without any proof, passivity criteria for one- and two-ports
in an attempt to relate passivity and activity with stability. Passivity of a network was
defined in Section 1.2.

1.8.1 One-Ports 

As always, we refer here to LLF time invariant networks. Such a one-port is passive if its
input impedance Z(s) or input admittance Y(s) is a positive real function. The impedance
function Z(s) is positive real if it satisfies the following two conditions: 

1. Z(s) is real when s is real.
2. Re[Z(s)] ≥ 0 for R[s] ≥ 0.

Here, Re means the real part of what follows it.
The following three alternative criteria, if satisfied, determine equivalently the positive

realness of a network.

1. Z(s) is positive real if and only if [2]
• It does not have poles with positive real part. Poles on the jω-axis are simple

with real and positive residues and
• Re[Z(jω)] ≥ 0 for all ω.

2. Z(s) is positive real if [2]
• It has no poles nor zeros with positive real part,
• Poles or zeros on the jω-axis are simple, and
• Re[Z(jω)] ≥ 0 for all ω.

3. Z(s) is positive real if [3]
• For Z(s) = N(s)/D(s), the polynomial N(s) + D(s) is Hurwitz, and
• Re[Z(jω)] ≥ 0 for all ω.

A Hurwitz polynomial has real coefficients, and all its roots lie on the LH of the s-plane
excluding the jω-axis. 

Note that, in the above criteria, poles at zero and infinity are considered, in accordance
with the convention for zeros at zero and infinity (see Section 1.6.2), to lie on the jω-axis.
Based on these criteria, a preliminary test for positive realness of the impedance function,

 (1.83)

proceeds in the following steps [3]. Check:

1. All ai, bi are real and positive.
2. |n – m| ≤ 1.

Z s( ) N s( )
D s( )
------------

amsm am 1– sm 1– … a1s a0+ + + +

bns
n bn 1– sn 1– … b1s b0+ + + +

------------------------------------------------------------------------------= =
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3. If ao = 0, then a1 ≠ 0, and if bo = 0, then b1 ≠ 0.

4. The zeros of N(s) and D(s) on the jω-axis are simple.

5. There are no missing terms in N(s) and D(s) except when all terms of even powers or 
of odd powers of s are missing.

If these preliminary conditions are satisfied, we next proceed to test the following, which
are necessary and sufficient conditions. Check:

1. N(s) + D(s) is a Hurwitz polynomial.

2. The numerator polynomial of the real part of Z(jω) does not have any jω-axis
zeros of odd multiplicity.

The Routh-Hurwitz test can be used to reveal whether a polynomial with positive and
real coefficients is Hurwitz. This test involves the expansion in continued fractions of the
ratio of the even to the odd part or of the odd to the even part of the polynomial. If the
resulting coefficients are all present and positive, the polynomial is Hurwitz. However,
with computers at easy reach today, this test may become obsolete.

Next, to test condition b, we observe that 

(1.84)

where P(ω2) is the numerator polynomial of the real part of Z(jω).
Since  is positive for all ω, we need only test P(ω2). In some cases, this may be

easy, but in general we have to examine whether P(x), where x = ω2 has real roots of odd
multiplicity for 0 ≤ ω2 < ∞. Although this may be tested by means of Sturm’s theorem [2],
again, the use of a computer can save effort and avoid errors.

1.8.2 Two-Ports 

In the case of a two-port, the criterion for passivity is as follows [2]:
An LLF and time-invariant two-port is passive if and only if:

1. The characteristic polynomial (common denominator of all Z parameters) has no 
roots in the RH of the s-plane.

2. Any poles of the Z-parameters on the jω-axis are simple, and their residues at these 
poles satisfy the following conditions:

K11 ≥ 0 and real

K22 ≥ 0 and real

K11K22 – K12K21 ≥ 0 K12 = K*21 

(Kij residue for parameter Zij)

3. The real (R) and imaginary (X) parts of the Z-parameters (for s = jω) satisfy the 
following conditions:

Re Z jω( )[ ] Re
N jω( )
D jω( )
---------------- P ω2( )

D jω( ) 2
---------------------= =

D jω( ) 2
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R11 ≥ 0

R22 ≥ 0

4R11R22 – (R12 + R21)2 – (X12 – X21)2 ≥ 0

The first two conditions may be tested by means of the Routh-Hurwitz criterion and con-
dition c by means of Sturm’s theorem. Again, the use of a computer simplifies matters.

1.8.3 Activity

If any of the above conditions for passivity is not satisfied, the network will be active.
The activity of a two-port is directly related to its maximum power gain, which is greater

than 1. If we determine this maximum power gain of the two-port in terms of its Z param-
eters, we finally find that [2]

(1.85)

where

Substituting for r and x in Eq. (1.85) and taking into account that 

we get that 

Thus, condition c for passivity is violated, and the two-port is not passive—it is indeed
active.

1.8.4 Passivity and Stability

Based on the above, the following results can be obtained.
One-port networks—The impedance or admittance of a passive LLF time-invariant net-

work, according to the passivity conditions, can have poles and zeros in the LH of the s-
plane. If any are on the jω-axis, they should be simple. 

Theoretically, poles and zeros on the jω-axis occur in the impedance or admittance func-
tion of a purely lossless LC one-port. However, in practice, both inductors and capacitors
have always some loss associated with their values. The effect of this loss is to move the jω-
axis poles and zeros out of the jω-axis inside the LHP. In this case, both N(s) and D(s) will
be Hurwitz and the passive one-port strictly stable.

K p max
Z21

2

R11R22 2 2 1 r– x2 r––+[ ]
--------------------------------------------------------------------=

r
R12R21 X12X21–

R11R22

--------------------------------------= x
R12X21 R21X12–

2R11R22

--------------------------------------=

K p max 1>

4R11R22 R12 R21+( )2– X12 X21–( )2– 0<
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On the other hand, any passive termination of the passive one-port will not change the
passivity property, since the sum of two positive real functions is also positive real. There-
fore, a passive one-port is absolutely stable.

A stable, active one-port, however, is potentially unstable, since a passive termination
will always be found that will make it unstable. The condition that Re[Z(jω)] ≥ 0 is not sat-
isfied for all ω in the case of an active one-port.

Two-port networks—A passive two-port terminated at both ports by passive imped-
ances will remain passive. Therefore, it is absolutely stable.

However, contrary to the case of an active one-port, an active two-port may be absolutely
stable, because the activity conditions in this case do not violate the passivity conditions.
On the other hand, a potentially unstable network will be active.

1.9 Reciprocity

This property of a network is included here for completeness rather than for its usefulness
in the development of the material in this book.

A network is reciprocal if [2] 

1. (See Fig.1.25) the current occurring in a short between two nodes α and β due
to a voltage between the nodes γ and δ is equal to the current occurring in a
short between the nodes γ and δ, if the same voltage as before is applied between
the nodes α and β, or

2. (See Fig. 1.26) the voltage resulting between the nodes α and β due to a current
applied between the nodes γ and δ is the same as that resulting between the
nodes γ and δ when the same current as before is applied between nodes α and β.

In terms of the various parameters, the necessary and sufficient condition for a two-port
network to be reciprocal is any of the following:

Z12 = Z21

Y12 = Y21

H12 = –H21

G12 = –G21

∆A = α11α22 – α12α21 = 1

FIGURE 1.25
For reciprocity, .I 2 I ′2=
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As an example, consider the two-port in Fig. 1.27. For this two-port, we have

and

Therefore, the two-port in Fig. 1.27 is reciprocal.

1.10 Summary

Various concepts, necessary for the characterization of the continuous-time active filters,
were reviewed in this chapter. These concerned the types of the filters of interest and their
responses, ideal and practical.

Next, some useful concepts were reviewed briefly from network theory concerning the
nodal analysis method, network parameters and functions, to fundamental properties like
stability, passivity, activity, and reciprocity.

The interested reader with no prior knowledge of these concepts could find it useful to
get a better insight by consulting the references.
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FIGURE 1.26
For reciprocity, .E2 E′2=

Z12
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------
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I 1
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I 2 0=

R3= =

FIGURE 1.27
A reciprocal two-port.
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Chapter 2

 

The Approximation Problem

 

2.1 Introduction

 

Solution of the approximation problem is a major step in the design procedure of a filter
and is equally important in the design of both analog and digital filters. It is through the
solution of this problem that the filter designer determines the filter function, the response
which satisfies the specifications. Of course, the function obtained this way will satisfy the
specifications only approximately and not exactly. However, if the specifications are set
within the limitations of the LLF networks, the network realizing the approximating func-
tion will fulfil the requirements and thus be suitable for the task for which it is designed.

In this chapter, based on the contents of Chapter 1, we review first the characteristics of
the 

 

permitted

 

 functions, and we formulate the approximation problem. Next, we present
briefly the best known and most popular functions used in the solution of the approxima-
tion problem for the required filter response in the frequency domain. Then, since these
functions are lowpass, we introduce suitable frequency transformations in order to obtain
highpass, bandpass, or bandstop filters according to the requirements. Finally, we discuss
the transformation of elements and the scaling of impedance level.

 

2.2 Filter Specifications and Permitted Functions 

 

The knowledge gathered from the analysis of LLF networks, in the more general concept
of the term 

 

analysis

 

, which was explained in Section 1.4, can help in the search for the most
suitable filter function to meet particular specifications. The results of this analysis impose
three important constraints on the 

 

permitted

 

 LLF network functions. These have to be
causal, rational, and stable.

Before proceeding to explain how to determine the filter function to meet a set of speci-
fications, we review these constraints briefly.

 

2.2.1 Causality

 

In general, causality refers to the fact that there can be no result without cause. In the case
of interest here, a causal network will not respond before an excitation has been applied to
its terminals. Thus, the unit impulse response is zero for time 

 

t

 

 < 0. The response in Fig.
2.1(a) is not causal; therefore, it cannot be realized. On the other hand, that in Fig. 2.1(b) is
causal, therefore realizable. Thus, the ideal lowpass filter is unrealizable, because its
impulse response is noncausal.
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In the frequency domain, causality is determined by means of the Paley-Wiener criterion
[1]. Consider the impulse response 

 

h

 

(

 

t

 

), which possesses a Fourier Transform 

 

H

 

(

 

j

 

ω

 

) for
which 

(2.1)

For 

 

H

 

(

 

j

 

ω

 

) to be causal, the criterion is the following:

(2.2)

Some consequences of this criterion are the following: 

1. The magnitude function |

 

H

 

(

 

j

 

ω

 

)| cannot be zero for a finite frequency band.
However, it can be zero at a finite number of distinct frequencies.

2. The magnitude |

 

H

 

(

 

j

 

ω

 

)| cannot decrease faster than exponentially.

3. Because of this constraint, the ideal filters are unrealizable.

 

2.2.2 Rational Functions

 

The LLF network functions are rational, i.e., ratios of two finite polynomials of the Laplace
transform variable 

 

s

 

. Therefore, it is not possible to realize the function 

 

e

 

–

 

sT

 

 by such a net-
work, because this function cannot be expressed in the form of a rational function.

 

2.2.3 Stability

 

The response of a stable network is bounded if the excitation is bounded. This means that,
if 

 

h

 

(

 

t

 

) is the impulse response of the network, then

(2.3)

and  when .

FIGURE 2.1
(a) Noncausal and (b) causal response.

H jω( ) 2 ωd
∞–

∞

∫ ∞<

H jω( )log

1 ω2+
------------------------------

∞–

∞

∫ dω ∞<

h t( ) t ∞<d
0

∞

∫

lim h t( ) 0→ t ∞→
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In the frequency domain, stability implies that 

1. the network function 

 

H

 

(

 

s

 

) does not have poles in the RH of the 

 

s

 

-plane, 
2. any poles on the 

 

j

 

ω

 

-axis are simple, and
3. the degree of the numerator polynomial cannot be higher than the degree of 

the denominator by more than one.

However, for a filter to be useful, its function 

 

H

 

(

 

s

 

) has to be strictly stable, i.e., all its poles
must be located in the LH of the 

 

s

 

-plane excluding the 

 

j

 

ω

 

-axis (poles at zero and infinity are
considered to be located on the 

 

j

 

ω

 

-axis).

 

2.3 Formulation of the Approximation Problem

 

In practice, the specifications of the filter may be given in terms of the cutoff frequency (or
frequencies) 

 

ω

 

c

 

, the maximum allowable deviation (error) 

 

A

 

max

 

 in the passband, the stop-
band edges (frequencies), and the minimum attenuation 

 

A

 

min

 

 

 

in the stopband. In the case of
equalizers, it may be possible that the required frequency response is specified more
closely. In general, from the specifications, we will be able to draw a frequency response
magnitude plot, which will correspond to a prespecified curve. For example, for a lowpass
filter, this diagram will be of the form shown in Fig. 2.2. The required response will have to
lie between the limits set by the diagram. 

Theoretically, the approximation problem is stated as follows: 

1. Time domain:
The impulse response 

 

h

 

(

 

t

 

) has to be approximated. An approximating function

 

h

 

*(

 

t

 

) is selected such that some error 

 

ε

 

 is minimal, where

 (2.4)

FIGURE 2.2
A possible magnitude response which satisfies the specifications of a lowpass filter.

ε h t( ) h* t( )–[ ] 2 td
0

∞

∫=
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Of course, 

 

h

 

*(

 

t

 

) should be such that its Laplace transform 

 

H

 

(

 

s

 

) is a realizable
function by a LLF network.

2. Frequency domain:
In the frequency, domain we often work in terms of lowpass functions, because
they are simpler, and because the highpass, bandpass, and bandstop responses
can be obtained from lowpass responses by means of suitable frequency trans-
formations.

Our problem here is to find a function 

 

F

 

(

 

s

 

) the magnitude and/or phase
response of which approximates the prespecified curve according to a predeter-
mined criterion.

The approximation problem has been solved mathematically in various ways. In the case
of magnitude approximation, the best known and most popular lowpass functions are the
following: the Butterworth or maximally flat, the Chebyshev (Tschebycheff) or equiripple,
the monotonic or Papoulis, and the Cauer or elliptic function filters. Of course, with the use
of a computer, one may create one’s own approximating functions, particularly in the cases
of arbitrary responses of filters and equalizers. In such cases, techniques employing linear
segments, curve fitting, pole-zero placements, etc., have proved very useful in solving the
approximation problem.

In the case of delay approximation, best known functions are the Bessel-Thomson filters,
the Padè approximates, both maximally flat, and those of Chebyshev type.

In what follows, we introduce briefly the best known and practically useful approxima-
tions to the ideal lowpass filter and to the ideal delay.

 

2.4 Approximation of the Ideal Lowpass Filter

 

In practical filter design, the amplitude response is more often specified than the phase
response. The amplitude response of the ideal lowpass filter with normalized cutoff fre-
quency at 

 

ω

 

c

 

 = 1 is shown in Fig. 2.3. As has already been explained in Section 2.2., this ideal
amplitude response cannot be expressed as a rational function of 

 

s

 

. It is thus unrealizable.
If we accept a small error in the passband and a non-zero transition band, we may seek a
rational function 

 

F

 

(

 

s

 

), the magnitude of which will approximate the ideal response as
closely as possible. A suitable magnitude function can be of the form

(2.5)

FIGURE 2.3
Ideal lowpass filter amplitude response.

F jω( ) M ω( ) 1

1 ε2w ω2( )+[ ] 1 2⁄-----------------------------------------= =
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where 

 

ε

 

 is a constant between zero and one (0 < 

 

ε

 

 

 

≤

 

 1), according to the accepted passband
error, and 

 

w

 

(

 

ω

 

2

 

) is a function of 

 

ω

 

2

 

 such that 

0 

 

≤

 

 

 

w

 

(

 

ω

 

2

 

) 

 

≤

 

 1 0 

 

≤

 

 

 

ω

 

 

 

≤

 

 1

and which increases very fast with increasing 

 

ω

 

, for 

 

ω

 

 > 1, remaining much greater than one
outside the passband.

In general, the numerator of 

 

M

 

(

 

ω

 

) may be a constant other than unity, which will influ-
ence the gain (or attenuation) at 

 

ω

 

 = 0 (at dc). 
In the following, we review the most popular functions w(

 

ω

 

2

 

) and the corresponding

 

F

 

(

 

s

 

), the magnitude of which approximate the amplitude response of the ideal lowpass
filter.

 

2.4.1 Butterworth or Maximally Flat Approximation

 

If we let 

 

ε 

 

= 1 and 

in Eq. (2.5), 

 

n

 

 being a positive real integer, we will get the following amplitude function:

(2.6)

It can be seen that

 

M

 

(0) = 1

while 

 

M

 

(

 

ω

 

) decreases monotonically with increasing 

 

ω

 

.
At 

 

ω

 

c

 

 = 1,

or

In other words, at 

 

ω

 

c

 

 = 1, the amplitude is 3 dB below its value at dc. This is the cutoff fre-
quency of the filter. Clearly, this is independent of 

 

n

 

, the order of the filter function, which
in fact determines how close to the ideal is the approximating function 

 

M

 

(

 

ω

 

), i.e., how suc-
cessful the approximation is.

Equation (2.6) for different n gives the amplitude response of the various Butterworth fil-
ter functions. The Butterworth approximation is also called the maximally flat approxima-
tion, because the first 2

 

n

 

 – 1 derivatives of 

 

M

 

(

 

ω

 

), the maximum number in Eq. (2.2), are zero
at 

 

ω 

 

= 0. The error in the passband is zero at 

 

ω 

 

= 0 and maximal (3 dB) at cutoff. Between

 

ω

 

= 0 and 

 

ω 

 

= 1, the error takes intermediate values increasing monotonically from the zero
value with increasing 

 

ω

 

. For values of 

 

ω

 

 >> 1, 

 

M

 

(

 

ω

 

) behaves approximately as

w ω2( ) ω2n=

M ω( ) 1

1 ω2n+[ ] 1 2⁄-----------------------------=

M 1( ) 1

2
------- 0.707= =

20 M 1( )log 10 2log– 3.01–= =



©1999 CRC Press LLC

i.e., it changes asymptotically as 

 (2.7)

or, in other words, it falls off by 6n dB/octave (20n dB/decade).
We now seek to obtain the network function F(s) whose magnitude with s = jω is M(ω).

We proceed as follows. Observing that

 (2.8)

we may write

By a process known as analytic continuation, it turns out that we may remove the s = jω
constraint and write

  (2.9)

Now define a function P(s2) such that 

(2.10)

when we will also have that

Thus, knowing P(–ω2) through M2(ω), we can obtain P(s2) by setting s2 for –ω2 in Eq. (2.8).
Then, expressing P(s2) in the form of Eq. (2.10), we observe that the poles of F(s) are sym-
metrical to those of F(–s) about the jω-axis. Since F(s) has to be a stable function, we identify
its poles as those of P(s2) with negative real part.

The poles of P(s2) are the roots of the equation

(2.11)

It can be shown that the solution of Eq. (2.11) is the following:

(2.12)

for k = 1, 2,..., 2n.

M ω( ) 1

ωn
------=

20 M ω( )log 20n ωlog–=

M2 ω( ) F jω( ) 2 F jω( )F jω–( ) 1

1 ω2n+
-----------------= = =

F s( )F s–( ) s jω=
1

1 1–( )ns2n+
-----------------------------

s jω=

=

F s( )F s–( ) 1

1 1–( )ns2n+
-----------------------------=

P s2( ) F s( )F s–( )=

M2 ω( ) P ω2–( )=

1 1–( )ns2n+ 0=

sk σk jωk+
2k 1–

2n
---------------π 

 sin– j
2k 1–

2n
---------------π 

 cos+= =
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The n poles of F(s) are those obtained from Eq. (2.12) with k = 1, 2,..., n. All poles have
magnitude equal to unity and lie on the circumference of the unit circle equally spaced.

As an example, consider the case for n = 4. We have

Then

The poles of P(s2), are found from Eq. (2.12) for k = 1, 2,..., 8. These lie on the circumference
of the unit circle as shown in Fig. 2.4.

Of these, the first four (k = 1, 2, 3, and 4) will be assigned to F(s), since they have to lie on
the LH of the s-plane. They are as follows:

s1 = –0.3827 + j0.9239

s2 = –0.9239 + j0.3827

s3 = –0.9239 – j0.3827

s4 = –0.3827 – j0.9239

Therefore, the fourth-order Butterworth lowpass function will be

M2 ω( ) 1

1 ω8+
---------------=

P s2( ) 1

1 s8+
-------------=

FIGURE 2.4
Poles of the Butterworth filter for n = 4.

F s( ) 1
s s1–( ) s s2–( ) s s3–( ) s s4–( )

-----------------------------------------------------------------------=
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Grouping complex conjugate pole terms, it turns out that

or multiplying out in full,

The denominator of this last expression is known as a Butterworth polynomial. The first
ten Butterworth polynomials in two forms are given on Table A.1 at the end of the book for
easy reference. Finally, in Fig. 2.5 the magnitude response of the third-order Butterworth
filter is shown together with the responses of two other filters we are dealing with next for
comparison.

2.4.2 Chebyshev or Equiripple Approximation

In this case, Eq. (2.5) takes the following form: 

(2.13)

Here again, 0 < ε ≤ 1, and Cn(ω) is a Chebyshev polynomial of degree n having the following
form:

(2.14)

F s( ) 1

s2 0.7654s 1+ +( ) s2 1.8478s 1+ +( )
----------------------------------------------------------------------------------------=

F s( ) 1

s4 2.613s3 3.414s2 2.613s 1+ + + +
-------------------------------------------------------------------------------------=

FIGURE 2.5
Magnitude responses of the Butterworth third-order lowpass filter and the corresponding Chebyshev (1 dB
ripple) and Bessel filters.

F jω( ) 2 M2 ω( ) 1

1 ε2Cn
2 ω( )+

------------------------------= =

Cn ω( ) n cos 1– ω( )cos= 0 ω 1≤ ≤

1 ω≤n cosh1– ω( )cosh=
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Clearly, Cn(ω) varies between +1 and –1 in the passband (0 ≤ ω ≤ 1), while its absolute
value increases rapidly with ω above ω = 1. Consequently, M(ω) varies between 1 and
(1 + ε2)–1/2 in the passband having an oscillatory or ripple error of

Thus, the accepted error in the passband determines the value of ε.
The Chebyshev polynomials can be obtained by the recursion formula

(2.15)

with

C0(ω) = 1

C1(ω) = ω

A plot of the Chebyshev polynomials with n = 1, 2, and 3 is given in Fig. 2.6.
Therefore, at dc (ω = 0), we will have 

Outside the passband and for ω >> 1, M(ω) behaves approximately like (ε 2n–1ωn)–1, i.e.,
the attenuation for ω >> 1 will be 

(2.16)

20 1 ε2+( )1 2⁄
log 10 1 ε2+( )log   dB=

Cn 1+ ω( ) 2ωCn ω( ) Cn 1– ω( )–=

FIGURE 2.6
Plot of Chebyshev polynomials of degrees n =
1, 2, and 3.

M 0( ) 1   n odd

1 ε2+( ) 1 2⁄–
    n even




=
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compared to 20 n log ω in the corresponding Butterworth function. Thus, for ε > 1, the Che-
byshev approximation has an advantage of 20 log ε + 6(n – 1) dB over the Butterworth
approximation. However when ε < 1, this advantage becomes less significant, since then
log ε will be negative.

By a similar procedure to the Butterworth case, the poles of the Chebyshev filter func-
tions can be shown to be as follows:

where

 (2.17)

(2.18)

with

These poles lie on an ellipse defined by the following equation:

 (2.19)

The major semi-axis of the ellipse falls on the jω-axis, its length being ± cosh βk, whereas
the length of the minor semiaxis is ± sinh βk. 

The points of intersection of the ellipse and the jω-axis define the –3 dB frequencies (half-
power frequencies), which are thus equal to ± cosh βk. The corresponding Butterworth fre-
quencies are always ωc = ±1.

We may normalize the poles of the Chebyshev functions in order to have the half-power
frequencies (–3 dB frequencies) appearing at ωc = 1, by dividing sk by cosh βk. Then, the nor-
malized poles sk will be as follows:

with

(2.20)

(2.21)

sk σk jωk±=

σk βksinh
2k 1–

2n
---------------π 
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---------------   
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n
---sinh 1– 1

ε
--- k 1 2 … 2n, , ,= =
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2
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-----------------
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2

cosh2βk

------------------+ 1=

s′ k
sk

βkcosh
----------------- σ′k jω′k±= =

σ′k βk
2k 1–

2n
---------------π 

 sintanh=

ω′k
2k 1–

2n
---------------π 

 cos=

p



©1999 CRC Press LLC

Comparing  with the corresponding poles of the Butterworth functions, it can be seen
that they have the same imaginary parts, whereas their real parts differ by the factor tanhβk.
The relative locations on the s-plane of the Butterworth and normalized Chebyshev func-
tion poles are given in Fig. 2.7 for n = 3. For ε = 0, when βk = oo   and tanhβk = 1, the poles of the
Butterworth and Chebyshev functions coincide.

The coefficients of the Chebyshev filter functions, as well as their poles, have been tabu-
lated for various ripple values i.e., 0.1, 0.5, 1, …, 3 dB. A sample of such a tabulation is given
on Table A.2 in Appendix A. This table does not give the normalized Chebyshev filter func-
tions. In all these cases, the upper edge of the passband ripple occurs at ωc = 1.

The amplitude responses for the 1 dB ripple and the 3 dB ripple third-order Chebyshev
lowpass functions

and

are shown in Fig. 2.8 for comparison with the response of the corresponding Butterworth
filter. It can be seen that the Chebyshev filters have equiripple response in the passband
and fall off monotonically outside it.

2.4.3 Inverse Chebyshev Approximation

The Chebyshev polynomials are also used to obtain the so-called Inverse Chebyshev filter
functions, the magnitude of which is given as follows:

s′ k

FIGURE 2.7
Relative positions of Butterworth and normalized Chebyshev poles.

F1dB s( ) 0.491

s3 0.988s2 1.238s 0.491+ + +
-----------------------------------------------------------------------=

F3dB s( ) 0.2506

s3 0.597s2 0.928s 0.2506+ + +
--------------------------------------------------------------------------=
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(2.22)

The properties of these functions are complementary to those of the Chebyshev functions
in the sense that they present maximum flatness in the passband and equiripple behavior
in the stopband. Also, their phase response and consequently their group delay is better
than that of the Chebyshev filter. In Fig. 2.9, the magnitude response of the third-order
Inverse Chebyshev and the corresponding Chebyshev function are shown for comparison.

FIGURE 2.8
Comparison of the magnitude response of 1 dB and 3 dB ripple Chebyshev third-order lowpass filters and with
the corresponding Butterworth filter.

M2 ω( )
ε2Cn

2 1
ω
---- 

 

1 ε2Cn
2 1

ω
---- 

 +

------------------------------=

FIGURE 2.9
Magnitude response of the third-or-
der Chebyshev (1 dB ripple) and the
corresponding Inverse Chebyshev
functions.
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2.4.4 Papoulis Approximation

Filter L or Papoulis functions approximating the ideal lowpass filter response are obtained
from Eq. (2.5) if we let ε = 1 and

(2.23)

with Ln(ω2) having the following properties:

a. Ln(0) = 0

b. Ln(1) = 1

c.

d.

Property c secures monotonicity in the amplitude response, whereas property d that the fall
off rate at cutoff (ω = 1) is the greatest possible, if monotonicity is assumed.

Ln(ω2) polynomials are related to the Legendre Pk(x) polynomials of the first kind. Some
of them are given on Table 2.1.

The corresponding filters are known as Legendre, Class L, or Papoulis filters [2]. Their
poles are found by the procedure that was followed in the case of Butterworth filters.

The main characteristics of these filters are the following:

• Their amplitude response is monotonic.

• The falloff rate at cutoff is the greatest, assuming monotonicity.

• All of their zeros are at infinity.

Because L-filters are less sharp than Chebyshev filters, they are not as popular. However,
in cases where the ripple in the passband is undesirable and so the use of Chebyshev filters
is excluded, they could be preferable to Butterworth because of their steepest slope at cutoff.

2.4.5 Elliptic Function or Cauer Approximation

The filters examined so far have, except for the Inverse Chebyshev, all of their zeros at infin-
ity. However, in some cases, a higher falloff rate is required in the transition band; in other
words, a very high attenuation is required very near the cutoff frequency. This requirement

TABLE 2.1

Ln(ω2) Polynomials

n Ln(ω2)

2 ω4

3 3ω6 – 3ω4 + ω2

4 6ω8 – 8ω6 + 3ω4

5 20ω10 – 40ω8 + 28ω6 – 8ω4 + ω2

w ω2( ) Ln ω2( )=

dLn ω2( )
dω

-------------------- 0≥

dLn ω2( )
dω

--------------------
ω 1=

max=
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mandates the use of elliptic functions in the approximation, thus obtaining the elliptic func-
tions or, simply, elliptic or Cauer filters.

These filters display equiripple behavior both in the passband and the stopband. The
typical magnitude response of a third-order elliptic filter is shown in Fig. 2.10, correspond-
ing to the following general filter function F(s).

(2.24)

The characteristic quantities that determine the elliptic filter specifications are the maxi-
mum passband error, given as maximum attenuation Amax in the passband, the minimum
attenuation Amin in the stopband, the frequency ωs at which the stopband starts, and the
passband edge or cutoff frequency ωc.

In the case of the elliptic filters, Eq. (2.5) is written in the following form:

(2.25)

where Rn, depending on whether n is odd or even, is either

n odd (n = 2k + 1) (2.26)

or

n even (n = 2k) (2.27)

It can be seen from Eqs. (2.26) and (2.27) that

(2.28)

FIGURE 2.10
Typical magnitude response of an
elliptic filter of third order.
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The meaning of this is that the value of Rn(ω) at a frequency ω´ in the band 0 ≤ ω ≤ 1 is the
reciprocal of its value at the frequency 1/ω´ in the 1 < ω < ∞ frequency band. Therefore, if
the critical frequencies could be found that lead to equiripple behavior in the passband,
automatically the function will have equiripple behavior in the stopband also. Since |F|2

is bounded, the poles of F(s) cannot lie on the jω-axis. Also, since |F(jω)|2 cannot be zero
inside the passband, its zeros should lie outside the passband. However, the zeros of
|F(jω)|2 are the poles of Rn(ω). Therefore, all the poles of Rn(ω) should be greater than unity.
This means that the zeros of Rn(ω) should all lie in the band 0 ≤ ω < 1.

The poles, zeros, and frequencies ωs have been tabulated for various combinations of val-
ues of Amax and Amin. In such tables, the ripple in the passband is usually given in terms of
the reflection coefficient ρ, which is related to Amax as follows:

(2.29)

It must be stressed that, with Amax, Amin, ωc, and ωs known, the solution of the approxima-
tion problem by means of the elliptic filters requires the lowest-order function and, there-
fore, it can be realized with the lowest cost. For this reason, the elliptic filters are used most
often in practice.

Some elliptic filter functions are given in the Appendix A in Table A.3 for a certain value
of maximum attenuation Amax in the passband. Clearly, for the selection of the suitable ellip-
tic filter, the specifications should include the values of Amax, Amin, Ωs(ωs/ωc), and n. In con-
trast, only the filter order n is required in the case of the Butterworth filter, whereas in the
case of the Chebyshev filter the values of n and ε (or Amax) should be given. It is very impor-
tant for the reader to know that, given Amin, Amax, Ωs(ωs/ωc), the required value of n can be
quickly determined for the Butterworth, Chebyshev, and Cauer filters from corresponding
nomograms [4].

2.4.6 Selecting the Filter from Its Specifications

In the table giving the Butterworth filter functions, it is assumed that the cutoff frequency
is normalized to unity, i.e., Ωc = 1. The suitable filter function can be read off this table, if its
order n has been determined from the specifications. Thus, if the desired rate of fall in the
transition band is 6N dB/octave, because n is an integer, we select n = N if N is an integer;
otherwise, the value of n will be equal to the nearest integer greater than N.

However, in some cases the filter specifications may be given differently. Let us suppose,
in the more general case, that the filter specifications require the maximum attenuation in
the passband to be Amax (<3 dB), occurring at ωp rad/s (not normalized), and that beyond
the frequency ωs (rad/s) the minimum attenuation should be As (in dB). In such cases, the
determination of the Butterworth filter order n can proceed as follows.

We suppose that the 3 dB (cutoff) frequency is ωc rad/s, which of course corresponds to
the normalized cutoff frequency Ωc. Then the normalized frequencies Ωp and Ωs will be the
following:

(2.30)

From Eq. (2.6), with A = –20 log M(ω), we have

Amax 10 1 ρ2–( )log–   dB=

Ωp

ωp

ωc

------ Ωs
ωs

ωc

------= =
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(2.31)

from which, solving for , we obtain

(2.32)

Similarly, we will have for Ωs

(2.33)

Dividing Eq. (2.33) by Eq. (2.32) gives

(2.34)

But, because of Eq. (2.30),

(2.35)

Then, substituting ωs/ωp for Ωs/Ωp in Eq. (2.34), we obtain the following required value of
n: 

(2.36)

It should be pointed out that this value of n will not be necessarily an integer. Then, the
order of the required Butterworth filter function will be equal to the nearest integer greater
than this value.

Next, we must determine the value of ωc. Substituting the value of n that was found in
Eq. (2.32) [or in Eq. (2.33)], the actual value of Ωp (or Ωs) is determined and, using Eq. (2.30),
the value of ωc is obtained. In general, the value of ωc which is obtained based on the value
of Ωp will be different from that obtained based on Ωs. However, any one of these values of
ωc will satisfy the filter specifications. The same is true if we use the mean of these two val-
ues of ωc. 

To demonstrate, this let the filter specifications be the following: 

Substituting in Eq. (2.36) gives 

n = 4.3

We select n to be the next integer value, i.e., 5.

Ap 20 1 Ωp
2n+( )1 2⁄

log 10 1 Ωp
2n+( )log= =

Ωp
2n

Ωp
2n 10

0.1Ap 1–=
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2n 10
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2n 10
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10
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------------------------=
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n
1
2
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0.1As 1–

10
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  ωs
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 log
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log=

f p 3 kHz, Ap 1 dB, f s≤ 6 kHz, As 20 dB≥= =
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Substituting for n in Eqs. (2.32) and (2.33), we find the following values for Ωp and Ωs: 

Ωp = 0.87361

Ωs = 1.5833

Then, from Eq. (2.30), for Ωp = 0.87361, we get one value of ωc.

and for Ωs = 1.5833 another

We may choose to consider as the ωc value the mean of  and , namely

Either of , , or ωc can be used as the required cutoff frequency ωc. To show this, we
calculate the values of Ap and As by means of Eqs. (2.32) and (2.33), which correspond to
each of these three values of ωc. Results are given in Table 2.2.

Clearly, the specifications are satisfied in all three cases.
Let us now consider the selection of the Chebyshev filter satisfying certain specifications.

Since Cn(1) = 1 for any integer n, we will have from Eq. (2.13)

(2.37)

from which

(2.38)

For the previous example, substituting for Ap(= Amax) = 1 dB Eq. (2.38) gives

ε = 0.505

Considering that at Ωs the filter function behaves approximately as  we obtain

(2.39)

TABLE 2.2

fc (kHz) Ap (dB) As (dB)

3.434 1 24.25

3.78955 0.401 20

3.61148 0.63 22.1

ωcp
2π 3.434 krad/s×=

ωcs
2π 3.78955 krad/s×=

ωcp
ωcs

ωc

ωcp
ωcs

+

2
--------------------- 2π 3.61148 krad/s×= =

ωcp
ωcs

20 1 ε2Cn
2 1( )+[ ] 1 2⁄

log 10 1 ε2+( )log Ap= =

ε 10
0.1Ap 1–=

ε2n 1– Ωn( ) 1–

As 20 εlog 6 n 1–( ) 20n Ωlog+ +≅
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In the case of the present example, Ω = Ωs = 2 since ωc = ωp. Then, Eq. (2.39) gives 

20 = 20 log 0.505 + 6(n – 1) + 20n log 2

from which, solving for n, we get n = 2.69. Therefore, the required order of Chebyshev filter
will be n = 3, which is lower than the required order n = 5 of the Butterworth filter.

The case of the Cauer filter is much simpler, since n can be obtained straight from tables,
given the specifications ωp, Ap, ωs, and As, again using ωp as ωc. From such tables [3], or the
corresponding nomogram [4] in the case of the previous example, we obtain n = 3. Since n
is also 3 in the Chebyshev case, we prefer to realize the Chebyshev function, since the cost
will be lower, as we shall see in later chapters. It should be mentioned, however, that in
practical filter design, in which the fall-off rate is higher than that in this example, the order
of the Chebyshev filter is always higher than the order of the corresponding Cauer filter,
and the most economical filter will be the Cauer filter.

2.4.7 Amplitude Equalization

In some cases, the amplitude response of the practical filter may not match the amplitude
response of the function it realizes. This is because the performance of its components is
not ideal. To avoid the subsequent distortion of the signal when passing through the filter,
it is necessary that its amplitude response be corrected or, in an other word, equalized.

It is obvious that the transfer function of the equalizer cannot be selected from a prede-
termined set of functions, since it depends uniquely on the individual filter response that
requires equalization. Once the equalizer response has been deduced from the difference
between the expected response and the “actual” filter response, the latter obtained by sim-
ulation of the filter on the computer using non-ideal components, a function approximat-
ing the equalizer response should be found. This can be achieved by applying curve-fitting
techniques and an optimization program, while care should be taken in order that the
resulting function will be realizable (permitted function). Another approach would start
with a certain pole and zero placement and use then the optimization program to adjust
their locations until the required response is obtained.

A practical approach [6] suitable in the case of passive filters is to use a cascade of simple
networks, e.g., the constant-resistance bridge-T network, the amplitude response of which
can be relatively easily adjusted. By properly selecting the component values of the sec-
tions, the overall response of the cascaded sections can be adjusted to match the required
equalizer response.

2.5 Filters with Linear Phase: Delays

As was explained in Section 1.6.2, if 

we define the group delay τg as 

ϕ ω( ) H jω( )arg≡
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(2.40)

whereas

(2.41)

is the phase delay.
It can be shown [5] that the definition of the group delay has a physical meaning only

when (a) the magnitude function varies slowly with frequency, and (b) the phase varies
nearly linearly with frequency over the band of interest.

If H(s) is a rational function, the same will be true for the group delay τg, while the phase
delay τp will not be a rational function.

The function

has linear phase, since

and represents the pure delay T, since

However, e–sT is not a rational function of s.
Thus, although it can be realized by a lossless transmission line terminated at both ends

in its characteristic impedance, it cannot be realized by an LLF network.
We can approximate e–sT though by a rational function having either all its zeros at infin-

ity (polyonimic) or in the RH of the s-plane (non-minimum phase function).
This approximation can be achieved either by way of approximating the linear phase

–ωT [Fig. 2.11(a)] or by way of approximating the group delay T [Fig. 2.11(b)], as was indi-
cated in the case of the ideal lowpass filter. Some useful delay approximation functions are
briefly reviewed below.

τg  
dϕ ω( )

dω
----------------–≡

 
ϕ ω( )

ω
------------– τ p=

H s( ) e sT–=

ϕ ω( )  e jωT–arg≡ ωT–=

 
dϕ
dω
-------– T=

FIGURE 2.11
(a) Ideal linear phase and (b) group delay response.
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2.5.1 Bessel-Thomson Delay Approximation

The approximation of the constant group delay T normalized to unity can be obtained by
a procedure similar to that followed in the case of magnitude response. Let us select the
approximation function F(s) to be polyonimic, i.e., of the form

(2.42)

where K is a constant, and Dn(s) a polynomial with positive constant coefficients of order n. 
From F(s) we obtain the phase function

Next, we perform a Taylor expansion of ϕ(ω) about ω = 0 and take the derivative with
respect to ω, which we equate to the negative of the group delay T = 1. Equating then coef-
ficients of equal powers of ω, we obtain a number of equations equal to the desired order
of approximation n. Clearly, only the constant term of –dϕ/dω is equated to 1. All the other
coefficients are set equal to zero. Solution of this set of equations will give the values of the
n coefficients of Dn(s). The value of K in Eq. (2.42) is equal to the constant term of Dn(s), nor-
malizing thus the magnitude of F(jω) at ω = 0 to unity.

As an example, consider the case n = 2. Let

Then,

Taylor’s expansion of ϕ(ω), assuming that , is

Taking the derivative of ϕ(ω) with respect to ω of the first two terms in the series, and ignor-
ing the rest for ω such that ω << 1 gives

or

Equating this to 1 and multiplying through by (β – ω2)4 gives the following equation:
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Now we equate the constant term on the one side of this equation to the constant term on
the other side and obtain

or

We do the same for the coefficients of ω2  and get

But, since α = β, this equation gives β = 3. Therefore, the second-order delay function will
be the following:

Following this approach, it is found [5] that the polynomials Dn(s) are related to the Bessel
polynomials Gn(s) of degree n by the following relationship:

(2.43)

These Bessel polynomials are defined as follows: 

(2.44)

It can be shown that all of Dn(s) zeros are located in the LH of the s-plane, and there exists
at most one zero on the negative real semi-axis.

The first two polynomials and the recursion formula for obtaining Dn(s) of any degree n
are as follows:

Do = 1

D1(s) = s + 1

Dn(s) = (2n – 1)Dn–1(s) + s2Dn–2(s) (2.45)

The first 5 Dn(s) polynomials and their roots are given in Table 2.3.
The delay functions F(s) obtained this way are called Bessel or Thomson filters, and they

approximate the ideal delay according to the maximally flat criterion. Their amplitude

αβ αω2+( ) β ω2–( )2 α3ω2 β ω2–( ) 2α3ω4–( )– β ω2–( )4
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αβ3 β4=

α β=
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-------------------------=
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1
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  sn=
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response is lowpass with a cutoff frequency depending on the value of n and given by the
following approximate formula (for n ≥ 3):

(2.46)

This can be easily seen in Fig. 2.12(a), showing the magnitude response of the first three
Bessel filters of odd orders.

The corresponding phase response plots are shown in Fig. 2.12(b). It can be seen that the
bandwidth with nearly linear phase also increases with increasing n. 

In Fig. 2.5 the amplitude, and in Fig. 2.13 the phase response, of the third-order Bessel
filter are shown along with the corresponding responses of the Butterworth and the 1 dB
ripple Chebyshev filters of the same order. It can be seen that, from the selectivity point of

TABLE 2.3

Dn(s) Polynomials and Their Roots

n Dn(s) Roots of Dn(s)

1 s + 1 –1

2 s2 + 3s + 3 –1.5 ± j0.867

3 s3 + 6s2 + 15s + 15 –2.322, –1.839 ± j1.754

4 s4 + 10s3 + 45s2 + 105s + 105 –2.896 ± j0.867, –2.104 ± j2.657

5 s5 + 15s4 + 105s3 + 420s2 + 945s + 945 –3.647, –3.352 ± j1.743, –2.325 ± j3.571

ω3dB 2n 1–( ) 2ln=

FIGURE 2.12
(a) Magnitude and (b) phase response of the
first three Bessel filters of odd orders.
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view, the Bessel filter is at a disadvantage, but its phase response, as far as linearity is con-
cerned, is by far superior—particularly when compared to the Chebyshev phase response.

As a consequence of their superior phase response, the time response of the Bessel-
Thomson filters also displays superior performance concerning fidelity to the input wave-
forms over the other lowpass filters. In other words, they transmit, for example, square
pulses with lower distortion than the other filters. This can be easily seen in Fig. 2.14, where
the step response of the three filters considered above is shown. Clearly, the rise time, the
settling time, and the overshoot are lower for the Bessel filter than for the other two.

It can also be seen that the Bessel response rises to 50 percent of its final value at td = 1s,
which is equal to the unit (1s) delay it approximates. This justifies the characterization of td

as the delay time.

FIGURE 2.13
Phase response of Bessel, Butterworth, and Chebyshev (1 dB ripple) third-order filters.

FIGURE 2.14
Step response of the Bessel, Butterworth, and Chebyshev (1 dB ripple) third-order filters.
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This observation is nearly true for the corresponding response of the Bessel filters of any
order n. However, as n increases, the rise time becomes shorter, and thus the step response
comes nearer to the undistorted step. This is so because, as n increases, more frequencies of
the infinite spectrum of the input step fall within the bandwidth of nearly linear phase, and
thus the approximation comes closer to the input.

The reduced rise time with increasing n can also be proved, if the magnitude response of
the Bessel filters is considered. Clearly, from Eq. (2.46) and the plots in Fig. 2.12(a), the 3 dB
bandwidth increases with increasing n. Then, from Eq. (1.33), it follows that the rise time
should decrease with increasing n.

The bandwidth ωo of the maximally flat delay is defined [4] as the reciprocal of the delay
at ω = 0, i.e.,

(2.47)

Since the normalized delay is 1, ωo will also be 1, i.e.

(2.48)

Clearly, the meaning of Eq. (2.47) is that the product bandwidth times delay is constant.
That is, large bandwidth corresponds to short delay and vice versa.

Letting s = ju, where

we can create two tables, the first giving the u values (for each n) for certain deviations of
the time delay from its ideal value (i.e., its value at ω = 0), and the second giving the values
of u (for each n) in which the attenuation is certain decibels below its value at ω = 0. From
these tables, the designer can select the value of n and consequently determine the corre-
sponding Bessel-Thomson delay function that suits best the specifications (see Reference 3).

2.5.2 Other Delay Functions

Another class of functions approximating in fact the phase of e–sT according to the maxi-
mally flat criterion at ω = 0 are the allpass Padè approximations [6]. All of the zeros of these
functions lie on the RHP located symmetrically to the poles with respect to the jω-axis. The
magnitude response of these is unity for all ω and their useful bandwidth is twice that of
the Bessel-Thomson delays of corresponding orders. However, in spite of these useful char-
acteristics, their step response displays a very narrow precursor of height about equal to
their final value, a highly undesirable characteristic (see Fig. 2.15). To avoid the appearance
of this precursor in the step response one may use lowpass Padè delay approximations [7]
or other more useful delay functions [8, 9, 10]. Other delay functions which approximate
the group delay according to the Chebyshev criterion have also been proposed [11]. These
display improved characteristics over the Padè delay functions of corresponding orders.

In general, the function that will be selected for delaying a signal will depend greatly on
the type of signal. Thus, if the signal is in the form of a step, a lowpass delay is more suit-
able than an allpass. In the case of a signal with a certain bandwidth though, an allpass
function with linear phase may satisfy the specifications more effectively. In practice, on

ωo
1
T
---=

ωo 1=

u ωT
ω
ωo

------= =
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many occasions, the combination of a lowpass filter with sharp cutoff and an allpass func-
tion filter connected in cascade results in the desirable solution, as explained next.

2.5.3 Delay Equalization

As it was mentioned in the previous section, the step response of the Bessel-Thomson fil-
ters, due to their linear phase response, makes them more suitable in pulse transmission
than the corresponding Butterworth, Chebyshev or Cauer filters. However, from the selec-
tivity point of view their performance is very poor compared to the other filters.

To achieve both phase linearity and good selectivity in the amplitude response, a practi-
cal solution is to use suitable allpass functions of second-order in order to modify the phase
of the filter that has the desirable magnitude response. Their use will not affect the filter
magnitude response, since they are allpass. Such functions will be of the form

(2.49)

They will be selected by means of a computer optimization program, which will determine
the most suitable coefficient values β and γ in each case.

This procedure, called phase equalization, proves to be very useful in problems where
the required filter should possess high selectivity and at the same time linear phase
response, i.e., constant group delay. 

2.6 Frequency Transformations

The filter functions that were reviewed in the previous sections refer to lowpass filters.
They are given in normalized form, i.e., their passband width is unity. In all these tables,
the normalized frequency sn is implied for sinusoidal excitation sn = jΩ with

FIGURE 2.15
Step response of the second-order allpass Padè delay function.

F s( ) s2 βs– γ+

s2 βs γ+ +
--------------------------=
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where ω is the real frequency variable, and ωc is the actual cutoff frequency of the desired
lowpass filter. Following this convention, the normalized cutoff frequency Ωc of all filters is

We will now show by means of suitable transformations how we can obtain denormal-
ized lowpass, highpass, bandpass, bandstop filters, and delays using data obtained from
the tabulated normalized lowpass functions. In all cases, we refer to frequency response,
when s = jω.

2.6.1 Lowpass-to-Lowpass Transformation

In the normalized lowpass function, if we substitute s/ωc for sn, we will obtain the denor-
malized lowpass function with ωc being its cutoff frequency. For example, for the first-order
Butterworth function

(2.50)

we will get 

(2.51)

which is also lowpass with its cutoff frequency at ωc.
Clearly, with this transformation, the normalized frequency band  is trans-

formed to the denormalized frequency band

as shown in Fig. 2.16.
As can be seen from Eqs. (2.50) and (2.51) the shape of the frequency response does not

change with this transformation. Following this, it is obvious that transmission zeros at Ω1

will appear at the frequency ω1 = Ω1ωc in the denormalized magnitude response. This is
shown clearly in Fig. 2.17.

Finally, it should be mentioned that the gain of the normalized filter functions is assumed
to be normalized, i.e., its maximum value is equal to unity. It is usual that in filter design
we are not so interested in the actual value of the magnitude in the corresponding response,
but in its relative value (or relative attenuation), which determines the filter selectivity.

Ω ω
ωc

------=

Ωc 1=

F sn( ) 1
sn 1+
-------------=

F s( ) 1
s ωc 1+⁄
---------------------

ωc

s ωc+
--------------= =

0 Ω 1≤ ≤

0 ω ωc≤ ≤

FIGURE 2.16
Lowpass-to-lowpass transformation.
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2.6.2 Lowpass-to-Highpass Transformation

Applying the transformation

a lowpass function is transformed to a highpass.
The frequencies 0 and ∞ of the lowpass function are transformed to ∞ and 0, respectively,

while the cutoff frequency of the lowpass, which is 1 in the normalized function, is trans-
formed to itself in the new function. Thus, the passband of the lowpass  is trans-
formed to the passband  of the highpass function as shown in Fig. 2.18(a).

Following the same argument as in the case of the lowpass-to-lowpass transformation, if
we substitute ωc/s for sn in Eq. (2.50) we will get

(2.52)

which is a highpass function with ωc its cutoff frequency. The mapping of the lowpass pass-
band  to the highpass passband  is shown pictorially in Fig. 2.18(b).

FIGURE 2.17
Lowpass-to-lowpass frequency transformation.

sn
1
s
---→

0 Ω 1≤ ≤
0 Ω ∞≤ ≤

FIGURE 2.18
Lowpass-to-highpass transformation.

F s( ) s
s ωc+
--------------=

0 Ω 1≤ ≤ ωc ω ∞≤ ≤
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2.6.3 Lowpass-to-Bandpass Transformation

Applying the transformation

a lowpass function is transformed to a bandpass function with a passband width equal to
that of the lowpass, i.e., equal to 1. There are two bandpass cutoff frequencies, Ωc1 and Ωc2,
such that

and

(2.53)

Ωo is called the normalized center frequency of the bandpass function. The passband map-
ping is shown in Fig. 2.19(a).

The bandwidth of the passband is

(2.54)

since this has to be equal to that of the lowpass. Solving Eqs. (2.53) and (2.54) for Ωc1 and
Ωc2 gives the following: 

(2.55)

Using this transformation in the example we considered before, the lowpass Butterworth
function [Eq. (2.50)] will be transformed to the function

which is bandpass, since it becomes zero at Ω = 0 and ∞.

sn s
1
s
---+→ s2 1+

s
-------------=

Ωc1Ωc2 1=

Ωo
2 Ωc1Ωc2 1= =

FIGURE 2.19
Lowpass-to-bandpass transformation.
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--- 5
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Denormalization of the bandpass function to a center frequency ωo is obtained by substi-
tuting ω/ωo for Ω in Eqs. (2.53) to (2.55). The bandwidth of the denormalized function will
then be

If the bandwidth should be other than ωo, the transformation has to be modified. Thus,
we may obtain the denormalized bandpass function straight from the normalized lowpass
function by applying to the latter the following transformation:

Corresponding mapping of the passbands and stopbands are shown in Fig. 2.19(b). In this
case,

(2.56)

2.6.4 Lowpass-to-Bandstop Transformation

Applying the transformation

a normalized lowpass function is transformed to a bandstop (bandreject) function, the
stopband of which is between the normalized frequencies Ωc2 and Ωc1 as shown in
Fig. 2.20(a).

To obtain the required denormalized bandstop function from the normalized lowpass
function, the suitable transformation is

B ωc2 ωc1– ωo= =

sn

ωo

B
------ s

ωo

------
ωo

s
------+ 

 →

ωo
2 ωc1ωc2=

B ωc2 ω– c1=

sn
1

s
1
s
---+

-----------→ s

s2 1+
-------------=

FIGURE 2.20
Lowpass-to-bandstop transformation.

sn
B

ωo
s

ωo

------
ωo

s
------+ 

 
-------------------------------→
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where ωo is the centre frequency in the stopband with

and B is the bandwidth of the stopband 

This is shown in Fig. 2.20(b).
In the case of the example considered above, we will obtain the normalized bandstop

function

This is zero at Ω = 1 and 1 at Ω = 0 and ∞, which shows the bandstop behavior of the function.

2.6.5 Delay Denormalization

As we have seen in Section 2.5, the functions that approximate the ideal delay are also
given in tables or in the form of recursion formulas. The denormalized function is obtained
from the normalized one by substituting sτ for sn, where τ is the required delay in seconds.

2.7 Design Tables for Passive LC Ladder Filters

All filter functions introduced in this chapter can be realized by passive networks. There is
an abundance of books and papers in the literature describing how this can be done. How-
ever, in this book, we are interested only in the realization using doubly terminated LC lad-
ders, since their simulation by active RC networks results in low sensitivity filters (see
Chapter 6).

The general structure of such a network is shown in Fig. 2.21. In the case of lowpass poly-
onimic filters (all zeros at infinity), all Zis are inductors, and all Yis are capacitors. In the case
of lowpass functions with finite transmission zeros (e.g., Cauer filters), the Zis will be par-
allel tuned LC subcircuits, or the Yis will be series tuned LC combinations.

ωo
2 ωc1ωc2=

B ωc2 ωc1–=

F s( ) s2 1+

s2 s 1+ +
----------------------=

FIGURE 2.21
The general form of a doubly terminated ladder.
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Design tables for realizing all the lowpass functions that we have introduced above for
various values of Amax (or ε), Amin, and orders, as well as for various values of the ratio R2/R1

are given in many books [4, 12, 13, 14]. Although, from the sensitivity point of view, as we
shall see later, the equally terminated ladder (R1 = R2) is most desirable, in some cases (e.g.,
even-order Chebyshev and Cauer filters), this is not exactly possible.

These tables are used by the passive filter designer and, of course, by the active RC filter
designer who will choose to design a filter by simulating the passive ladder by active ele-
ments. Therefore, once the designer has chosen the normalized lowpass filter function from
the specifications of his problem, he may use these tables to obtain the passive circuit,
which realizes this function. Then, he can obtain the required denormalized filter by apply-
ing suitable transformations to the element values as explained below.

As we shall see in later Chapters (e.g., Chapter 6), one powerful method for designing
RC active filters is to simulate passive LC ladder filters, either topologically or functionally,
using RC active circuits. Thus, the tables of LC passive filters greatly simplify this design
and are used accordingly. It is for this very reason that we have introduced these tables for
the design of LC ladder filters here.

However, for various reasons, there are no corresponding tables available for the design
of RC active filters in general use. For example, an RC active cannot be transformed to a
corresponding bandpass or bandstop circuit by the transformation of its elements as in the
case of the passive LC circuits, while available tables [15] do not cover all useful active RC
circuits and Cauer filter design.

One final point here: the lowpass filter function realized by the circuit in Fig. 2.21 as the
voltage ratio Vo/Vs is in fact realized within a constant multiplier that is lower than unity.
The reason for this is that at dc (ω = 0), the transfer voltage ratio Vo/Vs reduces to

which is always less than 1 except for R1 = 0, when it is equal to 1.

2.7.1 Transformation of Elements

In the case of passive filters, as stated above, one can obtain the denormalized highpass,
bandpass, or bandstop filters by applying the previously introduced frequency transfor-
mations to the impedances of the elements of the normalized lowpass filter.

This approach is not applicable in the case of active RC filters except for the case of
obtaining a highpass from the normalized lowpass filter. We examine the element transfor-
mation in more detail below:

2.7.1.1 LC Filters                   TABLE 2.4 

Lowpass-to-lowpass Transformation  with ωc the cutoff frequency

Element Impedance New element value

Ln L = Ln/ωc

Cn C = Cn/ωc

Vo

Vs

------
R2

R1 R2+
------------------=

sn
s

ωc
------→

snLn
s

ωc
------Ln=

1
snCn
-----------

ωc

sCn
---------=
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All these element transformations are summarized in Table 2.5.

As an example, consider the design of a bandpass filter having center frequency at
1 krad/s and 100 rad/s bandwidth. Assume that, from additional specifications, a sixth-
order Butterworth bandpass filter has been found suitable.

Lowpass-to-highpass Transformation  with ωc the cutoff frequency

Element Impedance New element value

Ln

Cn

Lowpass-to-bandpass Transformation 

Element Impedance New element values

Ln

L and C in series

Cn

L and C in parallel

Lowpass-to-bandstop
Transformation 

Element Impedance New element values

Ln

L and C in parallel

Cn

L and C in series

TABLE 2.5

Element Transformations

Elements of 
lowpass filter

Corresponding elements of the denormalized

Highpass Bandpass Bandstop

sn

ωc

s
------→

snLn

ωcLn

s
------------= C

1
ωcLn
------------=

1
snCn
----------- s

ωcCn
-------------= L

1
ωcCn
-------------=

sn

ωo

B
------ s

ωo
------

ωo

s
------+ 

 →

snLn

ωo

B
------ s

ωo
------

ωo

s
------+ 

  Ln= L
Ln

B
----- C

B

ωo
2
Ln

------------= =

1
snCn
----------- 1

Cn

ωo

B
------ s

ωo
------

ωo

s
------+ 

 
---------------------------------------=

L
B

Cnωo
2

------------- C
Cn

B
------= =

sn
1

ωo

B
------ s

ωo
------

ωo

s
------+ 

 
--------------------------------→

snLn

Ln

ωo

B
------ s

ωo
------

ωo

s
------+ 

 
--------------------------------=

L
BLn

ωo
2

---------- C
1

BLn
----------= =

1
snCn
-----------

ωo

B
------ s

ωo
------

ωo

s
------+

Cn
--------------------------------= L

1
BCn
---------- C

BCn

ωo
2

----------= =

Ln C = 1/(Lnωc) L = Ln/B

C B ωo
2
Ln( )⁄=

L LnB ωo
2⁄=

C 1 BLn( )⁄=

Cn L = 1/(Cnωc)
L B ωo

2
Cn( )⁄=

C Cn B⁄=

L = 1/(BCn)

C CnB ωo
2⁄=
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Clearly, the sixth-order bandpass will be obtained from the third-order lowpass Butter-
worth filter by applying the lowpass-to-bandpass transformation

where ωo = 1 krad/s and B = 100 rad/s.
From the tabulated Butterworth filters, Table A.1, we find

At this point, we may proceed in one of the following two alternative ways:

1. We may apply the lowpass-to-bandpass transformation to obtain either the nor-
malized or the denormalized bandpass function and proceed to realize it, i.e., to
determine the circuit.

2. Alternatively, we may realize the lowpass filter and apply the lowpass-to-denor-
malized bandpass transformation to the elements of the lowpass making use of
the Table 2.5.

The second method has the advantage that the realization of the lowpass filter reduces
to choosing the circuit from the available design tables. In cases, when there are no avail-
able design tables, the advantage still remains, since the realization of the lowpass filter is
simpler than that of the bandpass, because the order of the latter is double that of the low-
pass. On the other hand, the second method is not applicable to the synthesis of active RC
networks. So, the choice of the most suitable method will depend on the type of the circuit
(passive LC or active RC) we choose to design.

Suppose we choose to realize F(sn) by a passive LC equally terminated ladder. Using the
corresponding table, given for example in Reference 12, we find that the suitable circuit is
that appearing in Fig. 2.22.

Using Table 2.5, we can easily obtain the element denormalization for ωo = 1 krad/s and
B = 100 rad/s. The denormalized w.r.t. frequency bandpass circuit is as shown in Fig. 2.23.

This circuit is still normalized w.r.t. impedance level, since all component values are
referred to terminating resistances of 1 Ω. If we want to raise the impedance level to a prac-
tical value, e.g., 600 Ω, we should multiply the impedance of each component by 600, when
we obtain the component values in parentheses in Fig. 2.23. We treat impedance denormal-
ization in Section 2.7.

sn

ωo

B
------ s

ωo

------
ωo

s
------+ 

 →

F sn( ) 1

sn
3 2sn

2 2sn 1+ + +
------------------------------------------=

FIGURE 2.22
Butterworth normalized lowpass filter of third-order.
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2.7.1.2 Active RC Filters

The procedure described above can be applied to obtain the denormalized lowpass or
highpass RC active filter once the normalized lowpass function has been selected.

It is not possible to obtain the normalized or denormalized bandpass and bandstop cir-
cuits straight from the normalized lowpass, because there is no suitable transformation for
this purpose. Clearly with no inductances in these circuits, it is impossible to apply the ele-
ment transformations for bandpass and bandstop of Table 2.5. In this case, first the normal-
ized bandpass or bandstop function is obtained using the corresponding frequency
transformation. Next, the normalized filter is synthesized by a suitable method, as we shall
see in later chapters, and then the denormalized bandpass or bandstop filter is obtained by
properly scaling the filter time constants. 

It has to be emphasized here that frequency transformation must be applied only to time
constants, i.e., either to the capacitances or to those resistances that determine the time con-
stants and not to those that determine the gain of the active element.

The following two examples will clarify this, while for a more formal proof the interested
reader should refer to References 6 and 16.

Consider first the simple RC circuit in Fig. 2.24(a). The transfer voltage ratio V2/V1 is the
following:

(2.57)

If we interchange the position of the elements without changing its topology, as shown in
Fig. 2.24(b), the new transfer voltage ratio will be 

FIGURE 2.23
Frequency denormalized bandpass filter.

FIGURE 2.24
Simple (a) lowpass and (b) highpass RC circuits.

F s( )
V2

V1

------ 1
RCs 1+
--------------------

1
RC
-------- 1

s 1 RC⁄+
-----------------------⋅= = =
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(2.58)

It can be seen that, with this interchange of elements, the lowpass circuit in Fig. 2.24(a) has
been transformed to the highpass of Fig. 2.24(b). The two filters will have the same cutoff
frequency if

(2.59)

As a second example, consider the two RC active circuits in Fig. 2.25(a) and (b), using an
operational amplifier as the active element (see Chapter 3). Circuit (b) is obtained from cir-
cuit (a) by changing all resistors to capacitors and vice versa.

The transfer function V2/V1 of circuit (a) is 

(2.60)

and that of circuit (b) is

(2.61)

Clearly, again the lowpass circuit has been transformed to a highpass simply by changing
resistors to capacitors and vice versa in the lowpass circuit. For the two circuits to have the
same cutoff frequency, the following relationship should hold:

(2.62)

In both these examples, if the required denormalized cutoff frequency is ωc, the time con-
stants in Eqs. (2.59) and (2.62) have to be divided by ωc. This means that either the capaci-
tance or the resistance which determine the time constant should be divided by ωc and not
both. Compare this case with LC filters where both L and C are divided by ωc.

The above is part of the so called RC:CR transformation, by means of which a lowpass
RC circuit, passive or active, is transformed to the corresponding highpass, under the con-

F ′ s( )
V′2

V′1

------- sC′R′
sC′R′ 1+
----------------------- s

s 1 C′R′⁄+
---------------------------= = =

RC C′R′=

FIGURE 2.25
(a) Lowpass and (b) highpass RC active filters.

F s( )
V2

V1

------  
1

CR1

----------–  
1

s
1

CR2

----------+
-------------------  

R2 R1⁄
sCR2 1+
----------------------–= = =

F ′ s( )
V′2

V′1

-------  
C1

C2

------–  
s

s
1

C2R
----------+

-------------------  
sC1R

sC2R 1+
----------------------–= = =

CR2 C2R=
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dition that the pertinent transfer function is dimensionless, i.e., ratio of voltages or cur-
rents. According to this transformation the element Ri is transformed to the element Ci with
nominal value 1/Ri and vice versa. Resistances, which determine the voltage gain, or the
current gain of the active element, do not change, which is not true if the active element is
a voltage controlled current source (VCCS) or a current controlled voltage source (CCVS).

As a further example, consider the RC active filter in Fig. 2.26(a), which realizes the sec-
ond-order Butterworth lowpass function.

(2.63)

Applying the RC:CR transformation, this circuit is changed to that of Fig. 2.26(b), which
is highpass with cutoff frequency Ωc = 1 equal to the cutoff frequency of the corresponding
lowpass in Fig. 2.26(a). If we divide both resistances or both capacitances by ωc (rad/s),
their cutoff frequency becomes ωc.

2.8 Impedance Scaling

If the desired cutoff frequency of the circuits in Fig. 2.24 is ωc = 1 rad/s, this can be achieved
for

However, the same result can be achieved if 

or

and so on.
When we select the second or third set of values of R and C instead of the first, in actual

fact, we have multiplied the impedances of these components by 103 or 106, respectively,

FIGURE 2.26
(a) Second-order RC active lowpass and (b) corresponding RC active highpass filter.

F s( ) 1

s2 2s 1+ +
------------------------------=

C 1 F R 1 Ω= =

C 1 mF R 1 kΩ= =

C 1 µF R 1 MΩ= =
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obtaining thus more practical values for the elements R and C. We say that we have raised
the impedance level of the circuit by 103 and 106, respectively.

This denormalization of a circuit to the impedance level Ro requires multiplication by Ro

of the values of all resistances, and all inductances in the circuit and division by Ro of all
capacitances. In the case when the gain of the active element(s) is determined by the ratio
of two resistances, which do not affect the circuit time constants, the impedance level for
these resistances may be different from that for the rest of the circuit. Also, if a filter is real-
ized as the cascade connection of low-order functions (i.e., first and second order), which
are isolated from each other, again the impedance level in each section can be different from
that in the other.

As an example of impedance scaling, we will calculate the values of the components in
the circuit in Fig. 2.26(b) for an impedance level of 104 Ω and a cutoff frequency at 104 rad/s.
In accordance with the above discussion, we multiply all resistances by 104 and divide all
capacitances by 104 in order to perform impedance scaling.

Next we may choose to divide the values of the capacitors by another 104 or the values
of the resistors by this same scaling factor in order to achieve frequency denormalization.
Choosing to frequency scale the capacitances, the following set of component values is
obtained: 

These component values are more suitable for RC active filters (particularly if the active
element is an operational amplifier) than if we had chosen to frequency scale the resis-
tances. It should be pointed out, however, that frequency scale could have also been
obtained if all resistances had been divided by 10a and all capacitances by 104–a, since the
time constants that actually matter would have been scaled by 10a × 104–a = 104.

2.9 Predistortion

It is well understood that the components one uses in order to build up a circuit one has
designed are not ideal. Thus, the equivalent of a coil is not a pure inductance, but it has
some loss associated with it. This loss is modeled by a small resistance r connected in series
with its inductance L. Similarly, there is some loss associated with the capacitance of a
capacitor, usually negligible in today’s capacitors, which is modeled by connecting a con-
ductance g in parallel with the capacitance C.

For the sake of argument, let us suppose that the ratios r/L and g/C are both equal to d.
Thus the impedance of the coil and the admittance of the capacitor will be, respectively,

ZL = sL + r = L(s + d)

and

YC = sC + g = C(s + d)

The circuit transfer function, as derived by circuit analysis, is found to be a linear func-
tion of impedance or admittance ratios. This means that the poles and zeros of the transfer

R1 R2 10 kΩ, C1 2 10 8–×  F, C2
1

2
------- 10 8–  F×= = = =
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function will move to the left in the s-plane by the same amount, d. Thus, the frequency
response of the practical circuit will differ from the expected one, i.e., it will be distorted.
In some cases, this effect may not matter, but in cases of highly selective bandpass filters,
the distortion in the frequency response will be serious and thus unacceptable.

To counterbalance this type of distortion in the frequency response of the practical circuit
to be built out of coils, capacitors, and resistors, the designer can shift the poles and zeros
of the transfer function to the right on the s-plane by the same amount d and then proceed
to calculate the component values. With the application of this technique, known as predis-
tortion, the poles and zeros of the transfer function of the practical circuit will be placed
nearly at the initially wanted positions, moved there, because of the power dissipation of
the practical components, coils, and capacitors. Predistortion is in effect a frequency trans-
formation of the initial transfer function F(s) to F(p) where p = s – d. This transformation is
nonreactive in that it is not applied to the reactive elements of the circuit.

In practice, the losses in coils and capacitors will not be the same. Then, the designer can
add resistances in series with the coils and in parallel to the capacitors in order to obtain
the same factor d in all components. It should be noted, though, that because of the intro-
duction of dissipative components (the resistors) in the LC circuit, there will be an increase
in the flat loss of the circuit. Since this loss can, in some cases, be intolerable, and the num-
ber of the additional resistors excessive, the predistortion technique may not always pro-
duce an attractive solution to the unavoidable problem of dissipation introduced by the
practical reactive components.

2.10 Summary

The problem of determining a filter function satisfying the specifications of a filter has been
examined in this chapter to some detail.

Filter specifications may refer mainly either to amplitude (magnitude) requirements or
to phase (or delay) requirements. Determining first the order of the lowpass prototype filter
function, the designers can then choose the most suitable one among the available in tables
Butterworth, Chebyshev, Papoulis, or Cauer functions, if they are interested in the ampli-
tude response. Similarly, if they are interested in the phase response, they may choose a
lowpass or an allpass function among the available in tabulated form Bessel-Thomson,
Padè, or Chebyshev-type delay functions.

In the case of amplitude or phase equalization, the designers will basically have to work
heuristically using the computer as their main tool and a suitable optimization program.

Suitable frequency and element transformations were introduced in order to transform
the lowpass prototype filter to the required denormalized lowpass, highpass, bandpass, or
bandstop filter. These frequency transformations are also useful in the translation of the
denormalized filter specifications to the corresponding lowpass prototype requirements.

Once the most suitable circuit has been chosen (in a way we shall see in later chapters)
for the realization of the denormalized function, suitable impedance scaling should be
applied to the component values in order to make the circuit more practical within its envi-
ronment (signal level, source impedance, load impedance, and characteristics of the active
element). Impedance scaling was also introduced, while in the final section of this chapter
the concept of predistortion was introduced briefly.

Before we examine the selection of suitable circuits for the realization of filter functions
we introduce in the next chapter various active elements that will be used in subsequent
chapters.
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Chapter 3

 

Active Elements

 

3.1 Introduction

 

The ideal active elements are devices having one to three ports with properties that make
them very useful in network synthesis. Some active elements are more useful than others,
in the sense that their realizations are more practical than others.

The most important ideal active elements in network synthesis fall into the following
groups:

• Ideal controlled sources

• Generalized impedance converters (GICs)

• Generalized impedance inverters (GIIs)

• Negative resistance

• Current conveyors

Although the GIIs, generally speaking, can be regarded as GICs, they are presented sepa-
rately here for reasons of clarity.

The first three groups consist of two-port devices, and the fourth is one-port. The fifth is
a three-port device. We present each of these groups separately below.

For all these ideal active elements, we give practical realizations using two active devices
which are commercially available, namely, the operational amplifier (opamp) and the oper-
ational transconductance amplifier (OTA). The opamp and OTA are special cases of two
ideal active elements, and their implementations in IC form make them indispensable
today, both in discrete and fully integrated analog network design. Because of this exclu-
sive use in active filter design, we introduce them here both as ideal and practical elements,
giving emphasis on the imperfections of the practical realizations.

Before proceeding with the development of this chapter, one point should be clarified.
Although the transistor, either the bipolar (BJT) or the unipolar (FET), is essentially the basic
active element in the realization of all other active elements in practice, we prefer not to con-
sider it as such here but rather to treat it as a type of a nonideal controlled current source.

 

3.2 Ideal Controlled Sources

 

An ideal controlled source is a source whose magnitude (voltage or current) is proportional
to another quantity (voltage or current) in some part of the network. Table 3.1 lists the four
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types of controlled sources. Their characteristic feature is that the transmission matrix has
just one nonzero element. Among them, only the CCVS and the VCCS are basic devices. A
VCCS followed by a CCVS gives a VCVS, and reversing the order gives a CCCS.

 

3.3 Impedance Transformation (Generalized Impedance Converters and 
Inverters) [1, 2]

 

Consider a two-port to be terminated at port 2 in an impedance 

 

Z

 

L

 

 as shown in Fig. 3.1(a).
The input impedance 

 

Z

 

i

 

1

 

 at port 1 expressed in terms of 

 

Z

 

L

 

 and the transmission matrix
parameters 

 

a

 

ij

 

, 

 

i

 

, 

 

j

 

 = 1, 2 is as follows:

(3.1)

 

TABLE 3.1

 

Ideal Controlled Sources

 

Description Symbol

 

A

 

 Matrix
Reciprocal or 
Nonreciprocal

 

1 Voltage controlled
voltage source (VCVS)

Nonreciprocal

2 Current controlled 
voltage source (CCVS)

Nonreciprocal

3 Current controlled 
current source (CCCS)

Nonreciprocal

4 Voltage controlled 
current source (VCCS)

Nonreciprocal

E1 2=gEE1

1 g⁄ 0

0 0

E1 2=zII1
0 0

1 z⁄ 0

- I1 2=hII1
0 0

0 1 h⁄

- I1 2=y EE1

0 1 y⁄
0 0

Zi1

V1

I 1

------≡
a11ZL a12+
a21ZL a22+
--------------------------=



 

©1999 CRC Press LLC

 

where, in the general case 

 

a

 

ij

 

, 

 

i

 

, 

 

j

 

 = 1, 2, and 

 

Z

 

L

 

 are functions of the complex variable 

 

s

 

. Thus,
the action of the two-port is to transform the impedance 

 

Z

 

L

 

 to another 

 

Z

 

i

 

1

 

 which, depending
on the nature of 

 

a

 

ij

 

, can produce very interesting and useful values.
Similarly, if the two-port is terminated at port 1 in an impedance 

 

Z

 

s

 

, the input impedance

 

Z

 

i

 

2 

 

at port 2 will be as follows:

(3.2)

Thus, again the two-port acts as an impedance transformer or converter.
We may consider now the following two specific cases:

• Case a:

 

a

 

11

 

, 

 

a

 

22 

 

≠

 

 0 while

 

a

 

12

 

 = 

 

a

 

21

 

 = 0

• Case b:

 

a

 

11

 

 = 

 

a

 

22

 

 = 0 while

 

a

 

12

 

, 

 

a

 

21 

 

≠

 

 0

Substituting in Eq. (3.1) we get for

Case a:
(3.3)

Case b:
(3.4)

Similarly, substituting in Eq. (3.2) we get for

Case a: (3.5)

Case b: (3.6)

Clearly, in Case a, when 

 

a

 

12

 

 = 

 

a

 

21

 

 = 0, the two-port is a generalized impedance converter
(GIC), when 

 

G

 

a

 

, the conversion constant, is a function of 

 

s

 

. The conversion constant is not
the same for port 1 and port 2.

On the other hand, in Case b, when 

 

a

 

11

 

 = 

 

a

 

22

 

 = 0, the two-port is a generalized impedance
inverter (GII). In this case, the inversion constant 

 

G

 

b

 

 is the same for port 1 and port 2.

FIGURE 3.1
Two-port device terminated at port 2 or at port 1

Zi2
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I 2
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3.3.1 Generalized Impedance Converters [3]

 

Following the argument presented above, we can define the GIC as the two-port for which
the transmission matrix parameters 

 

a

 

12 

 

and 

 

a

 

21

 

 are zero for all 

 

s

 

, while 

 

a

 

11 

 

= 

 

k

 

 and 

 

a

 

22

 

 = 

 

k

 

/

 

f

 

(

 

s

 

),
i.e.,

(3.7)

where 

 

k

 

 is a positive constant.
Following this definition of the GIC and referring to Fig. 3.1, if the impedances 

 

Z

 

L

 

 and 

 

Z

 

s

 

are connected across port 2 and port 1, respectively, then the input impedances 

 

Z

 

i

 

1

 

 and 

 

Z

 

i

 

2

 

at ports 1 and 2 will be 

(3.8a)

(3.8b)

The conversion function 

 

f

 

(

 

s

 

) can take any complex value realizable by an active RC two-
port. However, some simple expressions of 

 

f

 

(

 

s

 

) have been proven to be of very high practi-
cal value in active network synthesis, as shown below. 

 

3.3.1.1 The Ideal Active Transformer

 

Let 

 

a

 

11

 

 = 

 

±

 

1/

 

n

 

1

 

, and 

 

a

 

22

 

 = 

 

±

 

n

 

2

 

,

 

 

 

with 

 

n

 

1 

 

≠

 

 

 

n2. Then,

(3.9)

and the converter transforms ZL to

(3.10)

If n1 = n2 = n, the two-port is the ideal transformer (Fig. 3.2) which, of course, is passive and
reciprocal.

A[ ] k 0

0 k f s( )⁄
=

Zi1 f s( )ZL=

Zi2
1

f s( )
----------Zs=

a11

a22

------ 1
n1n2

----------=

Zi
1

n1n2

----------ZL=

FIGURE 3.2
Ideal transformer, (a) normal and (b) reverse polarity.
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3.3.1.2 The Ideal Negative Impedance Converter

Let  

In either case, we have

(3.11)

and

 (3.12)

Thus, an ideal negative impedance converter (NIC) is a two-port device that presents
across one of its ports the negative of the impedance that is connected across the other port
within a constant k2.

Two types of NICs can be identified according to the signs of a11 and a22. When

the voltage negative-impedance converter (VNIC) is obtained, since then the polarity of the
voltage at port 1 is reversed with respect to the polarity of the voltage at port 2.

On the other hand, when

the current negative impedance converter (CNIC) is obtained, since then the direction of
the output current with respect to that of the input current is reversed.

With k = 1, the VNIC and CNIC of unity gain are obtained. The concept of negative resis-
tance is explained in Section 3.4.

3.3.1.3 The Positive Impedance Converter

Let f(s) = s and k = 1

Then, for ZL = R, Eq. (3.8a) gives

(3.13)

Thus, terminating this GIC with a resistor makes the input impedance look like that of a
grounded inductor. This is very significant in filter design, as we shall see later (Chapters
4 and 6).

This GIC, when it was first introduced [4], was called the positive-immittance converter
or the PIC (immittance from impedance and admittance).

a11 k a22+−
1
k
--- f s( )[ ]± 1= = =

a11

a22

------ k2–=

Zi k2– ZL=

a11 k a22– 1
k
---= =

a11 k a22  
1
k
---–= =

Zi1 sR=
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On the other hand, for ZL = 1/sC,

(3.14)

i.e., a grounded resistance of 1/C ohms.
Looking now at port 2, if Zs = R, Eq. (3.8b) gives [f(s) = s],

(3.15)

i.e., the impedance of a capacitor 1/R farads.
The use of the PIC in filter design is explained in Chapter 6.

3.3.1.4 The Frequency-Dependent Negative Resistor [5]

As a last case, consider that 

Then, with ZL = R,

i.e., the impedance of a grounded capacitor of 1/R farads.
However, if ZL = 1/sC, then

(3.16)

Substituting jω for s gives

 (3.17)

Clearly, this is a negative resistance dependent on frequency. For this reason it is called
the frequency-dependent negative resistor (FDNR) of type D (D-FDNR).

Usually, the impedance of a D-FDNR is written as 1/s2D with the unit of D being farad-
second. The symbol of this in a circuit is similar to that of a capacitor but with four parallel
lines instead of two. For this reason the D-FDNR is sometimes referred to as supercapacitor.

An E-type FDNR can be obtained if a PIC is terminated at port 2 by an inductor. Then,
with ZL = sL and f(s) = s, Eq. (3.8a) gives

(3.18)

This is sometimes called the superinductor, but it is not so useful in active RC filter design
as the supercapacitor, as we shall see in Chapter 6.

Zi1
1
C
----=

Zi2
R
s
---=

f s( ) 1
s
---=

Zi1
R
s
---=

Zi1
1

s2C
--------=

Zi1 ω( )  
1

ω2C
----------–=

Zi1 s2L=
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The GIC is a nonreciprocal two-port, as can be easily derived from its transmission
matrix. If it is loaded by the same impedance at both its ports, Zi1 and Zi2 will be different,
as can be seen through Eqs. (3.8a) and (3.8b) for Zs = ZL. Depending on f(s) and ZL or Zs,
either of the ports (port one or port two) can be used to represent the component that has
been obtained by the impedance conversion.

The GIC is thus a very flexible device, which can be used to simulate the transformer,
negative resistance, inductance, and the D-FDNR, all of importance in filter design.

3.3.2 Generalized Impedance Inverters

The generalized impedance inverter (GIV) can be defined as the two-port with transmis-
sion parameters a11, a22 = 0, and a12, a21 ≠ 0 for all s.

If such a two-port is terminated at one port by an impedance ZL, the impedance Zi seen
in the other port will be

(3.19)

where Gb = a12/a21 can be defined as the inversion constant with units Ω2.
Gb will be, in general, a function of s. However, in network synthesis, two cases have

attracted the interest of the designers: the positive impedance inverter or gyrator and the
negative impedance inverter. These are now considered.

3.3.2.1 The Gyrator

The gyrator, or positive impedance inverter, is a very attractive two-port, because it can be
used to simulate inductance. Its symbol and transmission matrix are shown in Fig. 3.3.

This definition through its transmission matrix, with g1 ≠ g2 and positive, refers to the
active gyrator. However, if g1 = g2 = g, the gyrator is a passive two-port.

Clearly, the gyrator is a nonreciprocal two-port, since

Its importance in network synthesis stems from the fact that, if it is terminated at port 2 by
a capacitance CL, the impedance seen in port 1, according to Eq. (3.19), is

(3.20)

Zi

a12

a22

------ 
1
ZL

------ Gb
1
ZL

------= =

FIGURE 3.3
Symbols of gyrator: (a) a12, a21 > 0, and (b) a12, a21 < 0 with Gb = (g1g2)–1.

a11a22 a12a21– 1≠

Zi GbsCL s
CL

g1g2

---------- sLeq= = =
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i.e., the impedance of an equivalent inductance

(3.21)

The use of the gyrator in network synthesis is explained in Chapter 6, where this device is
studied more rigorously.

3.3.2.2 Negative Impedance Inverter

A negative impedance inverter (NIV) is a two-port device whose input impedance at one-
port is the negative reciprocal of the terminating impedance at the other port. This can be
obtained, if Gb in Eq. (3.19) is equal to –1, i.e.,

Then,

(3.22)

Since, in this case, either

or

with a11, a22 = 0, the NIV is a reciprocal two-port.

3.4 Negative Resistance

The concept of negative resistance is exciting from both theoretical and practical points of
view. A negative resistance is a two-terminal device defined by the relationship between
the voltage and the current in it, i.e.,

(3.23)

Its physical meaning can be explained by the fact that it absorbs negative power; therefore,
it acts as an energy source.

The defining Eq. (3.23) is valid in practice for a limited range of voltages and currents,
over which it can behave linearly. 

In practice, negative resistance can be seen at one port of an NIC or NIV when the other
port is terminated in a positive resistance. Its presence can be detected by the simple exper-
imental setup shown in Fig. 3.4. A positive resistance of value equal to the magnitude of

Leq
CL

g1g2

----------=

Gb 1–=

Zi  
1
ZL

------–=

a12 1 a21– 1= =

a12 1 a21 1–= =

V RI R 0>–=
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the negative one is connected in series with –R. If a current is sent through this combina-
tion, the voltage measured across it is zero, in spite of the fact that the voltage drops across
R and –R are nonzero.

The concept of negative resistance can be also explained through the V-I characteristics
of the tunnel diode and the unijunction transistor. In these cases, incremental negative
resistance appears in the part of characteristics with negative slope. There are two types of
such characteristics shown in Fig. 3.5. The S-type corresponding to the V-I characteristic of
the unijunction transistor and the N-type corresponding to the V-I characteristic of the tun-
nel diode (or the tetrode electronic tube).

The negative resistance obtained by the means explained above is supposed to be inde-
pendent of frequency, and indeed this is true in practice for a range of frequencies. It is,
however, possible to obtain negative resistance dependent on frequency, and this has been
exploited usefully in network synthesis.

Consider the case of a GIV with an inversion “constant” ks to be terminated at port 2 by
a capacitor CL. The input impedance seen at port 1 will be, from Eq. (3.4),

Substituting jω for s in this equation, we obtain

which is, in fact, a negative resistance dependent on ω2. This is the frequency-dependent
negative resistance type E (E-FDNR) that we saw in Section 3.3.1.

The second FDNR type, type D, can be obtained if a GIC with a conversion function f(s) =
1/s is terminated at port 2 by a capacitor CL. Then, the input impedance at port 1 using Eq.
(3.3), will be

FIGURE 3.4
Demonstrating the action of a negative resistance.

FIGURE 3.5
(a) S-type and (b) N-type V-I characteristics.

Zi Gb
1
ZL

------ s2kCL= =

Zi ω2– kCL=
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which for s = jω gives

As mentioned earlier, the D-type FDNR will be realized and used in filter synthesis in
Chapter 6.

3.5 Ideal Operational Amplifier

The operational amplifier, or opamp, is the most versatile active element. All active ele-
ments that have been used in active network synthesis in the past can be realized using the
opamp.

The ideal opamp is an ideal differential voltage controlled voltage source (DVCVS) with
infinite gain. It has infinite input impedance and zero output impedance. Its symbol and
equivalent circuit are shown in Fig. 3.6. The ground connection in Fig. 3.6(a) is not gener-
ally shown.

By definition,

(3.24)

with υ1 applied to the noninverting input and υ2 to the inverting input.
Assuming finite υo, infinite A calls for

(3.25)

or equivalently

(3.26)

This equality holds approximately quite satisfactorily in practice also, since the input
voltage difference υ1 – υ2 is A times (A ≈ 105) smaller than υo, the maximum value of which
can be, say, up to 10 V for IC opamps, depending on the power supply voltage.

Zi Gb
1
ZL

------ s2kCL= =

Zi  
1

ω2CL

-------------–=

FIGURE 3.6
The ideal operational amplifier (a) symbol and (b) equivalent circuit.

υo A υ1 υ2–( )=

υ1 υ2– 0=

υ1 υ2=
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In many cases, the noninverting input is grounded, which leads to the inverting input
being at nearly earth potential, i.e.,

In such cases, the inverting input node of the opamp is called the virtual earth (VE) or vir-
tual ground point.

3.5.1 Operations Using the Ideal Opamp

The infinite voltage gain of the ideal opamp, coupled with its infinite input resistance and
zero output resistance, make it suitable for performing some useful mathematical opera-
tions on voltages. The most important of these operations are explained below.

3.5.1.1 Summation of Voltages

The circuit arrangement for such an operation is shown in Fig. 3.7, where the opamp is
used in its single input mode.

Assuming a virtual ground at the inverting input (i.e., V = 0), we can write for this node

which is obtained through Kirchhoff’s current law. This leads to

(3.27)

If Rf = R1 = R2 = … = Rn, then

(3.28)

Thus, the negative of the sum of voltages can be obtained. If the difference of two voltages
is required, the arrangement in Fig. 3.8 can be used.

υ2 0≅

FIGURE 3.7
The opamp as a summer.

V1

R1

------
V2

R2

------ …
Vn

Rn

------
Vo

Rf

------+ + + + 0=

Vo

Rf

R1

------V1

Rf

R2

------V2 …
Rf

Rn

------Vn+ + + 
 –=

Vo V1 V2 … Vn+ + +( )–=
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Clearly, we can write the following:

 (3.29)

and

(3.30)

Since

using Eqs. (3.29) and (3.30), we get

(3.31)

In the case that some of the voltages in Eq. (3.28) have to be added with the opposite sign,
a second opamp should be used to sum those voltages first in the manner shown in Fig. 3.7.
Then this sum should be fed through the appropriate resistor to the input node of the main
opamp.

3.5.1.2 Integration

The arrangement to obtain the integration
of a voltage is shown in Fig. 3.9 (if Vi and Vo

are the Laplace transforms of voltages υi

and υï, respectively.) Assuming zero initial
conditions [i.e., υo(0) = 0], we will have

from which we obtain the following:

FIGURE 3.8
Circuit giving the difference of two voltages.

Va
1
2
---V1=

Vb
1
2
--- V2 Vo+( )=

Va Vb≅

Vo V1 V2–=

FIGURE 3.9
Integrator.

υ i

R
---- C

dυo

dt
---------+ 0=



©1999 CRC Press LLC

(3.32)

Initial conditions can be introduced by charging the capacitor to the appropriate voltage
before starting the integration.

In the complex frequency domain, Eq. (3.32) is written as

 (3.33)

where Vi and Vo are the Laplace transforms of voltages υi and υo, respectively.
As an example, if υi is the unit step voltage u(t), from Eq. (3.33), we obtain

(3.34)

It is seen that the slope of the ramp thus obtained is determined by the time constant RC. 
If the position of the passive components in Fig. 3.9 is interchanged, the circuit of a dif-

ferentiator results. However, in practice, such a circuit will not work properly because of
excessive noise. Differentiation using an opamp in this configuration is never used. How-
ever, with a resistor of some low value connected in series with C, the noise can be reduced,
but only approximate differentiation will be obtained.

3.5.2 Realization of Some Active Elements Using Opamps

The opamp can be “programmed” to realize other active elements that are useful in the
synthesis of active networks. We include here some examples of such circuits, whereas oth-
ers such as the gyrator, PIC, GIC, FDNR, and FDNC will be presented in Chapter 6, where
they are also used in filter synthesis.

3.5.2.1 Realization of Controlled Sources

Clearly, the opamp, being a voltage-controlled voltage source in itself, is most suitable for
realizing other controlled voltage sources of finite gain. In Fig. 3.10(a), the realization of a
finite-gain K VCVS is shown, while in Fig. 3.10(b) that of a finite-gain CCVS is shown.

For the arrangement in Fig. 3.10(a), if V is the voltage at the inverting input of the opamp,
we have

Since Vi ≅  V (because A ≅ ∞ ), we easily deduce that

(3.35)

Similarly, for the circuit in Fig. 3.10(b), since the inverting input of the opamp is at virtual
earth, we get

υo t( )  
1

RC
-------- υ i td

0

t

∫–=

Vo  
1

RCs
----------Vi–=

υo t( )  
1

RC
-------- t⋅–=

V
R1

R1 R2+
------------------Vo=

K
Vo

Vi

------≡ 1
R2

R1

-----+=
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or

(3.36)

Clearly, the circuit in Fig. 3.10(b) acts as a current-to-voltage converter.
The opamp can also be used to translate voltage-to-current or current-to-current. An

example of a voltage-to-current converter is shown in Fig. 3.11. The derivation of this fol-
lows the observation that

and consequently the current through Z is independent of Z.

3.5.2.2 Realization of Negative-Impedance Converters

As explained in Section 3.3.1, there are two types of negative-impedance converters: the
current NIC and the voltage NIC. If their conversion ratio is unity, they possess the follow-
ing A matrices:

I 1
Vo

Rf

------+ 0=

FIGURE 3.10
Realization of (a) a finite-gain VCVS and (b) a finite-gain CCVS.

Vo Rf I 1–=

FIGURE 3.11
A voltage-to-current converter.

Vs R1I=
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INIC: (3.37)

VNIC: (3.38)

A NIC of either type terminated in an imped-
ance ZL at port 2,2´ (Fig. 3.12) has an input
impedance Zin at port 1,1´ given by

(3.39)

If ZL is purely resistive, the resulting negative
resistance can be used to compensate for a pos-
itive or dissipative resistance of equal magni-

tude, thus reducing power dissipation, e.g., the copper loss in a wire transmission
system. The concept of negative resistance and its types are explained in more detail in
Section 3.4.

The realization of both types of NIC using an opamp is shown in Fig. 3.13(a) for the INIC
and Fig. 3.13(b) for the VNIC [6]. To prove this, consider the circuit in Fig. 3.13(a) first.
Clearly,

Therefore,

A[ ] 1 0

0 1–
=

A[ ] 1– 0

0 1
=

FIGURE 3.12
NIC terminated by impedance ZL.

Zin

V1

I 1

------≡ ZL–=

FIGURE 3.13
Opamp realization of (a) the INIC and (b) the VNIC.

V1 V2 I 1
V1 V0–

R
------------------= =

I 2
V2 V0–

R
------------------

V1 V0–
R

------------------= =
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or

which is the case for an INIC.
Coming now to Fig. 3.13(b), it can be observed that

which conforms to the transmission matrix of a VNIC.

3.5.2.3 Gyrator Realizations

A number of gyrator realizations using opamps have appeared in the literature. Some of
these have been successfully used in practice [7, 8, 9]. The Orchard-Wilson gyrator [7] is a
single-opamp active one (g1 ≠ g2), whereas Riordan’s [8] employs two opamps. Useful gyra-
tor circuits have also been suggested by Antoniou [9].

In Fig. 3.14, the Riordan arrangement for inductance simulation is shown. Straightfor-
ward analysis, assuming ideal opamps, gives that the input impedance Zin is 

Thus,

One of Antoniou’s gyrator circuits is shown in Fig. 3.15. This is a four-terminal circuit,
and it cannot be used when a three-terminal one is required. It is a very useful circuit
though, because from this a useful generalized-immittance-converter circuit is obtained as
shown below.

I 1 I 2–( )–=

V0 2V1=

V2 V1 V0– V1 2V1– V1–= = =

I 1 I 2–=

FIGURE 3.14
Riordan circuit for inductance simulation.

Zin
V1

I 1

------ sCR2= =

Leq CR2=
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Assuming R1 = R2 = R and identical open-loop gains of the opamps, it can be shown [9]
that this circuit is unconditionally (absolutely) stable, while that in Fig. 3.14 is conditionally
stable.

3.5.2.4 GIC Circuit Using Opamps

The Antoniou gyrator circuit [9] that appears in Fig. 3.15 is redrawn, in its general form, in
Fig. 3.16 (within the broken lines). All Yi are admittances.

It can be seen that the voltages at nodes a, b, and c, assuming ideal opamps, are equal. Thus,

V1 = Vb = V2

To determine I1 in terms of –I2, we can write the following successively: 

I1 =Y2 (V1 – V3) (3.40a)

Y3 (V3 – V1) = Y4 (V1 – V4) (3.40b)

Y5 (V4 – V1) = –I2 (3.40c)

FIGURE 3.15
One of Antoniou’s gyrator circuits.

FIGURE 3.16
General GIC circuit using opamps.
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From Eq. (3.40c), V4 is obtained, which is then inserted in Eq. (3.40b) to give V3. Next, the
value of V3 is inserted in Eq. (3.40a) to give

(3.41)

Thus, the transmission matrix of the GIC is as follows: 

(3.42)

Consequently, the conversion function f(s) and the constant take the following values:

(3.43)

Assuming that Y2 = Y3 = Y4 = Y6 = R–1 and Y5 = sC, the input impedance Zi ,1 at port 1 will be

(3.44)

The same result can be obtained if Y5 = R–1 and Y3 = sC, whereas if Y6 = sC, then Zi,1 = R.
If the admittance Y1 is connected across port 1, the input impedance Zi,2 at port 2 will be

Then again, for Y1 = Y2 = Y3 = Y4 = R–1 and Y5 = sC,

(3.45)

while, if Y1 is also equal to sC, then 

(3.46)

giving a supercapacitor or D-FDNR. The same results are obtained for Zi,2 if Y5 = R–1 and
Y3 = sC.

One important point that should be noted is that, if Y1 = sC and Y6 = R-–1 are both con-
nected to the GIC circuit as shown in Fig. 3.16, the overall circuit will be a resonator, simu-
lating a parallel LC circuit. Another observation concerns the connections of the opamps to
the nodes of the Y-subnetwork. Inspection of Eqs. (3.40a) through (3.40c) reveals that it is
immaterial which input terminal of opamp 1 is connected to node a and which to node b.
The same is true for opamp 2. We will make use of this circuit in Chapters 4 and 6 to simu-
late inductance.

I 1

Y2Y4

Y3Y5

------------ I 2–( )=

A[ ]
1 0

0
Y2Y4

Y3Y5

------------
=

k 1 f s( )
Y3Y5

Y2Y4

------------= =

Zi 1,
V1

I 1

------≡ f s( ) 1
Y6

-----⋅ sCR2= =

Zi 2,
V2

I 2

------≡ 1
f s( )
---------- 

1
Y1

-----=

Zi 2,
1

sC
------=

Zi 2,
1

s2C2R
---------------=



©1999 CRC Press LLC

3.5.3 Characteristics of IC Opamps

Practical opamps have characteristics that differ from those of the ideal element used in
previous sections. Apart from their open-loop voltage gain, which is noninfinite, their
input impedance and output admittance are not infinite either. There are also some addi-
tional parameters associated with the operation of the practical opamp [10] which degrade
its performance, and the designer should always keep them in mind. In spite of these,
though, the nonideal behavior of the practical opamp does not prevent it from being the
most versatile linear active element in use today.

3.5.3.1 Open-Loop Voltage Gain of Practical Opamps

The dc and very low frequency open-loop voltage gain of most IC bipolar opamps is of the
order of 105 (100 dB), and for MOS opamps at least one order of magnitude lower. In most
practical cases, the error introduced in circuits incorporating opamps is not very signifi-
cant, and the operation at dc can still be considered ideal. This, however, is not true at fre-
quencies above a few hertz.

For reasons of stability of the circuits in which the opamp is embedded, its magnitude
response is shaped such that the falloff rate is 6 dB/octave, as shown in Fig. 3.17(a). The
associated phase response is shown in Fig. 3.17(b). This behavior can be described mathe-
matically as follows:

 (3.47)

where Ao is the dc gain and τ a time constant that creates a pole at –1/τ. The cutoff fre-
quency is

with fc equal to about 10 Hz for general-purpose bipolar IC opamps such as, e.g., the 741.
The frequency fT at which the magnitude of A(jω) becomes unity is the most important
characteristic of each opamp, since it actually denotes its gain-bandwidth (GB) product. We
can explain this as follows. 

FIGURE 3.17
(a) Magnitude and (b) phase response of the opamp (741 type) open-loop voltage gain.

A s( )
Ao

1 sτ+
--------------=

ωc 2πf c
1
τ
---= =
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With ωc = 1/τ, Eq. (3.47) gives

and so 

Thus, when |A(jω)|=1,

and since (ωT/ωc)2 >> 1, we have 

whence

i.e., the gain-bandwidth product—the product of the dc gain and the 3-dB bandwidth. Note
that if ωT = 2 πfT, then fT = |Ao|fc also.

Clearly, the high gain of the opamp is not available at frequencies higher than about
10 Hz. It should also be mentioned that, as it can be easily obtained from Eq. (3.47), the
maximum gain that can be obtained at the frequency fx using the opamp is

 (3.48)

This model will be taken into consideration whenever we examine the performance of var-
ious circuits using opamps throughout this book.

The effect of this single-pole model of the opamp on the performance of the VCVS real-
ized using the opamp is examined in Section 3.5.4. In some cases, when we are interested
in frequencies well above fc, this single-pole model can be simplified by writing Eq. (3.47)
in the following approximate form:

(3.49)

3.5.3.2 Input and Output Impedances

The input impedance of the opamp can be defined when measured either between each
input terminal and the ground, or, as differential, i.e., between the two input terminals.

A s( )
Ao

1 s ωc⁄+
---------------------=

A jω( )
Ao

1
ω
ωc

------ 
  2

+
1 2⁄-----------------------------------=

1
ωT

ωc

------ 
 

2

+
1 2⁄

Ao=

ωT

ωc

------ Ao≅

ωT Ao ωc=

A jωx( )
f T

f x

------=

A s( )
ωT

s
------≅
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Although a function of frequency, it is usually considered purely resistive, Ri. The value of
Ri is around 150 kΩ for bipolar opamps, while for opamps using FETs as the input stage or
MOSFETs throughout, it is very high indeed. However, even in the case of bipolar opamps,
since they are always used with negative feedback, the error introduced due to its presence
is insignificant and therefore can be neglected in practice. Similarly, the output impedance
of a bipolar general-purpose IC opamp is of the order of 100 Ω, which when the opamp is
used with negative voltage feedback introduces an insignificant error, usually ignored in
practice.

To be sure that these impedances will not affect the performance of the circuit using bipo-
lar IC opamps, the impedance level of the associated circuit should be chosen greater than
1 kΩ and smaller than 100 kΩ, with 10 kΩ being the most appropriate choice. The upper
limit is set by other imperfections of the opamp, which are explained below.

3.5.3.3 Input Offset Voltage VIO

If both inputs of the real opamp are grounded, the output voltage will not be zero in prac-
tice, as would be expected. This is a defect that causes the output voltage to be offset with
respect to ground potential. For large ac input signals, the output voltage waveform will
then be unsymmetrically clipped; that is, the opamp will display a different degree of non-
linear behavior for positive and negative excursions of the input signals. The input offset
voltage VIO is that voltage which must be applied between the input terminals to balance
the opamp. In many opamps, this defect may be “trimmed” to zero by means of an external
potentiometer connected to terminals provided for this reason. 

3.5.3.4 Input Offset Current IIO

This is defined as the difference between the currents entering the input terminals when
the output voltage is zero. These currents are actually the base bias currents of the transis-
tors at the input stage of the opamp (for bipolar opamps), and their effect is the appearance
of an undesired dc voltage at the output. This defect of the opamp can be modeled by con-
necting two current generators at the input terminals of the ideal opamp. This is shown in
Fig. 3.18 for the case of the circuit in Fig. 3.11, which is used to provide 1 + Rf/R1 voltage
gain. R2 is inserted to reduce the effect of the input bias currents as we show below and has
no effect on the signal. If the input voltage Vs is zero, and assuming linear operation of the
opamp, we may observe the following.

FIGURE 3.18
Current sources IB1, IB2 represent the presence of input offset currents.
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The action of IB1 causes the output voltage to be (IB2 = 0)

(3.50)

The action of IB2, assuming IB1 = 0, will result in the output voltage

(3.51)

Then applying superposition when both IB1 and IB2 are present, we get the output voltage

(3.52)

For this voltage to be zero when IB1 = IB2, which is the optimistic case, the following rela-
tionship between the resistor values should hold:

(3.53)

However, even under this condition, when IB1 ≠ IB2, the output voltage will be

(3.54)

i.e., nonzero. Note though that without R2, Vo = IB1Rf and, since IIO << IB1 in practice, the out-
put voltage arising from the input bias currents is reduced by including R2. 

3.5.3.5 Input Voltage Range VI

Assuming that the imperfections of the opamp due to input offset voltage and input offset
current have been corrected, the voltage transfer characteristic of the amplifier will be as
shown in Fig. 3.19, where Vi represents the differential input voltage. It can be seen that the
opamp behaves linearly only in the region of Vi.

V01 Rf I B1=

V02 1
Rf

R1

------+ 
  I B2R2–=

V0 V01 V02+ I B1Rf 1
Rf

R1

------+ 
  I B2R2–= =

R2
R1Rf

R1 Rf+
------------------=

V0 I B1 I B2–( )Rf I I 0Rf= =

FIGURE 3.19
The saturation characteristics of the opamp.

V2– Vi V1≤ ≤
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i.e., only for this range of Vi can one get the benefit of the full voltage gain of the opamp.
Beyond this voltage range, the amplifier goes to saturation.

Although the nonlinear behavior of the opamp is a cause of concern in the design of
active RC filters, one can get advantage of the saturation characteristic to build analog volt-
age comparators, which are very useful in practice (for example, as zero crossing detec-
tors).

3.5.3.6 Power Supply Sensitivity ∆VIO /∆VGG

This is the ratio of the change of the input offset voltage ∆VIO to the change in the power
supply ∆VGG that caused it. The change in the power supply is considered symmetrical.

3.5.3.7 Slew Rate SR

The rate of change of the output voltage cannot be infinite due to the various internal time
constants of the opamp circuitry. The slew rate (SR) is defined as the maximum rate of
change of the output voltage for a unit step input excitation. This is normally measured for
unity gain at the zero voltage point of the output waveform.

The SR sets a serious limitation to the amplitude of the signal at high frequencies. This
can be shown in the case of a sinewave as follows. Let

Then,

which becomes maximal at the zero crossing points, i.e., when ωt = 0, π, 2π,…. Thus, at
ωt = 0

(3.55)

Since this cannot be larger than the SR, i.e.,

(3.56)

it is clear, that for linear operation at a high frequency ω, the amplitude of the output volt-
age cannot be greater than SR/ω. Thus, at high frequencies, the opamp cannot work prop-
erly at its full input voltage swing, as it does at low frequencies.

3.5.3.8 Short-Circuit Output Current

This denotes the maximum available output current from the opamp, when its output ter-
minal is short circuited with the ground or with one of its power supply rails.

3.5.3.9 Maximum Peak-to-Peak Output Voltage Swing Vopp

This is the maximum undistorted peak-to-peak output voltage, when the dc output voltage
is zero.

υo Vm ωtsin=

dυo

dt
--------- Vmω ωtcos=

dυo

dt
---------

ωt 0=

Vmω=

SR Vmω≥
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3.5.3.10 Input Capacitance Ci

This is the capacitance between the input terminals with one of them grounded.

3.5.3.11 Common-Mode Rejection Ratio CMRR

Ideally, the opamp should reject completely all common-mode signals (i.e., the same sig-
nals applied to both inputs) and amplify the differential-mode ones. However, for reasons
of circuit imperfections, the amplifier gain is not exactly the same for both of its inputs. The
result of this is that common-mode signals are not rejected completely. A measure of this
imperfection is the common-mode rejection ratio (CMRR). Expressed in dB, the CMRR is
the ratio of open-loop differential gain to the corresponding common-mode gain of the
opamp. Its value at low frequencies is typically better than 80 dB, but it decreases at higher
frequencies.

3.5.3.12 Total Power Dissipation

This is the total dc power that the opamp absorbs from its power supplies, minus the power
that the amplifier delivers to its load.

3.5.3.13 Rise Time tr

This is the time required for the output voltage of the amplifier to increase from 10 to 90
percent of its final value for a step input voltage. It can be shown simply that tr × fc ≅ 0.35
(see Section 1.4.1).

3.5.3.14 Overshoot

This is the maximum deviation of the output voltage above its final value for a step input
excitation.

3.5.4 Effect of the Single-Pole Compensation on the Finite Voltage Gain Controlled 
Sources

Consider the two circuits in Fig. 3.20. For an ideal opamp, the voltage gains of these circuits
are the following:

Fig. 3.20(a) (noninverting)

Fig. 3.20(b) (inverting)

Assuming that the open-loop gain A of the opamp is finite, the voltage gain GN(s) of the cir-
cuit in Fig. 3.20(a) is written as follows:

(3.57)

αn
R1 R2+

R1

------------------=

α i–  
Rf

R1

------–=

GN

Vo

Vi

------≡ A
1 βA+
----------------=



©1999 CRC Press LLC

where β is the feedback ratio given by

(3.58)

If A follows the single-pole model, i.e.,

(3.59)

substituting for A in Eq. (3.58), we get

(3.60)

where we assumed that βAo >> 1, which is quite reasonable in practice.
Applying the same procedure in the case of Fig. 3.20(b), we can obtain, for the gain GI,

the following:

(3.61)

where

Then, substituting for A from (3.59), and after some arithmetic manipulations, we obtain

(3.62)

FIGURE 3.20
(a) Noninverting and (b) inverting voltage amplifiers using the opamp.

β
R1

R1 R2+
------------------=

A s( )
Aoωc

s ωc+
--------------=

GN

Aoωc

s ωc βAoωc+ +
-------------------------------------

Aoωc

s βAoωc+
------------------------≅

Aoωc

s
Aoωc

αN

------------+
---------------------= =

GI

Vo

Vi

------≡  
Rf

R1 Rf+
------------------ 

A
1 βA+
----------------–=

β
R1

R1 Rf+
------------------=

GI α I

Aoωc

1 α I+
--------------

s
Aoωc

1 α I+
--------------+

-----------------------–=



©1999 CRC Press LLC

It can be seen from Eqs. (3.60) and (3.62) that both GN and GI have a single-pole behavior.
This is to be expected, since A(s) behaves similarly. However, the unexpected is that for
equal nominal gains at low frequencies, i.e.,

the useful bandwidth of GN is larger than that of GI. In particular, when

the bandwidth of the noninverting amplifier is double the bandwidth of the inverting one.

3.6 The Ideal Operational Transconductance Amplifier (OTA)

The ideal OTA is a differential-input voltage-controlled current source (DVCCS). Its sym-
bol is shown in Fig. 3.21(a), and its operation is defined by the following equation:

(3.63)

The transconductance gm can be controlled externally by the current IB. Both voltages V1 and
V2 are with reference to ground.

The equivalent circuit of the ideal OTA is shown in Fig. 3.21(b). Some simple applications
of the OTA are described below [11]. 

3.6.1 Voltage Amplification

Inverting and noninverting voltage amplification can be achieved using an OTA as shown
in Fig. 3.22(a) and 3.22(b), respectively. Any desired gain can be achieved by a proper choice
of gm and RL. It should be noted that the output voltage Vo is obtained from a source with
output impedance equal to RL. Zero output impedance can be achieved only if such circuits
are followed by a buffer or voltage follower.

αN α I=

αN α I 1= =

FIGURE 3.21
Ideal operational transconductance amplifier, (a) symbol and (b) equivalent circuit.

I o gm V1 V2–( )=
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3.6.2 A Voltage-Variable Resistor (VVR)

A grounded voltage-variable resistor can be easily obtained using the ideal OTA as shown
in Fig. 3.23. Since Io = –Ii, we will have the following:

 (3.64)

Using two such arrangements cross-connected in parallel, a floating VVR can be obtained.
On the other hand, if in Fig. 3.23 the input terminals are interchanged, the input resistance
will be –1/gm. Thus, using OTAs, both positive and negative resistors become available
without actually having to build them on the chip. These, coupled with capacitors, lead to
the creation of the so-called active-C filters discussed later in this book.

3.6.3 Voltage Summation

Voltage summation can be obtained using OTAs, which in effect translate voltages to cur-
rents. These are easily summed as shown in Fig. 3.24 for two voltages V1 and V2.

FIGURE 3.22
(a) Inverting and (b) noninverting voltage gain using an ideal OTA.

FIGURE 3.23
Grounded voltage-variable resistor.

Zi
Vi

I i

-----
Vi

I o–
-------

Vi

gmVi

----------- 1
gm

-----= = = =

FIGURE 3.24
Voltage summation.
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It is clear that

or

Solving for Vo, we get

 (3.65)

By changing the grounded input of one of the input OTAs, voltage subtraction can be
achieved. These operations are useful for the realization of transfer functions.

3.6.4 Integration

The operation of integration can be achieved very conveniently using the OTA as is shown
in Fig. 3.25. Clearly,

(3.66)

It follows that both inverting and noninverting integration is easily achieved. Of course, in
all cases, the output impedance of the circuit is nonzero.

If a resistor is connected in parallel with C in Fig. 3.25, the integration will become lossy.
On the other hand, connecting the circuit in Fig. 3.23 at the output of that in Fig. 3.25, the
integration becomes both lossy and adjustable.

3.6.5 Gyrator Realization

The defining equations of the gyrator can be written in the Y matrix form as follows:

 (3.67)

These equations can be interpreted in the form of an equivalent circuit comprising two
voltage controlled current sources connected as shown in Fig. 3.26. Thus OTAs, being volt-
age controlled current sources, are most suitable for the realization of the gyrator—more

I 01 I 02 I 0+ + 0=

gm1V1 gm2V2 gm3V0–+ 0=

Vo

gm1

gm3

--------V1

gm2

gm3

--------V2+=

FIGURE 3.25
Integration of the difference of voltages V1, V2.
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sC
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I 1

I 2

0 g1

g2– 0

V1
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suitable than opamps, which are voltage controlled voltage sources. Such a circuit using
OTAs is shown in Fig. 3.27. Clearly,

Then the A matrix, not considering ZL as part of the circuit, will be

(3.68)

Thus, the circuit consisting of the two OTAs realizes, in general, the ideal active gyrator
(gm1 ≠ gm2). In case gm1 = gm2, the gyrator behaves as a passive circuit.

With ZL connected as shown in Fig. 3.27, the input impedance Zi is as follows: 

(3.69)

If ZL represents the impedance of a capacitor CL, the equivalent inductance Leq will be 

 (3.70)

3.6.6 Practical OTAs

The versatility of the OTA as an active element, as demonstrated above, makes it very use-
ful in VLSI circuits. Also, discrete IC OTAs in bipolar and MOS technology are available.

FIGURE 3.26
Gyrator realization using two VCCSs.

FIGURE 3.27
Gyrator realization using two OTAs.
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These practical ICs have certain advantages over opamps as well as disadvantages. Their
advantages include higher bandwidths and simpler circuitry. The former make them more
useful than the opamps in the design of active filters operating at high frequencies (up to
the megahertz region). On the other hand, their simpler circuitry, coupled with the control-
lability of their gm, leads to versatility in integration and tuning.

However, they have some drawbacks. Currently available IC OTAs have a performance
that is limited by certain imperfections, some of which are similar to those explained in the
case of practical IC opamps. Some additional ones, though, need more attention. One
important imperfection is the limited range of input voltage (< 20 mV) for linear operation
[12, 13]. This problem can be solved by using a potential divider at the input terminals in
order to reduce the differential input voltage. This divider, however, reduces the effective
input impedance of the OTA.

Other important imperfections include the finite input and output impedances of the
OTA, as well as the frequency dependence of transconductance gm [12, 13].

The input impedance can be modeled by connecting a resistance Ric in parallel with a
capacitance Cic from each input terminal of the ideal OTA to ground and a capacitance Cid

in parallel with a resistance Rid between the input terminals. When one of the input termi-
nals is grounded the input impedance is simplified being the parallel combination of the
resistances Ric, Rid and the capacitance Cic + Cid.

The OTA output impedance is modeled by the parallel combination of a resistance Ro and
a capacitance Co connected between the OTA output terminal and the ground.

Finally, the frequency dependence of the OTA transconductance can be approximately
described by a single pole model given by

(3.71)

where gmo is the value of gm at dc, and τ = 1/ωb, ωb being the OTA finite bandwidth.
Also, the phase model is often used, which is described as follows:

  (3.72)

In this equation, ϕ = ωτ is the phase delay with τ = 1/ωb giving the time delay.
Both Eqs. (3.71) and (3.72) can be further approximately written as

(3.73)

These OTA gm models will be used alternatively in later chapters where the OTA is used in
filter design as the active element.

In spite of all these imperfections, though, careful design can minimize their effect on the
available bandwidth, which remains much higher than that of an opamp. This makes OTAs
very useful for the design of active filters at high frequencies, as shown later in this book.

3.6.7 Current Conveyor [14]

The current conveyor (CC) is a three-port active element classified as a current mode
device. We introduce the ideal element here, briefly. The definition of the ideal CC type 1
(CCI) is given by means of the following mathematical description with reference to its
symbol, shown in Fig. 3.28:

gm s( )
gmo

1 sτ+
--------------=

gm jω( ) gmoe
jϕ–=

gm s( ) gmo 1 sτ–( )≈
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(3.74)

This is the earlier version of the current conveyor, which was followed later by the type-II
current conveyor, CCII, mathematically defined by the following equation:

(3.75)

The CCII is a more versatile device than the CCI.
By means of this, all previously introduced
active one- and two-port active elements can be
realized. As a first example, consider the situa-
tion shown in Fig. 3.29.

If terminal 1 and earth constitute the input
port, and terminals 2 and earth the output port,
from Eq. (3.75) we can easily obtain the follow-
ing transmission matrix:

which clearly is that of an ideal voltage-con-
trolled voltage source.

As a second example, consider the situation in
Fig. 3.30. With Y(Z) and earth representing the
input terminals, and X and earth the output ter-
minals, we can easily obtain from Eq. (3.75) the
following: 

(3.76)

Clearly, this equation describes the ideal unity
gain INIC, as was shown in Section 3.3.1.

FIGURE 3.28
Symbol of current conveyor, CCI.
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FIGURE 3.29
CCII realizing an ideal VCVS.
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FIGURE 3.30
CCII+ realizing an NIC.
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We will consider this active device again in Chapter 12. The reader interested in its appli-
cations to filter design may also be referred for example to [15].

3.7 Summary

In continuous-time active filter design, we employ active elements and passive compo-
nents. The active elements are mostly two-port active building blocks like controlled
sources, NICs, GICs, PICs, gyrators, etc. They all can be realized using opamps and/or
OTAs. However, opamps and OTAs, themselves being special types of controlled sources,
are also used as active elements on their own right.

Because of the importance of these two amplifiers in active filter design, understanding
of their imperfections is absolutely necessary. This can help the designer to avoid problems
that will surely arise in practical circuits if they are not taken into consideration.

The active elements, which were introduced in this chapter, will be employed in the
design of active filters in all subsequent chapters.
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Chapter 4

 

Realization of First- and Second-Order Functions 

 

Using Opamps

 

4.1 Introduction

 

All active elements, which were introduced in the previous chapter, are useful in the real-
ization of filter functions, although some of them are more useful than others. Among
these, the opamp is the most versatile active element in use today up to frequencies of the
order of 100 kHz. As was shown in the previous chapter, it can be used to realize other
active elements, e.g., all controlled-sources, GICs, etc., but it can also be used as a high (in
theory infinite) gain amplifier on its own right. Both of these aspects of the opamp employ-
ment in filter design are exploited in this chapter.

As we shall see in the next chapter, one useful method of designing high-order filters is
to cascade first- and second-order stages. Usually, one first-order stage will be required
only when the filter function is of odd order, the remaining stages being of second-order.
In another method of high-order filter design, multiple feedback is applied in the cascade
connection of low-order stages. If the filter function is lowpass or highpass only first-order
stages will be required whereas, if it is bandpass, bandreject, or allpass, all cascaded stages
will be of second-order. It is therefore fully justified to study first- and second-order stages
using the opamp(s) as their active element(s).

An abundance of circuits realizing, in particular, second-order functions have been pro-
posed over the past 30 to 35 years, some of which are more “suitable” than others. Criteria
of suitability are usually set by the filter designer according to the problem at hand; how-
ever, some are clearly objective. Among these, the following three will be of main concern
to us in this chapter, namely, (a) the possibility that the circuit can realize the specific sec-
ond-order function, (b) its sensitivity to component value variations (defined in Section
4.4), and (c) its cost (number and tolerance of its components both passive and active).
Based on these criteria we have chosen to include in this chapter only a small number of
second-order circuits. This does not necessarily imply that these circuits are the best in all
cases, but the filter designer should not ignore their existence and usefulness. 

 

4.2 Realization of First-Order Functions

 

Alongside its use in the integrator circuit in Fig. 3.9, the opamp can be also used in the real-
ization of other first-order transfer functions, which are useful in filter design. Such func-
tions are lowpass, highpass, and allpass. Although the lowpass and highpass functions can
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be realized using RC circuits only, the presence of the opamp in the circuit can provide it
with gain and isolation from the circuit that follows it. Thus, the presentation of these cir-
cuits here is justifiable. 

 

4.2.1 Lowpass Circuits

 

A first-order lowpass circuit is shown in Fig. 4.1(a). Its transfer voltage ratio can easily be
shown to be

(4.1)

Thus, the circuit can realize the transfer function

(4.2)

with

The dc gain is

and can be adjusted to any desired practical value.
An alternative circuit is that shown in Fig. 4.1(b), which does not introduce a phase inver-

sion (sign reversal) as does that in Fig. 4.1(a). Its transfer function is

(4.3)

where

FIGURE 4.1
(a) A first-order lowpass circuit and (b) an alternative circuit.
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Equating similar coefficients in Eqs. (4.2) and (4.3) we obtain the following design relation-
ships:

(4.4)

 

4.2.2 Highpass Circuits

 

Both circuits in Fig. 4.2 can realize the first-order highpass function

(4.5)

The transfer function of the circuit in Fig. 4.2(a) is 

(4.6)

Therefore, following coefficient matching, we get from Eqs. (4.5) and (4.6) the design equa-
tions as follows:

(4.7)

Clearly, the value of one component will have to be selected arbitrarily.
Similarly, the transfer function of the circuit in Fig. 4.2(b) is 

(4.8)

and, after coefficient matching, we obtain

, (4.9)

Here, two components should have their values arbitrarily selected.

a
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--------= b, 1
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--------= dc gain

a
b
---, K=

FIGURE 4.2
Two alternative first-order highpass circuits.
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4.2.3 Allpass Circuits

 

Two circuits [1] suitable for the realization of the first-order allpass function,

(4.10)

are shown in Fig. 4.3.
The transfer function of the circuit in Fig. 4.3(a) is the following: 

(4.11)

The same holds for the circuit in Fig. 4.3(b), but without the negative sign in front. For both
circuits, coefficient matching gives the following design relationship:

(4.12)

 

4.3 The General Second-Order Filter Function

 

The second-order filter function, in its general form, is the following:

(4.13)

Realization of this function using active RC networks is of interest only in the case that 

i.e., when the poles of 

 

F

 

(

 

s

 

) are complex conjugate. Otherwise, when the poles are negative
real, the realization can be achieved using passive RC networks only. 
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FIGURE 4.3
Two alternative first-order allpass circuits.
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F

 

(

 

s

 

) can be written alternatively in general “biquadratic” form as follows:

(4.14)

In Eq. (4.14), 

 

ω

 

oz

 

 and 

 

ω
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 are the undamped natural frequencies of the zeros and poles
respectively, while 

 

Q

 

z

 

 and 

 

Q

 

p

 

 are the corresponding quality factors, or Q factors. The zero
or pole frequency is the magnitude of the zero or pole, respectively, while their quality is a
measure of how near the 

 

j

 

ω

 

-axis is the corresponding zero or pole in the s-plane.
Comparing Eq. (4.14) to Eq. (4.13), we get 

(4.15)

(4.16)

It is common to use 

 

ω

 

o

 

 instead of 

 

ω

 

op

 

 and 

 

Q

 

 instead of 

 

Q

 

p

 

, and we will adopt these symbols
here, too. In the case of the second-order bandpass filter, 

 

ω

 

o

 

 coincides with the filter center
frequency (when the magnitude response is plotted on a log frequency scale), while the
Q factor determines the relative width of the frequency response with respect to the center
frequency.

Depending on the positions of the zeros on the 

 

s

 

-plane, the second-order filter frequency
responses of interest, obtained from Eq. (4.13), are as shown in Fig. 4.4. We will examine
below the most useful practical active RC circuits realizing these functions, taking into con-
sideration mainly the criterion of low sensitivity, which we introduce first.

 

4.4 Sensitivity of Second-Order Filters

 

The term 

 

sensitivity

 

 is used to express the degree of influence of a variation in the value of
one (or more) component on the performance of the circuit in which it is embedded. Vari-
ations in the component values may be due to one or more of the following reasons:

• changes in the environmental conditions, e.g., temperature

• component aging

• component substitution due to failure

• component tolerances during the production of the circuit

The less sensitive the circuit is to component variations, the more stable its characteristics
will be and, thus, the more likely it will be to remain within its specifications, regardless of
these changes. Therefore, sensitivity is a major factor in determining how useful a circuit
can be in practice.

Sensitivity measures of greatest interest in the case of second-order filters are introduced
below. Other sensitivity measures, useful mainly in the case of high-order circuits, are pre-
sented in the next chapter.

F s( ) K
s2 ωoz

Qz

-------s ωoz
2+ +

s2 ωop

Qp

--------s ωop
2+ +

------------------------------------=

ωop γ=

Qp
γ

β
-------=
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Let us suppose that we are interested in the variation of the filter characteristics due to a
change in the value of the circuit element 

 

x

 

. Writing

(4.17)

we define the relative sensitivity of 

 

H

 

(

 

s

 

) to 

 

x

 

 as 

(4.18)

which can also be written as follows:

(4.19)

Clearly,  is a complex quantity. However, if 

 

H

 

 is replaced by |H(

 

j

 

ω

 

)|, we can obtain the
sensitivity of the frequency response to variations in the element value and plot it against

FIGURE 4.4
Frequency responses of various useful second-order filter functions.

H s( ) H s x,( )=

Sx
H ∂ Hln

∂ xln
-------------≡

Sx
H ∂H H⁄
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----------------≡ x

H
---- 

∂H
∂x
-------=

Sx
H
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frequency. Note that the sensitivity  is of considerable practical use in estimating the
effect of element changes. Thus, if x changes by p percent, to a first approximation, |H(jω)|
will change by  percent.

It is also useful to note that at any frequency s = jω.

where  is the semi-relative phase sensitivity.

The sensitivity of H, as it was defined above, can be calculated for a filter function of any
order; i.e., this definition is not restricted to the case of second-order functions. More suit-
able sensitivity measures for second-order filter functions are the pole, ωo, and Q-factor sen-
sitivities.

The pole p semi-relative sensitivity is defined by

(4.20)

and expresses the pole displacement due to the variation in the value of the element x. It is
also a complex quantity in general.

The Q factor and ωo sensitivity measures are particularly useful in the case of 2nd-order
bandpass filters. These are defined as follows:

(4.21)

(4.22)

The element x in the previous considerations can be passive or active. In the case where
it is active, it can be the open-loop gain of an opamp, the gm of an OTA, or the gain of a con-
trolled source of finite gain, obtained for example from an opamp using resistive feedback.
In the latter case, its actual gain variation, due to a variation in the open-loop gain of the
opamp, will greatly depend on the nominal value of x.

To show this let us consider the case depicted in Fig. 4.5, where an opamp is used to
obtain the gain k of a VCVS. With

(4.23)

we can easily find that 

(4.24)

and subsequently

(4.25)

Sx
H jω( )

Sx
H jω( ) p⋅

Sx
H Sx

H jQx
ϕ+=

Qx
ϕ x

dϕ
dx
------=

Sx
p dp

dx x⁄
-------------≡

Sx
Q dQ Q⁄

dx x⁄
----------------≡ x

Q
---- 

dQ
dx
-------=

Sx

ωo dωo ωo⁄
dx x⁄

-------------------≡ x
ωo

------ 
dωo

dx
---------=

β
R1

R1 R2+
------------------=

k
Vo

Vi

------≡ A
1 βA+
----------------=

dk
dA

1 βA+( )2
-----------------------=
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Thus, for given values of A and dA, the actual varia-
tion dk of k will depend on β. But,

where kn is the desired or nominal value of k. Substi-
tuting in Eq. (4.25), we get

(4.26)

We conclude then that, independently of the sensitivity of Q or ωo to k, their actual vari-
ations will greatly depend on the nominal value of k, being small for small values of kn .

This observation has led to the introduction [1] of the gain sensitivity product as the sensi-
tivity measure that takes into consideration the importance of the value of k, when exam-
ining the actual Q and ωo variations. Under these circumstances, Eqs. (4.21) and (4.22) will
be written as follows:

(4.27)

(4.28)

Since the open-loop gain of an opamp, and to a less extent k, are functions of frequency,
one should take this into consideration in calculating the variations of Q and ωo. It has been
shown [2] that the percentage ωo variations causes a much larger variation in the transfer
function of an active RC filter (about 2Q times larger) than that caused by the same percent-
age Q variation. Therefore, it is important, when comparing second-order filter realiza-
tions, to determine the percentage change in ωo

(4.29)

which is caused by the finite bandwidth of the amplifier.
As has been mentioned, the sensitivity measures examined above are suitable for study-

ing the sensitivity of active RC filters of second order. We have also introduced sensitivity
measures concerning the overall transfer function variation when all circuit components,
passive and active, are varying simultaneously. However, these do not give any important
information concerning the sensitivity of second-order active RC filters in addition to the
information given by the sensitivity measures introduced above. Such multiparameter sen-
sitivity measures are suitable for studying the sensitivity of higher-order active RC filters
and are introduced in Chapter 5, where the design of such filters is considered.

4.5 Realization of Biquadratic Functions Using SABs

An active RC circuit realizing a biquadratic transfer function is called a biquad. A single-
amplifier biquad (SAB) is a biquad using one amplifier.

FIGURE 4.5
Opamp used to obtain gain k.

β 1

1
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--------------- 1
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----= =
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-----------------------------=

GSk
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Q k⋅=
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ωo k⋅=

δω
δωo
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4.5.1 Classification of SABs

Most SABs can be classified [3] in one of the two general structures shown in Fig. 4.6. In
Fig. 4.6(a) the enhanced positive feedback (EPF) configuration is shown, while in Fig. 4.6(b)
the enhanced negative feedback (ENF) configuration is shown. The passive RC network is
a complex zero-producing section, and it can be of second- or third-order. The input signal
is fed to the circuit by inserting the signal voltage source between the terminal b and
ground in Fig. 4.6(a) and, similarly, between the terminal c and ground in Fig. 4.6(b). It can
be also fed as a current to one of the nodes of the RC passive network, either internal or
external (not to terminals b and c). In some cases, when complex zeros should be realized,
the input signal is also fed through a resistor connected to the common node of Ra and Rb

( ).
A SAB is called canonic if the RC network employs two capacitors only, since this is the

minimum number to provide a biquadratic transfer function. However, it can employ three
capacitors, as it is the case with the RC subnetwork being a twin-T.

The term enhanced stems from the fact that the resistive feedback by means of Ra, Rb or
 affects the position of the complex poles of the overall function, moving them on a

circle towards the jω-axis.
An important property may be possessed by the two configurations as they appear in

Fig. 4.6 if the following conditions are satisfied:

1. The RC networks are the same but with the respective connections of terminals
b and c to earth and the opamp output interchanged, as is suggested in the figure.

2. If Rb is written as 

[Fig. 4.6(a)] (4.30)

then

[Fig. 4.6(b)] (4.31)

where n is a positive number greater than one.

FIGURE 4.6
(a) The SAB EPF and (b) ENF configurations.

Ra′  and Rb′

Ra′ Rb′,

Rb n 1–( )Ra=

Ra′ n 1–( )Rb′=
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Under these conditions, the two configurations are said to be related by the complemen-
tary transformation (CT) [4]. The important characteristic of this situation is that the two
circuits have identical poles and same sensitivities.

The process of applying the CT is the following: the terminals of the feedback network,
which are connected to the output terminal of the opamp in the initial circuit, are connected
to ground, and those connected to ground in the initial network are now connected to the
opamp output terminal. At the same time, the opamp input terminals are interchanged.
This is shown clearly in Fig. 4.7. It should be mentioned that with the application of the CT
an ENF biquad is transformed to an EPF, and vice versa.

Application of the complementary transformation to a useful circuit gives rise to another
that may also be useful. This idea has been successfully used [3, 4], and many SABs have
been obtained that have interesting properties.

The SABs we shall present below will belong to one or other of the configurations in
Fig. 4.6, and mostly they will be canonic. These are among the most useful ones in practice.

4.5.2 A Lowpass SAB

The most popular second-order lowpass circuit is that of Sallen-Key’s [5] shown in Fig. 4.8,
which employs an opamp in an arrangement of a VCVS with gain G. Clearly, it belongs to
the EPF class of SABs. Its transfer voltage ratio, obtained by analyzing the circuit, is as fol-
lows:

(4.32)

where 

FIGURE 4.7
Application of the complementary transformation.

H s( )
V0

Vi

------
G C1C2R1R2( )⁄

s2 1
R1C1

------------ 1
R2C1

------------ 1 G–
R2C2

-------------+ + 
  s

1
R1R2C1C2

-------------------------+ +
------------------------------------------------------------------------------------------------------= =

G 1
Rb

Ra

-----+=
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The realization of the second-order lowpass function,

(4.33)

by this circuit can be obtained by matching the coefficients of equal powers of s in Eqs.
(4.32) and (4.33). Following this, one obtains the following:

(4.34a)

(4.34b)

(4.34c)

Since the number of unknowns is larger than the number of the equations, some compo-
nents will have to be selected arbitrarily. One popular choice is the following:

(4.35)

With this selection, one takes advantage of the whole bandwidth of the opamp, i.e., up to
frequency fT. Substituting in Eqs. (4.34), we get 

(4.36a)

(4.36b)

with the restriction that K = γ, which is not usually a problem in filter design.

FIGURE 4.8
The Sallen-Key second-order lowpass circuit.
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--------------------------=
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-------------+ + β=

1
R1R2C1C2

------------------------- γ=

G
R1R2C1C2

------------------------- K=
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From these equations, the following capacitance values are obtained:

(4.37a)

(4.37b)

As an example, consider the realization of the second-order Butterworth lowpass filter
function

(4.38)

Selecting R = 1 the (normalized) values of the passive components of the circuit in Fig. 4.7
will be as follows:

(4.39a)

(4.39b)

(4.39c)

The circuit can be denormalized to a cutoff frequency ωc and an impedance level Ro. Two
sets of passive component values can be the following:

In both cases, a proper value for Rb (in order to avoid dc offset voltage in the opamp output)
will be 

Rb = 2Ro

while Ra = ∞.
For example, if Ro = 10 kΩ, and the desired cutoff frequency is 1 kHz, one finds the fol-

lowing: 

Set 1 Set 2

C1
2

Rβ
-------=

C2
β

2γR
---------=

F s( ) 1

s2 2s 1+ +
------------------------------=

R1 R2 1= =

C1 2=

C2
1

2
-------=

R1 R2 Ro= = R1 R2
Ro

ωc

------= =

C1
2

ωcRo

------------= C1
2

Ro

-------=

C2
1

2Roωc

-------------------= C2
1

2Ro

-------------=
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Clearly, the values in set 2 are not practical, but they can become so by raising the imped-
ance level to 10 Ω. Then we will have:

R1 = R2 = 15.9 kΩ

C1 = 14.14 nF

C2 = 7.071 nF

Rb = 31.8 kΩ

Using Eqs. (4.27) and (4.28) the ωo and Q sensitivities with respect to variations in the pas-
sive component values (passive sensitivities) are found to be as follows ( ,

):

This design is optimum with respect to passive sensitivities, but it is not optimum when
variations of the open-loop gain of the opamp are taken into account.

The sensitivity of this circuit has also been studied for other design approaches. For
example, selecting

R1 = R2 and C1 = C2

requires

Although the ωo sensitivities remain the same, the corresponding Q sensitivities increase
considerably, becoming proportional to Q [6]. Thus, this design is not useful in practice.

Set 1 Set 2

R1 R2 10 kΩ= = R1 R2
104

2π 3×10
------------------ 1.59 Ω= = =

C1
2

2π 3×10 4×10
----------------------------- 22.5 nF= = C1

2

104
-------- 141.4 µF= =

C2
1

2 2π 3×10 4×10
------------------------------------- 11.25 nF= = C2

1

2 4×10
------------------ 70.71 µF= =

Rb 20 kΩ= Rb 3.18 Ω=

ωo γ=
Q γ β⁄=

SR1 R2 C1 C2, , ,
ωo  

1
2
---–= SRa

ωo SRb

ωo 0= = SR1

Q SR2

Q 0= =

SC1

Q S– C2

Q 1
2
---= = SRa

Q SRb

Q 0= =

G 3 1
Q
----– 3 β

γ
-------–= =
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Another design approach, followed by Saraga [7], starts with the requirement to mini-
mize the sensitivity of Q with respect to variations in the open-loop gain of the opamp
(active sensitivity). This approach leads to the following component values:

Although this design is optimum with respect to Q active sensitivity, it is not optimum with
reference to Q passive sensitivities. We can find an overall optimum design with G between
1 and 4/3 taking into account the expected maximum variations both of passive and active
components [6, 7].

4.5.3 A Highpass SAB 

A useful circuit is the Sallen-Key [5]
highpass SAB shown in Fig. 4.9, which
belongs to the EPF class also.

Clearly, this circuit has the same
topology as the Sallen-Key lowpass
SAB, and it can be obtained from the lat-
ter by applying the RC:CR transforma-
tion to the RC section of the lowpass
circuit. According to this transforma-
tion, each resistance RL in the lowpass
circuit is replaced by a capacitance CH of
value

and each capacitance CL in the lowpass circuit is replaced by a resistance RH of value

Normalized values are considered to apply in this transformation. Substituting RiH for
1/sCiL and sCiH for 1/RiL, i = 1,2 in Eq. (4.32), we obtain the following transfer voltage ratio
for the highpass circuit in Fig. 4.9:

(4.40)

In Eq. (4.40) Ri, Ci, i = 1,2 are those in Fig. 4.9.
This result can be easily verified by a straightforward analysis of the circuit in Fig. 4.9.

Clearly, the two networks, lowpass and highpass, have the same poles and therefore the
same Q and ωo sensitivities.

C1
3γ
β

----------,= C2 1,= R1
β
γ
---,= R2

1

3γ
----------,= G

4
3
---=

FIGURE 4.9
The Sallen-Key highpass SAB.
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As an example, the normalized component values of the Sallen-Key highpass circuit real-
izing the second-order Butterworth highpass filter function

(4.41)

will be the following:

These values are obtained by applying the RC:CR transformation to the corresponding
component values of the Sallen-Key lowpass filter, which are given by Eqs. (4.39).

Of course, the value of G remains unchanged, i.e., G = 1. The highpass circuit can be
denormalized to an impedance level Ro and a cutoff frequency ωc in exactly the same way
as it was explained for the lowpass circuit.

4.5.4 A Bandpass SAB

An active RC circuit [8], useful in the realization of a second-order bandpass function is
shown in Fig. 4.10. Clearly, this circuit belongs to the ENF class of SABs.

Assuming that the opamp is ideal, the transfer voltage ratio of the SAB is as following:

(4.42)

F s( ) s2

s2 2s 1+ +
------------------------------=

C1H C2H 1= =

R1H
1

2
-------=

R2H 2=

FIGURE 4.10
A bandpass SAB.
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where

(4.43)

The second-order bandpass transfer function

(4.44)

can be realized by this SAB to within a constant multiplier as the voltage ratio –Vo/Vi, if we
rewrite F(s) as follows:

(4.45)

where n is real and positive. 
Let 

Then, coefficient matching between Eqs. (4.42) and (4.45), after some simple mathematical
manipulations, gives the following:

(4.46a)

(4.46b)

(4.46c)

(4.46d)

(4.46e)

Clearly, the Q-factor sensitivity of the SAB is affected by the choice of n, which has to be as
low as possible for low Q-factor sensitivity.

In an attempt to minimize the Q-factor sensitivity, we may show, using Eq. (4.46a), that
the value of n is minimal for any r, if 

q = 1

h
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------------- K,
Ra
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-----= =
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--------------------------=
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Q
---- r
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---=
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γr
-----=
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γq
-----=
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i.e., when

C1 = C2

Then,

(4.47a)

which, depending on r, can be (within the practical limitations) as small as it is desired.
With this choice of q, the rest of the design Eqs. (4.46) become as follows (C1 = C2 = C):

(4.47b)

(4.47c)

(4.47d)

Since Eqs. (4.47) are not sufficient to give unique component values, the designer should
select r and one of R1, R2, or C as well as Ra or Rb taking into consideration the opamp spec-
ifications. 

The ωo and Q-factor sensitivities to variations in component values, assuming an ideal
opamp, are given in Table 4.1. 

Clearly, the value of r has to be very small, but since n in Eq. (4.47a) should be positive for
stability, the following condition must hold:

(4.48)

TABLE 4.1

ωo and Q-Factor Sensitivities (C1 = C2)

Component xi
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Fleischer [9] has shown that, when taking into consideration the effect of variation of the
open-loop gain A(s) of the opamp on ωo and Q variations [assuming A(s) ≈ ωT/s], the
approximately optimum value of r is given by

(4.49)

where  and  are the standard deviations of the passive elements (assumed equal)
and of the gain bandwidth product ωT of the opamp, respectively. In fact, the value of r
need not be less than 1/60, which results in practical values of the components R1, R2, Rα,
and Rb. An analogous optimization approach followed by Daryanani [6] leads to a value of
r very close to that given by Eq. (4.49).

Some important features of this SAB are the following:

a. Q factor, and hence bandwidth, can be varied independently of ωo by varying K.

b. Successive stages can be cascaded without the need for isolating stages. This
also holds for the SABs in Figs. 4.8 and 4.9.

c. All capacitors in all cascaded stages can be designed to be of the same value.

d. Any source resistance can be absorbed by R1 to avoid errors in the frequency
response. This is true for the SAB in Fig. 4.8 but not for the SAB in Fig. 4.9. 

e. It is easy to reduce the output voltage at the center frequency to avoid bringing
the opamp to the nonlinear region of its characteristics, i.e., to saturation, even
for small input signals. Clearly, at the center frequency, the output voltage will
be, from Eq. (4.42),

where h is given by Eq. (4.43). This value can be quite high, even for moderate
Q. The way to reduce this voltage is to split R1 into two others, , as shown
in Fig. 4.11, such that

This will not affect the shape of the frequency response, i.e., ωo and Q.

r 0.25
ωo

ωT

------ 
σωT

σR C,
----------≈

σR C, σωT

Vo ωo

hQ
ωo

-------Vi ωo
=

R′1 R″1,

FIGURE 4.11
Some transformation to reduce the output voltage at the center frequency without altering the shape of the
frequency response.

R1

R′1R″1

R′1 R″1+
----------------------=
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f. The ratio ωT/ωo in Eq. (4.49) gives the value of the amplifier gain at the center
frequency of the filter. Since the sensitivities depend on the value of r, amplifiers
with different ωT will affect differently the performance of the circuit. Thus, a
two-pole one-zero frequency compensated opamp will extend the useful range
of the filter [9] further than that corresponding to the use of the 741-type opamps.

The form of the transfer function remains unchanged if R1 and R2 are interchanged with
C1 and C2 respectively. However, in this case, feature d explained above is not applicable, if
the signal source impedance is not zero. The same is true for feature e.

Example 4.1
Consider the use of this SAB to realize the function

with the center frequency at 10 krad/s and impedance level at 10 kΩ.
Clearly, the normalized ωo and the Q-factor values are as following:

ωo = 1, Q = 10

Selecting the practical resistance spread to be 1/100 results in r = 10–2, which leads,
through Eq. (4.47a) to 

Therefore,

Selecting C = 1, we get from Eqs. (4.47)

R2 = 10, R1 = 10–1

and from Eq. (4.43),

One set of denormalized component values can then be as follows:

C1 = C2 = 10 nF

R1 = 1 kΩ, R2 = 100 kΩ, Ra = 1 kΩ, Rb = 100 kΩ

To achieve unity gain at the center frequency, we observe that since

F s( ) 0.1s

s2 0.1s 1+ +
------------------------------=

n 2 10 101– 1–×× 1= =

K
Ra

Rb

----- 1
10
------

1–×10 10 2–= = =

h
1 10 2–+

10 1– 1×
------------------- 10.1= =
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we should arrange that

Solving then for  and , we get 

Let us now look for the optimum design taking into consideration the effect of the finite
gain bandwidth product ωT of the opamp. Assuming 

and ωT = 2π × 106 rad/s, we obtain from (4.49)

To simplify the calculations a little, we may choose, with no problem,

Then, following the same procedure as before, we obtain the following set of denormalized
values:

C1 = C2 = 10 nF, R1 = 10/7 kΩ (  = 102.7 kΩ,  = 1.449 kΩ),

R2 = 70 kΩ, Ra = 2 kΩ, Rb = 75.4 kΩ

Note that Ra and Rb can be denormalized at a different impedance level from that for Ci,Ri

i = 1,2.

4.5.5 Lowpass- and Highpass-Notch Biquads

Friend [10] has introduced additional resistors to the SAB in Fig. 4.10, by means of which
the input signal is added directly to the input terminals of the opamp as is shown in
Fig. 4.12. Clearly, the circuit remains canonic, but it is now possible to realize complex zeros
in addition to the complex poles. Depending on the values of these additional components
all types of SABs except the lowpass are obtained, namely:

Bandpass when R6,R7,Rc = ∞
Highpass when R7 = ∞

hQ
ωo

------- 10.1 10× 101= =

R″1

R′1 R″1+
----------------------

1
101
--------- and

R′1R″1

R′1 R″1+
---------------------- R1 1 kΩ= = =

R′1 R″1

R′1 101 kΩ, R″1 1.01 kΩ= =

σωT
0.25 σR C, 0.005= =

r 0.25
104 0.25×

2π 6×10 5 103–××
------------------------------------------- 1

50
------≈ ≈

r
1
49
------=

R′1 R″1
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Lowpass notch when R6 = ∞

Highpass notch when R7 = ∞

Allpass when R6,R7 = ∞

Friend’s generalization of the circuit in Fig. 4.10 has led to the design of the popular STAR
building block [11]. It should also be mentioned that, if in addition to R6,R7 = ∞, also Rb = ∞
and R5 = ∞, the circuit is reduced to that shown in Fig. 4.13 [12], which is studied separately
below. Of the other four cases, the bandpass has already been studied above. The highpass
is less economical than that of Sallen and Key, which we have examined already, and there-
fore we will not elaborate on it. This leaves us with the two notch cases, which are now
examined a little further.

4.5.6 Lowpass Notch (R6 = ∞)

For convenience in the analysis of the circuit we use conductances (Gi) instead of resis-
tances (Ri). Assuming that 

(4.50a)

(4.50b)

FIGURE 4.12
The generalized SAB developed by Friend.

FIGURE 4.13
A simple allpass biquad.

R6 ∞=

G1 G4 G5+= =

CRC Employee
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(4.50c)

(4.50d)

(4.50e)

and an ideal opamp, straightforward analysis gives the following transfer function:

(4.51)

under the conditions

(4.52a)

(4.52b)

Clearly, this transfer function is of the form

(4.53)

which corresponds to a lowpass notch filter, provided that . This latter condition is
in fact satisfied since, from the circuit transfer function, Eq. (4.51),

Equating coefficients of equal powers of s in Eqs. (4.51) and (4.53), we get the following four
equations:

(4.54a)

(4.54b)

(4.54c)

Kc
Gc

Ga Gc+
-------------------=

Kb
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Ga Gc+
-------------------=

C1 C2 C= =
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C2
-------------------------------------+

s2 2G2

C
---------

Kb2 G 7 G1+
C

-----------------------------–+ s
G1
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------ G2 KbG7–( )+

------------------------------------------------------------------------------------------------------------=

Gc 2G7 2G2 G5+ +( ) G4 Ga Gb+( )=

G7

G2

------
Ga

Gb Gc+
-------------------=

F s( ) ds2 e+

s2 βs γ+ +
--------------------------=

d e γ⁄<

Kc Kc

G2 G7+
G2 KbG7–
-------------------------<

d Kc=

e
KcG1 G7 G2+( )

C2
-------------------------------------=

β
2G2

C
---------

Kb 2G7 G1+( )
C

----------------------------------–=

(         )
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(4.54d)

G1 = G4 + G5

With the addition of Eqs. (4.52a) and (4.52b), we have only six equations—not enough to
determine the values of all passive components of the circuit. We may then make the usual
choices, as in the bandpass case.

(4.55a)

(4.55b)

where ωp is the magnitude of the pole frequency.
Thus, the set of the necessary equations to determine all component values is completed.

4.5.7 Highpass Notch (R7 = ∞)

A highpass notch SAB is obtained from the general circuit in Fig. 4.12 if R7 = ∞. Working
with conductances as previously, and assuming ideal opamp, the transfer voltage ratio of
the circuit is found to be

(4.56)

under the condition

(4.57)

where G1, Kc, Kb, and C are given again by Eqs. (4.50b, c, d, e).
This transfer voltage ratio is again of the form of Eq. (4.53), but with , since 

Therefore, the SAB can realize a highpass notch filter function. The design equations can be
found as it was explained above, in the case of the lowpass notch function.

4.5.8 An Allpass SAB

Allpass biquads are useful in the realization of a high-order allpass function as the cascade
connection of second-order sections, the transfer functions of which have the form

γ
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------ G2 KbG7–( )=

C 1=

r
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------ 0.25
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σωT

σR C,
----------≈=
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C
---------
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C
------ G1 2G6+( )–+ s

G1

C2
------ G2 KbG6–( )+

-----------------------------------------------------------------------------------------------------------------=

Kb

Gc

Gb

------
G4 2G6+
2G2 G5+
----------------------=

d e γ⁄>

Kc

KcG2 G6–
G2 KbG6–
-------------------------> Kc

G2
G6

Kc

------–

G2 KbG6–
-------------------------=
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(4.58)

Such a function is the (n,n) Padè approximation of the function e–s [13].
A simple biquad [12] suitable for such a realization is shown in Fig. 4.13. Its transfer volt-

age ratio, assuming ideal opamp is as follows:

(4.59)

where

It can be shown that as the pole Q increases, so does the ratio r = R2/R1. For a given resis-
tance ratio r, the maximum value of ωi/σi, where –σi ± jωi are the poles of F(s) in Eq. (4.58),
achieved when C1 = C2, is the following:

(4.60)

Thus, depending on the maximum acceptable range of resistance values, a limit is set on
the position of the poles of F(s) which are realized by this network.

Letting C1 = C2 = C in Eq. (4.59), the transfer function becomes

(4.61)

Equating coefficients of equal powers of s in Eqs. (4.58) and (4.61) we obtain the following
component values:

(4.62)

with

Functions with higher ωi/σi ratios can be realized by this network by connecting an addi-
tional resistor from the noninverting input of the opamp to the output, as was mentioned
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above in connection with Friend’s work. Although this change makes the circuit more flex-
ible, at the same time it increases its sensitivity to component values.

With or without this additional resistance, the network cannot realize a function whose
poles and zeros are not equidistant from the origin in the s-plane. In such a case, other
biquads [12, 14] should be used.

Another observation is the following: if the positions of resistors R1 and R2 are inter-
changed with those of capacitors C1 and C2, respectively, the resulting network is also an
allpass biquad with a similar transfer function. As the reader can similarly show, the high-
est ωi/σi ratio is also given by Eq. (4.60), achieved when R1 = R2 with r = C1/C2 this time.

A drawback of the circuit is its gain, which, given by K in
Eq. (4.59), is lower than one. One way to increase the value of
K is to reduce the amount of the output voltage Vo fed back to
the input by means of R2 and C2. In practice, this may be
achieved by means of a potentiometer as shown in Fig. 4.14.
Thus, the value of K becomes

where α is the potentiometer setting, this being between zero
and one. Depending on the value of α, the circuit gain can be
even greater than one. Naturally, the potentiometer resis-
tance must be low with respect to R2 and 1/ωC2.

Finally, as can be easily seen from Eq. (4.59), if the coeffi-
cient of s in the numerator is made equal to zero, the circuit
can be used as a bandstop symmetrical notch biquad realizing
the function

displaying the same behavior at zero and infinity.
As an example, let us use the circuit in Fig. 4.13 to obtain a delay of τ = 10 ms by means

of the realization of the second-order Padè approximation written for our purpose as fol-
lows:

Selecting a convenient value for C, e.g., C = 0.1 µF, and using Eqs. (4.62), we get the follow-
ing:

FIGURE 4.14
A practical way to enhance the
gain of the SAB in Fig. 4.13.
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-----------------------------=
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----------------------------------------------= =
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600

2 12 104 10 7–×××
---------------------------------------------- 25 kΩ= =
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The actual values of Ra, Rb can be obtained either by assuming a suitable value of K or by
optimizing some other circuit characteristic, e.g., the opamp offset. In the latter case, select-
ing Ra//Rb = R2 we can obtain

Ra = 120 kΩ Rb = 40 kΩ

resulting in a K = 0.25. However, this value of K can become unity by means of a 1 kΩ poten-
tiometer connected as shown in Fig. 4.14.

4.6 Realization of a Quadratic with a Positive Real Zero

In realizing certain lowpass non-minimum phase delay functions [14] as the cascade con-
nection of second-order stages, one is involved with the realization of a quadratic with a
positive real zero, i.e., with the function

(4.63)

An RC active network, which can realize F(s) using one operational amplifier [15] and
which has very low sensitivity to variations in the values of its components, is shown in
Fig. 4.15. Its transfer voltage ratio is 

(4.64)

Ra

Rb

----- 6002

12 104×
-------------------- 3= =

F s( ) k α s–( )
s2 βs γ+ +
--------------------------=

FIGURE 4.15
An active RC network for the realization of F(s), Eq. (4.63).
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The values of the components of the network realizing F(s), Eq. (4.63), can be found by
equating coefficients of equal powers of s in Eqs. (4.63) and (4.64). Since the number of the
unknowns is larger than the number of the resulting equations, the values of any two com-
ponents can be selected arbitrarily. Selecting, for example,

C1 = C2 = 1

coefficient matching in Eqs. (4.63) and (4.64) gives the following:

Solving for the unknown component values gives the following:

(4.65a)

(4.65b)

(4.65c)

(4.65d)

Clearly, for positive values of gα and gb, the following conditions should hold between the
coefficients of the transfer function:

On the other hand, if C1 ≠ C2, one can show that, for the component values to be positive, k
should be

(4.66)

It can also be shown that the Q-factor sensitivities are as follows:
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It can be seen that the Q-factor sensitivities are extremely low and independent of the
Q factor. Also, the Q factor is insensitive to variations in the values of the two capacitances,
if C1 = C2. Therefore, this condition can be the starting point in the design of the stage.

As an example, consider the realization of the following function:

(4.67)

which is part of a delay function. Selecting

C1 = C2 = 1

we have inequality (4.66) satisfied. The values of the other components are calculated by
means of Eqs. (4.65). The circuit, denormalized to an impedance level of 106/3 Ω and a 0.1 s
delay, is shown in Fig. 4.16.

4.7 Biquads Obtained Using the Twin-T RC Network

The twin-T (TT) RC network is shown in its simplest version in Fig. 4.17a. Its transfer volt-
age ratio V2/V1 is as follows:

(4.68)

where T = RC. 

Thus, the TT in Fig. 4.17(a) processes a pair of transmission zeros on the jω-axis or, in
other words, it is a bandstop circuit. This pair of zeros can be moved out of the jω-axis, if a

F s( ) 0.5628 5.902 s–( )
s2 4.117s 6.9963+ +
-------------------------------------------------=

FIGURE 4.16
Realization of F(s), Eq. (4.67), denormalized to 106/3 Ω and 0.1 s delay.

V2

V1

------

s2 1

T2
-----+

s2 4
T
---s 1

T2
-----+ +

------------------------------=
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resistor is used to bridge the terminals 1 and 2, as shown in Fig. 4.17(b). In this case, the new
transfer voltage ratio will be the following:

(4.69)

It can be seen from Eq. (4.69) that the transmission zeros have moved inside the LH of the
s-plane. Either form of the TT shown in Fig. 4.17 (and, of course, more complicated ones [16])
can be used in conjunction with active elements to realize various biquadratic functions. 

As an example, consider the circuit in Fig. 4.18. If 

analysis of the circuit, assuming ideal opamp, gives the following voltage ratio:

(4.70)

FIGURE 4.17
(a) The TT network and (b) the Bridged-TT network.
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FIGURE 4.18
Example circuit.
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where 

(4.71)

Thus, a useful bandstop circuit with zero output impedance has been obtained using the
TT. A number of other biquads can be obtained using other forms of TT, and the interested
reader is advised to refer to other sources [1, 16] for details. 

4.8 Two-Opamp Biquads

A large number of two-opamp biquads can be obtained by a technique introduced below
for the enhancement of the Q of certain SABs. Other useful two opamp biquads have also
been suggested which possess interesting characteristics. In addition, very low sensitivity
biquads may be obtained if the inductance of the LCR biquad is simulated by the two-
opamp GIC [17, 18]. Although inductance simulation is explained in detail in Chapter 6,
we include this possibility here because of its simplicity. In what follows, we examine first
this possibility and then some other useful two-opamp biquads.

4.8.1 Biquads by Inductance Simulation

In Fig. 4.19, three possible biquads, obtained by combining an inductance, a capacitance,
and a resistance, are shown. All of them have the same poles with  and

.
Substituting the component L in Fig. 4.19(a) by its GIC equivalent (see Sections 3.5.2 and

6.4), the corresponding active RC circuit in Fig. 4.20 is obtained without the buffer amplifier
of gain k.

If the signal source is removed and placed at node b feeding R in series, while node a is
earthed the bandpass biquad equivalent to that in Fig. 4.19(b) is obtained. Finally, to obtain
the highpass equivalent, the signal source is placed between a broken node at c and earth,
while nodes a and b are earthed.

It can be shown by referring to Fig. 4.20 that the value of the equivalent inductance is ide-
ally as follows:

(4.72)

G 1 ωo
2, 1

R1R2C
2

------------------= =
ωo

Q
------, 2

R2C
----------=

FIGURE 4.19
RLC biquads: (a) lowpass, (b) bandpass, and (c) highpass.

ωo 1 LC⁄=
Q=R C L⁄

Leq C
R1R3RL

R2

------------------=
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Substituting for L, we obtain the following ωo and Q values:

(4.73)

(4.74)

In designing these filters, it is usual to select

R1 = R2 = R3 = RL = r (4.75)

when, from Eqs. (4.73) and (4.74),

(4.76)

and

(4.77)

The Q and ωo sensitivities to variation in the passive component values are the following:

On the other hand, if we consider matched opamps with the one pole model describing
their frequency response, we can determine that the error of ωo is approximately [16] the
following:

FIGURE 4.20
Lowpass biquad.
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(4.78)

One important drawback of these biquads is that their output is not taken from a zero
impedance node. Therefore in order to cascade such stages for realizing higher order filters
isolation amplifiers should be inserted between successive stages, as shown in Fig. 4.20.

Inductance simulation can also be applied to obtain notch biquads, both lowpass (LPN)
and highpass (HPN) notch. Suitable LCR biquads are those shown in Fig. 4.21. For the all-
pass notch, i.e., with ωoz = ωop, C2 and L2 in these networks should be deleted. The substitu-
tion of L by its GIC equivalent in Fig. 4.21(a) is straightforward, as it was achieved in the
case of the lowpass biquad in Fig. 4.19(a). However, in the case of the HPN in Fig. 4.21(b),
both L1 and L2 are simulated using the same GIC, as explained in Chapter 6. We do not
include the active equivalents of the LPN and the HPN here, leaving them to the reader as
an exercise.

Finally, the allpass biquad using inductance simulation is clearly a three-opamp biquad,
and consequently it does not belong to the two opamp class of biquads. A simulation is
given below.

4.8.2 Two-Opamp Allpass Biquads

The allpass biquadratic function

(4.79)

is written in the following form:

(4.80)

where

(4.81)

∆ωo

ωo

---------- 2
ωo

ωT

------–≅

FIGURE 4.21
LCR notch biquads: (a) LPN and (b) HPN.
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Then, F1(s) is realized by any bandpass SAB, and F(s) is formed by using a second opamp
to perform the summation in Eq. (4.80). Such an allpass active circuit is shown in Fig. 4.22,
where the SAB in Fig. 4.10 has been used to realize F1(s).

The merits of the SAB in Fig. 4.10 can be used advantageously in the realization of the
high-Q biquadratics in a high-order allpass function.

4.8.3 Selectivity Enhancement

There is a category of active RC networks with inherently low sensitivities but requiring
excessive spread in component values, even when they realize relatively low (~10) Q val-
ues. These networks employ negative feedback exclusively around a finite- or infinite-gain
amplifier.

To improve the selectivity of such circuits, one could employ positive feedback [8, 19],
but this leads to sensitivity degradation of the circuits. We describe another method here,
by means of an example, which does not lead to severe sensitivity degradation if it is
applied carefully.

Consider the bandpass circuit in Fig. 4.23. It can be shown that the Q value of this circuit
is the following:

FIGURE 4.22
A two-opamp allpass biquad.

FIGURE 4.23
A low-Q bandpass circuit.
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(4.82)

We now introduce a VCVS of gain K at node N as shown in Fig. 4.24. Note that there are
now available two zero impedance outputs. 

By straightforward analysis, we can find that

(4.83)

and

(4.84)

i.e., the simultaneous realization of a bandpass and a lowpass function both having the
same poles. From Eq. (4.83), the new Q factor will be

(4.85)

It can be seen that for the same component values in the two circuits, there is an enhance-
ment in Q since

(4.86)

Since the introduction of the VCVS affects both the Q and ωo values, their corresponding
sensitivities will be increased. However, if the VCVS is realized by means of an opamp, and
the value of K is very low (e.g., unity), its effect on the sensitivity will not be significant.

The Q enhancement technique suggested above can be applied to a large number of cir-
cuits [20–22]. In all cases, the availability of the second zero-impedance output is an advan-

Q
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FIGURE 4.24
The enhanced-Q circuit.
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tage. Note that, if the positions of resistors and capacitors in Fig. 4.24 are interchanged, the
second transfer function of the network will be highpass instead of lowpass.

It is interesting to note that a circuit due to Bach [23] can be obtained from the Sallen and
Key lowpass circuit using the Q enhancement technique. Thus, assuming that the gain of
the voltage amplifier in the Sallen and Key filter is unity, Fig. 4.25(a), introducing an addi-
tional unity gain VCVS at node A, Bach’s circuit in Fig. 4.25(b) is obtained.

Of course, this does not imply that the respective components in the two circuits have the
same values. Applying the RC:CR transformation, the corresponding highpass circuits are
obtained.

4.9 Three-Opamp Biquads

The use of three opamps to realize second-order filter functions leads to multiple-output
biquads with the additional advantage of versatility in that ωo, Q, and the filter gain can be
independently adjusted. Although they are not without problems, as we shall see later,
technology has produced three opamp chips ready for use in realizing biquadratics.

The poles of the circuits we present here are obtained by means of two integrators in a
feedback loop. That is why these are often referred to as the two integrator-loop biquads.

We may develop such a three-opamp biquad following the old analog computing tech-
nique for solving a differential equation. To show this, let us consider the second-order
lowpass function realized as the ratio of two voltages Vo and Vi, i.e.,

(4.87)

We can write this equation as follows:

(4.88)

Clearly, Vo may be obtained from  by two successive integrations with proper
time constants. On the other hand, the term  can be obtained as the sum of the
three terms on the right-hand side of Eq. (4.88). We may thus realize Eq. (4.88) as it is shown
in block diagram form in Fig. 4.26.

FIGURE 4.25
(a) Sallen and Key and (b) Bach’s circuits.
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Using opamps to perform the summing and integration operations, we obtain the circuit
shown in Fig. 4.27. Straightforward analysis of this circuit shows that the function in Eq.
(4.87) is realized with a minus sign. To avoid this, and also the use of a fourth amplifier, we
make use of the circuit in Fig. 3.8, giving the difference of two voltages.

Following this, the circuit in Fig. 4.27 becomes as is shown in Fig. 4.28. Again, straight-
forward analysis of this circuit gives the following:

(4.89)

(4.90)

(4.91)

FIGURE 4.26
Block diagram for realizing Vo/Vi, Eq. (4.88).

FIGURE 4.27
Implementation of the block diagram in Fig. 4.26.
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where

(4.92a)

(4.92b)

and

(4.92c)

From these, we can obtain the following design equations:

(4.93a)

(4.93b)

(4.93c)

with R1 and R4 taking suitably chosen values.
This circuit is referred to as the KHN (Kerwin, Huelsman, Newcomb) biquad [24], and it

simultaneously displays lowpass, bandpass, and highpass behavior. All three filters have
the same poles, of course.

A notch response can be obtained by adding the lowpass and highpass outputs using an
extra opamp. The ωo and Q passive sensitivities are very low. However, the excess phase
shift introduced by each integrator and the summer, due to the finite GB product of the
opamps, leads to Q enhancement with undesirable effects in the filter response. This is

FIGURE 4.28
The KHN biquad.
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examined below, but first let us see another three-opamp biquad with some additional
interesting characteristics.

4.9.1 The Tow-Thomas [25–27] Three-Opamp Biquad

A more versatile three-opamp biquad is shown in Fig. 4.29. Its transfer voltage ratio (Vo/Vi)
is as follows:

(4.94)

Clearly, it is possible to obtain any kind of second-order filter function by a proper choice
of the component values. Thus we may have the following:

This circuit was initially proposed by Tow [25] and studied by Thomas [26, 27]. Its passive
sensitivities are similar to those of the KHN three-opamp network. However, it is more ver-
satile, realizing all kinds of second-order filter function without the use of an extra opamp,
which is required in the case of the KHN circuit. It suffers, though, from the results of
excess phase shift on Q enhancement, as explained below.

LP: if C1 = 0, R1 = R3 = ∞

BP: if C1 = 0, R1 = R2 = ∞ (positive sign)

BP: if C1 = 0, R2 = R3 = ∞ (negative sign)

HP: if C1 = C, R1 = R2 = R3 = ∞

Notch: if C1 = C, R1 = R3 = ∞

Allpass: if C1 = C, R1 = ∞, r = R3/Q

FIGURE 4.29
The Tow-Thomas three-opamp biquad.
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4.9.2 Excess Phase and Its Compensation in Three-Opamp Biquads

Because of the finite gain-bandwidth product of the opamps, excess phase appears in the
summer (beyond the 180°) and the integrators (beyond the 90°) in the three-opamp
biquads, which finally leads to Q enhancement and to instabilities of the circuits. We may
calculate this excess phase in the case of the simple sign-reversing amplifier in Fig. 4.30 as
follows. Assuming that the opamp gain may be approximated with a model having a single
pole at the origin (that is, at zero frequency), i.e.,

simple analysis of the circuit in Fig. 4.30 gives the following transfer voltage ratio Vo/Vi :

(4.95)

Thus, at frequency ω, there is an extra phase shift beyond the 180°, 

(4.96)

This extra phase shift , which in the case of the ideal opamp would be zero, is called the
excess phase.

In a similar way, it can easily be shown that the excess phase for an integrator is approx-
imately

(4.97)

Since the two integrators and the summer are connected in cascade inside the loop, the
overall excess phase becomes substantial. It can be shown that this leads to Q enhancement,
which is undesirable. Thus, assuming that the opamps are identical (i.e., they have the
same ωT), the enhanced Qenh of the biquad in Fig. 4.29 is approximately [28]

(4.98)

FIGURE 4.30
Sign-reversing amplifier.
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where the value of Q is that for ideal opamps, ωo is the pole frequency of the biquad, and
K typically is 4. A similar Q enhancement is obtained in the case of the biquad in Fig. 4.28.

The excess phase, being a phase lag, can be cancelled by introducing an equal phase lead
inside the loop. Passively, this can be easily achieved by connecting a capacitor of suitable
value in parallel with one of resistors R in Fig. 4.28 or the resistor R in the integrator in
Fig. 4.29. However, since the temperature coefficients of this capacitor and ωT are not the
same, this compensation cannot be perfect at different temperatures.

More successful is the active compensation as employed in the Åkerberg-Mossberg
three-opamp biquad, which we examine next.

Clearly, to reverse the sign of an integrator, a second opamp should be employed as
shown in Fig. 4.31(a). The excess phase for this non-inverting or positive integrator is
approximately, according to Eqs. (4.96) and (4.97),

However, if the sign reversal of the integrator is achieved according to Fig. 4.31(b), then it
can be easily shown that the excess phase of the integrator becomes 

i.e., phase lead instead of phase lag.
Thus, this phase lead will cancel out the phase lag of the other integrator inside the loop

of the three-opamp biquads, and the overall excess phase will be zero. This scheme of
excess phase compensation is called active compensation, and it is less temperature depen-
dent than the passive compensation of excess phase that was mentioned above.

4.9.3 The Åkerberg-Mossberg Three-Opamp Biquad [29]

The Åkerberg-Mossberg three-opamp biquad is a modified version of the Tow-Thomas
three-opamp biquad. To simplify matters we set the following values to some of the passive
components in the circuit in Fig. 4.29:

Then, the Tow-Thomas biquad becomes as shown in Fig. 4.32(a). By actively compensat-
ing the integrator as in Fig. 4.31, the Åkerberg-Mossberg biquad is obtained as shown in
Fig. 4.32(b).

FIGURE 4.31
(a) A non-inverting integrator and (b) a non-inverting integrator with active compensation of excess phase.
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Straightforward analysis of the biquad in Fig. 4.32(b) gives the following:

(4.99)

(4.100)

The Åkerberg-Mossberg biquad, in its simplified form, can thus simultaneously realize
lowpass and bandpass functions with the same poles. In its more general version, it can
realize any type of biquadratic function, if the input signal is fed properly weighted to the
inputs of all amplifiers. In all cases, the poles are not affected.

It is clear from Eqs. (4.99) and (4.100) that both the Q factor and the pole frequency ωo can
be independently adjusted. Depending on the component values, voltages at internal
nodes may differ substantially. This inevitably will lead to nonlinear operation of some
amplifiers and, therefore, to reduced dynamic range even for small signals. For the mini-
mization of such effects, r1 should be equal to r2, but this will make the active compensation
ineffective, and thus Q enhancement will not be avoided.

4.10 Summary

Low-order (first and second) filter circuits were presented in this chapter, which have been
chosen among an abundance that have appeared in the literature over the years. These are
mostly canonic and have been proven useful in practice.

FIGURE 4.32
(a) The Tow-Thomas biquad actively compensated for excess phase, giving the Åkerberg-Mossberg biquad in (b).
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The biquads can be classified as SABs (single-amplifier biquads), two-opamp biquads,
and three-opamp biquads. Also, the SABs can be classified as enhanced positive feedback
(EPF) and enhanced negative feedback (ENF) biquads, depending on the feedback paths,
positive or negative, in which the frequency dependent passive network is connected. By
means of the application of the complementary transformation to one SAB, another SAB is
obtained which has the same poles as the first one and, consequently, same pole sensitivi-
ties. This has led to the discovery of a number of useful biquads as well as to the rediscov-
ery of others, previously suggested. 

Among the important merits of a biquad, its sensitivity to variations in component val-
ues and economy are the most prominent. Sensitivity of Q, ωo , and the gain-sensitivity
product are the most useful measures that characterize the value of a biquad. It is because
of this that high-Q biquadratic functions could better be realized by two- or three-opamp
biquads instead of using SABs. This, of course, increases the cost and power consumption,
and it is a matter of priority for the designer in solving a particular filtering problem to
make the appropriate choice.

First- and second-order filter circuits are very useful in the realization of high-order filter
functions. Some methods for such realizations are based on the use of lower-order sections,
particularly biquads. Therefore, knowledge of the most suitable biquad in a particular case
is of fundamental importance for achieving the “best” design. This will become apparent
in the next chapter, where the design of high-order filters is considered.
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Chapter 5

 

Realization of High-Order Functions

 

5.1 Introduction

 

In most cases, the selectivity provided by a second-order filter is not adequate. Higher-order
filter functions have to be realized in order to satisfy the stringent selectivity requirements
in telecommunication systems, special instrumentation, and many other applications.

To realize such high-order filter functions, two main approaches have been found most
useful in practice. The first is to cascade second-order stages without feedback (cascade fil-
ter) or through the application of negative feedback (multiple-loop feedback filters, MLFs).
The second is to use combinations of active (e.g., opamps) and passive (resistors and capac-
itors) components in order to simulate either the inductances or the operation of a high-
order LC ladder. Yet another approach, the use of just one opamp embedded in an RC net-
work in order to realize the high-order function, although possible, has been dropped for
reasons of high sensitivity.

The study of such high-order circuits requires some additional tools over those used in
the previous chapter, which were suitable for second-order filters. For example, in an MLF
or a simulated ladder filter, the value of each component does not affect only one pole or
one zero of the filter, but more than one, making thus the filter tuning difficult. In this case,
the Q sensitivity for, example, of a biquadratic section in the MLF circuit cannot be used as
a criterion when comparing the MLF circuit to the simulated ladder. Therefore, more suit-
able sensitivity measures are required for such comparisons, the determination of which
makes the use of a computer program unavoidable.

In this chapter, we first discuss briefly a number of criteria which characterize a useful,
practical, active RC filter. Next, we introduce suitable sensitivity measures, which have
been proven to be consistent with one another, as far as the information on sensitivity they
give is concerned. Then, three high-order filters are discussed, all of them using the biqua-
dratic circuit as a cell. These are the cascade, the multiple-loop feedback, and the cascade
of biquartic stages filters, the latter being a mixture of the other two. The simulated LC lad-
der filter is examined in the next chapters.

 

5.2 Selection Criteria for High-Order Function Realizations

 

The realization of a high-order function can be achieved by a number of methods. Some of
these have proved more advantageous in practice than others, and over the years they have
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prevailed. Before we see which methods are more acceptable in practice and therefore more
useful in filter design, we should set a number of criteria that a design method must satisfy
in order to be considered more suitable than others in solving a design problem. It must be
emphasized, though, that there is not one method that is the best according to all criteria.
So, we will consider the best method as the one that satisfies most of the criteria in a more
satisfactory way than the rest.

The most important criteria that can be used in comparing the various methods of real-
ization of a high-order function are the following:

• The possibility of realizing the required function using the available components.

• Sensitivity, i.e., stability of the filter characteristics. As we have already seen in
the previous chapter, some biquads are more sensitive than others to variations
in their component values. This is also true in high-order circuits.

• Economy. Some design methods lead to circuits that require fewer components
than others and therefore are more advantageous from the economy point of
view. 

• Simplicity of design. The designer prefers to use an easy to understand and
apply design method rather than a more complicated one. 

• The possibility of producing the filter in integrated circuit form. Of course, this
will depend on the number of filters to be manufactured; otherwise it will not
be economical.

• Power dissipation. Lower power dissipation relaxes the power supply design
and leads to lower heat produced by the filter.

• Tuning simplicity. Every circuit, after it has been built, requires tuning in order
to satisfy the required specifications.

• Dynamic range. This determines the range between highest signal level that will
pass undistorted through the filter and the lowest signal that can be distin-
guished from the noise. This is usually expressed in decibels and may be written
as

• Noise. Active elements produce their own noise, which is added to that of the
passive components, thus decreasing the signal-to-noise ratio at the output of
the filter.

• Other criteria, such as passband attenuation, etc., that the designer may set as
applicable in the specific filter design problem.

Clearly, some of these criteria cannot be satisfied by the same circuit. For example, low
sensitivity and small number of opamps (economy) used in the circuit cannot be satisfied
simultaneously, as we have already seen in the realization of second-order functions. Also,
a low-sensitivity circuit that employs a large number of opamps dissipates higher levels of
dc power and produces more noise than other, more sensitive circuits that use a lower
number of opamps. Thus, the task of the designer is to select a circuit design that satisfies
most of the criteria that are considered more important for the filter design problem at
hand.

∆R
Maximum signal level
Minimum signal level
------------------------------------------------------ Distortion limit

Noise floor
-------------------------------------= =
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5.3 Multiparameter Sensitivity

 

In the previous chapter (Section 4.4), we introduced various sensitivity measures useful in
the case of the realization of second-order functions. These measures of sensitivity can, in
some cases, be of some importance when studying the sensitivity of a high-order filter, too.
However, they do not give a complete picture of the sensitivity of such a filter, due to the
large number of its components.

More useful in sensitivity studies of high-order filters have been proved to be the so-
called multiparameter sensitivity measures. Some of these are reviewed here below: 

1. Worst-case sensitivity 

 

WS

 

 defined as follows:

(5.1)

where 

 

n

 

 is the number of elements, passive and active, and 

 

H

 

 the filter transfer
function.

Since 

 

H

 

 is a function of 

 

ω

 

 too, WS, is also a function of frequency. Worst-case
sensitivity estimates the worst deviation from the nominal response when all
components have the same percentage variation.

2. Schoeffler’s sensitivity measure, in its simplified form, is defined as follows [1]:

(5.2)

where  is the standard deviation of |H|, and 

 

σ

 

 the standard deviation
of resistors and capacitors, assumed to be the same for all these components,
with the additional requirement that they are uncorrelated.

Both these multiparameter sensitivity measures require for their determination
the calculation of  for all 

 

x

 

i

 

, assuming they vary independently. However,
since the variations of the components, in practice, are not infinitesimal, a more
realistic picture, and therefore, more useful in engineering work, would be a
sensitivity measure based on the real type of component variations, as is the
following one. 

3. Standard deviation of the amplitude response for a large number of measure-
ments. Here, as a measurement, we consider the calculation of the amplitude
response using one set of component values that have been obtained at random
within the tolerance limits of the components. In doing this, we assume that the
component values have a uniform or normal distribution around its nominal
value. The limits of the distribution are set by the tolerance of the components.

The standard deviation  is determined using the following formula [2]:

(5.3)
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or by the formula for a smaller number of measurements 

 (5.4)

where 

 

N

 

, the number of measurements, is

100 < 

 

N

 

 < 10,000

Since |

 

H

 

i

 

| is a function of 

 

ω

 

, so is .
The component random values can be obtained as follows: the computer is

instructed to give each time two random numbers, 

 

r

 

1

 

 and 

 

r

 

2

 

, both between 0 and
1. Assuming a uniform distribution of component values around the nominal
value, if 

 

δ

 

x

 

 is the tolerance of the component with nominal value 

 

x

 

, its random
value  will be either 

(5.5)

The standard deviation multiparameter sensitivity measure is used in comparing
high-order circuits realizing the same filter function below. However, use of the
other two measures leads to similar conclusions; therefore, they can also be
applied in multiparameter sensitivity calculations.

 

5.4 High-Order Function Realization Methods

 

The most useful methods for the realization of high-order filter functions in practice fall
into one of the following three general methods:

1. Cascade connection of second-order sections
2. Multiple-loop feedback circuits
3. Simulation of passive LC ladder networks

In Method 1, taking advantage of the useful biquadratic sections we examined in the pre-
vious chapter, we write the high-order function as the product of biquadratic factors that
we realize accordingly. Next, we cascade these sections by connecting the output of each
section to the input of the following one. This method has the advantages of simplicity in
designing and aligning the filter, provided that the output of each section is of very low
impedance—practically zero.

In Method 2, multiple feedback and, in some cases, multiple feed-forward is applied in
a cascade connection of biquadratic sections. This coupling, as we shall see later, leads to a
better sensitivity performance of the overall circuit compared to the corresponding circuit
obtained by Method 1.

Simulation of passive resistively-terminated lossless ladder networks can be achieved by
simulating either the inductances of the ladder, using GICs, PICs, gyrators, or functionally.
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Functional simulation here implies that branch currents and node voltages in the ladder are
modeled using analog computer simulation techniques. The ladder simulation method is
attractive, because it leads to active circuits of lower sensitivities than the other two meth-
ods.

For simplicity reasons in design and filter alignment, a combination of Methods 1 and 2
may, in some cases, lead to useful circuits having the advantages of both methods. Accord-
ing to this method, the high-order function is written as the product of biquartics (fourth-
order functions), which are realized as multiple-loop feedback sections and then cascaded.

In this chapter, Methods 1 and 2, as well as their combination, i.e., the cascade of biquartic
sections, are explained to some detail. As previously mentioned, the simulation of resis-
tively terminated ladder lossless filters is explained in following chapters.

 

5.5 Cascade Connection of Second-Order Sections

 

A high-order filter function 

 

T

 

(

 

s

 

) [we shall use 

 

T

 

(

 

s

 

) here for notational simplicity] can be
realized as the ratio of the output voltage to the input voltage of a cascade connection of
lower-order stages, each of which does not load the output of its preceding one. For this
to be true, the output impedance of each section must be much lower than the input imped-
ance of the following section at all frequencies of interest.

The lower-order stages are preferably biquadratic. Their realization has been presented
in the previous chapter. If the function under realization is of odd order, there will be a first-
order term which, according to the type of 

 

T

 

(

 

s

 

) (lowpass, highpass, or allpass), can be real-
ized by one of the first-order circuits suggested in Chapter 4.

Thus, the high-order filter function 

 

T

 

(

 

s

 

) will be written in the form 

(5.6)

where 

 

t
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) is a first-order term, or simply unity, depending on the order 

 

n

 

 of the function,
which is either odd (
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 + 1) or even 
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 respectively, with 
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 being an integer and

(5.7)

Depending on 

 

T

 

(

 

s

 

), one or two of the numerator coefficients in Eq.(5.7) may be zero, while
in the case of an allpass function, the numerator coefficients will be equal to the corre-
sponding coefficients of the denominator, with the additional constraint that 
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In forming each biquadratic term 
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) and then cascading the biquad sections to obtain
the overall circuit realizing 

 

T

 

(

 

s

 

), three degrees of freedom are at the designer’s disposal.
These are the following:

• Pole-zero pairing, i.e., which poles with which zeros of 
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(
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) will be paired to
form each 

 

t

 

i
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s

 

).

• Distribution of the overall gain in the various biquadratics.

• Physical position of each biquad in the cascade.
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Clearly, the pole-zero pairing greatly affects the dynamic range of the corresponding
biquad and consequently that of the whole filter. Also, the distribution of the filter gain
among the various biquads influences their dynamic range, while the biquad sequence in
the cascade has a significant effect on the total noise generation in the filter.

Consequently, the filter designer should take advantage of these degrees of freedom in
order to optimize the design with regard to the following two main criteria: 

• Maximization of dynamic range

• Maximization of the signal-to-noise ratio

In what follows, the optimization approach is explained to some detail with regard to the
dynamic range of the filter, which has been shown to be the most relevant [3] in this case.

For reasons of clarity, we give here the universally acceptable definition of the dynamic
range of a circuit. It is the ratio, expressed in decibels, of the maximum input signal (volt-
age) level 

 

V

 

imax

 

, that passes undistorted through the circuit to the minimum input signal
level 

 

V

 

imin

 

, for which the signal at the output of the circuit is still above the output noise
level. If the highest output voltage capability for undistorted operation is 

 

V

 

o,max

 

 and 

 

K

 

 is the
filter gain then the highest input voltage 

 

V

 

i,max

 

 can be 

(5.8)

Other less important points that may influence the designer’s decisions could be the fol-
lowing:

• Minimization of the transmission sensitivity

• Minimization of the passband attenuation

• Simplification of tuning procedure

 

5.5.1 Pole-Zero Pairing

 

It will be noted that a complex pole near the 

 

j

 

ω

 

-axis creates an elevation in the magnitude
response of the corresponding biquadratic term, at frequencies around the imaginary part
of the pole. On the other hand, a zero at a similar position creates a deep notch in the mag-
nitude response at frequencies around the imaginary part of the zero. If such a pole and
zero are very much apart in the s-plane, and they are paired to form a biquadratic function,
the minimum value in the magnitude response inside the passband will be much lower
than the maximum value, whether this is inside or outside the passband. In such a case, the
input signal level cannot be very high in order to avoid nonlinear operation, and it can not
be very low either, because then the signal at the output will be buried in noise at frequen-
cies near the zero.

To avoid such a situation, the magnitude of the biquadratic response should be as flat as
possible. To make this more clear, suppose that the magnitude response of the biquadratic
term 

 

t

 

i

 

(

 

j

 

ω

 

) is as shown in Fig. 5.1. Let 

 

ω

 

L

 

 and 

 

ω

 

H

 

 be the filter passband edges, lower and
upper, respectively. What we actually seek with the proper pole-zero pairing is to make the
difference between the maximum value  wherever in the response, and the minimum
value  inside the passband as small as possible. To achieve this, we should pair each
complex pole with its nearest complex zero. 
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This argument leads us to the following rule of thumb: to decompose a high-order filter
function to the product of biquadratics for maximizing the dynamic range of each biquad
(and consequently of the whole filter), we should pair each complex pole with its nearest
zero, starting with the pole of highest Q factor. 

As an example of the application of this rule, consider the pole-zero positions in Fig. 5.2.
(The conjugate poles and zeros are supposed to be placed in the third quadrant). According
to the rule of thumb, pole p1 should be paired with zero z1, pole p2 with zero z2, and pole
p3 with zero z3. Based on the above argument, a certain algorithm has been suggested by
Lueder [4] and discussed by Moschytz [3] for obtaining the optimum pole-zero pairing.
The decomposition obtained using the rule of thumb in most cases is identical to the opti-
mum decomposition. When it is not, the degradation in the dynamic range is not substan-
tially different. For this reason, we do not explain the optimum decomposition algorithm
here, but we advise the interested reader to consult the above-mentioned references as well
as Reference 5.

There are cases, however, when the decomposition can be obtained on a different basis.
Consider for example the following sixth-order bandpass function: 

FIGURE 5.1
Biquadratic term.

FIGURE 5.2
Illustration of pole-zero positions.
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(5.9)

Here, all zeros are at zero and infinity. Neglecting at present the distribution of the gain to
the three stages, one may decompose T(s) in the following way:

 (5.10)

However, the following decomposition is also possible

(5.11)

with

(5.12)

Each of these two decompositions has practical advantages, and the designer may like to
base the pole-zero pairing on these. For example, the lowpass (or the bandpass) section, if
placed at the beginning in the cascade, will attenuate out-of-band high-frequency signals,
which may otherwise lead to nonlinear operation of the opamps in the subsequent stages.
On the other hand, the designer may choose the pole-zero pairing of Eq. (5.11), since a
bandpass biquad is easier to tune than the lowpass and highpass configurations.

5.5.2 Cascade Sequence

The proper sequence of the biquads in the cascade is important for achieving maximum
dynamic range in the cascade realization of a high-order filter. However, the determination
of the best sequence may become a rather tedious procedure if the number of biquads to be
cascaded is high. This is so because, for N biquads, there exist N! different sequence possi-
bilities, which will have to be examined.

An efficient algorithm has been described in the literature [6], but we will not explain it
here. Fortunately, there exists a simple guide arising from experience that can help the
designer to achieve a satisfactory result in practice much easier and quicker.

Thus, we start by determining the frequency of maximum magnitude in each biquad and
then form the sequence in such a way that neighboring biquads have their frequencies of
maxima as far apart as possible. If there is a lowpass or bandpass section, this is preferably
placed in front, while if there exists a highpass, this is placed last. A bandpass section can
also be placed last in the cascade, its action being similar to the highpass, namely to prevent
any low-frequency noise generated by the leading stages inside the filter from appearing
at the output.

A satisfactory solution can also be achieved if the biquads are placed in the cascade in
increasing Q factor. It is interesting to note that these mostly intuitive suggestions may help
the pole-zero pairing in cases like the example in the previous subsection. Thus, if we select
to decompose the sixth-order bandpass function (with all zeros at the origin and infinity)
in a lowpass, bandpass, and highpass biquadratics, we associate the lowest Q poles with

T s( ) K
s3

s2 b11s b01+ +( ) s2 b12s b02+ +( ) s2 b13s b03+ +( )
--------------------------------------------------------------------------------------------------------------------=

T s( ) K
1

s2 b11s b01+ +
--------------------------------- s2

s2 b12s b02+ +
--------------------------------- s

s2 b13s b03+ +
---------------------------------××=

T s( ) K t1 s( ) t2 s( ) t3 s( )⋅ ⋅ ⋅=

ti s( ) s

s2 b1is b0i+ +
--------------------------------=
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the lowpass function, the highest Q poles with the highpass, and the bandpass is left to be
associated with the intermediate Q poles. Then, the proper sequence will be the lowpass
biquad in front, followed by the bandpass, with the highpass last in the cascade.

Of course, if we had chosen to decompose this sixth-order bandpass function in three
bandpass biquadratics, the proper sequence would be in order of increasing Q factor.

5.5.3 Gain Distribution [5]

Having optimized the pole-zero pairing and the biquad sequence in the cascade, we now
turn to the distribution of the overall filter gain to the various stages to obtain as high a
dynamic range as possible. We consider the filter transfer function of order 2N written as
follows: 

(5.13)

where , with K being the overall gain of the filter and ki the gain of the ith
stage. Let also the biquad sequence be . 

We work here on the following idea: for the maximum input voltage that results in undis-
torted output voltage Vo of the filter, the output voltages of the intermediate stages should
also be undistorted. To achieve this, we distribute the overall filter gain to the various
stages in such a way that the maximum voltage at the output of each intermediate stage is
also Vo, i.e.,

Let

(5.14)

where  is the transfer function from the filter input to the output of the ith stage. Also
let 

(5.15)

and

(5.16)

Then, the gain distribution should be such that 

T s( ) ki ti s( )
i 1–

N

∏=

k1 k2…kN⋅ K=
k1t1 s( ) k2t2 s( ) …kNtN s( ), ,

maxVoi jω( ) maxVoN jω( ) Vo i 1 2 … N 1–, , ,= = =

Ti s( ) klt l s( ) i
l 1=

i

∏ 1 2 … N 1–, , ,= =

Ti s( )

max ti jω( )
i 1=

N

∏ MN=

max t l jω( )
l 1=

i

∏ Mi i 1 2 … N 1–, , ,= =
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.................................
..........................................

From these equations, we obtain the following values for all kj :

(5.17)

(5.18)

and in general,

(5.19)

where 

(5.20)

As an example, let us design a bandpass filter having a center frequency at 1 krad/s and
bandwidth 100rad/s, consistent with the Butterworth response of sixth-order. 

Starting with the third-order Butterworth lowpass function,

(5.21)

we apply the lowpass-to-bandpass transformation 

to the lowpass function and obtain the following bandpass function:

(5.22)

If we choose to decompose T(s) into three second-order bandpass functions, we will get,
from (5.22)

k1M1 KMN=

k2k1M2 KMN=

kN 1– kN 2– …k1MN 1– KMN=

k1 K
MN

M1

--------=

k2
M1

M2

-------=

kj

M j 1–

M j

------------ j 2 3 … N, , ,= =

kN
K

kj

j 1=

N 1–

∏
-------------=

t sn( ) 1

sn
3 2sn

2 2sn 1+ + +
------------------------------------------=

sn
s2 1+
0.1s

-------------=

T s( ) 0.001s3

s6 0.2s5 3.02s4 0.401s3 3.02s2 0.2s 1+ + + + + +
---------------------------------------------------------------------------------------------------------------------=
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where 

with K = 0.001 and Q factors Q1 = 10, Q2 = 20.02, Q3 = 20.02. 
Having decided on the pole zero pairing, we now turn to the problem of the sequence in

the cascade. We have the following possibilities:

Ta · Tb · Tc, Ta · Tc · Tb, Tb · Tc · Ta, Tb · Ta · Tc, Tc · Ta · Tb, Tc · Tb · Ta

If we choose to follow the rule of thumb for forming the sequence in the order of increas-
ing Q, then Ta should be in front, followed by either Tb or Tc, since Tb and Tc have equal Q
factors. We choose the sequence Ta, Tb, Tc.

Next, we have to determine the gain distribution in such a way that the overall gain at
the center frequency is unity, i.e., K = 0.001. Following the procedure outlined above, we
find successively

Thus, the final decomposition of the overall bandpass function will be as follows:

(5.23)

(5.24)

(5.25)

Each of these functions will be realized by the SAB shown in Fig. 5.3 and placed in the cas-
cade in the order given in Fig. 5.4.

Ta s( ) k1t1 s( )
k1s

s2 0.1s 1+ +
------------------------------= =
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k2s
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----------------------------------------------------------------------= =
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k3s
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----------------------------------------------------------------------= =
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------ 0.1= = =

k2
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-------------------------------------------------- 10

162.936
------------------- 0.0613738= = =

k3
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k1k2
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0.1 0.0613738×
--------------------------------------- 0.162936= = =
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------------------------------=
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----------------------------------------------------------------------=
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Following the procedure outlined in Section 4.5, the normalized and denormalized com-
ponent values (ωo = 1krad/s, Ro = 10 kΩ) are calculated. They are given on Table 5.1.

5.6 Multiple-Loop Feedback Filters

We are concerned here with the application of negative feedback in a cascade connection
of low-order sections. Two general topologies have been studied extensively: 

• The leapfrog topology shown in Fig. 5.5
• The summed-feedback shown in Fig. 5.6

TABLE 5.1

Component Values

Section T1 Section T2 Section T3

Component Normalized Denormalized Normalized Denormalized Normalized Denormalized

kΩ, nF kΩ, nF kΩ, nF

10.27 102.7 16.84 168.4 6.344 63.44

0.145 1.45 0.1505 1.505 0.1398 1.40

7 70 7.3098 73.1 6.70336 67.03

1 100 1 100 1 100

1 100 1 100 1 100

0.265 2.65 0.3368 3.37 0.3368 3.37

10 10 100 100 10 100

FIGURE 5.3
SAB.

FIGURE 5.4
Cascade sequence.
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The leapfrog topology is useful in the functional simulation of an LC ladder, and it is
explained in the next chapter. The summed-feedback topology, as it appears in Fig. 5.6, is
not suitable for realizing any finite transmission zeros. To overcome this problem, two use-
ful techniques are the following:

a. The multiple- or distributed-input technique, shown in Fig. 5.7, in which the
input signal is also feeding the input of all cascading sections, and

b. The summation of the input signal and the output signals from all cascaded
sections, as shown in Fig. 5.8.

The topology in Fig. 5.6, and subsequently those in Figs. 5.7 and 5.8, are in fact generaliza-
tions (or adaptations) of similar analog computer methods for solving differential equa-
tions. 

FIGURE 5.5
The leapfrog topology.

FIGURE 5.6
The summed-feedback topology.

FIGURE 5.7
Summed-feedback distributed-input topology.
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To show this, consider for simplicity an nth-order lowpass function.

(5.26)

This is to be realized as the voltage ratio Vo/Vi, in which case we will have, from (5.26)

(5.27)

We can rewrite Eq. (5.27) in the following form: 

(5.28)

Observe that Vo can be obtained from snVo by integrating snVo successively n times. If we
then add KVi and the output voltages from each integrator, weighted and signed according
to Eq. (5.28), we will obtain snVo. This is shown in Fig. 5.9 in block diagram form for n even.
If the summation produces an extra sign reversal, the voltages should be summed with
opposite signs. All voltages that take part in Eq. (5.28), with the opposite sign of that
required, can have their sign reversed by summing them properly weighted, separately,
using an opamp, the output of which is then connected to the input of the main summer in
Fig. 5.9.

As an example, consider again the realization of the third-order Butterworth lowpass
function

 (5.29)

Writing this in the form of Eq. (5.28), we will have

FIGURE 5.8
Summed-feedback summed-output topology.

F s( ) K

sn an 1– sn 1– … a1s ao+ + + +
---------------------------------------------------------------------=

Vo s( ) K

sn an 1– sn 1– … a1s ao+ + + +
---------------------------------------------------------------------Vi s( )=

snVo KVi an 1– sn 1– an 2– sn 2– … a1s ao+ + + +( )Vo–=

T s( ) 1

s3 2s2 2s 1+ + +
----------------------------------------

Vo s( )
Vi s( )
-------------= =

s3Vo Vi 2s2 2s 1+ +( )Vo–=
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Using single-input opamps, the complete circuit realizing the function will be as it is
shown in Fig. 5.10. Notice that, from the output of the main summer, we additionally obtain
the realization of the third-order Butterworth highpass function. 

It can also be seen from Figs. 5.9 and 5.10 that any finite transmission zeros can be pro-
duced by summing voltages from the outputs of the various integrators properly signed
and weighted. For example, the output of summer No. 2 in Fig. 5.10 gives the realization
of the following function: 

Three other design methods based on the topology of Fig. 5.6 have been proposed and
studied. These are the following:

• The primary-resonator block (PRB) [7, 8]

• The follow-the-leader feedback (FLF) [9, 10] and

• The shifted-companion form (SCF) [11].

Both the FLF and SCF networks are generalizations of the PRB network. In what follows,
we review first the SCF method, in which we include the PRB, and then the FLF design.

FIGURE 5.9
Realization of Eq. (5.28) using the analog computer technique. All time constants are normalized to unity.

FIGURE 5.10
The analog computer approach to realizing the third-order Butterworth lowpass filter function.

V′o s( )
Vi s( )
--------------- 2s2 1+( )

Vo

Vi

------–  
2s2 1+

s3 2s2 2s 1+ + +
----------------------------------------–= =
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5.6.1 The Shifted-Companion-Form (SCF) Design Method

For simplicity, we will explain this method by means of applying it to realize the third-
order Butterworth lowpass function, Eq. (5.29). We proceed as follows.

First we select a parameter α, and we use it to shift the frequency variable s to a new fre-
quency variable p such that 

s = p – α (5.30)

We then introduce this into the expression for T(s) Eq. (5.29) and obtain 

or

(5.31)

where

(5.32)

For an nth-order function, when the coefficient of pn is 1, the usual selection of α is such
that makes the coefficient of pn–1 equal to zero. This is, in fact, the ratio of the coefficient of
sn–1 in the original denominator polynomial divided by n, the order of the function. In
accordance with this, we get from the first of Eqs. (5.32) the following value of α: 

Using this in the rest of Eqs. (5.32), we get a1 and ao, i.e.,

a1 = 2/3 ao = 0.25926

Thus, T(p) becomes

(5.33)

This transfer function can be realized by the block diagram (companion-form) of Fig. 5.11.
We now apply an opposite shift operation on the block diagram in Fig. 5.11 and obtain

the block diagram in Fig. 5.12. Notice that, in order to obtain unity gain at dc, Vi is multi-
plied by α –3. This block diagram can be implemented in practice as shown in Fig. 5.13,
assuming C = 1.
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p α–( )3 2 p α–( ) 2 p α–( ) 1+( )+ +
--------------------------------------------------------------------------------------------=

T p( ) 1

p3 a2p2 a1p ao+ + +
-------------------------------------------------=

a2 2 3α–=
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p3 2
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------+ +
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----------------------------------------------------------

Vo

Vi

------ p( )= = =



©1999 CRC Press LLC

A saving of one opamp (or two) in the circuit of Fig. 5.13 can be achieved if the summa-
tion of voltages, input, and feedback is performed using both inverting and noninverting
inputs of the summer, or if the operation of summation is performed by the first lossy inte-
grator with the opamp operating in differential mode.

The general SCF network has its first stage different from the others, because it performs
the operation

In this case, α is not selected as it was above, i.e., to make an–1 equal to zero. However, when
an–1 = 0, because the value of α is selected for this purpose, the SCF network has all its stages
identical, and the whole SCF circuit is identical to the PRB network.

FIGURE 5.11
Realization of Eq. (5.33) in block diagram form.

FIGURE 5.12
Realization of T(s) in block diagram form.

FIGURE 5.13
Final circuit realizing T(s), Eq. (5.29).

1
s an 1– α+ +
-----------------------------
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By applying the usual lowpass-to-bandpass transformation

to the block diagram in Fig. 5.12, the block diagram implementation of the geometrically,
symmetric sixth-order Butterworth bandpass function will be obtained. In this case, each
stage in the cascade becomes of order 2, and it requires a bandpass biquad for its realiza-
tion. However, the feedback factors do not have to be changed.

Similarly, the highpass Butterworth filter function realization will be obtained if, in
Fig. 5.12, the lowpass-to-highpass transformation is applied.

It should be mentioned that the PRB circuit cannot realize filters with finite transmission
zeros, while the SCF can if α is not selected to make an–1 = 0. In fact, by the general SCF net-
work any transfer function, lowpass, highpass, bandpass, bandstop, and allpass can be
realized. Of course, the summation or the feed-forward technique will be used for the real-
ization of transmission zeros.

As a design example let us apply the transformation

as we did in the case of the CF. Then, each cascaded stage will become bandpass, as follows: 

With α = 2/3, we finally get for T(s)

The Q factor of all stages is 15, thus the SAB in Fig. 5.3 can be used for the realization of
each bandpass section, with all of these SABs being identical.

Since all three cascaded stages are tuned to the same center frequency and have equal
Q factors and gains (unity), they will have the same maximum output voltage and there is
no need to take any more steps to maximize the dynamic range of the filter.

Coming to the design of the SABs, we select r = 1/49 and, following the procedure out-
lined in Section 4.5, we obtain the component values, normalized and denormalized (ωo =
1krad/s and Ro = 10 kΩ) given in Table 5.2. The overall circuit is given in Fig. 5.14(a) with
each block representing the SAB in Fig. 5.14(b).

5.6.2 Follow-the-Leader Feedback Design (FLF)

The general FLF circuit is shown in block diagram form in Fig. 5.15. Clearly, the summation
of the feedback voltages is responsible for the realization of the poles of the function,
whereas the second summation is required for the realization of any finite transmission
zeros. Here, ti(s) can be first-order lowpass or highpass functions or, alternatively, second-
order functions. 

sn
s2 ωo

2+
Bs

-----------------=

sn
s2 1+
0.1s

-------------→

T s( ) α
s2 1+
0.1s

------------- α+

------------------------ 0.1αs

s2 0.1αs 1+ +
----------------------------------= =

T s( ) 0.0666667s

s2 0.0666667s 1+ +
------------------------------------------------=
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TABLE 5.2

Component Values

Values

Component Normalized
Denormalized

kΩ, nF

15.47 154.7

0.1442 1.442

7 70

1 100

1 100

0.3129 3.129

10 100

0.296 2.96

1 10

0.6667 6.667

1.143 11.43

1 10

FIGURE 5.14
(a) The overall bandpass filter and (b) the circuit of each SAB.
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If we concentrate on all-pole functions the FLF block diagram can take the practical form
shown in Fig. 5.16, where an opamp is used to perform the summation of the feedback volt-
ages, assuming that there is no sign reversal in each ti, i = 1, 2,…, n, block.

This circuit is topologically similar to the SCF and PRB, except that there exists feedback
from the output of stage t1, which is missing in the case of the PRB circuit, although it can
be considered part of the local feedback in the SCF circuit. It also differs from the PRB and
the SCF circuits in that all ti, i = 1, 2,…, n stages are not identical. However, it is possible to
assume identical ti and R1 = ∞, in which case the FLF circuit becomes identical to the PRB
circuit.

On the other hand the different ti, i = 1, 2,…, n stages and the feedback from the t1 stage
can be used advantageously as additional degrees of freedom in order to improve the sen-
sitivity of the FLF circuit. It has been shown [5], though, that this sensitivity improvement
of the optimized FLF circuit is not so high as to force the designer to seek the optimized FLF
circuit, if the PRB circuit can be used instead. For this reason, we do not include the opti-
mization procedure here, but the reader can consult the relevant references [7–11] in order
to satisfy any interest in the subject.

It was explained in Section 5.5 that the dynamic range is an important parameter in a
high-order filter design using the cascade method. The same is true in the case of all mul-
tiple-loop feedback filters. Thus, the gain of the filter has to be properly distributed among
the cascaded stages ti so that the maximum voltage appearing at the output of each stage

FIGURE 5.15
Block diagram of the general FLF circuit.

FIGURE 5.16
The practical FLF circuit with no finite transmission zeros.
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is the same in all stages. The procedure to do this is the same as that followed in the cascade
design, and it is not repeated here. However, we should note that in the PRB design, this
gain distribution procedure is mathematically simpler than in the cascade or other FLF
designs since, in the PRB design, all ti stages are identical. 

However, the optimized FLF design has been shown [12] to be the most practical multi-
ple-loop feedback design based on sensitivity, dynamic range, and noise performance.

5.7 Cascade of Biquartics

As discussed in the previous sections, the CF filter is easy to design and tune, but its sensi-
tivity in the passband is rather high compared to that of the MLF filters, when properly
designed. MLFs, however, are difficult to adjust in practice. The cascade of biquartics filter,
CBR, has been proposed [13] as an intermediate case, i.e., a filter with sensitivity in the
passband lower than that of the CF filter, but which is easier to tune than the MLF filters.
The design of CBR filters has been optimized [14–16] in the case of high-order geometri-
cally symmetric bandpass filters with zeros at the origin and infinity. Therefore, here we
will examine the design of this type of filters only. We refer to the stages of the CBR filter,
which are of fourth order, as biquartic sections, or BR sections.

5.7.1 The BR Section

The block diagram of the BR stage is shown in Fig. 5.17. Each ti(s) stage, i = 1, 2, is a band-
pass biquadratic function of the form

(5.34)

Here, f is real and positive. If f = 0, the BR stage becomes the cascade of two biquadratics,
which is of no interest to us here.

It should be mentioned that the topology of the BR section is the common topology of all
MLF circuits, i.e., SCF, FLF, PRB, and LF, when these filters realize a fourth-order filter func-
tion. The transfer function of the BR stage is

(5.35)

FIGURE 5.17
Block diagram of a BR section.
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where D(s) is a polynomial of fourth degree when t1(s) and t2(s) are given by Eq. (5.34) and

(5.36)

The gain coefficient is easily adjusted and can be useful to the designer in optimizing the
dynamic range of the filter. We can set it equal to unity for reasons of simplicity.

Consider now the biquartic function

(5.37)

with each Ti(s), i = 1, 2 having the following form:

(5.38)

If  is to be realized by the biquartic section in Fig. 5.17, D(s) in Eq. (5.35) has to be iden-
tified by the denominator of  and similarly for N(s). Thus, D(s) will be

(5.39)

But from Eqs. (5.35) and (5.34), D(s) is also given by

(5.40)

or

(5.41)

where

(5.42)

and

(5.43)

with η set in this form for convenience. Notice that η > 0.
Our task now is to determine  and η (and consequently f) for the biquartic to realize

 in Eq. (5.37).
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5.7.2 Effect of η on  and 

From Eqs. (5.41), (5.39), and (5.40), using simple algebra, the following equations can be
obtained:

(5.44)

(5.45)

(5.46)

(5.47)

In the case of geometrically symmetric bandpass filters which have been obtained from the
transformation of an all-pole lowpass function to bandpass, each pair of complex conjugate
poles of the lowpass function transforms to two pairs of poles of the bandpass function
which have identical Q factors.

Thus, depending on which two pairs of poles of the bandpass function the BR section is
to realize, we distinguish two cases when referring to Eqs. (5.44) through (5.47).

a. (symmetrical stage)

b. (nonsymmetrical stage)

It has been shown [16] that the symmetrical stage is more advantageous in practice than
the nonsymmetrical one. This will be explained later, when the realization of the overall
function will be considered. Thus, the nonsymmetrical case will not be considered further
here.

Referring to the symmetrical stage then, substituting Q for Q1 and Q2 in Eqs. (5.44) and
(5.46) gives

(5.48)

and

(5.49)

Subtracting (5.49) from (5.48) or vice-versa and after some manipulation the following is
obtained:

(5.50)

which gives the relationship between  and , i = 1, 2.
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Clearly, the values of  and , i = 1, 2, will depend on the value of η as a consequence
of Eq. (5.45). It can then be observed by means of Eq. (5.50), that there is a range of values
of η for which

and another range of η values for which

and, finally, a value of η = ηo for which

These can be clearly illustrated by means of an example. Consider pairing the equal Q fac-
tor biquadratics Tb(s) and Tc(s) of T(s), Eq. (5.22), in order to form the biquartic function of
interest here. In this case (however, see design example below with different indices)

Using these values in Eqs. (5.45), (5.47), (5.48), and (5.49) the two diagrams in Fig. (5.18) can
be obtained.

The value of η = ηo is most interesting, because the two biquadratics t1(s) and t2(s) become
identical and, consequently, the corresponding stages in the BR will be identical. This can
be the starting point in any CBR filter design as it is considered here. We can determine this
value ηo from Eq. (5.45) as follows.

Since, for identical t1(s) and t2(s),

Q′ i ω′i

ω′1 ω′2 Q′1 Q′2≠=

ω′1 ω′2 Q′1≠ Q′2=

ω′1 ω′2 Q′1 Q′2= =

Q1 Q2 Q 20.0187= = =

ω1 0.9576228=

ω2 1.0442525=

FIGURE 5.18
Effect of varying η on (a) the Q factors  and (b) the center frequencies , i = 1,2 of biquads t1(s), t2(s),
symmetrical stage.

Q′ i ω′i

ω′1 ω′2 ω′ Q′1 Q′2 Q′= = = =
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substituting in Eq. (5.47) gives

(5.51)

Also from Eq. (5.48) using (5.51)

(5.52)

Then, inserting these values in Eq. (5.45), the following value of η is obtained:

(5.53)

5.7.3 Cascading Biquartic Sections

Biquartic sections can be cascaded to realize high-order filter functions. There is no need
for isolation stages between the BR sections, since their outputs are of low impedance,
being the output of an opamp with negative voltage feedback. Thus, the cascade of biquar-
tic sections filter or CBR filter is obtained.

As mentioned above, we consider here the realization of bandpass filter functions, which
have been obtained from an all-pole lowpass via the usual lowpass-to-bandpass transfor-
mation. These functions will be of the following form:

(5.54)

where each Ti(s) will be given by Eq. (5.38).
Thus, the order of T(s) will be 2N, with N being even or odd.
If N is even, T(s) can be written as the product of biquartic functions, each of them having

in their numerator only a s2 term multiplied by a constant. On the other hand, if N is odd,
one bandpass biquadratic term can be separated from T(s) and realized separately. Then, the
rest of T(s) will be of an order divisible by 4 and therefore will be treated as when N is even.

For an optimum CBR filter design, various degrees of freedom should be considered,
namely, pairing the pole-pairs to obtain the biquartics, position of each BR section in the
cascade, and distribution of the overall gain among the various stages. These degrees of
freedom are to be considered in this and following sections.

Pairing pole pairs for obtaining symmetrical BR sections, apart from being practically
more desirable than the nonsymmetrical sections, leads to further advantages [16] concern-
ing sensitivity and noise. There is not much difference between the two cases, as far as
dynamic range is concerned. Following this reasoning, pole-pairs are preferably paired in
a way that symmetrical BR sections will be obtained.

5.7.4 Realization of Biquartic Sections

There is a flexibility in the realization of each biquartic section (Fig. 5.17), depending on the
Q factor of the biquadratic blocks, ti [Eq. (5.34)]. Thus, for Q factors ≤ 30 and in the audio

ω′ ω1ω2=

Q′ Q
2 ω1ω2

ω1 ω2+
--------------------=

η η o ω1 ω2–( )2 1 1

4Q2
---------– 

 = =

T s( ) Ti s( )
i 1=

N

∏=
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frequencies regime, SABs [17] can be used [18] in the realization. Then, the overall BR sec-
tion will be as shown in Fig. 5.19(a). However, since the possibility exists with this SAB to
use both inputs of the operational amplifier to obtain summation of voltages, the summer
can be eliminated, and the BR circuit will be as shown in Fig. 5.19(b) using two operational
amplifiers.

In BR sections, in which the Q factors of the biquadratic blocks are greater than 30, two-
opamp or even three-opamp biquads should be used. A suitable two-opamp biquad is the
GIC-type biquad [19] shown in Fig. 5.20, which will take the place of each SAB in
Fig. 5.19(a).

The two biquads, SAB and GIC-type, have been studied [20–22] and optimized from the
sensitivity and noise points of view and, for this reason, they are used in the realization of
filter functions here.

5.7.4.1 Design Example

For reasons of comparison, let us consider the use of this technique to design the sixth-
order Butterworth bandpass filter that we have also designed as a CF and a PRB (SCF) filter.

Since it is a sixth-order function, we choose to pair the two equal-Q pole biquadratics in
order to form the BR function, while the remaining lower-Q second-order bandpass func-
tion will be realized by the SAB in Fig. 5.3. Thus, we will have, from Eq. (5.22)

FIGURE 5.19
Realization of a BR section using (a) three and (b) two operational amplifiers.

T2 s( )T3 s( )
k2 0.047832s

s2 0.0478362s 0.9170415+ +
----------------------------------------------------------------------

k3 0.0521638s

s2 0.521638s 1.0904632+ +
-------------------------------------------------------------------×=
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with

ω2 = 0.9576228 Q2, Q3 = 20.0187 = Q

ω3 = 1.0442525

and

D(s) = s4 + 0.1s3 + 2s2 + 0.11s + 1

Then,

and

It can be seen that ,  are slightly less than Q, while the two biquads in the BR stage
will be tuned to the center frequency of the filter. Then,

In practice it will be impossible to realize the coefficient of s using components even of 0.1
percent tolerance. So, to a very good approximation, we can write this function practically
as follows:

FIGURE 5.20
GIC-type biquad.
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ηo ω2 ω3–( )2 1 1

4Q2
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  0.0075= =
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t2 s( ) t3 s( ) 0.04999689s
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Two identical SABs will be used to realize t2(s) and t3(s).
To complete the design, we must calculate the feedback ratio f using the value of ηo. From

Eq. (5.43), we will have

If we choose to have the biquad (SAB) leading in the cascade, the overall filter will be as
shown in Fig. 5.21 in block diagram form. The summation is performed using an opamp as
is shown in Fig. 5.22.

Component values for the overall filter are given in Table 5.3, both normalized, and
denormalized to Ro = 10 kΩ and ωo = 1krad/s.

5.7.5 Sensitivity of CBR Filters

Having dealt with the problem of realization of the CBR filters, we can now proceed to
examine their sensitivity and, if possible, optimize their design from this point of view.
It is clear that the filter sensitivity will not depend on the sequence of the BR sections in
the cascade. It will, however, depend on the feedback ratios η, on the types and the
design of biquads used, and on the particular pairing of pole pairs to form the biquartic
functions.

t2 s( ) t3 s( ) 0.05s

s2 0.05s 1+ +
---------------------------------= =

f
ηo

h′2h′3

-------------- 0.0075
0.05 0.05×
--------------------------- 3= = =

FIGURE 5.21
Realization of F(s) using a SAB and a BR section connected in cascade. SABs t2 and t3 are identical.

FIGURE 5.22
Opamp for performing summation.
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The sensitivity of the CBR circuit has been examined [16] realizing an eighth-order, 0.5 dB
ripple Chebyshev bandpass filter function, which has been obtained from the correspond-
ing all-pole lowpass via the transformation

The standard deviation of the magnitude response of the filter was considered as the sen-
sitivity measure. This was calculated according to a Monte Carlo method for 1000 tries. All
passive components were assumed to have values uniformly distributed within their tol-
erance limits ±1 percent, and operational amplifiers were assumed to correspond to one-
pole model with 10 percent tolerance in their gain-bandwidth product (fT = 1 MHz). Results
are as follows.

The sensitivity is reduced as the feedback ratio η increases up to the ηo value. Further
increase in η > ηo does not lead to substantial further reduction in sensitivity. It appears that
sensitivity reduction of the BR section as η increases follows the reduction in the difference

 and becomes nearly constant when  for η ≥ ηo. In all cases (0 < η < ηmax),
the sensitivity of the BR section is lower than the sensitivity of this section with f = 0 (cas-
cade filter). Here, by ηmax, the value of η is denoted for which one of the  factors becomes
infinite. This value can be obtained from Eq. (5.45) for the symmetrical case to be

(5.55)

SABs can be used instead of GIC-type biquads, if the Q factors of the biquadratics in a BR
stage are low (≤30), thus saving in operational amplifiers. It has been shown in this case [16]
that the two CBR circuits are equivalent from the sensitivity point of view, but in the cir-
cuits with SABs, there is a saving of at least two operational amplifiers. Also, noise perfor-
mance should be superior since, as has been shown [15], CBR circuits with SABs are less
noisy than CBR circuits with GIC-type biquads.

Referring to the position of each BR section in the cascade, it has been shown [15, 16] that,
as a rule of thumb, the BR sections should be placed in ascending Q factor order starting
with the lowest Q section. This result is in agreement with the optimum ordering in the CF
case.

TABLE 5.3

Component Values

SAB T1 SABs t2, t3

Component Normalized
Denormalized

kΩ, nF Normalized
Denormalized

kΩ, nF

10.27 102.7 20.67 206.7

0.145 1.45 0.1439 1.44

7 70 7 70

1 100 1 100

1 100 1 100

0.265 2.65 0.33678 3.37

10 100 10 100

– – 1 10
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R″1

R2

C1

C2

Ra

Rb

R

sn
s2 1+
0.1s

-------------=

ω′1 ω′2– ω′1 ω′2=
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ηmax ω1 ω2–( )2 ω1ω2
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5.8 Summary

The realization of a high-order filter function is necessary when the designer’s filter prob-
lem is to satisfy the stringent selectivity requirements in telecommunication systems, spe-
cial instrumentation and many other applications. Direct methods of realization of such
filter functions using only one opamp are not practical, because they result in highly sensi-
tive active circuits. 

In this chapter, three practical methods of realizing high-order filter functions have been
reviewed. A fourth method is explained in the next chapter. The three methods, namely, the
cascade connection of second-order stages, CF; the multiple-loop feedback, MLF; and the
cascade connection of fourth-order stages, CBR, have advantages and disadvantages.
Thus, the CF can realize any type of stable filter function, is easy to design and tune, and
requires fewer opamps than the other filters. Its disadvantage is the higher sensitivity in
the passband compared to the other filters. 

Three MLF circuits were reviewed. The primary-resonator block, the follow-the-leader
feedback, and the shifted-companion form. Their common characteristic is the application
of negative feedback in a cascade connection of low-order stages, first- or second-order,
depending on the type of filter function, whether it is lowpass (highpass) or bandpass
(bandstop), respectively. The MLF circuits have low sensitivity in the passband—much
lower than the CF—but their design and tuning are more involved than in the case of the
corresponding CF. The SCF is the most general of the three, while the FLF can be optimized
to have lowest sensitivity and noise. The PRB is practically suitable for the realization of
geometrically symmetric bandpass filters when the design of the SCF and the nonopti-
mized FLF result in the same PRB circuit.

The cascade connection of biquartic stages, CBR, is an alternative and useful approach
for the design of geometrically symmetric bandpass filters. It combines the advantages of
the CF (easy to design and tune) with the low sensitivity characteristics of the MLF. It has
been proven also to display noise performance similar to that of the FLF circuit, which is
the best among all the MLF circuits. Lowpass active filters of special form [23] as well as
other filter functions [13, 24] can also be realized as CBR circuits, but the optimization pro-
cedure outlined above was derived [15] for the case of the geometrically symmetric band-
pass filters only. 

From the previous discussion, one can conclude that, when the selectivity demand is rel-
atively low, the CF can be the preferable solution. However, when this demand is more
stringent, the PRB or the CBR filters should be the choice provided, of course, that they can
realize the pertinent function. Otherwise, the designer should look for an optimized FLF
circuit or for a LC ladder simulated circuit provided, of course, that a suitable LC ladder
realizing the required transfer function exists. 

The method of LC ladder simulation leads to active RC filters of very low sensitiv-
ity,—lower than that of the MLF circuits—and is examined in the following two chapters.
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Chapter 6

 

Simulation of LC Ladder Filters Using Opamps

 

6.1 Introduction

 

In Chapter 5, we examined two general methods of high-order filter design, namely the
cascade of low-order sections and the multiple-loop feedback method. We will now explain
ways for the simulation of passive LC ladder filters as an alternative but, at the same time,
popular and very useful approach to active RC filter design.

For reasons that we will explain in Section 6.2, the passive LC filter in the form of a ladder
has to be resistively terminated as shown in Fig. 1.19, repeated here as Fig. 6.1 for conve-
nience. The transfer voltage ratio of this filter obtained from Table 1.2 is as follows:

(6.1)

where 

 

Z

 

ij

 

, 

 

i

 

, 

 

j 

 

= 1, 2 are the z-parameters of the LC two-port.
Clearly, a filter function can be realized by this circuit, provided that it is written in the

form of Eq. (6.1), so that the LC two-port parameters can be suitably identified and subse-
quently synthesized. The terminating resistances are taken into consideration during the
design, and their ratio influences the amount of signal power transferred from source to
load via the LC two-port.

In this chapter, we do not intend to design the LC two-port, as this has been done long
ago for all the filter functions that have been obtained as the solution to the approximation
problem. The values of the inductors and capacitors for various orders and  ratios of
these functions have been tabulated and appear in many text and reference books [1–4].

The purpose of this chapter is to explain some ways for simulating either the impedance
of the inductors or the operation of the passive LC ladder by means of active RC circuits.
Thus, in Section 6.2, we give the motivation for using the simulation of the LC ladder filter
in order to obtain useful high-order active RC filters. In Sections 6.3 and 6.4, we use gyra-

FIGURE 6.1
Resistively terminated LC two-port.
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tors and generalized-immittance converters, first introduced in Chapter 3, to simulate the
impedance of the inductors and the supercapacitors, the latter appearing in the passive lad-
der through a suitable impedance transformation of the prototype filter. Next, in Section
6.5, the method of simulating the actual operation of the passive ladder filter is presented.

 

6.2 Resistively-Terminated Lossless LC Ladder Filters

 

We are interested here in LC filters that are in the form of an LC ladder resistively termi-
nated at both ends, as is shown in Fig. 6.2. In this circuit, 

 

X

 

i

 

, 

 

i

 

 = 1, 2,…,

 

n

 

 are LC impedances
or admittances. 

 

X

 

1

 

 and/or 

 

X

 

n

 

 may be missing, in some cases.
The important characteristic of the ladder is that there is a single path of signal transmis-

sion from source to load. Orchard has shown [5] that when the ladder is properly designed,
at the frequencies of maximum power transfer, the first-order sensitivity of the magnitude
of the transfer function to each inductor and capacitor is zero, while it remains low in the
intermediate frequencies throughout the passband. This can be intuitively explained as fol-
lows: since the LC ladder is lossless at the frequencies of maximum power transfer, a
change in an L or a C value can only increase the loss of the filter. Thus, the derivative of
the frequency response (magnitude) with respect to each L and each C will be zero at these
frequencies and so will be the corresponding sensitivity.

Furthermore, it has been shown [6, 7] that, for this type of filter, the sensitivity to the
inductors and capacitors can be near zero throughout the passband rather than at only a few
frequencies. It is therefore logical to expect that this low sensitivity of the lossless ladder fil-
ter will be retained in an active RC network which simulates the “operation” of the LC lad-
der or which contains active RC subcircuits that simulate the impedance of the inductances.
This idea has resulted in the popularity of this method in active RC filter design.

It should be mentioned that the sensitivity of the ladder LC filter is not low in the transi-
tion and stopbands. However by proper design [6, 7] this can be close to a lower bound. On
the other hand, as long as the loss in these bands remains higher than the filter require-
ments dictate, this sensitivity will not be of any practical importance.

 

6.3 Methods of LC Ladder Simulation

 

The simulation of a resistively terminated LC ladder can be achieved by the following four
methods:

FIGURE 6.2
A resistively terminated ladder network.
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1. Inductance substitution by a gyrator-C combination.

2. Impedance transformation of part or the whole of the LC ladder. In this case
generalized-immitance converters are employed.

3. Simulation of currents and voltages in the ladder. The leapfrog (LF), coupled-
biquad (CB) as well as the signal-flow-graph methods are names that have been
used in the past to express essentially the same method.

4. The linear transformation (LT), which includes the wave active filter (WAF)
method, approaches the simulation of the LC ladder the same way as 

 

c

 

, but it
uses transformed variables instead of simulating the voltages and currents of
the LC ladder. 

Methods 1 and 2 are usually considered to constitute the topological approach to LC lad-
der simulation, whereas the last two (3 and 4) constitute the functional or operational
approach. In this chapter, we will explain the first three of these methods, while the fourth
will be treated in the next chapter.

 

6.4 The Gyrator

 

The gyrator was introduced in Section 3.3. It is, in effect, a positive impedance inverter
defined by its transmission matrix as follows:

Its symbol is shown again in Fig. 6.3(a). If it is terminated at port 2 in an impedance Z,
Fig. 6.3(b), the impedance seen at port 1 will be

(6.2)

Clearly 

 

g

 

1

 

, 

 

g

 

2

 

 have the dimensions of a conductance and are called, most appropriately,
gyration conductances. For inductance simulation, 

 

Z

 

 will be the impedance of a capacitor
C, when 

 

Z

 

1

 

 becomes, from (6.2)

(6.3)

A[ ] 0 1 g2⁄±
g1± 0

=

FIGURE 6.3
(a) The gyrator symbol and (b) the gyrator terminated in an impedance Z at port 2.
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where

(6.4)

The gyrator, strictly speaking, is an active two-port. However, if

 

g

 

1

 

 = 

 

g

 

2

 

 = 

 

g

 

it behaves as a lossless passive one, since then the power flowing in, 

 

V

 

1

 

I

 

1

 

, is equal to the
power flowing out, 

 

V

 

2

 

(–

 

I

 

2

 

), from the gyrator. However, the active gyrator, depending on the
value of 

 

g

 

1

 

/

 

g

 

2

 

, will act as an amplifier for the signal in one direction and as an attenuator
in the opposite direction. 

In the ideal case, we consider 

 

g

 

1

 

 and 

 

g

 

2

 

 independent of frequency which, in practice, is
true only for a limited frequency range.

It can be seen from Fig. 6.3(b) that this simulated inductance seen at port 1 is grounded.
However, in lowpass, bandpass, and bandstop LC ladders, floating inductors, i.e., induc-
tors not connected to ground, are present. To simulate such an inductor, two gyrators are
required to be connected as shown in Fig. 6.4. The two gyrators have to be matched; other-
wise, this arrangement will not simulate a pure floating inductance.

The quality of the simulated inductor depends greatly on the quality of the capacitor C.
Thus, if 

 

g

 

c

 

 is the leakage conductance of the capacitor, then the associated loss resistance RL
of the simulated inductor can be calculated from Eq. (6.2) as follows:

Thus,

(6.5)

Clearly, 

 

g

 

c

 

 should be as small as possible.

 

6.4.1 Gyrator Imperfections

 

Let us assume that the gyrator in Fig. 6.5 is not ideal and that its admittance matrix is as
follows:

Leq
C

g1g2

----------=

FIGURE 6.4
Use of two gyrators to simulate a floating inductor.

Z1
1

g1g2

---------- 1
Zc

-----⋅ 1
g1g2

---------- sC gc+( )= =

Leq
C

g1g2

---------- RL,
gc

g1g2

----------= =



 

©1999 CRC Press LLC

 

(6.6)

where 

 

g

 

a

 

, 

 

g

 

b

 

 are non-zero, pure conductances. Since 

straightforward analysis gives that the input impedance 

 

Z

 

in

 

 will be the following:

(6.7)

Substituting 

 

j

 

ω

 

 for 

 

s,

 

 we get

(6.8)

Thus, the input impedance represents the series connection of an inductance 

 

L

 

eq

 

 and an
unwanted resistance 

 

R

 

u

 

, where 

(6.9)

(6.10)

Therefore, the quality factor Q of the simulated inductance is finite, while both 

 

L

 

eq

 

 and its
associated resistance 

 

R

 

u

 

 are functions of 

 

ω

 

2

 

. Using Eqs. (6.9) and (6.10) this quality factor
can be determined to be 

(6.11)

which has the following maximum value 

 

Q

 

max

 

:

FIGURE 6.5
Nonideal gyrator terminated in a capacitor.
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(6.12)

The value of Qmax is independent of frequency and the capacitance C (provided the capac-
itor is ideal) and occurs at the following frequency:

(6.13)

Thus, for high-quality simulated inductances, the gyrator parasitic conductances ga, gb

should be as small as possible compared to g1, g2.

6.4.2 Use of Gyrators in Filter Synthesis

It is implied from the above discussion that the gyrator-capacitor combination can take the
place of an inductor in the LC ladder. As an example, consider the third-order highpass fil-
ter shown in Fig. 6.6(a). Let g1 = g2 = 10–3S.

The capacitance required for the simulation of the 30 mH inductance will be determined
using Eq. 6.4. Thus, solving for C, we get

The circuit using the simulated inductance is shown in Fig. 6.6(b).
LC ladders most suitable for inductance simulation using gyrators are those with no

floating inductors in their structure. Such are highpass filters and bandpass filters with no
transmission zeros in the upper stopband. The structures of these types of filters are shown
in Fig. 6.7(a) and (b), respectively.

Qmax

g1g2

g1g2 gagb+
--------------------------- 1

g1g2

gagb

----------+=

ωo
1
C
---- g1g2 gagb+( )

gb

ga

-----=

FIGURE 6.6
(a) Simulation of the inductance in an LC filter using (b) a gyrator-capacitor combination.

C g1g2Leq 10 6– 3 10 2– F×× 30 nF= = =
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It should be mentioned that the impedance-inverting property of the gyrator can be used
to transform an RC impedance to an RL impedance. For example, consider the gyrator ter-
minated at port 2 by the RC impedance

(6.14)

The impedance presented at its input will be

or

(6.15)

Clearly, Zin represents the equivalent impedance of a resistance (1/Rg1g2) in parallel with
an inductance (C/g1g2), as the reader can easily see.

This suggests that a filter function can be decomposed into an RC impedance (or admit-
tance) function and an RL impedance (or admittance) function, the latter being realized as
the input impedance (or admittance) at one port of a gyrator terminated by the appropriate
RC impedance (or admittance) at the other port. Then, the two impedances (or admit-
tances) are combined to give the overall circuit using a gyrator, resistors and capacitors.
This method of using the gyrator in the synthesis of active RC networks was very popular
in the 1960s, when saving in active elements was considered a figure of merit in active RC
filter design. This is not so true today, though, when the low price of the opamps allows for
the relaxation of this condition in favor of resorting to simpler methods of active RC syn-
thesis such as the inductance simulation method.

FIGURE 6.7
Optimum ladder structures for inductance simulation using gyrators: (a) highpass and (b) bandpass with no
transmission zeros in the upper stopband.
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6.5 Generalized Impedance Converter, GIC

The concept of the GIC was introduced in Section 3.3. As a reminder, it is a two-port defined
by its transmission matrix

(6.16)

where f(s) is the impedance conversion function and k a positive constant.
The GIC is very useful in LC ladder filter simulation by active RC networks, when it is

used either as a positive-impedance converter (PIC) or to produce a frequency-dependent
negative resistance of type-D (D-FDNR). In the first case, f(s) = s, and the GIC is terminated
at port 2 by a resistance R. Then, the input impedance at port 1 is the following:

(6.17)

This is recognized as the impedance of an inductance R, in henries.
On the other hand, if f(s) = 1/s and a capacitor C is connected across port 2, the input

impedance at port 1 will be

(6.18)

This is recognized as an FDNR of type-D, which is a negative resistance in effect, since, if
jω is substituted for s in Eq. (6.18), Zi1 becomes 

(6.19)

which is resistive, negative, and frequency dependent.
It is usual to give the GIC the symbol shown in Fig. 6.8 with the dot always indicating

the side of port 1 and the conversion function f(s) written inside the box. 

6.5.1 Use of GICs in Filter Synthesis

According to the previous discussion, a GIC with conversion function f(s) = s and a resistor
connected across its port 2 presents in its port 1 the impedance of an inductor (Fig. 6.9), thus
operating as a PIC.

A[ ] k 0

0 k f s( )⁄
=

Zi1 f s( )ZL sR= =

Zi1
1
s
--- 1

sC
------⋅ 1

s2C
--------= =

Zi1
1

ω2C
----------–=

FIGURE 6.8
Usual symbol of the GIC.
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Two matched GICs of this type are required in order to simulate a floating inductance as
shown in Fig. 6.10. This is in agreement with the corresponding case for gyrators.

Following this approach, we can say that optimum ladders for inductance simulation are,
as in the case of gyrators, highpass filters, and bandpass filters with no zeros of transmission
in the upper stopband. These filter structures are shown in Fig. 6.7(a) and (b), respectively.
This type of inductance simulation technique was first introduced by Gorski-Popiel [8].

It has been shown [9] that the optimum GIC circuit for this application is that shown in
Fig. 6.11 terminated at port 2 by the resistance R5. The conversion function of this GIC can
be easily shown (Section 3.5.2) to be the following:

(6.20)

with (6.21)

FIGURE 6.9
The GIC operating as PIC.

FIGURE 6.10
Simulation of a floating inductor.

FIGURE 6.11
Most practical GIC circuit for inductance simulation used as a PIC.

V1

I 1

------ sCRR5 ks= =

k CRR5=
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Extending this, it can be shown [8, 10], that any (n + 1)-terminal network consisting of
inductors can be simulated only using n GICs and a resistive network of the same topology.
The importance of this statement is that it can lead to savings in the numbers of GICs
required in the simulation of LC ladder filters, provided that such subnetworks can be sep-
arated from the corresponding ladders.

Consider, for example, the ladder filter in Fig. 6.12(a). The inductor subnetwork is as
shown in Fig. 6.12(b) and can be simulated using three GICs [Fig. 6.12(c)] instead of five
that would have been required otherwise (two for each floating inductor and one for L3, the
position of which can be exchanged with that of C to avoid its being floating).

As a second example, consider realizing a bandpass active filter from the Butterworth
third-order lowpass filter

From tables [1, 2] or otherwise, we get the passive realization in LC ladder form shown in
Fig. 6.13(a). Since there is a floating inductance in the circuit, two gyrators or two GICs are
required for its realization arranged as is shown in Fig. 6.4 and Fig. 6.10, respectively.

From this, we can obtain the bandpass filter by applying the usual lowpass-to-bandpass
transformation to the reactive components (Section 2.6.3)

For ωo = 1 krad/s, B = 100 rad/s and an impedance level of 600 Ω, the sixth-order band-
pass LC ladder filter will be as shown in Fig. 6.13(b). Clearly, it is preferable, for reasons of
economy, to simulate this filter using PICs as is depicted in Fig. 6.13(c), since using gyrators

FIGURE 6.12
The LC ladder in (a), with the LC subnetwork in (b) simulated in (c) using GICs as PICs.

F s( ) 1

s3 2s2 2s 1+ + +
----------------------------------------=

sn
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would require a larger number of opamps to be employed for the simulation. Notice that
this simulated circuit employs three resistances of very low values, which make the circuit
impractical. If the values of the terminating resistances can be raised further without any
effect on the use of the circuit, the impedance level of the whole filter can be raised to make
all the component values practical. On the other hand, if the terminating resistance values
have to remain 600 Ω, the conversion constant k of the PICs will be smaller than 1, i.e., 10–3,
which will lead to increased resistance values of the PICs terminated resistors, namely
600 Ω and 12 kΩ instead of 0.6 Ω and 12 Ω, respectively.

One should note here that the PICs used in the simulation of the inductance subnetwork
must be matched. Two different inductance subnetworks may employ for their simulation
two different sets of PICs, but all the PICs in each set should be matched.

It can be seen that, by changing the inductance-subnetwork to the topologically similar
resistive subnetwork using PICs, we have in effect performed a complex impedance scaling
on part of the LC ladder. Complex impedance scaling of the whole ladder is explained
immediately below.

6.6 FDNRs: Complex Impedance Scaling

This technique of inductance simulation has been treated extensively by Bruton [11]. It is
most suitable for lowpass filters of the minimum capacitor realization. The reason for this
will become apparent below.

FIGURE 6.13
The third-order Butterworth lowpass filter in (a) is transformed into the bandpass in (b), which is simulated
using PICS as in (c).
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Bruton’s technique amounts to complex impedance scaling of the entire filter and not to
part of it as we saw in the case of using PICs. It is based on the fact that the filter transfer
function will remain unchanged if the impedance of each element is divided by the same
quantity, in this case by s. We can demonstrate this simulation approach by means of an
example.

The filter in Fig. 6.12(a) is scaled by dividing each impedance by s. Then, the resistance is
transformed to the impedance of a capacitance, while the impedance of the capacitor is
transformed to the impedance of a supercapacitor (Section 3.3.1), as is shown in Fig. 6.14(a).
The simulated circuit is shown in Fig. 6.14(b), where a FDNR D-element is used to simulate
the supercapacitor.

A GIC circuit useful in realizing the FDNR D-element is shown in Fig. 6.15, terminated
in a capacitor C5. It can be easily shown that its input admittance is

(6.22)

In cases where the capacitive terminations of the ladder are undesirable in Fig. 6.14(a), we
can use two extra PICs terminated by two resistances Rs and RL, as shown in Fig. 6.16.

Comparing the circuit in Fig. 6.14(b) to that in Fig. 6.12(c), it can be seen that the former
requires fewer opamps than the latter, but its terminations are capacitive. However, if this
is unacceptable, because of the existence of a source impedance or a resistive load, buffer

FIGURE 6.14
(a) Transformation of the ladder in Fig. 6.12(a) to another employing a D-element, which is realized by a GIC
with f(s) = s terminated in a capacitor (b).

FIGURE 6.15
A useful FDNR D-element.

I 1

V1

------ s2C1C5R4=
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amplifiers can be used in the circuit, one between the signal source and the 1/Rs capacitor
and the other between capacitor 1/RL and the load resistance. This approach avoids using
the circuit in Fig. 6.16, which employs three GICs also.

Lowpass LC ladder filters can be designed using either a minimum number of inductors
or a minimum number of capacitors [1]. Of the two, the latter, when simulated using Bru-
ton’s transformation, leads to a filter with minimum number of D-elements, thus saving
opamps. Unfortunately, this is not true in the case of bandpass filters, where there is no sav-
ing in opamps, even as compared to the PIC design.

One serious practical problem with this ladder simulation technique is that there is no dc
return path for the noninverting inputs of the two opamps in the FDNR circuit embedded
in the circuit in Fig. 6.14(b). To avoid this, one solution [9] is to connect two large resistors,
as large as practically possible, in parallel with the two terminating capacitors Cs and CL.
Their values should be chosen such that the required value of the transfer function at dc
will not change. To demonstrate this, let Ra and Rb be the two resistances connected across
the capacitors Cs and CL, respectively, in Fig. 6.14(b). The value of Vo/Vs at dc is equal to 0.5
for all equally terminated lowpass LC ladders of interest. Therefore, the voltage drop
across Rb should be Vs/2, which means that at dc

(6.23)

from which we get

(6.24)

6.7 Functional Simulation

In this approach to ladder simulation [12, 13], we seek to simulate the “operation” of the
LC ladder, i.e., the equations that describe the topology of the LC ladder, rather than sim-
ulate the impedance of the inductances. In other words, instead of using an active circuit
that simulates the impedance sL of inductance L, we try to simulate the voltage and the cur-
rent that exist in sL, which are related by 

FIGURE 6.16
Realization of the ladder of Fig. 6.12(a) using a D-element and resistive terminations.
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(6.25)

In so doing, we use voltages that are analogous to each inductor current and voltage. For
example, we can simulate the above I, V relationship, by means of an integrator with time
constant dependent on L, the output voltage of which is analogous to I.

Similarly, we treat the operation of a capacitance C. Here, an integrator with time con-
stant dependent on C will be used to integrate a voltage, which is analogous to current I,
in order to produce another voltage V according to the relationship

(6.26)

It will be recalled that we use integrators, and not differentiators, for reasons related to the
excessive noise behavior of the latter.

The functional simulation method that we are to explain here is known as the leapfrog
(LF) method, because it leads to a circuit structure resembling that of the so-named chil-
dren’s game (see Fig. 5.5).

We will explain the LF method by means of an example. Consider the fifth-order lowpass
filter shown in Fig. 6.17(a), where all node voltages as well as the currents in the inductors
have been suitably named. We write the relationships connecting these currents and the
node voltages using Kirchhoff’s current rule as well as Ohm’s law. Referring to node No. 1,
we have 

which can be also written as follows:

I
V
sL
------=

V
I

sC
------=

FIGURE 6.17
Fifth-order lowpass filter.

Vs V1–
Rs

------------------ sC1V1 I 2–– 0=
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(6.27)

Thus, –V1 can be obtained at the output of an inverting lossy integrator as shown in
Fig. 6.17(b). In a similar way, we may write for I2

(6.28)

Then, a voltage analogous to –I2 can be obtained at the output of a lossless inverting inte-
grator, in which the capacitance in farads is arithmetically equal to the value of L2 in henrys.
This is shown in Fig. 6.17(c). 

Working on an analogous basis, we will obtain the rest of the required equations, which
are as follows:

(6.29)

(6.30)

(6.31)

Clearly, V3 and I4 will be obtained at the output of lossless integrators, while V5(=Vo) at the
output of a lossy integrator. 

In building up the overall active RC ladder, it is usually helpful to produce it first in
block diagram form and then insert the integrators and the other components in the places
of the corresponding blocks. Thus, from Eqs. (6.27) through (6.31), we obtain the block dia-
gram shown in Fig. 6.18.

It can be seen that integrators, sign changers, and summers are required for the imple-
mentation. However, summation of voltages can either be performed by the integrators or
by the sign changers, preferably the former. Following this, we can now proceed to produce
the actual active RC ladder. This is shown in Fig. 6.19.

It can be seen that the “horizontal” branches of the active ladder consist of inverting
integrators alternating with inverting integrators and sign inverters in cascade, the latter
being in effect noninverting integrators. The top and bottom integrators are lossy, because
of the passive ladder terminating resistors, while the rest are lossless integrators.

In the case of a ladder of even order, the last capacitor will be missing [C5 in Fig. 6.17(a)].
Then, the current in the last L will also pass through the load resistor RL, which will give
rise to a simple V, I relationship. Thus, in the case of Fig. 6.17(a) with C5 missing the load
end of the ladder would be as shown in Fig. 6.20(a). We will then have

(6.32)

and the active RC ladder would terminate as it is shown in Fig. 6.20(b).
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6.7.1 Example

As an example, let us consider the realization of the third-order Butterworth lowpass func-
tion in the form of an LF structure. The lowpass prototype LC filter terminated by equal
resistances in a normalized form is as shown in Fig. 6.21. Following the procedure outlined
above, we find first the equations for voltages V1, V2 and current I2. These are as follows:

FIGURE 6.18
Block diagram of the active ladder simulating the
operation of the filter in Fig. 6.17(a).

FIGURE 6.19
The overall LF or active RC ladder simulating the opera-
tion of the LC ladder filter in Fig. 6.17(a).

FIGURE 6.20
When capacitor C5 in Fig. 6.17(a) is missing (a), the last branch of the active ladder will be as in (b).
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 –=
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Then, the LF structure in block diagram form, as well as the practical circuit, will be as
shown in Fig. 6.22(a) and (b), respectively. The circuit in Fig. 6.22(b) can be denormalized
to any convenient impedance level and any required cutoff frequency.

The use of so many inverting and noninverting integrators in the active ladder inevitably
creates problems due to the excess phase associated with each of them. These are more pro-
nounced at higher frequencies and require attention. We can use the methods explained in
Section 4.9 and compensate the integrators, particularly the noninverting ones, since the
excess phase created by them is higher than that created by the inverting integrators.

6.7.2 Bandpass Filters

Applying the usual lowpass-to-bandpass transformation

FIGURE 6.21
The lowpass LC filter of third-order.

I 2–  
1

sL2

-------- V1 V3–( )–=

V3  
1

sC3

--------
V3

RL

------ I 2– 
 –=

FIGURE 6.22
LF simulation of the third-order Butterworth lowpass LC filter shown in Fig. 6.21.
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to the block diagram in Fig. 6.18, each integrator block will be transformed to a biquad of
infinite Q factor, apart from the two lossy integrators at the beginning and the end of the
ladder, which will have finite Q factors. We can redraw the block diagram of the general
form shown in Fig. 5.5 repeated here in Fig. 6.23.

The bandpass filters obtained this way are geometrically symmetric or all-pole, as they
are often called. Szentirmai [14] has generalized the method so that it can realize almost any
filter function, i.e., bandpass and band-reject filters, which are not symmetrical, having
arbitrary stopband requirements. If the bandpass filter is symmetrical, then all biquads can
be chosen to resonate at the same frequency, which gives the circuit the characteristic of
modularity.

The LF in its general form with each ti(s) block being a biquad is usually called the cou-
pled-biquad structure (CB). The infinite-Q biquadratics will be in practice realized by
biquads that can be adjusted to have as high a Q factor as possible. In many cases, we can
use SABs, but in some cases, three-opamp biquads (see Chapter 4) may be more suitable.
However, in the latter case, the number of opamps becomes excessive while, if these are not
compensated for their excess phase, there will be serious distortion in their frequency
response, when they operate at higher frequencies (say, above 100 kHz).

The LF active filters retain the low-sensitivity characteristic of the passive ladder in the
passband, while in the transition or stopbands they are no better than the corresponding
cascade filter. 

As an example of obtaining a geometrically symmetric bandpass filter from a lowpass
active ladder, let us apply the transformation

to the integrators of the lowpass filter in Fig. 6.22(a).
The two lossy integrators have the same transfer function

(6.33)

while the lossless one in the middle, being noninverting, has the transfer function

(6.34)

Applying the above lowpass-to-bandpass transformation to Eqs. (6.33) and (6.34) gives the
following biquadratic functions, respectively:

(6.35)

FIGURE 6.23
The leapfrog structure, repeated.
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(6.36)

Each one of T1 and T3 may be realized by the sign-inverting bandpass SAB in Fig. 4.10 or
by the three-opamp Åkerberg-Mossberg biquad. However for the realization of T2 a non-
inverting bandpass biquad is required that is capable of having an infinite Q factor. Such a
biquad can be either the Åkerberg-Mossberg suitably modified [9] or the Sallen and Key
[15] bandpass biquad. Also, the SAB in Fig. 4.10 could be used followed by or, better, fol-
lowing a sign inverter. 

If we choose to use the SAB in Fig. 4.10, T1 and T3, being identical, will be realized by the
SAB in Fig. 6.24(a) and T2 by the circuit in Fig. 6.24(b). These biquads are then coupled
according to the scheme in Fig. 6.25 to obtain the overall bandpass filter. Each biquad in this
figure can be denormalized to the required center frequency ωo and to a suitable impedance
level. Note that the gain of the filter is 0.5 as in the LC prototype.

6.7.3 Dynamic Range of LF Filters

We have pointed out in Chapter 5 that the dynamic range of high-order active filters is an
important characteristic of the various structures and should always be maximized during

T2 s( ) 1
20
------ 

s

s2 1+
-------------=

FIGURE 6.24
Realization of (a) T1 and T3, Eq. (6.33)
and (b) of T2, Eq. (6.34).

FIGURE 6.25
The overall LF or CB filter realizing the sixth-order Butterworth bandpass function.
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the design stage. Luckily, the LF ladder can be adjusted for maximum dynamic range. For
this purpose, one tries to adjust the gain of each ti block to obtain the same maximum value
at the output of every opamp in the circuit. Then the value of each feedback ratio fi is
changed to the value that keeps the product fiti–1ti unchanged. 

This is an advantage of the LF over the GIC-type simulation, where optimization of the
dynamic range can be achieved only by properly intervening during the phase of the orig-
inal passive synthesis [9].

6.8 Summary

The simulation of a resistively terminated ladder LC filter is desirable, because it leads to
active RC filters with very low sensitivity in the passband. This simulation can be achieved
either by simulating the inductances by means of opamps, resistors and capacitors, or by
simulating the operation of the ladder. The opamps in the first case are used to realize gyra-
tors, GICs (PICs), or FDNRs. In the second case, the opamps are used as integrators, lossless
and lossy, summers, and sign-reversing elements (LF) or as parts of active biquads (CB).

The low passband sensitivity of the filters designed using the latter simulation approach
is their most important characteristic. This allows for looser tolerances of the components
when trimming these filters.

Another very important advantage of this kind of active RC filters is the availability of
the prototype ladder LC designs. The well known lowpass Butterworth, Chebyshev,
Bessel, and Cauer filter functions have been designed as resistively terminated ladder LC
filters and tabulated. From these tables, using the element transformation table of Section
2.7.1 other filter types (namely highpass, bandpass, and bandstop) can be obtained,
depending on the requirements. Of course, this does not prevent anyone from designing a
custom ladder LC filter, something that one must certainly do when the requirements call
for the design of an equalizer.

The main important disadvantages of the ladder simulation method are the following:

1. The large number of opamps required which, apart from the economical problem
associated with it, leads to high dc power consumption, thus creating heat in
the circuit. In some cases though, the number of opamps required may be
reduced if the use of one-opamp grounded gyrators and FDNRs [16, 17] can
satisfy the filter requirements.

2. The limited dynamic range of the filters obtained by the topological method of
simulation. This is not important in the case of the LF type of simulation since,
as we have mentioned, maximization of the dynamic range of the corresponding
circuits is possible. In the case of the topological method of simulation, maxi-
mizing the dynamic range is rather involved and should be applied during the
design of the passive ladder circuit.
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Chapter 7

 

Wave Active Filters

 

7.1 Introduction

 

Wave active filter (WAF) design is an alternative approach to the simulation of resistively
terminated LC ladder filters in the effort to obtain active RC filters of low sensitivity [1].
Their development [2–4] followed the introduction of the wave digital filters initially by
Fettweis [5] and later by Constantinides [6]. Some difficulties observed in the earlier work
on WAF were overcome by the introduction of a more general approach [7] based on the
derivation of a general wave two-port for a floating impedance and another for a shunt
admittance. Thus, it was possible to indicate the one-one correspondence between the pas-
sive ladder elements and these two-ports, which can be easily implemented using resistors,
capacitors, and opamps. In further developments [8–10], the somehow excessive number
of opamps employed in the initially proposed WAFs was greatly reduced by the introduc-
tion of certain modified techniques, whereas their sensitivity and high-frequency perfor-
mance was studied [11].

The material presented in this chapter is based mainly on the content of References 7 and
11. Also, the design of linear transformation active (LTA) filters [12] is included. Their
development, which followed that of the WAFs, led to a general design approach that may
be interpreted to include the designs of WAFs, leapfrog, and signal-flow-graph filters as
special cases.

 

7.2 Wave Active Filters

 

These filters simulate the resistively terminated LC ladder filters by means of active equiv-
alent subnetworks of each series-arm impedance and each parallel arm admittance of the
passive ladder. Each element of the passive ladder is treated as an elementary two-port,
and its active RC equivalent is determined after its voltage and current port variables have
been linearly transformed to another sets of variables, which will be subsequently referred
to as the

 

 wave variables

 

.
To develop this simulation method, consider the resistively terminated LC ladder shown

in Fig. 7.1. Without loss of generality, let each 

 

Z

 

i

 

 and each 

 

Y

 

i

 

+1

 

 be a simple reactive element
L or C. Of course, in some cases, 

 

Z

 

1

 

 and/or 

 

Y

 

n

 

 may not be present, but this does not matter
as far as the subsequent development of the method is concerned.

Consider now such an elementary two-port 

 

N

 

 shown in Fig. 7.2(a) and defined by its V
and I port variables.
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For reasons to be justified later, we consider that these V, I port variables are related by
means of a modified transmission matrix A defined by the following convention:

(7.1)

where

(7.2)

Clearly, in Eq. (7.1), parameters 

 

a

 

12

 

 and 

 

a

 

22

 

 have the opposite signs to those they would nor-
mally have.

Let us now introduce the following linear transformation to port variables:

(7.3)

Variables 

 

A

 

i

 

, 

 

i 

 

= 1, 2 are considered to be the incident waves, while 

 

B

 

i

 

 the reflected waves.

 

R

 

i

 

, 

 

i 

 

= 1, 2 are the port normalization resistances used to translate the currents 

 

I

 

i

 

, 

 

i 

 

= 1, 2 to
voltages. This transformation can be represented by the wave equivalent two-port in
Fig. 7.2(b). Combining Eqs. (7.3) and (7.1) gives the following wave equations:

FIGURE 7.1
Terminated LC ladder.

FIGURE 7.2
(a) An elementary two-port N and (b) its wave equivalent N´.

V1

I 1

a11 a12

a21 a22

V2

I 2

A[ ] V2

I 2

= =

A[ ] a11 a12

a21 a22

=

Ai Vi I iRi+=

Bi Vi I iRi i– 1 2,= =



 

©1999 CRC Press LLC

 

(7.4)

Here 

 

s

 

ij

 

, 

 

i

 

, 

 

j

 

 = 1, 2 are the scattering parameters, which take the following values:

(7.5)

For a series-arm impedance Z and a parallel-arm admittance Y, we have, in terms of the
modified transmission matrix description, the following:

(7.6)

(7.7)

Substituting in Eqs. (7.5) and subsequently in Eqs. (7.4) we get the following equations
relating the wave variables for the two cases:

(7.8)

and

(7.9)

with 

 

G

 

i

 

 = 1/

 

R

 

i

 

.

B1

B2

s11 s12

s21 s22

A1

A2

=

s11 a11 a21R1 a12G2 a22R1G2+––( ) ∆⁄=

s12 R1G2 ∆⁄=

s21 1 ∆⁄=

s22 a11 a21R1 a12G2 a22R1G2+ + +( ) ∆⁄=

∆ a11 a21R1 a12G2 a22R1G2––+=

G2 1 R2⁄=

a11 a12

a21 a22 Z

1 Z–

0 1–
=

a11 a12

a21 a22 Y

1 0

Y 1–
=
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R2 R1 Z+–
R1 R2 Z+ +
----------------------------   
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R1 R2 Z+ +
----------------------------
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A1
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=
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-----------------------------

  2G2

G1 G2 Y+ +
-----------------------------

2G1

G1 G2 Y+ +
-----------------------------   

G2 G1 Y––
G1 G2 Y+ +
-----------------------------

A1
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=
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If we consider that the incident waves A1, A2 and the reflected waves B1, B2 are voltages,
Eqs. (7.8) and (7.9) can be represented by the circuits in Figs. 7.3(a) and (b), respectively.
Equations (7.8) and (7.9) do not change if both the numerator and the denominator of each
scattering parameter is divided by Z/Ro and Y/Go, respectively. It is then possible to use
this approach to simulate LC ladder filters using active RC equivalent circuits for each
series-arm impedance and parallel-arm admittance as we explain below.

To this end, we have to develop active RC equivalents for the various elements in the lad-
der, namely, for each L, C, the signal source, and the terminating resistances. Then, we
should solve the problem of interconnecting them in order to obtain the overall ladder.

7.3 Wave Active Equivalents (WAEs)

In this section, we develop WAE circuits for each elementary two-port in the ladder,
whether it be an L, or a C, or a tuned circuit.

7.3.1 Wave Active Equivalent of a Series-Arm Impedance

If, in Fig. 7.3(a), Z is the impedance of an inductance L, we may divide R1, R2, and Z by
Z/Ro, i.e. by sL/Ro and obtain the WAE in Fig. 7.4(a). This impedance scaling has trans-
formed the inductor into a resistor, and the two resistors into capacitors.

FIGURE 7.3
Active representation of Eqs. (7.8) and (7.9) in (a) and (b), respectively.
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On the other hand, if Z is the impedance of a capacitance C, no impedance scaling is
required, since the wave equivalent in Fig. 7.3(a) will already be an active RC circuit.

7.3.2 Wave Active Equivalent of a Shunt-Arm Admittance

If the shunt element is a capacitor, its wave active equivalent will be that in Fig. 7.3(b), and
no impedance scaling will be necessary for active RC realization. However, if the shunt ele-
ment is an inductor of admittance 1/sL, we can apply impedance scaling by dividing G1,
G2 and Y by Y/Go to obtain the WAE of Fig. 7.4(b), which is active RC realizable.

7.3.3 WAEs for Equal Port Normalization Resistances

The WAEs in Figs. 7.3(a) and (b) also apply when the port-normalization resistances R1 and
R2 are equal. However, if we start with Eqs. (7.8) and (7.9) we can obtain additional WAEs,
which can be more useful in some cases.

If we let R1 = R2 = R in Eqs. (7.8) we obtain the following in the case of the series-arm
impedance Z:

(7.10)

FIGURE 7.4
WA equivalents of an inductor (a) in a series arm, and (b) in a shunt arm.

B1
Z

2R Z+
-----------------A1

2R
2R Z+
-----------------A2+=
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-----------------A1

Z
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If we consider voltages A1 and A2 as the excitations, then B1 and B2 will be equal to the
node voltages Va and Vb in Figs. 7.5(a) and (b), respectively. In the case of Fig. 7.5(a), it can
be seen that B2 may be obtained as follows:

B2 =A1 + A2 – Va (7.11)

Similarly, in the case of Fig. 7.5(b), B1 may be obtained as 

B1 = A1 + A2 – Vb (7.12)

Thus, depending on the relative position of 2R and Z with respect to the excitations A1 and
A2, we can obtain the alternative WAE circuits shown in Fig. 7.6. The two WAEs in Fig. 7.6
can be combined in one circuit as shown in Fig. 7.7.

Applying then the impedance scaling, i.e., dividing Z and 2R by Zo/Ro in Figs. 7.6(a) and
(b) and in Fig. 7.7, when Z is the impedance of an inductance, active RC realizable wave
equivalent circuits can be obtained. This is possible because, by dividing both numerators
and denominators in Eqs. (7.8) by Z/Ro, the values of B1 and B2 do not change. No imped-
ance scaling is required if the series element is a capacitor.

7.3.4 Wave Active Equivalent of the Signal Source

Consider the situation in Fig. 7.8. The voltage V, expressed in terms of VS and I, is as follows:

V = VS + I RS (7.13)

FIGURE 7.5
Circuits with A1 and A2 as excitations.

FIGURE 7.6
Alternative WAEs for a series-arm impedance.
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We also have that 

A = V + I R

B = V – I R

where R is the port normalization resistance. Substituting for V
from Eq. (7.13), we get 

A = VS + I(RS + R) (7.14a)

B = VS – I(R – RS) (7.14b)

It can be seen from Eq. (7.14b) that if R = RS

B = VS (7.15)

This means that the reflected voltage from the signal source end of the ladder is equal to
the open-circuit output voltage of the source.

7.3.5 Wave Active Equivalent of the Terminating Resistance

The situation is shown in Fig. 7.9. We may write

V = I RL

while

A = V + IR = I(RL + R)

B = V – IR = I(RL – R) 

Again, for RL = R

B = 0 (7.16)

FIGURE 7.7
Alternative WAE obtained by combining Figs. 7.6(a) and (b) in one.

FIGURE 7.8

FIGURE 7.9
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i.e., there is no reflection wave, and the incident power of the signal is completely absorbed
by R.

7.3.6 WAEs of Shunt-Arm Admittances

The above procedure concerning the series-arm impedance can be repeated for the case of
the shunt-arm admittance when G1 = G2 = G. Thus, starting with Eqs. (7.9) we can find alter-
native WAEs to that in Fig. 7.3(b). However, the circuit of Fig. 7.3(b) has been found to be
directly usable and gives practically acceptable results. Thus, we do not intend to pursue
this matter further, and leave it to the reader as an exercise.

7.3.7 Interconnection Rules

Having derived wave equivalents for the various elements in the passive ladder, the next
step is to determine proper interconnection rules for the adjacent WAEs in order to avoid
any errors that may arise from loading effects.

Consider the two adjacent passive two-ports Na and Nb shown in Fig. 7.10(a). In the pas-
sive ladder, port 2 of Na is directly connected to port 1 of Nb so that V1b is equal to V2a and
I1b = –I2a. This can also be expressed mathematically as follows:

(7.17)

It is evident that the corresponding WAEs  and  cannot have their adjacent ports
directly connected. Let us assume that a matching two-port Nc is going to be used in order
to achieve the correct interconnection of the adjacent ports of  and  as shown in Fig.
7.10(b). Mathematically, where [P] is a 2 × 2 nonsingular matrix, this can be described as
follows:

(7.18)

FIGURE 7.10
(a) Two adjacent two-ports and (b) their WAEs interconnected.
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Assuming equal port normalization resistances at ports 2a and 1b, and using Eqs. (7.3),
we can write for each one of the adjacent ports the following:

(7.19)

(7.20)

Substituting in (7.19) for [V1b I1b]T from Eq. (7.17) we get

or

(7.21)

Finally, solving Eq. (7.20) for [V2a I2a]T and inserting its value in Eq. (7.21) gives

or

(7.22)

On comparing Eq. (7.22) with Eq. (7.18), we obtain 

(7.23)

Therefore, the operation of the matching two-port Nc is to
connect terminal A1b to B2a and the terminal B1b to A2a. Phys-
ically, this means that the reflected wave at port 2a is the
incident wave at port 1b, and the incident wave at port 2a is
the reflected wave at port 1b. This constitutes the required
interconnection rule of two adjacent WAE ports and will be
subsequently referred to as the cross-cascade connection.
Schematically, this is shown in Fig. 7.11. 

However, if the adjacent port normalization resistances
are not equal, say R1 and R2, the two ports cannot be directly
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FIGURE 7.11
The cross-cascade connection of ad-
jacent WAE ports with equal nor-
malization resistances.
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cross-cascaded. Since, in the passive LC ladder, the two adjacent terminals of the elements
are connected by a short, Z = 0, we can replace Z in the WAE of Fig. 7.3(a) by a short-circuit
and thus obtain the required matching network in Fig. 7.12.

The same matching network can be obtained from Fig. 7.3(b), if we set Y = 0, i.e., an open
circuit. However, such a network may not be required, since the general circuits in Fig. 7.3
provide for different port normalization resistances, which can be always chosen at will,
thus saving in active and passive components.

7.3.8 WAEs of Tuned Circuits

The tuned circuit in the LC ladder can be either series or parallel and connected as a series-
arm impedance or a parallel-arm admittance.

There is no problem in the cases of a series-tuned in series-arm or a parallel tuned in a
shunt-arm. In both cases, the two elements L and C can be treated as different two-ports
and their WAEs determined as was explained above. However, the previously derived
WAEs cannot be applied when the parallel tuned circuit is in a series-arm or the series-
tuned circuit is in a shunt-arm of the LC ladder. In these cases, we work as follows.

Consider the case of the parallel-tuned circuit in a series-arm [Fig. 7.13(a)]. We may write
Z in the following form:

(7.24)

Substituting in Eqs. (7.8), we get (assuming R1 = R2 = R)

(7.25)

On the other hand, for a series-tuned circuit in a series-arm, we have 

FIGURE 7.12
Matching network for nonequal port normalization resistances.
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(7.26)

and substituting in Eqs. (7.9) we obtain the following:

(7.27)

On comparing Eqs. (7.25) with Eqs. (7.27), it is observed that B1P and B2S are of the same
form. They can be equal provided that LS = 4R2CP and CS = LP/4R2. The same is true for B2P

and B1S. We may then conclude that the WAE of a parallel-tuned circuit in a series-arm is
the same with the WAE of a series-tuned circuit in a series-arm, under the condition that
the values of L and C in the series-tuned circuit are given by the above mentioned relation-
ships in terms of R, LP, and CP.

Following this and the interconnection rules explained previously, we obtain the WAE of
the parallel tuned circuit in a series-arm to be as is shown in Fig. 7.13(b). The values R/2
and 4CP in the second half of this WAE have been obtained by means of impedance scaling
using the factor Z/R, where Z = s2LS = 8R2CPs.

The case of a series-tuned circuit in a shunt-arm is found to be simpler. One can simulate
the inductance by a grounded gyrator, and this in series with the capacitor will take the
place of admittance Y in Fig. 7.3(b). Since this case is rather simple, we will not consider it
any further.

FIGURE 7.13
WAE of the parallel tuned circuit in a series-arm. Values of resistors r and  may not be different and can be
chosen conveniently.
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7.3.9 WA Simulation Example

As an example of a LC ladder simulation according to the wave active method consider the
lowpass prototype in Fig. 7.14(a) with RS = RL. First, we split the ladder in simple two-port
elements as the broken lines indicate, and for each one of these elementary two-ports we
find the corresponding WAE circuit. These have been determined above and appear in
Figs. 7.3(b) and 7.13. Choosing equal port normalization resistances in all WAEs and nor-
malized to RS = 1, we can easily obtain the WA filter shown in Fig. 7.14(b).

7.3.10 Comments on the Wave Active Filter Approach

It would be useful and constructive at this point if we made some comments on the wave
active filter method of LC ladder simulation before proceeding to any further develop-
ments on this theory.

1. One interesting point about this method is that there is no restriction on the type
of LC ladder filter that can be simulated. Once we have determined WAE circuits
for any type of element, and their combination in shunt or in series as tuned
circuits, these can be accordingly cross-cascaded to form the overall ladder as
an active RC circuit. And this can be achieved for equal as well as nonequal
resistive terminations.

2. It is also interesting and useful to note, looking at the WA filter in Fig. 7.14(b),
that there are two outputs available, namely Vo1 and Vo2. Still more interesting
is the fact that the two transfer functions Vo1/Vs and Vo2/Vs are power comple-
mentary, when RS = RL, i.e.,

(7.28)

FIGURE 7.14
(a) The LC ladder prototype and (b) its WA realization. All resistor values not indicated are equal and can assume
any convenient value in practice.

Vo1
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--------
2 Vo2

Vs

--------
2

+ 1=
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The meaning of this is that, if Vo2/Vs is a lowpass function, Vo1/Vs will be its
power complementary highpass, and vice-versa. We will leave the proof of this
statement until later when we will examine it in more detail.

3. It can be seen from Fig. 7.14(b) and deduced from the theory presented so far
that the ladder simulation by this method requires a large number of opamps,
larger than any other simulation method and indeed any other method of filter
synthesis we have examined up to now. This is an important drawback of this
elegant approach, which makes it uneconomical both from the component count
and the power consumption points of view. It is this major problem of WAF that
we will try to solve in the following sections.

7.4 Economical Wave Active Filters

The main disadvantage of the wave active filters is the large number of opamps they
employ, namely, 2N opamps for a LC ladder with N storage elements. Among the various
methods for reducing the number of opamps used in the design of WAFs, which have been
suggested in References 8 through 11, we choose to describe the last one because of its sim-
plicity and its similarity to the method of LC ladder simulation using GICs (PICs). In cer-
tain structures, the reduction in the number of the required opamps can be substantial.

Consider a passive two-port network N described by its y-parameters. As in the case of
single elements, we introduce two new pairs of variables Ai, Bi i = 1, 2 such that

(7.29)

where Ri, i = 1, 2 are the port normalization resistances. Using in these equations, the rela-
tionships between Ii and Vi by means of the y-parameters, Yij, i, j = 1, 2, of the two-port we
obtain

(7.30a)

(7.30b)

where 

(7.31a)

(7.31b)
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Then, solving Eq. (7.30a) for V1, V2 and substituting in Eq. (7.30b) gives the following rela-
tionship between Bi and Ai, i = 1, 2:

(7.32)

with

(7.33)

Matrix Q1 should be nonsingular.
If the new variables Ai, Bi, i = 1, 2 are voltages, each pair of them can be obtained through

the use of an operational amplifier, as shown in Fig. 7.15. This active network is the wave
active equivalent (WAE) of the passive two-port network N.

The above theory can be extended to the case of an n-port. For simplicity, consider that
the n-ports have a common terminal. With the n-port being described through its y-param-
eters, the n pairs of variables Ai, Bi, i = 1, 2…, n are given as follows:

(7.34)

where 

(7.35)

(7.36)
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S[ ] A1
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=

S[ ] Q1[ ] 1– Q2[ ]=

FIGURE 7.15
Wave active equivalent of passive two-port N.
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If [Q1] is nonsingular, Eqs. (7.34) give 

or 

(7.37)

where

(7.38)

The WAE of the n-port can be obtained in a manner similar to that of the two-port.
This theory can be used to simulate a passive LC ladder filter as follows: the ladder is

split into one kind of element (L or C) n-port subnetworks. For each subnetwork, a WAE is
determined, and this is transformed into an active RC circuit, if it is not in that form already,
and then all these RC WAEs are connected in the usual WAF manner according to the posi-
tion of the corresponding passive subnetworks in the initial ladder. The terminating resis-
tors can be associated with the first and last subnetworks and therefore can be included in
the corresponding WAEs.

As an example, consider the ladder in Fig. 7.16(a), which is split into subnetworks, as
shown by the broken lines. The four-port L-subnetwork consisting of inductors L1, L2, and
L3 has the active RC subnetwork in Fig. 7.16(b) as its WAE. The overall WAF is shown in
Fig. 7.16(c). It should be mentioned that there is a saving in operational amplifiers of 50 per-

B[ ] Q2[ ] Q1[ ] 1– A[ ]⋅ ⋅=

B[ ] S[ ] A[ ]⋅=

S[ ] Q2[ ] Q1[ ] 1–⋅=

FIGURE 7.16
(a) Eighth-order LC ladder bandpass filter, (b) WAE of subnetwork consisting of inductors L1, L2, and L3, and
(c) overall WAE of ladder.
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cent when this is compared to the corresponding WAF of the initially proposed design. On
the other hand, this WAF employs two operational amplifiers fewer than that of Brackett
[8], who approaches the design differently. More specifically, Brackett (a) simulates the par-
allel-tuned circuit L3C4 using the WAE of a series-tuned circuit, in which he interchanges
the outputs B1 and B2, and (b) uses gyrators to simulate grounded inductors L2 and L4.

This extended WAF method of simulation is general and independent of the type of the
passive ladder, namely, whether this is lossless or lossy. Thus, in the case of the lossy one,
each resistor in the ladder can be associated with one neighboring L- or C- subnetwork. It
is preferable that all resistors be associated with C-subnetworks, since then they remain
resistors in the corresponding RC WAEs, whereas, if they are associated with L-subnet-
works, they become capacitors when the complex impedance scaling is applied to make the
WAE RC realizable.

Thus, the RC WAE of the RLC doubly-terminated ladder in Fig. 7.17(a) is as shown in
Fig. 7.17(b). Resistor R2 has been associated with the two-port subnetwork consisting of
capacitors C2 and C3.

7.5 Sensitivity of WAFs

In this section, the sensitivity of WAFs is examined and compared to the sensitivity of LF
filters.

Without loss of generality, consider a passive ladder that, for the purpose of being simu-
lated by a WAF, is split into two-port subnetworks. The corresponding WAF will be in
block diagram form as shown in Fig. 7.18. The blocks labeled MAT (for matching active
transformer) represent the network in Fig. 7.19, with its passive components suitably

FIGURE 7.17
(a) Sixth-order RLC bandpass ladder and (b) its wave active equivalent.

FIGURE 7.18
Block diagram of general WAF.
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labelled for better identification. Note that, normally, Rai = Rbi, i = 1, 2. For active RC real-
ization, the application of proper impedance scaling will turn each L- or RL-subnetwork
into a R- or CR-subnetwork, respectively. Then, depending on whether the L-subnetwork
precedes or follows the MAT, resistor R2 or  will become a capacitor. However, for the
sake of argument, we keep the block diagram in the form shown in Fig. 7.18.

It is clear from Fig. 7.18 that if all MATs behave ideally, because of the one-to-one corre-
spondence between the subnetworks in the passive ladder and the WAF, the sensitivities
of the two filters to the elements of these subnetworks will be the same. Since these sensi-
tivities for doubly terminated LC ladders are known to be low, the expected higher sensi-
tivity of the WAF over that of the passive ladder will be due to the nonideal behavior of
each MAT and the mismatch that this is creating in the WAF.

The operation of each MAT is affected mostly by the finite gain-bandwidth (GB) product
of the operational amplifiers, which becomes most important when the filter is designed to
operate at high frequencies. Ignoring for the moment the effect of the MAT sections on the
WAF sensitivity at low frequencies, it has been shown [11] through worst sensitivity (WS)
studies that 

a. The WS of the earlier introduced and the economical WAF are of the same order
but, as it may be expected, higher than that of the passive ladder.

b. The WS of the WAFs are of the same order but smaller than that of the corre-
sponding LF.

In this study, both passive and active components were included in the calculation of the
WS measure with the opamps considered to be of the one-pole model and its GB = 1 MHz.

Thus the sensitivity of the WAF at low frequencies, where the opamps behave nearly as
ideal devices, is similar to the sensitivity of corresponding active RC filters resulting by any
other ladder simulation techniques. It remains, of course, the problem of high frequency
operation which we examine next.

7.6 Operation of WAFs at Higher Frequencies

We are concerned here with the problems arising in the operation of the WAFs at higher
frequencies due to the finite GB product of the opamps and ignoring any slew-rate effects.

FIGURE 7.19
Matching active transformer (MAT).

R′1
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Since MATs are the only active components of the WAF, we can study their behavior at
higher frequencies, since at these frequencies resistors and capacitors are considered to
behave ideally.

Because the WAF has been drawn in Fig. 7.18 as the cascade connection of MATs and pas-
sive subnetworks, it is more appropriate to study the operation of each MAT through its
transmission matrix. Ideally this matrix (nonmodified) should be as follows:

(7.39)

Owing to the finite GB product of the opamps the matrix elements change, but detailed
study [11] has shown that only the a12 element is substantially affected, taking the following
value:

(7.40)

where

(7.41)

with µi being the open-loop gain of the opamp and γi the feedback ratio Rai/(Rai + Rbi), the
nominal value of which is 0.5. As an indication of this effect let us calculate the value of a12

for the following typical values:

At the frequency of 50 kHz, Eq. (7.40) gives the following value of a12:

This is an extremely high value compared to the values of the other elements of the trans-
mission matrix, calling for frequency compensation of the MAT. To make a12 as small as
possible the product γ1γ2 in Eq. (7.40) should be kept as close to unity as possible. In prac-
tice, this has been found [11] to be achieved by connecting a capacitor of about 260 pF
across each resistor Rai in the circuit of the MAT, when working with opamps of the 741
type. Fortunately, this compensation does not affect the element a21, while it improves
slightly the values of elements a11, a22 to be even closer to unity at higher frequencies. With
this type of compensation, the operating range of WAFs can be extended up to at least
100 kHz.

A[ ] 1 0

0 1
=

a12 1
γ1γ2

κ i

----------R′1–=

κ i

µi

1 βiµi+
------------------- γi, 1 βi–( )κ i i 1 2,= = =

µio 105 f c, 10 Hz f T 1 MHz= = =

Rai Rbi 1.2kΩ, R′1 10 kΩ= = =

a12 946≈
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7.7 Complementary Transfer Functions [7]

It is interesting and useful to note that in a WAF, there are two outputs available leading to
two different transfer functions being realized at the same time. This can be easily seen in
Fig. 7.15, where output voltages B1 and B2 are available from opamp outputs. Viewing the
WAF as a whole wave equivalent, the signal excitation is the incident wave voltage A1,
which is equal to the voltage of the signal source, while B1 and B2 are the reflected waves,
with A2 = 0 when R2 = RL.

Let us consider that the two-port N is entirely reactive. If we remove the two amplifiers,
the remaining will represent a resistively terminated LC ladder. Let aij, i, j = 1, 2 be the
parameters of its modified transmission matrix as we have considered before. We can see
that 

(7.42)

which by means of Eqs. (7.5) can be written as follows:

(7.43)

Since N is reactive, a11 and a22 are even functions, while a12 and a21 are odd functions. There-
fore,

(7.44)

To obtain Eqs. (7.44), use has been made of the fact that the LC ladder two-port is reciprocal.
Adding Eqs. (7.44) gives

(7.45)

or

(7.46)
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The meaning of Eq. (7.46) is that the two functions B2/A1 and B1/A1 for RS = RL = R are
power complementary. This means that if, for example, B2/A1 is a lowpass function, its
power complementary function B1/A1 is highpass obtained simultaneously with the
former. 

7.8 Wave Simulation of Inductance

The reader may have observed that there exists some degree of similarity between the sim-
ulation of a passive ladder through the wave active theory and the method using GICs. To
clarify this point, let us consider the action of the MAT circuit in Fig. 7.19, when the L-sub-
network is a grounded inductor L. With the application of impedance scaling (division of
impedances by s) in order to obtain active RC realization, the inductor L will become a
resistor RL, while resistor  will become a capacitor . Then the input impedance at the
left port of the MAT will be

(7.47)

Clearly, this is the impedance of an inductance of value .
On the other hand, if the C subnetwork is a grounded capacitor C, the input impedance

at the right port of the MAT can be found to be

(7.48)

which is purely resistive.
Thus, the circuit of the MAT (within the broken lines in Fig. 7.19) with a capacitor  in

place of resistor  behaves as a PIC. A PIC can also be obtained if R2 is replaced by a
capacitor instead of . Compared to the Antoniou PIC [12] it uses two extra resistors, but
all resistor values can be equal thus reducing to zero the component spread. Also, as in the
case of the Antoniou GIC, if R2 is replaced by a capacitor instead of , while the right-
hand-port is terminated by a capacitor, the circuit will behave as an FDNR type-D. 

This resemblance of the economical WAFs to the GIC filters though should not lead to the
conclusion that the former do not have to offer anything new in practice. In fact, it has been
shown [11] that in some cases the economical WAFs may employ fewer opamps than their
GIC counterparts.

7.9 Linear Transformation Active Filters (LTA Filters)

These filters [13–15], in a way similar to that of the WAF, simulate the resistively terminated
LC ladder filters by means of active equivalent subnetworks of each series- and parallel-
arm passive element of the ladder. Each element of the ladder is again treated as a two-port,
and its active RC equivalent is determined through linear transformations of its port volt-
age and current variables, hence their name.

R′1 C′1

V2

I 2–
------- sC′1R2RL=

C′1R2RL

V ′1

I ′1–
--------- R2

C′1

C
-------=

C′1

R′1

R′1

R′1
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To develop this simulation method of resistively terminated LC ladder filters, let us again
consider the ladder in Fig. 7.1, repeated here as Fig. 7.20 for convenience. Without loss of
generality, let each Zi and Yi + 1 be a simple reactive element, L or C. The ladder is split in
elementary two-ports as implied by the broken vertical lines in the figure.

Consider now one of these elementary two-ports, shown in Fig. 7.21(a), defined by its
port V and I variables, which are related by means of the modified transmission matrix A´,
as in the WAF case. Thus,

(7.49)

We introduce now another set of variables xi, yi i = 1, 2 obtained from the corresponding Vi,
Ii, i = 1, 2 variables by means of the following linear transformation:

(7.50)

where all

(7.51)

are nonsingular matrices. These are the so-called transformation matrices.

FIGURE 7.20
Terminated LC ladder.

FIGURE 7.21
(a) An element of the ladder treated as a two-port, and (b) the symbol of its LTA equivalent.

V1

I 1

A′[ ] V2

I 2
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= =
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From Eqs. (7.49) and (7.50), we can obtain the following relationship among the new sets
of variables:

(7.52)

Clearly, for active RC simulation of the passive ladder, the transformation matrices should
be suitably selected.

We may consider the xi, i = 1, 2 variables as inputs and the yi, i = 1, 2 variables as outputs.
Then, from Eq. (7.52) we can obtain the following relationship:

(7.53)

In the general case, K, L, M, and N are functions of the complex variable s. The usual LTA
equivalent of the elementary two-port in Fig. 7.21(a) is as shown in Fig. 7.21(b). Notice that
a little circle indicates the input terminals, while a little arrow the output terminals.

As an example, consider the determination of the LTA equivalent of the series inductor
shown in Fig. 7.22(a). Its modified transmission matrix is as follows:

(7.54)

A useful choice for [Q1] and [Q2] is the following [14]:

(7.55)

where γ and R are freely selectable parameters.
Substituting in Eq. (7.52) from Eqs. (7.54) and (7.55), we obtain the following:

x1

y1

Q1[ ] A′[ ] Q2[ ] 1– x2

y2

=

y1

y2

K L

M N

x1

x2

=

FIGURE 7.22
(a) A series inductor and (b) its possible LTA equivalent.

A′[ ] 1 sL–

0 1–
=

Q1[ ] γ 0

0 R
Q2[ ] 0 R–

γ 0
= =
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(7.56)

or

(7.57)

Assuming that xi, yi, i = 1, 2 are voltages, a possible implementation of Eq. (7.57) by an active
RC circuit is shown in Fig. 7.22(b).

Following this procedure, LTA equivalent circuits of an inductor in a parallel-arm, a
series- and a parallel-arm capacitor have also been found [13, 14]. It is usual to describe an
LTA equivalent for the combination of the first reactive element in the ladder and the signal
source VS with its output resistance RS. This reactive element, of course, can be a series or
parallel inductor or capacitor. Similarly, a LTA equivalent is determined for the load resis-
tor RL combined with the last reactive element of the ladder, which can also be a series or
parallel inductor or capacitor depending on the passive ladder and its order.

7.9.1 Interconnection Rule

Having derived LTA equivalents for each element of the ladder, the next step is to deter-
mine a suitable way for interconnecting the equivalents of adjacent elements in order to
build up the overall active ladder. For this purpose, we consider the two adjacent two-ports
in the V-I domain shown in Fig. 7.23(a) and proceed as in the case of WAFs. In the passive
ladder prototype in the V-I domain, the two adjacent ports of Na and Nb are directly con-
nected, so that 

(7.58)

Q1[ ] A′[ ] Q2[ ] 1– γ 0

0 R

1 sL–

0 1–

0 R–

γ 0
=

x1

y1

s
γL
R
------ 1

1 0

x2

y2

=

FIGURE 7.23
(a) Adjacent ladder elements and (b) the interconnection of their LTA equivalents.

V1b

I 0b
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0 1–

V2a
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In order to interconnect the LTA equivalents  and  of Fig. 7.23(b), a matching inter-
connecting two-port Nc should be determined that will keep the original parameters of 
and  unaltered, thus avoiding any loading effects.

But,

(7.59)

Substituting for [V1b I1b]T from Eq. (7.58) gives 

(7.60)

which, by virtue of Eq. (7.50), written for Na, finally gives

(7.61)

Therefore, the matching network Nc should be described by the following matrix P:

(7.62)

When [Q1b] and [Q2a] are chosen as in Eqs. (7.55), substitution in (7.62) gives matrix P to
be the following:

(7.63)

Substituting in Eq. (7.61) gives

(7.64)

Thus, with this specific selection of [Q1b] and [Q2a], the interconnection rule of the adjacent
ports of  and  should be the cross-cascade.

Clearly, the interconnection rule depends on [Q1b] and [Q2a]. In order to make this as sim-
ple as possible—specifically, the cross-cascade connection—we can proceed as follows: we
select [Q1b] to be as simple as possible and then determine [Q2a] through Eq. (7.62) written as 

(7.65)
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This relationship has been called the compatibility relationship [15]. Once [Q2a] has been
found, then [Q1a] can be determined or obtained from the existing list [15] in order to make
Eq. (7.53) easily active RC implementable. To avoid complications, it is advisable to follow
the above procedure starting from the load end of the ladder and moving toward the
source end.

7.9.2 General Remarks on the Method

It is evident that the choice of the transformation matrices Q1i and Q2i for the ith series- or
shunt-arm of the ladder will strongly determine the complexity of the overall LTA struc-
ture. Initially proposed LTA equivalents required a large number of opamps but, most
important, they employed some of them in the form of differentiators, which made LTA fil-
ters quite “noisy.”

However, later LTA developments [15] resulted in greatly improved LTA filters on both
these aspects. Thus, by a more “suitable” choice of the transformation matrices, which
includes making some of their elements frequency dependent, reduction in the complexity
of the LTA filter can be achieved, while use of differentiators is avoided using integrators
instead. These most suitable transformation matrices have been given in tabulated form
both for series- and shunt-arm elements of the ladder [15].

The LTA method is a general approach to simulation of resistively terminated LC ladder
filters. Due to its generality, other methods of LC-ladder simulation, such as wave active
filters, leapfrog, and signal-flow-graph (SFG), may be interpreted as special cases of the
LTA method. It must be remembered, though, that the development of LTA filters eventu-
ally followed that of the WAFs.

7.10 Summary

The WAF design method is an alternative approach to the simulation of resistively termi-
nated LC ladder filters. The initially proposed WAFs employed a large number of opera-
tional amplifiers, but later developments resulted in more economical structures
employing one opamp per storage element. These canonic structures are very similar to the
structures of GIC (PIC) filters but, in some cases, they may use two opamps fewer than the
latter. The sensitivity of WAFs is low, as low as the sensitivity of the other ladder simulation
methods. Also, WAFs can be easily compensated in order to improve their useful frequency
range. Another important feature of these active filters is that they provide two signal out-
puts that are power complementary.

The development of WAFs was followed by the introduction of the LTA filters which
work on the same principles. However, their design approach is more general than that of
the WAF, and it may be interpreted that the WAF design as well as the design of other active
filters, such as the LF and the SFG, are special cases of that of the LTA filters.
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Chapter 8

Single Operational Transconductance Amplifier
(OTA) Filters

8.1 Introduction

In the previous chapters active RC filters using the operational amplifier (opamp) have been dis-
cussed extensively. These filters have been widely used in various low frequency applications in
telecommunication networks, signal processing circuits, communication systems, control, and in-
strumentation systems for a long time. However, active RC filters cannot work at higher frequencies
(over 200kHz) due to opamp frequency limitations and are not suitable for full integration. They
are also not electronically tunable and usually have complex structures. Many attempts have been
made to overcome these drawbacks [1]–[8]. The most successful approach is to use the operational
transconductance amplifier (OTA) to replace the conventional opamp in active RC filters [9]–[45],
as predicted in [9]. In recent years OTA-based high frequency integrated circuits, filters and systems
have been widely investigated.

As seen in Chapter 3, an ideal operational transconductance amplifier is a voltage-controlled cur-
rent source, with infinite input and output impedances and constant transconductance. The OTA
has two attractive features: its tranconductance can be controlled by changing the external dc bias
current or voltage, and it can work at high frequencies. The OTA has been implemented widely in
CMOS and bipolar and also in BiCMOS and GaAs technologies. The typical values of transcon-
ductances are in the range of tens to hundreds of µS in CMOS and up to mS in bipolar technology.
The CMOS OTA, for example, can work typically in the frequency range of 50 MHz to several
100 MHz. Linearization techniques make the OTA able to handle input signals of the order of volts
with nonlinearities of a fraction of one percent. We will not discuss the OTA design in this book,
although it is very important. The reader can look at References [2]–[5] on this topic.

Programmable high-frequency active filters can therefore be achieved by incorporating the OTA.
These OTA filters also have simple structures and low sensitivity. In Chapter 3 the OTA and some
simple OTA-based building blocks were introduced. In this chapter we will discuss how to construct
filters using a single OTA, because single OTA active filters have advantages such as low power
consumption, noise, parasitic effects, and cost. Commercially widely available OTAs are very easy
to access for one to build filters with resistors and capacitors.

However, single OTA filters may not be suitable for full integration as they contain resistors which
demand large chip area. These filter structures may also not be fully programmable, as only one
OTA is utilized. It should be emphasized that on-chip tuning is the most effective way to overcome
fabrication tolerances, component nonidealities, aging, and changing operating conditions such as
temperature. Therefore, in monolithic design we should also further avoid using resistors. In recent
years, active filters which use only OTAs and capacitors have been widely studied [12]–[23], [26]–
[43]. These filters are intuitively called OTA-C filters, which will also be the subject of the remaining
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chapters. Fortunately, the single OTA filter structures can be readily converted into fully integrated
OTA-C counterparts by using OTAs to simulate the resistors. This will be shown in the chapter.

It should be noted that practical OTAs will have finite input and output impedances. For the
CMOS OTA, for example, the input resistance is usually very large, being neglectable, but the output
resistance is in the range of 50k� to 1M�, and the input and output capacitances are typically
of the order of 0.05pF [7]. Also, at very high frequencies, the OTA transconductance will be
frequency dependent due to its limited bandwidth. These nonideal impedance and transconductance
characteristics will influence the stability and frequency performances of OTA filters. Practical OTAs
will also exhibit nonlinearity for large signals and have noise, which will affect the dynamic range
of OTA filters.

In this chapter a large number of first-order and second-order single OTA filter structures are gen-
erated systematically. Design methods and equations are derived. Sensitivity analysis is conducted,
and OTA nonideality effects are investigated. Performances of the generated OTA filter architec-
tures are also compared. Knowledge of the OTA in Chapter 3 and single opamp active RC filters in
Chapter 4 should be of help in understanding this chapter.

8.2 Single OTA Filters Derived from Three-
Admittance Model

Consider the general circuit model in Fig. 8.1. It contains one OTA and three admittances. With
the indicated input and output voltages it can be simply shown that

H1(s) = Vo1

Vi
= gmY2

Y1Y2 + Y1Y3 + Y2Y3 + gmY2
(8.1)

H2(s) = Vo2

Vi
= gm (Y1 + Y2)

Y1Y2 + Y1Y3 + Y2Y3 + gmY2
(8.2)

FIGURE 8.1
General model with three admittances.

Using these expressions we can readily derive different first-order and second-order filter structures
from the general three-admittance model in Fig. 8.1 by assigning different components to Yi and
checking the corresponding transfer functions in Eqs. (8.1) and (8.2). For example, Yi can be a
resistor (Yi = gi), a capacitor (Yi = sCi), an open circuit (Yi = 0), or a short circuit (Yi = ∞). It
can also be a parallel combination of two components (Yi = gi + sCi).

8.2.1 First-Order Filter Structures

In this section we use the general model to generate first-order filters.
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First-Order Filters with One or Two Passive Components

SelectingY1 = sC1, Y2 = ∞ andY3 = 0 gives rise to the simplest structure as shown in Fig. 8.2(a),
which has a lowpass filter function given by

H1(s) = gm

sC1 + gm
(8.3)

with the dc gain equal to unity and the cutoff frequency equal to gm/C1.

FIGURE 8.2
Simple first-order lowpass (a, b, c) and general (d) filters.

Figure 8.2(b) shows another simple lowpass filter corresponding to Y1 = ∞, Y2 = g2, and
Y3 = sC3. The transfer function is derived as

H2(s) = gm

sC3 + g2
(8.4)

with the dc gain equal to gm/g2 and the cutoff frequency being g2/C3.
The circuit in Fig. 8.2(c), corresponding to Y1 = sC1, Y2 = ∞ and Y3 = g3, has the lowpass

characteristic as
H1(s) = gm

sC1 + (g3 + gm)
(8.5)

When Y1 = sC1, Y2 = g2, and Y3 = 0, the output from Vo2 is a general type, given by

H2(s) = sgmC1 + gmg2

sg2C1 + gmg2
(8.6)

which has the standard form of

H(s) = K
s + ωz

s + ωp
(8.7)

The circuit is shown in Fig. 8.2(d). The circuits in Fig. 8.2 were also discussed, for example, in
Ref. [15], here we show that they can be derived from the model in Fig. 8.1.
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First-Order Filters with Three Passive Components

Observe that all the circuits in Fig. 8.2 contain less than three passive elements. In Fig. 8.3 we
present a set of first-order filters with three passive components, which are derived from Fig. 8.1.

FIGURE 8.3
First-order filter configurations with three passive components.

It is first verified that when choosing Y1 = sC1, Y2 = g2 and Y3 = g3, the general model produces
a lowpass filter from Vo1, that is

H1(s) = gmg2

s (g2 + g3) C1 + g2 (g3 + gm)
(8.8)

and a general transfer function from Vo2, given by

H2(s) = sgmC1 + gmg2

s (g2 + g3) C1 + g2 (g3 + gm)
(8.9)

The circuit is shown in Fig. 8.3(a).
Then consider the circuit in Fig. 8.3(b), which is obtained by setting Y1 = g1, Y2 = sC2 and

Y3 = g3. It is found that a highpass filter is derived whose transfer function is given by

H1(s) = sgmC2

s (g1 + g3 + gm)C2 + g1g3
(8.10)

with the gain at the infinite frequency being gm/(g1 + g3 + gm) and the cutoff frequency equal to
g1g3/[(g1 + g3 + gm)C2].

This circuit also offers a general first-order characteristic, as can be seen from its transfer function

H2(s) = sgmC2 + gmg1

s (g1 + g3 + gm)C2 + g1g3
(8.11)

Finally, if Y1 and Y2 are resistors and Y3 a capacitor, then both H1(s) and H2(s) are of lowpass
characteristic. The circuit is presented in Fig. 8.3(c) and the transfer functions are given below.

H1(s) = gmg2

s (g1 + g2) C3 + g2 (g1 + gm)
(8.12)

H2(s) = gm (g1 + g2)

s (g1 + g2) C3 + g2 (g1 + gm)
(8.13)
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It is interesting to note from Eqs. (8.8) and (8.12) that the filters in Figs. 8.3(a) and (c) have similar
characteristics from output Vo1 or H1(s). The circuits in Figs. 8.2(a–c) and 8.3(c) will also be used
as lossy integrators to construct integrator-based OTA-C filters in Chapter 9.

8.2.2 Lowpass Second-Order Filter with Three Passive Components

It should be pointed out that the model in Fig. 8.1 can also support many second-order filters. In
this section however we only derive and discuss the simplest lowpass filter in order for the reader
to appreciate some advantages of OTA filters before a comprehensive investigation of structure
generation, design, and performance analysis of various second-order filters using a single OTA.
Choosing in Fig. 8.1 Y1 = sC1, Y2 = g2, Y3 = sC3, the transfer function in Eq. (8.1) becomes

H1(s) = gmg2

s2C1C3 + sg2 (C1 + C3)+ gmg2
(8.14)

which is a lowpass filter characteristic. The corresponding circuit is shown in Fig. 8.4, which has
only one resistor and two capacitors.

FIGURE 8.4
Simplest second-order lowpass filter derived from Fig. 8.1.

It will be recalled from Chapter 4 that the standard form of the lowpass characteristic is normally
written as

Hd(s) = Kω2
o

s2 + ωo
Q
s + ω2

o

(8.15)

whereK is the dc gain,ωo is the undamped natural frequency, andQ is the quality factor, representing
the selectivity, that is, the initial steepness of the transition band.

Comparison of Eqs. (8.14) and (8.15) indicates that the dc gain of the filter, K , is unity and

ωo =
√
gmg2

C1C3
, Q =

√
gm

g2

√
C1C3

C1 + C3
(8.16)

For convenience of design and also from the viewpoint of cost we set C1 = C3. This permits the
development of simple design formulas for the component values, given by

C1 = C3 = C, g2 = ωoC

2Q
, gm = 2QωoC (8.17)

where C can be arbitrarily assigned.
As an example, we design the filter for the specifications of

fo = 4MHz, Q = 1/
√

2, K = 1
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This is a Butterworth filter. Choosing C1 = C3 = C = 5pF , using Eq. (8.17) we can compute
g2 = 88.86µS and gm = 177.72µS.

Now we consider the filter sensitivity performance. Using the relative sensitivity definition intro-
duced in Chapter 4, namely,

SQx = x

Q

∂Q

∂x
, Sωox = x

ωo

∂ωo

∂x
(8.18)

for the lowpass filter in Fig. 8.4 it is found that:

S
ωo
gm = S

ωo
g2 = −SωoC1

= −SωoC3
= 1

2 (8.19)

S
Q
gm = −SQg2 = 1

2 , −SQC1
= S

Q
C3

= 1
2
C1−C3
C1+C3

= 0 (8.20)

and these results indicate superior sensitivity performance. Note that setting C1 = C3 leads not
only to practical convenience, but also to a decrease in the sensitivity of the filter to deviations in the
capacitor design values, as can be seen from Eq. (8.20).

It is therefore clear from the above discussion that the OTA lowpass filter has a very simple
structure, minimum component count, very simple design formulas, and extremely low sensitivity.
As will be seen, this is generally true for other OTA filters.

8.2.3 Lowpass Second-Order Filters with Four Passive Components

It is quite straightforward to treat each admittance in the general model as a single passive com-
ponent, either a resistor or capacitor as seen above. If more components are used for a single
admittance, then more filter architectures can be obtained. In the following we generate useful
lowpass second-order filters with four passive components, using again the model in Fig. 8.1.

The lowpass filter with Y1 = sC1, Y2 = g2, Y3 = g3 + sC3 is depicted in Fig. 8.5(a). Its transfer
function is derived as

H1(s) = gmg2

s2C1C3 + s [(g2 + g3) C1 + g2C3] + g2 (gm + g3)
(8.21)

FIGURE 8.5
Lowpass filters with four passive components.

Comparing the transfer function in Eq. (8.21) with the desired function in Eq. (8.15) yields the
following equations
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ωo =
√
g2(g3+gm)
C1C3

, Q =
√
g2(g3+gm)C1C3

(g2+g3)C1+g2C3
,

K = gm
g3+gm (8.22)

A convenient design is to select C1 = C3 = C and g2 = g3 = g. That is, all capacitances
are equal and all conductances are identical, which makes the design easy and economical. With
this selection, only three component values need to be decided. Generally, we can determine the
component values for given ωo, Q and K . We can also assign a value to any of C, g, or gm and
determine the other two in terms of ωo and Q for a not specified K .

For the equal capacitances and conductances Eqs. (8.22) accordingly become

ωoC =
√
g (g + gm), Q =

√
g(g + gm)

3g
, K = gm

g + gm
(8.23)

From Eqs. (8.23) it can be determined that

g = ωoC

3Q
, gm = 3QωoC

(
1 − 1

9Q2

)
, K = 1 − 1

9Q2
(8.24)

It is very interesting to note, see Eqs. (8.24), that

Q = 1

3
, K = 0, gm = 0 (8.25)

Q >
1

3
, K > 0, gm > 0 (8.26)

Q <
1

3
, K < 0, gm < 0 (8.27)

Equation (8.26) indicates that the circuit can realize large Q and positive gain, while Eq. (8.27)
implies that with the interchange of the OTA input terminals the resulting circuit will complemen-
tarily implement small Q and negative gain. Equation (8.25) means that the design method cannot
implement Q = 1/3. However, this does not represent a problem, since Q of 1/2 or lower can be
realized straightforwardly with a passive RC circuit. We should stress that throughout the chapter,
for gm > 0, the OTA is connected just as it appears in figures, while gm < 0 simply means the
interchange of the OTA input terminals.

Using the sensitivity definition in Eq. (8.18) it can be derived from Eqs. (8.22) that the general
sensitivity expressions are given by

S
ωo
C1

= S
ωo
C3

= −Sωog2
= −1

2
, Sωog3

= 1

2

g3

g3 + gm
,

Sωogm = 1

2

gm

g3 + gm
(8.28)

S
Q
C1

= 1

2
− (g2 + g3) C1

(g2 + g3) C1 + g2C3
,
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S
Q
C3

= 1

2
− g2C3

g2C3 + (g2 + g3) C1
,

SQg2
= 1

2
− g2 (C1 + C3)

g2 (C1 + C3)+ g3C1
,

SQg3
= g3

2 (g3 + gm)
− g3C1

g3C1 + g2 (C1 + C3)
,

SQgm = Sωogm (8.29)

SKC1
= SKC3

= SKg2
= 0, −SKg3

= SKgm = g3

g3 + gm
(8.30)

For the design withC1 = C3 = C and g2 = g3 = g, substituting the design formulas in Eqs. (8.24)
we have further

S
ωo
C1

= S
ωo
C3

= −Sωog2
= −1

2
, Sωog3

= 1

18Q2
,

Sωogm = 1

2

(
1 − 1

9Q2

)
(8.31)

S
Q
C1

= −SQC3
= SQg2

= −1

6
, SQg3

= −1

3
+ 1

18Q2
,

SQgm = Sωogm (8.32)

SKC1
= SKC3

= SKg2
= 0, −SKg3

= SKgm = 1

9Q2
(8.33)

It can be seen from these results that the structure in Fig. 8.5(a) has very low sensitivity.
Another lowpass filter can be obtained, which corresponds to Y1 = g1 + sC1, Y2 = g2, Y3 = sC3,

as shown in Fig. 8.5(b). It has the transfer function

H1(s) = gmg2

s2C1C3 + s [g2C1 + (g1 + g2) C3] + g2 (gm + g1)
(8.34)

This lowpass filter is similar to the one discussed above, as can be seen from Eqs. (8.21) and (8.34).
The same design technique can be used, and the sensitivity performance is also similar.

8.2.4 Bandpass Second-Order Filters with Four Passive Components

The bandpass filter with Y1 = g1, Y2 = sC2, Y3 = g3 + sC3 is shown in Fig. 8.6(a). The circuit
transfer function is derived as

H1(s) = sgmC2

s2C2C3 + s [(g1 + g3 + gm)C2 + g1C3] + g1g3
(8.35)
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FIGURE 8.6
Bandpass filters with four passive components.

The ideal bandpass characteristic is typically written as

Hd(s) =
K ωo

Q
s

s2 + ωo
Q
s + ω2

o

(8.36)

where ωo is the geometric center frequency of the passband, ωo/Q is the 3dB bandwidth, which can
also be denoted by B, and Q is again the quality factor.

Comparing Eq. (8.35) with Eq. (8.36) leads to the following design equations:

ωo =
√
g1g3

C2C3
, Q =

√
g1g3C2C3

(g1 + g3 + gm)C2 + g1C3
,

K = gmC2

(g1 + g3 + gm)C2 + g1C3
(8.37)

We set C2 = C3 = C and g1 = g3 = g and obtain from Eqs. (8.37)

g = ωoC, gm = ωoC

Q
(1 − 3Q), K = 1 − 3Q (8.38)

It can be seen from Eq. (8.38) that for practical Q values, gm < 0 and K < 0 which mean that
the OTA input terminals need to be interchanged and negative gain will be achieved.

The sensitivities of the filter are found to be

S
ωo
C2

= S
ωo
C3

= −Sωog1
= −Sωog3

= −1

2
, Sωogm = 0 (8.39)

−SQC2
= S

Q
C3

= 1

2
− g1C3

g1C3 + (g1 + g3 + gm)C2
,

SQg1
= 1

2
− g1 (C2 + C3)

g1 (C2 + C3)+ (g3 + gm)C2
,

SQg3
= 1

2
− g3C2

g3C2 + g1 (C2 + C3)+ gmC2
,

©1999 CRC Press LLC



SQgm = − gmC2

g1C3 + (g1 + g3 + gm)C2
(8.40)

SKC2
= −SKC3

= g1C3

g1C3 + (g1 + g3 + gm)C2
,

SKg1
= − g1 (C2 + C3)

g1C3 + (g1 + g3 + gm)C2
,

SKg3
= − g3C2

g1C3 + (g1 + g3 + gm)C2
,

SKgm = 1 − gmC2

g1C3 + (g1 + g3 + gm)C2
(8.41)

When C1 = C3 = C and g2 = g3 = g, we have the following simple expressions:

S
ωo
C2

= S
ωo
C3

= −Sωog1
= −Sωog3

= −1

2
, Sωogm = 0 (8.42)

−SQC2
= S

Q
C3

= SQg3
= 1

2
−Q,

SQg1
= 1

2
− 2Q, SQgm = −1 + 3Q (8.43)

SKC2
= −SKC3

= −SKg3
= Q, SKg1

= −2Q, SKgm = 3Q (8.44)

From the sensitivity results, it can be observed that the design using the circuit in Fig. 8.6(a) with
the OTA input terminals interchanged has very lowωo sensitivity. However, theQ andK sensitivities
display a modest Q dependence, although this is no problem for low Q design. The realization of
large Q may cause an increase in the sensitivity. But considering that the ωo sensitivity contributes
more to response deviation than the Q sensitivity [47], the design is still useful for not very large
Q, since the ωo sensitivities are extremely low. Also, note that for filter design, the gain sensitivity
is of less concern than the ωo and Q sensitivities. Therefore when commenting the filter sensitivity
performance, we mainly consider the ωo and Q sensitivities.

It is also worthwhile mentioning that in bandpass filter design the design formulas can also be
expressed in terms of ωo and B only and the bandwidth sensitivities can be calculated by using
SBx = S

ωo
x − S

Q
x . This can be practiced readily for the bandpass filter in Fig. 8.6(a) using the above

results.
Another bandpass filter is associated withY1 = g1 +sC1, Y2 = sC2, Y3 = g3, shown in Fig. 8.6(b).

Its transfer function is given by

H1(s) = sgmC2

s2C1C2 + s [g3C1 + (g1 + g3 + gm)C2] + g1g3
(8.45)

This filter function is similar to that of the above bandpass filter in Eq. (8.35). Thus similar perfor-
mances are expected.
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8.3 Second-Order Filters Derived from Four-
Admittance Model

In this section we consider another two general single-OTA models and filter structures derived
from them. We first consider the model in Fig. 8.7, which consists of an OTA and four admittances.
This model may be looked upon as a result of grounding the non-inverting terminal of the OTA and
applying a voltage input through an admittance to the inverting terminal of the OTA in Fig. 8.1. It
can be shown that the transfer function of the new model in Fig. 8.7 is given by

H(s) = Y1 (Y3 − gm)

Y1Y3 + Y1Y4 + Y2Y3 + Y2Y4 + Y3Y4 + gmY3
(8.46)

FIGURE 8.7
General model with four admittances.

Similarly, filter structures can be generated by selecting proper components in the model and the
corresponding transfer functions can be obtained from Eq. (8.46).

8.3.1 Filter Structures and Design

The filter structures derived from the general model will be presented in this section. We will
show how to design the filters to meet given specifications and analyze the corresponding sensitivity
performance.

Lowpass Filter

When choosing Y1 = g1, Y2 = sC2, Y3 = g3, Y4 = sC4, we have a lowpass filter as shown in
Fig. 8.8, which has the transfer function

H(s) = g1(g3 − gm)

s2C2C4 + s [g3C2 + (g1 + g3) C4] + (g1 + gm) g3
(8.47)

Comparing its transfer function in Eq. (8.47) with the desired function in Eq. (8.15) yields the
following equations:

ωo =
√
(g1+gm)g3
C2C4

, Q =
√
(g1+gm)g3C2C4

g3C2+(g1+g3)C4
,

K = g1g3−g1gm
g1g3+g3gm

(8.48)
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242 8. SINGLE OTA FILTERS

FIGURE 8.8
Lowpass filter derived from Fig. 8.7.

Based on these expressions we can design and analyze the filter. But we want first to draw the reader’s
attention to the similarity and difference of Eq. (8.22) and Eq. (8.48). The two filters have the same
ωo andQ expressions in form, the difference being only in the subscripts of gj and Cj , although the
gain expressions are different. The same design method can be used and the same design formulas
and sensitivity performance of ωo and Q will be achieved. To show this, we select C2 = C4 = C

and g1 = g3 = g. Using Eq. (8.48) we can obtain the design formulas as

g = ωoC

3Q
, gm = 3QωoC

(
1 − 1

9Q2

)
, K = −

(
1 − 2

9Q2

)
(8.49)

and the sensitivity expressions of the filter as

S
ωo
C2

= S
ωo
C4

= −Sωog3
= −1

2
, Sωog1

= 1

18Q2
,

Sωogm = 1

2

(
1 − 1

9Q2

)
(8.50)

−SQC2
= S

Q
C4

= SQg3
= −1

6
, SQg1

= −1

3
+ 1

18Q2
,

SQgm = Sωogm (8.51)

SKC2
= SKC4

= 0, SKg1
= 1 − 1

9Q2
,

SKg3
= −

1 − 1
9Q2

1 − 2
9Q2

, SKgm = 2

9Q2

1 − 1
9Q2

1 − 2
9Q2

(8.52)

Just as we expected, the designed lowpass filter has very low sensitivity and simple design formulas
like the filter in Fig. 8.5(a).
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Bandpass Filter

A bandpass filter will result for Y1 = sC1, Y2 = g2, Y3 = g3, Y4 = sC4 as shown in Fig. 8.9(a).
The corresponding transfer function is given by

H(s) = s(g3 − gm)C1

s2C1C4 + s [g3C1 + (g2 + g3) C4] + (g2 + gm) g3
(8.53)

FIGURE 8.9
Bandpass filters derived from Fig. 8.7.

Comparing Eq. (8.53) with Eq. (8.36) leads to

ωo =
√
(g2+gm)g3
C1C4

, Q =
√
(g2+gm)g3C1C4

g3C1+(g2+g3)C4
,

K = (g3−gm)C1
g3C1+(g2+g3)C4

(8.54)

Setting C1 = C4 = C and g2 = g3 = g, for example, we can obtain g and gm, being the same as
those in Eq. (8.49) of the lowpass filter, but K = −(9Q2 − 2)/3.

As a numerical example, for the bandpass filter of fo = 1MHz and Q = 5 choosing C = 10pF
we can determine g = 4.2µS and gm = 938.3µS. The filter gain is equal to 74.3.

As is obvious from their ωo and Q expressions, the bandpass filter in Fig. 8.9(a) has the same ωo
andQ sensitivities as those of the lowpass filter in Fig. 8.8. As demonstrated above, these sensitivities
are very low, less than or equal to 1/2. The gain sensitivities of the bandpass filter are given below:

SKC1
= −SKC4

= 2
3 , SKg2

= − 1
3 ,

SKg3
= − 2

3 + 1
2−9Q2 , SKgm = 1−9Q2

2−9Q2 (8.55)

The gain sensitivities are also as low as those of the lowpass filter in Fig. 8.8.
We must emphasize the attractive low sensitivity feature of the bandpass filter. Especially the

sensitivities will become smaller as Q increases, which makes it particularly suitable for large Q
applications. Recalling that the bandpass filters generated in Section 8.2.4 are not suitable for large
Q applications, because the Q sensitivities are proportional to Q.

Notice that for g2 = 0, the transfer function in Eq. (8.53) becomes

H(s) = s (g3 − gm)C1

s2C1C4 + sg3 (C1 + C4)+ gmg3
(8.56)
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This reveals that eliminating the g2 resistor in Fig. 8.9(a), the circuit can still support the bandpass
function. This simplified circuit is given in Fig. 8.9(b).

For the simplified bandpass filter without the g2 resistor in Fig. 8.9(b), we have

ωo =
√
gmg3

C1C4
, Q =

√
gm

g3

√
C1C4

C1 + C4
, K = (g3 − gm)C1

g3 (C1 + C4)
(8.57)

Selecting C1 = C4 = C, we can obtain

g3 = ωoC

2Q
, gm = 2QωoC, K = 1

2

(
1 − 4Q2

)
(8.58)

which are similar to the formulas in Eq. (8.17) for the lowpass filter in Section 8.2.2.
It can also be observed that the bandpass filter with g2 = 0 in Fig. 8.9(b) has the same ωo and Q

sensitivities as those of the lowpass filter in Section 8.2.2. The gain sensitivities are shown as

SKgm = −SKg3
= − 4Q2

1 − 4Q2
, SKC1

= −SKC4
= 1

2
(8.59)

which are also low.

Other Considerations on Structure Generation

Throughout this chapter, we are mainly concerned with canonic second-order structures containing
only two capacitors. Of course, if more capacitors are used, then more structures may be obtained.
For example, if Y1 = sC1, Y2 = sC2, Y3 = g3, Y4 = sC4, then the bandpass filter in Fig. 8.10(a)
will arise, which has the transfer function

H(s) = s (g3 − gm)C1

s2 (C1 + C2) C4 + sg3 (C1 + C2 + C4)+ gmg3
(8.60)

Comparison of Eq. (8.60) with Eq. (8.36) yields ωo,Q andK expressions, from which design can
be carried out. Two design methods are given below. One method is to set C1 = C2 = C4 = C.
The following formulas are then obtained.

gm = 3QωoC, g3 = 2ωoC

3Q
, K = 1

3
− 3

2
Q2 (8.61)

The other method is to set C1 + C2 = C4 = C and specify K . This yields

gm = 2QωoC, g3 = ωoC

2Q
, C1 = 2KC

1 − 4Q2
, C2 = C − C1 (8.62)

From the C1 formula we can see that for practicalQ values (Q > 1/2), only negative gainK can be
achieved.

It is also possible to obtain other filter configurations by using a combination of more elements
for an admittance. For example, if Y1 = sC1, Y2 = g2, Y3 = g3 + sC3, Y4 = g4 (two components
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FIGURE 8.10
Bandpass with three capacitors and highpass filter using component matching.

are used for Y3) as shown in Fig. 8.10(b), we have the transfer function as

H(s) = s2C1C3 + sC1 (g3 − gm)

s2C1C3 + s [(g3 + g4) C1 + (g2 + g4 + gm)C3]

+ (g2g3 + g2g4 + g3g4 + g3gm)

(8.63)

When g3 = gm, a highpass filter will result. This realization is however not particularly attractive,
due to the use of difference matching. This problem for the highpass filter realization can be overcome
by using the models in Section 8.3.2 and Section 8.7.

8.3.2 Second-Order Filters with the OTA Transposed

The second model with four admittances is displayed in Fig. 8.11. This model may be considered
as a modification of Fig. 8.1 by grounding the non-inverting terminal of the OTA and applying
a voltage input through an admittance to the output node of the OTA. It can also be reckoned as
a consequence of transposing the OTA, that is, interchanging the input and output of the OTA in
Fig 8.7. The general transfer function of the model can be demonstrated as

H(s) = Y1Y3

Y1Y3 + Y1Y4 + Y2Y3 + Y2Y4 + Y3Y4 + gmY3
(8.64)

Note that the transfer function misses the term of −gm in the numerator, but has the same denominator
compared with the function in Eq. (8.46). As will be seen, the former leads to some advantages such as
more filter functions and better programmability while retaining low sensitivity. Also, similar design
methods can be used. For example, the capacitances can take the same value and the resistances
may be set to be identical. A number of filter configurations can be produced from the model.

Highpass Filter

A highpass characteristic is achieved by setting Y1 = sC1, Y2 = g2, Y3 = sC3, Y4 = g4. The
circuit is shown in Fig. 8.12, with the transfer function given by

H(s) = s2C1C3

s2C1C3 + s [g4C1 + (g2 + g4 + gm)C3] + g2g4
(8.65)
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FIGURE 8.11
General four-admittance model with the OTA transposed.

Note that there are no difference nulling conditions involved in this highpass realization which also
saves one resistor, compared with the one in Fig. 8.10(b).

FIGURE 8.12
Highpass filter with transposed OTA.

Design can be carried out by comparing Eq. (8.65) with the standard highpass characteristic

Hd(s) = Ks2

s2 + ωo
Q
s + ω2

o

(8.66)

where K is the gain at the infinite frequency, ωo is the undamped natural frequency, and the quality
factor Q relates to the transition sharpness. Design equations are as follows (K = 1):

ωo =
√
g2g4

C1C3
, Q =

√
g2g4C1C3

g4C1 + (g2 + g4 + gm)C3
(8.67)

Choosing C1 = C3 = C and g2 = g4 = g we can determine that

g = ωoC, gm = ωoC

Q
(1 − 3Q) (8.68)

The ωo and Q sensitivities are similar to those in Section 8.2.4 as can be inspected from the
similarity between the two denominators of Eqs. (8.35) and (8.65). From the sensitivity results in
Eqs. (8.42) and (8.43). It can be seen that for this design, the highpass circuit has very low ωo
sensitivities, but Q sensitivities will increase with Q. The filter thus may not suit very high Q
applications. The design also requires interchanging the OTA input terminals. A highpass filter
which has very low Q sensitivity will be presented in Section 8.7.
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Lowpass Filter

A lowpass filter is attained by choosing Y1 = g1, Y2 = sC2, Y3 = g3, Y4 = sC4. The correspond-
ing circuit is exhibited in Fig. 8.13 and its transfer function is given by

H(s) = g1g3

s2C2C4 + s [g3C2 + (g1 + g3) C4] + (g1 + gm) g3
(8.69)

FIGURE 8.13
Lowpass filter with transposed OTA.

The denominator of the transfer function in Eq. (8.69) is the same as that in Eq. (8.47). The design
formulas forC2 = C4 = C and g1 = g3 = g are hence the same as those in Eq. (8.49), with the only
difference being K = 1/9Q2. The ωo and Q sensitivities are also the same as those in Eqs. (8.50)
and (8.51), which are very low.

Bandpass Filters

A bandpass filter can be obtained by selecting Y1 = sC1, Y2 = g2, Y3 = g3, Y4 = sC4 which is
shown in Fig. 8.14(a) and has a transfer function as

H(s) = sg3C1

s2C1C4 + s [g3C1 + (g2 + g3) C4] + (g2 + gm) g3
(8.70)

FIGURE 8.14
Bandpass filters with transposed OTA.

One design method is to set C1 = C4 = C and g2 = g3 = g, which gives the formulas the
same as those for the bandpass filter in Fig. 8.9(a), as Eqs. (8.70) and (8.53) have exactly the same
denominator, but K = 1/3. Another method for the bandpass filter design is to set C1 = C4 = C

only. The filter gain K can then be used as a design parameter. The design formulas are derived as

g3 = K ωoC
Q
, g2 = (1 − 2K)ωoC

Q
,
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gm = QωoC
K

[
1 − K(1−2K)

Q2

]
(8.71)

The condition is K < 1/2 to ensure a positive g2. When K = 1/2, we have

g3 = ωoC

2Q
, g2 = 0, gm = 2QωoC (8.72)

Similar to the discussion in Section 8.3.1, this reveals that the g2 resistor can be removed. Generally,
a simpler bandpass filter can be obtained by removing the g2 resistor from Fig. 8.14(a), as shown in
Fig. 8.14(b). This simple filter has a transfer function

H(s) = sg3C1

s2C1C4 + sg3 (C1 + C4)+ gmg3
(8.73)

another circuit which is as simple as the lowpass filter in Fig. 8.4.
A bandpass filter with three capacitors is also obtained by assigning Y1 = sC1, Y2 = sC2, Y3 =

g3, Y4 = sC4 as shown in Fig. 8.14(c). The transfer function is derived as

H(s) = sg3C1

s2(C1 + C2)C4 + sg3 (C1 + C2 + C4)+ gmg3
(8.74)

With C2 = 0 this circuit will also reduce to Fig. 8.14(b). It should be noted that the bandpass filters
in Fig. 8.14 all have very low sensitivities as their counterparts in Section 8.3.1.

The model in Fig. 8.11 can also support another bandpass filter which corresponds to Y1 =
g1, Y2 = sC2, Y3 = sC3, Y4 = g4 as shown in Fig. 8.15. This bandpass filter has a transfer function

H(s) = sg1C3

s2C2C3 + s [g4C2 + (g1 + g4 + gm)C3] + g1g4
(8.75)

FIGURE 8.15
Another bandpass filter from Fig. 8.11.

Assuming C2 = C3 = C we determine g1, g4 and gm in terms of ωo, Q and K , given by

g1 = K
ωo

Q
, g4 = ωoQ

K
, gm = ωoQ

K

[
−2 + (1 −K)K

Q2

]
(8.76)

We can also further assign g1 = g4 = g, which will result in the same g and gm as those for the
highpass filter in Eq. (8.68), but K is fixed to be Q.
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8.4 Tunability of Active Filters Using Single OTA

It is well known that the transconductance of an OTA is controllable by the bias dc current or
voltage. For instance, the relationship between the transconductance and bias current of the bipolar
OTA, CA3080, is given by [9]

gm = 1

2VT
IB (8.77)

where VT is the thermal voltage and has a value of 26mV at room temperature. IB is the bias current.
If voltage is preferred to be the controlling variable, then a bias circuit can be used to convert the
voltage to the current.

It is obvious that when design has determined gm, the bias current needed can also be decided by
Eq. (8.77), given by

IB = 2VT gm (8.78)

For example, if gm = 19.2mS, then IB = 1mA.
Programmability is one of the most attractive features of the OTA, since this makes it possible

to tune filters electronically, which is especially important for on-chip tuning of fully integrated
filters [5, 6, 37, 38, 39, 41, 42]. From the transfer functions of the OTA filters developed, it can be
demonstrated that some structures are indeed tunable. For example, the center frequency ωo of the
bandpass filters in Figs. 8.9, 8.10, and 8.14 can be tuned independently of their bandwidth B, while
the bandpass filters in Figs. 8.6 and 8.15 have the bandwidth B separately tunable from the center
frequency ωo. The quality factor Q can be controlled independently from the cutoff frequency ωo
for the highpass filter in Fig. 8.12.

8.5 OTA Nonideality Effects

Having considered filter structure generation, design, and sensitivity analysis we can now discuss
some of the more practical problems in OTA filter design. In particular we will deal with the effects
of OTA nonidealities on filter performance. The methods for the evaluation and reduction of the
effects will be proposed.

8.5.1 Direct Analysis Using Practical OTA Macro-Model

It will be recalled from Chapter 3 that an OTA macro-model with finite input and output impedances
and transconductance frequency dependence is shown in Fig. 8.16. We useGi andCi to represent the
differential input conductance and capacitance and drop subscript d (for differential) for simplicity.
Go and Co are those at the output. The common-mode input conductance Gic and capacitance CiC
are ignored because they are usually very small in practice compared with differential counterparts
and can be absorbed as most filter structures have a grounded capacitor or a grounded OTA resistor
from OTA input terminals to ground. This will be assumed throughout all remaining chapters,
unless otherwise stated. The input and output admittances can be written as Yi = Gi + sCi and
Yo = Go + sCo. The transconductance frequency dependence can be described using a single pole
model, as mentioned in Chapter 3 and repeated below:

gm(s) = gm0

1 + s
ωb

(8.79)
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where ωb is the finite bandwidth of the OTA and gm0 is the dc transconductance. The phase shift
model is also often used, which is given, in the frequency domain, by [12]

gm(jω) = gm0e
−jφ (8.80)

where φ is the phase delay. Both models can be approximated as

gm(s) ≈ gm0(1 − sτ ) (8.81)

where τ = 1/ωb is the time delay and φ = ωτ , when ω << ωb. In the following the related
terminologies may be used alternatively.

FIGURE 8.16
Practical OTA macro-model.

To give the reader some numerical order of OTA parameter values, a CMOS OTA, for example,
may have the following data:

gm0 = 56µS, fb = 100MHz (τ = 1.59ns) , Gi = 0 ,

Go = 1µS (Ro = 1M�) , Ci = 0.05pF, Co = 0.1pF

Now we consider the effects of OTA nonidealities on filters in detail. For the circuit in Fig. 8.1,
incorporating the OTA macro-model we can derive the following modified transfer function

H ′
1(s) = Y2gm(s)+ (Y2 + Y3 + Yo) Yi

(Y1 + Yi) (Y2 + Y3 + Yo)+ Y2 (Y3 + Yo)+ Y2gm(s)
(8.82)

Noting that if only the OTA frequency dependence is of concern, the associated transfer function can
be simply obtained by substituting gm(s) for gm in the ideal expression in Eq. (8.1).

Using the general equation, the impact of the OTA nonidealities on any derived filter structures
can be evaluated. Take the lowpass filter in Fig. 8.4 as an example. With finite OTA impedances and
bandwidth taken into account, the transfer function of the filter becomes

H ′
1(s) = K

s2 + ωz
Qz
s + ω2

z

s2 + ω′
o

Q′ s + ω′2
o

(8.83)

where

ω′
o = ωo

√√√√1 + Gi
gm0

+ Go
gm0

1 + Ci
C1

+ Co
C3

(8.84)
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Q′ = Q

√(
1 + Gi

gm0
+ Go

gm0

) (
1 + Ci

C1
+ Co

C3

)
1 + C3

C1+C3

Gi
g2

+ C1
C1+C3

Go
g2

+ Ci
C1+C3

+ Co
C1+C3

− gm0τ
C1+C3

(8.85)

K = C3Ci

C1C3 + C3Ci + C1Co
(8.86)

ωz =
√
g2 (gm0 +Gi)

C3Ci
(8.87)

Qz =
√
g2 (gm0 +Gi)C3Ci

g2Ci + C3Gi − gm0g2τ
(8.88)

Note thatK is the gain at the infinity frequency, that is,H ′
1(∞) = K . The dc gain can be derived as

H ′
1(0) = H1(0)

1 + Gi
gm0

1 + Gi
gm0

+ Go
gm0

(8.89)

In the above equations, ωo and Q are as shown in Eq. (8.16). H1(0) represents the ideal dc gain,
which is unity.

During the formulation of Eq. (8.83), for simplicity and without loss of insight into the problem,
we use a first-order approximation. The first glance at the equation indicates that the ideal all-pole
lowpass function in Eq. (8.14), now becomes a general biquadratic function with finite transmission
zeros and all coefficients are changed.

Of all the parasitics contributing to the change of the transfer function, the input and output
conductances (especially the latter) seem to have greater influence on the low frequency response
than others and introduce losses causing reduction of the pole and zero quality factors and the low-
frequency gain. For example, the dc gain in Eq. (8.89) is totally dependent on the finite conductances,
being less than unity. The finite input and output capacitances affect more the high-frequency
response. At the extreme infinite frequency the magnitude, as shown in Eq. (8.86), is no longer
zero, but a finite value determined completely by the nonideal capacitances, especially the input
capacitance. Note in particular that the input conductance and capacitance provide extra signal
paths, as can be seen from the numerator parameters. Therefore the differential input application of
the OTA may not be favorable in some cases.

Two major effects of gm(s) should be emphasized. From the pole quality factor Q′ expression
in Eq. (8.85), we can see that transconductance frequency dependence can enhance the Q, which is
known as the Q enhancement effect. The other is the stability problem, that is, the finite ωb may
cause the circuit to oscillate by shifting the poles to the right plane.

To appreciate the change more clearly, we further write the parameters in the relative change
form (a first-order approximation is adopted during the whole simplification). Using Eq. (8.84) and
denoting -ωo = ω′

o − ωo we can obtain

-ωo

ωo
= 1

2

(
Gi

gm0
+ Go

gm0
− Ci

C1
− Co

C3

)
(8.90)
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In a similar way, from Eq. (8.85) and with -Q = Q′ −Q we have

-Q

Q
=
(

1

2gm0
− 1

g2

C3

C1 + C3

)
Gi +

(
1

2gm0
− 1

g2

C1

C1 + C3

)
Go

+ gm0

C1 + C3
τ + C3 − C1

2C1 (C1 + C3)
Ci + C1 − C3

2C3 (C1 + C3)
Co (8.91)

Finally, from Eq. (8.89) and with -H1(0) = H ′
1(0)−H1(0) we can derive

-H1(0)

H1(0)
= − Go

gm0
(8.92)

Equation (8.90) clearly shows that Gi and Go increase ωo, while Ci and Co decrease ωo. The
excess phase has no effect on ωo (for the first-order approximation). Equation (8.92) reveals thatGo
has a reduction impact on the dc gain. The effects on Q depend on how the circuit is designed. For
the design in Section 8.2.2, with normalized C1 = C3 = C = 1F , Eq. (8.91) reduces to

-Q

Q
= g2 − gm0

2gm0g2
(Gi +Go)+ gm0

2
τ (8.93)

Further substituting the design formulas in Eq. (8.17) with C = 1F gives

-Q

Q
= 1 − 4Q2

4ωoQ
(Gi +Go)+Qωoτ (8.94)

Therefore, τ has a Q enhancement effect. Ci and Co have no impact on Q for the first-order
approximation and C1 = C3. Gi and Go will cause Q reduction. We should stress that the
contribution of excess phase (φ = ωoτ ) to the Q enhancement is multiplied by Q2, that is -Q(due
to φ)= Q2φ, as can be seen from Eq (8.94). Therefore, for large Q applications, even a very small
phase shift can cause a very big increase in Q and thus instability. From this example we also see
that a good design can reduce nonideality effects. In particular, using equal design capacitances also
reduces the influence of finite OTA input and output capacitances on the pole quality factor, besides
the benefits mentioned in Section 8.2.2 such as the zero sensitivities of Q to the capacitances.

It should also be noted that OTAs using different IC technologies may have different performances.
For instance, MOS and CMOS OTAs have a very large input resistance, which may thus be assumed
infinite in most cases. However, the input resistance of bipolar OTAs is quite low. The above analysis
is general, which could be simplified for the CMOS OTA by dropping off Gi , for example.

Similarly, taking the OTA nonidealities into consideration, the general transfer functions of
Figs. 8.7 and 8.11 become, respectively,

H ′(s) = Y1 (Y3 − gm(s))

Y1Y3+Y1(Y4+Yo)+(Y2+Yi)Y3+(Y2+Yi)(Y4+Yo)
+Y3(Y4+Yo)+Y3gm(s)

(8.95)

and

H ′(s) = Y1Y3
Y1Y3+Y1(Y4+Yi)+(Y2+Yo)Y3+(Y2+Yo)(Y4+Yi)

+Y3(Y4+Yi)+Y3gm(s)

(8.96)
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Using the respective equation we can analyze the influence of OTA nonidealities on the filters derived
from the general models in Figs. 8.7 and 8.11. The difference of the two expressions in terms of Yi
and Yo is due to the different connection of the OTA in the models.

8.5.2 Simple Formula Method

A simple method for evaluation of the effects of finite bandwidth has been proposed in Ref. [46].
This method uses the sensitivity to the amplifier gain to assess the effects of phase shift, which
simplifies the analysis. Using this method we can, for example, assess the influence of the OTA
finite bandwidth on the filter. The associated formulas are given below:

-ωo
ωo

= ωo
2Qωb

(
S
ωo
gm − S

Q
gm

)
(8.97)

-Q
Q

= ωo
2Qωb

[(
4Q2 − 1

)
S
ωo
gm + S

Q
gm

]
(8.98)

For the simple lowpass structure in Fig. 8.4, Sωogm = S
Q
gm = 1

2 , as given in Eqs. (8.19) and (8.20).
It can be shown that the effect of the finite bandwidth ωb of the OTA is to cause fractional deviations
in Q and ωo, given approximately by

-ωo

ωo
= 0,

-Q

Q
= Q

ωo

ωb
(8.99)

Recognizing that it is deviations in ωo which frequently cause the greatest deviation in the amplitude
response of the filter (see Section 4.4), another attractive feature of this filter is observed from the
result. Equation (8.99) can also be derived from Eqs. (8.90) and (8.94), as expected.

Similarly, for the lowpass filter in Fig. 8.8, using the results ofSωogm andSQgm in Eqs. (8.50) and (8.51),
we have

-ωo

ωo
= 0,

-Q

Q
= Qωo

ωb

(
1 − 1

9Q2

)
(8.100)

8.5.3 Reduction and Elimination of Parasitic Effects

It is possible to reduce the effects of OTA input and output impedances by absorption and those
of transconductance frequency dependence by phase lead compensation. To show the former we
consider the second-order filter model in Fig. 8.7. The latter will be handled in Chapter 9.

From Eq. (8.95) we can see that if Y2 and Y4 are a parallel of a resistor and a capacitor, that is,
Y2 = g2 + sC2, and Y4 = g4 + sC4, then the effects of Yi and Yo can be completely eliminated
by absorption design, that is, Gi and Ci are absorbed by g2 and C2, respectively, and Go and Co
by g4 and C4. Figure 8.17 shows the lowpass circuit which can absorb the OTA input and output
impedances and all node parasitic capacitances. The circuit has the following ideal transfer function:

H(s) = g1 (g3 − gm)

s2C2C4+s[(g3+g4)C2+(g1+g2+g3)C4]
+(g1g3+g1g4+g2g3+g2g4+g3g4+gmg3)

(8.101)

For the circuit in Fig. 8.17, the OTA finite conductances and capacitances cause a change in design
capacitances and conductances as

-C2 = Ci, -C4 = Co, -g2 = Gi, -g4 = Go
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FIGURE 8.17
Lowpass filter that can absorb all parasitic resistances and capacitances.

The absorption approach determines the real component values by subtracting the nominal values
with the increments due to nonideal OTA parameters, that is

Creal = Cnominal −-C, greal = gnominal −-g (8.102)

This requires that
Cnominal > -C, gnominal > -g

For example, the nominal values for relevant capacitances and conductances must be much bigger
than the respective parasitic values. It should be noted that at very high frequencies this may not be
always met.

Similar methods for the elimination of the effects of finite OTA input and output impedances can
also be discussed based on Eq. (8.96) for the filters derived from Fig. 8.11.

In most cases in this chapter each admittance is treated as a single component, resistor or capacitor.
Only in the cases in which we want to achieve additional functions or performances do we consider
them as a combination of two components. This will also be the case for the remaining sections of
the chapter.

8.6 OTA-C Filters Derived from Single OTA Filters

In the above, many interesting filters using a single OTA have been developed. These single OTA
filter structures may not be fully integratable and fully programmable due to the fact that they contain
resistors and use only one OTA. But they are still useful for monolithic implementation, because by
replacing the discrete resistor with the simulated OTA resistor, they can be very easily converted into
the counterparts using OTAs and capacitors only. The derived OTA-C filters should be suitable for
full integration. In the following we first discuss how to simulate resistors using OTAs only and then
selectively illustrate some OTA-C filters thus derived from the single OTA counterparts.

8.6.1 Simulated OTA Resistors and OTA-C Filters

Resistors can be simulated using OTAs. Figure 8.18(a) shows a simple single OTA connection.
This circuit is equivalent to a grounded resistor with resistance equal to the inverse of the OTA
transconductance, that is, R = 1/gm [12]. Floating resistor simulation may require more OTAs.
Figure 8.18(b) shows a circuit with two identical OTAs [15]. It can be shown that it is equivalent
to a floating resistor of resistance equal to R = 1/gm. Finally, for the ideal voltage input, the first
OTA in the input terminated floating resistor simulation is redundant and can thus be eliminated, as
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shown in Fig. 8.18(c). This simulation not only saves one OTA but also has a high input impedance,
a feature useful for cascade design.

FIGURE 8.18
OTA simulation of resistors.

For simplicity from now on throughout the remaining chapters we will drop subscript m off
transconductance gm in almost all cases except when for some special cases in which the subscript
mmust be used. The reader should keep in mind that in OTA-C filters, g really means gm since only
OTA and capacitors are used. The function of resistors is simulated by OTAs as discussed above.

We now derive OTA-C filters from some single OTA filters using the resistor substitution method.
To stress that they are based on single OTA filter prototypes we keep the gm symbol for this OTA.
A lowpass OTA-C filter is obtained from Fig. 8.4, by simply replacing the floating resistor by the
OTA equivalent in Fig. 8.18(b), which is depicted in Fig. 8.19(a). Figure 8.19(b) shows the OTA-C
bandpass filter derived from Fig. 8.6(a) using the OTA grounded resistor in Fig. 8.18(a). We give the
OTA-C equivalents of the lowpass filter in Fig. 8.8 and the bandpass filter in Fig. 8.9(a), as shown
in Figs 8.19(c) and 8.19(d), respectively. The lowpass OTA-C filter in Fig. 8.19(c) uses an input
terminated OTA resistor in Fig. 8.18(c) and the grounded OTA resistor in Fig. 8.18(a). The bandpass
OTA-C filter in Fig. 8.19(d) consists of an OTA grounded resistor and an OTA floating resistor. The
single OTA bandpass filter in Fig. 8.15 and the highpass filter in Fig. 8.12 are also converted into the
OTA-C counterparts, which are shown in Figs. 8.19(e) [36] and 8.19(f), respectively.

8.6.2 Design Considerations of OTA-C Structures

The transfer functions of the OTA-C filters are the same as those of the single OTA counterparts.
The difference is only that in OTA-C filters, the gs are all OTA transconductances. The resistor
substitution method also retains the sensitivity property of the original single OTA filter. Therefore
the structures that have minimum sensitivity should be first considered in OTA-C realization. It is
evident that the number of OTAs in the derived OTA-C filters will depend on how many resistors
are in the original circuits. The architectures with fewer resistors may be attractive in the sense of
reducing the number of OTAs. Also, note that the grounded resistor needs fewer OTAs to simulate
than the floating resistor, and thus the single OTA filter structures using grounded resistors may
be preferable in terms of reduction in the number of OTAs in the derived OTA-C filters. As will
be discussed immediately, the grounded resistor will also introduce fewer parasitic elements into
the filter circuit than the floating resistor when the nonidealities of the OTA(s) simulating them
are taken into consideration. It should also be noted that structures using grounded capacitors are
advantageous with respect to reducing parasitic effects and the chip area, as the floating capacitor
has bigger parasitic capacitances and requires larger chip area.

For the OTA-RC filters we have discussed the effects of nonidealities of the OTA gm. When
dealing with the OTA-C equivalent we must also consider the nonidealities of the OTAs simulating
resistors. For the grounded OTA resistor in Fig. 8.18(a), the equivalent grounded admittance due to
the OTA nonidealities can be demonstrated as (to be general, we include the OTA common-mode
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FIGURE 8.19
Examples of OTA-C filters derived from single OTA counterparts.

impedance)

YGR = Yid + Yic + Yo + gm(s) = (Gid +Gic +Go + gm0)

+ s (Cid + Cic + Co − gm0/ωb) (8.103)

which is a complex admittance, no longer a pure conductance.

For the floating resistor simulation in Fig. 8.18(b), the nonidealities of the two identical OTAs
will have more complex effects. We can draw the equivalent circuit taking the OTA nonidealities
into account and use the current source shift theorem (in a loop) to simplify the equivalent circuit.
The resulting circuit can be further proved to be equivalent to a π type admittance network with the
series arm admittance given by

YFRπs = 2Yid + gm(s) = (2Gid + gm0)+ s (2Cid − gm0/ωb) (8.104)
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and the two equal parallel arm admittances, given by

YFRπp = 2Yic + Yo = (2Gic +Go)+ s (2Cic + Co) (8.105)

Unlike the grounded resistor, in this case it is impossible to write an equivalent floating admittance.
Now we can consider the effects on OTA-C filters of the nonidealities from the resistor simulation

OTAs. For example, in the lowpass OTA-C filter in Fig. 8.19(a) the two identical OTAs simulating the
floating resistor of conductance g2 will have a π equivalent circuit due to their nonidealities as shown
above. As can be seen from the circuit structure and the expressions of the series and parallel arm
admittances of the π network in Eqs. (8.104) and (8.105), respectively, the finite differential input
conductances (2Gid2) can be absorbed by transconductance g20 and the common-mode capacitances
and output capacitance (2Cic2 +Co2) can also be absorbed byC1 andC3. But the effects of the finite
differential input capacitances and the finite bandwidth will produce a parasitic floating capacitance
equal to 2Cid2 − g20/ωb2, and the effect of the common-mode input conductances and the output
conductance will generate two parasitic grounded resistors of equal conductances of 2Gic2 + Go2
in parallel with C1 and C3. Such parasitic elements will affect the filter poles and zeros. Further
analysis can be easily carried out by substituting

Y ′
1 = (2Gic2 +Go2)+ s [C1 + (2Cic2 + Co2)]

Y ′
3 = (2Gic2 +Go2)+ s [C3 + (2Cic2 + Co2)]

Y ′
2 = (2Gid2 + g20)+ s (2Cid2 − g20/ωb2)

for Y1, Y3 and Y2 in Eq. (8.1). The reader may formulate the corresponding practical expression of
the transfer function and compare it with the ideal one in Eq. (8.14) to study the effects in details.

As a second example, the bandpass OTA-C filter with two grounded OTA resistors in Fig. 8.19(b)
is considered. Taking the nonidealities of the g1 and g3 OTAs into account and using Eq. (8.103) we
have the changed grounded admittances as

Y ′
1 = [(Gid1 +Gic1 +Go1)+ g10] + s (Cid1 + Cic1 + Co1 − g10/ωb1)

Y ′
3 = [(Gid3 +Gic3 +Go3)+ g30] + s [C3 + (Cid3 + Cic3 + Co3 − g30/ωb3)]

It can be seen that the finite conductances can be absorbed by the respective transconductances
of the g1 and g3 OTAs. Also, the finite capacitances and bandwidth of the g3 OTA can be absorbed
by C3. But a parasitic capacitor from the output node to ground will be produced by the finite
capacitances and bandwidth of the g1 OTA, which cannot be absorbed. Again a detailed evaluation
can be conducted by substituting Y ′

1 and Y ′
3 for Y1 and Y3 in Eq. (8.1) and comparing the resulting

equation with the ideal transfer function in Eq. (8.35). For example, if only the finite capacitances and
bandwidth of the g1 OTA are considered, we can readily demonstrate that their effect is to produce
extra terms in the denominator of the transfer function in Eq. (8.35), which are

[
s2 (C2 + C3)+ sg3

]
(Cid1 + Cic1 + Co1 − g10/ωb1)

The nonideality effects of the input termination OTA can also be similarly evaluated. The reader
may, for example, consider the g1 OTA in the lowpass circuit in Fig. 8.19(c).
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Tuning may need reconsideration. As we have already found in Section 8.4, it is not possible
to tune the frequency and quality factor independently in some single OTA filters. By replacing
fixed resistors by tunable OTAs the programmability can be enhanced. For instance, the single OTA
bandpass filter in Fig. 8.9(a) has only ωo tunable, while the OTA-C simulation in Fig. 8.19(d) has
also tunable B. The tuning process simply involves the tuning of B by the g2 or g3 OTA, followed
by the adjusting of ωo by the gm OTA. It is noted that in the original single OTA bandpass circuit
in Fig. 8.15, only the bandwidth or the quality factor is tunable, but now the OTA-C derivative in
Fig. 8.19(e) has also the tunable center frequency, as can be seen from Eq. (8.75). We can first
tune ωo by the g1 or g4 OTA and then B or Q by the gm OTA. The final example is the highpass
OTA-C filter in Fig. 8.19(f), whose ωo can be tuned by the g2 or g4 OTA andQ then by the gm OTA,
compared with the single OTA prototype in Fig. 8.12 which has only Q electronically adjustable.

8.7 Second-Order Filters Derived from Five-
Admittance Model

In this section a more complex one OTA and five-admittance model is considered. The general
model with complete feedback is shown in Fig. 8.20. This will be seen to be a development for
Fig. 8.1 with two additional admittances. Because more admittances are used, more filter structures
and design flexibility can be achieved.

FIGURE 8.20
Five-admittance model with complete output feedback.

The circuit transfer function can be shown as

H(s) = gmY2Y4
Y1Y2Y4+Y1Y2Y5+Y1Y3Y4+Y1Y3Y5+Y1Y4Y5

+Y2Y3Y4+Y2Y3Y5+Y2Y4Y5+gmY2Y4

(8.106)

Different filter characteristics can be realized using the general model. This can be done by
trying different combinations of passive components in Eq. (8.106). Suppose that each admittance
is realized with one element. Exhaustive search shows that a total of 13 different structures can be
derived: one highpass, four bandpass and three lowpass filters with five passive components; two
bandpass and two lowpass filters with four passive components; as well as one lowpass filter with
three passive components. The combinations of components for the 13 structures are presented in
Table 8.1. The corresponding configurations and transfer functions can be derived from the general
model in Fig. 8.20 and the general expression in Eq. (8.106), which will be presented in the following.
These filter structures are suitable for cascade design due to their high input impedance. Note that the
four passive element lowpass and bandpass filters derived are actually the same as the counterparts
in Figs. 8.5 and 8.6. The three passive component lowpass filter is the same as that in Fig. 8.4. This
is no surprise, as the general three-admittance model with output Vo1 in Fig. 8.1 can be derived from
the five-admittance model in the above. We therefore will not repeat them here, although the reader
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is encouraged to check this. In the following we will concentrate on the filters with five passive
components. These filters can realize the lowpass, highpass, and bandpass functions.

Table 8.1 Generation of Filter Structures Based on Model in Fig. 8.20
Function

Type Components Circuit Figure Equation

General Y1 Y2 Y3 Y4 Y5 8.20 8.106

HP g1 sC2 g3 sC4 g5 8.21 8.108

BP1 g1 sC2 sC3 g4 g5 8.22(a) 8.113

BP2 g1 g2 sC3 sC4 g5 8.22(b) 8.117

BP3 g1 sC2 g3 g4 sC5 8.22(c) 8.118

BP4 sC1 g2 g3 sC4 g5 8.22(d) 8.119

BP5∗ g1 ∞ sC3 sC4 g5 8.6(a) 8.35

BP6∗ g1 sC2 sC3 ∞ g5 8.6(b) 8.45

LP1 sC1 g2 sC3 g4 g5 8.23(a) 8.120

LP2 g1 g2 sC3 g4 sC5 8.23(b) 8.122

LP3 sC1 g2 g3 g4 sC5 8.23(c) 8.123

LP4∗ g1 ∞ sC3 g4 sC5 8.5(a) 8.21

LP5∗ sC1 g2 sC3 ∞ g5 8.5(b) 8.34

LP6∗ sC1 g2 sC3 ∞ 0 8.4 8.14

∗ Note that the symbol subscriptions used here are different from those in
Section 8.2.

8.7.1 Highpass Filter

A highpass filter can be obtained by selecting Y1 = g1, Y2 = sC2, Y3 = g3, Y4 = sC4, Y5 = g5
as shown in Fig. 8.21.

FIGURE 8.21
Highpass filter derived from Fig. 8.20.

We first manipulate Eq. (8.106) according to Y2 and Y4 into

H(s) = gmY2Y4

(Y1 + Y3 + Y5 + gm) Y2Y4 + (Y1 + Y3) Y5Y2 + Y1 (Y3 + Y5) Y4 + Y1Y3Y5
(8.107)

The transfer function is then easily derived as

H(s) = s2gmC2C4

s2 (g1 + g3 + g5 + gm)C2C4 + s [(g1 + g3) g5C2 + g1 (g3 + g5) C4] + g1g3g5

(8.108)
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Comparison of Eqs. (8.108) and (8.66) will give rise to design equations of ωo,Q, andK in terms
of gs and Cs. Using these equations we can determine component values and analyze sensitivity
performance. For the setting up of C2 = C4 = C and g1 = g3 = g5 = g we can obtain the
component values as

g = 4QωoC, gm = 64Q3ωoC

(
1 − 3

16Q2

)
, K = 1 − 3

16Q2
(8.109)

and the sensitivities of the design as

Sωog1
= Sωog3

= Sωog5
= 1

2

(
1 − 1

16Q2

)
,

Sωogm = −1

2

(
1 − 3

16Q2

)
, S

ωo
C2

= S
ωo
C4

= −1

2
(8.110)

SQg1
= SQg5

= −1

4

(
1 − 1

8Q2

)
, SQg3

= 1

32Q2
,

SQgm = 1

2

(
1 − 3

16Q2

)
, S

Q
C2

= S
Q
C4

= 0 (8.111)

SKC2
= SKC4

= 0, SKgm = 3

16Q2
,

SKg1
= SKg3

= SKg5
= − 1

16Q2
(8.112)

The sensitivities of the filter are extremely low, the maximum value being 1/2. Recalling the
highpass filter in Section 8.3.2 which has largeQ sensitivities for highQ design, the above highpass
filter has the advantage of being suitable for any practical Q values in term of sensitivity.

The highpass filter in Fig. 8.21 contains two floating capacitors and three grounded resistors
which will determine its performance to the OTA nonidealities and circuit parasitics, which will be
discussed with comparison with other filter structures in Section 8.7.4.

A 100 kHz highpass filter is now designed which has a normalized characteristic of

Hd(s) = s2

s2 + 0.5s + 1

which reveals that Q = 2. Let C2 = C4 = 10pF . We can obtain g1 = g3 = g5 = 50.265µS and
gm = 3.066mS. The designed filter will have a gain of K = 0.953.

8.7.2 Bandpass Filter

Four bandpass filter structures are presented in this section. The first bandpass filter is derived
from Fig. 8.20 by setting Y1 = g1, Y2 = sC2, Y3 = sC3, Y4 = g4, Y5 = g5 as shown in Fig. 8.22(a).
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The transfer function can be found, by sorting out Eq. (8.106) according to Y2 and Y3, as

H(s) = sgmg4C2

s2 (g4 + g5) C2C3 + s {[g1 (g4 + g5)+ g4 (g5 + gm)]C2 + g1 (g4 + g5) C3} + g1g4g5

(8.113)

FIGURE 8.22
Four bandpass filters derived from Fig. 8.20.

Similarly we can also derive the design formulas and sensitivity results for this circuit. When
C2 = C3 = C and g1 = g4 = g5 = g, the design formulas are found to be

g = √
2ωoC, gm = √

2ωoC
(
−5 +

√
2
Q

)
,

K = Q√
2

(
−5 +

√
2
Q

)
(8.114)

The OTA input terminals should be interchanged for practicalQ values. The sensitivities are derived
as

Sωogm = 0, Sωog4
= Sωog5

= 1

4
, Sωog1

= −SωoC2
= −SωoC3

= 1

2
(8.115)

SQgm = − Q√
2

(
−5 +

√
2

Q

)
, SQg4

= −1

4
+

√
2Q, SQg5

= 3

4
− 3Q√

2
,

SQg1
= 1

2
− 2

√
2Q, −SQC2

= S
Q
C3

= 1

2
−

√
2Q (8.116)

The second bandpass filter structure is shown in Fig. 8.22(b), which corresponds to Y1 = g1, Y2 =
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g2, Y3 = sC3, Y4 = sC4, Y5 = g5. The transfer function is given by

H(s) = sgmg2C4

s2 (g1 + g2) C3C4 + s {(g1 + g2) g5C3 + [(g1 + g2) g5 + (g1 + gm) g2]C4} + g1g2g5

(8.117)
Comparing Eq. (8.117) with Eq. (8.113) we can see that the bandpass filters in Figs. 8.22(a) and (b)
have similar transfer functions and therefore similar design procedures and sensitivity performance.

The third bandpass filter with Y1 = g1, Y2 = sC2, Y3 = g3, Y4 = g4, Y5 = sC5 is revealed in
Fig. 8.22(c). The fourth bandpass filter corresponding to the choice of Y1 = sC1, Y2 = g2, Y3 =
g3, Y4 = sC4, Y5 = g5 is drawn in Fig. 8.22(d). These two bandpass filters have similar transfer
functions. The transfer function of Fig. 8.22(c) is formulated as

H(s) = sgmg4C2

s2 (g1 + g3 + g4) C2C5 + s [(g1 + g3 + gm) g4C2 + g1 (g3 + g4) C5] + g1g3g4

(8.118)
and the transfer function of Fig. 8.22(d) is given by

H(s) = sgmg2C4

s2 (g2 + g3 + g5) C1C4 + s [(g2 + g3) g5C1 + g2 (g3 + g5 + gm)C4] + g2g3g5

(8.119)
It can be shown that all the bandpass filters in Fig. 8.22 have similar sensitivity performance. Also

they contain one grounded and one floating capacitor and one floating and two grounded resistors.
The OTA-C equivalents will have similar performances to the nonidealities of the gm OTA and the
OTAs simulating the resistors. Section 8.7.4 will further discuss these issues.

8.7.3 Lowpass Filter

Three lowpass filter configurations are now generated. The first lowpass filter is obtained by
selecting Y1 = sC1, Y2 = g2, Y3 = sC3, Y4 = g4, Y5 = g5. Substitution into Eq. (8.106) leads to

H(s) = gmg2g4

s2 (g4 + g5) C1C3 + s [(g2g4 + g2g5 + g4g5) C1 + (g2g4 + g2g5) C3] + g2g4 (gm + g5)

(8.120)
which compares to the standard lowpass filter characteristic. The corresponding lowpass filter circuit
is shown in Fig. 8.23(a).

If C1 = C3 = C and g2 = g4 = g5 = g, then it can be derived

g = 2ωoC

5Q
, gm = 5QωoC

(
1 − 2

25Q2

)
, K = 1 − 2

25Q2
(8.121)

The second interesting structure shown in Fig. 8.23(b) comes from the setting Y1 = g1, Y2 =
g2, Y3 = sC3, Y4 = g4, Y5 = sC5. The transfer function is given by

H(s) = gmg2g4

s2 (g1 + g2) C3C5 + s [(g1 + g2) g4C3 + (g1g2 + g1g4 + g2g4) C5] + (g1 + gm) g2g4

(8.122)
This transfer function is very similar to the one in Eq. (8.120). So the lowpass filter in Fig. 8.23(b)
will have similar performances as the one in Fig. 8.23(a).
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FIGURE 8.23
Three lowpass filters derived from Fig. 8.20.

The third lowpass filter is given in Fig. 8.23(c), which corresponds to Y1 = sC1, Y2 = g2, Y3 =
g3, Y4 = g4, Y5 = sC5. The transfer function is derived as

H(s) = gmg2g4

s2 (g2 + g3 + g4) C1C5 + s [(g2 + g3) g4C1 + g2 (g3 + g4) C5] + (gm + g3) g2g4

(8.123)
It can be shown that the lowpass structures in Fig. 8.23 all have low sensitivities. They contain two
grounded capacitors and one grounded and two floating resistors and have similar performances for
the nonidealities of the gm OTA and the OTAs simulating the resistors, as will be seen in the next
section.

8.7.4 Comments and Comparison

As discussed in Section 8.5, in integrated filter design, grounded capacitors are usually preferred
because they have smaller parasitic capacitances and need less chip area than floating ones. The
highpass filter contains two floating capacitors, bandpass filters use one grounded and one floating
capacitors, and lowpass filters contain only grounded capacitors. Thus, the lowpass filters are better
than the bandpass filters, which are better than the highpass filter in terms of the use of grounded
capacitors.

In filter design the number of OTAs should be small, as more OTAs means larger chip area, larger
power consumption, more noise, and more parasitic effects. As developed in Section 8.6, a grounded
resistor needs one OTA to simulate, but a floating resistor requires two OTAs to simulate. Note
also that the floating resistor when simulated using OTAs will introduce more equivalent parasitic
elements (aπ network, not an admittance). The highpass filter has three grounded resistors, bandpass
filters have two grounded and one floating resistor, and lowpass filters embrace one grounded and two
floating resistors. The numbers of OTAs needed for simulation of resistors in the highpass, bandpass,
and lowpass filters are three, four, and five, respectively. Therefore, in terms of the number of OTAs
the derived highpass structure is better than the bandpass filters, which are better than the lowpass
filters.

The number of grounded capacitors and the number of grounded resistors are in conflict; if one is
big, then the other must be small, as the total number is three. In real design some compromise may
have to be made in order to achieve the global optimum.
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The OTA is used as a differential input OTA in all highpass, bandpass, and lowpass structures. The
nonideality effects of the gm OTA will be similar for all the structures due to the similarity among the
structures, although for example, in some structures such as Figs. 8.21, 8.22(a–c) and 8.23(b), the
finite output conductance may be absorbed and in others such as Figs. 8.22(d), 8.23(a) and 8.23(c),
the finite output capacitance may be absorbed. (A similar observation for the finite OTA input
conductance and capacitance can also be discussed.)

The effects of nonidealities of the resistor simulation OTAs will be quite different. After absorption
(see Section 8.6), the highpass filter in Fig. 8.21 will have three grounded parasitic capacitors in
parallel with respective grounded resistors; the bandpass filters in Fig. 8.22 will have one floating
and two grounded parasitic capacitors in parallel with the corresponding floating and grounded
design resistors and one grounded parasitic resistor in parallel with the grounded capacitor; the
lowpass filters in Fig. 8.23 will have two floating and one grounded parasitic capacitors in parallel
with the related design resistors and two grounded parasitic resistors in parallel with respective design
capacitors. It is thus clear that with respect to the effects of nonidealities of the OTAs simulating
resistors, the highpass filter is the best, followed by the bandpass filters and then the lowpass filters.
Again detailed analysis can be conducted by using the changed admittances due to the nonidealities
of the resistor simulation OTAs to replace the ideal ones in Eq. (8.106) for any filter architectures.

8.8 Summary

In this chapter, we have used the operational transconductance amplifier to construct active filters.
We have in particular presented systematic methods for generating second-order filters using a single
OTA with a reasonable number of resistors and capacitors. The transfer functions, design formulas,
and sensitivity results have been formulated. These OTA filters are insensitive to tolerance and
parasitics, of high frequency capability, electronically tunable, and simple in structure. They are
suitable for discrete implementation using commercially available OTAs and also useful for IC
fabrication, when resistors are replaced by OTA equivalents, resulting in OTA-C filters. We have
investigated OTA-C filters derived from the single OTA filters by resistor substitution. The effects
of OTA nonidealities such as finite input and output impedances and transconductance frequency
dependence have also been considered for both discrete and IC filters. It has been proved that these
nonidealities influence filter performance. Some techniques have been suggested to reduce the effects
from the structural standpoint.

It is noted that there are some other OTA filter structures. References [23] and [24] gave some
single OTA structures with current input and voltage output. Filter architectures based on an OTA
and an opamp were studied in Ref. [25]. The opamp may limit the working frequency, but in most
cases it can be eliminated. OTA-C filters can also be obtained from single opamp active RC filters
(as well as multiple opamp architectures) either by direct replacement of the opamp and resistors
by OTAs or by some transformation [17]. Many more useful OTA-C filters will be introduced in
the following chapters. In the next chapter we will investigate two integrator loop OTA-C filters.
The current-mode equivalents of the single OTA filters developed in this chapter will be studied in
Chapter 12.
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Chapter 9

Two Integrator Loop OTA-C Filters

9.1 Introduction

As discussed in Chapter 8, using the operational transconductance amplifier (OTA) to replace the
conventional opamp in active RC filters results in several benefits. OTA-C filters offer improvements
in design simplicity, parameter programmability, circuit integrability, and high-frequency capability
when compared to opamp-based filters, as well as reduced component count. They are also insen-
sitive to tolerance. Hence OTA-C filter structures have received great attention from both academia
and industry and have become the most important technique for high-frequency continuous-time
integrated filter design [1]–[49]. Note that OTA-C filters are also widely known as gm-C filters in
the literature, especially in solid-state circuit implementation. The term transconductance-C filters
is also often used. In this book we adopt the term OTA-C filters.

This chapter deals with second-order OTA-C filters of two integrator loop configuration. Two
integrator loop filters are a very popular category of filters, their opamp realization being discussed
in the context of biquads in Chapter 4. They have very low sensitivity, and they can be used alone and
can also be used as a section for cascade high-order filter design. The early papers on two integrator
loop OTA-C filters include [6]–[11]. It was first proved in Ref. [6] that OTAs and capacitors can
be used to construct all building blocks for active filter design, laying the foundation for OTA-C
filters. Active filters using only OTAs and capacitors (without any opamps and resistors) were then
investigated practically in [9]. The authors of [9] not only proposed a very interesting two integrator
loop structure which has been simplified or generalized to develop more filter structures later [10],
but also proposed methods for some practical high frequency (MHz range) design problems such as
compensation and tuning which have been used in other integrated OTA-C filter designs [12, 46].
The term OTA-C filters was also first used in [9] in terms of then C-OTA filters. Another important
publication on (two integrator loop) OTA-C filters is reference [11], where versatile filter functions
were achieved by switches. This paper has led to many further similar publications such as [15, 19].
Since 1985 when a tutorial paper on OTA-C filters was published [12], more papers have been
published [13]–[40], [42]–[49]. In particular, Reference [16] has systematically summarized and
extended the work on two integrator loop OTA-C filters published previously [6]–[14] using the block
diagram method. OTA-C filters based on passive LC ladder simulation were also investigated [26]–
[28] at the early stages of the development of OTA-C filters, which will be discussed in details in the
next chapter.

In this chapter we will classify and study two integrator loop OTA-C filters in a systematic and
comprehensive way. Some further or new results will be given. Throughout the chapter the diversity
of structures, functions, methods, and performances is emphasized and many design choices are
given for a particular application.
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9.2 OTA-C Building Blocks and First-Order OTA-C Filters
[6, 12]

The basic building blocks with which we shall work comprise the ideal integrator, amplifier, and
summer. The OTA realizations of these blocks are depicted in Fig. 9.1, which were also discussed
in Chapter 3.

FIGURE 9.1
(a) Ideal integrator, (b) amplifier, and (c) summer.

With τ1 = C1/g1 the ideal integrator in Fig. 9.1(a) has the characteristic of

H(s) = Vo

Vi1 − Vi2
= 1

sτ1
(9.1)

The amplifier in Fig. 9.1(b) has gain

k = Vo

Vi1 − Vi2
= g1

g2
(9.2)

and the summer in Fig. 9.1(c) has the relation of

Vo = β1Vi1 − β2Vi2 + β3Vi3 (9.3)

where βj = gj/g4.
Some lossy integrators and first-order filters are shown in Fig. 9.2. These circuits can be constructed

using the basic building blocks in Fig. 9.1. They were also derived from the single OTA and three
admittance model in Chapter 8. In particular, the structure in Fig. 9.2(a) relates to the circuit in
Fig. 8.3(c). In practice they are used directly as building blocks in the design of second-order and
higher-order filters.

For the feedback circuit in Fig. 9.2(a), with τ1 = C1/g1 and k1 = g2/g3 we have the transfer
functions as

Vo1 = Vi1 + k1Vi2 − Vi3

τ1s + k1
(9.4)

Vo2 = k1Vi1 − k1τ1sVi2 + τ1sVi3

τ1s + k1
(9.5)
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FIGURE 9.2
Lossy integrators and first-order filters.

The two relations in Eqs. (9.4) and (9.5) show that the filter in Fig. 9.2(a) can fulfill lowpass and
highpass specifications, depending on the voltages applied to Vi1, Vi2 and Vi3. We can also obtain
a canonical lowpass structure with feedback being achieved by direct connection, that is, k1 = 1,
which is shown in Fig. 9.2(b). The corresponding relation of this circuit becomes

Vo1 = 1

τ1s + 1
Vi1 (9.6)

Note that the circuit of Fig. 9.2(b) is called a lossy integrator, as is that of Fig. 9.2(a) with input
Vi1 and output Vo1, Vi2 and Vi3 being left disconnected.

Another different lossy integrator is given in Fig. 9.2(c), which has the lowpass function

Vo = g1

sC1 + g2
Vi = 1

τ1s + k1
Vi (9.7)

where τ1 = C1/g1 and k1 = g2/g1.

The last lossy integrator is shown in Fig. 9.2(d), which has the lowpass function given by

Vo = 1

τ1s + k1
Vi (9.8)

where τ1 = C1/g1 and k1 = 1 + g2/g1. This one differs from Fig. 9.2(b) in that it has an extra OTA
with g2 and from Fig. 9.2(c) in that it has a feedback loop.
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9.3 Two Integrator Loop Configurations and
Performance

In this section we will generally introduce two integrator loop structures and their performance.
The OTA-C realizations will be discussed in the following sections.

9.3.1 Configurations

Figure 9.3 shows two configurations of two integrator loop systems. They both have two feedback
loops consisting of two ideal integrators and two amplifiers. The difference between Figs. 9.3(a)
and (b) is in the feedback structure; the former is of the summed-feedback (SF) type and the latter
of the distributed-feedback (DF). This is because in Fig. 9.3(a) the outputs of all the integrators are
fedback to the first integrator input; while in Fig. 9.3(b) the last (second in this case) integrator output
is fedback to the inputs of all the integrators. It is also apparent that Fig. 9.3(b) with τ1 and τ2 being
interchanged and k22 being represented by k11 is the transpose of Fig. 9.3(a).

FIGURE 9.3
Two integrator loop configurations.

Using the basic building blocks in Fig. 9.1 and the first-order circuits in Fig. 9.2 we can readily
realize the two integrator loop configurations in Fig. 9.3. Before doing this, we describe some
common features briefly.

9.3.2 Pole Equations

The loops in Fig. 9.3 determine the pole characteristics of the systems. The structure in Fig. 9.3(a)
has the system pole polynomial DSF (s) (denominator of the transfer function), the pole angular
frequency ωo and the pole quality factor Q as shown below, respectively.

DSF (s) = τ1τ2s
2 + k11τ2s + k12 = τ1τ2

(
s2 + ωo

Q
s + ω2

o

)
(9.9)

ωo =
√

k12

τ1τ2
,

ωo

Q
= k11

τ1
, Q = 1

k11

√
k12

τ1

τ2
(9.10)

Similarly Fig. 9.3(b) has the pole equation and parameters, given by Eqs. (9.11) and (9.12).

DDF (s) = τ1τ2s
2 + k22τ1s + k12 = τ1τ2

(
s2 + ωo

Q
s + ω2

o

)
(9.11)
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ωo =
√

k12

τ1τ2
,

ωo

Q
= k22

τ2
, Q = 1

k22

√
k12

τ2

τ1
(9.12)

9.3.3 Design

The polynomial equation determines the system poles, thus the performance. The coefficients kij
and time constants τj are determined by individual circuit components. For the given ωo and Q of
Fig. 9.3(a), the design will require deciding on kij and τj . This can be carried out using Eq. (9.10) for
the summed-feedback configuration. For example, setting τ1 = τ2 = τ yields the design formulas,
given by

k11 = ωoτ

Q
, k12 = (ωoτ)

2 (9.13)

We can also select k11 = k12 = k and obtain

τ1 = k
Q

ωo

, τ2 = 1

ωoQ
(9.14)

We can further determine component values for the particular realization. The design method is also
suitable for the distributed-feedback configuration.

9.3.4 Sensitivity

It can be readily shown that the two integrator loop systems have very low sensitivity. For instance,
using Eq. (9.10) the ωo, ωo/Q(= B) and Q sensitivities to τ s and ks are calculated as

Sωo
τ1

= Sωo
τ2

= −S
ωo

k12
= −1/2, S

ωo

k11
= 0 (9.15)

Sωo/Q
τ1

= −S
ωo/Q
k11

= −1, Sωo/Q
τ2

= S
ωo/Q
k12

= 0 (9.16)

SQ
τ1

= −SQ
τ2

= S
Q
k12

= 1/2, S
Q
k11

= −1 (9.17)

The calculated sensitivities are all very low. Most of them are either 0 or ±1/2 and only a few are
±1. (This is compared with the Q sensitivities of some bandpass filters which are Q-dependent in
Chapter 8.) The parameter sensitivities to circuit components can be further easily computed for the
particular realization.

9.3.5 Tuning

Tuning is a major problem in continuous-time filter design. In practice the constants τ1, τ2, k11,
k22, k12 can be properly implemented using OTAs and are thus electronically controllable since the
associated transconductances gj are related to bias voltages or currents. At this stage it is clear from
Eqs. (9.10) and (9.12) that Q can be adjusted by k11 (or k22) independently from ωo, a very attractive
property. We should stress that k11 (or k22) plays a key role in independent tuning. We shall see
soon that most structures have this independent tuning capability.

9.3.6 Biquadratic Specifications

In filter design, different types of filter may be required. The most common are the lowpass (LP),
bandpass (BP), highpass (HP), bandstop (BS, also called symmetrical notch), lowpass notch (LPN),
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highpass notch (HPN), and allpass (AP) characteristics. The standard expressions for these functions
are given in Table 9.1 for the convenience of the discussion to come. The general biquadratic transfer
function may also be required in some cases. Taking the development of Section 4.3 of Chapter 4
further, it can be written in the form

H(s) =
K2s

2 + K1
ωo

Q
s + K0ω

2
o

s2 + ωo

Q
s + ω2

o

(9.18)

The typical specifications can be derived from this general expression using the conditions in the
table.

Table 9.1 Some Popular Biquadratic Filter Specifications
Type Numerators Derivative conditions

LP KLPω
2
o K2 = K1 = 0,K0 = KLP

BP KBP
ωo

Q
s K2 = K0 = 0,K1 = KBP

HP KHP s
2 K1 = K0 = 0,K2 = KHP

BS KBS(s
2 + ω2

n), ωn = ωo K1 = 0,K2 = K0 = KBS

LPN KLPN(ωo

ωn
)2(s2 + ω2

n), ωn > ωo K1 = 0,K2 = KLPN(ωo

ωn
)2

K0 = KLPN

HPN KHPN(s2 + ω2
n), ωn < ωo K1 = 0,K2 = KHPN,

K0 = KHPN(ωn

ωo
)2

AP KAP (s
2 − ωo

Q
s + ω2

o) K2 = −K1 = K0 = KAP

Note: The denominators for all the functions have the same form as s2 +
ωo

Q
s + ω2

o .

In the following we will show how filter structures can be generated, how many functions can
be realized, how the filters can be best designed and how the performances can be evaluated and
enhanced. As a large number of different OTA-C filter structures can be obtained, we will only
selectively introduce some of the more interesting architectures.

9.4 OTA-C Realizations of Distributed-Feedback (DF)
Configuration

In this section we realize the DF configuration using OTAs and capacitors. The general realization
with arbitrary feedback coefficients is first discussed and then the structures with special feedback
coefficients are presented.

9.4.1 DF OTA-C Circuit and Equations

The DF configuration in Fig. 9.3(b) has two ideal integrators which can be realized using the ideal
OTA-C integrator in Fig. 9.1(a) and two feedback coefficients which may be realized using the OTA
voltage amplifier in Fig. 9.1(b). Therefore, the general realization will require two capacitors and
six OTAs, as shown in Fig. 9.4 [16]. We wish to use this biquad to show how to obtain different
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functions by using different inputs and outputs. Now we formulate the equations of this general
structure.

FIGURE 9.4
DF OTA-C realization with arbitrary k12 and k22.

With τ1 = C1/g1, τ2 = C2/g2, k12 = g5/g6, and k22 = g3/g4, nodal equations of the circuit can
be written as

Vo1 = (Vi1 − Vo4) /τ1s (9.19)

Vo2 = (Vo1 − Vo3) /τ2s (9.20)

Vo3 = (Vo2 − Vi3) k22 + Vi4 (9.21)

Vo4 = (Vo2 − Vi5) k12 + Vi6 (9.22)

From these equations we can derive the general input and output voltage relations as

DDF1(s)Vo1 = (τ2s + k22) Vi1 − k12k22Vi3 + k12Vi4 + (τ2s + k22) k12Vi5

− (τ2s + k22) Vi6 (9.23)

DDF1(s)Vo2 = Vi1 + k22τ1sVi3 − τ1sVi4 + k12Vi5 − Vi6 (9.24)

DDF1(s)Vo3 = k22Vi1 −
(
τ1τ2s

2 + k12

)
k22Vi3 +

(
τ1τ2s

2 + k12

)
Vi4

+ k12k22Vi5 − k22Vi6 (9.25)

DDF1(s)Vo4 = k12Vi1 + k12k22τ1sVi3 − k12τ1sVi4 −
(
τ1τ2s

2 + k22τ1s
)
k12Vi5

+
(
τ1τ2s

2 + k22τ1s
)
Vi6 (9.26)
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where
DDF1(s) = τ1τ2s

2 + k22τ1s + k12 (9.27)

9.4.2 Filter Functions

The equations formulated above indicate that this general circuit can offer a variety of filter
specification with different inputs and outputs. Table 9.2 presents all possible functions. To illustrate
how to use the table, we look at row Vo3 and column Vi4 and the corresponding intersection BS. If
we apply the input voltage to Vi4 only, grounding all the other input voltages, and take the output
voltage from Vo3 only, then the circuit will give a BS transfer function from Vi4 to Vo3. The lowpass
and bandpass filters can be easily seen from Eqs. (9.23–9.27).

Table 9.2 Filter Functions from DF OTA-C Structure in Fig. 9.4

Vi1 Vi3 Vi4 Vi5 Vi6 Vi35 Vi14 Vi46 Vi146

Vo1 LP LP BP LP

Vo2 LP BP BP LP LP BP

Vo3 LP BS BS LP LP HP LPN HPN BS

Vo4 LP BP BP HP AP

Vo1−Vo3 BP HP HP BP BP HP

It is a very attractive feature that the circuit can directly give the bandstop function without need
of extra components or difference component matching as in most cases. The BS filter is given by
output Vo3 for input Vi3 or Vi4, the transfer functions being given by

− Vo3

Vi3
= k22

Vo3

Vi4
= k22

(
τ1τ2s

2 + k12
)

τ1τ2s2 + k22τ1s + k12
(9.28)

More interesting, we can also obtain a lowpass notch filter (see Table 9.1 for its definition) from Vo3
when Vi1 = Vi4 = Vi14 meaning that Vi1 and Vi4 are connected together and provided by the same
source voltage Vi14, with the transfer function given by

Vo3

Vi14
= τ1τ2s

2 + (k12 + k22)

τ1τ2s2 + k22τ1s + k12
(9.29)

and a highpass notch filter from Vo3 when Vi4 = Vi6 = Vi46, given by

Vo3

Vi46
= τ1τ2s

2 + (k12 − k22)

τ1τ2s2 + k22τ1s + k12
(9.30)

For the realization of highpass characteristics, from the Vo1 and Vo3 expressions we can see that

DDF1(s) (Vo1 − Vo3) = τ2sVi1 + k22τ1τ2s
2Vi3 − τ1τ2s

2Vi4

+ k12τ2sVi5 − τ2sVi6 (9.31)

This reveals that the voltage output across nodes 1 and 3 (Vo1 −Vo3) can support the HP function for
inputs Vi3 or Vi4. However, this method may not be favorable in some cases, because of the floating
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output. But as will be seen in later sections it can be readily converted to the output to the ground
by using extra OTAs.

A further observation of Eqs. (9.23–9.27) indicates that when Vi3 = Vi5 = Vi35 the voltages of
nodes 3 and 4 offer the HP function. The transfer functions are rewritten as

Vo3

Vi35
= − k22τ1τ2s

2

τ1τ2s2 + k22τ1s + k12
(9.32)

Vo4

Vi35
= − k12τ1τ2s

2

τ1τ2s2 + k22τ1s + k12
(9.33)

In this case Vo1 supports the BP characteristic with the numerator of k12τ2s.
More complex functions can also be realizable. When Vi1 = Vi4 = Vi6 = Vi146, a general

biquadratic function can be attained from Vo4, given by

Vo4

Vi146
= τ1τ2s

2 + (k22 − k12) τ1s + k12

τ1τ2s2 + k22τ1s + k12
(9.34)

For example, the BS and AP characteristics will result from k12 = k22 and k12 = 2k22, respectively.
The difference equality or matching may not be easy to maintain in discrete implementation, but it
can be quite readily achieved in integrated circuit implementation with on-chip tuning.

From the above discussion it can be seen that the circuit with all capacitors grounded, all outputs
with respect to the ground, and no need of difference component matching, can offer all the LP, BP,
HP, BS, LPN, and HPN characteristics. With use of difference component matching, the AP and
other complex functions can also be achieved.

Filter functions can also be produced by capacitor injection. Voltage injection through the un-
grounded capacitor technique is however not suitable for integrated circuit implementation and
cascade design of high-order filters. The former is because the resulting floating capacitor will
increase the chip area and parasitic effects, and the latter is due to undesirable capacitive coupling
between cascaded stages caused by the injection capacitors and the need for ideal buffers. Even for
individual use the injection requires an ideal voltage source with zero source resistance. Practical
considerations therefore lead one to avoid using capacitor voltage injection and ground all capaci-
tors. In this chapter we therefore consider the realizations with only grounded capacitors. This also
implies that the capacitor injection technique will not be used.

9.4.3 Design Examples

We have presented various design examples of lowpass, bandpass, and highpass filters in Chapter 8.
For the DF OTA-C structure in Fig. 9.4, the LP, BP, and HP filters may be conveniently realized
using the transfer functions obtained in the above. Here we just show two more complex examples,
that is, the design of the BS and AP filters. First we want to see how the standard BS characteristic

HBS(s) = KBS

s2 + ω2
o

s2 + ωo

Q
s + ω2

o

(9.35)

can be implemented using the transfer function -Vo3/Vi3.
Comparing Eqs. (9.28) and (9.35) and setting τ1 = τ2 = τ we have

τ = KBS

Q

ωo

, k22 = KBS, k12 = (KBSQ)2 (9.36)
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Another method is to let k22 = k12 = k. The corresponding design formulas are derived as

k = KBS, τ1 = 1

ωoQ
, τ2 = KBS

Q

ωo

(9.37)

It is very flexible to further determine gs and Cs according to their relations with ks and τ s.
Consider the following specifications for the bandstop filter:

fo = 500kHz, Q = 8, KBS = 2

Based on the design formulas in Eq. (9.37), for example, with the selection of

g1 = g2 = g3 = g5 = g = 40µS

we can calculate the other component values as

g4 = g6 = g/KBS = 20µS, C1 = g/ωoQ = 1.59pF,

C2 = gKBSQ/ωo = 203.7pF

In this design only two different transconductance values are used, a useful feature for integrated
circuit implementation.

To design an AP filter having the transfer function

HAP (s) = KAP

s2 − ωo

Q
s + ω2

o

s2 + ωo

Q
s + ω2

o

(9.38)

we use the transfer function Vo4/Vi146 in Eq. (9.34). For the arbitrary k22 we determine the design
formulas as

KAP = 1, τ1 = 2

ωoQ
, τ2 = k22

Q

ωo

, k12 = 2k22 (9.39)

The reader is encouraged to consider other interesting realizations, for example the LPN and HPN
filters.

9.4.4 DF OTA-C Realizations with Special Feedback
Coefficients

We further consider the most important three special cases of the realization of the DF configuration
in Fig. 9.3(b). The first structure is the one in Fig. 9.5, which is the realization corresponding to
k12 = 1 and this unity feedback is realized by pure connection, saving two OTAs. This circuit was
first published in 1983 [10] and has also been investigated later on.

The equations of the circuit can be easily derived as (there remain τ1 = C1/g1, τ2 = C2/g2 and
k22 = g3/g4)

DDF2(s)Vo1 = (τ2s + k22) Vi1 − k22Vi3 + Vi4 (9.40)

DDF2(s)Vo2 = Vi1 + k22τ1sVi3 − τ1sVi4 (9.41)
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FIGURE 9.5
DF OTA-C realization with k12 = 1 and arbitrary k22.

DDF2(s)Vo3 = k22Vi1 −
(
τ1τ2s

2 + 1
)
k22Vi3

+
(
τ1τ2s

2 + 1
)
Vi4 (9.42)

D(s)DF2 (Vo1 − Vo3) = τ2sVi1 + k22τ1τ2s
2Vi3 − τ1τ2s

2Vi4 (9.43)

where
DDF2(s) = τ1τ2s

2 + k22τ1s + 1 (9.44)

As can be seen from Eqs. (9.40 through 9.44) this structure has the LP, BP, HP, and BS character-
istics. One interesting realization of the HP function is correspondent to Vi1 = Vi3 = Vi13 for Vo3,
giving

Vo3

Vi13
= − k22τ1τ2s

2

τ1τ2s2 + k22τ1s + 1
(9.45)

The other outputs have for Vi13: DDF2(s)Vo1 = τ2sVi13 and DDF2(s)Vo2 = (k22τ1s + 1)Vi13.
The second important case is that k12 = k22 = k and k is realized using a single voltage amplifier,

saving two OTAs, which is shown in Fig. 9.6. This structure was derived in [20] based on the
modification of the biquad proposed in [13]. The latter biquad is however not included in this
chapter because it is in nature based on current integrators. The current-mode OTA-C filters will be
handled in Chapter 12.

FIGURE 9.6
DF OTA-C realization with k12 = k22 = k.
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This structure offers the LP, BP, and HP functions, which can be seen from the following equations
with τ1 = C1/g1, τ2 = C2/g2 and k = g3/g4:

DDF3(s)Vo1 = (τ2s + k) Vi1 + kτ2sVi3 − τ2sVi4 (9.46)

DDF3(s)Vo2 = Vi1 + k (τ1s + 1) Vi3 − (τ1s + 1) Vi4 (9.47)

DDF3(s)Vo3 = kVi1 − kτ1τ2s
2Vi3 + τ1τ2s

2Vi4 (9.48)

where
DDF3(s) = τ1τ2s

2 + kτ1s + k (9.49)

A further look at Eq. (9.48) reveals that this filter structure also supports the BS function from Vo3
when Vi1 = Vi4 = Vi14. The function is given by

Vo3

Vi14
= τ1τ2s

2 + k

τ1τ2s2 + kτ1s + k
(9.50)

Vo1 and Vo2 will give the LP (numerator = k) and BP (numerator = −τ1s) for Vi14, respectively.
The simplest or canonical second-order filter is correspondent to k22 = k12 = 1 that is realized

with pure connection as shown in Fig. 9.7 [9, 10]. The transfer functions are given by

Vo1 = (τ2s + 1) Vi1

τ1τ2s2 + τ1s + 1
(9.51)

Vo2 = Vi1

τ1τ2s2 + τ1s + 1
(9.52)

A LP function can be obtained from Vo2, whilst Vo1 − Vo2 has a BP characteristic.

FIGURE 9.7
DF OTA-C realization with k12 = k22 = 1.

9.5 OTA-C Filters Based on Summed-Feedback (SF)
Configuration

This section is now concerned with the OTA-C synthesis of the SF two integrator loop configuration
in Fig. 9.3(a). Both arbitrary and special feedback coefficients are considered.
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9.5.1 SF OTA-C Realization with Arbitrary k12 and k11

Both general and specific OTA-C realizations of the SF configuration in Fig. 9.3(a) can be achieved.
A very important two integrator two loop OTA-C structure is the one similar to the KHN active RC
biquad (see Chapter 4 and [50]), as shown in Fig. 9.8 [8, 16]. Note that the two feedback coefficients
are not separately realized and they share the same OTA resistor, saving one OTA compared with
use of separate amplifiers. We now analyze the circuit.

FIGURE 9.8
SF OTA-C realization with arbitrary k12 and k11.

With τ1 = C1/g1, τ2 = C2/g2, k11 = g3/g5 and k12 = g4/g5, we can derive from the circuit

sτ1Vo1 = Vi1 − Vo3 (9.53)

sτ2Vo2 = Vo1 − Vi2 (9.54)

Vo3 = k11 (Vo1 − Vi3) + k12 (Vo2 − Vi4) + Vi5 (9.55)

Solution of the equations gives

DSF1(s)Vo1 = τ2sVi1 + k12Vi2 + k11τ2sVi3

+ k12τ2sVi4 − τ2sVi5 (9.56)

DSF1(s)Vo2 = Vi1 − (τ1s + k11) Vi2 + k11Vi3

+ k12Vi4 − Vi5 (9.57)

DSF1(s)Vo3 = (k11τ2s + k12) Vi1 − k12τ1sVi2 − k11τ1τ2s
2Vi3

− k12τ1τ2s
2Vi4 + τ1τ2s

2Vi5 (9.58)

DSF1(s) (Vi1 − Vo3) = τ1τ2s
2Vi1 + k12τ1sVi2 + k11τ1τ2s

2Vi3

+ k12τ1τ2s
2Vi4 − τ1τ2s

2Vi5 (9.59)
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where
DSF1(s) = τ1τ2s

2 + k11τ2s + k12 (9.60)

It can be seen that the circuit can realize the LP, BP, and HP functions. The output as a difference
of Vi1 − Vo3 under the excitation of Vi1 also has an HP characteristic. A very important feature of
the circuit is that it can simultaneously output the LP, BP, and HP functions, which is similar to the
KHN active RC biquad (see Chapter 4 or [50]) and is often called the KHN OTA-C biquad.

This circuit can also give a general function from Vo3 for Vi1 = Vi2 = Vi5 = Vi125, that is

Vo3

Vi125
= τ1τ2s

2 + (k11τ2 − k12τ1) s + k12

τ1τ2s2 + k11τ2s + k12
(9.61)

From this expression it can be seen that when k12τ1 = k11τ2 the circuit has a BS function, while if
k12τ1 = 2k11τ2 an AP will arise.

Design Example of KHN OTA-C Biquad

We now design the KHN biquad to realize the three standard LP, BP, and HP specifications in
Table 9.1. We choose Vi5 as the input (all the other input voltages are grounded) and use Vo2, Vo1,
and Vo3 as respective outputs. To start the design, we write the relevant transfer functions from
Eqs. (9.56 through 9.58) as

Vo2

Vi5
= −1

τ1τ2s2 + k11τ2s + k12
,
Vo1

Vi5
= −τ2s

τ1τ2s2 + k11τ2s + k12
,

Vo3

Vi5
= τ1τ2s

2

τ1τ2s2 + k11τ2s + k12
(9.62)

The minus sign in Eq. (9.62) will be left out in the following discussion for convenience. Using
Eq. (9.62) we can determine the design formulas as

k12 = 1

KLP

, k11 = 1

KBP

, τ1 = 1

KBP

Q

ωo

, τ2 = KBP

KLP

1

ωoQ
(9.63)

Suppose that fo = 200kHz, Q = 1, and KLP = KBP = KHP = 1 are required. Selecting
g1 = g2 = g5 = 62.83µS we can calculate g3 = g4 = 62.83µS and C1 = C2 = 50.00pF . For
the given requirements this is an excellent design, since all transconductances are identical, making
the biquad easy to tune; all capacitances are equal, being economical; and also the three transfer
functions have the same maximum amplitude value equal to 1, leading to the largest dynamic range
(this will be further investigated in Section 9.11.6).

9.5.2 SF OTA-C Realization with k12 = k11 = k

Another interesting structure is obtained when k12 = k11 = k and a single voltage amplifier is
utilized to realize the identical feedback coefficient, saving two OTAs, as shown in Fig. 9.9 [32].
Note that there is a change in the polarity of the g2 OTA due to the use of the differential input OTA
of g3, compared with the general SF structure in Fig. 9.8.

Nodal analysis with k = g3/g4, τ1 = C1/g1 and τ2 = C2/g2 yields

DSF2(s)Vo1 = τ2sVi1 + kVi2 − τ2sVi3 (9.64)
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FIGURE 9.9
SF OTA-C realization with k12 = k11 = k.

DSF2(s)Vo2 = −Vi1 + (τ1s + k) Vi2 + Vi3 (9.65)

DSF2(s)Vo3 = k (τ2s + 1) Vi1 − kτ1sVi2 + τ1τ2s
2Vi3 (9.66)

DSF2(s) (Vi1 − Vo3) = τ1τ2s
2Vi1 + kτ1sVi2 − τ1τ2s

2Vi3 (9.67)

where

DSF2(s) = τ1τ2s
2 + kτ2s + k (9.68)

Obviously this circuit supports the LP, BP, and HP characteristics and the simultaneous output of all
the three functions is available for Vi3. The general function can also be obtained for Vi1 = Vi2 =
Vi3 = Vi123, given by

Vo3

Vi123
= τ1τ2s

2 + k (τ2 − τ1) s + k

τ1τ2s2 + kτ2s + k
(9.69)

This expression reveals that τ1 = τ2 can lead to a BS characteristic, while τ1 = 2τ2 gives rise to an
AP function.

It is interesting to note the difference of the three general expressions in Eqs. (9.34), (9.61),
and (9.69) in the term of s in the respective numerators. From Eqs. (9.34), (9.69), and (9.61),
different functions can be obtained by setting k12 and k22, τ1 and τ2, or the mixture of kij and τj ,
respectively.

9.6 Biquadratic OTA-C Filters Using Lossy Integrators

In the above, we have discussed the two ideal integrator two loop structures. We now consider
the configurations given in Fig. 9.10. These configurations contain one overall loop with one ideal
integrator and one lossy integrator. For Fig. 9.10(a) if the lossy integrator is realized using the single
loop OTA-C integrators in Figs. 9.2(a) and (b), then the derived OTA-C filters will be the same as
those derived from the two ideal integrator two loop DF configurations. In this section we want
to emphasize another implementation, that is, using the lossy integrators in Figs. 9.2(c) and (d) to
realize the configurations in Fig. 9.10.
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FIGURE 9.10
Configurations with lossy integrator.

9.6.1 Tow-Thomas OTA-C Structure

The realization of Fig. 9.10(a) with k12 = 1 using the lossy integrator in Fig. 9.2(c) is shown in
Fig. 9.11 [7, 10, 11]. The voltage transfer functions with τ1 = C1/g1, τ2 = C2/g2 and k22 = g3/g2
are derived as

Vo1 = (τ2s + k22) Vi1 + Vi2 − k22Vi3

τ1τ2s2 + k22τ1s + 1
(9.70)

Vo2 = Vi1 − τ1sVi2 + k22τ1sVi3

τ1τ2s2 + k22τ1s + 1
(9.71)

FIGURE 9.11
Tow-Thomas OTA-C filter.

This OTA-C architecture consists of two integrators in a single loop: one ideal integrator and the
other lossy integrator of the type in Fig. 9.2(c). This biquad is the single most popular biquad in
practice. It can be considered to be the OTA-C equivalent of the Tow-Thomas (TT) active RC biquad
(see Chapter 4 or [51]). It can also be generated by OTA-C simulation of resistors and inductors of a
passive RLC resonator, thus being often called the active OTA-C resonator. This will be discussed in
detail in the next chapter. The circuit has very low sensitivity and low parasitic effects, and is simple
in structure. The functions of this OTA-C biquad have also been thoroughly investigated with the
aid of switches in [11, 15, 19]. The design and practical performance analysis of the filter will be
discussed in detail in Section 9.11.

9.6.2 Feedback Lossy Integrator Biquad

Another realization of Fig. 9.10(a) with k12 = 1 is the one using the lossy integrator in Fig. 9.3(d),
as shown in Fig. 9.12 [12]. This circuit differs from the TT filter in that it has two feedback loops
and differs from the canonical DF filter in Section 9.4.4 in that it uses a lossy integrator. The circuit
is a combination of two categories, although we discuss it in this section. The transfer functions of
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the circuit with the inputs and outputs indicated are derived as

Vo1 = (τ2s + k22) Vi1 − (k22 − 1)Vi3

τ1τ2s2 + k22τ1s + 1
(9.72)

Vo2 = Vi1 + (k22 − 1) τ1sVi3

τ1τ2s2 + k22τ1s + 1
(9.73)

where k22 = 1 + g3
g2

, τ1 = C1/g1 and τ2 = C2/g2.

FIGURE 9.12
Feedback lossy integrator OTA-C filter.

Similar discussion can be conducted based on the configuration in Fig. 9.10(b), but only the lossy
integrator in Fig. 9.2(c) can be used. The resulting OTA-C circuit is similar to that discussed above
in function and performance and is therefore not dealt with here.

9.7 Comparison of Basic OTA-C Filter Structures

In the above we have generated a number of OTA-C filter structures based on summed-feedback
and distributed-feedback two integrator loop configurations. This section compares performances
of these different architectures.

9.7.1 Multifunctionality and Number of OTA

From the formulated transfer expressions for different architectures it is seen that the proposed
filters all have a multifunction feature, supporting at least two functions at different input or output
positions. All the architectures support the LP and BP functions. The HP and BS filters are obtainable
from Figs. 9.4, 9.5, 9.6, 9.8, and 9.9, noting that using Figs. 9.8 and 9.9 to realize the BS function
involves difference matching although an on-chip tuning scheme may be used to achieve accurate
matching. Figures 9.4, 9.8, and 9.9 also offer the AP function. Finally, Fig. 9.4 can further supplies
the LPN and HPN characteristics.

The role of circuit node 3 makes a very special contribution to the multifunctionality, as can be
seen from the expressions related to output Vo3 or the inputs relevant to node 3 such as Vi3 and Vi4
in Figs. 9.4 through 9.6, 9.8, and 9.9 and Vi5 in Fig. 9.8.

Inspecting the different structures we can also see that Fig. 9.7 contains two OTAs; Figs. 9.11
and 9.12 both require three; Figs. 9.5, 9.6, and 9.9 all embrace four; Fig. 9.8 five; and Fig. 9.4 six.
All the architectures use two grounded capacitors.

In Table 9.3 we present the filter functions and the number of OTAs of all the structures. Two
extremes are the simplest two OTA structure with the LP and BP functions and the most complex
six OTA circuit containing all filter functions.
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Table 9.3 Comparison of Different OTA-C Filter Architectures

Functions with
Structure Number Functions with difference Sensitivity Tuning
of filter of OTA direct realization matching of ωo and Q of ωo and Q

Fig. 9.4 6 LP, BP, HP, AP Low Independent
BS, LPN, HPN

Fig. 9.5 4 LP, BP, HP, BS Low Independent
Fig. 9.6 4 LP, BP, HP, BS Low Not
Fig. 9.7 2 LP, BP Low Not
Fig. 9.8 5 LP, BP, HP BS, AP Low Independent
Fig. 9.9 4 LP, BP, HP BS, AP Low Not

Fig. 9.11 3 LP, BP Low Independent
Fig. 9.12 3 LP, BP Low Independent

9.7.2 Sensitivity

We have generally discussed the sensitivity. To appreciate this for individual architectures, we
summarize the parameter relations of ωo and Q in Table 9.4. From this table we can very easily
calculate the sensitivities of ωo and Q. These are found to be very low for all the structures generated,
with the values being 0, 0.5, 1, or between 0 and 1.

Table 9.4 Parameter Relations of OTA-C Realizations of SF and DF Configurations

Structure τ1 τ2 k11 k22 k12 ωo
ωo
Q

Q

Fig. 9.4 C1
g1

C2
g2

g3
g4

g5
g6

√
g5g1g2
g6C1C2

g3g2
g4C2

g4
g3

√
g5g1C2
g6g2C1

Fig. 9.5 C1
g1

C2
g2

g3
g4

1
√

g1g2
C1C2

g3g2
g4C2

g4
g3

√
g1C2
g2C1

Fig. 9.6 C1
g1

C2
g2

g3
g4

g3
g4

√
g3g1g2
g4C1C2

g3g2
g4C2

√
g4g1C2
g3g2C1

Fig. 9.7 C1
g1

C2
g2

1 1
√

g1g2
C1C2

g2
C2

√
g1C2
g2C1

Fig. 9.8 C1
g1

C2
g2

g3
g5

g4
g5

√
g4g1g2
g5C1C2

g3g1
g5C1

1
g3

√
g4g5g2C1

g1C2

Fig. 9.9 C1
g1

C2
g2

g3
g4

g3
g4

√
g3g1g2
g4C1C2

g3g1
g4C1

√
g4g2C1
g3g1C2

Fig. 9.11 C1
g1

C2
g2

g3
g2

1
√

g1g2
C1C2

g3
C2

1
g3

√
g1g2C2

C1

Fig. 9.12 C1
g1

C2
g2

1 + g3
g2

1
√

g1g2
C1C2

g2+g3
C2

1
g2+g3

√
g1g2C2

C1

9.7.3 Tunability

Electronic tunability is available. Parametersωo andQ in all structures may be tuned by controlling
the associated transconductances gj through adjustment of bias voltages or currents. It is recalled
from Chapter 8 that the relation of the transconductance and the bias current can be expressed as

gj = kIBj (9.74)
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where k is a constant equal to 19.2 at room temperature, depending on semiconductor material, etc.,
and IBj is the bias current. To see more clearly about how we can tune the bias current or voltage to
change the filter parameters we write the expressions of the TT biquad parameters directly in terms
of the bias current. For the same type OTA and g1 = g2 = g we can derive using the expressions
given in Table 9.4:

ωo = g√
C1C2

, Q = g

g3

√
C2

C1
,

ωo

Q
= g3

C2
(9.75)

Substituting Eq. (9.74) into Eq. (9.75) gives

ωo = k√
C1C2

IB, Q =
√

C2

C1

IB

IB3
,

ωo

Q
= k

C2
IB3 (9.76)

From this equation we can see that by tuning IB we can change ωo and Q proportionally without
influencing ωo

Q
, the bandwidth for the BP filter, which is determined by IB3. Trimming IB3 will

lead to a proportional change in ωo

Q
and an inversely proportional alteration in Q, without impact on

ωo which is determined by IB . This orthogonal tunability can be very convenient for some design
tasks. For example it can be used to design a BP filter with the same bandwidth for different center
frequencies or the same center frequency with different bandwidths. In fully integrated filters tuning
is automatic and adaptive [1, 2, 19, 41, 43, 44].

Independent tuning of ωo and Q is very important. From the relations in Table 9.4 we can see
that ωo and Q of most structures can be independently tuned, which is indicated in Table 9.3.

9.8 Versatile Filter Functions Based on Node Current Injection

In the above we have shown how to generate filter functions from the basic OTA-C network by
properly applying voltage inputs to the OTA input terminals and taking voltage outputs from circuit
nodes directly. These input and output methods are very simple and easy. There is no need for
any extra components, resulting in the simple structure. The input method may however cause the
differential input application of some OTAs which may increase the effects of OTA input impedances.
In some structures filter functions are still limited and filter design may suffer from less flexibility.
The biggest problem is that we cannot control zeros independently, because all the transconductances
are related to filter poles.

From this section on we will look at other input and output methods using extra input and output
OTA networks. Use of additional OTAs will give more design flexibility, although the structure may
be more complex. For example, arbitrary scaling of the filter gain may be achieved and various
universal biquads can be readily attained.

In this section we concentrate on the technique of node current injection. This input method is to
apply a voltage through an extra single-ended input OTA to some circuit node. Because the input
voltage is converted into the current, which is then injected into the circuit node, we give the name of
node current injection. This method will not introduce any extra circuit node and except the inherent
differential input application of the g2 OTA in Figs. 9.4 through 9.7, 9.9, and 9.12. All the other
OTAs are single ended.
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9.8.1 DF Structures with Node Current Injection

We redraw the circuit of Fig. 9.5, but with voltages being input to circuit nodes through gaj OTAs,
as shown in Fig. 9.13. With τ1 = C1/g1, τ2 = C2/g2, k22 = g3/g4, and αj = gaj /gj , j = 1, 2,
α3 = ga3/g4, the general relations are derived by routine circuit analysis as

DDF2(s)Vo1 = Vi1α1 (τ2s + k22) − Vi2α2 + Vi3α3 (9.77)

DDF2(s)Vo2 = Vi1α1 + Vi2α2τ1s − Vi3α3τ1s (9.78)

DDF2(s)Vo3 = Vi1α1k22 + Vi2α2k22τ1s

+ Vi3α3

(
τ1τ2s

2 + 1
)

(9.79)

DDF2(s) (Vo1 − Vo3) = Vi1α1τ2s − Vi2α2 (k22τ1s + 1)

− Vi3α3τ1τ2s
2 (9.80)

where DDF2 is the same as Eq. (9.44) and is given below for convenience.

DDF2(s) = τ1τ2s
2 + k22τ1s + 1 (9.81)

It can be seen that the DF structure with node current injection in Fig. 9.13 have the LP, BP, BS,
and HP characteristics. With Vi1 = Vi2 = Vi3 = Vi123 the outputs from Vo3 and Vo1 − Vo3 will be
universal in function. Take the former as an example. The universal transfer function is given by

Vo3

Vi123
= α3τ1τ2s

2 + α2k22τ1s + (α3 + α1k22)

τ1τ2s2 + k22τ1s + 1
(9.82)

For the DF structure of Fig. 9.6 with node current injection as shown in Fig. 9.14 we have the
following equations with τ1 = C1/g1, τ2 = C2/g2, k = g3/g4, αj = gaj /gj , j = 1, 2, α3 = ga3/g4:

FIGURE 9.13
DF structure of Fig. 9.5 with node current injection.
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DDF3(s)Vo1 = Vi1α1 (τ2s + k) − Vi2α2k − Vi3α3τ2s (9.83)

DDF3(s)Vo2 = Vi1α1 + Vi2α2τ1s − Vi3α3 (τ1s + 1) (9.84)

DDF3(s)Vo3 = Vi1α1k + Vi2α2kτ1s + Vi3α3τ1τ2s
2 (9.85)

where
DDF3(s) = τ1τ2s

2 + kτ1s + k (9.86)

FIGURE 9.14
DF structure of Fig. 9.6 with node current injection.

Note that these inputs can support the LP, BP, and HP functions. With Vi1 = Vi2 = Vi3 = Vi123
and the output taken from Vo3 we can obtain a universal biquadratic function as

Vo3

Vi123
= α3τ1τ2s

2 + α2kτ1s + α1k

τ1τ2s2 + kτ1s + k
(9.87)

Further study of this general biquad gives, in Table 9.5, all the standard filter functions. This
deserves some comments due to many interesting features. First, we can see that due to three extra
input OTAs we can freely control the numerator parameters by αj , without any influence on the
denominator parameters which are entirely determined by kij and τj . We can thus say that the zeros
and poles of the system are completely independently tunable, a very useful feature in filter design.
Second, any filter characteristics can be realized, making the architecture truly universal in function.
Third, no coefficient difference matching is involved, thus the architecture is insensitive to variation.
All this contrasts with those structures corresponding to Eqs. (9.34), (9.61), and (9.69). A final note
relates to −α2 and αj = 0 in the table. The former simply means that the input should be applied to
the inverting terminal of the ga2 OTA, rather than the non-inverting terminal as in Fig. 9.14; while
the latter implies that the gaj OTA should be removed since gaj = 0. In the remainder of the chapter
we will assume this for all similar cases to avoid the inconvenience of redrawing the circuit. Thus,
whenever we have a negative or zero αj , this is accomplished through the interchange of the input
terminals or removal of the gaj OTA, respectively.

9.8.2 SF Structures with Node Current Injection

The KHN OTA-C biquad with the voltage inputs through extra OTAs to circuit nodes is shown in
Fig. 9.15 [16]. With τ1 = C1/g1, τ2 = C2/g2, k12 = g4/g5, k11 = g3/g5, αj = gaj /gj , j = 1, 2,
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Table 9.5 Filter Realizations Based on Universal Biquad Derived from Fig. 9.14

Type Numerators Parameter conditions Design formulas

LP KLPω2
o α3 = α2 = 0 KLP = α1

BP KBP
ωo
Q

s α3 = α1 = 0 KBP = α2

HP KHP s2 α2 = α1 = 0 KHP = α3

BS KBS(s
2 + ω2

o ) α2 = 0, α3 = α1 = α KBS = α

LPN KLPN (
ωo
ωn

)2(s2 + ω2
n), ωn > ωo α2 = 0, α3 < α1 KLPN = α1, ω

2
n = α1

α3
ω2
o

HPN KHPN(s2 + ω2
n), ωn < ωo α2 = 0, α3 > α1 KHPN = α3, ω

2
n = α1

α3
ω2
o

AP KAP (s2 − ωo
Q

s + ω2
o ) α3 = −α2 = α1 = α KAP = α

α3 = ga3/g5, the input and output relations are formulated as

DSF1(s)Vo1 = Vi1α1τ2s − Vi2α2k12 − Vi3α3τ2s (9.88)

DSF1(s)Vo2 = Vi1α1 + Vi2α2 (τ1s + k11) − Vi3α3 (9.89)

DSF1(s)Vo3 = Vi1α1 (k11τ2s + k12) + Vi2α2k12τ1s

+ Vi3α3τ1τ2s
2 (9.90)

where
DSF1(s) = τ1τ2s

2 + k11τ2s + k12 (9.91)

FIGURE 9.15
SF structure of Fig. 9.8 with node current injection.

Note that these inputs can support the LP, BP, and HP functions. With Vi1 = Vi2 = Vi3 = Vi123
and the output taken from Vo3 we can obtain a universal biquadratic function, given by

Vo3

Vi123
= α3τ1τ2s

2 + (α1k11τ2 + α2k12τ1) s + α1k12

τ1τ2s2 + k11τ2s + k12
(9.92)

For the SF structure of Fig. 9.9 with node current injection as shown in Fig. 9.16, with τ1 = C1/g1,
τ2 = C2/g2, k = g3/g4, αj = gaj /gj , j=1, 2, and α3 = ga3/g4 we write the equations of node
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voltages as

DSF2(s)Vo1 = Vi1α1τ2s + Vi2α2k − Vi3α3τ2s (9.93)

DSF2(s)Vo2 = −Vi1α1 + Vi2α2 (τ1s + k) + Vi3α3 (9.94)

DSF2(s)Vo3 = Vi1α1k (τ2s + 1) − Vi2α2kτ1s + Vi3α3τ1τ2s
2 (9.95)

where
DSF2(s) = τ1τ2s

2 + kτ2s + k (9.96)

FIGURE 9.16
SF structure of Fig. 9.9 with node current injection.

From these equations, taking the output from Vo3 and connecting Vi1, Vi2, and Vi3 together as
Vi123, we can obtain the following universal voltage transfer function

Vo3

Vi123
= α3τ1τ2s

2 − (α2τ1 − α1τ2) ks + α1k

τ1τ2s2 + kτ2s + k
(9.97)

Now we want to explain the generation method of universal biquads in the above from another
viewpoint, which will be useful to facilitate our further investigation in the next two sections. In the
above we connect all three voltage inputs together as a single voltage input. We can express this by
saying that the single input voltage is distributed onto all circuit nodes by converting the voltage into
currents using extra gaj OTAs. This can be drawn as shown in Fig. 9.17(a), which clearly shows how
to produce node input currents Ii1, Ii2, and Ii3 from a single voltage input Vi . We intuitively call the
circuit the distributor. Thus we say that we can construct universal biquads from basic structures by
using the input distribution method [21, 23, 24, 25, 47].

9.9 Universal Biquads Using Output Summation
Approach

As we have found, using additional OTAs can achieve many advantages. To implement arbitrary
transmission zeros three programmable parameters are needed to independently tune the numerator
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FIGURE 9.17
(a) Input distributor and (b) output combiner.

coefficients. The input distribution and output summation techniques can be utilized. As has been
already demonstrated, for instance, we can use the input distributor to convert a single voltage input to
weighted multiple current inputs, collect the terms in the output related to these multiple inputs with
the weights to the single input, and adjust the weight coefficients to produce arbitrary transmission
zeros and gains without any influence on the poles. In a similar way we may also add the summer
in Fig. 9.17(b) to combine the multiple outputs for a certain input to generate any desired zeros and
gains [21]–[23], [25, 47], which is the topic of this section.

9.9.1 DF-Type Universal Biquads

The summation method can be used to construct the universal biquad based on the DF realization
in Fig. 9.5. From Eqs. (9.40 through 9.42) summing the three node voltages for Vi3, or Vi4, or Vi13
(defined as before) we can obtain the respective universal biquads. For the input Vi4 for example,
summation of the LP (Vo1), BP (Vo2) and BS (Vo3) outputs with the weights of β1 = gb1/gr ,
β2 = gb2/gr and β3 = gb3/gr gives:

Vo

Vi4
= β3τ1τ2s

2 − β2τ1s + (β1 + β3)

τ1τ2s2 + k22τ1s + 1
(9.98)

The reader can verify that taking the output of Vo1 − Vo3 as a summing element will generate more
universal biquads. Note that the βj definitions for all universal biquads are the same as those given
above throughout Section 9.9. We shall therefore not repeat them in the following.

For the DF structure in Fig. 9.6, summation of the three output voltages for Vi3, Vi4, or Vi14 can
also produce corresponding universal biquads. TakingVi14 as an example, the LP, BP, and BS outputs
from Vo1, Vo2, and Vo3, respectively, are summed together to give a universal transfer function:

Vo

Vi14
= β3τ1τ2s

2 − β2τ1s + (β1 + β3) k

τ1τ2s2 + kτ1s + k
(9.99)

Of course, many universal biquads can also be obtained from Fig. 9.4 using the summation
technique. But considering the summation will introduce four more OTAs, so the total number of
OTAs in such biquads would reach ten and thus not be very attractive.

9.9.2 SF Type Universal Biquads

It is easy to derive a universal biquad based on the KHN OTA-C structure in Fig. 9.8. Equations
reveal that summing all three output node voltages for Vi3, Vi4 and Vi5 will result in three correspond-
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ing universal biquads. And if the output Vi1 −Vo3 is also taken into summation, more combinations
can be produced. For instance, summation of Vo1 (LP), Vo2 (BP) and Vi1 − Vo3 (HP) for Vi1 will
lead to a universal biquad as shown in Fig. 9.18, with the transfer function given by

Vo

Vi1
= β3τ1τ2s

2 + β2τ2s + β1

τ1τ2s2 + k11τ2s + k12
(9.100)

Note that summing Vi1 − Vo3 is realized by connecting Vi1 to the non-inverting terminal of the gb3
OTA and Vo3 to the inverting. This method introduces the differential input application of the gb3
OTA.

FIGURE 9.18
Universal KHN OTA-C biquad.

For the SF structure in Fig. 9.9, we can similarly generate some universal biquads. One example
is the summation of Vo1 (BP), Vo2 (LP) and Vo3 (HP) with Vi3 as input, giving a universal transfer
function of

Vo

Vi3
= β3τ1τ2s

2 − β1τ2s + β2

τ1τ2s2 + kτ2s + k
(9.101)

It should be pointed out that in some cases we may need to consider the sign of β. We must
emphasize that the negative βj can be simply achieved by inputing the voltage to the non-inverting
terminal of the gbj OTA. This will also be implied in the next section.

9.9.3 Universal Biquads Based on Node Current Injection and
Output Summation

Now we generate some universal biquads from the structures with node current inputs by using
the output summation technique. We present four such biquads for the illustration purpose, based
on the DF structure in Fig. 9.13, DF structure in Fig. 9.14, SF structure in Fig. 9.15, and SF structure
in Fig. 9.16, respectively. All these universal biquads are obtained by means of summation of three
node voltages Voj , j = 1, 2, 3 with input Vi3 using the output combiner in Fig. 9.17(b). The first one
is based on the DF structure in Fig. 9.13. Summing three output voltages for Vi3 leads to

Vo

Vi3
= α3

β3τ1τ2s
2 − β2τ1s + (β1 + β3)

τ1τ2s2 + k22τ1s + 1
(9.102)
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For the DF structure in Fig. 9.14 we have by summing the three node voltages

Vo

Vi3
= α3

β3τ1τ2s
2 − (β2τ1 + β1τ2) s − β2

τ1τ2s2 + kτ1s + k
(9.103)

For the SF structure in Fig. 9.15, the addition of the summation network leads to

Vo

Vi3
= α3

β3τ1τ2s
2 − β1τ2s − β2

τ1τ2s2 + k11τ2s + k12
(9.104)

Its current transfer function version was given in [18].
Finally the SF structure in Fig. 9.16 with the summation network has

Vo

Vi3
= α3

β3τ1τ2s
2 − β1τ2s + β2

τ1τ2s2 + kτ2s + k
(9.105)

9.9.4 Comments on Universal Biquads

Several important notes should be highlighted in the construction of universal biquads. The
summation method will introduce an additional resistive node, the overall output node. This node
will produce a pole at high frequencies due to parasitic capacitances, which should be dealt with
carefully for HF applications. The summation method also needs one more OTA (for voltage output)
than the distribution method.

Inspection of the universal biquads generated using both the distribution and summation methods
indicates that some biquads may need difference matching for some particular filters, whereas others
may realize them directly. The need of difference matching is a disadvantage in filter design, because
of the high sensitivity to the component variation.

Note that node 3, the output node of the g3 OTA, in all filter structures has a particular contribution
to the universality and multifunctionality. The distribution-type biquads all use Vo3 as the output
and the summation-type biquads use Vi3 or some others relevant to node 3 as the input.

To see clearly how to apply the input distributor and output summer to obtain a general biquadratic
function the equations of node voltages in terms of node currents can be written, since as indicated
in Fig. 9.17 the distributor and summer perform weighted voltage-to-current conversion.

Using both the distribution and summation methods can of course produce more universal biquads
but will need too many OTAs and is not necessary since either the distribution or the summation can
achieve sufficient numerator parameter control and fulfill the set of functions that the combination
of the two can provide. However for the circuit which does not have the term of s2 for any input and
output, then both methods may be needed to obtain a universal realization. This is discussed in the
next section.

9.10 Universal Biquads Based on Canonical and TT Circuits

For the canonical biquad we must include the input voltage in the combination since the basic circuit
cannot offer the characteristics with term s2. Using the input distribution and output summation
methods we can obtain five universal biquads as shown in Fig. 9.19. Their transfer functions are
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given in the order of the figures below:

Ha(s) = gz2C1C2s
2 + (gz2g2C1 − gz1g1C2) s + (gz2 − gz0) g1g2

gr
(
C1C2s2 + g2C1s + g1g2

) (9.106)

Hb(s) = gz2C1C2s
2 + (gz2g2C1 − gz1gz3C1) s + (gz2g1g2 − gz0gz3g2)

gr
(
C1C2s2 + g2C1s + g1g2

) (9.107)

Hc(s) = gz2C1C2s
2 + (gz2g2C1 − gz1gz3C2) s + (gz2g1g2 − gz1gz3g2 − gz0gz3g2)

gr
(
C1C2s2 + g2C1s + g1g2

) (9.108)

Hd(s) = gz2C1C2s
2 + (gz2g2C1 − gz1gz3C2) s + (gz2g1g2 − gz1gz3g2 − gz0gz3g1)

gr
(
C1C2s2 + g2C1s + g1g2

) (9.109)

He(s) = gz2C1C2s
2 + (gz2g2C1 − gz1gz3C1) s + (gz2g1g2 − gz0gz3g1)

gr
(
C1C2s2 + g2C1s + g1g2

) (9.110)

These expressions show the variety of universal biquads that can be achieved. The structures in
Fig. 9.19(a) and (b) were given in [22] and [24], respectively. As an exercise, the reader may be
interested to check the equations for the structures in Fig. 9.19(c) through (e). Reference [23] has
also given a complete set of universal biquads based on the TT structure. The generation method is
similar to the above based on the canonical configuration.

9.11 Effects and Compensation of OTA Nonidealities

In the above we presented many two integrator loop filter structures. In this section we deal with
practical frequency responses and dynamic range of these filters.

9.11.1 General Model and Equations

In Chapter 8 we discussed the OTA nonideality effects in some detail. It should be stressed that
parasitics, in particular, the high frequency parasitic parameters, should be carefully considered, as
OTA filters are used at high frequencies [29]–[33], [43, 44], [2, 9, 24]. In the following we assess
the effects of OTA nonidealities on the TT OTA-C circuit for illustrative purpose. To do this we first
define OTA nonideality symbols and then consider the circuit in Fig. 9.20.

Denote Yij and Yoj as the input and output admittances of the j th OTA, respectively. They
can be written as Yij = Gij + sCij and Yoj = Goj + sCoj , where Gij , Cij , Goj and Coj are the
input conductance, input capacitance, output conductance, and output capacitance, respectively. The
finite bandwidth results in the transconductance frequency dependence, which can be approximately
expressed as gj (s) ≈ gj0(1 − s

ωbj
) where gj0 is the nominal transconductance and ωbj is the OTA

bandwidth. For simplicity we will drop subscript 0 in the following.
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FIGURE 9.19
Universal biquads based on canonical structure.

In the ideal case, typical analysis of the circuit in Fig. 9.20 yields

Vo1

Vi

= g0Y2

Y1Y2 + g1g2
,

Vo2

Vi

= g0g2

Y1Y2 + g1g2
(9.111)

From these equations we can verify that selecting Y1 = sC1 and Y2 = sC2 +g3 leads to a lowpass
filter from Vo2, with the transfer function given by

H(s) = Vo2

Vi

= g0g2

C1C2s2 + g3C1s + g1g2
(9.112)

and the pole parameters given by

ωo =
√

g1g2

C1C2
, Q =

√
g1g2C1C2

g3C1
(9.113)

The resulting structure is the same as that in Fig. 9.11 in Section 9.6.
When Y1 = sC1 + g4 and Y2 = sC2 the circuit will have a bandpass function from Vo1 and a

lowpass from Vo2. For Y1 = sC1 + g4 and Y2 = sC2 + g3, a lowpass transfer function can be
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FIGURE 9.19
Universal biquads based on canonical structure (continued).

FIGURE 9.20
A circuit model for analysis of OTA nonidealities.

attained from Vo2, given by

Vo2

Vi

= g0g2

C1C2s2 + (g3C1 + g4C2) s + (g1g2 + g3g4)
(9.114)

The corresponding circuit is displayed in Fig. 9.21.
Taking OTA finite input and output impedances and finite bandwidth into consideration, we have

Vo1

Vi

= g0(s)Y
′
2

Y ′
1Y

′
2 + g1(s)g2(s)

,
Vo2

Vi

= g0(s)g2(s)

Y ′
1Y

′
2 + g1(s)g2(s)

(9.115)

where Y ′
1 and Y ′

2 depend on the nominal assignment of Y1 and Y2. For example, when Y1 = sC1 and
Y2 = sC2 + g3 and note in particular that g3 is a grounded OTA resistor, not a discrete resistor, we
have Y ′

1 = sC1 + (Yo0 + Yo1 + Yi2) and Y ′
2 = sC2 + g3(s) + (Yi1 + Yo2 + Yi3 + Yo3).
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FIGURE 9.21
LP filter with complete compensation of finite OTA impedances.

9.11.2 Finite Impedance Effects and Compensation

For the structure of Y1 = sC1 and Y2 = sC2 +g3, taking finite OTA impedances into consideration
and denoting C′

1 = C1 + (Co0 + Co1 + Ci2), C′
2 = C2 + (Ci1 + Co2 + Ci3 + Co3), g′

3 = g3 +
(Gi1 + Go2 + Gi3 + Go3) and gp = Go0 + Go1 + Gi2, we have

H ′(s) = Vo2

Vi

= g0g2

C′
1C

′
2s

2 + (
g′

3C
′
1 + gpC

′
2

)
s + (

g1g2 + g′
3gp

) (9.116)

We can see that OTA nonidealities have changed all filter coefficients. For instance, the pole frequency
and quality factor now become

ω′
o =

√
g1g2 + g′

3gp

C′
1C

′
2

, Q′ =
√(

g1g2 + g′
3gp

)
C′

1C
′
2

g′
3C

′
1 + gpC

′
2

(9.117)

and the magnitude at the zero frequency becomes

H ′(0) = g0g2

g1g2 + g′
3gp

(9.118)

instead of H(0) = g0/g1, although H ′(∞) = 0. When Y1 = sC1 + g4 and Y2 = sC2 the circuit
will have similar effects from OTA parasitics.

From the above analysis we can see that all parasitic capacitances are referred to the ground due to
the single-ended input of the OTA and these parasitic capacitances can be absorbed into the grounded
circuit capacitances. This again confirms the conclusion that using single-ended OTAs and grounded
capacitors can reduce the effects of parasitic capacitances. This is also true for the finite conductance
problem. As we can see, the grounded circuit conductance (the g3 OTA) can compensate all parasitic
conductances including the finite OTA conductance. Therefore for the lowpass function if we select
Y1 = sC1 + g4 and Y2 = sC2 + g3, that is, using one more grounded OTA resistor, all finite input
and output conductances and capacitances can be absorbed.

Consider the circuit in Fig. 9.21 again. Suppose that OTAs in the circuit have finite conductances
and capacitances as

Gi1 = Gi2 = Gi3 = Gi4 = 0, Go0 = Go1 = Go2 = Go3 = Go4 = 0.5µS,

Ci1 = Ci2 = Ci3 = Ci4 = 0.04pF, Co0 = Co1 = Co2 = Co3 = Co4 = 0.2pF
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To see how absorption works, we denote and calculate

.C1 = Ci2 + Ci4 + Co0 + Co1 + Co4 = 0.68pF,

.C2 = Ci1 + Ci3 + Co2 + Co3 = 0.48pF,

.g3 = Gi1 + Gi3 + Go2 + Go3 = 1µS,

.g4 = Gi2 + Gi4 + Go0 + Go1 + Go4 = 1.5µS

It is recalled from Chapter 8 that the absorption approach determines the real component values by
subtracting the nominal values with the increments due to nonideal OTA parameters, that is

Creal = Cnominal − .C, greal = gnominal − .g

This requires that

Cnominal > .C, gnominal > .g

For example, the nominal value for C1 must be much bigger than 0.68 pF and the nominal value
of the g4 transconductance must be much larger than 1.5µS. It should be noted that at very high
frequencies this may not be always met. Careful design is thus needed to handle the parasitic effects.

9.11.3 Finite Bandwidth Effects and Compensation

Finite bandwidth or transconductance frequency dependence or phase shift will also affect the filter
performance as shown in Eq. (9.115). Analysis can be conducted using these equations directly. The
modified transfer function for Y1 = sC1 and Y2 = sC2 + g3, for example, is derived as

H ′′(s) =
g0g2

ωb0ωb2
s2 − g0g2

(
1

ωb0
+ 1

ωb2

)
s + g0g2(

C1C2 − g3C1
ωb3

+ g1g2
ωb1ωb2

)
s2 +

[
g3C1 − g1g2

(
1

ωb1
+ 1

ωb2

)]
s + g1g2

(9.119)

from which we can see that the frequency response is indeed changed. Putting it in a standard form
of

H ′′(s) = K
s2 − ωz

Qz
s + ω2

z

s2 + ω′
o

Q′ s + ω′2
o

(9.120)

the modified parameters can be obtained as below:

K =
g0g2

ωb0ωb2

C1C2 − g3C1
ωb3

+ g1g2
ωb1ωb2

(9.121)

ω′
o =

√
g1g2

C1C2 − g3C1
ωb3

+ g1g2
ωb1ωb2

(9.122)
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Q′ =

√
g1g2

(
C1C2 − g3C1

ωb3
+ g1g2

ωb1ωb2

)
g3C1 − g1g2

(
1

ωb1
+ 1

ωb2

) (9.123)

ωz = √
ωb0ωb2 (9.124)

Qz =
√
ωb0ωb2

ωb0 + ωb2
(9.125)

Note also that H ′′(∞) = K is no longer zero, although H ′′(0) = H(0) = g0/g1.
The circuit may also be unstable if the design does not care this problem very much, since the

finite bandwidth may cause the denominator coefficients to be negative and shift the poles into the
right-half s plane. To ensure the stability, the following conditions with the first-order approximation
should be met:

C1 >
g1g2

g3

(
1

ωb1
+ 1

ωb2

)
, C2 >

g3

ωb3
(9.126)

Compensation of the effects of transconductance frequency dependence is possible [9, 33, 46].
For the ideal integrator we can put a resistor in series with the capacitor [9] and this resistor can be
realized using a MOSFET in the ohm region in integrated circuit design [46]. From the circuit in
Fig. 9.22 we can write

H(s) = gm

sC

1 + sRC

1 + s/ωb

(9.127)

It is clear that setting

R = 1/ωbC (9.128)

the circuit will be an ideal integrator. Doing so for all integrators, the effects of finite bandwidth in
the canonical structure in Fig. 9.7, for example, can be completely compensated.

FIGURE 9.22
Passive compensation of finite bandwidth effects.

An alternative active compensation method [33] is based on the two OTAs of different transcon-
ductances, which are connected in parallel with opposite polarities, as shown in Fig. 9.23. This
arrangement of the two OTAs is equivalent to a differential input OTA with the transconductance
equal to the difference of the two OTAs and with reduced excess phase. The principle of compensa-
tion is now explained. The total effective transconductance can be expressed in terms of individual
single-pole characteristics with the first-order approximation as

ge(s) = g1(s) − g2(s) = g1

(
1 − s

ωb1

)
− g2

(
1 − s

ωb2

)
(9.129)
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where the subscripts 1 and 2 refer to OTAs 1 and 2, respectively. Equation (9.129) can also be
manipulated to

ge(s) = (g1 − g2)

[
1 − s

g1/ωb1 − g2/ωb2

g1 − g2

]
(9.130)

It can be seen from this equation that if the condition g1/ωb1 = g2/ωb2 is met, the two OTAs will
behave like a single OTA having an effective transconductance ge = g1 − g2 which is frequency
independent.

FIGURE 9.23
Active compensation of OTA finite bandwidth.

It should be noted that the first-order cancellation of excess phase is valid at frequencies much
lower than ωb1 and ωb2. The active compensation can achieve a wider tuning range but cause a
reduction in the effective transconductance, both due to the difference of two transconductances. As
two OTAs are used, the compensation scheme will have an increase in the power dissipation and
chip area. It is, therefore, usually used to replace the OTAs whose excess phase severely affects the
filter performance, e.g., the OTAs realizing integrators.

9.11.4 Selection of OTA-C Filter Structures

Filter structures may be equivalently transformed for some functions in the ideal case. For example,
the canonical biquad in Fig. 9.24(a) can be equivalently converted into the circuit in Fig. 9.24(b),
which is similar to the TT biquad. Notice that all two-integrator filters offer the lowpass and bandpass

FIGURE 9.24
Illustration of equivalent structures.

functions. It can be generally said that these architectures are ideally equivalent in realizing the same
LP or BP characteristic. It must be realized, however, that this happens only in the ideal situation
with everything being perfect. In practice, filter performances may vary from structure to structure.
For instance, the effects of OTA nonidealities on Figs. 9.24(a) and (b) will be different. For the
desired function we may select the best structure with respect to practical performances among those
which can ideally realize the function. This is also why we generate many filter configurations.

The illustration in Fig. 9.24 also shows how a filter using the differential input OTA can be
converted into the equivalent using the single-ended input OTA, or the converse of this. Note that
Fig. 9.24(a) contains two OTAs but Fig. 9.24(b) has four OTAs. It is also interesting that among
all the structures presented in the chapter, only the KHN and TT biquads do not use the differential
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input OTA inherent in the pole network. In all the other structures the g2 OTA has the differential
input application.

9.11.5 Selection of Input and Output Methods

As we have shown, various input and output techniques may be used to realize a desired transfer
function for a chosen structure. Theoretically we can inject a voltage signal through a capacitor,
or input the voltage using the differential input terminals of OTAs, or apply the voltage through an
extra single-ended input OTA onto the circuit node. The output can be the voltage of some circuit
node or the converted node voltage using an OTA voltage amplifier. Ideally they may produce the
same function required. But practically using different inputs and outputs will result in different
performances. How to choose different input and output techniques may require various factors
such as the effects of OTA nonidealities to be taken into account in particular applications. We have
already excluded the method of applying the input voltage through the ungrounded capacitor, since it
is not desirable from the viewpoint of integration and cascading. The method for inputing the voltage
to the OTA input terminals is the simplest and easiest way, but may increase the parasitic effects due to
the finite OTA input impedances. Imposing the voltage through an additional single-ended input OTA
to the circuit node needs more OTAs although in some cases it may reduce the feedthrough effects.
The output through additional OTAs may only be considered if a universal biquad is required, as the
summing node of this method will have a parasitic pole at high frequencies. But generally the method
of applying the input voltage and taking output voltage with additional OTAs can offer some design
flexibility and ease of independent tuning. With these approaches it is also easy to form single-input
and single-output universal biquads and to utilize two different sets of OTAs to generate system poles
and zeros separately by using the voltage-to-current input distributor or voltage-to-current output
summer, as we have shown in the chapter.

9.11.6 Dynamic Range Problem

According to the definition in Chapter 5, the dynamic range can be obtained by calculating the
ratio of the maximum signal magnitude to the noise level at either the input or the output nodes of
the system.

Generally, given the desired filter transfer function, the dynamic range of a filter is dependent
on the dynamic ranges of the network elements, especially the active devices, and the filter net-
work architecture. The limited dynamic range of the OTA is confined by the linear input range
and noise level, which restricts the dynamic range of the filter. Several publications have dealt
with noise performance analysis [34]–[37], [43] (due to OTA input voltage noise) and large-signal
capability [38]–[40], [16, 24] (due to OTA nonlinearity) of OTA-C filters.

Here we want to consider the upper limit, the maximum signal level. The finite maximum magni-
tude of signal is mainly due to the limited linear range of the OTA as discussed in Chapter 3. For the
given OTAs, to maximize the maximum input voltage, it was shown in Section 5.5.3 of Chapter 5
that the maximum values of all the OTA output voltages must be equal from structural viewpoint.
For the KHN structure in Fig. 9.8 and for Q > 1, for example, using Eqs. (9.56 through 9.58) the
maximum values of Vo1, Vo2 and Vo3 for Vi5 can be approximated as

∣∣∣∣Vo2

Vi5

∣∣∣∣
max

= Q

k12
,

∣∣∣∣Vo1

Vi5

∣∣∣∣
max

= 1

k11
,

∣∣∣∣Vo3

Vi5

∣∣∣∣
max

= Q (9.131)

which are the magnitude values at ωo.
To make the three values equal requires k12 = 1 and k11 = 1/Q. Taking this into consideration

it can be seen that the gain KLP of the lowpass filter must be equal to 1 and the gain KBP of the
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bandpass filter must be equal to Q. In other words, only KLP = 1 and KBP = Q can be achieved for
the maximum signal operation, rather than arbitrary values. In the case of maximum signal swing,
according to the above results and Eq. (9.63) we have

τ1 = τ2 = 1/ωo (9.132)

Another example is the design for the maximum signal swing of the TT filter in Fig. 9.11. From
Eqs. (9.70) and (9.71) we can see that the TT biquad using the input Vi3, for example, has

∣∣∣∣Vo1

Vi3

∣∣∣∣
max

=
√

τ2

τ1
,

∣∣∣∣Vo2

Vi3

∣∣∣∣
max

= 1 (9.133)

For the maximum signal swing design we must have τ1 = τ2 and for given ωo and Q we can
determine

τ1 = τ2 = 1

ωo

, k22 = 1

Q
(9.134)

To finish the discussion of practical design considerations we mention the loading and mismatch
effects. As we have already discussed in various places, real OTAs do not have infinite output
impedances. Besides the previously mentioned problems this will also cause loading effects. Thus,
OTA-C circuits should be designed to drive high-impedance nodes such as the inputs of other OTAs.
If the low-impedance nodes must be driven, the opamp or OTA buffer circuits must be used [2]. This
should be kept in mind particularly when designing high-order filters by cascading OTA-C biquads.
Only those biquads with the input voltage applied to OTA input terminals can be directly cascaded.
In integrated OTA-C filter design, identical transconductances are usually used to make on-chip
tuning, design, and layout easier. In practice, mismatch in transconductances can be produced due to
fabrication error, which may cause performance change. Thus the sensitivity of the transfer function
to the mismatch error must be small.

9.12 Summary

In this chapter we have comprehensively and systematically investigated generation and design of
integrator-based second-order OTA-C filter structures. Many filter architectures have been generated.
We have proved that these architectures can offer all types of filter function without use of the
capacitor injection. Simultaneous outputs of different filter characteristics for some single input can
be obtained. Universal biquads and realizations have been extensively studied. The filter structures
have been compared and practical design considerations have been given.

The proposed first-order and second-order OTA-C filters can be cascaded or coupled to realize high-
order specifications. Note that all the structures presented in the chapter are suitable for cascading,
because the input is at the high-impedance input terminals of OTAs. In odd-order cascade design,
while first-order sections can be used, third-order sections are also quite often utilized. Third-order
OTA-C filters can be found in [25] and will be discussed in the following chapters. We will investigate
high order OTA-C filter design in Chapters 10 and 11, introducing the LC ladder simulation and
multiple loop feedback methods, respectively.

It is noted that the filter architectures generated in the chapter can also be derived from a general
multiple loop feedback model [47]. This will be discussed in Chapter 11. Another note is that the
second-order integrator loop systems have been realized using OTA-based voltage integrators and
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amplifiers in this chapter. In fact, we can also realize them using OTA-based current integrators and
amplifiers [48, 49], which will be discussed in Chapter 12.
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Chapter 10

OTA-C Filters Based on Ladder Simulation

10.1 Introduction

In Chapters 8 and 9 we discussed the design of low-order OTA-C filters. In this chapter we deal
with high-order OTA-C filter design [1]–[42]. The most popular method for high-order filter design
is the cascade method due to its modularity of structure and simplicity of design and tuning. As
discussed in Chapter 5, for a given transfer function we first factorize it into low-order functions
and then realize these functions using the filter structures proposed in Chapters 8 and 9. Finally we
cascade the designed sections, the whole circuit giving the desired transfer function. For lowpass
and highpass filters we can simply use the lowpass and highpass sections, respectively. For bandpass
filters we can use either both lowpass and highpass sections, or only bandpass sections. This should
be decided before factorization. The cascade method is general in that arbitrary transmission zeros,
as required in equalizer design, can be realized. The principles of cascade design were established in
Chapter 5, and so will not be repeated here. Suffice it to say that any of the OTA structures reported
in Chapters 8 and 9 may be incorporated into such an architecture. The reader is also encouraged to
refer to the relevant papers and books for OTA-C filter design examples based on this method [1]–[4],
[9]–[12].

The cascade method however has a very high sensitivity to component tolerances. It has already
been established that resistively terminated lossless LC filters have very low passband sensitivity. To
achieve low sensitivity, OTA-C filters can thus be designed by simulating passive LC filters, as we
have done for the design of opamp-based active RC filters in Chapter 6. In this chapter we investigate
the simulation method for OTA-C filter design. Again, we assume the availability of design tables
or appropriate computer software for the generation of LC ladder network component values, and
therefore concentrate on how to simulate these passive LC ladders using only OTAs and capacitors.

Various methods for OTA-C simulation of doubly terminated passive LC ladders will be introduced
in a systematic way. These can be broadly classified into three categories: component substitution,
signal flow simulation, and coupled biquad realization, as discussed in Chapter 6. The first category,
belonging to the topological approach, includes the inductor substitution, the Bruton transformation
and the impedance/admittance block substitution. The second, being the functional or operational
approach, contains the leapfrog (LF) structure and its derivatives as well as matrix methods (including
the wave filter method). The third embraces the biquad-based LF structure, one of the multiple loop
feedback configurations, and the follow-the-leader-feedback (FLF) structure (see Chapter 5). The
component substitution methods keep the active filter structure and equations identical to those of
the original passive ladder. The signal simulation method has the same equations as, but different
structures from, the original ladder. The coupled biquad approach may have different equations and
structures. Various practical design considerations will also be presented.

With outstanding low-sensitivity performance, ladder simulation OTA-C filters are complex in
structure and difficult to tune, compared with the cascade method. While the component substitution
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and LF methods are most popular, the matrix decomposition and coupled biquad approaches have
also been used. The coupled biquad method also has modular design properties. In general terms
and also to enjoy the modular design we present the ladder simulation from the block viewpoint,
leaving component-level simulation as its special cases.

We will first describe OTA-C filter design using the inductor substitution and Bruton transformation
methods, followed by discussion of the admittance simulation approach. OTA-C filter design based
on the signal flow simulation of passive LC ladders will then be discussed. The equivalence of the
admittance substitution and signal simulation methods will also be studied. Next, the matrix methods
for OTA-C filter design and coupled biquad OTA-C configurations are briefly explained. After some
comments on practical OTA-C design problems, a summary of the chapter is finally presented.

10.2 Component Substitution Method

OTA-C filter design based on a passive LC ladder can be conducted by substituting resistors and
inductors by OTA-C counterparts. Such an OTA-C circuit has as low a sensitivity as the passive
counterpart, except for the imperfections in the realization of the active resistor and inductor and the
increase in the total number of components. The Bruton method transforms the passive LC ladder
into some new equivalent ladder which contains no inductors, but some new components, which
are then replaced by OTA-C counterparts. The admittance block substitution method deals with
each ladder arm as a whole and replaces it by the OTA-C circuit which has the same impedance or
admittance function.

10.2.1 Direct Inductor Substitution

OTA-C realization based on doubly terminated passive LC ladders by direct component substi-
tution requires the simulation of inductors and resistors. Simulation of resistors has been given in
Chapter 8. For convenience we present them again in Fig. 10.1, with the input termination for ideal
voltage input, general floating and grounded resistors being shown in Figs. 10.1(a), (b), and (c),
respectively. All have the resistance equal to the inversion of the OTA transconductance, i.e.,

R = 1

g
(10.1)

Note that the output termination resistor in the passive prototype is grounded.
Note also that the grounded resistors and input termination require a single OTA and the general

floating resistor requires two OTAs. Effects of OTA nonidealities on the OTA resistors were discussed
in Chapter 8.

OTA-C Inductors

Now we consider OTA-C simulation of the inductor. As discussed in Chapter 3, the OTA is most
convenient for realizing the gyrator because the gyrator contains only two CCVSs. The OTA gyrator,
when terminated by a capacitor, will produce a simulated OTA-C inductor with the inductance being
given by

L = C

g1g2
(10.2)

as depicted in Fig. 10.2(a) [7].
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FIGURE 10.1
OTA simulation of resistors.

FIGURE 10.2
OTA-C simulation of inductors: (a) grounded and (b) floating.

A floating OTA-C inductor based on two gyrators connected back-to-back may be reduced to the
three OTA architecture shown in Fig. 10.2(b) [8]. It can be shown that when g2 = g3 = g, the
equivalent inductance is given by

L = C

g1g
(10.3)

Note that a grounded inductor can be simulated using two OTAs and one capacitor. But a floating
inductor needs three OTAs and one capacitor. The inductor substitution technique described above
leads to a realization that has the same topology as the original passive ladder network. The difference
is that each inductor is replaced by a circuit using OTAs and the capacitor.

As an example, consider the OTA-C simulation of a floating inductor of the inductance equal to
173.64 µH in a 10 MHz lowpass passive LC ladder. Choosing g1 = g2 = g3 = g = 200µS, we
can calculate the required capacitance, C = g2L = 6.95pF .

Tolerance Sensitivity of Filter Function

The inductor substitution method has low sensitivity. It leaves the capacitor as it is in the original
ladder and realizes the terminal resistor using a single OTA. Therefore the sensitivities to the capac-
itance and the transconductance of the OTA resistor are not changed. Now consider the inductor
which is realized using either two or three OTAs and one capacitor. The relative sensitivities of the
filter function to these OTA transconductances and the capacitance will depend on the sensitivity of
the inductance to these parameters according to the following relation:

S
H(s)
gi ,C

= S
H(s)
L SLgi ,C (10.4)
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where H(s) is the transfer function, and gi and C are the related transconductances and capacitance
simulating the inductor.

As can be seen from Eqs. (10.2) and (10.3), for both grounded and floating OTA-C inductors, we
have SLC = −SLgi = 1. The performance sensitivities to these parameters will therefore be the same
as the original sensitivity to the passive inductance, as indicated in Eq. (10.4).

Parasitic Effects on Simulated Inductor

For the grounded inductor with g1 = g2 = g for example, taking finite OTA impedances into
consideration, we can derive the terminal admittance of the OTA-C inductor as

Yin = G′ + sC′ + g2

G′ + s (C + C′)
(10.5)

where G′ = Gi + Go and C′ = Ci + Co. Gi , Ci and Go, Co are the respective input and output
conductances and capacitances.

The equivalent circuit is depicted in Fig. 10.3. It consists of an inductor with a series parasitic
inductor and loss resistor and parallel parasitic capacitor and loss resistor, whose values are given by

L = C

g2
, Ls = C′

g2
, Rs = G′

g2
, Cp = C′, Rp = 1

G′ (10.6)

FIGURE 10.3
Equivalent circuit of practical grounded OTA-C inductor.

Now we consider only the output conductance effects. The input admittance in Eq. (10.5) becomes

Yin = Go + g2

Go + jωC
(10.7)

[if the input conductances also need to be considered, we can simply useG′ to replaceGo in Eq. (10.7)
to include Gi] or the input impedance with the first-order approximation is given by

Zin = jωL+ rL = jω
C

g2
+Go

[
1

g2
+ ω2

(
C

g2

)2
]

(10.8)
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which is an ideal inductor in series with a parasitic resistor. The inductor quality factor is derived as

qL = ωL

rL
= 1

2

g

Go

2
(
ωC
g

)
1 +

(
ωC
g

)2
(10.9)

The maximum value for qL is given by 1
2Adc. Note that Adc = g

Go
is the maximum voltage gain at

dc, set by the nonzero conductance at the output of the OTA. The inductor quality factor is therefore
at most one-half the dc voltage gain of the OTAs used [17]. It is very important to reduce the output
conductance in order to realize a high-quality inductor, especially for high-frequency design since
the loss resistance increases (the quality factor decreases) with frequency.

The OTA may contain internal poles at high frequencies, which become a serious problem when
the signals in the filter passband approach the frequencies of these undesirable poles. If the two OTAs
constituting the gyrator have one dominant high-frequency pole (ωb), then the transconductance will
be frequency dependent, given by

g(s) = g

1 + s/ωb
(10.10)

The terminal admittance of the OTA-C inductor can be obtained with a first-order approximation
as [17]

Yin = 1

jω
(
C/g2

) − 2

ωbC/g2
(10.11)

and the terminal impedance with a first-order approximation can be derived either from the OTA-C
inductor circuit or by inverting Yin in Eq. (10.11) as

Zin = jωL+ rL = jω
C

g2
− 2ω

C

g2

ω

ωb
(10.12)

The quality factor of the OTA-C inductor is obtained from Eq. (10.12), given by

qL = −1

2

ωb

ω
(10.13)

From Eq. (10.12) it can be seen that the effect of finite bandwidth corresponds to a negative
resistance in series with the inductance. According to Eq. (10.11) we can compensate for this effect
by using a positive grounded resistor in parallel with the input port. This resistor can also absorb the
output conductances of the related OTAs. Equation (10.12) also shows that the series parasitic loss
resistance due to finite ωb also increases with frequency.

Parasitic Effects on Filter Function

To facilitate discussion, we define the tolerance sensitivity as the sensitivity of a function to the
variation in the component value and the parasitic sensitivity as the sensitivity of a function to
the parasitic parameter of the component. Passive LC ladders have very low-magnitude tolerance
sensitivity in the passband, but the phase tolerance sensitivity may not be low. It can be shown
that the parasitic impact is bigger than the tolerance influence on the magnitude response in the
passband [46]. It is therefore important to reduce parasitic effects on the magnitude response in
order to achieve a good passband magnitude response with the simulation method. It has also been
shown in [47, 48] that the magnitude and phase parasitic sensitivities are related to the phase and
magnitude tolerance sensitivities, respectively. This reveals that the phase tolerance sensitivity is
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also important for the magnitude performance due to the parasitic effects. There are several methods
which are available for computation of tolerance sensitivity, but not much work has been done for
the parasitic counterpart.

It can be shown that parasitic sensitivities can be computed based on tolerance sensitivities.
Consider the network containing an inductor with loss, that is, ZL = sL+ rL. The transfer function
of the network can be expressed as a bilinear function of ZL, given by

H(s) = A11 + A12 (sL+ rL)

A21 + A22 (sL+ rL)
= N

D
(10.14)

where Aij are coefficients independent of ZL. Direct differentiation of Eq. (10.14) gives

∂H

∂rL
= 1

s

∂H

∂L
= A12A21 − A11A22

D2
(10.15)

which leads to the parasitic sensitivity function as

PH
rL

= 1

H

∂H

∂rL
= 1

sL
SHL (10.16)

Writing H = |H |ejφ and using Eq. (10.16) we can obtain the relative change in the magnitude
due to the inductor loss resistance as

#|H |
|H | = rLP

|H |
rL

= 1

qL
Q
φ
L (10.17)

where Qφ
L = L

∂φ
∂L

, which is the phase tolerance sensitivity and is calculated at the nominal state,
i.e., rL = 0.

We can see that the magnitude change due to rL can be calculated using the phase tolerance
sensitivity with no need of any extra circuit analysis. This also reveals that the phase tolerance
sensitivity is also important for the magnitude frequency response due to the existence of the parasitic
loss resistance. In our case, qL can be obtained from Eqs. (10.9) and (10.13) for the effects of the
output conductance and the impact of excess phase, respectively. The total variation can be derived
as

#|H |
|H | = 2Qφ

L


1 +

(
ωC
g

)2

2
(
ωC
g

) Go

g
− ω

ωb


 (10.18)

It is stressed again that the parasitic effects increase with the frequency and to achieve a high-
frequency performance we must reduce these parasitics.

We now consider the impact of parasitic capacitances on the filter function. From Eq. (10.5) and
Fig. 10.3 we can see that the parasitic capacitances in parallel with the circuit capacitance will cause
the shift in the equivalent inductance by Ls . Therefore, the following formula in Eq. (10.19) for
computation of the relative change in the magnitude due to the tolerance in the inductance can be
used to evaluate the effects of the parasitic capacitances.

#|H |
|H | = #L

L
S

|H |
L (10.19)
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The change of the magnitude due to the parasitic capacitances,C′ = Ci+Co in parallel with the circuit
capacitance C, can be obtained from Eq. (10.19) by noting that L = C/g2 and #L = Ls = C′/g2,
given by

#|H |
|H | = C′

C
S

|H |
L (10.20)

From this equation we can see that to reduce the change, the parasitic to normal capacitance ratio
must be small and the magnitude tolerance sensitivity to the inductance must also be small. It is very
fortunate that S|H |

L is indeed very small. It should be very interesting to note from the above analysis
that the magnitude change due to parasitics depends on the ratios of Go/g, C′/C, ω/ωb and also
the tolerance phase and magnitude sensitivities. To reduce the parasitic effects, these factors must
be taken into consideration, especially for very high-frequency applications.

10.2.2 Application Examples of Inductor Substitution

It is well known that the inductor substitution method is most economical for simulation of highpass
LC ladders, as the inductors in highpass ladders are grounded. In this section, however, two other
examples are presented to illustrate how to design OTA-C filters from passive LC ladders by using
the inductor substitution method introduced above and also to introduce some concepts for later use
in the chapter.

OTA-C Biquad Derived from RLC Resonator Circuit

The OTA-C active resonator is the most popular biquad in practice. It can be generated by OTA-C
simulation of resistors and inductors of a passive RLC resonator. It has very low sensitivity and
parasitic effects.

Consider the passive RLC resonator circuit in Fig. 10.4(a). It has the driving point impedance

Z(s) = Vout

Iin
= sL

s2LC1 + s L
R

+ 1
(10.21)

Direct substitution of the OTA resistor and OTA-C inductor produces the corresponding active OTA-
C resonator as shown in Fig. 10.4(b). The simulated function is derived by noting that L = C/g1g2
and R = 1/g3, given by

H(s) = Vout

Iin
= sC2

s2C1C2 + sg3C2 + g1g2
(10.22)

FIGURE 10.4
RLC and OTA-C resonators.

We discussed the OTA nonideality effects on the two integrator loop structure in Chapter 9. Now
we analyze the effects based on the inductor simulation. Inspection of the OTA-C resonator reveals
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that the input and output capacitances of all the OTAs can be absorbed by the circuit capacitances
C1 and C2. Also, the output conductance of the g1 OTA, the input conductance of the g2 OTA and
both the input and output conductances of the g3 OTA can be absorbed by the transconductance g3.
Therefore we only need to consider the output conductance of the g2 OTA and the input conductance
of the g1 OTA, in addition to the frequency dependent transconductances. It is clear that we can
evaluate the parasitic effects on the whole transfer function based on the general formulas derived
in the previous section. But for second-order filters, parameters ωo and Q are of more interest. The
relative changes in these parameters due to the inductor parasitic losses are generally given in [47]

#ωo

ωo
= − 1

2QqL

(
S
ωo
L + S

Q
L

)
(10.23)

#Q

Q
= 1

2QqL

[(
4Q2 − 1

)
S
ωo
L − S

Q
L

]
(10.24)

Again they are dependent on both tolerance sensitivities and the finite qL. From Eq. (10.21) we can
deduce that SωoL = − 1

2 and SQL = − 1
2 . Equations (10.23) and (10.24) become, respectively,

#ωo

ωo
= 1

2QqL
(10.25)

#Q

Q
= − 1

2QqL

(
2Q2 − 1

)
(10.26)

The series loss resistance due to the output conductance of the g2 OTA, Go2 and the input con-
ductance of the g1 OTA, Gi1 is given by rL = (Go2 +Gi1)/g1g2. The inductor quality factor can
be derived as

qL = ωoC2

Go2 +Gi1
(10.27)

Substitution of this into Eqs. (10.25) and (10.26) yields the relative change of ωo and Q. We can
also see that the finite qL has different impacts onQ and ωo. A comparison may be made by writing

#Q

Q
/
#ωo

ωo
= −

(
2Q2 − 1

)
(10.28)

which shows that the change in ωo due to parasitic loss is smaller than that in Q. It is noted that
#ωo/ωo being small is important as the total magnitude change depends more on it.

Finally we point out that the ideal LC resonator and its OTA-C counterpart correspond to R = ∞
and g3 = 0, that is, the removal of the resistor and the corresponding OTA, respectively. Both lossy
and ideal OTA-C resonators will be needed in the simulation of some passive LC ladders.

A Lowpass OTA-C Filter

For illustration we consider the fifth-order lowpass finite zero LC ladder in Fig. 10.5(a). We
replace the input and output termination resistors by the OTA counterparts in Figs. 10.1(a) and (c),
respectively, and the two floating inductors by the OTA-C equivalent in Fig. 10.2(b). The resulting
OTA-C filter is displayed in Fig. 10.5(b). The component values can be determined using the formulas
in Eqs. (10.1–10.3) as

g1 = 1/R1, C′
3 = g2g3L3, C′

5 = g4g5L5, g6 = 1/R6 (10.29)
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where g2 and g3 (g4 and g5) can be used to produce a proper value for C′
3 (C′

5).

FIGURE 10.5
Fifth-order finite zero lowpass LC ladder and its OTA-C simulation.

In IC implementation, the grounded capacitor is simpler to implement in technology. The floating
capacitor has substantial parasitic capacitances (about 10% of the capacitance value) from the bottom
plate to the substrate, i.e., the ac ground. For grounded capacitors, the bottom plate should be
connected to ground and thus the parasitic capacitances are shorted out for signal currents and play
no role [3]. Figure 10.6 gives a circuit which can simulate the floating capacitor using OTAs and the
grounded capacitor [14]. It can be formulated that

Cf = g1g2

g3g4
Cg (10.30)

Or we can say that for the given floating capacitanceCf , the grounded capacitance can be determined
by

Cg = g3g4

g1g2
Cf (10.31)

and the value can be adjusted by the related transconductances.
It must be noted that the price paid for grounding the floating capacitor is the extra five OTAs.

The increased number of OTAs may cause other problems such as extra noise and power consump-
tion. Compared with the block substitution method we shall introduce in Section 10.3, the separate
treatment of the floating capacitor and inductor in the series arm is not economical, requiring three
more OTAs. Finally it should be pointed out that the convertor circuit in Fig. 10.6 has an internal
node, node A, which does not have any component to ground, which we call the suspending node.
The suspending node with parasitic capacitances will produce an extra pole and this parasitic pole
will influence the filter responses at high frequencies.

10.2.3 Bruton Transformation and FDNR Simulation

By dividing the impedance of each branch in the passive ladder network by s the Bruton trans-
formation converts the inductors, capacitors, and resistors of the ladder to the resistors, frequency-
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FIGURE 10.6
Conversion of floating capacitor to grounded capacitor.

dependent-negative-resistance (FDNR) components, and capacitors, respectively, as shown in Sec-
tion 6.6. Thus the OTA-C realization becomes the substitution of the new set of components.

The FDNR has an impedance given by

Z(s) = 1

s2D
(10.32)

The grounded FDNR can be implemented with five OTAs and two grounded capacitors and the
floating FDNR requires six OTAs and two grounded capacitors, as shown in Figs. 10.7(a) [8, 14]
and (b) [14], respectively. It can be shown that both of them have

D = g1g2

g3g4g5
C1C2 (10.33)

FIGURE 10.7
Realizations of grounded and floating FDNRs.

The synthesis procedure of opamp-RC filters based on the Bruton Transformation has been given
in Chapter 6, but is again now summarized for OTA-C filters. For a given transfer function, first
design a passive LC filter. Then use the Bruton transformation method to transform the LC filter, that
is, replace the resistors R by capacitors of value 1/R; the inductors L by resistors of value L; and
the capacitors C by FDNRs whose D value is C. Next use the OTA resistors and OTA-C FDNRs to
replace the corresponding resistors and FDNRs in the transformed circuit. If required, the resulting
floating capacitors may also be replaced by the OTA-grounded capacitor circuit. The new element
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values resulting from the substitution can be determined; taking the FDNR as an example, from
Eq. (10.33) we obtain

C1C2 = g3g4g5

g1g2
D (10.34)

All the values are now electronically controllable through the related transconductances. The final
OTA-C filter which realizes the given transfer characteristic is thus obtained.

The Bruton transformation method is widely used in active RC filter design. In the above we
have shown that the method can also be used to design OTA-C filters. We want now to evaluate the
performance of the method in OTA-C filter design and decide whether the method is suitable or not.

The Bruton Transformation does not affect the topology of the ladder circuit, nor does it affect
the transfer function realized. Therefore, similar to the inductor substitution method, the FDNR
substitution method can produce OTA-C filters that have as low a sensitivity as the passive circuit.

The philosophy behind the Bruton method for active RC filter design however may not be suitable
for OTA-C filters. Unlike the active RC case where the transformation of inductors to resistors is
clearly an advantage, in OTA-C filter design the resistors resulting from the transformation of the
inductors by the Bruton method also need to be replaced. The OTA-C realization of the FDNR is
clearly more complex than that of the simulated inductor, as revealed in Fig. 10.2 and Fig. 10.7.
These two factors make the number of components needed for the inductor and FDNR substitution
approaches much different, the total numbers of OTAs and capacitors with the FDNR method being
much bigger than those required by the inductor replacement approach.

Take the third-order all-pole lowpass filter and its transformed version in Fig. 10.8 as an example.
The two terminated resistors each uses one OTA and the floating inductor needs three OTAs and one
capacitor. Altogether five OTAs and three capacitors are needed for the inductor substitution method.
With the FDNR method, the floating resistor requires two OTAs and the two grounded FDNRs each
requires five OTAs and two capacitors, which leads to the OTA and capacitor total numbers of twelve
and six, respectively, with the input terminal capacitor being floating.

FIGURE 10.8
Third-order all-pole inductor and FDNR ladders.

Similar comparison can be conducted for the highpass filter with all zeros at the origin in Fig. 10.9.
The inductor substitution approach requires six OTAs and three capacitors, while the Bruton method
needs eight OTAs and four capacitors, both having a floating capacitor.

FIGURE 10.9
Third-order highpass inductor and FDNR ladders.

We should say that for both lowpass and highpass filters the FDNR method will generate additional
suspending nodes which are inherent in the FDNR circuits in Fig. 10.7. In addition, the Bruton method
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will always have a floating capacitor at the input terminal resulting from the input termination resistor,
which will also cause a dc path problem, as discussed in Chapter 6.

From the above analysis we can conclude that the Bruton transformation method may not be
attractive for OTA-C filter design, although for highpass filter design the difference of the component
numbers is not so great. Use of the direct inductor substitution method can also save the Bruton
transformation step. A full set of OTA-C simulations of components for the inductor replacement
and Bruton transformation methods with emphasis on tunability can be found in [14].

10.3 Admittance/Impedance Simulation

In Chapters 3 and 6 various opamp impedance conversion or transformation circuits and methods
were introduced and applied in active RC filter design based on passive ladders. In this section we deal
with the OTA-C counterparts. Generally, each arm of a ladder network is actually a one-driving-port
network and may contain several components as in cases of finite zero lowpass, finite zero highpass,
bandpass, and bandstop filters. Rather than dealing with individual components as previously we
simulate the impedance or admittance of each arm as a whole using OTAs and capacitors. This may
be achieved by direct OTA-C substitution of those admittance or impedance blocks in the prototype
ladder. In the following, however, we will present a method which first converts the floating series
admittance to the grounded impedance using OTAs and then simulate all grounded impedances using
OTAs and capacitors.

10.3.1 General Description of the Method

To facilitate discussion, Fig. 10.10 gives a general ladder with series arm admittances and parallel
arm impedances. The admittances in the series arms are floating. If the floating admittance is a
complex combination of inductors and capacitors, then the individual treatment of floating inductors
and floating capacitors in the arm will have redundant OTAs. We now do a simple transformation,
which converts the floating admittance as a whole into a grounded impedance. The circuit for
realizing this conversion is exhibited in Fig. 10.11 [8]. The relation between the floating admittance
Yf and the grounded impedance Zg is given by

Yf = g1g2Zg (10.35)

From the design standpoint when Yf is given, then Zg can be determined as

Zg = 1

g1g2
Yf (10.36)

where g1 and g2 can be used to scale the impedance level.
Replacing all the floating admittances by the OTA-grounded impedance circuit in Fig. 10.11, the

general ladder in Fig. 10.10 can be simulated as shown in Fig. 10.12 which consists of only OTAs
and grounded impedances and where for example, Z′

3 = Y3/g3g4. The problem left is simply to
simulate all grounded impedances using OTAs and capacitors. This can be done using the inductor
substitution method in Section 10.2.1. The structure in Fig. 10.12 may be simplified by using the
well known fact that any two single-input OTAs with equal transconductances and opposite input
polarities, whose outputs are connected to the same node, can be equivalently replaced by a single
differential-input OTA with the same transconductance, for example, when g2 = g4 = g6. This will
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FIGURE 10.10
General admittance and impedance ladder.

FIGURE 10.11
Conversion of floating admittance to a grounded impedance using OTAs.

be discussed in Section 10.5. Also note that the first OTA at the input end can be discarded for ideal
voltage input. For very complex arms in the passive filter, multiple levels of impedance conversion
and inductor substitution may be needed. But two-level simulation will suffice for most practical
ladders, as can be seen in the next section.

FIGURE 10.12
OTA-grounded impedance simulation of general ladder.

10.3.2 Application Examples and Comparison

To appreciate this general method we now present some typical examples. First reconsider the
fifth-order finite zero lowpass LC filter in Fig. 10.5(a). There are two floating admittances which
are the parallel LC resonators, needing to be treated. In general, consider the floating parallel LC
resonator in Fig. 10.13(a). The floating admittance is

Yf = sC + 1

sL
(10.37)

Using the conversion circuit in Fig. 10.11 and Eq. (10.36) we have the grounded impedance

Zg = s
C

g1g2
+ 1

sLg1g2
(10.38)

which is a series LC resonator with inductance L′ = C/g1g2 and capacitance C′ = g1g2L. This
is shown in Figs. 10.13(b) and (c) which correspond to the arrangements of the capacitor being
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grounded and floated, respectively, [22]. In Figs. 10.13(b) and (c) we also give the corresponding
OTA-C simulations of the grounded impedance, in both cases the inductor-related capacitor having
C′′ = g3g4L

′.

FIGURE 10.13
OTA-C simulation of parallel LC resonator in series arms.

It is evident that this is a two-step method. In both cases we can first choose g1 or g2 to give C′
some proper value (L′ is fixed accordingly) and then generate the appropriate value for C′′ using
g3 or g4. It is also very interesting to note that C′′ can be tuned independently from C′, which are
related to the original capacitor and inductor, respectively.

Comparing the two realizations with the capacitor grounded or floating in Figs. 10.13(b) and
(c) we can see that the realization with the grounded capacitor contains one more OTA than the
implementation with the floating capacitor. This is obviously because the former contains the floating
inductor, while the latter the grounded inductor. Also, the grounded capacitor realization has one
suspending node, while the floating capacitor counterpart has two suspending nodes. The floating
capacitor may be a disadvantage in IC design. Therefore (also for the reason that will follow
immediately), we would not be interested in the floating capacitor realization.

Now we compare the results with those in Section 10.2.1. First look at Fig. 10.5(b) and
Fig. 10.13(c). It is apparent that if the floating capacitors are allowed, the structure in Fig. 10.5(b) is
more attractive than the one in Fig. 10.13(c) in terms of the number of OTAs needed (two less for each
series arm) and the suspending nodes (no suspending nodes), another reason for the above negative
claim about the method in Fig. 10.13(c). For grounded-capacitor-only realizations, the method in
Fig. 10.13(b) is better than the method in Figs. 10.5(b) and 10.6, since the number of OTAs needed
for each series arm is reduced by two.

Figure 10.14 presents the whole OTA-C circuit based on the passive LC prototype in Fig. 10.5(a)
and realized using the floating admittance to grounded impedance conversion method and with
grounded capacitors only. Clearly, whenR, L, andC in Fig. 10.5(a) are known, the values of related
components in Fig. 10.14 can be determined (with C2, C4, and C6 remaining unchanged):

g1 = 1/R1, C′
3 = g2g3L3, C′′

3 = g4g5

g2g3
C3 ,
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C′
5 = g6g7L5, C′′

5 = g8g9

g6g7
C5, g10 = 1/R6 (10.39)

It is possible to have identical transconductances (except the termination OTAs). Settinggi = gj = g,
i, j = 2, 3, . . . , 9 leads to C′

3 = g2L3, C′′
3 = C3, C′

5 = g2L5 and C′′
5 = C5. However, it may not

be possible to have identical capacitances, unless C2 = C4 = C6. But we can reduce the number of
different values to three. For example, we can set C′

3 = C′′
3 = C2 and obtain g2g3 = C2/L3 and

g4g5 = C2
2/(C3L3). Similarly we can make C′

5 = C′′
5 = C6 and determine g6g7 and g8g9.

FIGURE 10.14
OTA-C simulation of finite zero lowpass ladder by admittance substitution.

Figure 10.15 gives another example of an eighth-order bandpass filter. From the passive LC ladder
in Fig. 10.15(a) we can identify that

Y1 = 1

R1 + sL1 + 1
sC1

, Z2 = 1

sC2 + 1
sL2

,

Y3 = 1

sL3 + 1
sC3

, Z4 = 1
1
R4

+ sC4 + 1
sL4

(10.40)

Transforming the two floating admittances into the grounded impedances and then realizing all
grounded impedances by the inductor substitution method we can obtain the OTA-C circuit as shown
in Fig. 10.15(b), where the corresponding component values are determined as (C2 and C4 are left
unchanged)

g3 = g1g2R1, C′
1 = g1g2L1, C′′

1 = g4g5
g1g2

C1, C′
2 = g6g7L2 ,

C′
3 = g8g9L3, C′′

3 = g10g11
g8g9

C3 ,

C′
4 = g12g13L4, g14 = 1

R4
(10.41)

We can see that through the floating admittance to grounded impedance transformation, the floating
resistor, inductor, and capacitor of the series resonator in the series arm become the grounded resistor,
capacitor, and inductor of the parallel resonator. This bandpass OTA-C filter architecture has a very
good feature in that each circuit node has a grounded capacitor and thus can be expected to have
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very low parasitic capacitance effects. In fact all parasitic capacitances can be absorbed by these
grounded capacitances.

FIGURE 10.15
Bandpass RLC ladder and OTA-C simulation by admittance substitution.

10.3.3 Partial Floating Admittance Concept

Partial floating of the series arm admittance may be useful in some cases and makes the admittance
substitution method more general. As shown in Fig. 10.16(a) and (b), if the floating admittance can
be split into two parts Yj = Yj1 + Yj2, we can leave one part Yj1 where it is and simulate the other
part Yj2 using three OTAs and the grounded impedance Z′

j2 = 1
g1g2

Yj2. For example, if the series
arm is a LC parallel resonator as shown in Fig. 10.16(c), we may leave the capacitor Yj1 = sC

unchanged and convert only the inductor Yj2 = 1
sL

to the grounded capacitor Z′
j2 = 1

sLg1g2
using

the OTA gyrator, as shown in Fig. 10.16(d). For the LC ladder in Fig. 10.5(a), the partial floating
concept will result in the same OTA-C circuit as that in Fig. 10.5(b) which was obtained by the
inductor substitution.

We can also explain the partial transformation concept in the following way. If Yj1 = 0, it will
mean that we do not leave any series admittance, or any part of it, floating. Examples of this are
all-pole lowpass and all-pole bandpass filters. If Yj2 = 0, it will imply that we will not convert any
series admittance, or any part of it, into the grounded form. For instance, highpass filters may be
dealt with in this way. The examples for both nonzero Yj1 and Yj2 may be all-pole bandstop and
finite zero lowpass filters. Thus the partial concept is more comprehensive and general.
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FIGURE 10.16
Illustration of partial conversion of series arm admittance.

10.4 Signal Flow Simulation and Leapfrog Structures

In the preceding sections, we have introduced the component substitution and admittance simu-
lation methods. Another popular theory for OTA-C filter design is to simulate signal flow relations
in the LC ladder circuit. As discussed for active RC filter design in Chapter 6, by this method, the
circuit equations that describe the topology of the passive ladder structure are first written. Then a
signal flow block diagram is drawn based on these equations. Finally the block diagram is realized
using OTAs and capacitors. In the simulation of LC ladders, the original equations are of the mixed
current and voltage type. We can convert these equations to their voltage-only counterparts by scal-
ing, which is the technique that will be discussed in this section. The mixed equations can also be
scaled to the current signal only. This will be dealt with in Chapter 12.

Two techniques for active signal simulation of a passive ladder exist. One is to simulate relations
of series-arm currents and parallel-arm voltages, treating the respective arm as a single-port network.
The other is to do component-level signal simulations, that is, to simulate relations of signals in all
individual elements, for example, individual capacitor voltages and inductor currents. The first type
of signal flow simulation structures are block based, since the series and parallel arms are treated as
a whole, no matter how many components are there. The second method has a case-by-case feature,
for the different passive LC structures the signal flow equations may be very different. Also, note that
if each arm in the passive ladder structure is simply a single component, such cases including all-pole
LP and zero-at-origin HP LC ladders, the block method will reduce to the component method. In
the following we will therefore concentrate on the block signal simulation method for OTA-C filter
design based on passive LC ladders. A systematic treatment will be given.

10.4.1 Leapfrog Simulation Structures of General Ladder

The general ladder network with series admittances and parallel impedances is shown in Fig. 10.17.
The equations relating the currents flowing in the series arms, Ij , and the voltages across parallel
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arms, Vj , can be written as

I1 = Y1 (Vin − V2) , V2 = Z2 (I1 − I3) , I3 = Y3 (V2 − V4) ,

V4 = Z4 (I3 − I5) , I5 = Y5 (V4 − V6) , Vout = V6 = Z6I5 (10.42)

The transfer function Vout/Vin can be obtained from these equations by eliminating the intermediate
variables. These equations can be represented by a signal flow diagram depicted in Fig. 10.18.
Observe that the output of each block is fed back to the input of the preceding block and therefore
the structure is called the leapfrog (LF) structure [53], as recalled from Chapter 6.

FIGURE 10.17
General admittance and impedance ladder with signals indicated.

FIGURE 10.18
Leapfrog block diagram of general ladder.

In contrast with the cascaded topology, these blocks are not isolated from each other, and any
change in one block affects the voltages and currents in all the other blocks. This type of coupling
between the blocks makes the tuning of the whole network more difficult, but gives rise to the much
lower sensitivity [49].

In active filter design the mixed current and voltage signal equations are normally converted by
scaling into their counterparts with voltage signals only. Scaled by a conductance gm, Eq. (10.42)
can be written as

V ′
1 = Y1

gm
(Vin − V2) , V2 = gmZ2

(
V ′

1 − V ′
3

)
, V ′

3 = Y3
gm
(V2 − V4) ,

V4 = gmZ4
(
V ′

3 − V ′
5

)
, V ′

5 = Y5
gm
(V4 − V6) ,

Vout = V6 = gmZ6V
′
5 (10.43)

whereV ′
j = Ij /gm. TheYj/gm andgmZi are voltage transfer functions. It is clear that these equations

will lead to the same transfer function Vout/Vin as that from Eq. (10.42). The corresponding block
diagram is shown in Fig. 10.19.

As traditionally done for opamp-RC filter design (see Chapter 6), to realize this new block diagram
we can similarly synthesize the voltage summers and voltage transfer functions of Yj/gm and gmZi
using OTAs and capacitors. Of course, different ladders will have different Yj and Zi values and the
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FIGURE 10.19
Scaled leapfrog block diagram of general ladder.

associated OTA-C structures thus will be different. In the following, however, we will not follow
the conventional method. We will present a new, systematic, and more efficient method unique to
OTA-C filters by using the feature of the OTA. This method is similar to that proposed in [22].

From Eq. (10.43) we can see that the voltage relations have a typical form of

Uj = Hj
(
Uj−1 − Uj+1

)
(10.44)

where Uj can be Vj or V ′
j , and

Hj = Yj/gm, for odd j ; Hj = gmZj , for even j (10.45)

Equation (10.44) can be realized using an OTA with a transconductance of gj and a grounded
impedance of

Z′
j = Hj/gj (10.46)

as shown in Fig. 10.20. This is an OTA-grounded impedance section. The summation operation is
simply realized by the OTA differential input. It can be verified that the voltage transfer function
from the OTA input to output is equal to gjZ′

j = Hj . Note that we relate the voltage transfer function
Hj to the grounded impedance Z′

j . Thus the voltage transfer function realization can now become
the simulation of the normal grounded impedance, which can be easily done using the inductor
replacement method.

FIGURE 10.20
OTA-grounded impedance section.

Using Fig. 10.20 as a building block we can readily obtain the OTA-grounded impedance LF
structure from Eq. (10.43) or Fig. 10.19, as shown in Fig. 10.21.

The grounded impedances have the values calculated by

Z′
1 = 1

g1gm
Y1, Z′

2 = gm
g2
Z2, Z′

3 = 1
g3gm

Y3, Z′
4 = gm

g4
Z4 ,

Z′
5 = 1

g5gm
Y5, Z′

6 = gm
g6
Z6 (10.47)

From Eq. (10.47) we can see that besides the general scaling by gm, each new grounded impedance
has a separate transconductance which can be used to adjust the impedance level. We can also note
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FIGURE 10.21
General LF OTA-grounded impedance realization.

that Z′
j are not the original impedances Zj in the ladder. For the even number subscript, Z′

j is the
original impedance Zj in the parallel arm of the ladder multiplied by the ratio of gm/gj , while for
the odd number subscript, Z′

j is the inversion of the original impedance Zj or the admittance Yj in

the series arm divided by the product of gjgm. When gj = gm = g, we have Z′
j = Yj/g

2 for odd j
and Z′

j = Zj for even j . Further if gj = gm = 1, then Z′
j = Yj for odd j . Note that in many OTA-C

publications, unity values of transconductances and the scaling conductance are used for simplicity.

The salient feature of the structure is that the OTA-C realization problem becomes the OTA-C
realization of the grounded impedances only and the simple inductor substitution method can be
conveniently used to simulate the impedance constituents. It is also noted that each OTA output
node having a grounded subnetwork and the subnetwork having no extra connection with other
parts of the circuit, as is the case in Fig. 10.21, can ensure the low sensitivity of the structure to
the transconductance [23]. As seen from Eq. (10.47), a change in a tranconductance will change
the impedance level of the grounded subnetwork connected to its output only and, according to
the sensitivity property, the sensitivity of the filter function to the transconductance will be equal
to the sum of all the sensitivities of the function to the constituent elements (real or simulated) in
the subnetwork. Since the sensitivities to constituent passive elements are usually low or low by
proper design, the sensitivity to the transconductance will also be low. This argument suits all the
transconductances in Fig. 10.21. Therefore, the OTA-C filters based on Fig. 10.21 will have low
sensitivity. Moreover, the original floating inductor or capacitor in the series arm can be converted
into the grounded capacitor and inductor, respectively. As will be seen soon, each capacitor of
the resulting OTA-C filter will have a corresponding reactive element (capacitor or inductor) in the
passive counterpart, which, as demonstrated in Section 10.2, can guarantee the low sensitivity of
the transfer function of the OTA-C filter to its capacitors. Thus OTA-C filters based on the method
discussed above will have low sensitivity to both transconductances and capacitors.

The above method is similar to the admittance simulation method in Section 10.3 in that the
floating admittances are converted into the grounded impedances using OTAs. We will prove in
Section 10.5 that the OTA-C filter structures obtained using the admittance simulation method and
the signal simulation method can be the same under certain conditions.

In the following we introduce some OTA-C structures derived from passive LC ladders. Since
we have not put any limitations on the impedances and admittances in the general ladder, the signal
simulation method is therefore suitable for arbitrary LC ladders. For simplicity, and also because of
popularity, only some typical LC ladder simulations will be presented.

10.4.2 OTA-C Lowpass LF Filters

Consider the fifth-order all-pole LC ladder with termination resistors in Fig. 10.22(a). Comparing
the circuit with the general ladder in Fig. 10.17 gives Y1 = 1/R1, Z2 = 1/sC2, Y3 = 1/sL3,
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Z4 = 1/sC4, Y5 = 1/sL5 and Z6 = 1
sC6+1/R6

. The circuit equations accordingly become

I1 = 1
R1
(Vin − V2) , V2 = 1

sC2
(I1 − I3) , I3 = 1

sL3
(V2 − V4) ,

V4 = 1
sC4

(I3 − I5) , I5 = 1
sL5

(V4 − V6) ,

Vout = V6 = 1
sC6+1/R6

I5 (10.48)

Scaling Eq. (10.48) by the factor of gm results in voltage functions Hj given in Eq. (10.45) and
realized in the way as shown in Fig. 10.20, where grounded impedances Z′

j are given in Eq. (10.46).
The OTA-C filter structure is given in Fig. 10.22(b). For given Rj , Cj , and Lj , we can compute the
new parameter values as

g′
1 = g1gmR1, C′

2 = g2
gm
C2, C′

3 = g3gmL3, C′
4 = g4

gm
C4 ,

C′
5 = g5gmL5, C′

6 = g6
gm
C6, g′

6 = g6
gm

1
R6

(10.49)

The values can be adjusted overall by gm and individually by gj . Two design techniques can be
utilized. One is to make all transconductances identical, that is, g1 = g2 = g3 = g4 = g5 = g6 = g

with different capacitances which can be calculated from Eq. (10.49) as C′
j = ggmLj when j is

odd; C′
j = g

gm
Cj when j is even. The other is to select the same value for all capacitances, that

is, C′
2 = C′

3 = C′
4 = C′

5 = C′
6 = C with different transconductances which are determined from

Eq. (10.49) as gj = C
gmLj

, for odd j and gj = gmC
Cj

, for even j . In many cases gm can be chosen to
be unity.

FIGURE 10.22
Fifth-order all-pole LC ladder and LF OTA-C realization.

The OTA-C filter contains only integrators and summers. Once again we see that the integrator
is the basic building block in active filter design. Note that the structure requires only grounded
capacitors, an advantage for integration. It is also simple, as only eight OTAs and five capacitors
are needed. When R6 = 1/gm, the g′

6 termination OTA can be removed if the inverting terminal
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of the g6 OTA is connected to the output. This has been used very often in the OTA-C literature
such as [20]. The first paper studying the OTA-C realization of all-pole leapfrog filters based on
LC ladders was published in [18], where other possibilities of terminations were also given. In the
following we will first give an example to the above all-pole filter design and then look at the OTA-C
architecture for the finite zero lowpass LC ladders.

Example

We design a fifth-order 1 dB-ripple 4 MHz Chebyshev filter based on the LF OTA-C simula-
tion of the passive ladder. The fifth-order 1 dB-ripple Chebyshev lowpass filter has a normalized
characteristic of (see appendix)

Hd(s) = 0.061415

s5 + 0.93682s4 + 1.68882s3 + 0.97440s2 + 0.58053s + 0.12283

The corresponding normalized component values of the ladder in Fig. 10.22(a) are given by

R1 = R6 = 1, C2 = 2.135, L3 = 1.091 ,

C4 = 3.001, L5 = 1.091, C6 = 2.135

We first denormalize the component values with the frequency of fo = 4MHz and the resistance of
R = 10k- (see Chapter 2). The corresponding denormalized component values are obtained as

R1 = R6 = 10k-, C2 = C6 = 8.495pF ,

L3 = L5 = 434.1µH, C4 = 11.941pF

Then using the formulas in Eq. (10.49) with the choice of equal transconductances

g1 = g2 = g3 = g4 = g5 = g6 = gm = 1/R = 100µS

we obtain

g′
1 = g′

6 = 100µS, C′
2 = C′

6 = 8.495pF ,

C′
4 = 11.941pF, C′

3 = C′
5 = 4.341pF

The results show that all the transconductances are equal and there are only three different capacitance
values with the maximum capacitance spread (ratio) of only 2.75. Also, note that all capacitors are
grounded. So this is a good design for integrated circuit implementation. Note that in this design
g6 = g′

6. Thus one OTA can be saved at the output end.
Now we consider a fifth-order finite zero passive LC ladder, as shown in Fig. 10.23. Similarly,

identifying that

Y1 = 1/R1, Z2 = 1/sC2, Y3 = sC3 + 1

sL3
,
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Z4 = 1/sC4, Y5 = sC5 + 1

sL5
, Z6 = 1

sC6 + 1/R6
(10.50)

and following the same design procedure we can obtain the OTA-C counterpart as shown in
Fig. 10.23(b), similar to that in [20]. The difference from the all-pole type is in Y3 and Y5 which are
a combination admittance of two components and involve two steps. Taking Y3 as an example, we
first have the corresponding grounded impedance as

Z′
3 = Y3

g3gm
= sL′

3 + 1

sL3g3gm
(10.51)

where L′
3 = C3

g3gm
. The second term in the equation represents a capacitance of the value C′

3 =
L3g3gm. But the first term is equivalent to an inductor. This should then be further replaced by an

OTA-C inductor with L′
3 = C′′

3
g′

3g
′′
3

. Combining the two steps we can also obtain C′′
3 in terms of C3.

The design formulas of the OTA-C filter for all components are given below.

FIGURE 10.23
Fifth-order finite zero passive LC and active OTA-C LF filters.

g′
1 = g1gmR1, C′

2 = g2
gm
C2, C′

3 = g3gmL3, C′′
3 = g′

3g
′′
3

g3gm
C3 ,

C′
4 = g4

gm
C4, C′

5 = g5gmL5, C′′
5 = g′

5g
′′
5

g5gm
C5 ,

C′
6 = g6

gm
C6, g′

6 = g6
gm

1
R6

(10.52)
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where gm is the scaling conductance. Similarly, using the equation the OTA-C filter can be conve-
niently designed to have the same transconductances or the same capacitances. If all transconduc-
tances are equal to gm, we will have from Eq. (10.52) that g′

1 = g2
mR1, g′

6 = 1/R6, C′
j = Cj for

even j = 2, 4, 6, C′
j = g2

mLj for j = 3, 5 and C′′
j = Cj for j = 3,5.

10.4.3 OTA-C Bandpass LF Filter Design

The complexity of the OTA-C filter based on the LF structure will depend on the number of
elements in the series and shunt branches of the passive ladder circuit. The bandpass filter design
may be conducted from the all-pole lowpass LC filter by applying the lowpass to bandpass frequency
transformation s → 1

B
s + 1

sB/ω2
o

, where ωo is the center frequency and B is the bandwidth of the

bandpass filter to be designed (see Chapters 2 and 6). The bandpass LC structure from the all
pole lowpass prototype will typically have series resonators in series arms and parallel resonators
in parallel arms. We start design from the bandpass LC ladder only and take the LF simulation of
the circuit in Fig. 10.24(a) as an example. Recognizing that Y1 is an RLC series resonator, Z4 is a
parallel RLC resonator and Z2 and Y3 are the ideal parallel and series LC resonators and following
the same design procedure we can obtain the LF OTA-C filter structure as shown in Fig. 10.24(b).
The component values can be formulated as

g′′′
1 = g1gmR1, C′

1 = g1gmL1, C′′
1 = g′

1g
′′
1

g1gm
C1, C′

2 = g2
gm
C2 ,

C′′
2 = g′

2g
′′
2gm

g2
L2, C

′
3 = g3gmL3, C′′

3 = g′
3g

′′
3

g3gm
C3, C′

4 = g4
gm
C4 ,

C′′
4 = g′

4g
′′
4gm

g4
L4, g′′′

4 = g4
gm

1
R4

(10.53)

where gm is the scaling conductance. Further design can be carried out based on the equation.

10.4.4 Partial Floating Admittance Block Diagram and
OTA-C Realization

The partial floating admittance concept can offer more flexibility in OTA-C filter realizations based
on passive LC ladders, as discussed in Section 10.3.3. This concept also suits the signal simulation
approach. Consider the general ladder in Fig. 10.25. We want to leave admittances Yj1 floating and
simulate the nodal voltages and the currents flowing in admittances Yj2 (not the total currents in the
series arms). The equations for the whole ladder in Fig. 10.25 can be written as

I1 = Y12 (Vin − V2) , V2 = Z2 [(I1 − I3)+ Y11 (Vin − V2)− Y31 (V2 − V4)] ,

I3 = Y32 (V2 − V4) , V4 = Z4 [(I3 − I5)+ Y31 (V2 − V4)− Y51 (V4 − V6)] ,

I5 = Y52 (V4 − V6) , Vout = V6 = Z6 [I5 + Y51 (V4 − V6)] (10.54)

Scaling Eq. (10.54) by conductance gm and denoting V ′
j = Ij /gm we can obtain

V ′
1 = Y12

gm
(Vin − V2) ,
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FIGURE 10.24
Eighth-order bandpass LC and LF OTA-C filter.

V2 = gmZ2

[(
V ′

1 − V ′
3

)+ Y11

gm
(Vin − V2)− Y31

gm
(V2 − V4)

]
,

V ′
3 = Y32

gm
(V2 − V4) , V4 = gmZ4

[(
V ′

3 − V ′
5

)

+ Y31

gm
(V2 − V4)− Y51

gm
(V4 − V6)

]
,

V ′
5 = Y52

gm
(V4 − V6) ,

Vout = V6 = gmZ6

[
V ′

5 + Y51

gm
(V4 − V6)

]
(10.55)

In Fig. 10.26 we give the corresponding OTA-grounded impedance LF structure with floating ad-
mittances, where gj is the OTA transconductance and g2 = g4 = g6, which simulates the relations
in Eq. (10.55). The design formulas for the grounded impedances Z′

j , j = 1, 2,. . . , 6, are the same
as those in Eq. (10.47) in form, except that Y1, Y3 and Y5 should be replaced by Y12, Y32 and Y52,
respectively, and g2 = g4 = g6. The design formulas for the floating admittances Y ′

11, Y ′
31 and Y ′

51
are given below:

Y ′
11 = g2

gm
Y11, Y ′

31 = g4

gm
Y31, Y ′

51 = g6

gm
Y51 (10.56)

To illustrate the method we consider the fifth-order finite zero LC ladder in Fig. 10.27(a). Assigning
Y11 = 0, Y12 = 1/R1, Y31 = sC3, Y32 = 1

sL3
, Y51 = sC5 and Y52 = 1

sL5
, and using the above
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FIGURE 10.25
General ladder illustrating partial floating admittance.

FIGURE 10.26
OTA-grounded impedance version with partial floating admittance.

method we can obtain the OTA-C filter shown in Fig. 10.27(b), similar to those in [4, 20, 21]. The
values for g′

1, C′
j , and g′

6 can be calculated using Eq. (10.49). The new values for the two floating

capacitances can be computed from Eq. (10.56), given by C′′
3 = g4

gm
C3 and C′′

5 = g6
gm
C5. Note again

that there should be g2 = g4 = g6.
For the R1 arm we can of course assign Y11 = 1/R1 and Y12 = 0, which means that the whole

resistor is left floating. In this case the simulation structure can be simplified at the input end,
requiring fewer OTAs and not having the resistive node. This consideration is in fact suitable for
all the cases in which Y1 is a resistor and is often used [21, 22, 40]. We leave this for the reader to
investigate.

Note that the OTA-C simulation with floating capacitors requires fewer OTAs, but may occupy
more chip area and increase parasitic effects due to floating capacitors. Also, unlike Section 10.4.1
the sensitivity to the OTA transconductance may increase due to the coupling from the floating
capacitors.

10.4.5 Alternative Leapfrog Structures and OTA-C Realizations

Most active filters are composed of integrators with coupling and in most cases such coupling can
be explained by feedback theory. Understanding the filter structure in this way is very beneficial,
as will be seen more generally in Section 10.7 and Chapter 11. The leapfrog configuration we have
discussed so far is very convenient and straightforward for description from the feedback viewpoint,
as all the coupling (feedback) paths are on the upper side and impedances in their natural positions.
This is especially true when feedforward techniques are used to produce transmission zeros, since
thus we can have the very convenient arrangement in that all feedback is on one side and feedforward
on the other, as was shown in Figs. 10.26 and 10.27 and will be seen in Chapter 11.

Many other alternative (equivalent) forms of the simulation structure of the general ladder can be
obtained. The original form of the LF signal flow graph [49, 53] for the general ladder is slightly
different from the one in Fig. 10.18 in that coupling appears on both upper and lower sides, as was
presented in Chapters 5 and 6. Chapter 6 also drew the LF structure in a different way.
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FIGURE 10.27
Fifth-order finite zero LF OTA-C filter with partial floating admittance.

In Fig. 10.28 we introduce another two alternative forms of the simulation structure of the gen-
eral ladder in Fig. 10.17, all of which can be obtained by simply rearranging the LF structure in
Fig. 10.18. Figure 10.28(a) can also be found in other books such as [2]. It can be easily verified
that the two alternatives have the same signal relations as Eq. (10.42). We also show four interesting
alternative OTA-grounded impedance realizations in Fig. 10.29. Note that we assume that the scaling
conductance gm = 1 and the OTAs have unity transconductances and thus the values of the grounded
impedances Z′

j are equal to Yj and Zj for odd and even j , respectively. Again, it can be verified that
they are the same as the structure in Fig. 10.21. The OTA-C simulation can be similarly conducted
by further simulating the grounded impedances using the inductor substitution method.

References [19, 20] investigated the OTA-C realization of Fig. 10.28(a) and Fig. 10.29(a). Only
single-input and single-output transconductors were initially used [19], usually resulting in complex
filter structures with a large number of transconductors, although some very simple four transistor
transconductors [45] are available which may give similar complexity at the transistor level, compared
with the differential input OTA counterparts. The authors realized this and attempted to reduce the
number of active devices based on the voltage and current (controlled) source shift theorem for the
ladders with the capacitor loop and inductor cut-set, respectively, [20]. This can also be done by using
the well known fact that any two single-input OTAs with equal transconductances and opposite input
polarities, whose outputs are connected to the same node, can be equivalently replaced by a single
differential-input OTA with the same transconductance [18]. The papers in [21]–[25] are mainly
about OTA-C realization of the second alternative OTA-grounded impedance version in Fig. 10.29(b).
The lowpass OTA-C filters in [28, 29] belong to the third type form in Fig. 10.29(c). We will later
present an example for the fourth alternative OTA-grounded impedance version in Fig. 10.29(d). We
must emphasize that all the LF forms are equivalent; it is just a matter of drawing. This also means
that we have shown that the OTA-C structures given in the literature are all equivalent, although
superficially they may look quite different. It should also be noted that all the LF structures can be
seen as the cross-cascade interconnection.
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FIGURE 10.28
Alternative LF block diagrams.

The partial floating admittance concept is suitable for all the alternative LF structures, simply
leaving the floating part in site and simulating the other part. Again, consider the fifth-order finite
zero lowpass LC ladder filter in Fig. 10.27(a). Using the fourth alternative form in Fig. 10.29(d) and
the partial floating concept we can obtain the OTA-C equivalent in Fig. 10.30, where we select the
unity scaling conductance and OTA transconductances.

10.5 Equivalence of Admittance and Signal Simulation Methods

In the above we have discussed two major methods: the admittance simulation and the signal
simulation. Both methods first convert, or partially convert, the admittances in the series arms into
the grounded impedances and then use the inductor substitution technique to realize the grounded
impedances. The only difference is that the admittance simulation method is by substitution of the
floating admittance with an OTA-grounded impedance circuit, while the signal simulation approach
is based on the simulation of the circuit equations with the building block of the OTA-grounded
impedance voltage section. This observation suggests that there may be some relation between the
two methods, and the superficial similarity between the OTA-C filters derived from the two methods
seemingly also supports this. We now try to prove that under certain conditions the two methods are
equivalent.

It is clear that the general proof of the equivalence must be done for the first-level simulation,
since the two methods use the same technique for the second-level simulation. We come back to
the general OTA-grounded impedance structure obtained by the admittance simulation method in
Fig. 10.12, which is redrawn in Fig. 10.31(a) for reference. Circuit node A is associated with the
outputs of two single-input and opposite-polarity OTAs, the g2 and g4 OTAs. If they have equal
transconductance values, g2 = g4 = gm, then the two OTAs can be combined into one differential-
input OTA, the gm OTA, in the way shown in Fig. 10.31(b). It can be shown easily that the current
to the node from this OTA will be equal to the total current from the original two OTAs and the filter
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FIGURE 10.29
Alternative LF OTA-grounded impedance structures.

FIGURE 10.30
Finite zero LP OTA-C filter based on alternative LF structure and partial admittance conver-
sion.
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function will thus remain the same. In the same way we can do a simplification for all the other
nodes. Such a manipulation at node B in Fig. 10.31(a) will require g4 = g6. Thus we can see that
if all related nodes are concerned, then all the OTAs with even-number subscripts must have the
same transconductance. For Fig. 10.31(a) we should have g2 = g4 = g6 = gm. The new structure
resulting from this treatment is shown in Fig. 10.31(b), noting that the first OTA at the input end
can be discarded for ideal voltage input without influence on the filter function because the ideal
input voltage source can have arbitrary current. Now let us look at the signal simulation structure
in Fig. 10.21. If g2 = g4 = g6 = gm, Fig. 10.21 will become exactly the same as Fig. 10.31(b).
This means that we have proved that under the condition of g2 = g4 = g6 = gm, the admittance
simulation structure and the signal simulation structure will be identical. From this equivalence we
therefore stress that the admittance simulation and the signal simulation methods are equally useful
for continuous-time integrated OTA-C filter design.

We can appreciate the above demonstration from the signal viewpoint only. In fact, the admittance
simulation is the lowest-level signal simulation, the simulation of the Ohm’s law equation which
involves the current and voltage of the branch (series arm) only, having a local feature. The signal
(LF) simulation is carried out at a high level, which is the simulation of Kirchhoff’s law equations
involving currents and voltages of different branches, having a global feature. When we consider
the node currents for the admittance simulation configuration, that means that we also consider
Kirchhoff’s law relations. This is why the simplified structure obtained in this way can be equivalent
to the configuration attained using the signal flow simulation method. This argument also leads us
to conclude that OTA-C simulation can be based on even higher-level circuit equations such as the
two-port network equations and the nodal equations, which is the topic of the next section.

We can also discuss these methods from the admittance standpoint only. The admittance simulation
is the simulation of the individual admittance. In the signal simulation we can put the Kirchhoff
equations in a form of admittance matrix and therefore we may say that signal simulation is a
generalized admittance simulation, a simulation of the admittance matrix. When dealing with the
currents of a node as in the above proof we deal equivalently with the admittances related to that
node or handle some admittance matrix, no longer a single admittance. This is why we can reach
the equivalence. From this discussion we can also realize that OTA-C filter design from passive
LC ladders can be based on the matrix form of various equations, which will be introduced in the
following section.

10.6 OTA-C Simulation of LC Ladders Using Matrix Methods

Another category of very useful but more complex methods for active filter design based on passive
LC ladder simulation is based on the matrix descriptions. The first matrix method is based on the
two-port transmission matrix equation [55]. The fundamental principle as discussed in Chapter 7 is
the linear transformation of port variables of a network from the voltage and current domain to a new
voltage domain in which active realizations are conducted. The design procedure of this approach
for use in OTA-C filter design is now summarized as below:

1. Divide the passive LC ladder into component sections in cascade and write down their chain
matrices.

2. Transform the voltage and current terminal variables into some new voltage variables by
choosing the transformation matrices and write down the four voltage transfer functions.
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FIGURE 10.31
Admittance simulation structure (a) and its simplified equivalent (b).

3. The resulting voltage transfer functions of each section are realized using OTAs and capac-
itors and their building blocks.

4. Connect all the designed sections together according to the interconnection rules. If the
interconnection matrix is not a 0-1 matrix for the chosen transformation matrices, then some
interconnection coefficients may also need to be realized using OTAs.

This method is a combination of the cascade and simulation methods. It is general; the leapfrog
structure and the wave active filter (see Chapter 7) appear as its special cases. This method can
transform the original impedance/admittance ladder into many forms of structure by properly choos-
ing the transformation matrices. In the literature only a very special case of this method has been
discussed to show how to use this method to derive OTA-C filters [28, 29]. Further investigation into
the application of the two-port matrix method in OTA-C filter design is needed.

Another powerful matrix method for active simulation of passive ladders has been recently pro-
posed in [56]. This new method has been successfully used in active RC, switched-capacitor, and
OTA-C filter design. The design procedure of this method for OTA-C filters is as follows [30, 31]:

1. A set of nodal equations that describe the passive prototype network is written in a matrix
equation form as

[J ] =
(

[G] + s[C] + s−1[0]
)

[V ] (10.57)
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where [V ] is a vector representing the nodal voltages, [J ] is a vector representing the input
current sources and [G], [C], and [0] are matrices whose elements are simple algebraic
combinations of respective passive conductance, capacitance and inverted inductance values.

2. The second-order matrix equation in Eq. (10.57) is decomposed into two first-order design
equations by introduction of a vector of auxiliary variables. A large number of decomposi-
tions are possible for OTA-C filters. The choice of decomposition for a particular filter design
is dictated by the type of building blocks available and the nature of the desired response.

3. To form the active OTA-C filter, each row of each design equation is implemented by a
first-order OTA/capacitor section.

We should stress that the two-port matrix method (due to the large number of section divisions
and transformations of the passive prototype) and the nodal matrix method (due to the large number
of possible decompositions of the total matrix equation of the passive prototype) can generate many
useful active filter structures. The conventional simulation structures such as the LF can be derived
as a special case corresponding to a particular interconnection and decomposition for the two-port
and nodal methods, respectively. We must say that the two matrix methods introduced above are very
useful for exploration of new simulation structures and complex design implementations. Because
these methods are quite mathematically intensive and highly specialized, we will not discuss the
details of the methods. The reader is strongly encouraged to refer to the relevant papers for more
information.

10.7 Coupled Biquad OTA Structures

In the above we have obtained several useful OTA-C filter structures from simulation of passive
LC ladders. The LF structure may be generalized in the way that the impedance/admittance sections
including the associated OTAs are replaced by biquadratic filters. The coupling or feedback of the
biquads can also be different. This leads to an independent and systematic study area, which is called
the coupled biquad filters. As discussed in Chapter 6, in coupled biquad filter design ideal lossless
active resonators are often required. Many bandpass filters in Chapters 8 and 9 can be designed to
have an infinite pole Q, equivalent to an ideal active resonator.

Besides the LF structure, there are also several other coupled biquad configurations such as the
follow-the-leader feedback (FLF) and inverse FLF (IFLF), which are also called multiple-loop feed-
back filters, as in Chapter 5. It can be proved that the FLF and IFLF are the adjoints of each other.
Figure 10.32 shows the diagram of the OTA-C FLF structure, where biquads can be the OTA-C
resonator shown in Section 10.2 or one of those generated in Chapters 8 and 9. This method is
modular, since it is based on biquads similar to the cascade approach, and has low sensitivity due to
complex interstage coupling similar to the signal flow simulation.

Similar to the active RC counterpart [2, 57, 59], denoting the input coefficient by α = ga0/gA, the
transfer function of the j th biquad by Tj (s), j = 1, 2, . . ., n, feedback coefficient by Fi = gai/gA,
i = 1, 2, . . . n, and feedforward coupling coefficient by Ki = gbi/gB , i = 0, 1, 2, . . ., n, we can write
the following equations:

−V0 = αVin +
n∑
i=1

FiVi (10.58)
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FIGURE 10.32
General OTA-C FLF structure.

Vi = V0

i∏
j=1

Tj (s), i = 1, 2, . . . , n (10.59)

Vout = −
n∑
i=0

KiVi (10.60)

From Eqs. (10.58) and (10.59) we can obtain

H0(s) = V0

Vin
= −α 1

1 +∑n
k=1

[
Fk
∏k
j=1 Tj (s)

] (10.61)

Hi(s) = Vi

Vin
= −α

∏i
j=1 Tj (s)

1 +∑n
k=1

[
Fk
∏k
j=1 Tj (s)

] (10.62)

and

Hn(s) = Vn

Vin
= −α

∏n
j=1 Tj (s)

1 +∑n
k=1

[
Fk
∏k
j=1 Tj (s)

] (10.63)

Then using Eqs. (10.60) and (10.61–10.63) we attain the overall transfer function as

H(s) = Vout

Vin
= α

K0 +∑n
k=1

[
Kk

∏k
j=1 Tj (s)

]
1 +∑n

k=1

[
Fk
∏k
j=1 Tj (s)

] (10.64)

For Tj (s) = τj s, that is, a voltage integrator, a general nth-order transfer function can be obtained
immediately. More generally Tj blocks can be OTA-C lossy integrators, first-order filters, or biquads.
The first- and second-order OTA-C filters developed in Chapters 8 and 9 can be used here. In
Reference [36], for example, an all-pole bandpass OTA-C FLF filter using the canonical two integrator
loop bandpass biquad was designed. Very few papers on coupled biquad OTA-C filters have been
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published [36]–[38]. There is still much work that needs to be done to enhance the use of the method
in continuous-time integrated OTA-C filter design.

10.8 Some General Practical Design Considerations

To design low-sensitivity, high-frequency, and large dynamic range OTA-C filters, many practical
factors should be considered carefully. While we can use high-quality components (for example,
high-frequency, low-noise, highly linear, and simple OTAs) to enhance the filter performance, in
this section we will however discuss the issues from the viewpoint of filter structures and design
methods.

10.8.1 Selection of Capacitors and OTAs

In some implementations, grounded capacitors are preferred, because they need less chip area
and can absorb parasitic capacitances. We can convert the floating capacitor to the grounded ca-
pacitor by using extra OTAs. The trade-off between the increased number of OTAs and the use of
floating capacitors however may need to be considered when choosing the structure, as the attempt
of grounding capacitors may require too many extra OTAs which may balance out the advantages
from grounding these capacitors. It should also be cautioned that for finite-zero LP filters, the effort
of conversion will result in suspending internal nodes which are vulnerable to parasitics. In the
balanced implementation as will be discussed in Chapter 12, splitting a single floating capacitor into
two grounded may not reduce the total chip area, because the total capacitance of the two grounded
capacitors will be four times the value of the floating capacitance.

The realizations using only single-input and single-output OTAs may require too many OTAs,
although they may have some advantages of reduction in feedthrough effects. Therefore in the
simulation design, the differential-input application of the OTA is very popular. Generally, any two
single-input OTAs with equal transconductances and opposite input polarities, whose outputs are
connected to the same node, can be equivalently replaced by a single differential-input OTA with the
same transconductance. This results in simple circuitry and possibly reduced power consumption
and chip area.

The simulation method can ensure that all but one, or at most two, transconductances are iden-
tical. Identical gm values can make on-chip tuning, design, and layout much easier, since a free
transconductance cell can be used throughout the circuit [3, 19]. Equal capacitance values may be
achieved with different values of transconductances, which is quite popular in discrete design. But in
IC implementation it seems that identical transconductances are more important as reasoned above.

In high-frequency design, the circuit capacitance is very small (the time constant C/g is small).
The smallest design capacitance must be larger than the total of all parasitic capacitances on the same
node for the circuit capacitance to absorb all the parasitic capacitances. For very high frequencies,
this may not always be possible and the OTA parasitic capacitances are quite often used as the design
capacitance, although they are less controllable. Because of the relatively large parasitic capacitances,
the grounded capacitor may no longer be advantageous for very high-frequency design.

In practice, component value determination should also meet the requirements concerning dy-
namic range, noise, and power consumption. To optimize the filter dynamic range, for example, all
integrator output swings should be made equal. The signal simulation method has the possibility
of scaling the component values such that the circuits have the maximum possible dynamic range.
This scaling is not normally available in the component substitution design.
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10.8.2 Tolerance Sensitivity and Parasitic Effects

The simulation method can retain the low-sensitivity property of passive LC ladders, because the
one-to-one correspondence of components or signals between the passive filter and active counterpart
is preserved. A caution may be given to the block-based admittance substitution or signal simulation
methods. In some cases when the admittance or impedance block in the general ladder is too complex,
the one-to-one correspondence between the active filter and the associated passive filter may not be
retained so well and thus the sensitivity of the derived active filter may not be guaranteed to be as
low as that of the passive LC counterpart.

Because the parasitic sensitivity is greater than the tolerance sensitivity in passive LC ladders, it
is especially important to keep the parasitic sensitivity low. To decrease the effects of the parasitic
conductances and capacitances on the filter magnitude frequency response we must reduce the
inductance shift and resistive loss due to these parasitics. It is very important to note that the
magnitude response change due to the parasitic parameters is proportional to the phase and magnitude
tolerance sensitivities to the inductance. The passive LC ladders have very low magnitude tolerance
sensitivity, but the phase tolerance sensitivity may not be low, which should receive attention when
dealing with the equivalent parasitic loss resistor. It should also be noted that the parasitic effects
will become worse as the frequencies increase.

10.8.3 OTA Finite Impedances and Frequency-Dependent Transconductance

It is often said that OTA-C filters are especially subjected to parasitics. The capability of absorbing
the parasitics is thus necessary. OTA finite impedances will cause the performance change, as we have
already discussed in Section 10.2, Chapters 8 and 9. The differential input application of the OTA may
cause the capacitive coupling in the circuit due to the floating finite input impedance. The resistive
node that has only a grounded OTA resistor may present an extra pole by parasitic capacitances.
The suspending node that does not have any grounded resistor or capacitor is vulnerable to both
parasitic capacitances and resistances. In the simulation of LC ladders, most structures can well
absorb OTA capacitances and thus no parasitic poles and zeros can be produced. But in some cases,
for example, simulating the lowpass ladder filters of finite transmission zeros, using only grounded
capacitors often causes some suspending nodes. Note in particular that in integrated circuits the
design capacitance is only one or two orders of magnitude higher than, or may even well be in the
similar value range of, parasitic capacitances at very high frequencies. The parasitic poles may
thus be quite near the cutoff frequency [24]. The best structures should be those in which each
internal circuit node has a grounded capacitor, since absorption design of parasitic capacitances can
be possible.

The excess phase of the OTA will also pose a stability problem at higher frequencies. For the
given OTA, to extend the working frequency of the filter, we must overcome the finite bandwidth
effects. The passive compensation technique using a MOSFET resistor and the active compensation
method based on the two OTAs of different transconductances, which are connected in parallel with
opposite polarities, can be used as discussed in Chapter 9.

10.9 Summary

This chapter has introduced methods for design of high-order OTA-C filters based on doubly
terminated passive LC ladders. Different OTA-C filter architectures have been obtained by using
the component substitution, admittance simulation, signal flow simulation, and coupled biquad
methods. The most outstanding advantage of this class of OTA-C filters is their low passband
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sensitivity performance. However, their design and tuning procedures are more complex compared
with the cascade method, and more complex structures are often required. In most high-order filters
with stringent requirements, the sensitivity advantage usually prevails, making it desirable to use a
ladder-based method.

The inductance substitution method is one of the most popular methods used for OTA-C filter
design. The Bruton Transformation method may not be suitable for OTA-C filter design because
no advantages could be achieved, especially in terms of the number of components. The two-step
admittance simulation method is appropriate to OTA-C filters. The LF and their alternative structures
resulting from signal simulation are most widely utilized for OTA-C filter design. We have shown
that the different forms of LF structures all are equivalent, thus giving the same performance. We
have also generally demonstrated that the admittance substitution and signal simulation methods are
equivalent in OTA-C filter design under certain conditions. These two methods both are popular in
OTA-C filter design. The matrix signal flow simulation methods and coupled biquad approach are
more complex, but they can realize more functions and the latter has also a modular feature.

It should be pointed out that some insights into the simulation of passive LC ladders presented in
this chapter are general. They may also be suitable for other types of active filters, although they are
discussed for OTA-C filter design. In Chapter 11 we will introduce another useful method for the
design of high-order OTA-C filters. Current-mode OTA-C filter design based on ladder simulation
will be dealt with in Chapter 12.
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Chapter 11

Multiple Integrator Loop Feedback OTA-C Filters

11.1 Introduction

The system performance of high-frequency continuous-time OTA-C filters depends on both the
constituent components (OTAs and capacitors) and the circuit architecture (how OTAs and capaci-
tors are connected). OTAs have been developed in different technologies such as bipolar, CMOS,
BiCMOS, and GaAs, and their performances have been continuously improved, making a major con-
tribution to enhanced continuous-time filter specifications. Many new filter architectures offering
a variety of performances have been generated, and comparisons of the architectures from various
viewpoints have also been made in order to find the optimum structure in one sense or another.

The structure generation, design methods, and performance evaluation of high-frequency OTA-C
filters have been of considerable interest to filter designers and researchers [1]–[31]. In Chapters 8
and 9 we have discussed second-order OTA-C filters based on a single-OTA model and two integrator
loop configurations, respectively. In Chapter 10 we have dealt with high-order OTA-C filter design.
While the biquadratic OTA-C filters proposed in Chapters 8 and 9 can be cascaded to realize high-
order specifications, Chapter 10 has introduced various approaches based on passive LC ladder
simulation. No matter what the approach, the filter structures almost always consist of integrators and
amplifiers as the most basic building blocks, and have feedback loops at this basic level. A general
approach therefore may be developed based on the multiple loop feedback structure constructed
with integrators and amplifiers. This chapter will introduce such a general multiple integrator loop
feedback approach for OTA-C filter design.

As discussed in [10] and previous chapters, in the synthesis of OTA-C filters several important
issues should be taken into consideration. The filter architecture should be simple and require a
small number of components. To achieve the canonical or minimum component realization is of
importance for both discrete and IC design because this will reduce volume, noise, parasitic effects,
and power dissipation. This seems especially significant for high-order OTA-C filter design, because
in OTA-C filters the transconductance gain of the OTA is used like a resistance in conventional active
RC filters and the number of OTAs will therefore grow rapidly as the filter order increases. The
second consideration, as we have seen, is to use grounded capacitors which can absorb parasitic
capacitances and need smaller chip areas than do floating ones. To avoid producing internal nodes
that are without grounded capacitors is also important, since otherwise parasitic poles will result
due to OTA nonidealities and circuit parasitic capacitances. The versatility of the filter network is
another practical concern; in many situations it would be ideal for the filter to provide any type of
characteristic without alteration of the configuration. Furthermore, the design method and equations
should be simple to use. Architectures which have appeared in the literature cannot achieve all
the objectives simultaneously. For example, the ladder simulation methods are normally based on
a particular passive LC prototype and can only realize zeros on the imaginary axis, thus being not
general enough. Simple structures usually have floating capacitors, and grounding all capacitors will
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require more OTAs and produce suspending internal nodes without grounded capacitors for finite
transmission zeros, besides complex design procedures and need of passive filter knowledge. The
multiple integrator loop feedback method to be presented in this chapter has all the advantages.

As we have already stressed in the previous chapters, practical performance must be effectively
assessed in the design. In addition to the well known sensitivity criteria, one must also note that
OTAs are not ideal in both their frequency response and dynamic range. The frequency response
nonidealities involve finite input and output impedances, and transconductance frequency depen-
dence or excess phase. The dynamic range nonidealities are due to the finite linear differential input
voltage and limited noise level. The former nonidealities influence the filter frequency performance
and stability, while the latter restrict the filter dynamic range. Any useful design methods and filter
structures should therefore have less impact from these OTA nonidealities.

This chapter will show how to generate, analyze, and design multiple integrator loop feedback
filter structures using OTAs and grounded capacitors for synthesis of both transmission poles and
zeros. The discussion is mainly based on the work in papers [8, 10, 12, 13]. General theory and
a systematic scheme for generating all-pole filter structures is first established, with concentration
on minimum component OTA-C realizations and the enumeration of canonical filter structures.
Two general methods for the generation of transmission zeros are then introduced together with
illustrative examples. We next formulate general sensitivity relations and analyze sensitivities for
different structures. This is followed by the evaluation of dynamic range and the effects of OTA
nonidealities. The chapter concludes with a brief summary.

11.2 General Design Theory of All-Pole Structures [9, 12, 28]

In this section we will generally address the multiple loop feedback method for the design of
all-pole OTA-C filters.

11.2.1 Multiple Loop Feedback OTA-C Model

The basic building blocks in the construction of OTA-C filters are voltage integrators and amplifiers
as shown in Figs. 11.1(a) and (b), respectively, as recalled from Chapter 9. The voltage transfer
functions H(s) = Vout/Vin (Vin is the differential input voltage to the OTA) of the integrator and
amplifier are simply shown as

H(s) = 1

sC/g

and
H(s) = g1

g2

respectively.
The general multiple integrator loop feedback OTA-C model with all capacitors being grounded

to be addressed in this chapter is shown in Fig. 11.2. As depicted, this model is composed of a
feedforward network consisting of n OTA-capacitor integrators connected in cascade and a feedback
network that may contain OTA voltage amplifiers and/or pure wire connections.

11.2.2 System Equations and Transfer Function

To analyze the model generally, the feedback network may be described as
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FIGURE 11.1
Voltage integrator and amplifier.

FIGURE 11.2
Multiple integrator loop feedback OTA-C model.

Vf i =
n∑

j=i

fijVoj , i = 1, 2, ..., n (11.1)

where fij is the voltage feedback coefficient from the output of integrator j to the input of integrator
i. This coefficient fij can be realized with an open circuit or an amplifier for the zero or nonzero
values, respectively. The former means no feedback exists, while the latter suits any amount of
feedback, between the ith and j th integrators. In particular, we may also realize fij = 1, i.e., the
unity feedback by direct connection, as an alternative to using a unity gain amplifier.

Equation (11.1) can also be written in the matrix form.

[
Vf

] = [F ] [Vo] (11.2)

where [Vo] = [Vo1 Vo2 · · ·Von]t , the output voltages of integrators, [Vf ] = [Vf 1 Vf 2 · · ·Vfn]t , the
feedback voltages to the inverting input terminals of integrators, and [F ] = [fij ]nxn, the feedback
coefficient matrix. The superscript t stands for transpose.

The currents flowing into and out of the feedback network all are zero, since they are related to the
input terminals of the OTAs in the feedforward circuit or in the feedback network, which are ideally
infinite impedance. Noting this and denoting time constants τj = Cj/gj , we can write the equations
for the feedforward network by inspection

sτ1Vo1 = Vin − Vf 1, sτj+1Voj+1 = Voj − Vfj+1 (11.3)

where s is the complex frequency.
Equation (11.3) can also be condensed in a matrix form

[Vo] = [M(s)]−1 ([B]Vin − [
Vf

])
(11.4)
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where

[M(s)] =




sτ1
−1 sτ2

−1 sτ3
. . .

−1 sτn


 (11.5)

[B] = [1 0 · · · 0]t (11.6)

Combining Eqs. (11.2) and (11.4) we can obtain the equation for the whole system as

[A(s)] [Vo] = [B]Vin (11.7)

where

[A(s)] = [M(s)] + [F ] (11.8)

Equation (11.7) establishes the relationship between the overall circuit input and the integrator
outputs including the overall circuit output. Using the equation we can formulate various useful
expressions for the general model. Here we first demonstrate the circuit transfer function using
Eq. (11.7), while we will also refer back to this equation when coping with other problems, for
example the realization of transmission zeros in Section 11.4 and sensitivity computation in Sec-
tion 11.5.

Solving Eq. (11.7) yields

[Vo]

Vin
= [A(s)]−1[B] = 1

|A(s)|




A11(s)

A12(s)
...

A1n(s)


 (11.9)

where |A(s)| and Aij (s) represent the determinant and cofactors of [A(s)], respectively.
Since the overall circuit output Vout = Von, from Eq. (11.9) it can be readily identified that the

system transfer function is given by

H(s) = Vout

Vin
= A1n(s)

|A(s)| (11.10)

Noting that [F ] is an upper triangular matrix and using Eq. (11.8) the system matrix [A(s)] may
be generally written as

[A(s)] =




sτ1 + f11 f12 f13 f1n−1 f1n
−1 sτ2 + f22 f23 · · · f2n−1 f2n

−1 sτ3 + f33 f3n−1 f3n
...

−1 sτn + fnn


 (11.11)
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Based on Eq. (11.11) we can see that A1n(s) = 1. Thus the transfer function H(s) can be
simplified as

H(s) = 1

|A(s)| (11.12)

11.2.3 Feedback Coefficient Matrix and Systematic Structure Generation

The feedback matrix [F ] is defined by Eq. (11.2) and has the property that

fij

{ �= 0 if there is feedback between Voj and Vf i

= 0 otherwise

As can be seen from Eq. (11.2), if all the elements in a row of [F ], say row i, are zero, the
corresponding feedback voltage Vf i will be zero and so is the converse. Vf i = 0 means that the
inverting terminal of the OTA in the ith integrator is grounded.

Note that [F ] is an upper triangular matrix; fij is nonzero for all i ≤ j . If we further suppose that
no inverting integrator terminals are grounded, the feedback matrix will also have the property that
each row has one and only one nonzero element, which implies that fnn is always nonzero under the
assumption.

As discussed before, the nonzero feedback coefficient can always be realized using an OTA voltage
amplifier and the unity feedback coefficient can also be achieved by pure wire connection.

In the following by the canonical or minimum component realization we mean that for realizing
unity dc gain nth-order all-pole lowpass filters, only n OTAs and n capacitors (i.e., n integrators)
are required. For the general model in Fig. 11.2 the canonical realization is clearly equivalent to no
components existing in the feedback network.

If all the nonzero feedback coefficients are unity and are realized with pure wire connection, there
will be no OTAs in the feedback network. The whole system then has the minimum number of
components. Alternatively we can say that for canonical architectures, the feedback matrix [F ] =
[fij ]n×n defined by Eq. (11.2) obviously has only zero and unit elements, and is thus unimodular,
since feedback can be achieved only by direct connection.

It is apparent that there is a one-to-one correspondence between the feedback matrix [F ] and the
circuit configuration, and different [F ] will give rise to different circuit structures. To show this
we consider the situation that feedback is realized only by direct connection and none of the OTA
inverting terminals in the integrators are grounded. According to the features of the general [F ]
discussed above, the feedback matrix [F ] now becomes an upper triangular (0, 1) matrix and has one
and only one unit element in each row, leading to fnn = 1. Therefore for the nth-order model there
are n! combinations of unit element positions in the matrix. Note that the unit element fij = 1 in
each combination is realized by a direct connection between the negative input terminal of integrator
i and the output of integrator j . Thus we have n! different combinations of feedback connections,
i.e., n! different filter structures.

It is of particular interest that this also suggests a method for generating all possible filter architec-
tures that are canonical and without grounded integrator inverting terminals. That is, for any given
order n, we first find all n! combinations of unit element positions in [F ]. Direct connections are then
made corresponding to all unit feedback coefficients in each combination; this is repeated for all n!
different combinations. All possible filter configurations are thus obtained, which correspond to the
n! different feedback connection combinations. This method is extensively studied and exemplified
in Section 11.3.
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11.2.4 Filter Synthesis Procedure Based on Coefficient Matching

From Eq. (11.11) we can see that the determinant |A(s)| may normally be an nth-order polynomial
of s. The transfer function in Eq. (11.12) may therefore have the all-pole filter characteristic. The
all-pole filter structures with different feedback configurations can be generated using the method
given in the preceding section. We now discuss how to design these filters to fulfill the required
specification.

The general form of all-pole lowpass transfer functions may be expressed as

Hd(s) = A0

Bnsn + Bn−1sn−1 + · · · + B1s + 1
(11.13)

To synthesize this desired transfer function Hd(s) we may follow the generic procedure shown
below.

Based on Eqs. (11.11) and (11.12), by expansion of |A(s)| we can obtain the circuit transfer
function as

H(s) = g0(τh, fij )

gn(τh, fij )sn + gn−1
(
τh, fij

)
sn−1 + · · · + g1

(
τh, fij

)
s + 1

(11.14)

Comparing Eq. (11.13) and Eq. (11.14), to achieve the desired characteristic the following set of
coefficient matching equations must be satisfied.

gn

(
τh, fij

) = Bn, gn−1
(
τh, fij

) = Bn−1, · · · , g1
(
τh, fij

) = B1,

g0
(
τh, fij

) = A0 (11.15)

Solving Eq. (11.15) we can obtain τh and fij . To finish the design we can then compute the values
of each C and g from τh and fij .

The efficient expansion of |A(s)| to reach the polynomial form in s of Eq. (11.14) is the first step
in the design. Some symbolic analysis techniques may be required generally to deal with |A(s)| to
get coefficient matching equations. However, the issue may be quite easily handled for low-order
and some general high-order filters as will be shown in the next section.

The coefficient matching equations are usually nonlinear. Note that to produce the item sk , there
is at least one group of k integrators making a multiplicative contribution to the corresponding
coefficient. Hence, gk(τh, fij ) will contain at least one term of multiplication of k integration
constants. In most cases a nonlinear equation solver may need to be invoked to solve the derived
parameter value determination equations. In the later section we will show that the design equations
of many structures can be easily solved explicitly .

To further determine each g and C there exist n degrees of freedom in the canonical realization
and more than n degrees in the noncanonical. Thus the transconductances or the capacitances can
be arbitrarily assigned to be identical. Taking the canonical realization as an example we may set
g1 = g2 = · · · = gn = g and then calculate Cj = gτj , for any j , or let C1 = C2 = · · · = Cn = C

and then compute gj = C/τj .
As can be seen from Eq. (11.8) the network performance is a function of [F ]. Different [F ]

matrices will lead to different transfer characteristics in Eq. (11.12). [F ] is also linked with filter
structures and different [F ] matrices will correspond to different architectures. Thus the relationship
between the performance and the structure is established through the feedback matrix. The signif-
icance is even more in that the generality, regularity, and systematicality of the design method is
obtained from the introduction of [F ].
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11.3 Structure Generation and Design of All-pole Filters [9, 12, 28]

In Section 11.2 we have discussed generally the proposed method for generation, analysis, and de-
sign of OTA-C filters. In this section we will investigate the application of the method. For simplicity
and clarity, we concentrate on canonical filter configurations with no feedback voltages (inverting
inputs of gj OTAs) being grounded for a given order n using the method given in Section 11.2.3.
Some component value determination formulas and design considerations are also presented.

11.3.1 First- and Second-Order Filters

In the simplest first-order case [F ] = f11, the general model has the transfer function

H(s) = 1/ (τ1s + f11)

The canonical structure by direct feedback connection that corresponds to f11 = 1 is given in
Fig. 11.3(a).

FIGURE 11.3
(a) First- and (b) second-order canonical OTA-C filter structures.

For the second-order model the general transfer function is derived using Eqs. (11.11) and (11.12)
as

H(s) = 1/
[
τ1τ2s

2 + (τ2f11 + τ1f22) s + (f11f22 + f12)
]

(11.16)

With f22 = f12 = 1 and f11 = 0, the canonical second-order filter is obtained as shown in
Fig. 11.3(b) [4, 5], which was also discussed in terms of two integrator loop structures in Chapter 9
and the transfer function in Eq. (11.16) accordingly reduces to

H(s) = 1/
(
τ1τ2s

2 + τ1s + 1
)

which can realize the unity dc gain ( A0 = 1 ) all-pole characteristic in Eq. (11.13) with τ2 = B2/B1
and τ1 = B1.

The other combination of [F ] unit elements is f11 = f22 = 1 and f12 = 0. The corresponding
filter, a cascade of two first-order canonical sections, is rejected since it cannot realize complex poles.

Having shown that the first- and second-order filters can be derived from the general model in
Fig. 11.2, we now turn to a demonstration of the power of the approach in generating high-order
OTA-C filter structures in the following sections.
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11.3.2 Third-Order Filters

For the third-order model that is derived from Fig. 11.2 but with n = 3, using general [F ] and
Eqs. (11.11) and (11.12) we formulate the general transfer function as

H(s) = 1/
{
τ1τ2τ3s

3 + (τ1τ2f33 + τ1τ3f22 + τ2τ3f11) s
2

+ [τ1 (f22f33 + f23) + τ2f11f33 + τ3 (f11f22 + f12)] s

+ (f11f22f33 + f11f23 + f12f33 + f13)
}

(11.17)

As proved in Section 11.2.3, there are altogether six possible configurations. It can be verified
that the last term in the denominator of Eq. (11.17) is equal to 1 for all the structures, and so A0 = 1
in Eq. (11.13). The results are presented below.

When f13 = f23 = f33 = 1 and the other elements are zero, we have the structure in Fig. 11.4(a)
and the circuit transfer function in Eq. (11.17) becomes

H(s) = 1/
(
τ1τ2τ3s

3 + τ1τ2s
2 + τ1s + 1

)
(11.18)

FIGURE 11.4
Third-order canonical OTA-C filters.

The parameter value equations are demonstrated as

τ1 = B1, τ2 = B2/B1, τ3 = B3/B2 (11.19)

If we select f12 = f23 = f33 = 1 and the other fij = 0, the filter architecture in Fig. 11.4(b)
results. The corresponding transfer function and the parameter value determination formulas are
derived as

H(s) = 1/
(
τ1τ2τ3s

3 + τ1τ2s
2 + (τ1 + τ3) s + 1

)
(11.20)

τ3 = B3/B2, τ2 = B2/ (B1 − B3/B2) , τ1 = B1 − B3/B2 (11.21)

For [F ] with f11 = f23 = f33 = 1 and the other fij = 0, or f12 = f22 = f33 = 1 and the
other fij = 0, the circuits become cascaded by a first-order and a second-order canonical sections
in Fig. 11.3.
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The other two combinations which correspond to the [F ] of a unity matrix and the [F ] with
f13 = f22 = f33 = 1 and the other fij = 0, respectively, do not seem practical, because the structure
with a unity matrix [F ] is a cascade of three first-order canonical sections in Fig. 11.3, which can
only realize some real poles, and for the structure corresponding to f13 = f22 = f33 = 1 and the
other fij = 0 the solutions of component values for the Butterworth and Chebyshev approximations
are not real positive numbers, which has been numerically verified. Therefore they are rejected.

11.3.3 Fourth-Order Filters

For the fourth-order general model of Fig. 11.2, again from Eqs. (11.11) and (11.12), the general
transfer function can be written with some tedious manipulation as

H(s) = 1/
{
(τ1τ2τ3τ4) s

4

+ (τ1τ2τ3f44 + τ1τ2τ4f33 + τ1τ3τ4f22 + τ2τ3τ4f11) s
3

+ [τ1τ2 (f33f44 + f34) + τ1τ3f22f44 + τ1τ4 (f22f33 + f23)

+ τ2τ3f11f44 + τ2τ4f11f33 + τ3τ4 (f11f22 + f12)] s
2

+ [τ1 (f22f33f44 + f22f34 + f23f44 + f24) + τ2 (f11f33f44 + f11f34)

+τ3 (f11f22f44 + f12f44) + τ4 (f11f22f33 + f11f23 + f12f33 + f13)] s

+ (f11f22f33f44 + f11f22f34 + f11f44f23

+f12f33f44 + f11f24 + f13f44 + f12f34 + f14)
}

(11.22)

For any particular [F ] we can easily draw the associated structure, obtain the corresponding transfer
function, and calculate the component values. There are altogether 24 combinations of possible filter
configurations according to the discussion in Section 11.2.3. There are ten practical structures, five
of which are shown in Fig. 11.5, together with the corresponding [F ]s, transfer functions, and some
design formulas below. Note that in each case the fij s that are not written out are treated as zero
and the realization of the unity dc gain all-pole lowpass characteristic in Eq. (11.13) with A0 = 1 is
dealt with.

Fig. 11.5(a): f12 = f23 = f34 = f44 = 1

H(s) = 1/
[
τ1τ2τ3τ4s

4 + τ1τ2τ3s
3 + (τ1τ2 + τ1τ4 + τ3τ4) s

2 + (τ1 + τ3) s + 1
]

τ4 = B4/B3, τ3 = B3/B, τ2 = B/(B1 − B3/B),

τ1 = B1 − B3/B, B = B2 − B1B4/B3
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Fig. 11.5(b): f13 = f23 = f34 = f44 = 1

H(s) = 1/
[
τ1τ2τ3τ4s

4 + τ1τ2τ3s
3 + (τ1τ2 + τ1τ4) s

2 + (τ1 + τ4) s + 1
]

τ4 = B4/B3, τ3 = B3/ [B2 − (B1 − B4/B3) B4/B3] ,

τ2 = B2/ (B1 − B4/B3) − B4/B3, τ1 = B1 − B4/B3

Fig. 11.5(c): f13 = f24 = f34 = f44 = 1

H(s) = 1/
[
τ1τ2τ3τ4s

4 + τ1τ2τ3s
3 + τ1τ2s

2 + (τ1 + τ4) s + 1
]

τ4 = B4/B3, τ3 = B3/B2, τ2 = B2/ (B1 − B4/B3) , τ1 = B1 − B4/B3

Fig. 11.5(d): f14 = f23 = f34 = f44 = 1

H(s) = 1/
[
τ1τ2τ3τ4s

4 + τ1τ2τ3s
3 + (τ1τ2 + τ1τ4) s

2 + τ1s + 1
]

τ4 = B4/B3, τ3 = B3/ (B2 − B1B4/B3) , τ2 = B2/B1 − B4/B3, τ1 = B1

Fig. 11.5(e): f14 = f24 = f34 = f44 = 1

H(s) = 1/
[
τ1τ2τ3τ4s

4 + τ1τ2τ3s
3 + τ1τ2s

2 + τ1s + 1
]

τ1 = B1, τ2 = B2/B1, τ3 = B3/B2, τ4 = B4/B3

It is observed that the circuits in Figs. 11.5(a)–(e) can be easily designed using the attached
formulas. The other five practical structures correspond to f12 = f22 = f34 = f44 = 1, f12 =
f24 = f34 = f44 = 1, f13 = f22 = f34 = f44 = 1, f14 = f22 = f34 = f44 = 1, f14 = f23 =
f33 = f44 = 1, respectively.

In addition to the 10 configurations presented above there are another 14 possible structures.
These 14 configurations, however, have been found not suitable for realizing the Butterworth and
Chebyshev approximation filters; 10 of them are a cascade of canonical sections of either 4 first-
orders, or 2 first-orders and 1 second-order, or 1 first-order and 1 third-order, which cannot realize
2 pairs of complex poles, while the other 4 (corresponding to f12 = f24 = f33 = f44 = 1,
f13 = f24 = f33 = f44 = 1, f14 = f22 = f33 = f44 = 1, and f14 = f24 = f33 = f44 = 1,
respectively) have no practical solutions of the associated design equations.
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FIGURE 11.5
Fourth-order all-pole canonical OTA-C filter structures.

11.3.4 Design Examples of Fourth-Order Filters

Numerical design examples for the five structures in Fig. 11.5 are now presented. For the 4th-order
Butterworth lowpass filter the normalized transfer function is (see Chapter 2 and Appendix A)

Hd(s) = 1

s4 + 2.61313s3 + 3.41421s2 + 2.61313s + 1

We use the five structures given in Fig. 11.5 to realize this characteristic. Identifying that B4 = 1,
B3 = B1 = 2.61313 and B2 = 3.41421, the parameter values of the structures are calculated from
the individual coefficient matching equations by using the formulated explicit solutions, which are
given in Table 11.1.

The realization of the fourth-order 455 kHz unity gain Butterworth filter using the structure in
Fig. 11.5(a) is now further considered. The equal transconductance design is adopted with the
transconductance value being g = 30.1µS. The normalized capacitances are calculated from τj in
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Table 11.1 Parameter Values for Normalized 4th-Order Butterworth Filter
Circuit τ1 τ2 τ3 τ4

Fig. 11.5(a) 1.53073 1.57716 1.08239 0.382683

Fig. 11.5(b) 2.23044 1.14805 1.02049 0.382683

Fig. 11.5(c) 2.23044 1.53073 0.765367 0.382683

Fig. 11.5(d) 2.61313 0.92388 1.08239 0.382683

Fig. 11.5(e) 2.61313 1.30656 0.765367 0.382683

Table 11.1 as

C1 = 46.1µF, C2 = 47.5µF, C3 = 32.6µF, C4 = 11.5µF

For the cutoff frequency 455 kHz, frequency denormalization leads to the nominal circuit capac-
itances

C1 = 16.1pF, C2 = 16.6pF, C3 = 11.4pF, C4 = 4.0pF

The Chebyshev lowpass filters can also be realized. For instance, the transfer function of the 1dB
ripple, frequency-normalized Chebyshev filter with unity dc gain is obtained as

Hd(s) = 1

3.62808s4 + 3.45688s3 + 5.27496s2 + 2.69429s + 1

The circuit parameter values for realizing this characteristic using the five canonical configurations
in Fig. 11.5 are listed in Table 11.2.

Table 11.2 Parameter Values for 4th-Order 1dB Ripple Chebyshev Filter
Circuit τ1 τ2 τ3 τ4

Fig. 11.5(a) 1.28172 1.90934 1.41256 1.04953

Fig. 11.5(b) 1.64476 2.15761 0.974114 1.04953

Fig. 11.5(c) 1.64476 3.20713 0.655337 1.04953

Fig. 11.5(d) 2.69429 0.908307 1.41256 1.04953

Fig. 11.5(e) 2.69429 1.95783 0.655337 1.04953

11.3.5 General nth-Order Architectures

The above examples reveal that using the proposed method we may systematically generate a
large number of practical all-pole filter structures. General nth-order architectures can also be thus
derived. Rather than trying to exhaustively enumerate all n! possible general structures due to the
complexity of the problem, we present some typical ones for illustrative purposes.

11.3.5.1 General IFLF Configuration

If [F ] is chosen so that the elements in the last column all are unity and the other elements of
the matrix are zero, then the circuit has the inverse follow-the-leader feedback (IFLF) structure as
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shown in Fig. 11.6. System matrix [A(s)] becomes

[A(s)] =




sτ1 0 0 1
−1 sτ2 0 1

· · ·
0 0 sτn−1 1
0 0 −1 sτn + 1


 (11.23)

FIGURE 11.6
General IFLF structure.

The third-order IFLF filter has been given in Fig. 11.4(a) and fourth-order counterpart is the circuit
in Fig. 11.5(e). We now derive the general explicit design formulas for the nth-order IFLF circuit.

By expansion of [A(s)] using the last column we obtain

|A(s)| = τ1τ2 · · · τnsn + τ1τ2 · · · τn−1s
n−1 + · · · + τ1τ2s

2 + τ1s + 1 (11.24)

Comparing it with Eq. (11.13) gives the design equations

j∏
i=1

τi = Bj j = 1, 2, ..., n (11.25)

By simple manipulation of Eq. (11.25) we obtain

τ1 = B1, τi = Bi/Bi−1 (11.26)

The IFLF structure can also be derived by using the signal flow graph method [7].

11.3.5.2 General LF Configuration

If the choice is made of fi(i+1) = 1, i = 1, 2, ..., n − 1, fnn = 1, and all the other fij s are
zero, then the leapfrog (LF) configuration results as shown in Fig. 11.7. The derivative third- and
fourth-order counterparts have been exhibited in Fig. 11.4(b) and Fig. 11.5(a), respectively.

The transfer function may be obtained explicitly in an iterative way and the analytic expressions
for determining parameter values may also be attainable from the coefficient matching equations.
To appreciate this we write the system matrix

[A(s)] =




sτ1 1
−1 sτ2 1 · · ·

−1 sτ3
· · ·

sτn−1 1
−1 sτn + 1




(11.27)
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FIGURE 11.7
General LF configuration.

from which we can obtain |A(s)| as

|A(s)| = (sτn + 1) Ann(s) + A(n−1)n(s) = sτ1A11(s) + A12(s) (11.28)

where Ajn(s) can be formulated in an iterative way as

A1n(s) = 1, A2n(s) = τ1s ,

Ajn(s) = sτj−1A(j−1)n(s) + A(j−2)n(s) (11.29)

and A1j (s) can be determined by

A1n(s) = 1, A1(n−1)(s) = sτn + 1 ,

A1j (s) = sτj+1A1(j+1)(s) + A1(j+2) (11.30)

For any order, using the above iterative formulas we can derive the corresponding transfer function
H(s) = Vout/Vin. We can verify this for the third- and fourth-order LF filters discussed previously.
We now take the fifth-order filter as another example. Using Eqs. (11.28–11.30) we have

|A(s)| = τ1τ2τ3τ4τ5s
5 + τ1τ2τ3τ4s

4 + (τ1τ2τ3 + τ1τ2τ5 + τ1τ4τ5 + τ3τ4τ5) s
3

+ (τ1τ2 + τ1τ4 + τ3τ4) s
2 + (τ1 + τ3 + τ5) s + 1 (11.31)

To realize the fifth-order transfer function in Eq. (11.13), the pole parameters, τj are determined
as

τ5 = B5
B4

, τ4 = B4
B3−B2τ5

, τ3 = B3−B2τ5
B2−(B1−τ5)τ4

,

τ2 = B2−(B1−τ5)τ4
B1−τ3−τ5

, τ1 = B1 − τ3 − τ5 (11.32)

11.3.6 Other Types of Realization

It should be noticed that the explicit expressions of the transfer function of, for example, the third-
and fourth-order models given in Eq. (11.17) and Eq. (11.22) are general; they are actually suitable
for any realizations of feedback coefficients.
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In the above we have considered canonical structures with integrator inverting input terminals
being ungrounded. Based on the discussion we may conveniently further comment on the other
types of realization structure.

First consider the noncanonical realizations with the inverting terminals of integrators remaining
ungrounded. If some or all feedback coefficients are realized with OTA voltage amplifiers, many
more structures may be obtained. For example, for the second-order two integrator loop feedback
biquads based on the general model in Fig. 11.2, we may also choose f22 = gb3/gb4, f12 = 1, or
f22 = 1, f12 = gb5/gb6, or f22 = gb3/gb4, f12 = gb5/gb6, all with f11 = 0. (The corresponding
biquadratic structures have been investigated in Chapter 9.)

If grounded integrator inverting terminals are further allowed, more structure varieties may be
obtained. For example, if we select f1j �= 0, j = 1, 2, ..., n and the other fij = 0, with f1j being
realized by OTA voltage amplifiers, then the general FLF structure can be obtained. Note that in this
structure, Vf i = 0 for all i = 2, 3, ..., n.

Note that the noncanonical synthesis produces some non-integrating nodes (for example, if fij

is realized with an OTA voltage amplifier, there will be a node without any circuit capacitance
connected, which is the output node of the amplifier, also the inverting input terminal of the ith
integrator). The nonideal OTA capacitances and circuit parasitic capacitances associated with the
node may thus influence the high-frequency performance, producing an unwanted pole. More OTAs
will also cause other problems, as will be discussed later in the chapter.

11.4 Generation and Synthesis of Transmission Zeros

In the above sections we concentrated on the generation of all-pole filters. In this section we
address the issue of implementing the transmission zeros, that is, the synthesis of the general transfer
function

Hd(s) = Ans
n + An−1s

n−1 + · · · + A1s + A0

Bnsn + Bn−1sn−1 + · · · + B1s + 1
(11.33)

Note that this is a universal expression, since any characteristics of any order and any type can
be derived from the expression. In the extreme case that the nth-order system has n zeros and is
without lack of any terms of s, the system will have 2n + 1 independent coefficients. Clearly for
the universal realization, the minimal number of capacitors is n, the order of the filter; while the
minimum number of OTAs equals 2n + 1, that is, the number (n) of integrators plus the number
(n + 1) of coefficients of the numerator of the transfer function. The latter n + 1 OTAs guarantee
that the numerator coefficients are controllable separately from each other, which ensures that any
special numerators can be achieved by selecting these transconductances, and separately from the
denominator which is determined by the n integrators, thus keeping the natural modes unchanged
when the numerator is adjusted.

For a given input to a node, different nodes may support different types of output characteristic,
while for a fixed output node the output function may vary as the input node changes. Therefore by
altering input and output nodes we may realize some transmission zeros. For example noncanonical
second-order filters may support a variety of filtering functions such as the lowpass, bandpass,
highpass and bandstop characteristics in this way, as has been shown in Chapter 9.

More generally, for a given input we may combine the different node outputs with a summation
OTA network to give the overall circuit output, or for a fixed output distribute the overall input onto
different circuit nodes using an OTA distribution network. A general transfer function can thus be
obtained. Then by properly selecting the summation or distribution weights for respective cases
one may attain any filter characteristics. In the following we will formulate design equations of
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the two methods and illustrate the realization of various numerator characteristics using different
architectures.

11.4.1 Output Summation of OTA Network [12]

Here we connect a summation OTA network to the circuit in Fig. 11.2, as shown in Fig. 11.8.
Denoting Hj(s) = Voj /Vin and αj = gaj /gr we derive

H(s) = Vout/Vin = α0 +
n∑

j=1

αjHj (s) (11.34)

FIGURE 11.8
OTA-C filter model with output summation OTA network.

Using the results given in Section 11.2.2 [Eq. (11.9)] we know that

Hj(s) = A1j (s)/|A(s)| (11.35)

Substituting Eq. (11.35) into Eq. (11.34) we have the circuit transfer function

H(s) = α0 + 1

|A(s)|
n∑

j=1

αjA1j (s) (11.36)

The overall transfer function in Eq. (11.36) may have the general form of Eq. (11.33) with ref-
erence to matrix [A(s)] in Eq. (11.11) and the transmission zeros may be controlled arbitrarily by
transconductances gaj through weights αj .

11.4.2 Input Distribution of OTA Network [12]

In this approach, the voltage signal is applied to circuit nodes by an input OTA network as shown
in Fig. 11.9. In this way finite transmission zeros can also be achieved. Exactly the same formulation
process as that in Section 11.2.2 can be followed to derive the design equations for this case. All the
relations in Eqs. (11.1), (11.2), (11.4), (11.5), (11.7), and (11.8) apply here, with only one exception
that instead of [B] = [1 0 · · · 0]t of Eq. (11.6) in Section 11.2.2, now

[B] = [β1 β2 · · ·βn]t (11.37)
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where βj = gaj /gj , j = 1, 2, ..., n, since Eq. (11.3) in Section 11.2.2 correspondingly becomes for
the present case

sτ1Vo1 = β1Vin − Vf 1, sτj+1Vo(j+1) = βj+1Vin + (
Voj − Vf (j+1)

)
(11.38)

FIGURE 11.9
OTA-C filter model with input distribution OTA network.

This exception is clearly due to the change of input form; in Fig. 11.2 the input voltage is applied
only to the first integrator output node and this is realized directly through the OTA in the integrator,
while in the present case the input voltage is distributed to all the integrator output nodes and this is
accomplished by extra OTAs.

First solving Eq. (11.7) for [Vo], then substituting Eq. (11.37) and finally observing Vout =
γ (βn+1Vin + Von), where γ = gn+1/gr and βn+1 = ga(n+1)/gn+1, we can formulate that

H(s) = Vout

Vin
= γ


βn+1 + 1

|A(s)|
n∑

j=1

βjAjn(s)


 (11.39)

Equation (11.39) also indicates the possibility of arbitrary transmission zero realization by adjusting
βj , that is, gaj .

Note that the distribution method actually involves the superposition theorem, since the responses
corresponding to the different resulting node inputs are superposed at the output node. This method
can therefore also be understood in the way that the different node inputs are collected with weights
into a single input.

It is also noted that if the maximum order in the numerator is required to be n − 1, then we can
remove the ga(n+1) OTA, and the gn+1 and gr OTAs for γ = 1 and simply output the voltage Von
directly in the distribution case (this leads to an advantage that the resistive summing node that will
have effects of the parasitics at very high frequencies is avoided), while for the summation thega0 OTA
should be deleted. It is also of interest to note that when the transadmittance functions are required,
we can eliminate the gr OTA in both input distribution and output summation configurations.

In the next two sections, we will illustrate the general output summation and input distribution
methods for arbitrary transmission zero realization developed above. We will investigate third-order
OTA-C structures and general nth-order IFLF and LF configurations. Note that universal OTA-C
biquads can also be derived based on the output summation and input distribution methods, which
have already been discussed in Chapter 9.
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11.4.3 Universal and Special Third-Order OTA-C Filters [13]

The general third-order transfer function can be expressed as

Hd(s) = A3s
3 + A2s

2 + A1s + A0

B3s3 + B2s2 + B1s + 1
(11.40)

Four third-order universal OTA-C structures are given in Fig. 11.10, which consist of the canonical
IFLF and output summation network, canonical IFLF and input distribution network, canonical LF
and output summation network, and canonical LF and input distribution network. Deriving the
circuit transfer functions of the structures and comparing them with the desired characteristic in
Eq. (11.40) we can obtain the design formulas for filter parameters.

FIGURE 11.10
Four universal third-order OTA-C filters.
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11.4.3.1 IFLF and Output Summation Structure in Fig. 11.10(a)

Denote that τj = Cj/gj and αj = gaj /gr . Using Eq. (11.36) the voltage transfer function
H(s) = Vout/Vin of the structure is derived as

H(s) = α0τ1τ2τ3s
3+(α0τ1τ2+α1τ2τ3)s

2+(α0τ1+α1τ2+α2τ3)s+(α0+α1+α2+α3)

τ1τ2τ3s
3+τ1τ2s

2+τ1s+1
(11.41)

Comparison of Eqs. (11.41) and (11.40) leads to the following design formulas:

τ1 = B1, τ2 = B2/B1, τ3 = B3/B2 (11.42)

α0 = A3/B3, α1 = (A2 − α0B2) B1/B3 ,

α2 = [A1 − α0B1 − α1B2/B1)] B2/B3 ,

α3 = A0 − (α0 + α1 + α2) (11.43)

11.4.3.2 IFLF and Input Distribution Structure in Fig. 11.10(b)

For the filter in Fig. 11.10(b), with βj = gaj /gj and γ = g4/gr and using Eq. (11.39) we derive
the voltage transfer function

H(s) = γ
β4τ1τ2τ3s

3+(β4+β3)τ1τ2s
2+(β4+β2)τ1s+(β4+β1)

τ1τ2τ3s
3+τ1τ2s

2+τ1s+1
(11.44)

The τ s can be determined using Eq. (11.42) and the βs are obtained as follows (set γ = 1):

β4 = A3/B3, β3 = A2/B2 − β4 ,

β2 = A1/B1 − β4, β1 = A0 − β4 (11.45)

11.4.3.3 LF and Output Summation Structure in Fig. 11.10(c)

The voltage transfer function of the structure in Fig. 11.10(c) is derived as

H(s) = α0τ1τ2τ3s
3+(α0τ1τ2+α1τ2τ3)s

2+[α0(τ1+τ3)+α1τ2+α2τ3]s+(α0+α1+α2+α3)

τ1τ2τ3s
3+τ1τ2s

2+(τ1+τ3)s+1
(11.46)

The parameters can be determined using the equations below

τ1 = B1 − B3/B2, τ2 = B2/ (B1 − B3/B2) , τ3 = B3/B2 (11.47)

α0 = A3/B3, α1 = (A2 − α0B2) (B1 − B3/B2) /B3 ,

α2 = [A1 − α0B1 − α1B2/ (B1 − B3/B2)] B2/B3 ,

α3 = A0 − (α0 + α1 + α2) (11.48)
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11.4.3.4 LF and Input Distribution Structure in Fig. 11.10(d)

The voltage transfer function of Fig. 11.10(d) is demonstrated as

H(s) = γ
β4τ1τ2τ3s

3+(β4+β3)τ1τ2s
2+[β4(τ1+τ3)+β2τ1]s+(β4+β3+β1)

τ1τ2τ3s
3+τ1τ2s

2+(τ1+τ3)s+1
(11.49)

Taking γ = 1 we have the following design formulas [τ s are calculated using Eq. (11.47)]

β4 = A3/B3, β3 = A2/B2 − β4, β2 = (A1 − β4B1) / (B1 − B3/B2) ,

β1 = A0 − (β4 + β3) (11.50)

11.4.3.5 Realization of Special Characteristics

If the maximum order in the numerator is required to be n−1 = 2 and γ = 1 is selected, then ga4,
g4 and gr OTAs all can be removed and the output voltage Vo3 of the third integrator can be directly
used as the filter output in the distribution structures, while for the summation type, the ga0 OTA
should be deleted. In any case, if the calculated αj = 0 or βj = 0, then the corresponding gaj OTA
should be eliminated. Thus, for some specific characteristics the filter structures can be simplified.
For example, using Figs. 11.10(a)–(d) to realize the desired numerator with A3 = A1 = 0 we will
have, respectively,

α0 = 0, α1 = A2B1/B3, α2 = −A2 (B2/B3)
2 ,

α3 = A0 − (α1 + α2) (11.51)

γ = 1, β4 = 0, β3 = A2/B2, β2 = 0, β1 = A0 (11.52)

α0 = 0, α1 = (B1 − B3/B2) A2/B3, α2 = −A2 (B2/B3)
2 ,

α3 = A0 − (α1 + α2) (11.53)

γ = 1, β4 = 0, β3 = A2/B2 ,

β2 = 0, β1 = A0 − A2/B2 (11.54)

Note that using the above formulas we may have negative values for some αj and βj . This sim-
ply means the need for the interchange of the two input terminals of the associated gaj OTA.
Figs. 11.11(a)–(d) show the resulting structures corresponding to Eqs. (11.51–11.54).

11.4.3.6 Design of Elliptic Filters

We now show how to use the filter structures above to realize an elliptic lowpass filter of

Hd(s) = 0.588358s2 + 1

1.67029s3 + 1.41856s2 + 1.91391s + 1
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FIGURE 11.11
Four elliptic third-order OTA-C filters.

Using Eq. (11.42) we can determine the IFLF pole parameters as

τ1 = 1.91391, τ2 = 0.741184, τ3 = 1.17745

and the LF pole parameters are given by Eq. (11.47) as

τ1 = 0.736455, τ2 = 1.926199, τ3 = 1.17745

The zero parameters for all the structures are computed using Eqs. (11.51–11.54), given in Table 11.3.
Suppose that the cutoff frequency is required to be 500 kHz. We further determine the component

values of the structure in Fig. 11.11(b). We choose the normalized values of capacitances as

C1 = 42.5µF, C2 = 30.3µF, C3 = 48.2µF
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Table 11.3 Parameter Values of Third-Order Elliptic OTA-C Filter
Fig. 11.11 α0 α1 α2 α3

(a) 0 0.674173 -0.424378 0.750205

(c) 0 0.259416 -0.424378 1.16496

Fig. 11.11 β4 β3 β2 β1

(b) 0 0.414757 0 1

(d) 0 0.414757 0 0.585243

and compute
ga1 = g1 = 22.2µS, g2 = g3 = 40.9µS, ga3 = 17.0µS

using the data in Table 11.3. Denormalization with the frequency of 500 kHz we have the real
capacitances as

C1 = 13.5pF, C2 = 9.7pF, C3 = 15.3pF

11.4.4 General nth-Order OTA-C Filters

We now try to further establish the explicit design equations for universal IFLF and LF architectures
which are suitable for any values of the order n.

11.4.4.1 Universal IFLF Architectures [8, 10]

As an illustration, for the canonical IFLF structure (fjn = 1, j = 1, 2, ..., n and the other fij = 0)
with the output summation OTA network [8], using Eq. (11.23) it can be demonstrated that

|A(s)| = τ1τ2 · · · τnsn + τ1τ2 · · · τn−1s
n−1

+ · · · + τ1τ2s
2 + τ1s + 1 (11.55)

A1j (s) = τj+1τj+2 · · · τnsn−j + τj+1τj+2 · · · τn−1s
n−j−1

+ · · · + τj+1τj+2s
2 + τj+1s + 1 (11.56)

where j = 1, 2, 3, ..., n − 1
Substitution of relations (11.55) and (11.56) into Eq. (11.36) yields the general circuit transfer

function and comparing this function with that in Eq. (11.33) we have the design equations

Bj =
j∏

i=1

τi, (j = 1, 2, · · · , n) (11.57)

and

An−j =
j∑

i=0


αi

n−j+i∏
h=i+1

τh


 , (j = 0, 1, 2, . . . , n − 1) ,
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A0 =
n∑

i=0

αi (11.58)

From the design viewpoint, if the transfer characteristic of Eq. (11.33) is desired the circuit
parameters must then be determined in terms of coefficients Aj and Bj from Eqs. (11.57) and (11.58).
With B0 = 1 it is easy to demonstrate that

τj = Bj/Bj−1, (j = 1, 2, 3, . . . , n) (11.59)

and

An−j =
j∑

i=0

(
Bn−j+i

Bi

)
αi, (j = 0, 1, 2, . . . , n) (11.60)

Equation (11.59) can be directly used for calculation of integration constants τj . From Eq. (11.60)
the iterative computation formulas of summation weights αj can also be obtained, given by

α0 = An

Bn
, αj = Bj

Bn

[
An−j − ∑j−1

i=0

(
Bn−j+i

Bi

)
αi

]
,

(j = 1, 2, 3, . . . , n) (11.61)

The parameter value determination formulas in Eqs. (11.59) and (11.61) apply to any order real-
izations, including second-order. It can be observed from numerator coefficient expressions (11.58)
or (11.60) that the circuit may realize any special transfer functions, since we can enable any coeffi-
cient Ai of the numerator to be any value including zero by properly choosing the values and signs
of gaj , j ≤ n − i. On the other hand, for any required zeros, that is any values of Ai , we can easily
compute the associated parameters αj by means of Eq. (11.61). If the calculated αj is negative, we
can simply interchange the two input terminals of the related OTA with gaj . If the computed value
of αj is zero, then the gaj OTA should be removed.

Now we consider the canonical IFLF structure with the distribution network [10, 28]. Using
Eq. (11.23) we formulate

A1n(s) = 1, Ajn = τ1τ2τ3 · · · τj−1s
j−1, j = 2, 3, 4, ..., n (11.62)

and |A(s)| is given by Eq. (11.55).
Combining Eq. (11.62) with Eq. (11.39) we have the circuit transfer function

H(s) = γ

|A(s)|

[
βn+1

n∏
i=1

τis
n + (βn+1 + βn)

n−1∏
i=1

τis
n−1 + · · ·

+ (βn+1 + β2) τ1s + (βn+1 + β1)

]
(11.63)

Comparing Eq. (11.63) with Eq. (11.33) when γ = 1 and noting that the τj are calculated using
Eq. (11.59) we get

βn+1 = An/Bn, β1 = A0 − An/Bn ,
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βj = Aj−1/Bj−1 − An/Bn, j = 2, 3, ..., n (11.64)

Any filters may be realized through adjusting distribution weights βj , that is, the associated gaj .
In odd-order elliptic filter realizations, An = 0 can be achieved by removing the ga0 and ga(n+1)

OTAs for the output summation and input distribution methods, respectively. For other zero Aj

realizations, the input distribution method is advantageous when compared to the output summa-
tion technique in that the former does not require any component difference matching or equality
constraints. For instance, if a zero coefficient is required, from Eq. (11.60) we may see that some
restriction on the relationship between αj values will be needed for the output summation approach to
make a coefficient equal to zero. However, inspection of Eq. (11.63) indicates that a zero coefficient,
say Aj = 0 can be achieved simply by setting βj+1 to zero, that is, eliminating the OTA with ga(j+1)
for the input distribution method.

11.4.4.2 Universal LF Architectures

In Section 11.3.5 we have proved that |A(s)|, Ajn(s), and A1j (s) of the general LF structure can
be obtained in an iterative way. Substituting these into Eqs. (11.36) and (11.39) we can obtain the
circuit transfer functions for the output summation and input distribution methods of transmission
zero realization. Taking the fifth-order structure as an example, we have determined |A(s)| and τj in
Eqs. (11.31) and (11.32). Now for the output summation type, the numerator of the transfer function
is formulated using Eq. (11.36) as

N(s) = α0τ1τ2τ3τ4τ5s
5 + (α0τ1τ2τ3τ4 + α1τ2τ3τ4τ5) s

4

+ [α0 (τ1τ2τ3 + τ1τ2τ5 + τ1τ4τ5 + τ3τ4τ5) + α1τ2τ3τ4 + α2τ3τ4τ5] s3

+ [α0 (τ1τ2 + τ1τ4 + τ3τ4) + α1 (τ2τ3 + τ2τ5 + τ4τ5) + α2τ3τ4 + α3τ4τ5] s2

+ [α0 (τ1 + τ3 + τ5) + α1 (τ2 + τ4) + α2 (τ3 + τ5) + α3τ4 + α4τ5] s

+ (α0 + α1 + α2 + α3 + α4 + α5) (11.65)

and for the input distribution structure, using Eq. (11.39) we have the numerator of the transfer
function as (γ = 1)

N(s) = β6τ1τ2τ3τ4τ5s
5 + (β6 + β5) τ1τ2τ3τ4s

4

+ [β6 (τ1τ2τ3 + τ1τ2τ5 + τ1τ4τ5 + τ3τ4τ5) + β4τ1τ2τ3] s3

+ [(β6 + β5) (τ1τ2 + τ1τ4 + τ3τ4) + β3τ1τ2] s2 (11.66)

+ [β6 (τ1 + τ3 + τ5) + β4 (τ1 + τ3) + β2τ1] s + (β6 + β5 + β3 + β1)

To realize the general fifth-order function in Eq. (11.33), the pole parameters, τj in the denominator
of the filter transfer function as shown in Eq. (11.32) can be determined using Eq. (11.33). The
numerator parameters, αj for the summation type and βj for the distribution can then be easily
determined from Eqs. (11.65) and (11.66) with comparison with Eq. (11.33) in an iterative way,
respectively.
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Figure 11.12 shows a special fifth-order lowpass filter realizing

Hd(s) = A4s
4 + A2s

2 + A0

B5s5 + B4s4 + B3s3 + B2s2 + B1s + 1
(11.67)

(the numerator coefficients of Aj = 0, j = 1, 3, 5), which is obtainable from the general input
distribution structure by removing the ga6 OTA (β6 = 0), replacing the g6 and gr OTAs by a direct
connection (γ = 1), and removing the ga2 and ga4 OTAs (β2 = β4 = 0).

FIGURE 11.12
Lowpass LF-input distribution filter that can realize imaginary- and real-axis zeros.

With τj calculated using Eq. (11.32), the numerator parameters of the filter can be determined
from Eq. (11.66) compared with Eq. (11.67) as

β5 = A4/B4, β3 = (A2 − β5B2) /τ1τ2, β1 = A0 − (β3 + β5) (11.68)

The reader is encouraged to further realize a particular elliptic function given in the appendix, with
a denormalization frequency of 10 MHz.

11.5 General Formulation of Sensitivity Analysis [12, 28]

In the preceding sections we have discussed many interesting OTA-C structures of the multiple
integrator loop configuration. In the design of active filters sensitivity is one of the most important
criteria in assessing the filter quality, as has been mentioned on several occasions in this book. This
section focuses on sensitivity analysis of all-pole OTA-C filters. Instead of calculating the sensitivity
of individual structures generated we will present a general approach.

Since after calculation of the τj and fij sensitivities we can easily further compute the gs and Cs
sensitivities using the relations τj = Cj/gj and fij = gij1/gij2, in the following we deal with only
the sensitivities to τj and fij .

11.5.1 General Sensitivity Relations

To formulate sensitivity functions we differentiate [Vo]/Vin in Eq. (11.9) with respect to circuit
parameter x using the well known inverse matrix differentiation formula and obtain the derivative
of [Vo]/Vin as

∂ ([Vo] /Vin)

∂x
= −[A(s)]−1 ∂[A(s)]

∂x
[A(s)]−1[B] (11.69)
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where [A(s)] and [B] were shown in Eqs. (11.8) and (11.6), respectively.
When x = τj , since [F ] is independent of τj , using Eqs. (11.8) and (11.5), or just Eq. (11.11) we

have

∂[A(s)]

∂τj
= ∂[M(s)]

∂τj
=

j th


...

· · · s · · ·
...


 jth (11.70)

Substituting Eq. (11.70) into Eq. (11.69), together with Eq. (11.6) yields

∂ ([Vo] /Vin)

∂τj
= − s

|A(s)|2




Aj1(s)A1j (s)

Aj2(s)A1j (s)
...

Ajn(s)A1j (s)


 (11.71)

From Eq. (11.71) and noting that the output voltage is the last element in vector [Vo] we can
identify that

∂H(s)

∂τj
= −s

Ajn(s)A1j (s)

|A(s)|2 (11.72)

Thus using Eq. (11.72) and Eq. (11.12), the sensitivities of the transfer function H(s) with respect
to integration constants τj can be readily obtained, given by

SH(s)
τj

= τj

H(s)

∂H(s)

∂τj
= −sτj

Ajn(s)A1j (s)

|A(s)| (11.73)

Considering that A1n(s) = 1, from Eq. (11.73) we can also write the simplified sensitivity relations
for j = 1 and j = n, given by

SH(s)
τ1

= −sτ1
A11(s)

|A(s)| , SH(s)
τn

= −sτn
Ann(s)

|A(s)|

Next we consider the transfer function sensitivities to feedback coefficients fij . Using Eq. (11.8)
or Eq. (11.11) and considering that [M(s)] is not related to fij we derive

∂[A(s)]

∂fij

= ∂[F ]

∂fij

=

j th


...

· · · 1 · · ·
...


 ith (11.74)

Then substituting Eq. (11.74) into Eq. (11.69) (now x = fij ) and incorporating Eq. (11.6) we can
obtain that

∂ ([Vo] /Vin)

∂fij

= − 1

|A(s)|2




Ai1(s)A1j (s)

Ai2(s)A1j (s)
...

Ain(s)A1j (s)


 (11.75)
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From Eq. (11.75) we can identify

∂H(s)

∂fij

= −Ain(s)A1j (s)

|A(s)|2 (11.76)

Using Eq. (11.76) and the sensitivity definition, plus Eq. (11.12) we can prove the relative sensi-
tivity functions as

S
H(s)
fij

= −fij

Ain(s)A1j (s)

|A(s)| , i ≤ j (11.77)

When considering A1n(s) = 1, we may simplify Eq. (11.77) for the cases of i = 1, j = n, and
both i = 1 and j = n as shown below

S
H(s)
f1j

= −f1j
A1j (s)

|A(s)| , S
H(s)
fin

= −fin
Ain(s)

|A(s)| , S
H(s)
f1n

= − f1n

|A(s)|

Using Eq. (11.73) and Eq. (11.77) we can also readily demonstrate the following relation

S
H(s)
fjj

/SH(s)
τj

= fjj /sτj (11.78)

Equation (11.78) can also be obtained from the sensitivity definition and the structural feature of
matrix [A(s)] in Eq. (11.11). The relation may be used to compute the sensitivity to fjj when the
sensitivity to τj is known, or vice versa.

From the sensitivity functions developed above, we may easily obtain the magnitude and the
phase sensitivities of H(jω), since they are the real and imaginary parts of S

H(jω)
x (x is τi or fij ),

respectively. That is, with |H(jω)| and φ(ω) being the magnitude and phase frequency responses,
respectively, we have

S
|H(jω)|
x = Re

{
S

H(jω)
x

}
, Qφ(ω)

x = x
∂φ(ω)

∂x
= Im

{
S

H(jω)
x

}
(11.79)

The Schoeffler’s measure introduced in Section 5.3 [32] can also be readily calculated by

S =
n∑

i=1

∣∣∣SH(jω)
τi

∣∣∣2 +
n∑

i=1

n∑
h=1,h≥i

∣∣∣SH(jω)
fih

∣∣∣2 (11.80)

Note that the formulation is general. Using these formulas, we can calculate sensivities of specific
structures without knowing their transfer functions.

11.5.2 Sensitivities of Different Filter Structures

The first example involves the sensitivity analysis of third-order structures. The general τj sensi-
tivity functions of the third-order structures are derived using Eq. (11.73) as

SH(s)
τ1

= −H(s)
[
τ1τ2τ3s

3 + (τ1τ2f33 + τ1τ3f22) s
2 + τ1 (f22f33 + f23) s

]
,

SH(s)
τ2

= −H(s)
[
τ1τ2τ3s

3 + (τ1τ2f33 + τ2τ3f11) s
2 + τ2f11f33s

]
,
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SH(s)
τ3

= −H(s)
[
τ1τ2τ3s

3 + (τ1τ3f22 + τ2τ3f11) s
2 + τ3 (f11f22 + f12) s

]
(11.81)

where H(s) has been given in Eq. (11.17) of Section 11.3.2.
Two special canonical cases are given below, when realizing the unity dc gain characteristic

(A0 = 1) in Eq. (11.13). The sensitivities for f13 = f23 = f33 = 1 and the other fij = 0 in [F ],
i.e., the configuration in Fig. 11.4(a), are calculated with substitution of Eq. (11.19), given by

SH(s)
τh

= −

 3∑

j=h

Bj s
j


 /


 3∑

j=1

Bjs
j + 1


 , h = 1, 2, 3 (11.82)

For [F ] with f12 = f23 = f33 = 1 and the other fij = 0, i.e., the structure in Fig. 11.4(b), with
incorporation of Eq. (11.21) the sensitivities in Eq. (11.81) accordingly reduce to

SH(s)
τ1

= −
[
B3s

3 + B2s
2 + (B1 − B3/B2) s

]
/Dd(s) ,

SH(s)
τ2

= −
(
B3s

3 + B2s
2
)
/Dd(s) ,

SH(s)
τ3

= −
[
B3s

3 + (B3/B2) s
]
/Dd(s) ,

Dd(s) = B3s
3 + B2s

2 + B1s + 1 (11.83)

To illustrate the sensitivity computation method formulated above we consider the third-order
unity dc gain all-pole Butterworth characteristic

Hd(s) = 1

s3 + 2s2 + 2s + 1

Identifying B1 = 2, B2 = 2 and B3 = 1 and substituting them into the expressions in Eq. (11.82),
then utilizing Eq. (11.80) (where the second part is now zero) the Schoeffler’s multi-parameter
sensitivity for the structure in Fig. 11.4(a) is computed as

S1 = 3ω6 + 4ω4 + 4ω2

1 + ω6
(11.84)

Similarly, using Eqs. (11.83) and (11.80) we also obtain the Schoeffler’s sensitivity for the structure
in Fig. 11.4(b), given by

S2 = 3ω6 + 4ω4 + 2.5ω2

1 + ω6
(11.85)

Comparing the two results in Eqs. (11.84) and (11.85) we have

S1 − S2 = 1.5ω2

1 + ω6
(11.86)
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which clearly shows that the structure in Fig. 11.4(a) is more sensitive than the circuit in Fig. 11.4(b)
at all (both passband and stopband) frequencies. So in terms of sensitivity the latter architecture is
better than the former.

It is noted that for some general nth-order structures, by calculating the relevant cofactors of [A(s)]
we can also attain the sensitivity functions. For example, the sensitivity functions of the general
all-pole IFLF configuration in Fig. 11.6 are given by

SH(s)
τh

= −
∑n

j=h

(∏j

i=1 τi

)
sj∑n

j=1

(∏j

i=1 τi

)
sj + 1

(11.87)

Substituting the design equations results in

SH(s)
τh

= −

 n∑

j=h

Bj s
j


 /


 n∑

j=1

Bjs
j + 1


 h = 1, 2, ..., n (11.88)

11.6 Determination of Maximum Signal Magnitude

In the following we present a method for determining the maximum input voltage |Vin|max of
the filter when the maximum linear differential input voltages of the OTAs are given [10]. Noise
performance analysis can be found elsewhere [11], [22]– [25].

We denote the maximum linear input voltage of the gj OTA with VTj , and the voltage across the
input terminals of the gj OTA in the filter with Vdj . The relation in Eq. (11.89) must be met for all
the related OTAs to ensure their operation in their respective linear regions.

∣∣Vdj

∣∣ ≤ VTj (11.89)

Using Hj(s) to represent the transfer function of signal voltages from the filter input to the differ-
ential input of the gj OTA, defined as

Vdj = Hj(s)Vin (11.90)

and substituting Eq. (11.90) into Eq. (11.89) we have

|Vin| ≤ VTj /
∣∣Hj(jω)

∣∣
max (11.91)

From Eq. (11.91) we can see that for the given VTj of OTAs, by finding the maximum values of
magnitude of concerned signal transfer functions we can obtain the maximum input voltage of the
filter as

|Vin|max = min
{
VTj /

∣∣Hj(jω)
∣∣
max : for all related j

}
(11.92)

For the third-order elliptic filter in Fig. 11.13, which is redrawn from Fig. 11.11(b) for convenience,
the maximum allowable input voltage of the filter is given by

|Vin|max = min

{
VT a1

|Ha1(jω)|max
,

VT a3

|Ha3(jω)|max
,
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VT 1

|H1(jω)|max
,

VT 2

|H2(jω)|max
,

VT 3

|H3(jω)|max

}
(11.93)

FIGURE 11.13
Third-order elliptic IFLF and input distribution filter structure.

It is easy to see that Ha1(s) = Ha3(s) = 1 and H1(s) = H(s) that has been already obtained
in Section 11.4.3 and is rewritten below for convenience. H2(s) and H3(s) can also be formulated
from Fig. 11.13 and are given below.

H1(s) =
(
β3τ2τ1s

2 + β1

)
/D(s) ,

H2(s) =
[
(β1τ2τ3 − β3τ2τ1) s

2 + (β1τ2 − β3τ2) s
]
/D(s) ,

H3(s) =
[
−β3τ2τ1s

2 + (β1τ3 − β3τ1) s − β3

]
/D(s) ,

D(s) = τ3τ2τ1s
3 + τ2τ1s

2 + τ1s + 1 (11.94)

When realizing the characteristic Hd(s) in Eq. (11.40) with A3 = A1 = 0 using H1(s) with
relations in Eqs. (11.42) and (11.52), the associated functions in the above become, respectively,

H1(s) =
(
A2s

2 + A0

)
/Dd(s) ,

H2(s) =
[
(A0B3/B1 − A2) s

2 + (A0B2/B1 − A2/B1) s
]
/Dd(s) ,

H3(s) =
[
−A2s

2 + (A0B3/B2 − A2B1/B2) s − A2/B2

]
/Dd(s) ,

Dd(s) = B3s
3 + B2s

2 + B1s + 1 (11.95)

For the normalized third-order elliptic lowpass filter with A2 = 0.588358, A0 = 1, B3 = 1.67029,
B2 = 1.41856, B1 = 1.91391 as shown in Section 11.4.3, using Eqs. (11.95) we can draw |H1(jω)|,
|H2(jω)| and |H3(jω)|. From these graphs we can identify the maximum values of these magnitudes
as

|H1(jω)|max = 1, |H2(jω)|max = 1.07, |H3(jω)|max = 0.87
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which appear at the normalized frequencies of 0.9, 1, and 1, respectively. Thus, together with
|Ha1(jω)|max = |Ha3(jω)|max = 1 we obtain the maximum input voltage of the filter as

|Vin|max = min {VT a1, VT a3, VT 1, 0.93VT 2, 1.149VT 3}

It is thus obvious that VT 2 is crucial for making |Vin|max as high as possible. In the event that all
threshold voltages are identical and equal to VT , we will have |Vin|max = 0.93VT .

11.7 Effects of OTA Frequency Response Nonidealities [10]

As discussed previously, OTA frequency nonidealities including finite input and output impedances
and frequency dependence of the transconductance will cause deterioration of the filter performances.
It should be noted that the input resistance of the CMOS OTA is usually very large and as a result
it can be ignored in analysis. However the input resistance of the bipolar OTA must be taken into
consideration, since it is comparable with the output resistance. Here our analysis is conducted for
CMOS OTA-C filters. We can generally obtain the equivalent circuit of the filter incorporating the
nonidealities and parasitics and formulate the real transfer function. The filter frequency perfor-
mances can then be analyzed. Consider the third-order elliptic filter in Fig. 11.13, whose design in
the ideal case was given in Section 11.4.3 and dynamic range was considered in Section 11.6.

For the convenience of comparison, the ideal transfer function of the circuit is repeated again as

H(s) = β3τ2τ1s
2 + β1

τ3τ2τ1s3 + τ2τ1s2 + τ1s + 1
(11.96)

For the normalized elliptic characteristic with the cutoff frequency of 500 kHz, it has been determined
in Section 11.4.3 thatga1 = g1 = 22.2µS, g2 = g3 = 40.9µS, ga3 = 17.0µS,C1 = 13.5pF,C2 =
9.7pF,C3 = 15.3pF .

Let us use, for example, Ci2, Co2, Go2 and g2(s) to represent the input capacitance, output
capacitance, output conductance, and frequency-dependent transconductance of the g2 OTA, respec-
tively, and Cp2 denotes the parasitic capacitance of node 2. We also introduce such symbols as
C′

1 = C1 + Co1 + Coa1 + Cp1, C′
2 = C2 + Co2 + Cp2, C′

3 = C3 + Co3 + Coa3 + Ci1 + Cp3,
G1 = Go1 + Goa1, G2 = Go2 and G3 = Go3 + Goa3. The OTA transconductance frequency
dependence can be modeled in various ways, such as the one pole, two pole, one pole and one zero,
two pole and one zero, and excess phase or phase shift. All the models can be reasonably simplified
as gj (s) = gj (1 − s/ωbj ), as mentioned in the previous chapters.

For example, the practical nonideal parameters of the CMOS OTAs with the above-calculated
transconductance values are given by [21]

Ci1 = Ci2 = Ci3 = Cd = 0.0385pF ,

Co1 = Co2 = Co3 = Coa1 = Coa3 = Co = 0.52pF ,

Go1 = Goa1 = 56nS, Go2 = Go3 = 954nS, Goa3 = 39nS ,

1/ωb1 = 1/ωba1 = 31.1ns, 1/ωb2 = 1/ωb3 = 2.57ns, 1/ωba3 = 33ns
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The common-mode input capacitances (of the same value for all the OTAs) are treated equivalently
as the parasitic node capacitances of Cp1 = Cp2 = 0.0502pF and Cp3 = 0.1506pF .

When both OTA finite impedances and transconductance frequency dependence are taken into
consideration the formulas will become very complicated. We therefore present only a first-order
approximation of the effects.

H ′(s) = A′
3s

3 + A′
2s

2 + A′
1s + A′

0

B ′
3s

3 + B ′
2s

2 + B ′
1s + B ′

0
(11.97)

where
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The filter performance is affected at all frequencies. Equation (11.97) and its coefficients indicate
that filter frequency characteristics will perform differently from the ideal case of Eq. (11.96). In
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addition to the change of all coefficients, the numerator is increased in order (A′
3s

3) and has an
unexpected term (A′

1s). The system poles and zeros will be accordingly altered. In particular, the
zeros will vary from the ideal two imaginary to three general zeros.

Note that the effect of the parasitic capacitances Coj , Cpj , and Ci1 causes the element value shift.
This effect may be eliminated by absorbing these capacitive parasitics into the circuit capacitances.
However we must consider that such compensation design is by reducing the circuit capacitances
to accommodate the parasitic capacitances. Therefore, comparatively, if the parasitic capacitances
are too large, the circuit capacitances will become too small and the parasitic part will thus become
dominant. The parasitics-induced element shift can also be effectively reduced by tuning.

It is important to note that each node in the circuit has a grounded capacitor and thus every node
parasitic capacitance can be absorbed into the corresponding circuit capacitance and no parasitic
poles will be produced.

The OTA input capacitances Ci2 and Ci3 and output conductances Goj can have a major impact.
The influences due to these nonidealities are mutually dependent as can be seen from the coefficient
expressions of Eq. (11.97). However, equations for A′

0 and B ′
0 do show that the finite output resis-

tances mainly influence the low frequency response, and the input capacitances primarily affect the
high-frequency characteristic as revealed by the expressions of A′

2 and B ′
3. It can also be seen that

the OTA transconductance frequency dependence degrades the high-frequency characteristic more
than the low-frequency characteristic.

Generally the differential input application of OTAs causes feedthrough effects or unexpected
signal paths due to finite input capacitances like Ci2 and Ci3 [20]. To overcome this problem single-
input OTAs may be applied, since as recalled from Chapter 9, structures with differential-input
OTAs can be equivalently converted into structures with single-ended input OTAs by splitting a
differential-input OTA into two single-ended input OTAs of the same transconductance but opposite
polarity. However, this may need double the number of OTAs compared with the differential input
applications of OTAs, if the type of OTA remains the same. The large number of active devices will
lead to other problems, for example, the increase of the equivalent node conductances Gj and the
circuit capacitance spread. Also the overall effect of OTA excess phase will be accordingly increased.
This is also unfavorable for power consumption and the chip area. These trade-offs between the two
applications must be accounted for in some situations, especially in the design of high-order filters.

The reader is encouraged to conduct (Spice or Matlab) simulation using the data given above
to observe the deviation of the nonideal performance from the ideal one to confirm the theoretical
analysis of the effects of OTA nonidealities in the above. The PSpice result can be found in [10].

For high-order OTA-C filter design we have so far introduced the cascade (biquads in Chap-
ters 8 and 9), ladder simulation (Chapter 10) and multiple integrator loop feedback (this chapter)
approaches. To this point, the reader may also be interested to compare these three methods, in
details, generally or using some typical realizations. For this consideration, we mention that ref-
erence [13] has shown that the multiple integrator loop feedback structures may be advantageous
over the cascade and ladder simulation architectures in terms of generality of function, simplicity of
structure, and insensitivity to OTA nonidealities.

11.8 Summary

A general multiple loop feedback approach for the realization of OTA-C filters has been proposed.
The systematic generation, analysis, and design of different filter configurations have been addressed
with emphasis on canonical structures. We have formulated general relations for all-pole and arbitrary
transmission zero realizations and exemplified the theory extensively. The method described in the
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chapter has the following advantages: (a) it is systematic and general due to the introduction of the
feedback matrix [F ] and the relationship between [F ] and the feedback connection (some well known
filter configurations are simply special cases of the approach); (b) a variety of new structures with
different performances can be generated, with both canonical and noncanonical realizations being
available; (c) all capacitors are grounded and canonical realization can guarantee that all internal
nodes have a grounded capacitor; (d) it is also flexible in assigning element values and in various
cases simple explicit design formulas are applicable.

The essence of the method is the establishment of the relationship between the filter structure
and the feedback matrix, which makes systematic structure generation and general analysis and
design equation formulation possible. Using the one-to-one correspondence between the feedback
connection matrix and the circuit configuration one can deal with any particular applications based on
these general equations. For example, if the circuit topology is known, we may write the feedback
matrix [F ] and analyze the filtering characteristic and sensitivity performance. For the desired
transfer function, on the other hand, an [F ], that is, a circuit structure, may be defined to realize the
transfer function.

In the chapter, we have demonstrated the general expressions for sensitivity computation and results
for different structures have been given. We have also analyzed the effects of OTA nonidealities,
which embrace finite impedances, phase shift, and nonlinearity. The OTA impedances and excess
phase cause a shift of filter frequency characteristics from ideal ones. In particular they change the
pole positions and hence pose a potential risk of instability, while OTA nonlinearity and noise limit
the filter dynamic range.

In the chapter we have mainly dealt with canonical filter structures. Noncanonical realization
with OTA amplifiers realizing general feedback coefficients can provide some design flexibility and
result in more architectures. They will also cause problems due to the greater number of OTAs
needed and resistive nodes introduced, such as poor frequency performance, the large chip area, and
power consumption. Trade-offs between the feedthrough effects (parasitic zeros) and the problems
related to the large number of OTAs must also be considered when deciding whether to exploit the
differential input or single input OTAs, as the differential input application gives rise to unwanted
signal paths, whereas the single input application results in the increase in the number of OTAs.

The general unbalanced models can be converted into the balanced equivalents by using differential
four-input and two-output OTAs in integrators and mirroring the feedback network in the upper part
to the lower part. This will be discussed in the next chapter. Note that the OTA-C filters in this
chapter are based on voltage integrators and voltage feedback. A general multiple current-integrator
loop current-feedback model can be similarly established using dual output OTAs (DO-OTA) and
capacitors, which will also be studied in Chapter 12.

From the viewpoint of the whole book, we have so far discussed opamp-RC filters (Chapters 4–7)
and OTA-C filters (Chapters 8–11). In recent years many other new high-performance structures and
design methods of continuous-time active filters have been proposed and widely used in practice.
In Chapter 12 we shall introduce these new topics, commercially used or in the research front, to
satisfy different needs of the readers.
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Chapter 12

Current-Mode Filters and Other Architectures

12.1 Introduction

Continuous-time active filter design has developed very rapidly over the last few years [1]–[60].
In the previous chapters we have basically concentrated on two main types: opamp-based active-RC
filters and OTA-based active-C filters. We have also confined ourselves to the differential-input and
single-output opamp and OTA. There have also been many other advanced design methods which
have been utilized in practice. Multiple-input and multiple-output opamps and OTAs as well as other
new active devices such as current conveyors have also been available. This chapter will introduce
these new design approaches and filter structures.

Recent advances in analog integrated circuits and signal processing have shown that the current-
mode approach is superior to the voltage-mode in terms of its wide bandwidth, high speed, low
voltage and power, large dynamic range, and simplicity in circuit structure [7, 8]. Current-mode
signal processing techniques have also been widely used, in particular, in high performance filtering
applications [12]–[25], [35]–[49]. For example, in the simulation of passive LC ladders, rather
than converting mixed voltage and current equations to the voltage-only counterparts, designers
now scale the mixed equations to the current-only ones [19, 20, 41, 42]. Even in the realization
of a voltage transfer function, it is now preferred to cascade a transadmittance function, a current
transfer function, and a transimpedance function section to benefit from the current-mode approach,
in contrast with the conventional active RC design that uses only voltage sections.

The OTA-C filter structures we have discussed in the previous chapters are mainly based on voltage
integrators, voltage amplifiers, and voltage feedback. They are very convenient for voltage signal
processing and voltage description with voltage inputs to OTA input terminals and voltage outputs
from circuit nodes. For current signal processing and description we can expect that circuits based on
current integrators, current amplifiers, and current feedback should be straightforward, with current
inputs to circuit nodes and current outputs from OTA output terminals. Although single-output OTAs
can be used to construct individual current integrators and current amplifiers, they cannot readily
provide local or overall current outputs or current feedback. Therefore dual- or multiple-output
OTAs (DO-OTA or MO-OTA) [10, 11] are needed for current-mode signal processing.

The current-mode DO-OTA filters were first studied in [12, 13], where a number of current-mode
single or two DO-OTA filters and a current-mode Tow-Thomas or resonator type two integrator loop
filter were developed. These filters can be implemented using only DO-OTAs and capacitors by
replacing the resistor with the DO-OTA simulation [10]. Recently, a large number of papers on
current-mode continuous-time integrated OTA filters have been published [14]–[25]. This chapter
will investigate current-mode DO-OTA-C filters. A comprehensive set of first- and second-order
filter structures are generated based on a current-mode single DO-OTA and five-admittance model in
Section 12.2. Current-mode DO-OTA-C biquadratic architectures of two integrator loop configura-
tions are generated in Section 12.3. Current-mode DO-OTA-C filter design based on passive ladder
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simulation is discussed in Section 12.4. We also deal with generation and synthesis of current-mode
multiple integrator loop DO-OTA-C filters in Section 12.5.

The current-mode DO-OTA-C filters in Sections 12.2 through 12.5 correspond to the voltage-
mode OTA-C filters in Chapters 8 through 11, respectively. Having those well-known advantages
of voltage-mode OTA-C filters such as simplicity in structure, programmability, suitability for high
frequencies, and full integration, the current-mode DO-OTA-C filters can also directly process the
current signals with no need of any additional conversion components. More important is that the
current-mode DO-OTA-C structures may have different, possibly better, performances such as distor-
tion and noise than the voltage-mode counterparts, although they may have the same sensitivity [8].
The network transpose [9] and adjoint circuit [8] methods may be used to convert voltage-mode
circuits to current-mode counterparts, but for the reader’s convenience (to avoid the need for prior
knowledge of voltage-mode OTA-C filters and some other circuit theories relating the transpose and
adjoint concepts) we choose to present this chapter in a relatively independent way, rather than from
the viewpoint of converting the voltage-mode OTA-C filters in Chapters 8–11 to the current-mode
DO-OTA-C counterparts.

Besides the current-mode DO-OTA-C filters, many other popular continuous time filter structures
such as the balanced opamp-RC and OTA-C configurations, MOSFET-C filters, OTA-C-opamp
structures and active filters using current conveyors are also introduced in this chapter, which is the
subject of Section 12.6. Section 12.7 summarizes the whole chapter.

12.2 Current-Mode Filters Based on Single DO-OTA

In Chapter 8 we discussed filter structures using a single-OTA model with voltage input, output,
and feedback. Single-OTA filters are cheap to build, consume less power, and have better noise
performance. Furthermore, OTA-C filters can be easily obtained from the single-OTA counterparts
by OTA simulation of the resistor. In this section we introduce a current-mode model using a single
DO-OTA, with current input, output, and feedback and generate the corresponding current-mode
filters using a similar method.

12.2.1 General Model and Filter Architecture Generation

The symbol of the dual-output OTA (DO-OTA) is shown in Fig. 12.1(a) and its ideal equivalent
circuit is given in Fig. 12.1(b). The circuit of the DO-OTA can be a simple differential amplifier
with two outputs, an OTA with addition of a current mirror to its output (to provide multiple current
outputs), or a series connection of two OTAs with the same transconductances and opposite polarities.
The DO-OTA can be conveniently used to construct various current-mode filters.

FIGURE 12.1
Symbol and equivalent circuit of DO-OTA.

Consider the general model in Fig. 12.2 [14], which consists of one DO-OTA and five admittances,
with current input, current output, and current feedback. The current transfer function,H(s) = Io/Ii
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can be shown as

H(s) = gmY2Y4

Y1Y2Y4 + Y1Y2Y5 + Y1Y3Y4 + Y1Y3Y5 + Y1Y4Y5 + Y2Y3Y4 + Y2Y3Y5 + Y2Y4Y5 + gmY2Y4
(12.1)

which is the same in form as the general expression for the voltage-mode counterpart in Chapter 8.
Thus similar design techniques may be used. Sensitivity performances will be the same, which will
be shown in Section 12.2.3.

FIGURE 12.2
Current-mode model with one DO-OTA and five admittances.

Different filter structures and characteristics can be realized using the general circuit model and
transfer function. This can be done by assigning different components to Yj and checking the
corresponding transfer functions in Eq. (12.1). For example, Yj can be a resistor (Yj = gj ), a
capacitor (Yj = sCj ), an open circuit (Yj = 0), or a short circuit (Yj = ∞). Both first-order and
second-order filter structures can be obtained. In the following we will present a set of filter structures
based on this model.

12.2.1.1 First-Order Filter Structures

For first-order filters five admittances are too much. We thus set Y4 = ∞ and Y5 = 0 and choose
the other three admittances. Selecting Y1 = sC1, Y2 = ∞, and Y3 = 0 gives rise to the simplest
structure as shown in Fig. 12.3(a), which has a lowpass filter function given by

H(s) = gm

sC1 + gm (12.2)

with the dc gain equal to unity and the cutoff frequency equal to gm/C1.

FIGURE 12.3
Two simple first-order configurations.

The circuit in Fig. 12.3(b), corresponding to Y1 = sC1, Y2 = ∞ and Y3 = g3 has the lowpass
characteristic as

H(s) = gm

sC1 + (g3 + gm) (12.3)
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In Fig. 12.4 we present a set of first-order filters with one capacitor and two resistors. It is first
verified that when choosing Y1 = sC1, Y2 = g2 and Y3 = g3, the general model produces a lowpass
filter, that is

H(s) = gmg2

s (g2 + g3) C1 + g2 (g3 + gm) (12.4)

The circuit is shown in Fig. 12.4(a).

FIGURE 12.4
First-order configurations with two resistors.

Then consider the circuit in Fig. 12.4(b), which is obtained by setting Y1 = g1, Y2 = sC2, and
Y3 = g3. It is found that a highpass filter is derived whose current transfer function is given by

H(s) = sgmC2

s (g1 + g3 + gm)C2 + g1g3
(12.5)

with the gain at the infinity frequency being gm/(g1 + g3 + gm) and the cutoff frequency equal to
g1g3/[(g1 + g3 + gm)C2].

Finally, if Y1 and Y2 are resistors and Y3 a capacitor, then H(s) is of the lowpass characteristic.
The circuit is presented in Fig. 12.4(c) and the current transfer function is given below.

H(s) = gmg2

s (g1 + g2) C3 + g2 (g1 + gm) (12.6)

12.2.1.2 Second-Order Filter Architectures

Suppose that each admittance is realized with one component and two and only two capacitors are
used. Exhaustive search by trying all different combinations of components shows that a total of 13
different second-order structures can be derived: one highpass (HP), four bandpass (BP), and three
lowpass (LP) filters with three resistors; two bandpass and two lowpass filters with two resistors; as
well as one lowpass filter with one resistor. The combinations of components for the 13 structures
are presented in Table 12.1. The corresponding configurations and transfer functions can be readily
derived from the general model in Fig. 12.2 and the general expression in Eq. (12.1). The transfer
functions of the three resistor filters in Table 12.1 are the same as the respective counterparts in
Section 8.7 of Chapter 8. We will show LP and BP filters with one or two resistors in Section 12.2.3.

12.2.2 Passive Resistor and Active Resistor

Many interesting second-order filters using a single DO-OTA, two capacitors, and different number
of resistors have been developed. The resistors can be passive resistors, as in discrete design. They
can also be active resistors as in integrated circuits. The active resistor can be realized by a DO-OTA
connected in the way as shown in Fig. 12.5 [10]. When both terminals A and B are floating, it
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Table 12.1 Generation of Second-Order Filter Structures Based on Model in Fig. 12.2
Type Components

General Y1 Y2 Y3 Y4 Y5

LP1 [12] sC1 g2 sC3 ∞ 0
LP2 sC1 g2 sC3 ∞ g5
LP3 g1 ∞ sC3 g4 sC5
LP4 sC1 g2 sC3 g4 g5
LP5 g1 g2 sC3 g4 sC5
LP6 sC1 g2 g3 g4 sC5

BP1 g1 sC2 sC3 ∞ g5
BP2 g1 ∞ sC3 sC4 g5
BP3 g1 sC2 sC3 g4 g5

BP4 [14] g1 g2 sC3 sC4 g5
BP5 g1 sC2 g3 g4 sC5
BP6 sC1 g2 g3 sC4 g5

HP [14] g1 sC2 g3 sC4 g5

is a floating resistor and when terminal B is grounded, it is a grounded resistor. In both cases the
conductance of the resistor is equal to the transconductance of the DO-OTA. Filters whose resistors
all are active resistors will comprise only DO-OTAs and capacitors and thus are DO-OTA-C filters.

FIGURE 12.5
DO-OTA simulation of resistor.

The transfer functions of the DO-OTA-C filters with active resistors are the same as those of the
single DO-OTA counterparts with passive resistors and their sensitivity performances are thus also
the same due to one to one correspondence between the passive resistor and active resistor.

The differences are that the passive resistor filters may have low power consumption, noise, and
parasitic effects, while the active resistor filters are suitable for full integration and their tunability is
improved. The number of DO-OTAs in the DO-OTA-C filters is equal to the number of resistors plus
one, since only one DO-OTA is required for the simulation of both grounded and floating resistors.

In the following discussion we show some second-order filter architectures derived from the
general model in Fig. 12.2 based on components in Table 12.1. We will not distinguish the passive
and active resistors and simply say the resistor, unless otherwise stated. Therefore, symbol gj will
mean the conductance of a passive resistor or the transconductance of the active resistor.

12.2.3 Design of Second-Order Filters

The simplest second-order lowpass filter with Y1 = sC1, Y2 = g2, Y3 = sC3, Y4 = ∞, Y5 = 0
of Fig. 12.1 is shown in Fig. 12.6 [12], which has only one resistor. The current transfer function in
Eq. (12.1) becomes

H(s) = gmg2

s2C1C3 + sg2 (C1 + C3)+ gmg2
(12.7)
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FIGURE 12.6
Simplest second-order lowpass filter.

As mentioned before, the standard form of the lowpass characteristic is normally written as

Hd(s) = Kω2
o

s2 + ωo
Q
s + ω2

o

(12.8)

Comparison of Eqs. (12.7) and (12.8) indicates that the dc gain of the filter, K , is unity and

ωo =
√
gmg2

C1C3
, Q =

√
gm

g2

√
C1C3

C1 + C3
(12.9)

For convenience of design and also from the viewpoint of cost we set C1 = C3 = C. This permits
the development of simple design formulas for the component values, given by

C1 = C3 = C, g2 = ωoC

2Q
, gm = 2QωoC (12.10)

where C can be arbitrarily assigned. The sensitivities are found to be:

S
ωo
gm = Sωog2 = −SωoC1

= −SωoC3
= 1/2 (12.11)

S
Q
gm = −SQg2 = 1

2 , −SQC1
= SQC3

= 1
2
C1−C3
C1+C3

= 0 (12.12)

and these results indicate superior sensitivity performance. Note that setting C1 = C3 leads not
only to practical convenience, but also to a decrease in the sensitivity of the filter to deviations in
the capacitor design values. It is therefore clear from the above discussion that like the voltage-
mode counterpart in Chapter 8 the current-mode DO-OTA lowpass filter has a very simple structure,
minimum component count, very simple design formulas, and extremely low sensitivity.

We now consider lowpass and bandpass filters with two resistors. The lowpass filter with Y1 =
sC1, Y2 = g2, Y3 = sC3, Y4 = ∞, Y5 = g5 is depicted in Fig. 12.7(a). Its current transfer function
is derived as

H(s) = gmg2

s2C1C3 + s [(g2 + g5) C1 + g2C3] + g2 (gm + g5)
(12.13)

Comparing the transfer function in Eq. (12.13) with the desired function in Eq. (12.8) and selecting
C1 = C3 = C and g2 = g5 = g yields the following formulas:

g = ωoC

3Q
, gm = 3QωoC

(
1 − 1

9Q2

)
, K = 1 − 1

9Q2
(12.14)
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FIGURE 12.7
Lowpass filters with two resistors.

The sensitivities can be derived as

S
ωo
C1

= SωoC3
= −Sωog2 = −1/2, S

ωo
g5 = 1/18Q2 ,

S
ωo
gm = 0.5

(
1 − 1/9Q2

)
(12.15)

S
Q
C1

= −SQC3
= SQg2 = −1/6, S

Q
g5 = −1/3 + 1/18Q2 ,

S
Q
gm = Sωogm (12.16)

SKC1
= SKC3

= SKg2
= 0, −SKg5

= SKgm = 1/9Q2 (12.17)

It can be seen from these results that the structure in Fig. 12.7(a) has very low sensitivity.
The second lowpass filter which corresponds to Y1 = g1, Y2 = ∞, Y3 = sC3, Y4 = g4, Y5 = sC5,

is shown in Fig. 12.7(b). It has the transfer function

H(s) = gmg4

s2C3C5 + s [g4C3 + (g1 + g4) C5] + g4 (gm + g1)
(12.18)

Note that this lowpass filter is similar to the one discussed above.
The bandpass filter with two resistors, corresponding to Y1 = g1, Y2 = sC2, Y3 = sC3, Y4 =

∞, Y5 = g5 is shown in Fig. 12.8(a). The current transfer function is derived as

H(s) = sgmC2

s2C2C3 + s [(g1 + g5 + gm)C2 + g1C3] + g1g5
(12.19)

FIGURE 12.8
Bandpass filters with two resistors.
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Comparing Eq. (12.19) with the ideal bandpass characteristic

Hd(s) =
K ωo
Q
s

s2 + ωo
Q
s + ω2

o

(12.20)

leads to the following design equation with C2 = C3 = C and g1 = g5 = g

g = ωoC, gm = ωoC

Q
(1 − 3Q), K = 1 − 3Q (12.21)

For practical Q values, gm is negative. Note that gm < 0 simply means the interchange of the
DO-OTA output terminals.

The sensitivities of the filter are formulated as

S
ωo
C2

= SωoC3
= −Sωog1 = −Sωog5 = −1/2, S

ωo
gm = 0 (12.22)

−SQC2
= SQC3

= SQg5 = 1/2 −Q, S
Q
g1 = 1/2 − 2Q ,

S
Q
gm = −1 + 3Q (12.23)

SKC2
= −SKC3

= −SKg5
= Q, SKg1

= −2Q, SKgm = 3Q (12.24)

From the sensitivity results, it can be observed that the design using the circuit in Fig. 12.8(a) has
low ωo sensitivity. However, the Q and K sensitivities display a modest Q dependence, although
this is no problem for lowQ design. The realization of largeQ with the DO-OTA output terminals
interchanged may cause an increase in the Q and K sensitivities. But considering that it is the ωo
sensitivity that contributes more to the response deviation and theK sensitivity is less important, the
designs are still useful for not very largeQ, since the ωo sensitivities are extremely low.

The second bandpass filter with two resistors is associated withY1 = g1, Y2 = ∞, Y3 = sC3, Y4 =
sC4, Y5 = g5, as shown in Fig. 12.8(b). Its transfer function is given by

H(s) = sgmC4

s2C3C4 + s [g5C3 + (g1 + g5 + gm)C4] + g1g5
(12.25)

This filter function is similar to that of the above bandpass filter.

12.2.4 Effects of DO-OTA Nonidealities

The practical DO-OTA has finite input and output conductances and capacitances. It also has
nonzero phase shift (finite bandwidth). Using Ymi = Gmi + sCmi , Ymo = Gmo + sCmo and
gm(s) = gm0

1+s/ωmb ≈ gm0(1− s/ωmb) to represent the finite input admittance, output admittance, and
transconductance frequency dependence of the gm DO-OTA, the general model in Fig. 12.2 taking
these nonidealities into consideration will have a changed current transfer function. The output
short-circuit current transfer function is given by

H ′(s) = Io

Ii
=
[

1 + Ymo

gm(s)
Hv(s)

]
Hi(s) (12.26)
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where

Hi(s) = gm(s)Y2Y4/ [(Y1 + Ymo) Y2Y4 + (Y1 + Ymo) Y2 (Y5 + Ymi)

+ (Y1 + Ymo) Y3Y4 + (Y1 + Ymo) Y3 (Y5 + Ymi)

+ (Y1 + Ymo) Y4 (Y5 + Ymi)+ Y2Y3Y4 + Y2Y3 (Y5 + Ymi)

+ Y2Y4 (Y5 + Ymi)+ gm(s)Y2Y4] (12.27)

Hv(s) = 1 + Y3

Y2
+ Y2 + Y3 + Y4

Y2Y4
(Y5 + Ymi) (12.28)

Using these relations we can analyze the effects of the DO-OTA nonidealities on filter performance
for all structures by substituting corresponding Yj components in Table 12.1. Of course, we can also
evaluate the effects by directly considering individual filter structures. We are not going into the
detail here, but the results are, in general, that the nonideal excess phase will have aQ-enhancement
effect, the input and output conductances introduce losses, causing reduction of the pole and zero
quality factors and the low-frequency gain. The DO-OTA capacitances degrade the high-frequency
characteristic of the filter. They may produce parasitic poles for some structures. We should also note
that the output capacitance of the dual-output OTA generates parasitic zeros as seen from Eq. (12.26),
compared with the input capacitance of the differential input OTA in voltage-mode OTA-C circuits,
which produce extra zeros in Chapter 8.

In fully integrated filter design the resistor is simulated by a DO-OTA as shown in Fig. 12.5.
The nonidealities of such DO-OTAs will also have an impact on the filter performance. Taking the
differential input and output admittances YRi and YRo and frequency-dependent transconductance
gR(s) into account, the DO-OTA resistor will have an equivalent admittance given by

YR = gR(s)+ YRi + YRo

= (gR0 +GRi +GRo)+ s (CRi + CRo − gR0/ωRb) (12.29)

This reveals that the resistor conductance is changed and also there appears a nonideal capacitor with
the resistor. If the common-mode input and output admittances are also taken into consideration, then
a π equivalent circuit will result for the floating resistor, where the series arm floating admittance is
given by Eq. (12.29) and the two parallel arm grounded admittances have the same value, given by
the sum of the common-mode input and output admittances. For the grounded resistor, the equivalent
circuit will be a changed grounded admittance given by the admittance in Eq. (12.29) plus the sum
of the common-mode input and output admittances.

For IC filter design the effects of the gmOTA imperfections can still be assessed using Eqs. (12.26)–
(12.28). As discussed for the voltage-mode circuits in Chapter 8, to systematically evaluate the effects
of the nonidealities of the resistor DO-OTAs on different filter architectures, we can simply replace
resistor conductances in individual transfer functions or the corresponding Yj in Eqs. (12.26)–(12.28)
by associated modified admittances. We can also substitute the nonideal equivalent circuit of the
resistor into the filter circuit and analyze the effects of the nonidealities of the resistor simulation
DO-OTAs.

©1999 CRC Press LLC



12.3 Current-Mode Two Integrator Loop DO-OTA-C Filters

In Chapter 9 we have extensively investigated OTA-C biquadratic filters of the two integrator
loop configuration based on voltage integrators, voltage amplifiers, and voltage feedback networks.
Two integrator loop configurations have been widely employed in practical applications. In this
section we realize the two integrator loop structures from the current-mode viewpoint. The resulting
DO-OTA-C filters are based on current integrators, current amplifiers, and current feedback.

12.3.1 Basic Building Blocks and First-Order Filters [15]

The basic DO-OTA based current-mode building blocks are indicated in Fig. 12.9, where
Figs. 12.9(a), (b), and (c) are the current integrator, amplifier, and summer, respectively. The current
summer is realized simply with the circuit node.

FIGURE 12.9
Basic current-mode DO-OTA-C building blocks.

First-order current-mode filters are given in Fig. 12.10. Figure 12.10(a) has the lowpass function

FIGURE 12.10
First-order current-mode DO-OTA-C configurations.

Io1 = Ii1/ (τ1s + k1) (12.30)

where τ1 = C1/g1 and k1 = g2/g1. For the feedback circuit in Fig. 12.10(b), with τ1 = C1/g1 and
k1 = g2/g3 we have the current transfer functions as

Io1 = (Ii1 − k1Ii2) / (τ1s + k1) ,
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Io2 = (k1Ii1 + k1τ1sIi2) / (τ1s + k1) (12.31)

The two relations in Eq. (12.31) show that the filter in Fig. 12.10(b) can fulfill lowpass and highpass
specifications. The circuits in Figs. 12.10(a) and (b) with Io1 and Ii1 are also called lossy integrators.
The two simple lossy integrators given in Fig. 12.3 are also useful.

12.3.2 Current-Mode DO-OTA-C Configurations with Arbitrary kij [15]

Two integrator loop configurations in Fig. 9.3 of Chapter 9 will be recalled. Using the basic
current building blocks in Fig. 12.9 and the first-order current circuits in Figs. 12.3 and 12.10 we can
also realize the two integrator loop architectures in the current domain. Because grounded capacitors
have some advantages, and for second-order filters two capacitors are sufficient, we will use two
grounded capacitors in all the current-mode DO-OTA-C realizations in this section.

The current-mode architectures corresponding to Fig. 9.3 are obtained as illustrated in Fig. 12.11.
Figure 12.11(a) uses six DO-OTAs and the structure in Fig. 12.11(b) has five DO-OTAs. The pole
parameter relations including ωo, ωo/Q andQ for the two realizations are displayed in Table 12.2.
The zeros of different required characteristics can be realized using different inputs and outputs.

FIGURE 12.11
Second-order current-mode DO-OTA-C filters with arbitrary kij .
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Table 12.2 Parameter Relations of General Current-Mode DO-OTA-C Realizations
Circuits τ1 τ2 k11 k22 k12 ωo

ωo
Q

Q

Fig.12.11(a) C1
g1

C2
g2

g3
g4

g5
g6

√
g5g1g2
g6C1C2

g3g1
g4C1

g4
g3

√
g5g2C1
g6g1C2

Fig.12.11(b) C1
g1

C2
g2

g4
g5

g3
g5

√
g3g1g2
g5C1C2

g4g2
g5C2

1
g4

√
g3g5g1C2
g2C1

To show how current signals are processed by these filters we apply current inputs to circuit nodes
and take current outputs from DO-OTA output terminals. For the circuit in Fig. 12.11(a) we formulate
the current transfer functions as

D1(s)Io1 = τ2sIi1 − k12Ii2 + k11τ2sIi3 + k12τ2sIi5
D1(s)Io2 = Ii1 + (τ1s + k11) Ii2 + k11Ii3 + k12Ii5
D1(s)Io3 = −k11τ2sIi1 + k11k12Ii2 + k11

(
τ1τ2s

2 + k12
)
Ii3

− k11k12τ2sIi5
D1(s) (Io3 + Io5) = − (k11τ2s + k12) Ii1 − k12τ1sIi2

+k11τ1τ2s
2Ii3 + k12τ1τ2s

2Ii5

D1(s) = τ1τ2s2 + k11τ2s + k12 = τ1τ2
(
s2 + ωo

Q
s + ω2

o

)




(12.32)

Looking at the expressions in Eq. (12.32), especially those of Io3 and Io3 + Io5 and noting in
particular the contributions of Ii3 we can see that the architecture in Fig. 12.11(a) can perform LP,
BP, HP, and BS filtering functions. It is noted that the g1 DO-OTA in Fig. 12.11(a) may be designed
to have another output terminal, if necessary, to give a direct Io1 output.

The current relations of Fig. 12.11(b) are derived as

D2(s)Io1 = (τ2s + k22) Ii1 − k12Ii2 + k12τ2sIi3
D2(s)Io2 = Ii1 + τ1sIi2 + (k22τ1s + k12) Ii3
D2(s)Io3 = −k12Ii1 − k12τ1sIi2 + k12τ1τ2s

2Ii3
D2(s)Io4 = −k22Ii1 − k22τ1sIi2 + k22τ1τ2s

2Ii3

D2(s) = τ1τ2s2 + k22τ1s + k12 = τ1τ2
(
s2 + ωo

Q
s + ω2

o

)




(12.33)

Equation (12.33) indicates that the structure in Fig. 12.11(b) supports LP, BP, and HP filters, the
output from Io3 or Io4 with Ii3 making the HP contribution to the multifunctionality.

12.3.3 Current-Mode DO-OTA-C Biquadratic Architectures with k12 = kjj

Consider the four DO-OTA circuit in the Fig. 12.12(a) [16], with k12 = k11 = k = g3/g4 and
τj = Cj/gj , we can derive the current transfer relations as shown below:

D1(s)Io1 = τ2sIi1 − kIi2 + kτ2sIi3
D1(s)Io2 = Ii1 + (τ1s + k) Ii2 + kIi3
D1(s)Io3 = −k (τ2s + 1) Ii1 − kτ1sIi2 + kτ1τ2s2Ii3
D1(s) = τ1τ2s2 + kτ2s + k


 (12.34)

From Eq. (12.34), we can see that the filter configuration in Fig. 12.12(a) offers the LP, BP, and HP
characteristics.
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FIGURE 12.12
Current-mode DO-OTA-C filters with (a) k12 = k11 and (b) k12 = k22.

The four DO-OTA filter structure with k12 = k22 = k = g3/g4 and τj = Cj/gj is shown in
Fig. 12.12(b). We can formulate

D2(s)Io1 = (sτ2 + k) Ii1 + kIi2 − skτ2Ii3
D2(s)Io2 = −Ii1 + sτ1Ii2 + (sτ1 + 1) kIi3
D2(s)Io3 = kIi1 − skτ1Ii2 + s2kτ1τ2Ii3
D2(s) = τ1τ2s2 + kτ1s + k


 (12.35)

Thus the circuit has the LP, BP, and HP functions. To output the HP function the g3 OTA may need
another output.

12.3.4 Current-Mode DO-OTA-C Biquadratic Architectures with k12 = 1[15]

The filter circuit with k12 = 1 is shown in Fig. 12.13(a), which has four DO-OTAs. The equations
of the circuit reduce to

D1(s)Io1 = τ2sIi1 − Ii2 + k11τ2sIi3
D1(s)Io2 = Ii1 + (τ1s + k11) Ii2 + k11Ii3
D1(s)Io3 = −k11τ2sIi1 + k11Ii2 + k11

(
τ1τ2s

2 + 1
)
Ii3

D1(s) (Io3 − Io2) = − (k11τ2s + 1) Ii1 − τ1sIi2 + k11τ1τ2s
2Ii3

D1(s) = τ1τ2s2 + k11τ2s + 1




(12.36)
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FIGURE 12.13
Current-mode DO-OTA-C biquads with k12 = 1.

The parameter relations are exhibited in Table 12.3. Figure 12.13(a) and Eq. (12.36) show that
this circuit saves two DO-OTAs and realizes LP, BP, HP, and BS filters, compared with the general
circuit in Fig. 12.11(a). Note that Ii3 plays a special role in achieving the multifunctionality and the
output Io3 − Io2 can be realized by simply connecting the two corresponding terminals together due
to their respective directions.

A two-DO-OTA realization is associated with the feedback coefficients k11 = k12 = 1 as shown
in Fig. 12.13(b). In this case all the feedback paths reduce to simple pure wire connections, thus
resulting in the simplest or canonical structure with the LP and BP functions given by Eq. (12.37)

D1(s)Io1 = τ2sIi1 − Ii2,D1(s)Io2 = Ii1 + (τ1s + 1) Ii2 ,

D1(s) = τ1τ2s2 + τ2s + 1 (12.37)

The special three DO-OTA realization which corresponds to k12 = 1 is given in Fig. 12.13(c) [13].
The parameter relations of the special realization are presented in Table 12.3 and the associated
characteristic is written as

D2(s)Io1 = (τ2s + k22) Ii1 − Ii2, D2(s)Io2 = Ii1 + τ1sIi2 ,

D2(s) = τ1τ2s2 + k22τ2s + 1 (12.38)
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Table 12.3 Parameter Relations of Special Current-Mode DO-OTA-C Realizations

Circuits τ1 τ2 k11 k22 k12 ωo
ωo
Q

Q

Fig. 12.13(a) C1
g1

C2
g2

g3
g4

1
√
g1g2
C1C2

g3g1
g4C1

g4
g3

√
g2C1
g1C2

Fig. 12.13(b) C1
g1

C2
g2

1 1
√
g1g2
C1C2

g1
C1

√
g2C1
g1C2

Fig. 12.13(c) C1
g1

C2
g2

g3
g2

1
√
g1g2
C1C2

g3
C2

1
g3

√
g1g2C2
C1

12.3.5 DO-OTA Nonideality Effects

In this section we evaluate the effects of DO-OTA nonidealities including the finite input and
output impedances as well as the transconductance frequency dependence.

Note that all OTAs in the generated architectures are used with one of the input terminals grounded.
For circuits in Figs. 12.13(b) and 12.13(c) where there are capacitors on all nodes, DO-OTA in-
put capacitances and parasitic node capacitances can be compensated by absorption design. In
Figs. 12.11(a), (b), Figs. 12.12(a), (b) and Fig. 12.13(a), the input capacitances of the DO-OTAs in
the feedforward path and the parasitic node capacitances on the nodes with capacitors can be ab-
sorbed by the corresponding circuit capacitances. However, the input capacitances of the DO-OTAs
and the parasitic node capacitances related to the resistive nodes (from the nodes to ground there is
only a DO-OTA resistor) in the feedback path(s) in these circuits will cause an increase in the order
of system transfer functions, a change influencing the filter characteristics in very high-frequency
designs.

The most influential parasitics are perhaps the DO-OTA output capacitances and conductances.
Note that the DO-OTA may be realized by using the differential output transconductance amplifier.
In this case the finite output capacitance and conductance of the DO-OTA will degrade the filter
performance, causing parasitic zeros, especially the output impedance of the g1 DO-OTA in the
configurations in Figs. 12.11(a), 12.12(a), 12.13(a), 12.13(b), and the g3 DO-OTA in Fig. 12.12(b).
The DO-OTA may also be implemented by using a single-ended output transconductance amplifier
followed by a current mirror or by connecting two OTAs of the same transconductances but different
polarities in series. In these cases the finite output impedances may be modeled as connected from
each output terminal to ground and thus the DO-OTA output capacitances related to the capacitive
nodes in all the architectures in Figs. 12.11–12.13 may be absorbed by circuit capacitances. However,
the finite DO-OTA output capacitances associated with the resistive nodes in Figs. 12.11(a), (b),
Fig. 12.12(a), (b), and Fig. 12.13(a) will give rise to parasitic system poles. Also, any parasitic floating
capacitances and resistances between the two output terminals of the DO-OTAs may deteriorate filter
performance.

12.3.6 Universal Current-Mode DO-OTA-C Filters

From the formulated current transfer expressions in Eqs. (12.32)–(12.38) it is seen that the proposed
filters in Figs. 12.11–12.13 all have a multifunction feature, supporting more than two functions
of LP, BP, HP, and BS at different input or output positions. Inspecting the different structures in
Figs. 12.11–12.13 we can also see that the structures contains two to six DO-OTAs.

As we discussed in Chapter 9, the general biquadratic characteristic can also be realized by adding
more OTAs to the basic structures. For example, the input distribution OTA network in Fig. 12.14(a)
can be connected to the two integrator loop filter structures to produce universal biquads. Note that
the current distributor converts a single current input to weighted multiple current inputs, Iij = αj Iin
where αj = gaj /gr are the distribution coefficients. The coefficients can be selected to produce
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arbitrary transmission zeros and gain without any influence on the poles. Note, in particular, that the
sign of αj can be easily changed by interchanging the input terminals of the gaj OTA, if needed.

FIGURE 12.14
Input distribution network and universal biquad example.

For example, connecting the distribution network in Fig. 12.14(a) to the circuit in Fig. 12.11(b)
and taking output from Io3, we can obtain from Eq. (12.33) the general current transfer function

H(s) = Io3

Iin
= k12

α3τ1τ2s
2 − α2τ1s − α1

τ1τ2s2 + k22τ1s + k12
(12.39)

which can support a variety of filter functions such as the LP, BP, HP, notch, and allpass characteristics.
For Fig. 12.12(a) with the distribution network and with output from Io3, from Eq. (12.34) we can

derive

H(s) = Io3

Iin
= k α3τ1τ2s

2 − (α2τ1 + α1τ2) s − α1

τ1τ2s2 + kτ2s + k (12.40)

As an example of the distribution method we give the resulting universal biquad in Fig. 12.14(b).
The general transfer function for Fig. 12.12(b) with the distribution network and output from Io3

is obtained from Eq. (12.35) as

H(s) = Io3

Iin
= k α3τ1τ2s

2 − α2τ1s + α1

τ1τ2s2 + kτ1s + k (12.41)

The circuit in Fig. 12.13(a), to which the distribution network is connected also has a general
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function from Io3, which can be derived from Eq. (12.36) and is given by

H(s) = Io3

Iin
= k11

α3τ1τ2s
2 − α1τ2s + (α2 + α3)

τ1τ2s2 + k11τ2s + 1
(12.42)

We can also add a weighted current summer to the two integrator loop filters to combine relevant
current outputs for a certain input to generate any desired zeros. This can be done in two ways: one
is to directly sum the relevant output currents, each of the weights consisting of two-OTA current
amplifiers [16]; the other is to sum the related output currents via node voltages, which requires just
one extra OTA for each summed current. The latter method requires just half the number of OTAs
needed by the former and is thus used below. The summation network is shown in Fig. 12.15(a).

FIGURE 12.15
Output summation network and universal biquad example.

For the structures in Figs. 12.11(b), 12.12(a), 12.12(b), and 12.13(a), from Eqs. (12.33)–(12.36)
it can be observed that summing Io1, Io2 and Io3 with weights, with Ii3 being as input we will
have universal transfer functions. Thus connecting the summation OTA network in Fig. 12.15(a)
to the circuits in, for example, Figs. 12.11(b), 12.12(a), 12.12(b), and 12.13(a) will result in four
corresponding universal biquads. The universal biquad based on Fig. 12.12(a) and the summation
method is representatively shown in Fig. 12.15(b). With βj = gaj /gj we attain the associated current
transfer functions H(s) = Iout/Ii3 of these universal biquads, given by, respectively,

H(s) = β3k12τ1τ2s
2+(β2k22τ1+β1k12τ2)s+β2k12
τ1τ2s

2+k22τ1s+k12
(12.43)

H(s) = k β3τ1τ2s
2+β1τ2s+β2

τ1τ2s
2+kτ2s+k (12.44)
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H(s) = k β3τ1τ2s
2+(β2τ1−β1τ2)s+β2
τ1τ2s

2+kτ1s+k (12.45)

H(s) = k11
β3τ1τ2s

2+β1τ2s+(β3+β2)

τ1τ2s
2+k11τ2s+1

(12.46)

Finally, two universal biquads based on the canonical structure of Fig. 12.13(b) are obtained with
a distribution network and a summation network, as shown in Figs. 12.16(a) and (b), respectively.
With αj = gaj /gr , j=0, 1, 2 and τj = Cj/gj , the current transfer function of Fig. 12.16(a) is derived

FIGURE 12.16
Universal current-mode DO-OTA-C biquads based on canonical structure.

as

H(s) = α0τ1τ2s
2 + (α0τ2 + α2τ1) s + (α0 + α2 + α1)

τ1τ2s2 + τ2s + 1
(12.47)

With βj = gaj /gj and τj = Cj/gj we derive the general transfer function of Fig. 12.16(b) as

H(s) = γ β0τ1τ2s
2 + (β0 + β1) τ2s + (β0 + β2)

τ1τ2s2 + τ2s + 1
(12.48)

These universal structures have the input summed in order to achieve the second-order term s2. This
is different from the universal biquads obtained above which do not need to include the input in the
summation since the outputs in the basic structures contain s2 terms.
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12.4 Current-Mode DO-OTA-C Ladder Simulation Filters

Active filters derived from passive LC ladders have very low sensitivity. We have already discussed
opamp-RC and OTA-C filter design based on LC ladder simulation in Chapter 6 and Chapter 10,
respectively. In the simulation of passive LC ladders, the original equations are of the mixed current
and voltage type. In opamp-RC and OTA-C realizations we convert these equations to voltage-
only counterparts by scaling. In this section we convert these mixed equations to the current-only
equivalents [19, 20, 41, 42] and realize the corresponding current signal flow diagram using current-
mode DO-OTA-C building blocks. Discussion will be in parallel with that in Chapter 10 for ease of
understanding and comparison.

12.4.1 Leapfrog Simulation Structures of General Ladder

The general ladder network with series admittances and parallel impedances is recalled from
Chapter 10 and shown in Fig. 12.17. The equations relating the currents flowing in the series arms,

FIGURE 12.17
General admittance and impedance ladder with signals indicated.

Ij , and the voltages across the parallel arms, Vj , are also recalled and repeated below.

I1 = Y1 (Vin − V2) , V2 = Z2 (I1 − I3) , I3 = Y3 (V2 − V4) ,

V4 = Z4 (I3 − I5) , I5 = Y5 (V4 − V6) , Vout = V6 = Z6I5 (12.49)

The transfer function Vout/Vin can be obtained from these equations by eliminating the intermediate
variables.

The mixed current and voltage signal equations are now converted by scaling into the counterparts
with current signals only. Scaled by a conductance gm, Eq. (12.49) can be written as

I1 = Y1
gm

(
I ′

in − I ′
2

)
, I ′

2 = gmZ2 (I1 − I3) , I3 = Y3
gm

(
I ′

2 − I ′
4

)
,

I ′
4 = gmZ4 (I3 − I5) , I5 = Y5

gm

(
I ′

4 − I ′
6

)
,

I ′
out = I ′

6 = gmZ6I5 (12.50)

where I ′
j = gmVj . TheYj/gm andgmZi are current transfer functions. It is clear that this equation will

lead to the same transfer function I ′
out/I

′
in = Vout/Vin as that from Eq. (12.49). The corresponding

leapfrog (LF) signal flow diagram is shown in Fig. 12.18.
We can synthesize the current summers and current transfer functions of Yj/gm and gmZi using

DO-OTAs and grounded impedances. We prefer using grounded impedances because grounded
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FIGURE 12.18
Current-mode leapfrog block diagram of general ladder.

capacitors and grounded DO-OTA resistors can absorb some DO-OTA finite input and output capac-
itances and conductances, respectively, thus reducing parasitic effects. From Eq. (12.50) we can see
that the current relations have a typical form of

Jj = Hj
(
Jj−1 − Jj+1

)
(12.51)

where Jj can be Ij or I ′
j , and

Hj = Yj/gm, for odd j ; Hj = gmZj , for even j (12.52)

Equation (12.51) can be realized using a DO-OTA with a transconductance of gj and a grounded
impedance of

Z′
j = Hj/gj (12.53)

as shown in Fig. 12.19. This is a DO-OTA-grounded impedance section. The summation operation
is simply realized by the circuit node. It can be verified that the current transfer function from the
OTA input to output is equal to gjZ′

j = Hj . Note that we relate the current transfer function Hj
to the grounded impedance Z′

j . Thus the current transfer function realization can now become the
simulation of the normal grounded impedance.

FIGURE 12.19
Current-mode DO-OTA-grounded impedance section.

Using Fig. 12.19 as a building block we can readily obtain the OTA-grounded impedance LF
structure from Eq. (12.50) or Fig. 12.18, as shown in Fig. 12.20. From Eqs. (12.52), (12.53) we can
show the grounded impedances have the values, given by

Z′
1 = 1

g1gm
Y1, Z

′
2 = gm

g2
Z2, Z

′
3 = 1

g3gm
Y3, Z

′
4 = gm

g4
Z4 ,

Z′
5 = 1

g5gm
Y5, Z

′
6 = gm

g6
Z6 (12.54)

which are the same as the corresponding formulas in Chapter 10.
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FIGURE 12.20
General current-mode LF DO-OTA-grounded impedance realization.

From Eq. (12.54) we can see that besides the general scaling by gm, each new grounded impedance
has a separate transconductance which can be used to adjust the impedance level. We can also note
that Z′

j are not the original impedances Zj in the ladder. For the even number subscript, Z′
j is the

original impedance Zj in the parallel arm of the ladder multiplied by the ratio of gm/gj , while for
the odd number subscript, Z′

j is the inversion of the original impedance Zj or the admittance Yj in

the series arm divided by the product of gjgm. When gj = gm = g, we have Z′
j = Yj/g2 for odd j

and Z′
j = Zj for even j . Further if gj = gm = 1, then Z′

j = Yj for odd j .
From the above discussion we can see that for any concrete passive LC ladder, the DO-OTA-C

realization problem becomes the DO-OTA-C realization of the grounded impedances and the simple
inductor substitution method can be conveniently used to simulate the impedance constituents. In
the following we introduce DO-OTA-C structures derived from different passive LC ladders using
the above general method.

We mention here that if voltage input and output are preferred, at the input end an OTA with
transconductance gm can be used to convert input voltage Vin to input current I ′

in and a grounded
resistor simulated by an OTA with transconductance gm can be connected to the output end to convert
output current I ′

out to output voltage Vout.

12.4.2 Current-Mode DO-OTA-C Lowpass LF Filters

Consider the fifth-order all-pole LC ladder with termination resistors in Fig. 12.21(a). Comparing
the circuit with the general ladder in Fig. 12.17 gives Y1 = 1/R1, Z2 = 1/sC2, Y3 = 1/sL3,
Z4 = 1/sC4, Y5 = 1/sL5 and Z6 = 1/(sC6 + 1/R6). The circuit equations accordingly become

I1 = 1
R1
(Vin − V2) , V2 = 1

sC2
(I1 − I3) , I3 = 1

sL3
(V2 − V4) ,

V4 = 1
sC4
(I3 − I5) , I5 = 1

sL5
(V4 − V6) ,

Vout = V6 = 1
sC6+1/R6

I5 (12.55)

Scaling Eq. (12.55) by the factor of gm results in current functions Hj given in Eq. (12.52) and
realized in the way as shown in Fig. 12.19, where grounded impedances Z′

j are given in Eq. (12.53).
The DO-OTA-C filter structure is given in Fig. 12.21(b). For given Rj , Cj , and Lj , we can compute
the new parameter values as

g′
1 = g1gmR1, C′

2 = g2
gm
C2, C′

3 = g3gmL3, C′
4 = g4

gm
C4 ,

C′
5 = g5gmL5, C′

6 = g6
gm
C6, g′

6 = g6
gm

1
R6

(12.56)
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FIGURE 12.21
Fifth-order all-pole LC ladders and LF DO-OTA-C realization.

The values can be adjusted overall by gm and individually by gj . Two design techniques can be
utilized. One is to make all transconductances identical, that is, g1 = g2 = g3 = g4 = g5 = g6 = g
with different capacitances which can be calculated from Eq. (12.56) as C′

j = ggmLj when j is
odd; C′

j = Cjg/gm when j is even. The other is to select the same value for all capacitances, that
is, C′

2 = C′
3 = C′

4 = C′
5 = C′

6 = C with different transconductances which are determined from
Eq. (12.56) as gj = C/gmLj , for odd j and gj = gmC/Cj , for even j . In many cases gm can be
chosen to be unity. The filter structure consists of only current integrators and summers. When
R6 = 1/gm, the g′

6 termination OTA can be removed if the inverting terminal of the g6 OTA is
connected to the output.

Now we consider a fifth-order finite zero passive LC ladder, as shown in Fig. 12.22(a). Similarly,
identifying that

Y1 = 1
R1
, Z2 = 1

sC2
, Y3 = sC3 + 1

sL3
, Z4 = 1

sC4
,

Y5 = sC5 + 1
sL5
, Z6 = 1

sC6+1/R6
(12.57)

and following the same design procedure we can obtain the DO-OTA-C counterpart as shown in
Fig. 12.22(b). The difference from the all-pole type is in Y3 and Y5 which are a combination
admittance of two components and involve two steps. Taking Y3 as an example, we first have the
corresponding grounded impedance as

Z′
3 = Y3

g3gm
= sL′

3 + 1

sL3g3gm
(12.58)

where L′
3 = C3/g3gm. The second term in the equation represents a capacitance of the value

C′
3 = L3g3gm. But the first term is equivalent to an inductor. This should then be further replaced

by an OTA-C inductor with L′
3 = C′′

3/g
′
3g

′′
3 . Combining the two steps we can also obtain C′′

3 in
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FIGURE 12.22
Fifth-order finite zero passive LC and active DO-OTA-C LF filters.

terms of C3. The design formulas of the DO-OTA-C filter for all components are given below:

g′
1 = g1gmR1, C′

2 = g2
gm
C2, C′

3 = g3gmL3, C′′
3 = g′

3g
′′
3

g3gm
C3 ,

C′
4 = g4

gm
C4, C′

5 = g5gmL5, C′′
5 = g′

5g
′′
5

g5gm
C5 ,

C′
6 = g6

gm
C6, g′

6 = g6
gm

1
R6

(12.59)

where gm is the scaling conductance. Similarly, using the equation the DO-OTA-C filter can be
conveniently designed to have the same transconductances or the same capacitances. Note that we
can also use the form of the grounded inductor and floating capacitor, as in Chapter 10.

12.4.3 Current-Mode DO-OTA-C Bandpass LF Filter Design

The complexity of the DO-OTA-C filter based on the LF structure will depend on the number of
elements in the series and shunt branches of the passive ladder circuit. The bandpass LC structure
typically has series resonators in series arms and parallel resonators in parallel arms. Consider the
bandpass LC filter in Fig. 12.23(a). Recognizing that Y1 is a RLC series resonator, Z4 is a parallel
RLC resonator and Z2 and Y3 are the ideal parallel and series LC resonators and following the same
design procedure we can obtain the LF DO-OTA-C filter structure as shown in Fig. 12.23(b). The
component values can be formulated as

g′′′
1 = g1gmR1, C′

1 = g1gmL1, C′′
1 = g′

1g
′′
1

g1gm
C1 ,
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FIGURE 12.23
Eighth-order bandpass LC and LF DO-OTA-C filter.

C′
2 = g2

gm
C2, C′′

2 = g′
2g

′′
2gm

g2
L3 ,

C′
3 = g3gmL3, C′′

3 = g′
3g

′′
3

g3gm
C3, C′

4 = g4
gm
C4 ,

C′′
4 = g′

4g
′′
4gm

g4
L4, g′′′

4 = g4
gm

1
R4

(12.60)

where gm is the scaling conductance. Further design can be carried out based on the equation.

12.4.4 Alternative Current-Mode Leapfrog DO-OTA-C Structure

One of the most outstanding features of the basic LF configuration we have studied is that the
circuit can be very straightforwardly and conveniently explained with feedback theory. An alternative
form of the simulation structure of the general ladder in Fig. 12.17 is given in Fig. 12.24, which can
be obtained by simply rearranging the LF structure in Fig. 12.18. The corresponding OTA-grounded
impedance version is shown in Fig. 12.25. Note that we assume that the scaling conductance gm = 1
and the OTAs have unity transconductances and thus the values of the grounded impedances Z′

j are
equal to Yj and Zj for odd and even j , respectively. The OTA-C simulation can then be similarly
conducted by further simulating the grounded impedances using the inductor substitution method.
The fifth-order lowpass LC filter in Fig. 12.21(a) is simulated in this way and its DO-OTA-C version
is shown in Fig. 12.26.
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FIGURE 12.24
Alternative current-mode LF block diagram.

FIGURE 12.25
Alternative current-mode DO-OTA-grounded impedance LF structure.

FIGURE 12.26
Alternative current-mode DO-OTA-C LF structure based on all-pole LC ladder.

12.5 Current-Mode Multiple Loop Feedback DO-OTA-C Filters

Voltage-mode multiple loop feedback OTA-C filters were studied in Chapter 11. We now in-
vestigate the design of current-mode multiple loop feedback DO-OTA-C filters. The method used
is similar to that proposed in Chapter 11, but here in the current domain. Note that multiple loop
feedback filter structures have many attractive features such as realizability of arbitrary transmission
zeros, use of only grounded capacitors, versatility in the type of structures and requirement of fewer
components. Reference [22] has shown that to realize the same transfer function, the multiple loop
feedback method may need a smaller number of OTAs and have less parasitic effects than the cascade
and ladder simulation methods.

12.5.1 Design of All-Pole Filters [23]

The general model of current-mode multiple loop feedback DO-OTA-C filters is shown in
Fig. 12.27. It is similar to the model in Chapter 11, but differs from that in that it consists of
current integrators and the current feedback network that may contain DO-OTA based current am-
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plifiers. The circuit equations of the current-mode model can be established following the same
procedure in Chapter 11. Denote the current integration constant of the j th integrator as τj = Cj/gj ,
and the current feedback coefficient from the j th integrator output to the ith integrator input as fij .
We first describe the current feedback network by

[
If
] = [F ] [Io] (12.61)

where [Io] = [Io1 Io2 · · · Ion]t , the output currents of integrators, [If ] = [If 1 If 2 · · · If n]t , the
feedback currents and [F ] = [fij ]n×n, the feedback matrix.

FIGURE 12.27
Current-mode multiple loop feedback DO-OTA-C model.

Then the current feedforward part is determined by

[M(s)] [Io] = [B]Iin − [
If
]

(12.62)

where

[M(s)] =



sτ1
−1 sτ2

. . .

−1 sτn


 (12.63)

[B] = [
1 0 · · · 0

]t
(12.64)

The equation for the whole current-mode DO-OTA-C system is therefore derived by combining
Eqs. (12.61) and (12.62) as

[A(s)] [Io] = [B] Iin (12.65)

where

[A(s)] = [M(s)] + [F ] =



sτ1 + f11 f12 f1n

−1 sτ2 + f22 f2n
. . .

−1 sτn + fnn


 (12.66)

From Eq. (12.65) we can obtain all the integrator current outputs

[Io] = [A(s)]−1 [B] Iin (12.67)
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Using Eq. (12.66) and Eq. (12.64) we derive the overall current transfer function from Eq. (12.67)

H(s) = Iout/Iin = Ion/Iin = 1/|A(s)| (12.68)

where |A(s)| is the determinant of matrix [A(s)].
In feedback coefficient matrix [F ] the element fij �= 0, if there exists feedback between If i and

Ioj ; otherwise, fij = 0. The nonzero current coefficient fij can be realized as fij = gij1/gij2 or
simply as a direct connection if fij = 1. As in the voltage-mode case in Chapter 11, according to the
one-to-one correspondence between feedback matrix [F ] and filter architectures for a given order,
the generation of filter structures can be accomplished by finding all combinations of [F ] nonzero
elements. (If the output current of any integrator is fedback to some circuit node, then [F ] has one
and only one nonzero element in each column. And therefore for the general nth-order there are n!
possible combinations.) We then have all different feedback connections, i.e., all filter structures. In
the minimum component or canonical realization, namely, one DO-OTA and one capacitor for one
pole, to realize the unity dc gain nth-order all-pole characteristic only n DO-OTAs and n capacitors
are needed in the whole system. This clearly requires that there should not be any circuit components
in the feedback network. Therefore feedback can be achieved only by direct connections and the
values of all nonzero elements in [F ] become unity.

To exemplify the general theory and show how to realize the desired all-pole filter characteristic:

Hd(s) = 1/
(
Bns

n + Bn−1s
n−1 + · · · + B1s + 1

)
(12.69)

we discuss the design of canonical fourth-order current-mode DO-OTA-C filters. The [F ] matrices,
corresponding transfer functionsH(s) and simple design formulas for the realization of Eq. (12.69)
of five cases are shown below and their structures are given in Fig. 12.28.

Structure (a): f11 = f12 = f23 = f34 = 1,

H(s) = 1/[τ1τ2τ3τ4s4 + τ2τ3τ4s3 + (τ3τ4 + τ1τ4 + τ1τ2)s2 + (τ2 + τ4)s + 1]
τ1 = B4/B3, τ2 = B3/B, τ3 = B/(B1 − B3/B), τ4 = B1 − B3/B, B = B2 − B1B4/B3

Structure (b) : f11 = f12 = f23 = f24 = 1,

H(s) = 1/[τ1τ2τ3τ4s4 + τ2τ3τ4s3 + (τ3τ4 + τ1τ4)s2 + (τ1 + τ4)s + 1]
τ1 = B4/B3, τ2 = B3/[B2 − (B1 − B4/B3)B4/B3], τ3 = B2/(B1 − B4/B3)− B4/B3,
τ4 = B1 − B4/B3

Structure (c) : f11 = f12 = f13 = f24 = 1,

H(s) = 1/[τ1τ2τ3τ4s4 + τ2τ3τ4s3 + τ3τ4s2 + (τ1 + τ4)s + 1]
τ1 = B4/B3, τ2 = B3/B2, τ3 = B2/(B1 − B4/B3), τ4 = B1 − B4/B3

Structure (d) : f11 = f12 = f14 = f23 = 1,

H(s) = 1/[τ1τ2τ3τ4s4 + τ2τ3τ4s3 + (τ3τ4 + τ1τ4)s2 + τ4s + 1]
τ1 = B4/B3, τ2 = B3/(B2 − B1B4/B3), τ3 = B2/B1 − B4/B3, τ4 = B1

Structure (e) : f11 = f12 = f13 = f14 = 1,

H(s) = 1/(τ1τ2τ3τ4s4 + τ2τ3τ4s3 + τ3τ4s2 + τ4s + 1)
τ4 = B1, τ3 = B2/B1, τ2 = B3/B2, τ1 = B4/B3
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FIGURE 12.28
Fourth-order current-mode DO-OTA-C filters.

A numerical example of the fourth-order filter design for realizing the normalized Butterworth
approximation with the desired function

Hd(s) = 1

s4 + 2.61313s3 + 3.41421s2 + 2.61313s + 1

is now given. Table 12.4 presents the parameter values of all the canonical fourth-order filters in
Fig. 12.28, which are obtained by using the explicit design formulas given in the above.

The explicit expression of the general current transfer function of the fourth-order model with the
general [F ] can also be derived, which is the same in form as that in Chapter 11 [23]. Some typical
general nth-order current-mode DO-OTA-C architectures may include the canonical FLF structure
corresponding to f1i = 1, for i = 1, 2, ..., n and the canonical LF configuration associated with
f11 = 1, fij = 1 for j = i + 1 [23].
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Table 12.4 Parameter Values for Fourth-Order Butterworth Filter
Circuit τ4 τ3 τ2 τ1

Fig. 12.28(a) 1.53073 1.57716 1.08239 0.382683

Fig. 12.28(b) 2.23044 1.14805 1.02049 0.382683

Fig. 12.28(c) 2.23044 1.53073 0.765367 0.382683

Fig. 12.28(d) 2.61313 0.92388 1.08239 0.382683

Fig. 12.28(e) 2.61313 1.30656 0.765367 0.382683

12.5.2 Realization of Transmission Zeros

The transfer function with arbitrary transmission zeros of

Hd(s) = Ans
n + An−1s

n−1 + · · · + A1s + A0

Bnsn + Bn−1sn−1 + · · · + B1s + 1
(12.70)

can be realized by using the input distribution and output summation methods. Although the theory
is similar to that in Chapter 11, we want to repeat the formulation process to show how the circuits
work in current domain.

12.5.2.1 Multiple Loop Feedback with Input Distribution

The multiple current-integrator loop current-feedback model with a current input distribution
network is shown in Fig. 12.29. The current distribution coefficient to the input of the j th integrator
is denoted as αj = gaj /gr (α0 = ga0/gr is the direct transmission coefficient from the overall input
to the overall output). We can establish the equation relating the output currents Ioj of integrators to

FIGURE 12.29
Current-mode multiple loop feedback and input distribution model.

the overall input current Iin, which is the same as Eq. (12.65) except now

[B] = [α1 α2 · · ·αn]t (12.71)

From the circuit we can see that the overall output current can be expressed in terms of the overall
input current and the output current of the nth integrator as

Iout = α0Iin + Ion (12.72)
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Solving Ion from Eq. (12.65) with [B] in Eq. (12.71) leads to

Ion = 1

|A(s)|
n∑
j=1

αjAjn(s)Iin (12.73)

and substituting Eq. (12.73) into Eq. (12.72) we derive the circuit transfer function as

H(s) = Iout

Iin
= α0 + 1

|A(s)|
n∑
j=1

αjAjn(s) (12.74)

where Aij (s) represent cofactors of matrix [A(s)].

The transfer function in Eq. (12.74) may have the general form of Eq. (12.70) with reference to
matrix [A(s)] in Eq. (12.66). The system poles are determined by τj and fij and the transmission
zeros may be controlled arbitrarily by transconductances gaj through weights αj .

12.5.2.2 Multiple Loop Feedback with Output Summation

Look at Fig. 12.30 which is a basic multiple integrator loop feedback configuration with an output
summation OTA network, compared with Fig. 12.29. The input current is applied only to the input
node of the first integrator. The overall output is a weighted sum of all output currents of integrators
and the overall input current.

FIGURE 12.30
Current-mode multiple loop feedback and output summation model.

With γ = g0/gr , from Fig. 12.30 we can also obtain Eq. (12.65), but with

[B] = [γ 0 · · · 0]t (12.75)

From the circuit we can observe that Ioaj = Io(j−1)gaj /sCj , and Ioj = Io(j−1)gj /sCj , which give
with β0 = ga0/g0 and βj = gaj /gj

Ioaj = βj Ioj (12.76)
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Since the overall output current is the sum of output currents of all the gaj OTAs, we can obtain

Iout = β0Io0 +
n∑
j=1

βj Ioj (12.77)

Note that Io0 = γ Iin. Solving Eq. (12.65) with [B] in Eq. (12.75) yields

Ioj = γ A1j (s)

|A(s)| Iin (12.78)

From Eqs. (12.77) and (12.78) we can therefore obtain the general current transfer function as

H(s) = Iout

Iin
= γ


β0 + 1

|A(s)|
n∑
j=1

βjA1j (s)


 (12.79)

Design can be carried out based on the equation for the summation type current-mode DO-OTA-C
filters.

12.5.2.3 Filter Structures and Design Formulas

Many filter structures and their design formulas can be derived based on the above discussion.
We can obtain explicit design formulas for general nth-order architectures with the distribution and
summation networks [24]. For simplicity, in the following we illustrate four third-order structures
and present their design formulas for the synthesis of elliptic functions [i.e., n = 3 andA3 = A1 = 0
in Eq. (12.70)].

The four structures are given in Fig. 12.31 [22]. The configuration with the FLF (that is, f11 =
f12 = f13 = 1) and the input distribution network in Fig. 12.31(a) has the current transfer function
as

H(s) = α3τ1τ2s
2 + (α3τ2 + α2τ1) s + (α3 + α2 + α1)

τ1τ2τ3s3 + τ2τ3s2 + τ3s + 1
(12.80)

The parameter value equations for the denominator and numerator are formulated by comparing
Eq. (12.80) with Eq. (12.70) for n = 3 and A3 = A1 = 0 as

τ3 = B1, τ2 = B2/B1, τ1 = B3/B2 (12.81)

α3 = A2B1/B3, α2 = −α3B
2
2/B1B3 ,

α1 = A0 − α3 − α2 (12.82)

The current transfer function of the FLF and summation structure in Fig. 12.31(b) is derived as

H(s) = γ β1τ2τ3s
2 + β3

τ1τ2τ3s3 + τ2τ3s2 + τ3s + 1
(12.83)

The parameter value equations for the numerator, with γ = 1, are demonstrated as

β1 = A2/B2, β3 = A0 (12.84)
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FIGURE 12.31
Third-order elliptic current-mode FLF and LF DO-OTA-C structures.

The denominator parameters are calculated using Eq. (12.81).

The circuit with the LF architecture (f11 = f12 = f23 = 1) and the input distribution network is
shown in Fig. 12.31(c). It has the current transfer function as

H(s) = α3τ1τ2s
2 + (α3τ2 + α2τ1) s + (α3 + α2 + α1)

τ1τ2τ3s3 + τ2τ3s2 + (τ1 + τ3) s + 1
(12.85)

and the design formulas are given by

τ1 = B3/B2, τ2 = B2/ (B1 − B3/B2) ,

τ3 = B1 − B3/B2 (12.86)

α3 = A2
B1−B3/B2

B3
, α2 = −α3

B2
2

B3(B1−B3/B2)
,
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α1 = A0 − α3 − α2 (12.87)

For the LF and summation combination structure in Fig. 12.31(d) we have the current transfer
function as

H(s) = γ β1τ2τ3s
2 + (β1 + β3)

τ1τ2τ3s3 + τ2τ3s2 + (τ1 + τ3) s + 1
(12.88)

and with γ = 1, the design formulas are derived as

β1 = A2/B2, β3 = A0 − β1 (12.89)

The denominator parameters are given in Eq. (12.86).
The minus sign in α2 in Eqs. (12.82) and (12.87) simply means the interchange of the associated

ga2 OTA input terminals. The zero values of αj or βj , if any, imply that the corresponding gaj
OTAs should be removed. It should also be noted that to realize this particular kind of filters the
distribution method [Figs. 12.31(a) and 12.31(c)] requires seven OTAs and difference matching,
while the summation approach [Figs. 12.31(b) and 12.31(d)] needs five OTAs and no difference
matching. Hence the summation approach is preferable. This is in contrast with the voltage-mode
design in Chapter 11, where the distribution method is advantageous.

For the normalized third-order elliptic lowpass filter with

Hd(s) = 0.588358s2 + 1

1.67029s3 + 1.41856s2 + 1.91391s + 1
(12.90)

The parameter values for pole realizations are calculated as τ1 = 1.17745, τ2 = 0.741181, τ3 =
1.91391 for the FLF structure and τ1 = 1.17745, τ2 = 1.92618, τ3 = 0.736459 for the LF structure.
The parameter values for zero realizations are computed as α3 = 0.674176, α2 = −0.424379,
α1 = 0.750203 for the FLF and distribution architecture, α3 = 0.259418, α2 = −0.424379, α1 =
1.16496 for the LF and distribution structure, β1 = 0.414758, β3 = 1 for the FLF and summation
architecture, and β1 = 0.414758, β3 = 0.585242 for the LF and summation configuration.

12.6 Other Continuous-Time Filter Structures

In this section we briefly overview other popular continuous-time active filter architectures and
design techniques. This includes balanced opamp-RC and OTA-C structures, MOSFET-C and OTA-
C-opamp filters, and filters using current conveyors.

12.6.1 Balanced Opamp-RC and OTA-C Structures

The opamp-RC and OTA-C (voltage- and current-mode) filters we have discussed so far all are
single ended. In this section we discuss active filter design based on balanced architectures.

Balanced structures are most widely utilized in continuous-time integrated filter design [1]–[4],
[26]–[30]. This is because balanced structures can increase the common-mode rejection ratio,
eliminate the even-order harmonic distortion components and reduce the effects of power supply
noise. Balanced configurations can be obtained from single-ended structures. The single-ended to
balanced conversion can be generally achieved by first mirroring the whole single-ended circuit at
ground (duplicating all the components and changing the terminal polarities of all mirrored active
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elements) and then combining each original amplifier and its mirrored counterpart into a balanced
differential input-differential output device with inverting-noninverting gains. Note that the resulting
balanced version will have an added benefit of 3dB improvement in dynamic range. Because signals
of both polarities are now available, sign inverters with unity gain can be readily realized by a simple
crossing of wires and thereby save the components in question.

These general rules for converting single-ended structures to balanced differential counterparts
are suitable for opamp-RC filters in Chapters 4–7, OTA-C filters in Chapters 8–11 and current-mode
DO-OTA-C filters in Sections 12.2–12.5. For example, the process of converting a single-ended
opamp-RC integrator into a balanced one is shown in Fig. 12.32. The balanced OTA-C integrator is

FIGURE 12.32
Balanced opamp-RC integrator.

shown in Fig. 12.33(a), which can be derived from the single-ended prototype in Fig. 12.33(b) using
the conversion method.

FIGURE 12.33
Balanced OTA-C integrator.

We should say that balanced filter structures can also be generated without having single-ended
equivalents. Note that compared with the single-ended circuit the balanced equivalent requires twice
the number of passive components and active components with balanced differential inputs and
differential outputs often consist of more complicated circuitry than their single-ended counterparts.
It is also noted that in integrated filters where the balanced version is used, the whole IC filter is
presumably customer designed [2]. Thus although balanced differential opamps and OTAs may not
be commercially available, this will not pose a major problem. More discussion on balanced filter
structures can be found in [2, 4, 26, 28].

12.6.2 MOSFET-C Filters

As is well known, automatic electronic tuning is crucial for fully integrated filters to compensate
the drifts of element values and filter performances due to component tolerance, device nonideality,
parasitic effects, temperature, environment and aging. Integration of analog circuits in MOS tech-
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nology is also driven towards a single chip implementation of mixed circuits and systems because
digital circuits are integrated in MOS technology.

In conventional active RC filters, the resistor is the problem; it has a very limited range of values
(normally R ≤ 40k/ without use of special processing techniques and resistances beyond the limit
will be physically too large) and is not electronically tunable.

As is well known, a MOSFET can be used as a voltage-controlled resistor biased in the ohmic
region, with the resistance being adjustable by the bias gate voltage. It is therefore obvious that
using the MOSFET to replace the resistor in active RC filters can meet the two requirements and the
resulting filters are called the MOSFET-C filters.

MOSFET-C filters are usually implemented using a balanced structure [26]–[30]. Figure 12.34
shows a balanced MOSFET-C integrator. The balanced active RC prototype is also given in the figure
for comparison. MOSFET-C filters can be similarly constructed by replacing resistors in active RC
filters by their corresponding MOSFETs.

FIGURE 12.34
Balanced MOSFET-C integrator.

As in active RC filter design, we must consider the opamp nonideality effects including the
frequency limitation and compensation techniques may be needed [29]. A new and important
problem peculiar to MOSFET-C filters is the nonideality of the MOSFET. The MOSFET is in
nature a nonlinear resistor and we must reduce or eliminate the MOSFET nonlinearity. This is also
why MOSFET-C filters must have balanced structures (a single-ended configuration results in high
nonlinearities and distortion, but balanced structures can eliminate the even-function nonlinearity).
In the literature, a special approach for a complete cancellation of MOSFET nonlinearity has been
proposed [30], which is shown in Fig. 12.35.

FIGURE 12.35
Modified MOSFET-C integrator.

We must stress that the MOSFET-C approach is one of the most popular methods in continuous-
time integrated filter design, which is second to only the OTA-C method. The major advantage of
the MOSFET-C approach is that the well developed active RC design methods can be directly used
and the constituent components (opamps, MOSFETs and capacitors) all are standard and available
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in most IC design libraries. Like conventional active RC filters, this approach however remains
suffering from the limited frequency range due to the use of opamps and the inherent nonlinearities
of MOSFET resistors that must be canceled. As we mentioned before, OTAs require much simpler
circuitry than opamps (for example, the first stage of the opamp) and have a very high-frequency
response and an electronically tunable transconductance. The OTA-C filtering approach dominates
in high-frequency integrated continuous-time filter design and has been successfully implemented
in different IC technologies including CMOS. The reader may refer to references [1]–[4], [26]–[32]
for details of MOSFET-C filter design.

12.6.3 OTA-C-Opamp Filter Design

Since an OTA has a simple circuitry suitable for MOS integration and has a transconductance
tunable by the bias voltage or current, we can also use the OTA to replace the resistor in opamp-
RC filters, resulting in the OTA-C-opamp filters, which can resolve the problems due to the use
of resistors. More often, OTA-C-opamp filters are developed to solve the parasitic capacitance
problem in OTA-C filters [32]. That is, inserting an opamp into the OTA-C integrator to reduce the
parasitic effects by the virtual ground property of the opamp. Figure 12.36(a) shows a single-ended
integrator which consists of an OTA and an opamp with feedback from a Miller capacitor [34]. The
corresponding balanced structure is given in Fig. 12.36(b). Similar to the compensation technique for
the OTA-C integrator introduced in Chapter 9 we can insert a small MOSFET resistor in series with
the Miller capacitor to compensate the nonideal frequency characteristics of the OTA and opamp.

FIGURE 12.36
OTA-C-opamp integrators.

The generation of OTA-C-opamp filter structures is simple, either by replacing the resistor in
opamp-RC filters by the OTA or by substituting the OTA-C-opamp integrator for the OTA-C integrator
in OTA-C filters.

In some high-frequency OTA-C filters where a simple single-stage OTA is normally used, the dc
gain of the OTA is very low and usually parasitic capacitances are high. Therefore, normally a very
wide range of tuning is required to compensate the nonideal effects such as parasitic capacitances
and poor output impedances [33]. The OTA-C-opamp technique may present an alternative to the
OTA-C method since OTA-C-opamp filters are insensitive to parasitic capacitances due to the virtual
ground of the high gain opamp input and have high dc gain due to the two stage arrangement of
integrators. However, the OTA-C-opamp method suffers from the frequency limitation imposed by
the opamp and the large power consumption and chip area due to more active devices used (one extra
opamp for each integrator). Also, considering that OTA-C filters which may be seen as a result of
replacement of both opamps and resistors in opamp-RC filters usually have the structures that have
a grounded capacitor on each node which can be used to absorb OTA parasitic capacitances, as has
been seen from Chapters 8–11, the OTA-C-opamp approach may no longer be attractive.

We can also have current-mode DO-OTA-C-opamp filter structures. Figure 12.37 gives a current-
mode integrator which uses an opamp, a capacitor, and a DO-OTA. Using this integrator to replace
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the DO-OTA-C integrator in current-mode DO-OTA-C filters in Sections 12.2–12.5 we can easily
generate corresponding current-mode DO-OTA-C-opamp filters.

FIGURE 12.37
Current-mode DO-OTA-C-opamp integrator.

12.6.4 Active Filters Using Current Conveyors

The second-generation current conveyor (CCII) which was first proposed in 1970 [35] has recently
been widely used in high performance analog signal processing circuits including active filters [36]–
[38] due to its mixed voltage and current functions, wide bandwidth and large dynamic range. In
Chapter 3 a very brief introduction was given. Now we discuss applications of the CCII in active
filter design.

It will be recalled from Chapter 3 that the CCII is defined as [35]


 IyVx
Iz


 =


 0 0 0

1 0 0
0 ±1 0




VyIx
Vz




Normally the CCIIs with the positive and negative polarities are represented by the CCII+ and
CCII−, respectively.

The CCII is a mixed voltage and current active building block. With terminal Z grounded the CCII
can be used as a voltage follower from terminal Y to terminal X. With terminal Y grounded the CCII
can also be used as a current follower from terminal X to terminal Z. What is more, the CCII together
with an external resistor connected from terminal X to ground can be used as a transconductance
amplifier with the transconductance being equal to the reciprocal of the resistance, with voltage input
to terminal Y and current output from terminal Z. Ideally the CCII transconductance amplifier has
the characteristic of Iz = ± 1

R
Vy .

Because of its versatility of function the CCII can be used to construct many interesting filter
structures. The building blocks such as the voltage and current integrators and the simulated inductor
are illustrated in Fig. 12.38(a), (b), and (c), respectively, [35]. For simplicity the ground connection
in the CCII symbol in Chapter 3 is dropped. The equivalent inductance of the simulated inductor is
given by L = R1R2C.

A two-CCII active RC biquad is displayed in Fig. 12.39. This circuit may be considered to be
either a cross-connection of an ideal integrator and a lossy integrator or a parallel connection of an
active inductor, a capacitor, and a resistor. The voltage outputs from the circuit nodes of the biquad
with grounded capacitors ideally give the lowpass and bandpass filters for the voltage input through
R3, given by

HLP (s) = VoLP

Vin
=

1
R2R3C1C2

s2 + 1
R3C1

s + 1
R1R2C1C2

(12.91)

©1999 CRC Press LLC



FIGURE 12.38
CCII-based building blocks.

FIGURE 12.39
Two-CCII biquad.

HBP (s) = VoBP

Vin
=

1
R3C1

s

s2 + 1
R3C1

s + 1
R1R2C1C2

(12.92)

To give another example we consider the CCII-RC structure using one CCII in Fig. 12.40. Routine
circuit analysis yields

HLP (s) = Vout

ViLP
= g1g2

s2C1C2 + sg1 (C1 + C2)+ g1g2
(12.93)

HBP (s) = Vout

ViBP
= sg1C2

s2C1C2 + sg1 (C1 + C2)+ g1g2
(12.94)

indicating that the circuit can offer the lowpass and bandpass functions. The reader should check
that the ωo andQ sensitivities are very low.

In practice, CCII-RC filter design must also take the effects of CCII nonidealities into consid-
eration. These nonidealities include finite impedances at terminals Y, X, and Z and the error or
frequency dependence of voltage and current following characteristics (from terminals Y to X and
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FIGURE 12.40
Single-CCII biquad.

terminals X to Z, respectively). They will adversely affect the filter frequency performance in various
ways. Detailed discussion and compensation methods can be found in [39, 40].

12.6.5 Log-Domain, Current Amplifier, and Integrated-RLC Filters

These filtering techniques are very active research topics these days. We will not discuss them
in details in this book, but give references for the reader who may be interested to know them.
Log-domain filters (designed based on the log operation of the transistor nonlinear characteristic)
have been investigated in [45]–[49]. They are internally nonlinear externally linear current-mode
filters. References [41]–[44] are concerned with current amplifier filters, linear current-mode filters.
Publications on new integrated RLC filters are given in [50]–[53], the interest in which has been
aroused by recent surge in wireless communications.

12.7 Summary

The design of current-mode DO-OTA-C filters has been studied. First- and second-order current-
mode filters have been derived using a single DO-OTA and five-admittance model. They are suitable
for both discrete and IC implementations. Current-mode two-integrator loop DO-OTA-C archi-
tectures have been obtained and the range of filter functions which are supported by the various
architectures has been shown. The filter performances including the effects of DO-OTA nonide-
alities have also been analyzed. Current-mode DO-OTA-C filters based on leapfrog simulation of
passive LC ladders have been discussed. Systematic generation and design of current-mode multiple
integrator loop feedback DO-OTA-C filters have been studied.

Instead of synthesizing the filters based on voltage building blocks such as voltage integrators
and voltage amplifiers using single output OTAs, all the realizations in Sections 12.2–12.5 are
based on current building blocks such as current integrators and current amplifiers incorporating
DO-OTAs. The current-mode DO-OTA-C filter structures derived in this chapter, together with
those voltage-mode OTA-C counterparts in Chapters 8–11 complementarily form a complete set
of transconductance amplifier and capacitor filter architectures. This will no doubt give the filter
designer more opportunities to choose the best structure for their requirements.

In this chapter we have also introduced various other successful techniques and structures for
continuous-time filter design such as balanced opamp-RC and OTA-C structures, MOSFET-C con-
figurations, OTA-C-opamp filters, and active filters using CCIIs.

We stress that continuous-time integrated filter design for high-frequency applications has pro-
gressed tremendously and remains an active topic. In this book, we have concentrated on the conven-
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tional well-established opamp-RC filters and the predominant OTA-C filters that have been developed
more recently. We have also discussed other popular methods such as the current-mode DO-OTA-C
and MOSFET-C approaches. The discussion in this book has been mainly on filter design methods,
structure generation and performance analysis in the block level. Some important issues such as
solid-state (transistor-level) implementation, automatic (on-chip) tuning, and computer-aided design
of continuous-time filters have not been discussed in details. The reader may be interested to refer
to relevant publications for solid-state implementation [1, 4, 5, 7, 28], automatic tuning [54]–[57]
and filter CAD [58]–[60].

It is also stressed that in high-frequency continuous-time integrated filter design, the study of
filter structures and synthesis methods is as important as solid-state implementation, because the
performance of a filter depends on the constituent components, the connection of the components,
and the principles based on which the structure is derived, together with the IC technology, fabrication
techniques, and packaging methods used. This presents the variety of areas to which filter researchers
and designers can be devoted to improve and enhance filter performances for advanced applications.
At the end of the book we hope that we have armed the reader with sufficient background to explore
further topics in this exciting and challenging area.
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Appendix A

 

A Sample of Filter Functions
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TABLE A.2

 

Denominator Polynomials in Expanded and in Factored Forms for Chebyshev Filters of Odd Order 
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5 s5 + 1.17249s4 + 1.93738s3 + 1.30958s2 + 0.75252s + 0.17892 = (s2 + 0.22393s + 1.03578)(s2 + 0.58625s + 0.47677)(s + 0.36232)

7 s7 + 1.15122s6 + 2.41265s5 + 1.86941s4 + 1.64790s3 + 0.75565s2 + 0.28207s + 0.04473 = (s2 + 0.11401s + 1.01611)(s2 + 0.31944s + 0.67688)(s2 + 0.46160s + 0.25388)(s + 0.25617)

9 s9 + 1.14257s8 + 2.90273s7 + 2.42933s6 + 2.78150s5 + 1.61139s4 + 0.98362s3 + 0.34082s2 + 0.09412s + 0.01118 = (s2 + 0.06891s + 1.00921)(s2 + 0.19841s + 0.78937)(s2 + 0.30398s 
+ 0.45254)(s2 + 0.37288s + 0.15634)(s + 0.19841)

Amax = 1 dB (ε = 0.50885)

1 s + 1.96523

3 s3 + 0.73782s2 + 1.02219s + 0.32689 = (s2 + 0.36891s + 0.88610)(s + 0.36891)

5 s5 + 0.70646s4 + 1.49954s3 + 0.69348s2 + 0.45935s + 0.08172 = (s2 + 0.13492s + 0.95217)(s2 + 0.35323s + 0.39315)(s + 0.21831)
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7 s7 + 0.69809s6 + 1.99367s5 + 1.03955s4 + 1.14460s3 + 0.38264s2 + 0.16613s + 0.02043 = (s2 + 0.06913s + 0.97462)(s2 + 0.19371s + 0.63539)(s2 + 0.27991s + 0.21239)(s + 0.15534)

9 s9 + 0.69468s8 + 2.49129s7 + 1.38375s6 + 2.07675s5 + 0.85687s4 + 0.64447s3 + 0.16845s2 + 0.05438s + 0.00511 = (s2 + 0.04189s + 0.98440)(s2 + 0.12063s + 0.76455)(s2 + 0.18482s 
+ 0.42773)(s2 + 0.22671s + 0.13153)(s + 0.12063)

Amax = 2 dB (ε = 0.76478)

1 s + 1.30756

3 s3 + 0.73782s2 + 1.02219s + 0.32689 = (s2 + 0.36891s + 0.88610)(s + 0.36891)

5 s5 + 0.70646s4 + 1.49954s3 + 0.69348s2 + 0.45935s + 0.08172 = (s2 + 0.13492s + 0.95217)(s2 + 0.35323s + 0.39315)(s + 0.21831)

7 s7 + 0.69809s6 + 1.99367s5 + 1.03955s4 + 1.14460s3 + 0.38264s2 + 0.16613s + 0.02043 = (s2 + 0.06913s + 0.97462)(s2 + 0.19371s + 0.63539)(s2 + 0.27991s + 0.21239)(s + 0.15534)

9 s9 + 0.69468s8 + 2.49129s7 + 1.38375s6 + 2.07675s5 + 0.85687s4 + 0.64447s3 + 0.16845s2 + 0.05438s + 0.00511 = (s2 + 0.04189s + 0.98440)(s2 + 0.12063s + 0.76455)(s2 + 0.18482s 
+ 0.42773)(s2 + 0.22671s + 0.13153)(s + 0.12063)

Amax = 3 dB (ε = 0.99763)

1 s + 1.00238

3 s3 + 0.59724s2 + 0.92835s + 0.25059 = (s2 + 0.29862s + 0.83917)(s + 0.29862)

5 s5 + 0.57450s4 + 1.41503s3 + 0.54894s2 + 0.40797s + 0.06265 = (s2 + 0.10972s + 0.93603)(s2 + 0.28725s + 0.37701)(s + 0.17753)

7 s7 + 0.56842s6 + 1.91155s5 + 0.83144s4 + 1.05185s3 + 0.30002s2 + 0.14615s + 0.01566 = (s2 + 0.05629s + 0.96648)(s2 + 0.15773s + 0.62726)(s2 + 0.22792s + 0.20425)(s + 0.12649)

9 s9 + 0.56594s8 + 2.41014s7 + 1.11232s6 + 1.94386s5 + 0.67893s4 + 0.58351s3 + 0.13139s2 + 0.04759s + 0.00392 = (s2 + 0.03413s + 0.97950)(s2 + 0.09827s + 0.75966)(s2 + 0.15057s 
+ 0.42283)(s2 + 0.18470s + 0.12664)(s + 0.09827)

TABLE A.2

Denominator Polynomials in Expanded and in Factored Forms for Chebyshev Filters of Odd Order (continued)

n Polynomials

©1999 CRC Press LLC



TABLE A.3

Elliptic Approximation Functions for Amax = 0.5 dB

n Amin Numerator constant K Numerator of F(s) Denominator of F(s)

(a) Ωs = 1.5

2 8.3 0.38540 s2 + 3.92705 s2 + 1.03153s + 1.60319

3 21.9 0.31410 s2 + 2.80601 (s2 + 0.45286s + 1.14917)(s + 0.766952

4 36.3 0.015397 (s2 + 2.53555)(s2 +12.09931) (s2 + 0.25496s + 1.06044)(s2 + 0.92001s + 0.47183)

5 50.6 0.019197 (s2 + 2.42551)(s2 + 5.43764) (s2 + 0.16346s + 1.03189)(s2 + 0.57023s + 0.57601)(s + 0.42597)

(b) Ωs = 2.0

2 13.9 0.20133 s2 + 7.4641 s2 + 1.24504s + 1.59179

3 31.2 0.15424 s2 + 5.15321 (s2 + 0.53787s + 1.14849)(s + 0.69212)

4 48.6 0.0036987 (s2 + 4.59326)(s2 + 24.22720) (s2 + 0.30116s + 1.06258)(s2 + 0.88456s + 0.41032)

5 66.1 0.0046205 (s2 + 4.36495)(s2 + 10.56773) (s2 + 0.19255s + 1.03402)(s2 + 0.58054s + 0.52500)(s + 0.392612)

(c) Ωs = 3.0

2 21.5 0.083974 s2 + 17.48528 s2 + 1.35715s + 1.55532

3 42.8 0.063211 s2 + 11.82781 (s2 + 0.58942s + 1.14559)(s + 0.65263)

4 64.1 0.00062046 (s2 + 10.4554)(s2 + 58.471) (s2 + 0.32979s + 1.063281)(s2 +0.86258s + 0.37787)

5 85.5 0.00077547 (s2 + 9.8955)(s2 + 25.0769) (s2 + 0.21066s + 1.0351)(s2 + 0.58441s + 0. 496388)(s + 0.37452
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