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Preface

“In this digital age, who needs continuous-time filters?” Such an obvious question, and
one which deserves an immediate response. True, we do live in a digital age—digital com-
puters, digital communications, digital broadcasting. But, much though digital technology
may bring us advantages over analog systems, at the end of the day a digital system must
interface with the real world—the analog world. For example, to gain the advantages that
digital signal processing can offer, that processing must take place on bandlimited signals, if
unwanted aliasing effects are not to be introduced. After the processing, the signals are
returned to the real analog world after passing through a reconstruction filter. Both band-
limiting and reconstruction filters are analog filters, operating in continuous time. This is but
one example—but any system that interfaces with the real world will find use for continu-
ous-time filters.

The term continuous-time perhaps needs some explanation. There was the time when ana-
log filters were just that—they processed analog signals in real time, in contrast to digital
filters which performed filtering operations on digital representations of samples of sig-
nals, often not in real time. Then in the 1970s, along came sampled data filters. Sampled
data filters did not work with digital representations of the sampled signal, but operated
on the samples themselves. Perhaps the best known example of such an approach is that of
switched-capacitor filters, which as the name suggests, use switches (usually transistor
switches) together with capacitors and active devices to provide filter functions. Note that
these filters are discontinuous in time as a result of the switching which takes place within
the circuits; indeed continuous bandlimiting and reconstruction filters are needed as a
result. Much research took place in the 1970s and 1980s on switched capacitor filters as a
result of the advantages for integrated circuit realization that they promised. There was so
much stress on research in this area that development of the more conventional analog fil-
ters received relatively little attention. However, when switched capacitor filters failed to
provide all the solutions, attention once again turned to the more traditional approaches,
and the name continuous-time filters was coined to differentiate them from their digital and
sampled data counterparts.

This book is about continuous-time filters. The classic LCR filters built with inductors,
capacitors, and resistors are such filters, of course, and indeed are still much in use. How-
ever, these filters are unsuitable for implementation in the ubiquitous integrated circuit,
since no satisfactory way of making inductors on chip has been found. That is why so much
attention has been paid to active continuous-time filters over the years. Active filters offer
the opportunity to integrate complex filters on-chip, and do not have the problems that the
relatively bulky, lossy, and expensive inductors bring—in particular their stray magnetic
fields that can provide unwanted coupling in a circuit or system. It is therefore active con-
tinuous-time filters on which we shall concentrate here.

As just mentioned, active filters have been around for some time as a means of overcom-
ing the disadvantages associated with passive filters (of which the use of inductors is one).
It is a sobering realization that the Sallen and Key circuit (which uses a voltage amplifier,
resistors, and capacitors, and is one of the most popular and enduring active-RC filter
“architectures”) has been around for about 40 years, yet research into active filters still pro-
ceeds apace after all that time. Tens of thousands of journal articles and conference papers
must have been published and presented over the years. The reasons are manifold, but two
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particular ones are of note. First, the changes in technology have required new approaches.
Thus as cheap, readily available integrated circuit opamps replaced their discrete circuit
counterparts (early versions of which used vacuum tube technology, mounted in 19”
racks), it became feasible to consider filter circuits using large numbers of opamps, and
new improved architectures emerged. Similarly the development of integrated transcon-
ductance amplifiers (the so-called OTA, or operational transconductance amplifiers) led to
new filter configurations which reduced the number of resistive components, and allowed
with advantage filter solutions to problems using currents as the variables of interest,
rather than voltages. In the limit this gives rise to OTA-C filters, using only active devices
and capacitors, eminently suitable for integration, but not reducing the significance of
active-RC filters which maintain their importance in hybrid realizations. Second, the
demands on filter circuits have become ever more stringent as the world of electronics and
communications has advanced. For example, greater demands on bandwidth utilization
have required much higher performance in filters in terms of their attenuation characteris-
tics, and particularly in the transition region between passband and stopband. This in turn
has required filters capable of exhibiting high “Q,” but having low sensitivity to compo-
nent changes, and offering dynamically stable performance — filters are not meant to oscil-
late! In addition, the continuing increase in the operating frequencies of modern circuits
and systems reflects on the need for active filters that can perform at these higher frequen-
cies; an area where the OTA active filter outshines its active-RC counterpart.

What then is the justification for this new book on continuous-time active filters? For the
newcomer to the field, the literature can be daunting, in both its volume and complexity,
and this book picks a path through the developed field of active filters which highlights the
important developments, and concentrates on those architectures that are of practical sig-
nificance. For the reader who wants to be taken to the frontiers of continuous-time active
filter design, these too are to be found here, with a comprehensive treatment of transcon-
ductance amplifier-based architectures that will take active filter design into the next mil-
lennium. All this material is presented in a context that will enable those readers new to
filter design (let alone continuous-time active filter design) to get up to speed quickly.

This book will be found interesting by practising engineers and students of electronics,
communications or cognate subjects at postgraduate or advanced undergraduate level of
study. It is simply structured. Chapters 1 through 3 cover the basic topics required in intro-
ducing filter design; Chapters 4 through 7 then focus on opamp-based active-RC filters;
finally, Chapters 8 through 12 concentrate on OTA-Capacitor filters (and introduce some
other approaches), taking the reader up to the frontiers of modern active continuous-time
filter design.

A book such as this requires much work on the part of the authors. In this case it is an
achievement of which the authors are particularly proud because it represents the success-
ful collaboration of three engineering academics from quite different cultural back-
ground—Greece, China, and the United Kingdom. The catalyst to this collaboration has
been Nora Konopka from CRC Press in the U.S., to whom all of us are grateful. In addition,
we have many to thank as individuals. Theodore Deliyannis particularly thanks his col-
leagues I. Haritantis, G. Alexiou, and S. Fotopoulos in Patras, Prof. A. G. Constantinides of
Imperial College, London, and the IEE for allowing him to reproduce parts of their com-
mon papers published in the Proceedings of the IEE. He also expresses his gratitude to Mrs.
V. Boile and his postgraduate student K. Giannakopoulos for their help in preparing the
manuscript. Finally he thanks his wife Myriam for her encouragement and understanding.

Yichuang Sun acknowledges Prof. Barry Jefferies of the University of Hertfordshire,
UK, for his support, and helpful comments on his work; he is also grateful to Tony Crook
for his help in preparing the manuscript. He also expresses his thanks to his wife, Xiaohui,
and son, Bo, for their support and patience.
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Kel Fidler is particularly grateful to his co-authors Theodore and Yichuang for their
incredibly hard work, and their patience and civility at times when things became a little
quiet! He also thanks all his friends and colleagues in York for their forbearance and under-
standing when they observed that, once again, he had taken on too much! In particular he
thanks Navin Sullivan, without whom, in many complex ways, these authors would never
have come together to write this book.

TLD, Patras
YS, Hatfield
JKE, York
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Chapter 1

Filter Fundamentals

1.1 Introduction

Continuous-time active filters are active networks (circuits) with characteristics that make
them useful in today’s system design. Their response can be predetermined once their exci-
tation is known, provided that their characteristic function is known or can be derived from
their circuit diagram. Thus, it is important for the filter designer to be familiar with the con-
cepts relevant to filter characterization.

These useful concepts are reviewed in this chapter. For motivation, we deal with the filter
characterization and the possible responses first. In order to pursue these further, we need
to consider certain fundamentals; the analysis of a circuit is explained by means of the
nodal method. The analysis of the circuit gives the mathematical expressions, transfer, or
other functions that describe its characteristics. We examine these functions in terms of
their pole-zero locations in the s-plane and use them to determine the frequency and time
responses of the circuit. The concepts of stability, passivity, activity, and reciprocity, which
are closely associated with the study and the design of the types of networks examined in
this book, are also visited briefly.

1.2 Filter Characterization

The filters examined in this book are networks that process the signal from a source before
they deliver it to a load. In terms of a block diagram this is shown in Fig. 1.1.

The filter network is considered here to be lumped, linear, continuous-time, time invari-
ant, finite, passive, or active. These terms are clarified in the following section.

1.2.1 Lumped

In lumped networks, we consider the resistance, inductance, or capacitance as symbols or
simple elements concentrated within the boundaries of the corresponding physical ele-
ment, the physical dimensions of which are negligible compared to the wavelength of the
fields associated with the signal. This is in contrast to the distributed networks, in which the
physical elements have dimensions comparable to the wavelength of the fields associated
with the signal.
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Signal

Source Filter —»— Load

Y

FIGURE 1.1
Block diagram of a filter inserted between the signal source and the load.

1.2.2 Linear

Consider the circuit or system shown in Fig. 1.2(a) in block diagram form, where r,(t) is the
system response to the excitation e;(t).

The system will be linear (LS) when its response to the excitation C,e,(t), where C, is a
constant, is also multiplied by C,, i.e., if it is C,r(t), as shown in Fig. 1.2(b). This expresses
the principle of proportionality.

For a linear system the principle of superposition holds. This principle is stated as fol-
lows: If the responses to the separate excitations C,e,(t) and C,e,(t) are C,r,(t) and C,r,(t),
respectively, then the response to the excitation C,e,(t) + C,e,(t) will be C,r(t) + C,ry(t), C;
and C, both being constants. Some examples of linear circuits are the following:

* An amplifier working in the linear region of its characteristics is a linear circuit.

e A differentiator is a linear circuit. To show this, let r(t) be the response to the
excitation e(t).

() = g-gitl) (1.1)

Then, if e(t) is multiplied by a constant C, we will get for the new response r'(t)

() = d[%et( 0 - cdz(tt) = Cr(t) (1.2)

¢ Similarly, for an integrator, the response r(t) to its excitation e(t) is:

t
r(t) = Ie(T)dT (1.3)
0
If e(t) is multiplied by the constant C, the new response of the integrator will be:
t t
r'(t) = J’Ce(r)dr = CJ’e(T)dr (1.4)
0 0
ex(t) ri(t) Ciey(H) Ciry(t)
—— s | —— s »—
(@) (b)

FIGURE 1.2
System response to excitation.
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¢ A time delayer, which introduces the time delay T to the signal, also corresponds
to a linear operator, since the response to the excitation e(t) will be

rit) = e(t—T) (1.5)

1.2.3 Continuous-Time and Discrete-Time

In a continuous-time filter, both the excitation e and the response r are continuous functions
of the continuous time ¢, i.e.,

e =e(t) r=r(t) (1.6)

In contrast, in a discrete-time or sampled-data filter the values of the excitation and
response are continuous, changing only at discrete instants of time. These are the sampling
instants. Only the values of the excitation and response at the sampling instants are of inter-
est. In this case, we have

e =e(nT) r=rnT)

where T is the sampling period and # a positive integer.
Details of continuous-time filters are given in Section 1.6, while further reference to dis-
crete-time filters is not within the scope of this book.

1.2.4 Time-Invariant

A time-invariant filter is built up from elements whose values do not change with time dur-
ing the operation of the filter. In such a filter, if the excitation e(t) is delayed by T, so is its
response r(t). This is shown by means of Fig. 1.3.

1.2.5 Finite

The physical dimensions of the filter network are finite; the number of its components is
finite.

1.2.6 Passive and Active

A simple definition of a passive filter is given in terms of its elements, i.e., if all of its ele-
ments are passive the filter will be passive. Therefore, a passive filter may include among

e(t) ‘ ] _ _
A% Y
0 t 0 t
e(t-T) |
Vi - — \A
0 T t 0 T t

FIGURE 1.3
Defining a time-invariant filter.
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its elements resistors, capacitors, inductors, transformers, or ideal gyrators (see Chapter 3).
If the elements of the filter include amplifiers or negative resistances, this will be called
active.

Another more formal definition is the following: A filter is passive if and only if the fol-
lowing conditions are satisfied:

1. Ifcurrentsand voltagesof any waveformareapplied toits terminal, the total energy
supplied to the filter is non-negative.

2. No response appears in the circuit before the application of the excitation.

A filter is active if not passive. Condition 2 is necessary in order to avoid the situation in
which energy has been stored in some elements and appears before the application of the
excitation.

Passivity conditions in terms of network functions are given in Section 1.7.

1.3 Types of Filters

Ideal transmission of a signal from its source to the receiver requires the following two con-
ditions to be satisfied:

1. The spectrum of the signal remains unchanged.

2. The time differences between the various components of the signal remain
unchanged.

The latter condition is satisfied if there is no change in the phase of each component dur-
ing the transmission, or if the phase varies linearly with frequency. Since changes in phase
are bound to occur in practice, linearity in phase with frequency is necessary for the Con-
dition 2 to be satisfied.

Thus, the desired transfer function of a transmitting medium should have the following
characteristics. Its magnitude should be:

H(jw)| =1
and its phase
argH(jw) = —wT
where T is a constant with the dimensions of time.

The function in Laplace transform notation, which possesses these two characteristics, is
the following;:

H(s) = e°'
However, in real transmission, the signal is usually distorted for various reasons such as
interference by other signals, corruption by noise, etc. Then the distorted signal, before
reaching the receiver, has to be corrected or processed in order to be restored to its initial

form. This can be achieved by means of filters and equalizers.
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We distinguish the filters according to their frequency response as lowpass, highpass,
bandpass, bandstop, allpass, and arbitrary frequency response (equalizers). The latter are
included here, following the general definition of a filter given at the beginning of this
chapter.

The basic filter frequency responses are as follows:

1. The lowpass filter—The ideal response of a lowpass filter is shown in Fig. 1.4(a).
All frequencies below the cutoff frequency w, pass through the filter without
obstruction. The band of these frequencies is the filter passband. Frequencies
above cutoff are prevented from passing through the filter and they constitute
the filter stopband.

However, for reasons explained in Chapter 2, the ideal lowpass filter response
cannot be realized by a physical circuit. Instead, the practical lowpass filter
response will, in general, be as shown in Fig. 1.4(b). It can be seen that a small
error is allowable in the passband, while the transition from the passband to the
stopband is not abrupt. The width of this transition band w, — w, determines the
filter selectivity. Here w, is considered to be the lowest frequency of the stopband,
in which the gain remains below a specified value.

2. The highpass filter—For reasons similar to those holding for the lowpass filter
the ideal highpass filter response is unrealizable. The amplitude response of the
practical highpass filter will basically be as shown in Fig. 1.5.

In the highpass filter the passband is above the cutoff frequency w, while all
frequencies below w, are attenuated when passing through the filter.

3. The bandpass filter—The ideal bandpass is again unrealizable and the ampli-
tude response of the practical bandpass filter is as shown in Fig. 1.6. Here the
passband lies between two stopbands, the lower and the upper. Accordingly
there are two transition bands.

Gain Gain

Passband ] Stopband

0 o o 0 (PB) qq (SB) o
FIGURE 1.4 Transition band
(a) Ideal and (b) practical lowpass fil- (TB)
ter amplitude response. (a) ()

Gain
1 W
practical — « ideal

FIGURE 1.5
The basic highpass ideal and practical filter ampli- ]
tude response. 0 SB o TB o PB ©
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1 AV AR v
practical = ¢ ideal
FIGURE 1.6
Amplitude response of the ideal and practical basic 'TB1 TB2:
bandpass filter. 0 SBl o oy PB @y a3 SB2 o

4. The bandstop filter—The amplitude response of the practical band-elimination
or bandstop filter is shown in Fig. 1.7, while its ideal response is again unreal-
izable. It can be seen that the filter possesses two passbands separated by a
stopband rejected by the filter. There are also two transition bands.

5. The allpass filter—Ideally this filter passes, without any attenuation, all frequen-
cies (0 to »), while its characteristic of concern is the phase response. If its phase
response is linear, then it can operate as an ideal time delayer. In practice the
phase can be linear, within an acceptable error, up to a certain frequency w.. For
frequencies below w, the allpass filter operates as a delayer. It is useful in phase
equalization.

It should be noted that allpass filters are not the only ones that may possess
linear phase response. Certain lowpass filters also have similar phase response,
as explained in Chapter 2, and they can be used as time delayers.

6. Amplitude equalizers—The amplitude equalizer has an amplitude response that
does not belong to any of the filter responses considered above. It is used to
compensate for the distortion of the frequency spectrum that the signal suffers
when passing through a system. Its amplitude response is therefore drawn as
complementary to the signal spectrum. In this sense it can be considered arbitrary
being suitable for only one distorted signal.

I
1.4 Steps in Filter Design

Filter design, in effect, involves three separate processes or steps, these being

1. Analysis of circuits
2. Curve approximation
3. Synthesis of the filter

Gain

¢ practieal —

FIGURE 1.7 0 Lower SB Upper @
Amplitude response of the ideal and practical basic PB 01};'?: '?J;p:tz ;‘;;
bandstop filter. TB TB
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These three steps are explained below to clarify matters.

1. Analysis of circuits—Conventionally, analysis of a circuit is the procedure to
find the characteristics of the filter operation from its diagram and the values of
its components. However, analysis of circuits has a more general meaning here,
namely to determine general types of operational characteristics for various
general types and orders of circuits. These characteristics may be formulated as
rational functions of the complex frequency variable s, with constraints depend-
ing on the circuit type. These rational functions will be referred to here as the
permitted functions.

2. Curve approximation—Based on the knowledge of the characteristics and poten-
tialities of the various types of circuits, we may proceed to try to find the solution
of a certain design problem. Clearly the filter specifications are not given in the
form of rational functions, but as lines or curves that give, for example, maxima
and minima of attenuation. These lines determine the so-called specified curve.
Therefore, the next step in the filter design will necessarily be the determination
of the permitted rational function that best approximates the specified curve,
i.e., that satisfies the conditions set by the specified curve.

Usually the complexity (and consequently the cost) of the circuit increases
with the order of the permitted function that is selected. It is therefore necessary
to determine the simplest permitted function that satisfies the specifications.
Once the suitable permitted function has been found, the basic information is
available for the determination of the corresponding circuit, i.e., the circuit whose
operation characteristics are in agreement with the selected permitted function.

3. Filter synthesis—Filter synthesis refers to the process for determining a circuit,
i.e., its diagram and the values of its components. Even more ambitiously, we
may find all possible circuits that satisfy the specifications and among them select
the best according to certain criteria (cost, available technologies, power dissipa-
tion, etc.).

1.5 Analysis

For the sake of the reader who is not very familiar with the analysis of a general circuit, we
include this section to explain the nodal analysis of a circuit and use the results in order to
obtain the mathematical relationship(s) connecting its response(s) to the excitation(s).
These relationships will, in the general case, give the types of the permitted functions
which were mentioned in the previous section.

1.5.1 Nodal Analysis

Nodal analysis is usually used to determine the response of an active circuit to a certain
excitation. We will explain the method of nodal analysis by applying it in the case of the
circuit in Fig. 1.8.

Let V, i = 1,2,3,4 be the voltages in the corresponding nodes and apply Kirchhoff’s cur-
rent law (KCL) in each node. We may write for node 1:

Y12(V1=V3) +Y13(V1 = V3) +yu(Vi=V,) = 1
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FIGURE 1.8
Circuit illustrating nodal analysis.
or
YiVi—Y12V2—Y13Va—VYiaVa = |y (1.7)

where y;; = Vi, + Y13+ Y14 is the self-admittance of node 1, i.e., the sum of all admittances
connected to node 1, while Vi i, j=1,2,34, with i # j, is the mutual admittance directly con-
necting node i to node ;.

Similarly we may write for the other nodes

node 2: Y V1 + Y Vo = Y Vs = 12V, = 0 (1.8)
node 3: Y3V = YaVo + YasVs - Y5V =0 (1.9)
node 4: Y1V = Y2V = YaVs + yalVe = - (1.10)

where y;, i = 2,3,4 is the self-admittance of node 2,3,4, respectively.

It must be noted that these four equations are not independent. For example, if we add
the first three we will get Eq. (1.10). To get an independent set of equations we arbitrarily
choose one node as the reference node and set its voltage equal to zero. Then, the number
of equations required for the calculation of the voltages at the other nodes will be reduced
by one. In the case of this example, let V, =0 and obtain the following set of three equations:

yuVi—-ypVo—yisVs=1
“Y1V1 + YnVy — Y5V =0 (1.11)

“YVi—YsVo + Y3V5 =0

where y;, i = 1,2,3 are the self admittances of the nodes including, of course, the mutual
admittance connecting the corresponding node to the reference node (node number 4, in
this case). Solution of the set of Eq. (1.11) will give the voltages at nodes 1,2,3 referring to
the voltage at node number 4.

To complete the analysis, the currents in each admittance should be calculated. This can
be easily achieved by applying Ohm’s law at each branch. For example, the current I;in y;
is the following:

Ly = y(V; = V) (1.12)
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In the general case of a circuit with N nodes, the n = N - 1 independent equations, when
the Nth node has been chosen as the reference node, with V, = 0, are as follows:

yaVi+tyn Vot ty,V, =14
YauVi+yuVo +eit y,V, = (1.13)

YY1+ YoVo +t y,,V, =1

n

where, in all y;, i # j, the minus sign has been included in the symbol. This set of equations
can be written in matrix form.

Y11 Y12 -+ Yn| | V1 (9
Yo1 Yoo -+ Yon| [V2| = |12 (1.14)
Vo Yoz o Yol [V L1
or simply
(YItvl =11 (1.15)
where
Y11 Y12 -+« Yan
[y] = |2 Y22 Yan (1.16)
Yo Yoz - Yo

is an n X n matrix, and [V], [I] are column matrices. When the admittances are bilateral, i.e.,
the corresponding currents through them remain the same in magnitude when the applied
voltages change their polarity, it is always y;; = y;, and this matrix is symmetric around the
main diagonal. All passive RLC networks are characterized by this property. This is true for
all reciprocal networks (see Section 1.9).

It is important to realize that matrix [y] can be formed by inspection of the circuit once
the nodes have been identified (numbered) and the reference node has been chosen. To this
end, one should remember that each self admittance y;; is the sum of all admittances con-
nected to the ith node, while in the symbol for each mutual admittance, Vi i 2], the minus
sign is included. On the other hand, if matrix [y] is known, it can be used to reconstruct the
circuit, following the above observations regarding y; and y;;, i #j.

In the above discussion, it was assumed that all independent sources were current
sources, and this is most convenient when applying KCL. However, when some excitations
are applied via voltage sources, these should be transformed to their equivalent current
sources by using Norton’s theorem. According to this theorem, a voltage source, Fig. 1.9(a),
is equivalent to a current source, Fig. 1.13(b), when
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FIGURE 1.9
(a) A voltage source and (b) its equivalent current source.

Iy = Ve

s ZSU
and

Zy = Zgy = Zs

In case V,isideal (i.e., Z, = 0), we assume that Z  # 0, we carry out the analysis as usual, and
in the final expressions we set Z, = 0.

However, when dependent current or voltage sources are present in the circuit, the y
matrix is not symmetrical, because then some of the Y;; are not the same as the correspond-
ing ;. In the case of a dependent current source, whether it be current controlled or voltage
controlled (see Section 3.2), this is treated as an independent current source in forming the
corresponding nodal equation, which is then rearranged in the form of Eq. (1.13). In the case
of a dependent voltage source, whether it be voltage controlled or current controlled, this
may be transformed to a current source using Norton’s theorem, as was explained above.

1.5.2 Network Parameters

The y-matrix that was determined above is useful in determining various network param-
eters that express the network behavior. We explain this in the cases of one- and two-port
networks. These are considered linear, lumped, finite and time-invariant, usually denoted
as LLF networks.

1.5.2.1 One-Port Network

A one-port (or two-terminal) network is shown in Fig. 1.10. It is excited by a current source
only. V; is the response of interest.

LLF
Yin Network

—_e e D G

FIGURE 1.10
A one-port network excited by a current source.
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Then matrix [I] in Eq. (1.14) will be as follows:
I

=10 (1.17)

From these equations, we obtain V; and consequently Y;,. Applying Cramer’s rule, we
will have

V, = A_yll (1.18)
and
1 1, A
Y, = — === ' 1.19
" Zy, Vi Ap (1.19)

where A, is the determinant of [y], and Ay, is its cofactor when the first row and first column
are deleted.

1.5.2.2 Two-Port Network

Consider the two-port network shown in Fig. 1.11. If I; and I, are the only independent exci-
tations, we may write, as a consequence of linearity, the following equations:

Vi = Zpli+ 2yl
Vo = Zyly+Zyl, (1.20)
where
Vv \ Vv \
Zn:‘l“‘l le—l—‘l Zzlz‘l“z Zp =+
Lh,=o0 2l =0 Lh,=o0 2l =0 (1.21)
are the so called Z-parameters of the two-port. Here,
1 oib— —4—11—02
T LLF T
‘|’1 Two-port T
1'0———] ———02'

FIGURE 1.11
A two-port LLF network.
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means the ratio of V; and I; when I, = 0, and similarly for the rest of Eq. (1.21).
These can be obtained from Eq. (1.14) if we set all current excitations, except I; and I,,
equal to zero and solve for V, and V,. The result will be

Ay
A

A A
Z,= -2 lyn = == Z,=-2

Zy =
A, y A, (1.22)

y

where A, is the cofactor of the element y;; of matrix [y]. Clearly, all Z; have the dimensions
of impedance.

A corresponding circuit model (equivalent) for the two-port, based on Eq. (1.20), can be
drawn as shown in Fig. 1.12. The symbol for Z,,I, and Z,I; denotes a dependent voltage
source.

Alternatively, we may write Eq. (1.20) in the following form:

1 = YuVi+ YV,
l2 = YaVi+ YoV, (1.23)
and determine Y, the so called Y-parameters of the two-port as follows:
v.oo b vo ol v -l v ol
11—V1V:0 12—V2V=0 21—V1V=0 2 = 2o s
2 1 2 1 (1.24)

These parameters have the dimensions of admittance and can be obtained from the
Z-parameters that were earlier determined from the [y] matrix of the two-port. The conver-
sion formulas between Z- and Y-parameters are given [2, 3] in Table 1.1.

The equivalent circuit of the two-port based on Eq. (1.23) is shown in Fig. 1.13. The sym-
bol for Y;,V, and Y,,V, denotes a dependent current source.

Similarly, we may obtain sets of hybrid parameters of the two-port defined by the follow-
ing equations:

H-parameters: V, = Hyl, +H,V, I, = Hyl; +HV,, or

(1.25)
G-pal’ameters I 1 = GMVl + GlZI 2 V2 = G21Vl + G22| 2 (1 26)
I, Zy In 1,
\|r, Z,1y Zy1y Vv,
O 0

FIGURE 1.12
Equivalent circuit of the two-port using the Z-parameters.
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FIGURE 1.13

Equivalent circuit of the two-port based on Eq. (1.23).

TABLE 1.1

Matrix Conversion Table [2]

Zy Zy
Zyy Zy
Zy Zy
Zy Zy
AZ AVA
Yy Zy/DZ
Yo, ~Zy,/DZ
Y, ~Zy/AZ
Y,, Zy/DMZ
AY 1/0Z
Hy AZ]Z,,
Hy, 2,12y
H,, ~ZnlZy
H,, 1/Zy,
AH ZulZ,,
Gn 1/Z,
G ~Z1,/Zy
Gy ZnlZy
Gy, AZ]Zy
AG ZylZy
ay ZulZy
a1 AZ[Zy,
y 1/Z,
Ay ZynlZy
AA ZlZy

1/Yy
_ 12/ Yu
Yo/ Yy
AY/Yy
Yo/ Yy
AY/Y,,
Y/ Yo
Yy /Yo
1/Y,,
Y/ Yy
Y/ Yy
-1/Y,,
-AY/Y,,
Yy /Yy

YIZ/ YZ]

~Hy/Hy
~Hy/Hy
-1/Hy

_HTZ/HZI

1/Gy
~G1,/ Gy
Gy /Gy
AG/G,y,
Gy/Gy
AG/Gy,
G/ Gy
-Gy, /Gy,
1/Gy,

G,/Gy
Gyl AG
-G/ DG
-Gy /DG
Gu/AG
1/A0G

Gll

ayy/ ax
AA/aZI
1/ay
ayp/ay
] ay
ay/ap
_AA/au
-1/ay,
ay/ay,
ay/ay,
a1/
DA/ ay,
~1/ay,
ay/ay
ay/ay
ay/ay
DA/ ay
1/ay
ap/ay

ay/ay
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Since these hybrid parameters are referred to the same two-port, they must be related to
the previously defined z- and Y-parameters. Conversions formulas for these parameters
are also given [2, 3] in Table 1.1.

Notice that the hybrid parameters have different dimensions. Thus, H;; and G,, are
impedance functions, H,, and G;; admittance functions, and H,,, H,;, G,, and G,, are
dimensionless. It is for this reason that the parameters are said to be hybrid.

The hybrid equivalent circuits of the two-port based on Egs. (1.25) and (1.26) are shown
in Figs. 1.14(a) and (b), respectively.

Finally, we may write the relationships between port voltages and currents in the follow-
ing form:

Vi = aVy+ap(-y)

| 1= a.21V2 + a22(_| 2) (127)

and thus obtain the a, i, j = 1,2 parameters, which form the transmission matrix. These
parameters relate the input voltage and current to the corresponding output voltage and
current and are very useful when studying cascaded two-port networks.

In Eq. (1.27), -1, is used instead of I, to keep in agreement with the initial definition of the
a;, 1, j = 1,2 parameters, in which I, was taken flowing out at port 2 rather than flowing in,
as is generally considered.

An equivalent circuit of the two-port based on Eq. (1.27) could also be drawn, but we
leave this to the reader as an exercise. Conversion formulae are given [2, 3] in Table 1.1.

1.5.3 Two-Port Interconnections

In certain cases, the analysis of a complex two-port may be simplified, if this can be decom-
posed into two (or more) subnetworks connected in one of the ways shown below:

1.5.3.1 Series-Series Connection
This connection is shown in Fig. 1.15.

H;
I 11

Vi HiV2

=
3l
g
Ly
O
N/

o

®)

FIGURE 1.14
(a) The H-parameter and (b) G-parameter equivalent circuits of the two-port.
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FIGURE 1.15
Series—series connection of two two-ports.

Since

l1a = 1y l2a = 13
and
Via+ Vi V,

Vy

V2a + V2b

it can be easily shown that the Z-parameter matrix of the overall two-port is the sum of the
Z-parameter matrices of the individual two-ports, i.e.,

[Z] = [Z].+[2Z]s (1.28)

This connection of two-ports is sometimes known as cascode connection.

1.5.3.2 Parallel-Parallel Connection
In this case, the situation is as shown in Fig. 1.16. Observe that

V1 = Vla = Vlb Vz = VZu = V2b

and

[yl

Iyl

FIGURE 1.16
Parallel-parallel connection.
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It can then be easily shown that

[Y] = [Y]a+[Y]s (1.29)

1.5.3.3 Series Input-Parallel Output Connection
Following similar reasoning, it can be shown that
[H] = [H]a+[H], (1.30)
1.5.3.4 Parallel Input-Series Output Connection
Again, it can similarly be shown that
[G] = [Gl.+[GCls (1.31)

1.5.3.5 Cascade Connection

This is shown in Fig. 1.17. Since it is very useful on many occasions, we explain it in detail.
It can be seen that

l2a = —lyp

Voa = Vi

We may then write

= [A]{Vﬂ = [A] a[A]{VZﬂ

—12a —12b

{Vla
I la

If the behavior of the overall network is described by the relationship

ol
I1a — 2b

we can easily obtain that

[Al = [Al[A]b (1.32)
T 112- _ Ilb= Ly
d A A A
Via [Al, V24 V|1b (Al Vlzb
L L, o

FIGURE 1.17
Cascade connection of two two-ports.
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1.5.4 Network Transfer Functions

The five sets of parameters that were introduced in the previous section describe fully the
network behavior toward its port terminations. Using these parameters, one can determine
various functions, e.g., the input impedance or admittance at one port when another
impedance is connected across the other port. Transfer functions are also expressed in
terms of these parameters as shown by the following example.

Consider the circuit in Fig. 1.18, where an LLF network is connected between a signal
source of voltage E, and internal resistance R, and a load resistance R, . Let the two-port net-
work be described by its Z-parameters.

The voltages and currents at the two-ports of the network are related by Eq. (1.20), which
is repeated here for convenience.

Vi =2yl +2Z4l,

Vo = Zyli+ 250,

(1.33)

If we wish to determine the voltage transfer ratio V,/E,, we may proceed as follows.
Observing that

V,=-LR, (1.34)

and substituting for I, in Eq. (1.33) gives

Z

V, = anl—ﬁlsz (1.35)
Z

V, = znll—%v2 (1.36)

Solving Eq. (1.36) for I, and substituting in Eq. (1.35), we get, successively,

_ R +Z;
I = 5 Vs (1.37)
and

- Z1(R+2Z5) =252y
RZx

Vi

V, (1.38)

I;

LLF T
V; R
[zl 2 % L

I §

FIGURE 1.18
A two-port connected between source and load.
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But
V, = Eg— 1Ry (1.39)

Substituting for I; from Eq. (1.37) in Eq. (1.39), then equating the sides on the right in Egs.
(1.38) and (1.39) and solving for V,/E,, we finally get the following;:

v, _ R Z
Eq (Ry+Zu)(R+2Zy)—2Z1Z

(1.40)

Various other transfer functions for different values of R, and R, are given [1] in Table 1.2
using both the Z- and Y-parameters of the two-port where appropriate.

All the network functions that appear on Table 1.2 are the Laplace transforms of corre-
sponding functions of continuous time. Since in this book we are dealing with filters that
are characterized by this type of functions only, we review the concept of continuous-time
filter functions in the next section in some detail.

TABLE 1.2
Source Load Transfer Function
\Y%
00 [*) |_12 = 221
I
0 0 \Tl = Y21
0 o Vo_Za__Ya
Vi 2y Yoo
lo Yo _ Zn
[ 0 = D == - =
Iy Yy Zy
0 R I,  Y/R
" Vi Y+t UR
o R \Z ZR
t Iy Zyp*tR
R o) \_/.g = 221
8 Eg Z+ Rg
R 0 oo Ya
8 I~ Y+ /R,
Y, Z5R
R R, 2 21

vy (Ry*+ Z1) (R + Z5p) =221
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1.6 Continuous-Time Filter Functions

As was mentioned in Section 1.2, the response of a continuous-time filter to the continuous-
time excitation e(t) is a continuous-time function r(t) given as follows:

r(t) = [h(t-T)e(r)dr (1.41)

where h(t) is the impulse response (see Section 1.6.3) of the filter.
In the frequency domain this equation is written as follows:

R(s) = H(s)E(s) (1.42)

where R(s), H(s), E(s) are the Laplace transforms of the time functions r(t), h(t), and e(t)
respectively, and s is the complex frequency variable. H(s) is the filter function, transfer or
driving-point impedance, or admittance function. These are shown in Fig. 1.19 in block dia-
gram form.

For the filters we are concerned with, H(s) will be a rational function of s, i.e., the ratio of
two real and finite polynomials in s. It is written in the following form:

N(s) _ a8 +a, ;S " +..+as+a

H(s) = =
(=) D(s)  s"+b, ;" " +...+bs+h

(1.43)

where N(s) and D(s) are the numerator and denominator polynomials, respectively, with
m 2 n, a;, b; real and b; positive (for stability reasons explained below).

If z;, i = 1,2,...n are the roots of N(s), i.e., the zeros of H(s) and p,, i = 1,2,....,m are the roots
of D(s), i.e., the poles of H(s), then Eq. (1.43) can be written as follows:

[1(s-2)
H(s) = a,'5t— (1.44)

rI(S— )
j=1

If the signal is sinusoidal of frequency w, in Eqs. (1.43) and (1.44) s is substituted by jc.
Function H(jw) obtained this way is in fact the continuous-time Fourier transform of (). It
can then be written in the following form:

H(jw) = [H(jw)e*® (1.45)

i.e., in terms of the magnitude and phase of H(jw).

e(t) r(t) E(s) R(s)
—p—1 h(t) —>»— —»— HE) ——

(@) (b)

FIGURE 1.19
Block diagram representation of the filter (a) in the time domain and (b) in the frequency domain.
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Clearly,

¢(w) = arg[H(jw)] (1.46)
It is usual practice to present the magnitude of H(jw) in the form
A(w) = 20 log|H(jw)| (1.47)

and thus express it in dB. This gives the filter gain in dB.
However, in most cases, we talk about the filter attenuation or loss, —A(w), also in deci-
bels. In some cases, the attenuation is given in nepers obtained as follows:

Attenuation in nepers: o(w) = =In|H(jw)| (1.48)

In most filter design cases, H(s) represents the ratio of the Laplace transform of the out-
put voltage to the Laplace transform of the input voltage to the filter being thus dimen-
sionless. However, it may also represent ratio of currents, when it will again be
dimensionless, or ratio of output voltage to input current (transimpedance) or output cur-
rent to input voltage (transadmittance) having the dimensions of impedance or admit-
tance, respectively. Finally, it may represent a driving point function, i.e., the ratio of the
voltage to the current in one port of the filter network or vice versa. In these cases, H(s)
will represent either an impedance function or an admittance function, again not being
dimensionless.

1.6.1 Pole-Zero Locations

The roots of N(s), which are the zeros z; of H(s) (because for s = z; H(s) becomes zero), can
be real or complex conjugate, since all of the coefficients of N(s) are real. Each of these zeros
can be located at a unique point in the complex frequency plane as shown in Fig. 1.20. In
case of a multiple zero, all of them are located at the same point in the s-plane.

On the other hand, the roots of D(s), which are the poles p; of H(s) (because for s = p;, H(s)
becomes infinite) can be real or complex conjugate, since D(s) also has real coefficients.
However, their real part can only be negative for reasons of stability. Also, for a network to
be useful as a filter, its transfer function H(s) should not have poles with real part equal to
zero. Thus, the poles of function H(s) should all lie in the left half of the s-plane (LHP)
excluding the jw-axis, while its zeros can lie anywhere in the s-plane, i.e., in the left-half and
in the right-half s-plane (RHP).

Im| s-plane Im| s-plane
LHP [0} RHP LHP x RHP
o
° x
© © £ 3
Re R
X
(o) (o)
0] X
(@) ()

FIGURE 1.20

(a) Possible zero and (b) possible pole locations in the s-plane.

©1999 CRC Press LLC



1.6.2 Frequency Response

Under steady-state conditions (i.e., s = jw) the magnitude of H(jw) and its phase arg[H(jw)],
given by Egs. (1.47) and (1.46), respectively, as A(w) and ¢(w), constitute the frequency
response of the filter.

To get a good picture of the gain and phase functions of frequency w, we draw the corre-
sponding plots with the frequency being the independent variable. It is usual in most cases
for the scale in the frequency axis to be logarithmic in order to include as many frequencies
as possible in the plots. The A(w) axis has a linear scale but, in effect, it is also logarithmic,
since A(w) is expressed in decibels. Finally, the ¢(w) axis is linear, usually expressed in
degrees. However, in some cases, instead of working in terms of $(w), we work considering
the group delay 1,(w), defined as flows:

Group delay: Ty(w) = - % (1.49)
w
This has the dimensions of time and denotes the time delay that the specific frequency com-
ponent in the spectrum of the signal experiences, when this passes through the filter.
Since A(w) is an even function of w, its plot against —w will be symmetrical around the
A(w) axis of the plot against w. On the other hand, ¢(w) is an odd function of w; therefore,
its plots against w and —w will be antisymmetrical around the ¢(w) axis.
To clarify all these terms, let us consider the following example for H(s):

S

H(s) = ————
S +055+1

(1.50)

The function has one zero at s = jO and another at s = joo (since it takes zero value at s = jo).
It is usual to consider these zeros located on the jw-axis in the s-plane. The two poles are

5, = —0.25 + j0.9682
s, = —0.25 — j0.9682

They are located in the LHP and are complex conjugate.
To obtain the frequency response, we substitute jw for s in Eq. (1.50) to obtain

jw

H(jow) = — 2= (1.51)
(Jeo) —w +j0.50+1
Then
H(jw) = L (152)
J(1—w?)? +0.250°
and
_m . 1050
d(w) = 5 tan o (1.53)
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FIGURE 1.21
(a) Amplitude (magnitude) and (b) phase response of the function given by Eq. (1.50).

The plots of the magnitude in dB [i.e., A(w) ] and the phase of H(jw) against frequency for
positive w only are shown in Fig. 1.21(a) and (b), respectively.

1.6.3 Transient Response

In filter design, the specifications are usually given in terms of the frequency response.
However, in cases of pulse transmission, it is useful to know the response of the filter as a
function of time, i.e., its transient response.

In such cases, we usually study the response of the filter to two test functions: the unit
impulse or &(t) function and the unit step function. The respective impulse response and
step response of the filter are briefly reviewed in what follows.

1.6.3.1 Impulse Response

The impulse response of a filter is its transient response when the excitation is the unit
impulse or &t) function, which is defined as follows:

+00

J’ o(t)dt =1 (1.54)
and
o(t)=0 for t#0
According to this definition, we may also write

+
+oo T

I6(t—T)dt = Ié(t)dt =1 (1.55)
oo -
with &(t) being zero for t # T.
Since the Laplace transform of &(t) is
L[3(1)] =1 (1.56)

©1999 CRC Press LLC



substituting for E(s) in Eq. (1.42), repeated here for convenience,
R(s) = H(s)E(9) (1.42)
we obtain
R(9 = H(s) L = H(s) (1.57)

In other words, the Laplace transform of the filter response to the unit impulse [function
d(t)] is the transfer function H(s).
Taking the inverse Laplace transform of H(s) to be

h(t) = L™ [H(s)] (1.58)
we get
rt) = L[R(9] = L7[H(s)] = h(t) (1.59)

Therefore, the impulse response of a filter is the inverse Laplace transform of its transfer
function.

1.6.3.2 Step Response

The step response of a filter is its time response when the excitation is the step function
Ku(t), where K is a constant (voltage or current) and u(t) the unit step function defined as
follows:

uy = g Lt>0 (1.60)
Oot<O
with the important property that
- du(t)
3(t) = =5 (1.61)

Again, the shifting property holds, i.e.,

O
u(t-=T) = git>T
oot<T

(1.62)

Its Laplace transform is
_1
Llu(t)] = s (1.63)

Substituting for E(s) in Eq. (1.42) gives
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R(9 = K @ (1.64)
Taking the inverse Laplace transform of R(s) gives the filter step response, i.e.,
() = L‘{K @J (1.65)

The step response for various filter functions, commonly used, is further examined in the
next chapter.

Clearly, since H(s) is the impulse response and H(s)/s the unit step response (K =1) of a
filter (or system), the unit step response is the time integral of the impulse response; in
other words, the impulse response is the derivative of the step response.

1.6.4 Step and Frequency Response

In Fig. 1.22, a typical step response of a lowpass filter is shown. Characteristic quantities
associated with this response are values of the rise time ¢, the delay time T,, the settling time
t, and the overshoot. These quantities are defined as follows:

e The rise time t, is defined as the time it takes the step response to rise from 10
percent to 90 percent of its final value.

e The delay time T, is the time it takes for the step response to rise to 50 percent
of its final value.

¢ The settling time ¢, is the time that elapses between the moment of appearance
of the first peak and the moment beyond which the step response does not differ
by more that 2 percent from its final value.

* The overshoot is the percent of the final value difference between the maximum
and the final value of the step response.

The rise time £, the settling time ¢, and the overshoot are used as figures of merit in com-
paring the transient response of various filters. The delay time T, is equal to the delay the
signal experiences when passing through the filter and is considered again in Section 2.5.

It is interesting to mention here that a very important relationship connects the rise time
t, and the cutoff frequency f, of a lowpass filter, namely,

t,f.00.35 (1.66)

f(®

FIGURE 1.22
Typical step response of a lowpass filter.
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or equivalently,
tw, 02.2 (1.67)

This relationship is valid for low overshoot values (<5 percent). For higher overshoot, the
constant should increase to a value between 0.35 and 0.5 [1]. Its importance arises from the
fact that in order to reduce the rise time, the filter bandwidth has to increase. Its physical
implication is that if narrow pulses are to be transmitted through the filter without exces-
sive distortion, their duration should be larger than the rise time of the filter. Equivalently,
the filter bandwidth should be larger than the reciprocal of the pulse duration.

Although Eq. (1.66) is generally considered empirical, it can be easily obtained for a filter
(or system) with the following transfer function:

W,

H(s) = sto,

(1.68)

For a unit step input u(t), the response r(t) can be obtained as follows. Since, per (Eq. 1.42),

R(s) = H(s)E(s)

and
=1
E(9 =
the response will be
w,
R = —< 1.
(9 = Ereys (1.69)
Taking the inverse Laplace transform of R(s) gives
() =1-e™ t>0 (1.70)
with 7(«) = 1, the final value of r(t).
Now referring to Fig. 1.22, for t = ¢,
r(t) = 0.1r() = 0.1 = 1-e ™"
from which we get t, to be
0.1
tOs 1.71)

Next, for t =t,,

ety

r(t,) = 0.9r(w) =09 = 1-e

©1999 CRC Press LLC



from which ¢, is found to be

2.3
tZDaC (1.72)
Therefore,
_ 22 _ 22 _035

L > (1.73)

and
t,f.00.35

I

1.7 Stability

Since the main object of this book is the design of active RC filters, and these filters may be
or become unstable under certain conditions, it is appropriate to review the concept of sta-
bility here. Filter stability has already been mentioned in Section 1.6 with reference to the
pole positions of the filter function.

In practical terms, the output voltage or current of a filter must always follow the input
at steady-state, i.e., it should not become uncontrollable. Such an uncontrollable behavior
usually leads either to dc saturation of the output voltage or to the generation of a periodic
waveform independent of the input signal.

In mathematical terms, stability of a linear network in the time domain, strictly speaking,
requires that its impulse response h(t) be absolutely integrable, i.e.,

=Y

J'\h(t)\dt = M<w (1.74)
0
Consequently, strict stability implies that only terms of the following form are allowed in
the expression for the impulse response [3]:

n_-—ot n_—ot

At'e " coswt or At'e " sinwt

where A is a real constant, # is a non-negative integer, 0 is a positive real number, and wis
a non-negative real quantity with the dimensions of angular frequency.

For a filter to be useful, it should be strictly stable. Since the impulse response is the
inverse Laplace transform of the pertinent network function, strict stability implies that the
poles of this function should only be of the form

—0xzjw with 0>0,w=0

i.e., they should lie in the LH of the s-plane excluding the jw axis.
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If the network function has poles on the jw-axis also, then its impulse response expres-
sion will include terms of the form Acoswt, Asinwt. The network is considered marginally
stable in this case, but then it cannot be useful as a filter.

A network is unstable if it is not strictly or marginally stable.

1.7.1  Short-Circuit and Open-Circuit Stability

Consider the two-terminal network shown in Fig. 1.23. The

1 impedance Z(s) appearing across its terminals is the follow-
o—p— :
,1\ mng:
v ? LLF
I 2(s) = Y (1.75)

1(s)

FIGURE 1.23 . . ey s
Two-terminal network. If the network is driven by a voltage source (excitation), then

the response will be the current I(s) given by

I(s) = Zzl-s-)V(s) (1.76)

Clearly, the one-port will be stable if the zeros of Z(s) are all in the LH of the s-plane exclud-
ing the jw-axis. The one-port is then short-circuit stable.

Next, consider the one-port being driven by a current source (excitation). Then the volt-
age V(s) across its terminals (response) will be given from Eq. (1.77) as follows:

V(s) = Z(9)I(s) (1.77)

If Z(s) has poles in the LH of the s-plane excluding the jw-axis, it will be open-circuit stable.

Consequently, the position of the zeros and the poles of Z(s) will determine whether the
one-port can be voltage or current driven. If neither the zeros nor the poles of Z(s) lie on the
jw-axis or the RH of the s-plane, the network can be excited by either a voltage source or a
current source. For example, if

2
Z(s) = w (1.78)

§—6s+ 10

the corresponding one-port will be open-circuit unstable.

1.7.2  Absolute Stability and Potential Instability

A linear two-terminal network is absolutely stable if it remains strictly stable under any
passive termination. It is potentially unstable if there is even one passive termination for
which it becomes unstable. Thus, the two-terminal network in Fig. 1.24(a), the impedance
of which is Z(s), will be absolutely stable if the impedance Z,(s) + Z(s) does not possess a
zero that lies in the RH of the s-plane including the jw-axis for any passive impedance Z ,(s),
including short-circuit (Z, = 0) and open-circuit (Z, = «). Therefore, a short-circuit or open-
circuit unstable network is not absolutely stable.
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FIGURE 1.24
Defining an absolutely stable (a) one-port and (b) two-port.

In a similar manner, we may define an absolutely stable two-port. Consider the situation
in Fig. 1.24(b), where the two-port network with impedance matrix [Z] is terminated at
both its input and output ports by the passive impedances Z,(s) and Zg(s), respectively.

The two-port will be absolutely stable, if the impedance function

Zy(s) = Za(s) + Zix(s) (1.79)
or, equivalently

Zy(s) = Zg(s) *+ Zia(9) (1.80)
has no zeros in the RH s-plane including the jw-axis, for any pair of passive terminations
Z, and Zj. If this impedance has a zero in the RH or on the jw-axis, the two-port will be
potentially unstable.

The equivalence of Egs. (1.79) and (1.80) in determining the absolute stability of the two-
port can be shown as follows:

— ZlZZZl
Zy(s) = Za +211—'Z"2*2+—Z-B (1.81)
and
— ZlZZZl
Zy)(S) = Zg+Zyn— 2—11"' Z, (1.82)
Assuming that

Z,Zx %0
the zeros of Z,(s) will be the zeros of
(Zs+ Zy) (Zoy + Zy) = Z15Z5

plus the poles of Z,, + Zj, the latter being always on the LH of the s-plane.
On the other hand, the zeros of Z,(s) will again be the zeros of

(Zyp + Z) (Zyy + Z4) = Z1pZy

plus the poles of Z,, + Z,, again the latter being always on the LH of the s-plane. Hence, the
equivalence.
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1.8 Passivity Criteria for One- and Two-Port Networks

We introduce here, briefly and without any proof, passivity criteria for one- and two-ports
in an attempt to relate passivity and activity with stability. Passivity of a network was
defined in Section 1.2.

1.8.1 One-Ports

As always, we refer here to LLF time invariant networks. Such a one-port is passive if its
input impedance Z(s) or input admittance Y(s) is a positive real function. The impedance
function Z(s) is positive real if it satisfies the following two conditions:

1. Z(s) is real when s is real.
2. Re[Z(s)] = 0 for R[s] = 0.

Here, Re means the real part of what follows it.
The following three alternative criteria, if satisfied, determine equivalently the positive
realness of a network.

1. Z(s) is positive real if and only if [2]

* It does not have poles with positive real part. Poles on the juraxis are simple
with real and positive residues and

e Re[Z(jw)] 2 0 for all w.
2. Z(s) is positive real if [2]
e It has no poles nor zeros with positive real part,
* Poles or zeros on the jw-axis are simple, and
* Re[Z(jw)] =2 0 for all w.
3. Z(s) is positive real if [3]
e For Z(s) = N(s)/ D(s), the polynomial N(s) + D(s) is Hurwitz, and
* Re[Z(jw)] 2 0 for all w.

A Hurwitz polynomial has real coefficients, and all its roots lie on the LH of the s-plane
excluding the jw-axis.

Note that, in the above criteria, poles at zero and infinity are considered, in accordance
with the convention for zeros at zero and infinity (see Section 1.6.2), to lie on the jw-axis.
Based on these criteria, a preliminary test for positive realness of the impedance function,

N(S) _ @nS *8nsS  +..+&5+35

Z(s) =
(s D(s) p,s"+b,_,8" '+...+b;s+h

(1.83)

proceeds in the following steps [3]. Check:

1. All a;, b; are real and positive.

1

2. ln-ml <1.

©1999 CRC Press LLC



3. Ifa, =0, then g, # 0, and if b, = 0, then b, # 0.
4. The zeros of N(s) and D(s) on the jw-axis are simple.

5. There arenomissing termsin N(s) and D(s) except when all terms of even powers or
of odd powers of s are missing.

If these preliminary conditions are satisfied, we next proceed to test the following, which
are necessary and sufficient conditions. Check:

1. N(s) + D(s) is a Hurwitz polynomial.

2. The numerator polynomial of the real part of Z(jw) does not have any jw-axis
zeros of odd multiplicity.

The Routh-Hurwitz test can be used to reveal whether a polynomial with positive and
real coefficients is Hurwitz. This test involves the expansion in continued fractions of the
ratio of the even to the odd part or of the odd to the even part of the polynomial. If the
resulting coefficients are all present and positive, the polynomial is Hurwitz. However,
with computers at easy reach today, this test may become obsolete.

Next, to test condition b, we observe that

R 4 w)] =R (1.84)

N( jw)J _ _P(w)
D(jw)]  |D(jw)?

where P(w?) is the numerator polynomial of the real part of Z(jw).

Since \D(joo)\2 is positive for all w, we need only test P(«?). In some cases, this may be
easy, but in general we have to examine whether P(x), where x = u? has real roots of odd
multiplicity for 0 < u? < c0. Although this may be tested by means of Sturm’s theorem [2],
again, the use of a computer can save effort and avoid errors.

1.8.2 Two-Ports

In the case of a two-port, the criterion for passivity is as follows [2]:
An LLF and time-invariant two-port is passive if and only if:

1. The characteristic polynomial (common denominator of all Z parameters) has no
roots in the RH of the s-plane.

2. Any poles of the Z-parameters on the jw-axis are simple, and their residues at these
poles satisfy the following conditions:

K;; 2 0 and real

K,, 2 0 and real
KKy — KipKy 20 K, = K*y
(K;; residue for parameter Z;)

3. The real (R) and imaginary (X) parts of the Z-parameters (for s = jw) satisfy the
following conditions:
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R, 20
R, =0
4R;1Ry = (Ryy + Ry = (Xj = X)* 20

The first two conditions may be tested by means of the Routh-Hurwitz criterion and con-
dition c by means of Sturm’s theorem. Again, the use of a computer simplifies matters.

1.8.3 Activity

If any of the above conditions for passivity is not satisfied, the network will be active.

The activity of a two-port is directly related to its maximum power gain, which is greater
than 1. If we determine this maximum power gain of the two-port in terms of its Z param-
eters, we finally find that [2]

1Z1”

K =
p max
Ri1Rp[2+ 24/ 11 X - r]

(1.85)

where

- R12R21 — ><12)(21 X = R12X21 — R21X12
R11R22 2R11R22

Substituting for r and x in Eq. (1.85) and taking into account that
K p max > 1
we get that
ARy;Rz — (Riz *+ Rer) = (Xs2 = X21)” < 0

Thus, condition ¢ for passivity is violated, and the two-port is not passive—it is indeed
active.

1.8.4 Passivity and Stability

Based on the above, the following results can be obtained.

One-port networks—The impedance or admittance of a passive LLF time-invariant net-
work, according to the passivity conditions, can have poles and zeros in the LH of the s-
plane. If any are on the jw-axis, they should be simple.

Theoretically, poles and zeros on the jw-axis occur in the impedance or admittance func-
tion of a purely lossless LC one-port. However, in practice, both inductors and capacitors
have always some loss associated with their values. The effect of this loss is to move the jo-
axis poles and zeros out of the jw-axis inside the LHP. In this case, both N(s) and D(s) will
be Hurwitz and the passive one-port strictly stable.
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On the other hand, any passive termination of the passive one-port will not change the
passivity property, since the sum of two positive real functions is also positive real. There-
fore, a passive one-port is absolutely stable.

A stable, active one-port, however, is potentially unstable, since a passive termination
will always be found that will make it unstable. The condition that Re[Z(jw)] = 0 is not sat-
isfied for all win the case of an active one-port.

Two-port networks—A passive two-port terminated at both ports by passive imped-
ances will remain passive. Therefore, it is absolutely stable.

However, contrary to the case of an active one-port, an active two-port may be absolutely
stable, because the activity conditions in this case do not violate the passivity conditions.
On the other hand, a potentially unstable network will be active.

1.9 Reciprocity

This property of a network is included here for completeness rather than for its usefulness
in the development of the material in this book.
A network is reciprocal if [2]

1. (See Fig.1.25) the current occurring in a short between two nodes o and  due
to a voltage between the nodes y and 0 is equal to the current occurring in a
short between the nodes yand 9, if the same voltage as before is applied between
the nodes a and B, or

2. (See Fig. 1.26) the voltage resulting between the nodes a and B due to a current
applied between the nodes y and 6 is the same as that resulting between the
nodes yand 8 when the same current as before is applied between nodes o and .

In terms of the various parameters, the necessary and sufficient condition for a two-port
network to be reciprocal is any of the following:

Ziy=7Zn

Y, =Yy,
H,, = -H,
Gy, = -Gy

AA = O11Q0p — A0y = 1

« v o T
L A8 E1$ éfq Ly
[ [
FIGURE 1.25

. . _
For reciprocity, 1, = 1',.
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For reciprocity, E, = E',.

As an example, consider the two-port in Fig. 1.27. For this two-port, we have

2125\—/-l

= R3
P

1,=0
and

Z, = V2

:R3

1,=0

Iy

Therefore, the two-port in Fig. 1.27 is reciprocal.

FIGURE 1.27
A reciprocal two-port.

1.10 Summary

Various concepts, necessary for the characterization of the continuous-time active filters,
were reviewed in this chapter. These concerned the types of the filters of interest and their
responses, ideal and practical.

Next, some useful concepts were reviewed briefly from network theory concerning the
nodal analysis method, network parameters and functions, to fundamental properties like
stability, passivity, activity, and reciprocity.

The interested reader with no prior knowledge of these concepts could find it useful to
get a better insight by consulting the references.
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Chapter 2
The Approximation Problem

2.1 Introduction

Solution of the approximation problem is a major step in the design procedure of a filter
and is equally important in the design of both analog and digital filters. It is through the
solution of this problem that the filter designer determines the filter function, the response
which satisfies the specifications. Of course, the function obtained this way will satisfy the
specifications only approximately and not exactly. However, if the specifications are set
within the limitations of the LLF networks, the network realizing the approximating func-
tion will fulfil the requirements and thus be suitable for the task for which it is designed.

In this chapter, based on the contents of Chapter 1, we review first the characteristics of
the permitted functions, and we formulate the approximation problem. Next, we present
briefly the best known and most popular functions used in the solution of the approxima-
tion problem for the required filter response in the frequency domain. Then, since these
functions are lowpass, we introduce suitable frequency transformations in order to obtain
highpass, bandpass, or bandstop filters according to the requirements. Finally, we discuss
the transformation of elements and the scaling of impedance level.

2.2 Filter Specifications and Permitted Functions

The knowledge gathered from the analysis of LLF networks, in the more general concept
of the term analysis, which was explained in Section 1.4, can help in the search for the most
suitable filter function to meet particular specifications. The results of this analysis impose
three important constraints on the permitted LLF network functions. These have to be
causal, rational, and stable.

Before proceeding to explain how to determine the filter function to meet a set of speci-
fications, we review these constraints briefly.

2.2.1 Causality

In general, causality refers to the fact that there can be no result without cause. In the case
of interest here, a causal network will not respond before an excitation has been applied to
its terminals. Thus, the unit impulse response is zero for time t < 0. The response in Fig.
2.1(a) is not causal; therefore, it cannot be realized. On the other hand, that in Fig. 2.1(b) is
causal, therefore realizable. Thus, the ideal lowpass filter is unrealizable, because its
impulse response is noncausal.
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FIGURE 2.1
(a) Noncausal and (b) causal response.

In the frequency domain, causality is determined by means of the Paley-Wiener criterion
[1]. Consider the impulse response h(t), which possesses a Fourier Transform H(jw) for

which

Iuﬂmm%w<m (2.1)

—00

For H(jw) to be causal, the criterion is the following;:

0

ﬂmmHU?de<w (2.2)
1+w

Some consequences of this criterion are the following:

1. The magnitude function |H(jw)| cannot be zero for a finite frequency band.
However, it can be zero at a finite number of distinct frequencies.

2. The magnitude |H(jw)| cannot decrease faster than exponentially.

3. Because of this constraint, the ideal filters are unrealizable.

2.2.2 Rational Functions

The LLF network functions are rational, i.e., ratios of two finite polynomials of the Laplace
transform variable s. Therefore, it is not possible to realize the function e~ by such a net-
work, because this function cannot be expressed in the form of a rational function.

2.2.3 Stability

The response of a stable network is bounded if the excitation is bounded. This means that,
if h(t) is the impulse response of the network, then

0

[h(tydt<eo (2.3)

and lim h(t) - O when t - .
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In the frequency domain, stability implies that

1. the network function H(s) does not have poles in the RH of the s-plane,
2. any poles on the jw-axis are simple, and

3. the degree of the numerator polynomial cannot be higher than the degree of
the denominator by more than one.

However, for a filter to be useful, its function H(s) has to be strictly stable, i.e., all its poles
must be located in the LH of the s-plane excluding the jw-axis (poles at zero and infinity are
considered to be located on the jw-axis).

2.3 Formulation of the Approximation Problem

In practice, the specifications of the filter may be given in terms of the cutoff frequency (or
frequencies) w, the maximum allowable deviation (error) A,,, in the passband, the stop-
band edges (frequencies), and the minimum attenuation A,,,in the stopband. In the case of
equalizers, it may be possible that the required frequency response is specified more
closely. In general, from the specifications, we will be able to draw a frequency response
magnitude plot, which will correspond to a prespecified curve. For example, for a lowpass
filter, this diagram will be of the form shown in Fig. 2.2. The required response will have to
lie between the limits set by the diagram.
Theoretically, the approximation problem is stated as follows:

1. Time domain:

The impulse response h(t) has to be approximated. An approximating function
h*(t) is selected such that some error € is minimal, where

e = [[h(t)—h*(1)] “dt (2.4)

2010g[F(jeo)] BTty

tA
U N

Ain

0 L2/

FIGURE 2.2
A possible magnitude response which satisfies the specifications of a lowpass filter.
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Of course, h*(t) should be such that its Laplace transform H(s) is a realizable
function by a LLF network.

2. Frequency domain:

In the frequency, domain we often work in terms of lowpass functions, because
they are simpler, and because the highpass, bandpass, and bandstop responses
can be obtained from lowpass responses by means of suitable frequency trans-
formations.

Our problem here is to find a function F(s) the magnitude and/or phase
response of which approximates the prespecified curve according to a predeter-
mined criterion.

The approximation problem has been solved mathematically in various ways. In the case
of magnitude approximation, the best known and most popular lowpass functions are the
following: the Butterworth or maximally flat, the Chebyshev (Tschebycheff) or equiripple,
the monotonic or Papoulis, and the Cauer or elliptic function filters. Of course, with the use
of a computer, one may create one’s own approximating functions, particularly in the cases
of arbitrary responses of filters and equalizers. In such cases, techniques employing linear
segments, curve fitting, pole-zero placements, etc., have proved very useful in solving the
approximation problem.

In the case of delay approximation, best known functions are the Bessel-Thomson filters,
the Pade approximates, both maximally flat, and those of Chebyshev type.

In what follows, we introduce briefly the best known and practically useful approxima-
tions to the ideal lowpass filter and to the ideal delay.

2.4 Approximation of the Ideal Lowpass Filter

In practical filter design, the amplitude response is more often specified than the phase
response. The amplitude response of the ideal lowpass filter with normalized cutoff fre-
quency at w, = 1is shown in Fig. 2.3. As has already been explained in Section 2.2., this ideal
amplitude response cannot be expressed as a rational function of s. It is thus unrealizable.
If we accept a small error in the passband and a non-zero transition band, we may seek a
rational function F(s), the magnitude of which will approximate the ideal response as
closely as possible. A suitable magnitude function can be of the form

1

IF(jw) = M(w) = —[1 RS (2.5)
[FGe)
1
FIGURE 2.3
Ideal lowpass filter amplitude response. 0 o=l o
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where € is a constant between zero and one (0 < € < 1), according to the accepted passband
error, and w(w?) is a function of «? such that

O<sw(w?) <1 0<sw<1

and which increases very fast with increasing w, for w> 1, remaining much greater than one
outside the passband.

In general, the numerator of M(w) may be a constant other than unity, which will influ-
ence the gain (or attenuation) at w= 0 (at dc).

In the following, we review the most popular functions w(w?) and the corresponding
E(s), the magnitude of which approximate the amplitude response of the ideal lowpass
filter.

2.4.1 Butterworth or Maximally Flat Approximation

If welete=1and
w(w’) ="

in Eq. (2.5), n being a positive real integer, we will get the following amplitude function:

It can be seen that
M) =1
while M(w) decreases monotonically with increasing w.
Atw.=1,
M(1) = < = 0.707
J2
or

20logM (1) = 40log2 = — 3.01

In other words, at w, = 1, the amplitude is 3 dB below its value at dc. This is the cutoff fre-
quency of the filter. Clearly, this is independent of n, the order of the filter function, which
in fact determines how close to the ideal is the approximating function M(w), i.e., how suc-
cessful the approximation is.

Equation (2.6) for different n gives the amplitude response of the various Butterworth fil-
ter functions. The Butterworth approximation is also called the maximally flat approxima-
tion, because the first 21 — 1 derivatives of M(w), the maximum number in Eq. (2.2), are zero
at w= 0. The error in the passband is zero at w = 0 and maximal (3 dB) at cutoff. Between
w=0and w=1, the error takes intermediate values increasing monotonically from the zero
value with increasing w. For values of w>> 1, M(w) behaves approximately as
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M(w) =

E |~

i.e., it changes asymptotically as
20logM (w) = —20n logw (2.7)
or, in other words, it falls off by 6n dB/octave (20n dB/decade).

We now seek to obtain the network function F(s) whose magnitude with s = jw is M(w).
We proceed as follows. Observing that

M (w) = [F(jw)* = F(jo)F(-jw) = : (2.8)

+ wZn
we may write

F(S)F(_S)‘s:jw = —':'I'-"'n]
1+(_1) S s= jw

By a process known as analytic continuation, it turns out that we may remove the s = jw
constraint and write

F(s)F(-s) = — L~ (2.9)
1+(-1)'s
Now define a function P(s?) such that
P(s°) = F(s)F(-s) (2.10)

when we will also have that

M*(@) = P(-)
Thus, knowing P(—w?) through M*(w), we can obtain P(s?) by setting s? for —a? in Eq. (2.8).
Then, expressing P(s?) in the form of Eq. (2.10), we observe that the poles of F(s) are sym-
metrical to those of F(-s) about the jw-axis. Since F(s) has to be a stable function, we identify

its poles as those of P(s?) with negative real part.
The poles of P(s?) are the roots of the equation

1+(=1)"$" =0 (2.11)

It can be shown that the solution of Eq. (2.11) is the following;:

S = O+ jwy, = —sm%’gk2 r% Jcosgak_ r% (2.12)

fork=1,2,..,2n.
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The n poles of F(s) are those obtained from Eq. (2.12) with k = 1, 2,..., n. All poles have
magnitude equal to unity and lie on the circumference of the unit circle equally spaced.
As an example, consider the case for n = 4. We have

1
M*(w) =
1+’
Then
P(&) = ——
+S

The poles of P(s?), are found from Eq. (2.12) fork =1, 2,..., 8. These lie on the circumference
of the unit circle as shown in Fig. 2.4.
Of these, the first four (k =1, 2, 3, and 4) will be assigned to F(s), since they have to lie on
the LH of the s-plane. They are as follows:
5, = —0.3827 + j0.9239
s, = —0.9239 + j0.3827
s3 = —0.9239 - j0.3827
s, = —0.3827 - j0.9239

Therefore, the fourth-order Butterworth lowpass function will be

1
(s—s)(s—9)(s—-s)(s—s)

F(s) =

jo

FIGURE 2.4
Poles of the Butterworth filter for n = 4.
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Grouping complex conjugate pole terms, it turns out that

1

F(s) = — z
(s*+0.7654 + 1)(s* + 1.8478& + 1)

or multiplying out in full,

1

F(s) =
ST +2.61F°+3.414°+2.61F+1

The denominator of this last expression is known as a Butterworth polynomial. The first
ten Butterworth polynomials in two forms are given on Table A.1 at the end of the book for
easy reference. Finally, in Fig. 2.5 the magnitude response of the third-order Butterworth
filter is shown together with the responses of two other filters we are dealing with next for
comparison.

2.4.2 Chebyshev or Equiripple Approximation

In this case, Eq. (2.5) takes the following form:

1

IF(jw)” = MY(w) = m

(2.13)

Here again, 0 <e<1, and C,(w) is a Chebyshev polynomial of degree n having the following
form:

C,(w) = cos(ncos'w)  Os<|w<1

= cosh(n cosh'w) 1<(w (2.14)
120 —
WG“)‘ Seee, o

0.80 —

— Butterworth
0.40 — ... Chebyshev

— Bessel
0.00 T T T TTT T T T

0.01 0.10 1.00 10.00 100.00

Normalized Frequency, w/o,
FIGURE 2.5

Magnitude responses of the Butterworth third-order lowpass filter and the corresponding Chebyshev (1 dB
ripple) and Bessel filters.

©1999 CRC Press LLC



Clearly, C,(w) varies between +1 and -1 in the passband (0 < w < 1), while its absolute
value increases rapidly with w above w = 1. Consequently, M(w) varies between 1 and
(1 + €212 in the passband having an oscillatory or ripple error of

20log(1+¢?)"Y? = 10log( 1+¢?) dB

Thus, the accepted error in the passband determines the value of €.
The Chebyshev polynomials can be obtained by the recursion formula

Che1(w) = 20C,(w) —C,_1(w) (2.15)
with
Cow) =1
C(w) = w

A plot of the Chebyshev polynomials with n =1, 2, and 3 is given in Fig. 2.6.
Therefore, at dc (w = 0), we will have

1 n odd

1/2

d
M(0) = O b
O@1+¢9) n even

Outside the passband and for w >> 1, M(w) behaves approximately like (€ 2"'w)7, i.e.,

the attenuation for w>> 1 will be

20log(e 2" *w") = 20loge + 20log 2 + 20logw”

= 20loge + 6(n—1) + 20n logw dB (2.16)
C;
1
i |
t 1
f} ]
! i
¢ H
1 1
1
) |
-1 ‘1 @

| t
I ]
| ]
I ]
| ]
| ]
I |

FIGURE 2.6 G o 1

Plot of Chebyshev polynomials of degrees n = Csy

1, 2, and 3.
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compared to 20 1 log win the corresponding Butterworth function. Thus, for € > 1, the Che-
byshev approximation has an advantage of 20loge + 6(n — 1) dB over the Butterworth
approximation. However when € < 1, this advantage becomes less significant, since then
log € will be negative.

By a similar procedure to the Butterworth case, the poles of the Chebyshev filter func-
tions can be shown to be as follows:

S = Oy E joy

where
o, = sinhpy ESin%kaglrg (2.17)
Wy = cosmkcosgkzglr% (2.18)
with
B, = r—l]sinh‘li k=12 ..2n

These poles lie on an ellipse defined by the following equation:

2 2
ke gk = (2.19)
sink’B,  cosHp,

The major semi-axis of the ellipse falls on the jw-axis, its length being + cosh {3, whereas
the length of the minor semiaxis is + sinh .

The points of intersection of the ellipse and the jw-axis define the -3 dB frequencies (half-
power frequencies), which are thus equal to + cosh B,. The corresponding Butterworth fre-
quencies are always w, = +1.

We may normalize the poles of the Chebyshev functions in order to have the half-power
frequencies (-3 dB frequencies) appearing at w, = 1, by dividing s, by cosh B,. Then, the nor-
malized poles s, will be as follows:

N SR
Sk costB, O Wy
with
. . Rk-1
a'y = taankst—-—Zn TH (2.20)
. 2k -1
W'y = cosD—2n TE (2.21)
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Comparing s, with the corresponding poles of the Butterworth functions, it can be seen
that they have the same imaginary parts, whereas their real parts differ by the factor tanhf3,.
The relative locations on the s-plane of the Butterworth and normalized Chebyshev func-
tion poles are given in Fig. 2.7 for n = 3. For € = 0, when B,-00 and tanhp, = 1, the poles of the
Butterworth and Chebyshev functions coincide.

The coefficients of the Chebyshev filter functions, as well as their poles, have been tabu-
lated for various ripple valuesi.e., 0.1,0.5, 1, ..., 3 dB. A sample of such a tabulation is given
on Table A.2 in Appendix A. This table does not give the normalized Chebyshev filter func-
tions. In all these cases, the upper edge of the passband ripple occurs at w, = 1.

The amplitude responses for the 1 dB ripple and the 3 dB ripple third-order Chebyshev
lowpass functions

0.491
Foa(s) =
1a6(5) $*+0.088 + 1.238 + 0.491
and
0.2506
Faas(s) =

s*+0.597%” + 0.92& + 0.2506

are shown in Fig. 2.8 for comparison with the response of the corresponding Butterworth
filter. It can be seen that the Chebyshev filters have equiripple response in the passband
and fall off monotonically outside it.

2.4.3 Inverse Chebyshev Approximation

The Chebyshev polynomials are also used to obtain the so-called Inverse Chebyshev filter
functions, the magnitude of which is given as follows:

jo

FIGURE 2.7
Relative positions of Butterworth and normalized Chebyshev poles.
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FIGURE 2.8
Comparison of the magnitude response of 1 dB and 3 dB ripple Chebyshev third-order lowpass filters and with
the corresponding Butterworth filter.

2~2[l0
e C.
M3 (w) = e (2.22)

The properties of these functions are complementary to those of the Chebyshev functions
in the sense that they present maximum flatness in the passband and equiripple behavior
in the stopband. Also, their phase response and consequently their group delay is better
than that of the Chebyshev filter. In Fig. 2.9, the magnitude response of the third-order
Inverse Chebyshev and the corresponding Chebyshev function are shown for comparison.

1.20 T
IFGe)
0.80 —
0.40 — — Chebyshev IR
—— Inverse Chebyshev . .
N
N .
FIGURE 2.9 y RS
-
Magnitude response of the third-or- h S .-
der Chebyshev (1 dB ripple) and the 0.00 L L) B A1) B M N R 1 M M MR
corresponding Inverse Chebyshev 0.01 0.10 1.00 10.00 100.00
functions. Normalized Frequency, o/,
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2.4.4 Papoulis Approximation

Filter L or Papoulis functions approximating the ideal lowpass filter response are obtained
from Eq. (2.5) if we lete =1 and

W(w?) = Ly(w) (2.23)
with L, («?) having the following properties:

a. L(0)=0
b. L(1)=1
2
o Ab(@) g
dw
dL,(w)

d. o

= max

w=1

Property c¢ secures monotonicity in the amplitude response, whereas property d that the fall
off rate at cutoff (w= 1) is the greatest possible, if monotonicity is assumed.
L,(«?) polynomials are related to the Legendre P,(x) polynomials of the first kind. Some
of them are given on Table 2.1.
TABLE 2.1
L, («?) Polynomials
n L,(u?)
2 wt
3 30 - 3w + w?
4
5

60° — 8wy + 3wt
20W'0 — 4000° + 28w — 8W* + WP

The corresponding filters are known as Legendre, Class L, or Papoulis filters [2]. Their
poles are found by the procedure that was followed in the case of Butterworth filters.
The main characteristics of these filters are the following;:

* Their amplitude response is monotonic.
¢ The falloff rate at cutoff is the greatest, assuming monotonicity.

e All of their zeros are at infinity.

Because L-filters are less sharp than Chebyshev filters, they are not as popular. However,
in cases where the ripple in the passband is undesirable and so the use of Chebyshev filters
is excluded, they could be preferable to Butterworth because of their steepest slope at cutoff.

2.4.5 Elliptic Function or Cauer Approximation

The filters examined so far have, except for the Inverse Chebyshev, all of their zeros at infin-
ity. However, in some cases, a higher falloff rate is required in the transition band; in other
words, a very high attenuation is required very near the cutoff frequency. This requirement
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mandates the use of elliptic functions in the approximation, thus obtaining the elliptic func-
tions or, simply, elliptic or Cauer filters.

These filters display equiripple behavior both in the passband and the stopband. The
typical magnitude response of a third-order elliptic filter is shown in Fig. 2.10, correspond-
ing to the following general filter function F(s).

K(s"+ W)

F(s) = >
(s+a)(s +PBs+y)

(2.24)

The characteristic quantities that determine the elliptic filter specifications are the maxi-
mum passband error, given as maximum attenuation A,,, in the passband, the minimum
attenuation A,,, in the stopband, the frequency w, at which the stopband starts, and the
passband edge or cutoff frequency w,.

In the case of the elliptic filters, Eq. (2.5) is written in the following form:

1

Fjw)? = —+ (2.25)
(o) 1+&°R,(w°)
where R,, depending on whether 7 is odd or even, is either
2 2 2 2 2 2
R(w) = AG—ON@-0) . (U=W) ) qq-2k+1)  (226)
(1-ww)(1-ww)...(1—ww)
or
2 2 2 2 2 2
R,(w) = ((1)1;(2 )(wz_zwz)'”(wk_u; )2 n even (n = 2k) (2.27)
(1-ww)(1-ww)...(1-ww)
It can be seen from Egs. (2.26) and (2.27) that
o _1
R = 7 (2.28)
[FGe)l
(dB)

FIGURE 2.10 \f\
Typical magnitude response of an .

elliptic filter of third order. 0 o, o o o
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The meaning of this is that the value of R,(w) at a frequency w" in the band 0 < w< 1 is the
reciprocal of its value at the frequency 1/w” in the 1 < w < « frequency band. Therefore, if
the critical frequencies could be found that lead to equiripple behavior in the passband,
automatically the function will have equiripple behavior in the stopband also. Since |F 2
is bounded, the poles of F(s) cannot lie on the jw-axis. Also, since | F(jw) |2 cannot be zero
inside the passband, its zeros should lie outside the passband. However, the zeros of
| F(jw) |2 are the poles of R, (w). Therefore, all the poles of R, (w) should be greater than unity.
This means that the zeros of R, (w) should all lie in the band 0 < w< 1.

The poles, zeros, and frequencies w, have been tabulated for various combinations of val-
ues of A,,,, and A,,;,. In such tables, the ripple in the passband is usually given in terms of
the reflection coefficient p, which is related to A,,,, as follows:

min®

Anax = —10l0g(1-p°) dB (2.29)

It must be stressed that, with A,,,,, A,,;,, ®, and w, known, the solution of the approxima-
tion problem by means of the elliptic filters requires the lowest-order function and, there-
fore, it can be realized with the lowest cost. For this reason, the elliptic filters are used most
often in practice.

Some elliptic filter functions are given in the Appendix A in Table A.3 for a certain value
of maximum attenuation A,,,, in the passband. Clearly, for the selection of the suitable ellip-
tic filter, the specifications should include the values of A,,.,, A,;,, Q/(w,/w,.), and n. In con-
trast, only the filter order n is required in the case of the Butterworth filter, whereas in the
case of the Chebyshev filter the values of n and € (or 4,,,,) should be given. It is very impor-
tant for the reader to know that, given A, A,,.., Q,(w,/w,), the required value of n can be
quickly determined for the Butterworth, Chebyshev, and Cauer filters from corresponding
nomograms [4].

2.4.6 Selecting the Filter from Its Specifications

In the table giving the Butterworth filter functions, it is assumed that the cutoff frequency
is normalized to unity, i.e., Q.= 1. The suitable filter function can be read off this table, if its
order n has been determined from the specifications. Thus, if the desired rate of fall in the
transition band is 6N dB/octave, because 7 is an integer, we select n = N if N is an integer;
otherwise, the value of n will be equal to the nearest integer greater than N.

However, in some cases the filter specifications may be given differently. Let us suppose,
in the more general case, that the filter specifications require the maximum attenuation in
the passband to be 4,,,, (<3 dB), occurring at w, rad/s (not normalized), and that beyond
the frequency w, (rad/s) the minimum attenuation should be A, (in dB). In such cases, the
determination of the Butterworth filter order n can proceed as follows.

We suppose that the 3 dB (cutoff) frequency is w, rad /s, which of course corresponds to
the normalized cutoff frequency Q. Then the normalized frequencies Q, and Q, will be the
following:

Qp = P QS = = (230)

From Eq. (2.6), with A = -201log M(w), we have
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A, = 20log(1+Q%")"? = 10og( 1+ Q") (2.31)
from which, solving for Qﬁ" , we obtain
Q¥ =10 -1 (2.32)
Similarly, we will have for Q,
Q=101 (2.33)
Dividing Eq. (2.33) by Eq. (2.32) gives
R 10 21 (2.34)
T
But, because of Eq. (2.30),
g—: = %: (2.35)

Then, substituting w,/ w, for Q,/Q, in Eq. (2.34), we obtain the following required value of
n:

n= 1Iogw_—lg[log[F—JL)—SDT (2.36)

0.1A

2 Qoo 10

It should be pointed out that this value of n will not be necessarily an integer. Then, the
order of the required Butterworth filter function will be equal to the nearest integer greater
than this value.

Next, we must determine the value of w,.. Substituting the value of n that was found in
Eq. (2.32) [or in Eq. (2.33)], the actual value of Q, (or Q,) is determined and, using Eq. (2.30),
the value of w, is obtained. In general, the value of w, which is obtained based on the value
of Q, will be different from that obtained based on Q.. However, any one of these values of
w, will satisfy the filter specifications. The same is true if we use the mean of these two val-
ues of w..

To demonstrate, this let the filter specifications be the following:
f, = 3kHz, A,<1dB, f,=6kHz, A2200dB
Substituting in Eq. (2.36) gives
n=423
We select 1 to be the next integer value, i.e., 5.
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Substituting for n in Egs. (2.32) and (2.33), we find the following values for Q,and Q;:
Q, = 0.87361
Q, = 1.5833

Then, from Eq. (2.30), for Q, =0.87361, we get one value of .

W, = 21 % 3.434 krad/s

and for Q, = 1.5833 another

W, = 2mx 3.78955 krad/s

We may choose to consider as the w, value the mean of W, and @_, namely

W, = = 211x 3.61148 krad/s

2

Either of 0, , W, OF W, can be used as the required cutoff frequency w.. To show this, we
calculate the values of A, and A; by means of Egs. (2.32) and (2.33), whlch correspond to
each of these three values of W, Results are given in Table 2.2.

TABLE 2.2
f.(kHz) A, (dB) A, (dB)
3.434 1 24.25
3.78955 0.401 20
3.61148 0.63 2.1

Clearly, the specifications are satisfied in all three cases.
Let us now consider the selection of the Chebyshev filter satisfying certain specifications.
Since C,(1) =1 for any integer 1, we will have from Eq. (2.13)

20log[ 1+ €°C2(1)]* = 10log(1+€%) = A, (2.37)

from which

€ =410 °-1 (2.38)

For the previous example, substituting for A,(= A 1dB Eq. (2.38) gives

mux) =
€ =0.505
Considering that at Q, the filter function behaves approximately as (£2n_l§2n)_1 we obtain

A, [020loge + 6(n —1) + 20nlogQ (2.39)
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In the case of the present example, Q = Q, = 2 since W, = w,. Then, Eq. (2.39) gives
20 = 2010g 0.505 + 6(n — 1) + 20nlog2

from which, solving for 1, we get n = 2.69. Therefore, the required order of Chebyshev filter
will be n = 3, which is lower than the required order n = 5 of the Butterworth filter.

The case of the Cauer filter is much simpler, since n can be obtained straight from tables,
given the specifications w, A, w, and A, again using w, as .. From such tables [3], or the
corresponding nomogram [4] in the case of the previous example, we obtain 1 = 3. Since n
is also 3 in the Chebyshev case, we prefer to realize the Chebyshev function, since the cost
will be lower, as we shall see in later chapters. It should be mentioned, however, that in
practical filter design, in which the fall-off rate is higher than that in this example, the order
of the Chebyshev filter is always higher than the order of the corresponding Cauer filter,
and the most economical filter will be the Cauer filter.

2.4.7 Amplitude Equalization

In some cases, the amplitude response of the practical filter may not match the amplitude
response of the function it realizes. This is because the performance of its components is
not ideal. To avoid the subsequent distortion of the signal when passing through the filter,
it is necessary that its amplitude response be corrected or, in an other word, equalized.

It is obvious that the transfer function of the equalizer cannot be selected from a prede-
termined set of functions, since it depends uniquely on the individual filter response that
requires equalization. Once the equalizer response has been deduced from the difference
between the expected response and the “actual” filter response, the latter obtained by sim-
ulation of the filter on the computer using non-ideal components, a function approximat-
ing the equalizer response should be found. This can be achieved by applying curve-fitting
techniques and an optimization program, while care should be taken in order that the
resulting function will be realizable (permitted function). Another approach would start
with a certain pole and zero placement and use then the optimization program to adjust
their locations until the required response is obtained.

A practical approach [6] suitable in the case of passive filters is to use a cascade of simple
networks, e.g., the constant-resistance bridge-T network, the amplitude response of which
can be relatively easily adjusted. By properly selecting the component values of the sec-
tions, the overall response of the cascaded sections can be adjusted to match the required
equalizer response.

2.5 Filters with Linear Phase: Delays

As was explained in Section 1.6.2, if

¢(w) = argH (jw)
we define the group delay T, as
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do (w)
0= as (2.40)

whereas

¢(w)

- T =T, (241)
is the phase delay.

It can be shown [5] that the definition of the group delay has a physical meaning only
when (a) the magnitude function varies slowly with frequency, and (b) the phase varies
nearly linearly with frequency over the band of interest.

If H(s) is a rational function, the same will be true for the group delay 1,, while the phase
delay 1, will not be a rational function.

The function

H(s) = e°'
has linear phase, since
d(w)=arge’® = —wT
and represents the pure delay T, since
do _
Tdw T

However, ¢T is not a rational function of s.

Thus, although it can be realized by a lossless transmission line terminated at both ends
in its characteristic impedance, it cannot be realized by an LLF network.

We can approximate e~ though by a rational function having either all its zeros at infin-
ity (polyonimic) or in the RH of the s-plane (non-minimum phase function).

This approximation can be achieved either by way of approximating the linear phase
-wT [Fig. 2.11(a)] or by way of approximating the group delay T [Fig. 2.11(b)], as was indi-
cated in the case of the ideal lowpass filter. Some useful delay approximation functions are
briefly reviewed below.

Group
Delay

¢(o

(a) (b)

FIGURE 2.11
(a) Ideal linear phase and (b) group delay response.
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2.5.1 Bessel-Thomson Delay Approximation

The approximation of the constant group delay T normalized to unity can be obtained by
a procedure similar to that followed in the case of magnitude response. Let us select the
approximation function F(s) to be polyonimic, i.e., of the form

K
Dn(s)

F(s) = (2.42)

where K is a constant, and D, (s) a polynomial with positive constant coefficients of order n.
From F(s) we obtain the phase function

¢(w) = argF(jw)

Next, we perform a Taylor expansion of ¢(w) about w = 0 and take the derivative with
respect to w, which we equate to the negative of the group delay T = 1. Equating then coef-
ficients of equal powers of w, we obtain a number of equations equal to the desired order
of approximation . Clearly, only the constant term of -d¢ / dw is equated to 1. All the other
coefficients are set equal to zero. Solution of this set of equations will give the values of the
n coefficients of D, (s). The value of K in Eq. (2.42) is equal to the constant term of D, (s), nor-
malizing thus the magnitude of F(jw) at w =0 to unity.

As an example, consider the case n =2. Let

D,(s) = S+as+P
Then,

$(w) = argF(jo) = — tan' 2L
B—w

Taylor’s expansion of ¢(w), assuming that y(w) = law/ (B— o) <1, is

pl@) = {[301(12_3(;(3_(0;2)3 ’ }

Taking the derivative of ¢(w) with respect to w of the first two terms in the series, and ignor-
ing the rest for wsuch that w << 1gives

_dp(w) _ aB+aw2_;{3a3m2(s_m2)3+ea%“(s—mz)T
do  B-w)” 3 (B-w)°

or

_dd(w) _ (0B +aw’)(B- o)’ —a’w’(B - o) - 20°w"
do (B-o)’

Equating this to 1 and multiplying through by (B — w?)* gives the following equation:

©1999 CRC Press LLC



(aB +aw’)(B-w’)’ - (0’ (B - ") —20°w") = (B-?)’

Now we equate the constant term on the one side of this equation to the constant term on
the other side and obtain

or

We do the same for the coefficients of w? and get
of’ +a’B = 4p°

But, since a = B, this equation gives [ = 3. Therefore, the second-order delay function will
be the following:

3
F,(s) = —
() §+3s+3

Following this approach, it is found [5] that the polynomials D, (s) are related to the Bessel
polynomials G,(s) of degree n by the following relationship:

D,(s) = G o (2.43)
These Bessel polynomials are defined as follows:

¢, H0= i( (n+ k! (2.44)

L1 £ (n—K)iki(29)

It can be shown that all of D,(s) zeros are located in the LH of the s-plane, and there exists
at most one zero on the negative real semi-axis.

The first two polynomials and the recursion formula for obtaining D, (s) of any degree n
are as follows:

D,=1
Di(s)=s+1
D,(s) = 2n — 1)D,_4(s) + 2D, _,(s) (2.45)

The first 5 D,(s) polynomials and their roots are given in Table 2.3.
The delay functions F(s) obtained this way are called Bessel or Thomson filters, and they
approximate the ideal delay according to the maximally flat criterion. Their amplitude
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TABLE 2.3
D, (s) Polynomials and Their Roots

n D, (s) Roots of D,(s)

1 s+1 -1

2 s2+3s+3 -1.5 +j0.867

3 $3 + 652+ 155 + 15 —2.322, -1.839 + j1.754

4 s* + 10s3 + 45s% + 105s + 105 —2.896 + j0.867, —2.104 + j2.657

5  s5+15s* + 10553 + 420s* + 9455 + 945  -3.647, -3.352 + j1.743, —2.325 + j3.571

response is lowpass with a cutoff frequency depending on the value of n and given by the
following approximate formula (for n 2 3):

Wags = J(2n=1)In2 (2.46)

This can be easily seen in Fig. 2.12(a), showing the magnitude response of the first three
Bessel filters of odd orders.

The corresponding phase response plots are shown in Fig. 2.12(b). It can be seen that the
bandwidth with nearly linear phase also increases with increasing .

In Fig. 2.5 the amplitude, and in Fig. 2.13 the phase response, of the third-order Bessel
filter are shown along with the corresponding responses of the Butterworth and the 1 dB
ripple Chebyshev filters of the same order. It can be seen that, from the selectivity point of

o —
n o=l
= -50 —
-
k't
g 7 n=3
S
E
< 100 —
n=s
-150 T llllllll T Ill‘llll T IIIIIIII
0.10 1.00 10.00 100.00
Normalized Frequency
(@
0 —
3
8o
2 200 —
2
2
B
FIGURE 2.12 40 L L L
(a) Magnitude and (b) phase response of the 0 2 4 6 8 10
Normalized Fi
first three Bessel filters of odd orders. o ) fequeney
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FIGURE 2.13
Phase response of Bessel, Butterworth, and Chebyshev (1 dB ripple) third-order filters.

view, the Bessel filter is at a disadvantage, but its phase response, as far as linearity is con-
cerned, is by far superior—particularly when compared to the Chebyshev phase response.
As a consequence of their superior phase response, the time response of the Bessel-
Thomson filters also displays superior performance concerning fidelity to the input wave-
forms over the other lowpass filters. In other words, they transmit, for example, square
pulses with lower distortion than the other filters. This can be easily seen in Fig. 2.14, where
the step response of the three filters considered above is shown. Clearly, the rise time, the
settling time, and the overshoot are lower for the Bessel filter than for the other two.
It can also be seen that the Bessel response rises to 50 percent of its final value at t, = 1s,
which is equal to the unit (1s) delay it approximates. This justifies the characterization of t,

as the delay time.

12 —
Step
Response | . ,‘ N -
E A < ” -z
“' (] - - L d
i
0.8 — H [}
[]
H [}
H [
H ]
1 ¢ [}
i
:" ' — Butterworth
04— " - Chebyshev
ik ... Bessel
H
i
i
. — 1 T 1 T T T 1 T
8 12 16 20
time

FIGURE 2.14
Step response of the Bessel, Butterworth, and Chebyshev (1 dB ripple) third-order filters
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This observation is nearly true for the corresponding response of the Bessel filters of any
order n. However, as 1 increases, the rise time becomes shorter, and thus the step response
comes nearer to the undistorted step. This is so because, as n increases, more frequencies of
the infinite spectrum of the input step fall within the bandwidth of nearly linear phase, and
thus the approximation comes closer to the input.

The reduced rise time with increasing n can also be proved, if the magnitude response of
the Bessel filters is considered. Clearly, from Eq. (2.46) and the plots in Fig. 2.12(a), the 3 dB
bandwidth increases with increasing n. Then, from Eq. (1.33), it follows that the rise time
should decrease with increasing n.

The bandwidth w, of the maximally flat delay is defined [4] as the reciprocal of the delay
atw=0,1ie,,

1
W, = = (2.47)
Since the normalized delay is 1, w, will also be 1, i.e.
w, =1 (2.48)

Clearly, the meaning of Eq. (2.47) is that the product bandwidth times delay is constant.
That is, large bandwidth corresponds to short delay and vice versa.
Letting s = ju, where

u=owl =

Ele

we can create two tables, the first giving the u values (for each n) for certain deviations of
the time delay from its ideal value (i.e., its value at w=0), and the second giving the values
of u (for each n) in which the attenuation is certain decibels below its value at w = 0. From
these tables, the designer can select the value of n and consequently determine the corre-
sponding Bessel-Thomson delay function that suits best the specifications (see Reference 3).

2.5.2 Other Delay Functions

Another class of functions approximating in fact the phase of e=T according to the maxi-
mally flat criterion at w= 0 are the allpass Pade approximations [6]. All of the zeros of these
functions lie on the RHP located symmetrically to the poles with respect to the jw-axis. The
magnitude response of these is unity for all w and their useful bandwidth is twice that of
the Bessel-Thomson delays of corresponding orders. However, in spite of these useful char-
acteristics, their step response displays a very narrow precursor of height about equal to
their final value, a highly undesirable characteristic (see Fig. 2.15). To avoid the appearance
of this precursor in the step response one may use lowpass Pade delay approximations [7]
or other more useful delay functions [8, 9, 10]. Other delay functions which approximate
the group delay according to the Chebyshev criterion have also been proposed [11]. These
display improved characteristics over the Pade delay functions of corresponding orders.
In general, the function that will be selected for delaying a signal will depend greatly on
the type of signal. Thus, if the signal is in the form of a step, a lowpass delay is more suit-
able than an allpass. In the case of a signal with a certain bandwidth though, an allpass
function with linear phase may satisfy the specifications more effectively. In practice, on
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FIGURE 2.15
Step response of the second-order allpass Pade delay function.

many occasions, the combination of a lowpass filter with sharp cutoff and an allpass func-
tion filter connected in cascade results in the desirable solution, as explained next.

2.5.3 Delay Equalization

As it was mentioned in the previous section, the step response of the Bessel-Thomson fil-
ters, due to their linear phase response, makes them more suitable in pulse transmission
than the corresponding Butterworth, Chebyshev or Cauer filters. However, from the selec-
tivity point of view their performance is very poor compared to the other filters.

To achieve both phase linearity and good selectivity in the amplitude response, a practi-
cal solution is to use suitable allpass functions of second-order in order to modify the phase
of the filter that has the desirable magnitude response. Their use will not affect the filter
magnitude response, since they are allpass. Such functions will be of the form

_S-Bs+y

F S +Bs+y

(2.49)

They will be selected by means of a computer optimization program, which will determine
the most suitable coefficient values  and yin each case.

This procedure, called phase equalization, proves to be very useful in problems where
the required filter should possess high selectivity and at the same time linear phase
response, i.e., constant group delay.

2.6 Frequency Transformations

The filter functions that were reviewed in the previous sections refer to lowpass filters.
They are given in normalized form, i.e., their passband width is unity. In all these tables,
the normalized frequency s, is implied for sinusoidal excitation s, = jQ with
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Q =

Ele

where w is the real frequency variable, and w, is the actual cutoff frequency of the desired
lowpass filter. Following this convention, the normalized cutoff frequency Q. of all filters is

Q. =1

We will now show by means of suitable transformations how we can obtain denormal-
ized lowpass, highpass, bandpass, bandstop filters, and delays using data obtained from
the tabulated normalized lowpass functions. In all cases, we refer to frequency response,
when s = jo.

2.6.1 Lowpass-to-Lowpass Transformation

In the normalized lowpass function, if we substitute s/w, for s,, we will obtain the denor-
malized lowpass function with w, being its cutoff frequency. For example, for the first-order
Butterworth function

1
S +1

F(s,) = (2.50)

we will get

1 — (A)C
s/w,+1 s+w,

F(s) = (2.51)

which is also lowpass with its cutoff frequency at ..
Clearly, with this transformation, the normalized frequency band 0<|Q| <1 is trans-
formed to the denormalized frequency band

0<|w € w,

as shown in Fig. 2.16.

As can be seen from Egs. (2.50) and (2.51) the shape of the frequency response does not
change with this transformation. Following this, it is obvious that transmission zeros at Q,
will appear at the frequency w, = Q,w, in the denormalized magnitude response. This is
shown clearly in Fig. 2.17.

Finally, it should be mentioned that the gain of the normalized filter functions is assumed
to be normalized, i.e., its maximum value is equal to unity. It is usual that in filter design
we are not so interested in the actual value of the magnitude in the corresponding response,
but in its relative value (or relative attenuation), which determines the filter selectivity.

— —
A -1 o0 1 60 = o=y, 0 @m0

FIGURE 2.16
Lowpass-to-lowpass transformation.
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FIGURE 2.17
Lowpass-to-lowpass frequency transformation.

2.6.2 Lowpass-to-Highpass Transformation

Applying the transformation

1
73
a lowpass function is transformed to a highpass.

The frequencies 0 and o of the lowpass function are transformed to « and 0, respectively,
while the cutoff frequency of the lowpass, which is 1 in the normalized function, is trans-
formed to itself in the new function. Thus, the passband of the lowpass 0<[Q| <1 is trans-
formed to the passband 0<|Q| <« of the highpass function as shown in Fig. 2.18(a).

Following the same argument as in the case of the lowpass-to-lowpass transformation, if
we substitute w./s for s, in Eq. (2.50) we will get

F(s) = (2.52)

which is a highpass function with w, its cutoff frequency. The mapping of the lowpass pass-
band 0<]Q[ <1 to the highpass passband w, < |w| < « is shown pictorially in Fig. 2.18(b).

—
<y -1 0 1 (9}
(@
— ]
-0 -0, 0 (0] 0w -0 0 o ©
(b)

FIGURE 2.18
Lowpass-to-highpass transformation.
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2.6.3 Lowpass-to-Bandpass Transformation

Applying the transformation

1 _§+1
- S+ - =
S S S

a lowpass function is transformed to a bandpass function with a passband width equal to
that of the lowpass, i.e., equal to 1. There are two bandpass cutoff frequencies, Q, and Q,,
such that

QleCZ =1
and
02=0,0,=1 (2.53)

Q, is called the normalized center frequency of the bandpass function. The passband map-
ping is shown in Fig. 2.19(a).
The bandwidth of the passband is
Qep=Qcy = 1 (2.54)

since this has to be equal to that of the lowpass. Solving Egs. (2.53) and (2.54) for Q and
Q,, gives the following:

Qe

1
‘QCZ‘ = é 5
(2.55)

Using this transformation in the example we considered before, the lowpass Butterworth
function [Eq. (2.50)] will be transformed to the function

S

F(s) = ——
S+s+1

which is bandpass, since it becomes zero at Q = 0 and c.

9 -1 0 1 g QY 0 Q0 O
-© - o, o -(o-(n -0, g 0 (o c2 (o)
M)

FIGURE 2.19
Lowpass-to-bandpass transformation.
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Denormalization of the bandpass function to a center frequency w, is obtained by substi-
tuting w/ w, for Q in Egs. (2.53) to (2.55). The bandwidth of the denormalized function will
then be

B = U)cz —We1 = (-‘00
If the bandwidth should be other than w,, the transformation has to be modified. Thus,

we may obtain the denormalized bandpass function straight from the normalized lowpass
function by applying to the latter the following transformation:

Qo[]S | O]
S~ By, sU

Corresponding mapping of the passbands and stopbands are shown in Fig. 2.19(b). In this
case,

2 _
(*)0 - wcleZ

B = W (2.56)

2.6.4 Lowpass-to-Bandstop Transformation

Applying the transformation

1 S
S+1‘ 32+1
S

a normalized lowpass function is transformed to a bandstop (bandreject) function, the
stopband of which is between the normalized frequencies Q_, and Q, as shown in
Fig. 2.20(a).

To obtain the required denormalized bandstop function from the normalized lowpass
function, the suitable transformation is

B
0s , 9
W,m= + —
Ly, sU
— R e
€, -1 0 1 £ Q- -2 0 Q0 QY
@
-0 -0, 0 o © “W-Weg -0y Vg 0 @ O, Oy @

®)

FIGURE 2.20
Lowpass-to-bandstop transformation.
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where w, is the centre frequency in the stopband with
W = Wy,
and B is the bandwidth of the stopband
B = W,—0y

This is shown in Fig. 2.20(b).
In the case of the example considered above, we will obtain the normalized bandstop
function

This is zero at Q =1 and 1 at Q =0 and o, which shows the bandstop behavior of the function.

2.6.5 Delay Denormalization

As we have seen in Section 2.5, the functions that approximate the ideal delay are also
given in tables or in the form of recursion formulas. The denormalized function is obtained
from the normalized one by substituting st for s,, where T is the required delay in seconds.

2.7 Design Tables for Passive LC Ladder Filters

All filter functions introduced in this chapter can be realized by passive networks. There is
an abundance of books and papers in the literature describing how this can be done. How-
ever, in this book, we are interested only in the realization using doubly terminated LC lad-
ders, since their simulation by active RC networks results in low sensitivity filters (see
Chapter 6).

The general structure of such a network is shown in Fig. 2.21. In the case of lowpass poly-
onimic filters (all zeros at infinity), all Z;s are inductors, and all ;s are capacitors. In the case
of lowpass functions with finite transmission zeros (e.g., Cauer filters), the Z;s will be par-
allel tuned LC subcircuits, or the Y;s will be series tuned LC combinations.

z, z, z, z,
I__._______

Y Y, Ys[] Yo

FIGURE 2.21
The general form of a doubly terminated ladder.
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Design tables for realizing all the lowpass functions that we have introduced above for
various values of A, (or €), A,,;,, and orders, as well as for various values of the ratio R,/R,
are given in many books [4, 12, 13, 14]. Although, from the sensitivity point of view, as we
shall see later, the equally terminated ladder (R, = R,) is most desirable, in some cases (e.g.,
even-order Chebyshev and Cauer filters), this is not exactly possible.

These tables are used by the passive filter designer and, of course, by the active RC filter
designer who will choose to design a filter by simulating the passive ladder by active ele-
ments. Therefore, once the designer has chosen the normalized lowpass filter function from
the specifications of his problem, he may use these tables to obtain the passive circuit,
which realizes this function. Then, he can obtain the required denormalized filter by apply-
ing suitable transformations to the element values as explained below.

As we shall see in later Chapters (e.g., Chapter 6), one powerful method for designing
RC active filters is to simulate passive LC ladder filters, either topologically or functionally,
using RC active circuits. Thus, the tables of LC passive filters greatly simplify this design
and are used accordingly. It is for this very reason that we have introduced these tables for
the design of LC ladder filters here.

However, for various reasons, there are no corresponding tables available for the design
of RC active filters in general use. For example, an RC active cannot be transformed to a
corresponding bandpass or bandstop circuit by the transformation of its elements as in the
case of the passive LC circuits, while available tables [15] do not cover all useful active RC
circuits and Cauer filter design.

One final point here: the lowpass filter function realized by the circuit in Fig. 2.21 as the
voltage ratio V,/ V. is in fact realized within a constant multiplier that is lower than unity.
The reason for this is that at dc (w = 0), the transfer voltage ratio V,/V, reduces to

R,
Rl + R2

Vo _
Ve
which is always less than 1 except for R, = 0, when it is equal to 1.

2.7.1 Transformation of Elements

In the case of passive filters, as stated above, one can obtain the denormalized highpass,
bandpass, or bandstop filters by applying the previously introduced frequency transfor-
mations to the impedances of the elements of the normalized lowpass filter.

This approach is not applicable in the case of active RC filters except for the case of
obtaining a highpass from the normalized lowpass filter. We examine the element transfor-
mation in more detail below:

2.7.1.1 LC Filters TABLE 2.4

Lowpass-to-lowpass ~ Transformation s, - (,oi with w, the cutoff frequency
C

Element Impedance New element value
S
L, = —L =
er Srl n wc n L Lrl/wr
W,
Cn 1 = —= C= Cn/('oc
s,.C, sC,
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Lowpass-to-highpass

,
Transformation s, — _é_c with w, the cutoff frequency

Element Impedance New element value
_ Ly __1
L Snbn = s ¢ wely
1 _ s 1
C” Sncn - wCCn L - wCCn
. ) s (*)q]
Lowpass-to-bandpass Transformation s, - EQFO * <0
Element Impedance New element values
L and C in series
= @oris | ©q L
L, Snl-n_E_O"'_DLn L:En C:__EB._
(*)oLn
1 1 L and C in parallel
C, $nCh ngoDS +£qj L = iz C = &1
BLw, sU C,w, B
Transformation s, - L
Lowpass-to-bandstop Wos | 94
B, sU
Element Impedance New element values
L L and C in parallel
Sbn = - BL 1
L" SODE. + (:).CD L= _2n = =
BLk, sH w, BL,
L and C in series
W, W,
_0[3 + _OJ BC
C, 1 _ B W, S L = i - _n
sC, ~ C BCy W’

>

(o]

All these element transformations are summarized in Table 2.5.

TABLE 2.5

Element Transformations

Elements of

Corresponding elements of the denormalized

lowpass filter Highpass Bandpass Bandstop
_ 2
L, C=1/(L,w) L=L/B L= LB/,
_ 2
C = B/(wyL,) C = 1/(BL,)
_ 2
C L=1/(Cw) L = B/(w,Cy) L-1/(BC,)
—_ Y —r Y
_ 2
C=C/B C = C,B/w,

As an example, consider the design of a bandpass filter having center frequency at
1 krad/s and 100 rad /s bandwidth. Assume that, from additional specifications, a sixth-
order Butterworth bandpass filter has been found suitable.
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Clearly, the sixth-order bandpass will be obtained from the third-order lowpass Butter-
worth filter by applying the lowpass-to-bandpass transformation

Wo]S , O
S~ Bl sC

where w, =1 krad/s and B =100 rad/s.
From the tabulated Butterworth filters, Table A.1, we find

1

F(s) = ——5——
Si+2s,+2s,+1

At this point, we may proceed in one of the following two alternative ways:

1. We may apply the lowpass-to-bandpass transformation to obtain either the nor-
malized or the denormalized bandpass function and proceed to realize it, i.e., to
determine the circuit.

2. Alternatively, we may realize the lowpass filter and apply the lowpass-to-denor-
malized bandpass transformation to the elements of the lowpass making use of
the Table 2.5.

The second method has the advantage that the realization of the lowpass filter reduces
to choosing the circuit from the available design tables. In cases, when there are no avail-
able design tables, the advantage still remains, since the realization of the lowpass filter is
simpler than that of the bandpass, because the order of the latter is double that of the low-
pass. On the other hand, the second method is not applicable to the synthesis of active RC
networks. So, the choice of the most suitable method will depend on the type of the circuit
(passive LC or active RC) we choose to design.

Suppose we choose to realize F(s,) by a passive LC equally terminated ladder. Using the
corresponding table, given for example in Reference 12, we find that the suitable circuit is
that appearing in Fig. 2.22.

Using Table 2.5, we can easily obtain the element denormalization for w, = 1 krad /s and
B =100 rad/s. The denormalized w.r.t. frequency bandpass circuit is as shown in Fig. 2.23.

This circuit is still normalized w.r.t. impedance level, since all component values are
referred to terminating resistances of 1 Q. If we want to raise the impedance level to a prac-
tical value, e.g., 600 Q, we should multiply the impedance of each component by 600, when
we obtain the component values in parentheses in Fig. 2.23. We treat impedance denormal-
ization in Section 2.7.

]

1
—
i

-1 élv"

FIGURE 2.22
Butterworth normalized lowpass filter of third-order.
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FIGURE 2.23

Frequency denormalized bandpass filter.

2.7.1.2 Active RC Filters

The procedure described above can be applied to obtain the denormalized lowpass or
highpass RC active filter once the normalized lowpass function has been selected.

It is not possible to obtain the normalized or denormalized bandpass and bandstop cir-
cuits straight from the normalized lowpass, because there is no suitable transformation for
this purpose. Clearly with no inductances in these circuits, it is impossible to apply the ele-
ment transformations for bandpass and bandstop of Table 2.5. In this case, first the normal-
ized bandpass or bandstop function is obtained using the corresponding frequency
transformation. Next, the normalized filter is synthesized by a suitable method, as we shall
see in later chapters, and then the denormalized bandpass or bandstop filter is obtained by
properly scaling the filter time constants.

It has to be emphasized here that frequency transformation must be applied only to time
constants, i.e., either to the capacitances or to those resistances that determine the time con-
stants and not to those that determine the gain of the active element.

The following two examples will clarify this, while for a more formal proof the interested
reader should refer to References 6 and 16.

Consider first the simple RC circuit in Fig. 2.24(a). The transfer voltage ratio V,/ V, is the
following:

V, 1 _ 1 1
V, RCst1_ RC5+1/RC 257)

If we interchange the position of the elements without changing its topology, as shown in
Fig. 2.24(b), the new transfer voltage ratio will be

R C'
AMN o
l

—>0

O 0
A Vi

C~

=<

3

(@) (®)

FIGURE 2.24
Simple (a) lowpass and (b) highpass RC circuits.
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r — V,2 - SCR' _ S
P = 7 “scrR+1 sTUCR (2.58)

It can be seen that, with this interchange of elements, the lowpass circuit in Fig. 2.24(a) has
been transformed to the highpass of Fig. 2.24(b). The two filters will have the same cutoff
frequency if

RC = CR (2.59)
As a second example, consider the two RC active circuits in Fig. 2.25(a) and (b), using an
operational amplifier as the active element (see Chapter 3). Circuit (b) is obtained from cir-

cuit (a) by changing all resistors to capacitors and vice versa.
The transfer function V,/V; of circuit (a) is

1 1 _ R/R

CR,
and that of circuit (b) is
o _ Vs _ C s _ sCR
F'(s) = v.,- "G, L " TSCR+1 (2.61)

Clearly, again the lowpass circuit has been transformed to a highpass simply by changing
resistors to capacitors and vice versa in the lowpass circuit. For the two circuits to have the
same cutoff frequency, the following relationship should hold:

CR, = C,R (2.62)

In both these examples, if the required denormalized cutoff frequency is w,, the time con-
stants in Egs. (2.59) and (2.62) have to be divided by w.. This means that either the capaci-
tance or the resistance which determine the time constant should be divided by w, and not
both. Compare this case with LC filters where both L and C are divided by w..

The above is part of the so called RC:CR transformation, by means of which a lowpass
RC circuit, passive or active, is transformed to the corresponding highpass, under the con-

Ry '
AMA ||
S| T v
- - AMA
R, C,
V1 0 AAAN -t o V; vl°——| |"—‘ L oV}
) “®)
FIGURE 2.25

(a) Lowpass and (b) highpass RC active filters.
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dition that the pertinent transfer function is dimensionless, i.e., ratio of voltages or cur-
rents. According to this transformation the element R; is transformed to the element C; with
nominal value 1/R; and vice versa. Resistances, which determine the voltage gain, or the
current gain of the active element, do not change, which is not true if the active element is
a voltage controlled current source (VCCS) or a current controlled voltage source (CCVS).

As a further example, consider the RC active filter in Fig. 2.26(a), which realizes the sec-
ond-order Butterworth lowpass function.

1

F(s) = ———
S+ .25+ 1

(2.63)

Applying the RC:CR transformation, this circuit is changed to that of Fig. 2.26(b), which
is highpass with cutoff frequency Q. =1 equal to the cutoff frequency of the corresponding
lowpass in Fig. 2.26(a). If we divide both resistances or both capacitances by w, (rad/s),
their cutoff frequency becomes w..

2.8 Impedance Scaling

If the desired cutoff frequency of the circuits in Fig. 2.24 is w, = 1 rad /s, this can be achieved
for

C=1F R=1Q
However, the same result can be achieved if
C=1mF R= 1kQ
or
C=1uF R=1MQ
and so on.

When we select the second or third set of values of R and C instead of the first, in actual
fact, we have multiplied the impedances of these components by 10° or 10¢, respectively,

1 1
11 AMN
11 A
C Ry

2

l_“_“l Yoltage
< cy Amplifier
gain 2

[

1
o—AAMN— Voltage
1\ R R, Amplifier

gain 2

@) )

xX—>4

S>> b
—=—>
-

FIGURE 2.26
(a) Second-order RC active lowpass and (b) corresponding RC active highpass filter.
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obtaining thus more practical values for the elements R and C. We say that we have raised
the impedance level of the circuit by 10° and 10°, respectively.

This denormalization of a circuit to the impedance level R, requires multiplication by R,
of the values of all resistances, and all inductances in the circuit and division by R, of all
capacitances. In the case when the gain of the active element(s) is determined by the ratio
of two resistances, which do not affect the circuit time constants, the impedance level for
these resistances may be different from that for the rest of the circuit. Also, if a filter is real-
ized as the cascade connection of low-order functions (i.e., first and second order), which
are isolated from each other, again the impedance level in each section can be different from
that in the other.

As an example of impedance scaling, we will calculate the values of the components in
the circuit in Fig. 2.26(b) for an impedance level of 10* Q and a cutoff frequency at 10 rad /s.
In accordance with the above discussion, we multiply all resistances by 10* and divide all
capacitances by 10* in order to perform impedance scaling.

Next we may choose to divide the values of the capacitors by another 10* or the values
of the resistors by this same scaling factor in order to achieve frequency denormalization.
Choosing to frequency scale the capacitances, the following set of component values is
obtained:

RL=R, =10kQ, C,=.2x10°F, CZ:%leo“"F

These component values are more suitable for RC active filters (particularly if the active
element is an operational amplifier) than if we had chosen to frequency scale the resis-
tances. It should be pointed out, however, that frequency scale could have also been
obtained if all resistances had been divided by 10" and all capacitances by 10, since the
time constants that actually matter would have been scaled by 10" x 104 = 10

2.9 Predistortion

It is well understood that the components one uses in order to build up a circuit one has
designed are not ideal. Thus, the equivalent of a coil is not a pure inductance, but it has
some loss associated with it. This loss is modeled by a small resistance r connected in series
with its inductance L. Similarly, there is some loss associated with the capacitance of a
capacitor, usually negligible in today’s capacitors, which is modeled by connecting a con-
ductance g in parallel with the capacitance C.

For the sake of argument, let us suppose that the ratios r/L and g/C are both equal to d.
Thus the impedance of the coil and the admittance of the capacitor will be, respectively,

Z, =sL+r=L(s+d)
and
Yo=5sC+g=C(s +d)

The circuit transfer function, as derived by circuit analysis, is found to be a linear func-
tion of impedance or admittance ratios. This means that the poles and zeros of the transfer
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function will move to the left in the s-plane by the same amount, d. Thus, the frequency
response of the practical circuit will differ from the expected one, i.e., it will be distorted.
In some cases, this effect may not matter, but in cases of highly selective bandpass filters,
the distortion in the frequency response will be serious and thus unacceptable.

To counterbalance this type of distortion in the frequency response of the practical circuit
to be built out of coils, capacitors, and resistors, the designer can shift the poles and zeros
of the transfer function to the right on the s-plane by the same amount d and then proceed
to calculate the component values. With the application of this technique, known as predis-
tortion, the poles and zeros of the transfer function of the practical circuit will be placed
nearly at the initially wanted positions, moved there, because of the power dissipation of
the practical components, coils, and capacitors. Predistortion is in effect a frequency trans-
formation of the initial transfer function F(s) to F(p) where p = s — d. This transformation is
nonreactive in that it is not applied to the reactive elements of the circuit.

In practice, the losses in coils and capacitors will not be the same. Then, the designer can
add resistances in series with the coils and in parallel to the capacitors in order to obtain
the same factor d in all components. It should be noted, though, that because of the intro-
duction of dissipative components (the resistors) in the LC circuit, there will be an increase
in the flat loss of the circuit. Since this loss can, in some cases, be intolerable, and the num-
ber of the additional resistors excessive, the predistortion technique may not always pro-
duce an attractive solution to the unavoidable problem of dissipation introduced by the
practical reactive components.

2.10 Summary

The problem of determining a filter function satisfying the specifications of a filter has been
examined in this chapter to some detail.

Filter specifications may refer mainly either to amplitude (magnitude) requirements or
to phase (or delay) requirements. Determining first the order of the lowpass prototype filter
function, the designers can then choose the most suitable one among the available in tables
Butterworth, Chebyshev, Papoulis, or Cauer functions, if they are interested in the ampli-
tude response. Similarly, if they are interested in the phase response, they may choose a
lowpass or an allpass function among the available in tabulated form Bessel-Thomson,
Pade, or Chebyshev-type delay functions.

In the case of amplitude or phase equalization, the designers will basically have to work
heuristically using the computer as their main tool and a suitable optimization program.

Suitable frequency and element transformations were introduced in order to transform
the lowpass prototype filter to the required denormalized lowpass, highpass, bandpass, or
bandstop filter. These frequency transformations are also useful in the translation of the
denormalized filter specifications to the corresponding lowpass prototype requirements.

Once the most suitable circuit has been chosen (in a way we shall see in later chapters)
for the realization of the denormalized function, suitable impedance scaling should be
applied to the component values in order to make the circuit more practical within its envi-
ronment (signal level, source impedance, load impedance, and characteristics of the active
element). Impedance scaling was also introduced, while in the final section of this chapter
the concept of predistortion was introduced briefly.

Before we examine the selection of suitable circuits for the realization of filter functions
we introduce in the next chapter various active elements that will be used in subsequent
chapters.
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Chapter 3

Active Elements

3.1 Introduction

The ideal active elements are devices having one to three ports with properties that make
them very useful in network synthesis. Some active elements are more useful than others,
in the sense that their realizations are more practical than others.

The most important ideal active elements in network synthesis fall into the following
groups:

e Jdeal controlled sources

¢ Generalized impedance converters (GICs)

Generalized impedance inverters (GlIs)
¢ Negative resistance

* Current conveyors

Although the GlIIs, generally speaking, can be regarded as GICs, they are presented sepa-
rately here for reasons of clarity.

The first three groups consist of two-port devices, and the fourth is one-port. The fifth is
a three-port device. We present each of these groups separately below.

For all these ideal active elements, we give practical realizations using two active devices
which are commercially available, namely, the operational amplifier (opamp) and the oper-
ational transconductance amplifier (OTA). The opamp and OTA are special cases of two
ideal active elements, and their implementations in IC form make them indispensable
today, both in discrete and fully integrated analog network design. Because of this exclu-
sive use in active filter design, we introduce them here both as ideal and practical elements,
giving emphasis on the imperfections of the practical realizations.

Before proceeding with the development of this chapter, one point should be clarified.
Although the transistor, either the bipolar (BJT) or the unipolar (FET), is essentially the basic
active element in the realization of all other active elements in practice, we prefer not to con-
sider it as such here but rather to treat it as a type of a nonideal controlled current source.

3.2 Ideal Controlled Sources

Anideal controlled source is a source whose magnitude (voltage or current) is proportional
to another quantity (voltage or current) in some part of the network. Table 3.1 lists the four
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TABLE 3.1

Ideal Controlled Sources

Reciprocal or
Description Symbol A Matrix Nonreciprocal

1 Voltage controlled -+

+ 1/9 0 .
voltage source (VCVS) Eq Nonreciprocal

3 Current controlled

current source (CCCS) Ilv

00 Nonreciprocal
0 1/h

4 Voltage controlled -+

current source (VCCS) Eq

0Ly Nonreciprocal
0o

2 Current controlled + 0 0 Nonreciprocal
voltage source (CCVS) |1v zl;=E, 1/z0 P

types of controlled sources. Their characteristic feature is that the transmission matrix has
just one nonzero element. Among them, only the CCVS and the VCCS are basic devices. A
VCCS followed by a CCVS gives a VCVS, and reversing the order gives a CCCS.

3.3 Impedance Transformation (Generalized Impedance Converters and
Inverters) [1, 2]

Consider a two-port to be terminated at port 2 in an impedance Z, as shown in Fig. 3.1(a).
The input impedance Z;; at port 1 expressed in terms of Z; and the transmission matrix
parametersa; i,j=1,2is as follows:

Vi _anZ tag 3.1)

Zil =
I anZ, +ay
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FIGURE 3.1
Two-port device terminated at port 2 or at port 1

where, in the general case a;,1,j=1,2, and Z; are functions of the complex variable s. Thus,
the action of the two-port s to transform the impedance Z, to another Z;; which, depending
on the nature of a;, can produce very interesting and useful values.

Similarly, if the two-port is terminated at port 1 in an impedance Z,, the input impedance
Z;,at port 2 will be as follows:

Vo _ aptan

i, =— = === = 3.2
2T, aptanZ, (32)
Thus, again the two-port acts as an impedance transformer or converter.
We may consider now the following two specific cases:
e Case a: ay, Ay %0 while Ay, =0, =0
e Case b: Ay =y =0 while Ay, Ay % 0
Substituting in Eq. (3.1) we get for
a a
Case a: Zi, = =27, = G,Z, G, = =2
A A (3.3)
ap 1 1 a
Case b: Z, = == = Gp5- Gy = =
an Z, Z 8z (3.4)
Similarly, substituting in Eq. (3.2) we get for
| A, 1
Case a: Zi, = allZs = GaZs (3.5)
ap 1 1
. Z = - — = —_ .
Case b 25 7 szs (3.6)

Clearly, in Case a, when a,, = a,, = 0, the two-port is a generalized impedance converter
(GIC), when G,, the conversion constant, is a function of s. The conversion constant is not
the same for port 1 and port 2.

On the other hand, in Case b, when 4, = a,, = 0, the two-port is a generalized impedance
inverter (GII). In this case, the inversion constant G, is the same for port 1 and port 2.
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3.3.1 Generalized Impedance Converters [3]

Following the argument presented above, we can define the GIC as the two-port for which
the transmission matrix parameters 4,, and a,, are zero for all s, while a,, = k and a,, = k/f(s),
ie.,

[A] = {k 0 } (3.7)
0 k/ f(9)

where k is a positive constant.

Following this definition of the GIC and referring to Fig. 3.1, if the impedances Z; and Z,
are connected across port 2 and port 1, respectively, then the input impedances Z;, and Z,,
at ports 1 and 2 will be

Z, = f(s9)Z, (3.8a)
1
Z, = T(";)Zs (3.8b)

The conversion function f(s) can take any complex value realizable by an active RC two-
port. However, some simple expressions of f(s) have been proven to be of very high practi-
cal value in active network synthesis, as shown below.

3.3.1.1 The ldeal Active Transformer

Let a,, = #1/n,, and a,, = +n,, with n, # n,. Then,

Q

bl L

— = (3.9)
Ay Ny
and the converter transforms Z; to
_ 1
Z = nlnzZL (3.10)

If n, = n, = n, the two-port is the ideal transformer (Fig. 3.2) which, of course, is passive and
reciprocal.

Imm 1:n
® L L ]
O O O Q
11 =-l]l_ (l11==nl
an=n az=-n
O 0 O 0
@) ®) *

FIGURE 3.2
Ideal transformer, (a) normal and (b) reverse polarity.
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3.3.1.2 The ldeal Negative Impedance Converter
- _ .1 -
Let a; = 7k ay, = iE [f(s)] =1

In either case, we have

ap; 2
et (3.11)
axp
and
Z, = Kz, (3.12)

Thus, an ideal negative impedance converter (NIC) is a two-port device that presents
across one of its ports the negative of the impedance that is connected across the other port
within a constant k2.

Two types of NICs can be identified according to the signs of a,, and a,,. When

Foull o

a; = kK Ay =

the voltage negative-impedance converter (VNIC) is obtained, since then the polarity of the
voltage at port 1 is reversed with respect to the polarity of the voltage at port 2.
On the other hand, when

the current negative impedance converter (CNIC) is obtained, since then the direction of
the output current with respect to that of the input current is reversed.

With k =1, the VNIC and CNIC of unity gain are obtained. The concept of negative resis-
tance is explained in Section 3.4.

3.3.1.3 The Positive Impedance Converter
Let fls)=s and k=1
Then, for Z; =R, Eq. (3.8a) gives
Zi; = sR (3.13)

Thus, terminating this GIC with a resistor makes the input impedance look like that of a
grounded inductor. This is very significant in filter design, as we shall see later (Chapters
4 and 6).

This GIC, when it was first introduced [4], was called the positive-immittance converter
or the PIC (immittance from impedance and admittance).
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On the other hand, for Z; =1/sC,

-1
Zy = 2 (3.14)
i.e., a grounded resistance of 1/C ohms.
Looking now at port 2, if Z, = R, Eq. (3.8b) gives [f(s) =],
R
Zi2 = g (3.15)
i.e., the impedance of a capacitor 1/R farads.
The use of the PIC in filter design is explained in Chapter 6.
3.3.1.4 The Frequency-Dependent Negative Resistor [5]
As a last case, consider that
_1
f(s) =
Then, with Z;, =R,
R
Ziy = P
i.e., the impedance of a grounded capacitor of 1/R farads.
However, if Z;, = 1/sC, then
Z, = = (3.16)
sC
Substituting jw for s gives
Z (@) = — —— (3.17)
il ()ch .

Clearly, this is a negative resistance dependent on frequency. For this reason it is called
the frequency-dependent negative resistor (FDNR) of type D (D-FDNR).

Usually, the impedance of a D-FDNR is written as 1/s?D with the unit of D being farad-
second. The symbol of this in a circuit is similar to that of a capacitor but with four parallel
lines instead of two. For this reason the D-FDNR is sometimes referred to as supercapacitor.

An E-type FDNR can be obtained if a PIC is terminated at port 2 by an inductor. Then,
with Z, = sL and f(s) = s, Eq. (3.8a) gives

Z, =sL (3.18)

This is sometimes called the superinductor, but it is not so useful in active RC filter design
as the supercapacitor, as we shall see in Chapter 6.
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The GIC is a nonreciprocal two-port, as can be easily derived from its transmission
matrix. If it is loaded by the same impedance at both its ports, Z,, and Z,, will be different,
as can be seen through Egs. (3.8a) and (3.8b) for Z,= Z,. Depending on f(s) and Z, or Z,,
either of the ports (port one or port two) can be used to represent the component that has
been obtained by the impedance conversion.

The GIC is thus a very flexible device, which can be used to simulate the transformer,
negative resistance, inductance, and the D-FDNR, all of importance in filter design.

3.3.2 Generalized Impedance Inverters

The generalized impedance inverter (GIV) can be defined as the two-port with transmis-
sion parameters a,;, a,, = 0, and a,,, a,; # 0 for all s.

If such a two-port is terminated at one port by an impedance Z,, the impedance Z; seen
in the other port will be

_ 1

1
= = = Gy 3.19
1 a22 Z|_ bZL ( )
where G, = a,,/a,, can be defined as the inversion constant with units Q2.
G, will be, in general, a function of s. However, in network synthesis, two cases have
attracted the interest of the designers: the positive impedance inverter or gyrator and the
negative impedance inverter. These are now considered.

3.3.2.1 The Gyrator

The gyrator, or positive impedance inverter, is a very attractive two-port, because it can be
used to simulate inductance. Its symbol and transmission matrix are shown in Fig. 3.3.
This definition through its transmission matrix, with g, # g, and positive, refers to the
active gyrator. However, if g, = g, = g, the gyrator is a passive two-port.
Clearly, the gyrator is a nonreciprocal two-port, since

A8 — Ay # 1

Its importance in network synthesis stems from the fact that, if it is terminated at port 2 by
a capacitance C;, the impedance seen in port 1, according to Eq. (3.19), is

Z, = GsC = s& = sl (3.20)
9:9>

LN &
[ —— prs—C) o o

D ( - D (

1 0
[ —— —") o —)
(a) (b)

FIGURE 3.3
Symbols of gyrator: (a) a, a5 >0, and (b) ay,, ay < 0 with G, = (,8,) ™
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i.e., the impedance of an equivalent inductance

C
Leg = —

= — (3.21)
0192

The use of the gyrator in network synthesis is explained in Chapter 6, where this device is
studied more rigorously.

3.3.2.2 Negative Impedance Inverter

A negative impedance inverter (NIV) is a two-port device whose input impedance at one-
port is the negative reciprocal of the terminating impedance at the other port. This can be
obtained, if G, in Eq. (3.19) is equal to -1, i.e.,

Then,

(3.22)

Since, in this case, either

or
a,=1 a, = -1

with ay,, a5, = 0, the NIV is a reciprocal two-port.

3.4 Negative Resistance

The concept of negative resistance is exciting from both theoretical and practical points of
view. A negative resistance is a two-terminal device defined by the relationship between
the voltage and the current in it, i.e.,

V =-Rl R>0 (3.23)

Its physical meaning can be explained by the fact that it absorbs negative power; therefore,
it acts as an energy source.

The defining Eq. (3.23) is valid in practice for a limited range of voltages and currents,
over which it can behave linearly.

In practice, negative resistance can be seen at one port of an NIC or NIV when the other
port is terminated in a positive resistance. Its presence can be detected by the simple exper-
imental setup shown in Fig. 3.4. A positive resistance of value equal to the magnitude of
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I y=0 g-R
FIGURE 3.4 \l/

Demonstrating the action of a negative resistance.

the negative one is connected in series with —R. If a current is sent through this combina-
tion, the voltage measured across it is zero, in spite of the fact that the voltage drops across
R and -R are nonzero.

The concept of negative resistance can be also explained through the V-I characteristics
of the tunnel diode and the unijunction transistor. In these cases, incremental negative
resistance appears in the part of characteristics with negative slope. There are two types of
such characteristics shown in Fig. 3.5. The S-type corresponding to the V-I characteristic of
the unijunction transistor and the N-type corresponding to the V-I characteristic of the tun-
nel diode (or the tetrode electronic tube).

The negative resistance obtained by the means explained above is supposed to be inde-
pendent of frequency, and indeed this is true in practice for a range of frequencies. It is,
however, possible to obtain negative resistance dependent on frequency, and this has been
exploited usefully in network synthesis.

Consider the case of a GIV with an inversion “constant” ks to be terminated at port 2 by
a capacitor C,. The input impedance seen at port 1 will be, from Eq. (3.4),

Zi = sz_ = SZkCL

Substituting jw for s in this equation, we obtain
Z, = —-w’kC,

which is, in fact, a negative resistance dependent on «?. This is the frequency-dependent
negative resistance type E (E-FDNR) that we saw in Section 3.3.1.

The second FDNR type, type D, can be obtained if a GIC with a conversion function f(s) =
1/s is terminated at port 2 by a capacitor C;. Then, the input impedance at port 1 using Eq.
(3.3), will be

(a) (b)

FIGURE 3.5
(a) S-type and (b) N-type V-I characteristics.
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which for s = jw gives

1
w’C,

Zi:_

As mentioned earlier, the D-type FDNR will be realized and used in filter synthesis in
Chapter 6.

3.5 Ideal Operational Amplifier

The operational amplifier, or opamp, is the most versatile active element. All active ele-
ments that have been used in active network synthesis in the past can be realized using the
opamp.

The ideal opamp is an ideal differential voltage controlled voltage source (DVCVS) with
infinite gain. It has infinite input impedance and zero output impedance. Its symbol and
equivalent circuit are shown in Fig. 3.6. The ground connection in Fig. 3.6(a) is not gener-
ally shown.

By definition,

U, = A(L;—U,) (3.24)

with v, applied to the noninverting input and v, to the inverting input.
Assuming finite v,, infinite A calls for

U,—U, = 0 (3.25)
or equivalently
LU, = U, (3.26)

This equality holds approximately quite satisfactorily in practice also, since the input
voltage difference v, — U, is A times (A = 10°) smaller than v,, the maximum value of which
can be, say, up to 10 V for IC opamps, depending on the power supply voltage.

vio 1+ v, + @
V20 - 0 e
v
o o——

@

FIGURE 3.6
The ideal operational amplifier (a) symbol and (b) equivalent circuit.
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In many cases, the noninverting input is grounded, which leads to the inverting input
being at nearly earth potential, i.e.,

v, 00

In such cases, the inverting input node of the opamp is called the virtual earth (VE) or vir-
tual ground point.

3.5.1 Operations Using the Ideal Opamp

The infinite voltage gain of the ideal opamp, coupled with its infinite input resistance and
zero output resistance, make it suitable for performing some useful mathematical opera-
tions on voltages. The most important of these operations are explained below.

3.5.1.1 Summation of Voltages

The circuit arrangement for such an operation is shown in Fig. 3.7, where the opamp is
used in its single input mode.
Assuming a virtual ground at the inverting input (i.e., V = 0), we can write for this node

which is obtained through Kirchhoff’s current law. This leads to

R R
V, = —E&vl+—fv2+ FRALY

0
R, R, - tRVD (3.27)
IfR;=R,=R,=...=R,, then
Vo = —(V,+V,+...+V,) (3.28)

Thus, the negative of the sum of voltages can be obtained. If the difference of two voltages
is required, the arrangement in Fig. 3.8 can be used.

Ry R¢
Vio—AMN— 4"2'A' A
R,
Va0 VWV v | —oV,
| +
|
R, !

FIGURE 3.7
The opamp as a summer.
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FIGURE 3.8

Circuit giving the difference of two voltages.

Clearly, we can write the following;:

and

Since

using Egs. (3.29) and (3.30), we get

—W—
Vao Vi N
b—oV,
v +
Vi—AMA—4

vV, = %vl (3.29)

V, = %(v2+vo) (3.30)
V, OV,

V, =V,-V, (3.31)

In the case that some of the voltages in Eq. (3.28) have to be added with the opposite sign,
a second opamp should be used to sum those voltages first in the manner shown in Fig. 3.7.
Then this sum should be fed through the appropriate resistor to the input node of the main

opamp.

3.5.1.2 Integration

The arrangement to obtain the integration
of a voltage is shown in Fig. 3.9 (if V;and V,

Vio—aAamn

FIGURE 3.9
Integrator.
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are the Laplace transforms of voltages v;
and v, respectively.) Assuming zero initial

conditions [i.e., U,(0) = 0], we will have

v, +Cdu0

RYCat - °

from which we obtain the following:



U (t) = — ﬁl—duidt (3.32)

Initial conditions can be introduced by charging the capacitor to the appropriate voltage
before starting the integration.
In the complex frequency domain, Eq. (3.32) is written as

V, = — -V (3.33)

where V; and V, are the Laplace transforms of voltages v; and v,, respectively.
As an example, if v; is the unit step voltage u(t), from Eq. (3.33), we obtain

V(1) = — ﬁl—cn (3.34)

It is seen that the slope of the ramp thus obtained is determined by the time constant RC.

If the position of the passive components in Fig. 3.9 is interchanged, the circuit of a dif-
ferentiator results. However, in practice, such a circuit will not work properly because of
excessive noise. Differentiation using an opamp in this configuration is never used. How-
ever, with a resistor of some low value connected in series with C, the noise can be reduced,
but only approximate differentiation will be obtained.

3.5.2 Realization of Some Active Elements Using Opamps

The opamp can be “programmed” to realize other active elements that are useful in the
synthesis of active networks. We include here some examples of such circuits, whereas oth-
ers such as the gyrator, PIC, GIC, FDNR, and FDNC will be presented in Chapter 6, where
they are also used in filter synthesis.

3.5.2.1 Realization of Controlled Sources

Clearly, the opamp, being a voltage-controlled voltage source in itself, is most suitable for
realizing other controlled voltage sources of finite gain. In Fig. 3.10(a), the realization of a
finite-gain K VCVS is shown, while in Fig. 3.10(b) that of a finite-gain CCVS is shown.

For the arrangement in Fig. 3.10(a), if V is the voltage at the inverting input of the opamp,
we have

R
v

V=EraR

Since V;0V (because A [ ), we easily deduce that
KE—(_)=1+— (3.35)

Similarly, for the circuit in Fig. 3.10(b), since the inverting input of the opamp is at virtual
earth, we get
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Vlo———— + vo
r—VWW—— o

R,

R, R

(a)

FIGURE 3.10

I,

V

(®

Realization of (a) a finite-gain VCVS and (b) a finite-gain CCVS.

or

Vo = Ryl

(3.36)

Clearly, the circuit in Fig. 3.10(b) acts as a current-to-voltage converter.
The opamp can also be used to translate voltage-to-current or current-to-current. An
example of a voltage-to-current converter is shown in Fig. 3.11. The derivation of this fol-

lows the observation that

Vs

Rl

and consequently the current through Z is independent of Z.

3.5.2.2 Realization of Negative-Impedance Converters

As explained in Section 3.3.1, there are two types of negative-impedance converters: the
current NIC and the voltage NIC. If their conversion ratio is unity, they possess the follow-

ing A matrices:

FIGURE 3.11
A voltage-to-current converter.
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INIC:

VNIC:

I
O-——p—]

A
Vi 7o

o—]

1

NIC

1'

FIGURE 3.12
NIC terminated by impedance Z;.

[A] = é 01 (3.37)
[A] = |10 (3.38)
10 1

A NIC of either type terminated in an imped-
ance Z; at port 2,2” (Fig. 3.12) has an input
impedance Z,, at port 1,1” given by

Zin E = _ZL

Vi (3.39)
I

If Z, is purely resistive, the resulting negative
resistance can be used to compensate for a pos-
itive or dissipative resistance of equal magni-

tude, thus reducing power dissipation, e.g., the copper loss in a wire transmission
system. The concept of negative resistance and its types are explained in more detail in

Section 3.4.

The realization of both types of NIC using an opamp is shown in Fig. 3.13(a) for the INIC
and Fig. 3.13(b) for the VNIC [6]. To prove this, consider the circuit in Fig. 3.13(a) first.

Clearly,
V-V,
V, =V l, = ——
1 2 1 R
Therefore,
L VamVo _VimV
2 R R
I
ANV <02
R
I i)
lo—p» - oV, ¥, V2
+ [1] Il (1] o |
lo—p + ,
R _ —-o2
1 R
v; 1 1 VvV
< 2/1<\>2 Vi v,
A R
1o 02' 1% o
(a) (®)
FIGURE 3.13

Opamp realization of (a) the INIC and (b) the VNIC.
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or

I, = —(-1,)

which is the case for an INIC.
Coming now to Fig. 3.13(b), it can be observed that

V, = 2V,
V, = V=V, = V,-2V, = -V,
=l

which conforms to the transmission matrix of a VNIC.

3.5.2.3 Gyrator Realizations

A number of gyrator realizations using opamps have appeared in the literature. Some of
these have been successfully used in practice [7, 8, 9]. The Orchard-Wilson gyrator [7] is a
single-opamp active one (g; Zg,), whereas Riordan’s [8] employs two opamps. Useful gyra-
tor circuits have also been suggested by Antoniou [9].

In Fig. 3.14, the Riordan arrangement for inductance simulation is shown. Straightfor-
ward analysis, assuming ideal opamps, gives that the input impedance Z,,is

Thus,

Leqg = CR
One of Antoniou’s gyrator circuits is shown in Fig. 3.15. This is a four-terminal circuit,
and it cannot be used when a three-terminal one is required. It is a very useful circuit

though, because from this a useful generalized-immittance-converter circuit is obtained as
shown below.

R
AN
\Y Il R
10—p—4 oY
._W_.
11
—AMN— [ R
R C
iR

FIGURE 3.14
Riordan circuit for inductance simulation.
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1 0t AMN— 02

+ * 02!
%R’
1'o
FIGURE 3.15

One of Antoniou’s gyrator circuits.

Assuming R, = R, = R and identical open-loop gains of the opamps, it can be shown [9]
that this circuit is unconditionally (absolutely) stable, while that in Fig. 3.14 is conditionally
stable.

3.5.2.4 GIC Circuit Using Opamps

The Antoniou gyrator circuit [9] that appears in Fig. 3.15 is redrawn, in its general form, in
Fig. 3.16 (within the broken lines). All Y; are admittances.
It can be seen that the voltages at nodes a, b, and ¢, assuming ideal opamps, are equal. Thus,

V]:Vb:VZ

To determine I, in terms of —I,, we can write the following successively:

L =Y, (V,-V,) (3.40a)
Yy (Va= V) =Y, (V- V) (3.40b)
Y5 (V4 - Vl) = _12 (3.40C)

Y

| |

I

—— > ¢

.|”_T

FIGURE 3.16
General GIC circuit using opamps.
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From Eq. (3.40c), V, is obtained, which is then inserted in Eq. (3.40b) to give V. Next, the
value of V; is inserted in Eq. (3.40a) to give

_ YoY,
Il - Y3Y5(_| 2) (3‘41)

Thus, the transmission matrix of the GIC is as follows:

1 0
[A] = 0 Y2Ya (3.42)
Y5Ys

Consequently, the conversion function f(s) and the constant take the following values:

YsYs

.. (3.43)

k=1 f(s) =

Assuming that Y,=Y;=Y, = Y,=R"'and Y; = sC, the input impedance Z; , at port 1 will be
Vi 1 _

Z.,= = f(s)EVS = sCR (3.44)

The same result can be obtained if Y5 = R and Y; = sC, whereas if Y, = sC, then Z;; = R.
If the admittance Y, is connected across port 1, the input impedance Z;, at port 2 will be

\%
Zi,2=_2 = i

1
L 1Y,

-1
Z,= % (3.45)
while, if Y, is also equal to sC, then
_ 1
22 = 5 (3.46)

giving a supercapacitor or D-FDNR. The same results are obtained for Z,, if Y5 = R and
Y, =sC.

One important point that should be noted is that, if Y; = sC and Y, = R~! are both con-
nected to the GIC circuit as shown in Fig. 3.16, the overall circuit will be a resonator, simu-
lating a parallel LC circuit. Another observation concerns the connections of the opamps to
the nodes of the Y-subnetwork. Inspection of Egs. (3.40a) through (3.40c) reveals that it is
immaterial which input terminal of opamp 1 is connected to node a and which to node b.
The same is true for opamp 2. We will make use of this circuit in Chapters 4 and 6 to simu-
late inductance.
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3.5.3 Characteristics of IC Opamps

Practical opamps have characteristics that differ from those of the ideal element used in
previous sections. Apart from their open-loop voltage gain, which is noninfinite, their
input impedance and output admittance are not infinite either. There are also some addi-
tional parameters associated with the operation of the practical opamp [10] which degrade
its performance, and the designer should always keep them in mind. In spite of these,
though, the nonideal behavior of the practical opamp does not prevent it from being the
most versatile linear active element in use today.

3.5.3.1 Open-Loop Voltage Gain of Practical Opamps

The dc and very low frequency open-loop voltage gain of most IC bipolar opamps is of the
order of 10° (100 dB), and for MOS opamps at least one order of magnitude lower. In most
practical cases, the error introduced in circuits incorporating opamps is not very signifi-
cant, and the operation at dc can still be considered ideal. This, however, is not true at fre-
quencies above a few hertz.

For reasons of stability of the circuits in which the opamp is embedded, its magnitude
response is shaped such that the falloff rate is 6 dB/octave, as shown in Fig. 3.17(a). The
associated phase response is shown in Fig. 3.17(b). This behavior can be described mathe-
matically as follows:

Ao

1+st

A(s) = (3.47)

where A, is the dc gain and T a time constant that creates a pole at —=1/1. The cutoff fre-
quency is

I

with f, equal to about 10 Hz for general-purpose bipolar IC opamps such as, e.g., the 741.
The frequency f; at which the magnitude of A(jw) becomes unity is the most important
characteristic of each opamp, since it actually denotes its gain-bandwidth (GB) product. We
can explain this as follows.

Gain Ph
dB ase

(dB) I (degrees) 0 Frequency (Hz)
|
|
|
|
|
! fr T

0 i
f. Frequency (Hz)
(a) (b)
FIGURE 3.17

(a) Magnitude and (b) phase response of the opamp (741 type) open-loop voltage gain.
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With w,. = 1/1, Eq. (3.47) gives

A

A(s) = —=2

(9 1+s/w,

and so
. A,
AGw) = —2
1+|:|(_*)_D
Col

Thus, when | A(jw) =1,

and since (w;/W,)* >> 1, we have

whence
wWr = |Agw,

i.e., the gain-bandwidth product—the product of the dc gain and the 3-dB bandwidth. Note
that if w, = 2 T1f;, then f = | A, | f. also.

Clearly, the high gain of the opamp is not available at frequencies higher than about
10 Hz. It should also be mentioned that, as it can be easily obtained from Eq. (3.47), the
maximum gain that can be obtained at the frequency f, using the opamp is

fr

(AWl = + (3.48)

This model will be taken into consideration whenever we examine the performance of var-
ious circuits using opamps throughout this book.

The effect of this single-pole model of the opamp on the performance of the VCVS real-
ized using the opamp is examined in Section 3.5.4. In some cases, when we are interested
in frequencies well above f,, this single-pole model can be simplified by writing Eq. (3.47)
in the following approximate form:

Mgm% (3.49)

3.5.3.2 Input and Output Impedances

The input impedance of the opamp can be defined when measured either between each
input terminal and the ground, or, as differential, i.e., between the two input terminals.
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Although a function of frequency, it is usually considered purely resistive, R;. The value of
R; is around 150 kQ for bipolar opamps, while for opamps using FETs as the input stage or
MOSFETs throughout, it is very high indeed. However, even in the case of bipolar opamps,
since they are always used with negative feedback, the error introduced due to its presence
is insignificant and therefore can be neglected in practice. Similarly, the output impedance
of a bipolar general-purpose IC opamp is of the order of 100 Q, which when the opamp is
used with negative voltage feedback introduces an insignificant error, usually ignored in
practice.

To be sure that these impedances will not affect the performance of the circuit using bipo-
lar IC opamps, the impedance level of the associated circuit should be chosen greater than
1 kQ and smaller than 100 kQ, with 10 kQ being the most appropriate choice. The upper
limit is set by other imperfections of the opamp, which are explained below.

3.5.3.3 Input Offset Voltage Vo

If both inputs of the real opamp are grounded, the output voltage will not be zero in prac-
tice, as would be expected. This is a defect that causes the output voltage to be offset with
respect to ground potential. For large ac input signals, the output voltage waveform will
then be unsymmetrically clipped; that is, the opamp will display a different degree of non-
linear behavior for positive and negative excursions of the input signals. The input offset
voltage V, is that voltage which must be applied between the input terminals to balance
the opamp. In many opamps, this defect may be “trimmed” to zero by means of an external
potentiometer connected to terminals provided for this reason.

3.5.3.4 Input Offset Current I,

This is defined as the difference between the currents entering the input terminals when
the output voltage is zero. These currents are actually the base bias currents of the transis-
tors at the input stage of the opamp (for bipolar opamps), and their effect is the appearance
of an undesired dc voltage at the output. This defect of the opamp can be modeled by con-
necting two current generators at the input terminals of the ideal opamp. This is shown in
Fig. 3.18 for the case of the circuit in Fig. 3.11, which is used to provide 1 + R;/R, voltage
gain. R, is inserted to reduce the effect of the input bias currents as we show below and has
no effect on the signal. If the input voltage V is zero, and assuming linear operation of the
opamp, we may observe the following.

FIGURE 3.18
Current sources I, I, represent the presence of input offset currents.
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The action of I;; causes the output voltage to be (I, = 0)
Vo1 = Rilgg (3.50)

The action of I, assuming I, = 0, will result in the output voltage
Vo, = —HL+ R iR, (3.51)

Then applying superposition when both I, and I, are present, we get the output voltage

R
Vo = Vg1 + Vg, = I5Rf = Ell + ﬁ%' s2Ro (3.52)
1

For this voltage to be zero when I, = I,, which is the optimistic case, the following rela-
tionship between the resistor values should hold:

_ _RiRs
2" R+R, (3.53)
However, even under this condition, when I, # I,, the output voltage will be
Vo = (le1—1g)Rs = I1oRs (3.54)

i.e., nonzero. Note though that without R,, V, = I;R;and, since I, << I; in practice, the out-
put voltage arising from the input bias currents is reduced by including R,.

3.5.3.5 Input Voltage Range V,

Assuming that the imperfections of the opamp due to input offset voltage and input offset
current have been corrected, the voltage transfer characteristic of the amplifier will be as
shown in Fig. 3.19, where V; represents the differential input voltage. It can be seen that the
opamp behaves linearly only in the region of V.

~V,<V, <V,

Yo

b - - =

FIGURE 3.19
The saturation characteristics of the opamp.
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i.e., only for this range of V; can one get the benefit of the full voltage gain of the opamp.
Beyond this voltage range, the amplifier goes to saturation.

Although the nonlinear behavior of the opamp is a cause of concern in the design of
active RC filters, one can get advantage of the saturation characteristic to build analog volt-
age comparators, which are very useful in practice (for example, as zero crossing detec-
tors).

3.5.3.6  Power Supply Sensitivity AV,q /AV g

This is the ratio of the change of the input offset voltage AV, to the change in the power
supply AV that caused it. The change in the power supply is considered symmetrical.

3.5.3.7 Slew Rate SR

The rate of change of the output voltage cannot be infinite due to the various internal time
constants of the opamp circuitry. The slew rate (SR) is defined as the maximum rate of
change of the output voltage for a unit step input excitation. This is normally measured for
unity gain at the zero voltage point of the output waveform.

The SR sets a serious limitation to the amplitude of the signal at high frequencies. This
can be shown in the case of a sinewave as follows. Let

U, = V,sinwt
Then,

do,

= V,,cosuxt
dt m

which becomes maximal at the zero crossing points, i.e.,, when wt = 0, 1, 2m,.... Thus, at
wt=0

du,

Dol = v, (3.55)
dt wt=0
Since this cannot be larger than the SR, i.e.,
SRz V,® (3.56)

it is clear, that for linear operation at a high frequency w, the amplitude of the output volt-
age cannot be greater than SR/ w. Thus, at high frequencies, the opamp cannot work prop-
erly at its full input voltage swing, as it does at low frequencies.

3.5.3.8 Short-Circuit Output Current

This denotes the maximum available output current from the opamp, when its output ter-
minal is short circuited with the ground or with one of its power supply rails.

3.5.3.9 Maximum Peak-to-Peak Output Voltage Swing V,

opp
This is the maximum undistorted peak-to-peak output voltage, when the dc output voltage
is zero.
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3.5.3.10 Input Capacitance C;

This is the capacitance between the input terminals with one of them grounded.

3.5.3.11 Common-Mode Rejection Ratio CMRR

Ideally, the opamp should reject completely all common-mode signals (i.e., the same sig-
nals applied to both inputs) and amplify the differential-mode ones. However, for reasons
of circuit imperfections, the amplifier gain is not exactly the same for both of its inputs. The
result of this is that common-mode signals are not rejected completely. A measure of this
imperfection is the common-mode rejection ratio (CMRR). Expressed in dB, the CMRR is
the ratio of open-loop differential gain to the corresponding common-mode gain of the
opamp. Its value at low frequencies is typically better than 80 dB, but it decreases at higher
frequencies.

3.5.3.12 Total Power Dissipation

This is the total dc power that the opamp absorbs from its power supplies, minus the power
that the amplifier delivers to its load.

3.5.3.13 Rise Time t,

This is the time required for the output voltage of the amplifier to increase from 10 to 90
percent of its final value for a step input voltage. It can be shown simply that ¢, x £, [10.35
(see Section 1.4.1).

3.5.3.14 Overshoot

This is the maximum deviation of the output voltage above its final value for a step input
excitation.

3.5.4 Effect of the Single-Pole Compensation on the Finite Voltage Gain Controlled
Sources

Consider the two circuits in Fig. 3.20. For an ideal opamp, the voltage gains of these circuits
are the following;:

+

Fig. 3.20(a) (noninverting) a, = %?3
1
. N R,
Fig. 3.20(b) (inverting) o = -
1

Assuming that the open-loop gain A of the opamp is finite, the voltage gain G,(s) of the cir-
cuit in Fig. 3.20(a) is written as follows:

Vo _
GN = vl - (357)
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Vio———1+ v, A
— °© R,
) AAAA Vio—AMA - v,
R, +

@ o)
FIGURE 3.20
(a) Noninverting and (b) inverting voltage amplifiers using the opamp
where  is the feedback ratio given by
_ R
B = RR, (3.58)
If A follows the single-pole model, i.e.,
A,w
A(s) = == 3.59
(9 = Sk (359)
substituting for A in Eq. (3.58), we get
AOmC AOO')C AOO')C
= O = .
G S+ W+ BAW, S+ PBALW, o+ AW, (3.60)
On

where we assumed that BA, >> 1, which is quite reasonable in practice.

Applying the same procedure in the case of Fig. 3.20(b), we can obtain, for the gain G,
the following:

_Vo - Rf A
G,_Vi __R1+Rf T+ PA (3.61)
where
_ R
B = R, + R

Then, substituting for A from (3.59), and after some arithmetic manipulations, we obtain

-—-m (3.62)
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It can be seen from Egs. (3.60) and (3.62) that both G, and G, have a single-pole behavior.
This is to be expected, since A(s) behaves similarly. However, the unexpected is that for
equal nominal gains at low frequencies, i.e.,

On = O
the useful bandwidth of Gy, is larger than that of G,. In particular, when
ay =0a, =1

the bandwidth of the noninverting amplifier is double the bandwidth of the inverting one.

3.6 The Ideal Operational Transconductance Amplifier (OTA)

The ideal OTA is a differential-input voltage-controlled current source (DVCCS). Its sym-
bol is shown in Fig. 3.21(a), and its operation is defined by the following equation:

Io = gm(Vl_Vz) (363)

The transconductance g,, can be controlled externally by the current I;. Both voltages V; and
V, are with reference to ground.

The equivalent circuit of the ideal OTA is shown in Fig. 3.21(b). Some simple applications
of the OTA are described below [11].

3.6.1 Voltage Amplification

Inverting and noninverting voltage amplification can be achieved using an OTA as shown
in Fig. 3.22(a) and 3.22(b), respectively. Any desired gain can be achieved by a proper choice
of g,, and R;. It should be noted that the output voltage V, is obtained from a source with
output impedance equal to R;. Zero output impedance can be achieved only if such circuits
are followed by a buffer or voltage follower.

I I
B Vl @ ]

V0o I

! + 8m 2 VzO—e &m (1-V2)
Voo —

O — 0O o, O

(@) (b)
FIGURE 3.21

Ideal operational transconductance amplifier, (a) symbol and (b) equivalent circuit.
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FIGURE 3.22

O]
A/
1 %
(a) Inverting and (b) noninverting voltage gain using an ideal OTA.

3.6.2 A Voltage-Variable Resistor (VVR)

in Fig. 3.23. Since I, = -, we will have the following:

A grounded voltage-variable resistor can be easily obtained using the ideal OTA as shown

(3.64)
Using two such arrangements cross-connected in parallel, a floating VVR can be obtained.
On the other hand, if in Fig. 3.23 the input terminals are interchanged, the input resistance

the creation of the so-called active-C filters discussed later in this book.

will be -1/g,,. Thus, using OTAs, both positive and negative resistors become available
without actually having to build them on the chip. These, coupled with capacitors, lead to
3.6.3 Voltage Summation

FIGURE 3.23

Vio L

rents. These are easily summed as shown in Fig. 3.24 for two voltages V; and V,.
o—>
Grounded voltage-variable resistor.

Voltage summation can be obtained using OTAs, which in effect translate voltages to cur-

—
Zi

Vio————

FIGURE 3.24

Voltage summation.

<l
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It is clear that
Lo+l 1o =10
or

Om1V1i+ OmVo—0OmsVo = 0

Solving for V,, we get

Vv, = g-”‘—lvl+g—m2v2 (3.65)

m3 m3

By changing the grounded input of one of the input OTAs, voltage subtraction can be
achieved. These operations are useful for the realization of transfer functions.

3.6.4 Integration

The operation of integration can be achieved very conveniently using the OTA as is shown
in Fig. 3.25. Clearly,

lo _ Gn

Vo =g = saVi—Va) (3.66)

It follows that both inverting and noninverting integration is easily achieved. Of course, in
all cases, the output impedance of the circuit is nonzero.

If a resistor is connected in parallel with C in Fig. 3.25, the integration will become lossy.
On the other hand, connecting the circuit in Fig. 3.23 at the output of that in Fig. 3.25, the
integration becomes both lossy and adjustable.

3.6.5 Gyrator Realization

The defining equations of the gyrator can be written in the Y matrix form as follows:

I -0, 0] |V,
These equations can be interpreted in the form of an equivalent circuit comprising two

voltage controlled current sources connected as shown in Fig. 3.26. Thus OTAs, being volt-
age controlled current sources, are most suitable for the realization of the gyrator—more

(3.67)

Vlc‘ﬁ + Io
VzG —_ Em Vo

FIGURE 3.25 |

Integration of the difference of voltages V,, V,.

C
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\/] V) g1 ¥,

FIGURE 3.26
Gyrator realization using two VCCSs. o . , )

suitable than opamps, which are voltage controlled voltage sources. Such a circuit using
OTAs is shown in Fig. 3.27. Clearly,

I, = gmV: and 1, = -3 = gy,V,

Then the A matrix, not considering Z, as part of the circuit, will be

o L
[A] = Om1 (3.68)
gm2 0

Thus, the circuit consisting of the two OTAs realizes, in general, the ideal active gyrator
(8 % guo)- In case g, = £, the gyrator behaves as a passive circuit.
With Z; connected as shown in Fig. 3.27, the input impedance Z; is as follows:

Zi

\I—/E -1 (3.69)
1

gmlngZL

If Z, represents the impedance of a capacitor C;, the equivalent inductance L,, will be

C.
L =
U OmOme

(3.70)

3.6.6 Practical OTAs

The versatility of the OTA as an active element, as demonstrated above, makes it very use-
ful in VLSI circuits. Also, discrete IC OTAs in bipolar and MOS technology are available.

I
V, I
1o > +gml b———->—2
_ A
7
I gm2 ¥ [
+
FIGURE 3.27 ’

Gyrator realization using two OTAs.

|__.|
l‘-“
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These practical ICs have certain advantages over opamps as well as disadvantages. Their
advantages include higher bandwidths and simpler circuitry. The former make them more
useful than the opamps in the design of active filters operating at high frequencies (up to
the megahertz region). On the other hand, their simpler circuitry, coupled with the control-
lability of their g,, leads to versatility in integration and tuning.

However, they have some drawbacks. Currently available IC OTAs have a performance
that is limited by certain imperfections, some of which are similar to those explained in the
case of practical IC opamps. Some additional ones, though, need more attention. One
important imperfection is the limited range of input voltage (< 20 mV) for linear operation
[12, 13]. This problem can be solved by using a potential divider at the input terminals in
order to reduce the differential input voltage. This divider, however, reduces the effective
input impedance of the OTA.

Other important imperfections include the finite input and output impedances of the
OTA, as well as the frequency dependence of transconductance g,, [12, 13].

The input impedance can be modeled by connecting a resistance R, in parallel with a
capacitance C;, from each input terminal of the ideal OTA to ground and a capacitance C;,
in parallel with a resistance R;; between the input terminals. When one of the input termi-
nals is grounded the input impedance is simplified being the parallel combination of the
resistances R,, R;; and the capacitance C;. + C;;.

The OTA output impedance is modeled by the parallel combination of a resistance R, and
a capacitance C, connected between the OTA output terminal and the ground.

Finally, the frequency dependence of the OTA transconductance can be approximately
described by a single pole model given by

— _9mo
gm(s) - 1+sT (371)

where g,,, is the value of g, at dc, and T = 1/ w,, w, being the OTA finite bandwidth.
Also, the phase model is often used, which is described as follows:

On(J®) = gnee? (3.72)

In this equation, ¢ = wtis the phase delay with T =1/w, giving the time delay.
Both Egs. (3.71) and (3.72) can be further approximately written as

gm(s) = gmo(l - ST) (373)

These OTA g,, models will be used alternatively in later chapters where the OTA is used in
filter design as the active element.

In spite of all these imperfections, though, careful design can minimize their effect on the
available bandwidth, which remains much higher than that of an opamp. This makes OTAs
very useful for the design of active filters at high frequencies, as shown later in this book.

3.6.7 Current Conveyor [14]

The current conveyor (CC) is a three-port active element classified as a current mode
device. We introduce the ideal element here, briefly. The definition of the ideal CC type 1
(CCI) is given by means of the following mathematical description with reference to its
symbol, shown in Fig. 3.28:
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vyo—Ip 1y
Vxo——p— X

FIGURE 3.28 J_

Symbol of current conveyor, CCL

01
o) =11 0d|i, (3.74)
0

This is the earlier version of the current conveyor, which was followed later by the type-II
current conveyor, CCII, mathematically defined by the following equation:

Iy 00 Uy
v = |1 0 9li, (3.75)
il |ox10|u,

The CCII is a more versatile device than the CCI.
lo— Y By means of this, all previously introduced
active one- and two-port active elements can be

car z realized. As a first example, consider the situa-
20— X tion shown in Fig. 3.29.

If terminal 1 and earth constitute the input
_I_ port, and terminals 2 and earth the output port,
= from Eq. (3.75) we can easily obtain the follow-
ing transmission matrix:

o
00

which clearly is that of an ideal voltage-con-
trolled voltage source.

As a second example, consider the situation in
Fig. 3.30. With Y(Z) and earth representing the

FIGURE 3.29
CClII realizing an ideal VCVS.

1o Y input terminals, and X and earth the output ter-
minals, we can easily obtain from Eq. (3.75) the
car z following:
20— X
T Vi = V2 = |1 0110 (3.76)
L i, |-, |o=1|H,
FIGURE 3.30 Clearly, this equation describes the ideal unity
CClI+ realizing an NIC. gain INIC, as was shown in Section 3.3.1.
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We will consider this active device again in Chapter 12. The reader interested in its appli-
cations to filter design may also be referred for example to [15].

3.7 Summary

In continuous-time active filter design, we employ active elements and passive compo-
nents. The active elements are mostly two-port active building blocks like controlled
sources, NICs, GICs, PICs, gyrators, etc. They all can be realized using opamps and/or
OTAs. However, opamps and OTAs, themselves being special types of controlled sources,
are also used as active elements on their own right.

Because of the importance of these two amplifiers in active filter design, understanding
of their imperfections is absolutely necessary. This can help the designer to avoid problems
that will surely arise in practical circuits if they are not taken into consideration.

The active elements, which were introduced in this chapter, will be employed in the
design of active filters in all subsequent chapters.
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Chapter 4

Realization of First- and Second-Order Functions
Using Opamps

4.1 Introduction

All active elements, which were introduced in the previous chapter, are useful in the real-
ization of filter functions, although some of them are more useful than others. Among
these, the opamp is the most versatile active element in use today up to frequencies of the
order of 100 kHz. As was shown in the previous chapter, it can be used to realize other
active elements, e.g., all controlled-sources, GICs, etc., but it can also be used as a high (in
theory infinite) gain amplifier on its own right. Both of these aspects of the opamp employ-
ment in filter design are exploited in this chapter.

As we shall see in the next chapter, one useful method of designing high-order filters is
to cascade first- and second-order stages. Usually, one first-order stage will be required
only when the filter function is of odd order, the remaining stages being of second-order.
In another method of high-order filter design, multiple feedback is applied in the cascade
connection of low-order stages. If the filter function is lowpass or highpass only first-order
stages will be required whereas, if it is bandpass, bandreject, or allpass, all cascaded stages
will be of second-order. It is therefore fully justified to study first- and second-order stages
using the opamp(s) as their active element(s).

An abundance of circuits realizing, in particular, second-order functions have been pro-
posed over the past 30 to 35 years, some of which are more “suitable” than others. Criteria
of suitability are usually set by the filter designer according to the problem at hand; how-
ever, some are clearly objective. Among these, the following three will be of main concern
to us in this chapter, namely, (a) the possibility that the circuit can realize the specific sec-
ond-order function, (b) its sensitivity to component value variations (defined in Section
4.4), and (c) its cost (number and tolerance of its components both passive and active).
Based on these criteria we have chosen to include in this chapter only a small number of
second-order circuits. This does not necessarily imply that these circuits are the best in all
cases, but the filter designer should not ignore their existence and usefulness.

4.2 Realization of First-Order Functions

Alongside its use in the integrator circuit in Fig. 3.9, the opamp can be also used in the real-
ization of other first-order transfer functions, which are useful in filter design. Such func-
tions are lowpass, highpass, and allpass. Although the lowpass and highpass functions can
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be realized using RC circuits only, the presence of the opamp in the circuit can provide it
with gain and isolation from the circuit that follows it. Thus, the presentation of these cir-
cuits here is justifiable.

4.2.1 Lowpass Circuits

A first-order lowpass circuit is shown in Fig. 4.1(a). Its transfer voltage ratio can easily be
shown to be

Vo, 1/CR,
HE =T = - s7TcR (4.1)
Thus, the circuit can realize the transfer function
a
F = —_— 4.2
(9 = 2 (42)
- L. L
with a= CRl’b " TR
The dc gain is
a__R
b R,

and can be adjusted to any desired practical value.
An alternative circuit is that shown in Fig. 4.1(b), which does not introduce a phase inver-
sion (sign reversal) as does that in Fig. 4.1(a). Its transfer function is

_Vs _ K/CR
H=T = sTcr (4.3)
R,
=1+ =2
where K=1 R
R;
—AMA—
____.Icl____‘
Ry
Vio— AMA—

oV,

FIGURE 4.1
(a) A first-order lowpass circuit and (b) an alternative circuit.
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Equating similar coefficients in Egs. (4.2) and (4.3) we obtain the following design relation-
ships:

K p=2L

.ooa _
CR CR dcgain - = K (4.4)

a=

4.2.2 Highpass Circuits

Both circuits in Fig. 4.2 can realize the first-order highpass function

F(s) = % (4.5)

The transfer function of the circuit in Fig. 4.2(a) is

_ R S
H(S) = -R sT1/CR, (46)

Therefore, following coefficient matching, we get from Egs. (4.5) and (4.6) the design equa-
tions as follows:

R, 1
S = = 47
R bcgR 47)
Clearly, the value of one component will have to be selected arbitrarily.
Similarly, the transfer function of the circuit in Fig. 4.2(b) is
_ Ks
H(s) = s+1/(RC) (48)
and, after coefficient matching, we obtain
R, 1
= = + — = —_—
a=k=1 R b = =5 (4.9)

Here, two components should have their values arbitrarily selected.

R;

FIGURE 4.2
Two alternative first-order highpass circuits.
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4.2.3 Allpass Circuits

Two circuits [1] suitable for the realization of the first-order allpass function,

F(s) = ::%2 (4.10)

are shown in Fig. 4.3.
The transfer function of the circuit in Fig. 4.3(a) is the following:

V, _ s—1/CR

= 0 = _ > < =
1) = ¢ = ~sti/cr (411)

The same holds for the circuit in Fig. 4.3(b), but without the negative sign in front. For both
circuits, coefficient matching gives the following design relationship:

a= — (4.12)

Ry
Ry

R
I C
@

FIGURE 4.3
Two alternative first-order allpass circuits.

4.3 The General Second-Order Filter Function

The second-order filter function, in its general form, is the following:

a,s’ +a,5+ &

F =
© S+Bs+y

(4.13)

Realization of this function using active RC networks is of interest only in the case that

Jy >0.508

i.e., when the poles of F(s) are complex conjugate. Otherwise, when the poles are negative
real, the realization can be achieved using passive RC networks only.
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F(s) can be written alternatively in general “biquadratic” form as follows:

2, W 2
s + s+ w;,

F(s) = K—r—— - (4.14)
s+ =Ps+ ol
p

In Eq. (4.14), w,, and w,, are the undamped natural frequencies of the zeros and poles

respectively, while Q, and Q, are the corresponding quality factors, or Q factors. The zero

or pole frequency is the magnitude of the zero or pole, respectively, while their quality is a

measure of how near the jw-axis is the corresponding zero or pole in the s-plane.
Comparing Eq. (4.14) to Eq. (4.13), we get

Wop = AY (4.15)

Itis common to use w, instead of w,,and Q instead of Q,, and we will adopt these symbols
here, too. In the case of the second-order bandpass filter, w, coincides with the filter center
frequency (when the magnitude response is plotted on a log frequency scale), while the
Q factor determines the relative width of the frequency response with respect to the center
frequency.

Depending on the positions of the zeros on the s-plane, the second-order filter frequency
responses of interest, obtained from Eq. (4.13), are as shown in Fig. 4.4. We will examine
below the most useful practical active RC circuits realizing these functions, taking into con-
sideration mainly the criterion of low sensitivity, which we introduce first.

4.4 Sensitivity of Second-Order Filters

The term sensitivity is used to express the degree of influence of a variation in the value of
one (or more) component on the performance of the circuit in which it is embedded. Vari-
ations in the component values may be due to one or more of the following reasons:

¢ changes in the environmental conditions, e.g., temperature
* component aging
* component substitution due to failure

e component tolerances during the production of the circuit

The less sensitive the circuit is to component variations, the more stable its characteristics
will be and, thus, the more likely it will be to remain within its specifications, regardless of
these changes. Therefore, sensitivity is a major factor in determining how useful a circuit
can be in practice.

Sensitivity measures of greatest interest in the case of second-order filters are introduced
below. Other sensitivity measures, useful mainly in the case of high-order circuits, are pre-
sented in the next chapter.
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FIGURE 4.4
Frequency responses of various useful second-order filter functions.

Let us suppose that we are interested in the variation of the filter characteristics due to a
change in the value of the circuit element x. Writing

H(s) = H(s, X (4.17)

we define the relative sensitivity of H(s) to x as

_0InH
S = dlnx (4.18)
which can also be written as follows:
_oH/H _ x oH
S= ox/x  H ox (4.19)

Clearly, S is a complex quantity. However, if H is replaced by | H(jw) |, we can obtain the
sensitivity of the frequency response to variations in the element value and plot it against
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frequency. Note that the sensitivity S0 s of considerable practical use in estimating the
effect of element changes. Thus, if x changes by p percent, to a first approximation, | H(jw) |
will change by Si'V“' [p percent.

It is also useful to note that at any frequency s = jw.

Si = s +iQ}
_ o

where Q; = x== is the semi-relative phase sensitivity.

dx

The sensitivity of H, as it was defined above, can be calculated for a filter function of any
order; i.e., this definition is not restricted to the case of second-order functions. More suit-
able sensitivity measures for second-order filter functions are the pole, w, and Q-factor sen-
sitivities.

The pole p semi-relative sensitivity is defined by

-_dp_
S'= T (4.20)

and expresses the pole displacement due to the variation in the value of the element x. It is
also a complex quantity in general.

The Q factor and w, sensitivity measures are particularly useful in the case of 2nd-order
bandpass filters. These are defined as follows:

deQ (4.21)

S’ = == (4.22)

The element x in the previous considerations can be passive or active. In the case where
itis active, it can be the open-loop gain of an opamp, the g,, of an OTA, or the gain of a con-
trolled source of finite gain, obtained for example from an opamp using resistive feedback.
In the latter case, its actual gain variation, due to a variation in the open-loop gain of the
opamp, will greatly depend on the nominal value of x.

To show this let us consider the case depicted in Fig. 4.5, where an opamp is used to
obtain the gain k of a VCVS. With

R

B = R+R, (4.23)
we can easily find that
_Vo_ A
k_Vi = T9pA (4.24)
and subsequently
= _dA (4.25)
(1+BA)
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Thus, for given values of A and dA, the actual varia-

Vio——{+ tion dk of k will depend on f. But,

A —o Yo
-1 _1
[3 - RZ - kn
"_——W— 1+ E
R, 1
Ry where k, is the desired or nominal value of k. Substi-
tuting in Eq. (4.25), we get
N ___dA
FIGURE 4.5 dk = (1+ A/kn)z (426)

Opamp used to obtain gain k.

We conclude then that, independently of the sensitivity of Q or w, to k, their actual vari-
ations will greatly depend on the nominal value of k, being small for small values of k, .

This observation has led to the introduction [1] of the gain sensitivity product as the sensi-
tivity measure that takes into consideration the importance of the value of k, when exam-
ining the actual Q and w, variations. Under these circumstances, Egs. (4.21) and (4.22) will
be written as follows:

GS® = SU K (4.27)
GS™” = S°k (4.28)

Since the open-loop gain of an opamp, and to a less extent k, are functions of frequency,
one should take this into consideration in calculating the variations of Q and w,. It has been
shown [2] that the percentage w, variations causes a much larger variation in the transfer
function of an active RC filter (about 2Q times larger) than that caused by the same percent-
age Q variation. Therefore, it is important, when comparing second-order filter realiza-
tions, to determine the percentage change in w,

Sz 2% (4.29)
(*)0

which is caused by the finite bandwidth of the amplifier.

As has been mentioned, the sensitivity measures examined above are suitable for study-
ing the sensitivity of active RC filters of second order. We have also introduced sensitivity
measures concerning the overall transfer function variation when all circuit components,
passive and active, are varying simultaneously. However, these do not give any important
information concerning the sensitivity of second-order active RC filters in addition to the
information given by the sensitivity measures introduced above. Such multiparameter sen-
sitivity measures are suitable for studying the sensitivity of higher-order active RC filters
and are introduced in Chapter 5, where the design of such filters is considered.

4.5 Realization of Biquadratic Functions Using SABs

An active RC circuit realizing a biquadratic transfer function is called a biguad. A single-
amplifier biquad (SAB) is a biquad using one amplifier.
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4.5.1 Classification of SABs

Most SABs can be classified [3] in one of the two general structures shown in Fig. 4.6. In
Fig. 4.6(a) the enhanced positive feedback (EPF) configuration is shown, while in Fig. 4.6(b)
the enhanced negative feedback (ENF) configuration is shown. The passive RC network is
a complex zero-producing section, and it can be of second- or third-order. The input signal
is fed to the circuit by inserting the signal voltage source between the terminal b and
ground in Fig. 4.6(a) and, similarly, between the terminal c and ground in Fig. 4.6(b). It can
be also fed as a current to one of the nodes of the RC passive network, either internal or
external (not to terminals b and c). In some cases, when complex zeros should be realized,
the input signal is also fed through a resistor connected to the common node of R, and R,
(R andR,").

A SAB is called canonic if the RC network employs two capacitors only, since this is the
minimum number to provide a biquadratic transfer function. However, it can employ three
capacitors, as it is the case with the RC subnetwork being a twin-T.

The term enhanced stems from the fact that the resistive feedback by means of R,, R, or
R., Ry affects the position of the complex poles of the overall function, moving them on a
circle towards the jw-axis.

An important property may be possessed by the two configurations as they appear in
Fig. 4.6 if the following conditions are satisfied:

1. The RC networks are the same but with the respective connections of terminals
b and c to earth and the opamp output interchanged, as is suggested in the figure.

2. If R, is written as
R, = (n—1)R, [Fig. 4.6(a)] (4.30)
then
R, = (n=1)R, [Fig. 4.6(b)] (4.31)

where 7 is a positive number greater than one.

a [
«| RrC gm
R}
bt A
+ +
+— A
< R 24 re |
R,
X3
- @) ®)

FIGURE 4.6
(a) The SAB EPF and (b) ENF configurations.
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Under these conditions, the two configurations are said to be related by the complemen-
tary transformation (CT) [4]. The important characteristic of this situation is that the two
circuits have identical poles and same sensitivities.

The process of applying the CT is the following: the terminals of the feedback network,
which are connected to the output terminal of the opamp in the initial circuit, are connected
to ground, and those connected to ground in the initial network are now connected to the
opamp output terminal. At the same time, the opamp input terminals are interchanged.
This is shown clearly in Fig. 4.7. It should be mentioned that with the application of the CT
an ENF biquad is transformed to an EPF, and vice versa.

Application of the complementary transformation to a useful circuit gives rise to another
that may also be useful. This idea has been successfully used [3, 4], and many SABs have
been obtained that have interesting properties.

The SABs we shall present below will belong to one or other of the configurations in
Fig. 4.6, and mostly they will be canonic. These are among the most useful ones in practice.

4.5.2 A Lowpass SAB

The most popular second-order lowpass circuit is that of Sallen-Key’s [5] shown in Fig. 4.8,
which employs an opamp in an arrangement of a VCVS with gain G. Clearly, it belongs to
the EPF class of SABs. Its transfer voltage ratio, obtained by analyzing the circuit, is as fol-
lows:

H(S) - 20 _ G/(C1C2R1R2) (4 32)
Vi 2,01, 1 ,1-Go 1
[Rlcl R,C, chzD RR,C,C,

where
-1+ R
G=1+ R,
AMA =
SIS g
L 4 Rb
€ 3p, G R,
id MW
— Cl‘ ——
3 e
+ +
—9 Rl
AMA
: 1
%R' éR’ s
L X
@ ®)
FIGURE 4.7

Application of the complementary transformation.
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FIGURE 4.8
The Sallen-Key second-order lowpass circuit.

The realization of the second-order lowpass function,

K

F(S) = 524-[3—3-}-\/

(4.33)

by this circuit can be obtained by matching the coefficients of equal powers of s in Egs.
(4.32) and (4.33). Following this, one obtains the following:

1,1 ,1-G_

= 4.34
R.C, RC, RC, P (4.342)
1 -y (4.34D)
G
ol (4.34¢)

Since the number of unknowns is larger than the number of the equations, some compo-
nents will have to be selected arbitrarily. One popular choice is the following:

R,=R, =R and G = 1(R, = ) (4.35)

With this selection, one takes advantage of the whole bandwidth of the opamp, i.e., up to
frequency fr. Substituting in Eqs. (4.34), we get

1
= 4.36b
R’C,C, Y ( :

with the restriction that K =y, which is not usually a problem in filter design.
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From these equations, the following capacitance values are obtained:

_ 2
C, = _RB (4.37a)
_ B

As an example, consider the realization of the second-order Butterworth lowpass filter
function

1

F(S) =
S+ .25+ 1

(4.38)

Selecting R = 1 the (normalized) values of the passive components of the circuit in Fig. 4.7
will be as follows:

R=R =1 (4.392)
C, =2 (4.39b)
c,= X (4.39¢)

The circuit can be denormalized to a cutoff frequency w, and an impedance level R,. Two
sets of passive component values can be the following:

Set 1 Set 2

_ 2 _ 2
Cl_wCRO Cl_ﬁ,
1 1
C, = C, = —
* 2R, 27 2R,

In both cases, a proper value for R, (in order to avoid dc offset voltage in the opamp output)
will be

R, =2R,
while R, = o,
For example, if R, = 10 kQ, and the desired cutoff frequency is 1 kHz, one finds the fol-

lowing:
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Set 2

Set 1
b - o 10t L
R, = R, = 10 kQ R =R, = =1.59Q
21x10°
2
C, = 2 22.5nF C, = £24 = 141.4 pF
2mx10°x10" 10
_ 1 _ _ 1 _
C,= ——= =1125nF C, = = 70.71 pF
2./2mx10°x10" J2x10
R, = 20 kQ R, = 3.18Q

Clearly, the values in set 2 are not practical, but they can become so by raising the imped-

ance level to 10 Q. Then we will have:

R, =R, =159 kQ
C, = 14.14 nF

C, = 7.071 nF

R, = 31.8 kQ

Using Egs. (4.27) and (4.28) the w, and Q sensitivities with respect to variations in the pas-
sive component values (passive sensitivities) are found to be as follows (w, = JY,

Q= JW/B):
Q:O

mO:S::O:O Sgl:SR

W, _ 1
SRl, R, C1,Cp — —é a
K=%R=0

This design is optimum with respect to passive sensitivities, but it is not optimum when

variations of the open-loop gain of the opamp are taken into account.
The sensitivity of this circuit has also been studied for other design approaches. For

example, selecting

R,=R, and C,=¢,
requires
1 B
G=3—-==3--2
N

Although the w, sensitivities remain the same, the corresponding Q sensitivities increase
considerably, becoming proportional to Q [6]. Thus, this design is not useful in practice.
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Another design approach, followed by Saraga [7], starts with the requirement to mini-
mize the sensitivity of Q with respect to variations in the open-loop gain of the opamp
(active sensitivity). This approach leads to the following component values:

@]
¢
1
5
.<
(@]
N
1
_I—‘
P
1
<™
&9
11
-
®
1]
wih

Although this design is optimum with respect to Q active sensitivity, it is not optimum with
reference to Q passive sensitivities. We can find an overall optimum design with G between
1 and 4/3 taking into account the expected maximum variations both of passive and active
components [6, 7].

4.5.3 A Highpass SAB

AN A useful circuit is the Sallen-Key [5]
6 | & belong tothe EPF cass e,
Vo— }——] oV, Clearly, this circuit has the same
topology as the Sallen-Key lowpass
SAB, and it can be obtained from the lat-
ter by applying the RC:CR transforma-
tion to the RC section of the lowpass
circuit. According to this transforma-
: tion, each resistance R, in the lowpass
circuit is replaced by a capacitance C;; of

FIGURE 4.9 1
The Sallen-Key highpass SAB. value

Normalized values are considered to apply in this transformation. Substituting R for
1/sC; and sCy; for 1/R;;, i =1,2 in Eq. (4.32), we obtain the following transfer voltage ratio
for the highpass circuit in Fig. 4.9:

H(s) =

\Y;

Vo _ GS (4.40)
Vi 2.0 1 1 .1-G; 1

s + + + S +

ERZCZ R2C1 RlC1[| R1R2C1C2

In Eq. (4.40) R, C,, i = 1,2 are those in Fig. 4.9.

This result can be easily verified by a straightforward analysis of the circuit in Fig. 4.9.
Clearly, the two networks, lowpass and highpass, have the same poles and therefore the
same Q and w, sensitivities.
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As an example, the normalized component values of the Sallen-Key highpass circuit real-
izing the second-order Butterworth highpass filter function

F(s) = 71 }25+ . (4.41)
will be the following:
Ch=Cp=1
Ri = —

Ron :'\[2

These values are obtained by applying the RC:CR transformation to the corresponding
component values of the Sallen-Key lowpass filter, which are given by Egs. (4.39).

Of course, the value of G remains unchanged, i.e., G = 1. The highpass circuit can be
denormalized to an impedance level R, and a cutoff frequency w, in exactly the same way
as it was explained for the lowpass circuit.

4.5.4 A Bandpass SAB

An active RC circuit [8], useful in the realization of a second-order bandpass function is
shown in Fig. 4.10. Clearly, this circuit belongs to the ENF class of SABs.
Assuming that the opamp is ideal, the transfer voltage ratio of the SAB is as following:

hs

H(s) = Vo _ (4.42)
V, 52+[pl+C2—K 1 Os + 1
[R2C102 R1C; RlRZClc2
|1
11
G
R,
——AAAN—¢
Ry G
OT_W_H | -
% v,
R, R

.|||.4

FIGURE 4.10
A bandpass SAB.
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where

_1+K _ Ry
h = RC, K = R, (4.43)
The second-order bandpass transfer function
F(s) = —=— (4.44)
S +Bs+y

can be realized by this SAB to within a constant multiplier as the voltage ratio -V, /V,, if we
rewrite F(s) as follows:

as

F(s) = 5
s +[(n+1)B-np]s+y

(4.45)

where 1 is real and positive.
Let

R G
TR 17 G

Then, coefficient matching between Egs. (4.42) and (4.45), after some simple mathematical
manipulations, gives the following:

n= Q(q+1) é—l (4.46a)

K =2 [5 44
g (4.460)
R,C, = J% (4.46¢)
R,C, = J\-/Ta (4.46d)
R,C, = —— (4.46¢)

~yrq
Clearly, the Q-factor sensitivity of the SAB is affected by the choice of 1, which has to be as
low as possible for low Q-factor sensitivity.
In an attempt to minimize the Q-factor sensitivity, we may show, using Eq. (4.46a), that
the value of n is minimal for any 7, if

g=1
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i.e., when

Then,

n =2Q.r-1 (4.47a)

which, depending on r, can be (within the practical limitations) as small as it is desired.
With this choice of g, the rest of the design Eqs. (4.46) become as follows (C, = C, = C):

K = %ﬁ (4.47b)
= Ir

R,C = [y (4.47¢)

R,C = —— (4.47d)

e

Since Eqs. (4.47) are not sufficient to give unique component values, the designer should
select r and one of R,, R,, or C as well as R, or R, taking into consideration the opamp spec-
ifications.

The w, and Q-factor sensitivities to variations in component values, assuming an ideal
opamp, are given in Table 4.1.

TABLE 4.1
w, and Q-Factor Sensitivities (C; = C,)

Component x; S: ° S&:
© 3 b
R, - -3+ 2Q.F
c = Q-3
o« 3 ey
K 0 2Q./r-1

Clearly, the value of r has to be very small, but since 7 in Eq. (4.47a) should be positive for
stability, the following condition must hold:

1
Jr> 50 (4.48)
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Fleischer [9] has shown that, when taking into consideration the effect of variation of the
open-loop gain A(s) of the opamp on w, and Q variations [assuming A(s) = w;/s], the
approximately optimum value of r is given by

(o)
r= 0.25((:’—): o (4.49)
R C

where 0y ¢ and 0, are the standard deviations of the passive elements (assumed equal)
and of the gain bandwidth product w; of the opamp, respectively. In fact, the value of r
need not be less than 1/60, which results in practical values of the components R;, R,, R,,
and R,. An analogous optimization approach followed by Daryanani [6] leads to a value of
r very close to that given by Eq. (4.49).

Some important features of this SAB are the following;:

a. Q factor, and hence bandwidth, can be varied independently of w, by varying K.

b. Successive stages can be cascaded without the need for isolating stages. This
also holds for the SABs in Figs. 4.8 and 4.9.

c. All capacitors in all cascaded stages can be designed to be of the same value.

d. Any source resistance can be absorbed by R, to avoid errors in the frequency
response. This is true for the SAB in Fig. 4.8 but not for the SAB in Fig. 4.9.

e. Itis easy to reduce the output voltage at the center frequency to avoid bringing
the opamp to the nonlinear region of its characteristics, i.e., to saturation, even
for small input signals. Clearly, at the center frequency, the output voltage will
be, from Eq. (4.42),

- hQ
VO‘ - Uovi‘wo

Wo

where & is given by Eq. (4.43). This value can be quite high, even for moderate
Q. The way to reduce this voltage is to split R, into two others, R';, R";, as shown
in Fig. 4.11, such that

Rr 1 Rn 1

R, = —1°1
1 Rll+ R”l

This will not affect the shape of the frequency response, i.e., w, and Q.
R, R}
RiRy

Ri' Rl:R_i';iT

<

X °

FIGURE 4.11
Some transformation to reduce the output voltage at the center frequency without altering the shape of the
frequency response.
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f. The ratio w;/w, in Eq. (4.49) gives the value of the amplifier gain at the center
frequency of the filter. Since the sensitivities depend on the value of , amplifiers
with different w; will affect differently the performance of the circuit. Thus, a
two-pole one-zero frequency compensated opamp will extend the useful range
of the filter [9] further than that corresponding to the use of the 741-type opamps.

The form of the transfer function remains unchanged if R, and R, are interchanged with

C, and C, respectively. However, in this case, feature d explained above is not applicable, if
the signal source impedance is not zero. The same is true for feature e.

Example 4.1
Consider the use of this SAB to realize the function

0.1s

F(s) = ————
S+0.1s+1

with the center frequency at 10 krad /s and impedance level at 10 kQ.
Clearly, the normalized w, and the Q-factor values are as following:
w=1 Q=10

0

Selecting the practical resistance spread to be 1/100 results in r = 102, which leads,
through Eq. (4.47a) to

n=2x10x10"-1 =1

Therefore,

R 1 1 2
K === =x10" = 1
.~ 10 0

Selecting C = 1, we get from Eqs. (4.47)
R,=10, R,=10"
and from Eq. (4.43),

2
o 1+10

—— =101
10" %1

One set of denormalized component values can then be as follows:
C,=C,=10nF
R,=1kQ, R, =100 kQ, R, =1kQ, R, =100 kQ
To achieve unity gain at the center frequency, we observe that since
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hQ - 10.1x 10= 101
(‘00

we should arrange that

R, 1 R4URY o
R,+R", 101 R,+R", Ry =1k
Solving then for R'; and R", we get

R, =101kQ, R"; =101k

Let us now look for the optimum design taking into consideration the effect of the finite
gain bandwidth product w; of the opamp. Assuming

O, = 0.25 Or c = 0.005
and w; = 21 x 10° rad /s, we obtain from (4.49)

(=025 10'x025 _ 1
“T2mx10° x 5x 10° 50

To simplify the calculations a little, we may choose, with no problem,

1

r =
4

©

Then, following the same procedure as before, we obtain the following set of denormalized
values:

C,=C,=10nF, R, =10/7kQ (R, =1027kQ, R", =1.449 kQ),
R,=70kQ, R, =2kQ, R, =754 kQ

Note that R, and R, can be denormalized at a different impedance level from that for C,R;
i=12.

4.5.5 Lowpass- and Highpass-Notch Biquads

Friend [10] has introduced additional resistors to the SAB in Fig. 4.10, by means of which
the input signal is added directly to the input terminals of the opamp as is shown in
Fig. 4.12. Clearly, the circuit remains canonic, but it is now possible to realize complex zeros
in addition to the complex poles. Depending on the values of these additional components
all types of SABs except the lowpass are obtained, namely:

Bandpass when RyR,R. =
Highpass when R, =0
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FIGURE 4.12
The generalized SAB developed by Friend.
Lowpass notch when Ry=o
Highpass notch when R, =0
R,R, =

Allpass when
Friend’s generalization of the circuit in Fig. 4.10 has led to the design of the popular STAR

building block [11]. It should also be mentioned that, if in addition to R¢,R; = o, also R, = o

and R; = o, the circuit is reduced to that shown in Fig. 4.13 [12], which is studied separately

below. Of the other four cases, the bandpass has already been studied above. The highpass
is less economical than that of Sallen and Key, which we have examined already, and there-
fore we will not elaborate on it. This leaves us with the two notch cases, which are now

examined a little further.

4.5.6 Lowpass Notch (R; = )
For convenience in the analysis of the circuit we use conductances (G;) instead of resis-

tances (R,). Assuming that
(4.50a)

R, = @
(4.50b)

FIGURE 4.13
A simple allpass biquad.
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Ke= 53a (4.50¢)
Gp
K, = 4,
o= 5as, (4504)
c,=C,=C (4.50e)

and an ideal opamp, straightforward analysis gives the following transfer function:

K S+ KcGi(G7 + Gy)
¢ 2
\é’ T, 126, K,2GA+G > G (451
i 2 2 b 7 1
s+ [—C—— ———-C—i)]s+ Ez(Gz—KbGﬁ

under the conditions

GC(2G7 + 2G2 + G5) = G4(Ga + Gb) (4523)
G, G,
(—3—2 = G706, (4.52b)

(4.53)

which corresponds to a lowpass notch filter, provided that d <e/y . This latter condition is
in fact satisfied since, from the circuit transfer function, Eq. (4.51),

G,+G,
KC < KCGZ - KbG7
Equating coefficients of equal powers of s in Egs. (4.51) and (4.53), we get the following four
equations:

d = K, (4.54a)
o = KGi(G+Gy) (454b)
C2
2G, Ky(2G,+G,)
_2G, Ky(2G,+Gy) 4.54
5 = . (4.54¢)
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G
y = E:ZL(GZ_KbGﬂ (4.54d)

G, =Gy + Gs

With the addition of Egs. (4.52a) and (4.52b), we have only six equations—not enough to
determine the values of all passive components of the circuit. We may then make the usual
choices, as in the bandpass case.

c=1 (4.552)
r = S2ngos Jor (4.55b)
G, Wr Or ¢

where w, is the magnitude of the pole frequency.
Thus, the set of the necessary equations to determine all component values is completed.

4.5.7 Highpass Notch (R, = «)

A highpass notch SAB is obtained from the general circuit in Fig. 4.12 if R, = c. Working
with conductances as previously, and assuming ideal opamp, the transfer voltage ratio of
the circuit is found to be

G
Kcsz + E—;(KCG2 - GG)

\\—ig - 2G, K G (4.56)
| S| TG+ 26y s+ (G- KiGo)
under the condition
Ge _ Gat 2G (4.57)

C
Kbi ~ 2G,+Gq

where G, K,, K,, and C are given again by Eqs. (4.50b, ¢, d, e).
This transfer voltage ratio is again of the form of Eq. (4.53), but with d >e/y, since

S

KCGZ_GG _ Kc
GZ_KbGG - CGZ_Kbc;6

G,—
K>

Therefore, the SAB can realize a highpass notch filter function. The design equations can be
found as it was explained above, in the case of the lowpass notch function.

4.5.8 An Allpass SAB

Allpass biquads are useful in the realization of a high-order allpass function as the cascade
connection of second-order sections, the transfer functions of which have the form
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F(s) = S=Bs+y (4.58)

Such a function is the (n,n) Padeé approximation of the function e~ [13].
A simple biquad [12] suitable for such a realization is shown in Fig. 4.13. Its transfer volt-
age ratio, assuming ideal opamp is as follows:

g2 Ye - . LRRC; R, C:C;, I RRCC,
TV sz+—]LCl+C2 + 1
R, C,C, = RiR,C,C,

o B A
? (4.59)

where

Ry

K =
R.+ R,

It can be shown that as the pole Q increases, so does the ratio r =R, /R;. For a given resis-
tance ratio #, the maximum value of w,/ g, where -0, + jw, are the poles of F(s) in Eq. (4.58),
achieved when C, = C,, is the following;:

E% = -1 (4.60)

I"max

Thus, depending on the maximum acceptable range of resistance values, a limit is set on
the position of the poles of F(s) which are realized by this network.
Letting C, = C, = C in Eq. (4.59), the transfer function becomes

g{&aL_LJ 1

_V, RRC RCI RR,C?

H(s) = i K o2, T (4.61)
R.C" R,R,C?

Equating coefficients of equal powers of s in Egs. (4.58) and (4.61) we obtain the following
component values:

— (4.62)

Py
1]
I'm
ey
|
N
Py
< |,
N
Py

with

K =
R.+ R,

Functions with higher w;/ 0, ratios can be realized by this network by connecting an addi-
tional resistor from the noninverting input of the opamp to the output, as was mentioned
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above in connection with Friend’s work. Although this change makes the circuit more flex-
ible, at the same time it increases its sensitivity to component values.

With or without this additional resistance, the network cannot realize a function whose
poles and zeros are not equidistant from the origin in the s-plane. In such a case, other
biquads [12, 14] should be used.

Another observation is the following: if the positions of resistors R, and R, are inter-
changed with those of capacitors C; and C,, respectively, the resulting network is also an
allpass biquad with a similar transfer function. As the reader can similarly show, the high-
est 0,/ 0, ratio is also given by Eq. (4.60), achieved when R, = R, with r = C, /C, this time.

A drawback of the circuit is its gain, which, given by K in

R, Eq. (4.59), is lower than one. One way to increase the value of
AN K is to reduce the amount of the output voltage V, fed back to

G, the input by means of R, and C,. In practice, this may be
4| '—0 achieved by means of a potentiometer as shown in Fig. 4.14.

Thus, the value of K becomes

K' =

<
QX

where a is the potentiometer setting, this being between zero
= and one. Depending on the value of a, the circuit gain can be
even greater than one. Naturally, the potentiometer resis-
FIGURE 4.14 tance must be low with respect to R, and 1/ wC,.
A practical way to enhance the Finally, as can be easily seen from Eq. (4.59), if the coeffi-
gain of the SAB in Fig. 4.13. . . . R
cient of s in the numerator is made equal to zero, the circuit
can be used as a bandstop symmetrical notch biquad realizing
the function

2 2
s+ w
F(s) = Ke—"
S"+Bs+ w,

displaying the same behavior at zero and infinity.

As an example, let us use the circuit in Fig. 4.13 to obtain a delay of T = 10 ms by means
of the realization of the second-order Padé approximation written for our purpose as fol-
lows:

1’ —61s+ 12 _ s —600s + 12x10"
1’ +61s+12 & +600+ 110"

F(s) =

Selecting a convenient value for C, e.g., C = 0.1 uF, and using Egs. (4.62), we get the follow-
ing:

R, = 800 - 2540
2x12x 10 x 10
-—2 _-333K
600x 10

©1999 CRC Press LLC



_ 600° _ 3

C12x1d

ol

The actual values of R, R, can be obtained either by assuming a suitable value of K or by
optimizing some other circuit characteristic, e.g., the opamp offset. In the latter case, select-
ing R,/ /R, = R, we can obtain

R, =120 kQ R, =40 kQ

resulting in a K= 0.25. However, this value of K can become unity by means of a 1 kQ poten-
tiometer connected as shown in Fig. 4.14.

4.6 Realization of a Quadratic with a Positive Real Zero

In realizing certain lowpass non-minimum phase delay functions [14] as the cascade con-
nection of second-order stages, one is involved with the realization of a quadratic with a
positive real zero, i.e., with the function

k(o —s)

F(s) = s +PBs+y

(4.63)

An RC active network, which can realize F(s) using one operational amplifier [15] and
which has very low sensitivity to variations in the values of its components, is shown in
Fig. 4.15. Its transfer voltage ratio is

9.8 g
Vo _ C,L0,C, (4.64)
V, Sz+gC1+Czs+ 92 [ +g_aDg +g}
> C,C, C.C, g e
i1
[
C: R
—— AAAN—

R G

Vio— AW ———| |— A

Ra

FIGURE 4.15
An active RC network for the realization of F(s), Eq. (4.63).
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The values of the components of the network realizing F(s), Eq. (4.63), can be found by
equating coefficients of equal powers of s in Egs. (4.63) and (4.64). Since the number of the
unknowns is larger than the number of the resulting equations, the values of any two com-

ponents can be selected arbitrarily. Selecting, for example,

coefficient matching in Eqs. (4.63) and (4.64) gives the following:

a= gigz B=29, y-= gz[%‘ﬁg—ggﬁga}

Solving for the unknown component values gives the following:

g =k
_B
9 = >
g, = 2y —(B+2a)k
: B
9y = 2y —(B+2a)k

20

k=0

(4.65a)

(4.65b)

(4.65¢)

(4.65d)

Clearly, for positive values of ¢, and g,, the following conditions should hold between the

coefficients of the transfer function:

(4.66)

2y = k(2a +pB)
On the other hand, if C; # C,, one can show that, for the component values to be positive, k
should be
k< _.....—y...._
a+p <,

It can also be shown that the Q-factor sensitivities are as follows:

o

Sgl’ Sga’ (_Sgb) < %
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It can be seen that the Q-factor sensitivities are extremely low and independent of the
Q factor. Also, the Q factor is insensitive to variations in the values of the two capacitances,
if C; = C,. Therefore, this condition can be the starting point in the design of the stage.

As an example, consider the realization of the following function:

0.562§ 5.902-s)
& +4.117 + 6.9963

F(s) = (4.67)

which is part of a delay function. Selecting
Cl = C2 = 1

we have inequality (4.66) satisfied. The values of the other components are calculated by
means of Egs. (4.65). The circuit, denormalized to an impedance level of 10°/3 Qand a 0.1 s
delay, is shown in Fig. 4.16.

4.7 Biquads Obtained Using the Twin-T RC Network

The twin-T (TT) RC network is shown in its simplest version in Fig. 4.17a. Its transfer volt-
age ratio V,/V is as follows:

Vo Ta T (4.68)
1 S+Zs+=
T 2

where T = RC.

Thus, the TT in Fig. 4.17(a) processes a pair of transmission zeros on the jw-axis or, in
other words, it is a bandstop circuit. This pair of zeros can be moved out of the jw-axis, if a

0.3 pF
I
[

161.9kQ
M—2

592.2kQ
Vio—AMA—

FIGURE 4.16
Realization of F(s), Eq. (4.67), denormalized to 10°/3 Q and 0.1 s delay.
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FIGURE 4.17

(a) The TT network and (b) the Bridged-TT network.

resistor is used to bridge the terminals 1 and 2, as shown in Fig. 4.17(b). In this case, the new
transfer voltage ratio will be the following:

T 2
x—z: 4+ 2 1T 2 (4.69)
1 SZ+ ms+ +2m
T T

It can be seen from Eq. (4.69) that the transmission zeros have moved inside the LH of the

s-plane. Either form of the TT shown in Fig. 4.17 (and, of course, more complicated ones [16])

can be used in conjunction with active elements to realize various biquadratic functions.
As an example, consider the circuit in Fig. 4.18. If

+

D)=
D=

1
Ry
analysis of the circuit, assuming ideal opamp, gives the following voltage ratio:

_ _GE+w) (4.70)

0
sz+—Q—°s+w§

Vo

R;

oV,

FIGURE 4.18
Example circuit.
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where

-1
R,R,C?

G=1 = (4.71)

2

O£

Thus, a useful bandstop circuit with zero output impedance has been obtained using the
TT. A number of other biquads can be obtained using other forms of TT, and the interested
reader is advised to refer to other sources [1, 16] for details.

4.8 Two-Opamp Biquads

A large number of two-opamp biquads can be obtained by a technique introduced below
for the enhancement of the Q of certain SABs. Other useful two opamp biquads have also
been suggested which possess interesting characteristics. In addition, very low sensitivity
biquads may be obtained if the inductance of the LCR biquad is simulated by the two-
opamp GIC [17, 18]. Although inductance simulation is explained in detail in Chapter 6,
we include this possibility here because of its simplicity. In what follows, we examine first
this possibility and then some other useful two-opamp biquads.

4.8.1 Biquads by Inductance Simulation

In Fig. 4.19, three possible biquads, obtained by combining an inductance, a capacitance,
and a resistance, are shown. All of them have the same poles with w, = 1/ JLC and
Q=RJ/C/L.

Substituting the component L in Fig. 4.19(a) by its GIC equivalent (see Sections 3.5.2 and
6.4), the corresponding active RC circuit in Fig. 4.20 is obtained without the buffer amplifier
of gain k.

If the signal source is removed and placed at node b feeding R in series, while node a is
earthed the bandpass biquad equivalent to that in Fig. 4.19(b) is obtained. Finally, to obtain
the highpass equivalent, the signal source is placed between a broken node at ¢ and earth,
while nodes a and b are earthed.

It can be shown by referring to Fig. 4.20 that the value of the equivalent inductance is ide-
ally as follows:

RiRsRy
R,

Leg = C (4.72)

(@)

FIGURE 4.19
RLC biquads: (a) lowpass, (b) bandpass, and (c) highpass.
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FIGURE 4.20
Lowpass biquad.

Substituting for L, we obtain the following w,and Q values:

W, = —— = 1 (4.73)

JLC  C(RR:R/R,)"?

R

Q= wCR= m (4.74)
In designing these filters, it is usual to select
R,=R,=R,=RL=r (4.75)
when, from Egs. (4.73) and (4.74),
rC = (% (4.76)
and
R= Qr 4.77)

The Q and w, sensitivities to variation in the passive component values are the following:

On the other hand, if we consider matched opamps with the one pole model describing
their frequency response, we can determine that the error of w, is approximately [16] the
following:
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AW, ;%W (4.78)
W, oy

One important drawback of these biquads is that their output is not taken from a zero
impedance node. Therefore in order to cascade such stages for realizing higher order filters
isolation amplifiers should be inserted between successive stages, as shown in Fig. 4.20.

Inductance simulation can also be applied to obtain notch biquads, both lowpass (LPN)
and highpass (HPN) notch. Suitable LCR biquads are those shown in Fig. 4.21. For the all-
pass notch, i.e., with w,, = w,, C, and L, in these networks should be deleted. The substitu-
tion of L by its GIC equivalent in Fig. 4.21(a) is straightforward, as it was achieved in the
case of the lowpass biquad in Fig. 4.19(a). However, in the case of the HPN in Fig. 4.21(b),
both L, and L, are simulated using the same GIC, as explained in Chapter 6. We do not
include the active equivalents of the LPN and the HPN here, leaving them to the reader as
an exercise.

Finally, the allpass biquad using inductance simulation is clearly a three-opamp biquad,
and consequently it does not belong to the two opamp class of biquads. A simulation is
given below.

4.8.2 Two-Opamp Allpass Biquads

The allpass biquadratic function

2
F(s) = S=BS*Y (4.79)
S +Ps+y
is written in the following form:
- Bs _ _
F(s) = 1-25—>— = 1-2F(s) (4.80)
S"+fBs+y
where
Fi(s) = 57— Bs (4.81)
S +[Bs+y
L Ly
[ 4
g © T R C, L, R
o . —o o . o
(@ )
FIGURE 4.21

LCR notch biquads: (a) LPN and (b) HPN.
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Then, F(s) is realized by any bandpass SAB, and F(s) is formed by using a second opamp
to perform the summation in Eq. (4.80). Such an allpass active circuit is shown in Fig. 4.22,
where the SAB in Fig. 4.10 has been used to realize F,(s).

The merits of the SAB in Fig. 4.10 can be used advantageously in the realization of the
high-Q biquadratics in a high-order allpass function.

4.8.3 Selectivity Enhancement

There is a category of active RC networks with inherently low sensitivities but requiring
excessive spread in component values, even when they realize relatively low (~10) Q val-
ues. These networks employ negative feedback exclusively around a finite- or infinite-gain
amplifier.

To improve the selectivity of such circuits, one could employ positive feedback [8, 19],
but this leads to sensitivity degradation of the circuits. We describe another method here,
by means of an example, which does not lead to severe sensitivity degradation if it is
applied carefully.

Consider the bandpass circuit in Fig. 4.23. It can be shown that the Q value of this circuit
is the following;:

FIGURE 4.22
A two-opamp allpass biquad.

VoA

FIGURE 4.23
A low-Q bandpass circuit.
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191 C,C,
= (21_=1=2 4.82
N 9(C, + C2)2 ( :

We now introduce a VCVS of gain K at node N as shown in Fig. 4.24. Note that there are
now available two zero impedance outputs.
By straightforward analysis, we can find that

HEIER
Vo _ me (4.83)
Vi &+ &S_l_ 019>
KC,” KC,C,

and

<
joi]

- glgz/ClCZ (4 84)
24+ %2 o, 9
KC,” T KC,C,

<

i.e., the simultaneous realization of a bandpass and a lowpass function both having the
same poles. From Eq. (4.83), the new Q factor will be

KC,0,
"= /— (4.85)
Q C.0,

It can be seen that for the same component values in the two circuits, there is an enhance-
ment in Q since

Q _ C
S - %HEEJR (4.86)

Since the introduction of the VCVS affects both the Q and w, values, their corresponding
sensitivities will be increased. However, if the VCVS is realized by means of an opamp, and
the value of K is very low (e.g., unity), its effect on the sensitivity will not be significant.
The Q enhancement technique suggested above can be applied to a large number of cir-
cuits [20-22]. In all cases, the availability of the second zero-impedance output is an advan-

11
G
g2
——AAAN—e
21 G
¥ N v, - —o Ve
a

.|||

FIGURE 4.24
The enhanced-Q circuit.
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tage. Note that, if the positions of resistors and capacitors in Fig. 4.24 are interchanged, the
second transfer function of the network will be highpass instead of lowpass.

It is interesting to note that a circuit due to Bach [23] can be obtained from the Sallen and
Key lowpass circuit using the Q enhancement technique. Thus, assuming that the gain of
the voltage amplifier in the Sallen and Key filter is unity, Fig. 4.25(a), introducing an addi-
tional unity gain VCVS at node A, Bach’s circuit in Fig. 4.25(b) is obtained.

Of course, this does not imply that the respective components in the two circuits have the
same values. Applying the RC:CR transformation, the corresponding highpass circuits are
obtained.

i
{
1

R; R, Ry R,
Vio—AAAN— oV,  Vio—AAAN— oV,
A A
G

T

(9}
-
a—

@ )

FIGURE 4.25
(a) Sallen and Key and (b) Bach’s circuits.

4.9 Three-Opamp Biquads

The use of three opamps to realize second-order filter functions leads to multiple-output
biquads with the additional advantage of versatility in that w,, Q, and the filter gain can be
independently adjusted. Although they are not without problems, as we shall see later,
technology has produced three opamp chips ready for use in realizing biquadratics.

The poles of the circuits we present here are obtained by means of two integrators in a
feedback loop. That is why these are often referred to as the two integrator-loop biquads.

We may develop such a three-opamp biquad following the old analog computing tech-
nique for solving a differential equation. To show this, let us consider the second-order
lowpass function realized as the ratio of two voltages V, and V, i.e.,

K

Vo _ (4.87)
Vi 2, W 2
s+ 65 + 0
We can write this equation as follows:
s Ky, 1s
;gv" = (:ivi 5 Vo~ Vo (4.88)

Clearly, V, may be obtained from (s*/ W)V, by two successive integrations with proper
time constants. On the other hand, the term (S°/w,)V, can be obtained as the sum of the
three terms on the right-hand side of Eq. (4.88). We may thus realize Eq. (4.88) as it is shown
in block diagram form in Fig. 4.26.
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FIGURE 4.26
Block diagram for realizing V,/V,, Eq. (4.88).

Using opamps to perform the summing and integration operations, we obtain the circuit
shown in Fig. 4.27. Straightforward analysis of this circuit shows that the function in Eq.
(4.87) is realized with a minus sign. To avoid this, and also the use of a fourth amplifier, we
make use of the circuit in Fig. 3.8, giving the difference of two voltages.

Following this, the circuit in Fig. 4.27 becomes as is shown in Fig. 4.28. Again, straight-

forward analysis of this circuit gives the following:

K'/(RC)®

11
RCQ

S+ —=s+

(K'/RC)s

1

RAC?

—-\/—i- 2, 11
+—=s+
S+ RS

R’C?

FIGURE 4.27
Implementation of the block diagram in Fig. 4.26.
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FIGURE 4.28
The KHN biquad.

where
2R;R;
K' = 4.92
RiR; + RiRs + R;Rs (4.922)
2R;R;
1Q = 4.92
R RiR; + RiRs + RyR; (4920)
and
K' _
i K (4.92¢)
From these, we can obtain the following design equations:
_ 1
RC = — (4.93a)
wO
R, = RKY (4.93b)
0‘)0
R
Ry = ——— (4.93¢)
201 W
K KQ

with R, and R, taking suitably chosen values.

This circuit is referred to as the KHN (Kerwin, Huelsman, Newcomb) biquad [24], and it
simultaneously displays lowpass, bandpass, and highpass behavior. All three filters have
the same poles, of course.

A notch response can be obtained by adding the lowpass and highpass outputs using an
extra opamp. The w, and Q passive sensitivities are very low. However, the excess phase
shift introduced by each integrator and the summer, due to the finite GB product of the
opamps, leads to Q enhancement with undesirable effects in the filter response. This is
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examined below, but first let us see another three-opamp biquad with some additional
interesting characteristics.

4.9.1 The Tow-Thomas [25-27] Three-Opamp Biquad

A more versatile three-opamp biquad is shown in Fig. 4.29. Its transfer voltage ratio (V,/ V)
is as follows:

C12+i|:|R e, _1

— e — S —
C° "CRIR, R &
= ! CRR (4.94)
2 1 1
S+ ——s+
CR4 C2R2

<|<
o

Clearly, it is possible to obtain any kind of second-order filter function by a proper choice
of the component values. Thus we may have the following:

LP: ifC, =0, R, =Ry=oo
BP: ifC;=0, Ri=R,=o (positive sign)
BP: ifC;=0, R,=R;=00 (negative sign)
HP: ifC,=C, R,=R,=R;=w
Notch: if C,=C, R, =R,=o
Allpass: if C;=C, Ri=o,r=R,/Q
This circuit was initially proposed by Tow [25] and studied by Thomas [26, 27]. Its passive
sensitivities are similar to those of the KHN three-opamp network. However, it is more ver-
satile, realizing all kinds of second-order filter function without the use of an extra opamp,

which is required in the case of the KHN circuit. It suffers, though, from the results of
excess phase shift on Q enhancement, as explained below.

) :I-Cl i
Vio—e !
FIGURE 4.29

The Tow-Thomas three-opamp biquad.
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4.9.2 Excess Phase and Its Compensation in Three-Opamp Biquads

Because of the finite gain-bandwidth product of the opamps, excess phase appears in the

summer (beyond the 180°) and the integrators (beyond the 90°) in the three-opamp
biquads, which finally leads to Q enhancement and to instabilities of the circuits. We may

calculate this excess phase in the case of the simple sign-reversing amplifier in Fig. 4.30 as
follows. Assuming that the opamp gain may be approximated with a model having a single
pole at the origin (that is, at zero frequency), i.e.,

A=_2
S

simple analysis of the circuit in Fig. 4.30 gives the following transfer voltage ratio V,/ V;:

Lo 1
1+28

(4.95)

Thus, at frequency w, there is an extra phase shift beyond the 180°,

120 ~2W
hoy = —tan 1; DE for w << w;

(4.96)
This extra phase shift ¢,, which in the case of the ideal opamp would be zero, is called the
excess phase.

In a similar way, it can easily be shown that the excess phase for an integrator is approx-
imately

W
¢ex D_(*_)T (497)

Since the two integrators and the summer are connected in cascade inside the loop, the
overall excess phase becomes substantial. It can be shown that this leads to Q enhancement,

which is undesirable. Thus, assuming that the opamps are identical (i.e., they have the
same ), the enhanced Q,,, of the biquad in Fig. 4.29 is approximately [28]

QenhDQ;w (4.98)
1-KQ=
QwT
R
AN
R
Vio—AAMA

|

" b——o0V,

FIGURE 4.30

Sign-reversing amplifier.

©1999 CRC Press LLC



where the value of Q is that for ideal opamps, w, is the pole frequency of the biquad, and
K typically is 4. A similar Q enhancement is obtained in the case of the biquad in Fig. 4.28.

The excess phase, being a phase lag, can be cancelled by introducing an equal phase lead
inside the loop. Passively, this can be easily achieved by connecting a capacitor of suitable
value in parallel with one of resistors R in Fig. 4.28 or the resistor R in the integrator in
Fig. 4.29. However, since the temperature coefficients of this capacitor and w; are not the
same, this compensation cannot be perfect at different temperatures.

More successful is the active compensation as employed in the Akerberg-Mossberg
three-opamp biquad, which we examine next.

Clearly, to reverse the sign of an integrator, a second opamp should be employed as
shown in Fig. 4.31(a). The excess phase for this non-inverting or positive integrator is
approximately, according to Egs. (4.96) and (4.97),

3w

exc O-—
¢ wr

However, if the sign reversal of the integrator is achieved according to Fig. 4.31(b), then it
can be easily shown that the excess phase of the integrator becomes

, W
¢ exc[la

i.e., phase lead instead of phase lag.

Thus, this phase lead will cancel out the phase lag of the other integrator inside the loop
of the three-opamp biquads, and the overall excess phase will be zero. This scheme of
excess phase compensation is called active compensation, and it is less temperature depen-
dent than the passive compensation of excess phase that was mentioned above.

4.9.3 The Akerberg-Mossberg Three-Opamp Biquad [29]

The Akerberg-Mossberg three-opamp biquad is a modified version of the Tow-Thomas
three-opamp biquad. To simplify matters we set the following values to some of the passive
components in the circuit in Fig. 4.29:

C,=0,RR=R; =

Then, the Tow-Thomas biquad becomes as shown in Fig. 4.32(a). By actively compensat-
ing the integrator as in Fig. 4.31, the Akerberg-Mossberg biquad is obtained as shown in
Fig. 4.32(b).

FIGURE 4.31
(a) A non-inverting integrator and (b) a non-inverting integrator with active compensation of excess phase.
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FIGURE 4.32
(a) The Tow-Thomas biquad actively compensated for excess phase, giving the Akerberg-Mossberg biquad in (b).

Straightforward analysis of the biquad in Fig. 4.32(b) gives the following:

V_Ol = /RG (4.99)
Vi 2 1 r '
s“+s +
R,C; C,C,R;rr,
Voo _ r./C,C,Rrr, (4.100)
Vi & 1 . r

+s
R,C; C,C,R;rr,

The Akerberg-Mossberg biquad, in its simplified form, can thus simultaneously realize
lowpass and bandpass functions with the same poles. In its more general version, it can
realize any type of biquadratic function, if the input signal is fed properly weighted to the
inputs of all amplifiers. In all cases, the poles are not affected.

It is clear from Egs. (4.99) and (4.100) that both the Q factor and the pole frequency w, can
be independently adjusted. Depending on the component values, voltages at internal
nodes may differ substantially. This inevitably will lead to nonlinear operation of some
amplifiers and, therefore, to reduced dynamic range even for small signals. For the mini-
mization of such effects, r, should be equal to r,, but this will make the active compensation
ineffective, and thus Q enhancement will not be avoided.

4.10 Summary

Low-order (first and second) filter circuits were presented in this chapter, which have been
chosen among an abundance that have appeared in the literature over the years. These are
mostly canonic and have been proven useful in practice.
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The biquads can be classified as SABs (single-amplifier biquads), two-opamp biquads,
and three-opamp biquads. Also, the SABs can be classified as enhanced positive feedback
(EPF) and enhanced negative feedback (ENF) biquads, depending on the feedback paths,
positive or negative, in which the frequency dependent passive network is connected. By
means of the application of the complementary transformation to one SAB, another SAB is
obtained which has the same poles as the first one and, consequently, same pole sensitivi-
ties. This has led to the discovery of a number of useful biquads as well as to the rediscov-
ery of others, previously suggested.

Among the important merits of a biquad, its sensitivity to variations in component val-
ues and economy are the most prominent. Sensitivity of Q, w,, and the gain-sensitivity
product are the most useful measures that characterize the value of a biquad. It is because
of this that high-Q biquadratic functions could better be realized by two- or three-opamp
biquads instead of using SABs. This, of course, increases the cost and power consumption,
and it is a matter of priority for the designer in solving a particular filtering problem to
make the appropriate choice.

First- and second-order filter circuits are very useful in the realization of high-order filter
functions. Some methods for such realizations are based on the use of lower-order sections,
particularly biquads. Therefore, knowledge of the most suitable biquad in a particular case
is of fundamental importance for achieving the “best” design. This will become apparent
in the next chapter, where the design of high-order filters is considered.

References

[1] G.S. Moschytz. 1974. Linear Integrated Networks: Design, New York: Van Nostrand Reinhold.
[2] D. Hilberman. 1973. “An approach to the sensitivity and statistical variability of biquadratic
filters,” IEEE Trans. on Circuit Theory, CT-20, 4: 382-390.
[3] A.S.Sedra.1974. “Generation and classification of single amplifier filters,” Intl. J. Circuit Theory
and Appl. 2(1), pp. 51-67.
[4] N.Fliege.1973. “Anew class of second-order RC-active filters with two operational amplifiers,
NTZ 26(4), pp. 279-282.
[5] R.P Sallen and E. L. Key. 1955. “A practical method of designing RC active filters,” IRE Trans.
on Circuit Theory CT-2, pp. 74-85.
[6] G. Daryanani. 1976. Principles of Active Network Synthesis and Design, New York: John Wiley
and Sons.
[7] W. Saraga, “Sensitivity of 2nd-order Sallen-Key-type active RC filters,” Electron. Lett. 3(10),
pp. 442-444.
[8] T. Deliyannis. 1968. “High-Q factor circuit with reduced sensitivity,” Electron. Lett. 4, p. 577.
[9] P.E.Fleischer. 1976. “Sensitivity minimization in a single amplifier biquad circuit,” IEEE Trans.
Circuits and Systems CAS-23, 1, pp. 45-55.
[10] J. J. Friend. 1970. “A single operational amplifier biquadratic filter section,” Proc. 1970 Int.
Symposium on Circuit Theory, Atlanta, Georgia, pp. 179-180.
[11] J.]. Friend, C. A. Harris, and D. Hilberman. 1975. “STAR: An active biquadratic filter section,”
IEEE Trans. on Circuits and Systems CAS-22, 2, pp. 115-121.
[12] T. Deliyannis. 1969. “RC active allpass sections,” Electron. Lett. 5, p. 59.
[13] D.F. Tuttle. 1958. Network Synthesis, vol. I, New York: John Wiley and Sons.
[14] T. Deliyannis. 1970. “Six new delay functions and their realization using active RC networks,”
The Radio and Electronic Engineer, 39(3), pp. 139-144.
[15] ibid. “Realization of a quadratic with a positive real zero,” ibid., pp. 271-272.
[16] A.S.Sedraand P.O. Brackett. 1978. Filter Theory and Design: Active and Passive, London: Pitman.

©1999 CRC Press LLC



[17]
(18]
[19]
[20]
[21]
[22]

[23]
[24]

[25]
[26]

[27]
[28]

[29]

A. Antoniou. 1969. “Realization of gyrators using operational amplifiers and their use in RC-
active network synthesis,” Proc. IEE (London) 116, pp. 1838-1850.

B. B. Bhattacharyya, W. S. Mikhael, and A. Antoniou. 1974. “Design of RC-active networks
using generalized-immittance converters,” J. Frank. Inst., 297(1), pp. 45-48.

PR. Geffe, “RC-amplifier resonators for active filters,” IEEE Trans. Circuit Theory CT-15, pp.
415-419.

T. Deliyannis. 1970. “A low-pass filter with extremely low sensitivity,” Proc. IEEE 58(9), pp.
1366-1367.

T. Deliyannis and Y. Berdi. 1971. “Selectivity improvement in a useful second-order active RC
section,” Int. J. Electronics 31(3), pp. 243-248.

ibid. 1973. “Selectivity Enhancement of Certain Low-sensitivity RC Active Networks,” 34(4),
pp- 513-526.

R. E. Bach. 1960. “Selecting R-C values for active filters,” Electronics 33, pp. 82-83.

W. Kerwin, L. P. Huelsman, and R. W. Newcomb. 1967. “State-variable synthesis for insensitive
integrated circuit transfer functions,” IEEE ]. Solid-State Circuits SC-2, 3, pp. 87-92.

J. Tow. 1968. “Active RC filters—A state-space realization,” Proc. IEEE 56, pp. 1137-1139.

L. C. Thomas. 1971. “The biquad: Part I—some practical design considerations,” IEEE Trans.
on Circuit Theory CT-18, pp. 350-357.

ibid. “The biquad: Part [I—a multipurpose active filtering system,” pp. 358-361.

A.S. Sedra. 1989. In Miniaturized and Integrated Filters, S. K. Mitra and C. F. Kurth (eds.), New
York: John Wiley and Sons.

D. Akerberg and K. Mossberg. 1974. “A versatile active RC building block with inherent
compensation for the finite bandwidth of the amplifier,” IEEE Trans. Circuits and Systems CAS-
21, 1, pp. 75-78.

©1999 CRC Press LLC



Deliyannis, Theodore L. et a "Realization of High-Order Functions'
Continuous-Time Active Filter Design
Boca Raton: CRC Press LLC,1999



Chapter 5
Realization of High-Order Functions

5.1 Introduction

In most cases, the selectivity provided by a second-order filter is not adequate. Higher-order
filter functions have to be realized in order to satisfy the stringent selectivity requirements
in telecommunication systems, special instrumentation, and many other applications.

To realize such high-order filter functions, two main approaches have been found most
useful in practice. The first is to cascade second-order stages without feedback (cascade fil-
ter) or through the application of negative feedback (multiple-loop feedback filters, MLFs).
The second is to use combinations of active (e.g., opamps) and passive (resistors and capac-
itors) components in order to simulate either the inductances or the operation of a high-
order LC ladder. Yet another approach, the use of just one opamp embedded in an RC net-
work in order to realize the high-order function, although possible, has been dropped for
reasons of high sensitivity.

The study of such high-order circuits requires some additional tools over those used in
the previous chapter, which were suitable for second-order filters. For example, in an MLF
or a simulated ladder filter, the value of each component does not affect only one pole or
one zero of the filter, but more than one, making thus the filter tuning difficult. In this case,
the Q sensitivity for, example, of a biquadratic section in the MLF circuit cannot be used as
a criterion when comparing the MLF circuit to the simulated ladder. Therefore, more suit-
able sensitivity measures are required for such comparisons, the determination of which
makes the use of a computer program unavoidable.

In this chapter, we first discuss briefly a number of criteria which characterize a useful,
practical, active RC filter. Next, we introduce suitable sensitivity measures, which have
been proven to be consistent with one another, as far as the information on sensitivity they
give is concerned. Then, three high-order filters are discussed, all of them using the biqua-
dratic circuit as a cell. These are the cascade, the multiple-loop feedback, and the cascade
of biquartic stages filters, the latter being a mixture of the other two. The simulated LC lad-
der filter is examined in the next chapters.

5.2 Selection Criteria for High-Order Function Realizations

The realization of a high-order function can be achieved by a number of methods. Some of
these have proved more advantageous in practice than others, and over the years they have
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prevailed. Before we see which methods are more acceptable in practice and therefore more
useful in filter design, we should set a number of criteria that a design method must satisfy
in order to be considered more suitable than others in solving a design problem. It must be
emphasized, though, that there is not one method that is the best according to all criteria.
So, we will consider the best method as the one that satisfies most of the criteria in a more
satisfactory way than the rest.

The most important criteria that can be used in comparing the various methods of real-
ization of a high-order function are the following;:

¢ The possibility of realizing the required function using the available components.

* Sensitivity, i.e., stability of the filter characteristics. As we have already seen in
the previous chapter, some biquads are more sensitive than others to variations
in their component values. This is also true in high-order circuits.

e Economy. Some design methods lead to circuits that require fewer components
than others and therefore are more advantageous from the economy point of
view.

e Simplicity of design. The designer prefers to use an easy to understand and
apply design method rather than a more complicated one.

¢ The possibility of producing the filter in integrated circuit form. Of course, this
will depend on the number of filters to be manufactured; otherwise it will not
be economical.

* Power dissipation. Lower power dissipation relaxes the power supply design
and leads to lower heat produced by the filter.

¢ Tuning simplicity. Every circuit, after it has been built, requires tuning in order
to satisfy the required specifications.

¢ Dynamic range. This determines the range between highest signal level that will
pass undistorted through the filter and the lowest signal that can be distin-
guished from the noise. This is usually expressed in decibels and may be written
as

_ Maximum signal level_ Distortion limit
Minimum signal level Noise floor

AR

e Noise. Active elements produce their own noise, which is added to that of the
passive components, thus decreasing the signal-to-noise ratio at the output of
the filter.

e Other criteria, such as passband attenuation, etc., that the designer may set as
applicable in the specific filter design problem.

Clearly, some of these criteria cannot be satisfied by the same circuit. For example, low
sensitivity and small number of opamps (economy) used in the circuit cannot be satisfied
simultaneously, as we have already seen in the realization of second-order functions. Also,
a low-sensitivity circuit that employs a large number of opamps dissipates higher levels of
dc power and produces more noise than other, more sensitive circuits that use a lower
number of opamps. Thus, the task of the designer is to select a circuit design that satisfies
most of the criteria that are considered more important for the filter design problem at
hand.
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5.3 Multiparameter Sensitivity

In the previous chapter (Section 4.4), we introduced various sensitivity measures useful in
the case of the realization of second-order functions. These measures of sensitivity can, in
some cases, be of some importance when studying the sensitivity of a high-order filter, too.
However, they do not give a complete picture of the sensitivity of such a filter, due to the
large number of its components.

More useful in sensitivity studies of high-order filters have been proved to be the so-
called multiparameter sensitivity measures. Some of these are reviewed here below:

1. Worst-case sensitivity WS defined as follows:

ws=y | & (5.1)

i=1

where 7 is the number of elements, passive and active, and H the filter transfer
function.

Since H is a function of w too, WS, is also a function of frequency. Worst-case
sensitivity estimates the worst deviation from the nominal response when all
components have the same percentage variation.

2. Schoeffler’s sensitivity measure, in its simplified form, is defined as follows [1]:

O/ = 022 st (5.2)

where 0,y is the standard deviation of |HI, and o the standard deviation
of resistors and capacitors, assumed to be the same for all these components,
with the additional requirement that they are uncorrelated.

Both these multiparameter sensitivity measures require for their determination
the calculation of d|H|/0x for all x; assuming they vary independently. However,
since the variations of the components, in practice, are not infinitesimal, a more
realistic picture, and therefore, more useful in engineering work, would be a
sensitivity measure based on the real type of component variations, as is the
following one.

3. Standard deviation of the amplitude response for a large number of measure-
ments. Here, as a measurement, we consider the calculation of the amplitude
response using one set of component values that have been obtained at random
within the tolerance limits of the components. In doing this, we assume that the
component values have a uniform or normal distribution around its nominal
value. The limits of the distribution are set by the tolerance of the components.

The standard deviation O,y is determined using the following formula [2]:

N N 2

2 1 2 D]_ O
Oamm = g » IHIl = IHilD (5.3)

Ni:zl %i:zl O

©1999 CRC Press LLC



or by the formula for a smaller number of measurements

2

oiH/HzNL_li;Hiz_m&;Hi} (5.4)

where N, the number of measurements, is
100 < N < 10,000

Since | H;l is a function of w, s0 is Gpj/ -

The component random values can be obtained as follows: the computer is
instructed to give each time two random numbers, r, and r,, both between 0 and
1. Assuming a uniform distribution of component values around the nominal
value, if 9, is the tolerance of the component with nominal value ¥, its random
value x' will be either

X" = x(1+9,r,) if r,<05

X' = x(1-29,ry) if r,>05 (5.5)

The standard deviation multiparameter sensitivity measure is used in comparing
high-order circuits realizing the same filter function below. However, use of the
other two measures leads to similar conclusions; therefore, they can also be
applied in multiparameter sensitivity calculations.

5.4 High-Order Function Realization Methods

The most useful methods for the realization of high-order filter functions in practice fall
into one of the following three general methods:

1. Cascade connection of second-order sections
2. Multiple-loop feedback circuits

3. Simulation of passive LC ladder networks

In Method 1, taking advantage of the useful biquadratic sections we examined in the pre-
vious chapter, we write the high-order function as the product of biquadratic factors that
we realize accordingly. Next, we cascade these sections by connecting the output of each
section to the input of the following one. This method has the advantages of simplicity in
designing and aligning the filter, provided that the output of each section is of very low
impedance—practically zero.

In Method 2, multiple feedback and, in some cases, multiple feed-forward is applied in
a cascade connection of biquadratic sections. This coupling, as we shall see later, leads to a
better sensitivity performance of the overall circuit compared to the corresponding circuit
obtained by Method 1.

Simulation of passive resistively-terminated lossless ladder networks can be achieved by
simulating either the inductances of the ladder, using GICs, PICs, gyrators, or functionally.
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Functional simulation here implies that branch currents and node voltages in the ladder are
modeled using analog computer simulation techniques. The ladder simulation method is
attractive, because it leads to active circuits of lower sensitivities than the other two meth-
ods.

For simplicity reasons in design and filter alignment, a combination of Methods 1 and 2
may, in some cases, lead to useful circuits having the advantages of both methods. Accord-
ing to this method, the high-order function is written as the product of biquartics (fourth-
order functions), which are realized as multiple-loop feedback sections and then cascaded.

In this chapter, Methods 1 and 2, as well as their combination, i.e., the cascade of biquartic
sections, are explained to some detail. As previously mentioned, the simulation of resis-
tively terminated ladder lossless filters is explained in following chapters.

5.5 Cascade Connection of Second-Order Sections

A high-order filter function T(s) [we shall use T(s) here for notational simplicity] can be
realized as the ratio of the output voltage to the input voltage of a cascade connection of
lower-order stages, each of which does not load the output of its preceding one. For this
to be true, the output impedance of each section must be much lower than the input imped-
ance of the following section at all frequencies of interest.

The lower-order stages are preferably biquadratic. Their realization has been presented
in the previous chapter. If the function under realization is of odd order, there will be a first-
order term which, according to the type of T(s) (lowpass, highpass, or allpass), can be real-
ized by one of the first-order circuits suggested in Chapter 4.

Thus, the high-order filter function T(s) will be written in the form

T(s) = t(s) D|_| ti(s) (5.6)

i=1

where #(s) is a first-order term, or simply unity, depending on the order n of the function,
which is either odd (n = 2N + 1) or even n = 2N, respectively, with N being an integer and

2
S +a.S+

t(s) = a|22 ;1S + Go (.7)
s +Db;;s+ by

Depending on T(s), one or two of the numerator coefficients in Eq.(5.7) may be zero, while
in the case of an allpass function, the numerator coefficients will be equal to the corre-
sponding coefficients of the denominator, with the additional constraint that a,; = -—b;;, with
b, >0.

In forming each biquadratic term #(s) and then cascading the biquad sections to obtain
the overall circuit realizing T(s), three degrees of freedom are at the designer’s disposal.
These are the following:

e Pole-zero pairing, i.e.,, which poles with which zeros of T(s) will be paired to
form each t(s).

e Distribution of the overall gain in the various biquadratics.

* Physical position of each biquad in the cascade.
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Clearly, the pole-zero pairing greatly affects the dynamic range of the corresponding
biquad and consequently that of the whole filter. Also, the distribution of the filter gain
among the various biquads influences their dynamic range, while the biquad sequence in
the cascade has a significant effect on the total noise generation in the filter.

Consequently, the filter designer should take advantage of these degrees of freedom in
order to optimize the design with regard to the following two main criteria:

* Maximization of dynamic range

e Maximization of the signal-to-noise ratio

In what follows, the optimization approach is explained to some detail with regard to the
dynamic range of the filter, which has been shown to be the most relevant [3] in this case.
For reasons of clarity, we give here the universally acceptable definition of the dynamic
range of a circuit. It is the ratio, expressed in decibels, of the maximum input signal (volt-
age) level V.., that passes undistorted through the circuit to the minimum input signal
level V,,.,, for which the signal at the output of the circuit is still above the output noise

imin/

level. If the highest output voltage capability for undistorted operation is V, ., and K is the

o,max

filter gain then the highest input voltage V. can be
V
Vi,max = %X (58)

Other less important points that may influence the designer’s decisions could be the fol-
lowing;:

¢ Minimization of the transmission sensitivity
e Minimization of the passband attenuation

e Simplification of tuning procedure

5.5.1 Pole-Zero Pairing

It will be noted that a complex pole near the jw-axis creates an elevation in the magnitude
response of the corresponding biquadratic term, at frequencies around the imaginary part
of the pole. On the other hand, a zero at a similar position creates a deep notch in the mag-
nitude response at frequencies around the imaginary part of the zero. If such a pole and
zero are very much apart in the s-plane, and they are paired to form a biquadratic function,
the minimum value in the magnitude response inside the passband will be much lower
than the maximum value, whether this is inside or outside the passband. In such a case, the
input signal level cannot be very high in order to avoid nonlinear operation, and it can not
be very low either, because then the signal at the output will be buried in noise at frequen-
cies near the zero.

To avoid such a situation, the magnitude of the biquadratic response should be as flat as
possible. To make this more clear, suppose that the magnitude response of the biquadratic
term t,(jw) is as shown in Fig. 5.1. Let w; and wy,; be the filter passband edges, lower and
upper, respectively. What we actually seek with the proper pole-zero pairing is to make the
difference between the maximum value [t;|,,,, wherever in the response, and the minimum
value |tj i, inside the passband as small as possible. To achieve this, we should pair each
complex pole with its nearest complex zero.
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FIGURE 5.1
Biquadratic term.

This argument leads us to the following rule of thumb: to decompose a high-order filter
function to the product of biquadratics for maximizing the dynamic range of each biquad
(and consequently of the whole filter), we should pair each complex pole with its nearest
zero, starting with the pole of highest Q factor.

As an example of the application of this rule, consider the pole-zero positions in Fig. 5.2.
(The conjugate poles and zeros are supposed to be placed in the third quadrant). According
to the rule of thumb, pole p, should be paired with zero z,, pole p, with zero z,, and pole
p; with zero z,. Based on the above argument, a certain algorithm has been suggested by
Lueder [4] and discussed by Moschytz [3] for obtaining the optimum pole-zero pairing.
The decomposition obtained using the rule of thumb in most cases is identical to the opti-
mum decomposition. When it is not, the degradation in the dynamic range is not substan-
tially different. For this reason, we do not explain the optimum decomposition algorithm
here, but we advise the interested reader to consult the above-mentioned references as well
as Reference 5.

There are cases, however, when the decomposition can be obtained on a different basis.
Consider for example the following sixth-order bandpass function:

() Zy

P, X () z,

M2
P Re

FIGURE 5.2
Illustration of pole-zero positions.
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S3

T = G bst 1) (5 + by * B)(S + b+ 1)

(5.9)

Here, all zeros are at zero and infinity. Neglecting at present the distribution of the gain to
the three stages, one may decompose T(s) in the following way:

- 1 s S
T(s) = K x — X (5.10)
S +byst+ by S HbSt by, S HbigS+ by

However, the following decomposition is also possible

T(s) = K [Iy(s) [,(s) [Es(s) (5.11)
with
S

t(s) = 5———m— (5.12)

s +hys+ by

Each of these two decompositions has practical advantages, and the designer may like to
base the pole-zero pairing on these. For example, the lowpass (or the bandpass) section, if
placed at the beginning in the cascade, will attenuate out-of-band high-frequency signals,
which may otherwise lead to nonlinear operation of the opamps in the subsequent stages.
On the other hand, the designer may choose the pole-zero pairing of Eq. (5.11), since a
bandpass biquad is easier to tune than the lowpass and highpass configurations.

5.5.2 Cascade Sequence

The proper sequence of the biquads in the cascade is important for achieving maximum
dynamic range in the cascade realization of a high-order filter. However, the determination
of the best sequence may become a rather tedious procedure if the number of biquads to be
cascaded is high. This is so because, for N biquads, there exist N! different sequence possi-
bilities, which will have to be examined.

An efficient algorithm has been described in the literature [6], but we will not explain it
here. Fortunately, there exists a simple guide arising from experience that can help the
designer to achieve a satisfactory result in practice much easier and quicker.

Thus, we start by determining the frequency of maximum magnitude in each biquad and
then form the sequence in such a way that neighboring biquads have their frequencies of
maxima as far apart as possible. If there is a lowpass or bandpass section, this is preferably
placed in front, while if there exists a highpass, this is placed last. A bandpass section can
also be placed last in the cascade, its action being similar to the highpass, namely to prevent
any low-frequency noise generated by the leading stages inside the filter from appearing
at the output.

A satisfactory solution can also be achieved if the biquads are placed in the cascade in
increasing Q factor. It is interesting to note that these mostly intuitive suggestions may help
the pole-zero pairing in cases like the example in the previous subsection. Thus, if we select
to decompose the sixth-order bandpass function (with all zeros at the origin and infinity)
in a lowpass, bandpass, and highpass biquadratics, we associate the lowest Q poles with
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the lowpass function, the highest Q poles with the highpass, and the bandpass is left to be
associated with the intermediate Q poles. Then, the proper sequence will be the lowpass
biquad in front, followed by the bandpass, with the highpass last in the cascade.

Of course, if we had chosen to decompose this sixth-order bandpass function in three
bandpass biquadratics, the proper sequence would be in order of increasing Q factor.

5.5.3 Gain Distribution [5]

Having optimized the pole-zero pairing and the biquad sequence in the cascade, we now
turn to the distribution of the overall filter gain to the various stages to obtain as high a
dynamic range as possible. We consider the filter transfer function of order 2N written as
follows:

T(s) = [kti(s) (5.13)

where k; [k,...ky = K, with K being the overall gain of the filter and k; the gain of the ith
stage. Let also the biquad sequence be Kkjt;(S), kyt5(S), ... kytn(S) -

We work here on the following idea: for the maximum input voltage that results in undis-
torted output voltage V, of the filter, the output voltages of the intermediate stages should
also be undistorted. To achieve this, we distribute the overall filter gain to the various
stages in such a way that the maximum voltage at the output of each intermediate stage is
alsoV, ie.,

maxVi(jw)| = maxVon(jw)| = V, i=12..,N-1

Let
T,(s) = |_| kt.(s) i=12..,N-1 (5.14)

where T;(s) is the transfer function from the filter input to the output of the ith stage. Also
let

ma{ﬂti(jw) = My (5.15)
and
ma{ﬂtt(jw) = M i=1,2..,N-1 (5.16)

Then, the gain distribution should be such that
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k, = KM_l (5.17)
_ M
k, = . (5.18)
and in general,
ML
kj = m j=23..,N (5.19)
where
K
ky = g (5.20)

As an example, let us design a bandpass filter having a center frequency at 1 krad /s and
bandwidth 100rad /s, consistent with the Butterworth response of sixth-order.
Starting with the third-order Butterworth lowpass function,

1

t(s,) = m (5.21)
we apply the lowpass-to-bandpass transformation
s = s+1
0.1s
to the lowpass function and obtain the following bandpass function:
T(s) = 0.0015" (5.22)

£ +0.25° +3.0%" +0.401S° +3.0%* +0.2s + 1

If we choose to decompose T(s) into three second-order bandpass functions, we will get,
from (5.22)

T(s) = Ta(s) OMy(s) OM(8)
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where

k,s
S+0.1s+1

Ta(s) = Kqty(9)

k,s
s’ +0.0478363 + 0.9170415

To(s) = kata(S)

kss
s’ +0.0521638 + 1.0904632

To(s) = ksts(s) =

with K =0.001 and Q factors Q, = 10, Q, = 20.02, Q, = 20.02.

Having decided on the pole zero pairing, we now turn to the problem of the sequence in
the cascade. We have the following possibilities:

Tu'Tb'Tc/ Tu'Tc'Tb/ Tb'Tc'Tul Tb'Tu'Tc/ Tc'Ta'Tb/ Tc'Tb'Ta

If we choose to follow the rule of thumb for forming the sequence in the order of increas-
ing Q, then T, should be in front, followed by either T, or T, since T, and T, have equal Q
factors. We choose the sequence T, T, T..

Next, we have to determine the gain distribution in such a way that the overall gain at

the center frequency is unity, i.e., K = 0.001. Following the procedure outlined above, we
find successively

- maxT(jo)l _ 1 _
“ = mai, (o) " 107

_ maxt, (jw)| _ 10 _
ke = max|t,(jw) @,(jw)| 162.936 0.0613738
ke = = — 0001 _ 5162036

Thus, the final decomposition of the overall bandpass function will be as follows:

T, = 215 (5.23)
s+0.1s+1

T, = 00613738 (524)
& +0.0478363 + 0.9170415

. 0.162936 (525)

s +0.0521638 + 1.0904632

Each of these functions will be realized by the SAB shown in Fig. 5.3 and placed in the cas-
cade in the order given in Fig. 5.4.
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Cascade sequence.

T.

Following the procedure outlined in Section 4.5, the normalized and denormalized com-
ponent values (w, = 1krad/s, R, = 10 kQ) are calculated. They are given on Table 5.1.

TABLE 5.1

Component Values

Section T,

Section T,

Section T,

Component Normalized Denormalized Normalized Denormalized Normalized Denormalized

kQ, nF kQ, nF kQ, nF
R'; 10.27 102.7 16.84 168.4 6.344 63.44
R"; 0.145 1.45 0.1505 1.505 0.1398 1.40
R, 7 70 7.3098 73.1 6.70336 67.03
C, 1 100 1 100 1 100
C, 1 100 1 100 1 100
R, 0.265 2.65 0.3368 3.37 0.3368 3.37
Ry 10 10 100 100 10 100

5.6 Multiple-Loop Feedback Filters

We are concerned here with the application of negative feedback in a cascade connection

of low-order sections. Two general topologies have been studied extensively:

e The leapfrog topology shown in Fig. 5.5

* The summed-feedback shown in Fig. 5.
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FIGURE 5.5
The leapfrog topology.
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FIGURE 5.6
The summed-feedback topology.

The leapfrog topology is useful in the functional simulation of an LC ladder, and it is
explained in the next chapter. The summed-feedback topology, as it appears in Fig. 5.6, is
not suitable for realizing any finite transmission zeros. To overcome this problem, two use-
ful techniques are the following:

a. The multiple- or distributed-input technique, shown in Fig. 5.7, in which the
input signal is also feeding the input of all cascading sections, and

b. The summation of the input signal and the output signals from all cascaded
sections, as shown in Fig. 5.8.

The topology in Fig. 5.6, and subsequently those in Figs. 5.7 and 5.8, are in fact generaliza-
tions (or adaptations) of similar analog computer methods for solving differential equa-
tions.

S
Y
[
&

FIGURE 5.7
Summed-feedback distributed-input topology.

©1999 CRC Press LLC



bg

FIGURE 5.8
Summed-feedback summed-output topology.

To show this, consider for simplicity an nth-order lowpass function.

K

1

F(s) = -
s'+a,;S +..+aS+a

(5.26)

This is to be realized as the voltage ratio V,/V, in which case we will have, from (5.26)

K

VolS) = Vi(s) (5.27)
s'+a, ;8 " +..+aS+3
We can rewrite Eq. (5.27) in the following form:
SV, = KV,=(a,_,8" " +a, .8 *+... +as+a,)V, (5.28)

Observe that V, can be obtained from s"V, by integrating s"V, successively n times. If we
then add KV; and the output voltages from each integrator, weighted and signed according
to Eq. (5.28), we will obtain s*V,. This is shown in Fig. 5.9 in block diagram form for 1 even.
If the summation produces an extra sign reversal, the voltages should be summed with
opposite signs. All voltages that take part in Eq. (5.28), with the opposite sign of that
required, can have their sign reversed by summing them properly weighted, separately,
using an opamp, the output of which is then connected to the input of the main summer in
Fig. 5.9.

As an example, consider again the realization of the third-order Butterworth lowpass
function

1 _ V(s)
S+288+2s+1  Vi(s)

T(s) = (5.29)

Writing this in the form of Eq. (5.28), we will have
SV, = V,—(25° +2s+ 1)V,
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FIGURE 5.9
Realization of Eq. (5.28) using the analog computer technique. All time constants are normalized to unity.

Using single-input opamps, the complete circuit realizing the function will be as it is
shown in Fig. 5.10. Notice that, from the output of the main summer, we additionally obtain
the realization of the third-order Butterworth highpass function.

It can also be seen from Figs. 5.9 and 5.10 that any finite transmission zeros can be pro-
duced by summing voltages from the outputs of the various integrators properly signed
and weighted. For example, the output of summer No. 2 in Fig. 5.10 gives the realization
of the following function:

V'O(S) - _(252 +1)\£) - _ 252 +1

Vi(s) Vi S+288+2s+1

Three other design methods based on the topology of Fig. 5.6 have been proposed and
studied. These are the following;:

¢ The primary-resonator block (PRB) [7, 8]
¢ The follow-the-leader feedback (FLF) [9, 10] and
¢ The shifted-companion form (SCF) [11].

Both the FLF and SCF networks are generalizations of the PRB network. In what follows,
we review first the SCF method, in which we include the PRB, and then the FLF design.

4 1
Vio—AMN— s A'A:A'A — 1 1
+ 1Y) + —AMN——— AN —_
L 1 ° 2V, + M oV,
= =V, +

~
WA
>
<
3"
4
I
I
|

FIGURE 5.10
The analog computer approach to realizing the third-order Butterworth lowpass filter function.
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5.6.1 The Shifted-Companion-Form (SCF) Design Method

For simplicity, we will explain this method by means of applying it to realize the third-
order Butterworth lowpass function, Eq. (5.29). We proceed as follows.

First we select a parameter o, and we use it to shift the frequency variable s to a new fre-
quency variable p such that

s=p-a (5.30)

We then introduce this into the expression for T(s) Eq. (5.29) and obtain

1
T(p) = 3 >
(p—a) +2(p—-a)"+ ((p-a) +1)
or
1
T(p) = = > (5.31)
p-t+ap +tap+a,
where
a, =2-3a
a, = 30°—4a + 2
_ 3 2
a, =1-0"+20"-2a (5.32)

For an nth-order function, when the coefficient of p" is 1, the usual selection of a is such
that makes the coefficient of p"-! equal to zero. This is, in fact, the ratio of the coefficient of
s"1 in the original denominator polynomial divided by n, the order of the function. In
accordance with this, we get from the first of Egs. (5.32) the following value of a:

Q
1
WIN

Using this in the rest of Egs. (5.32), we geta, and a,, i.e.,

a,=2/3 a, = 0.25926
Thus, T(p) becomes
1 1 V,
T(p) = = = 7 (p) (5.33)
p°+2p+ L p'+0.6667+0.25926 Vi
3 27

This transfer function can be realized by the block diagram (companion-form) of Fig. 5.11.

We now apply an opposite shift operation on the block diagram in Fig. 5.11 and obtain
the block diagram in Fig. 5.12. Notice that, in order to obtain unity gain at dc, V; is multi-
plied by o —3. This block diagram can be implemented in practice as shown in Fig. 5.13,
assuming C = 1.
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FIGURE 5.11
Realization of Eq. (5.33) in block diagram form.
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FIGURE 5.12
Realization of T(s) in block diagram form.
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FIGURE 5.13
Final circuit realizing T(s), Eq. (5.29).

A saving of one opamp (or two) in the circuit of Fig. 5.13 can be achieved if the summa-
tion of voltages, input, and feedback is performed using both inverting and noninverting
inputs of the summer, or if the operation of summation is performed by the first lossy inte-
grator with the opamp operating in differential mode.

The general SCF network has its first stage different from the others, because it performs
the operation

1
S+ a,_;+0

In this case, a is not selected as it was above, i.e., to make 4,,_; equal to zero. However, when
a,, =0, because the value of a is selected for this purpose, the SCF network has all its stages

identical, and the whole SCF circuit is identical to the PRB network.
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By applying the usual lowpass-to-bandpass transformation

S+
Bs

Sn:

to the block diagram in Fig. 5.12, the block diagram implementation of the geometrically,
symmetric sixth-order Butterworth bandpass function will be obtained. In this case, each
stage in the cascade becomes of order 2, and it requires a bandpass biquad for its realiza-
tion. However, the feedback factors do not have to be changed.

Similarly, the highpass Butterworth filter function realization will be obtained if, in
Fig. 5.12, the lowpass-to-highpass transformation is applied.

It should be mentioned that the PRB circuit cannot realize filters with finite transmission
zeros, while the SCF can if a is not selected to make a,_; = 0. In fact, by the general SCF net-
work any transfer function, lowpass, highpass, bandpass, bandstop, and allpass can be
realized. Of course, the summation or the feed-forward technique will be used for the real-
ization of transmission zeros.

As a design example let us apply the transformation

S +1
0.1s

—

as we did in the case of the CF. Then, each cascaded stage will become bandpass, as follows:

a _ 0.1as
2 2

S+1+a s +0.1las+1
0.1s

T(s) =

With a =2/3, we finally get for T(s)

0.066666%
T(s) = 5
s"+0.066666% + 1

The Q factor of all stages is 15, thus the SAB in Fig. 5.3 can be used for the realization of
each bandpass section, with all of these SABs being identical.

Since all three cascaded stages are tuned to the same center frequency and have equal
Q factors and gains (unity), they will have the same maximum output voltage and there is
no need to take any more steps to maximize the dynamic range of the filter.

Coming to the design of the SABs, we select r = 1/49 and, following the procedure out-
lined in Section 4.5, we obtain the component values, normalized and denormalized (w, =
lkrad/s and R, = 10 kQ) given in Table 5.2. The overall circuit is given in Fig. 5.14(a) with
each block representing the SAB in Fig. 5.14(b).

5.6.2 Follow-the-Leader Feedback Design (FLF)

The general FLF circuit is shown in block diagram form in Fig. 5.15. Clearly, the summation
of the feedback voltages is responsible for the realization of the poles of the function,
whereas the second summation is required for the realization of any finite transmission
zeros. Here, t(s) can be first-order lowpass or highpass functions or, alternatively, second-
order functions.
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FIGURE 5.14
(a) The overall bandpass filter and (b) the circuit of each SAB.
TABLE 5.2
Component Values
Values
Denormalized
Component  Normalized kQ, nF
R, 15.47 154.7
R"; 0.1442 1.442
R, 7 70
c, 1 100
c, 1 100
R, 0.3129 3.129
R, 10 100
R; 0.296 2.96
Reo 1 10
R;, 0.6667 6.667
Ris 1.143 11.43
R 1 10
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FIGURE 5.15
Block diagram of the general FLF circuit.

If we concentrate on all-pole functions the FLF block diagram can take the practical form
shown in Fig. 5.16, where an opamp is used to perform the summation of the feedback volt-
ages, assuming that there is no sign reversal in each t,, i = 1, 2,..., n, block.

This circuit is topologically similar to the SCF and PRB, except that there exists feedback
from the output of stage t;, which is missing in the case of the PRB circuit, although it can
be considered part of the local feedback in the SCF circuit. It also differs from the PRB and
the SCF circuits in that all , i = 1, 2,..., n stages are not identical. However, it is possible to
assume identical ¢, and R, = =, in which case the FLF circuit becomes identical to the PRB
circuit.

On the other hand the different t, i = 1, 2,..., n stages and the feedback from the ¢, stage
can be used advantageously as additional degrees of freedom in order to improve the sen-
sitivity of the FLF circuit. It has been shown [5], though, that this sensitivity improvement
of the optimized FLF circuit is not so high as to force the designer to seek the optimized FLF
circuit, if the PRB circuit can be used instead. For this reason, we do not include the opti-
mization procedure here, but the reader can consult the relevant references [7-11] in order
to satisfy any interest in the subject.

It was explained in Section 5.5 that the dynamic range is an important parameter in a
high-order filter design using the cascade method. The same is true in the case of all mul-
tiple-loop feedback filters. Thus, the gain of the filter has to be properly distributed among
the cascaded stages t; so that the maximum voltage appearing at the output of each stage

R,
AW
b e e — — e — — — — - |
R;

AMA '

Ry |

AMN [

Ry |

|

v, v |

m o—AAMN— -
" ty ty —— — —1 ¢, A
v A/ v;

FIGURE 5.16
The practical FLF circuit with no finite transmission zeros.
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is the same in all stages. The procedure to do this is the same as that followed in the cascade
design, and it is not repeated here. However, we should note that in the PRB design, this
gain distribution procedure is mathematically simpler than in the cascade or other FLF
designs since, in the PRB design, all ¢, stages are identical.

However, the optimized FLF design has been shown [12] to be the most practical multi-
ple-loop feedback design based on sensitivity, dynamic range, and noise performance.

5.7 Cascade of Biquartics

As discussed in the previous sections, the CF filter is easy to design and tune, but its sensi-
tivity in the passband is rather high compared to that of the MLF filters, when properly
designed. MLFs, however, are difficult to adjust in practice. The cascade of biquartics filter,
CBR, has been proposed [13] as an intermediate case, i.e., a filter with sensitivity in the
passband lower than that of the CF filter, but which is easier to tune than the MLF filters.
The design of CBR filters has been optimized [14-16] in the case of high-order geometri-
cally symmetric bandpass filters with zeros at the origin and infinity. Therefore, here we
will examine the design of this type of filters only. We refer to the stages of the CBR filter,
which are of fourth order, as biquartic sections, or BR sections.

5.7.1 The BR Section

The block diagram of the BR stage is shown in Fig. 5.17. Each f(s) stage, i = 1, 2, is a band-
pass biquadratic function of the form

t(s) = — 1S (5.34)

2 i 2
ST+ s+ W
Q'i
Here, f is real and positive. If f = 0, the BR stage becomes the cascade of two biquadratics,
which is of no interest to us here.
It should be mentioned that the topology of the BR section is the common topology of all

MLE circuits, i.e., SCF, FLF, PRB, and LF, when these filters realize a fourth-order filter func-
tion. The transfer function of the BR stage is

aL(St(s) _  N(S)

v,
T2l = G % T - °DE) (5.35)
1
a
\/ t1(s) tx(s) >—oVo
\/] V2

FIGURE 5.17
Block diagram of a BR section.
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where D(s) is a polynomial of fourth degree when #,(s) and t,(s) are given by Eq. (5.34) and
N(s) = h';h',s (5.36)

The gain coefficient is easily adjusted and can be useful to the designer in optimizing the
dynamic range of the filter. We can set it equal to unity for reasons of simplicity.
Consider now the biquartic function

Ta(s) = Ty(s) OTy(s) (5.37)
with each T(s), i = 1, 2 having the following form:

h;s

Ti(s) = (5.38)

2 i 2
S+ =s+w

Q

If T,(s) is to be realized by the biquartic section in Fig. 5.17, D(s) in Eq. (5.35) has to be iden-
tified by the denominator of T,(s) and similarly for N(s). Thus, D(s) will be

D(s) = %;2 + %s + w%%z + %zs + w% (5.39)

But from Egs. (5.35) and (5.34), D(s) is also given by

D(s) = %2 + 8—,'13 + m'ﬂ%z + (s—,’zs + w'% + fh',h',s° (5.40)
or
D(s) = D'(s) +ns° (5.41)
where
D'(s) = %2+8—,'15+w’% 2+8—,'§s+w’% (5.42)
and
N = fh,h, (5.43)

with n set in this form for convenience. Notice that n > 0.
Our task now is to determine D’(s) and n (and consequently f) for the biquartic to realize
T,(s) in Eq. (5.37).
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5.7.2 Effect of N on ', and Q'

From Egs. (5.41), (5.39), and (5.40), using simple algebra, the following equations can be
obtained:

Wy 07 W, % (5.44)
Q,1 QIZ 1 2
2 2 1w 2 2, 00,00,
Wity + —= = w; + - (5.45)
TR, T TR
('0_'1 + w_lz = 31 + 22 (5.46)
,2 ,1 2 Ql
Wiw, = Ww, (5.47)

In the case of geometrically symmetric bandpass filters which have been obtained from the
transformation of an all-pole lowpass function to bandpass, each pair of complex conjugate
poles of the lowpass function transforms to two pairs of poles of the bandpass function
which have identical Q factors.

Thus, depending on which two pairs of poles of the bandpass function the BR section is
to realize, we distinguish two cases when referring to Egs. (5.44) through (5.47).

a. Q; = Q, = Q (symmetrical stage)
b. Q;#2Q, (nonsymmetrical stage)

It has been shown [16] that the symmetrical stage is more advantageous in practice than
the nonsymmetrical one. This will be explained later, when the realization of the overall
function will be considered. Thus, the nonsymmetrical case will not be considered further
here.

Referring to the symmetrical stage then, substituting Q for Q, and Q, in Egs. (5.44) and
(5.46) gives

W, W, _ w0t
L+ —f = L= (5.48)
Q, Q. Q

and
W W, _ w+w
01,02 - D7 (5.49)
Q, Q) Q

Subtracting (5.49) from (5.48) or vice-versa and after some manipulation the following is
obtained:

EQi'l - Qi'B(wll —w') =0 (5.50)

which gives the relationship between Q'; and w';,i=1, 2.
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Clearly, the values of Q'; and w';, i=1, 2, will depend on the value of n| as a consequence
of Eq. (5.45). It can then be observed by means of Eq. (5.50), that there is a range of values
of n for which

W'y = WY Q:#Q"
and another range of n values for which
W70, Q' =0Q,
and, finally, a value of n = n, for which
o=, Q=Q,
These can be clearly illustrated by means of an example. Consider pairing the equal Q fac-

tor biquadratics T,(s) and T.(s) of T(s), Eq. (5.22), in order to form the biquartic function of
interest here. In this case (however, see design example below with different indices)

Q, = Q, = Q = 20.0187
w, = 0.9576228
w, = 1.0442525

Using these values in Egs. (5.45), (5.47), (5.48), and (5.49) the two diagrams in Fig. (5.18) can
be obtained.

The value of n = n, is most interesting, because the two biquadratics #,(s) and t,(s) become
identical and, consequently, the corresponding stages in the BR will be identical. This can
be the starting point in any CBR filter design as it is considered here. We can determine this
value n, from Eq. (5.45) as follows.

Since, for identical t,(s) and t,(s),

100 - 110
80 1.06
z
Q: g
5 60 s 1.02
: £
& R
Qa0 £o09s
g
Q) Q) b
20 \Q'I 0.94 ',
0 1 | I3 1 J 0.90 1 1 1 1 ]
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
Feedback 3 Feedback 7
(a) (b)
FIGURE 5.18

Effect of varying n on (a) the Q factors Q'; and (b) the center frequencies w';, i = 1,2 of biquads #,(s), t,(s),
symmetrical stage.
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substituting in Eq. (5.47) gives

W' = Jow, (5.51)

Also from Eq. (5.48) using (5.51)

2.Jw,0,

Q = le_,_wz (5.52)
Then, inserting these values in Eq. (5.45), the following value of n is obtained:
n =1, = (@ -w)R--10 (5.53)

AEZD

5.7.3 Cascading Biquartic Sections

Biquartic sections can be cascaded to realize high-order filter functions. There is no need
for isolation stages between the BR sections, since their outputs are of low impedance,
being the output of an opamp with negative voltage feedback. Thus, the cascade of biquar-
tic sections filter or CBR filter is obtained.

As mentioned above, we consider here the realization of bandpass filter functions, which
have been obtained from an all-pole lowpass via the usual lowpass-to-bandpass transfor-
mation. These functions will be of the following form:

T(s) = []Ti(s) (5.54)

where each Ty(s) will be given by Eq. (5.38).

Thus, the order of T(s) will be 2N, with N being even or odd.

If N is even, T(s) can be written as the product of biquartic functions, each of them having
in their numerator only a s? term multiplied by a constant. On the other hand, if N is odd,
one bandpass biquadratic term can be separated from T(s) and realized separately. Then, the
rest of T(s) will be of an order divisible by 4 and therefore will be treated as when N is even.

For an optimum CBR filter design, various degrees of freedom should be considered,
namely, pairing the pole-pairs to obtain the biquartics, position of each BR section in the
cascade, and distribution of the overall gain among the various stages. These degrees of
freedom are to be considered in this and following sections.

Pairing pole pairs for obtaining symmetrical BR sections, apart from being practically
more desirable than the nonsymmetrical sections, leads to further advantages [16] concern-
ing sensitivity and noise. There is not much difference between the two cases, as far as
dynamic range is concerned. Following this reasoning, pole-pairs are preferably paired in
a way that symmetrical BR sections will be obtained.

5.7.4 Realization of Biquartic Sections

There is a flexibility in the realization of each biquartic section (Fig. 5.17), depending on the
Q factor of the biquadratic blocks, t; [Eq. (5.34)]. Thus, for Q factors < 30 and in the audio
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frequencies regime, SABs [17] can be used [18] in the realization. Then, the overall BR sec-
tion will be as shown in Fig. 5.19(a). However, since the possibility exists with this SAB to
use both inputs of the operational amplifier to obtain summation of voltages, the summer
can be eliminated, and the BR circuit will be as shown in Fig. 5.19(b) using two operational
amplifiers.

In BR sections, in which the Q factors of the biquadratic blocks are greater than 30, two-
opamp or even three-opamp biquads should be used. A suitable two-opamp biquad is the
GIC-type biquad [19] shown in Fig. 5.20, which will take the place of each SAB in
Fig. 5.19(a).

The two biquads, SAB and GIC-type, have been studied [20-22] and optimized from the
sensitivity and noise points of view and, for this reason, they are used in the realization of
filter functions here.

5.7.4.1 Design Example

For reasons of comparison, let us consider the use of this technique to design the sixth-

order Butterworth bandpass filter that we have also designed as a CF and a PRB (SCF) filter.
Since it is a sixth-order function, we choose to pair the two equal-Q pole biquadratics in

order to form the BR function, while the remaining lower-Q second-order bandpass func-
tion will be realized by the SAB in Fig. 5.3. Thus, we will have, from Eq. (5.22)

k, 0.047832 § ks 0.0521638

TA)T3(s) = = 2
S +0.0478363+0.9170415 s"+0.521638 + 1.0904632

W
<
b3

>
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A A AL
<

s

y
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YVVv

11
LA _' I____
Vio—AMN—1—] - AAAA_4]
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+ 1 b—oVa
AW 2
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S
—_— |

FIGURE 5.19
Realization of a BR section using (a) three and (b) two operational amplifiers.

©1999 CRC Press LLC



FIGURE 5.20
GIC-type biquad.

with

and

Then,

and

Vio—AAMA— — FH—AMWA—— AW

oY,

|
.;|I

w, =0.9576228 Q, Q, =20.0187 = Q

w; = 1.0442525

D(s) =s*+0.1s3 + 252 + 0.11s + 1

W, = w5 = Ju,w; =1
. ;o 2Jw 2% 20.0187
Q,=Q5= 2%Q = = 20.00

T Wty 2.0018753

_ 2 1.
Ny = (W, — ) EL—ZE)—E = 0.0075

It can be seen that Q',, Q'; are slightly less than Q, while the two biquads in the BR stage
will be tuned to the center frequency of the filter. Then,

0.04999688
s*+0.04999688 + 1

ty(s) = ta(s) =

In practice it will be impossible to realize the coefficient of s using components even of 0.1
percent tolerance. So, to a very good approximation, we can write this function practically

as follows:
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to(s) = ta(s) =

0.05s
S +0.05+1
Two identical SABs will be used to realize t,(s) and #,(s).
Eq. (5.43), we will have

f= Mo 0.0075

To complete the design, we must calculate the feedback ratio f using the value of n,. From
T h,h,  0.05x 0.05
is shown in Fig. 5.22.

3

If we choose to have the biquad (SAB) leading in the cascade, the overall filter will be as
denormalized to R, = 10 kQ and w, = 1krad/s.

shown in Fig. 5.21 in block diagram form. The summation is performed using an opamp as

Component values for the overall filter are given in Table 5.3, both normalized, and
5.7.5 Sensitivity of CBR Filters

examine their sensitivity and, if possible, optimize their design from this point of view.
functions.

Having dealt with the problem of realization of the CBR filters, we can now proceed to
It is clear that the filter sensitivity will not depend on the sequence of the BR sections in

the cascade. It will, however, depend on the feedback ratios n, on the types and the
design of biquads used, and on the particular pairing of pole pairs to form the biquartic

-3
1

\ : S'?B S:&B > S:AB oV,

1 VZ V3 2 3

T T T

FIGURE 5.21
Realization of F(s) using a SAB and a BR section connected in cascade. SABs t, and t; are identical.
R/3
—AMA— Y%
R
4

FIGURE 5.22

Opamp for performing summation.
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TABLE 5.3

Component Values

SAB T, SABs t, t;
Denormalized Denormalized
Component  Normalized kQ, nF Normalized kQ, nF

R’y 10.27 102.7 20.67 206.7
R"; 0.145 1.45 0.1439 1.44
R, 7 70 7 70

C, 1 100 1 100

C, 1 100 1 100

R, 0.265 2.65 0.33678 3.37
Ry 10 100 10 100

R - - 1 10

The sensitivity of the CBR circuit has been examined [16] realizing an eighth-order, 0.5 dB
ripple Chebyshev bandpass filter function, which has been obtained from the correspond-
ing all-pole lowpass via the transformation

The standard deviation of the magnitude response of the filter was considered as the sen-
sitivity measure. This was calculated according to a Monte Carlo method for 1000 tries. All
passive components were assumed to have values uniformly distributed within their tol-
erance limits +1 percent, and operational amplifiers were assumed to correspond to one-
pole model with 10 percent tolerance in their gain-bandwidth product (f; = 1 MHz). Results
are as follows.

The sensitivity is reduced as the feedback ratio n increases up to the n, value. Further
increase in n >, does not lead to substantial further reduction in sensitivity. It appears that
sensitivity reduction of the BR section as ) increases follows the reduction in the difference
w'; — W', and becomes nearly constant when w'; = w', forn 2n,. Inall cases (0 <n<n,,,),
the sensitivity of the BR section is lower than the sensitivity of this section with f= 0 (cas-
cade filter). Here, by n,,.,, the value of n is denoted for which one of the Q'; factors becomes
infinite. This value can be obtained from Eq. (5.45) for the symmetrical case to be

W, W:.
Nmax = ((*)1_(*)2)2 + (1222 (5.55)

SABs can be used instead of GIC-type biquads, if the Q factors of the biquadratics in a BR
stage are low (<30), thus saving in operational amplifiers. It has been shown in this case [16]
that the two CBR circuits are equivalent from the sensitivity point of view, but in the cir-
cuits with SABs, there is a saving of at least two operational amplifiers. Also, noise perfor-
mance should be superior since, as has been shown [15], CBR circuits with SABs are less
noisy than CBR circuits with GIC-type biquads.

Referring to the position of each BR section in the cascade, it has been shown [15, 16] that,
as a rule of thumb, the BR sections should be placed in ascending Q factor order starting
with the lowest Q section. This result is in agreement with the optimum ordering in the CF
case.
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5.8 Summary

The realization of a high-order filter function is necessary when the designer’s filter prob-
lem is to satisfy the stringent selectivity requirements in telecommunication systems, spe-
cial instrumentation and many other applications. Direct methods of realization of such
filter functions using only one opamp are not practical, because they result in highly sensi-
tive active circuits.

In this chapter, three practical methods of realizing high-order filter functions have been
reviewed. A fourth method is explained in the next chapter. The three methods, namely, the
cascade connection of second-order stages, CF; the multiple-loop feedback, MLF; and the
cascade connection of fourth-order stages, CBR, have advantages and disadvantages.
Thus, the CF can realize any type of stable filter function, is easy to design and tune, and
requires fewer opamps than the other filters. Its disadvantage is the higher sensitivity in
the passband compared to the other filters.

Three MLF circuits were reviewed. The primary-resonator block, the follow-the-leader
feedback, and the shifted-companion form. Their common characteristic is the application
of negative feedback in a cascade connection of low-order stages, first- or second-order,
depending on the type of filter function, whether it is lowpass (highpass) or bandpass
(bandstop), respectively. The MLF circuits have low sensitivity in the passband—much
lower than the CF—Dbut their design and tuning are more involved than in the case of the
corresponding CF. The SCF is the most general of the three, while the FLF can be optimized
to have lowest sensitivity and noise. The PRB is practically suitable for the realization of
geometrically symmetric bandpass filters when the design of the SCF and the nonopti-
mized FLF result in the same PRB circuit.

The cascade connection of biquartic stages, CBR, is an alternative and useful approach
for the design of geometrically symmetric bandpass filters. It combines the advantages of
the CF (easy to design and tune) with the low sensitivity characteristics of the MLF. It has
been proven also to display noise performance similar to that of the FLF circuit, which is
the best among all the MLF circuits. Lowpass active filters of special form [23] as well as
other filter functions [13, 24] can also be realized as CBR circuits, but the optimization pro-
cedure outlined above was derived [15] for the case of the geometrically symmetric band-
pass filters only.

From the previous discussion, one can conclude that, when the selectivity demand is rel-
atively low, the CF can be the preferable solution. However, when this demand is more
stringent, the PRB or the CBR filters should be the choice provided, of course, that they can
realize the pertinent function. Otherwise, the designer should look for an optimized FLF
circuit or for a LC ladder simulated circuit provided, of course, that a suitable LC ladder
realizing the required transfer function exists.

The method of LC ladder simulation leads to active RC filters of very low sensitiv-
ity—lower than that of the MLF circuits—and is examined in the following two chapters.
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Chapter 6
Simulation of LC Ladder Filters Using Opamps

6.1 Introduction

In Chapter 5, we examined two general methods of high-order filter design, namely the
cascade of low-order sections and the multiple-loop feedback method. We will now explain
ways for the simulation of passive LC ladder filters as an alternative but, at the same time,
popular and very useful approach to active RC filter design.

For reasons that we will explain in Section 6.2, the passive LC filter in the form of a ladder
has to be resistively terminated as shown in Fig. 1.19, repeated here as Fig. 6.1 for conve-
nience. The transfer voltage ratio of this filter obtained from Table 1.2 is as follows:

ZxyR
(Re+Z1)(RL+Z30) =212,

H(s) = x—z - 6.1)

where Zyi,j=1,2are the z-parameters of the LC two-port.

Clearly, a filter function can be realized by this circuit, provided that it is written in the
form of Eq. (6.1), so that the LC two-port parameters can be suitably identified and subse-
quently synthesized. The terminating resistances are taken into consideration during the
design, and their ratio influences the amount of signal power transferred from source to
load via the LC two-port.

In this chapter, we do not intend to design the LC two-port, as this has been done long
ago for all the filter functions that have been obtained as the solution to the approximation
problem. The values of the inductors and capacitors for various orders and R,/ Ry ratios of
these functions have been tabulated and appear in many text and reference books [1-4].

The purpose of this chapter is to explain some ways for simulating either the impedance
of the inductors or the operation of the passive LC ladder by means of active RC circuits.
Thus, in Section 6.2, we give the motivation for using the simulation of the LC ladder filter
in order to obtain useful high-order active RC filters. In Sections 6.3 and 6.4, we use gyra-

two-port

I{B |

FIGURE 6.1
Resistively terminated LC two-port.
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tors and generalized-immittance converters, first introduced in Chapter 3, to simulate the
impedance of the inductors and the supercapacitors, the latter appearing in the passive lad-
der through a suitable impedance transformation of the prototype filter. Next, in Section
6.5, the method of simulating the actual operation of the passive ladder filter is presented.

6.2 Resistively-Terminated Lossless LC Ladder Filters

We are interested here in LC filters that are in the form of an LC ladder resistively termi-
nated at both ends, as is shown in Fig. 6.2. In this circuit, X;, i =1, 2,...,n are LC impedances
or admittances. X; and/or X, may be missing, in some cases.

The important characteristic of the ladder is that there is a single path of signal transmis-
sion from source to load. Orchard has shown [5] that when the ladder is properly designed,
at the frequencies of maximum power transfer, the first-order sensitivity of the magnitude
of the transfer function to each inductor and capacitor is zero, while it remains low in the
intermediate frequencies throughout the passband. This can be intuitively explained as fol-
lows: since the LC ladder is lossless at the frequencies of maximum power transfer, a
change in an L or a C value can only increase the loss of the filter. Thus, the derivative of
the frequency response (magnitude) with respect to each L and each C will be zero at these
frequencies and so will be the corresponding sensitivity.

Furthermore, it has been shown [6, 7] that, for this type of filter, the sensitivity to the
inductors and capacitors can be near zero throughout the passband rather than at only a few
frequencies. It is therefore logical to expect that this low sensitivity of the lossless ladder fil-
ter will be retained in an active RC network which simulates the “operation” of the LC lad-
der or which contains active RC subcircuits that simulate the impedance of the inductances.
This idea has resulted in the popularity of this method in active RC filter design.

It should be mentioned that the sensitivity of the ladder LC filter is not low in the transi-
tion and stopbands. However by proper design [6, 7] this can be close to a lower bound. On
the other hand, as long as the loss in these bands remains higher than the filter require-
ments dictate, this sensitivity will not be of any practical importance.

6.3 Methods of LC Ladder Simulation

The simulation of a resistively terminated LC ladder can be achieved by the following four
methods:

R

FIGURE 6.2
A resistively terminated ladder network.
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1. Inductance substitution by a gyrator-C combination.

2. Impedance transformation of part or the whole of the LC ladder. In this case
generalized-immitance converters are employed.

3. Simulation of currents and voltages in the ladder. The leapfrog (LF), coupled-
biquad (CB) as well as the signal-flow-graph methods are names that have been
used in the past to express essentially the same method.

4. The linear transformation (LT), which includes the wave active filter (WAF)
method, approaches the simulation of the LC ladder the same way as ¢, but it

uses transformed variables instead of simulating the voltages and currents of
the LC ladder.

Methods 1 and 2 are usually considered to constitute the topological approach to LC lad-
der simulation, whereas the last two (3 and 4) constitute the functional or operational
approach. In this chapter, we will explain the first three of these methods, while the fourth
will be treated in the next chapter.

6.4 The Gyrator

The gyrator was introduced in Section 3.3. It is, in effect, a positive impedance inverter
defined by its transmission matrix as follows:

[A] =

0 £V/g,
g9, O

Its symbol is shown again in Fig. 6.3(a). If it is terminated at port 2 in an impedance Z,
Fig. 6.3(b), the impedance seen at port 1 will be

7, = =

= 6.2
0192 6.2)

Clearly g, g, have the dimensions of a conductance and are called, most appropriately,
gyration conductances. For inductance simulation, Z will be the impedance of a capacitor
C, when Z, becomes, from (6.2)

C
Z, = s— =5sl, 6.3
' 0192 4 (6.3)
I L
1o—p— — 402 P —
i i
v, V, 7Z,> z
1'o—— t—02' o——
(@) ®)

FIGURE 6.3
(a) The gyrator symbol and (b) the gyrator terminated in an impedance Z at port 2.
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where

C
Ly, = — 6.4
9.0, 6.4)

The gyrator, strictly speaking, is an active two-port. However, if

&1=8& =8

it behaves as a lossless passive one, since then the power flowing in, V I, is equal to the
power flowing out, V,(-1,), from the gyrator. However, the active gyrator, depending on the
value of g,/g,, will act as an amplifier for the signal in one direction and as an attenuator
in the opposite direction.

In the ideal case, we consider g, and g, independent of frequency which, in practice, is
true only for a limited frequency range.

It can be seen from Fig. 6.3(b) that this simulated inductance seen at port 1 is grounded.
However, in lowpass, bandpass, and bandstop LC ladders, floating inductors, i.e., induc-
tors not connected to ground, are present. To simulate such an inductor, two gyrators are
required to be connected as shown in Fig. 6.4. The two gyrators have to be matched; other-
wise, this arrangement will not simulate a pure floating inductance.

The quality of the simulated inductor depends greatly on the quality of the capacitor C.
Thus, if g, is the leakage conductance of the capacitor, then the associated loss resistance RL
of the simulated inductor can be calculated from Egq. (6.2) as follows:

1 1 1
Z, = — = —(sC+
SN R AR
Thus,
C 9c
Ly, = ——, R = =% 6.5
0, - 0.0, (6.5)

Clearly, ¢. should be as small as possible.

6.4.1 Gyrator Imperfections

Let us assume that the gyrator in Fig. 6.5 is not ideal and that its admittance matrix is as
follows:

2 3 L
1 o - 4 lo—rrrdn o4

1

4 10— o4

FIGURE 6.4
Use of two gyrators to simulate a floating inductor.
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I I

1 2
FIGURE 6.5 | | -l_
Nonideal gyrator terminated in a capacitor. ¢ .

[Y] = {ga 91} (6.6)
=0, Op

where g, ¢, are non-zero, pure conductances. Since
I, = —sCV,
straightforward analysis gives that the input impedance Z;, will be the following:

_ sC+ g

Zin -
0a(sC+ @) + 010,

(6.7)

Vi
Iy

Substituting jw for s, we get

. 2 ~2
Z, (jw) = JwCGi9, + 95(9:9 + 9aGy) + W' C°g, 6.8)

(0,92 + 9.0p)° + W’ Cgl

Thus, the input impedance represents the series connection of an inductance L,, and an
unwanted resistance R, where

_ Ca,9
Leq - 122 22 2 (6.9)
(9192 + 0a0p)" + 0 Cgy

9(0:02 + 0a0b) + W C°g, (6.10)

R, =
(9:09; + 9.0p)° + W' C’gl

Therefore, the quality factor Q of the simulated inductance is finite, while both L,, and its
associated resistance R, are functions of w?. Using Egs. (6.9) and (6.10) this quality factor
can be determined to be

Leqw - Cglgz(*)

6.11)
Ri 05(0:02 + 9.0y) + 0°C°0,

Q:

which has the following maximum value Q

max *
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9:9> [1 4 9192
max = ————— |1+ == 6.12
Q 0192+ 9.0y Ja9s (6.12)

The value of Q,,,,, is independent of frequency and the capacitance C (provided the capac-
itor is ideal) and occurs at the following frequency:

1
W, = c /(9192+9a9b)%; (6.13)

Thus, for high-quality simulated inductances, the gyrator parasitic conductances g, g,
should be as small as possible compared to g, .

6.4.2 Use of Gyrators in Filter Synthesis

It is implied from the above discussion that the gyrator-capacitor combination can take the
place of an inductor in the LC ladder. As an example, consider the third-order highpass fil-
ter shown in Fig. 6.6(a). Let ¢, = g, = 10-3S.

The capacitance required for the simulation of the 30 mH inductance will be determined
using Eq. 6.4. Thus, solving for C, we get

C = g0sLeq = 10°x3x 10°F = 30 nF

The circuit using the simulated inductance is shown in Fig. 6.6(b).

LC ladders most suitable for inductance simulation using gyrators are those with no
floating inductors in their structure. Such are highpass filters and bandpass filters with no
transmission zeros in the upper stopband. The structures of these types of filters are shown
in Fig. 6.7(a) and (b), respectively.

0.1667 pF 0.1667 pF
11 I
1 1l
600 02 p
330mH gsoo Q
-
E,
@)
0.1667 pF 0.1667 pF
Y {1
i il
600 2
30nF 600 2
E. T
®)

FIGURE 6.6
(a) Simulation of the inductance in an LC filter using (b) a gyrator-capacitor combination.
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®
R gqﬁﬁ%}

®)

FIGURE 6.7
Optimum ladder structures for inductance simulation using gyrators: (a) highpass and (b) bandpass with no
transmission zeros in the upper stopband.

It should be mentioned that the impedance-inverting property of the gyrator can be used
to transform an RC impedance to an RL impedance. For example, consider the gyrator ter-
minated at port 2 by the RC impedance

-r=L
Zee = R= 2 (6.14)
The impedance presented at its input will be
1 41
Z, = — IZ—
" 002 Zee
or
z. 1 o1 1 sC (6.15)

T 0% p, Ll GG SCR+1

sC

Clearly, Z,, represents the equivalent impedance of a resistance (1/Rg;g,) in parallel with
an inductance (C/g,9,), as the reader can easily see.

This suggests that a filter function can be decomposed into an RC impedance (or admit-
tance) function and an RL impedance (or admittance) function, the latter being realized as
the input impedance (or admittance) at one port of a gyrator terminated by the appropriate
RC impedance (or admittance) at the other port. Then, the two impedances (or admit-
tances) are combined to give the overall circuit using a gyrator, resistors and capacitors.
This method of using the gyrator in the synthesis of active RC networks was very popular
in the 1960s, when saving in active elements was considered a figure of merit in active RC
filter design. This is not so true today, though, when the low price of the opamps allows for
the relaxation of this condition in favor of resorting to simpler methods of active RC syn-
thesis such as the inductance simulation method.
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6.5 Generalized Impedance Converter, GIC

The concept of the GIC was introduced in Section 3.3. As a reminder, it is a two-port defined
by its transmission matrix

[A] = {k 0 } (6.16)
0 k/ f(s)

where f(s) is the impedance conversion function and k a positive constant.

The GIC is very useful in LC ladder filter simulation by active RC networks, when it is
used either as a positive-impedance converter (PIC) or to produce a frequency-dependent
negative resistance of type-D (D-FDNR). In the first case, f(s) = s, and the GIC is terminated
at port 2 by a resistance R. Then, the input impedance at port 1 is the following:

Z, = f(s)Z, = sR (6.17)

This is recognized as the impedance of an inductance R, in henries.
On the other hand, if f(s) = 1/s and a capacitor C is connected across port 2, the input
impedance at port 1 will be

nt -1 (6.18)

Z, = 5 N

niF

This is recognized as an FDNR of type-D, which is a negative resistance in effect, since, if
jwis substituted for s in Eq. (6.18), Z;; becomes

Zy, = —— (6.19)

which is resistive, negative, and frequency dependent.
It is usual to give the GIC the symbol shown in Fig. 6.8 with the dot always indicating
the side of port 1 and the conversion function f(s) written inside the box.

6.5.1 Use of GICs in Filter Synthesis

According to the previous discussion, a GIC with conversion function f(s) = s and a resistor
connected across its port 2 presents in its port 1 the impedance of an inductor (Fig. 6.9), thus
operating as a PIC.

10 02

f(s)

FIGURE 6.8
Usual symbol of the GIC. ~ 1'0——] 02!
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sR

FIGURE 6.9
The GIC operating as PIC.

Two matched GICs of this type are required in order to simulate a floating inductance as
shown in Fig. 6.10. This is in agreement with the corresponding case for gyrators.

Following this approach, we can say that optimum ladders for inductance simulation are,
as in the case of gyrators, highpass filters, and bandpass filters with no zeros of transmission
in the upper stopband. These filter structures are shown in Fig. 6.7(a) and (b), respectively.
This type of inductance simulation technique was first introduced by Gorski-Popiel [8].

It has been shown [9] that the optimum GIC circuit for this application is that shown in
Fig. 6.11 terminated at port 2 by the resistance R;. The conversion function of this GIC can
be easily shown (Section 3.5.2) to be the following:

Y1 SCRR = ks (6.20)
1
with k = CRR (6.21)
X sR
— - AMA—] - R A
s S —
o—0
[oSu— |0

FIGURE 6.10
Simulation of a floating inductor.

Th .

A/

i

FIGURE 6.11
Most practical GIC circuit for inductance simulation used as a PIC.
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Extending this, it can be shown [8, 10], that any (1 + 1)-terminal network consisting of
inductors can be simulated only using n GICs and a resistive network of the same topology.
The importance of this statement is that it can lead to savings in the numbers of GICs
required in the simulation of LC ladder filters, provided that such subnetworks can be sep-
arated from the corresponding ladders.

Consider, for example, the ladder filter in Fig. 6.12(a). The inductor subnetwork is as
shown in Fig. 6.12(b) and can be simulated using three GICs [Fig. 6.12(c)] instead of five
that would have been required otherwise (two for each floating inductor and one for L,, the
position of which can be exchanged with that of C to avoid its being floating).

As a second example, consider realizing a bandpass active filter from the Butterworth
third-order lowpass filter

1

F(s) = ——r——
S+288+2s+1

From tables [1, 2] or otherwise, we get the passive realization in LC ladder form shown in
Fig. 6.13(a). Since there is a floating inductance in the circuit, two gyrators or two GICs are
required for its realization arranged as is shown in Fig. 6.4 and Fig. 6.10, respectively.

From this, we can obtain the bandpass filter by applying the usual lowpass-to-bandpass
transformation to the reactive components (Section 2.6.3)

o6+ Wi
BU w,s U

s, U

For w,=1krad/s, B=100 rad/s and an impedance level of 600 Q, the sixth-order band-
pass LC ladder filter will be as shown in Fig. 6.13(b). Clearly, it is preferable, for reasons of
economy, to simulate this filter using PICs as is depicted in Fig. 6.13(c), since using gyrators

L, L,
2
Lj
3
(b)
b 1 R R, 2 i

s s
R, = R; = Ry=Ly(2)
. g“t Rp=Ly(2)
s R;=L;(£d)

v, 3 L.
=

FIGURE 6.12
The LC ladder in (a), with the LC subnetwork in (b) simulated in (c) using GICs as PICs.
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FIGURE 6.13
The third-order Butterworth lowpass filter in (a) is transformed into the bandpass in (b), which is simulated
using PICS as in (c).

would require a larger number of opamps to be employed for the simulation. Notice that
this simulated circuit employs three resistances of very low values, which make the circuit
impractical. If the values of the terminating resistances can be raised further without any
effect on the use of the circuit, the impedance level of the whole filter can be raised to make
all the component values practical. On the other hand, if the terminating resistance values
have to remain 600 Q, the conversion constant k of the PICs will be smaller than 1, i.e., 1073,
which will lead to increased resistance values of the PICs terminated resistors, namely
600 Q and 12 kQ instead of 0.6 Q and 12 Q, respectively.

One should note here that the PICs used in the simulation of the inductance subnetwork
must be matched. Two different inductance subnetworks may employ for their simulation
two different sets of PICs, but all the PICs in each set should be matched.

It can be seen that, by changing the inductance-subnetwork to the topologically similar
resistive subnetwork using PICs, we have in effect performed a complex impedance scaling
on part of the LC ladder. Complex impedance scaling of the whole ladder is explained
immediately below.

6.6 FDNRs: Complex Impedance Scaling

This technique of inductance simulation has been treated extensively by Bruton [11]. It is
most suitable for lowpass filters of the minimum capacitor realization. The reason for this
will become apparent below.

©1999 CRC Press LLC



Bruton’s technique amounts to complex impedance scaling of the entire filter and not to
part of it as we saw in the case of using PICs. It is based on the fact that the filter transfer
function will remain unchanged if the impedance of each element is divided by the same
quantity, in this case by s. We can demonstrate this simulation approach by means of an
example.

The filter in Fig. 6.12(a) is scaled by dividing each impedance by s. Then, the resistance is
transformed to the impedance of a capacitance, while the impedance of the capacitor is
transformed to the impedance of a supercapacitor (Section 3.3.1), as is shown in Fig. 6.14(a).
The simulated circuit is shown in Fig. 6.14(b), where a FDNR D-element is used to simulate
the supercapacitor.

A GIC circuit useful in realizing the FDNR D-element is shown in Fig. 6.15, terminated
in a capacitor Cs. It can be easily shown that its input admittance is

L gceR, (6.22)

1

In cases where the capacitive terminations of the ladder are undesirable in Fig. 6.14(a), we
can use two extra PICs terminated by two resistances R, and R, as shown in Fig. 6.16.
Comparing the circuit in Fig. 6.14(b) to that in Fig. 6.12(c), it can be seen that the former
requires fewer opamps than the latter, but its terminations are capacitive. However, if this
is unacceptable, because of the existence of a source impedance or a resistive load, buffer

® Lﬂ
}}F
I ‘A"'Av T
b
H
=
&

L;
ARy -~ ol
v L — g v - =R
s __+ s .l 17:
»C = ¢
I o
==
®) =

FIGURE 6.14
(a) Transformation of the ladder in Fig. 6.12(a) to another employing a D-element, which is realized by a GIC

with f(s) = s terminated in a capacitor (b).

1, G R R R,
T—»«-—-l P—W——W—WT
| )

FIGURE 6.15
A useful FDNR D-element.
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FIGURE 6.16
Realization of the ladder of Fig. 6.12(a) using a D-element and resistive terminations.

amplifiers can be used in the circuit, one between the signal source and the 1/R, capacitor
and the other between capacitor 1/R; and the load resistance. This approach avoids using
the circuit in Fig. 6.16, which employs three GICs also.

Lowpass LC ladder filters can be designed using either a minimum number of inductors
or a minimum number of capacitors [1]. Of the two, the latter, when simulated using Bru-
ton’s transformation, leads to a filter with minimum number of D-elements, thus saving
opamps. Unfortunately, this is not true in the case of bandpass filters, where there is no sav-
ing in opamps, even as compared to the PIC design.

One serious practical problem with this ladder simulation technique is that there is no dc
return path for the noninverting inputs of the two opamps in the FDNR circuit embedded
in the circuit in Fig. 6.14(b). To avoid this, one solution [9] is to connect two large resistors,
as large as practically possible, in parallel with the two terminating capacitors C, and C;.
Their values should be chosen such that the required value of the transfer function at dc
will not change. To demonstrate this, let R, and R, be the two resistances connected across
the capacitors C, and C;, respectively, in Fig. 6.14(b). The value of V,/ V_at dcis equal to 0.5
for all equally terminated lowpass LC ladders of interest. Therefore, the voltage drop
across R, should be V,/2, which means that at dc

Vo _ Ry _
V. R+L +L,+R, 0.5 (6.23)

from which we get

R, = R,+L,+L, (6.24)

6.7 Functional Simulation

In this approach to ladder simulation [12, 13], we seek to simulate the “operation” of the
LC ladder, i.e., the equations that describe the topology of the LC ladder, rather than sim-
ulate the impedance of the inductances. In other words, instead of using an active circuit
that simulates the impedance sL of inductance L, we try to simulate the voltage and the cur-
rent that exist in sL, which are related by
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=2 (6.25)

In so doing, we use voltages that are analogous to each inductor current and voltage. For
example, we can simulate the above I, V relationship, by means of an integrator with time
constant dependent on L, the output voltage of which is analogous to 1.

Similarly, we treat the operation of a capacitance C. Here, an integrator with time con-
stant dependent on C will be used to integrate a voltage, which is analogous to current I,
in order to produce another voltage V according to the relationship

It will be recalled that we use integrators, and not differentiators, for reasons related to the
excessive noise behavior of the latter.

The functional simulation method that we are to explain here is known as the leapfrog
(LF) method, because it leads to a circuit structure resembling that of the so-named chil-
dren’s game (see Fig. 5.5).

We will explain the LF method by means of an example. Consider the fifth-order lowpass
filter shown in Fig. 6.17(a), where all node voltages as well as the currents in the inductors
have been suitably named. We write the relationships connecting these currents and the

node voltages using Kirchhoff’s current rule as well as Ohm’s law. Referring to node No. 1,
we have

V-V
%R:i—sqvl—lzz 0

which can be also written as follows:

A\ 2 A Ly V5=V,
-— -
I I,
v‘ ) -l— T ) ) -,- i
. - .
R,
——AAAN—
(ol L,
-——~| |— 1 |
- Vio—AMA—
) —o-% 1 ] —o0-]
R “Vio—AMN— !
‘LR
® ©

FIGURE 6.17
Fifth-order lowpass filter.
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-V, = %BV—F;SV* -1 6.27)

Thus, -V, can be obtained at the output of an inverting lossy integrator as shown in
Fig. 6.17(b). In a similar way, we may write for I,

1
-1, = —g—Lz(Vl—V3) (6.28)

Then, a voltage analogous to —I, can be obtained at the output of a lossless inverting inte-
grator, in which the capacitance in farads is arithmetically equal to the value of L, in henrys.
This is shown in Fig. 6.17(c).

Working on an analogous basis, we will obtain the rest of the required equations, which
are as follows:

Vs = g (l-1) (6.29)
I, = —i(vs—vs) (6.30)
v, = ‘ia"‘\éﬁ (631)

Clearly, V; and I, will be obtained at the output of lossless integrators, while V;(=V,) at the
output of a lossy integrator.

In building up the overall active RC ladder, it is usually helpful to produce it first in
block diagram form and then insert the integrators and the other components in the places
of the corresponding blocks. Thus, from Egs. (6.27) through (6.31), we obtain the block dia-
gram shown in Fig. 6.18.

It can be seen that integrators, sign changers, and summers are required for the imple-
mentation. However, summation of voltages can either be performed by the integrators or
by the sign changers, preferably the former. Following this, we can now proceed to produce
the actual active RC ladder. This is shown in Fig. 6.19.

It can be seen that the “horizontal” branches of the active ladder consist of inverting
integrators alternating with inverting integrators and sign inverters in cascade, the latter
being in effect noninverting integrators. The top and bottom integrators are lossy, because
of the passive ladder terminating resistors, while the rest are lossless integrators.

In the case of a ladder of even order, the last capacitor will be missing [Cs in Fig. 6.17(a)].
Then, the current in the last L will also pass through the load resistor R;, which will give
rise to a simple V, I relationship. Thus, in the case of Fig. 6.17(a) with C5 missing the load
end of the ladder would be as shown in Fig. 6.20(a). We will then have

_1
o= RV (6.32)

and the active RC ladder would terminate as it is shown in Fig. 6.20(b).
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FIGURE 6.18 FIGURE 6.19
Block diagram of the active ladder simulating the = The overall LF or active RC ladder simulating the opera-
operation of the filter in Fig. 6.17(a). tion of the LC ladder filter in Fig. 6.17(a).

J_ 4 1 — A'A:A'A /‘
Cs R, 1o + &,:L
= AN
v
(a) (®)

FIGURE 6.20
When capacitor C; in Fig. 6.17(a) is missing (a), the last branch of the active ladder will be as in (b).

6.7.1 Example

As an example, let us consider the realization of the third-order Butterworth lowpass func-
tion in the form of an LF structure. The lowpass prototype LC filter terminated by equal
resistances in a normalized form is as shown in Fig. 6.21. Following the procedure outlined
above, we find first the equations for voltages V;, V, and current I,. These are as follows:

_V :_id/s_vl_lt|
! sGU R, U
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FIGURE 6.21
The lowpass LC filter of third-order.

=1, = - S_l_z(V1_V3)
= _iE‘P_{_?’_| 0
8 sGR, T

Then, the LF structure in block diagram form, as well as the practical circuit, will be as
shown in Fig. 6.22(a) and (b), respectively. The circuit in Fig. 6.22(b) can be denormalized
to any convenient impedance level and any required cutoff frequency.

The use of so many inverting and noninverting integrators in the active ladder inevitably
creates problems due to the excess phase associated with each of them. These are more pro-
nounced at higher frequencies and require attention. We can use the methods explained in
Section 4.9 and compensate the integrators, particularly the noninverting ones, since the
excess phase created by them is higher than that created by the inverting integrators.

6.7.2 Bandpass Filters

Applying the usual lowpass-to-bandpass transformation

v
URy 1
(@) ®)

FIGURE 6.22
LF simulation of the third-order Butterworth lowpass LC filter shown in Fig. 6.21.
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to the block diagram in Fig. 6.18, each integrator block will be transformed to a biquad of
infinite Q factor, apart from the two lossy integrators at the beginning and the end of the
ladder, which will have finite Q factors. We can redraw the block diagram of the general
form shown in Fig. 5.5 repeated here in Fig. 6.23.

The bandpass filters obtained this way are geometrically symmetric or all-pole, as they
are often called. Szentirmai [14] has generalized the method so that it can realize almost any
filter function, i.e., bandpass and band-reject filters, which are not symmetrical, having
arbitrary stopband requirements. If the bandpass filter is symmetrical, then all biquads can
be chosen to resonate at the same frequency, which gives the circuit the characteristic of
modularity.

The LF in its general form with each t(s) block being a biquad is usually called the cou-
pled-biquad structure (CB). The infinite-Q biquadratics will be in practice realized by
biquads that can be adjusted to have as high a Q factor as possible. In many cases, we can
use SABs, but in some cases, three-opamp biquads (see Chapter 4) may be more suitable.
However, in the latter case, the number of opamps becomes excessive while, if these are not
compensated for their excess phase, there will be serious distortion in their frequency
response, when they operate at higher frequencies (say, above 100 kHz).

The LF active filters retain the low-sensitivity characteristic of the passive ladder in the
passband, while in the transition or stopbands they are no better than the corresponding
cascade filter.

As an example of obtaining a geometrically symmetric bandpass filter from a lowpass
active ladder, let us apply the transformation

5 +10

to the integrators of the lowpass filter in Fig. 6.22(a).
The two lossy integrators have the same transfer function

WO (8) = - o5 (633)

while the lossless one in the middle, being noninverting, has the transfer function

_ 1
) = = (6.34)

Applying the above lowpass-to-bandpass transformation to Eqs. (6.33) and (6.34) gives the
following biquadratic functions, respectively:

0.1s
Ti(s), Ta(s) = - 7101571 (6.35)
4 £ £
o> (i@ [l [Ty > @ > [Tl - - > &> [H—s
-f3 L

FIGURE 6.23
The leapfrog structure, repeated.
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To(s) = 516 ZS (6.36)

s +1

Each one of T, and T, may be realized by the sign-inverting bandpass SAB in Fig. 4.10 or
by the three-opamp Akerberg-Mossberg biquad. However for the realization of T, a non-
inverting bandpass biquad is required that is capable of having an infinite Q factor. Such a
biquad can be either the Akerberg-Mossberg suitably modified [9] or the Sallen and Key
[15] bandpass biquad. Also, the SAB in Fig. 4.10 could be used followed by or, better, fol-
lowing a sign inverter.

If we choose to use the SAB in Fig. 4.10, T, and T}, being identical, will be realized by the
SAB in Fig. 6.24(a) and T2 by the circuit in Fig. 6.24(b). These biquads are then coupled
according to the scheme in Fig. 6.25 to obtain the overall bandpass filter. Each biquad in this
figure can be denormalized to the required center frequency w, and to a suitable impedance
level. Note that the gain of the filter is 0.5 as in the LC prototype.

6.7.3 Dynamic Range of LF Filters

We have pointed out in Chapter 5 that the dynamic range of high-order active filters is an
important characteristic of the various structures and should always be maximized during

10.27 1

0.1449
7.54
0.2
= @ =
1
11
0.1 | } ] 7
Vioa 2.082 1
_l l_‘ —oV,
>
L 0.15343
B 5 49
FIGURE 6.24
Realization of (a) T, and T, Eq. (6.33) = =
and (b) of T,, Eq. (6.34). ()
1 y 1 1
-0.1s ] -0.1s
V,oe—( ) Fan Y ~
& s2+0.1s+1 [N 20(s2+1) ] st40.1s+1 oY
\A % Ve
1/\

FIGURE 6.25

The overall LF or CB filter realizing the sixth-order Butterworth bandpass function.
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the design stage. Luckily, the LF ladder can be adjusted for maximum dynamic range. For
this purpose, one tries to adjust the gain of each #, block to obtain the same maximum value
at the output of every opamp in the circuit. Then the value of each feedback ratio f; is
changed to the value that keeps the product fi, ,t, unchanged.

This is an advantage of the LF over the GIC-type simulation, where optimization of the
dynamic range can be achieved only by properly intervening during the phase of the orig-
inal passive synthesis [9].

6.8 Summary

The simulation of a resistively terminated ladder LC filter is desirable, because it leads to
active RC filters with very low sensitivity in the passband. This simulation can be achieved
either by simulating the inductances by means of opamps, resistors and capacitors, or by
simulating the operation of the ladder. The opamps in the first case are used to realize gyra-
tors, GICs (PICs), or FDNRs. In the second case, the opamps are used as integrators, lossless
and lossy, summers, and sign-reversing elements (LF) or as parts of active biquads (CB).

The low passband sensitivity of the filters designed using the latter simulation approach
is their most important characteristic. This allows for looser tolerances of the components
when trimming these filters.

Another very important advantage of this kind of active RC filters is the availability of
the prototype ladder LC designs. The well known lowpass Butterworth, Chebyshev,
Bessel, and Cauer filter functions have been designed as resistively terminated ladder LC
filters and tabulated. From these tables, using the element transformation table of Section
2.7.1 other filter types (namely highpass, bandpass, and bandstop) can be obtained,
depending on the requirements. Of course, this does not prevent anyone from designing a
custom ladder LC filter, something that one must certainly do when the requirements call
for the design of an equalizer.

The main important disadvantages of the ladder simulation method are the following;:

1. The large number of opamps required which, apart from the economical problem
associated with it, leads to high dc power consumption, thus creating heat in
the circuit. In some cases though, the number of opamps required may be
reduced if the use of one-opamp grounded gyrators and FDNRs [16, 17] can
satisfy the filter requirements.

2. The limited dynamic range of the filters obtained by the topological method of
simulation. This is not important in the case of the LF type of simulation since,
as we have mentioned, maximization of the dynamic range of the corresponding
circuits is possible. In the case of the topological method of simulation, maxi-
mizing the dynamic range is rather involved and should be applied during the
design of the passive ladder circuit.
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Chapter 7
Wave Active Filters

7.1 Introduction

Wave active filter (WAF) design is an alternative approach to the simulation of resistively
terminated LC ladder filters in the effort to obtain active RC filters of low sensitivity [1].
Their development [2—4] followed the introduction of the wave digital filters initially by
Fettweis [5] and later by Constantinides [6]. Some difficulties observed in the earlier work
on WAF were overcome by the introduction of a more general approach [7] based on the
derivation of a general wave two-port for a floating impedance and another for a shunt
admittance. Thus, it was possible to indicate the one-one correspondence between the pas-
sive ladder elements and these two-ports, which can be easily implemented using resistors,
capacitors, and opamps. In further developments [8-10], the somehow excessive number
of opamps employed in the initially proposed WAFs was greatly reduced by the introduc-
tion of certain modified techniques, whereas their sensitivity and high-frequency perfor-
mance was studied [11].

The material presented in this chapter is based mainly on the content of References 7 and
11. Also, the design of linear transformation active (LTA) filters [12] is included. Their
development, which followed that of the WAFs, led to a general design approach that may
be interpreted to include the designs of WAFs, leapfrog, and signal-flow-graph filters as
special cases.

7.2 Wave Active Filters

These filters simulate the resistively terminated LC ladder filters by means of active equiv-
alent subnetworks of each series-arm impedance and each parallel arm admittance of the
passive ladder. Each element of the passive ladder is treated as an elementary two-port,
and its active RC equivalent is determined after its voltage and current port variables have
been linearly transformed to another sets of variables, which will be subsequently referred
to as the wave variables.

To develop this simulation method, consider the resistively terminated LC ladder shown
in Fig. 7.1. Without loss of generality, let each Z; and each Y, ; be a simple reactive element
L or C. Of course, in some cases, Z; and/or Y, may not be present, but this does not matter
as far as the subsequent development of the method is concerned.

Consider now such an elementary two-port N shown in Fig. 7.2(a) and defined by its V
and I port variables.
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FIGURE 7.1
Terminated LC ladder.
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FIGURE 7.2
(a) An elementary two-port N and (b) its wave equivalent N".

For reasons to be justified later, we consider that these V, I port variables are related by
means of a modified transmission matrix A defined by the following convention:

vl} _ {an a, {vz - (A vz} 1)
Iy Ay Ay | I I,
where
[A] = |30 a”} (7.2)
Ay; Ay

Clearly, in Eq. (7.1), parameters 4, and a,, have the opposite signs to those they would nor-
mally have.
Let us now introduce the following linear transformation to port variables:

Ai Vi+|iRi

B =V-ILR i=12

(7.3)

Variables A, i =1, 2 are considered to be the incident waves, while B, the reflected waves.
R, i=1, 2 are the port normalization resistances used to translate the currents I, i=1, 2 to
voltages. This transformation can be represented by the wave equivalent two-port in
Fig. 7.2(b). Combining Egs. (7.3) and (7.1) gives the following wave equations:
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-k
B, So1 Spg | A
Heres;, i,j=1,2are the scattering parameters, which take the following values:

Si1 = (a1 —au Ry — a6, + apR Gy) /A

S, = RIGy/A

Sy = /A

Sy = (811 +ay Ry +a1,G, +a,RG,)/A

A = a; +ayuR —a;,G,—a,R G,

G, = 1/R, (7.5)

For a series-arm impedance Z and a parallel-arm admittance Y, we have, in terms of the
modified transmission matrix description, the following:

{au alz} = {1 —J (7.6)
Ay Ay, 0-

G % = P 0} (7.7)
Q1 Ay,

Y —
Substituting in Egs. (7.5) and subsequently in Eqs. (7.4) we get the following equations
relating the wave variables for the two cases:

R,—R,+Z 2R,

By _ |[Ri+tR+Z Ri+R+Z||A (7.8)
B, 2R, RI—-R,+Z||A,
Ri+R,+Z R +R,+Z
and
G,-G,-Y 2G,
By _ |G1+Go+Y G +G+Y | |A (7.9)
B, 2G,; G,—-G,-Y||A,
with G;=1/R..
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If we consider that the incident waves A;, A, and the reflected waves B,, B, are voltages,
Egs. (7.8) and (7.9) can be represented by the circuits in Figs. 7.3(a) and (b), respectively.
Equations (7.8) and (7.9) do not change if both the numerator and the denominator of each
scattering parameter is divided by Z/R, and Y/G,, respectively. It is then possible to use
this approach to simulate LC ladder filters using active RC equivalent circuits for each
series-arm impedance and parallel-arm admittance as we explain below.

To this end, we have to develop active RC equivalents for the various elements in the lad-
der, namely, for each L, C, the signal source, and the terminating resistances. Then, we
should solve the problem of interconnecting them in order to obtain the overall ladder.

7.3 Wave Active Equivalents (WAEs)

In this section, we develop WAE circuits for each elementary two-port in the ladder,
whether it be an L, or a C, or a tuned circuit.

7.3.1 Wave Active Equivalent of a Series-Arm Impedance

If, in Fig. 7.3(a), Z is the impedance of an inductance L, we may divide R,, R,, and Z by
Z/R, i.e. by sL/R, and obtain the WAE in Fig. 7.4(a). This impedance scaling has trans-
formed the inductor into a resistor, and the two resistors into capacitors.

b——>

= 14

R] Ilk

>7 =

P —2>
—=>
Y
e
e

FIGURE 7.3
Active representation of Egs. (7.8) and (7.9) in (a) and (b), respectively.
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FIGURE 7.4
WA equivalents of an inductor (a) in a series arm, and (b) in a shunt arm.

On the other hand, if Z is the impedance of a capacitance C, no impedance scaling is
required, since the wave equivalent in Fig. 7.3(a) will already be an active RC circuit.

7.3.2 Wave Active Equivalent of a Shunt-Arm Admittance

If the shunt element is a capacitor, its wave active equivalent will be that in Fig. 7.3(b), and
no impedance scaling will be necessary for active RC realization. However, if the shunt ele-
ment is an inductor of admittance 1/sL, we can apply impedance scaling by dividing G,,
G, and Y by Y/G, to obtain the WAE of Fig. 7.4(b), which is active RC realizable.

7.3.3 WAEs for Equal Port Normalization Resistances

The WAEs in Figs. 7.3(a) and (b) also apply when the port-normalization resistances R, and
R, are equal. However, if we start with Egs. (7.8) and (7.9) we can obtain additional WAEs,
which can be more useful in some cases.

If we let R, = R, = R in Egs. (7.8) we obtain the following in the case of the series-arm
impedance Z:

Z 2R

By = srx Mt R+
2R i
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If we consider voltages A; and A, as the excitations, then B, and B, will be equal to the
node voltages V, and V, in Figs. 7.5(a) and (b), respectively. In the case of Fig. 7.5(a), it can
be seen that B, may be obtained as follows:

B, =A, + Ay~ V, (7.11)
Similarly, in the case of Fig. 7.5(b), B, may be obtained as
B,=A,+A, -V, (7.12)

Thus, depending on the relative position of 2R and Z with respect to the excitations A; and
A,, we can obtain the alternative WAE circuits shown in Fig. 7.6. The two WAE:s in Fig. 7.6
can be combined in one circuit as shown in Fig. 7.7.

Applying then the impedance scaling, i.e., dividing Z and 2R by Z,/R, in Figs. 7.6(a) and
(b) and in Fig. 7.7, when Z is the impedance of an inductance, active RC realizable wave
equivalent circuits can be obtained. This is possible because, by dividing both numerators
and denominators in Egs. (7.8) by Z/R,, the values of B, and B, do not change. No imped-
ance scaling is required if the series element is a capacitor.

7.3.4 Wave Active Equivalent of the Signal Source

Consider the situation in Fig. 7.8. The voltage V, expressed in terms of Vs and I, is as follows:

V=V +IR, (7.13)

2R

._>
9
_9

>
6 —&
2
6 —&

(@) ()

FIGURE 7.5
Circuits with A; and A, as excitations.
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FIGURE 7.6
Alternative WAEs for a series-arm impedance.
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FIGURE 7.7
Alternative WAE obtained by combining Figs. 7.6(a) and (b) in one.

1 We also have that
\ A=V +IR
R, <A

v B=V-IR

K —B where R is the port normalization resistance. Substituting for V
from Eq. (7.13), we get
FIGURE 7.6 A=V, +IRs+R) (7.14a)
B=V,-IR-Ry) (7.14b)
It can be seen from Eq. (7.14b) that if R = R

B=V, (7.15)

This means that the reflected voltage from the signal source end of the ladder is equal to
the open-circuit output voltage of the source.

7.3.5 Wave Active Equivalent of the Terminating Resistance

I The situation is shown in Fig. 7.9. We may write
o——Pp——
A V=IR,
A—>
A" § RL Whlle
B < A=V +IR=IR, + R)
o———— B=V-IR=I(R,-R)
FIGURE 7.9

Again, for R, =R
B=0 (7.16)
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i.e., there is no reflection wave, and the incident power of the signal is completely absorbed
by R.

7.3.6  WAEs of Shunt-Arm Admittances

The above procedure concerning the series-arm impedance can be repeated for the case of
the shunt-arm admittance when G, = G, = G. Thus, starting with Egs. (7.9) we can find alter-
native WAEs to that in Fig. 7.3(b). However, the circuit of Fig. 7.3(b) has been found to be
directly usable and gives practically acceptable results. Thus, we do not intend to pursue
this matter further, and leave it to the reader as an exercise.

7.3.7 Interconnection Rules

Having derived wave equivalents for the various elements in the passive ladder, the next
step is to determine proper interconnection rules for the adjacent WAEs in order to avoid
any errors that may arise from loading effects.

Consider the two adjacent passive two-ports N, and N, shown in Fig. 7.10(a). In the pas-
sive ladder, port 2 of N, is directly connected to port 1 of Ny, so that V;, is equal to V,, and
I, = -I,,. This can also be expressed mathematically as follows:

B )
0-1

It is evident that the corresponding WAEs N', and N, cannot have their adjacent ports

directly connected. Let us assume that a matching two-port N is going to be used in order

to achieve the correct interconnection of the adjacent ports of N', and N’y as shown in Fig.
7.10(b). Mathematically, where [P] is a 2 x 2 nonsingular matrix, this can be described as

Vi

Vﬂ (7.17)

Ilb |2a

follows:
{Aﬂ = [P] {Aﬂ (7.18)
Blb BZa
Iia | P Ity Loy
A A A
Via Ny Vi, Vis Ny Vap
| | | [
(@)
By,0 . ~ oB
! | | B Bw | | ®
N,
NY N}
Az A
A1¢ [0 »- & O Az],
(b)
FIGURE 7.10

(a) Two adjacent two-ports and (b) their WAEs interconnected.
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Assuming equal port normalization resistances at ports 2a and 1b, and using Egs. (7.3),

we can write for each one of the adjacent ports the following:

Awl = |1 R}V (7.19)
[Bi] 1Rl
Aaal = |1 R||Vaa (7.20)
| Bzal 11 R} | 2]
Substituting in (7.19) for [V, I;;]T from Eq. (7.17) we get
Al — |1 R[|1 0| |V2a
Byl |1-R/|0-1|1,.
or
Au = |1 RV (7.21)
Bip 1 R||l,
Finally, solving Eq. (7.20) for [V,, I,,]" and inserting its value in Eq. (7.21) gives
1
Byl |1 R||1-R |B,
or
Al = |0 11 Az (7.22)
Bip 10/ |B,,
On comparing Eq. (7.22) with Eq. (7.18), we obtain
P =91 (7.23)
10
B,. B, lherefore, the operation of the matching two-port N is to

connect terminal A, to B,, and the terminal By, to A,,. Phys-
ically, this means that the reflected wave at port 2a is the
incident wave at port 1b, and the incident wave at port 2a is

Az Ay the reflected wave at port 1b. This constitutes the required
interconnection rule of two adjacent WAE ports and will be
FIGURE 7.11 subsequently referred to as the cross-cascade connection.

The cross-cascade connection of ad-  gchematically, this is shown in Fig. 7.11.
jacent WAE ports with equal nor-

malization resistances.
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cross-cascaded. Since, in the passive LC ladder, the two adjacent terminals of the elements
are connected by a short, Z = 0, we can replace Z in the WAE of Fig. 7.3(a) by a short-circuit
and thus obtain the required matching network in Fig. 7.12.

The same matching network can be obtained from Fig. 7.3(b), if we set Y =0, i.e., an open
circuit. However, such a network may not be required, since the general circuits in Fig. 7.3
provide for different port normalization resistances, which can be always chosen at will,
thus saving in active and passive components.

7.3.8 WAEs of Tuned Circuits

The tuned circuit in the LC ladder can be either series or parallel and connected as a series-
arm impedance or a parallel-arm admittance.

There is no problem in the cases of a series-tuned in series-arm or a parallel tuned in a
shunt-arm. In both cases, the two elements L and C can be treated as different two-ports
and their WAEs determined as was explained above. However, the previously derived
WAESs cannot be applied when the parallel tuned circuit is in a series-arm or the series-
tuned circuit is in a shunt-arm of the LC ladder. In these cases, we work as follows.

Consider the case of the parallel-tuned circuit in a series-arm [Fig. 7.13(a)]. We may write
Z in the following form:

7= 1 (7.24)

SCP+§}L_p

Substituting in Egs. (7.8), we get (assuming R, =R, = R)

B = 1 , _2R(sG +1/sLy)
P14+ 2R(sG+1/sk) P 1+ 2R(sG+ 1/skp) 2
(7.25)
+
B, = 2R(sG+1/sly) 1

1+2R(sG+1/slp) ' 1+ 2R(SQ,+1/SLP)A2

On the other hand, for a series-tuned circuit in a series-arm, we have

& —

=+

FIGURE 7.12
Matching network for nonequal port normalization resistances.
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FIGURE 7.13

WAE of the parallel tuned circuit in a series-arm. Values of resistors r and R' may not be different and can be
chosen conveniently.

1

= + .
Z = sl sC (7.26)
and substituting in Egs. (7.9) we obtain the following;:
_ sL+1/sG 2R
Bis = SR (sL+1/sC) T IRT (sL+ /50y
_ 2R sly+1/sC,
B = SR (SL+1/5C) " T 2R+ (sL+ 1/5C) 7 .27)

On comparing Egs. (7.25) with Eqgs. (7.27), it is observed that B;, and B, are of the same
form. They can be equal provided that Ly = 4R?C, and Cg = L,/4R>?. The same is true for B,,
and B,;. We may then conclude that the WAE of a parallel-tuned circuit in a series-arm is
the same with the WAE of a series-tuned circuit in a series-arm, under the condition that
the values of L and C in the series-tuned circuit are given by the above mentioned relation-
ships in terms of R, L, and Cp

Following this and the interconnection rules explained previously, we obtain the WAE of
the parallel tuned circuit in a series-arm to be as is shown in Fig. 7.13(b). The values R/2
and 4C, in the second half of this WAE have been obtained by means of impedance scaling
using the factor Z/R, where Z = s2Lg = 8R?Cps.

The case of a series-tuned circuit in a shunt-arm is found to be simpler. One can simulate
the inductance by a grounded gyrator, and this in series with the capacitor will take the
place of admittance Y in Fig. 7.3(b). Since this case is rather simple, we will not consider it
any further.

©1999 CRC Press LLC



7.3.9 WA Simulation Example

As an example of a LC ladder simulation according to the wave active method consider the
lowpass prototype in Fig. 7.14(a) with R = R;. First, we split the ladder in simple two-port
elements as the broken lines indicate, and for each one of these elementary two-ports we
find the corresponding WAE circuit. These have been determined above and appear in
Figs. 7.3(b) and 7.13. Choosing equal port normalization resistances in all WAEs and nor-
malized to Rg = 1, we can easily obtain the WA filter shown in Fig. 7.14(b).

7.3.10 Comments on the Wave Active Filter Approach

It would be useful and constructive at this point if we made some comments on the wave
active filter method of LC ladder simulation before proceeding to any further develop-
ments on this theory.

1. One interesting point about this method is that there is no restriction on the type
of LC ladder filter that can be simulated. Once we have determined WAE circuits
for any type of element, and their combination in shunt or in series as tuned
circuits, these can be accordingly cross-cascaded to form the overall ladder as
an active RC circuit. And this can be achieved for equal as well as nonequal
resistive terminations.

2. It is also interesting and useful to note, looking at the WA filter in Fig. 7.14(b),
that there are two outputs available, namely V,; and V,,. Still more interesting
is the fact that the two transfer functions V,,/V, and V,,/V, are power comple-
mentary, when Rg = R, i.e.,

2
+

Ve = 1 (7.28)
Vi

Vol
Vs

AAA
W\
r

) g + + A
V}-l | | | 1 | | Vl.z
F 33 3| 3 3 3 -
y | 9 3 b2 > >
> > e L > — > >
| 5 3T BT 13| $n
% |
-—C - Cs
T + T
®
FIGURE 7.14

(a) The LC ladder prototype and (b) its WA realization. All resistor values not indicated are equal and can assume
any convenient value in practice.
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The meaning of this is that, if V,,/V, is a lowpass function, V,,/V, will be its
power complementary highpass, and vice-versa. We will leave the proof of this
statement until later when we will examine it in more detail.

3. It can be seen from Fig. 7.14(b) and deduced from the theory presented so far
that the ladder simulation by this method requires a large number of opamps,
larger than any other simulation method and indeed any other method of filter
synthesis we have examined up to now. This is an important drawback of this
elegant approach, which makes it uneconomical both from the component count
and the power consumption points of view. It is this major problem of WAF that
we will try to solve in the following sections.

7.4 Economical Wave Active Filters

The main disadvantage of the wave active filters is the large number of opamps they
employ, namely, 2N opamps for a LC ladder with N storage elements. Among the various
methods for reducing the number of opamps used in the design of WAFs, which have been
suggested in References 8 through 11, we choose to describe the last one because of its sim-
plicity and its similarity to the method of LC ladder simulation using GICs (PICs). In cer-
tain structures, the reduction in the number of the required opamps can be substantial.

Consider a passive two-port network N described by its y-parameters. As in the case of
single elements, we introduce two new pairs of variables A, B; i = 1, 2 such that

|

Al _ |11 R
B; 1-R
where R, i =1, 2 are the port normalization resistances. Using in these equations, the rela-

tionships between I; and V; by means of the y-parameters, Y, i, j = 1, 2, of the two-port we
obtain

\q =12 (7.29)

A _ |1+RYy  RYy, [V _ [Ql] Vi (7.30a)
A2 R2Y21 1+ R2Y22 V2 V2
{Bl} _ {1—R1Y11 —RiY, {Vl = [Q,] Vl} (7.30b)
BZ —R2Y21 1- R2Y22 V2 2

where

Q

1+RYy RiYyp, } (7313)
2,

| RYa 1+RY,

Q, = 1-RYy _Rlle} (7.31b)
L —R2Y21 1- R2Y22
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Then, solving Eq. (7.30a) for V,, V, and substituting in Eq. (7.30b) gives the following rela-

tionship between B;and A, i =1, 2:
Bul = g | (7.32)
B, A,

[S = [Q]7[QJ] (7.33)

with

Matrix Q, should be nonsingular.

If the new variables A, B, i = 1, 2 are voltages, each pair of them can be obtained through
the use of an operational amplifier, as shown in Fig. 7.15. This active network is the wave
active equivalent (WAE) of the passive two-port network N.

The above theory can be extended to the case of an n-port. For simplicity, consider that
the n-ports have a common terminal. With the n-port being described through its y-param-
eters, the n pairs of variables A, B, i =1, 2..., n are given as follows:

[Al = [Q4 V]

[B] = [Q.] [IV] (7.34)
where
1+RYy RYypn 00 RYy,
(0] = R,Y, 1+R)Y, ... R)Y,, (7.35)
R,Y 1 RY. ..1+R)Y,,
1-RYy; -RiYyn o —RYq,
[Qz] _ _RZYZl 1—R2Y22 _R2Y2n (736)
_RnYnl _RnYnZ 1_RnYnn
B,
o—t
R
R R
1 I
T R
N .
FIGURE 7.15

Wave active equivalent of passive two-port N.
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If [Q,] is nonsingular, Eqs. (7.34) give

[B] = [Q] OQ] A
or

[B] =[S OA] (7.37)

where

[S = [Q,] Q™ (7.38)

The WAE of the n-port can be obtained in a manner similar to that of the two-port.

This theory can be used to simulate a passive LC ladder filter as follows: the ladder is
split into one kind of element (L or C) n-port subnetworks. For each subnetwork, a WAE is
determined, and this is transformed into an active RC circuit, if it is not in that form already,
and then all these RC WAEs are connected in the usual WAF manner according to the posi-
tion of the corresponding passive subnetworks in the initial ladder. The terminating resis-
tors can be associated with the first and last subnetworks and therefore can be included in
the corresponding WAEs.

As an example, consider the ladder in Fig. 7.16(a), which is split into subnetworks, as
shown by the broken lines. The four-port L-subnetwork consisting of inductors L,, L,, and
L, has the active RC subnetwork in Fig. 7.16(b) as its WAE. The overall WAF is shown in
Fig.7.16(c). It should be mentioned that there is a saving in operational amplifiers of 50 per-

AAA
WA

WAE of 4-port
L - subsetwork

AAA
W

i | A

- Cs R, V, Ry,
o 4
1; 3

WA

©

FIGURE 7.16
(a) Eighth-order LC ladder bandpass filter, (b) WAE of subnetwork consisting of inductors L,, L,, and L, and
(c) overall WAE of ladder.
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FIGURE 7.17
(a) Sixth-order RLC bandpass ladder and (b) its wave active equivalent.

cent when this is compared to the corresponding WAF of the initially proposed design. On
the other hand, this WAF employs two operational amplifiers fewer than that of Brackett
[8], who approaches the design differently. More specifically, Brackett (a) simulates the par-
allel-tuned circuit L,C, using the WAE of a series-tuned circuit, in which he interchanges
the outputs B, and B,, and (b) uses gyrators to simulate grounded inductors L, and L,.

This extended WAF method of simulation is general and independent of the type of the
passive ladder, namely, whether this is lossless or lossy. Thus, in the case of the lossy one,
each resistor in the ladder can be associated with one neighboring L- or C- subnetwork. It
is preferable that all resistors be associated with C-subnetworks, since then they remain
resistors in the corresponding RC WAEs, whereas, if they are associated with L-subnet-
works, they become capacitors when the complex impedance scaling is applied to make the
WAE RC realizable.

Thus, the RC WAE of the RLC doubly-terminated ladder in Fig. 7.17(a) is as shown in
Fig. 7.17(b). Resistor R, has been associated with the two-port subnetwork consisting of
capacitors C, and C,.

7.5 Sensitivity of WAFs

In this section, the sensitivity of WAFs is examined and compared to the sensitivity of LF
filters.

Without loss of generality, consider a passive ladder that, for the purpose of being simu-
lated by a WAE is split into two-port subnetworks. The corresponding WAF will be in
block diagram form as shown in Fig. 7.18. The blocks labeled MAT (for matching active
transformer) represent the network in Fig. 7.19, with its passive components suitably

Il
- 1 - - — - —p—0
v RC or RL 1:[ LorC 1:[ 1:{ RL or RC :t
* subnetwork T subnetwork T T subnetwork l'
— -1 — - — — )

FIGURE 7.18
Block diagram of general WAF.
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labelled for better identification. Note that, normally, R, = R,;, i = 1, 2. For active RC real-
ization, the application of proper impedance scaling will turn each L- or RL-subnetwork
into a R- or CR-subnetwork, respectively. Then, depending on whether the L-subnetwork
precedes or follows the MAT, resistor R, or R'; will become a capacitor. However, for the
sake of argument, we keep the block diagram in the form shown in Fig. 7.18.

It is clear from Fig. 7.18 that if all MATs behave ideally, because of the one-to-one corre-
spondence between the subnetworks in the passive ladder and the WAF, the sensitivities
of the two filters to the elements of these subnetworks will be the same. Since these sensi-
tivities for doubly terminated LC ladders are known to be low, the expected higher sensi-
tivity of the WAF over that of the passive ladder will be due to the nonideal behavior of
each MAT and the mismatch that this is creating in the WAF.

The operation of each MAT is affected mostly by the finite gain-bandwidth (GB) product
of the operational amplifiers, which becomes most important when the filter is designed to
operate at high frequencies. Ignoring for the moment the effect of the MAT sections on the
WATF sensitivity at low frequencies, it has been shown [11] through worst sensitivity (WS)
studies that

a. The WS of the earlier introduced and the economical WAF are of the same order
but, as it may be expected, higher than that of the passive ladder.

b. The WS of the WAFs are of the same order but smaller than that of the corre-
sponding LF.

In this study, both passive and active components were included in the calculation of the
WS measure with the opamps considered to be of the one-pole model and its GB =1 MHz.

Thus the sensitivity of the WAF at low frequencies, where the opamps behave nearly as
ideal devices, is similar to the sensitivity of corresponding active RC filters resulting by any
other ladder simulation techniques. It remains, of course, the problem of high frequency
operation which we examine next.

7.6 Operation of WAFs at Higher Frequencies

We are concerned here with the problems arising in the operation of the WAFs at higher
frequencies due to the finite GB product of the opamps and ignoring any slew-rate effects.

: B, By 1
| |
| |
| 1
| Ry Rt |
| Ra Ru :

- I I AAR F Ry A | PIL

< VW— o QO AN g
C '1\ | : ! 'T‘ L
v v
subnetwork I | | | subnetwork
|
D e e e e e e e e o = =
FIGURE 7.19

Matching active transformer (MAT).
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Since MATs are the only active components of the WAF, we can study their behavior at
higher frequencies, since at these frequencies resistors and capacitors are considered to
behave ideally.

Because the WAF has been drawn in Fig. 7.18 as the cascade connection of MATs and pas-
sive subnetworks, it is more appropriate to study the operation of each MAT through its
transmission matrix. Ideally this matrix (nonmodified) should be as follows:

[A] = Ll)ﬂ (7.39)

Owing to the finite GB product of the opamps the matrix elements change, but detailed
study [11] has shown that only the a,, element is substantially affected, taking the following
value:

ay, = 1—"}1(—‘.’2R'1 (7.40)
where
K = —H Vi = (L—B)K, i=12 (7.41)
ey T o |

with y; being the open-loop gain of the opamp and y; the feedback ratio R,;/(R,; + R,), the
nominal value of which is 0.5. As an indication of this effect let us calculate the value of a,,
for the following typical values:

W = 10°, f.=10Hz f; = 1MHz

R, = R, = 1.2kQ, R, = 10kQ

At the frequency of 50 kHz, Eq. (7.40) gives the following value of a,,:
a,=~ 946

This is an extremely high value compared to the values of the other elements of the trans-
mission matrix, calling for frequency compensation of the MAT. To make 4,, as small as
possible the product y,y, in Eq. (7.40) should be kept as close to unity as possible. In prac-
tice, this has been found [11] to be achieved by connecting a capacitor of about 260 pF
across each resistor R in the circuit of the MAT, when working with opamps of the 741
type. Fortunately, this compensation does not affect the element a,;, while it improves
slightly the values of elements a;;, a,, to be even closer to unity at higher frequencies. With
this type of compensation, the operating range of WAFs can be extended up to at least
100 kHz.
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7.7 Complementary Transfer Functions [7]

It is interesting and useful to note that in a WAF, there are two outputs available leading to
two different transfer functions being realized at the same time. This can be easily seen in
Fig. 7.15, where output voltages B, and B, are available from opamp outputs. Viewing the
WAF as a whole wave equivalent, the signal excitation is the incident wave voltage A,,
which is equal to the voltage of the signal source, while B, and B, are the reflected waves,
with A,=0 when R,=R,.

Let us consider that the two-port N is entirely reactive. If we remove the two amplifiers,
the remaining will represent a resistively terminated LC ladder. Let @ i,j=1,2be the
parameters of its modified transmission matrix as we have considered before. We can see
that

B,
~ =S,
Ay Ay =V,
> s
= o
Al A=V
(7.42)

which by means of Egs. (7.5) can be written as follows:

- (311—a3,G) — (2 —a,G)R
(11— 21,G) + (a—a,,G)R

Su

_ 2
(11— a1,G) + (a —a,,G)R

S

(7.43)

Since N is reactive, a,; and a,, are even functions, while a,, and a,, are odd functions. There-
fore,

2 2 2 2, 2
ay; +a;, —(a;,G" +ay;) —2
2 2 2524 2R + 2

ay; + ay—(apG™ + aRe) +

811811 =

4
ail + agz— (aiZGZ + agle) +2

8218*21 =

(7.44)

To obtain Egs. (7.44), use has been made of the fact that the LC ladder two-port is reciprocal.
Adding Egs. (7.44) gives

S11511"' S215;1 =1 (7.45)
or

‘311‘2 + ‘821‘2 =1 (7.46)
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The meaning of Eq. (7.46) is that the two functions B,/ A; and B,/ A, for Rg = R, =R are
power complementary. This means that if, for example, B,/ A, is a lowpass function, its
power complementary function B;/ A, is highpass obtained simultaneously with the
former.

7.8 Wave Simulation of Inductance

The reader may have observed that there exists some degree of similarity between the sim-
ulation of a passive ladder through the wave active theory and the method using GICs. To
clarify this point, let us consider the action of the MAT circuit in Fig. 7.19, when the L-sub-
network is a grounded inductor L. With the application of impedance scaling (division of
impedances by s) in order to obtain active RC realization, the inductor L will become a
resistor R;, while resistor R'; will become a capacitor C'; . Then the input impedance at the
left port of the MAT will be

% = sC,R,R, (7.47)

-2

Clearly, this is the impedance of an inductance of value C';R;R, .
On the other hand, if the C subnetwork is a grounded capacitor C, the input impedance
at the right port of the MAT can be found to be

h:R2

r
_|l

Ch
S (7.48)
which is purely resistive.

Thus, the circuit of the MAT (within the broken lines in Fig. 7.19) with a capacitor C'; in
place of resistor R'; behaves as a PIC. A PIC can also be obtained if R, is replaced by a
capacitor instead of R'; . Compared to the Antoniou PIC [12] it uses two extra resistors, but
all resistor values can be equal thus reducing to zero the component spread. Also, as in the
case of the Antoniou GIG, if R, is replaced by a capacitor instead of R';, while the right-
hand-port is terminated by a capacitor, the circuit will behave as an FDNR type-D.

This resemblance of the economical WAFs to the GIC filters though should not lead to the
conclusion that the former do not have to offer anything new in practice. In fact, it has been
shown [11] that in some cases the economical WAFs may employ fewer opamps than their
GIC counterparts.

7.9 Linear Transformation Active Filters (LTA Filters)

These filters [13-15], in a way similar to that of the WAF, simulate the resistively terminated
LC ladder filters by means of active equivalent subnetworks of each series- and parallel-
arm passive element of the ladder. Each element of the ladder is again treated as a two-port,
and its active RC equivalent is determined through linear transformations of its port volt-
age and current variables, hence their name.
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To develop this simulation method of resistively terminated LC ladder filters, let us again
consider the ladder in Fig. 7.1, repeated here as Fig. 7.20 for convenience. Without loss of
generality, let each Z; and Y; + 1 be a simple reactive element, L or C. The ladder is split in
elementary two-ports as implied by the broken vertical lines in the figure.

Consider now one of these elementary two-ports, shown in Fig. 7.21(a), defined by its
port V and I variables, which are related by means of the modified transmission matrix A",

as in the WAF case. Thus,
I I, A Ay | I

We introduce now another set of variables x; y;i =1, 2 obtained from the corresponding V;,
I, i =1, 2 variables by means of the following linear transformation:

m - m (750)

where all

[Q] = Fi B} (7.51)
Yi &

are nonsingular matrices. These are the so-called transformation matrices.

1oz, !

Z, Zy
M i
d | S|

>

Y,

|
N
|
|
1
!
!
i
1
[

_———_—- - —- = =

FIGURE 7.20
Terminated LC ladder.

1, I Y1 <—l ,—> y2

o—Pp— ——o¢—o0
? ?
I " I "
o——1 0 X0——— ———ox;
(a) (b)
FIGURE 7.21

(a) An element of the ladder treated as a two-port, and (b) the symbol of its LTA equivalent.
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From Egs. (7.49) and (7.50), we can obtain the following relationship among the new sets
of variables:

H = [QI[AT[Q]™ N (7.52)
Y1 )7

Clearly, for active RC simulation of the passive ladder, the transformation matrices should
be suitably selected.

We may consider the x;, i =1, 2 variables as inputs and the y;, i = 1, 2 variables as outputs.
Then, from Eq. (7.52) we can obtain the following relationship:

Pl - {K LJ Xl} (7.53)
1z M NJ |X,
In the general case, K, L, M, and N are functions of the complex variable s. The usual LTA
equivalent of the elementary two-port in Fig. 7.21(a) is as shown in Fig. 7.21(b). Notice that
a little circle indicates the input terminals, while a little arrow the output terminals.

As an example, consider the determination of the LTA equivalent of the series inductor
shown in Fig. 7.22(a). Its modified transmission matrix is as follows:

[A] = & _sj (7.54)

A useful choice for [Q,] and [Q,] is the following [14]:

[Q] = {V OJ Q] = {0 ‘ﬂ (7.55)
OR y 0

where yand R are freely selectable parameters.
Substituting in Eq. (7.52) from Egs. (7.54) and (7.55), we obtain the following:

I, L I
oIV ¢—0
4 ?
v Y;

| |
O O
(2)

FIGURE 7.22
(a) A series inductor and (b) its possible LTA equivalent.
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[QIIATIQ]™ = P 0} F ‘Sﬂ {0 ‘J (7.56)
OR[|0 -1||y O

or

yL
yl 1 o y2

Assuming that x;, i, i =1, 2 are voltages, a possible implementation of Eq. (7.57) by an active
RC circuit is shown in Fig. 7.22(b).

Following this procedure, LTA equivalent circuits of an inductor in a parallel-arm, a
series- and a parallel-arm capacitor have also been found [13, 14]. It is usual to describe an
LTA equivalent for the combination of the first reactive element in the ladder and the signal
source V¢ with its output resistance R;. This reactive element, of course, can be a series or
parallel inductor or capacitor. Similarly, a LTA equivalent is determined for the load resis-
tor R; combined with the last reactive element of the ladder, which can also be a series or
parallel inductor or capacitor depending on the passive ladder and its order.

7.9.1 Interconnection Rule

Having derived LTA equivalents for each element of the ladder, the next step is to deter-
mine a suitable way for interconnecting the equivalents of adjacent elements in order to
build up the overall active ladder. For this purpose, we consider the two adjacent two-ports
in the V-I domain shown in Fig. 7.23(a) and proceed as in the case of WAFs. In the passive
ladder prototype in the V-I domain, the two adjacent ports of N, and Nj are directly con-
nected, so that

Vie = |1 0]1V2e (7.58)
lop 0-1|1,,
I1a Iz Ity Iz
A Y S N 7
Via Na Vau Vib Np Vap
| L] L
(a)

Yia 4‘_—1 r—>— —*—I I—‘> y
' Y2a Y *
N,

N N}

X2a X1b
X1q O L 4 L o 0 X1p
(b)

FIGURE 7.23
(a) Adjacent ladder elements and (b) the interconnection of their LTA equivalents.
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In order to interconnect the LTA equivalents N', and N’y of Fig. 7.23(b), a matching inter-
connecting two-port N_should be determined that will keep the original parameters of N',
and N'y unaltered, thus avoiding any loading effects.

But,
M = [Qul Vlﬂ (7.59)
Y1b 1y
Substituting for [V, I,]” from Eq. (7.58) gives
\%
N = [Qul {1 OJ { ﬂ (7.60)
Yo 0-1 |1z
which, by virtue of Eq. (7.50), written for N,, finally gives
M = [Qul {1 0} [Qud ™ H (7.61)
Yib 0-1 Y2a

Therefore, the matching network N, should be described by the following matrix P:

[P] = [Qu] {1 0}[% . (7.62)
0-1

When [Q;,] and [Q,,] are chosen as in Egs. (7.55), substitution in (7.62) gives matrix P to
be the following:

[P] = {01} (7.63)
10
Substituting in Eq. (7.61) gives
X1b = Ya
Yo = X (7.64)

Thus, with this specific selection of [Q,,] and [Q,,], the interconnection rule of the adjacent
ports of N', and N', should be the cross-cascade.

Clearly, the interconnection rule depends on [Q,,] and [Q,,]. In order to make this as sim-
ple as possible—specifically, the cross-cascade connection—we can proceed as follows: we
select[Q;,] to be as simple as possible and then determine [Q,,] through Eq. (7.62) written as

(o M = [Qu {1 0} (7.65)
10 0-1
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This relationship has been called the compatibility relationship [15]. Once [Q,,] has been
found, then [Q,,] can be determined or obtained from the existing list [15] in order to make
Eq. (7.53) easily active RC implementable. To avoid complications, it is advisable to follow
the above procedure starting from the load end of the ladder and moving toward the
source end.

7.9.2 General Remarks on the Method

It is evident that the choice of the transformation matrices Q,; and Q,; for the ith series- or
shunt-arm of the ladder will strongly determine the complexity of the overall LTA struc-
ture. Initially proposed LTA equivalents required a large number of opamps but, most
important, they employed some of them in the form of differentiators, which made LTA fil-
ters quite “noisy.”

However, later LTA developments [15] resulted in greatly improved LTA filters on both
these aspects. Thus, by a more “suitable” choice of the transformation matrices, which
includes making some of their elements frequency dependent, reduction in the complexity
of the LTA filter can be achieved, while use of differentiators is avoided using integrators
instead. These most suitable transformation matrices have been given in tabulated form
both for series- and shunt-arm elements of the ladder [15].

The LTA method is a general approach to simulation of resistively terminated LC ladder
filters. Due to its generality, other methods of LC-ladder simulation, such as wave active
filters, leapfrog, and signal-flow-graph (SFG), may be interpreted as special cases of the
LTA method. It must be remembered, though, that the development of LTA filters eventu-
ally followed that of the WAFs.

7.10 Summary

The WAF design method is an alternative approach to the simulation of resistively termi-
nated LC ladder filters. The initially proposed WAFs employed a large number of opera-
tional amplifiers, but later developments resulted in more economical structures
employing one opamp per storage element. These canonic structures are very similar to the
structures of GIC (PIC) filters but, in some cases, they may use two opamps fewer than the
latter. The sensitivity of WAFs is low, as low as the sensitivity of the other ladder simulation
methods. Also, WAFs can be easily compensated in order to improve their useful frequency
range. Another important feature of these active filters is that they provide two signal out-
puts that are power complementary.

The development of WAFs was followed by the introduction of the LTA filters which
work on the same principles. However, their design approach is more general than that of
the WAF, and it may be interpreted that the WAF design as well as the design of other active
filters, such as the LF and the SFG, are special cases of that of the LTA filters.
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Chapter 8

Single Operational Transconductance Amplifier
(OTA) Filters

8.1 Introduction

In the previous chapters active RC filters using the operational amplifier (opamp) have been dis-
cussed extensively. These filters have been widely used in various low freguency applications in
telecommunication networks, signal processing circuits, communication systems, control, and in-
strumentation systemsfor along time. However, active RC filters cannot work at higher frequencies
(over 200kHz) due to opamp frequency limitations and are not suitable for full integration. They
are also not electronically tunable and usually have complex structures. Many attempts have been
made to overcome these drawbacks [1]-{8]. The most successful approach isto use the operational
transconductance amplifier (OTA) to replace the conventional opamp in active RC filters [9]-{45],
aspredictedin[9]. Inrecent years OTA-based high frequency integrated circuits, filters and systems
have been widely investigated.

As seen in Chapter 3, an ideal operational transconductance amplifier is avoltage-controlled cur-
rent source, with infinite input and output impedances and constant transconductance. The OTA
has two attractive features: its tranconductance can be controlled by changing the external dc bias
current or voltage, and it can work at high frequencies. The OTA has been implemented widely in
CMOS and bipolar and aso in BICMOS and GaAs technologies. The typical values of transcon-
ductances are in the range of tens to hundreds of ©Sin CMOS and up to mSin bipolar technology.
The CMOS OTA, for example, can work typicaly in the frequency range of 50 MHz to several
100 MHz. Linearization techniques make the OTA able to handle input signals of the order of volts
with nonlinearities of afraction of one percent. We will not discuss the OTA design in this book,
although it is very important. The reader can look at References [2]-[5] on this topic.

Programmable high-frequency active filters can therefore be achieved by incorporating the OTA.
These OTA filters also have simple structures and low sensitivity. In Chapter 3 the OTA and some
simple OTA-based building blockswere introduced. In this chapter we will discuss how to construct
filters using a single OTA, because single OTA active filters have advantages such as low power
consumption, noise, parasitic effects, and cost. Commercialy widely available OTAs are very easy
to access for one to build filters with resistors and capacitors.

However, single OTA filters may not be suitable for full integration asthey contain resistorswhich
demand large chip area. These filter structures may aso not be fully programmable, as only one
OTA isutilized. It should be emphasized that on-chip tuning is the most effective way to overcome
fabrication tolerances, component nonidealities, aging, and changing operating conditions such as
temperature. Therefore, in monolithic design we should also further avoid using resistors. In recent
years, active filters which use only OTAs and capacitors have been widely studied [12]{23], [26]—
[43]. Thesefiltersareintuitively called OTA-C filters, which will a so be the subject of the remaining
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chapters. Fortunately, the single OTA filter structures can be readily converted into fully integrated
OTA-C counterparts by using OTAs to simulate the resistors. Thiswill be shown in the chapter.

It should be noted that practical OTAs will have finite input and output impedances. For the
CMOSQTA, for example, theinput resistanceisusually very large, being neglectable, but the output
resistance is in the range of 50k to 1M 2, and the input and output capacitances are typically
of the order of 0.05pF [7]. Also, at very high frequencies, the OTA transconductance will be
frequency dependent dueto itslimited bandwidth. These nonideal impedance and transconductance
characteristicswill influencethe stability and frequency performancesof OTA filters. Practical OTAs
will also exhibit nonlinearity for large signals and have noise, which will affect the dynamic range
of OTA filters.

In this chapter alarge number of first-order and second-order single OTA filter structures are gen-
erated systematically. Design methods and equations are derived. Sensitivity analysisis conducted,
and OTA nonideality effects are investigated. Performances of the generated OTA filter architec-
tures are also compared. Knowledge of the OTA in Chapter 3 and single opamp active RC filtersin
Chapter 4 should be of help in understanding this chapter.

8.2 Single OTA FiltersDerived from Three-
Admittance M odel

Consider the general circuit model in Fig. 8.1. It contains one OTA and three admittances. With
the indicated input and output voltages it can be simply shown that

Vo1 _ ngZ

— (8.1
Vi V1Yo + Y1Y3 + YoY3 + g Y2

Hi(s) =

Vo2 gm Y1+ Y2)

— (8.2
Vi NYa+TY3+YoYz+gnlo

Ha(s) =

V, o—1g
m

\ - \

o1 Y2
Y, Y,

Using these expressionswe canreadily derivedifferent first-order and second-order filter structures
from the general three-admittance model in Fig. 8.1 by assigning different components to ¥; and
checking the corresponding transfer functions in Egs. (8.1) and (8.2). For example, Y; can be a
resistor (Y; = g;), acapacitor (¥; = sC;), an open circuit (¥; = 0), or ashort circuit (¥; = oo). It
can also be a parallel combination of two components (Y; = g; + sC;).

02

FIGURE 8.1
General model with three admittances.

8.2.1 First-Order Filter Structures

In this section we use the general model to generate first-order filters.
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First-Order Filterswith One or Two Passive Components

Selecting Y, = sC1, Y2 = oo and Y3 = Ogivesrisetothesimplest structureasshowninFig. 8.2(a),
which has alowpass filter function given by

8m

H = —
1(s) 5Cr+ 2

(8.3)

with the dc gain equal to unity and the cutoff frequency equal to g,/ C1.

oV

vvo Vio B 920

FIGURE 8.2
Simple first-order lowpass (a, b, c) and general (d) filters.

Figure 8.2(b) shows another simple lowpass filter corresponding to Y1 = oo, Y2 = g2, and
Y3 = sC3. Thetransfer function is derived as

(8.4)

with the dc gain equal to g, /g2 and the cutoff frequency being g2/ Cs.
The circuit in Fig. 8.2(c), corresponding to Y1 = sC1, Y2 = oo and Y3 = g3, has the lowpass

characteristic as
8m

HG$)= ——F——— 8.5
1) sC1+ (g3 + &m) ®5)
When Y1 = 5C1, Y2 = g2, and Y3 = 0, the output from V,, isageneral type, given by
mC m
Hy(s) = BmEL T 8m82 8.6)
ngC]_ + gmg&2
which has the standard form of
s+ w;
H(s)=K (8.7)
s+ wp

The circuit is shown in Fig. 8.2(d). The circuitsin Fig. 8.2 were also discussed, for example, in
Ref. [15], here we show that they can be derived from the model in Fig. 8.1.
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First-Order Filterswith Three Passive Components

Observe that al the circuits in Fig. 8.2 contain less than three passive elements. In Fig. 8.3 we
present a set of first-order filters with three passive components, which are derived from Fig. 8.1.

: V. S
Vie—Tg; Vie—Tg; s
Vo1 VWA VoZ Vo1 | ‘ \ VoZ Vo1 VW Voz
4 9, Cz 9, L
IC1 g, 94 93 94 C,
@) (b) (©)
FIGURE 8.3

First-order filter configurations with three passive components.

Itisfirst verified that when choosing Y1 = sC1, Y2 = g2 and Y3 = g3, thegeneral model produces
alowpass filter from V,1, that is

Ha(s) = Em&2 (8.8)
s(g2+g3)C1+ g2(g3+ gm)

and a general transfer function from V,,», given by

Ho(s) = sgmC1+ gmg2 (8 9)
s(g2+83)C1+g2(83+ 8m)

Thecircuit isshown in Fig. 8.3(a).
Then consider the circuit in Fig. 8.3(b), which is obtained by setting Y1 = g1, Y2 = sC2 and
Y3 = g3. Itisfound that a highpass filter is derived whose transfer function is given by

Hi(s) = semC2 (8.10)
s(g1+ g3+ gm) C2+ g183

with the gain at the infinite frequency being g,, /(g1 + g3 + gm) and the cutoff frequency equal to

g183/[(g1+ 83 + gm)C2].
Thiscircuit also offersageneral first-order characteristic, as can be seen fromitstransfer function

Has) = 58mC2 + gm&1 (8.11)
s(g1+ g3+ gm) C2+ g183

Finaly, if Y1 and Y» are resistors and Y3 a capacitor, then both H1(s) and Ha(s) are of lowpass
characteristic. Thecircuit is presented in Fig. 8.3(c) and the transfer functions are given below.

8m82
H = 8.12
s s(g1+82)C3+g2(81+ 8m) (812)
Has) = gm (81 + 82) (8.13)

s(g1+82)C3+g2(81+ 8m)
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It isinteresting to note from Egs. (8.8) and (8.12) that the filtersin Figs. 8.3(a) and (c) have similar
characteristics from output V,; or Hi(s). Thecircuitsin Figs. 8.2(a—) and 8.3(c) will also be used
as lossy integrators to construct integrator-based OTA-C filtersin Chapter 9.

8.2.2 Lowpass Second-Order Filter with Three Passive Components

It should be pointed out that the model in Fig. 8.1 can aso support many second-order filters. In
this section however we only derive and discuss the simplest lowpass filter in order for the reader
to appreciate some advantages of OTA filters before a comprehensive investigation of structure
generation, design, and performance analysis of various second-order filters using a single OTA.
ChoosinginFig. 8.1 Y1 = sC1, Y2 = g2, Y3 = sC3, the transfer function in Eq. (8.1) becomes

8m82
52C1C3+ 582 (C1+ C3) + gmg2

Hi(s) = (8.14)

which is a lowpass filter characteristic. The corresponding circuit is shown in Fig. 8.4, which has
only oneresistor and two capacitors.

FIGURE 8.4
Simplest second-order lowpass filter derived from Fig. 8.1.

It will be recalled from Chapter 4 that the standard form of the lowpass characteristic is normally

written as 5
Ko

H = __©° 8.15

d(s) S2+%S+w§ ( )

where K isthedcgain, w, istheundamped natural frequency, and Q isthequality factor, representing
the selectivity, that is, theinitial steepness of the transition band.
Comparison of Egs. (8.14) and (8.15) indicates that the dc gain of thefilter, K, is unity and

JC1C3
W= [Sm82 5 [8m NT1TS (8.16)
C1C3 g2 C1+C3

For convenience of design and also from the viewpoint of cost we set C1 = C3. This permitsthe
development of simple design formulas for the component values, given by

w,C

CZC ZC, = —_—
1 3 82 2Q

. gm =2Qw,C (8.17)

where C can be arbitrarily assigned.
Asan example, we design the filter for the specifications of

fo=4MHz, Q=1/v2, K=1
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This is a Butterworth filter. Choosing C; = C3 = C = 5pF, using Eq. (8.17) we can compute
g2 =88.86uS and g, = 177.72uS.

Now we consider thefilter sensitivity performance. Using the relative sensitivity definition intro-
duced in Chapter 4, namely,

X BQ x dw,
sQ = §¥ = 8.18
¥ T 0 ax] o w, 0x (8.18)
for the lowpassfilter in Fig. 8.4 it isfound that:
Sen = Sgy = =S =-S5 =3 (8.19)
0 0 _1 0 _ 1C1-C3 _
Se, =-Sg=3 -S¢=58=34-2=0 (8.20)

and these results indicate superior sensitivity performance. Note that setting C1 = C3 leads not
only to practical convenience, but also to adecrease in the sensitivity of thefilter to deviationsin the
capacitor design values, as can be seen from Eq. (8.20).

It is therefore clear from the above discussion that the OTA lowpass filter has a very simple
structure, minimum component count, very simple design formulas, and extremely low sensitivity.
Aswill be seen, thisis generally true for other OTA filters.

8.2.3 Lowpass Second-Order Filterswith Four Passive Components

It is quite straightforward to treat each admittance in the general model as a single passive com-
ponent, either a resistor or capacitor as seen above. If more components are used for a single
admittance, then more filter architectures can be obtained. In the following we generate useful
lowpass second-order filters with four passive components, using again the model in Fig. 8.1.

The lowpass filter with Y1 = sC1, Y2 = go, Y3 = g3 + sCsisdepicted in Fig. 8.5(a). Itstransfer
function is derived as

Hi(s) = — Sm82 (8.21)
§2C1C3+ 5 [(g2 + 83) C1+ g2C3] + g2 (gm + &3)

FIGURE 8.5
Lowpass filters with four passive components.

Comparing the transfer function in Eqg. (8.21) with the desired function in Eq. (8.15) yields the
following equations
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_ [ 82(g3+8m) _ A/82(83+8m)C1C3
v, = JREEE, @ = YEEmn

T (82+83)C1+g2C3

— gm
T g3tgm (8.22)

A convenient design isto select C1 = C3 = C and g2 = g3 = g. That is, al capacitances
are equal and all conductances are identical, which makes the design easy and economical. With
this selection, only three component values need to be decided. Generally, we can determine the
component values for given w,, Q and K. We can aso assign avaueto any of C, g, or g, and
determine the other two in terms of w, and Q for anot specified K .

For the equal capacitances and conductances Egs. (8.22) accordingly become

vV + m m
@oC = /g (g + gm), Q=%» K=£ (8.23)

From Egs. (8.23) it can be determined that

w,C

1 1
@’ gm = 30w,C <1 ) s K=1-— (8.24)

8= " 902 902

It isvery interesting to note, see Eqgs. (8.24), that

1

0= 3 K=0 gn=0 (8.25)
1

Q>§, K>0g,>0 (8.26)
1

0 < 3 K<0 g,<0 (8.27)

Equation (8.26) indicates that the circuit can realize large Q and positive gain, while Eq. (8.27)
implies that with the interchange of the OTA input terminals the resulting circuit will complemen-
tarily implement small Q and negative gain. Equation (8.25) means that the design method cannot
implement Q = 1/3. However, this does not represent a problem, since Q of 1/2 or lower can be
realized straightforwardly with a passive RC circuit. We should stress that throughout the chapter,
for g, > 0O, the OTA is connected just as it appears in figures, while g,, < 0 simply means the
interchange of the OTA input terminals.

Using the sensitivity definition in Eq. (8.18) it can be derived from Egs. (8.22) that the general
sensitivity expressions are given by

1 1 g3
Wo __ Wo __ o — _ _ o — _
S =Sa="%="3 % =3gia

1 gm
§@0 — = (8.28)
&m 283+ 8gm
o _1_  (8+tsCa
C17 2 (g2+g3)C1+ 82C3
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1 82C3

S =%- :

G272 gC3+(g2+g3) C1

go_1__ 8+

822 g2(C1+ C3) +g3C1’

50 — 83 _ 83C1 ’

8 2(g3+gm) g3C1+g2(C1+C3)

0 _ ¢w,
Sg”l - S;’m (8.29)
SK —gK _gK _o _gK_ gk _ 83 (8.30)
Ci — YC3 — Mg g3 gr7z_g3+gm )

For thedesignwithC1 = C3 = C and g2 = g3 = g, substituting the design formulasin Egs. (8.24)
we have further

1 1
Wo __ QqWo __ o — o —
SCl_Scs__Sg’uz - S;’ua ~ 1807
1 1
Wo — _(1— — 8.31
it =5 (1 og2) (630
1 1 1
o _ 0 _¢0_ _ = O _ _ -, _ =
SC1__SC3_S82__6’ Sgs_ 3+18Q27
0 _ qwo
ng = S;n (8.32)
sk — sk —sK -0 sk —gk =1 8.33
Cp —PC3 —Pg— Y TP gm_9Q2 (8.33)

It can be seen from these results that the structure in Fig. 8.5(a) has very low sensitivity.
Another lowpassfilter can be obtained, which correspondsto Y1 = g1 +sC1, Y2 = g2, Y3 = 5Cs3,
as shownin Fig. 8.5(b). It has the transfer function

Hi(s) = — Sm82 (8.34)
§2C1C3+ 5 [g2C1 + (g1 + 82) C3] + 82 (gm + 81)

Thislowpassfilter is similar to the one discussed above, as can be seen from Egs. (8.21) and (8.34).
The same design technique can be used, and the sensitivity performanceis also similar.

8.2.4 Bandpass Second-Order Filterswith Four Passive Components

The bandpass filter with Y1 = g1, Yo = sC2, Y3 = g3 + sC3 isshown in Fig. 8.6(a). The circuit
transfer function is derived as

Ha(s) = — $8nC2 (8.35)
52C2C3+ 5 [(g1+ g3+ gm) C2 + g1C3] + g183
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FIGURE 8.6
Bandpass filters with four passive components.

Theideal bandpass characteristic is typically written as

K%s

Hi(s) = 5——F7—
d() S2+w—QUS+Cl)§

(8.36)

where w,, isthe geometric center frequency of the passband, w,/ Q isthe 3d B bandwidth, which can
also be denoted by B, and Q is again the quality factor.
Comparing Eg. (8.35) with Eq. (8.36) leads to the following design equations:

o — | 8183 0= +/8183C2C3
? TV €203’ (81+ 83+ gm) C2 + g1C3’

gmC2

K = (8.37)
(814 g3+ gm) C2 + 81C3
Weset C2 = C3 = C and g1 = g3 = g and obtain from Egs. (8.37)
w,C
g=w,C, gn=——01-30), K=1-30 (8.38)

Q

It can be seen from Eq. (8.38) that for practical Q values, g,, < 0and K < 0 which mean that
the OTA input terminals need to be interchanged and negative gain will be achieved.
The sengitivities of thefilter are found to be

1
Wo __ qWo __ 0 — o — o —
Sep =St ==Sp =St =—-5. Sp=0 (8:39)
_g0 _ 2 _ 1 81C3
27" 2 g1C3+ (g1+ 83+ gm) C2
go_1_ 81(C2+C3)
812 g1(C2+C3)+ (g3 +8gm) C2’
0 _ 1 83C2

872 g3C2+81(C2+ C3) + gnC2’
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§Q — gnC2

9 = (8.40)
" 81C3+ (g1 + 83+ gm) C2
K K 81C3
SCZ == _SC3 - )
81C3+ (81 + 83+ gm) C2
K — _ 81(C2+ C3)
s 81C3+ (g1 + 83+ gm) C2
gK — _ 83C2
8 g1C3+(g1+ g3+ 8m) C2
C
sK =1 8m*2 (8.41)
" 81C3+ (81 + 83+ gm) C2
When C1 = C3 = C and g2 = g3 = g, we have the following simple expressions:
so0 = 5o — g — _goo— L gm_g 8.42
C2 —°C3~ " Pa1 T TP T Ty gm — (8.42)
1
0 _ ¢Q _ ¢0 _
_SC2 - SCs - Sgs — 5 o,
1
Sg=5-20, Sg=-1+30 (8.43)
S&, =-S&=-SE=0. Sf=-20 sf =30 (8.44)

From the sensitivity results, it can be observed that the design using the circuit in Fig. 8.6(a) with
the OTA input terminalsinterchanged hasvery low w,, sensitivity. However, the Q and K sensitivities
display a modest Q dependence, although thisis no problem for low Q design. The redlization of
large QO may cause an increase in the sensitivity. But considering that the w, sensitivity contributes
more to response deviation than the Q sensitivity [47], the design is still useful for not very large
0, since the w, sensitivities are extremely low. Also, note that for filter design, the gain sensitivity
is of less concern than the w, and Q sensitivities. Therefore when commenting the filter sensitivity
performance, we mainly consider the w, and Q sensitivities.

It is also worthwhile mentioning that in bandpass filter design the design formulas can also be
expressed in terms of w, and B only and the bandwidth sensitivities can be calculated by using
SB = ¢ — SXQ . This can be practiced readily for the bandpass filter in Fig. 8.6(a) using the above
results.

Another bandpassfilterisassociatedwith Yy = g1+sC1, Y2 = sC», Y3 = g3,showninFig. 8.6(h).
Itstransfer function is given by

ngCZ

Hi(s) =
52C1C2 + 5 [g3C1 + (g1 + g3+ gm) C2] + 8183

(8.45)

Thisfilter function is similar to that of the above bandpass filter in Eq. (8.35). Thus similar perfor-
mances are expected.
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8.3 Second-Order FiltersDerived from Four-
Admittance M odél

In this section we consider another two general single-OTA models and filter structures derived
from them. Wefirst consider the model in Fig. 8.7, which consists of an OTA and four admittances.
This model may be looked upon as aresult of grounding the non-inverting terminal of the OTA and
applying a voltage input through an admittance to the inverting terminal of the OTA in Fig. 8.1. It
can be shown that the transfer function of the new model in Fig. 8.7 is given by

Y1 (Y3 —
H(s) = 1 (Y3 — gm) (8.46)
Y1iY3+ Y1Ya+ YoY3+ YoYa + Y3Ya + g1 Y3

Y

FIGURE 8.7
General model with four admittances.

Similarly, filter structures can be generated by selecting proper components in the model and the
corresponding transfer functions can be obtained from Eq. (8.46).

8.3.1 Filter Structuresand Design

The filter structures derived from the general model will be presented in this section. We will
show how to design the filters to meet given specifications and analyze the corresponding sensitivity
performance.

Lowpass Filter
When choosing Y1 = g1, Y2 = sC2, Y3 = g3, Y4 = sC4, we have alowpass filter as shown in
Fig. 8.8, which has the transfer function

gl(gS - gm)
52C2C4 + 5[g3C2 + (g1 + g3) Ca] + (81 + gm) 3

H(s) = (8.47)

Comparing its transfer function in Eq. (8.47) with the desired function in Eq. (8.15) yields the
following equations:

_ /[(g1tgm)gs _ A/(8118m)g3C2C4
w, = [l g = YEesa

— g3C2+(g1+83)Ca

_ £183—818n
K= 8183+838m (848)
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242 8. SINGLE OTA FILTERS

g v

1

VI O_'\M——L b —oVo
Cz:" —_C4

FIGURE 8.8
Lowpeass filter derived from Fig. 8.7.

Based on these expressionswe can design and analyze thefilter. But wewant first to draw thereader’s
attention to the similarity and difference of Eq. (8.22) and Eq. (8.48). The two filters have the same
w, and Q expressionsin form, the difference being only in the subscripts of g; and C;, although the
gain expressions are different. The same design method can be used and the same design formulas
and sensitivity performance of w, and Q will be achieved. To show this, we select Co = C4 = C
and g1 = g3 = g. Using Eq. (8.48) we can obtain the design formulas as

w,C _ 1 _ _i
8= 35" gm_3Qw0c<1—9—Q2>, K = (1 9Q2> (8.49)

and the sensitivity expressions of thefilter as

1 1
Wy __ QqWo __ 0 — o —
SCz - SC4 - _Sg)a - Sg)l ~ 1802

1 1
so =2 <1_ —ng) (8.50)
1 1 1
0 _ ¢0 _ ¢0_ 0 _
S =5 =5 =% Sa= 3% g2
S2 = s (8.51)
SK 5K —o, sK—1-_+
Ca =90, =Y a = - g_QZ
_ 1 _ 1
K _ _1 902 kK _ 2 1502 (8.52)
83 7 1_&’ gm_ngl_L ’
902 902

Just as we expected, the designed lowpass filter has very low sensitivity and simple design formulas
like the filter in Fig. 8.5(a).
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Bandpass Filter

A bandpass filter will result for Y1 = sC1, Y2 = g2, Y3 = g3, Ya = sC4 asshown in Fig. 8.9(a).
The corresponding transfer function is given by

- C
H(s) = — 5(83 — gm)C1 (853)
5°C1Ca + 5 [g3C1 + (g2 + g3) Ca] + (82 + gm) &3
93 93
] ]
Vi O_”—_ g —o V, Vi O_I % oV,
g, _—C4 = ; C4
(a) (b)
FIGURE 8.9
Bandpass filters derived from Fig. 8.7.
Comparing Eg. (8.53) with Eq. (8.36) leads to
— [(s2temles — N (82tem)e3C1Ca
Wo = CiCs > Q= 83C1+(g2+83)Cs
— _ (g3—gm)C1
K= 83C1+(g2+83)Ca (8:54)

Setting C1 = C4 = C and g2 = g3 = g, for example, we can obtain ¢ and g,,, being the same as
thosein Eq. (8.49) of the lowpass filter, but K = —(90% — 2)/3.

Asanumerical example, for the bandpassfilter of f, = IM Hz and Q = 5choosing C = 10pF
we can determine g = 4.2uS and g, = 938.3uS. Thefilter gainisequal to 74.3.

Asisobvious from their w, and Q expressions, the bandpass filter in Fig. 8.9(a) has the same w,
and Q sensitivitiesasthose of thelowpassfilterin Fig. 8.8. Asdemonstrated above, these sensitivities
are very low, lessthan or equal to 1/2. The gain sensitivities of the bandpass filter are given below:

K __ K _ 2 K __ 1
SCl__SC4_§’ ng__ﬁ’
K _ _2 1 K _ 1-90?
Sgg =73 + 2—9Q2’ ng - 2—9Q2 (855)

The gain sensitivities are also as low as those of the lowpass filter in Fig. 8.8.

We must emphasize the attractive low sensitivity feature of the bandpass filter. Especially the
sensitivities will become smaller as Q increases, which makes it particularly suitable for large Q
applications. Recalling that the bandpass filters generated in Section 8.2.4 are not suitable for large
Q applications, because the Q sensitivities are proportional to Q.

Noticethat for go = 0, the transfer function in Eq. (8.53) becomes

s(g3—gm)C1

H(s) =
) 52C1C4 + 583 (C1+ Ca) + gmg3

(8.56)
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This revedls that eliminating the g2 resistor in Fig. 8.9(a), the circuit can still support the bandpass
function. Thissimplified circuit isgiven in Fig. 8.9(b).
For the simplified bandpass filter without the g» resistor in Fig. 8.9(b), we have

Cc.C —gn) C
w, = |58 o [sm NC1C4 (83— 8m) C1 (857)
C1Cy g3 C1+Cy 83(C1+Cy)

Selecting C1 = C4 = C, we can obtain

w,C

_ @C _ _ 1402
g3="55 &n=200C. K_2(1 4Q) (8.59)

which are similar to the formulasin Eq. (8.17) for the lowpass filter in Section 8.2.2.
It can also be observed that the bandpass filter with go = 0in Fig. 8.9(b) has the same w,, and Q
sensitivities as those of the lowpass filter in Section 8.2.2. The gain sensitivities are shown as

1
N > (8.59)

2
sK = gk - 42"
8m 83 1— 4Q2’

which are also low.

Other Considerations on Structure Gener ation

Throughout thischapter, we are mainly concerned with canoni ¢ second-order structurescontaining
only two capacitors. Of course, if more capacitors are used, then more structures may be obtained.
For example, if Y1 = sC1, Yo = 5C», Y3 = g3, Y4 = 5C4, then the bandpass filter in Fig. 8.10(a)
will arise, which has the transfer function

s(g3—gm)C1

H(s) = —
5¢(C1+C2) Ca+583(C1+ Co+C4) + gmgs

(8.60)

Comparison of Eq. (8.60) with Eqg. (8.36) yields w,,, O and K expressions, from which design can
be carried out. Two design methods are given below. One method istoset C; = Co = C4 = C.
The following formulas are then obtained.

2w,C
8m = 30w,C, 83 = 2

1 2
30 3~ EQ (8.61)

The other method isto set C1 + C2 = C4 = C and specify K. Thisyields

w,C 2KC

Co=KC  —c-c 8.62
20 1= 1202 2 1 (8.62)

gm = ZQC!)OC, g3 =

From the C1 formulawe can seethat for practical Q values(Q > 1/2), only negativegain K can be
achieved.

It is also possible to obtain other filter configurations by using a combination of more elements
for an admittance. For example, if Y1 = sC1, Y2 = g2, Y3 = g3 + sC3, Y4 = ga (two components
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FIGURE 8.10
Bandpass with three capacitors and highpass filter using component matching.

are used for Y3) as shown in Fig. 8.10(b), we have the transfer function as

52C1C3+ 5C1 (23 — gm)
52C1C3 +5[(g3+ 84) C1+ (g2 + ga + gm) C3]
+ (8283 + 8284 + 8384 + g38m)

H(s) =

(8.63)

When g3 = g, ahighpass filter will result. This realization is however not particularly attractive,
duetotheuseof differencematching. Thisproblemfor the highpassfilter realization can beovercome
by using the modelsin Section 8.3.2 and Section 8.7.

8.3.2 Second-Order Filterswith the OTA Transposed

The second model with four admittancesisdisplayed in Fig. 8.11. Thismodel may be considered
as a modification of Fig. 8.1 by grounding the non-inverting terminal of the OTA and applying
a voltage input through an admittance to the output node of the OTA. It can also be reckoned as
a consequence of transposing the OTA, that is, interchanging the input and output of the OTA in
Fig 8.7. The general transfer function of the model can be demonstrated as

H(s) = Iils (8.64)
YiYa+Y1Ya+ YoY3+ YoYa+ Y3Ya+ gnY3

Notethat thetransfer function missestheterm of —g,, inthenumerator, but hasthe same denominator
comparedwiththefunctionin Eq. (8.46). Aswill beseen, theformer leadsto someadvantagessuch as
morefilter functions and better programmability whileretaining low sensitivity. Also, similar design
methods can be used. For example, the capacitances can take the same value and the resistances
may be set to beidentical. A number of filter configurations can be produced from the model.

Highpass Filter

A highpass characteristic is achieved by setting Y1 = sC1, Y2 = g2, Y3 = sC3, Y4 = g4. The
circuit is shown in Fig. 8.12, with the transfer function given by

S2C1C3

H(s) =
52C1C3+ 5 [g4C1 + (g2 + g4 + gm) C3] + 8284

(8.65)
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FIGURE 8.11
General four-admittance model with the OTA transposed.

Note that there are no difference nulling conditions involved in this highpass realization which also
saves one resistor, compared with the one in Fig. 8.10(b).

FIGURE 8.12
Highpass filter with transposed OTA.

Design can be carried out by comparing Eq. (8.65) with the standard highpass characteristic

K52

Ha(s) = o, = T Z T ?
o

(8.66)

where K isthe gain at the infinite frequency, w, isthe undamped natural frequency, and the quality
factor Q relates to the transition sharpness. Design equations are as follows (K = 1):

8284 ~/8284C1C3
W = ., 0= (8.67)
C1C3 84C1+ (g2+ 84+ 8gm) C3

Choosing C1 = C3 = C and g2 = g4 = g we can determine that

w,C

1-3 8.68
0 ( 0) (8:68)

g = a)OCa gm =

The w, and Q sensitivities are similar to those in Section 8.2.4 as can be inspected from the
similarity between the two denominators of Egs. (8.35) and (8.65). From the sensitivity resultsin
Egs. (8.42) and (8.43). It can be seen that for this design, the highpass circuit has very low w,
sengitivities, but Q sensitivities will increase with Q. The filter thus may not suit very high Q
applications. The design also requires interchanging the OTA input terminals. A highpass filter
which has very low Q sensitivity will be presented in Section 8.7.
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Lowpass Filter

A lowpassfilter isattained by choosing Y1 = g1, Y2 = sCa, Y3 = g3, Y4 = sC4. Thecorrespond-
ing circuit is exhibited in Fig. 8.13 and its transfer function is given by

H(s) = - 8183 (8.69)
§2C2C4+ 5 [83C2 + (814 83) Ca] + (81 + gm) 83

“T TI%

FIGURE 8.13
Lowpass filter with transposed OTA.

The denominator of thetransfer functionin Eq. (8.69) isthe sameasthat in Eq. (8.47). Thedesign
formulasfor Co = C4 = C and g1 = g3 = g arehencethe same asthosein Eq. (8.49), with the only
difference being K = 1/902. The w, and Q sensitivities are also the same as those in Egs. (8.50)

and (8.51), which are very low.

Bandpass Filters

A bandpass filter can be obtained by selecting Y1 = sC1, Y2 = g2, Y3 = g3, Y4 = sC4q Which is
shown in Fig. 8.14(a) and has atransfer function as

H(s) = — 583C1 (8.70)
§2C1C4+ 5 [g3C1+ (824 83) Ca]l + (82 + gm) 83

(a) (b) (c)

FIGURE 8.14
Bandpass filters with transposed OTA.

One design method isto set C1 = C4 = C and g2 = g3 = g, which gives the formulas the
same as those for the bandpass filter in Fig. 8.9(a), as Egs. (8.70) and (8.53) have exactly the same
denominator, but K = 1/3. Another method for the bandpass filter designistoset C; = C4 = C
only. Thefilter gain K can then be used as adesign parameter. The design formulas are derived as

g3= K%L, g2=(1-2K)%C,
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gm = 22C [1 _ K(lQ—22K>] (8.71)

The conditionis K < 1/2 to ensure a positive g2. When K = 1/2, we have

w,C

A = 07 m = 2 ()C 872
20" & 4 Qo (872

83 =

Similar to the discussion in Section 8.3.1, thisreveal sthat the g2 resistor can be removed. Generally,
asimpler bandpass filter can be obtained by removing the g resistor from Fig. 8.14(a), as shown in
Fig. 8.14(b). Thissimplefilter has atransfer function

sg3C1
52C1C4 + 583 (C1+ Ca) + gmg3

H(s) = (8.73)

another circuit which is as simple as the lowpass filter in Fig. 8.4.
A bandpass filter with three capacitorsis also obtained by assigning Y1 = sC1, Y2 = sCa, Y3 =
g3, Y4 = sC4 asshown in Fig. 8.14(c). The transfer function is derived as

sg3C1
52(C14 C2)Ca+ 5g3(C1+ C2+ Ca) + gmg3

H(s) = (8.74)

With C, = 0 thiscircuit will also reduceto Fig. 8.14(b). It should be noted that the bandpass filters
in Fig. 8.14 all have very low sensitivities as their counterpartsin Section 8.3.1.

The model in Fig. 8.11 can aso support another bandpass filter which corresponds to Y1 =
g1, Y2 = 5C>2, Y3 = 5C3, Y4 = g4 asshownin Fig. 8.15. Thisbandpassfilter has atransfer function

5g1C3

H(s) = (8.75)
§2C2C3 + 5 [g4C2 + (g1 + g4 + gm) C3] + g184
C3
Il
94
v,ww»——° v,
Caf = ig4
FIGURE 8.15
Another bandpass filter from Fig. 8.11.
Assuming C2 = C3 = C wedetermine g1, g4 and g, interms of w,, Q and K, given by
Wo o0 w, 0 1-K)X
= K2, — , — 24— 8.76
81 0 %= g g =~ [ + 02 (8.76)

We can aso further assign g1 = g4 = g, which will result in the same g and g,, as those for the
highpassfilter in Eq. (8.68), but K isfixed to be Q.

©1999 CRC PressLLC



8.4 Tunability of Active FiltersUsing Single OTA

It is well known that the transconductance of an OTA is controllable by the bias dc current or
voltage. For instance, the relationship between the transconductance and bias current of the bipolar
OTA, CA3080, isgiven by [9] L

8m = EIB (8.77)
where Vr isthethermal voltage and hasavalue of 26m V at room temperature. I isthebiascurrent.
If voltage is preferred to be the controlling variable, then a bias circuit can be used to convert the
voltage to the current.

It is obvious that when design has determined g,,,, the bias current needed can also be decided by
Eq. (8.77), given by

IB = 2VTgm (878)

For example, if g,, = 19.2m S, then Iy = 1mA.

Programmability is one of the most attractive features of the OTA, since this makes it possible
to tune filters electronically, which is especialy important for on-chip tuning of fully integrated
filters[5, 6, 37, 38, 39, 41, 42]. From the transfer functions of the OTA filters developed, it can be
demonstrated that some structures are indeed tunable. For example, the center frequency w, of the
bandpassfiltersin Figs. 8.9, 8.10, and 8.14 can be tuned independently of their bandwidth B, while
the bandpass filters in Figs. 8.6 and 8.15 have the bandwidth B separately tunable from the center
frequency w,. The quality factor Q can be controlled independently from the cutoff frequency w,
for the highpassfilter in Fig. 8.12.

8.5 OTA Nonideality Effects

Having considered filter structure generation, design, and sensitivity analysis we can now discuss
some of the more practical problemsin OTA filter design. In particular we will deal with the effects
of OTA nonidealities on filter performance. The methods for the evaluation and reduction of the
effects will be proposed.

8.5.1 Direct AnalysisUsing Practical OTA Macro-M odel

It will berecalled from Chapter 3that an OTA macro-model with finiteinput and output impedances
and transconductance frequency dependenceisshowninFig. 8.16. Weuse G; and C; to represent the
differential input conductance and capacitance and drop subscript d (for differential) for simplicity.
G, and C, are those at the output. The common-mode input conductance G;. and capacitance C;.
are ignored because they are usualy very small in practice compared with differential counterparts
and can be absorbed as most filter structures have a grounded capacitor or a grounded OTA resistor
from OTA input terminals to ground. This will be assumed throughout all remaining chapters,
unless otherwise stated. The input and output admittances can be written as ¥; = G; + sC; and
Y, = G, + sC,. The transconductance frequency dependence can be described using a single pole
model, as mentioned in Chapter 3 and repeated below:

&m0

—_— 8.79
1+ a%h (879

gm(s) =
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where w, is the finite bandwidth of the OTA and g,,0 is the dc transconductance. The phase shift
model is also often used, which is given, in the frequency domain, by [12]

gn(jw) = gmoe_j¢ (8.80)
where ¢ isthe phase delay. Both models can be approximated as

gm(s) =~ gmo(l — s57) (8.81)

where t = 1/wy isthe time delay and ¢ = wt, when @ << wp. In the following the related
terminologies may be used alternatively.

FIGURE 8.16
Practical OTA macro-model.

To give the reader some numerical order of OTA parameter values, a CMOS OTA, for example,
may have the following data:

gmo =56uS, f, =100MHz (t =15%9%s), G, =0,
Go=1uS (R, =1MQ) , C; =0.05pF, C,=0.1pF
Now we consider the effects of OTA nonidealities on filtersin detail. For the circuit in Fig. 8.1,
incorporating the OTA macro-model we can derive the following modified transfer function

H/(S)Z Yogm(s) + Yo+ Y3+Y,)Y; (882)
! Y1+Y) Yo+ Ys+Y,)+Y2(Y3+Y,) + Yogum(s) '

Noting that if only the OTA frequency dependenceis of concern, the associated transfer function can
be simply obtained by substituting g,, (s) for g,, intheideal expressionin Eqg. (8.1).

Using the genera equation, the impact of the OTA nonidealities on any derived filter structures
can be evaluated. Takethelowpassfilter in Fig. 8.4 asan example. With finite OTA impedances and
bandwidth taken into account, the transfer function of the filter becomes

sz—l—%s—l—a)zz

Hi(s) =K———— (8.83)
s2 + %s + a)j,z

where

1+ 2L 4 Go

(,()/ = w 8m0 8m0 (884)
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Gi G, Ci Co
\/(1+ g% + ng) <1+ C_l + C_3)

0'=0—— (8.85)
3 G C Go Ci Co 8&m0oT
1+ C1+C3 g2 + C1+1C3E + C1+C3 + C1+C3 =~ C1+C3
C3C;
. (8.86)

K =
C1C3+ C3C; 4 C1C,

v, = g2 (gmo+ Gi) (887)
¢ C3C; '

_ &2(gmo+ Gi) C3C;
82Ci + C3G; — gnmoget

Q. (8.88)

Note that K isthe gain at theinfinity frequency, that is, Hj (c0) = K. Thedc gain can be derived as

: 1+ 5
H1(0) = Hl(o)lG,-—Go (8.89)
gm0 ' &m0

In the above equations, w, and Q are as shown in Eq. (8.16). H;(0) represents the ideal dc gain,
which is unity.

During the formulation of Eq. (8.83), for simplicity and without loss of insight into the problem,
we use afirst-order approximation. The first glance at the equation indicates that the ideal all-pole
lowpass function in Eq. (8.14), now becomes ageneral biquadratic function with finite transmission
zeros and all coefficients are changed.

Of al the parasitics contributing to the change of the transfer function, the input and output
conductances (especially the latter) seem to have greater influence on the low frequency response
than others and introduce losses causing reduction of the pole and zero quality factors and the low-
frequency gain. For example, thedc gainin Eq. (8.89) istotally dependent on thefinite conductances,
being less than unity. The finite input and output capacitances affect more the high-frequency
response. At the extreme infinite frequency the magnitude, as shown in Eqg. (8.86), is no longer
zero, but a finite value determined completely by the nonideal capacitances, especialy the input
capacitance. Note in particular that the input conductance and capacitance provide extra signal
paths, as can be seen from the numerator parameters. Therefore the differential input application of
the OTA may not be favorable in some cases.

Two major effects of g, (s) should be emphasized. From the pole quality factor Q" expression
in Eqg. (8.85), we can see that transconductance frequency dependence can enhance the Q, which is
known as the Q enhancement effect. The other is the stability problem, that is, the finite w, may
cause the circuit to oscillate by shifting the poles to the right plane.

To appreciate the change more clearly, we further write the parameters in the relative change
form (afirst-order approximation is adopted during the whole simplification). Using Eq. (8.84) and
denoting Aw, = w, — w, we can obtain

Go (8.90)
gm0 &mo C1 C3

Aw, 1 ( G; G, C; Co)
> +

Wo
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In asimilar way, from Eqg. (8.85) and with AQ = Q' — Q we have

A 1 1 C 1 1 C
(e e
0 2gm0  82C1+C3 2em0  82C1+C3

&m0 C3—C1 C1—C3

+ + i+ —C, 8.91
Ci+Cs' T 2C1(Ci+Ca) ' T 2C3(Cr+ Ca) (8.91)
Finally, from Eq. (8.89) and with A H1(0) = H;(0) — H1(0) we can derive
AH )
19 __Go (8.92)

Hi(0)  gmo

Equation (8.90) clearly shows that G; and G, increase w,,, while C; and C, decrease w,. The
excess phase has no effect on w, (for the first-order approximation). Equation (8.92) revealsthat G,
has a reduction impact on the dc gain. The effectson Q depend on how the circuit is designed. For
the design in Section 8.2.2, with normalized C1; = C3 = C = 1F, Eq. (8.91) reducesto

A —
A0 _ 82780 ;4 4 80, (8.93)

0 28m0g2 2
Further substituting the design formulasin Eq. (8.17) with C = 1F gives

AQ 1-40%
j = 40,0 (Gi +Gy) + Quwot (8.94)

Therefore, t has a Q enhancement effect. C; and C, have no impact on Q for the first-order
approximation and C; = C3. G; and G, will cause Q reduction. We should stress that the
contribution of excess phase (¢ = w, 1) to the Q enhancement is multiplied by Q2, that is A Q(due
to ¢)= Q?¢, as can be seen from Eq (8.94). Therefore, for large Q applications, even avery small
phase shift can cause a very big increase in Q and thus instability. From this example we also see
that a good design can reduce nonideality effects. In particular, using equal design capacitancesalso
reduces the influence of finite OTA input and output capacitances on the pole quality factor, besides
the benefits mentioned in Section 8.2.2 such as the zero sensitivities of Q to the capacitances.

It should al so be noted that OTAsusing different | C technol ogies may have different performances.
For instance, MOS and CMOS OTAs have avery large input resistance, which may thus be assumed
infinitein most cases. However, theinput resistance of bipolar OTAsisquitelow. Theaboveanalysis
is general, which could be simplified for the CMOS OTA by dropping off G;, for example.

Similarly, taking the OTA nonidesdlities into consideration, the genera transfer functions of
Figs. 8.7 and 8.11 become, respectively,

Y1 (Y3 — gm(s))
Y1Y3+Y1(Ya+Yo)+(Yo+Y) Y3+ (Yo+Y;) (Y4+Y,)
+Y3(Ya+Yo)+Y3gm(s)

H'(s) =

(8.95)

and
Y1Y3
Y1Y3+Y1(Ya+Yi)+(Y2+Y,) Y3+ (Y2+Y,) (Ya+Yi)
+Y3(Y4+Yi)+Y3gm(s)

H'(s) =

(8.96)
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Using the respective equation we can analyze theinfluence of OTA nonidealitieson thefiltersderived
from the general modelsin Figs. 8.7 and 8.11. The difference of the two expressionsin terms of Y;
and Y, is due to the different connection of the OTA in the models.

8.5.2 SimpleFormulaMethod

A simple method for evaluation of the effects of finite bandwidth has been proposed in Ref. [46].
This method uses the sensitivity to the amplifier gain to assess the effects of phase shift, which
simplifies the analysis. Using this method we can, for example, assess the influence of the OTA
finite bandwidth on the filter. The associated formulas are given below:

A 0 0 0 Q
o = e (Ser — S2) (8.97)
8 = g5 [ (40% - 1) g + 8 | (8.9

For the simple lowpass structure in Fig. 8.4, Sg? = Sng = % as given in Egs. (8.19) and (8.20).

It can be shown that the effect of the finite bandwidth o, of the OTA isto cause fractional deviations
in Q and w,, given approximately by

A A
©o_g B2 _,p> (8.99)
Wo 0 wp

Recognizing that it isdeviationsin w, which frequently cause the greatest deviation in the amplitude
response of the filter (see Section 4.4), another attractive feature of this filter is observed from the
result. Equation (8.99) can aso be derived from Egs. (8.90) and (8.94), as expected.

Similarly, for thelowpassfilter in Fig. 8.8, usingtheresultsof Sg° and ngm inEgs. (8.50) and (8.51),
we have A AQ 0 1
W, Wo
=0, —= = 1—- — 8.100
Wy 0 wp ( 9Q2> ( )

8.5.3 Reduction and Elimination of Parasitic Effects

It is possible to reduce the effects of OTA input and output impedances by absorption and those
of transconductance frequency dependence by phase lead compensation. To show the former we
consider the second-order filter model in Fig. 8.7. The latter will be handled in Chapter 9.

From Eqg. (8.95) we can see that if Yo and Y4 are a parallel of aresistor and a capacitor, that is,
Yo = g2 + sCo, and Y4 = g4 + sCg, then the effects of ¥; and Y, can be completely eliminated
by absorption design, that is, G; and C; are absorbed by g> and C2, respectively, and G, and C,
by g4 and C4. Figure 8.17 shows the lowpass circuit which can absorb the OTA input and output
impedances and all node parasitic capacitances. Thecircuit hasthefollowing ideal transfer function:

81(83— &m)

52CoCa+s[(g3+84)Co+(g1+82+83)Cal
+(8183+8184+8283+8284+8384+8m83)

H(s) = (8.101)

For thecircuitin Fig. 8.17, the OTA finite conductances and capacitances cause achangein design
capacitances and conductances as

ACy; =Ci, AC4=C,, Ago=0G;, Aga=G,
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FIGURE 8.17
Lowpass filter that can absorb all parasitic resistances and capacitances.

The absorption approach determines the real component values by subtracting the nominal values
with the increments due to nonideal OTA parameters, that is

Cred = Cromind — AC,  grea = gnomind — Ag (8.102)

Thisrequires that
Chomina > AC,  gnomina > Ag

For example, the nominal values for relevant capacitances and conductances must be much bigger
than the respective parasitic values. It should be noted that at very high frequencies this may not be
always met.

Similar methods for the elimination of the effects of finite OTA input and output impedances can
also be discussed based on Eq. (8.96) for thefilters derived from Fig. 8.11.

In most casesin thischapter each admittanceistreated asasingle component, resistor or capacitor.
Only in the cases in which we want to achieve additional functions or performances do we consider
them as a combination of two components. Thiswill aso be the case for the remaining sections of
the chapter.

8.6 OTA-C FiltersDerived from Single OTA Filters

In the above, many interesting filters using asingle OTA have been developed. These single OTA
filter structures may not befully integratable and fully programmable dueto thefact that they contain
resistors and use only one OTA.. But they are still useful for monolithic implementation, because by
replacing the discrete resistor with the simulated OTA resistor, they can be very easily converted into
the counterparts using OTAs and capacitors only. The derived OTA-C filters should be suitable for
full integration. Inthefollowing wefirst discuss how to simulate resistors using OTAs only and then
selectively illustrate some OTA-C filters thus derived from the single OTA counterparts.

8.6.1 Simulated OTA Resistorsand OTA-C Filters

Resistors can be simulated using OTAs. Figure 8.18(a) shows a simple single OTA connection.
This circuit is equivalent to a grounded resistor with resistance equa to the inverse of the OTA
transconductance, that is, R = 1/g,, [12]. Floating resistor simulation may regquire more OTAS.
Figure 8.18(b) shows a circuit with two identical OTAs [15]. It can be shown that it is equivalent
to afloating resistor of resistance equal to R = 1/g,,. Finaly, for the ideal voltage input, the first
OTA in the input terminated floating resistor simulation is redundant and can thus be eliminated, as
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shownin Fig. 8.18(c). Thissimulation not only saves one OTA but also has a high input impedance,
afeature useful for cascade design.

FIGURE 8.18
OTA simulation of resistors.

For simplicity from now on throughout the remaining chapters we will drop subscript m off
transconductance g, in aimost all cases except when for some special cases in which the subscript
m must be used. The reader should keep in mind that in OTA-C filters, g realy means g,,, since only
OTA and capacitors are used. The function of resistorsis simulated by OTAs as discussed above.

We now derive OTA-C filtersfrom some single OTA filters using the resistor substitution method.
To stress that they are based on single OTA filter prototypes we keep the g, symbol for this OTA.
A lowpass OTA-C filter is obtained from Fig. 8.4, by simply replacing the floating resistor by the
OTA equivalent in Fig. 8.18(b), which is depicted in Fig. 8.19(a). Figure 8.19(b) shows the OTA-C
bandpassfilter derived from Fig. 8.6(a) using the OTA grounded resistor in Fig. 8.18(a). We givethe
OTA-C equivalents of the lowpass filter in Fig. 8.8 and the bandpass filter in Fig. 8.9(a), as shown
in Figs 8.19(c) and 8.19(d), respectively. The lowpass OTA-C filter in Fig. 8.19(c) uses an input
terminated OTA resistor in Fig. 8.18(c) and the grounded OTA resistor in Fig. 8.18(a). The bandpass
OTA-Cfilter in Fig. 8.19(d) consists of an OTA grounded resistor and an OTA floating resistor. The
single OTA bandpassfilter in Fig. 8.15 and the highpassfilter in Fig. 8.12 are also converted into the
OTA-C counterparts, which are shown in Figs. 8.19(€) [36] and 8.19(f), respectively.

8.6.2 Design Considerationsof OTA-C Structures

The transfer functions of the OTA-C filters are the same as those of the single OTA counterparts.
The difference is only that in OTA-C filters, the gs are all OTA transconductances. The resistor
substitution method also retains the sensitivity property of the original single OTA filter. Therefore
the structures that have minimum sensitivity should be first considered in OTA-C redization. Itis
evident that the number of OTAs in the derived OTA-C filters will depend on how many resistors
arein the original circuits. The architectures with fewer resistors may be attractive in the sense of
reducing the number of OTAs. Also, note that the grounded resistor needs fewer OTASto simulate
than the floating resistor, and thus the single OTA filter structures using grounded resistors may
be preferable in terms of reduction in the number of OTAs in the derived OTA-C filters. As will
be discussed immediately, the grounded resistor will also introduce fewer parasitic elements into
the filter circuit than the floating resistor when the nonidealities of the OTA(S) simulating them
are taken into consideration. It should also be noted that structures using grounded capacitors are
advantageous with respect to reducing parasitic effects and the chip area, as the floating capacitor
has bigger parasitic capacitances and requires larger chip area.

For the OTA-RC filters we have discussed the effects of nonidealities of the OTA g,,. When
dealing with the OTA-C equivalent we must also consider the nonidealities of the OTAs simulating
resistors. For the grounded OTA resistor in Fig. 8.18(a), the equivalent grounded admittance due to
the OTA nonidealities can be demonstrated as (to be general, we include the OTA common-mode
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C, Cy
A I

(e) ®

FIGURE 8.19
Examples of OTA-C filters derived from single OTA counterparts.

impedance)

YGR = Yia +Yic + Yo + gu(s) = (Gig + Gic + Go + gmo)

+5(Cig + Cic + Cop — gmo/wp)

which isacomplex admittance, no longer a pure conductance.

(8.103)

For the floating resistor ssmulation in Fig. 8.18(b), the nonidealities of the two identical OTAs
will have more complex effects. We can draw the equivalent circuit taking the OTA nonidealities
into account and use the current source shift theorem (in aloop) to simplify the equivalent circuit.
The resulting circuit can be further proved to be equivalent to ax type admittance network with the

series arm admittance given by

Yrgns = 2Yia + gm(s) = (2Giq + gmo) + s (2Ciq — gmo/wp)
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and the two equal parallel arm admittances, given by

YpRrap = 2Yic + Yo = (2Gic + G,) + 5 (2Cic + Co) (8.105)

Unlike the grounded resistor, in this case it isimpossible to write an equivalent floating admittance.

Now we can consider the effects on OTA-C filters of the nonidealities from the resistor simulation
OTAs. For example, inthelowpass OTA-Cfilterin Fig. 8.19(a) thetwoidentical OTAssimulating the
floating resistor of conductance g2 will haveas equivalent circuit dueto their nonidealities as shown
above. As can be seen from the circuit structure and the expressions of the series and parallel arm
admittances of the 7 network in Egs. (8.104) and (8.105), respectively, the finite differential input
conductances (2G;42) can be absorbed by transconductance g2 and the common-mode capacitances
and output capacitance (2C; 2 + C,2) can also be absorbed by C; and C3. But the effects of thefinite
differential input capacitances and the finite bandwidth will produce a parasitic floating capacitance
equal to 2C; 2 — g20/wp2, and the effect of the common-maode input conductances and the output
conductance will generate two parasitic grounded resistors of equal conductances of 2G;.2 + G2
in parallel with C1 and C3. Such parasitic elements will affect the filter poles and zeros. Further
analysis can be easily carried out by substituting

Y]/_ = (2GiC2 + GDZ) +s [Cl + (2Ci62 + COZ)]
Yé = (2Gic2 + Go2) + 5 [C3 + (2Cic2 + CoZ)]
Y; = (2Giq2 + 820) + 5 (2Cia2 — g20/@p2)

for Y1, Y3 and Y2 in EQ. (8.1). The reader may formulate the corresponding practical expression of
the transfer function and compare it with the ideal one in Eq. (8.14) to study the effects in details.

As asecond example, the bandpass OTA-C filter with two grounded OTA resistorsin Fig. 8.19(b)
isconsidered. Taking the nonidealities of the g1 and g3 OTAsinto account and using Eq. (8.103) we
have the changed grounded admittances as

Y1 =[(Gia1+ Gic1 + Go1) + g10] + 5 (Ciar + Cic1 + Co1 — g10/wp1)
Y3 =[(Gig3+ Gica + Go3) + g30] + 5 [C3 + (Cia3 + Cic3 + Co3 — g30/wp3)]

It can be seen that the finite conductances can be absorbed by the respective transconductances
of the g1 and g3 OTAs. Also, the finite capacitances and bandwidth of the gz OTA can be absorbed
by C3. But a parasitic capacitor from the output node to ground will be produced by the finite
capacitances and bandwidth of the g1 OTA, which cannot be absorbed. Again a detailed evaluation
can be conducted by substituting Y7 and Y5 for Y1 and Y3 in Eq. (8.1) and comparing the resulting
equationwiththeideal transfer functionin Eq. (8.35). For example, if only thefinite capacitancesand
bandwidth of the g1 OTA are considered, we can readily demonstrate that their effect is to produce
extraterms in the denominator of the transfer function in Eq. (8.35), which are

[SZ (C2+C3) + Sga] (Ciq1+ Cic1 + Co1 — g10/wp1)

The nonideality effects of the input termination OTA can also be similarly evaluated. The reader
may, for example, consider the g1 OTA in the lowpass circuit in Fig. 8.19(c).
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Tuning may need reconsideration. As we have already found in Section 8.4, it is not possible
to tune the frequency and quality factor independently in some single OTA filters. By replacing
fixed resistors by tunable OTAs the programmability can be enhanced. For instance, the single OTA
bandpass filter in Fig. 8.9(a) has only w, tunable, while the OTA-C simulation in Fig. 8.19(d) has
also tunable B. The tuning process simply involves the tuning of B by the g2 or g3 OTA, followed
by the adjusting of w, by the g,, OTA. It is noted that in the original single OTA bandpass circuit
in Fig. 8.15, only the bandwidth or the quality factor is tunable, but now the OTA-C derivative in
Fig. 8.19(e) has also the tunable center frequency, as can be seen from Eq. (8.75). We can first
tune w, by the g1 or g4 OTA and then B or Q by the g,, OTA. The final example is the highpass
OTA-Cfilter in Fig. 8.19(f), whose w, can be tuned by the g, or g4 OTA and Q then by the g,,, OTA,
compared with the single OTA prototype in Fig. 8.12 which hasonly Q electronically adjustable.

8.7 Second-Order FiltersDerived from Five-
Admittance M od€

In this section a more complex one OTA and five-admittance model is considered. The genera
model with complete feedback is shown in Fig. 8.20. This will be seen to be a development for
Fig. 8.1 with two additional admittances. Because more admittances are used, morefilter structures
and design flexibility can be achieved.

FIGURE 8.20
Five-admittance model with complete output feedback.

The circuit transfer function can be shown as

gmY2Yy
Y1Y2Ya+Y1YoYs+Y1Y3Ya+Y1Y3Ys+Y1Y4Y5
+Y2Y3Ya+Y2Y3Ys+Y2YaY5+gmYaYa

H(s) = (8.106)

Different filter characteristics can be realized using the general model. This can be done by
trying different combinations of passive components in Eq. (8.106). Suppose that each admittance
is realized with one element. Exhaustive search shows that a total of 13 different structures can be
derived: one highpass, four bandpass and three lowpass filters with five passive components; two
bandpass and two lowpass filters with four passive components; as well as one lowpass filter with
three passive components. The combinations of components for the 13 structures are presented in
Table 8.1. The corresponding configurations and transfer functions can be derived from the general
model in Fig. 8.20 and the general expression in Eq. (8.106), which will be presented in thefollowing.
Thesefilter structures are suitable for cascade design dueto their high input impedance. Notethat the
four passive element |owpass and bandpass filters derived are actually the same as the counterparts
in Figs. 8.5 and 8.6. The three passive component lowpass filter isthe same asthat in Fig. 8.4. This
isno surprise, asthe general three-admittance model with output V,,1 in Fig. 8.1 can be derived from
the five-admittance model in the above. We therefore will not repeat them here, although the reader
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is encouraged to check this. In the following we will concentrate on the filters with five passive
components. These filters can realize the lowpass, highpass, and bandpass functions.

Table8.1 Generation of Filter Structures Based on Model in Fig. 8.20

Function

Type Components Circuit Figure  Equation
Genera Y1 Yo Y3 Y Y5 8.20 8.106
HP g1 sCo g3 sCsg g5 821 8.108
BP1 g1 sC2 sC3 g4 g5 8.22(a) 8.113
BP2 g1 82 sCz3 sCas g5 8.22(b) 8.117
BP3 g1 sCr» g3 g4 sCs 8.22(c) 8.118
BP4 sC1 g2 g3 sCs g5 8.22(d) 8.119
BP5x% g1 oo sC3 sCq g5 8.6(a) 8.35
BP6x g1 sCp; sC3 oo g5 8.6(b) 8.45
LP1 sC1 g2 sC3 ga g5 8.23(a) 8.120
LP2 g1 g2 sC3 g4 sCs 8.23(h) 8.122
LP3 sC1 g2 g3 ga sCs 8.23(c) 8.123
L P4x g1 oo sC3 g4 sCs 8.5(a) 8.21
L P5x% sC1 g2 sC3 oo g5 8.5(b) 8.34
LP6x sC1 g2 sC3 o0 0 8.4 8.14
* Note that the symbol subscriptions used here are different from those in

Section 8.2.

8.7.1 HighpassFilter

A highpass filter can be obtained by selecting Y1 = g1, Y2 = sC>, Y3 = g3, Y4 = sCa, Y5 = g5
asshownin Fig. 8.21.

FIGURE 8.21
Highpass filter derived from Fig. 8.20.

We first manipulate Eq. (8.106) according to Y2 and Y4 into

Y>Y.

H(s) = Em”274 (8.107)

Y1+ Y3+ Y5+ gn) YoYa+ (Y1 + Y3) Y5Y2 + Y1 (Y3 + Y5) Ya + Y1Y3Y5
The transfer function is then easily derived as
H(s) 528 C2Ca
S) =
52 (814 83+ 85+ 8m) C2C4 + s [(g1 + g3) g5C2 + g1 (g3 + g5) Cal + 818385
(8.108)
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Comparison of Egs. (8.108) and (8.66) will giveriseto design equations of w,, Q, and K interms
of gsand Cs. Using these equations we can determine component values and analyze sensitivity
performance. For the setting up of C2 = C4 = C and g1 = g3 = g5 = g we can obtain the
component values as

3 3
:4 o s m = 3 o 1—— ) K:l—_ 1
g Qw,C, g 640°w C( 16Q2> 1602 (8.109)

and the sensitivities of the design as
1 1
Spe=Sge =Spe =3 (1— —16Q2) :

1 3 1

g1 g5 4 8_Q2 8 3202’
sg = % (1 - 16}) . S8 =88 =0 (8.111)
S&, =8¢,=0. S = %QZ,
Ser = Sga = Ses = 1 61QZ (8112

The sensitivities of the filter are extremely low, the maximum value being 1/2. Recalling the
highpassfilter in Section 8.3.2 which haslarge Q sensitivitiesfor high Q design, the above highpass
filter has the advantage of being suitable for any practical Q valuesin term of sensitivity.

The highpass filter in Fig. 8.21 contains two floating capacitors and three grounded resistors
which will determine its performance to the OTA nonidealities and circuit parasitics, which will be
discussed with comparison with other filter structuresin Section 8.7.4.

A 100 kHz highpass filter is now designed which has a normalized characteristic of

52

Hi(s) = —————
a(s) s24+055+1

which revealsthat Q = 2. Let C; = C4 = 10pF. We can obtain g1 = g3 = g5 = 50.265,.S and
gm = 3.066m S. The designed filter will have again of K = 0.953.

8.7.2 BandpassFilter
Four bandpass filter structures are presented in this section. The first bandpass filter is derived

fromFig. 8.20 by setting Y1 = g1, Y2 = sC2, Y3 = sC3, Y4 = g4, Y5 = g5 asshownin Fig. 8.22(a).
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The transfer function can be found, by sorting out Eq. (8.106) according to Y, and Y3, as
H(s) = 58m8aC2
52 (g4 + g5) C2C3+ s {[g1 (84 + g5) + g4 (g5 + &m)] C2 + g1 (g4 + g5) C3} + g1848s5

(8.113)
Vio
(a) (b)
~ C2 94 ~ 92 C4
V| +gm H M OVO Vl +gm —LVV\' H © VU
4%91 %ga -fos IC1 %ga 95
(c) (d)

FIGURE 8.22
Four bandpass filters derived from Fig. 8.20.

Similarly we can also derive the design formulas and sensitivity results for this circuit. When
Cy,=C3=Candg; = g4 = g5 = g, thedesign formulas are found to be

g =V2w,C,  gu = 2w,C (—5+ *g) :

(8.114)
The OTA input terminals should beinterchanged for practical Q values. The sensitivities are derived
as

59 =0,

1 1
o S =S =7 S =-5¢=-54=; (8.115)
0 V2 1
SQ =—= -5+, s@ — _— 20, sQ —
8m ﬁ < + Q g4 4 + \/_Q

8

Alw
SIS

1 1
0 0
SQ—E—Z\/EQ, _SCZZSC3:§—\/§Q

(8.116)

The second bandpassfilter structureisshown in Fig. 8.22(b), which correspondsto Y1 = g1, Y2 =
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g2, Y3 =5C3, Y4 = 5C4, Y5 = gs5. Thetransfer function is given by

58m82C4
52 (g1 + 82) C3Ca + s {(g1+ 82) 5C3 + [(g1 + 82) g5 + (81 + gm) g2] Ca} + g18285

(8.117)

Comparing Eqg. (8.117) with Eq. (8.113) we can see that the bandpassfiltersin Figs. 8.22(a) and (b)

have similar transfer functions and therefore similar design procedures and sensitivity performance.

The third bandpass filter with Y1 = g1, Y2 = sC2, Y3 = g3, Y4 = g4, Y5 = sCs isrevealed in

Fig. 8.22(c). The fourth bandpass filter corresponding to the choice of Y1 = sC1, Y2 = g2, Y3 =

g3, Y4 = sCq, Y5 = gs isdrawn in Fig. 8.22(d). These two bandpass filters have similar transfer
functions. The transfer function of Fig. 8.22(c) isformulated as

H(s) =

HEs) = — 5gm8aC2
52(g1+ 83+ 84) C2Cs + 5 [(g1 + g3+ gm) 84C2 + g1 (83 + g4) C5] + 818384
(8.118)
and the transfer function of Fig. 8.22(d) is given by
H(s) = — 58m82C4
s2(82+ g3+ 85) C1Ca + 5 [(82 + g3) §5C1 + g2 (g3 + g5 + gm) Ca] + 828385
(8.119)

It can be shown that all the bandpassfiltersin Fig. 8.22 have similar sensitivity performance. Also
they contain one grounded and one floating capacitor and one floating and two grounded resistors.
The OTA-C equivalents will have similar performances to the nonidealities of the g,, OTA and the
OTAs simulating the resistors. Section 8.7.4 will further discuss these issues.

8.7.3 LowpassFilter

Three lowpass filter configurations are now generated. The first lowpass filter is obtained by
selecting Y1 = sC1, Y2 = g2, Y3 = 5C3, Y4 = g4, Y5 = gs. Substitution into Eq. (8.106) leads to

8m8284
52 (g4 + g5) C1C3 + 5 [(g284 + 8285 + gag5) C1 + (8284 + g285) C3] + 8284 (gm + g5)
(8.120)
which comparesto the standard lowpassfilter characteristic. The corresponding lowpassfilter circuit
isshown in Fig. 8.23(a).
If C1=C3=Candgz = g4 = g5 = g, then it can be derived

H(s) =

2w,C 2 2
= , =5 Cll-—), K=1—-—— 8.121
8 50 8m Qw, ( 25Q2> 25Q2 ( )

The second interesting structure shown in Fig. 8.23(b) comes from the setting Y1 = g1, Y2 =
g2, Y3 =5C3, Y4 = ga, Y5 = sCs. Thetransfer function is given by

_ 8m8284
~ 52(g1+ 82) C3Cs + s [(81 + g2) g4C3 + (8182 + 8184 + 8284) Cs] + (81 + gm) 8284
(8.122)

This transfer function is very similar to the onein Eq. (8.120). So the lowpassfilter in Fig. 8.23(b)
will have similar performances as the onein Fig. 8.23(a).

H(s)
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FIGURE 8.23
Three lowpass filters derived from Fig. 8.20.

The third lowpass filter is given in Fig. 8.23(c), which correspondsto Y1 = sC1, Y2 = g2, Y3 =
g3, Y4 = g4, Y5 = sCs. Thetransfer function is derived as

_ 8m8284
52(g2+ g3+ g4) C1Cs + 5 [(g2 + g3) 84C1 + g2 (g3 + 84) Cs] + (gm + 83) 8284

(8.123)
It can be shown that the lowpass structuresin Fig. 8.23 all have low sensitivities. They contain two
grounded capacitors and one grounded and two floating resistors and have similar performances for
the nonidealities of the g, OTA and the OTAs simulating the resistors, as will be seen in the next
section.

H(s)

8.74 Commentsand Comparison

Asdiscussed in Section 8.5, in integrated filter design, grounded capacitors are usually preferred
because they have smaller parasitic capacitances and need less chip area than floating ones. The
highpass filter contains two floating capacitors, bandpass filters use one grounded and one floating
capacitors, and lowpass filters contain only grounded capacitors. Thus, the lowpassfilters are better
than the bandpass filters, which are better than the highpass filter in terms of the use of grounded
capacitors.

In filter design the number of OTAs should be small, as more OTAs meanslarger chip area, larger
power consumption, more noise, and more parasitic effects. Asdevelopedin Section 8.6, agrounded
resistor needs one OTA to simulate, but a floating resistor requires two OTAs to simulate. Note
also that the floating resistor when simulated using OTAs will introduce more equivalent parasitic
elements(an network, not an admittance). Thehighpassfilter hasthree grounded resistors, bandpass
filtershavetwo grounded and onefloating resistor, and | owpassfilters embrace one grounded and two
floating resistors. The numbersof OTAsneeded for simulation of resistorsin the highpass, bandpass,
and lowpass filters are three, four, and five, respectively. Therefore, in terms of the number of OTAs
the derived highpass structure is better than the bandpass filters, which are better than the lowpass
filters.

The number of grounded capacitors and the number of grounded resistors are in conflict; if oneis
big, then the other must be small, asthe total number isthree. In real design some compromise may
have to be made in order to achieve the global optimum.
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The OTA isused asadifferential input OTA inall highpass, bandpass, and lowpass structures. The
nonideality effectsof the g,, OTA will be similar for all the structures dueto the similarity among the
structures, although for example, in some structures such as Figs. 8.21, 8.22(a—) and 8.23(b), the
finite output conductance may be absorbed and in others such as Figs. 8.22(d), 8.23(a) and 8.23(c),
the finite output capacitance may be absorbed. (A similar observation for the finite OTA input
conductance and capacitance can also be discussed.)

Theeffectsof nonidealitiesof theresistor simulation OTAswill bequitedifferent. After absorption
(see Section 8.6), the highpass filter in Fig. 8.21 will have three grounded parasitic capacitors in
parallel with respective grounded resistors; the bandpass filters in Fig. 8.22 will have one floating
and two grounded parasitic capacitors in parallel with the corresponding floating and grounded
design resistors and one grounded parasitic resistor in parallel with the grounded capacitor; the
lowpass filters in Fig. 8.23 will have two floating and one grounded parasitic capacitors in parallel
withtherelated designresistorsand two grounded parasitic resistorsin parallel with respectivedesign
capacitors. It isthus clear that with respect to the effects of nonidealities of the OTAs simulating
resistors, the highpassfilter isthe best, followed by the bandpass filters and then the lowpass filters.
Again detailed analysis can be conducted by using the changed admittances due to the nonidealities
of the resistor simulation OTAs to replace the ideal onesin Eq. (8.106) for any filter architectures.

8.8 Summary

In this chapter, we have used the operational transconductance amplifier to construct activefilters.
Wehavein particular presented systematic methods for generating second-order filtersusing asingle
OTA with areasonable number of resistors and capacitors. The transfer functions, design formulas,
and sensitivity results have been formulated. These OTA filters are insensitive to tolerance and
parasitics, of high frequency capability, electronically tunable, and simple in structure. They are
suitable for discrete implementation using commercially available OTAs and aso useful for IC
fabrication, when resistors are replaced by OTA equivalents, resulting in OTA-C filters. We have
investigated OTA-C filters derived from the single OTA filters by resistor substitution. The effects
of OTA nonidealities such as finite input and output impedances and transconductance frequency
dependence have a so been considered for both discrete and IC filters. It has been proved that these
nonidealitiesinfluencefilter performance. Sometechniqueshave been suggested to reducethe effects
from the structural standpoint.

It is noted that there are some other OTA filter structures. References [23] and [24] gave some
single OTA structures with current input and voltage output. Filter architectures based on an OTA
and an opamp were studied in Ref. [25]. The opamp may limit the working frequency, but in most
cases it can be eliminated. OTA-C filters can also be obtained from single opamp active RC filters
(as well as multiple opamp architectures) either by direct replacement of the opamp and resistors
by OTAs or by some transformation [17]. Many more useful OTA-C filters will be introduced in
the following chapters. In the next chapter we will investigate two integrator loop OTA-C filters.
The current-mode equivalents of the single OTA filters developed in this chapter will be studied in
Chapter 12.
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Chapter 9

Two I ntegrator Loop OTA-C Filters

9.1 Introduction

Asdiscussed in Chapter 8, using the operational transconductance amplifier (OTA) to replace the
conventional opamp in active RC filtersresultsin several benefits. OTA-C filters offer improvements
in design simplicity, parameter programmability, circuit integrability, and high-frequency capability
when compared to opamp-based filters, as well as reduced component count. They are also insen-
sitive to tolerance. Hence OTA-C filter structures have received great attention from both academia
and industry and have become the most important technique for high-frequency continuous-time
integrated filter design [1]-{49]. Note that OTA-C filters are also widely known as g,,,-C filtersin
the literature, especialy in solid-state circuit implementation. The term transconductance-C filters
isalso often used. In this book we adopt the term OTA-C filters.

This chapter deals with second-order OTA-C filters of two integrator loop configuration. Two
integrator loop filters are a very popular category of filters, their opamp realization being discussed
inthe context of biquadsin Chapter 4. They have very low sensitivity, and they can be used aloneand
can a'so be used as a section for cascade high-order filter design. The early papers on two integrator
loop OTA-C filters include [6]{11]. It was first proved in Ref. [6] that OTAs and capacitors can
be used to construct al building blocks for active filter design, laying the foundation for OTA-C
filters. Activefiltersusing only OTAs and capacitors (without any opamps and resistors) were then
investigated practically in[9]. The authors of [9] not only proposed a very interesting two integrator
loop structure which has been simplified or generalized to devel op more filter structures later [10],
but also proposed methods for some practica high frequency (MHz range) design problems such as
compensation and tuning which have been used in other integrated OTA-C filter designs [12, 46].
The term OTA-C filterswas also first used in [9] in terms of then C-OTA filters. Another important
publication on (two integrator loop) OTA-C filters is reference [11], where versatile filter functions
were achieved by switches. This paper hasled to many further similar publications such as[15, 19].
Since 1985 when a tutorial paper on OTA-C filters was published [12], more papers have been
published [13]-{40], [42]-[49]. In particular, Reference [16] has systematically summarized and
extended thework on two integrator loop OTA-C filters published previously [ 6] 14] using the block
diagram method. OTA-C filters based on passive L C ladder simulation were also investigated [ 26]—
[28] at the early stages of the devel opment of OTA-C filters, which will be discussed in detailsin the
next chapter.

In this chapter we will classify and study two integrator loop OTA-C filters in a systematic and
comprehensive way. Some further or new resultswill be given. Throughout the chapter the diversity
of structures, functions, methods, and performances is emphasized and many design choices are
given for a particular application.
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9.2 OTA-C Building Blocks and First-Order OTA-C Filters
[6, 12]

The basic building blocks with which we shall work comprise theideal integrator, amplifier, and
summer. The OTA realizations of these blocks are depicted in Fig. 9.1, which were a so discussed
in Chapter 3.

Voo
i1 O‘_E_T_ovo
Via I C,

(a) (b) (c)

FIGURE 9.1
(a) Ideal integrator, (b) amplifier, and (c) summer.

With t1 = C1/g1 theideal integrator in Fig. 9.1(a) has the characteristic of

Vo 1
Hs)=———=— 9.1
) Vit — Vio ST1 ©.3)

The amplifier in Fig. 9.1(b) has gain

Vo
h=—0 =8 9.2)
Vit—Vi2 g2
and the summer in Fig. 9.1(c) has the relation of
Vo = P1Vi1 — B2Viz + B3Vis (9.3)

where B; = g;/ga.

Somelossy integratorsandfirst-order filtersareshowninFig. 9.2. Thesecircuitscanbeconstructed
using the basic building blocks in Fig. 9.1. They were aso derived from the single OTA and three
admittance model in Chapter 8. In particular, the structure in Fig. 9.2(a) relates to the circuit in
Fig. 8.3(c). In practice they are used directly as building blocks in the design of second-order and
higher-order filters.

For the feedback circuit in Fig. 9.2(a), with 71 = C1/g1 and k1 = g2/g3 we have the transfer
functions as

Vit +k1Vio — Vi3
Vo1 = 94
ol 15 +kl ( )

k1Vii — k Vi Vi
Vg = 1Vi1 — kitas Vi + tas Vi3 (9.5)
718 + k1
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FIGURE 9.2
Lossy integrators and first-order filters.

The two relationsin Egs. (9.4) and (9.5) show that the filter in Fig. 9.2(a) can fulfill lowpass and
highpass specifications, depending on the voltages applied to V;1, Vi2 and V;3. We can also obtain
a canonical lowpass structure with feedback being achieved by direct connection, that is, k1 = 1,
whichisshownin Fig. 9.2(b). The corresponding relation of this circuit becomes

Vi1 (9.6)

Vol =

71s+1

Note that the circuit of Fig. 9.2(b) is called alossy integrator, asis that of Fig. 9.2(a) with input
Vi1 and output V,1, V;2 and V;3 being left disconnected.

Another different lossy integrator is given in Fig. 9.2(c), which has the lowpass function

1
Vv,=—21 v, = v; 9.7)
sC1+ g2 715 + k1

wherety = C1/g1 and k1 = g2/g1.
Thelast lossy integrator is shown in Fig. 9.2(d), which has the lowpass function given by

1 Vi
18 + k1 !

(9.9)

wheret; = C1/g1 and k1 = 14 g2/g1. Thisonediffersfrom Fig. 9.2(b) in that it has an extra OTA
with g and from Fig. 9.2(c) in that it has a feedback 1oop.
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9.3 Two Integrator Loop Configurations and
Per for mance

In this section we will generally introduce two integrator loop structures and their performance.
The OTA-C redlizations will be discussed in the following sections.

9.3.1 Configurations

Figure 9.3 showstwo configurations of two integrator loop systems. They both have two feedback
loops consisting of two ideal integrators and two amplifiers. The difference between Figs. 9.3(a)
and (b) isin the feedback structure; the former is of the summed-feedback (SF) type and the latter
of the distributed-feedback (DF). Thisis becausein Fig. 9.3(a) the outputs of all the integrators are
fedback to thefirst integrator input; whilein Fig. 9.3(b) thelast (second in this case) integrator output
isfedback to theinputs of all theintegrators. It isalso apparent that Fig. 9.3(b) with z1 and 72 being
interchanged and k2, being represented by k13 is the transpose of Fig. 9.3(a).

-k

12 -k

12

11

ST, ST,

(@ (b)

FIGURE 9.3
Two integrator loop configurations.

Using the basic building blocks in Fig. 9.1 and the first-order circuitsin Fig. 9.2 we can readily
realize the two integrator loop configurations in Fig. 9.3. Before doing this, we describe some
common features briefly.

9.3.2 PoleEquations

Theloopsin Fig. 9.3 determine the pole characteristics of the systems. The structurein Fig. 9.3(a)
has the system pole polynomial Dsr(s) (denominator of the transfer function), the pole angular
frequency w, and the pole quality factor Q as shown below, respectively.

w,
Dgsr(s) = ‘L’]_‘L’zs2 + k11728 + k12 = 1172 <s2 + EUS + a)(%) (99)
k k 1
wo= -2, LR o= = it (9.10)
172 0 71 k11 T2

Similarly Fig. 9.3(b) has the pole equation and parameters, given by Egs. (9.11) and (9.12).

w
Dpr(s) = t1t2s? 4 kpot1s + k12 = 1112 (sz + Eos + wf) (9.11)
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k1p—2 (9.12)

9.3.3 Design

The polynomial equation determines the system poles, thus the performance. The coefficients;;
and time constants 7; are determined by individual circuit components. For the given w, and Q of
Fig. 9.3(a), the designwill require deciding on k;; and 7;. Thiscan be carried out using Eq. (9.10) for
the summed-feedback configuration. For example, setting t1 = 12 = 7 yields the design formulas,
given by

k1 = g k12 = (wo7)? (9.13)
We can also select k11 = k12 = k and obtain
1
T = kg, T2 = (9.149)
@o o Q

We can further determine component values for the particular realization. The design method isalso
suitable for the distributed-feedback configuration.

9.34 Sensitivity

It can bereadily shown that thetwo integrator |oop systemshavevery low sensitivity. For instance,
using Eq. (9.10) the w,, w,/ Q(= B) and Q sensitivitiesto rsand ks are calculated as

Ser = Ser = =S =-1/2, S =0 (9.15)
00 _ _g@/Q _ 0/0 _ q@olQ _
§e/0 = g% = 1, §%/C =852 =0 (9.16)
0 0
$e=-52=52 =12, SE =-1 (9.17)

The calculated sensitivities are all very low. Most of them are either O or +1/2 and only afew are
+1. (Thisis compared with the Q sensitivities of some bandpass filters which are Q-dependent in
Chapter 8.) The parameter sensitivitiesto circuit components can be further easily computed for the
particular realization.

9.3.5 Tuning

Tuning is amajor problem in continuous-time filter design. In practice the constants 71, t2, k11,
k22, k12 can be properly implemented using OTAs and are thus electronically controllable since the
associated transconductances g; are related to bias voltages or currents. At thisstageit is clear from
Egs. (9.10) and (9.12) that Q can be adjusted by k11 (or k22) independently from w,,, avery attractive
property. We should stress that k11 (or k22) plays a key role in independent tuning. We shall see
soon that most structures have this independent tuning capability.

9.3.6 Biquadratic Specifications

Infilter design, different types of filter may be required. The most common are the lowpass (L P),
bandpass (BP), highpass (HP), bandstop (BS, also called symmetrical notch), lowpass notch (LPN),
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highpass notch (HPN), and allpass (AP) characteristics. The standard expressionsfor thesefunctions
aregivenin Table 9.1 for the convenience of the discussion to come. The general biquadratic transfer
function may also be required in some cases. Taking the development of Section 4.3 of Chapter 4
further, it can be written in the form

Kzsz + Kl%s + Koa)g

H(s) =
) sz—i—%s—i—wg

(9.18)

The typical specifications can be derived from this general expression using the conditions in the
table.

Table 9.1 Some Popular Biquadratic Filter Specifications

Type | Numerators Derivative conditions
LP | Kppw? Ko=K1=0Ko=Kyp
BP KBPw—Q"S Ko=Kog=0,K1=Kpgp
HP | Kyps? K1=Kog=0,K,=Kpyp
BS | Kps(s? + w?), wn = w, K1=0,K;=Ko= Kps
LPN KLPN(Z)T:)Z(SZ +02), 0, >0, K1=0 K= KLPN(Z)T:)z
Ko = Krpn
HPN | Kppn(s? + @?), won < @, K1=0,Ko=Kpypn,
Ko = KHPN(%Z)Z
AP | Kap(s? — %5+ w?) Ko = —K1=Ko= Kap
Note: The denominators for al the functions have the same form as s2 +
w—Q"s + a)g.

In the following we will show how filter structures can be generated, how many functions can
be realized, how the filters can be best designed and how the performances can be evaluated and
enhanced. As alarge number of different OTA-C filter structures can be obtained, we will only
selectively introduce some of the more interesting architectures.

9.4 OTA-C Realizations of Distributed-Feedback (DF)
Configuration

In this section werealize the DF configuration using OTAs and capacitors. Thegeneral realization
with arbitrary feedback coefficients is first discussed and then the structures with special feedback
coefficients are presented.

9.4.1 DF OTA-C Circuit and Equations

The DF configuration in Fig. 9.3(b) hastwo ideal integrators which can be realized using the ideal
OTA-Cintegrator in Fig. 9.1(a) and two feedback coefficients which may be realized using the OTA
voltage amplifier in Fig. 9.1(b). Therefore, the general realization will require two capacitors and
six OTAs, as shown in Fig. 9.4 [16]. We wish to use this biquad to show how to obtain different
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functions by using different inputs and outputs. Now we formulate the equations of this general
structure.

|
\/

7
I

FIGURE 9.4
DF OTA-C realization with arbitrary k12 and k2.

With 71 = C1/g1, 12 = C2/g2, k12 = g5/g6, and koo = g3/ g4, Nodal equations of the circuit can
be written as

o1 = (Vi1 — Voa) /115 (9.19)
Vo2 = (Vo1 — Vo3) /728 (9.20)
Vo3 = (Vo2 — Viz) ka2 + Via (9.22)
Voa = (Vo2 — Vis) k12 + Vie (9.22)

From these equations we can derive the general input and output voltage relations as

Dpri(s)Vor = (125 + k22) Vi1 — k12k22Viz + k12Via + (125 + k22) k12Vis
— (125 + k22) Vie (9.23)

Dpri1(s) Vo2 = Vi1 + kot1sViz — tasVia + k12Vis — Vie (9.24)
Dpri(s)Vos = k22Vi1 — (Tlrzsz + klz) k22Viz + (Tl'CZS + klZ) i4

+ k12k22Vis — k22 Vie (9.25)
Dpri(s)Voa = k12Vi1 + kizkoot1s Viz — kiotis Via — <"51T252 + kZZTlS) k12Vis

+ (tlfzsz + k22T1S> Vie (9.26)
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where
Dpri(s) = 11725% + kaot1s + k12 (9.27)

9.4.2 Filter Functions

The equations formulated above indicate that this genera circuit can offer a variety of filter
specification with different inputsand outputs. Table 9.2 presentsall possiblefunctions. Toillustrate
how to use the table, we look at row V,3 and column V;4 and the corresponding intersection BS. If
we apply the input voltage to V;4 only, grounding al the other input voltages, and take the output
voltage from V,3 only, then the circuit will give aBS transfer function from V;4 to V3. Thelowpass
and bandpass filters can be easily seen from Egs. (9.23-9.27).

Table 9.2  Filter Functions from DF OTA-C Structurein Fig. 9.4

Vii Vis Via Vis Vie Vizs Viia Viae Viws
Vo1 LP LP BP LP
Vo2 LP BP BP LP LP BP
Vo3 LP BS BS LP LP HP LPN HPN BS
Voa LP BP BP HP AP
Voai—V,3|BP HP HP BP BP HP

It isavery attractive feature that the circuit can directly give the bandstop function without need
of extra components or difference component matching asin most cases. The BSfilter is given by
output V,3 for input V;3 or V;4, the transfer functions being given by

\% \% koo (T17052 + k
_ Vs Vo3 _ k2 i 172 12) ©.28)
Vi3 Via  t1tos® + koptis + k1o

More interesting, we can al so obtain alowpass notch filter (see Table 9.1 for its definition) from V3
when V;1 = Vi4 = V;14 meaning that V;1 and V;4 are connected together and provided by the same
source voltage V;14, with the transfer function given by

Voz  t1tas? + (k12 + k2o)

— . (9.29)
Viia  t1tasc 4+ kootais + ka2

and a highpass notch filter from V,3 when V;4 = V;g = V46, given by
v, 2 4 (k1o — k
Vos _ matas® + (ka2 — k22) (9.30)

Vigs — T1T2s? + kootis + k12
For the realization of highpass characteristics, from the V,,1 and V,3 expressions we can see that

Dpri(s) (Vo1 — Vo3) = t2s Vit + kaot11252Vig — 117252 Vig
+ k12725 Vis — 125 Vig (9.31)

Thisrevealsthat the voltage output across nodes 1 and 3 (V,,1 — V,,3) can support the HP function for
inputs V;3 or V;4. However, this method may not be favorable in some cases, because of the floating
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output. But aswill be seen in later sections it can be readily converted to the output to the ground
by using extra OTASs.

A further observation of Egs. (9.23-9.27) indicates that when V;3 = V;5 = V;35 the voltages of
nodes 3 and 4 offer the HP function. The transfer functions are rewritten as

Vo3 koot1 7282

=— (9.32)
Viss T1725° + kopt1s + k12
Voua k1217252 (9.33)
Viss 117252 + ko115 + k12 '

In this case V,1 supports the BP characteristic with the numerator of k127os.
More complex functions can also be realizable. When Vi1 = Vis4 = Vg = V146, a general
biquadratic function can be attained from V4, given by

Vo4 TiT2s? + (koo — k12) T1s + ka2
Vi1ae 117252 + koot1s + k12

(9.34)

For example, the BS and AP characteristicswill result from k12 = k22 and k12 = 2koo, respectively.
The difference equality or matching may not be easy to maintain in discrete implementation, but it
can be quite readily achieved in integrated circuit implementation with on-chip tuning.

From the above discussion it can be seen that the circuit with al capacitors grounded, all outputs
with respect to the ground, and no need of difference component matching, can offer al the LP, BP,
HP, BS, LPN, and HPN characteristics. With use of difference component matching, the AP and
other complex functions can also be achieved.

Filter functions can also be produced by capacitor injection. Voltage injection through the un-
grounded capacitor technique is however not suitable for integrated circuit implementation and
cascade design of high-order filters. The former is because the resulting floating capacitor will
increase the chip area and parasitic effects, and the latter is due to undesirable capacitive coupling
between cascaded stages caused by the injection capacitors and the need for ideal buffers. Even for
individual use the injection requires an ideal voltage source with zero source resistance. Practical
considerations therefore lead one to avoid using capacitor voltage injection and ground all capaci-
tors. In this chapter we therefore consider the realizations with only grounded capacitors. Thisalso
implies that the capacitor injection technique will not be used.

9.4.3 Design Examples

Wehave presented various design exampl es of |lowpass, bandpass, and highpassfiltersin Chapter 8.
For the DF OTA-C structure in Fig. 9.4, the LP, BR, and HP filters may be conveniently realized
using the transfer functions obtained in the above. Here we just show two more complex examples,
that is, the design of the BS and AP filters. First we want to see how the standard BS characteristic

2 2
s+ w
H =Kps—-—2— 9.35
Bs(s) BS 2 Tt ol (9:35)
can be implemented using the transfer function -V,,3/ V;3.
Comparing Egs. (9.28) and (9.35) and setting 11 = 12 = T we have
_ 0 _ _ 2
T=Kps—, kx=Kps, ko= (KpsQ) (9.36)

Wo
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Another method isto let ko = k12 = k. The corresponding design formulas are derived as

1
=K 2 (9.37)
w, 0 @o

k=Kps, 1=

Itisvery flexible to further determine gs and C's according to their relations with ksand ts.
Consider the following specifications for the bandstop filter:

f0=500kHZ, Q=8, K35=2

Based on the design formulasin Eq. (9.37), for example, with the selection of
g1=g2=g83=g5=g =40us

we can calculate the other component values as
g4=g6=g/Kps =20uS, C1=g/w,Q =159pF,

Cy =gKpsQ/w, =203.7pF

In this design only two different transconductance values are used, a useful feature for integrated
circuit implementation.
To design an AP filter having the transfer function

2 _ wy 2
s Qs—l—w

Hap(s) = Kap——p—— 9.38
AP(S) APS2+w_Q0S+w§ (9.38)

we use the transfer function V,4/ Vi146 in EQ. (9.34). For the arbitrary k2, we determine the design
formulas as
2 0
Kap=1 u=——, n=kn—, kip=2» (9.39)
¥ 0) Wo

Thereader isencouraged to consider other interesting realizations, for example the LPN and HPN
filters.

9.4.4 DF OTA-C Realizationswith Special Feedback
Coefficients

Wefurther consider the most important three special casesof therealization of the DF configuration
in Fig. 9.3(b). The first structure is the one in Fig. 9.5, which is the realization corresponding to
k12 = 1 and this unity feedback is realized by pure connection, saving two OTAs. This circuit was
first published in 1983 [10] and has also been investigated later on.

The equations of the circuit can be easily derived as (there remain r1 = C1/g1, 2 = C2/g2 and

koo = g3/g4)

Dpra(s)Vo1 = (t25 + k22) Vir — ko2 Viz + Vig (9.40)

Dpra(s)Vo2 = Vi1 + koot15Viz — 115 Via (941)
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Vo1
L
I
FIGURE 9.5

DF OTA-C realization with k1> = 1 and arbitrary koo.

Dpro(s)Voz = koo Vi1 — (TlTZSZ + 1) k2o Vi3

+ (‘1,'11,'25‘2 + 1) Via (9.42)
D(s)pr2 (Vo1 — Vo3) = T2s Vi1 + kpot17252Vig — t1725%Vig (9.43)

where
Dpra(s) = 1'11'252 +kpTis +1 (9.44)

As can be seen from Egs. (9.40 through 9.44) this structure hasthe LB, BP, HP, and BS character-
istics. One interesting realization of the HP function is correspondent to V;1 = Vi3 = V;13 for V3,
giving

Vo3 kaoT1 7252

Viis 111252 + kopys + 1

(9.45)

The other outputs have for V;13: Dpr2(s)V,1 = t2sViaz and Dppa(s) Ve = (koot1s + 1) Vias.
The second important caseisthat k12 = kop = k and k isrealized using asingle voltage amplifier,

saving two OTAS, which is shown in Fig. 9.6. This structure was derived in [20] based on the

modification of the biquad proposed in [13]. The latter biquad is however not included in this

chapter because it isin nature based on current integrators. The current-mode OTA-C filterswill be
handled in Chapter 12.

V. 94 > % Yoz

FIGURE 9.6
DF OTA-C realization with k12 = ko2 = k.
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Thisstructure offersthe LP, BP, and HP functions, which can be seen from the following equations
withty = C1/g1, 72 = C2/g2 and k = g3/ga:

Dpr3(s)Vor = (125 + k) Vir + ktas Vi3 — t2sVia (9.46)
Dpr3(s)Voz = Vin +k (tas +1) Viz — (tas + 1) Vig (9:47)
Dpra(s)Ves = kVi1 — kt1t25?Vig + 117252 Vig (9.48)
where
Dpr3(s) = 117252 + k115 + k (9.49)

A further look at Eq. (9.48) revedls that this filter structure also supports the BS function from V3
when V;1 = V4 = V;14. Thefunction is given by

v, 21k
o _ __Tes T (9.50)
Viia Tmites?+kns +k

V,1 and V,2 will give the LP (numerator = k) and BP (numerator = —t1s) for V;14, respectively.
The simplest or canonical second-order filter is correspondent to ko2 = k12 = 1 that isrealized
with pure connection as shown in Fig. 9.7 [9, 10]. The transfer functions are given by

(t2s +1) Vi1
Vji=—F—-"—"— 9.51
ol s?+ s+ 1 (9.5)

Vi1
Vo= ——— 9.52
02 ‘L'lrzsz +1s+1 ( )

A LP function can be obtained from V,,, whilst V,,1 — V,,» has a BP characteristic.

I° I

FIGURE 9.7
DF OTA-C realization with k1o = ko2 = 1.

9.5 OTA-C FiltersBased on Summed-Feedback (SF)
Configuration

Thissectionisnow concerned with the OTA-C synthesisof the SFtwointegrator loop configuration
in Fig. 9.3(a). Both arbitrary and specia feedback coefficients are considered.
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9.5.1 SF OTA-C Realization with Arbitrary kq, and k1

Both general and specific OTA-Credlizationsof the SFconfigurationin Fig. 9.3(a) can beachieved.
A very important two integrator two loop OTA-C structure is the one similar to the KHN active RC
biquad (see Chapter 4 and [50]), asshownin Fig. 9.8[8, 16]. Notethat the two feedback coefficients
are not separately realized and they share the same OTA resistor, saving one OTA compared with
use of separate amplifiers. We now analyze the circuit.

ch i]::_'
Vo3 4] - VM
3_
i Vi3
Vis Ve
v ) Vo1 ~Jd, Voz
it o—: =1

FIGURE 9.8
SF OTA-C realization with arbitrary k12 and k11.

With t1 = C1/g1, T2 = C2/g2, k11 = g3/gs and k12 = g4/gs, we can derive from the circuit

sT1Vo1 = Vin — Vo3 (9.53)
s12Vo2 = Vo1 — Vi (9.54)
Voz = k11 (Vo1 — Viz) + k12 (Vo2 — Via) + Vis (9.59)

Solution of the equations gives

Dsr1(s)Vor = t2s Vi1 + k12Vio + k11tos Viz
+ k12125 Vig — 125 Vis (9.56)
Dsrpi(s)Vo2 = Via — (t1s + k1) Viz + k11Vis
+ k12Via — Vis (9.57)
Dsp1(s)Vos = (ka17os + k12) Vir — kiotas Viz — kutatos®Via
— k12T1725%Vig + 11725 Vis (9.58)
Dsr1(s) (Viz — V3) = 117252 Vi1 + kaotas Viz + k1a17252Via

+ k1oT1725%Vig — T1725%Vis (9.59)
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where
Dsri(s) = 11725 + k11725 + k12 (9.60)

It can be seen that the circuit can realize the LP, BP, and HP functions. The output as adifference
of V;1 — V,3 under the excitation of V;1 also has an HP characteristic. A very important feature of
the circuit isthat it can simultaneously output the LP, BP, and HP functions, which is similar to the
KHN active RC biquad (see Chapter 4 or [50]) and is often called the KHN OTA-C biquad.

This circuit can also give ageneral function from V3 for V;1 = Vi2 = V5 = V;125, that is

Vo3 TiT2s? + (k1at2 — kioT1) s + k12 (9.61)
Vi1s 117252 + k11728 + k12 :

From this expression it can be seen that when k1211 = k1172 the circuit has a BS function, while if
k1211 = 2k1172 an AP will arise.

Design Example of KHN OTA-C Biquad

We now design the KHN biquad to realize the three standard LP, BP, and HP specifications in
Table 9.1. We choose V;5 as the input (all the other input voltages are grounded) and use V,,2, V1,
and V,3 as respective outputs. To start the design, we write the relevant transfer functions from
Eqgs. (9.56 through 9.58) as

Vo2 -1 Vo1 —T128
Vis  mitas?+kites + k12’ Vis  t1tos? + kiatos + k12’
v 2
. (9.62)
Vi T1728% + k11708 + k12

The minus sign in Eq. (9.62) will be left out in the following discussion for convenience. Using
Eqg. (9.62) we can determine the design formulas as

r 1 X 1 1 0O Kpp 1
= -, = R T1 = —_— =
12 K 11 K 1

= . = (9.63)
LP BP Kpp w, Krp w,Q

Suppose that f, = 200kHz, Q = 1, and K;p = Kgp = Kyp = 1 arerequired. Selecting
g1 = g2 = g5 = 62.83uS we can calculate g3 = g4 = 62.83uS and C1 = C2 = 50.00pF. For
the given requirementsthisis an excellent design, since all transconductances are identical, making
the biquad easy to tune; all capacitances are equal, being economical; and also the three transfer
functions have the same maximum amplitude value equal to 1, leading to the largest dynamic range
(thiswill be further investigated in Section 9.11.6).

952 SF OTA-C Realization with k1, = k11 =k

Another interesting structure is obtained when k12 = k11 = k and a single voltage amplifier is
utilized to realize the identical feedback coefficient, saving two OTAS, as shown in Fig. 9.9 [32].
Note that there is achange in the polarity of the g» OTA due to the use of the differential input OTA
of g3, compared with the general SF structurein Fig. 9.8.

Nodal analysiswith k = g3/g4, 11 = C1/g1 and 12 = C2/ g2 yields

Dsp2a(s)Vo1 = t2s Vi1 + kVio — 125 Vi3 (9.64)
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FIGURE 9.9
SF OTA-C realization with k12 = k11 = k.

Dsp2(s)Voz = —Vi1 + (115 + k) Vi2 + Vi3 (9.65)
Dsra(s) Vo3 = k (t25 + 1) Vi1 — k11sViz + 117257 Vi3 (9.66)
DsFa(s) (Vi1 — Vo3) = T1125Vi1 + ktas Vi — 1atos?Via (9.67)
where
Dgpa(s) = 11725° + ktos + k (9.68)

Obvioudly thiscircuit supports the LP, BP, and HP characteristics and the simultaneous output of all
the three functionsis available for V;3. The general function can also be obtained for V;1 = Vo =
Viz = Vi123, given by
Vo3 T1tos2 + k (o —11)s +k
Vis 117252 + k1os + k

(9.69)

This expression revealsthat r1 = 12 can lead to a BS characteristic, while t1 = 2t givesriseto an
AP function.

It is interesting to note the difference of the three general expressions in Eqgs. (9.34), (9.61),
and (9.69) in the term of s in the respective numerators. From Egs. (9.34), (9.69), and (9.61),

different functions can be obtained by setting k1> and k22, 71 and o, or the mixture of k;; and t;,
respectively.

9.6 Biquadratic OTA-C FiltersUsing Lossy Integrators

In the above, we have discussed the two ideal integrator two loop structures. We now consider
the configurations given in Fig. 9.10. These configurations contain one overall loop with one ideal
integrator and one lossy integrator. For Fig. 9.10(a) if thelossy integrator isrealized using the single
loop OTA-C integrators in Figs. 9.2(a) and (b), then the derived OTA-C filters will be the same as
those derived from the two ideal integrator two loop DF configurations. In this section we want
to emphasize another implementation, that is, using the lossy integrators in Figs. 9.2(c) and (d) to
realize the configurationsin Fig. 9.10.
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ST, st,+ky, sty + Ky ST,

(a) (b)

FIGURE 9.10
Configurations with lossy integrator.

9.6.1 Tow-Thomas OTA-C Structure

The redlization of Fig. 9.10(a) with k12 = 1 using the lossy integrator in Fig. 9.2(c) is shown in
Fig. 9.11[7, 10, 11]. The voltage transfer functionswith r1 = C1/g1, 72 = C2/g2 and koo = g3/g2
are derived as

_ (w25 + k) Vit + Vig —k2Vis

(9.70)
717252 + kootys + 1

ol

Vi1 — tasVio + koot1s Vi

Voo = (9.71)

117252 + kooT1s + 1

FIGURE 9.11
Tow-Thomas OTA-C filter.

This OTA-C architecture consists of two integratorsin asingle loop: oneideal integrator and the
other lossy integrator of the type in Fig. 9.2(c). This biquad is the single most popular biquad in
practice. It can be considered to be the OTA-C equivalent of the Tow-Thomas (TT) active RC biquad
(see Chapter 4 or [51]). It can also be generated by OTA-C simulation of resistors and inductors of a
passive RL C resonator, thus being often called the active OTA-C resonator. Thiswill be discussed in
detail in the next chapter. The circuit hasvery low sensitivity and low parasitic effects, and issimple
in structure. The functions of this OTA-C biquad have aso been thoroughly investigated with the
aid of switchesin [11, 15, 19]. The design and practical performance analysis of the filter will be
discussed in detail in Section 9.11.

9.6.2 Feedback Lossy Integrator Biquad

Another realization of Fig. 9.10(a) with k12 = 1isthe one using thelossy integrator in Fig. 9.3(d),
as shown in Fig. 9.12 [12]. Thiscircuit differs from the TT filter in that it has two feedback loops
and differs from the canonical DF filter in Section 9.4.4 in that it uses alossy integrator. The circuit
is a combination of two categories, although we discussit in this section. The transfer functions of
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the circuit with the inputs and outputs indicated are derived as

(125 +k22) Vi1 — (ko — 1) Vi3
- ‘L']_‘Czsz + koot1s +1

o1 (9.72)

Vi koo — 1 V;
Vo — i1+ (2 2—1D1sVi3 (9.73)
T1T25% + kooT1s + 1

whereky =1+ %, 11 = C1/g1and 72 = C2/go.

FIGURE 9.12
Feedback lossy integrator OTA-C filter.

Similar discussion can be conducted based on the configuration in Fig. 9.10(b), but only the lossy
integrator in Fig. 9.2(c) can be used. The resulting OTA-C circuit is similar to that discussed above
in function and performance and is therefore not dealt with here.

9.7 Comparison of Basic OTA-C Filter Structures

In the above we have generated a number of OTA-C filter structures based on summed-feedback
and distributed-feedback two integrator loop configurations. This section compares performances
of these different architectures.

9.7.1 Multifunctionality and Number of OTA

From the formulated transfer expressions for different architectures it is seen that the proposed
filters all have a multifunction feature, supporting at least two functions at different input or output
positions. All thearchitecturessupport theLPand BPfunctions. TheHP and BSfiltersare obtainable
from Figs. 9.4, 9.5, 9.6, 9.8, and 9.9, noting that using Figs. 9.8 and 9.9 to realize the BS function
involves difference matching although an on-chip tuning scheme may be used to achieve accurate
matching. Figures 9.4, 9.8, and 9.9 also offer the AP function. Finally, Fig. 9.4 can further supplies
the LPN and HPN characteristics.

The role of circuit node 3 makes a very special contribution to the multifunctionality, as can be
seen from the expressions related to output V,3 or the inputs relevant to node 3 such as V;3 and V;4
in Figs. 9.4 through 9.6, 9.8, and 9.9 and V5 in Fig. 9.8.

Inspecting the different structures we can also see that Fig. 9.7 contains two OTAS; Figs. 9.11
and 9.12 both require three; Figs. 9.5, 9.6, and 9.9 all embrace four; Fig. 9.8 five; and Fig. 9.4 six.
All the architectures use two grounded capacitors.

In Table 9.3 we present the filter functions and the number of OTAs of &l the structures. Two
extremes are the simplest two OTA structure with the LP and BP functions and the most complex
six OTA circuit containing all filter functions.
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Table 9.3 Comparison of Different OTA-C Filter Architectures

Functions with
Structure | Number  Functions with difference Sensitivity Tuning
of filter | of OTA direct realization matching of w,and @ of w, and @
Fig. 9.4 6 LR, BR HR, AP Low Independent
BS, LPN, HPN

Fig. 9.5 4 LR, BR, HP, BS Low Independent
Fig. 9.6 4 LR, BP, HR, BS Low Not
Fig. 9.7 2 LR, BP Low Not
Fig. 9.8 5 LP, BR, HP BS, AP Low Independent
Fig. 9.9 4 LR, BP, HP BS, AP Low Not
Fig. 9.11 3 LR BP Low Independent
Fig. 9.12 3 LR, BP Low Independent

9.7.2 Sensitivity

We have generally discussed the sensitivity. To appreciate this for individual architectures, we
summarize the parameter relations of w, and Q in Table 9.4. From this table we can very easily
calculatethe sensitivitiesof w, and Q. Thesearefound to bevery low for al the structures generated,
with the values being 0, 0.5, 1, or between 0 and 1.

Table 9.4 Parameter Relations of OTA-C Redlizations of SF and DF Configurations

Structure 1t kin k. k12 wo ®2 10)
Fig.94 & 2 83 85 858182 8382 g4 [8581C2
s g1 g2 84 86 86C1C2 84C2 83\ 8682C1
i G & 83 8182 8382 84 [81C2
Ag. 9.5 g1 82 2 1 €162 84C2 83\ 82C1
Fig. 9.6 ¢ G £3 £3 838182 8382 8481C2
s 81 82 84 84 84C1C2 84C2 2382C1
i G & 2182 82 81C2
Fig. 9.7 a 1 1 1) & e
Fig. 9.8 G S &3 84 848182 8381 1 [848582C1
T 81 82 85 85 85C1C2 g5C1 83 81C2
Fig. 9.9 G G2 g3 83 838182 8381 8482C1
T 81 82 &4 24 84C1C2 84C1 4381C2
i a & 83 8182 83 1 [8182C2
Fig. 9.11 o o o 1 ac o i &
i a & 83 2182 g2+s3 1 8182C2
Fig. 9.12 0 o 1+ o 1 1o & iy el

9.7.3 Tunability

Electronictunability isavailable. Parametersw, and Q inall structuresmay betuned by controlling
the associated transconductances g; through adjustment of bias voltages or currents. It is recalled
from Chapter 8 that the relation of the transconductance and the bias current can be expressed as

g = klp; (9.74)
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where k isaconstant equal to 19.2 at room temperature, depending on semiconductor material, etc.,
and Ip; isthe bias current. To see more clearly about how we can tune the bias current or voltage to
change the filter parameters we write the expressions of the TT biquad parameters directly in terms
of the bias current. For the same type OTA and g1 = g2 = g we can derive using the expressions
givenin Table 9.4:

8 g |C2 w, g3
_ =8]8 ®_8 9.75
@ A/ C1C2 ¢ gVt 0 (®.79)

Substituting Eq. (9.74) into Eq. (9.75) gives

k Colg o, k
__f g, o= |%2B @ _ X, 9.76
@o J/C1C2 B Q C1Ip3 0 C, B3 ( )

From this equation we can see that by tuning 7z we can change w, and Q proportionally without
influencing % the bandwidth for the BP filter, which is determined by Ig3. Trimming I3 will
lead to a proportional changein < and an inversely proportional alteration in Q, without impact on
w, Which is determined by Ip. Tths orthogonal tunability can be very convenient for some design
tasks. For example it can be used to design a BP filter with the same bandwidth for different center
frequencies or the same center frequency with different bandwidths. In fully integrated filterstuning
isautomatic and adaptive [1, 2, 19, 41, 43, 44].

Independent tuning of w, and Q is very important. From the relations in Table 9.4 we can see
that w, and Q of most structures can be independently tuned, which isindicated in Table 9.3.

9.8 VersatileFilter Functions Based on Node Current Injection

In the above we have shown how to generate filter functions from the basic OTA-C network by
properly applying voltage inputs to the OTA input terminals and taking voltage outputs from circuit
nodes directly. These input and output methods are very simple and easy. There is no need for
any extra components, resulting in the simple structure. The input method may however cause the
differential input application of some OTAswhich may increasethe effectsof OTA input impedances.
In some structures filter functions are still limited and filter design may suffer from less flexibility.
Thebiggest problemisthat we cannot control zerosindependently, because all the transconductances
are related to filter poles.

From this section on we will look at other input and output methods using extrainput and output
OTA networks. Use of additional OTAswill give more design flexibility, although the structure may
be more complex. For example, arbitrary scaling of the filter gain may be achieved and various
universal biquads can be readily attained.

In this section we concentrate on the technique of node current injection. Thisinput method isto
apply a voltage through an extra single-ended input OTA to some circuit node. Because the input
voltageis converted into the current, which isthen injected into the circuit node, we give the name of
node current injection. Thismethod will not introduce any extra circuit node and except the inherent
differential input application of the g2 OTA in Figs. 9.4 through 9.7, 9.9, and 9.12. All the other
OTAs are single ended.
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9.8.1 DF Structureswith Node Current Injection

We redraw the circuit of Fig. 9.5, but with voltages being input to circuit nodesthrough g,; OTAS,
as shown in Fig. 9.13. With 1y = C1/g1, 172 = C2/82, k22 = g3/ga, and &; = g4j/gj, | =1, 2,
a3 = g43/ g4, the genera relations are derived by routine circuit analysis as

Dpra(s)Ver = Viraa (t25 + k22) — Vizaz + Vizaz (9.77)
Dpra(s) Vo2 = Virar + Vipaotis — Vizaztis (9.78)
Dpra(s)Vos = Vitairko + Vigook2oT1s

¥ Visag (tlfzsz + 1) (9.79)

Dpra(s) (Vo1 — Vo3) = Viraatas — Vigaz (k22t1s + 1)
— VizoaTiT2s? (9.80)

where Dp 2 isthe same as Eq. (9.44) and is given below for convenience.
Dpro(s) = 11105 + kpotis + 1 (9.81)

It can be seen that the DF structure with node current injection in Fig. 9.13 have the LP, BP, BS,
and HP characteristics. With V;1 = V;2 = V;3 = V;123 the outputs from V,,3 and V,,; — V,3 will be
universal in function. Take the former as an example. The universal transfer function is given by

Vo3 aaTiTas? 4 aokootis + (a3 + a1kzo)
Vi123 117252 + koot1s 4+ 1

(9.82)

For the DF structure of Fig. 9.6 with node current injection as shown in Fig. 9.14 we have the
following equationswith t1 = C1/g1, 72 = C2/g2, k = g3/84, & = 8aj/8j, ] =1, 2, 3 = g43/84'

FIGURE 9.13
DF structure of Fig. 9.5 with node current injection.
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Dpr3a(s)Vo1 = Vit (tas + k) — Vioaok — Vizaztos (9.83)

Dpr3(s) Vo2 = Vira1 + Vigaotis — Vizaz (115 + 1) (9.84)
Dpr3(s)Ves = Virank + Vigagktys + Vigaatitos? (9.89)
where
Dpra(s) = ‘L’1‘172S2 + ktis +k (9.86)
k
v03 'Q/
=
_g V01
RJ
Vn o— B IC1
FIGURE 9.14

DF structure of Fig. 9.6 with node current injection.

Note that these inputs can support the LP, BP, and HP functions. With V;1 = V2 = Vi3 = V123
and the output taken from V,,3 we can obtain a universal biquadratic function as

Vo3 agrlrzsz + a2kt1s + a1k
Vitzs 117252 + k11s + k

(9.87)

Further study of this general biquad gives, in Table 9.5, all the standard filter functions. This
deserves some comments due to many interesting features. First, we can see that due to three extra
input OTAs we can freely control the numerator parameters by «;, without any influence on the
denominator parameters which are entirely determined by k;; and r;. We can thus say that the zeros
and poles of the system are completely independently tunable, avery useful feature in filter design.
Second, any filter characteristics can be realized, making the architecture truly universal in function.
Third, no coefficient difference matching isinvolved, thusthe architectureisinsensitive to variation.
All this contrasts with those structures corresponding to Egs. (9.34), (9.61), and (9.69). A final note
relatesto —az and ; = O inthetable. The former simply means that the input should be applied to
the inverting termina of the g,» OTA, rather than the non-inverting terminal asin Fig. 9.14; while
the latter impliesthat the g,; OTA should be removed since g,; = 0. In the remainder of the chapter
we will assume this for all similar cases to avoid the inconvenience of redrawing the circuit. Thus,
whenever we have a negative or zero «;, this is accomplished through the interchange of the input
terminals or removal of the g,; OTA, respectively.

9.8.2 SF Structureswith Node Current Injection

The KHN OTA-C biquad with the voltage inputs through extra OTAs to circuit nodesis shownin
Fig. 9.15[16]. With t1 = C1/g1, 12 = C2/g2, k12 = ga/g5, k11 = g3/85: oj = &4j/8j» 1 =1, 2,
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Table 9.5 Filter Realizations Based on Universal Biquad Derived from Fig. 9.14

Type Numerators Parameter conditions Design formulas

LP Kprg az=ap=0 Krp=o1

BP KBpw—é’s ag3=a1=0 Kpp =3

HP KHPSZ ap=a1 =0 Kup =a3

BS KBs(sZ—&-wg) ap=0,a3=0a1 =« Kps =«

LPN KLpN(Z)’—Z)Z(sZer,%),wn >w, ap=0a3<0aq KLPNZO(]_,(U,%= Z—%wf
HPN KHPN(s2+w3),wn < Wy ap =0,a3 > a1 KHpN:a3,a)3:Z—;w3
AP Kap(s?—%s+0d) a3=—0p =01 =« Kap =a

a3 = g43/¢s, theinput and output relations are formulated as

Dsr1(s) Vo1 = Viraatas — Vioaokiz — Vizaatos
Dsr1(s) Vo2 = Virar + Vioao (t1s + k11) — Vizas
Dgri(s) Vo3 = Vit (ka1tas + k12) + Vizaokiztis

+ Vigaarytos?

where 5
Dgsri1(s) = 11728 + ky17os + k12
@ o Vis
v03 g4i
[o)
Vi :931 l:C1
FIGURE 9.15

SF structure of Fig. 9.8 with node current injection.

(9.88)

(9.89)

(9.90)

(9.92)

Note that these inputs can support the LP, BR, and HP functions. With V;1 = Vi2 = Vi3 = Vj123

and the output taken from V,,3 we can obtain a universal biquadratic function, given by

Vo3 aaritas? + (anki1ta + aok1at1) s 4 ko
Vi123 17252 + k11728 + k12

(9.92)

For the SF structure of Fig. 9.9 with node current injection asshownin Fig. 9.16, withty = C1/g1,
T2 = C2/g2, k = g3/84, aj = g4j/gj, =1, 2, and az = g,3/g4 We write the equations of node
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voltages as

Dsra(s)Vo1 = Vitaatas + Vipaok — Vizaatos (9.93)
Dsp2(s) Vo2 = —Vitay + Vioao (115 + k) + Visaz (9.94)
Dsra(s)Voz = Viraak (t2s + 1) — Vipooktas + Vigatitos? (9.95)
where
Dspa(s) = 117282 + ktos + k (9.96)
@ O V|3
VO hd
3 (
] -
' v
f*g\1‘ + o1
Vi, tga1 lq
FIGURE 9.16

SF structure of Fig. 9.9 with node current injection.

From these equations, taking the output from V,3 and connecting V;1, V;2, and V;3 together as
V123, we can obtain the following universal voltage transfer function

Vo3 Ot3‘C;|_‘L’2S2 — (211 — a172) ks + a1k
Vitoz 117252 + ktos + k

(9.97)

Now we want to explain the generation method of universal biquads in the above from another
viewpoint, which will be useful to facilitate our further investigation in the next two sections. Inthe
above we connect all three voltage inputs together as a single voltage input. We can express this by
saying that the single input voltage is distributed onto all circuit nodes by converting the voltage into
currentsusing extrag,; OTAs. Thiscan bedrawn asshowninFig. 9.17(a), which clearly shows how
to produce node input currents I;1, 1,2, and I;3 from asingle voltage input V;. Weintuitively cal the
circuit the distributor. Thus we say that we can construct universal biquads from basic structures by
using the input distribution method [21, 23, 24, 25, 47].

9.9 Universal Biquads Using Output Summation
Approach

Aswe have found, using additional OTAs can achieve many advantages. To implement arbitrary
transmission zeros three programmabl e parameters are needed to independently tune the numerator
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Vo o I, Vo 0———_?? | oV,
— /
1 v 2 O I02 I
G2 i2 o 9p2 1
I _—
9a3 i3 Vog o— Gpg}+—o3
(a) (b)

FIGURE 9.17
(a) Input distributor and (b) output combiner.

coefficients. The input distribution and output summation techniques can be utilized. As has been
already demonstrated, for instance, we can usetheinput distributor to convert asinglevoltageinput to
weighted multiple current inputs, collect the termsin the output related to these multiple inputs with
the weights to the single input, and adjust the weight coefficients to produce arbitrary transmission
zeros and gains without any influence on the poles. In asimilar way we may also add the summer
in Fig. 9.17(b) to combine the multiple outputs for a certain input to generate any desired zeros and
gains [21]-{23], [25, 47], which is the topic of this section.

9.9.1 DF-Type Universal Biquads

The summation method can be used to construct the universal biquad based on the DF realization
in Fig. 9.5. From Egs. (9.40 through 9.42) summing the three node voltages for V;3, or V;a, or Vi13
(defined as before) we can obtain the respective universal biquads. For the input V;4 for example,
summation of the LP (V,1), BP (V,2) and BS (V,3) outputs with the weights of 81 = gp1/gr,

B2 = gr2/gr and B3 = gp3/ g, Qives:

Vo _ Panatas® — Boris + (B1+ Bo)

9.98
Vi 717252 + kooT1s + 1 ( )

The reader can verify that taking the output of V,1 — V,3 asasumming element will generate more
universal biquads. Note that the g; definitions for all universal biquads are the same as those given
above throughout Section 9.9. We shall therefore not repeat them in the following.

For the DF structure in Fig. 9.6, summation of the three output voltages for V;3, V;4, or V;14 can
also produce corresponding universal biquads. Taking V;14 asan example, theLP, BP, and BS outputs
from V,1, V,2, and V,,3, respectively, are summed together to give a universal transfer function:

Vo _ Batitas? — Botis + (B1 + Ba) k

(9.99)
Viia 117282 + kt1s + k

Of course, many universal biquads can also be obtained from Fig. 9.4 using the summation
technique. But considering the summation will introduce four more OTAS, so the total number of
OTAs in such biquads would reach ten and thus not be very attractive.

9.9.2 SF TypeUniversal Biquads

It is easy to derive a universal biquad based on the KHN OTA-C structure in Fig. 9.8. Equations
reveal that summing all three output node voltagesfor V;3, V;4 and V;s will result in three correspond-
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ing universal biquads. And if the output V;1 — V,3 isalso taken into summation, more combinations
can be produced. For instance, summation of V,; (LP), V,2 (BP) and V;1 — V,3 (HP) for V;1 will
lead to a universal biquad as shown in Fig. 9.18, with the transfer function given by

Vo _ Bat1tas? + Batos + P1 (9.100)
Vii  t1tes? + kitos + k12 '

Note that summing V;1 — V,3 isrealized by connecting V;1 to the non-inverting terminal of the g3
OTA and V,3 to the inverting. This method introduces the differential input application of the g3
OTA.

Vi o : E T K = w oV,

FIGURE 9.18
Universal KHN OTA-C biquad.

For the SF structure in Fig. 9.9, we can similarly generate some universal biquads. One example
is the summation of V,1 (BP), V,2 (LP) and V,3 (HP) with V;3 asinput, giving a universal transfer
function of

Vo _ Batitas® — Pitos + B2

IR (9.101)
Via 117282 + ktos + k

It should be pointed out that in some cases we may need to consider the sign of 8. We must
emphasize that the negative g; can be simply achieved by inputing the voltage to the non-inverting
terminal of the g;; OTA. Thiswill also beimplied in the next section.

9.9.3 Universal Biguads Based on Node Current Injection and
Output Summation

Now we generate some universal biquads from the structures with node current inputs by using
the output summation technique. We present four such biquads for the illustration purpose, based
on the DF structurein Fig. 9.13, DF structurein Fig. 9.14, SF structurein Fig. 9.15, and SF structure
in Fig. 9.16, respectively. All these universal biquads are obtained by means of summation of three
node voltages V,;, j = 1, 2, 3with input V;3 using the output combiner in Fig. 9.17(b). Thefirst one
is based on the DF structure in Fig. 9.13. Summing three output voltages for V;3 leadsto

Vo s Batitas? — Botis + (B1+ Ba)

9.102
Vi3 117252 + kopT1s + 1 ( )
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For the DF structurein Fig. 9.14 we have by summing the three node voltages

Vo s Batitas? — (B2t1 + Bit2) s — P2

— = (9.103)
Via 117252 + kt1s + k
For the SF structure in Fig. 9.15, the addition of the summation network leads to
v, 2 _ —
Yo _ . ,331'11'225' ,317:25 :82 (9104)
Vis T1725° + k11725 + k12
Its current transfer function version was given in [18].
Finally the SF structure in Fig. 9.16 with the summation network has
v, 2
Yo _  Peures” = frres + P2 (9.105)
Vi3 117252 + ktos + k

9.9.4 Commentson Universal Biquads

Severa important notes should be highlighted in the construction of universal biquads. The
summation method will introduce an additional resistive node, the overall output node. This node
will produce a pole at high frequencies due to parasitic capacitances, which should be dealt with
carefully for HF applications. The summation method also needs one more OTA (for voltage output)
than the distribution method.

Inspection of the universal biquads generated using both the distribution and summation methods
indicates that some biquads may need difference matching for some particular filters, whereas others
may realizethem directly. The need of difference matching isadisadvantagein filter design, because
of the high sensitivity to the component variation.

Notethat node 3, the output node of the gz OTA, inall filter structures has aparticular contribution
to the universality and multifunctionality. The distribution-type biquads al use V,3 as the output
and the summation-type biquads use V;3 or some others relevant to node 3 as the input.

To see clearly how to apply theinput distributor and output summer to obtain ageneral biquadratic
function the equations of node voltages in terms of node currents can be written, since as indicated
in Fig. 9.17 the distributor and summer perform weighted voltage-to-current conversion.

Using both the distribution and summation methods can of course produce more universal biquads
but will need too many OTAs and is not necessary since either the distribution or the summation can
achieve sufficient numerator parameter control and fulfill the set of functions that the combination
of the two can provide. However for the circuit which does not have the term of s2 for any input and
output, then both methods may be needed to obtain a universal realization. Thisis discussed in the
next section.

9.10 Universal Biquads Based on Canonical and TT Circuits

For the canoni cal biquad wemust includetheinput voltagein the combination sincethebasic circuit
cannot offer the characteristics with term s2. Using the input distribution and output summation
methods we can abtain five universal biquads as shown in Fig. 9.19. Their transfer functions are
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given in the order of the figures below:

8:2C1C25% + (8:282C1 — £:181C2) s + (822 — 820) 8182
gr (C1C25% + g2C1s + g182)

Ha(s) = (9.106)

8:2C1C25% + (8:282C1 — £:18:3C1) s + (8:28182 — 8:08:382)
gr (C1C2s2 4 g2C1s + g182)

Hy(s) = (9.107)

2
Ho(s) = 8:2C1C25° + (87282C1 — 8:18:3C2) s + (8:28182 — 8:182382 — gzogzsgz)(gllos)

gr (C1C252 + g2C1s + g182)

2
Hy(s) = 8:2C1C25° + (g:282C1 — gzlgzszCz) s+ (8:28182 — 87187382 — gzogzsgl)(g_ 109)
gr (C1C2s2 4 g2C1s + g182)

C1Cos? C1— C -
Ho(s) = 8:2C1C25° + (87282C1 g2z18z3 1) s + (8728182 — £:08:381) (9.110)
gr (C1C25% + g2C15 + g182)

These expressions show the variety of universal biquads that can be achieved. The structures in
Fig. 9.19(a) and (b) were given in [22] and [24], respectively. As an exercise, the reader may be
interested to check the equations for the structures in Fig. 9.19(c) through (e). Reference [23] has
also given a complete set of universal biquads based on the TT structure. The generation method is
similar to the above based on the canonical configuration.

9.11 Effectsand Compensation of OTA Nonidealities

In the above we presented many two integrator loop filter structures. In this section we deal with
practical frequency responses and dynamic range of thesefilters.

9.11.1 General Model and Equations

In Chapter 8 we discussed the OTA nonideality effectsin some detail. It should be stressed that
parasitics, in particular, the high frequency parasitic parameters, should be carefully considered, as
OTA filters are used at high frequencies [29]{33], [43, 44], [2, 9, 24]. In the following we assess
the effects of OTA nonidealitiesonthe TT OTA-C circuit for illustrative purpose. To do thiswefirst
define OTA nonideality symbols and then consider the circuit in Fig. 9.20.

Denote Y;; and Y,; as the input and output admittances of the jth OTA, respectively. They
can be written as Yij = Gij +sCjj and Yoj = Goj + 5Cyj, where Gij, Cij, Goj and C,j are the
input conductance, input capacitance, output conductance, and output capacitance, respectively. The
finite bandwidth resultsin the transconductance frequency dependence, which can be approximately
expressed as g; (s) ~ gjo(1 — wibl_) where g;o is the nominal transconductance and wy; is the OTA
bandwidth. For simplicity we will drop subscript 0 in the following.
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FIGURE 9.19
Universal biquads based on canonical structure.

Intheidea case, typical analysis of the circuit in Fig. 9.20 yields

Voo go¥2 Vo2 gog2 (9.111)
Vi Y1iYo+g182" Vi Y1Yo + g142

From these equations we can verify that selecting Y1 = sC1 and Y2 = sCo + g3 leadsto alowpass
filter from V,,, with the transfer function given by

\%
H(s) = -2 = 2082 (9.112)
Vi C1Cas® + g3Cis + 8182
and the pole parameters given by
N C1C
w, = | 5382 o _ VEI82T1T2 (9.113)
C1C2 g3C1

The resulting structure is the same as that in Fig. 9.11 in Section 9.6.
When Y, = sC1 + g4 and Y2 = sC» the circuit will have a bandpass function from V,1 and a
lowpass from V,,. For Y1 = sC1 + g4 and Y2 = sC> + g3, alowpass transfer function can be
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FIGURE 9.19
Universal biquads based on canonical structure (continued).

v Vv Ii—L_

= 9\(1 = Y,
FIGURE 9.20

A circuit model for analysis of OTA nonidealities.

attained from V,,», given by

Yoz _ 8082 (9.114)
Vi C1C2s? 4 (g3C1 + gaC2) s + (8182 + g384)

The corresponding circuit is displayed in Fig. 9.21.
Taking OTA finite input and output impedances and finite bandwidth into consideration, we have

Vo1 _ go(s)Y; Voo 80(s)g2(s) (9.115)
Vi Y{Y) 4 g1(s)ga(s)” Vi YY)+ g1(s)g2(s) '

where Yi and YZ/ depend on the nominal assignment of Y1 and Y». For example, when Y1 = sC1 and
Y> = sC2 + g3 and note in particular that g3 isagrounded OTA resistor, not a discrete resistor, we
have Y] = sC1+ (Y,0 + Yo1 + Yi2) and Y, = sC2 + g3(s) + (Yi1 + Yo2 + Yiz + Yo3).
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i "9, g, Voo

TR A

FIGURE 9.21
LP filter with complete compensation of finite OTA impedances.

9.11.2 Finite I mpedance Effectsand Compensation

For thestructureof Y1 = sC1 and Y2 = sC2+ g3, taking finite OTA impedancesinto consideration
and denoting C; = C1 4 (Co0 4 Co1 + Ci2), C5 = C2+ (Cin + Co2 + Ciz + Co3), 85 = g3 +
(Gir+ G2+ Giz+ Gy3) and g, = Goo + Go1 + G2, we have

Vo2 8082

H'(s)=— =
Vi CiChs2 + (g5C) + g,Ch) s + (8182 + g48p)

(9.116)

Wecan seethat OTA nonidealitieshavechanged al filter coefficients. For instance, the polefrequency
and quality factor now become

, 2182+ 858p ., \/ (8182 + 838p) C1C5
@o=\"crcr 0 = Xed cl (9.117)
1-2 83C1 +8pCy

and the magnitude at the zero frequency becomes

H'(0)= 5982 (9.118)
8182 + 838p

instead of H(0) = go/g1, athough H'(c0) = 0. When Y1 = sC1 + g4 and Y2 = sC> the circuit
will have similar effects from OTA parasitics.

From the above analysiswe can see that all parasitic capacitances arereferred to the ground due to
the single-ended input of the OTA and these parasitic capacitances can be absorbed into the grounded
circuit capacitances. Thisagain confirmsthe conclusion that using single-ended OTA s and grounded
capacitors can reduce the effects of parasitic capacitances. Thisisalso truefor the finite conductance
problem. Aswe can see, the grounded circuit conductance (the g3 OTA) can compensate all parasitic
conductancesincluding the finite OTA conductance. Therefore for the lowpass function if we select
Y1 =s5C1+ gaand Yo = sC2 + g3, that is, using one more grounded OTA resistor, al finite input
and output conductances and capacitances can be absorbed.

Consider thecircuit in Fig. 9.21 again. Suppose that OTAsin the circuit have finite conductances
and capacitances as

Gi1=Gi2=G3=Gi4=0, Goo=6G1=G2=G6G3=Gops= O-SHS,

Ci1=Ci2=Ci3=Cis=0.04pF, Cyo=Co1 = Cp2 = Cy3 = Cos =0.2pF
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To see how absorption works, we denote and calculate
AC1 = Ci2 + Cig + Coo + Co1 + Cosa = 0.68pF,
AC2 = Ci1+ Ciz3+ Co2 + Co3 = 0.48pF,
Agz = Gi1+ Giz+ Go2+ Goz = 1S,

Aga=Gi2+Gia+ Goo+ Go1+ Gos = 1518

It isrecalled from Chapter 8 that the absorption approach determines the real component values by
subtracting the nominal values with the increments due to nonideal OTA parameters, that is

Cread = Cnomina — AC,  gred = gnomina — Ag

This requires that
Cromina > AC,  gnomina > Ag

For example, the nominal value for C; must be much bigger than 0.68 pF and the nomina value
of the g4 transconductance must be much larger than 1.5,.S. It should be noted that at very high
frequenciesthis may not be alwaysmet. Careful design isthus needed to handle the parasitic effects.

9.11.3 Finite Bandwidth Effectsand Compensation

Finite bandwidth or transconductance frequency dependence or phase shift will also affect thefilter
performance as shown in EqQ. (9.115). Analysiscan be conducted using these equationsdirectly. The
modified transfer function for Y1 = sC1 and Y2 = sC2 + g3, for example, is derived as

8082 2 _ ongs (i + i) s + gog2

WpoWpH2 wp0 wp2

<C1C2 — €1y &) 52+ [g3C1 — 8182 (i + i)] s + 8182

Wp3 Wp1Wp2 wp1 wp2

H'(s) = (9.119)

from which we can see that the frequency response isindeed changed. Putting it in astandard form
of
s2 — Z—s + a)zz
H'(s)=K——— (9.120)
52 4 %s + w?

the modified parameters can be obtained as below:

8082

K= as)’iocwlbz 8182 (9.121)
C1C2 - wWhH3 + Wp1WpH2
/ 8182
w, = (9.122)
83C 818
\/C1C2 - jbal + wbiwiZ
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\/glgz <C1C2 _ 86 4 8182 )

Wph3 Wp1WhH2

0 = (9.123)
83C1— 8182 (wibl + w_12)

Wz = A/ WpOWpH2 (9.124)

0, = Yz (9.125)

wpo + Wp2

Note also that H” (c0) = K isno longer zero, although H”(0) = H(0) = go/g1.

The circuit may also be unstable if the design does not care this problem very much, since the
finite bandwidth may cause the denominator coefficients to be negative and shift the poles into the
right-half s plane. To ensurethe stability, the following conditionswith thefirst-order approximation
should be met:

1 1
Cy > S8 <— ; —) RFCAE <] (9.126)
83 wp1 wp2 wp3

Compensation of the effects of transconductance frequency dependence is possible [9, 33, 46].
For the ideal integrator we can put aresistor in series with the capacitor [9] and this resistor can be
realized using a MOSFET in the ohm region in integrated circuit design [46]. From the circuit in
Fig. 9.22 we can write

gm 1+ sRC

Itisclear that setting
R=1/wpC (9.128)

the circuit will be an ideal integrator. Doing so for al integrators, the effects of finite bandwidth in
the canonical structurein Fig. 9.7, for example, can be completely compensated.

FIGURE 9.22
Passive compensation of finite bandwidth effects.

An dternative active compensation method [33] is based on the two OTAs of different transcon-
ductances, which are connected in parallel with opposite polarities, as shown in Fig. 9.23. This
arrangement of the two OTAs is equivalent to a differential input OTA with the transconductance
equal to the difference of the two OTAs and with reduced excess phase. The principle of compensa-
tionis now explained. The total effective transconductance can be expressed in terms of individual
single-pole characteristics with the first-order approximation as

8e(s) = ga(s) — ga(s) = g1 (1 - L) - 82 (l — L) (9.129)
wp1

wp2
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where the subscripts 1 and 2 refer to OTAs 1 and 2, respectively. Equation (9.129) can also be
manipulated to
Sgl/wbl - gz/wbz} (9.130)

8e(s) = (81— g2) [1 -
81— 82

It can be seen from this equation that if the condition g1/wp1 = g2/wp2 IS Met, the two OTAs will
behave like a single OTA having an effective transconductance g, = g1 — g2 which is frequency

independent.
o— g‘
_;T:»
L 92
FIGURE 9.23

Active compensation of OTA finite bandwidth.

It should be noted that the first-order cancellation of excess phase is valid at frequencies much
lower than wp1 and wp2. The active compensation can achieve a wider tuning range but cause a
reduction in the effective transconductance, both due to the difference of two transconductances. As
two OTAs are used, the compensation scheme will have an increase in the power dissipation and
chip area. It is, therefore, usually used to replace the OTAs whose excess phase severely affects the
filter performance, e.g., the OTAs redlizing integrators.

9.11.4 Selection of OTA-C Filter Structures

Filter structuresmay beequival ently transformed for somefunctionsintheideal case. For example,
the canonical biquad in Fig. 9.24(a) can be equivalently converted into the circuit in Fig. 9.24(b),
whichissimilar tothe TT biquad. Noticethat all two-integrator filters offer the lowpass and bandpass

BT P T
F & T T I

(a) (b)

FIGURE 9.24
Illustration of equivalent structures.

functions. It can be generally said that these architectures areideally equivalent in realizing the same
LP or BP characteristic. It must be realized, however, that this happens only in the ideal situation
with everything being perfect. In practice, filter performances may vary from structure to structure.
For instance, the effects of OTA nonidealities on Figs. 9.24(a) and (b) will be different. For the
desired function we may select the best structure with respect to practical performances among those
which can ideally realize the function. Thisis aso why we generate many filter configurations.
The illustration in Fig. 9.24 aso shows how a filter using the differential input OTA can be
converted into the equivalent using the single-ended input OTA, or the converse of this. Note that
Fig. 9.24(a) contains two OTAS but Fig. 9.24(b) has four OTAs. It is aso interesting that among
all the structures presented in the chapter, only the KHN and TT biquads do not use the differential
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input OTA inherent in the pole network. In al the other structures the g» OTA has the differential
input application.

9.11.5 Sdection of Input and Output Methods

As we have shown, various input and output techniques may be used to realize a desired transfer
function for a chosen structure. Theoretically we can inject a voltage signal through a capacitor,
or input the voltage using the differentia input terminals of OTAS, or apply the voltage through an
extra single-ended input OTA onto the circuit node. The output can be the voltage of some circuit
node or the converted node voltage using an OTA voltage amplifier. 1deally they may produce the
same function required. But practically using different inputs and outputs will result in different
performances. How to choose different input and output techniques may require various factors
such asthe effects of OTA nonidealities to be taken into account in particular applications. We have
aready excluded the method of applying the input voltage through the ungrounded capacitor, sinceit
isnot desirablefrom the viewpoint of integration and cascading. The method for inputing the voltage
tothe OTA input terminalsisthe simplest and easi est way, but may increasethe parasitic effectsdueto
thefinite OTA input impedances. Imposing the voltagethrough an additional single-endedinput OTA
to the circuit node needs more OTAs although in some cases it may reduce the feedthrough effects.
The output through additional OTAs may only be considered if auniversal biquad is required, asthe
summing node of thismethod will haveaparasitic poleat high frequencies. But generally the method
of applying the input voltage and taking output voltage with additional OTAs can offer some design
flexibility and ease of independent tuning. With these approachesit is also easy to form single-input
and single-output universal biquadsand to utilize two different sets of OTAsto generate system poles
and zeros separately by using the voltage-to-current input distributor or voltage-to-current output
summer, as we have shown in the chapter.

9.11.6 Dynamic Range Problem

According to the definition in Chapter 5, the dynamic range can be obtained by calculating the
ratio of the maximum signal magnitude to the noise level at either the input or the output nodes of
the system.

Generally, given the desired filter transfer function, the dynamic range of afilter is dependent
on the dynamic ranges of the network elements, especialy the active devices, and the filter net-
work architecture. The limited dynamic range of the OTA is confined by the linear input range
and noise level, which restricts the dynamic range of the filter. Several publications have dealt
with noise performance analysis [34]-{37], [43] (due to OTA input voltage noise) and large-signal
capability [38]-{40], [16, 24] (due to OTA nonlinearity) of OTA-C filters.

Here we want to consider the upper limit, the maximum signal level. The finite maximum magni-
tude of signal is mainly dueto the limited linear range of the OTA as discussed in Chapter 3. For the
given OTAS, to maximize the maximum input voltage, it was shown in Section 5.5.3 of Chapter 5
that the maximum values of all the OTA output voltages must be equal from structural viewpoint.
For the KHN structure in Fig. 9.8 and for 0 > 1, for example, using Egs. (9.56 through 9.58) the
maximum values of V1, V,2 and V,3 for V;5 can be approximated as

1

max k11

Vo2

Vis

Q

max K12

Vol
Vis

Vo3

Vis

—0 (9.131)

max

which are the magnitude values at w,.
To make the three values equal requires k1> = 1 and k11 = 1/Q. Taking thisinto consideration
it can be seen that the gain K p of the lowpass filter must be equal to 1 and the gain Kpp of the
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bandpassfilter must beequal to Q. Inother words, only K; p = 1and Kgp = Q canbeachieved for
the maximum signal operation, rather than arbitrary values. In the case of maximum signal swing,
according to the above results and Eq. (9.63) we have

nn=1=1w, (9.132)

Another exampleis the design for the maximum signal swing of the TT filter in Fig. 9.11. From
Egs. (9.70) and (9.71) we can see that the TT biquad using the input V;3, for example, has

Vol
Vi3

V02
Vis

2

b
max 1

-1 (9.133)

max

For the maximum signal swing design we must have t; = 12 and for given w, and Q we can
determine
1 1
7,'1 =T =—, k22 = — (9134)
Wo 0
To finish the discussion of practical design considerations we mention the loading and mismatch
effects. As we have aready discussed in various places, real OTAs do not have infinite output
impedances. Besides the previously mentioned problems thiswill also cause loading effects. Thus,
OTA-C circuits should be designed to drive high-impedance nodes such astheinputs of other OTAs.
If the low-impedance nodes must be driven, the opamp or OTA buffer circuits must be used [2]. This
should be kept in mind particularly when designing high-order filters by cascading OTA-C biquads.
Only those biquads with the input voltage applied to OTA input terminals can be directly cascaded.
In integrated OTA-C filter design, identical transconductances are usually used to make on-chip
tuning, design, and layout easier. |n practice, mismatch in transconductances can be produced dueto
fabrication error, which may cause performance change. Thusthe sensitivity of the transfer function
to the mismatch error must be small.

9.12 Summary

In this chapter we have comprehensively and systematically investigated generation and design of
integrator-based second-order OTA-Cfilter structures. Many filter architectures have been generated.
We have proved that these architectures can offer al types of filter function without use of the
capacitor injection. Simultaneous outputs of different filter characteristics for some single input can
be obtained. Universal biquads and realizations have been extensively studied. Thefilter structures
have been compared and practical design considerations have been given.

Theproposedfirst-order and second-order OTA-Cfilterscan becascaded or coupledtorealizehigh-
order specifications. Note that all the structures presented in the chapter are suitable for cascading,
because the input is at the high-impedance input terminals of OTAS. In odd-order cascade design,
while first-order sections can be used, third-order sections are also quite often utilized. Third-order
OTA-Cfilterscanbefoundin[25] and will bediscussed inthefollowing chapters. Wewill investigate
high order OTA-C filter design in Chapters 10 and 11, introducing the LC ladder simulation and
multiple loop feedback methods, respectively.

It is noted that the filter architectures generated in the chapter can also be derived from a general
multiple loop feedback model [47]. Thiswill be discussed in Chapter 11. Another note is that the
second-order integrator loop systems have been realized using OTA-based voltage integrators and
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amplifiersin this chapter. In fact, we can also realize them using OTA-based current integrators and
amplifiers [48, 49], which will be discussed in Chapter 12.
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Chapter 10

OTA-C Filters Based on Ladder Simulation

10.1 Introduction

In Chapters 8 and 9 we discussed the design of low-order OTA-C filters. In this chapter we deal
with high-order OTA-C filter design [1]-{42]. The most popular method for high-order filter design
is the cascade method due to its modularity of structure and simplicity of design and tuning. As
discussed in Chapter 5, for a given transfer function we first factorize it into low-order functions
and then realize these functions using the filter structures proposed in Chapters 8 and 9. Finally we
cascade the designed sections, the whole circuit giving the desired transfer function. For lowpass
and highpassfilters we can simply use the lowpass and highpass sections, respectively. For bandpass
filterswe can use either both lowpass and highpass sections, or only bandpass sections. This should
be decided before factorization. The cascade method is general in that arbitrary transmission zeros,
asrequired in equalizer design, can berealized. The principles of cascade design were established in
Chapter 5, and so will not be repeated here. Suffice it to say that any of the OTA structures reported
in Chapters 8 and 9 may be incorporated into such an architecture. The reader is also encouraged to
refer to therelevant papers and booksfor OTA-C filter design examples based on thismethod [1]{4],
[91-{12].

The cascade method however has a very high sensitivity to component tolerances. It has already
been established that resistively terminated lossless L C filters have very low passband sensitivity. To
achieve low sensitivity, OTA-C filters can thus be designed by simulating passive L C filters, aswe
have donefor the design of opamp-based active RCfiltersin Chapter 6. Inthischapter weinvestigate
the simulation method for OTA-C filter design. Again, we assume the availability of design tables
or appropriate computer software for the generation of LC ladder network component values, and
therefore concentrate on how to simulate these passive LC ladders using only OTAs and capacitors.

Variousmethodsfor OTA-C simulation of doubly terminated passive L C ladderswill beintroduced
in asystematic way. These can be broadly classified into three categories. component substitution,
signal flow simulation, and coupled biquad realization, as discussed in Chapter 6. Thefirst category,
belonging to the topological approach, includes the inductor substitution, the Bruton transformation
and the impedance/admittance block substitution. The second, being the functional or operational
approach, containstheleapfrog (LF) structureand itsderivativesaswell as matrix methods (including
the wave filter method). The third embraces the biquad-based LF structure, one of the multiple loop
feedback configurations, and the follow-the-leader-feedback (FLF) structure (see Chapter 5). The
component substitution methods keep the active filter structure and equations identical to those of
the original passive ladder. The signal simulation method has the same equations as, but different
structures from, the original ladder. The coupled biquad approach may have different equations and
structures. Various practical design considerations will also be presented.

With outstanding low-sensitivity performance, ladder simulation OTA-C filters are complex in
structure and difficult to tune, compared with the cascade method. While the component substitution
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and LF methods are most popular, the matrix decomposition and coupled biquad approaches have
also been used. The coupled biquad method also has modular design properties. In general terms
and also to enjoy the modular design we present the ladder simulation from the block viewpoint,
leaving component-level simulation as its special cases.

Wewill first describe OTA-Cfilter design using theinductor substitution and Bruton transformation
methods, followed by discussion of the admittance simulation approach. OTA-C filter design based
on the signal flow simulation of passive LC ladders will then be discussed. The equivalence of the
admittance substitution and signal simulation methodswill also bestudied. Next, thematrix methods
for OTA-C filter design and coupled biquad OTA-C configurations are briefly explained. After some
comments on practical OTA-C design problems, a summary of the chapter isfinally presented.

10.2 Component Substitution M ethod

OTA-C filter design based on a passive L C ladder can be conducted by substituting resistors and
inductors by OTA-C counterparts. Such an OTA-C circuit has as low a sensitivity as the passive
counterpart, except for the imperfections in the realization of the active resistor and inductor and the
increase in the total number of components. The Bruton method transforms the passive LC ladder
into some new equivalent ladder which contains no inductors, but some new components, which
are then replaced by OTA-C counterparts. The admittance block substitution method deals with
each ladder arm as a whole and replaces it by the OTA-C circuit which has the same impedance or
admittance function.

10.2.1 Direct Inductor Substitution

OTA-C redlization based on doubly terminated passive LC ladders by direct component substi-
tution requires the simulation of inductors and resistors. Simulation of resistors has been given in
Chapter 8. For convenience we present them again in Fig. 10.1, with the input termination for ideal
voltage input, general floating and grounded resistors being shown in Figs. 10.1(a), (b), and (c),
respectively. All have the resistance equal to the inversion of the OTA transconductance, i.e.,

1
R=- (10.2)
8
Note that the output termination resistor in the passive prototype is grounded.
Note also that the grounded resistors and input termination require a single OTA and the general
floating resistor requirestwo OTAs. Effectsof OTA nonidealitiesonthe OTA resistorswerediscussed
in Chapter 8.

OTA-C Inductors

Now we consider OTA-C simulation of the inductor. As discussed in Chapter 3, the OTA is most
convenient for realizing the gyrator because the gyrator contains only two CCV Ss. The OTA gyrator,
when terminated by a capacitor, will produce asimulated OTA-C inductor with the inductance being
given by

c
L=— (10.2)
8182

asdepicted in Fig. 10.2(a) [7].
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FIGURE 10.2
OTA-C simulation of inductors: (a) grounded and (b) floating.

A floating OTA-C inductor based on two gyrators connected back-to-back may be reduced to the
three OTA architecture shown in Fig. 10.2(b) [8]. It can be shown that when g» = g3 = g, the

equivalent inductance is given by

L= (10.3)

818

Note that a grounded inductor can be simulated using two OTAs and one capacitor. But afloating
inductor needs three OTAs and one capacitor. The inductor substitution technique described above
leadsto arealization that hasthe sametopol ogy asthe original passiveladder network. Thedifference
isthat each inductor is replaced by acircuit using OTAs and the capacitor.

As an example, consider the OTA-C simulation of afloating inductor of the inductance equal to
173.64 wH in a 10 MHz lowpass passive LC ladder. Choosing g1 = g2 = g3 = g = 200u S, we
can calculate the required capacitance, C = g2L = 6.95pF.

Tolerance Sensitivity of Filter Function

The inductor substitution method has low sensitivity. It leaves the capacitor asit isin the original
ladder and realizes the terminal resistor using asingle OTA. Therefore the sensitivitiesto the capac-
itance and the transconductance of the OTA resistor are not changed. Now consider the inductor
which isrealized using either two or three OTAs and one capacitor. The relative sensitivities of the
filter function to these OTA transconductances and the capacitance will depend on the sensitivity of
the inductance to these parameters according to the following relation:

H(s) H(s) oL
SHQ) = s Wsk: . (10.4)
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where H (s) isthetransfer function, and g; and C are the related transconductances and capacitance
simulating the inductor.

As can be seen from Egs. (10.2) and (10.3), for both grounded and floating OTA-C inductors, we
have Sé = —Sng, = 1. The performance sensitivities to these parameters will therefore be the same
asthe original sensitivity to the passive inductance, asindicated in Eq. (10.4).

Par asitic Effects on Simulated I nductor

For the grounded inductor with g1 = g> = g for example, taking finite OTA impedances into
consideration, we can derive the terminal admittance of the OTA-C inductor as

2

8
Yo =G +sC’ &5 10.5
in +s +G,+s(c+c,) (10.5)

where G’ = G; + G, and C' = C; + C,. G;, C; and G, C, are the respective input and output
conductances and capacitances.

The equivalent circuit is depicted in Fig. 10.3. It consists of an inductor with a series parasitic
inductor and lossresistor and parallel parasitic capacitor and |oss resistor, whose val ues are given by

C c’ G’ 1
L=—, Li=—, Ri=—, C,=C', R,=— 10.6
g2 ST g2 $ T g2 P PG (10.6)
—
L
Co = §GP Lg
Rs
P—|

FIGURE 10.3
Equivalent circuit of practical grounded OTA-C inductor.

Now we consider only the output conductance effects. Theinput admittancein Eg. (10.5) becomes

2

8
Yin=G _— 10.7
in a+Go+ij (10.7)

[if theinput conductancesal so need to be considered, we can simply use G’ toreplace G, inEq. (10.7)
to include G;] or the input impedance with the first-order approximation is given by

c 1 C\?
Zin = ](,()L + ry = ]w? + GD |:? + (,()2 (;) :| (108)
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whichisanideal inductor in serieswith a parasitic resistor. Theinductor quality factor is derived as
wL 1

2 («C
qL = I = E%% (10.9)

The maximum value for ¢ is given by %Adc. Notethat Ay, = Gio is the maximum voltage gain at
dc, set by the nonzero conductance at the output of the OTA. The inductor quality factor istherefore
at most one-half the dc voltage gain of the OTAs used [17]. It isvery important to reduce the output
conductance in order to realize a high-quality inductor, especialy for high-frequency design since
the loss resistance increases (the quality factor decreases) with frequency.

The OTA may contain internal poles at high frequencies, which become a serious problem when
thesignalsin thefilter passband approach the frequencies of these undesirablepoles. If thetwo OTAS
constituting the gyrator have one dominant high-frequency pole (w), then the transconductance will
be frequency dependent, given by .

P —— (10.10)
14 s/wp

g(s) =

The terminal admittance of the OTA-C inductor can be obtained with a first-order approximation

(1] 1 2

~ jo(C/g?)  wnC/g?

and the terminal impedance with afirst-order approximation can be derived either from the OTA-C
inductor circuit or by inverting Yin in Eq. (10.11) as

(10.11)

in

C C
Zin=joL+ry, = jo— — 240—22 (10.12)
8 8" wp

The quality factor of the OTA-C inductor is obtained from Eq. (10.12), given by

1
gr=--2 (10.13)
2w

From Eg. (10.12) it can be seen that the effect of finite bandwidth corresponds to a negative
resistance in series with the inductance. According to Eg. (10.11) we can compensate for this effect
by using a positive grounded resistor in parallel with theinput port. Thisresistor can also absorb the
output conductances of the related OTAs. Equation (10.12) also shows that the series parasitic loss
resistance due to finite w;, aso increases with frequency.

Par asitic Effects on Filter Function

To facilitate discussion, we define the tolerance sensitivity as the sensitivity of a function to the
variation in the component value and the parasitic sensitivity as the sensitivity of a function to
the parasitic parameter of the component. Passive LC ladders have very low-magnitude tolerance
sensitivity in the passband, but the phase tolerance sensitivity may not be low. It can be shown
that the parasitic impact is bigger than the tolerance influence on the magnitude response in the
passband [46]. It is therefore important to reduce parasitic effects on the magnitude response in
order to achieve a good passband magnitude response with the simulation method. 1t has also been
shown in [47, 48] that the magnitude and phase parasitic sensitivities are related to the phase and
magnitude tolerance sensitivities, respectively. This reveals that the phase tolerance sensitivity is
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also important for the magnitude performance due to the parasitic effects. There are several methods
which are available for computation of tolerance sensitivity, but not much work has been done for
the parasitic counterpart.

It can be shown that parasitic sensitivities can be computed based on tolerance sensitivities.
Consider the network containing an inductor with loss, that is, Z; = sL + ry. Thetransfer function
of the network can be expressed as a hilinear function of Z; , given by

A A L N
Hs) = A4 +AwGLtr) N (10.14)
An+Ax(GL+rL) D

where A;; are coefficientsindependent of Z . Direct differentiation of Eq. (10.14) gives

oH _ 10H _ A12A2 — A11A»

= - 10.15
arp s dL D2 ( )
which leads to the parasitic sensitivity function as
10H 1
n_ ——— = g (10.16)

'L Hoar,  sL

Writing H = |H|e/? and using Eq. (10.16) we can obtain the relative change in the magnitude
due to the inductor loss resistance as

AlHL_ piH) _

1 ¢
= b _q_LQL (10.17)

where Q¢’ = LS—"L’,
i.e, rp =0.

We can see that the magnitude change due to r; can be calculated using the phase tolerance
sensitivity with no need of any extra circuit analysis. This also reveals that the phase tolerance
sensitivity isalsoimportant for the magnitude frequency response dueto the existence of the parasitic
loss resistance. In our case, g, can be obtained from Egs. (10.9) and (10.13) for the effects of the
output conductance and the impact of excess phase, respectively. The total variation can be derived
as

which is the phase tolerance sensitivity and is calculated at the nominal state,

AlH| 1+ (%)2 G
= 209 @j} - wﬁb (10.18)

It is stressed again that the parasitic effects increase with the frequency and to achieve a high-
frequency performance we must reduce these parasitics.

We now consider the impact of parasitic capacitances on the filter function. From Eg. (10.5) and
Fig. 10.3 we can see that the parasitic capacitancesin parallel with the circuit capacitance will cause
the shift in the equivalent inductance by L,. Therefore, the following formula in Eq. (10.19) for
computation of the relative change in the magnitude due to the tolerance in the inductance can be
used to evaluate the effects of the parasitic capacitances.

AlH AL
AlH] _ AL g

10.19
H L (10.19)
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Thechangeof the magnitude duetotheparasitic capacitances, C’ = C;+C, inparallel withthecircuit
capacitance C, can be obtained from Eq. (10.19) by noting that L = C/g2and AL = Ly = C' /g2,
given by N
— = ¢lH|
H —C S (10.20)
From this equation we can see that to reduce the change, the parasitic to normal capacitance ratio
must be small and the magnitude tolerance sensitivity to theinductance must also be small. Itisvery
fortunate that S'LH isindeed very small. It should be very interesting to note from the above analysis
that the magnitude change due to parasitics depends on the ratios of G, /g, C'/C, w/wp and aso
the tolerance phase and magnitude sensitivities. To reduce the parasitic effects, these factors must
be taken into consideration, especially for very high-frequency applications.

10.2.2 Application Examples of Inductor Substitution

Itiswell knownthat theinductor substitution method ismost economical for simulation of highpass
LC ladders, as the inductors in highpass ladders are grounded. In this section, however, two other
examples are presented to illustrate how to design OTA-C filters from passive LC ladders by using
the inductor substitution method introduced above and also to introduce some concepts for later use
in the chapter.

OTA-C Biquad Derived from RL C Resonator Circuit

The OTA-C active resonator isthe most popular biquad in practice. 1t can be generated by OTA-C
simulation of resistors and inductors of a passive RLC resonator. It has very low sensitivity and
parasitic effects.

Consider the passive RLC resonator circuit in Fig. 10.4(a). It has the driving point impedance

Vout sL

Z§)=—= ————
Iin SZLC1+S% +1

(10.21)

Direct substitution of the OTA resistor and OTA-C inductor produces the corresponding active OTA-
C resonator as shown in Fig. 10.4(b). The simulated function is derived by noting that L = C/g1g2
and R = 1/g3, given by

\% C
H(s) =~ = — =2 (10.22)
Iin §¢C1C2 + sg3C2 + 8182
Iin
I O
Oin F ‘
A Vout @ _p-C
Vout R -- 01 L 1
(o2 -+ [og

FIGURE 104
RLC and OTA-C resonators.

We discussed the OTA nonideality effects on the two integrator loop structure in Chapter 9. Now
we analyze the effects based on the inductor simulation. Inspection of the OTA-C resonator reveals
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that the input and output capacitances of all the OTAs can be absorbed by the circuit capacitances
C1 and Ca. Also, the output conductance of the g1 OTA, the input conductance of the g» OTA and
both the input and output conductances of the g3 OTA can be absorbed by the transconductance gs.
Thereforewe only need to consider the output conductance of the g» OTA and the input conductance
of the g1 OTA, in addition to the frequency dependent transconductances. It is clear that we can
evaluate the parasitic effects on the whole transfer function based on the general formulas derived
in the previous section. But for second-order filters, parameters w, and Q are of moreinterest. The
relative changes in these parameters due to the inductor parasitic losses are generally given in [47]

Aw‘:" - —ﬁ (SZ’” + SLQ) (10.23)
% = 2quL [(4Q2 - 1) s@ — SLQ] (10.24)

Again they are dependent on both tolerance sensitivities and the finite ¢ . From Eq. (10.21) we can
deducethat 5 = —1 and 5S¢ = —3. Equations (10.23) and (10.24) become, respectively,

Aw, 1
= 10.25
Wo 2Q‘]L ( )
AQ 1 5
— = 20 -1 10.26
o =~ 05 (20°Y) (10.26)

The series |oss resistance due to the output conductance of the go OTA, G,» and the input con-
ductance of the g1 OTA, G;1 isgivenby r; = (G,2 + G;1)/g1g2. Theinductor quality factor can

be derived as 0,Ca

" G2+ Gi1

Substitution of this into Egs. (10.25) and (10.26) yields the relative change of w, and Q. We can
also seethat thefinite g, has different impactson Q and w,. A comparison may be made by writing

qL (10.27)

A_QQ /AC::” = (207 -1) (10.28)

which shows that the change in o, due to parasitic loss is smaller than that in Q. It is noted that
Aw,/w, being small isimportant as the total magnitude change depends more on it.

Finally we point out that the ideal L C resonator and its OTA-C counterpart correspondto R = oo
and g3 = 0, that is, the removal of the resistor and the corresponding OTA, respectively. Both lossy
and ideal OTA-C resonators will be needed in the simulation of some passive LC ladders.

A Lowpass OTA-C Filter

For illustration we consider the fifth-order lowpass finite zero LC ladder in Fig. 10.5(a). We
replace the input and output termination resistors by the OTA counterpartsin Figs. 10.1(a) and (c),
respectively, and the two floating inductors by the OTA-C equivalent in Fig. 10.2(b). The resulting
OTA-CfilterisdisplayedinFig. 10.5(b). Thecomponent valuescan bedetermined usingtheformulas
in Egs. (10.1-10.3) as

g1=1/R1, Cz=gog3ls, Ci=gagsLs, gs=1/Rs (10.29)
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where g2 and g3 (g4 and gs) can be used to produce a proper value for C5 (Cg).

R,

H

O
IN

FIGURE 10.5
Fifth-order finite zero lowpass LC ladder and its OTA-C simulation.

In 1C implementation, the grounded capacitor issimpler to implement in technology. Thefloating
capacitor has substantial parasitic capacitances (about 10% of the capacitance value) from the bottom
plate to the substrate, i.e., the ac ground. For grounded capacitors, the bottom plate should be
connected to ground and thus the parasitic capacitances are shorted out for signal currents and play
norole[3]. Figure 10.6 givesacircuit which can simulate the floating capacitor using OTAs and the
grounded capacitor [14]. It can be formulated that

c, =8¢, (10.30)

8384

Or we can say that for the given floating capacitance C ¢, the grounded capacitance can be determined
by

c, =8¢, (10.31)

8182
and the value can be adjusted by the related transconductances.

It must be noted that the price paid for grounding the floating capacitor is the extra five OTAs.
The increased number of OTAs may cause other problems such as extra noise and power consump-
tion. Compared with the block substitution method we shall introduce in Section 10.3, the separate
treatment of the floating capacitor and inductor in the series arm is not economical, requiring three
more OTAs. Finally it should be pointed out that the convertor circuit in Fig. 10.6 has an internal
node, node A, which does not have any component to ground, which we call the suspending node.
The suspending node with parasitic capacitances will produce an extra pole and this parasitic pole
will influence the filter responses at high frequencies.

10.2.3 Bruton Transformation and FDNR Simulation

By dividing the impedance of each branch in the passive ladder network by s the Bruton trans-
formation converts the inductors, capacitors, and resistors of the ladder to the resistors, frequency-
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FIGURE 10.6
Conversion of floating capacitor to grounded capacitor.

dependent-negative-resistance (FDNR) components, and capacitors, respectively, as shown in Sec-
tion 6.6. Thus the OTA-C realization becomes the substitution of the new set of components.
The FDNR has an impedance given by

Z(s) = (10.32)

1
s2D

The grounded FDNR can be implemented with five OTAs and two grounded capacitors and the
floating FDNR requires six OTAs and two grounded capacitors, as shown in Figs. 10.7(a) [8, 14]
and (b) [14], respectively. It can be shown that both of them have

D_

8182 e, (10.33)

" 838485

FIGURE 10.7
Realizations of grounded and floating FDNRs.

The synthesis procedure of opamp-RC filters based on the Bruton Transformation has been given
in Chapter 6, but is again now summarized for OTA-C filters. For a given transfer function, first
design apassive L Cfilter. Then usethe Bruton transformation method to transform the L Cfilter, that
is, replace the resistors R by capacitors of value 1/R; the inductors L by resistors of value L; and
the capacitors C by FDNRswhose D valueis C. Next use the OTA resistors and OTA-C FDNRsto
replace the corresponding resistors and FDNRsin the transformed circuit. If required, the resulting
floating capacitors may also be replaced by the OTA-grounded capacitor circuit. The new element
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values resulting from the substitution can be determined; taking the FDNR as an example, from

Eq. (10.33) we obtain
_ 838485

8182

C1C2

D (10.34)

All the values are now electronically controllable through the related transconductances. The final
OTA-C filter which realizes the given transfer characteristic is thus obtained.

The Bruton transformation method is widely used in active RC filter design. In the above we
have shown that the method can also be used to design OTA-C filters. We want now to evaluate the
performance of the method in OTA-C filter design and decide whether the method is suitable or not.

The Bruton Transformation does not affect the topology of the ladder circuit, nor does it affect
the transfer function realized. Therefore, similar to the inductor substitution method, the FDNR
substitution method can produce OTA-C filters that have as low a sensitivity as the passive circuit.

The philosophy behind the Bruton method for active RC filter design however may not be suitable
for OTA-C filters. Unlike the active RC case where the transformation of inductors to resistorsis
clearly an advantage, in OTA-C filter design the resistors resulting from the transformation of the
inductors by the Bruton method also need to be replaced. The OTA-C realization of the FDNR is
clearly more complex than that of the simulated inductor, as revealed in Fig. 10.2 and Fig. 10.7.
These two factors make the number of components needed for the inductor and FDNR substitution
approaches much different, the total numbers of OTAs and capacitors with the FDNR method being
much bigger than those required by the inductor replacement approach.

Take the third-order all-pole lowpassfilter and itstransformed version in Fig. 10.8 asan example.
The two terminated resistors each uses one OTA and the floating inductor needs three OTAs and one
capacitor. Altogether five OTAsand three capacitors are needed for theinductor substitution method.
With the FDNR method, the floating resistor requires two OTAs and the two grounded FDNRs each
requiresfive OTAsand two capacitors, which leadsto the OTA and capacitor total numbers of twelve
and six, respectively, with the input terminal capacitor being floating.

R1 L3 C1 R3
o T ST 7R BT BTTC
@ ()

FIGURE 10.8
Third-order all-pole inductor and FDNR ladders.

Similar comparison can be conducted for the highpassfilter with all zerosat theoriginin Fig. 10.9.
Theinductor substitution approach requires six OTAs and three capacitors, while the Bruton method
needs eight OTAs and four capacitors, both having a floating capacitor.

1 a

o A

-]

[a) (b}

FIGURE 10.9
Third-order highpass inductor and FDNR ladders.

We should say that for both lowpass and highpassfiltersthe FDNR method will generate additional
suspending nodeswhich areinherentinthe FDNR circuitsin Fig. 10.7. Inaddition, theBruton method
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will dwayshave afl oating capacitor at theinput terminal resulting from theinput terminationresistor,
which will also cause a dc path problem, as discussed in Chapter 6.

From the above analysis we can conclude that the Bruton transformation method may not be
attractivefor OTA-C filter design, although for highpassfilter design the difference of the component
numbers is not so great. Use of the direct inductor substitution method can also save the Bruton
transformation step. A full set of OTA-C simulations of components for the inductor replacement
and Bruton transformation methods with emphasis on tunability can be found in [14].

10.3 Admittance/l mpedance Simulation

In Chapters 3 and 6 various opamp impedance conversion or transformation circuits and methods
wereintroduced and appliedin active RCfilter design based on passiveladders. Inthissectionwedeal
with the OTA-C counterparts. Generally, each arm of aladder network isactually a one-driving-port
network and may contain several components asin cases of finite zero lowpass, finite zero highpass,
bandpass, and bandstop filters. Rather than dealing with individual components as previously we
simulate the impedance or admittance of each arm as awhole using OTAs and capacitors. This may
be achieved by direct OTA-C substitution of those admittance or impedance blocks in the prototype
ladder. In the following, however, we will present a method which first converts the floating series
admittanceto the grounded impedance using OTAsand then simulate all grounded impedancesusing
OTAs and capacitors.

10.3.1 General Description of the Method

To facilitate discussion, Fig. 10.10 gives ageneral ladder with series arm admittances and parallel
arm impedances. The admittances in the series arms are floating. If the floating admittance is a
complex combination of inductors and capacitors, then the individual treatment of floating inductors
and floating capacitors in the arm will have redundant OTAs. We now do a simple transformation,
which converts the floating admittance as a whole into a grounded impedance. The circuit for
realizing this conversion is exhibited in Fig. 10.11 [8]. Therelation between the floating admittance
Yy and the grounded impedance Z, is given by

Yy = g1827, (10.35)

From the design standpoint when Y is given, then Z, can be determined as

1
Zo— Y 10.36
¢ g1g2 7 (1036)

where g1 and g» can be used to scale the impedance level.

Replacing al the floating admittances by the OTA-grounded impedance circuit in Fig. 10.11, the
general ladder in Fig. 10.10 can be simulated as shown in Fig. 10.12 which consists of only OTAs
and grounded impedances and where for example, Z; = Y3/gaga. The problem left is simply to
simulate all grounded impedances using OTAs and capacitors. This can be done using the inductor
substitution method in Section 10.2.1. The structure in Fig. 10.12 may be simplified by using the
well known fact that any two single-input OTAs with equal transconductances and opposite input
polarities, whose outputs are connected to the same node, can be equivalently replaced by a single
differential-input OTA with the same transconductance, for example, when go = g4 = gg. Thiswill
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FIGURE 10.10
General admittance and impedance ladder.

FIGURE 10.11
Conversion of floating admittance to a grounded impedance using OTAs.

be discussed in Section 10.5. Also note that the first OTA at the input end can be discarded for ideal
voltage input. For very complex arms in the passive filter, multiple levels of impedance conversion
and inductor substitution may be needed. But two-level simulation will suffice for most practical
ladders, as can be seen in the next section.

FIGURE 10.12
OTA-grounded impedance simulation of general ladder.

10.3.2 Application Examples and Comparison

To appreciate this general method we now present some typical examples. First reconsider the
fifth-order finite zero lowpass LC filter in Fig. 10.5(a). There are two floating admittances which
are the parallel LC resonators, needing to be treated. In general, consider the floating parallel LC
resonator in Fig. 10.13(a). The floating admittanceis

1
Yy =5C+ — 10.37
F=sC+ 7 ( )

Using the conversion circuit in Fig. 10.11 and Eq. (10.36) we have the grounded impedance

C 1
+
g182 sLgig»

Z,=s (10.38)

which is a series LC resonator with inductance L’ = C/g1g»> and capacitance C' = g1g2L. This
is shown in Figs. 10.13(b) and (c) which correspond to the arrangements of the capacitor being
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grounded and floated, respectively, [22]. In Figs. 10.13(b) and (c) we also give the corresponding
OTA-C simulations of the grounded impedance, in both cases the inductor-related capacitor having
C" = gagal'.

=i
<

¢ TC
(b) (©

(@

FIGURE 10.13
OTA-C simulation of parallel LC resonator in series arms.

It is evident that thisis a two-step method. In both cases we can first choose g1 or g2 to give C’
some proper value (L' is fixed accordingly) and then generate the appropriate value for C” using
g3 or ga. Itisaso very interesting to note that C” can be tuned independently from C’, which are
related to the original capacitor and inductor, respectively.

Comparing the two realizations with the capacitor grounded or floating in Figs. 10.13(b) and
(c) we can see that the realization with the grounded capacitor contains one more OTA than the
implementation with thefloating capacitor. Thisisobviously becausetheformer containsthefloating
inductor, while the latter the grounded inductor. Also, the grounded capacitor realization has one
suspending node, while the floating capacitor counterpart has two suspending nodes. The floating
capacitor may be a disadvantage in IC design. Therefore (also for the reason that will follow
immediately), we would not be interested in the floating capacitor realization.

Now we compare the results with those in Section 10.2.1. First look at Fig. 10.5(b) and
Fig. 10.13(c). Itisapparent that if the floating capacitors are allowed, the structurein Fig. 10.5(b) is
more attractivethan theonein Fig. 10.13(c) interms of the number of OTAsneeded (two lessfor each
series arm) and the suspending nodes (no suspending nodes), another reason for the above negative
claim about the method in Fig. 10.13(c). For grounded-capacitor-only realizations, the method in
Fig. 10.13(b) is better than the method in Figs. 10.5(b) and 10.6, since the number of OTAs needed
for each seriesarm is reduced by two.

Figure 10.14 presents the whole OTA-C circuit based on the passive L C prototypein Fig. 10.5(a)
and realized using the floating admittance to grounded impedance conversion method and with
grounded capacitorsonly. Clearly, when R, L, and C in Fig. 10.5(a) are known, the values of related
componentsin Fig. 10.14 can be determined (with C2, C4, and Cg remaining unchanged):

8485
g1=1/R1, C3=gog3ls, C5=°>""Cs,

8283
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8889
Cs = geg7ls, Cg = @CS, 210 = 1/Rs (10.39)

Itispossibleto haveidentical transconductances (except thetermination OTAS). Settingg; = g; = g,
i,j =23, ...,9leadsto C; = g2L3, C§ = C3, C{ = g?Ls and C{ = Cs. However, it may not
be possible to have identical capacitances, unless C> = C4 = Cg. But we can reduce the number of
different values to three. For example, we can set C; = C; = C2 and obtain go¢3 = C2/L3 and
g4g5 = C2/(C3L3). Similarly we can make Cf, = C = Cg and determine geg7 and gggo.

.. DG f
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_II ]I:

|
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FIGURE 10.14
OTA-C simulation of finite zero lowpass ladder by admittance substitution.

Figure 10.15 gives another example of an eighth-order bandpassfilter. From the passive L C ladder
in Fig. 10.15(a) we can identify that
1 1

= ., 1 2= 10
R1+SL1+m SC2+m

Y1

1 1

1 1 1
SL3+E R—4+SC4+m

(10.40)

Transforming the two floating admittances into the grounded impedances and then realizing all
grounded impedances by theinductor substitution method we can obtain the OTA-C circuit as shown
in Fig. 10.15(b), where the corresponding component values are determined as (C2 and Cy4 are left
unchanged)

g3=g182R1, Cy=g1g2Ll1, C7=§BC1  C)=gegrlz,

;o /7 __ 810811
C3=gsgols, C3=722Cs3,

C,=gwg13le, g =7 (10.41)

We can see that through the floating admittance to grounded impedance transformation, the floating
resistor, inductor, and capacitor of the seriesresonator in the series arm become the grounded resistor,
capacitor, and inductor of the parallel resonator. This bandpass OTA-C filter architecture has avery
good feature in that each circuit node has a grounded capacitor and thus can be expected to have
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very low parasitic capacitance effects. In fact all parasitic capacitances can be absorbed by these
grounded capacitances.

—
|1
1
O
nN
AI'_'

£ H

(b)

FIGURE 10.15
Bandpass RLC ladder and OTA-C simulation by admittance substitution.

10.3.3 Partial Floating Admittance Concept

Partial floating of the seriesarm admittance may be useful in some cases and makes the admittance
substitution method more general. Asshown in Fig. 10.16(a) and (b), if the floating admittance can
be split into two parts Y; = Y;1 + Y2, we can leave one part Y;3 where it is and simulate the other
part ¥;» using three OTAs and the grounded impedance Z', = LX,-Z. For example, if the series
am is a LC parallel resonator as shown in Fig. 10.16(c), we may leave the capecitor Yj; = sC
unchanged and convert only the inductor Yj, = }L to the grounded capacitor Z]/.2 = - Lgl Z using
the OTA gyrator, as shown in Fig. 10.16(d). For the LC ladder in Fig. 10.5(a), the partiai floati ng
concept will result in the same OTA-C circuit as that in Fig. 10.5(b) which was obtained by the
inductor substitution.

We can also explain the partial transformation concept in the following way. If Y;; = O, it will
mean that we do not |eave any series admittance, or any part of it, floating. Examples of this are
all-pole lowpass and all-pole bandpass filters. If Y;, = 0, it will imply that we will not convert any
series admittance, or any part of it, into the grounded form. For instance, highpass filters may be
dealt with in this way. The examples for both nonzero Y;; and Y;> may be all-pole bandstop and
finite zero lowpass filters. Thusthe partial concept is more comprehensive and general.
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FIGURE 10.16
lllustration of partial conversion of series arm admittance.

10.4 Signal Flow Simulation and L eapfrog Structures

In the preceding sections, we have introduced the component substitution and admittance simu-
lation methods. Another popular theory for OTA-C filter design isto simulate signal flow relations
in the LC ladder circuit. As discussed for active RC filter design in Chapter 6, by this method, the
circuit equations that describe the topology of the passive ladder structure are first written. Then a
signal flow block diagram is drawn based on these equations. Finally the block diagram is realized
using OTAs and capacitors. In the simulation of LC ladders, the original equations are of the mixed
current and voltage type. We can convert these equations to their voltage-only counterparts by scal-
ing, which is the technique that will be discussed in this section. The mixed equations can also be
scaled to the current signal only. Thiswill be dealt with in Chapter 12.

Two techniques for active signal simulation of a passive ladder exist. Oneisto simulate relations
of series-arm currents and parallel-arm voltages, treating the respective arm as asingle-port network.
The other is to do component-level signal simulations, that is, to simulate relations of signalsin all
individual elements, for example, individual capacitor voltages and inductor currents. Thefirst type
of signal flow simulation structures are block based, since the series and parallel arms are treated as
awhole, no matter how many components are there. The second method has a case-by-case feature,
for the different passive L C structuresthe signal flow equations may bevery different. Also, notethat
if each armin the passiveladder structureissimply asingle component, such casesincluding all-pole
LP and zero-at-origin HP LC ladders, the block method will reduce to the component method. In
the following we will therefore concentrate on the block signal simulation method for OTA-C filter
design based on passive L C ladders. A systematic treatment will be given.

10.4.1 Leapfrog Simulation Structuresof General Ladder

Thegeneral ladder network with seriesadmittancesand parallel impedancesisshowninFig. 10.17.
The equations relating the currents flowing in the series arms, I;, and the voltages across parallel

©1999 CRC PressLLC



arms, V;, can be written as

IL=Y1(Vin—V2), Vo=Zo(h1—13), Iz=Y3(Va—Vy),
Va=Z4(Iz—1Is5), Is=Ys(Va—Ve), Vou=Ve= Zsls (10.42)

Thetransfer function Vot / Vin can be obtained from these equations by eliminating the intermediate
variables. These equations can be represented by a signal flow diagram depicted in Fig. 10.18.
Observe that the output of each block is fed back to the input of the preceding block and therefore
the structure is called the leapfrog (LF) structure [53], as recalled from Chapter 6.

FIGURE 10.17
General admittance and impedance ladder with signals indicated.
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FIGURE 10.18
Leapfrog block diagram of general ladder.

In contrast with the cascaded topology, these blocks are not isolated from each other, and any
change in one block affects the voltages and currentsin al the other blocks. This type of coupling
between the blocks makes the tuning of the whole network more difficult, but gives rise to the much
lower sensitivity [49].

In active filter design the mixed current and voltage signal equations are normally converted by
scaling into their counterparts with voltage signals only. Scaled by a conductance g,,, Eq. (10.42)
can be written as

Vi= B (Vo= Vo), Va=guZa(V{—V3). Vi=L(va-va,

Va=gnZa(V5— Vi), Vi=(Va—Ve),

whereV! = I;/g,. TheY; /g, and g, Z; arevoltagetransfer functions. Itisclear that theseequations
will lead to the same transfer function Vet/ Vin as that from Eq. (10.42). The corresponding block
diagram is shown in Fig. 10.19.

Astraditionally donefor opamp-RC filter design (see Chapter 6), to realizethisnew block diagram
we can similarly synthesize the voltage summers and voltage transfer functions of Y; /g, and g, Z;
using OTAs and capacitors. Of course, different ladderswill have different Y; and Z; values and the
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FIGURE 10.19

Scaled leapfrog block diagram of general ladder.

associated OTA-C structures thus will be different. In the following, however, we will not follow

the conventional method. We will present a new, systematic, and more efficient method unique to

OTA-C filters by using the feature of the OTA. This method is similar to that proposed in [22].
From Eq. (10.43) we can see that the voltage relations have atypical form of

Uj = Hj (Uj—1 — Uj41) (10.44)

where U; canbe V; or V/, and

Hj =Yj/gm, forodd j; H;=g,Z;, foreven j (10.45)

Equation (10.44) can be realized using an OTA with a transconductance of g; and a grounded
impedance of
Z; = Hj/g; (10.46)

as shown in Fig. 10.20. Thisis an OTA-grounded impedance section. The summation operation is
simply realized by the OTA differentia input. It can be verified that the voltage transfer function
from the OTA input to output isequal to g; Z; = H;. Notethat werelate the voltage transfer function
H; to the grounded impedance Z'. Thus the voltage transfer function redization can now become
the simulation of the normal grounded impedance, which can be easily done using the inductor
replacement method.

FIGURE 10.20
OTA-grounded impedance section.

Using Fig. 10.20 as a building block we can readily obtain the OTA-grounded impedance LF
structure from Eq. (10.43) or Fig. 10.19, as shown in Fig. 10.21.
The grounded impedances have the values calcul ated by

;1 / __ 8m ;1 / __ 8m
21 =g V1 Ly="gZa Zz= g ¥s 2, =702,

1 Sm

From Eq. (10.47) we can seethat besidesthe general scaling by g, , €ach new grounded impedance
has a separate transconductance which can be used to adjust the impedance level. We can also note
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FIGURE 10.21
General LF OTA-grounded impedance realization.

that Z]f are not the original impedances Z; in the ladder. For the even number subscript, Z' is the
original impedance Z; in the parallel arm of the ladder multiplied by the ratio of g,,/g;, Wlllilefor
the odd number subscript, Z]/. istheinversion of the original impedance Z; or the admittance Y; in

the series arm divided by the product of g;g,. When g; = g,, = g, we have Zj’. = Yj/g2 for odd j
and Z; = Z; for even j. Furtherif g; = g, = 1,then Z} = Y; for odd j. Notethat in many OTA-C
publications, unity values of transconductances and the scaling conductance are used for simplicity.

The salient feature of the structure is that the OTA-C realization problem becomes the OTA-C
realization of the grounded impedances only and the simple inductor substitution method can be
conveniently used to simulate the impedance constituents. It is also noted that each OTA output
node having a grounded subnetwork and the subnetwork having no extra connection with other
parts of the circuit, as is the case in Fig. 10.21, can ensure the low sensitivity of the structure to
the transconductance [23]. As seen from Eqg. (10.47), a change in a tranconductance will change
the impedance level of the grounded subnetwork connected to its output only and, according to
the sensitivity property, the sensitivity of the filter function to the transconductance will be equal
to the sum of all the sensitivities of the function to the constituent elements (real or simulated) in
the subnetwork. Since the sensitivities to constituent passive elements are usually low or low by
proper design, the sensitivity to the transconductance will also be low. This argument suits al the
transconductances in Fig. 10.21. Therefore, the OTA-C filters based on Fig. 10.21 will have low
sensitivity. Moreover, the original floating inductor or capacitor in the series arm can be converted
into the grounded capacitor and inductor, respectively. As will be seen soon, each capacitor of
the resulting OTA-C filter will have a corresponding reactive element (capacitor or inductor) in the
passive counterpart, which, as demonstrated in Section 10.2, can guarantee the low sensitivity of
the transfer function of the OTA-C filter to its capacitors. Thus OTA-C filters based on the method
discussed above will have low sensitivity to both transconductances and capacitors.

The above method is similar to the admittance simulation method in Section 10.3 in that the
floating admittances are converted into the grounded impedances using OTAs. We will prove in
Section 10.5 that the OTA-C filter structures obtained using the admittance simulation method and
the signal simulation method can be the same under certain conditions.

In the following we introduce some OTA-C structures derived from passive LC ladders. Since
we have not put any limitations on the impedances and admittances in the general ladder, the signal
simulation method is therefore suitable for arbitrary L C ladders. For simplicity, and a so because of
popularity, only some typical LC ladder simulations will be presented.

10.4.2 OTA-C LowpassLF Filters

Consider thefifth-order all-pole L C ladder with termination resistorsin Fig. 10.22(a). Comparing
the circuit with the general ladder in Fig. 10.17 gives Y1 = 1/R1, Z2 = 1/sCa, Y3 = 1/sL3,
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Z4=1/5Cq,Y5=1/sLsand Zg = m. The circuit equations accordingly become

h=gVin=V2), Va=35—l), L= V2-Va),
Va=i&Us—1Is), Is= 1. (Va—Ve) ,

1
Vour = Vo = seogimg I5 (10.48)

Scaling Eq. (10.48) by the factor of g,, results in voltage functions H; given in Eq. (10.45) and
realized in theway as shown in Fig. 10.20, where grounded impedances Z/ aregivenin Eq. (10.46).

The OTA-C filter structure is given in Fig. 10.22(b). For given R;, C;, and L;, we can compute the
new parameter values as

81 = g18mR1, Cé:g—icz, C/3=g3gmL3, C4—g4C4,

Cs=gsgmls, Cp=50Ce, gp=20p (10.49)

The values can be adjusted overall by g, and individualy by g;. Two design techniques can be
utilized. Oneisto makeall transconductancesidentical, thatis, g1 = go=g3=ga=g5=g6=¢
with different capacitances which can be calculated from Eq. (10.49) as CJ’. = ggmL; when j is

odd; C/’. = icj when j is even. The other is to select the same value for all capacitances, that
is,C, =C5=Cy = C’5 = Cg = C with different transconductances which are determined from

Eq. (10.49) asg; = L ——,forodd j and g; = %,for even j. In many cases g, can be chosen to
be unity.
v LR Vo L Ve ls Ls Ve=Vou
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FIGURE 10.22
Fifth-order all-pole LC ladder and LF OTA-C realization.

The OTA-C filter contains only integrators and summers. Once again we see that the integrator
is the basic building block in active filter design. Note that the structure requires only grounded
capacitors, an advantage for integration. It is also simple, as only eight OTAs and five capacitors
are needed. When Rs = 1/g,, the g; termination OTA can be removed if the inverting terminal
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of the gg OTA is connected to the output. This has been used very often in the OTA-C literature
such as [20]. The first paper studying the OTA-C redlization of all-pole leapfrog filters based on
L C ladders was published in [18], where other possibilities of terminations were also given. In the
following we will first give an example to the above all-polefilter design and then look at the OTA-C
architecture for the finite zero lowpass LC ladders.

Example

We design a fifth-order 1 dB-ripple 4 MHz Chebyshev filter based on the LF OTA-C simula
tion of the passive ladder. The fifth-order 1 dB-ripple Chebyshev lowpass filter has a normalized
characteristic of (see appendix)

0.061415
52+ 0.9368254 + 1.68882s3 + 0.97440s2 + 0.58053s + 0.12283

Hy(s) =

The corresponding normalized component values of the ladder in Fig. 10.22(a) are given by

Ri=Rg=1 (Co=2135 L3=1091,

Cy=3001, L5=1091, Cg=2135

We first denormalize the component values with the frequency of f, = 4M H z and the resistance of
R = 10k<2 (see Chapter 2). The corresponding denormalized component values are obtained as

R1 = Rs =10kQ2, C2=Ceg=8495pF,

L3 =Ls=4341uH, C4=11941pF

Then using the formulas in Eq. (10.49) with the choice of equal transconductances

81=82=83=g84=85=86=8m = 1/R =100u$S

we obtain
g1 = g5 =100uS, Ch=C§=8.49%5pF ,

C,=11941pF, Ch=Ci=4341pF

Theresultsshow that all thetransconductancesare equal and thereare only threedifferent capacitance
values with the maximum capacitance spread (ratio) of only 2.75. Also, note that all capacitors are
grounded. So thisis agood design for integrated circuit implementation. Note that in this design
g6 = gg- Thusone OTA can be saved at the output end.

Now we consider a fifth-order finite zero passive LC ladder, as shown in Fig. 10.23. Similarly,
identifying that

1
Y1=1/R1, Z2=1/sCy, Y3=s5C3+—,
sL3
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1 1
Za=1/5Cs, Y5=sC — Zg= —— 10.50
4=1/sC4, Ys=35s 5+sL5 6= Cot 1/Re ( )

and following the same design procedure we can obtain the OTA-C counterpart as shown in
Fig. 10.23(b), similar to that in[20]. The difference from the all-poletypeisin Y3 and Y5 which are
a combination admittance of two components and involve two steps. Taking Y3 as an example, we
first have the corresponding grounded impedance as

Y. 1
8 _sLh+—— (10.51)

Zh=
3 838m 3 sL3g3gm

where L = —£3 The second term in the equation represents a capacitance of the value C; =
L3gsgn,. But thefirst term is equivaent to an inductor. This should then be further replaced by an
OTA-C inductor with L = g,cg,, Combining the two steps we can also obtain C3 in terms of Cs.

The design formulas of the O'I3'A3-C filter for all components are given below.

FIGURE 10.23
Fifth-order finite zero passive LC and active OTA-C LF filters.

8384
g1 =818mR1, Cp= 2Ca. C3=sgagmls. C3= gsagri Ca
Cl_ sac Cl — L Cc! = gég/s/c
4= gm 4, 5 — 858m L5, 5 858m
_ 3z — 861
Ch=18Co gp=ok (10.52)
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where g,, isthe scaling conductance. Similarly, using the equation the OTA-C filter can be conve-
niently designed to have the same transconductances or the same capacitances. If al transconduc-
tances are equal to g,,, we will have from Eq. (10.52) that g; = g2 R1, g5 = 1/Re, Cj = C; for
evenj=2,4,6,C; = gsL;forj=3,5and C} = C; forj=35.

10.4.3 OTA-C Bandpass LF Filter Design

The complexity of the OTA-C filter based on the LF structure will depend on the number of
elements in the series and shunt branches of the passive ladder circuit. The bandpass filter design
may be conducted from theall- poIeIowpass L Cfilter by applying the lowpass to bandpass frequency
transformation s — Bs + —/z where w, is the center frequency and B is the bandwidth of the

bandpass filter to be designed (see Chapters 2 and 6). The bandpass LC structure from the all
pole lowpass prototype will typically have series resonators in series arms and parallel resonators
in paralel arms. We start design from the bandpass L C ladder only and take the LF simulation of
the circuit in Fig. 10.24(a) as an example. Recognizing that Y1 isan RLC series resonator, Z4 isa
parallel RLC resonator and Z, and Y3 are the ideal parallel and series LC resonators and following
the same design procedure we can obtain the LF OTA-C filter structure as shown in Fig. 10.24(b).
The component values can be formulated as
" _ g’lg’l/ C

81 =g1gmR1, Cj=gigml1, C{= 12 Cy=%Cz,

a/

Cp= 982 1, ) = gaguls, Cf= 8¢5 Cp=cy,

37 gagm
" gigﬁ{gm mo_ 84 1
Cy= 24 Ly, g4 = am Ra (10.53)

where g, isthe scaling conductance. Further design can be carried out based on the equation.

10.4.4 Partial Floating Admittance Block Diagram and
OTA-C Realization

Thepartial floating admittance concept can offer moreflexibility in OTA-Cfilter realizations based
on passive L C ladders, as discussed in Section 10.3.3. This concept also suits the signal simulation
approach. Consider the general ladder in Fig. 10.25. We want to leave admittances Y}, floating and
simulate the nodal voltages and the currents flowing in admittances Y;» (not the total currentsin the
series arms). The equations for the whole ladder in Fig. 10.25 can be written as

I =Y2(Vin—=V2), Vo= 2Zs[(I1—13) + Y11 (Vin— Vo) — Y31 (V2 — V4)] ,
R=Yp(Va—Va), Va=Zs[(Iz—I5) + Y31 (Vo — V4) — V51 (Va — V)] ,
Is = Y52 (Va— Vo), Vou = Vo = Ze[Is + Y51 (Va — V)] (10.54)

Scaling Eq. (10.54) by conductance g, and denoting Vj’ = I;/g, We can obtain

Y12
Vl =—Vin—"V2) ,

m

©1999 CRC PressLLC



(b)

FIGURE 10.24
Eighth-order bandpass LC and LF OTA-C filter.

Y11 Y31
Vo =gmZ2 [(Vl/ — Vi) + . Vin—V2) = — (V2 — V4)] ,

m m

Y32
V=2 v, Va=guza [(vg W)

8m

Y31 Y51
+ _(VZ_V4)_—(V4_V6)i| ,

8m 8m

Y
V= "2 (V4—Ve) .

m

Y51
Vot = Vo = gmZs [Vé +—(Va— Ve)] (10.55)

m

In Fig. 10.26 we give the corresponding OTA-grounded impedance LF structure with floating ad-
mittances, where g; is the OTA transconductance and g2 = g4 = ge, Which simulates the relations
in EQ. (10.55). The design formulas for the grounded impedances Z;, i=12,...,6, aethe same
as those in Eq. (10.47) in form, except that Y1, Y3 and Y5 should be replaced by Y15, Yap and Ysp,
respectively, and g2 = g4 = ge. The design formulas for the floating admittances Y7,, Y3, and Y¢;
are given below:

82 84 86
Yip=""Yu, Y= Ya1, Y5 = Vs (10.56)

m gm gm

Toillustratethe method we consider thefifth-order finitezeroL CladderinFig. 10.27(a). Assigning
Y11 =0, Y1p = 1/R1, Y31 = 5C3, Y32 = %, Y51 = sCs and Y5 = i, and using the above
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FIGURE 10.25
General ladder illustrating partial floating admittance.

1 ' 1 V V
Vino L9 Vs L9z Vz . 93 Va 94 V4 95 V5 l}' £ Jgt
Qz; 2, Ez; z; 2! Qz;
Ya Yo Ysi
FIGURE 10.26

OTA-grounded impedance version with partial floating admittance.

method we can obtain the OTA-C filter shown in Fig. 10.27(b), similar to those in [4, 20, 21]. The
values for g1, C’ and g, can be calculated using Eq. (10.49). The new values for the two floating

capacitances can be computed from Eq. (10.56), given by C3 = g“ “Czand Cg = ge ©Cs. Note again
that there should be g2 = g4 = gs.

For the R1 arm we can of course assign Y11 = 1/R; and Y12 = 0, which means that the whole
resistor is left floating. In this case the simulation structure can be simplified at the input end,
requiring fewer OTAs and not having the resistive node. This consideration is in fact suitable for
all the casesin which Y7 isaresistor and is often used [21, 22, 40]. We leave this for the reader to
investigate.

Note that the OTA-C simulation with floating capacitors requires fewer OTAS, but may occupy
more chip area and increase parasitic effects due to floating capacitors. Also, unlike Section 10.4.1
the sensitivity to the OTA transconductance may increase due to the coupling from the floating
capacitors.

10.4.5 Alternative Leapfrog Structures and OTA-C Realizations

Most active filters are composed of integrators with coupling and in most cases such coupling can
be explained by feedback theory. Understanding the filter structure in this way is very beneficial,
aswill be seen more generaly in Section 10.7 and Chapter 11. The leapfrog configuration we have
discussed so far isvery convenient and straightforward for description from the feedback viewpoint,
as all the coupling (feedback) paths are on the upper side and impedances in their natural positions.
This is especially true when feedforward techniques are used to produce transmission zeros, since
thuswe can have the very convenient arrangement in that all feedback is on one side and feedforward
on the other, as was shown in Figs. 10.26 and 10.27 and will be seen in Chapter 11.

Many other alternative (equivalent) forms of the simulation structure of the general ladder can be
obtained. The original form of the LF signal flow graph [49, 53] for the general ladder is slightly
different from the one in Fig. 10.18 in that coupling appears on both upper and lower sides, as was
presented in Chapters 5 and 6. Chapter 6 also drew the LF structure in a different way.
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FIGURE 10.27
Fifth-order finite zero LF OTA-C filter with partial floating admittance.

In Fig. 10.28 we introduce ancther two aternative forms of the simulation structure of the gen-
eral ladder in Fig. 10.17, al of which can be obtained by simply rearranging the LF structure in
Fig. 10.18. Figure 10.28(a) can aso be found in other books such as[2]. It can be easily verified
that the two alternatives have the same signal relations as Eq. (10.42). We also show four interesting
aternative OTA-grounded impedancerealizationsin Fig. 10.29. Notethat we assumethat the scaling
conductance g,, = 1 and the OTAs have unity transconductances and thus the val ues of the grounded
impedances ZJ’. areequal to Y; and Z; for odd and even j, respectively. Again, it can be verified that
they are the same as the structure in Fig. 10.21. The OTA-C simulation can be similarly conducted
by further simulating the grounded impedances using the inductor substitution method.

References [19, 20] investigated the OTA-C realization of Fig. 10.28(a) and Fig. 10.29(a). Only
single-input and single-output transconductors wereinitially used [19], usually resulting in complex
filter structures with a large number of transconductors, although some very simple four transistor
transconductors[45] areavail ablewhich may givesimilar complexity at thetransistor level, compared
with the differential input OTA counterparts. The authors realized this and attempted to reduce the
number of active devices based on the voltage and current (controlled) source shift theorem for the
ladderswith the capacitor loop and inductor cut-set, respectively, [20]. Thiscan also bedoneby using
thewell known fact that any two single-input OTAswith equal transconductances and opposite input
polarities, whose outputs are connected to the same node, can be equivalently replaced by a single
differential-input OTA with the same transconductance [18]. The papers in [21]-{25] are mainly
about OTA-C realization of the second alternative OTA-grounded impedanceversionin Fig. 10.29(b).
The lowpass OTA-C filtersin [28, 29] belong to the third type form in Fig. 10.29(c). We will later
present an example for the fourth alternative OTA-grounded impedance version in Fig. 10.29(d). We
must emphasize that all the LF forms are equivalent; it isjust a matter of drawing. This also means
that we have shown that the OTA-C structures given in the literature are all equivalent, although
superficialy they may look quite different. It should also be noted that all the LF structures can be
seen as the cross-cascade interconnection.
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FIGURE 10.28
Alternative LF block diagrams.

The partia floating admittance concept is suitable for all the alternative LF structures, simply
leaving the floating part in site and simulating the other part. Again, consider the fifth-order finite
zero lowpass L C ladder filter in Fig. 10.27(a). Using the fourth aternative formin Fig. 10.29(d) and
the partial floating concept we can obtain the OTA-C equivalent in Fig. 10.30, where we select the
unity scaling conductance and OTA transconductances.

10.5 Equivalence of Admittance and Signal Simulation M ethods

In the above we have discussed two major methods: the admittance simulation and the signal
simulation. Both methods first convert, or partially convert, the admittances in the series arms into
the grounded impedances and then use the inductor substitution technique to realize the grounded
impedances. The only difference is that the admittance simulation method is by substitution of the
floating admittance with an OTA-grounded impedance circuit, while the signal simulation approach
is based on the simulation of the circuit equations with the building block of the OTA-grounded
impedance voltage section. This observation suggests that there may be some relation between the
two methods, and the superficial similarity between the OTA-C filters derived from the two methods
seemingly also supportsthis. We now try to prove that under certain conditions the two methods are
equivalent.

It is clear that the general proof of the equivalence must be done for the first-level simulation,
since the two methods use the same technique for the second-level simulation. We come back to
the general OTA-grounded impedance structure obtained by the admittance simulation method in
Fig. 10.12, which is redrawn in Fig. 10.31(a) for reference. Circuit node A is associated with the
outputs of two single-input and opposite-polarity OTAS, the g» and g4 OTAs. If they have equal
transconductance values, g> = g4 = g, then the two OTAS can be combined into one differential -
input OTA, the g, OTA, in the way shown in Fig. 10.31(b). It can be shown easily that the current
to the node from this OTA will be equal to the total current from the original two OTAs and thefilter
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FIGURE 10.29
Alternative LF OTA-grounded impedance structures.

FIGURE 10.30

Finite zero LP OTA-C filter based on alternative LF structure and partial admittance conver-
sion.
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function will thus remain the same. In the same way we can do a simplification for all the other
nodes. Such a manipulation at node B in Fig. 10.31(a) will require g4 = gs. Thus we can see that
if al related nodes are concerned, then all the OTAs with even-number subscripts must have the
same transconductance. For Fig. 10.31(a) we should have g2 = g4 = g6 = gn. The new structure
resulting from this treatment is shown in Fig. 10.31(b), noting that the first OTA at the input end
can be discarded for ideal voltage input without influence on the filter function because the ideal
input voltage source can have arbitrary current. Now let us look at the signal simulation structure
inFig. 10.21. If g2 = g4 = g6 = gm, Fig. 10.21 will become exactly the same as Fig. 10.31(b).
This means that we have proved that under the condition of g2 = g4 = gs = g, the admittance
simulation structure and the signal simulation structure will be identical. From this equivalence we
therefore stress that the admittance simulation and the signal simulation methods are equally useful
for continuous-time integrated OTA-C filter design.

We can appreciate the above demonstration from the signal viewpoint only. Infact, the admittance
simulation is the lowest-level signal simulation, the simulation of the Ohm'’s law eguation which
involves the current and voltage of the branch (series arm) only, having alocal feature. The signa
(LF) simulation is carried out at a high level, which is the simulation of Kirchhoff’s law equations
involving currents and voltages of different branches, having a global feature. When we consider
the node currents for the admittance simulation configuration, that means that we also consider
Kirchhoff'slaw relations. Thisiswhy the simplified structure obtained in thisway can be equivalent
to the configuration attained using the signal flow simulation method. This argument also leads us
to conclude that OTA-C simulation can be based on even higher-level circuit equations such asthe
two-port network equations and the nodal equations, which is the topic of the next section.

We can al so di scussthese methods from theadmittance standpoint only. Theadmittancesimulation
is the simulation of the individual admittance. In the signal simulation we can put the Kirchhoff
equations in a form of admittance matrix and therefore we may say that signal simulation is a
generalized admittance simulation, a simulation of the admittance matrix. When dealing with the
currents of a node as in the above proof we deal equivalently with the admittances related to that
node or handle some admittance matrix, no longer a single admittance. This is why we can reach
the equivalence. From this discussion we can also realize that OTA-C filter design from passive
L C ladders can be based on the matrix form of various equations, which will be introduced in the
following section.

10.6 OTA-C Simulation of LC LaddersUsing Matrix Methods

Another category of very useful but more complex methodsfor activefilter design based on passive
LC ladder simulation is based on the matrix descriptions. The first matrix method is based on the
two-port transmission matrix equation [55]. The fundamental principle as discussed in Chapter 7 is
thelinear transformation of port variables of anetwork from the voltage and current domain to anew
voltage domain in which active realizations are conducted. The design procedure of this approach
for use in OTA-C filter design is now summarized as below:

1. Dividethe passive LC ladder into component sectionsin cascade and write down their chain
matrices.

2. Transform the voltage and current termina variables into some new voltage variables by
choosing the transformation matrices and write down the four voltage transfer functions.
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FIGURE 10.31
Admittance simulation structure (a) and its simplified equivalent (b).

3. Theresulting voltage transfer functions of each section are realized using OTAs and capac-
itors and their building blocks.

4. Connect all the designed sections together according to the interconnection rules. If the
interconnection matrix isnot a0-1 matrix for the chosen transformation matrices, then some
interconnection coefficients may also need to be realized using OTAS.

This method is a combination of the cascade and simulation methods. It is genera; the leapfrog
structure and the wave active filter (see Chapter 7) appear as its special cases. This method can
transform the original impedance/admittance ladder into many forms of structure by properly choos-
ing the transformation matrices. In the literature only a very specia case of this method has been
discussed to show how to use this method to derive OTA-C filters[28, 29]. Further investigation into
the application of the two-port matrix method in OTA-C filter design is needed.

Another powerful matrix method for active smulation of passive ladders has been recently pro-
posed in [56]. This new method has been successfully used in active RC, switched-capacitor, and
OTA-C filter design. The design procedure of this method for OTA-C filtersis as follows [30, 31]:

1. A set of nodal equations that describe the passive prototype network is written in a matrix
equation form as

[41 = ([G] +s1CT +s7T1) [V] (10.57)
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where [V] is avector representing the nodal voltages, [ /] is a vector representing the input
current sources and [G], [C], and [I'] are matrices whose elements are simple algebraic
combinations of respective passive conductance, capacitance and inverted inductance val ues.

2. The second-order matrix equation in Eq. (10.57) is decomposed into two first-order design
equations by introduction of avector of auxiliary variables. A large number of decomposi-
tionsarepossiblefor OTA-Cfilters. The choiceof decompositionfor aparticular filter design
is dictated by the type of building blocks available and the nature of the desired response.

3. To form the active OTA-C filter, each row of each design equation is implemented by a
first-order OTA/capacitor section.

We should stress that the two-port matrix method (due to the large number of section divisions
and transformations of the passive prototype) and the nodal matrix method (due to the large number
of possible decompositions of the total matrix eguation of the passive prototype) can generate many
useful active filter structures. The conventional simulation structures such as the LF can be derived
as a specia case corresponding to a particular interconnection and decomposition for the two-port
and nodal methods, respectively. We must say that the two matrix methodsintroduced above are very
useful for exploration of new simulation structures and complex design implementations. Because
these methods are quite mathematically intensive and highly specialized, we will not discuss the
details of the methods. The reader is strongly encouraged to refer to the relevant papers for more
information.

10.7 Coupled Biquad OTA Structures

In the above we have obtained several useful OTA-C filter structures from simulation of passive
LC ladders. The LF structure may be generalized in the way that the impedance/admittance sections
including the associated OTAs are replaced by biquadratic filters. The coupling or feedback of the
biquads can a so be different. Thisleadsto anindependent and systematic study area, whichiscalled
the coupled biquad filters. Asdiscussed in Chapter 6, in coupled biquad filter design ideal lossless
active resonators are often required. Many bandpass filters in Chapters 8 and 9 can be designed to
have an infinite pole Q, equivalent to an ideal active resonator.

Besides the LF structure, there are also several other coupled biquad configurations such as the
follow-the-leader feedback (FLF) and inverse FLF (IFLF), which are also called multiple-loop feed-
back filters, asin Chapter 5. It can be proved that the FLF and IFLF are the adjoints of each other.
Figure 10.32 shows the diagram of the OTA-C FLF structure, where biquads can be the OTA-C
resonator shown in Section 10.2 or one of those generated in Chapters 8 and 9. This method is
modular, sinceit is based on biquads similar to the cascade approach, and has low sensitivity dueto
complex interstage coupling similar to the signal flow simulation.

Similar to the active RC counterpart [2, 57, 59], denoting the input coefficient by @ = g,0/g4, the
transfer function of the jth biquad by T;(s),j =1, 2, ..., n, feedback coefficient by F; = g.i/ga,
i=1,2,...n,andfeedforward coupling coefficient by K; = gp;/gB,i=0,1, 2, ..., n, wecanwrite
the following equations:

n
~Vo=aVin+ Y _ FV (10.58)
i=1
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Ty(s) Ty(s) Ta(s)
FIGURE 10.32
General OTA-C FLF structure.
i
Vi=Ww[[L). i=12....n (10.59)
j=1
n
Vo =—Y_KiV; (10.60)
i=0

From Egs. (10.58) and (10.59) we can obtain

Vo 1

Ho(s) = Vo= —a - p (10.61)
L AT T
: P T
Hi(s) = & =_a [l 7 (Z) (10.62)
Vin 143701 [Fk [lj=a Tj(s)]
and
" Ti(s
Hy(s) = “;_ — = 7 (k) (10.63)
n 1+ k= [Fk [Tj-1 Tj(s)]
Then using Egs. (10.60) and (10.61-10.63) we attain the overall transfer function as
Ko+ Yy | Ki [TE_, Tis)
Hisy = ot _ g, SILQVEE) (10.64)

Vin 1+3% [Fk Hf:l Tj(s)]

For T;(s) = t;s, that is, a voltage integrator, a general nth-order transfer function can be obtained
immediately. Moregenerally T; blockscanbe OTA-Clossy integrators, first-order filters, or biquads.
The first- and second-order OTA-C filters developed in Chapters 8 and 9 can be used here. In
Reference[36], for example, an all-polebandpass OTA-C FL Ffilter using the canonical twointegrator
loop bandpass biquad was designed. Very few papers on coupled biquad OTA-C filters have been
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published [36]{38]. Thereisstill much work that needsto be done to enhance the use of the method
in continuous-time integrated OTA-C filter design.

10.8 Some General Practical Design Consider ations

To design low-sensitivity, high-frequency, and large dynamic range OTA-C filters, many practical
factors should be considered carefully. While we can use high-quality components (for example,
high-frequency, low-noise, highly linear, and simple OTAS) to enhance the filter performance, in
this section we will however discuss the issues from the viewpoint of filter structures and design
methods.

10.8.1 Selection of Capacitorsand OTAs

In some implementations, grounded capacitors are preferred, because they need less chip area
and can absorb parasitic capacitances. We can convert the floating capacitor to the grounded ca-
pacitor by using extra OTAs. The trade-off between the increased number of OTAs and the use of
floating capacitors however may need to be considered when choosing the structure, as the attempt
of grounding capacitors may require too many extra OTASs which may balance out the advantages
from grounding these capacitors. It should also be cautioned that for finite-zero L P filters, the effort
of conversion will result in suspending internal nodes which are vulnerable to parasitics. In the
balanced implementation aswill be discussed in Chapter 12, splitting asingle floating capacitor into
two grounded may not reduce the total chip area, because the total capacitance of the two grounded
capacitors will be four times the value of the floating capacitance.

The realizations using only single-input and single-output OTAS may require too many OTAS,
although they may have some advantages of reduction in feedthrough effects. Therefore in the
simulation design, the differential-input application of the OTA isvery popular. Generally, any two
single-input OTAs with equal transconductances and opposite input polarities, whose outputs are
connected to the same node, can be equivalently replaced by asingle differential-input OTA with the
same transconductance. This results in ssimple circuitry and possibly reduced power consumption
and chip area.

The simulation method can ensure that all but one, or at most two, transconductances are iden-
tical. ldentical g, values can make on-chip tuning, design, and layout much easier, since a free
transconductance cell can be used throughout the circuit [3, 19]. Equal capacitance values may be
achieved with different values of transconductances, whichisquite popular in discrete design. Butin
|C implementation it seems that identical transconductances are more important as reasoned above.

In high-frequency design, the circuit capacitance is very small (the time constant C/g is small).
The smallest design capacitance must be larger than thetotal of al parasitic capacitanceson the same
node for the circuit capacitance to absorb al the parasitic capacitances. For very high frequencies,
thismay not always be possible and the OTA parasitic capacitances are quite often used asthe design
capacitance, althoughthey arelesscontrollable. Becauseof therelatively large parasitic capacitances,
the grounded capacitor may no longer be advantageous for very high-frequency design.

In practice, component value determination should also meet the requirements concerning dy-
namic range, noise, and power consumption. To optimize the filter dynamic range, for example, all
integrator output swings should be made equal. The signal simulation method has the possibility
of scaling the component values such that the circuits have the maximum possible dynamic range.
This scaling is not normally available in the component substitution design.
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10.8.2 Tolerance Sensitivity and Parasitic Effects

The simulation method can retain the low-sensitivity property of passive LC ladders, because the
one-to-one correspondence of componentsor signal s between the passivefilter and active counterpart
ispreserved. A caution may be given to the bl ock-based admittance substitution or signal simulation
methods. 1nsome caseswhentheadmittanceor impedance block inthegeneral ladder istoo complex,
the one-to-one correspondence between the active filter and the associated passive filter may not be
retained so well and thus the sensitivity of the derived active filter may not be guaranteed to be as
low as that of the passive LC counterpart.

Because the parasitic sensitivity is greater than the tolerance sensitivity in passive LC ladders, it
is especially important to keep the parasitic sensitivity low. To decrease the effects of the parasitic
conductances and capacitances on the filter magnitude frequency response we must reduce the
inductance shift and resistive loss due to these parasitics. It is very important to note that the
magnitude response change dueto the parasitic parametersis proportional to the phase and magnitude
tolerance sensitivities to the inductance. The passive L C ladders have very low magnitude tolerance
sensitivity, but the phase tolerance sensitivity may not be low, which should receive attention when
dealing with the equivalent parasitic loss resistor. It should also be noted that the parasitic effects
will become worse as the frequencies increase.

10.8.3 OTA Finite Impedances and Frequency-Dependent Transconductance

Itisoften said that OTA-C filtersare especially subjected to parasitics. The capability of absorbing
the parasiticsisthusnecessary. OTA finiteimpedanceswill causethe performancechange, aswehave
aready discussedin Section 10.2, Chapters8and 9. Thedifferential input application of the OTA may
cause the capacitive coupling in the circuit due to the floating finite input impedance. The resistive
node that has only a grounded OTA resistor may present an extra pole by parasitic capacitances.
The suspending node that does not have any grounded resistor or capacitor is vulnerable to both
parasitic capacitances and resistances. In the simulation of LC ladders, most structures can well
absorb OTA capacitances and thus no parasitic poles and zeros can be produced. But in some cases,
for example, simulating the lowpass ladder filters of finite transmission zeros, using only grounded
capacitors often causes some suspending nodes. Note in particular that in integrated circuits the
design capacitance is only one or two orders of magnitude higher than, or may even well be in the
similar value range of, parasitic capacitances at very high frequencies. The parasitic poles may
thus be quite near the cutoff frequency [24]. The best structures should be those in which each
internal circuit node has a grounded capacitor, since absorption design of parasitic capacitances can
be possible.

The excess phase of the OTA will also pose a stability problem at higher frequencies. For the
given OTA, to extend the working frequency of the filter, we must overcome the finite bandwidth
effects. The passive compensation technique using aMOSFET resistor and the active compensation
method based on the two OTAS of different transconductances, which are connected in parallel with
opposite polarities, can be used as discussed in Chapter 9.

109 Summary

This chapter has introduced methods for design of high-order OTA-C filters based on doubly
terminated passive LC ladders. Different OTA-C filter architectures have been obtained by using
the component substitution, admittance simulation, signal flow simulation, and coupled biquad
methods. The most outstanding advantage of this class of OTA-C filters is their low passband
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sensitivity performance. However, their design and tuning procedures are more complex compared
with the cascade method, and more complex structures are often required. In most high-order filters
with stringent requirements, the sensitivity advantage usually prevails, making it desirable to use a
ladder-based method.

The inductance substitution method is one of the most popular methods used for OTA-C filter
design. The Bruton Transformation method may not be suitable for OTA-C filter design because
no advantages could be achieved, especially in terms of the number of components. The two-step
admittance simulation method isappropriateto OTA-Cfilters. TheLF and their alternative structures
resulting from signal simulation are most widely utilized for OTA-C filter design. We have shown
that the different forms of LF structures all are equivalent, thus giving the same performance. We
have also generally demonstrated that the admittance substitution and signal simulation methods are
equivalent in OTA-C filter design under certain conditions. These two methods both are popular in
OTA-C filter design. The matrix signal flow simulation methods and coupled biquad approach are
more complex, but they can realize more functions and the latter has also a modular feature.

It should be pointed out that some insightsinto the simulation of passive LC ladders presented in
this chapter are general. They may a so be suitable for other types of active filters, athough they are
discussed for OTA-C filter design. In Chapter 11 we will introduce another useful method for the
design of high-order OTA-C filters. Current-mode OTA-C filter design based on ladder simulation
will be dealt with in Chapter 12.
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Chapter 11

Multiple I ntegrator Loop Feedback OTA-C Filters

11.1 Introduction

The system performance of high-frequency continuous-time OTA-C filters depends on both the
constituent components (OTAs and capacitors) and the circuit architecture (how OTAs and capaci-
tors are connected). OTAs have been developed in different technologies such as bipolar, CMOS,
BiCMOS, and GaAs, and their performances have been continuously improved, making amajor con-
tribution to enhanced continuous-time filter specifications. Many new filter architectures offering
avariety of performances have been generated, and comparisons of the architectures from various
viewpoints have also been made in order to find the optimum structure in one sense or another.

The structure generation, design methods, and performance evaluation of high-frequency OTA-C
filters have been of considerable interest to filter designers and researchers [1]-{31]. In Chapters 8
and 9 we have discussed second-order OTA-C filtersbased on asingle-OTA model and two integrator
loop configurations, respectively. In Chapter 10 we have dealt with high-order OTA-C filter design.
While the biquadratic OTA-C filters proposed in Chapters 8 and 9 can be cascaded to realize high-
order specifications, Chapter 10 has introduced various approaches based on passive LC ladder
simulation. No matter what the approach, thefilter structuresamost always consist of integratorsand
amplifiers as the most basic building blocks, and have feedback |oops at this basic level. A general
approach therefore may be developed based on the multiple loop feedback structure constructed
with integrators and amplifiers. This chapter will introduce such a general multiple integrator loop
feedback approach for OTA-C filter design.

As discussed in [10] and previous chapters, in the synthesis of OTA-C filters several important
issues should be taken into consideration. The filter architecture should be simple and require a
small number of components. To achieve the canonical or minimum component realization is of
importance for both discrete and | C design because thiswill reduce volume, noise, parasitic effects,
and power dissipation. Thisseemsespecially significant for high-order OTA-C filter design, because
in OTA-C filtersthe transconductance gain of the OTA isused like aresistancein conventional active
RC filters and the number of OTAs will therefore grow rapidly as the filter order increases. The
second consideration, as we have seen, is to use grounded capacitors which can absorb parasitic
capacitances and need smaller chip areas than do floating ones. To avoid producing internal nodes
that are without grounded capacitors is also important, since otherwise parasitic poles will result
due to OTA nonidealities and circuit parasitic capacitances. The versatility of the filter network is
another practical concern; in many situations it would be ideal for the filter to provide any type of
characteristic without alteration of the configuration. Furthermore, the design method and equations
should be simple to use. Architectures which have appeared in the literature cannot achieve all
the objectives simultaneoudly. For example, the ladder simulation methods are normally based on
a particular passive LC prototype and can only realize zeros on the imaginary axis, thus being not
general enough. Simple structuresusually have floating capacitors, and grounding all capacitorswill
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require more OTAs and produce suspending internal nodes without grounded capacitors for finite
transmission zeros, besides complex design procedures and need of passive filter knowledge. The
multiple integrator |oop feedback method to be presented in this chapter has all the advantages.

As we have already stressed in the previous chapters, practical performance must be effectively
assessed in the design. In addition to the well known sensitivity criteria, one must also note that
OTAs are not ideal in both their frequency response and dynamic range. The frequency response
nonidealities involve finite input and output impedances, and transconductance frequency depen-
dence or excess phase. The dynamic range nonidealities are due to the finite linear differential input
voltage and limited noise level. The former nonidealities influence the filter frequency performance
and stability, while the latter restrict the filter dynamic range. Any useful design methods and filter
structures should therefore have less impact from these OTA nonidedlities.

This chapter will show how to generate, analyze, and design multiple integrator loop feedback
filter structures using OTAs and grounded capacitors for synthesis of both transmission poles and
zeros. The discussion is mainly based on the work in papers [8, 10, 12, 13]. General theory and
a systematic scheme for generating all-pole filter structures is first established, with concentration
on minimum component OTA-C redlizations and the enumeration of canonical filter structures.
Two general methods for the generation of transmission zeros are then introduced together with
illustrative examples. We next formulate general sensitivity relations and analyze sensitivities for
different structures. This is followed by the evaluation of dynamic range and the effects of OTA
nonidealities. The chapter concludes with abrief summary.

11.2 General Design Theory of All-Pole Structures|9, 12, 28]

In this section we will generally address the multiple loop feedback method for the design of
al-pole OTA-C filters.

11.2.1 Multiple Loop Feedback OTA-C Model

Thebasic building blocksin the construction of OTA-Cfiltersarevoltageintegratorsand amplifiers
as shown in Figs. 11.1(a) and (b), respectively, as recalled from Chapter 9. The voltage transfer
functions H (s) = Vout/ Vin (Vin is the differential input voltage to the OTA) of the integrator and
amplifier are ssimply shown as

H(s) =

sC/g
and
H(s) =52
82
respectively.

The general multiple integrator loop feedback OTA-C model with al capacitors being grounded
to be addressed in this chapter is shown in Fig. 11.2. As depicted, this model is composed of a
feedforward network consisting of n OTA-capacitor integrators connected in cascade and afeedback
network that may contain OTA voltage amplifiers and/or pure wire connections.

11.2.2 System Equationsand Transfer Function
To analyze the model generally, the feedback network may be described as
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FIGURE 11.1
Voltage integrator and amplifier.
| Feedback Network |
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FIGURE 11.2
Multiple integrator loop feedback OTA-C model.
n
Vii=Y fijVoj. i=12..n (11.2)
j=i

where f;; isthe voltage feedback coefficient from the output of integrator j to theinput of integrator
i. This coefficient f;; can be realized with an open circuit or an amplifier for the zero or nonzero
values, respectively. The former means no feedback exists, while the latter suits any amount of
feedback, between the ith and jth integrators. In particular, we may also redlize f;; = 1, i.e., the
unity feedback by direct connection, as an aternative to using a unity gain amplifier.

Equation (11.1) can aso be written in the matrix form.

[Vi] = [F][V.] (11.2)

where[V,] = [Vy1 Vo2--- Von]', the output voltages of integrators, [V] = [Vi1 V2 - Vpu]', the
feedback voltages to the inverting input terminals of integrators, and [ F] = [ fi;]uxn, the feedback
coefficient matrix. The superscript ¢ stands for transpose.

The currentsflowing into and out of the feedback network al are zero, since they arerelated to the
input terminals of the OTAsin the feedforward circuit or in the feedback network, which areideally
infinite impedance. Noting this and denoting time constants r; = C;/g;, we can write the equations
for the feedforward network by inspection

st1Vo1 = Vin— Vi1, sTi+1Voj+1 = Voj — Vyjta (11.3)

where s is the complex frequency.
Equation (11.3) can aso be condensed in a matrix form

[Vo] = [M()] 1 ([B]Vin — [V/]) (11.4)
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where

ST1
—1s10
[M(s)] = —1lsts (10.5)
—1s1,
[B] =[10.--0] (11.6)

Combining Egs. (11.2) and (11.4) we can obtain the equation for the whole system as

[A®][Vo] = [B]Vin (11.7)

where
[A()] = [M ()] +[F] (11.8)

Equation (11.7) establishes the relationship between the overall circuit input and the integrator
outputs including the overall circuit output. Using the equation we can formulate various useful
expressions for the general model. Here we first demonstrate the circuit transfer function using
Eqg. (11.7), while we will also refer back to this equation when coping with other problems, for
example the realization of transmission zeros in Section 11.4 and sensitivity computation in Sec-
tion 11.5.

Solving Eq. (11.7) yields

Az1(s)
[Vo] . 1 | Aw(s)
=[A(s Bl= —— 11.9
Vi [A()][B] A0)| : (11.9)
A1, (s)

where |A(s)| and A;; (s) represent the determinant and cofactors of [A(s)], respectively.
Since the overall circuit output Vot = Von, from Eq. (11.9) it can be readily identified that the
system transfer function is given by

H(s) = Vout _ A, (s)
Vin  |A(S)]

(11.10)

Noting that [ F] is an upper triangular matrix and using Eq. (11.8) the system matrix [A(s)] may
be generally written as

s+ fi2 fi3 Sfu—1 fu
=1 sto+f2  faz o fa-1 fa
[A(s)] = -1 sw+fzz  fau-1 fa (11.12)
-1 st + fmz
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Based on Eq. (11.11) we can see that A1,(s) = 1. Thus the transfer function H(s) can be
simplified as

H(s) (11.12)

" JAG)|

11.2.3 Feedback Coefficient Matrix and Systematic Structure Generation
The feedback matrix [ F] is defined by Eq. (11.2) and has the property that

£ # 0 if thereis feedback between V,,; and V;
/'] = 0 otherwise

As can be seen from Eq. (11.2), if all the dlementsin a row of [F], say row i, are zero, the
corresponding feedback voltage V¢; will be zero and so is the converse. Vy; = 0 means that the
inverting terminal of the OTA intheith integrator is grounded.

Notethat [ F] isan upper triangular matrix; f;; isnonzerofor ali < j. If wefurther supposethat
no inverting integrator terminals are grounded, the feedback matrix will aso have the property that
each row has one and only one nonzero element, which impliesthat f,,, isawaysnonzero under the
assumption.

Asdiscussed before, the nonzero feedback coefficient can alwaysberealized using an OTA voltage
amplifier and the unity feedback coefficient can also be achieved by pure wire connection.

In the following by the canonical or minimum component realization we mean that for realizing
unity dc gain nth-order al-pole lowpass filters, only n OTAs and n capacitors (i.e., n integrators)
are required. For the general model in Fig. 11.2 the canonical redlization is clearly equivaent to no
components existing in the feedback network.

If all the nonzero feedback coefficients are unity and are realized with pure wire connection, there
will be no OTAs in the feedback network. The whole system then has the minimum number of
components. Alternatively we can say that for canonical architectures, the feedback matrix [F] =
[ fijlnxn defined by Eq. (11.2) obviously has only zero and unit elements, and is thus unimodular,
since feedback can be achieved only by direct connection.

It is apparent that there is a one-to-one correspondence between the feedback matrix [ F] and the
circuit configuration, and different [ F] will give rise to different circuit structures. To show this
we consider the situation that feedback is realized only by direct connection and none of the OTA
inverting terminals in the integrators are grounded. According to the features of the general [ F]
discussed above, the feedback matrix [ F] now becomes an upper triangular (0, 1) matrix and has one
and only one unit element in each row, leading to f,,, = 1. Therefore for the nth-order model there
are n! combinations of unit element positions in the matrix. Note that the unit element f;; = 1in
each combination isrealized by adirect connection between the negative input terminal of integrator
i and the output of integrator j. Thus we have n! different combinations of feedback connections,
i.e., n! different filter structures.

Itisof particular interest that this also suggests amethod for generating all possiblefilter architec-
tures that are canonical and without grounded integrator inverting terminals. That is, for any given
order n, wefirst find all n! combinationsof unit element positionsin[ F]. Direct connectionsarethen
made corresponding to all unit feedback coefficients in each combination; thisis repeated for all n!
different combinations. All possiblefilter configurations are thus obtained, which correspond to the
n! different feedback connection combinations. This method is extensively studied and exemplified
in Section 11.3.
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11.2.4 Filter Synthesis Procedure Based on Coefficient Matching

From Eq. (11.11) we can seethat thedeterminant | A (s)| may normally bean nth-order polynomial
of s. The transfer function in Eq. (11.12) may therefore have the all-pole filter characteristic. The
all-pole filter structures with different feedback configurations can be generated using the method
given in the preceding section. We now discuss how to design these filters to fulfill the required
specification.

The general form of all-pole lowpass transfer functions may be expressed as

Ag

Hy(s) =
a(s) Bus" + B, 1s" 14+ ... 4 Bis+1

(11.13)

To synthesize this desired transfer function H;(s) we may follow the generic procedure shown
below.

Based on Egs. (11.11) and (11.12), by expansion of |A(s)| we can obtain the circuit transfer
function as

_ go(tn, fij)
H(s) = 1
8n(Ths fi))s" + gn—1 (th, fij) s" 14+ g1 (w, fij) s +1

(11.14)

Comparing Eq. (11.13) and Eq. (11.14), to achieve the desired characteristic the following set of
coefficient matching equations must be satisfied.

8n (Thv ﬁj) = Bl’la 8n—1 (Ths .flj) = Bn—l’ e 81 (Th’ ﬁ/) = Bl’
o (tn, fij) = Ao (11.15)

Solving Eq. (11.15) wecanobtain 7, and f;;. Tofinish the design we can then compute the values
of each C and g from 7, and f;;.

The efficient expansion of |A(s)| to reach the polynomial formins of Eq. (11.14) isthefirst step
in the design. Some symbolic analysis techniques may be required generally to deal with |A(s)| to
get coefficient matching equations. However, the issue may be quite easily handled for low-order
and some general high-order filters as will be shown in the next section.

The coefficient matching equations are usually nonlinear. Note that to produce the item s*, there
is at least one group of k integrators making a multiplicative contribution to the corresponding
coefficient. Hence, gx(ty, fi;) will contain at least one term of multiplication of k integration
constants. In most cases a nonlinear equation solver may need to be invoked to solve the derived
parameter value determination equations. In thelater section we will show that the design equations
of many structures can be easily solved explicitly .

To further determine each g and C there exist n degrees of freedom in the canonical realization
and more than n degrees in the noncanonical. Thus the transconductances or the capacitances can
be arbitrarily assigned to be identical. Taking the canonical realization as an example we may set
g1=g82=---=g;, = gandthencaculate C; = gr;,forany j,orletC;=Co=---=C, =C
and then compute g; = C/1;.

As can be seen from Eqg. (11.8) the network performance is a function of [F]. Different [F]
matrices will lead to different transfer characteristics in Eq. (11.12). [F] is aso linked with filter
structures and different [ F] matriceswill correspond to different architectures. Thusthe relationship
between the performance and the structure is established through the feedback matrix. The signif-
icance is even more in that the generality, regularity, and systematicality of the design method is
obtained from the introduction of [ F].
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11.3 Structure Generation and Design of All-pole Filters[9, 12, 28]

In Section 11.2 we have discussed generally the proposed method for generation, analysis, and de-
signof OTA-Cfilters. Inthissectionwewill investigate the application of the method. For simplicity
and clarity, we concentrate on canonical filter configurations with no feedback voltages (inverting
inputs of g; OTAS) being grounded for a given order » using the method given in Section 11.2.3.
Some component value determination formulas and design considerations are also presented.
11.3.1 First- and Second-Order Filters

Inthe ssimplest first-order case [ F] = f11, the general model has the transfer function

H(s) =1/ (t1s + f11)

The canonical structure by direct feedback connection that corresponds to f11 = 1 is given in

Fig. 11.3(a).
Vi o I o Vout Vv, Vout
l C, C1I CZI
(@ (b)
FIGURE 11.3

(a) First- and (b) second-order canonical OTA-C filter structures.

For the second-order model the general transfer function isderived using Egs. (11.11) and (11.12)
as

H(s)=1/ [TleSZ + (2 f11+ 11 f22) s + (frafo + flz)] (11.16)

With fo» = f12 = 1l and f11 = 0, the canonical second-order filter is obtained as shown in
Fig. 11.3(b) [4, 5], which was also discussed in terms of two integrator loop structures in Chapter 9
and the transfer function in Eq. (11.16) accordingly reduces to

H(s)=1/ (‘L’]_‘Czsz + 118 + 1)

which can realize the unity dc gain ( Ap = 1) al-pole characteristicin Eq. (11.13) with 72 = B2/ B3
and t1 = Bj.
The other combination of [ F] unit elementsis f11 = f22 = 1 and f12 = 0. The corresponding
filter, acascade of twofirst-order canonical sections, isrejected sinceit cannot realize complex poles.
Having shown that the first- and second-order filters can be derived from the general model in
Fig. 11.2, we now turn to a demonstration of the power of the approach in generating high-order
OTA-C filter structures in the following sections.
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11.3.2 Third-Order Filters
For the third-order model that is derived from Fig. 11.2 but with n = 3, using genera [F] and
Egs. (11.11) and (11.12) we formulate the general transfer function as

H(s)=1/ {flfzrss3 + (r12.f33 + T1T3 f22 + T2T3 f11) 52

+[11 (fo2f33 + f23) + 12 f11f33 + 13 (f11fo2 + f12)] s
(11.17)

+ (f11/22f33 + fi1f23 + fi2f33 + f13)}

As proved in Section 11.2.3, there are atogether six possible configurations. It can be verified
that the last term in the denominator of Eq. (11.17) isequal to 1 for all the structures, and so Ag = 1

in Eq. (11.13). Theresults are presented bel ow.

When f13 = f23 = f33 = 1 and the other elements are zero, we have the structurein Fig. 11.4(a)
and the circuit transfer function in Eq. (11.17) becomes
H(s)=1/ <‘L’1'L’2'L’3s3 + 'L'1'L’2s2 + 115 + 1) (11.18)

H, w v il e
c, CZI c, Cl c, c:

I = =
(b

(@

Ly

.,|l__|

FIGURE 11.4
Third-order canonical OTA-C filters.
The parameter value equations are demonstrated as
T2 = Bz/B1, 13=B3/B> (1119

71 = B,

If we select fio = fo3 = fzz = 1and theother f;; = O, thefilter architecture in Fig. 11.4(b)
(11.20)

results. The corresponding transfer function and the parameter value determination formulas are

derived as
H(s)=1/ (rlrzrgs3 + 117282 + (11 +13)8 + 1)
(11.21)

73 = B3/Bp, 72 = Bz/ (B1 — B3/B2), 11 = B1— B3/B>

For [F] with f11 = fo3 = fs3 = landtheother f;; = 0, or fio = f» = fszs = 1 andthe
other f;; = 0, the circuits become cascaded by a first-order and a second-order canonical sections

inFig. 11.3.
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The other two combinations which correspond to the [F] of a unity matrix and the [F] with
f13 = f22 = f33 = landtheother f;; = 0, respectively, do not seem practical, becausethe structure
with a unity matrix [ F] is a cascade of three first-order canonical sectionsin Fig. 11.3, which can
only realize some real poles, and for the structure corresponding to f13 = f22 = f33 = 1 and the
other f;; = 0the solutions of component values for the Butterworth and Chebyshev approximations
are not real positive numbers, which has been numerically verified. Therefore they are rejected.

11.3.3 Fourth-Order Filters

For the fourth-order general model of Fig. 11.2, again from Egs. (11.11) and (11.12), the genera
transfer function can be written with some tedious manipulation as

H(s) =1/ {(7:17:27:31'4)s4

+ (T17273 fas + T1T2T4 fa3 + T1TaT4f22 + T2T3Taf11) S°

+ [r172 (f33.faa + f34) + 1173 f22 faa + 1174 (f22f33 + f23)

+ T2taf11fas + T2Taf11 fas + Tata (f11fo2 + f12)] 52

+ (71 (f22 /33 /a4 + f22f34 + f23faa + f2a) + 12 (f11/33 /a8 + f11/34)
+13(finfe2faa+ fr2faa) + ta (frnf2fa3 + fi1f3 + fi2faz + f13)] s

+ (furfoofaafaa + fraf22f3a + f11faaf23

+ f12f33fa4 + f11f2a + f13faa + f12f3a + f14)] (11.22)

For any particular [ F] wecan easily draw the associ ated structure, obtainthe corresponding transfer
function, and calcul ate the component values. There are altogether 24 combinations of possiblefilter
configurations according to the discussion in Section 11.2.3. There are ten practical structures, five
of which are shown in Fig. 11.5, together with the corresponding [ F]s, transfer functions, and some
design formulas below. Note that in each case the f;;s that are not written out are treated as zero
and the realization of the unity dc gain all-pole lowpass characteristic in Eq. (11.13) with Ag = 1is
dealt with.

Fig- 11.5(Q): fi2 = faz3 = faa = faa =1
H(s) =1/ [t1r2r3r4s4 + r1r2r3s3 + (172 + T1T4 + T3T4) 52 +(t1+13)5 + 1]

T4 = B4/B3, 13 = B3/B, 12 = B/(B1— B3/B),

71 =B1— B3/B, B =B — B1B4/B3
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Fig. 11.5(0): fi3 = fo3 = faa = faa =1

H(s)=1/ [r112r314s4 + 11721353 + (1172 + T174) $2 + (71 + Ta) s + 1]
T4 = Ba/B3, 13 = B3/[B2— (B1— Ba/B3) B4/B3] ,

T2 = Bp/ (B1— B4/B3) — B4/B3, 11 = B1— B4/B3

Fig. 11.5(C): f13 = foa = fas = faa =1

H(s)=1/ [1’11’21’31’4S4 + rl‘[zfgss + 'L'l‘L'zs2 +(t1+12)85 + 1]

T4 = B4/B3, 13 = B3/B2, 72 = B2/ (B1— B4/B3), 11 = B1 — Ba/B3

Fig. 11.5(d): fia = fs = faa = faa =1

H(s)=1/ [‘C11,'21,'3‘54S4 + T17o735° + (172 + T17T4) 24 s + 1]

T4 = B4/B3, 173 = B3/ (B2 — B1B4/B3) , 72 = B2/B1 — B4/B3, 71 = B1

Fig. 11.5(e): fia = foa = faa = faa =1

H(s) = 1/ [t1totatas® + tatotas® + 111052 + 115 + 1]

71 = B1, 70 = By/B1, 73 = B3/B2, 14 = B4/B3

It is observed that the circuits in Figs. 11.5(a)—(€) can be easily designed using the attached
formulas. The other five practical structures correspond to f12 = fo2 = faa = faa = 1, f12 =
Joa=fu=jfu=1fiz=fo=fu=fu=1fu=fo=fu=fu=1 fu=fa=
f33 = faa = 1, respectively.

In addition to the 10 configurations presented above there are another 14 possible structures.
These 14 configurations, however, have been found not suitable for realizing the Butterworth and
Chebyshev approximation filters; 10 of them are a cascade of canonical sections of either 4 first-
orders, or 2 first-orders and 1 second-order, or 1 first-order and 1 third-order, which cannot realize
2 pairs of complex poles, while the other 4 (corresponding to fi12 = foa = f33 = fu = 1,
Jiz3=fu=fz=fuu=1 fua=fo=fz=fu=1adfuu= fu=fz=fu=1
respectively) have no practical solutions of the associated design equations.
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FIGURE 11.5
Fourth-order all-pole canonical OTA-C filter structures.

11.3.4 Design Examples of Fourth-Order Filters

Numerical design examplesfor thefivestructuresin Fig. 11.5 are now presented. For the 4th-order
Butterworth lowpass filter the normalized transfer function is (see Chapter 2 and Appendix A)

1

H, =
a(s) 54+ 2.6131353 + 3.4142152 + 2.61313s + 1

We usethefive structures given in Fig. 11.5 to realize this characteristic. Identifyingthat B4 = 1,
B3z = B1 = 2.61313 and By = 3.41421, the parameter values of the structures are calculated from
the individual coefficient matching equations by using the formulated explicit solutions, which are
givenin Table 11.1.

The realization of the fourth-order 455 kHz unity gain Butterworth filter using the structure in
Fig. 11.5(a) is now further considered. The equal transconductance design is adopted with the
transconductance value being ¢ = 30.1..5. The normalized capacitances are calculated from z; in
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Table 11.1 Parameter Values for Normalized 4th-Order Butterworth Filter
Circuit T1 T2 73 T4
Fig. 11.5(a) | 1.53073 1.57716 1.08239 0.382683
Fig. 11.5(b) | 2.23044 1.14805 1.02049 0.382683
Fig. 11.5(c) | 2.23044 153073 0.765367 0.382683
Fig. 11.5(d) | 261313 0.92388 1.08239 0.382683
Fig. 11.5(e) | 2.61313 1.30656 0.765367 0.382683

Table1l.1as

C1=46.1uF, Co=475uF, C3=326uF, C4=115uF

For the cutoff frequency 455 kHz, frequency denormalization leads to the nominal circuit capac-
itances
C1=16.1pF, Co=166pF, C3=114pF, C4=40pF

The Chebyshev lowpass filters can also be realized. For instance, the transfer function of the 1dB
ripple, frequency-normalized Chebyshev filter with unity dc gain is obtained as

1

H, =
a(s) 3.62808s% + 3.45688s3 + 5.27496s2 + 2.69429s + 1

The circuit parameter values for realizing this characteristic using the five canonical configurations
inFig. 11.5arelisted in Table 11.2.

Table 11.2 Parameter Valuesfor 4th-Order 1dB Ripple Chebyshev Filter
Circuit T1 T2 73 T4
Fig. 11.5(a) | 1.28172 1.90934  1.41256 1.04953
Fig. 11.5(b) | 1.64476 2.15761 0.974114 1.04953
Fig. 11.5(c) | 1.64476 3.20713 0.655337 1.04953
Fig. 11.5(d) | 269429 0.908307 1.41256 1.04953
Fig. 11.5(e) | 269429 1.95783 0.655337 1.04953

11.3.5 General nth-Order Architectures

The above examples reveal that using the proposed method we may systematically generate a
large number of practical al-pole filter structures. General nth-order architectures can also be thus
derived. Rather than trying to exhaustively enumerate all n! possible general structures due to the
complexity of the problem, we present some typical onesfor illustrative purposes.

11.35.1 General IFLF Configuration

If [F] is chosen so that the elements in the last column all are unity and the other elements of
the matrix are zero, then the circuit has the inverse follow-the-leader feedback (IFLF) structure as

©1999 CRC PressLLC



shown in Fig. 11.6. System matrix [A(s)] becomes

st1 O 0 1
—1s10 0 1
[A(s)] = e (11.23)
0 0 STp—1 1
0 O -1 st,+1

FIGURE 11.6
General IFLF structure.

Thethird-order IFLFfilter hasbeen givenin Fig. 11.4(a) and fourth-order counterpart isthe circuit
in Fig. 11.5(e). We now derive the general explicit design formulas for the nth-order IFLF circuit.
By expansion of [A(s)] using the last column we obtain

[AGS)| = 1172+ Tus" + T1T2 -+ - Tpo18" T+ -+ - + T1T28% + T1s + 1 (11.24)

Comparing it with Eq. (11.13) gives the design equations

[[w=8B Jj=12..n (11.25)

By simple manipulation of Eq. (11.25) we obtain

71 = Bq, Ti = Bi/Bi_1 (11.26)

The IFLF structure can also be derived by using the signal flow graph method [7].

11.35.2 General LF Configuration

If the choice is made of fii4+1) = 1,i = 1,2,..,n — 1, fp, = 1, and dl the other f;;s are
zero, then the leapfrog (LF) configuration results as shown in Fig. 11.7. The derivative third- and
fourth-order counterparts have been exhibited in Fig. 11.4(b) and Fig. 11.5(a), respectively.

The transfer function may be obtained explicitly in an iterative way and the analytic expressions
for determining parameter values may also be attainable from the coefficient matching equations.
To appreciate this we write the system matrix

sty 1
—1stp 1 ---
Awl=| B (11.27)
STp—1 1
-1 st,+1

©1999 CRC PressLLC



FIGURE 11.7
General LF configuration.

from which we can obtain |A(s)| as

[A(S)| = (5Tp + 1) App(s) + Au—1)n(s) = sT1A11(5) + A12(s) (11.28)

where A;, (s) can be formulated in an iterative way as

A (s) =1, A(s) =115,
Ajp(s) = sTi—1AG—1n () + Aj—2)n(s) (11.29)

and Ay (s) can be determined by

A1, (s) =1, Al(n—l)(s) =57, +1,
A1j(s) = sTj+1A13j+1)(5) + A1(j+2) (11.30)

For any order, using the aboveiterative formulaswe can derive the corresponding transfer function
H(s) = Vout/ Vin. We can verify thisfor the third- and fourth-order LF filters discussed previously.
We now take the fifth-order filter as another example. Using Egs. (11.28-11.30) we have

|A(s)| = 7:17:2‘[3‘[4‘L'5s5 + rlrzrgus"' + (717273 + 117275 + T1T4T5 4 T3T475) 53

+ (T2 + Tita+ 1312) 2+ (11 + 13+ 15) 5 + 1 (11.31)

To realize the fifth-order transfer function in Eq. (11.13), the pole parameters, t; are determined
as

_ Bs _ Ba _ _ B3—Bsts
=18y "= BeByrs® 3= By—(Bi-to)14

By—(B1—15)74
B1—13—15

T2 = T1=B1—13— 15 (11.32)

11.3.6 Other Typesof Realization

It should be noticed that the explicit expressions of the transfer function of, for example, the third-
and fourth-order models givenin Eq. (11.17) and Eq. (11.22) are general; they are actually suitable
for any realizations of feedback coefficients.
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In the above we have considered canonical structures with integrator inverting input terminals
being ungrounded. Based on the discussion we may conveniently further comment on the other
types of realization structure.

First consider the noncanonical realizations with the inverting terminals of integrators remaining
ungrounded. If some or all feedback coefficients are realized with OTA voltage amplifiers, many
more structures may be obtained. For example, for the second-order two integrator loop feedback
biquads based on the general model in Fig. 11.2, we may also choose foo = gp3/gp4a, f12 = 1, OF
J22 =1, f12 = gv5/8v6: OF f22 = 8b3/8ba, f12 = gb5/8we, Al With f11 = 0. (The corresponding
biquadratic structures have been investigated in Chapter 9.)

If grounded integrator inverting terminals are further allowed, more structure varieties may be
obtained. For example, if weselect f1; # 0, j = 1,2, ..., n and the other f;; = O, with f1; being
realized by OTA voltage amplifiers, then the general FLF structure can be obtained. Notethat in this
structure, Vy; = Oforali =2,3, ..., n.

Note that the noncanonical synthesis produces some non-integrating nodes (for example, if f;;
is realized with an OTA voltage amplifier, there will be a node without any circuit capacitance
connected, which is the output node of the amplifier, also the inverting input terminal of the ith
integrator). The nonideal OTA capacitances and circuit parasitic capacitances associated with the
node may thusinfluence the high-frequency performance, producing an unwanted pole. More OTAS
will also cause other problems, as will be discussed later in the chapter.

11.4 Generation and Synthesis of Transmission Zeros

In the above sections we concentrated on the generation of all-pole filters. In this section we
addresstheissue of implementing the transmission zeros, that is, the synthesis of the general transfer
function
Ans" + Ap_ 18" T H o Aps 4 Ao

Bys" + B,_1s" 14+ ...+ Bis+1

Hy(s) = (11.33)
Note that this is a universal expression, since any characteristics of any order and any type can
be derived from the expression. In the extreme case that the nth-order system has n zeros and is
without lack of any terms of s, the system will have 2n + 1 independent coefficients. Clearly for
the universal realization, the minimal number of capacitorsis n, the order of the filter; while the
minimum number of OTAS equals 2n + 1, that is, the number (n) of integrators plus the number
(n + 1) of coefficients of the numerator of the transfer function. The latter n + 1 OTAS guarantee
that the numerator coefficients are controllable separately from each other, which ensures that any
special numerators can be achieved by selecting these transconductances, and separately from the
denominator which is determined by the n integrators, thus keeping the natural modes unchanged
when the numerator is adjusted.

For a given input to a node, different nodes may support different types of output characteristic,
while for afixed output node the output function may vary as the input node changes. Therefore by
altering input and output nodes we may realize some transmission zeros. For example noncanonical
second-order filters may support a variety of filtering functions such as the lowpass, bandpass,
highpass and bandstop characteristics in this way, as has been shown in Chapter 9.

More generally, for a given input we may combine the different node outputs with a summation
OTA network to give the overall circuit output, or for afixed output distribute the overall input onto
different circuit nodes using an OTA distribution network. A general transfer function can thus be
obtained. Then by properly selecting the summation or distribution weights for respective cases
one may attain any filter characteristics. In the following we will formulate design equations of

©1999 CRC PressLLC



the two methods and illustrate the realization of various numerator characteristics using different
architectures.

11.4.1 Output Summation of OTA Network [12]

Here we connect a summation OTA network to the circuit in Fig. 11.2, as shown in Fig. 11.8.
Denoting H;(s) = V,;/Vinand o = g4;/g- We derive

H(s) = Vou/Vin = a0+ ) _ a;H; () (11.34)
j=1

[ Feedback Network I

VA 2 2 B 2 -5 O -
C1T CZT cafE ch

I ]ll ‘} [} i 1
gaoi ; ga‘l\_r/ ga2\T/ 933; ; = gan; ; W;;! v

O T out
FIGURE 11.8
OTA-C filter model with output summation OTA network.
Using the results given in Section 11.2.2 [Eq. (11.9)] we know that
H;(s) = A1j(s)/|A(s)] (11.35)
Substituting Eg. (11.35) into Eq. (11.34) we have the circuit transfer function
1 n
H(s) = a0+ ——— Y ajA1(s) (11.36)
A o

The overall transfer function in Eq. (11.36) may have the general form of Eq. (11.33) with ref-
erence to matrix [A(s)] in Eqg. (11.11) and the transmission zeros may be controlled arbitrarily by
transconductances g,; through weights o; .

11.4.2 Input Distribution of OTA Network [12]

In this approach, the voltage signal is applied to circuit nodes by an input OTA network as shown
inFig. 11.9. Inthisway finitetransmission zeros can al so be achieved. Exactly the sameformulation
process asthat in Section 11.2.2 can be followed to derive the design equations for this case. All the
relationsin Egs. (11.1), (11.2), (11.4), (11.5), (11.7), and (11.8) apply here, with only one exception
that instead of [B] =[10 - - - 0]’ of Eq. (11.6) in Section 11.2.2, now

[B] =[B1 B2 Bul’ (11.37)
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where 8; = g4j/g;j,j =1, 2, ..., n,since Eq. (11.3) in Section 11.2.2 correspondingly becomes for
the present case

st1Vo1 = B1Vin— Vi1, sTi41Vo(j+1) = Bi+1Vin + (Voj — Vi) (11.38)

| Feedback Network |

FIGURE 11.9
OTA-C filter model with input distribution OTA network.

Thisexception is clearly dueto the change of input form; in Fig. 11.2 theinput voltageis applied
only to thefirst integrator output node and thisis realized directly through the OTA in the integrator,
whilein the present case the input voltage is distributed to all the integrator output nodes and thisis
accomplished by extra OTAS.

First solving Eq. (11.7) for [V,], then substituting Eq. (11.37) and finally observing Vo =
¥ (Bnt1Vin + Von), where y = g,41/gr ad Bpi1 = ga(n+1)/8n+1, We can formulate that

v, 1 ¢
H(s) = V—‘ =y {ﬂnﬂ slyver Y BiAjn (s)} (11.39)
| j:l

Equation (11.39) also indicates the possibility of arbitrary transmission zero realization by adjusting
Bj, that is, g4;.

Note that the distribution method actually involves the superposition theorem, since the responses
corresponding to the different resulting node inputs are superposed at the output node. This method
can therefore also be understood in the way that the different node inputs are collected with weights
into a single input.

It is also noted that if the maximum order in the numerator is required to be n — 1, then we can
remove the g,(,+1) OTA, and the g,,+1 and g, OTAsfor y = 1 and simply output the voltage Von
directly in the distribution case (this |eads to an advantage that the resistive summing node that will
haveeffectsof the parasiticsat very highfrequenciesisavoided), whilefor thesummationthe g,o OTA
should be deleted. It isalso of interest to note that when the transadmittance functions are required,
we can eliminate the g, OTA in both input distribution and output summation configurations.

In the next two sections, we will illustrate the general output summation and input distribution
methods for arbitrary transmission zero realization devel oped above. We will investigate third-order
OTA-C structures and general nth-order IFLF and LF configurations. Note that universal OTA-C
biquads can also be derived based on the output summation and input distribution methods, which
have already been discussed in Chapter 9.
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11.4.3 Universal and Special Third-Order OTA-C Filters[13]

The general third-order transfer function can be expressed as

A3zs3 + Azs? + A1s + Ag
3333 + stz +Bis+1

Hy(s) = (11.40)

Four third-order universal OTA-C structuresaregivenin Fig. 11.10, which consist of the canonical
IFLF and output summation network, canonical IFLF and input distribution network, canonical LF
and output summation network, and canonical LF and input distribution network. Deriving the
circuit transfer functions of the structures and comparing them with the desired characteristic in
Eqg. (11.40) we can obtain the design formulas for filter parameters.

FIGURE 11.10
Four universal third-order OTA-C filters.
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11.4.3.1 IFLF and Output Summation Structurein Fig. 11.10(a)

Denote that 7; = C;/g; and a; = gq4;/g-- Using Eqg. (11.36) the voltage transfer function
H (s) = Vout/ Vin Of the structure is derived as

3 2
_ agT172135° (ot T2+ T213) s “ (o T1 +n T2 +ap13) s+ (oo oo +ar3)
H(s) = T1ToT3s3+T1Tos2+115+1 (1141)

Comparison of Egs. (11.41) and (11.40) leads to the following design formulas:

71 = B1, 2= B2/B1, t3=B3/B> (11.42)
ap = A3/B3, a1 = (A2 —apB2) B1/B3,
a2 = [A1 — agB1 — @1B2/B1)] B2/ B3,

a3 = Ao — (@o + a1 + a2) (11.43)

11.4.3.2 IFLF and Input Distribution Structurein Fig. 11.10(b)

For thefilter in Fig. 11.10(b), with 8; = g,;/g; and y = g4/g, and using Eq. (11.39) we derive
the voltage transfer function

_ . Batitotas®+(BatB3) 1125 %+(BatBa) tas+(BatB1)
H(S) =Y r1121353+r11252+r1s+1 (1144)

The ts can be determined using Eqg. (11.42) and the s are obtained as follows (set y = 1):
Ba = A3/Bs, Pz = Az/B2— pa,
B2 = A1/B1— s, P1=Ao— Pa (11.45)

11.4.3.3 LF and Output Summation Structurein Fig. 11.10(c)
The voltage transfer function of the structurein Fig. 11.10(c) is derived as

3 2
_ oTn17135 (o T2+ 273)s oo (11 +73) +og Tptapa] s +H(ap oy +ap+ag)
H(s) = T17273s3+ 117252+ (T1+73)s+1 (11.46)

The parameters can be determined using the equations below

71 = B1— B3/B2, t2=By/(B1— B3/B2), 13=B3/B> (11.47)
oo = A3/B3, a1 = (A2 —aoB2) (B1— B3/B2) /B3,
o2 =[A1 — agB1 — a1B2/ (B1 — B3/B2)] B2/B3,

o3 = Ag — (g + o1 + a2) (11.48)
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11.4.3.4 LF and Input Distribution Structurein Fig. 11.10(d)
The voltage transfer function of Fig. 11.10(d) is demonstrated as

_ . Batitatas3+(Bat+B3) T s 2+ Ba(t1+73) +B27a]s +(Bat Ba+B1)
H(s) =y 11727353+ 11 Tos2+(11+13)s+1 (11'49)

Taking y = 1 we have the following design formulas [zs are calculated using Eq. (11.47)]
Ba = A3/B3, P3= A2/B2— Ba, P2 = (A1— PaB1)/(B1— B3/B2) .
B1= Ao — (Ba+ B3) (11.50)

11.4.35 Realization of Special Characteristics

If the maximum order in the numerator isrequiredtoben — 1 = 2and y = lisselected, then g,4,
g4 and g, OTAsall can be removed and the output voltage V,3 of the third integrator can be directly
used as the filter output in the distribution structures, while for the summation type, the g,o OTA
should be deleted. In any case, if the calculated «; = 0 or g; = 0, then the corresponding g,; OTA
should be eliminated. Thus, for some specific characteristics the filter structures can be simplified.
For example, using Figs. 11.10(a)—d) to realize the desired numerator with Az = A1 = 0 we will
have, respectively,

@0 =0, a1 =A2B1/Bs, az=—A(B2/B3)?,
az = Ag — (a1 + @) (11.51)
y=1 pBa=0, B3=A2/B2, P2=0, B1=A40 (11.52)
a0 =0, a1=(Bi— Bs/B2) A2/Bs, az=—Az(B2/B3)” ,
a3 = Apg — (@1 + @2) (11.53)
y=1 Ba=0, pz=A2/B2,

B2=0, p1=Ao— A2/B2 (11.54)

Note that using the above formulas we may have negative values for some «; and ;. This sim-
ply means the need for the interchange of the two input terminals of the associated g,; OTA.
Figs. 11.11(a)—(d) show the resulting structures corresponding to Egs. (11.51-11.54).

11.4.3.6 Design of Elliptic Filters
We now show how to use the filter structures above to realize an elliptic lowpass filter of

0.588358s52 + 1

H —
4(5) = 16702953 1 14185652 1 L.O139Ls 1 1
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FIGURE 11.11
Four elliptic third-order OTA-C filters.

Using Eqg. (11.42) we can determine the IFLF pole parameters as

71 = 191391, 1, =0.741184, 13 = 117745

and the LF pole parameters are given by Eq. (11.47) as

71 = 0.736455, 12 =1.926199, 13 =1.17745

Thezero parametersfor all the structuresare computed using Egs. (11.51-11.54), givenin Table 11.3.
Suppose that the cutoff frequency isrequired to be 500 kHz. We further determine the component
values of the structure in Fig. 11.11(b). We choose the normalized values of capacitances as

C1=425uF, Cp=303uF, Cs3=48.2uF
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Table 11.3 Parameter Values of Third-Order Elliptic OTA-C Filter

Fig. 11.11 | «p o1 a2 a3
€) 0 0.674173 -0.424378 0.750205
(© 0 0259416 -0.424378 1.16496
Fig.11.11 | B4 B3 B2 B1
(b) 0 0414757 0 1
(d) 0 0414757 0 0.585243

and compute

using the data in Table 11.3. Denormalization with the frequency of 500 kHz we have the real
capacitances as
C1=135pF, Co=97pF, C3=153pF

11.4.4 General nth-Order OTA-C Filters

Wenow try tofurther establish theexplicit design equationsfor universal IFLF and L F architectures
which are suitable for any values of the order n.

11.4.4.1 Universal IFLF Architectures[8, 10]

Asanillustration, for the canonical IFLF structure (fj, = 1, j = 1, 2, ..., n and theother f;; = 0)
with the output summation OTA network [8], using Eq. (11.23) it can be demonstrated that

JAG)| = 112 Tus" + T1T2 - Tyo1s" L

4+ Tes? +T1s + 1 (11.55)
A1j(s) = Tj11Tj42- - ‘L’nsn_j + Tjp1Tj2 - ‘l:n_ls”_-"_l
o T8t s + 1 (11.56)

wherej =1,2,3,...,n—1
Substitution of relations (11.55) and (11.56) into Eq. (11.36) yields the general circuit transfer
function and comparing this function with that in Eq. (11.33) we have the design equations

J
Bi=[]u. G=12--n (11.57)
i=1
and
i n—j+i
An7j=2 o 1_[ Th ) (j=o51725""n_1)7
i=0 h=i+1
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Ao=) o (11.58)

From the design viewpoint, if the transfer characteristic of Eq. (11.33) is desired the circuit
parameters must then be determined interms of coefficients A; and B; from Egs. (11.57) and (11.58).
With By = 1itiseasy to demonstrate that

i =8Bj/Bji-1, (j=123....n) (11.59)

and

J

B )

Anj= (T”) @, (j=012....n (11.60)
i=0 !

Equation (11.59) can bedirectly used for calculation of integration constants ;. From Eq. (11.60)
the iterative computation formulas of summation weights «;; can also be obtained, given by

a0 = g O‘J':B_,,[ le<"”'>ai],
(J=123....n) (11.61)

The parameter value determination formulas in Egs. (11.59) and (11.61) apply to any order real-
izations, including second-order. It can be observed from numerator coefficient expressions (11.58)
or (11.60) that the circuit may realize any specia transfer functions, since we can enable any coeffi-
cient A; of the numerator to be any value including zero by properly choosing the values and signs
of g4j, j <n —i. Ontheother hand, for any required zeros, that is any values of A;, we can easily
compute the associated parameters «; by means of Eq. (11.61). If the calculated «; is negative, we
can simply interchange the two input terminals of the related OTA with g,;. If the computed value
of «; is zero, then the g,; OTA should be removed.

Now we consider the canonical IFLF structure with the distribution network [10, 28]. Using
Eq. (11.23) we formulate

An(s) =1, Ajp=unn---gos't  j=234,..n (11.62)

and |A(s)| isgiven by Eq. (11.55).
Combining Eqg. (11.62) with Eq. (11.39) we have the circuit transfer function

n—1

H(s) = |A( T [ﬂnﬂnns + (Bur1+ B [ [ s

i=1
+ (Bnt1+ B2) t1s + (Bp+1 + ﬂl)} (11.63)
Comparing Eq. (11.63) with Eq. (11.33) when y = 1 and noting that the ; are calculated using
Eq. (11.59) we get

Bn+1= An/Bu, Br1=Ao— Ay/By,
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Bi=Aj_1/Bj_1—An/Bn, j=23,...n (11.64)

Any filters may be realized through adjusting distribution weights ;, that is, the associated g,; .

In odd-order elliptic filter realizations, A, = 0 can be achieved by removing the g,o0 and g4(n+1
OTAs for the output summation and input distribution methods, respectively. For other zero A;
realizations, the input distribution method is advantageous when compared to the output summa-
tion technique in that the former does not require any component difference matching or equality
constraints. For instance, if a zero coefficient is required, from Eq. (11.60) we may see that some
restriction on the relationship between «; valueswill be needed for the output summation approach to
make a coefficient equal to zero. However, inspection of Eq. (11.63) indicatesthat a zero coefficient,
say A; = 0 can be achieved simply by setting ;.1 to zero, that is, eliminating the OTA with g, (41
for the input distribution method.

11.4.4.2 Universal LF Architectures

In Section 11.3.5 we have proved that [A(s)|, A;,(s), and Ay;(s) of the general LF structure can
be obtained in an iterative way. Substituting these into Egs. (11.36) and (11.39) we can obtain the
circuit transfer functions for the output summation and input distribution methods of transmission
zero redlization. Taking thefifth-order structure as an example, we have determined |A(s)| and t; in
Egs. (11.31) and (11.32). Now for the output summation type, the numerator of the transfer function
isformulated using Eq. (11.36) as

N(s) = ozorlrzrgmrsss + (@oT1727374 + €1 T2T3T47T5) s
+ [o (117273 + 717275 + T1T4Ts + T3T4Ts) + Q1TRT3TA + A2T3TATS] 5°
+ [oo (1172 + T174 + T3T4) + 1 (T2T3 + T2T5 + TaTs) + 027374 + A3TATS) 52
+ [ao (t1 + 13 + T5) + a1 (12 + T4) + a2 (13 + T5) + @374 + €4aTH] §
+ (g + a1 + a2 + a3 + a4 + as) (11.65)

and for the input distribution structure, using Eq. (11.39) we have the numerator of the transfer
functionas(y = 1)

N(s) = BeTaT21374T55° + (B6 + Ps) T1T2T3Tas”
+ [Bs (T17273 + T1T2Ts + T1T4T5 + T3T4Ts) + P4TiT2T3] 5°
+ [(Bs + Bs) (1172 + T1T4 + T374) + Pat172] 5 (11.66)
+ [Be (t1 + 13+ 75) + Ba (t1 + 13) + B2t1]l s + (Bs + B5 + B3 + B1)

Torealizethegeneral fifth-order functionin Eq. (11.33), the pole parameters, ; in the denominator
of the filter transfer function as shown in Eg. (11.32) can be determined using Eq. (11.33). The
numerator parameters, «; for the summation type and g; for the distribution can then be easily
determined from Egs. (11.65) and (11.66) with comparison with Eq. (11.33) in an iterative way,
respectively.
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Figure 11.12 shows a special fifth-order lowpass filter realizing

Aas* + Axs? + Ag
BssS + Bas* + B3s3+ Bos2 4+ Bis + 1

Hy(s) = (11.67)

(the numerator coefficientsof A; = 0, j = 1, 3, 5), which is obtainable from the general input
distribution structure by removing the g,6 OTA (8s = 0), replacing the gg and g, OTAs by adirect
connection (y = 1), and removing the g,» and g,4 OTAS (82 = 84 = 0).

5 B 15 -_@vom

T

CZ
e\ T\ o fe
JI

1HF
iH

FIGURE 11.12
Lowpass LF-input distribution filter that can realize imaginary- and real-axis zeros.

With 7; calculated using Eq. (11.32), the numerator parameters of the filter can be determined
from Eq. (11.66) compared with Eq. (11.67) as

Bs = Aa/Ba, B3z = (A2 — BsB2) /t1t2, P1= Ao— (B3 + Ps) (11.68)

The reader is encouraged to further realize a particular elliptic function given in the appendix, with
a denormalization frequency of 10 MHz.

11.5 General Formulation of Sensitivity Analysis[12, 28]

In the preceding sections we have discussed many interesting OTA-C structures of the multiple
integrator loop configuration. In the design of active filters sensitivity is one of the most important
criteriain assessing the filter quality, as has been mentioned on several occasionsin this book. This
section focuses on sensitivity analysisof all-pole OTA-Cfilters. Instead of cal culating the sensitivity
of individual structures generated we will present a general approach.

Since after calculation of the 7; and f;; sensitivities we can easily further compute the gsand Cs
sengitivities using the relations t; = C;/g; and f;; = gij1/gij2, in the following we deal with only
the sensitivitiesto 7; and f;;.

11.5.1 General Sensitivity Relations

To formulate sensitivity functions we differentiate [V,]/ Vin in Eq. (11.9) with respect to circuit
parameter x using the well known inverse matrix differentiation formula and obtain the derivative
of [Vo]/ Vin &s
10 [A(s)]

0x

0 ([Vol /Vin)

S = Aol [A()]1[B] (11.69)
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where[A(s)] and [ B] were shown in Egs. (11.8) and (11.6), respectively.
When x = t;, since [ F] isindependent of t;, using Egs. (11.8) and (11.5), or just Eq. (11.11) we

have
jth

A]  d[M(s)]
81']' - 3Tj o

jth (11.70)

Substituting Eq. (11.70) into Eq. (11.69), together with Eq. (11.6) yields

Aj1(s)Az;(s)
O Vol Vi) _ s | A(9)A1(s) (11.71)
31 |A(s)[?
Ajn(s)Alj(S)

From Eq. (11.71) and noting that the output voltage is the last element in vector [V,] we can
identify that
OH(s) _ Ajn(s)Ag;(s)
0 JAG)2

(11.72)

Thususing Eg. (11.72) and Eq. (11.12), the sensitivities of the transfer function H (s) with respect
to integration constants t; can be readily obtained, given by

GHe) _ G OHG) _ Ajn($)A1j(s) (11.73)
Yo H(s) oy 7 A®)] '

Considering that A1,,(s) = 1, from Eq. (11.73) we can a so write the simplified sensitivity relations
for j = 1and j = n, given by

‘ A , A
Sg(*) = —srl—ll(s), Sf(” = —5T, nn ()
|A(s)] " |A(s)]

Next we consider the transfer function sensitivities to feedback coefficients f;;. Using Eq. (11.8)
or Eq. (11.11) and considering that [M (s)] is not related to f;; we derive

jth

AW _ alF] _
ofij afij

..1...|ith (11.74)

Then substituting Eq. (11.74) into Eq. (11.69) (now x = f;;) and incorporating Eq. (11.6) we can
obtain that

Ai1(s)Ag;(s)

3 ([Vol /Vin) 1 Ai2(s)A1j(s)

i A2

(11.75)

Ain(s)A1;(s)
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From Eq. (11.75) we can identify

9H (s) _ Ain(s)Az;(s)
ofij |A(s)?

(11.76)

Using Eg. (11.76) and the sensitivity definition, plus Eq. (11.12) we can prove the relative sensi-
tivity functions as
Ain(s)Agj(s)

H(s) .
Ji |A(s)]

sy L i< (11.77)

When considering A1, (s) = 1, we may simplify Eq. (11.77) for the casesof i = 1, j = n, and
bothi = 1 and j = n as shown below

H(s) A1j(s) GH®) _ Ain(s) HGs) _ Sin
Sy = f’|A()| Sfin f“|A(>| St T A®)|

Using Eq. (11.73) and Eq. (11.77) we can aso readily demonstrate the following relation

H(s)/SH(s) = fij/sTi (11.78)

Equation (11.78) can also be obtained from the sensitivity definition and the structural feature of
matrix [A(s)] in Eq. (11.11). The relation may be used to compute the sensitivity to f;; when the
sengitivity to 7; isknown, or vice versa.

From the sensitivity functions developed above, we may easily obtain the magnitude and the
phase sensitivities of H(jw), since they are the real and imaginary parts of Sf(j")) (x is7 or fi),
respectively. That is, with |H (jw)| and ¢ (w) being the magnitude and phase frequency responses,
respectively, we have

. . 9 .
SVl = Re (st ), oo = x—giw) = 1m |59 (11.79)

The Schoeffler's measure introduced in Section 5.3 [32] can also be readily calculated by

s = Z‘SH(/‘”)‘ B> st (11.80)

i=1h=1h>i

Notethat the formulationisgeneral. Using theseformulas, we can calculate sensivities of specific
structures without knowing their transfer functions.

11.5.2 Sengitivities of Different Filter Structures
Thefirst example involves the sensitivity analysis of third-order structures. The general 7; sensi-

tivity functions of the third-order structures are derived using Eq. (11.73) as

SHO) = —H(s) [T1T2f3s3 + (1t fa3 + 1173 f22) 52 + 71 (fo2 faz + f23) S] ;

Sa® = —H(s) [T1T2773S3 + (172 f3 + T213f11) 2 + Tzf11f33S] ,
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Sa®) = —H(s) [T1f2f3s3 + (t173f22 + T213f11) % + 13 (f11 f22 + f12) S] (11.81)

where H (s) has been given in Eq. (11.17) of Section 11.3.2.

Two special canonical cases are given below, when realizing the unity dc gain characteristic
(Ao = 1) in Eq. (11.13). The sensitivitiesfor f13 = fo3 = fzz = 1l and the other f;; = 0in [F],
i.e., the configuration in Fig. 11.4(a), are calculated with substitution of Eq. (11.19), given by

3 3
o =~ (Z Bjsj) / (Z Bjs/ + 1) . h=123 (11.82)
j=h i

For [F] with fi1 = f23 = fs3 = 1andthecther f;; = 0, i.e, the structurein Fig. 11.4(b), with
incorporation of EqQ. (11.21) the sensitivitiesin Eq. (11.81) accordingly reduceto

SH® = — [ Bas® + Bas® + (BL— Ba/ BD) s | /Da(s) .
SHE) — _ (B3s3 + st2> /Dg(s)
I ’
SHO) = —[Bas®+ (Ba/B2)s| /Dus)
Da(s) = Bas® 4 Bas® + Bys + 1 (11.83)

To illustrate the sensitivity computation method formulated above we consider the third-order
unity dc gain all-pole Butterworth characteristic

1

H =
a(s) s34+ 252425 +1

Identifying By = 2, B, = 2 and B3 = 1 and substituting them into the expressions in Eq. (11.82),
then utilizing Eqg. (11.80) (where the second part is now zero) the Schoeffler's multi-parameter
sensitivity for the structure in Fig. 11.4(a) is computed as

_ 30% 4 40" + 40?

S
! 14+ b

(11.84)

Similarly, using Egs. (11.83) and (11.80) weal so obtain the Schoeffler’ ssensitivity for the structure
in Fig. 11.4(b), given by

308 + 4w* + 2,507
PO i (11.85)
1+ b
Comparing the two resultsin Egs. (11.84) and (11.85) we have
1.502
S1—8= 11.86
1= S2= 15 ( )
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which clearly showsthat the structurein Fig. 11.4(a) is more sensitive than the circuit in Fig. 11.4(b)
at all (both passband and stopband) frequencies. So in terms of sensitivity the latter architecture is
better than the former.

Itisnoted that for some general nth-order structures, by cal culating therelevant cofactorsof [ A (s)]
we can also attain the sensitivity functions. For example, the sensitivity functions of the general
all-pole IFLF configuration in Fig. 11.6 are given by

Z;:h (l_[ij:l ‘L’i) Sj
21 (1_[{:1 Ti) s/ +1

SHO = —

(11.87)

Substituting the design equations resultsin

n n
ng == (Z Bjsj) / (Z Bjs! + 1) h=12,..,n (11.88)
j=h j=1

11.6 Determination of Maximum Signal Magnitude

In the following we present a method for determining the maximum input voltage | Vinlmax of
the filter when the maximum linear differential input voltages of the OTAs are given [10]. Noise
performance analysis can be found elsewhere [11], [22]-[25].

We denote the maximum linear input voltage of the g; OTA with Vr;, and the voltage across the
input terminals of the g; OTA in the filter with V;;. The relation in Eq. (11.89) must be met for all
the related OTAs to ensure their operation in their respective linear regions.

\Vaj| < Vrj (11.89)

Using H; (s) to represent the transfer function of signal voltages from the filter input to the differ-
ential input of the g; OTA, defined as

Vaj = Hj(s)Vin (11.90)

and substituting Eq. (11.90) into Eg. (11.89) we have

[Vinl < Vrj/ |Hj (o) ey (11.91)

From Eq. (11.91) we can see that for the given Vr; of OTAs, by finding the maximum values of
magnitude of concerned signal transfer functions we can obtain the maximum input voltage of the
filter as

[Vinlmax = Min{Vr;/ |Hj(jo)| ., : for al related j} (11.92)

For thethird-order élipticfilterinFig. 11.13, whichisredrawn from Fig. 11.11(b) for convenience,
the maximum allowable input voltage of the filter is given by

Vra1 V1a3
|Hal(jw)|max ' |Ha3(jw)|max '

|Vin|max = mln{
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Vr1 Vr2 Vr3 } (11.93)

|H1(jw)|max ' |H2(Jw)|max ' |H3(Jw)|max

_ i

-

FIGURE 11.13
Third-order elliptic IFLF and input distribution filter structure.

It is easy to seethat H,1(s) = H,3(s) = 1 and Hi(s) = H(s) that has been aready obtained
in Section 11.4.3 and is rewritten below for convenience. H»(s) and H3(s) can also be formulated
from Fig. 11.13 and are given below.

Ha(s) = (Bararas® + Bu) /D(s)
Hz(s) = [(/311213 — Batat1) s% + (B112 — Bat2) S] /D(s) ,

Ha(s) = |—Baters? + (Brza — fat1) s — ] /D(s) .
D(s) = 1372715° + To715% + 115 + 1 (11.94)

When realizing the characteristic H;(s) in Eq. (11.40) with A3 = A7 = 0 using Hi(s) with
relationsin Egs. (11.42) and (11.52), the associated functionsin the above become, respectively,

Ha(s) = (A25? + Ao0) /Da(s) ,
Ha(s) = [ (A0Ba/B1 = A2) s + (AoB2/ By — A2/B1)s | /Da(s)
Ha(s) = [~A2s® + (AoBa/ B2 — A2B1/B2)'s — A2/ B2] /Dus)

Dy(s) = Bas® 4 Bps® + Bys + 1 (11.95)

For thenormalized third-order ellipticlowpassfilter with A, = 0.588358, Ag = 1, B3 = 1.67029,
By = 1.41856, B; = 1.91391 asshownin Section 11.4.3, using Egs. (11.95) we can draw | H1(jw)|,
|H2(jw)| and | H3(jw)|. Fromthese graphswe canidentify the maximum values of these magnitudes
as

|Hl(ja))|max =1 |H2(jw)|max = 1.07, |H3(jw)|max = 0.87
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which appear at the normalized frequencies of 0.9, 1, and 1, respectively. Thus, together with
|Hy1(jw)|lmax = |Haz(jw)|max = 1 we obtain the maximum input voltage of the filter as

[Vinlmax = MiN{Vra1, Vre3, Vri, 0.93Vrp, 1.149Vr3)

It isthus obvious that V72 is crucial for making | Vinlmax as high as possible. 1n the event that all
threshold voltages are identical and equal to Vr, we will have | Vin|max = 0.93V7.

11.7 Effectsof OTA Frequency Response Nonidealities[10]

Asdiscussed previously, OTA frequency nonidealitiesincluding finiteinput and output impedances
and frequency dependence of thetransconductancewill cause deterioration of thefilter performances.
It should be noted that the input resistance of the CMOS OTA is usually very large and as a result
it can be ignored in analysis. However the input resistance of the bipolar OTA must be taken into
consideration, since it is comparable with the output resistance. Here our analysisis conducted for
CMOS OTA-C filters. We can generally obtain the equivalent circuit of the filter incorporating the
nonidealities and parasitics and formulate the real transfer function. The filter frequency perfor-
mances can then be analyzed. Consider the third-order dliptic filter in Fig. 11.13, whose design in
the ideal case was given in Section 11.4.3 and dynamic range was considered in Section 11.6.

For the convenience of comparison, the ideal transfer function of the circuit is repeated again as

Bator1s® + P1
T3'C2'L’1S3 + 'L'2'L’1s2 +715s+1

H(s) = (11.96)

For the normalized elliptic characteristic with the cutoff frequency of 500 kHz, it hasbeen determined
inSection11.4.3that g,1 = g1 = 22.2uS, g2 = g3 = 40.9uS, g,3 = 17.0uS, C1 = 13.5pF, Cy =
9.7pF,C3 =15.3pF.

Let us use, for example, Ci2, C,2, G,2 and go(s) to represent the input capacitance, output
capacitance, output conductance, and frequency-dependent transconductance of the g> OTA, respec-
tively, and C,,» denotes the parasitic capacitance of node 2. We also introduce such symbols as
Cl =C1+4+ Co1+ Cour + Cp1, C5 = C2 4 Cp2 + Cp2, C5 = C3+ Cop3 + Cpuz + Ci1 + Cp3,
G1 = Go1+ Gou1, G2 = G2 and Gz = G,3 + Goa3. The OTA transconductance frequency
dependence can be modeled in various ways, such as the one pole, two pole, one pole and one zero,
two pole and one zero, and excess phase or phase shift. All the models can be reasonably simplified
asg;(s) = gj(1— s/wp;), as mentioned in the previous chapters.

For example, the practical nonideal parameters of the CMOS OTAs with the above-calculated
transconductance values are given by [21]

Ci1 = Ci» = Ci3 = C; = 0.0385pF ,
Co1=Cp2=Cp3=Cpa1=Cps3=C, = 052pF N
Gol = Goal = 56’15, G02 = G03 = 954115, G0a3 =3%MmS s

1/wp1 = 1/ wpar = 3L.dns, 1/wpr = 1/wp3 = 2.57ns, 1/wp,3 = 33ns
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The common-mode input capacitances (of the same value for all the OTAS) are treated equivalently
as the parasitic node capacitances of C,1 = Cp2 = 0.0502p F and C,3 = 0.1506p F.

When both OTA finite impedances and transconductance frequency dependence are taken into
consideration the formulas will become very complicated. We therefore present only a first-order
approximation of the effects.

A’3s3 + A’2s2 + Als + Ay

H'(s) = 11.97
O) = B3 1 ByZ+ Bys + B (11.97)
where

/ IBSC/lcé 1
3 73 C1 C2 wpa3
, BCiC, B3CiCiz P1CyCia  B3ChHC i
Ap=—"122 4 2oy o mae g Im 2 s

73 C1C>2 13 C1 C2 71 C2 C3 3 C2 C1
T
17 nn G 13CC1 13C1Ca 13tat \wpal | wp2  @p3

B1
Ay =

737271
, CjCLCh CiChCia ChCLCiz C;ChCia
By=_1-2-8 4 12224 ~2-8202, ~172-02

C1C2C3 (C1C2 C3 Cy(C3 C1 C1Co C3

CiC4Ciz 1C;Ch 1

C1C3C2  13C1Cowp3
B! 1 Ci Cé 1 Ci Cis 1 Cé Cio 1 Cé Cio Gj C:/I. Cé
2:——— — — — ——— — — — —— ——

3C1Cy 12C1C3 71 C2 C3 3C2 C1 C3C1C2

G2C1Cy, G1CyCy 1 c’l< 1 1)

C2C1C3  C1C2C3  132C1 \wp2  wp3

1 C; 1 G 1C,G 1C,G
Biz__1+__13+__2_l+__1_2
1312 C1 1211 C3 3C2C1 13C1C2

1 1 1 1
T372T1 \ Wp1 wp2 wp3

1 1 G,

Bl = + =
7 nnn | wn

Thefilter performanceis affected at all frequencies. Equation (11.97) and its coefficientsindicate
that filter frequency characteristics will perform differently from the ideal case of Eg. (11.96). In
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addition to the change of al coefficients, the numerator is increased in order (A’3s3) and has an
unexpected term (A’s). The system poles and zeros will be accordingly altered. In particular, the
zeros will vary from the ideal two imaginary to three general zeros.

Note that the effect of the parasitic capacitances C,;, Cp;, and C;; causes the element val ue shift.
This effect may be eliminated by absorbing these capacitive parasitics into the circuit capacitances.
However we must consider that such compensation design is by reducing the circuit capacitances
to accommodate the parasitic capacitances. Therefore, comparatively, if the parasitic capacitances
are too large, the circuit capacitances will become too small and the parasitic part will thus become
dominant. The parasitics-induced element shift can also be effectively reduced by tuning.

It isimportant to note that each node in the circuit has a grounded capacitor and thus every node
parasitic capacitance can be absorbed into the corresponding circuit capacitance and no parasitic
poles will be produced.

The OTA input capacitances C;» and C;3 and output conductances G,; can have amajor impact.
The influences due to these nonidealities are mutually dependent as can be seen from the coefficient
expressions of Eq. (11.97). However, equations for Aj; and B do show that the finite output resis-
tances mainly influence the low frequency response, and the input capacitances primarily affect the
high-frequency characteristic as revealed by the expressions of A%, and B3. It can also be seen that
the OTA transconductance frequency dependence degrades the high-frequency characteristic more
than the low-frequency characteristic.

Generdlly the differential input application of OTAs causes feedthrough effects or unexpected
signal paths dueto finite input capacitanceslike C;» and C;3 [20]. To overcome this problem single-
input OTAs may be applied, since as recalled from Chapter 9, structures with differential-input
OTAs can be equivalently converted into structures with single-ended input OTASs by splitting a
differential-input OTA into two single-ended input OTA s of the same transconductance but opposite
polarity. However, this may need double the number of OTAs compared with the differential input
applications of OTAs, if the type of OTA remains the same. The large number of active devices will
lead to other problems, for example, the increase of the equivalent node conductances G; and the
circuit capacitance spread. Alsotheoverall effect of OTA excess phasewill be accordingly increased.
Thisisalso unfavorable for power consumption and the chip area. These trade-offs between the two
applications must be accounted for in some situations, especially in the design of high-order filters.

The reader is encouraged to conduct (Spice or Matlab) simulation using the data given above
to observe the deviation of the nonideal performance from the ideal one to confirm the theoretical
analysis of the effects of OTA nonidealities in the above. The PSpice result can be found in [10].

For high-order OTA-C filter design we have so far introduced the cascade (biquads in Chap-
ters 8 and 9), ladder simulation (Chapter 10) and multiple integrator loop feedback (this chapter)
approaches. To this point, the reader may also be interested to compare these three methods, in
details, generally or using some typical redlizations. For this consideration, we mention that ref-
erence [13] has shown that the multiple integrator loop feedback structures may be advantageous
over the cascade and ladder simulation architecturesin terms of generality of function, simplicity of
structure, and insensitivity to OTA nonidealities.

11.8 Summary

A general multipleloop feedback approach for the realization of OTA-C filters has been proposed.
The systematic generation, analysis, and design of different filter configurations have been addressed
with emphasison canonical structures. Wehaveformulated general relationsfor all-poleand arbitrary
transmission zero realizations and exemplified the theory extensively. The method described in the
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chapter has the following advantages. (a) it is systematic and general due to the introduction of the
feedback matrix [ F] and therelationship between [ F] and the feedback connection (somewell known
filter configurations are simply specia cases of the approach); (b) a variety of new structures with
different performances can be generated, with both canonical and noncanonical realizations being
available; (c) all capacitors are grounded and canonical realization can guarantee that all internal
nodes have a grounded capacitor; (d) it is also flexible in assigning element values and in various
cases simple explicit design formulas are applicable.

The essence of the method is the establishment of the relationship between the filter structure
and the feedback matrix, which makes systematic structure generation and general analysis and
design equation formulation possible. Using the one-to-one correspondence between the feedback
connection matrix and the circuit configuration one can deal with any particul ar applications based on
these general equations. For example, if the circuit topology is known, we may write the feedback
matrix [F] and analyze the filtering characteristic and sensitivity performance. For the desired
transfer function, on the other hand, an [ F], that is, acircuit structure, may be defined to realize the
transfer function.

Inthechapter, wehavedemonstrated thegeneral expressionsfor sensitivity computation and results
for different structures have been given. We have also analyzed the effects of OTA nonidealities,
which embrace finite impedances, phase shift, and nonlinearity. The OTA impedances and excess
phase cause a shift of filter frequency characteristics from ideal ones. In particular they change the
pole positions and hence pose a potential risk of instability, while OTA nonlinearity and noise limit
the filter dynamic range.

In the chapter we have mainly dealt with canonical filter structures. Noncanonical realization
with OTA amplifiersrealizing general feedback coefficients can provide some design flexibility and
result in more architectures. They will also cause problems due to the greater number of OTAS
needed and resistive nodes introduced, such as poor frequency performance, the large chip area, and
power consumption. Trade-offs between the feedthrough effects (parasitic zeros) and the problems
related to the large number of OTAs must also be considered when deciding whether to exploit the
differential input or single input OTAS, as the differential input application gives rise to unwanted
signal paths, whereas the single input application resultsin the increase in the number of OTAS.

Thegeneral unbalanced modelscan be converted into the bal anced equivalentsby using differential
four-input and two-output OTAs in integrators and mirroring the feedback network in the upper part
to the lower part. This will be discussed in the next chapter. Note that the OTA-C filters in this
chapter are based on voltage integrators and voltage feedback. A general multiple current-integrator
loop current-feedback model can be similarly established using dual output OTAs (DO-OTA) and
capacitors, which will also be studied in Chapter 12.

From the viewpoint of the whole book, we have so far discussed opamp-RC filters (Chapters 4-7)
and OTA-Cfilters (Chapters8—11). Inrecent years many other new high-performance structures and
design methods of continuous-time active filters have been proposed and widely used in practice.
In Chapter 12 we shall introduce these new topics, commercially used or in the research front, to
satisfy different needs of the readers.
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Chapter 12

Current-Mode Filters and Other Architectures

12.1 Introduction

Continuous-time active filter design has developed very rapidly over the last few years [1]-{60].
In the previous chapters we have basically concentrated on two main types. opamp-based active-RC
filters and OTA-based active-C filters. We have also confined ourselves to the differential-input and
single-output opamp and OTA. There have also been many other advanced design methods which
have been utilized in practice. Multiple-input and multiple-output opamps and OTAsaswell as other
new active devices such as current conveyors have also been available. This chapter will introduce
these new design approaches and filter structures.

Recent advances in analog integrated circuits and signal processing have shown that the current-
mode approach is superior to the voltage-mode in terms of its wide bandwidth, high speed, low
voltage and power, large dynamic range, and simplicity in circuit structure [7, 8]. Current-mode
signal processing techniques have also been widely used, in particular, in high performancefiltering
applications [12]{25], [35]-{49]. For example, in the simulation of passive LC ladders, rather
than converting mixed voltage and current equations to the voltage-only counterparts, designers
now scale the mixed eguations to the current-only ones [19, 20, 41, 42]. Even in the redlization
of avoltage transfer function, it is now preferred to cascade a transadmittance function, a current
transfer function, and a transimpedance function section to benefit from the current-mode approach,
in contrast with the conventional active RC design that uses only voltage sections.

The OTA-Cfilter structureswe have discussed in the previous chapters are mainly based on voltage
integrators, voltage amplifiers, and voltage feedback. They are very convenient for voltage signal
processing and voltage description with voltage inputs to OTA input terminals and voltage outputs
fromcircuit nodes. For current signal processing and description we can expect that circuitsbased on
current integrators, current amplifiers, and current feedback should be straightforward, with current
inputsto circuit nodes and current outputsfrom OTA output terminals. Although single-output OTASs
can be used to construct individual current integrators and current amplifiers, they cannot readily
provide local or overall current outputs or current feedback. Therefore dual- or multiple-output
OTAs (DO-OTA or MO-OTA) [10, 11] are needed for current-mode signal processing.

The current-mode DO-OTA filters were first studied in [12, 13], where a number of current-mode
single or two DO-OTA filters and a current-mode Tow-Thomas or resonator type two integrator loop
filter were developed. These filters can be implemented using only DO-OTAS and capacitors by
replacing the resistor with the DO-OTA simulation [10]. Recently, a large number of papers on
current-mode continuous-time integrated OTA filters have been published [14]-{25]. This chapter
will investigate current-mode DO-OTA-C filters. A comprehensive set of first- and second-order
filter structures are generated based on a current-mode single DO-OTA and five-admittance model in
Section 12.2. Current-mode DO-OTA-C biquadratic architectures of two integrator loop configura-
tions are generated in Section 12.3. Current-mode DO-OTA-C filter design based on passive ladder
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simulationisdiscussed in Section 12.4. We also deal with generation and synthesis of current-mode
multiple integrator loop DO-OTA-C filtersin Section 12.5.

The current-mode DO-OTA-C filters in Sections 12.2 through 12.5 correspond to the voltage-
mode OTA-C filters in Chapters 8 through 11, respectively. Having those well-known advantages
of voltage-mode OTA-C filters such as simplicity in structure, programmability, suitability for high
frequencies, and full integration, the current-mode DO-OTA-C filters can also directly process the
current signals with no need of any additional conversion components. More important is that the
current-mode DO-OTA-C structuresmay havedifferent, possibly better, performances such asdistor-
tion and noise than the voltage-mode counterparts, athough they may have the same sensitivity [8].
The network transpose [9] and adjoint circuit [8] methods may be used to convert voltage-mode
circuits to current-mode counterparts, but for the reader’s convenience (to avoid the need for prior
knowledge of voltage-mode OTA-C filters and some other circuit theories relating the transpose and
adjoint concepts) we choose to present this chapter in arelatively independent way, rather than from
the viewpoint of converting the voltage-mode OTA-C filters in Chapters 8-11 to the current-mode
DO-OTA-C counterparts.

Besidesthe current-mode DO-OTA-C filters, many other popular continuoustimefilter structures
such as the balanced opamp-RC and OTA-C configurations, MOSFET-C filters, OTA-C-opamp
structures and active filters using current conveyors are also introduced in this chapter, which is the
subject of Section 12.6. Section 12.7 summarizes the whole chapter.

12.2 Current-Mode Filters Based on Single DO-OTA

In Chapter 8 we discussed filter structures using a single-OTA model with voltage input, output,
and feedback. Single-OTA filters are cheap to build, consume less power, and have better noise
performance. Furthermore, OTA-C filters can be easily obtained from the single-OTA counterparts
by OTA simulation of theresistor. In this section we introduce a current-mode model using asingle
DO-OTA, with current input, output, and feedback and generate the corresponding current-mode
filters using a similar method.

12.2.1 General Model and Filter Architecture Generation

The symbol of the dual-output OTA (DO-OTA) isshown in Fig. 12.1(a) and itsideal equivalent
circuit is given in Fig. 12.1(b). The circuit of the DO-OTA can be a simple differential amplifier
with two outputs, an OTA with addition of acurrent mirror to its output (to provide multiple current
outputs), or aseries connection of two OTAswith the sametransconductances and opposite pol arities.
The DO-OTA can be conveniently used to construct various current-mode filters.

\YJ
V*I w_@{%gmwxv-) 1
V_ o o V_o_—@ o

@) (b)

FIGURE 12.1
Symbol and equivalent circuit of DO-OTA.

Consider thegeneral model in Fig. 12.2[14], which consists of one DO-OTA and five admittances,
with current input, current output, and current feedback. The current transfer function, H (s) = 1,/1;
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can be shown as

ngZY4
YiYoYa+ Y1YoYs + Y1Y3Y4a + Y1Y3Ys + Y1YaYs + YoY3Ys + Yo Y3Y5 + YoY4Ys5 + %TZYigﬁ

H(s) =

which isthe same in form as the general expression for the voltage-mode counterpart in Chapter 8.
Thus similar design techniques may be used. Sensitivity performanceswill be the same, which will
be shown in Section 12.2.3.

FIGURE 12.2
Current-mode model with one DO-OTA and five admittances.

Different filter structures and characteristics can be realized using the general circuit model and
transfer function. This can be done by assigning different components to Y; and checking the
corresponding transfer functions in Eq. (12.1). For example, ¥; can be aresistor (Y; = g;), a
capacitor (¥; = sC;), an open circuit (Y; = 0), or ashort circuit (Y; = oo). Both first-order and
second-order filter structurescan be obtained. Inthefollowing wewill present aset of filter structures
based on this model.

12.2.1.1 First-Order Filter Structures

For first-order filters five admittances are too much. We thus set Y4 = oo and Y5 = 0 and choose
the other three admittances. Selecting Y1 = sC1, Y2 = o0, and Y3 = O gives rise to the smplest
structure as shown in Fig. 12.3(a), which has alowpass filter function given by

8&m
H(s)= ——— 12.2
(s) “Citan (12.2)

with the dc gain equal to unity and the cutoff frequency equal to g,/ C1.

o
i)

(a) (b)

FIGURE 12.3
Two simple first-order configurations.

The circuit in Fig. 12.3(b), corresponding to Y1 = sC1, Y2 = oo and Y3 = g3 has the lowpass
characteristic as

8m
H - °r @ 12.3
(<) sC1+ (g3 + &gm) ( )
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In Fig. 12.4 we present a set of first-order filters with one capacitor and two resistors. It isfirst
verified that when choosing Y1 = sC1, Y2 = g2 and Y3 = g3, the general model produces alowpass
filter, that is

H(s) = Sm&2 (12.4)
s(g2+g3)C1+ g2(g3+ gm)

The circuit isshown in Fig. 12.4(a).

() (b) (©)

FIGURE 124
First-order configurations with two resistors.

Then consider the circuit in Fig. 12.4(b), which is obtained by setting Y1 = g1, Y2 = sC>», and
Y3 = g3. Itisfound that a highpass filter is derived whose current transfer function is given by

H(s) = 38mC2 (12.5)

s(g1+ g3+ gm) Ca+ g183

with the gain at the infinity frequency being g,,/(g1 + g3 + g») and the cutoff frequency equal to
g183/[(g1 + &3+ gm)C2].

Finaly, if Y1 and Y» are resistors and Y3 a capacitor, then H (s) is of the lowpass characteristic.
Thecircuit is presented in Fig. 12.4(c) and the current transfer function is given below.

H(s) = §m82 (12.6)
s(g1+82)Cz3+g2(81+ 8m)

12.2.1.2 Second-Order Filter Architectures

Suppose that each admittance is realized with one component and two and only two capacitorsare
used. Exhaustive search by trying al different combinations of components shows that atotal of 13
different second-order structures can be derived: one highpass (HP), four bandpass (BP), and three
lowpass (LP) filters with three resistors; two bandpass and two lowpass filters with two resistors; as
well as one lowpass filter with one resistor. The combinations of components for the 13 structures
are presented in Table 12.1. The corresponding configurations and transfer functions can be readily
derived from the general model in Fig. 12.2 and the general expression in Eq. (12.1). The transfer
functions of the three resistor filters in Table 12.1 are the same as the respective counterparts in
Section 8.7 of Chapter 8. We will show LP and BPfilterswith one or two resistorsin Section 12.2.3.

12.2.2 Passive Resistor and Active Resistor

Many interesting second-order filtersusing asingle DO-OTA, two capacitors, and different number
of resistors have been developed. The resistors can be passive resistors, asin discrete design. They
can also be activeresistors asin integrated circuits. The active resistor can be realized by aDO-OTA
connected in the way as shown in Fig. 12.5 [10]. When both terminals A and B are floating, it
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Table 12.1 Generation of Second-Order Filter Structures Based on Modédl in Fig. 12.2

Type Components
Genera Y1 Yo Y3 Ya Ys
LP1[12] | sC1 g2 sC3 o0 0
LP?2 sC1 g2 sC3 00 g5
LP3 g1 o0 sC3 ga sCs
LP4 sC1 g2 sC3 g4 g5
LP5 ) sC3 g4 sCs
LP6 |sC1 g 83 ga 5Cs
BP1 g1 sCa sC3 0o g5
BP2 g1 oo} sC3 sCq g5
BP3 g1 sC2 sC3 g4 &5
BPA[14] | &1 &2 sC3 sCs g5
BP5 g1 sC2 83 g4 sCs
BP6 |sC1 g2 83 sCq g5
HP[14 | g1 sC2 83 sCq g5

is a floating resistor and when terminal B is grounded, it is a grounded resistor. In both cases the
conductance of the resistor is equal to the transconductance of the DO-OTA. Filters whose resistors
all are active resistors will comprise only DO-OTASs and capacitors and thus are DO-OTA-C filters.

FIGURE 12.5
DO-OTA simulation of resistor.

The transfer functions of the DO-OTA-C filters with active resistors are the same as those of the
single DO-OTA counterparts with passive resistors and their sensitivity performances are thus also
the same due to one to one correspondence between the passive resistor and active resistor.

The differences are that the passive resistor filters may have low power consumption, noise, and
parasitic effects, while the active resistor filters are suitable for full integration and their tunability is
improved. The number of DO-OTAsinthe DO-OTA-C filtersisequal to the number of resistorsplus
one, since only one DO-OTA is required for the simulation of both grounded and floating resistors.

In the following discussion we show some second-order filter architectures derived from the
general model in Fig. 12.2 based on componentsin Table 12.1. We will not distinguish the passive
and active resistors and simply say the resistor, unless otherwise stated. Therefore, symbol g; will
mean the conductance of a passive resistor or the transconductance of the active resistor.

12.2.3 Design of Second-Order Filters

The simplest second-order lowpass filter with Y1 = sC1, Yo = g2, Y3 =5C3, Y4 =00,Y5=0
of Fig. 12.1isshownin Fig. 12.6 [12], which has only one resistor. The current transfer functionin
Eq. (12.1) becomes

H(s) = - Em&2 (12.7)
5cC1C3+ 582 (C1+ C3) + gmg2
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o—;:jf IC3

FIGURE 12.6
Simplest second-order lowpass filter.

As mentioned before, the standard form of the lowpass characteristic is normally written as

Kw?
Hy(s) = o2 n ‘”—Q"s0+ a)g (12.8)

Comparison of Egs. (12.7) and (12.8) indicates that the dc gain of thefilter, K, is unity and

/ JC1C
C1C3 g2 C1+C3

For convenience of design and also from the viewpoint of cost we set C1 = C3 = C. This permits
the development of simple design formulas for the component values, given by

c
Ci=C3=C, gr= ‘;—Q gm = 20w,C (12.10)

where C can be arbitrarily assigned. The sensitivities are found to be;

Sgo = Sgy = =S¢ = =S =1/2 (12.11)
[ [Y 1 0 0 1C1-C
Sgn = —Se2 =3 =S¢, =5¢;,=3 Ci—i—Ci =0 (12.12)

and these results indicate superior sensitivity performance. Note that setting C1 = C3 leads not
only to practical convenience, but also to a decrease in the sensitivity of the filter to deviationsin
the capacitor design values. It is therefore clear from the above discussion that like the voltage-
mode counterpart in Chapter 8 the current-mode DO-OTA lowpass filter has avery simple structure,
minimum component count, very simple design formulas, and extremely low sensitivity.

We now consider lowpass and bandpass filters with two resistors. The lowpass filter with Y1 =
sC1, Y2 = g2, Y3 =5C3, Y4 = 00, Y5 = gs isdepicted in Fig. 12.7(a). Its current transfer function

isderived as
8m82

H(s) =
52C1C3+ s [(g2 + g5) C1 + g2C3] + g2 (gm + 85)

(12.13)

Comparing thetransfer functionin Eq. (12.13) with the desired functionin Eq. (12.8) and selecting
C1 = C3 = C and g2 = g5 = g yieldsthe following formulas:

w,C
30°

1
902

1
g = gm = 30w,C (1 - 9_Q2> , K=1- (12.14)
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FIGURE 12.7
Lowpass filters with two resistors.

The sensitivities can be derived as
Seo = S0 = —=Sgg = —1/2,  Sgr =1/180%,
Sge =05(1-1/90?) (12.15)
sg =-58 =S5 =-1/6, S2=-1/3+1/1802,
S = Sen (12.16)
SE =& =58 =0 —SK=5K =1/90° (12.17)

It can be seen from these results that the structure in Fig. 12.7(a) has very low sensitivity.
The second lowpassfilter which correspondsto Y1 = g1, Y2 = 00, Y3 = sC3, Y4 = g4, Y5 = 5Cs,
isshownin Fig. 12.7(b). It has the transfer function

H(s) = — Em84 (12.18)
§2C3Cs5 + 5 [g4C3 + (g1 + 84) Cs] + g4 (gm + g1)

Note that this lowpass filter is similar to the one discussed above.
The bandpass filter with two resistors, corresponding to Y1 = g1, Y2 = sC2, Y3 = sC3, Y4 =
00, Y5 = g5 isshown in Fig. 12.8(a). The current transfer function is derived as

sgmC2

H(s) =
§2CoC3+ s [(g1+ g5 + gm) C2 + g1C3] + g185

(12.19)

FIGURE 12.8
Bandpass filters with two resistors.
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Comparing Eq. (12.19) with the ideal bandpass characteristic

K%s 12.20
H =7 .
d(s) S2+w_QUS+Cl)§ ( )
leads to the following design equationwithCo = Cz3=Cand g1 = gs = ¢
w,C
g=woC, gm= 0 1-30), K=1-30 (12.21)

For practical Q values, g, is negative. Note that g,, < 0 simply means the interchange of the
DO-OTA output terminals.
The sengitivities of the filter are formulated as

g =S¢ = —Sgr = —Sge = —1/2,  Sg0=0 (12.22)
—5¢ =88 =82 =12-0. Sg=1/2-20,

s& =-1+30 (12.23)

S&,=—88,=-Sk=0, S&=-20, SK =30 (12.24)

From the sensitivity results, it can be observed that the design using the circuit in Fig. 12.8(a) has
low w, sensitivity. However, the Q and K sensitivities display a modest O dependence, although
thisis no problem for low Q design. The realization of large Q with the DO-OTA output terminals
interchanged may cause an increase in the Q and K sensitivities. But considering that it is the w,
sensitivity that contributes more to the response deviation and the K sensitivity islessimportant, the
designs are still useful for not very large Q, since the w,, sensitivities are extremely low.

Thesecond bandpassfilter withtworesistorsisassociatedwith Y1 = g1, Y2 = 00, Y3 = sC3, Y4 =
sCa, Y5 = g5, asshown in Fig. 12.8(b). Itstransfer function is given by

sgmCa

H(s) =
52C3Ca + s [g5C3 + (g1 + g5+ &m) Ca] + g185

(12.25)

Thisfilter function is similar to that of the above bandpass filter.

12.2.4 Effectsof DO-OTA Nonidealities

The practical DO-OTA has finite input and output conductances and capacitances. It also has
nonzero phase shift (finite bandwidth). Using Y,,;, = G + sCni, Ymo = Gmo + sCpo and
gm(s) = 7 +§"/f)mb ~ gmo(1—s/wmp) torepresent the finite input admittance, output admittance, and
transconductance frequency dependence of the g,, DO-OTA, the general model in Fig. 12.2 taking
these nonidealities into consideration will have a changed current transfer function. The output
short-circuit current transfer function is given by

I

H'(s) = I—" = [1+ MHU(S)} H; (s) (12.26)

gm(s)
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where

Hi(s) = gm(s)Y2Ya/[(Y1 + Yimo) Y2Ya + (Y1 + Yino) Y2 (Y5 + Yini)

+ (Y1 + Yio) Ya¥Ya + (Y1 + Yipo) Y3 (Y5 + Vi)

+ Y1+ Yio) Ya (Y5 + Yyi) + Yo¥3Ya + Y2 Y3 (Y5 + Vi)

+ Y2Yq (Y5 4 Vi) + gm (s)Y2Y4] (12.27)
Y Yo+ Y34 Y.
Hys) =1+ —+ 2T 3T 4 yo Ly, (12.28)
Yo YoYy

Using theserelationswe can analyzethe effects of the DO-OTA nonidealitieson filter performance
for al structures by substituting corresponding ¥; componentsin Table 12.1. Of course, we can also
evaluate the effects by directly considering individual filter structures. We are not going into the
detail here, but the results are, in general, that the nonideal excess phase will have a Q-enhancement
effect, the input and output conductances introduce losses, causing reduction of the pole and zero
quality factors and the low-frequency gain. The DO-OTA capacitances degrade the high-frequency
characteristic of thefilter. They may produce parasitic polesfor some structures. We should also note
that the output capacitance of the dual-output OTA generates parasitic zeros as seen from Eq. (12.26),
compared with theinput capacitance of the differential input OTA in voltage-mode OTA-C circuiits,
which produce extra zeros in Chapter 8.

In fully integrated filter design the resistor is smulated by a DO-OTA as shown in Fig. 12.5.
The nonidealities of such DO-OTAs will also have an impact on the filter performance. Taking the
differential input and output admittances Yg; and Y, and frequency-dependent transconductance
gr(s) into account, the DO-OTA resistor will have an eguivalent admittance given by

Yr = gr(s) +Yri + Yro

= (gro+ Gri + GRro) + 5 (Cri + Cro — 8rO/®WRb) (12.29)

Thisrevealsthat theresistor conductanceis changed and al so there appearsanonideal capacitor with
theresistor. If thecommon-modeinput and output admittancesare al so taken into consideration, then
amr equivalent circuit will result for the floating resistor, where the series arm floating admittance is
given by Eq. (12.29) and the two parallel arm grounded admittances have the same value, given by
the sum of the common-modeinput and output admittances. For the grounded resistor, the equivalent
circuit will be a changed grounded admittance given by the admittance in Eq. (12.29) plus the sum
of the common-mode input and output admittances.

For ICfilter designtheeffectsof the g, OTA imperfectionscan still be assessed using Egs. (12.26)—
(12.28). Asdiscussed for thevoltage-modecircuitsin Chapter 8, to systematically evaluatethe effects
of the nonidealities of the resistor DO-OTASs on different filter architectures, we can simply replace
resistor conductancesinindividual transfer functionsor the corresponding Y; in Egs. (12.26)—<12.28)
by associated modified admittances. We can also substitute the nonideal equivalent circuit of the
resistor into the filter circuit and analyze the effects of the nonidealities of the resistor simulation
DO-OTAs.
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12.3 Current-Mode Two Integrator Loop DO-OTA-C Filters

In Chapter 9 we have extensively investigated OTA-C biquadratic filters of the two integrator
loop configuration based on voltage integrators, voltage amplifiers, and voltage feedback networks.
Two integrator loop configurations have been widely employed in practical applications. In this
section we realize the two integrator |oop structures from the current-mode viewpoint. The resulting
DO-OTA-C filters are based on current integrators, current amplifiers, and current feedback.

12.3.1 Basic Building Blocksand First-Order Filters[15]

The basic DO-OTA based current-mode building blocks are indicated in Fig. 12.9, where
Figs. 12.9(a), (b), and (c) are the current integrator, amplifier, and summer, respectively. The current
summer isrealized simply with the circuit node.

(@ (b) (©

FIGURE 12,9
Basic current-mode DO-OTA-C building blocks.

First-order current-mode filters are given in Fig. 12.10. Figure 12.10(a) has the lowpass function

(@ (b)

FIGURE 12.10
First-order current-mode DO-OTA-C configurations.

Io1 = Ii1/ (t15s + k1) (12.30)

wherety = C1/g1 and k1 = g2/g1. For the feedback circuit in Fig. 12.10(b), with 71 = C1/g1 and
k1 = g2/g3 we have the current transfer functions as

Ior = (Ijx — kal;2) / (t1s + k1)
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Iop = (kili1 + k1t1s1;2) / (Tus + k1) (12.31)

Thetwo relationsin Eq. (12.31) show that thefilter in Fig. 12.10(b) can fulfill lowpass and highpass
specifications. Thecircuitsin Figs. 12.10(a) and (b) with 1,1 and I;1 are also called lossy integrators.
The two simple lossy integrators given in Fig. 12.3 are also useful.

12.3.2 Current-Mode DO-OTA-C Configurationswith Arbitrary k;; [15]

Two integrator loop configurations in Fig. 9.3 of Chapter 9 will be recalled. Using the basic
current building blocksin Fig. 12.9 and thefirst-order current circuitsin Figs. 12.3 and 12.10 we can
also realizethetwo integrator loop architecturesin the current domain. Because grounded capacitors
have some advantages, and for second-order filters two capacitors are sufficient, we will use two
grounded capacitorsin all the current-mode DO-OTA-C redlizationsin this section.

The current-mode architectures corresponding to Fig. 9.3 are obtained asillustrated in Fig. 12.11.
Figure 12.11(a) uses six DO-OTAs and the structure in Fig. 12.11(b) has five DO-OTAs. The pole
parameter relations including w,, w,/Q and Q for the two realizations are displayed in Table 12.2.
The zeros of different required characteristics can be realized using different inputs and outputs.

FIGURE 12.11
Second-order current-mode DO-OTA-C filterswith arbitrary k;;.
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Table 12.2 Parameter Relations of General Current-Mode DO-OTA-C Redlizations

Circuits L 7 B ST &7 S S} @o g 0
Fgl2li@ | & 2 @ 5 858182 g381 g4 [8582C1
12, 7 % 7] 76 26C1C2  384C1 83\ 8681C2
. [ g & 838182 2482 1 [838561C2
Fig.12.11(b) a7 e &5 25C1Cs  25Co  2a 82C1

To show how current signals are processed by these filters we apply current inputsto circuit nodes
andtake current outputsfrom DO-OTA output terminals. For thecircuitinFig. 12.11(a) weformulate
the current transfer functions as

D1(s) o1 = tosli1 — kaoli2 + k11725133 + kiotos ;s
D1(s)Ip2 = Ii1 + (t15 + k11) Liz + k11li3 + k1215
D1(s) o3 = —k11tas It + krkaolio + k11 (tatas? + k12) I3
— k11ki2tos s (12.32)
D1(s) (1p3 + Ip5) = — (k11725 + k12) 11 — k1pt1s1i2
k11117252113 + k1ot1728% ;5

Di(s) = T172s? + knatos + k12 = 1112 (S2 + %s + wg)

Looking at the expressions in Eq. (12.32), especially those of I,3 and 1,3 + 1,5 and noting in
particular the contributions of ;3 we can see that the architecture in Fig. 12.11(a) can perform LP,
BP, HP, and BSfiltering functions. It is noted that the g1 DO-OTA in Fig. 12.11(a) may be designed
to have another output terminal, if necessary, to give adirect 7,1 output.

The current relations of Fig. 12.11(b) are derived as

Da(s)1p1 = (t25 + k22) Ii1 — ka2l;2 + k1225 1;3

Da(s)1p2 = Ii1 + t1s1i2 + (k2ot1s + ki12) Ii3

Da(s)1p3 = —ki2li1 — kiot1s iz + k1oT1t25% i3 (12.33)
Do(s)1pa = —kp2li1 — kot1sli2 + kopt1725% 113

Da(s) = T1tas? + koot1s + k12 = 1112 (s2 + %s + 603)

Equation (12.33) indicates that the structure in Fig. 12.11(b) supports LP, BP, and HP filters, the
output from 1,3 or 1,4 with I;3 making the HP contribution to the multifunctionality.

12.3.3 Current-Mode DO-OTA-C Biquadratic Architectureswith ki, = k;;

Consider the four DO-OTA circuit in the Fig. 12.12(a) [16], with k12 = k11 = k = g3/g4 and
7; = Cj/g;, we can derive the current transfer relations as shown below:

D1(s)Ip1 = toslin — kli2 + ktos1;3

D1(s)1p2 = Ii1 + (15 + k) li2 + ki3

D1(s)I,3 = —k (t2s + 1) Ij1 — kt1sljp + ktito5°1;3
Di(s) = 117252 + ktos + k

(12.34)

From Eq. (12.34), we can see that thefilter configuration in Fig. 12.12(a) offersthe LP, BP, and HP
characteristics.
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FIGURE 12.12
Current-mode DO-OTA-C filterswith (@) k12 = k11 and (b) k12 = k2o.

The four DO-OTA filter structure with k1o = k2 = k = gz/ga and t; = C;/g; is shown in
Fig. 12.12(b). We can formulate

D2(s)lp1 = (st2 + k) [j1 + kli2 — sktal;3
Do(s)lpp = —Iin + stalip + (st1 + 1) ki;3
Dy(s)1,3 = kl;1 — skt1lio + Szkrl‘[zlig
Da(s) = 11128 + ktis + k

(12.35)

Thus the circuit has the LB, BR, and HP functions. To output the HP function the g3 OTA may need
another output.

12.3.4 Current-Mode DO-OTA-C Biquadratic Architectureswith kq, = 1[15]

Thefilter circuit with k12 = lisshowninFig. 12.13(a), which hasfour DO-OTAS. The equations
of the circuit reduce to

Di1(s)1o1 = t2slin — Ii2 + k11125133

D1(s)1o2 = Ii1 + (15 + k11) li2 + ka1 1;3

D1(5)1o3 = —knatoslis + knaliz + ka1 (ratas® + 1) Iia (12.36)
Da(s) (I3 — Ipp) = — (kaatos + 1) In — tasliz + knntatos®lia

D1(s) = 117252 + k11725 + 1
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FIGURE 12.13
Current-mode DO-OTA-C biquadswith k12 = 1.

The parameter relations are exhibited in Table 12.3. Figure 12.13(a) and Eq. (12.36) show that
this circuit saves two DO-OTAs and realizes LP, BP, HP, and BS filters, compared with the general
circuitin Fig. 12.11(a). Notethat ;3 plays aspecia rolein achieving the multifunctionality and the
output 7,3 — I,,» can berealized by simply connecting the two corresponding terminals together due
to their respective directions.

A two-DO-OTA redlization is associated with the feedback coefficients k11 = k12 = 1 as shown
in Fig. 12.13(b). In this case all the feedback paths reduce to simple pure wire connections, thus
resulting in the simplest or canonical structure with the LP and BP functions given by Eq. (12.37)

D1(s)1o1 = t281i1 — 12, D1(s) o2 = i1 + (t1s + 1) I;2,
Di(s) = 11725 + Tos + 1 (12.37)

The special three DO-OTA realization which correspondsto k12 = lisgiveninFig. 12.13(c) [13].
The parameter relations of the special realization are presented in Table 12.3 and the associated
characteristic is written as

Da(s)lo1 = (125 +k22) Iin — Li2, D2(s)lo2 = Iin + 11812,

Dy(s) = ‘L'1‘L’2S2 + kootos +1 (12.38)
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Table 12.3 Parameter Relations of Special Current-Mode DO-OTA-C Realizations

Circuits 71 T2 ki1 ko ki W, % 0
Fig. 12.13(a) % % £ 1 T \/%
Fig.12130) | & 2 1 1 \/% g \/gi_E
Fig. 1213() | & <2 g fapo g L \/@

12.3.5 DO-OTA Nonideality Effects

In this section we evaluate the effects of DO-OTA nonidealities including the finite input and
output impedances as well as the transconductance frequency dependence.

Notethat all OTAsin the generated architectures are used with one of theinput terminal sgrounded.
For circuits in Figs. 12.13(b) and 12.13(c) where there are capacitors on al nodes, DO-OTA in-
put capacitances and parasitic node capacitances can be compensated by absorption design. In
Figs. 12.11(a), (b), Figs. 12.12(a), (b) and Fig. 12.13(a), the input capacitances of the DO-OTASs in
the feedforward path and the parasitic node capacitances on the nodes with capacitors can be ab-
sorbed by the corresponding circuit capacitances. However, the input capacitances of the DO-OTAS
and the parasitic node capacitances related to the resistive nodes (from the nodes to ground there is
only a DO-OTA resistor) in the feedback path(s) in these circuits will cause an increase in the order
of system transfer functions, a change influencing the filter characteristics in very high-frequency
designs.

The most influential parasitics are perhaps the DO-OTA output capacitances and conductances.
Note that the DO-OTA may be realized by using the differential output transconductance amplifier.
In this case the finite output capacitance and conductance of the DO-OTA will degrade the filter
performance, causing parasitic zeros, especially the output impedance of the g; DO-OTA in the
configurationsin Figs. 12.11(a), 12.12(a), 12.13(a), 12.13(b), and the gz DO-OTA in Fig. 12.12(b).
The DO-OTA may also be implemented by using a single-ended output transconductance amplifier
followed by acurrent mirror or by connecting two OTASs of the same transconductances but different
polaritiesin series. I1n these cases the finite output impedances may be modeled as connected from
each output terminal to ground and thus the DO-OTA output capacitances related to the capacitive
nodesinall thearchitecturesin Figs. 12.11-12.13 may be absorbed by circuit capacitances. However,
the finite DO-OTA output capacitances associated with the resistive nodes in Figs. 12.11(a), (b),
Fig.12.12(a), (b), and Fig. 12.13(a) will giveriseto parasitic system poles. Also, any parasiticfloating
capacitances and resistances between the two output terminals of the DO-OTAsmay deterioratefilter
performance.

12.3.6 Universal Current-Mode DO-OTA-C Filters

Fromtheformulated current transfer expressionsin Egs. (12.32)—(12.38) it isseen that the proposed
filters in Figs. 12.11-12.13 &l have a multifunction feature, supporting more than two functions
of LP, BR, HP, and BS at different input or output positions. Inspecting the different structuresin
Figs. 12.11-12.13 we can also see that the structures contains two to six DO-OTAS.

Aswediscussed in Chapter 9, the general biquadratic characteristic can also berealized by adding
more OTAsto the basic structures. For example, theinput distribution OTA network in Fig. 12.14(a)
can be connected to the two integrator loop filter structures to produce universal biquads. Note that
the current distributor converts asingle current input to weighted multiple current inputs, I;; = «; fin
where o; = g,;/g- are the distribution coefficients. The coefficients can be selected to produce
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arbitrary transmission zeros and gain without any influence on the poles. Note, in particular, that the
sign of «; can be easily changed by interchanging the input terminals of the g,; OTA, if needed.

(b)

FIGURE 12.14
Input distribution network and universal biquad example.

For example, connecting the distribution network in Fig. 12.14(a) to the circuit in Fig. 12.11(b)
and taking output from 1,3, we can obtain from Eq. (12.33) the general current transfer function

I, 371252 — A2T1S — @
O T (12.39)
Iin T1725° + koptT1s + k12

which can support avariety of filter functionssuch asthe L P, BP, HP, notch, and all pass characteristics.
For Fig. 12.12(a) with the distribution network and with output from 1,3, from Eq. (12.34) we can

derive

I3 a3TiTos® — (aaTy 4 1T2) s — o1

k (12.40)

H = =
) Iin 117252 + ktos + k

As an example of the distribution method we give the resulting universal biquad in Fig. 12.14(b).
The general transfer function for Fig. 12.12(b) with the distribution network and output from 1,3
is obtained from Eq. (12.35) as

1,3 Ol3‘L'1‘L’2S2 — 2718 + o1
In 117252 + kt1s + k

H(s) = (12.41)
The circuit in Fig. 12.13(a), to which the distribution network is connected also has a genera
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function from I,,3, which can be derived from Eqg. (12.36) and is given by

H(s) = 18 _ g, 072"~ catas & (2 + @) (12.42)
Iin 717282 + k117285 + 1

We can also add aweighted current summer to the two integrator loop filters to combine relevant
current outputs for a certain input to generate any desired zeros. This can be done in two ways. one
isto directly sum the relevant output currents, each of the weights consisting of two-OTA current
amplifiers[16]; the other isto sum the related output currents via node voltages, which requires just
one extra OTA for each summed current. The latter method requires just half the number of OTAS
needed by the former and is thus used below. The summation network is shown in Fig. 12.15(a).

Iout ﬂ
o1

gaB._
“_@_ T

< C TG
_@ =

(b)

FIGURE 12.15
Output summation network and universal biquad example.

For the structures in Figs. 12.11(b), 12.12(a), 12.12(b), and 12.13(a), from Egs. (12.33)—12.36)
it can be observed that summing 1,1, 1,2 and 1,3 with weights, with I;3 being as input we will
have universal transfer functions. Thus connecting the summation OTA network in Fig. 12.15(a)
to the circuits in, for example, Figs. 12.11(b), 12.12(a), 12.12(b), and 12.13(a) will result in four
corresponding universal biquads. The universal biquad based on Fig. 12.12(a) and the summation
method isrepresentatively shownin Fig. 12.15(b). With 8; = g,;/g; weattain the associated current
transfer functions H (s) = Ioyt/1;3 Of these universal biquads, given by, respectively,

_ Bakipratas®+(Bokopta+rkizta)s+B2kiz
HGs) = Y F e (12.43)
— pBanaras®+himos+5;
H(s) =k 117252 +kTos+k (12-44)
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_ g Bautas®+(Bori—Pata)s+h2
H(s) =k 117252 +kTys+k (12.45)

H(s) = ki Batitas®+B1tos +(B3+B2) (12.46)

1170524k Tos+1

Finally, two universal biquads based on the canonical structure of Fig. 12.13(b) are obtained with
adistribution network and a summation network, as shown in Figs. 12.16(a) and (b), respectively.
Witho; = g4j/¢,,]=0,1,2and t; = C;/g;, the current transfer function of Fig. 12.16(a) is derived

FIGURE 12.16
Universal current-mode DO-OTA-C biquads based on canonical structure.

as
aoT17252 + (QoT2 + €271) 5 + (20 + @2 + 1)
717252 + 15 + 1

H(s) = (12.47)

With 8; = g4j/g; and t; = C;/g; we derive the general transfer function of Fig. 12.16(b) as

Botitas? + (Bo + B1) T2s + (Bo + B2)

H(s) =
() =v 71752 + 15 + 1

(12.48)

These universal structures have theinput summed in order to achieve the second-order term s2. This
is different from the universal biquads obtained above which do not need to include the input in the
summation since the outputs in the basic structures contain s2 terms.
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124 Current-Mode DO-OTA-C Ladder Simulation Filters

Activefiltersderived from passive L C laddershavevery low sensitivity. Wehave already discussed
opamp-RC and OTA-C filter design based on LC ladder simulation in Chapter 6 and Chapter 10,
respectively. Inthe simulation of passive L C ladders, the original equations are of the mixed current
and voltage type. In opamp-RC and OTA-C realizations we convert these equations to voltage-
only counterparts by scaling. In this section we convert these mixed equations to the current-only
equivalents[19, 20, 41, 42] and realize the corresponding current signal flow diagram using current-
mode DO-OTA-C building blocks. Discussion will bein parallel with that in Chapter 10 for ease of
understanding and comparison.

12.4.1 Leapfrog Simulation Structures of General Ladder

The general ladder network with series admittances and parallel impedances is recalled from
Chapter 10 and shown in Fig. 12.17. The equations relating the currents flowing in the series arms,

FIGURE 12.17
General admittance and impedance ladder with signals indicated.

I;, and the voltages across the parallel arms, V;, are also recalled and repeated below.
Ii=Y1(Vin=V2), Va=2Z(I1—13), I3=Y3(V2a—Va),

Va=Z4(Iz—1Is5), Is=Ys(Va—Ve), Vou=Ve= Zsls (12.49)

Thetransfer function Vgt/ Vin can be obtained from these equations by eliminating the intermediate
variables.

Themixed current and voltage signal equations are now converted by scaling into the counterparts
with current signals only. Scaled by a conductance g,,, EQ. (12.49) can be written as

h=32 (1), L=gnZo(h—1), I3=2(p—1),

Iy=gnZa(3—1Is), Is=2(I;— 1),

Ly = Ié = gmZsls (12.50)

Whereljf = gmV;. TheY;/gn andg,, Z; arecurrent transfer functions. Itisclear that thisequationwill
lead to the same transfer function 15/, = Vout/ Vin @sthat from Eq. (12.49). The corresponding
leapfrog (LF) signa flow diagram is shown in Fig. 12.18.

We can synthesize the current summers and current transfer functions of Y;/g,, and g,, Z; using
DO-OTAs and grounded impedances. We prefer using grounded impedances because grounded
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FIGURE 12.18
Current-mode leapfrog block diagram of general ladder.

capacitors and grounded DO-OTA resistors can absorb some DO-OTA finiteinput and output capac-
itances and conductances, respectively, thus reducing parasitic effects. From Eq. (12.50) we can see
that the current relations have atypical form of

Jj = Hj (Jj-1— Jj11) (12.51)

where J; canbe /; or I, and

H]= j/gm, for odd B szgrnZ], for even j (1252)

Equation (12.51) can be realized using a DO-OTA with atransconductance of g; and a grounded
impedance of

asshownin Fig. 12.19. ThisisaDO-OTA-grounded impedance section. The summation operation
issimply realized by the circuit node. It can be verified that the current transfer function from the
OTA input to output is equal to g; Z; = H;. Note that we relate the current transfer function H;
to the grounded impedance Z'. Thus the current transfer function realization can now become the
simulation of the normal grounded impedance.

J

i1
O

FIGURE 12.19
Current-mode DO-OTA-grounded impedance section.

Using Fig. 12.19 as a building block we can readily obtain the OTA-grounded impedance LF
structure from Eq. (12.50) or Fig. 12.18, as shown in Fig. 12.20. From Egs. (12.52), (12.53) we can
show the grounded impedances have the values, given by

1 !/ __ 8m r 1 /I 8m
Z N, Z;= gzzz’ Z3_g3gmy3’ Zy= g4Z4’

__1 — 8m

which are the same as the corresponding formulasin Chapter 10.
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FIGURE 12.20
General current-mode LF DO-OTA-grounded impedance realization.

From Eq. (12.54) we can seethat besidesthe general scaling by g,,,, each new grounded impedance
has a separate transconductance which can be used to adjust the impedance level. We can also note
that ij are not the original impedances Z; in the ladder. For the even number subscript, Z' is the

original impedance Z; in the parallel arm of the ladder multiplied by the ratio of g, /g;, w('nilefor
the odd number subscript, Z} is the inversion of the original impedance Z; or the admittance ¥; in
the series arm divided by the product of g;g,,. When g; = g,, = g, we have Z; = Y;/g? for odd j
and ij = Z; for even j. Further if g; = g,, = 1, then ZJ’. =Y, forodd j.

From the above discussion we can see that for any concrete passive L C ladder, the DO-OTA-C
realization problem becomes the DO-OTA-C realization of the grounded impedances and the simple
inductor substitution method can be conveniently used to simulate the impedance constituents. In
the following we introduce DO-OTA-C structures derived from different passive LC ladders using
the above general method.

We mention here that if voltage input and output are preferred, at the input end an OTA with
transconductance g, can be used to convert input voltage Vi, to input current /;; and a grounded
resistor ssmulated by an OTA with transconductance g,,, can be connected to the output end to convert
output current 1] to output voltage Vout.

12.4.2 Current-Mode DO-OTA-C LowpassLF Filters

Consider thefifth-order all-pole L C ladder with termination resistorsin Fig. 12.21(a). Comparing
the circuit with the general ladder in Fig. 12.17 gives Y1 = 1/R1, Zo = 1/sC2, Y3 = 1/sL3,
Z4=1/5Cq,Y5=1/sLsand Zg = 1/(sCg + 1/ Rg). The circuit equations accordingly become

h=g%Vn=V2), Va=35-T), L= V2-Va),
Va= it (a—1Is), Is= 5= (Va—Ve) ,

Vout = Ve = Is (12.55)

1
sCs+1/Re

Scaling Eqg. (12.55) by the factor of g, resultsin current functions H; given in Eq. (12.52) and
realized in theway as shownin Fig. 12.19, where grounded impedances Z;. aregivenin Eqg. (12.53).
The DO-OTA-C filter structureis given in Fig. 12.21(b). For given R;, C;, and L;, we can compute
the new parameter values as

81 =81gmR1, Cp=2Cy Cy=g3gmls, Cp=Ca,

sm &m

Cs=gsgmls, Cp=5Ce, gp=2p (12.56)
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FIGURE 12.21
Fifth-order all-pole LC ladders and LF DO-OTA-C realization.

The values can be adjusted overall by g, and individually by g;. Two design techniques can be
utilized. Oneisto makeall transconductancesidentical, thatis, g1 = go = g3 =ga=g5=g6=¢
with different capacitances which can be calculated from Eq. (12.56) as CJ/. = ggmL; when j is
odd; Cj’. = Cjg/gm When j iseven. The other isto select the same value for all capacitances, that
is, C;, = C; = Cy = C{ = Cg = C with different transconductances which are determined from
Eq. (12.56) as g; = C/gmLj, forodd j and g; = g,,C/C;, for even j. In many cases g,, can be
chosen to be unity. The filter structure consists of only current integrators and summers. When
Re = 1/gm, the gg termination OTA can be removed if the inverting terminal of the gg OTA is
connected to the outpuit.

Now we consider afifth-order finite zero passive L C ladder, as shownin Fig. 12.22(a). Similarly,
identifying that

-1 -1 - 1 =1
=g, Zo=5, Y3=sC3+ 7. Za= &

1 1
Y5 = SC5 + m, ZG = m (1257)

and following the same design procedure we can obtain the DO-OTA-C counterpart as shown in
Fig. 12.22(b). The difference from the all-pole type is in Y3 and Y5 which are a combination
admittance of two components and involve two steps. Taking Y3 as an example, we first have the
corresponding grounded impedance as

Y 1
Zh=—> —sLh+—— (12.58)
838m sL3g38m

where L; = C3/gagm. The second term in the equation represents a capacitance of the value
C5 = L3gagn. But thefirst term is equivalent to an inductor. This should then be further replaced
by an OTA-C inductor with L5 = C7%/g5g5. Combining the two steps we can also obtain C7 in
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FIGURE 12.22
Fifth-order finite zero passive LC and active DO-OTA-C LF filters.

terms of C3. The design formulas of the DO-OTA-C filter for all components are given below:

!
5= I — 82 I = r— 8383
81 = 818mR1, Cy = ~Ca  C3=gagmls, C3=-Cs,

YA/
7% ;o 7 _ 8585
C4 = o Ca, C5 = g58mLs, C5 = 2sem Cs,

Co=4%Ce, g5=54% (12.59)

where g, is the scaling conductance. Similarly, using the equation the DO-OTA-C filter can be
conveniently designed to have the same transconductances or the same capacitances. Note that we
can also use the form of the grounded inductor and floating capacitor, asin Chapter 10.

1243 Current-Mode DO-OTA-C BandpassLF Filter Design

The complexity of the DO-OTA-C filter based on the LF structure will depend on the number of
elements in the series and shunt branches of the passive ladder circuit. The bandpass LC structure
typically has series resonators in series arms and parallel resonators in parallel arms. Consider the
bandpass LC filter in Fig. 12.23(a). Recognizing that Y1 isa RLC series resonator, Z4 is a parallel
RL C resonator and Z» and Y3 are theideal parallel and series L C resonators and following the same
design procedure we can obtain the LF DO-OTA-C filter structure as shown in Fig. 12.23(b). The
component values can be formulated as

i

818
81 = g18mR1, Cp=gigmls, Cf = 2C1,
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FIGURE 12.23
Eighth-order bandpass LC and LF DO-OTA-C filter.
/I __ 82 " __ g/zg/z/gm
C2 - gm C25 C2 - g2 L3 k]
Ch= L Cl = %C Cc,=4%cC
3 838m L3, 3 838m 3 4 8m 4>
_ 84848m gl
C)= %Lm g = g—;R—4 (12.60)

where g, isthe scaling conductance. Further design can be carried out based on the equation.

12.4.4 Alternative Current-Mode L eapfrog DO-OTA-C Structure

One of the most outstanding features of the basic LF configuration we have studied is that the
circuit can bevery straightforwardly and conveniently explained with feedback theory. Analternative
form of the simulation structure of the general ladder in Fig. 12.17 isgivenin Fig. 12.24, which can
be obtained by simply rearranging the LF structurein Fig. 12.18. The corresponding OTA-grounded
impedanceversionisshowninFig. 12.25. Notethat we assumethat the scaling conductance g, = 1
and the OTAs have unity transconductances and thus the values of the grounded impedances Z j/ are
equal to ¥; and Z; for odd and even j, respectively. The OTA-C simulation can then be similarly
conducted by further simulating the grounded impedances using the inductor substitution method.
Thefifth-order lowpass L C filter in Fig. 12.21(a) issimulated in thisway and its DO-OTA-C version
isshownin Fig. 12.26.
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FIGURE 12.24
Alternative current-mode LF block diagram.

FIGURE 12.25
Alternative current-mode DO-OTA-grounded impedance LF structure.

Iy

FIGURE 12.26
Alternative current-mode DO-OTA-C LF structure based on all-pole LC ladder.

125 Current-Mode Multiple Loop Feedback DO-OTA-C Filters

Voltage-mode multiple loop feedback OTA-C filters were studied in Chapter 11. We now in-
vestigate the design of current-mode multiple loop feedback DO-OTA-C filters. The method used
is similar to that proposed in Chapter 11, but here in the current domain. Note that multiple loop
feedback filter structures have many attractive features such asrealizability of arbitrary transmission
zeros, use of only grounded capacitors, versatility in the type of structures and regquirement of fewer
components. Reference [22] has shown that to realize the same transfer function, the multiple loop
feedback method may need asmaller number of OTAsand haveless parasitic effectsthan the cascade
and ladder simulation methods.

125.1 Design of All-Pole Filters[23]

The general model of current-mode multiple loop feedback DO-OTA-C filters is shown in
Fig. 12.27. It is similar to the model in Chapter 11, but differs from that in that it consists of
current integrators and the current feedback network that may contain DO-OTA based current am-
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plifiers. The circuit equations of the current-mode model can be established following the same
procedurein Chapter 11. Denote the current integration constant of the jthintegrator ast; = C;/g;,
and the current feedback coefficient from the jth integrator output to the ith integrator input as f;;.
We first describe the current feedback network by

[1;] =[F111.] (12.61)

where [1,] = [I,1 I,2--- Ion]’, the output currents of integrators, [Ir] = [Ir1 If2---Ip,]", the
feedback currentsand [ F] = [ fi;]nxn, the feedback matrix.

Feedback Network
In Im IB Ifn I
Lo Ha el | Moy le | Mogs L ] ! B | %
T~ 3= I 7o

FIGURE 12.27
Current-mode multiple loop feedback DO-OTA-C model.

Then the current feedforward part is determined by

[M ()] [1,] = [Blfin — [I7] (12.62)
where
ST]
—1s10
[M(s)] = . (12.63)
—1s1,
[B]=[10---0] (12.64)

The equation for the whole current-mode DO-OTA-C system is therefore derived by combining
Egs. (12.61) and (12.62) as

[A)][1o] = [B] fin (12.65)
where
sti+ fuu fi2 Sfin
-1 s+ f2 fon
[A®)] =[M)] +[F] = . (12.66)
—1st, + fnn

From Eq. (12.65) we can obtain all the integrator current outputs

[1,] = [A()] ' [B] in (12.67)
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Using Eq. (12.66) and Eq. (12.64) we derive the overall current transfer function from Eq. (12.67)

H(s) = Iout/lin = Ion/Iin = 1/]A(s)| (12.68)

where |A(s)| is the determinant of matrix [A(s)].

In feedback coefficient matrix [ F] the element f;; # 0, if there exists feedback between I; and
I,;; otherwise, f;; = 0. The nonzero current coefficient f;; can be redized as f;; = gij1/gij2 or
simply asadirect connectionif f;; = 1. Asinthevoltage-mode casein Chapter 11, according to the
one-to-one correspondence between feedback matrix [ F] and filter architectures for a given order,
the generation of filter structures can be accomplished by finding all combinations of [ F] nonzero
elements. (If the output current of any integrator is fedback to some circuit node, then [ F] has one
and only one nonzero element in each column. And therefore for the general nth-order there are n!
possible combinations.) We then have all different feedback connections, i.e., all filter structures. In
the minimum component or canonical realization, namely, one DO-OTA and one capacitor for one
pole, to realize the unity dc gain nth-order all-pole characteristic only » DO-OTAs and n capacitors
areneeded inthewhole system. Thisclearly requiresthat there should not be any circuit components
in the feedback network. Therefore feedback can be achieved only by direct connections and the
values of all nonzero elementsin [ F] become unity.

To exemplify the general theory and show how to realize the desired all-pole filter characteristic:

Hy(s) = 1/ (an" 4+ Byas" 4+ Bis + 1) (12.69)

we discuss the design of canonical fourth-order current-mode DO-OTA-C filters. The [ F] matrices,
corresponding transfer functions H (s) and simple design formulas for the realization of Eq. (12.69)
of five cases are shown below and their structures are given in Fig. 12.28.

Structure (8): f11 = f12 = fo3 = fas =1,

H(s) = 1/[t172t3tas® + 1o137as° + (1374 + 1174 + T172)52 + (T2 + Ta)s + 1]
71 = B4/B3,172 = B3/B,t3= B/(B1 — B3/B),t4a= B1— B3/B, B = B> — B1B4/B3

Structure (b) : f11 = fi2 = f23 = faa =1,

H(s) = 1/[t1tot3tas® + T2t37a5® + (1374 + T174)5% + (71 + Ta)s + 1]
T1 = B4/Bs, 12 = B3/[B2 — (B1 — B4/B3)B4/Bs], 13 = B2/(B1 — B4/ B3) — B4/Bg,
T4 = B1 — B4/B3

Structure (C) : f11 = fi2 = fiz = faa =1,

H(s) = 1/[1'1121314‘94 + 0137453 + T3T45% + (11 + Ta)s + 1]
71 = Ba/B3, 72 = B3/B2, 13 = B2/(B1 — Ba/B3), 14 = B1 — B4/ B3

Structure (d) : f11 = fi2 = fua = fo3 =1,

H (s) = 1/[t11213145% + 2137453 + (1374 + T174)5° + Tas + 1]
71 = Ba/B3, 72 = B3/(B2 — B1B4/B3), 13 = B2/B1 — Ba/B3, 14 = B1

Structure (€) : f11 = fiz = fiz= fua =1,

H(s) = 1/(T1T2T3‘C4S4 + ‘L'2‘L'3‘L'4S3 + ‘L'3‘L'4S2 + 145 + 1)
T4 = B1, 13 = B2/B1, 70 = B3/B2, 11 = B4/B3
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FIGURE 12.28

Fourth-order current-mode DO-OTA-C filters.

A numerical example of the fourth-order filter design for realizing the normalized Butterworth
approximation with the desired function

1
Hy(s) =

5%+ 26131353 + 3.4142152 + 2613135 + 1

is now given. Table 12.4 presents the parameter values of all the canonical fourth-order filtersin
Fig. 12.28, which are obtained by using the explicit design formulas given in the above.

The explicit expression of the general current transfer function of the fourth-order model with the

general [ F] can also be derived, which isthe same in form as that in Chapter 11 [23]. Some typical
genera nth-order current-mode DO-OTA-C architectures may include the canonical FLF structure
corresponding to f1; = 1, fori = 1,2, ..., n and the canonical LF configuration associated with
fu=1 fij=1for j =i+ 1[23].

©1999 CRC PressLLC



Table 12.4 Parameter Values for Fourth-Order Butterworth Filter
Circuit T4 73 2 T1

Fig. 12.28(a) | 1.53073 157716 1.08239 0.382683
Fig. 12.28(b) | 2.23044 1.14805 1.02049 0.382683
Fig. 12.28(c) | 2.23044 153073 0.765367 0.382683
Fig. 12.28(d) | 261313 0.92388 1.08239 0.382683
Fig. 12.28(e) | 2.61313 1.30656 0.765367 0.382683

125.2 Realization of Transmission Zeros
The transfer function with arbitrary transmission zeros of

Aps" + Ap_1s" T4+ Ars + Ag

H;(s) =
a(s) Bys" + By_1s" 14+ ...+ Bis+1

(12.70)

can be realized by using the input distribution and output summation methods. Although the theory
issimilar to that in Chapter 11, we want to repeat the formulation process to show how the circuits
work in current domain.

12521 Multiple Loop Feedback with Input Distribution

The multiple current-integrator loop current-feedback model with a current input distribution
network is shown in Fig. 12.29. The current distribution coefficient to the input of the jth integrator
isdenoted as«; = g4;/8r (0o = ga0/&r iSthe direct transmission coefficient from the overall input
to the overall output). We can establish the equation relating the output currents 1,; of integrators to

I Feedback Network l

T .
g
o
i
5

I
{

FIGURE 12.29
Current-mode multiple loop feedback and input distribution model.

the overall input current I;,,, which is the same as Eq. (12.65) except now

[B] =[a1 a2 o] (12.72)

From the circuit we can see that the overall output current can be expressed in terms of the overall
input current and the output current of the nth integrator as

Tout = a0fin + Ion (22.72)

©1999 CRC PressLLC



Solving Ion from Eq. (12.65) with [ B] in Eq. (12.71) leads to

1 n
Ion= —— iAin () 12.73
on 1AG5)| ;0@ j ($)in ( )

and substituting Eq. (12.73) into Eq. (12.72) we derive the circuit transfer function as

_ Tour _
H(s) = = |A( i Za] Ajn(s) (12.74)

where A;; (s) represent cofactors of matrix [A(s)].

The transfer function in Eq. (12.74) may have the general form of Eq. (12.70) with reference to
matrix [A(s)] in Eq. (12.66). The system poles are determined by 7; and f;; and the transmission
zeros may be controlled arbitrarily by transconductances g,,; through weights o;.

12.5.2.2 Multiple Loop Feedback with Output Summation

Look at Fig. 12.30 which isabasic multiple integrator |oop feedback configuration with an output
summation OTA network, compared with Fig. 12.29. The input current is applied only to the input
node of thefirst integrator. The overall output isaweighted sum of all output currents of integrators
and the overall input current.

| Feedback Network |

a3

=
T
aE>)

a2

a

FIGURE 12.30
Current-mode multiple loop feedback and output summation model.

With y = go/g,, from Fig. 12.30 we can also obtain Eq. (12.65), but with

[Bl=[y 0---0 (12.75)

From the circuit we can observe that 1,,; = In(j—1)84j/sC;, ad I,; = Ij—1)g;/sC;, which give
with Bo = ga0/g0 and B; = gaj/g;
loaj = Bjloj (12.76)
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Since the overall output current is the sum of output currents of al the g,; OTAs, we can obtain

n
Tow = Poloo + Y _ Biloj (12.77)
j=1

Notethat 7,0 = y Iin. Solving Eq. (12.65) with [B] in Eq. (12.75) yields

A1),
lLj =y 1A()] Iin (12.78)

From Egs. (12.77) and (12.78) we can therefore obtain the general current transfer function as

_ Jow _ 1N
H(s) = T = Bo + ] ;,@Alj (s) (12.79)

Design can be carried out based on the equation for the summation type current-mode DO-OTA-C
filters.

125.2.3 Filter Structuresand Design Formulas

Many filter structures and their design formulas can be derived based on the above discussion.
We can obtain explicit design formulas for general nth-order architectures with the distribution and
summation networks [24]. For simplicity, in the following we illustrate four third-order structures
and present their design formulasfor the synthesis of elliptic functions[i.e.,n = 3and A3 = A1 =0
in Eq. (12.70)].

The four structures are given in Fig. 12.31 [22]. The configuration with the FLF (that is, f11 =
f12 = f13 = 1) and the input distribution network in Fig. 12.31(a) has the current transfer function
as

aaT1tos? + (372 + 0271 5 + (03 + a2 + 01)

H(s) =
() 1727353 + To13s2 + 135 + 1

(12.80)

The parameter value equations for the denominator and numerator are formulated by comparing
Eqg. (12.80) with Eq. (12.70) forn = 3and A3 = A1 = 0as

13=B1, T2=B2/B1, 11=B3/B (12.81)
a3 = A2B1/B3, az = —a3B3/B1Bs3,
a1 = Ag — a3 — a2 (12.82)

The current transfer function of the FLF and summation structure in Fig. 12.31(b) is derived as

Brtatas? + B3

H(s) = 12.83
()= ‘L’1‘L’2‘E3S3 + ‘L’2‘L’3S2 + 135 +1 ( )

The parameter value equations for the numerator, with y = 1, are demonstrated as
B1=Az/B2, Ps= Ao (12.84)
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FIGURE 12.31
Third-order elliptic current-mode FLF and LF DO-OTA-C structures.

The denominator parameters are calculated using Eqg. (12.81).

The circuit with the LF architecture (f11 = f12 = fe3 = 1) and the input distribution network is
shown in Fig. 12.31(c). It has the current transfer function as

a3t1T252 + (a3t2 + apt1) s + (a3 + a2 + 1) (12.85)
T1Totas3 + 1o1as?2 + (11 + 1) s + 1 '

H(s) =

and the design formulas are given by

171 = B3/B2, 12 = By/(B1— B3/B2) ,

13 = B1— B3/B> (1289
B1—B3/B> BZZ
ag=Ap=—p—, a2 = ~ BB/
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a1 = Ag — a3 — a2 (12.87)

For the LF and summation combination structure in Fig. 12.31(d) we have the current transfer
function as )
Bit2t3s® + (B1 + B3)

H(s) = 12.88
() =v TToT3s3 + o352 + (11 + 13) s + 1 ( )

and with y = 1, the design formulas are derived as
B1=A2/B2, pz=Ao—pH1 (12.89)

The denominator parameters are given in Eq. (12.86).

Theminussignin az in Egs. (12.82) and (12.87) simply means the interchange of the associated
ga2 OTA input terminals. The zero values of «; or g;, if any, imply that the corresponding g,;
OTAs should be removed. It should also be noted that to realize this particular kind of filters the
distribution method [Figs. 12.31(a) and 12.31(c)] requires seven OTAs and difference matching,
while the summation approach [Figs. 12.31(b) and 12.31(d)] needs five OTAs and no difference
matching. Hence the summation approach is preferable. Thisisin contrast with the voltage-mode
design in Chapter 11, where the distribution method is advantageous.

For the normalized third-order elliptic lowpass filter with

0.588358s52 + 1
1.67029s3 + 1.41856s2 + 1.91391s + 1

Hy(s) = (12.90)

The parameter values for pole redlizations are calculated as 11 = 1.17745, 1o = 0.741181, 13 =
1.91391 for the FLF structure and 1 = 1.17745, to = 1.92618, 13 = 0.736459 for the LF structure.
The parameter values for zero realizations are computed as a3 = 0.674176, ap = —0.424379,
a1 = 0.750203 for the FLF and distribution architecture, oz = 0.259418, oy = —0.424379, a1 =
1.16496 for the LF and distribution structure, 81 = 0.414758, 83 = 1 for the FLF and summation
architecture, and 81 = 0.414758, B3 = 0.585242 for the LF and summation configuration.

12.6 Other Continuous-Time Filter Structures

In this section we briefly overview other popular continuous-time active filter architectures and
design techniques. Thisincludes balanced opamp-RC and OTA-C structures, MOSFET-C and OTA-
C-opamp filters, and filters using current conveyors.

12.6.1 Balanced Opamp-RC and OTA-C Structures

The opamp-RC and OTA-C (voltage- and current-mode) filters we have discussed so far al are
single ended. In this section we discuss active filter design based on balanced architectures.

Balanced structures are most widely utilized in continuous-time integrated filter design [1]-{4],
[26]{30]. This is because balanced structures can increase the common-mode rejection ratio,
eliminate the even-order harmonic distortion components and reduce the effects of power supply
noise. Balanced configurations can be obtained from single-ended structures. The single-ended to
balanced conversion can be generally achieved by first mirroring the whole single-ended circuit at
ground (duplicating all the components and changing the terminal polarities of all mirrored active
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elements) and then combining each original amplifier and its mirrored counterpart into a balanced
differential input-differential output device with inverting-noninverting gains. Notethat theresulting
balanced version will have an added benefit of 3dB improvement in dynamic range. Because signals
of both polarities are now available, signinverterswith unity gain can bereadily realized by asimple
crossing of wires and thereby save the components in question.

These genera rules for converting single-ended structures to balanced differential counterparts
are suitable for opamp-RC filtersin Chapters 4—7, OTA-C filtersin Chapters 8-11 and current-mode
DO-OTA-C filters in Sections 12.2-12.5. For example, the process of converting a single-ended
opamp-RC integrator into abalanced oneis shown in Fig. 12.32. The balanced OTA-C integrator is

FIGURE 12.32
Balanced opamp-RC integrator.

shown in Fig. 12.33(a), which can be derived from the single-ended prototypein Fig. 12.33(b) using
the conversion method.

FIGURE 12.33
Balanced OTA-C integrator.

We should say that balanced filter structures can also be generated without having single-ended
equivalents. Notethat compared with the single-ended circuit the balanced equivalent requirestwice
the number of passive components and active components with balanced differential inputs and
differential outputs often consist of more complicated circuitry than their single-ended counterparts.
It is also noted that in integrated filters where the balanced version is used, the whole IC filter is
presumably customer designed [2]. Thus athough balanced differential opamps and OTASs may not
be commercially available, this will not pose a major problem. More discussion on balanced filter
structures can be found in [2, 4, 26, 28].

12.6.2 MOSFET-C Filters

Asiswell known, automatic electronic tuning is crucial for fully integrated filters to compensate
the drifts of element values and filter performances due to component tolerance, device nonideality,
parasitic effects, temperature, environment and aging. Integration of analog circuits in MOS tech-
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nology is also driven towards a single chip implementation of mixed circuits and systems because
digital circuits are integrated in MOS technology.

In conventional active RC filters, the resistor is the problem; it has a very limited range of values
(normally R < 40k<2 without use of special processing techniques and resistances beyond the limit
will be physically too large) and is not electronically tunable.

Asiswell known, a MOSFET can be used as a voltage-controlled resistor biased in the ohmic
region, with the resistance being adjustable by the bias gate voltage. It is therefore obvious that
using the MOSFET to replace theresistor in active RC filters can meet the two requirements and the
resulting filters are called the MOSFET-C filters.

MOSFET-C filters are usually implemented using a balanced structure [26]-{30]. Figure 12.34
showsabalanced MOSFET-C integrator. Thebalanced active RC prototypeisalso giveninthefigure
for comparison. MOSFET-C filters can be similarly constructed by replacing resistorsin active RC
filters by their corresponding MOSFETS.

(a) (b)

FIGURE 12.34
Balanced MOSFET-C integrator.

As in active RC filter design, we must consider the opamp nonideality effects including the
frequency limitation and compensation techniques may be needed [29]. A new and important
problem peculiar to MOSFET-C filters is the nonideality of the MOSFET. The MOSFET is in
nature a nonlinear resistor and we must reduce or eliminate the MOSFET nonlinearity. Thisisalso
why MOSFET-C filters must have balanced structures (a single-ended configuration resultsin high
nonlinearities and distortion, but balanced structures can eliminate the even-function nonlinearity).
In the literature, a special approach for a complete cancellation of MOSFET nonlinearity has been
proposed [30], which isshown in Fig. 12.35.

FIGURE 12.35
Modified MOSFET-C integrator.

We must stress that the MOSFET-C approach is one of the most popular methods in continuous-
time integrated filter design, which is second to only the OTA-C method. The major advantage of
the MOSFET-C approach is that the well developed active RC design methods can be directly used
and the congtituent components (opamps, MOSFETs and capacitors) all are standard and available
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in most IC design libraries. Like conventional active RC filters, this approach however remains
suffering from the limited frequency range due to the use of opamps and the inherent nonlinearities
of MOSFET resistors that must be canceled. Aswe mentioned before, OTAs require much simpler
circuitry than opamps (for example, the first stage of the opamp) and have a very high-frequency
response and an electronically tunable transconductance. The OTA-C filtering approach dominates
in high-frequency integrated continuous-time filter design and has been successfully implemented
in different |C technologiesincluding CMOS. The reader may refer to references [1]4], [26]{32]
for details of MOSFET-C filter design.

12.6.3 OTA-C-Opamp Filter Design

Since an OTA has a simple circuitry suitable for MOS integration and has a transconductance
tunable by the bias voltage or current, we can also use the OTA to replace the resistor in opamp-
RC filters, resulting in the OTA-C-opamp filters, which can resolve the problems due to the use
of resistors. More often, OTA-C-opamp filters are developed to solve the parasitic capacitance
problem in OTA-C filters[32]. That is, inserting an opamp into the OTA-C integrator to reduce the
parasitic effects by the virtual ground property of the opamp. Figure 12.36(a) shows a single-ended
integrator which consists of an OTA and an opamp with feedback from aMiller capacitor [34]. The
corresponding balanced structureisgiveninFig. 12.36(b). Similar to the compensation techniquefor
the OTA-C integrator introduced in Chapter 9 we can insert asmall MOSFET resistor in serieswith
the Miller capacitor to compensate the nonideal frequency characteristics of the OTA and opamp.

Cc
1|
1l

FIGURE 12.36
OTA-C-opamp integrators.

The generation of OTA-C-opamp filter structures is simple, either by replacing the resistor in
opamp-RCfiltersby the OTA or by substituting the OTA-C-opampintegrator for the OTA-Cintegrator
in OTA-C filters.

In some high-frequency OTA-C filters where a simple single-stage OTA is normally used, the dc
gain of the OTA isvery low and usually parasitic capacitances are high. Therefore, normally avery
wide range of tuning is required to compensate the nonideal effects such as parasitic capacitances
and poor output impedances [33]. The OTA-C-opamp technique may present an alternative to the
OTA-C method since OTA-C-opamp filters are insensitive to parasitic capacitances due to the virtual
ground of the high gain opamp input and have high dc gain due to the two stage arrangement of
integrators. However, the OTA-C-opamp method suffers from the frequency limitation imposed by
the opamp and the large power consumption and chip area due to more active devices used (one extra
opamp for each integrator). Also, considering that OTA-C filters which may be seen as a result of
replacement of both opamps and resistors in opamp-RC filters usually have the structures that have
agrounded capacitor on each node which can be used to absorb OTA parasitic capacitances, as has
been seen from Chapters 8-11, the OTA-C-opamp approach may no longer be attractive.

We can a so have current-mode DO-OTA-C-opamp filter structures. Figure 12.37 gives a current-
mode integrator which uses an opamp, a capacitor, and a DO-OTA. Using this integrator to replace
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the DO-OTA-C integrator in current-mode DO-OTA-C filters in Sections 12.2-12.5 we can easily
generate corresponding current-mode DO-OTA-C-opamp filters.

Ii0+
% © Io
FIGURE 12.37

Current-mode DO-OTA-C-opamp integrator.

12.6.4 ActiveFiltersUsing Current Conveyors

The second-generation current conveyor (CCI1) which wasfirst proposedin 1970 35] hasrecently
been widely used in high performance analog signal processing circuitsincluding activefilters [36]—
[38] due to its mixed voltage and current functions, wide bandwidth and large dynamic range. In
Chapter 3 a very brief introduction was given. Now we discuss applications of the CClI in active
filter design.

It will be recalled from Chapter 3 that the CCl| is defined as [35]

I 0007[V,
Vi |=|100]]| L
I, 0+10 || V.

Normally the CClls with the positive and negative polarities are represented by the CCll+ and
CCll—, respectively.

The CCll isamixed voltage and current active building block. With terminal Z grounded the CCl |
can be used asavoltage follower from terminal Y to terminal X. With terminal Y grounded the CCl|
can aso be used asacurrent follower from terminal X to terminal Z. What is more, the CClI together
with an external resistor connected from terminal X to ground can be used as a transconductance
amplifier with the transconductance being equal to thereciprocal of the resistance, with voltageinput
to terminal Y and current output from terminal Z. Ideally the CClI transconductance amplifier has
the characteristic of 7, = £+ V.

Because of its versatility of function the CCll can be used to construct many interesting filter
structures. The building blocks such asthe voltage and current integrators and the simulated inductor
areillustrated in Fig. 12.38(a), (b), and (c), respectively, [35]. For simplicity the ground connection
in the CCIl symbol in Chapter 3 is dropped. The equivalent inductance of the simulated inductor is
givenby L = R1R2C.

A two-CClI active RC biquad is displayed in Fig. 12.39. This circuit may be considered to be
either a cross-connection of an ideal integrator and alossy integrator or a parallel connection of an
active inductor, a capacitor, and aresistor. The voltage outputs from the circuit nodes of the biquad
with grounded capacitorsideally give the lowpass and bandpass filters for the voltage input through
R3, given by

1
V —_—
Hpp(s) = =2 — RaRsC1Co (12.91)

- 24 1 1
V|n sc+ R3C1S + R1R2C1C>
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FIGURE 12.39
Two-CClIl biquad.
BP R3C
Hpp(s) = ;’, =1 (12.92)
STt RS T Rk

To give another example we consider the CCII-RC structure using one CCIl in Fig. 12.40. Routine
circuit analysisyields

Vi

Hip(s) = 2% = 8182 (12.93)
Vip  s°C1C2 + 581 (C1+ C2) + 8182
Vi C

Hpp(s) = =% = 28122 (12.94)

Vigp  s2C1C2+ 581 (C1+ C2) + g182

indicating that the circuit can offer the lowpass and bandpass functions. The reader should check
that the w, and Q sensitivities are very low.

In practice, CCII-RC filter design must also take the effects of CCll nonidealities into consid-
eration. These nonidealities include finite impedances at terminals Y, X, and Z and the error or
frequency dependence of voltage and current following characteristics (from terminals Y to X and
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FIGURE 12.40
Single-CCll biquad.

terminalsX to Z, respectively). They will adversely affect thefilter frequency performancein various
ways. Detailed discussion and compensation methods can be found in [39, 40].

12.6.5 Log-Domain, Current Amplifier, and Integrated-RL C Filters

These filtering techniques are very active research topics these days. We will not discuss them
in details in this book, but give references for the reader who may be interested to know them.
Log-domain filters (designed based on the log operation of the transistor nonlinear characteristic)
have been investigated in [45]{49]. They are internally nonlinear externally linear current-mode
filters. References[41]-{44] are concerned with current amplifier filters, linear current-mode filters.
Publications on new integrated RLC filters are given in [50]-{53], the interest in which has been
aroused by recent surge in wireless communications.

12.7 Summary

The design of current-mode DO-OTA-C filters has been studied. First- and second-order current-
mode filters have been derived using asingle DO-OTA and five-admittance model. They are suitable
for both discrete and 1C implementations. Current-mode two-integrator loop DO-OTA-C archi-
tectures have been obtained and the range of filter functions which are supported by the various
architectures has been shown. The filter performances including the effects of DO-OTA nonide-
aities have also been analyzed. Current-mode DO-OTA-C filters based on leapfrog simulation of
passive L C ladders have been discussed. Systematic generation and design of current-mode multiple
integrator loop feedback DO-OTA-C filters have been studied.

Instead of synthesizing the filters based on voltage building blocks such as voltage integrators
and voltage amplifiers using single output OTAS, all the realizations in Sections 12.2-12.5 are
based on current building blocks such as current integrators and current amplifiers incorporating
DO-OTAs. The current-mode DO-OTA-C filter structures derived in this chapter, together with
those voltage-mode OTA-C counterparts in Chapters 8-11 complementarily form a complete set
of transconductance amplifier and capacitor filter architectures. This will no doubt give the filter
designer more opportunities to choose the best structure for their requirements.

In this chapter we have also introduced various other successful techniques and structures for
continuous-time filter design such as balanced opamp-RC and OTA-C structures, MOSFET-C con-
figurations, OTA-C-opamp filters, and active filters using CClls.

We stress that continuous-time integrated filter design for high-frequency applications has pro-
gressed tremendously and remains an activetopic. Inthisbook, we have concentrated on the conven-
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tional well-established opamp-RC filtersand the predominant OTA-C filtersthat have been devel oped
more recently. We have also discussed other popular methods such as the current-mode DO-OTA-C
and MOSFET-C approaches. The discussion in thisbook has been mainly on filter design methods,
structure generation and performance analysis in the block level. Some important issues such as
solid-state (transistor-level) implementation, automatic (on-chip) tuning, and computer-aided design
of continuous-time filters have not been discussed in details. The reader may be interested to refer
to relevant publications for solid-state implementation [1, 4, 5, 7, 28], automatic tuning [54]{57]
and filter CAD [58]-{60].

It is also stressed that in high-frequency continuous-time integrated filter design, the study of
filter structures and synthesis methods is as important as solid-state implementation, because the
performance of a filter depends on the constituent components, the connection of the components,
and the principlesbased on which the structureisderived, together with the | C technol ogy, fabrication
techniques, and packaging methodsused. Thispresentsthevariety of areasto which filter researchers
and designers can be devoted to improve and enhance filter performances for advanced applications.
At the end of the book we hope that we have armed the reader with sufficient background to explore
further topicsin this exciting and challenging area.
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TABLE A.1

Butterworth Polynomials, B,(s) in Expanded and in Factored Form

n Butterworth Polynomials

1 s+1

2 2+ 1.4142s + 1

3 $#+22+25+1=(+1)(s=2+s+1)

4 st +2.613s% + 3.4145% + 2.613s + 1 = (s2 + 0.765s + 1)(s? + 1.848s + 1)

5 &%+ 3.2361s* + 5.2361s% + 5.23615% + 3.2361s + 1 = (s + 1.0000)(s2 + 0.618s + 1)(s*> + 1.618s + 1)

6 s + 3.86375% + 7.4641s* + 9.14168> + 7.4641s2 + 3.8637s + 1 = (s2 + 0.5176s + 1)(s? + 1.4142s + 1)(s® + 1.9318s + 1)

7 87+ 4.4940s° + 10.0978s° + 14.5918s* + 14.59186s% + 10.0978s2 + 4.4940s + 1 = (s + 1.0000)(s> + 0.445s + 1)(s> + 1.247s + 1)(s> + 1.802s + 1)

8 s8 + 5.125857 + 13.1317s° + 21.8462s° + 25.6884s* + 21.8462s% + 13.1371s2 + 5.1258s + 1 = (s* + 0.3902s + 1)(s* + 1.1112s + 1)(s® + 1.663s + 1)(s® + 1.9616s + 1)

9 %+ 5.7588s8 + 16.5817s7 + 31.1634s° + 41.9864s> + 41.9864s* + 31.1634s° + 16.5817s + 5.7588s + 1
= (s + 1.0000)(s? + 0.3474s + 1)(s? + 1.0000s + 1)(s? + 1.532s + 1)(s> + 1.8794s + 1)

10 510+ 6.3925s° + 20.4317s8 + 42.8021s7 + 64.8824s° + 74.2334s° + 64.8824s* + 42.8021s% + 20.4317s% + 6.3925s + 1
= (2 + 0.3128s + 1)(s* + 0.908s + 1)(s* + 1.4142s + 1)(s> + 1.782s + 1)(s® + 1.9754s + 1)
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TABLE A.2
Denominator Polynomials in Expanded and in Factored Forms for Chebyshev Filters of Odd Order

n Polynomials

Ay = 0.1dB (€ = 0.15262)

1 s+ 6.55220

3 3+ 1.93881s% + 2.62950s + 1.63805 = (s? + 0.96941s + 1.68975)(s + 0.96941)

5 5+ 1.74396s* + 2.77070s® + 2.39696s% + 1.435565 + 0.40951 = (s + 0.33307s + 1.19494)(s? + 0.87198s + 0.63592)(s + 0.53891)

7 87+ 1.69322s¢ + 3.18350s° + 3.16925s* + 2.70514s% + 1.48293s2 + 0.56179s + 0.10238 = (s? + 0.16768s + 1.09245)(s? + 0.46983s + 0.75322)(s? + 0.67893s + 0.33022)(s + 0.37678)

9 7+ 1.67270s% + 3.64896s7 + 3.96385s° + 4.19161s° + 2.93387s* + 1.73412s% + 0.69421s2 + 0.19176s + 0.025595 = (s? + 0.10088s + 1.05421)(s? + 0.29046s + 0.83437)(s* +
0.44501s + 0.49754)(s> + 0.54589s + 0.20135)(s + 0.29046)

A, =0.5dB (e = 0.34931)

max

1 s+2.86278

3§+ 1.25291s + 1.53490s + 0.71569 = (s + 0.62646s + 1.14245)(s + 0.62646)

5 5+ 1.17249s* + 1.93738s® + 1.30958s2 + 0.75252s + 0.17892 = (s? + 0.22393s + 1.03578)(s? + 0.58625s + 0.47677)(s + 0.36232)

7 §7+ 1151225 + 2.412655° + 1.86941s* + 1.64790s° + 0.75565s2 + 0.28207s + 0.04473 = (s? + 0.11401s + 1.01611)(s> + 0.31944s + 0.67688)(s? + 0.46160s + 0.25388)(s + 0.25617)

9 ¢+ 1.14257s8 + 2.90273s7 + 2.42933s° + 2.78150s° + 1.61139s* + 0.98362s% + 0.34082s2 + 0.09412s + 0.01118 = (s* + 0.06891s + 1.00921)(s> + 0.19841s + 0.78937)(s> + 0.30398s
+ 0.45254)(s? + 0.37288s + 0.15634)(s + 0.19841)

Ammc =1dB (5 = 050885)

1 s+ 1.96523
3 %+ 0.73782s% + 1.02219s + 0.32689 = (s> + 0.36891s + 0.88610)(s + 0.36891)

5  §5+0.70646s* + 1.49954s° + 0.69348s% + 0.45935s + 0.08172 = (s? + 0.13492s + 0.95217)(s* + 0.35323s + 0.39315)(s + 0.21831)
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TABLE A.2

Denominator Polynomials in Expanded and in Factored Forms for Chebyshev Filters of Odd Order (continued)

n Polynomials
7 57 +0.698095° + 1.99367s° + 1.03955s* + 1.14460s° + 0.38264s2 + 0.16613s + 0.02043 = (s> + 0.06913s + 0.97462)(s2 + 0.19371s + 0.63539)(s> + 0.27991s + 0.21239)(s + 0.15534)
9 5% +0.69468s + 2.49129s7 + 1.383755¢ + 2.07675s° + 0.856875* + 0.644475% + 0.16845s> + 0.05438s + 0.00511 = (s + 0.04189s + 0.98440)(s> + 0.12063s + 0.76455)(s* + 0.18482s
+0.42773)(s? + 0.22671s + 0.13153)(s + 0.12063)
A, =2 dB (e = 0.76478)
1 s+1.30756
3 s+ 0.73782s% + 1.02219s + 0.32689 = (s> + 0.36891s + 0.88610)(s + 0.36891)
5 5+ 0.70646s* + 1.49954s% + 0.69348s2 + 0.45935s + 0.08172 = (s + 0.13492s + 0.95217)(s* + 0.35323s + 0.39315)(s + 0.21831)
7 7+ 0.69809s° + 1.99367s> + 1.03955s* + 1.14460s° + 0.3826452 + 0.16613s + 0.02043 = (s2 + 0.06913s + 0.97462)(s* + 0.19371s + 0.63539)(s2 + 0.27991s + 0.21239)(s + 0.15534)
9 5% +0.69468s® + 2.49129s7 + 1.383755 + 2.07675s° + 0.856875* + 0.644475° + 0.16845s% + 0.05438s + 0.00511 = (s + 0.04189s + 0.98440)(s? + 0.12063s + 0.76455)(s* + 0.18482s
+0.42773)(s? + 0.22671s + 0.13153)(s + 0.12063)
A, =3 dB (€ = 0.99763)
1 s+ 1.00238
3 5%+ 0.59724s% + 0.92835s + 0.25059 = (s? + 0.29862s + 0.83917)(s + 0.29862)
5 %+ 0.57450s* + 1.41503s% + 0.54894s2 + 0.40797s + 0.06265 = (s? + 0.10972s + 0.93603)(s? + 0.28725s + 0.37701)(s + 0.17753)
7 7 +0.5684256 + 1.91155s% + 0.83144s* + 1.05185s + 0.30002s> + 0.14615s + 0.01566 = (s> + 0.05629s + 0.96648)(s> + 0.15773s + 0.62726)(s> + 0.22792s + 0.20425)(s + 0.12649)
9 52+ 0.56594s° + 2.41014s7 + 1.112325° + 1.943865° + 0.67893s* + 0.58351s° + 0.13139s2 + 0.04759s + 0.00392 = (s> + 0.03413s + 0.97950)(s* + 0.09827s + 0.75966)(s* + 0.15057s

+ 0.42283)(s? + 0.18470s + 0.12664)(s + 0.09827)

©1999 CRC Press LLC



TABLE A.3

Elliptic Approximation Functions for A,,,, = 0.5 dB

n A,;, Numerator constant K Numerator of F(s) Denominator of F(s)
(@) Q, =15

2 83  0.38540 s2 + 3.92705 s + 1.03153s + 1.60319

3 219 031410 52 + 2.80601 (s* + 0.45286s + 1.14917)(s + 0.766952

4 363 0.015397 (s? + 2.53555)(s* +12.09931) (s* + 0.25496s + 1.06044)(s> + 0.92001s + 0.47183)

5 506 0.019197 (s? + 2.42551)(s? + 5.43764) (s* + 0.16346s + 1.03189)(s*> + 0.57023s + 0.57601)(s + 0.42597)
(b) Q, =2.0

2 139 0.20133 s2 + 7.4641 s? + 1.24504s + 1.59179

3 312 0.15424 s2 + 5.15321 (s* + 0.53787s + 1.14849)(s + 0.69212)

4 48,6 0.0036987 (2 + 4.59326)(s? + 24.22720)  (s® + 0.30116s + 1.06258)(s* + 0.88456s + 0.41032)

5 661 0.0046205 (8% + 4.36495)(s? + 10.56773)  (s® + 0.19255s + 1.03402)(s? + 0.58054s + 0.52500)(s + 0.392612)
(©) Q. =30

2 215 0.083974 s2 + 17.48528 s? + 1.35715s + 1.55532

3 428 0.063211 s2 +11.82781 (s* + 0.58942s + 1.14559)(s + 0.65263)

4 641 0.00062046 (s* + 10.4554)(s* + 58.471) (s* + 0.32979s + 1.063281)(s? +0.86258s + 0.37787)

5 855 0.00077547 (s? + 9.8955)(s? + 25.0769) (s* + 0.21066s + 1.0351)(s? + 0.58441s + 0. 496388)(s + 0.37452

©1999 CRC Press LLC



	2573FM.PDF
	Continuous-Time Active Filter Design
	Preface
	Authors
	Contents


	2573CH01.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 1: Filter Fundamentals
	1.1 Introduction
	1.2 Filter Characterization
	1.2.1 Lumped
	1.2.2 Linear
	1.2.3 Continuous-Time and Discrete-Time
	1.2.4 Time-Invariant
	1.2.5 Finite
	1.2.6 Passive and Active

	1.3 Types of Filters
	1.4 Steps in Filter Design
	1.5 Analysis
	1.5.1 Nodal Analysis
	1.5.2 Network Parameters
	1.5.2.1 One-Port Network
	1.5.2.2 Two-Port Network

	1.5.3 Two-Port Interconnections
	1.5.3.1 Series–Series Connection
	1.5.3.2 Parallel–Parallel Connection
	1.5.3.3 Series Input–Parallel Output Connection
	1.5.3.4 Parallel Input–Series Output Connection
	1.5.3.5 Cascade Connection

	1.5.4 Network Transfer Functions

	1.6 Continuous-Time Filter Functions
	1.6.1 Pole-Zero Locations
	1.6.2 Frequency Response
	1.6.3 Transient Response
	1.6.3.1 Impulse Response
	1.6.3.2 Step Response

	1.6.4 Step and Frequency Response

	1.7 Stability
	1.7.1 Short-Circuit and Open-Circuit Stability
	1.7.2 Absolute Stability and Potential Instability

	1.8 Passivity Criteria for One- and Two-Port Networks
	1.8.1 One-Ports
	1.8.2 Two-Ports
	1.8.3 Activity
	1.8.4 Passivity and Stability

	1.9 Reciprocity
	1.10 Summary
	References and Further Reading



	2573CH02.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 2: The Approximation Problem
	2.1 Introduction
	2.2 Filter Specifications and Permitted Functions
	2.2.1 Causality
	2.2.2 Rational Functions
	2.2.3 Stability

	2.3 Formulation of the Approximation Problem
	2.4 Approximation of the Ideal Lowpass Filter
	2.4.1 Butterworth or Maximally Flat Approximation
	2.4.2 Chebyshev or Equiripple Approximation
	2.4.3 Inverse Chebyshev Approximation
	2.4.4 Papoulis Approximation
	2.4.5 Elliptic Function or Cauer Approximation
	2.4.6 Selecting the Filter from Its Specifications
	2.4.7 Amplitude Equalization

	2.5 Filters with Linear Phase: Delays
	2.5.1 Bessel-Thomson Delay Approximation
	2.5.2 Other Delay Functions
	2.5.3 Delay Equalization

	2.6 Frequency Transformations
	2.6.1 Lowpass-to-Lowpass Transformation
	2.6.2 Lowpass-to-Highpass Transformation
	2.6.3 Lowpass-to-Bandpass Transformation
	2.6.4 Lowpass-to-Bandstop Transformation
	2.6.5 Delay Denormalization

	2.7 Design Tables for Passive LC Ladder Filters
	2.7.1 Transformation of Elements
	2.7.1.1 LC Filters
	2.7.1.2 Active RC Filters


	2.8 Impedance Scaling
	2.9 Predistortion
	2.10 Summary
	References



	2573CH03.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 3: Active Elements
	3.1 Introduction
	3.2 Ideal Controlled Sources
	3.3 Impedance Transformation (Generalized Impedance Converters and Inverters) [1, 2]
	3.3.1 Generalized Impedance Converters [3]
	3.3.1.1 The Ideal Active Transformer
	3.3.1.2 The Ideal Negative Impedance Converter
	3.3.1.3 The Positive Impedance Converter
	3.3.1.4 The Frequency-Dependent Negative Resistor [5]

	3.3.2 Generalized Impedance Inverters
	3.3.2.1 The Gyrator
	3.3.2.2 Negative Impedance Inverter


	3.4 Negative Resistance
	3.5 Ideal Operational Amplifier
	3.5.1 Operations Using the Ideal Opamp
	3.5.1.1 Summation of Voltages
	3.5.1.2 Integration

	3.5.2 Realization of Some Active Elements Using Opamps
	3.5.2.1 Realization of Controlled Sources
	3.5.2.2 Realization of Negative-Impedance Converters
	3.5.2.3 Gyrator Realizations
	3.5.2.4 GIC Circuit Using Opamps

	3.5.3 Characteristics of IC Opamps
	3.5.3.1 Open-Loop Voltage Gain of Practical Opamps
	3.5.3.2 Input and Output Impedances
	3.5.3.3 Input Offset Voltage VIO
	3.5.3.4 Input Offset Current IIO
	3.5.3.5 Input Voltage Range VI
	3.5.3.6 Power Supply Sensitivity DVIO /DVGG
	3.5.3.7 Slew Rate SR
	3.5.3.8 Short-Circuit Output Current
	3.5.3.9 Maximum Peak-to-Peak Output Voltage Swing Vopp
	3.5.3.10 Input Capacitance Ci
	3.5.3.11 Common-Mode Rejection Ratio CMRR
	3.5.3.12 Total Power Dissipation
	3.5.3.13 Rise Time tr
	3.5.3.14 Overshoot

	3.5.4 Effect of the Single-Pole Compensation on the Finite Voltage Gain Controlled Sources

	3.6 The Ideal Operational Transconductance Amplifier (OTA)
	3.6.1 Voltage Amplification
	3.6.2 A Voltage-Variable Resistor (VVR)
	3.6.3 Voltage Summation
	3.6.4 Integration
	3.6.5 Gyrator Realization
	3.6.6 Practical OTAs
	3.6.7 Current Conveyor [14]

	3.7 Summary
	References



	2573CH04.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 4: Realization of First-and Second-Order Functions Using Opamps
	4.1 Introduction
	4.2 Realization of First-Order Functions
	4.2.1 Lowpass Circuits
	4.2.2 Highpass Circuits
	4.2.3 Allpass Circuits

	4.3 The General Second-Order Filter Function
	4.4 Sensitivity of Second-Order Filters
	4.5 Realization of Biquadratic Functions Using SABs
	4.5.1 Classification of SABs
	4.5.2 A Lowpass SAB
	4.5.3 A Highpass SAB
	4.5.4 A Bandpass SAB
	4.5.5 Lowpass- and Highpass-Notch Biquads
	4.5.6 Lowpass Notch (R6 = •)
	4.5.7 Highpass Notch (R7 = •)
	4.5.8 An Allpass SAB

	4.6 Realization of a Quadratic with a Positive Real Zero
	4.7 Biquads Obtained Using the Twin-T RC Network
	4.8 Two-Opamp Biquads
	4.8.1 Biquads by Inductance Simulation
	4.8.2 Two-Opamp Allpass Biquads
	4.8.3 Selectivity Enhancement

	4.9 Three-Opamp Biquads
	4.9.1 The Tow-Thomas [25–27] Three-Opamp Biquad
	4.9.2 Excess Phase and Its Compensation in Three-Opamp Biquads
	4.9.3 The Åkerberg-Mossberg Three-Opamp Biquad [29]

	4.10 Summary
	References



	2573CH05.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 5: Realization of High-Order Functions
	5.1 Introduction
	5.2 Selection Criteria for High-Order Function Realizations
	5.3 Multiparameter Sensitivity
	5.4 High-Order Function Realization Methods
	5.5 Cascade Connection of Second-Order Sections
	5.5.1 Pole-Zero Pairing
	5.5.2 Cascade Sequence
	5.5.3 Gain Distribution [5]

	5.6 Multiple-Loop Feedback Filters
	5.6.1 The Shifted-Companion-Form (SCF) Design Method
	5.6.2 Follow-the-Leader Feedback Design (FLF)

	5.7 Cascade of Biquartics
	5.7.1 The BR Section
	5.7.2 Effect of h on and
	5.7.3 Cascading Biquartic Sections
	5.7.4 Realization of Biquartic Sections
	5.7.4.1 Design Example

	5.7.5 Sensitivity of CBR Filters

	5.8 Summary
	References
	Further Reading



	2573CH06.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 6: Simulation of LC Ladder Filters Using Opamps
	6.1 Introduction
	6.2 Resistively-Terminated Lossless LC Ladder Filters
	6.3 Methods of LC Ladder Simulation
	6.4 The Gyrator
	6.4.1 Gyrator Imperfections
	6.4.2 Use of Gyrators in Filter Synthesis

	6.5 Generalized Impedance Converter, GIC
	6.5.1 Use of GICs in Filter Synthesis

	6.6 FDNRs: Complex Impedance Scaling
	6.7 Functional Simulation
	6.7.1 Example
	6.7.2 Bandpass Filters
	6.7.3 Dynamic Range of LF Filters

	6.8 Summary
	References



	2573CH07.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 7: Wave Active Filters
	7.1 Introduction
	7.2 Wave Active Filters
	7.3 Wave Active Equivalents (WAEs)
	7.3.1 Wave Active Equivalent of a Series-Arm Impedance
	7.3.2 Wave Active Equivalent of a Shunt-Arm Admittance
	7.3.3 WAEs for Equal Port Normalization Resistances
	7.3.4 Wave Active Equivalent of the Signal Source
	7.3.5 Wave Active Equivalent of the Terminating Resistance
	7.3.6 WAEs of Shunt-Arm Admittances
	7.3.7 Interconnection Rules
	7.3.8 WAEs of Tuned Circuits
	7.3.9 WA Simulation Example
	7.3.10 Comments on the Wave Active Filter Approach

	7.4 Economical Wave Active Filters
	7.5 Sensitivity of WAFs
	7.6 Operation of WAFs at Higher Frequencies
	7.7 Complementary Transfer Functions [7]
	7.8 Wave Simulation of Inductance
	7.9 Linear Transformation Active Filters (LTA Filters)
	7.9.1 Interconnection Rule
	7.9.2 General Remarks on the Method

	7.10 Summary
	References



	2573CH08.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 8: Single Operational Transconductance Amplifier (OTA) Filters
	8.1 Introduction
	8.2 Single OTA Filters Derived from Three-Admittance Model
	8.2.1 First-Order Filter Structures
	First-Order Filters with One or Two Passive Components
	First-Order Filters with Three Passive Components

	8.2.2 Lowpass Second-Order Filter with Three Passive Components
	8.2.3 Lowpass Second-Order Filters with Four Passive Components
	8.2.4 Bandpass Second-Order Filters with Four Passive Components

	8.3 Second-Order Filters Derived from Four-Admittance Model
	8.3.1 Filter Structures and Design
	Lowpass Filter
	Bandpass Filter
	Other Considerations on Structure Generation

	8.3.2 Second-Order Filters with the OTA Transposed
	Highpass Filter
	Lowpass Filter
	Bandpass Filters


	8.4 Tunability of Active Filters Using Single OTA
	8.5 OTA Nonideality Effects
	8.5.1 Direct Analysis Using Practical OTA Macro-Model
	8.5.2 Simple Formula Method
	8.5.3 Reduction and Elimination of Parasitic Effects

	8.6 OTA-C Filters Derived from Single OTA Filters
	8.6.1 Simulated OTA Resistors and OTA-C Filters
	8.6.2 Design Considerations of OTA-C Structures

	8.7 Second-Order Filters Derived from Five-Admittance Model
	8.7.1 Highpass Filter
	8.7.2 Bandpass Filter
	8.7.3 Lowpass Filter
	8.7.4 Comments and Comparison

	8.8 Summary
	References



	2573CH09.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 9: Two Integrator Loop OTA-C Filters
	9.1 Introduction
	9.2 OTA-C Building Blocks and First-Order OTA-C Filters [6, 12]
	9.3 Two Integrator Loop Configurations and Performance
	9.3.1 Configurations
	9.3.2 Pole Equations
	9.3.3 Design
	9.3.4 Sensitivity
	9.3.5 Tuning
	9.3.6 Biquadratic Specifications

	9.4 OTA-C Realizations of Distributed-Feedback (DF) Configuration
	9.4.1 DF OTA-C Circuit and Equations
	9.4.2 Filter Functions
	9.4.3 Design Examples
	9.4.4 DF OTA-C Realizations with Special Feedback Coefficients

	9.5 OTA-C Filters Based on Summed-Feedback (SF) Configuration
	9.5.1 SF OTA-C Realization with Arbitrary k 12 and k 11
	Design Example of KHN OTA-C Biquad

	9.5.2 SF OTA-C Realization with k 12 = k 11 = k

	9.6 Biquadratic OTA-C Filters Using Lossy Integrators
	9.6.1 Tow-Thomas OTA-C Structure
	9.6.2 Feedback Lossy Integrator Biquad

	9.7 Comparison of Basic OTA-C Filter Structures
	9.7.1 Multifunctionality and Number of OTA
	9.7.2 Sensitivity
	9.7.3 Tunability

	9.8 Versatile Filter Functions Based on Node Current Injection
	9.8.1 DF Structures with Node Current Injection
	9.8.2 SF Structures with Node Current Injection

	9.9 Universal Biquads Using Output Summation Approach
	9.9.1 DF-Type Universal Biquads
	9.9.2 SF Type Universal Biquads
	9.9.3 Universal Biquads Based on Node Current Injection and Output Summation
	9.9.4 Comments on Universal Biquads

	9.10 Universal Biquads Based on Canonical and TT Circuits
	9.11 Effects and Compensation of OTA Nonidealities
	9.11.1 General Model and Equations
	9.11.2 Finite Impedance Effects and Compensation
	9.11.3 Finite Bandwidth Effects and Compensation
	9.11.4 Selection of OTA-C Filter Structures
	9.11.5 Selection of Input and Output Methods
	9.11.6 Dynamic Range Problem

	9.12 Summary
	References



	2573CH10.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 10: OTA-C Filters Based on Ladder Simulation
	10.1 Introduction
	10.2 Component Substitution Method
	10.2.1 Direct Inductor Substitution
	OTA-C Inductors
	Tolerance Sensitivity of Filter Function
	Parasitic Effects on Simulated Inductor
	Parasitic Effects on Filter Function

	10.2.2 Application Examples of Inductor Substitution
	OTA-C Biquad Derived from RLC Resonator Circuit
	A Lowpass OTA-C Filter

	10.2.3 Bruton Transformation and FDNR Simulation

	10.3 Admittance/Impedance Simulation
	10.3.1 General Description of the Method
	10.3.2 Application Examples and Comparison
	10.3.3 Partial Floating Admittance Concept

	10.4 Signal Flow Simulation and Leapfrog Structures
	10.4.1 Leapfrog Simulation Structures of General Ladder
	10.4.2 OTA-C Lowpass LF Filters
	Example

	10.4.3 OTA-C Bandpass LF Filter Design
	10.4.4 Partial Floating Admittance Block Diagram and OTA-C Realization
	10.4.5 Alternative Leapfrog Structures and OTA-C Realizations

	10.5 Equivalence of Admittance and Signal Simulation Methods
	10.6 OTA-C Simulation of LC Ladders Using Matrix Methods
	10.7 Coupled Biquad OTA Structures
	10.8 Some General Practical Design Considerations
	10.8.1 Selection of Capacitors and OTAs
	10.8.2 Tolerance Sensitivity and Parasitic Effects
	10.8.3 OTA Finite Impedances and Frequency-Dependent Transconductance

	10.9 Summary
	References



	2573CH11.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 11: Multiple Integrator Loop Feedback OTA-C Filters
	11.1 Introduction
	11.2 General Design Theory of All-Pole Structures [9, 12, 28]
	11.2.1 Multiple Loop Feedback OTA-C Model
	11.2.2 System Equations and Transfer Function
	11.2.3 Feedback Coefficient Matrix and Systematic Structure Generation
	11.2.4 Filter Synthesis Procedure Based on Coefficient Matching

	11.3 Structure Generation and Design of All-pole Filters [9, 12, 28]
	11.3.1 First- and Second-Order Filters
	11.3.2 Third-Order Filters
	11.3.3 Fourth-Order Filters
	11.3.4 Design Examples of Fourth-Order Filters
	11.3.5 General n th-Order Architectures
	11.3.5.1 General IFLF Configuration
	11.3.5.2 General LF Configuration

	11.3.6 Other Types of Realization

	11.4 Generation and Synthesis of Transmission Zeros
	11.4.1 Output Summation of OTA Network [12]
	11.4.2 Input Distribution of OTA Network [12]
	11.4.3 Universal and Special Third-Order OTA-C Filters [13]
	11.4.3.1 IFLF and Output Summation Structure in Fig. 11.10(a)
	11.4.3.2 IFLF and Input Distribution Structure in Fig. 11.10(b)
	11.4.3.3 LF and Output Summation Structure in Fig. 11.10(c)
	11.4.3.4 LF and Input Distribution Structure in Fig. 11.10(d)
	11.4.3.5 Realization of Special Characteristics
	11.4.3.6 Design of Elliptic Filters

	11.4.4 General n th-Order OTA-C Filters
	11.4.4.1 Universal IFLF Architectures [8, 10]
	11.4.4.2 Universal LF Architectures


	11.5 General Formulation of Sensitivity Analysis [12, 28]
	11.5.1 General Sensitivity Relations
	11.5.2 Sensitivities of Different Filter Structures

	11.6 Determination of Maximum Signal Magnitude
	11.7 Effects of OTA Frequency Response Nonidealities [10]
	11.8 Summary
	References



	2573CH12.PDF
	Continuous-Time Active Filter Design
	Contents
	Chapter 12: Current-Mode Filters and Other Architectures
	12.1 Introduction
	12.2 Current-Mode Filters Based on Single DO-OTA Model
	12.2.1 General Model and Filter Architecture Generation
	12.2.1.1 First-Order Filter Structures
	12.2.1.2 Second-Order Filter Architectures

	12.2.2 Passive Resistor and Active Resistor
	12.2.3 Design of Second-Order Filters
	12.2.4 Effects of DO-OTA Nonidealities

	12.3 Current-Mode Two Integrator Loop DO-OTA-C Filters
	12.3.1 Basic Building Blocks and First-Order Filters [15]
	12.3.2 Current-Mode DO-OTA-C Configurations with Arbitrary k ij [15]
	12.3.3 Current-Mode DO-OTA-C Biquadratic Architectures with k 12 = k jj
	12.3.4 Current-Mode DO-OTA-C Biquadratic Architectures with k 12 = 1[15]
	12.3.5 DO-OTA Nonideality Effects
	12.3.6 Universal Current-Mode DO-OTA-C Filters

	12.4 Current-Mode DO-OTA-C Ladder Simulation Filters
	12.4.1 Leapfrog Simulation Structures of General Ladder
	12.4.2 Current-Mode DO-OTA-C Lowpass LF Filters
	12.4.3 Current-Mode DO-OTA-C Bandpass LF Filter Design
	12.4.4 Alternative Current-Mode Leapfrog DO-OTA-C Structure

	12.5 Current-Mode Multiple Loop Feedback DO-OTA-C Filters
	12.5.1 Design of All-Pole Filters [23]
	12.5.2 Realization of Transmission Zeros
	12.5.2.1 Multiple Loop Feedback with Input Distribution The multiple current-integrator loop current-feedback model
	12.5.2.2 Multiple Loop Feedback with Output Summation
	12.5.2.3 Filter Structures and Design Formulas


	12.6 Other Continuous-Time Filter Structures
	12.6.1 Balanced Opamp-RC and OTA-C Structures
	12.6.2 MOSFET-C Filters
	12.6.3 OTA-C-Opamp Filter Design
	12.6.4 Active Filters Using Current Conveyors
	12.6.5 Log-Domain, Current Amplifier, and Integrated-RLC Filters

	12.7 Summary
	References



	2573AppA.pdf
	Continuous-Time Active Filter Design
	Contents
	Appendix A: A Sample of Filter Functions



