DC OFFSET

DC Offset

- Analog circuits often add DC offsets to signals which may be undesirable
- Suppose we want to detect a signal by summing magnitude over some period
- Example: detection circuit

 $\rightarrow 0$ - Signal $\rightarrow 1$

- No signal + DC bias $\rightarrow 1$

$$\sum_{t=t_0}^{t_1} \left| x \right|$$

B. Baas, © 2008 EEC 281, Winter 2008

DC Offset

- Not usually a problem for high frequency signals
 - Filter out DC component with a high-pass filter
 - Analog or digital domain

B. Baas, © 2008 EEC 281, Winter 2008

DC Offset

- Can be a problem for signals with important components near DC, however
 - Still need a high-pass filter
 - Need a sharp frequency response to keep important lowfrequency parts of signal
 - Digital processing may be best (or required)

B. Baas, © 2008 EEC 281, Winter 2008 100

DC Offset Cancellation Architectures

- A) Signal passes through high-pass filter
 - Filter must not distort signal
 - Phase response likely important
- B) Low pass filter estimates DC offset, which is then subtracted from the signal
 - Filter need only estimate DC magnitude
 - Phase response likely unimportant

B. Baas, © 2008 EEC 281, Winter 2008

DC Offset Estimation

- FIR filters
 - Have desirable characteristic of linear phase
 - Require higher-order filter typically
- IIR filters
 - Generally lower-order for same filtering requirements
- IIR filters can be best choice here since sharpresponse low-pass magnitude-only output is typically required

B. Baas, © 2008 EEC 281, Winter 2008

DC Offset Estimation

- Analog
 - Faster response
- Digital
 - Opportunities to use sophisticated algorithms. Can adapt estimator based on:
 - System mode (e.g., rapid changes or steady state)
 - Signal characteristics (e.g., make estimations more accurate)
 - Knowledge about circuit characteristics (e.g., self calibration)

B. Baas, © 2008 EEC 281, Winter 2008

DC Offset Cancellation Architectures

- 1) Feed-forward
 - DC offset estimator circuit receives the input signal
 - Generally faster responding
- 2) Feed-back
 - DC offset estimator circuit receives corrected signal
 - Generally more accurate as it can compensate for DC offsets introduced by the subtractor

B. Baas, © 2008 EEC 281, Winter 2008

DC Offset Cancellation

- Many techniques to estimate DC offset of a varying signal
- Helpful to know characteristics of signal

DC Offset Cancellation

- Can use more sophisticated DC offset algorithms with digital design
- Likely includes a low-pass filter

106

