
Chapter 10
BCH and LDPC Error Correction Codes
for NAND Flash Memories

Alessia Marelli and Rino Micheloni

Nowadays NAND Flash memories are part of our lives in many ways. The storage
world is a completely new world thanks to NAND. As a matter of fact, it wouldn’t
be possible to have a smartphone without the use of NAND memories as the storage
media. After USB keys and digital cameras, Solid State Drives (SSDs) are now the
new disruptive application for Flash. Consumer-class ultra-light and ultra-thin
laptops require NAND storage, but it is really in the cloud and in enterprise servers
that the use of NAND can be a paradigm shift.

Because NAND devices can’t be manufactured without defects, the use of Error
Correction Codes (ECCs) has always been a common practice. While BCH
(Bose-Chaudhuri-Hocquenghem) is a de facto standard for consumer applications,
LDPC (Low-Density-Parity-Check) codes are a typical choice in the enterprise
world. This is especially true when looking at planar (2D) ultra-scaled (e.g. 15 nm)
NAND. Generally speaking, LDPC offers higher correction capabilities, but BCH
remains a good solution when bandwidth requirements are very stringent.

As discussed in previous chapters, 3D NAND is becoming a reality in the
market. In terms of noise models, 2D and 3D have some commonalities: they are
both very complex and they change during the NAND’s lifetime!

We do expect 3D NAND to bring new failure models into the game; all the
scientists working on ECCs for non-volatile memories will have to put their best
effort for getting as close as possible to the Shannon limit.

To set the stage, in this chapter we cover both BCH and LDPC codes. After a
brief introduction, we will see the implementation issues when coupling these codes
with a “real” NAND communication channel; practical workarounds will also be
discussed.

A. Marelli (&) � R. Micheloni
Performance Storage BU, Microsemi Corporation, Vimercate, Italy
e-mail: alessia.marelli@ieee.org

R. Micheloni
e-mail: rino.micheloni@ieee.org

© Springer Science+Business Media Dordrecht 2016
R. Micheloni (ed.), 3D Flash Memories, DOI 10.1007/978-94-017-7512-0_10

281

10.1 Introduction

During life, multiple sources can corrupt the data stored in NAND cells. The most
popular way for data recovery, sometimes used in conjunction with other tech-
niques (e.g. signal processing), is the adoption of an error correction code.

ECCs add redundant terms to the message, such that, on the receiver side, it is
possible to detect the errors and to recover the message that was “most probably”
transmitted. The set of “encoded” data, i.e. data with the added redundant terms, is
usually called codeword.

In other words, ECC can decrease the native Raw Bit Error Rate (RBER) of
NAND. Given a RBER as defined in Eq. (10.1)

RBER ¼ Number of bit errors
Total number of bits

ð10:1Þ

and an ECC able to recover t errors, the codeword error rate, sometimes called
Frame Error Rate (FER) is computed as in Eq. (10.2)

FER ¼ 1� ð1� RBERÞA þ A

1

� �
RBERð1� RBERÞA�1

�

þ � � � þ A

t

� �
RBERtð1� RBERÞA�t

� ð10:2Þ

where A is the codeword size.
Figure 10.1 shows the FER for a 1 kB codeword with an ECC able to correct 1,

10, 50 or 100 errors.

Fig. 10.1 Graph of the frame error probability for a 1 kB codeword with an ECC able to correct
1, 10, 50 and 100 errors

282 A. Marelli and R. Micheloni

Another quantity used to measure the impact of ECC is the Uncorrectable Bit
Error Rate (UBER). This is defined as in Eq. (10.3)

UBER ¼ FER
A

ð10:3Þ

A fundamental quantity used to decide which ECC to apply is the Code Rate.
The Code Rate is defined as the ratio between the number of protected bits and the
total number of transmitted bits (codeword size). If the Code Rate is high, we have
few ECC parity bits, i.e. the error correction capability is low. On the other hand,
we do not need too much extra space to store them. If the Code Rate is low, we
have a higher number of parity bits to protect the data, and the error correction
capability is high. In this case, we need more additional space to store the parity
bits, and in some cases this is not possible. Even when this is possible, it costs
money.

The trade-off between Code Rate and cost ($) is shown in Fig. 10.2. ECC
correctability (i.e. the number of correctable bits per codeword) is a function of the
Code Rate, as shown in Fig. 10.3. A lower code rate is less efficient in terms of
silicon area, but it can recover more errors.

Error correction capability is also influenced by the codeword size (Fig. 10.4).
Given the same code rate, the longer the codeword is, the higher the error correction
capability is. On the other hand, the longer the codeword is, the more complex the
ECC hardware is; a longer latency time to recover the corrupted data is another
downside.

In communication theory, Signal-to-Noise Ratio (SNR) is usually adopted
instead of RBER. Signal-to-noise ratio is a measure that compares the level of a
desired signal to the level of the background noise. It is defined as the ratio of the

Fig. 10.2 Trade-off between code rate and cost

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 283

signal power to the noise power, and it is often expressed in decibels. A ratio higher
than 1 (i.e. greater than 0 dB) indicates more signal than noise.

Error correction codes belong to the information theory, whose “father” is
Shannon; he demonstrated a fundamental theorem known as Shannon Limit [1].
This theorem establishes a limit in terms of achievable signal to noise ratio
(SNR) for an error-free communication in a coded system with Code Rate R. The
power of Shannon limit is the following: if we can guarantee that SNR does not
exceed this limit, then we are sure of the existence of a coded system (with rate R)
able to achieve error-free communication. Unfortunately, there isn’t any

Fig. 10.3 Trade-off between code rate and correctability t for a codeword size of 1024 bytes

Fig. 10.4 FER versus BER for an ECC with code rate of 0.9 and different codeword sizes

284 A. Marelli and R. Micheloni

constructive way for building such a coded system; this is why there is an intense
research activity for finding codes that get as close as possible to the Shannon limit.
The limit can be computed assuming an AWGN (Additive White Gaussian Noise)
channel and a BPSK (Binary Phase Shift Keying) modulation (Fig. 10.5).

The achievable SNR can be translated in achievable BER. The Shannon limit is
used to evaluate different coded systems: the best code is the one closest to the limit
[2, 3].

ECCs can be split in hard decision codes and soft decision codes. This dis-
tinction is not based on the structure of the code itself, but on the way the infor-
mation is treated by the code. A binary hard decision code treats all the data in a
digital way, i.e. “0” or “1”; in other words, the analog information is converted into
digital format by using one fixed reference level. On the contrary, a soft decision
code uses reliability information to take decisions: for example, a “0” is read with a
90 % reliability and a “1” is read with a 10 % reliability. In the following sections,
we will see how the soft information applies to NAND Flash, and a comparison
between hard and soft codes [3].

Basically, a Code C is the set of codewords obtained by associating the qk

messages of length k of the space A to qk words of length n of the space B in a
univocal way. A code is defined as linear if, given two codewords, their sum is a
codeword. When a code is linear, encoding and decoding can be described with
matrix operations.

We define the generator matrix of a code C as G. It follows that all the code-
words can be obtained as a combination of the rows of G. Therefore, encoding a
data message m is equivalent to multiply the message m by the code generator
matrix G, according to Eq. (10.4).

Fig. 10.5 Shannon limit for different code rates

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 285

c ¼ m � G ð10:4Þ

G is called in standard form or in systematic form if G = (Ik, P), where Ik is the
identity matrix k × k, and P is a matrix k × (n − k). If G is in standard form, then
the first k symbols of a codeword are called information symbols.

From the matrix G in systematic form, it is straightforward to derive the parity
matrix H = (−PT, In−k) where PT is the transpose of P and it is a matrix
(n − k) × k, and In−k is the identity matrix (n − k) × (n − k) [4, 5].

Systematic codes have the advantage that the data message can clearly be
identified in the codeword and, therefore, it can be read before decoding. For codes
in non-systematic form the message is no more recognizable in the encoded
sequence and it is necessary to have the inverse encoding function to recognize the
data sequence.

If C is a linear code with parity matrix H, then x � HT is called syndrome of x. It
follows that all the codewords have a syndrome equal to 0.

The syndrome is the key player of decoding. Once a message r is received (i.e.
read from the memory), it is necessary to understand if it has been corrupted by
calculating:

s ¼ x � HT ð10:5Þ

There are two possibilities:

• s = 0 ⟹ the message r is recognized as correct;
• s ≠ 0 ⟹ the received message contains some errors.

In the latter case a decoding procedure starts.
In order to understand how many errors a code is able to correct and detect we

need a metric. In the coding theory, it is called minimum distance or Hamming
distance d of a code, and it corresponds to the minimum number of different
symbols between any two codewords.

A code has detection capability v if it is able to recognize all the messages,
containing v errors at the most, as corrupted.

The detection capability is related to the minimum distance as described in
Eq. (10.6).

v ¼ d � 1 ð10:6Þ

A code has correction capability t if it is able to correct each combination of a
number of errors equal to t at the most. The correction capability is calculated from
the minimum distance d with Eq. (10.7):

t ¼ d � 1
2

� �
ð10:7Þ

where the square brackets mean the floor function.

286 A. Marelli and R. Micheloni

Codes can be manipulated or combined depending on applications. The possible
operation to increase the minimum distance of a code is the extension: a code C[n,
k] is extended to a code C′[n + 1, k] by adding one more parity symbol. Generally
speaking, for binary codes, the additional parity bit is the total parity of the mes-
sage. This is calculated as sum modulo 2 (XOR) of all the bits of the message.

When the “natural” length of the code does not fit the application constraints
(e.g. the NAND Flash page), it is possible to change it with the shortening oper-
ation: a C[n, k] is shortened into a code C′[n − j, k − j] by erasing j columns of the
parity matrix. Please note that the columns deleted are the ones corresponding to the
user data. With this operation, the Code Rate is decreased.

A similar operation, but with a very different outcome, is the puncturing oper-
ation. Puncturing is the process of removing some of the parity bits after encoding.
This has the same effect of encoding with an error correction code with a higher
rate. The good things is that the same decoder can be used regardless of how many
bits have been punctured; therefore, puncturing considerably increases the flexi-
bility of the system without significantly increasing its complexity [6].

10.2 BCH Codes

BCH codes belong to the most important class of cyclic algebraic codes. They were
found through independent researches by Hocquenghem in 1959 and by Bose and
Ray-Chauduri in 1960 [7, 8].

For BCH codes the minimum distance can be ensured during construction. The
definition of the code itself is based on the distance concept and on the Galois field
[9, 10].

Let β be an element of the Galois Field GF(qm). Let b be a non-negative integer.
A BCH code with “designed” distance d is generated by the polynomial g(x) of
minimal degree that has d − 1 consecutive powers of β: βb, βb+1,…, βb+d−2 as roots.
Given wi the minimal polynomial of βb+i for 0 ≤ i < d − 1, g(x) is computed as:

g xð Þ ¼ LCM w0 xð Þ;w1 xð Þ; . . .;wd�2 xð Þf g ð10:8Þ

and the protected data size is k = n − deg(g(x)).
It is possible to show that the designed d is at least 2t + 1, hence the code is able

to correct t errors.
If we assume b = 1, and β a primitive element of GF(qm), then the code becomes

a narrow-sense and primitive BCH code of length qm − 1 able to correct t errors.
We shall now consider narrow-sense primitive BCH codes.

In general, decoding of a BCH code is at least 10 times more complicated than
encoding. In this chapter we deal with binary BCH codes only, whose structure is
presented in Fig. 10.6.

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 287

10.2.1 BCH Encoding

Let’s assume a BCH code [n, k] with generator polynomial g(x) and a message
m(x) to be encoded, which is written as a polynomial of degree k − 1.

First of all, the message m(x) is multiplied by xn−k and subsequently divided by
g(x), thus obtaining a quotient q(x) and a remainder r(x) in accordance with
Eqs. (10.9) and (10.10).

mðxÞ � xn�k

gðxÞ ¼ qðxÞþ rðxÞ
gðxÞ ð10:9Þ

mðxÞ � xn�k þ rðxÞ ¼ qðxÞ � gðxÞ ð10:10Þ

The multiplication of the message m(x) by xn−k produces, as a result, a poly-
nomial of degree n − 1 where the first n − k coefficients, now null, will then be
occupied by parity bits.

Therefore, the encoded word c(x) is calculated as:

cðxÞ ¼ mðxÞ � xn�k þ rðxÞ ð10:11Þ

Practical implementation of Eq. (10.11) is depicted in Fig. 10.7. Please note that,
since we are considering binary BCH codes, the sum is actually a XOR, while the
product is an AND.

The “natural” structure of BCH encoding is sequential; this is not great in
high-speed implementations, because it slowly proceeds by byte, word or double
word. Figure 10.7b shows the unrolled implementation, assuming a processing of 1
byte at a time [4]. In the figure it is possible to see that the content of each register
does not depend on a single input anymore but on a whole byte.

encoder

m

F
la

s
h

m
e

m
o

ryc
Syndrome

computation
λ

Computation
Error

locations +

r s λ e m

X

X

Fig. 10.6 General structure of a binary BCH code

288 A. Marelli and R. Micheloni

10.2.2 BCH Decoding

The decoding operation follows three fundamental steps, as shown in Fig. 10.6:

• calculation of the syndromes;
• calculation of the coefficients of the error locator polynomial (usually done with

Berlekamp-Massey algorithm [4, 5]);
• calculation of the roots of the error locator polynomial (usually done with Chien

algorithm [4, 11]).

During transmission (reading) of the encoded message some errors may occur.
Errors can be represented by a polynomial that has coefficient “1” at every error’s
position:

E xð Þ ¼ E0 þE1xþ � � � þEn�1x
n�1 ð10:12Þ

If ECC can correct t errors, then t non-null coefficients are allowed in
Eq. (10.12) at most.

DXOR D FlipFlop

D D D D D

D D D D D

1·x75 1·x74 0·x73 1·x72 0·x71 1·x0

...,m(n·8-2),m(n·8-1)

…,m(n·8-2),m(n·8-1)

a74

c74

b0

b1

b7

a73

c73

a72

c72

a71

c71

a0

c0

c74 c73 c72 c71 c0

Sequential implementation

Unrolled implementation

...

...

...g = + + + + +

…,m((n-1)·8-2),m((n-1)·8-1)

…,m((n-2)·8-2),m((n-2)·8-1)

Fig. 10.7 Description of the sequential implementation of the BCH divider: it can be unrolled for
a parallel implementation [4]

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 289

Therefore, the transmitted (read) vector R(x) is:

R xð Þ ¼ c xð ÞþE xð Þ ð10:13Þ

The first decoding step consists in calculating the 2t syndromes for the read
message:

RðxÞ
wiðxÞ

¼ QiðxÞþ Si xð Þ
wiðxÞ

with 1� i� 2t ð10:14Þ

Si xð Þ ¼ QiðxÞ � wiðxÞþRðxÞ with 1� i� 2t ð10:15Þ

In accordance with Eqs. (10.14) and (10.15), the received vector is divided by
each minimal polynomial wi forming the generator polynomial, thus getting a
quotient Qi(x) and a remainder Si(x) called syndrome.

At this point the 2t syndromes must be evaluated into the elements β, β2, β3,…,
β2t, whose wi are the minimal polynomials. According to Eq (10.16), this evalua-
tion is the evaluation of the message received in β, β2, β3,…, β2t, since wi(β

i) = 0
(for 1 ≤ i ≤ 2t) because of the definition of minimal polynomial.

Si b
i� � ¼ Si ¼ Qi b

i� � � wi b
i� �þR bi

� � ¼ R bi
� � ð10:16Þ

Consequently, the ith syndrome can be calculated either as a remainder of the
division between the received message and the minimal polynomial wi, then
evaluated in βi, or as the evaluation in βi of the received message.

In case there aren’t any errors, the received polynomial is a codeword: therefore,
the remainder of the division of Eq. (10.14) is null and all the syndromes are
identically null. Verifying if the syndromes are identically null is a necessary and
sufficient condition to understand if the read message is a codeword (or if some
errors occurred).

For binary codes we use the following property:

S2i ¼ S2i ð10:17Þ

such that we can calculate only t syndromes.
Since the syndromes are computed as the remainder of the division between two

polynomials in the Galois field, it is straightforward to understand that the imple-
mentation is similar to the one of the encoder.

The Error Locator Polynomial Λ(x) is defined as the polynomial whose roots are
the inverse of the error positions.

K xð Þ ¼
Yv
i¼1

1� xXið Þ ð10:18Þ

290 A. Marelli and R. Micheloni

The degree of the error locator polynomial gives the number of errors that
occurred. As the degree of Λ(x) is t at most, in case of more than t errors, Λ(x) could
erroneously indicate t or less errors.

Coefficients of the error locator polynomial are linked to the syndromes by the
following equations

Svþ 1

Svþ 2

Svþ 3

..

.

S2v�1

0
BBBBB@

1
CCCCCA

¼

S1 S2 S3 � � � Sm
S2 S3 S4 � � � Smþ 1

S3 S4 � � � � � � Smþ 2

..

. ..
. ..

. ..
.

Sv Svþ 1 Svþ 2 � � � S2v�1

0
BBBBB@

1
CCCCCA

�

Km

Km�1

Km�2

..

.

K1

0
BBBBB@

1
CCCCCA

ð10:19Þ

Generally speaking, the method to compute the coefficients of the error locator
polynomial is the Berlekamp-Massey algorithm [4, 12].

The philosophy of the Berlekamp algorithm consists in solving the set of
Eq. (10.19) in an iterative way by consecutive approximations.

After 2t iterations, Λ(x) is the error locator polynomial; in the binary case it is
possible to perform the Berlekamp algorithm in t iterations. In the following we
describe the flow diagram for the inversion-less binary Berlekamp Massey algo-
rithm (Fig. 10.8) [13].

First of all, we define the syndrome polynomial as

1þ S ¼ 1þ S1zþ S2z
2 þ � � � þ S2t�1z

2t�1 ð10:20Þ

The initial conditions are given as follows:

m 0ð Þ ¼ 1 k 0ð Þ ¼ 1 and d 2ið Þ ¼ 1 if i\0 ð10:21Þ

We define d(2i) as the coefficient of z2i+1 in the product (1 + S(z))ν(2i)(z).

• If S2i+1 is unknown the algorithm is finished;
• otherwise

m 2iþ 2ð ÞðzÞ ¼ d 2i�2ð Þm 2ið ÞðzÞþ d 2ið Þk 2ið ÞðzÞ � z ð10:22Þ

k 2iþ 2ð ÞðzÞ ¼ z2k 2ið Þðz) if d 2ið Þ ¼ 0 or if deg m 2ið ÞðzÞ[i
zm 2ið Þðz) if d 2ið Þ 6¼ 0 or if deg m 2ið ÞðzÞ� i

�
ð10:23Þ

d 2ið Þ ¼ d 2i�2ð Þ if d 2ið Þ ¼ 0 or if deg m 2ið ÞðzÞ[i
d 2ið Þ if d 2ið Þ 6¼ 0 or if deg m 2ið ÞðzÞ� i

�
ð10:24Þ

The roots of ν(2t)(z) coincide with those of Λ(2t)(z).

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 291

Even if the algorithm is very complex, it usually does not require a parallel
implementation, since the size of the memory buffer and the execution latency are
acceptable in most of the cases.

The last step of the decoding process consists in searching for the roots of the
error locator polynomial, as per Eq. (10.25). If the roots are not coincident and they
belong to the Galois field, then it is enough to calculate their inverse to have the
error positions. If they are coincident, or they do not belong to the correct field, it

Initialize
ν(z)=1

δ=1, k=1, i=0

ν(z)=δν(z)+dkz

d=0 or
Deg ν(z)>i? k(z)=zν(z)

k(z)=z2k(z)

i=i+1

i<t? Deg v(z)>t?

NO

YES

NO

YES

v(z) is the
error locator
polynomial

NO

FAILURE

δ=d

Fig. 10.8 Flow diagram for the inversion-less Berlekamp algorithm

292 A. Marelli and R. Micheloni

means that the received message has a distance from a codeword greater than t. In
this case an uncorrectable error pattern occurred and the decoding process fails.

K xð Þ ¼ 1þK1xþ � � � þKtx
t ð10:25Þ

To determine the roots of the polynomial, the Chien machine neatly evaluates
Λ(x) in all the elements of the field α0, α1, α2, α3,… αN. For each element i of the field
such that the polynomial is null, the corresponding position (2m – 1 − i) is an error
position. A possible implementation of the Chien machine is represented in Fig. 10.9.

10.2.3 Multi-channel BCH

When BCH is used in a NAND-based system such as a Solid State Drive, it is
necessary to find out a balance between area and bandwidth. In fact, SSDs run
several NAND devices in parallel in order to achieve their target performances of
bandwidth and IOPS. Usually, NANDs are split in groups called “Flash Channels”:
channels work in parallel and read/write/erase operations can be interleaved within
the same channel (Fig. 10.10). In this multi-channel scenario, multiple encoding
and decoding machines are necessary, considering that, especially with ultra-scaled
geometries and multi-level storage (Chap. 3), correction is required all the time
(because of the high RBER).

In order to keep up with the bandwidth requirements, the most straightforward
solution would be one encoder and one decoder per channel. However, this
approach is extremely area consuming, especially because of the decoder.

As far as the encoding is concerned, it is very important that the data coming
from the host (CPU or Operating System) are dispatched to the various channels
without latency. There are three possible approaches, starting from the less area
consuming:

• single encoder shared among all Flash channels [14];
• a pool of encoders;
• one encoder per channel.

Fig. 10.9 Chien machine for a 5-error BCH: sequential implementation [4]

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 293

As mentioned, the right hardware choice comes from the tradeoff between sil-
icon area and latency.

Let’s now move to the decoding phase. The overall structure is shown in Fig. 10.11.
In this scenario, number of hardware machines to execute syndrome computation,
Berlekamp-Massey algorithm and Chien computation can be different.

Syndrome computation can be treated in the same way as the encoder, since all
the read messages require this computation. Execution of the Berlekamp–Massey
algorithm is pretty fast because it requires t iterations only.

As described in the previous section, the Chien machine searches for the roots,
one at a time. Such operation, carried out for all the bits of the message, results to be
very time consuming. Solution is, of course, a parallel architecture. Unlike the
parity and the syndromes computation machines, which have to operate with a
parallelism equal to the input data parallelism, the Chien machine does not have
particular limits other than complexity, area and power consumption. In this parallel

Fig. 10.10 Flash channel inside a solid state drive

Fig. 10.11 ECC decoding structure for handling multiple channels

294 A. Marelli and R. Micheloni

implementation, more error positions are contemporarily evaluated at each com-
putation cycle.

The execution time of the Chien algorithm is usually seen by the system as an
additional latency time. If the probability to have one or more errors becomes
considerable, this latency can significantly impact the system performance. The
downside of the Chien parallelism is the impact on silicon area, as sketched in
Fig. 10.12.

1 10 20
0

100

200

300

Simultaneously tested elements

X
O

R
 g

at
es

2÷5 errors Chien machine

1 error Chien machine

Fig. 10.12 Area impact of the Chien parallelism

Fig. 10.13 Probability of correction for a 2112-byte page: single error versus 2 ÷ 5 errors

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 295

Figure 10.13 shows, for a 2112-Byte page, the probability of correcting only one
error and the probability of correcting 2 ÷ 5 errors. Assuming a BER of 10−6, we
have that the probability of a single error is equal to 1.7 × 10−2 and the probability
of 2 ÷ 5 errors is equal to 1.5 × 10−4, respectively. The probability of a single error
is definitely more significant and since the Berlekamp algorithm exactly indicates
the number of errors to correct, it may be useful to exploit this information.

The resulting system is, therefore, composed of a couple of Chien machines with
different parallelisms, one for the correction of the single error and the second for
the correction of 2 ÷ 5 errors (Fig. 10.14).

This solution can be multiplied by any number of machines, especially if the
error correction capability t of the BCH we are dealing with is high. In this case, we
can compute the frequency of errors t′ that is more likely to occur, given the
estimated raw bit error rate, and have multiple Chien machine searching for t′ roots
with a high parallelism. On the contrary, the number of hardware machines to locate
the roots of t* > t′ errors can be smaller, and with a smaller parallelism [3, 4].

Of course, the numbers mentioned above are just an example; they might sig-
nificantly change depending on the NAND technology node and on the number of
bits stored within the same physical cell (e.g. MLC or TLC).

10.2.4 Multi-code Rate BCH

As discussed in the introduction of this chapter, it is typical for NAND to deal with
noise sources that vary during its lifetime. When NAND is fresh (i.e. few
Program/Erase cycles, Chap. 2) and there is no retention, RBER can be pretty low;
the situation is totally different at the end of life, i.e. when the device has been
read/erased/written multiple times. It follows that it is desirable to have an ECC able
to change its correction capability during life.

There are codes for which it is easy to change the code rate, while in other cases
it is not that straightforward: BCH is one of them because of its construction. In this
section, we present a way for building a multi-code rate BCH with a minimum area
overhead.

Encoder is the main issue. As discussed above, parity bits are computed as the
remainder of the division between the user data and the generator polynomial,
where the latter one is computed as the multiplication among the minimum poly-
nomial of t elements. If we want to adapt a BCH code able to correct t error to
correct t′ errors, where t′ < t, the easiest way is to have a second encoder which
computes the remainder of the division between the user data and the generator
polynomial, where the latter one is computed as the multiplication among the
minimum polynomial of t′ elements. This approach has a big area overhead,
because the encoding area is doubled.

A smarter and a less area consuming way is to derive the parity bits of the t′-code
from the parity bits of the t-code. Indeed, for the generator polynomials the equality
Eq. (10.26) holds true.

296 A. Marelli and R. Micheloni

P
ar

ity

R
eg

In
pu

t

S
yn

d
1

R
eg

s 1
(α

1)

uC
B

us

B
C

H
P

ar
ity

B
lo

ck

N
A

N
D

M
em

or
y

C
or

e

S
yn

d
2

R
eg

s 2
(α

3)

S
yn

d
3

R
eg

s 3
(α

5)

S
yn

d
4

R
eg

s 4
(α

7)

S
yn

d
5

R
eg

s 5
(α

9)

B
C

H
S

in
dr

om
e

B
lo

ck

C
om

m
an

d
In

te
rf

ac
e

F
S

M

M
ic

ro
C

on
tr

ol
le

r

R
O

M
R

ea
d,

pr
og

ra
m

,e
ra

se
al

go
.

B
C

H
B

er
le

ka
m

p
al

go
.

G
F

(2
15

)
M

ul
tip

lie
r

B
C

H
C

hi
en

2-
5

E
rr

or
B

lo
ck

B
C

H
C

hi
en

S
in

gl
e

E
rr

or
B

lo
ck

O
ut

pu
t

R
eg

xα
(5

,1
0 ,

15
,2

0)

R
eg

xα
(4

,8
,1

2,
16

)

R
eg

xα
(3

,6
,9

,1
2)

R
eg

xα
(2

,4
,6

,8
)

R
eg

xα
(1

,2
,3

,4
)

R
eg

xα
(1

,..
.,1

6)

C
hi

en
F

S
M &

E
rr

or
P

os
iti

on

F
ig
.
10

.1
4

E
xa
m
pl
e
of

B
C
H

en
gi
ne

in
cl
ud

in
g
2
pa
ra
lle
l
C
hi
en

ha
rd
w
ar
e
m
ac
hi
ne
s
[4
]

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 297

gðt; xÞ ¼ gðt0; xÞ � hðxÞ ð10:26Þ

Parity bits r(x) are computed as remainder of the division between user data
c(x) and generator polynomial g(t, x). From the definition of remainder we can write

c xð Þ ¼ qðxÞ � gðt; xÞþ rðxÞ ð10:27Þ

where q(x) is the quotient of the division and deg(r(x)) < deg(g(t, x)).
The division of r(x) by g(t′, x) leads to

r xð Þ ¼ q1ðxÞ � gðt0; xÞþ r0ðxÞ ð10:28Þ

where q1(x) is the quotient of the division and deg(r′(x)) < deg(g(t′, x)). By sub-
stituting Eqs. (10.26) and (10.28) in Eq. (10.27) we obtain

cðxÞ ¼ qðxÞ � gðt0; xÞ � hðxÞþ q1ðxÞ � gðt0; xÞþ r0ðxÞ
¼ qðxÞ � hðxÞþ q1ðxÞ½ � � gðt0; xÞþ r0ðxÞ ð10:29Þ

It is clear that r′(x) is the remainder of the division between c(x) and g(t′, x). The
circuit for a multi-code rate BCH encoder is shown in Fig. 10.15.

The overhead for this implementation is a programmable LSFR, which divides
the remainder of the first division by a factor of g(x). Of course, we can have more
than 2 encoders and multiple programmable LSFRs. Thanks to the LSFR pro-
grammability, when NAND is fresh, we can select a BCH code with a small error
correction capability, and user data are encoded with two subsequent divisions.
When the NAND gets older, we can execute a single division, as the subsequent
division is not required anymore.

Decoding is much easier. The syndromes are computed as different divisions by
all the factors of g(t, x). If we want to compute the syndromes by using the factors
of g(t′, x), where g(t′, x) is a factor of g(t, x), it is enough to disable the circuits that
compute the last t − t′ syndromes.

Fig. 10.15 Example of multi-code rate BCH encoder with two different generator polynomials

298 A. Marelli and R. Micheloni

Berlekamp-Massey algorithm is not impacted by the multi-code rate: it com-
pletes in fewer iterations at the beginning of life, with coefficients t′ instead of t.

Chien algorithm is not impacted at all. Again, it will stop after finding t′ roots
instead of t. However, in order to keep up with the SSD’s bandwidth, a multi-Chien
machine approach (Sect. 10.2.3) is likely to be implemented in a multi-code rate
environment.

10.2.5 BCH Detection Properties

BCH codes are not perfect codes: for this reason it is difficult that a codeword with
more than t errors moves in the correction sphere of another codeword. The
codewords of BCH codes are well separated, and only a number of errors much
bigger than t could partially overlap their correction spheres [3]. It follows that the
erroneous corrections are made only when the received message is located in a
correction sphere different from the original codeword.

Given a binary linear code C able to correct t errors, the probability of mis-
correction PME is defined as the probability that an ideal bounded distance decoder
executes erroneous corrections. The weighted probability PE(w) is the probability of
executing erroneous corrections when w errors occur.

Please note that the probability PME depends on the code C and on the trans-
mission channel.

Theorem 10.2.1 The weighted probability PE(w) is computed as:

PEðwÞ ¼ Dw

n
w

� � ð10:30Þ

where Dw is the number of decodable words and w is in the range [t + 1, n].
The number of decodable words can be computed as

Dw ¼
Xn
i¼0

ai
Xt

s¼0

Nði;w; sÞ ð10:31Þ

where N(i, w; s) is the number of words with weight w and distance s from a word
of weight i. This is computed by Eq. (10.32)

N i;w; sð Þ ¼
n� i
sþw�i

2

� �
i

s�wþ 1
2

� �
if w� ij j � s

0 if w� ij j[s

8<
: ð10:32Þ

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 299

By substituting Eq. (10.31) in Eq. (10.30) we have:

PEðwÞ ¼
Pn

i¼0 ai
Pt

s¼0 Nði;w; sÞ
n
w

� � ð10:33Þ

PME is computed based on PE(w) as described in Eq. (10.34)

PME ¼
Xn

w¼tþ 1

PEðwÞ/ðwÞ ð10:34Þ

where /ðwÞ is the probability that a word has weight w.
For a Binary Symmetric Channel BSC

PME ¼
Xn

w¼tþ 1

Dwp
w 1� pð Þn�w ð10:35Þ

where p is the bit error probability.
Dw can be computed according to Eq. (10.31). Unfortunately, the weights ai are

unknown for BCH codes and must be estimated.
There are a number of different theorems that can help estimating these weights

for a BCH code.

Theorem 10.2.2 Peterson Estimation The weight aiof a primitive BCH code of
length n and error correction capability t can be approximated as

ai ffi
n
i

� �

nþ 1ð Þt ð10:36Þ

In order to have upper bounds, different correction terms are added to
Eq. (10.36).

Figures 10.16 and 10.17 shows PE and PME for BCH[16383, 15851, 77], based
on the Peterson estimation. Both PE and PME exhibit a monotonic behavior.

It follows that the real PE and PME behaviour should be increasingly monotonic
with a long floor in the middle [11].

When both the code length and the Code Rate are high, this floor can be
approximated with

Q ¼ 2� n�kð Þ Xt

s¼0

n
s

� �
ð10:37Þ

300 A. Marelli and R. Micheloni

To sum up, we can state that the BCH code has a very good detection properties
for a long codeword; this feature is well suited for NAND-based systems such as
SSDs. In fact, when a catastrophic error occurs or when the error correction
capability of the code is overcome, in the vast majority of the cases, BCH signals a
decoding failure without attempting erroneous corrections.

Of course, this behaviour becomes really key when BCH is concatenated with
another code.

Fig. 10.16 PE behavior for
BCH[16383, 15851, 77]
based on the Peterson
estimation

Fig. 10.17 PME for BCH
[16383, 15851, 77] based on
the Peterson estimation

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 301

10.3 Low-Density Parity-Check (LDPC) Codes

Since its re-discovery in late 1990s, LDPC code has received a tremendous amount
of attentions because of the excellent error-correction capability and experienced a
widespread use in many real-life data communication and storage applications. In
1960s Dr. Gallager invented LDPC codes [15], in which two innovative ideas were
exploited: iterative decoding and constrained random code construction.

LDPC codes are known as “capacity approaching codes”; in other words, they
are a category of codes able to reach a Frame Error Rate very close to the Shannon
limit. The main reason is the powerful soft decoding, as shown in Figs. 10.18 and
10.19. Figure 10.18 shows the Shannon limit for 2 BCH codes and 2 hard decoded
LDPC codes. In this case, LDPC doesn’t show any significant advantage, mainly
because of two reasons: the use of hard instead of soft, and the adopted decoding
algorithm (i.e. bit-flipping) [5]. LDPC is the clear winner in Fig. 10.19, thanks to
the soft decoding. To be fair, the truth is that soft decoding pushes away the
Shannon limit; a careful review of the graph reveals that soft LDPC is very close to
the Hard Shannon limit, but still far from the Soft Shannon limit.

LDPC are block linear codes defined with a very sparse parity check matrix
H. Each matrix can be translated into its corresponding Tanner graph, where there is
a number of parity checks equal to the number of the matrix rows called “check
nodes”; there is also a number of variable nodes equal to the number of matrix
columns. A check node is connected to a variable node if there is a “1” in the
corresponding position in the matrix H.

ð10:38Þ

Figure 10.20 displays the Tanner graph of the matrix described in Eq. (10.38).
Tanner Graph can have cycles; in other words, we can start from a variable node

and come back to it by following different paths. The size of the smallest cycle is
called girth of the LDPC matrix. In Fig. 10.18 the matrix has girth 4 and the cycle
is shown with the bold red path; the corresponding 1s in Eq. (10.38) are highlighted
with a red circle, and they are the vertices of a rectangle.

Cycles are very dangerous in LDPC decoding because it is there where the
decoder can be “trapped”, being unable to find a solution.

While, conceptually, the encoder is a multiplication between the transmitted data
and the generator matrix G, LDPC codes can be effectively decoded by the iterative
Belief Propagation (BP) algorithm (also known as Sum-Product or SPA). BP
decoding matches the underlying code bipartite graph: decoding message is com-
puted on each variable node and check node, and iteratively exchanged through the
edges between neighboring nodes (Fig. 10.21). At the end of every iteration an
estimated codeword is produced; by multiplying this temporary codeword with H,

302 A. Marelli and R. Micheloni

Fig. 10.19 Soft LDPC versus BCH code, and soft Shannon limit

Fig. 10.20 Tanner graph of
matrix H of Eq. (10.38)

Fig. 10.18 Hard LDPC versus BCH, and hard Shannon limit

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 303

we can check if it is a correct one. If this is the case, then decoding stops, otherwise
a new iteration starts. It is well known that BP decoding algorithm works well if the
underlying code bipartite graph does not contain too many short cycles. Thus, it is
typically required that the graph is 4-cycle free, which is relatively easy to achieve.
The construction of graphs with higher order cycle free is definitely not trivial.

There a lot of different LDPC families. The LDPC code is called (j, k)-regular if
each variable node has a degree of j and each check node has a degree of k. There
are also irregular codes. To be useful for Flash memories, LDPC codes must not
only achieve very low decoding error rate with high Code Rates, but also be
suitable for high-speed VLSI implementation, with minimal silicon and energy cost.
It has been well demonstrated that Quasi-Cyclic (QC) LDPC codes are one family
of such implementation-oriented LDPC codes. The parity check matrix of a
QC-LDPC code consists of arrays of circulants. A circulant is a square matrix in
which each row is the cyclic shift of the row above it, and the first row is the cyclic
shift of the last row. The parity check matrix H of a QC-LDPC code can be written
as

H ¼
H1;1 H1;2 � � � H1;n

H2;1 H2;2 � � � H2;n

..

. ..
. . .

. ..
.

Hm;1 Hm;2 � � � Hm;n

2
6664

3
7775 ð10:39Þ

where each sub-matrix Hi,j is a binary circulant. Data storage systems such as Flash
demand very high Code Rates (e.g. 8/9 and higher). It has been proved that LDPCs
with best performances are the irregular ones [16–18]. However, with high Code
Rates, regular QC-LDPC codes are typically used, because they are easier to
implement in hardware. In this case, all the rows have the same number of 1s, all
the columns have the same number of 1s, and all the sub-matrices Hi,j have the
same column weight of 1 or 2. Since LDPC codes are subject to error floor, the code
parity check matrix column weight is typically 4, or even higher, in order to ensure

Fig. 10.21 Iterative LDPC
decoding

304 A. Marelli and R. Micheloni

a sufficiently low error floor (e.g., error floor only occurs below the decoding failure
rate of 10−12) [5]. The regular and cyclic structure of QC-LDPC code parity check
matrix can be leveraged to largely improve its encoder and decoder implementation
efficiency as described below.

10.3.1 LDPC Codes and NAND Flash Memories

Planar TLC NAND has recently pushed for LDPC codes adoption, mainly because
of the very high NAND raw BER. The complexity for tuning LDPC codes to the
NAND characteristics is definitely high. The good thing is that the industry already
paid the price (in terms of R&D) and today LDPC can be leveraged to foster the 3D
evolution (shrink) even more.

A Read operation in the NAND environment is of a hard type by its nature.
Sense Amplifiers translate cells threshold voltages into digital values, “0” or “1”
(Chap. 3). This is the reason why it is not easy to extract a soft information.

In Fig. 10.22, the two VTH distributions represent the two possible cell states:
“0” and “1” (assuming SLC NAND). When distributions overlap, errors pop
up. A hard decision decoder reads all the positive values as 0 and the negative ones
as 1, so that the overlap area in the figure represents the NAND raw BER. However,
A and B are very different errors, because A is a little positive, while B is far away
from 0. It’s like saying that B is much more likely to be an error than A. By
exploiting the exact value of A and B, the decoder can have a better starting point.
This is the so called soft information and it is measured by the Log Likelihood Ratio
(LLR).

The LLR for a particular value x is the logarithmic ratio between the probability
that the bit x was a 0 given the read value y, and the probability that the bit x was a 1
given the read value y. Given this definition, LLR can be written as:

LðuiÞ ¼ log
Pðui ¼ 0jyÞ
Pðui ¼ 1jyÞ

� �
ð10:40Þ

With NAND it’s not possible to know the exact value of the threshold voltage
VTH. As an approximation, each overlap area is split in a number of slices, by
moving the reference voltages. Figure 10.23 shows a MLC NAND where each
overlap area is split in 4 slices, so that each bit (LSB and MSB) is read with 3 soft
bits. The higher the number of soft bits, the more accurate the information is. This
technique has a cost because each bit has to be read 3 times (in this example).
Basically, soft information is asking for read oversampling.

In order to maximize the return on soft information, it is necessary to carefully
understand how to move each read reference voltage, and how many times, since
each additional read increases the latency.

The interaction between LDPC and NAND Flash is illustrated in Fig. 10.24.

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 305

Fig. 10.22 Threshold voltage distributions in SLC NAND flash

Fig. 10.23 Soft reads in MLC NAND flash

306 A. Marelli and R. Micheloni

10.3.2 LDPC Code Encoding

In the context of LDPC encoder design, the most straightforward approach is to
multiply the information bits with the dense generator matrix derived from the
sparse parity check matrix. The density of the generator matrix together with a large
code length make the parallel implementation of generator matrix-vector multipli-
cation impractical due to very high implementation complexity [19]. Hence, a
partially parallel encoder implementation is a must. However, for general non-QC
LDPC codes randomly constructed, their dense generator matrices may not have
any structural regularity that can be used to develop efficient partially parallel
encoder architecture. For QC-LDPC codes, partially parallel encoder design
becomes much more affordable. Let’s assume that the QC-LDPC code parity check
matrix is a m × n array of circulants, and each circulant is p × p. In the simplest
scenario, the matrix has a full rank of m � p. We assume that code parity check
matrix can be column-wise permuted so that the following sub-array has a full rank
of m � p:

Fig. 10.24 Soft LDPC in the NAND context

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 307

H1;n�mþ 1 H1;n�mþ 2 � � � H1;n

H2;n�mþ 1 H2;n�mþ 2 � � � H2;n

..

. ..
. . .

. ..
.

Hm;n�mþ 1 Hm;n�mþ 2 � � � Hm;n

2
6664

3
7775 ð10:41Þ

Let’s also consider a systematic encoding, i.e. the first (n – m) � p bits in each
codeword are the information bits, and the first (n − m) � p columns of the parity
check matrix correspond to the (n − m) � p information bits. Hence, the corre-
sponding generator matrix has the following form:

G ¼
I O � � � O G1;1 G1;2 � � � G1;m

O I � � � O G2;1 G2;2 � � � G2;m

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

O O � � � I Gn�m;1 Gn�m;2 � � � Gn�m;m

2
6664

3
7775 ð10:42Þ

where I and O represent identity p × p matrix and zero p × p matrix. Being G the
generator matrix, it must satisfies H � GT = 0, which clearly suggests that each Gi,j

should also be a p × p circulant.
The generator matrix-vector multiplication for QC-LDPC encoding can be

carried out in a partially parallel manner by leveraging the inherent cyclic structure
of the generator matrix (Fig. 10.25).

If the matrix H is not full rank, the code is semi-systematic. In other words, the
matrix G is shown in Eq. (10.43),

Fig. 10.25 LDPC encoding
with a full-rank matrix

308 A. Marelli and R. Micheloni

G ¼

I G1;1 � � � G1;z

I G2;1 � � � G2;z

. .
. ..

. ..
.

I Gn�z;1 � � � Gn�z;z

0 0 � � � 0 Q1;1 � � � Q1;z

..

. ..
. ..

. ..
.

0 0 � � � 0 Qz;1 � � � Qz;z

2
66666666664

3
77777777775

ð10:43Þ

where the part represented by Q is neither systematic nor regular (in size).
The hardware structure is represented in Fig. 10.26. The systematic part is

equivalent to the one of the full-rank H matrix. The grey part is non-systematic and
is not regular since the size of the Qs circulants is not fixed. In addition to that, it is
not easy to make it parallel due to its irregularity.

During read, once decoding stops, it is necessary to multiply the non-systematic
part by Q−1, in order to recover the original data [20].

As discussed, a semi-systematic implementation is much more complex than a
systematic one. When H is not full-rank, a possible workaround is to fix the parity
section. Parity-check matrix H on the parity section is composed by a specific
circulants. Those circulants can be all-zeros circulants so that matrix H won’t be
regular anymore. For more detailed discussions on QC-LDPC code encoder design,
readers can refer to [19, 21, 22].

Fig. 10.26 LDPC encoding without a full-rank matrix

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 309

10.3.3 LDPC Code Decoding

To understand LDPC decoding, one of the key concepts is the extrinsic informa-
tion. Here it is explained through an example [5].

We have a troop of 6 soldiers and each soldier wants to know the total number of
soldiers in the troop. In Fig. 10.27 we have a linear troop. In this case, each soldier
takes the number provided by the neighbour behind, he adds 1, and he transmits the
result to the neighbour in front of him. Soldiers at the edges receive a 0 from the
side without neighbour. For each soldier, the sum of received and transmitted
numbers is equal to the total number of soldiers.

The second troop (Fig. 10.28) is a little more complex, and it requires different
rules to pass the information. Each soldier takes all the numbers from his neigh-
bours, he adds 1, and he subtracts the number passed by the neighbour he wants to
send the message to. For example, the yellow soldier sends 2 + 3 + 2 + 1 − 2 = 6
to the green soldier. Soldiers at the edges receive a 0 from the side without
neighbour. The sum of the number that a soldier receives from anyone of his
neighbours plus the one the soldier passes to that neighbour is equal to the total
number of soldiers. This introduces the concept of extrinsic information. The idea is
that a soldier does not pass to a neighbouring soldier any information that the

Fig. 10.27 Linear troop

Fig. 10.28 Extrinsic
information

310 A. Marelli and R. Micheloni

neighbouring soldier already has; in other words only extrinsic information is
passed.

The last troop (Fig. 10.29) contains a cycle. The situation is unsolvable: no
matter what counting rule one may devise, the cycle represents a type of positive
feedback, both in clockwise and counter-clockwise direction, so that the messages
passed within the cycle will increase without bound. This shows that the message
passing on a graph cannot be claimed to be optimal if the graph contains one or
more cycles. However, while most practical codes contain cycles, it is well known
that message-passing decoding performs very well, assuming properly designed
codes.

The key innovation behind LDPC codes is the low-density nature of the parity
check matrix, which facilitates iterative decoding. Message-passing decoding refers
to a collection of low-complexity decoders working in a distributed fashion to
decode a received codeword, in a concatenated coded scheme. We can better
understand this sentence by using the crossword-puzzle analogy (Fig. 10.30).

Solving a crossword-puzzle proceeds as follows:

• start with all the horizontal words we know → red circles;
• proceed with all the vertical words we know → blue circles;
• re-start to see if we are able to complete more horizontal words given the

addition of the vertical words of the previous step → green circles;
• re-start to see if we are able to complete more vertical words → magenta

circles;
• keep looping until the crossword-puzzle is completed (or a codeword is found)

and stop when either we are not able to solve it (we fell in error floor) or we are
too tired (we reached the maximum number of iterations).

Belief Propagation algorithm is the best iterative decoding methods for LDPC.
In order to understand it, it might be useful to consider the Tanner Graph of the
parity check matrix (Fig. 10.31).

Fig. 10.29 Soldier formation
containing a cycle

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 311

Fig. 10.30 Crossword-puzzle

Fig. 10.31 Tanner graph of a
LDPC parity check matrix

Fig. 10.32 Check node
processing of LDPC BP
decoding

312 A. Marelli and R. Micheloni

During the check node processing phase (Fig. 10.32), each check node has to
compute the values m it has to send to variable nodes it is connected to. Values are
computed according to Eq. (10.44).

mi
j ¼

Y
k2N jð Þnfig

sign r jk
� � � / X

k2N jð Þnfig
/ jr jk j
� �0

@
1
A ð10:44Þ

/ xð Þ ¼ � log tanh
x
2

	
	

ð10:45Þ

Remembering the soldier example, please note that only the extrinsic informa-
tion is taken into account: in fact, the value mi is computed by using all the values
sent by the variable nodes connected to that specific check node, except variable
node i.

The same idea applies to variable node processing (Fig. 10.33), where value rj is
computed by using all the values sent by the check nodes connected to the variable
node, except check node j. Equation (10.46) is used

r ji ¼ wi þ
X

k2N ið Þnfjg
mi

k ð10:46Þ

where w are the input LLRs.
Values r represent the estimated codeword. At the end of each iteration this word

is multiplied by the transpose of H to check if it is a real codeword. If the result is
null, then r is a codeword and the decoding is finished, otherwise a new iteration
starts.

The formula used for check node processing is a very complex one and it
involves the function tanh, which is sketched in Fig. 10.34.

BP can be approximated with the so-called min-sum decoding algorithm: the
computational complexity can be largely reduced by paying a small decoding

Fig. 10.33 Variable node
processing of LDPC BP
decoding

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 313

performance degradation. The main difference between BP and min-sum lies in the
check node: Eq. (10.44) applies to BP, while the check node processing for
min-sum is described by Eq. (10.47).

mi
j ¼

Y
k2NðjÞnfig

sign r jk
� � � min

k2NðjÞnfig
r jk
�� �� ð10:47Þ

Therefore, the function Φ(x) (i.e. tanh), which is typically implemented as LUT,
is eliminated in the min-sum decoding algorithm. Min-sum can be further opti-
mized, as described below.

Figure 10.35a shows the comparison between values computed via sum-product
(SPA) and values computed via min-sum. Dots on the bisector would mean that
min-sum is a great approximation of sum-product, but this is not the case; even the
average has a different slope. By introducing an attenuation factor α, the approxi-
mation can be much better, as shown in Fig. 10.35b.

In other words, Eq. (10.47) can be computed as

mi
j ¼ a �

Y
k2NðjÞnfig

sign r jk
� � � min

k2NðjÞnfig
r jk
�� �� ð10:48Þ

The attenuation factors could change at each iteration and they must be properly
studied.

Fig. 10.34 Tanh function

314 A. Marelli and R. Micheloni

Fig. 10.35 a Comparison
between check node variables
computed with SPA and
min-sum. b Comparison
between check node variables
computed with SPA and
normalized min-sum [25]

Fig. 10.36 LDPC layered
decoding

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 315

Regardless of the specific decoding algorithm, the hardware implementation can
be parallelized by splitting the circulants processing (for both variable and check
nodes), as sketched in Fig. 10.36. This solution is known as “layered decoding”.

Taking again the crossword-puzzle analogy, in the min-sum case we first work
on all horizontal words (check nodes) and only then we switch to the vertical words
(variable nodes). In the layered case, once we have enough information on the
horizontal words (check nodes of one circulant row), we immediately switch to the
vertical words (variable nodes). In this way, the computation on the check nodes of
the second layer (second circulant row) has a much cleaner input (because it doesn’t
use the initial variable node value but the one already computed by the first layer).
Indeed, layered decoding requires much less iterations than standard min-sum.

10.3.4 QC-LDPC Applied to NAND Flash Memories

For Enterprise SSDs, target UBER is 10−16 (Eq. 10.3). Unfortunately, it is not
possible to evaluate LDPC performances without simulations, since there aren’t any
closed formulas like in the BCH case.

In addition to that, LDPC decoding algorithm, because of its iterative nature, has
a big drawback known as error floor [23, 24, 27].

Figure 10.37 shows how the error floor manifests itself: it is basically a change
of the slope at low BER. With BCH it is possible to exactly predict at which BER
the resulting UBER will be 10−16; with LDPC we don’t know at which BER the
error floor will appear and its slope. The only certainty is that it will appear.

Fig. 10.37 Error floor

316 A. Marelli and R. Micheloni

It is still a mystery why error floor pops up. Nowadays, mathematicians think
that it is due to trapping sets. Once the decoder is trapped in a trapping set, values
of the variable nodes corresponding to some of the wrong bits become bigger and
bigger as decoding proceeds; in other words, at some point, it becomes almost
impossible for the decoder to revert its decision. The decoding will reach the
maximum number of allowed iterations without finding a codeword.

Because there are 3 different types of trapping sets (Fig. 10.38), the output of the
decoder might be:

• a codeword containing few constant errors;
• a codeword containing a random number of errors;
• a codeword that contains a periodical number of errors.

The last one is very dangerous because a codeword with 6 errors can have 200
errors after decoding!

Going back to the simulation topic, software simulations are not a viable solution
to reach a UBER of 10−16; hardware co-simulations are a must. A single FPGA can
run few hundred million codewords per day, and this acceptable only if the target
FER is in the range of 10−6.

On the other hand, because of error floor, it is not possible to approximate the
graph below FER of 10−6 with a simple straight line. Bottom line, enterprise
applications ask for simulations of not less than 1013 codewords. One FPGA would

Fig. 10.38 Different kind of trapping sets [26]

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 317

need 100,000 days of simulations! This is why networks of FPGAs are the only
practical solution to this problem [24].

It is worth highlighting that it is important to run the “correct” simulations. In
fact, each parameter change requires a different simulation. For example, it is not
possible to extract the soft error floor from the hard error floor. For the same reason,
the min-sum decoding error floor can’t be used to deduce the floor for the nor-
malized min-sum.

Figure 10.39 shows a comparison between LDPC and BCH on AWGN channel.
NAND VTH distributions are modeled as two symmetric Gaussian distributions,
whose mean values are VTH = −1 and VTH = +1, respectively. In this model the
NAND raw BER is represented by the variance σ of the distributions.

In order to understand the actual performances of a specific LDPC code, it is
fundamental to make simulations based on data extracted from silicon.

Data read from NAND Flash memories are always either a 0 or a 1, as already
explained in Sect. 10.3.2. Therefore, the starting point is always hard decoding; if it
fails, soft decoding takes over and we need to:

• Re-Read in order to get reliability info for each single bit;
• Map each bit to a LLR value;
• run soft simulations.

Re-Read strategy is described in Sect. 10.3.2: basically, the read reference
voltage is shifted, and one or more additional Read operations are performed to
understand where bits are located within the voltage distribution.

Fig. 10.39 QC-LDPC versus
BCH for 2-bit/cell NAND
flash memory [12]

Table 10.1 Example of LLR
values for soft decoding

Value read from NAND flash

1st read 2nd read (re-read) LLR

0 0 +7

0 1 +1

1 0 −1

1 1 −7

318 A. Marelli and R. Micheloni

Each Re-Read operation returns a sequence of 0s and 1s, which can be coupled
to the sequence of the previous Read, as shown in Table 10.1.

The LLR sign indicates whether the bit of the 1st Read is more likely to be a 0 or
a 1; the magnitude indicates the confidence level associated to the 1st Read. Let’s
look at a couple of examples: “+1” indicates that we have read a 0 but we are not
that confident, while “+7” indicates that we have read a 0 and we are pretty sure
about this bit to be correct.

Once each bit of the transmitted message has been mapped to an LLR value, this
value is the input for soft decoding simulations, which are used to build curves like
the one shown in Fig. 10.19.

To sum up, despite all the challenges related to error floor and soft information,
LDPC can successfully be utilized to boost ECC performances, and it is definitely
the most promising solution for 3D NAND Flash memories, especially when
looking at TLC and QLC storage.

References

1. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423),
623–656 (1948)

2. C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting coding and
decoding: Turbo-codes, in Proceedings of ICC’93, Geneve, Switzerland, May 1993,
pp. 1064–1070

3. R. Micheloni, A. Marelli, K. Eshghi, Inside Solid State Drives (SSD) (Springer, Berlin, 2012)
4. R. Micheloni, A. Marelli, R. Ravasio, Error Correction Codes for Non-Volatile Memories

(Springer, Berlin, 2008)
5. S. Lin, D.J. Costello, Error Control Coding (Prentice Hall, Upper Saddle River, 2004)
6. T.K. Moon, Error Correcting Coding—Mathematical Methods and Algorithm (Wiley, NJ,

2005)
7. R.C. Bose, D.K. Ray-Chaudhuri, On a class of error correcting binary group codes. Inf.

Control 3, 68-79 (1960)
8. A. Hocquengheim, Codes Correcteurs d’erreurs. Chiffres 2, Sept 1959
9. M.A. Pellegrini, The (2, 3)-generation of the classical simple groups of dimensions 6 and 7.

Bull. Aust. Math. Soc. 93(1), 61–72 (2016)
10. M.A. Pellegrini, M.C. T. Bellani, The simple classical groups of dimension less than 6 which

are (2, 3)-generated. J. Algebra Appl. 14(10), 1550148 (2015) (15p)
11. M. Kim et al. Decoder error probability of binary linear block codes and its application to

binary primitive BCH codes. IEICE Trans. Fundam. (1996)
12. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Springer, Berlin, 2010)
13. E.R. Berlekamp, Algebraic Coding Theory (McGraw Hill, New York, 1968)
14. H.O. Burton, Inversionless decoding of binary BCH codes. IEEE Trans. Inf. Theory 17 (1971)
15. Y. Lee, H. Yoo, I. Yoo, I.C. Park, 6.4 Gb/s multi-threaded BCH encoder and decoder for

multichannel SSD controllers, in ISCC Digest of Technical Papers (2012)
16. R.G. Gallager, Low-density parity-check codes. IRE Trans. Inf. Theory IT-8, 21–28 (1962)
17. V. Zyablov, M. Pinsker, Estimation of the error-correction complexity of Gallager low-density

codes. Problemy Peredachi Informatsii 11, 23–26 (1975)
18. R.M. Tanner, A recursive approach to low complexity codes. IEEE Trans. Inf. Theory IT-27

(5), 533–547 (1981)

10 BCH and LDPC Error Correction Codes for NAND Flash Memories 319

19. G.A. Margulis, Explicit constructions of graphs without short cycles and low density codes.
Combinatorica 2(1), 71–78 (1982)

20. Z. Li et al., Efficient encoding of quasi-cyclic low-density parity check codes. IEEE Trans.
Commun. (2006)

21. S. Myung et al., Quasi-cyclic LDPC codes for fast encoding. IEEE Inf. Theory June (2005)
22. Z. Li, L. Chen, S. Lin, W. Fong, P.-S. Yeh, Efficient encoding of quasi-cyclic low-density

parity-check codes. IEEE Trans. Commun. 54, 71–81 (2006)
23. T. Richardson, Error floors of LDPC codes, in Proceedings of the 41st Annual Allerton

Conference on Communication, USA (2003)
24. R. Micheloni et al., Hardware/software co-simulation for error-floor detection in LDPC, in

Proceedings of Flash Memory Summit, www.flashmemorysummit.com, Santa Clara, CA,
USA, 5–7 Aug 2014

25. M. Fossorier et al., Channel Coding: Theory, Algorithms and Application (Wiley, NJ, 2005)
26. S. Landner, O. Milenkovic, Algorithmic and combinatorial analysis of trapping sets in

structured LDPC codes, in International Conference on Wireless Networks (2005)
27. L. Dolecek et al., Predicting error floors of structured LDPC codes: deterministic bounds and

estimates. IEEE J. Sel. Areas Commun. (2009)

320 A. Marelli and R. Micheloni

Chapter 11
Advanced Algebraic and Graph-Based
ECC Schemes for Modern NVMs

Frederic Sala, Clayton Schoeny and Lara Dolecek

In this chapter, we discuss advanced error-correcting code techniques. In particular,
we focus on two complementary strategies, asymmetric algebraic codes and
non-binary low-density parity-check (LDPC) codes. Both of these techniques are
inspired by traditional coding theory; however, in both cases, we depart from
classical approaches and develop new concepts specifically designed to take
advantage of inherent channel characteristics that describe non-volatile memories.

We focus, in particular, on modern flash devices, including multi-level and 3D
flash technology. Flash is a phenomenally popular technology; the attention it has
received has led to numerous process innovations. As a result, current implemen-
tations of flash, such as 3D flash, contain vast numbers of tightly-packed transistors.
Flash cells suffer from a variety of physical issues, including interference/crosstalk
(stronger in certain dimensions compared to others due to the packing design
parameters in 3D flash), read and write disturbs, charge leakage, and many others.
These complex effects are poorly modeled by traditional channels and the resulting
errors are not well handled by traditional coding schemes; we must look towards
novel approaches. We select two distinct, opposite points of attack. The first is
improving on classical algebraic codes, which offer known, efficient encoding and
decoding algorithms and are suitable for inexpensive, efficient devices with mild
error tolerance requirements. The second is improving on cutting-edge non-binary
LDPC codes, which have among the very best error-correcting ability of all known
coding schemes, at the cost of more complex encoding and decoding circuitry.
Additionally, new algebraic codes are particularly suitable for hard-read channels

F. Sala � C. Schoeny � L. Dolecek (&)
Electrical Engineering Department, UCLA, Los Angeles, CA 90095, USA
e-mail: dolecek@ee.ucla.edu

F. Sala
e-mail: fredsala@ucla.edu

C. Schoeny
e-mail: cschoeny@ucla.edu

© Springer Science+Business Media Dordrecht 2016
R. Micheloni (ed.), 3D Flash Memories, DOI 10.1007/978-94-017-7512-0_11

321

whereas LDPC codes are most beneficial for soft-read channels. The two coding
approaches thus target the opposite ends of the flash quality/cost tradeoff curve.

In the case of algebraic codes, we discuss a set of code constructions which rely
on traditional symmetric codes, such as BCH codes, as building blocks. The final
result is a family of codes specifically tailored towards asymmetric channels, such
as the triple-level cell (TLC) flash data storage channel, which can be deployed in
both 2D and 3D flash. We introduce a variation of these codes which can handle a
type of very specific flash errors, along with codes suitable for the dynamic
thresholding scheme, which is effective for non-volatile memories. For a subset of
our techniques, we quantify the offered improvements on data sets measured from
real flash devices.

In the case of LDPC codes, we present design and optimization techniques that
result in non-binary LDPC codes with lowered error floors. The error floor is an
effect which reduces the improvement in the output error rate of iteratively-decoded
LDPC codes as the input SNR increases; this effect occurs for high SNRs, limiting
the applicability of LDPC codes for high-reliability applications, such as flash. In
order to resolve this problem, we identify certain subgraph objects, called absorbing
sets, which occur in the Tanner graph structure of the LDPC code and contribute to
the error floor. We characterize these objects for the non-binary LDPC case and
present an algorithm to remove the smallest absorbing sets. Here too, the resulting
code construction is tailored for an asymmetric channel. The power of the technique
is illustrated for a series of non-binary LDPC codes, including the practical
quasi-cyclic (QC-LPDC) codes.

11.1 Asymmetric Algebraic ECCs

One of the most interesting features of real-life memory channels is their asym-
metry; that is, the fact that not all errors in such channels occur with equal prob-
ability. For example, the channel induced by a multiple-level flash storage device
has a vastly higher chance of inducing an error between the erased state and a
non-erased state compared to that of errors between two non-erased states.

Traditional coding theory largely does not concern itself with these asymmetries.
The binary symmetric (BSC) and binary erasure (BEC) channels are the most
frequently studied discrete channels while the additive white Gaussian noise
(AWGN) channel is the most used continuous channel. None of these channels
model asymmetries beyond the particular channel parameters. As a result, in order
to apply tools from traditional coding theory to real-life situations, a symmetric
channel is selected based on the worst-case error. This conservative approach
allows for a safe margin.

On the other hand, such approaches are also wasteful for asymmetric channels,
since a large amount of the strength of the code is then applied towards correcting
errors which are rare. This unneeded strength results in a lower-than-necessary code
rate, wasting energy or storage capacity. Conversely, if the code rate is kept

322 F. Sala et al.

constant, it would be more effective to place the code’s power into correcting
frequent errors, thus improving the overall error probability of the system. This
concept of coding for asymmetries is illustrated in Fig. 11.1.

In the remainder of this section, we discuss asymmetric error-correcting codes.
We formalize the intuition presented in the previous discussion. As described
earlier, we focus especially on the case of data storage in flash. In fact, data sets
collected from production flash devices are available. Since encoders and decoders
for algebraic codes are easy to specify and implement, we can test our proposed
codes directly on the real data (rather than perform simulations using synthetic
data).

11.1.1 Graded-Bit-Error Correcting Codes

We begin by considering the TLC (triple-level cell) flash channel, which, until very
recently, was the most advanced and dense flash technology. Despite the name
given to these devices, each cell has eight possible charge levels and thus represents
three bits of information. The organization of flash devices places each of these
three bits on a different page; pages are themselves collected as blocks, which are
further organized into planes [1].

This organization allows us to model the TLC flash channel in two natural ways.
First, looking at each cell separately, we may view the cell as an 8-ary channel, as
each cell has eight possible states. Secondly, we may view each bit separately, since
these bits are placed on different pages. In this case, the cell can be modeled as three
independent binary channels.

Fig. 11.1 The left diagram represents a packing of traditional Hamming spheres that are agnostic
to the error distribution. The right diagram represents a packing of spheres that are designed with
the error asymmetry in mind. The black dot at the center of each sphere represents the codeword,
and the red dots represent the most likely erroneously received words. By targeting the specific
error distribution, we can pack more asymmetric spheres than symmetric spheres, which translates
into a higher code rate. Note that this is a simplified illustration of n-dimensional spheres

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 323

In the case of the 8-ary channel, we may apply non-binary codes. We can use the
statistics of the 8-ary channel to estimate the number of errors expected in a block
of cells. Using this information and a target error rate, we can select an appropriate
code, such, as for example, a code from the 8-ary BCH code family. Similarly, if we
view the cell as three independent binary channels, we can select three binary
codes, such as three binary BCH codes, based on the error probability of each
channel.

It turns out, however, that neither of these approaches is suitable. An [n,k,t]8
BCH code (t-error-correcting 8-ary code of length n and dimension k, e.g., con-
taining 8k codewords) corrects any t 8-ary errors. For example, an error between
states 2 and 6 (a 2 → 6 error) can be corrected just as well as a 1 → 2 error.
However, our channel produces vastly more 1 → 2 errors. In particular, most errors
are only in one bit of the three-bit binary representation of each 8-ary state.

To illustrate this idea, we present the most frequent errors that occurred on a
TLC flash chip over 5000 program/erase (P/E) cycles of operation. Comparing the
programmed and errored state for the most frequent errors indeed confirms that
most errors occur only in a single bit of the three-bit triplet (Table 11.1).

Table 11.1 Most frequent
errors measured in a TLC
flash device (3-bit cells)

Programmed state Errored state Fraction of errors

000 010 0.2467

000 001 0.2444

111 101 0.0820

111 110 0.0807

000 100 0.0669

011 001 0.0556

100 110 0.0550

011 010 0.0547

100 101 0.0540

111 011 0.0217

The left column gives the intended, programmed state of the cell;
the middle column shows the result, which contains an error. The
right column gives the fraction of total errors caused. Note that
each of these 10 most popular errors contain only one bit in error

Fig. 11.2 Distributions for different voltage levels in a TLC (3-bit/8-state) cell. The 3-bit
representations rely on a Gray code

324 F. Sala et al.

The reason for this is explained by Fig. 11.2: the 3-bit binary representation of
the levels is based on a Gray code, so that going from one consecutive state to the
next only changes a single bit. We conclude that the ability to correct many 2 → 6
errors is an inefficiency in the code.

In the binary case, there is a similar problem. As can be predicted from the fact that
the three binary channels are really all operating in a single cell, the channels are not
independent. In this case, assuming independence underestimates the number of errors
where more than one of the bits is in error. That is, errors such as e = (1,1,0) and
e′ = (1,0,1) (here each non-zero value in a triplet represents an error in one of the three
bits) are under-represented. In fact, in our TLC device, we measured that the fraction of
errors that have 2 bits in error is 0.0314 and the fraction with 3 bits in error is 0.0069.
These quantities are far too large to have been produced if the probability of error
among each of the pages was independent. Nevertheless, the separate binary code
approach is a more accurate model compared to the 8-ary channel.

How can we design a code tailored to specifically deal with such error patterns?
First, as shown in the table above, we can profile the channel to discover how many
errors are typically single-bit errors and how many are multiple-bit errors. We then seek
to introduce a code which corrects errors with precisely these ratios. We detail this
notion in the following.

Definition 1 Let t,v > 0. Then, a vector e = (e1, e2, …, en) over (GF(2)
m)n is called

a [t;v]-bit error vector if it satisfies the following two properties:

1. wt(e) = |{i : ei ≠ 0}| ≤ t, and
2. for all i, wt(ei) ≤ v.

Definition 2 Let 0 < v1 < v2 ≤ m and t1, t2 > 0. A vector e = (e1, e2, …, en) over
(GF(2)m)n is a [t1, t2; v1, v2]-graded bit error vector if it satisfies the following
properties:

1. wt(e) = |{i : ei ≠ 0}| ≤ t1 + t2,
2. for all i, wt(ei) ≤ v2, and
3. |{i : wt(ei) > v1}| ≤ t2.

In the previous definitions, wt() refers to the Hamming weight of the vector (the
number of nonzero components in this vector). The basic idea is to introduce a more
refined version of the usual definition of error vectors. Rather than simply counting
the number of nonzero components, we classify them according to how many bits
are in error as well. The first definition is particularly suitable for the case where all
errors involve only a small number of bits. The second definition is more flexible: it
enables us to profile errors as involving some number of errors in few bits and a
(normally smaller) quantity of errors in a larger number of bits. Next, we define
codes which are capable of correcting such error patterns:

Definition 3 Let v, t > 0. Then, a code C is a [t;v]-bit error correcting code if it is
capable of correcting every [t;v]-graded bit error vector.

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 325

Definition 4 Let 0 < v1 < v2 ≤ m and t1, t2 > 0. Then, a code C is a [t1, t2; v1, v2]-
graded-bit error correcting code if it is capable of correcting every [t1, t2; v1, v2]-
graded bit error vector.

To see how these definitions work (and how they apply to our asymmetric TLC
flash channel), consider the following example. We store vectors of length n, where
each element is a 3-bit vector. For the sake of this example, we take n = 7. Say we
store the vector

x ¼ 000 110 010 101 000 111 000ð Þ:

After some time, we read back the stored data as

y ¼ 111 110 110 101 010 111 010ð Þ:

We can conclude that the error vector was

e ¼ 111 000 100 000 010 000 010ð Þ:

We can classify this error vector as a [3,1; 1,3]-graded-bit-error vector. There are
a total of 3 + 1 = 4 cells in error (4 triplets that are not all 0). Of these four, three
have only one bit in error, while the remaining has three bits in error. Based on this,
we can take v1 = 1, v2 = 3, and t1 = 3, t2 = 1.

Observe how this classification differs from the much more coarse error defi-
nition used by BCH codes. In the case of an 8-ary BCH code, we would simply
record that there were 4 errors, not distinguishing between the single-bit and
multiple-bit errors.

Next, our goal is to introduce graded bit error-correcting code constructions. As
we will see, an operation from linear algebra known as the tensor product is a
crucial ingredient in these constructions. The tensor product is an operation on
matrices defined as follows. Let us say that A is a matrix in Rm×n and B is a matrix
in Rp×q. Then, the tensor product A ⊗ B is defined as

A� B ¼
a11B � � � a1nB
..
. . .

. ..
.

am1B � � � amnB

2
64

3
75:

In other words, A ⊗ B is an mp × nq block matrix where each of the elements
of A is (scalar) multiplied by the matrix B. This operation has many important
properties in mathematics and physics. In coding theory, it was first used by Wolf to
produce a construction of [t;v]-bit error correcting codes [2]:

Construction 1 Let CA be a code with a parity check matrix given by
HA = H2 ⊗ H1, where H1 is the parity-check matrix of a binary [m,k1,v]2 code C1,
and H2 is the parity-check matrix for a [n,k2,t]d code C2, where d = 2m−k1. Then,
CA is a [t;v]-bit error correcting code.

326 F. Sala et al.

We can provide a simple example of such a code construction. For C1, we use
the Hamming code [3,1,1]2, which has parity check matrix

H1 ¼ 1 0 1
0 1 1

� �
:

In other words, we will use as one of our two constituent codes the binary 3-bit
repetition code with codewords {000,111}. Next, we can select a different code for
C2. Note that this code, in our case, must be over GF(4), since our final output must
be over GF(8), according to our requirements for TLC flash cells. Since we require
a code over GF(4), we let α be a primitive element over this finite field. Then, we
can take C2 to be a [4,2,1]4 code, which also corrects one error:

H2 ¼ 1 0 1 1
0 1 1 a

� �
:

Then, it is not hard to see that the resulting matrix is

HA ¼ 1 a a2 0 0 0 1 a a2 1 a a2

0 0 0 1 a a2 1 a a2 a a2 1

� �
:

Of course, it is possible to take the binary image of this GF(4) matrix:

HA ¼
1 0 1 0 0 0 1 0 1 1 0 1
0 1 1 0 0 0 0 1 1 0 1 1
0 0 1 1 0 1 1 0 1 0 1 1
0 0 1 0 1 1 0 1 1 1 1 0

2
664

3
775:

Since H1 and H2 are parity-check matrices for single-error correcting codes with
the desired properties, we expect CA (with parity-check matrix HA) to be a [1;1]-bit
error-correcting code. This is indeed the case: we observe that the columns of HA

are all distinct, so that therefore, an error vector with a single bit in error can be
corrected. Moreover, if we group the 12-bit long codewords in CA into 4 groups of
3 bits each, we regain the GF(8) interpretation of the code.

More recently, a construction for the more refined graded-bit-error correcting
codes was introduced [3]. This construction relies on the tensor product operation
as well; however, the construction is somewhat more sophisticated:

Construction 2 Let CB be a code with a parity check matrix given by

HB ¼ H2 � H3

H4 � H5

� �
:

Here, we have C1 a [m,k,v2]2 binary code with parity-check matrix H1. Let
r = m − k. We take H1 to be such that the top r3 rows of H1 are a parity-check

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 327

matrix for an [m,m − r3,v1]2 code for some r3 < r. This code will be called C3 (with
parity-check matrix H3). We let H5 be the submatrix of H1 including the bottom
r5 = r − r3 rows of H1. Finally, we let H2 be the parity-check matrix for a 2r3-ary [n,
k2,t1 + t2]d code C2 (d = 2r3) and H4 to be the parity-check matrix for a 2r5-ary [n,
k4,t2]f code C4 (f = 2r5).

Then, CB is a [t1,t2;v1,v2]-graded bit error correcting code of length n.
Let us see how the decoding works for this type of code. For the code CB, we

introduce the decoder DB which takes as an input a vector y = c + e, with c a
codeword in CB and e a [t1,t2; v1,v2]2

m-bit error vector. The output here is an
estimate e′ of the error vector e (note that we use a slightly abnormal convention
where the output is the error estimate rather than an estimate of the transmitted
codeword. The codeword estimate can be computed as c′ = y − e′). Then, the
decoder DB operates in the following way. Each of the other Di are the decoders for
the corresponding codes Ci.

1. Form the vectors (s1
0,…,sn

0) from the decoder D2(H2 � (H1′ � y1T,…, H1′ � ynT)T).
2. Set the error e* to be (D1′(s1

0),…,D1′(sn
0)).

3. Set the codeword y′ to be y + e*.
4. Compute (s1′,…,sn′) from D2(H2 � (H1′ � y1′T,…,H1′ � yn′T)T).
5. Set (s1″,…,sn″) to be D3(H3 � (H1″ � y1′T,…,H1″ � yn′T)T).
6. Set I to be {i : (si′,si″) ≠ (0,0)}.
7. Let y″ satisfy yi″ = yi if i is in I and yi″ = yi′ if i is not in I.
8. Set (s1

1,…,sn
1) to be D3(H3 � (H1″ � y1″T, …, H1″ � yn″T)T).

9. e = (e1,…,en) where ei = ei* if i is not in I and otherwise ei = D1(si
0,si

1).

The basic idea here is to first correct the errors with fewer bits in error. Of
course, some errors have too many bits in error, so they will be miscorrected (but
only to at most weight v1 + v2). Next, we detect which errors are the miscorrected
ones, and correct them as well.

We also note that all of the non-trivial operations in the decoding procedure are uses
of the decoding functions D1, D2, D3. Moreover, each of these operations is performed
at most twice. Therefore, the overall decoding complexity is a small constant factor
times the complexity of the worst (in terms of complexity) constituent code. So, for
example, if we use BCH codes as our constituent codes, our overall decoding algorithm
has complexity roughly twice as large as the largest constituent BCH code.

As mentioned, we can test the proposed graded-bit error-correcting codes on
actual data collected from TLC flash devices. The data was collected in the fol-
lowing way: random data patterns are written to the device, filling each block. This
procedure is repeated for 5000 program/erase (P/E) cycles; each 100 cycles, the
data is read back for errors [1].

The comparisons were performed against other BCH codes with the same rate
and length. In the three plots in Fig. 11.3, codes had lengths of 4096, 8192, and
16,384, respectively. The purple curve in the bottom figure, for example, indicates a
graded bit error correcting code with parameters [t1,t2; v1,v2] = [242,8; 1,3]. The
red curves represent 8-ary BCH codes. The blue curves represent (identical) binary
BCH codes used to protect each of the 3 bits in the cell separately. The black curves

328 F. Sala et al.

represent three binary BCH codes (with different parameters) selected to optimize
the error rate on each bit separately. For our graded bit error-correcting code
constructions, we also selected BCH codes as our underlying constituent codes, so
that the final parity check matrix HB is produced by stacking the tensor products of
parity check matrices of BCH codes.

Fig. 11.3 Page error rates
(PERs) for codes of with
approximately the same
length (4096, 8192, and
16,384 bits, respectively) and
rate tested using data
collected from TLC flash
devices after varying numbers
of program/erase cycles. The
red, blue, and black curves
use BCH codes (non-binary,
identical binary over the
separate pages, and differing
binary codes over the separate
pages, respectively.) The
purple curves show our
graded-bit error-correcting
code construction. As can be
seen, our asymmetric
construction results in no
errors (perfect operation) until
much later in the device
lifetime compared to
traditional codes

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 329

As can be seen, using graded bit error-correcting codes allows for no errors at all
on the measured data until late in the device lifetime (past 3000 P/E cycles). After
this point, these codes perform as well or better than the separate binary BCH
codes. Meanwhile, the 8-ary symmetric scheme has by far the worst performance.

We must point out that this is not the limit of what can be accomplished by the
use of asymmetric codes tailored to handle specific error patterns. We have
observed several other types of errors as well [4]. In the case of TLC flash, a careful
study of the error patterns indicates that cells can be broadly divided into reliable
and unreliable cells, where the unreliable cells are vastly more likely to be in error.
In the case of the data set we examined, we noted that a specific set of roughly
65,000 cells (forming approximately 0.05 % of the total number of cells) resulted in
more than 50 errors each across the 5000 P/E cycles from the test. In other words,
about 10−4 of the cells account for more than 10 % of the errors.

What is the behavior of these unreliable cells? We observed that the cells produce
these errors specifically when they are programmed to a higher voltage level. TLC cells
have 8 possible voltage levels; frequent errors occurred when the unreliable cells were
programmed to levels 4–7 (but not levels 0–3). Therefore, it is desirable to introduce a
code that has the same features as the graded-bit-error-correcting codes previously
discussed while also avoiding programming the unreliable cells to dangerously high
levels.

Fortunately, this turns out to be possible. We restrict ourselves to the specific
case of TLC flash, which means that we wish to create a code in GF(8), or,
equivalently, a binary code of length 3n. Of course, a similar construction can be
created for more general cases as well.

Before we proceed, let us introduce an auxiliary code construction, known as
“stuck-at” error-correcting codes. First, let the operation ◦: GF(2)m × GF(3)m to GF
(2)m be defined so that b = a ◦ s, where bi = si if si < 2 and bi = ai, otherwise. Pj is
defined as the set of all vectors s = (s1, …, sm) in Pj so that |{i : si < 2}| ≤ j. Then,
stuck-at error-correcting codes are defined in the following way:

Definition 5 For positive integers m,k,t,j, a [m,k,t,j]2 binary code C is a linear code
of length m and dimension k over GF(2) with encoding and decoding maps EC and
DC such that

1. For all s in Pj and any message h, EC(h,s) ◦ s = EC(h,s), and
2. For any error vector e in GF(2)m with wt(e) ≤ t, DC(EC(h,s) + e) = h.

The idea behind Definition 5 is that even if a particular subset of cells is stuck
(the subset has size at most j), the stuck-at error-correcting code C can still recover
from errors. As we will see, we can use these types of codes as a building block for
our construction; we adapt the stuck-at-error behavior to limit the levels of our
target cells.

Next, we introduce our goal codes:

Definition 6 Let n,k,t1,t2,j be positive integers where j,t1,t2 < n. Then, a [3n,k,t1,t2,
j] dynamic bit-error-correcting code C is a binary linear code of length 3n and
dimension k that is capable of correcting any [t1,t2]-bit-error vector. There is an

330 F. Sala et al.

additional constraint: if we write a codeword in C as c = (c1,c2, …, cn), where each
ci is an element in GF(8), then, given a set I of size at most j, ci ≤ 3 for all i in I and
all codewords c in C.

Definition 6 matches Definition 4 from our previous discussion, but adds the
requirement that a particular subset of cells is programmed to low levels only.
Therefore, we introduce a construction that builds on Construction 2 and adds a
corresponding constraint. Let us also use a simple map from elements in GF(4) to
binary vectors of length 2 (again, α is a primitive element in GF(4)):

CðaÞ ¼ 0;1ð ÞT; C a2
� � ¼ 1;1ð ÞT; C a3

� � ¼ 1;0ð ÞT; and Cð0Þ ¼ 0;0ð ÞT:

Construction 3 Let H1 = (α α2 α3) and H2 = (1 1 1), where H1 is a matrix in GF
(4)1×3 and H2 is a matrix in GF(2)1×3. Let H3 be a parity check matrix for a [n,k3,
t1 + t2]4 code C3. Also, let H4 be a parity check matrix for a [n,k4,t2,j]2 stuck-at-error
correcting code (as introduced in Definition 5). Then, a parity check matrix for a
[3n,2k3 + k4,t1,t2,j]2 dynamic bit-error-correcting code of length 3n is given by

H ¼ CðH3 � H1Þ
H4 � H2

� �
:

The basic idea here is to slightly modify our previous graded-bit error-correcting
construction (Construction 2) by forcing the use of a stuck-at error-correcting code
construction. Rather than use it to specifically correct stuck-at errors, we do almost
the reverse. The construction allows for mapping a message to one of several
possible codewords, in order to deal with the stuck-at behavior. We take advantage
of this by selecting the codeword where our unreliable cells are at lower levels.

For the case of our dynamic bit-error correcting codes, too, we can perform
simulations to show the advantages of such codes. We perform the comparison
against graded bit-error correcting codes (which lack the specific constraint of
avoiding high levels in unreliable cells) and other previously mentioned codes,
including various BCH codes.

In Fig. 11.4, the page error rates (PERs) are shown for codes of lengths 4096,
8192, and 16,384, respectively. As before, the lengths and rates of the codes
compared against are the approximately equal. The same code constructions are
shown as before; the green curve shows the new dynamic-bit-error code con-
struction. Exactly 2 unreliable cells were forced to lower levels in the top two plots,
while 4 unreliable cells were used in bottom plot. The purple curve shows the
graded-bit error-correcting codes. The other curves are the same types of codes used
for comparison in the previous sections.

Note that the dynamic-bit error-correcting codes have the best overall PER,
while still not exhibiting any errors until very far in the lifetime of the device. The
additional asymmetry of these codes (compared to the graded-bit error-correcting
codes) has granted us an additional half an order of magnitude in PER performance.
Therefore, we have the best of both worlds: codes with very good PERs, which do

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 331

not allow for any errors at all until late in the operative lifetime of the flash devices.
We have successfully taken advantage of asymmetry to produce codes which are a
dramatic improvement over traditional, symmetric codes.

Fig. 11.4 Page error rates
(PERs) for codes of with
approximately the same
length and rate tested with
data collected from TLC flash
devices after varying numbers
of program/erase cycles. As
before, the red, blue, and
black lines show varying
BCH-based code
constructions. The purple
curve shows the graded
bit-error correcting code
construction. The green
curves are the new
dynamic-bit error-correcting
codes, which continue to
show no errors until late in the
device lifetime, but also offer
an additional half-magnitude
improvement in overall PER
over the graded construction

332 F. Sala et al.

11.1.2 Dynamic Thresholds

Another particularly interesting feature of the flash channel is the fact that it is
time-varying. The longer the period of time between data write and data access
operations, the higher the probability of read error. This property is due to certain
physical effects acting on flash transistors. For example, over time, the electrons
trapped on the floating gates of flash cells will leak out, escaping these gates. The
errors caused by such effects are therefore inherently asymmetric.

In addition to these asymmetries, the time-varying character of the channel is
also not considered or exploited by traditional coding techniques. Recall that flash
devices work in the following way: the amount of charge on the floating gate is
measured and compared to a set of thresholds. The result of this comparison
determines the discrete value read out from the device. The thresholds used are
traditionally fixed and permanent, ignoring the degradation of the channel over
time. Although these fixed thresholds may be suitable for the channel at a particular
period of operation, they often prove to be inefficient for differing retention periods.

One solution to this problem is to introduce dynamic thresholds, which can be
changed over time. Although there are many ways to accomplish this task, there is a
particularly simple approach. We set the thresholds in such a way that the distri-
bution of the values in a block of cells is identical when being read as it was upon
write [5, 6]. In other words, we use this distribution of values as side information.

Let us formalize this idea. Say that we have a block x = (x1,x2,…, xn) of n cells
that can take on any of the q values (0,1,…, q − 1) each. In TLC flash, as in our
previous discussion, q = 8. Now, some time passes and the written values have
become the real values v = (v1,v2,…, vn). We have the thresholds t = (t1,…, tq−1),
which we use to read v in the following way: the output y = t(v) is given by

yi ¼ a; if ta � vi � taþ 1;

where we take t0 to be negative infinity and tq to be positive infinity.
Now, let us denote by k = (k0,…,kq−1) the distribution of values in x. That is,

ka = |{i | xi = a, 1 ≤ i ≤ n}|. Thus, for example, x = (1,0,0,3,1,1,1,2) has k
(x) = (2,4,1,1), since x has 2 values of 0, 4 values of 1, and so on.

Then, we can define dynamic thresholds in the following way:

Definition 7 A threshold vector t is a dynamic threshold if

k yð Þ ¼ k t vð Þð Þ ¼ k xð Þ:
For example, say that the vector x above was written, and the real charge values

are given by

v ¼ 1:2;0:2;0:6;2:3;1:1;1:0;1:3;2:2ð Þ:

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 333

Then, if we use the fixed threshold t1 = (0.5,1.5,2.5), we would read the output

y1 ¼ t1 vð Þ ¼ 1;0;1;2;1;1;1;2ð Þ;

with errors in the third and fourth positions. However, t1 is not a dynamic threshold:
the distribution of y1 is k(y1) = (1,5,2,0), which is not equal to k(x) = (2,4,1,1). Let
us instead select a dynamic threshold td = (0.7,2,2.25). Then, we correctly read

yd ¼ td vð Þ ¼ 1;0;0;3;1;1;1;2ð Þ:

Of course, dynamic thresholds do not guarantee that the read sequence is
error-free. However, they reduce error rates, since to yield an error, two components
(with differing initial values) must have their values switched relative to each other.
For example, if we have xi < xj, we must have vi > vj to cause an error. This event
occurs with lower probability in comparison to simply requiring xi < txi, which is
sufficient for an error in the fixed threshold case.

An illustration of this claim is in Fig. 11.5, where we simulated the degradation
of the channel with the passage of time by modeling flash cells as Gaussians with
increasing standard deviation over time. We then simulated a block of 105 cells by
writing random values and reading back for errors using dynamic thresholds versus
fixed thresholds. As the standard deviation of the Gaussians modeling the flash
channel increases, the dynamic threshold scheme yields a much slower growth in
error probability.

This type of simulation offers experimental support to the suggestion that
dynamic thresholds outperform fixed thresholds. However, we add a theoretical
comparison as well. Let us say that that N(x,y) is the Hamming distance between
vectors x and y. If y is generated by reading x, that is, y = t(v(x)) is the value read
from v (itself formed by the written values x) using the threshold t, then, we write N
(x,y) as N(t). Let us say also that t* is the optimal threshold in the sense that
t* = mint N(x,y) for some fixed x,y.

Fig. 11.5 Bit error rates
(BERs) in a simple
experiment modeling
multi-level flash cells as
Gaussians with increasing
standard deviations over time.
Blocks contain 105 cells.
Dynamic thresholds and fixed
thresholds were compared; as
can be seen, dynamic
thresholds offer improved
performance versus traditional
fixed thresholds

334 F. Sala et al.

We also make the assumption that the maximum possible error magnitude is
given by r, for some r in {0,…, q − 1}. This is a reasonable assumption for flash:
we expect most errors to be of small magnitude, possibly at most 1. With this, we
can say that any dynamic threshold td is quite close to the optimal threshold t*:

N td
� � (rþ 1ð ÞN t�ð Þ:

In other words, any dynamic threshold is at most a constant factor (depending on
the maximum error magnitude) from the optimal threshold. Of course, this optimal
threshold requires knowledge of x itself to compute. This knowledge is not
available when reading: a reliable estimate of x is the goal of the read operation. In
other words, the dynamic threshold offers a practical solution that is quite close to
an unobtainable optimum.

So far we have not discussed how to generate a set of thresholds. This is, of
course, an important practical concern. There are two possible approaches (and a
variety of combinations of the two) available [6]. The first is to use the distributions
of values in blocks as side information.

This side information is then stored elsewhere. For example, we can store these
values in very robust, highly-reliable cells, protected by powerful codes, which can
then be read with fixed thresholds with low risk of error.

Another approach is to store data in constant-weight codewords. These codewords
have a fixed distribution of values. Since the distribution is fixed, it can be hardcoded
into the system from production, bypassing the need to communicate side informa-
tion at all. The tradeoff here, of course, is the fact that constant-weight codes eliminate
certain codewords from being used, yielding a potentially smaller overall rate.

With either approach, we must further protect our system with error-correcting
codes. Dynamic thresholds by themselves will not sufficiently reduce the system’s
error rate to the target rate. This leaves us with the question of what choice of code
to select. We could, of course, use an existing, off-the-shelf code, such as BCH
codes. However, these schemes ignore the fact that dynamic thresholds yield
asymmetric errors, in the same way that asymmetry in 3-bit TLC error vectors are
ignored (leading to our improved tensor product-based constructions.) For example,
a single component error in a vector cannot occur, since this would change the read
codeword distribution, which is not possible with dynamic thresholds by definition.
However, traditional codes cannot take advantage of this idea.

Instead, we can propose specialized asymmetric codes that operate specifically
on dynamic thresholds.

Definition 8 Let a vector x be stored in a system with dynamic thresholds. An error
e that x can experience under dynamic thresholding is called a [t,v]-DT error if
e has at most t non-zero components and if each component has magnitude at most
v. A code capable of correcting any [t,v]-DT error is called a [t,v]-dynamic
threshold error correcting (DTEC) code.

Note that not all [t,v]-error vectors are [t,v]-DT error vectors. For example
(1,0,0,0) is a [1,1]-error vector of length 1, but not a DT error vector, since with

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 335

dynamic thresholds, errors require at least two positions to be non-zero in order to
preserve the distribution of values between x and x + e. In other words, there are
fewer DT-error vectors than there are error vectors in general. Although a con-
ventional error-correcting code can correct DT errors, it also corrects error vectors
which cannot occur with DT errors, which reduces the overall performance of the
code by sacrificing rate for unused error-correction strength.

We introduce a type of asymmetric construction that specifically corrects 2 DT
errors of any magnitude, thus providing an example of a [2,q − 1]-DTEC code
construction:

Construction 4 Let C be a [n,n − 2]q linear block code (of length n and dimension
n − 2) over a field Fq with parity-check matrix given by

H ¼ a1 a2 . . . an
a21 a22 . . . a2n

� �
;

where S = {a1, a2, …, an} is a subset of distinct elements of Fq. Then, C is a [2,
q − 1]-DTEC code if S is a Sidon set (a set with the property that for any four
distinct elements a,b,c,d in S, a + b ≠ c + d).

Note that such a code corrects any 2 errors in dynamic thresholding, while a general
2-error correcting code requires a much larger redundancy. This is the advantage of
custom, asymmetric error-correcting codes. It is possible to modify the previous
construction to yield codes for other values of limited magnitude r smaller than q − 1.

With, this, we have seen a further example of how to take advantage of
asymmetries in order to introduce superior algebraic error-correcting codes.

11.2 Non-binary LDPC Codes

Next, we switch our focus from algebraic codes to graph-based codes. Graph-based
codes have a nice advantage over algebraic codes, since it is possible to decode using
soft information. In other words, graph-based code decoders can take as inputs
fractional (rather than integer) values. Algebraic codes, however, lack this ability.
The use of soft information is particularly important for storage devices such as flash,
since we can perform multiple reads of the data in order to retrieve more accurate
decoder inputs. Soft information thus yields excellent error-correcting performance.
We provide more detail on this concept later on in this chapter.

We are particularly interested in one of the most important class of graph-based
codes, non-binary low-density parity-check (NB-LDPC) codes. LDPC codes were
first introduced in Gallager’s seminal doctoral thesis in the 1960s and rediscovered
during the 90s. Binary LDPC codes have been extensively studied and have found
use in numerous applications.

Non-binary LDPC codes, however, have remained somewhat less well-
understood. An early work by Davey and MacKay [7] showed that non-binary

336 F. Sala et al.

LDPC codes offer better performance compared to their binary counterparts. This
performance scales up with the field size parameter. However, this performance
gain comes at the cost of decoder complexity. The initial implantation of the LDPC
belief-propagation decoder for non-binary codes had a complexity of O(q2) for a
field size of q. However, this complexity can be reduced to a more manageable
Oðq log qÞ by an FFT-based decoder implementation. Other techniques for
low-complexity decoding have been proposed, including ones based on linear
programming.

In addition to improved decoder complexity, a large number of constructions for
non-binary LDPC codes have been proposed over the last ten years. The approaches
taken for such constructions vary widely; for example, constructions include
quasi-cyclic codes (some based on geometric approaches), protograph-based codes,
quantum LDPC codes, and many others [8–10]. The proliferation of such improved
works in the non-binary LDPC area of study suggests that such codes are
approaching common, practical application. In general, increasing the code length
of an LDPC code improves its performance; however, there are diminishing returns.
For example, doubling the code length from 1000 bits to 2000 bits typically has a
much greater positive effect on performance than doubling the code length from
100,000 bits to 200,000 bits.

However, before common application of non-binary LDPC codes can become
reality, there is an additional roadblock to handle. This is the so-called LDPC “error
floor”. The terminology reflects the appearance of the bit-error or frame-error rate
versus SNR for LDPC codes. Initially, as the SNR increases, the BERs/FERs
correspondingly improve dramatically; this is the “waterfall regime.” However,
after a certain point, these curves become increasingly flat, entering the error-floor
region. This error floor is a particularly important problem, since many applications
for LDPC codes, such as data storage devices, operate at very high SNRs. For
example, for Flash memory, the desired output FER often exceeds 10−15; this point
lies squarely in the error floor region for many LDPC codes. An illustration of an
error floor is shown in Fig. 11.6.

What causes the error floor behavior? This is an important question that has been
closely studied in the context of binary LDPC codes [11, 12]. We thus focus our
attention on higher performance, non-binary LDPC codes. We begin by explaining
the operation of practical LDPC decoders. In the case of storage devices, for
example, a small number of probes of the underlying device are allowed. If there is
only such probe permitted, we refer to the system as hard-decision. With more than
one read, the system is soft-decision, as shown in the bottom of Fig. 11.7. However,
only a small number of probes are allowed, due to latency issues. Note that an
important problem is setting the reference thresholds (VR1,VR2,VR3 for the
single-read case and VR1,…,VR6 for the two-read case.) A method based on
mutual-information optimization was presented in [13].

As a result of the small number of reads, the continuous channel of the storage
device has been transformed into a discrete channel. Similarly, in a digital system,
the messages are quantized to finite-precision variables. As a result, in practical
systems, decoder behavior ends up resembling that of decoders operating over

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 337

Fig. 11.6 Illustration of the
“error floor” behavior of
LDPC codes. Initially, as the
SNR increases, there is a
sharp downward slope as the
frame error rate
(FER) decreases. However,
this slope eventually levels
off, leading to much smaller
improvement in FER for high
SNRs

Fig. 11.7 Example of reads
in a MLC (4-level) flash
device. Hard decision allows
only one read, and thus only
one output state. For this
reason, there is a single
distinct threshold separating
each state. Soft decision
allows for multiple reads; 2
reads are shown on the bottom
figure. There are many
strategies for where to place
the thresholds VRi

much simpler channels, such as discrete memoryless channels. LDPC codes over
such channels are very well studied.

The majority of this existing research examines the error floors of binary codes.
The error floor is in fact intimately connected to certain objects in the graph
structure of the LDPC code. This graph structure is the Tanner graph; the Tanner
graph of an LDPC code is a bipartite graph where the two classes of nodes are
variable nodes (corresponding to components in LDPC codeword vectors) and
check nodes (corresponding to the parity-check equations.) There is an edge
between a check node and a variable node if the corresponding component is
involved in the corresponding check equation, respectively. An example of a
Tanner graph for a Hamming [7,4] binary code is shown below (Fig. 11.8). Of
course, this code is not low-density; however, the simple parity-check matrix helps
illustrate the idea behind the definition of the Tanner graph.

Since belief-propagation decoders operate on this graph structure, it is not sur-
prising that certain configurations of nodes cause decoding problems. Trapping sets

338 F. Sala et al.

and absorbing sets are examples of subgraph objects that, when found in the Tanner
graph of a particular code, are known to cause errors. These objects have been
extensively studied in the case of binary LDPC codes. Many papers have proposed
design algorithms for LDPC codes in order to avoid trapping and absorbing sets and
thus to remove the error floor behavior [14, 15].

However, this problem is more challenging in the non-binary LDPC case. In this
part of the chapter, we explore how to identify, enumerate, and remove absorbing
sets for non-binary LDPC codes. We begin with a summary of absorbing sets in the
traditional, binary LDPC case.

11.2.1 Binary Trapping/Absorbing Sets

We start with a subgraph of the Tanner graph for a binary LDPC code. The
subgraph contains the variable node set V with |V| = a. The variable nodes in V are
set to 1 while all other variable nodes are set to 0. The check nodes connected to the
vertices in V are divided into sets E and O, where E contains check nodes with an
even number of edges to vertices in V, and O has check nodes with an odd number
of such edges. Of course, in this configuration, E contains satisfied check nodes
while O contains unsatisfied check nodes. Now we can introduce trapping and
absorbing sets:

Definition 9 V is an (a,b) trapping set if |O| = b.

Definition 10 V is an (a,b) absorbing set if |O| = b and if each variable node in V
has (strictly) more neighbors in E than it does in O.

Definition 11 An elementary absorbing set/trapping set is an absorbing
set/trapping set with the added condition that each of the neighboring satisfied
check nodes has two edges connected to the set, while each of the neighboring
unsatisfied check nodes has exactly one edge connected to the set.

Fig. 11.8 Example of a Tanner graph for the (non-LDPC) Hamming [4, 7] binary code. The
circles represent the 7 variable nodes corresponding to each bit in the codeword. The squares
represent the three check equations from the code’s parity-check matrix. There is an edge between
a check node and a variable node if the corresponding bit is used in the parity-check equation

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 339

We show an illustration of such a set in Fig. 11.9.
We see that the configuration shown produces a (4,4) absorbing set. We have 4

variable nodes that are connected to 4 unsatisfied check nodes. The unsatisfied
check nodes are gray squares, while the satisfied check nodes are white. Note that in
addition, this is an elementary (4,4) absorbing set, since each of the unsatisfied
check nodes has exactly one edge connecting it to the 4 variable nodes, while each
of the satisfied check nodes has exactly two edges to the variable nodes.

Notice the basic idea of the absorbing set: it is a configuration of variable nodes
where a majority-logic bit-flipping decoder will make an error (here, we assume
that the all zero-codeword was sent) but will be unable to recover from this error.
This behavior occurs precisely because of the fact that the majority of the neigh-
boring check nodes are satisfied.

We will also require a few additional graph theory concepts. We can define a
vector space on the set of all cycles of an undirected graph. For such a graph G with
G = (V,E), the power set of E, 2E, is a vector space when taking symmetric set
difference as the addition operation, the identity function as the negation operation,
and the empty set as the additive identity element. Then, the cycle space of the
graph G is the subspace of 2E which has the cycles of G as its elements. Now we
apply basic principles from linear algebra:

Definition 12 A set of cycles F in G = (V,E) is the cycle span of G if it forms a
basis for the cycle space. Cycles in a cycle span are called fundamental cycles.

We can also introduce a related graph structure, called a variable node
(VN) graph. This graph is defined based on the bipartite graph of an elementary
absorbing set. The variable node graph contains only variable nodes; these nodes
are connected by an edge if they share a degree-two check node as a neighbor.

Fig. 11.9 Illustration of a (4,4) binary absorbing set. The white circles represent the four variable
nodes in the absorbing set. The white squares are satisfied check nodes while the gray squares are
unsatisfied check nodes. Since each of the unsatisfied check nodes has exactly one edge to the
variable node set, this is an elementary (4,4) absorbing set

340 F. Sala et al.

11.2.2 Non-binary Absorbing Sets

We are now ready to tackle the matter of non-binary absorbing sets. Since we are
working in the non-binary regime, the Tanner graph of a code has weights placed
on the edges connecting variable and check nodes. This weight is equal to the
corresponding non-zero value in the non-binary parity-check matrix of the LDPC
code. This adds an additional aspect to the graph structure: there is a topological
structure (just as is the case with binary codes), but also we now have a weight
structure. As a result, non-binary absorbing sets must also satisfy weight conditions.

As before, we seek a configuration where each variable node has more satisfied
neighboring check nodes compared to unsatisfied nodes; however, for
satisfied/unsatisfied part to be the case, we will require certain relationships between
the weights. We show an example of such an absorbing set in Fig. 11.10.

Note that here the edge weights are taken to be nonzero elements from the code’s
finite field GF(q). This absorbing set has the same topological structure as the
previous binary absorbing set example.

In the general case, however, in order for the degree-two check nodes to be
satisfied, we need the following relationships to hold over GF(q). Note that the
weights are labeled on the earlier diagram.

v1 w1 ¼ v2 w2; v2 w3 ¼ v4 w4; v4 w5 ¼ v3 w6;

v3 w7 ¼ v1 w8; v2 w11 ¼ v3 w12; v1 w9 ¼ v4 w10:

Fig. 11.10 Illustration of a non-binary (4,4) absorbing set. As before, this is an elementary
absorbing set. Note that each edge now has a weight; these weights must satisfy certain conditions
for the subgraph to form an absorbing set. However, the unlabeled version of the graph forms a
binary absorbing set

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 341

Each of these equations comes directly from the definition of the Tanner graph.
For example, the check node between v1 and v2 is only satisfied if (recall that all
variable nodes except for v1,…,v4 are set to 0, while v1,…,v4 are set to 1) if the
corresponding check equation is 0: v1w1 + v2w2 = 0.

If our field size is a power of 2, so that q = 2p, we can eliminate the variable
nodes in these equations in order to write a series of conditions exclusively for the
weights:

w1 w7 w11 ¼ w2 w8 w12; w3 w5 w12 ¼ w4 w6 w11; w2 w4 w9 ¼ w1 w3 w10;

where, as before, the equations are taken over GF(2p).
The basic idea can be written in a general form to define non-binary absorbing

sets:

Definition 13 A set V is an (a,b) absorbing set over GF(q) if there exists an (l − b)
x a submatrix B of rank rB given by elements bj,i for 1 ≤ j ≤ l − b, 1 ≤ i ≤ a in
matrix A satisfying the conditions:

1. If N(B) is the null space of B and di, 1 ≤ i ≤ b is the ith row of D where D is
given by excluding the matrix B from A, then, there exists x = [x1 x2 … xa]

T in
N(B) such that for xi is non-zero for all i in {1,…,a} and there is no i such that di
x = 0.

2. If D contains the elements dj,i for 1 ≤ j ≤ b, 1 ≤ i ≤ a, then, for all i in {1,2,…
a}, then

Xl�b

j¼1

S bj;i
� �

[
Xb
j¼1

S dj;i
� �

Here the function S is an indicator function such that S(x) = 1 for x nonzero and
0 for x = 0.

We observe that a similar type of adaptation to the non-binary case is possible
for trapping sets as well.

We can define non-binary elementary absorbing sets by adding the same con-
dition as we did for the binary absorbing set to elementary binary absorbing set
case. In this elementary absorbing set case, we can further manipulate the condi-
tions above to have the following form, which resembles that as shown in our
example. Let Cp be a cycle that contains p distinct variable nodes and p distinct
check nodes in a graph induced by an (a,b) non-binary absorbing set. Let Cp = c1–
v1–c2–v2–���–cp–vp–c1. The weight w2i−1 is the label on the edge connecting ci and
vi. Similarly, w2i is the label on the edge connecting vi and ci+1. Then, we have the
following.

Lemma 1 If the field size parameter q = 2p, then, every cycle Cp satisfies the
following relationship:

342 F. Sala et al.

Yp
k¼1

w2k�1 ¼
Yp
k¼1

w2k:

In the case of elementary non-binary absorbing sets, we now have a simple
breakdown of the definition: the (unweighted) topological structure must be a binary
absorbing set, and, in addition, the weights must satisfy the equation given in Lemma 1.

Now that we have set up our definitions and identified just what a non-binary
absorbing set is, we are ready to examine how to improve the performance of our
non-binary codes.

11.2.3 Performance Analysis and Implications

We begin by identifying how frequently the weight conditions can be satisfied. This
is an important question, since if the conditions are not met, we do not have an
absorbing set. This concept is described in the following theorem.

Theorem 1 We have an (a,b) unlabeled (binary) elementary absorbing set with e
satisfied check nodes. Then,

1. A fraction of (q − 1)a−e−1 of edge weight assignments (taken over GF(q))
produce non-binary elementary absorbing sets.

2. A fraction of e(q − 1)a−e−1(q − 2) of edge weight assignments (again taken over
GF(q)) produce (a,b + 1) non-binary trapping sets.

The proof of the theorem relies on simple counting arguments based on the
graph-theoretic ideas already introduced.

The theorem implies that there is a larger number (by a factor of e(q − 2))
non-binary trapping sets compared to non-binary absorbing sets, assuming that the
code and its weights are generated randomly. In practice, however, simulation
results show that error profiles do not involve any errors from trapping sets. On the
other hand, error profiles do show errors that are a result of absorbing sets. What
explains this behavior? The idea is that quantization used in decoding algorithms
results in these belief propagations acting in a way similar to majority-logic bit
flipping decoders. Such decoders do not struggle with the more general trapping set
errors, but, as we see from the definition of absorbing sets, these decoders will
produce errors when faced with absorbing sets.

For this reason, it is more desirable to find a way to remove or reduce absorbing
sets from the Tanner graphs of non-binary LDPC codes. First, we note that we must
target certain absorbing set parameters over others. In the error-floor regime, which
is at high SNR, errors typically only include a small number of variable nodes.
Therefore, we look at small absorbing sets. In fact, the performance of the LDPC
decoder will be dominated by the smallest absorbing set, which is also typically an
elementary absorbing set. The goal thus becomes to maximize the size of the
smallest absorbing set.

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 343

We are now ready to introduce an algorithm that eliminates problematic absorbing
sets from non-binary LDPC code Tanner graphs. As described, the key idea is to
manipulate the edge weights in such a way that the subgraphs involved are no longer
absorbing sets. The algorithm is given below.We use one additional term: an absorbing
set A is a child of an absorbing set B if A is a subgraph of B. We call B a parent of A.

344 F. Sala et al.

The basic concepts in Algorithm 1 follow. First, we select the elementary
absorbing sets that we wish to eliminate. These sets must be determined according
to the code parameters (for example, column weight, girth, etc.). Next, among this
group of sets, we examine the smallest absorbing set. We look for binary versions
of this set in the unlabeled (that is, the binary version of the) Tanner graph. If the
fundamental cycles of these absorbing sets satisfy the formula in Lemma 1, we
modify the weight of one of the edges to some other non-zero element in GF(q). We
make this choice in such a way that the previously removed absorbing sets are not
brought back. The process continues once the current absorbing set has been
removed.

Let us see an error profile (giving errors due to various absorbing sets) for a
particular choice of code. We show the effects of the previous algorithm on these
errors (Table 11.2).

Each of the error types refers to an (a,b) absorbing set which causes the error.
The algorithm removes all of these absorbing sets (up to the (8,2) set), which
dramatically reduces the number of errors. Here, the code is a non-binary LDPC
code over GF(4). The length was 2904 bits, the SNR was 5.1 dB, the code rate was
0.878, and the column weight was 4.

Next, in Fig. 11.11, we show a performance plot showing the effect of using the
algorithm (which is labeled A-method). We also compare with several other
algorithms which also attempt to resolve error floors through absorbing/trapping set
modification. In particular, we compare against the approach presented in [17],
which we refer to as the ‘P-method’. This approach attempts to cancel all cycles of
length l in the Tanner graph, where l is between the girth g and a lmax parameter.
This cancellation has the effect of removing certain absorbing sets as well (in
particular very small ones.) Another method we compare against, which we refer to
as the ‘N-method’, was proposed in [18].

Here, the figure shows frame error rate (FER) versus SNR for the original codes
and the three methods discussed. Note that the previously introduced algorithm
produces the best overall improvement in the FER. The code length was approx-
imately 2930 bits, the rate was 0.88, the column weight was 4, and the QSPA-FFT
decoder was used for decoding.

In the case of non-binary quasi-cyclic (NB-QC LDPC) codes, which are a very
practical class of non-binary LDPC codes, we have the results shown in Fig. 11.12.
Here the length is approximately 1400, the rate approximately 0.81, the column
weight 4, and, again, the QSPA-FFT decoder was used.

Table 11.2 Error profile for non-binary LDPC code over GF(4)

Error type (4,4) (5,0) (5,2) (6,2) (6,4) (6,6) (7,4) (8,2) others

Original 35 7 9 11 17 21 8 10 10

After Alg. 0 0 0 0 0 0 0 0 9

Code length is 2904 bits and code rate is 0.878. The code has column weight 4 and the SNR is
5.1 dB. Shown are the error profiles due to various absorbing sets before and after the absorbing
set removal algorithm

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 345

Fig. 11.11 SNR versus frame error rate (FER) for binary and non-binary LDPC codes over
several fields. The codes had approximate length 2930 bits, rate 0.88, and column weight 4. The
curves include the original, unmodified codes along with codes resulting from several methods
aimed at improving non-binary LDPC codes. The method described in Algorithm 1 is labeled
A-method; this method yields the most significant improvement in FER

Fig. 11.12 SNR versus FER plot for non-binary QC-LPDC with different field sizes. We compare
the original code to the codes improved by using the A-method from Algorithm 1. Note that the
improvement is strongest in smaller field sizes

346 F. Sala et al.

We note the fact that the improvement over the baseline diminishes as the field
size q grows. The reason for this is the fact that since there are many more choices
of edge weights for larger field sizes, absorbing sets naturally occur with smaller
probability, so that there are fewer of them to remove through any of the possible
algorithms.

11.3 Summary

In this chapter, two classes of non-standard codes were studied. The first class is
composed of algebraic codes, which rely only on hard information and are suitable
for applications where simple and efficient decoding is necessary, but error toler-
ance is more relaxed, such as inexpensive data storage devices. The second class is
made up of LDPC codes, which have more complex decoding, but offer extremely
good performance. LDPC codes are thus suitable for applications that require
extreme reliability. Flash devices occupy the entire spectrum between these two
endpoints. Both of the classes of advanced codes we study offer significant
improvements over their traditional counterparts, but, at the same time, present
more challenges in terms of constructions, design choices, and analyses.

First, we examined asymmetric algebraic codes. We motivated this study by
looking at asymmetric channels modeling the physical channels of data storage
devices. It was shown that using conventional symmetric codes was wasteful, either
in terms of code rate or error-correcting ability. Two types of asymmetric codes
were discussed: graded-bit error-correcting codes based on the tensor-product
operation, and dynamic threshold-based codes relying on the dynamic thresholding
side-information technique.

Afterwards, we looked at non-binary LDPC codes, which offer better perfor-
mance compared to the frequently-studied binary LPDC codes. We examined the
error-floor problem in the non-binary case and defined the underlying non-binary
absorbing set objects that result in the error floor. We introduced an algorithm that
can efficiently remove the problematic small absorbing sets from the Tanner graph
of a non-binary LDPC code. Simulation results showed significant improvement
over baseline non-binary LDPC codes.

References

1. E. Yaakobi, L. Grupp, P.H. Siegel, S. Swanson, J.K. Wolf, Characterization and
error-correcting codes for TLC flash memories, in Proceedings on IEEE International
Conference on Computing, Networking, and Communications (CCNC), Maui, HI, Jan–Feb
2012, pp. 486–491

2. J.K. Wolf, An introduction to tensor product codes and applications to digital storage systems,
in Proceedings on IEEE Information Theory Workshop (ITW), Punta del Este, Uruguay, Oct
2006, pp. 6–10

11 Advanced Algebraic and Graph-Based ECC Schemes for Modern NVMs 347

3. R. Gabrys, E. Yaakobi, L. Dolecek, Graded bit-error-correcting codes with applications to
flash memory. IEEE Trans. Inf. Theory 59(4), 2315–2327 (2013)

4. R. Gabrys, F. Sala, L. Dolecek, Coding for unreliable flash memory cells. IEEE Commun.
Lett. 18(9), 1491–1494 (2014)

5. H. Zhou, A. Jiang, J. Bruck, Error-correcting schemes with dynamic thresholds in non-volatile
memories, in Proceedings on IEEE International Symposium Information Theory (ISIT), St.
Petersburg, Russia, Jul–Aug 2011, pp. 2143–2147

6. F. Sala, R. Gabrys, L. Dolecek, Dynamic threshold schemes for multi-level non-volatile
memories. IEEE Trans. Commun. 61(7), 2624–2634 (2013)

7. M.C. Davey, D. MacKay, Low-density parity check codes over GF(q). IEEE Commun. Lett. 2
(6), 165–167 (1998)

8. A. Bazarsky, N. Presman, S. Litsyn, Design of non-binary quasicyclic LDPC codes by ACE
optimization, in Proceedings on IEEE Information Theory Workshop (ITW), Seville, Spain,
Sep 2013, pp. 1–5

9. L. Dolecek, D. Divsalar, Y. Sun, B. Amiri, Non-binary protograph-based LDPC codes:
enumerators, analysis, and designs. IEEE Trans. Inf. Theory 60(7), 3913–3941 (2014)

10. I. Andriyanova, D. Maurice, J.-P. Tillich, Quantum LDPC codes obtained by non-binary
constructions, in Proceedings on IEEE International Symposium Information Theory (ISIT),
Cambridge, MA, Jul 2012, pp. 343–347

11. L. Dolecek, Z. Zhang, V. Anantharam, M.J. Wainwright, B. Nikolic, Analysis of absorbing
sets and fully absorbing sets of array-based LDPC codes. IEEE Trans. Inf. Theory 56(1), 181–
201 (2010)

12. T.J. Richardson, Error floors of LDPC codes, in Proceedings on IEEE Allerton Conference on
Communication, Control, and Computing, Monticello, IL, Oct 2013, pp. 1426–1435

13. J. Wang, K. Vakilinia, T.-Y. Chen, T. Courtade, G. Dong, T. Zhang, H. Shankar, R. Wesel,
Enhanced precision through multiple reads for LDPC decoding in Flash memories.
IEEE J. Sel. Areas Commun. 32(5), 880–891 (2014)

14. J. Wang, L. Dolecek, R. Wesel, The cycle consistency matrix approach to absorbing sets in
separable circulant-based LDPC codes. IEEE Trans. Inf. Theory 59(4), 2293–2314 (2013)

15. D.V. Nguyen, S.K. Chilappagari, M.W. Marcellin, B. Vasic, On the construction of structured
LDPC codes free of small trapping sets. IEEE Trans. Inf. Theory 58(4), 2280–2302 (2012)

16. M. Karimi, A.H. Banihashemi, Efficient algorithm for finding dominant trapping sets of LDPC
codes. IEEE Trans. Inf. Theory 58(11), 6942–6958 (2012)

17. C. Poulliat, M. Fossorier, D. Declercq, Design of regular (2, dc) − LDPC codes over GF(q)
using their binary images. IEEE Trans. Commun. 56(10), 1626–1635 (2008)

18. T. Nozaki, K. Kasai, K. Sakaniwa, Analysis of error floors of non-binary LDPC codes over
MBIOS channel, in Proceedings on IEEE International Conference on Communication (ICC),
Kyoto, Japan, Jun 2011, pp. 1–5

348 F. Sala et al.

Chapter 12
System-Level Considerations on Design
of 3D NAND Flash Memories

Chao Sun and Ken Takeuchi

Abstract This chapter introduces the design of three-dimensional (3D) NAND
flash memory with the implications from the system side. For conventional
two-dimensional (2D) scaling, it is facing various limitations such as lithography
cost and cell-to-cell coupling interference. To sustain the trend of bit-cost reduction
beyond 10 nm technology node, 3D NAND flash memory is considered as the next
generation technique. Further, emerging memories called storage-class memories
(SCMs) such as resistive RAM (ReRAM), phase change RAM (PRAM) and
magnetoresistive RAM (MRAM) will revolutionize the storage system design. By
introducing SCM into the solid-state drive (SSD), hybrid SCM/3D-NAND flash
SSD and all SCM SSD achieve much higher write performance than all 3D-NAND
flash SSD due to SCM’s fast speed. In addition, the performance of the SSD is
workload dependent. Thus, it is meaningful to obtain the design guidelines of 3D
NAND flash for both all 3D-NAND flash SSD and hybrid SCM/3D-NAND flash
SSD with representative real-world workloads.

Keywords NAND flash memory � Storage-class memory (SCM) � Solid-state
drive � Flash translation layer � Garbage collection

12.1 Introduction

There is a growing demand for NAND flash memory due to its fast speed, low
power, and high reliability. NAND flash memory based storage systems are being
widely used from consumer electronic products like SD cards to enterprise appli-
cations like solid-state drives (SSDs) in servers and data centers. SSDs designed for
enterprise applications are discussed in this chapter. As described in Sect. 12.2, the

C. Sun (&) � K. Takeuchi
Chuo University, Tokyo, Japan
e-mail: sun@takeuchi-lab.org

K. Takeuchi
e-mail: takeuchi@takeuchi-lab.org

© Springer Science+Business Media Dordrecht 2016
R. Micheloni (ed.), 3D Flash Memories, DOI 10.1007/978-94-017-7512-0_12

349

bottleneck of NAND flash based SSDs lies in the write performance rather than the
read performance due to the inherent characteristics of the NAND flash. Hence, the
write performance of the SSD should be improved to meet the increasing
requirement for high performance storage in this big data era.

On the other hand, storage class memories (SCMs) such as the resistive RAM
(ReRAM), phase change RAM (PRAM) and magnetoresistive RAM (MRAM) are
attracting more and more attention due to their faster speed, higher endurance and
lower power consumption than the NAND flash memory. SCMs bridge the
bandgap between the DRAM and NAND flash memory. According to the speed
and capacity, SCM devices are divided into two categories: DRAM-like and
NAND-like. DRAM-like SCMs are called memory-type SCM (M-SCM) such as
the MRAM while NAND-like SCMs are named storage-type SCM (S-SCM) such
as the ReRAM and PRAM. The hybrid M-SCM/3D NAND flash SSD and all
S-SCM SSD have been proposed as the next generation SSDs.

In this chapter, techniques to improve the write performance of the SSD are
introduced. Three SSDs including all 3D-NAND flash SSD, hybrid
M-SCM/3D-NAND flash SSD and all S-SCM SSDs are discussed. Evaluated with
representative real-world workloads, it is found that the write performance of the
3D-NAND flash-based SSDs is workload dependent. According to the system-level
evaluation results, the design guidelines of the 3D-NAND flash for the SSDs are
obtained.

12.2 Background of Solid-State Drive

Figure 12.1 shows the memory hierarchy of the computer system. Top layer’s
memories have a faster speed but smaller capacity (high bit cost). In contract,
bottom layer’s memories have a slower speed but larger capacity (low bit cost).
SCMs, NAND flash and hard disk drive (HDD) are non-volatile. In the memory

CPU Register

SRAM
(Cache)

DRAM
(Main memory)

M-SCM (MRAM)

S-SCM (ReRAM, PRAM)

2D/3D-NAND flash (SSD)

HDD

Fast

SlowLow cost

High cost

Capacity

Fig. 12.1 Memory hierarchy

350 C. Sun and K. Takeuchi

hierarchy, NAND flash memory lies between the SCM and HDD. Since the bit cost
of the NAND flash memory is continuously reducing by scaling and multi-bit
technology, SSD becomes cost-effective as an alternative of HDD.

Figure 12.2 illustrates the organization of the NAND flash memory [1]. The
memory cells connected with the same word-line consists of a page, which is the
read and write unit of the NAND flash. A block is the erase unit. There are typical
128–256 pages in a block for the multi-cell level (MLC) NAND flash.

The architecture of the all 3D-NAND flash SSD, hybrid M-SCM/3D-NAND flash
SSD and all S-SCM SSD are described in Fig. 12.3. The key component of the SSD
is the SSD controller that integrates the flash translation layer (FTL) enabling SSD to
work as a block device. As shown in Fig. 12.4, the basic but very critical function in
the FTL is the logical-to-physical address translation, required due to the prohibited
in-place overwrite characteristics of the NAND flash memory. According to the
mapping granularity, the address translation can be classified into the page-level
mapping, block-level mapping and hybrid mapping. When a page data overwrite

Bitline
(BL)

Read and
Write unit: page

Erase
unit: block

Wordline
(WL)

Source
line

Fig. 12.2 NAND flash organization [1]

Host interface
Controller

SSD controller
(FTL)

3D-NAND
flash

SSD

Host

DRAM

(a)

SSD

Host interface
Controller

SSD controller
(FTL)

Host

DRAM
3D-NAND

flash
M-SCM

(b)

Host interface
Controller

SSD controller
(FTL)

S-SCM
SSD

Host

DRAM

(c)

Fig. 12.3 SSD architectures of a all 3D-NAND flash SSD, b hybrid M-SCM/3D-NAND flash
SSD and c all S-SCM SSD

12 System-Level Considerations on Design of 3D NAND Flash Memories 351

happens, the old data is read from the old page, merged with the new data, and
written to a new page. After that, the old page is invalidated. Hence, there are three
page statuses in the SSD: free page, page with the valid data and page with the
invalid data. Frequently accessed data (hot data) will create massive number of
invalid pages. When the SSD free space reduces to below a threshold (a few free
blocks in a plane), an operation, garbage collection (GC), in FTL, is triggered
on-demand or in the backend to reclaim one or more old blocks. Before erasing an
old block, all the valid pages in the block have to be copied to the free spaces in
another block, as shown in Fig. 12.5 [2]. Thus, the latency of the GC increases with
the number of valid pages in the recycling block. When such page-copy overhead is
large, the GC would become the bottleneck of the SSD write performance.
Furthermore, the wear leveling in the FTL guarantees the NAND flash blocks are
worn out evenly to maximize the lifetime of the SSD. According to whether the static
data in NAND flash blocks are periodically moved around or not, wear leveling can
be classified to static and dynamic wear leveling. Other functions like the error
correction code (ECC) and bad block management (BBM) are also essential.

Flash translation layer (FTL)

Address
Translation

Wear
Leveling

Garbage
Collection

Bad Block
Management

Error
Correction Code

page-level
mapping

block-level
mapping

hybrid
mapping

static dynamic on-demand backend

Data
Management

Fig. 12.4 Essential functions in the flash translation layer (FTL)
Page

B
uffer

...

New block

Blank pageValid page Invalid page

...

Next erase block

SSD
C

ontroller

(1) Read valid pages(2) Data out/in, ECC

(3) Write to a
new block

(4) Erase the
next erase block

NAND Chip

Fig. 12.5 Garbage collection
(GC) operation [2]

352 C. Sun and K. Takeuchi

12.3 SSD Performance Improvement Techniques

This chapter introduces three techniques to improve the write performance of
3D-NAND flash-based SSD: storage engine assisted SSD (SEA-SSD), logical
block address (LBA) scrambled SSD and hybrid M-SCM/3D-NAND flash SSD.
The first two techniques are based on the SSD controller and middleware co-design.
The last technique introduces the M-SCM into the SSD system. Finally, the design
of the all S-SCM SSD, as the long-term solution, is presented as well.

12.3.1 Storage Engine Assisted SSD (SEA-SSD)

Database is one of the most widely used applications in enterprise servers. The
middleware, storage engine of the database, controls when and where the data
should be stored in the storage. Therefore, the first technique, storage engine
assisted SSD (SEA-SSD), co-designs the storage engine with the SSD controller to
improve the SSD write performance for the database. It is based on the idea that the
upper layer of the storage stack holds much richer information than the lower layer.
For the current SSD, it only receives the information from the block device layer of
the operation system (OS), which includes the data, data size and data address. The
information is quite limited.

Figure 12.6 shows the comparisons between the conventional computer system
and proposed computer system with SEA-SSD [3]. Due to reasons (i) the storage
layers like the file system, block layer etc. are optimized for the conventional HDD
but not for SSD, conventional OS is inefficient for SSD storage [4–8], (ii) great
engineering effort is required if the hint messages have to go through all the layers in
the OS, the OS is simply bypassed in the proposed SEA-SSD. Hints are passed from
the SE (Storage Engine) to the SSD controller in order to store data more efficiently.

Database
SE

Application
layer

OS
layer

File system
Block layer

SSD
storage

SSD controller

3D-NAND flash

Device Driver

Conventional Proposal

Database
SE

SSD controller

3D-NAND flash

Hints

OS is
bypassed

Fig. 12.6 SEA-SSD concept [3]

12 System-Level Considerations on Design of 3D NAND Flash Memories 353

Figure 12.7 presents the architecture of the SEA-SSD [3]. Each 3D-NAND flash
chip is divided into two logical segments. Seg-Hot for the hot data (frequently
accessed data) and Seg-Cold for the cold data (seldom accessed data). By aggregating
data with similar activities in the same block, the GC overhead can be reduced. To
determine the size of each segment, the first kind of hint is sent to the SSD controller,
which is based on the strong correlation between the SE settings and hot data size. For
the Innodb storage engine, the settings include the buffer pool and redo log sizes. The
buffer pool caches the frequently accessed data (hot data) while redo log is used for
crash recovery that guarantees the durability of the Innodb storage engine. The
second hint is for data preliminary classification with a dynamic data model. If the
data is judged as hot by the storage engine when it is flushed, logical “1” is sent to the
SSD controller indicating that the data is hot and thus stored in the Seg-Hot, as shown
in Fig. 12.8 [3]. Otherwise, it is simply stored in Seg-Cold. As the activities of the
data stored in the 3D-NAND flash memory change with time, the data is predicted
again with the third hint when the GC is triggered in the SSD. The third hint is the
logical address of the page data that enters the flush list for the first time, since the data
will be flushed to the SSD soon. As shown in Fig. 12.8 [3], such data should be stored
in the Seg-Hot while other data are stored in Seg-Cold after the GC.

To evaluate the SEA-SSD, a database and SSD coupled simulator has been
developed, which is over 20-times faster than the virtual platform, based on the
Synopsys Platform Architect [9]. From the evaluation results, the write performance

SSD controller

SSD

Read/Write
requests

Database SE

Seg-ColdSeg-Hot

Hints (2) (3)(1)

-
(1) SSD partition

(2) Data classification

(3) Data prediction

NAND flash
memory

3D

Fig. 12.7 SEA-SSD
architecture [3]

New write data

Data is hot ?
(Refer to Hint (2))Y N

Write to
Seg-Hot

Write to
Seg-Cold

Data preliminary classification

Data is hot?
(Refer to Hint (3))Y N

Store in
Seg-Hot

Data prediction
GC starts

Store in
Seg-Cold

Fig. 12.8 SEA-SSD data management algorithms [3]

354 C. Sun and K. Takeuchi

is improved by 24 % at maximum. Moreover, maximum 16 % energy consumption
and 19 % lifetime enhancement are achieved.

12.3.2 Logical Block Address (LBA) Scrambled SSD

SEA-SSD is a design specially optimized for the database application. As a general
solution to improve the write performance of the all 3D-NAND flash SSD for all
applications, the logical block address (LBA) scrambled SSD is proposed [10].
A middleware LBA scrambler based on the address remapping technology is added
to the existed SSD system.

The concept of the LBA scrambler is to reduce the page-copy overhead of the
GC actively, as explained in Fig. 12.9 [10]. There are three kinds of pages in the
SSD: valid pages, free pages and invalid pages. Among the valid pages, pages that
still own free space are called fragmented pages. As mentioned in Sect. 12.2, all the
valid pages in the next erase block have to be copied to the free space of another
block, which leads to the degradation of the SSD write performance. Thus, LBA
scrambler is proposed to write small data to the remaining free space of the frag-
mented pages in the next erase block actively. Due to the overwrite, all these
fragmented pages in the next erase block become invalid and the data in the SSD
become less fragmented.

Figure 12.10 illustrates the LBA scrambled SSD based computer system [10]. To
achieve the address remapping, the LBA scrambler introduced another logical
address called scrambled LBA (SLBA). After LBA scrambling, the data address
SLBA is sent to the SSD controller. SSD controller writes data to a physical
3D-NAND flash page by the logical-to-physical table in the FTL (SSD controller).

…

…

3D-NAND chip

block…
…

…
…

… …

Next erase block

Page

Valid Free Invalid
Fragmented page

LBA scrambler actively writes data to the free space of
fragmented pages in the next erase block.
=> GC page-copy overhead reduction

Fig. 12.9 Concept of the LBA scrambler [10]

12 System-Level Considerations on Design of 3D NAND Flash Memories 355

To inform the LBA scrambler about the fragmented page addresses, the scrambled
logical page address (SLPA) of the fragmented page in the next erase block is sent to
the LBA scrambler by the SSD controller. To record the address remapping between
the LBA and SLBA, the LBA_to_SLBA table and unused_SLBA table are main-
tained in DRAM. As shown in Fig. 12.10, the LBA scrambler can locate in either the
SSD or host [10]. When it locates in the SSD, a large DRAM capacity will be
required for the SSD, but no interface modification is necessary. In contrast, a small
DRAM capacity is required if LBA scrambler locates in the host. However, due to
the communication between the LBA scrambler and the SSD controller, the interface
of the SSD has to be upgraded. The algorithm flowchart of the LBA scrambler is
shown in Fig. 12.11. For every N write requests, the hint (overwrite_preferred list) is
updated with information transferred from the FTL to the LBA scrambler [10]. By
referring to the overwrite_preferred list, the new write requests are generated for
writing the fragmented pages in the next erase block actively. Moreover, the una-
ligned writes will create fragmented pages and additional overwrites as shown in
Fig. 12.12. With the LBA scrambler’s address remapping, the problem of unaligned
writes for NAND flash memory can be eliminated.

From the evaluation results, maximum 394 % write performance improvement,
56 % energy consumption reduction and 55 % endurance enhancement are achieved
with the LBA scrambler, compared with the SSD system without the LBA scrambler.

Translate LBA into
SLBAs of vacant
sectors in the OP
list* aggressively.

*Recommended writing pages are stored in the overwrite_preferred list

3D-NAND

LBA
scrambler

SSD
controller

OS
(File system)

SSD

Send SLPA in the
next erase block to
the overwrite_preferred
list (Only write requests)

LBA: Logical block address SLBA: Scrambled LBA LPA: Logical page address
SLPA: Scrambled LPA PA: Physical address PPA: Physical page address

3D-NAND

SSD
controller

OS
(File system)

SSD

LBA
scrambler

LBA scrambler in the hostLBA scrambler in SSD

Host Host

Send SLBA

Send
LBA

Translate
LPA(SLPA)

to PPA

Send PA

Fig. 12.10 LBA scrambled SSD [10]

356 C. Sun and K. Takeuchi

12.3.3 Hybrid M-SCM/3D-NAND Flash SSD

Both the SEA-SSD and LBA scrambled SSD adopts a middleware and SSD con-
troller co-design methodology to improve the write performance of all 3D-NAND
flash SSD by reducing SSD GC overhead. However, the write performance
improvement of the SSD is limited by the read and write performance of the
3D-NAND flash memory.

On the other hand, SCM is much faster, more energy-efficient and endurable
than 3D-NAND flash memory. It is non-volatile and supports in-place overwrite.
Thus, both memory and storage systems are under a revolution due to SCM, as
shown in Fig. 12.13 [11]. M-SCM is used in both memory and storage systems. In

Receive new write
requests from host

Get recommended
pages from FTL

Generate new
requests to write fragmented
pages in the next erase block

in priority

Send write requests to FTL

count == N ?
Y N

count =
count + 1count = 0

update hint
every N writes

Fig. 12.11 LBA scrambled algorithm flowchart [10]

Aligned boundary

LBA0
1): Aligned

NAND page size

2): unaligned
3): unaligned

Fig. 12.12 Aligned and unaligned writes for the NAND flash memory

12 System-Level Considerations on Design of 3D NAND Flash Memories 357

addition, S-SCM is used only in the storage system. By introducing SCM into the
SSD system, the hybrid M-SCM/3D-NAND flash SSD is proposed to improve the
write performance of the all 3D-NAND flash memory [12]. From the measurement
results of the SCM (ReRAM) device, the verify cycles for write success vary with
the write/erase (W/E) cycle. Thus, NAND-like interface with ready/busy status is
adopted for the SCM. As shown in Fig. 12.3, M-SCM is used as a storage device
for the SSD rather than a simple cache [13]. The data fragmentation suppression
algorithm [12] and cold data eviction algorithm [13] are developed for the hybrid
M-SCM/3D-NAND flash SSD considering both the data activity and data size. In
the SSD controller, a least recently used (LRU) table is used to record the page

CPU

Memory
controller

DRAM

M-SCM

Main memory system

L1 cache

Address/Data/Control bus

I/O controller

All 3D-NAND
flash SSD

Hybrid M-SCM/
3D-NAND flash SSD

All S-SCM
SSD

Storage controller
Storage system

L2 cache

L3 cache

HDD

Fig. 12.13 Main memory and storage systems revolution due to SCM [11]

Coming logical
page addr.

LRU table

Hit (in table): Hot (frequently accessed)
Miss (not in table): Cold (rarely accessed)

New data

Current data in M-SCM

Data size: R

Page size: P
Page utilization PU = R/P

P θ
θ

U > : sequential (Un-fragmented)
PU < : random (fragmented)

MRU Pos.
(Hot)

LRU Pos.
(Cold)

Fig. 12.14 Criteria for data classification [11]

358 C. Sun and K. Takeuchi

data’s access history. As shown in Fig. 12.14, when the logical page address
(LPA) of the page data hits the LRU, the page data is considered as hot (frequently
accessed). Otherwise, the page data is judged as cold (seldom accessed). In addi-
tion, according to page utilization (data size divided by the page size), the page data
are divided into two kinds: random (fragmented) and sequential (un-fragmented).
When the page data size is over a threshold (θ), it is considered as the sequential
data. The data storage policy of the hybrid SSD is to store hot data or random data
in the M-SCM while cold and sequential data in the 3D-NAND flash. Hot data can
update in-place and random data can accumulate and become sequential in
M-SCM. The algorithm flowchart of the data management algorithm of the hybrid
M-SCM/3D-NAND flash SSD is described in Fig. 12.15 [13]. When M-SCM
becomes almost full, cold and less fragmented M-SCM data are evicted to the
3D-NAND flash. For the eviction procedure, the threshold to judge the data is
sequential or random is a dynamic value, increasing/decreasing according to the
data storage status in M-SCM. When it is hard to find the eviction candidates with
the current threshold, the threshold is reduced to relax the restriction.

For the hybrid M-SCM/3D-NAND flash SSD, there are two important design
considerations. Firstly, understand the M-SCM capacity and latency requirement
for representative applications. Secondly, understand the effect of the 3D-NAND
organization on the SSD write performance. Before the analyses, the SSD work-
loads are classified into four categories: hot and random, hot and sequential, cold
and random, cold and sequential, as shown in Fig. 12.16 [14]. A large value of the
average overwrite, defined as the total write data size divided by the user data size,
indicates the workload is hot since it contains many hot data. In addition, the
percentage of the random write request determines whether the workload is random
or sequential. Here, half of the NAND flash page size is used as the threshold to
judge the page is random or sequential.

From the evaluation results, increasing M-SCM capacity is more efficient to
boost the write performance of the SSD than increasing the 3D-NAND flash
overprovisioning (additional capacity over the user data size) with hot and random
workload. Both increasing M-SCM capacity and 3D-NAND flash overprovisioning
is capable of improving the SSD write performance. However, neither increasing

Host write

Hot data or
random data?

Y

Write to
M-SCM

N

Write to
3D-NAND

M-SCM is
almost full?

Y N

Evict cold and
less sequential

data to 3D-NAND

Fig. 12.15 Data
management algorithm of the
hybrid M-SCM/NAND flash
SSD [13]

12 System-Level Considerations on Design of 3D NAND Flash Memories 359

M-SCM capacity nor 3D-NAND flash overprovisioning is very effective for the
write performance boost of the cold and sequential workload. Therefore, intro-
ducing M-SCM to the SSD is most suitable for the hot and random workload but
not cost-efficient for the cold and sequential workload. Generally, less than 10 %
M-SCM/3D-NAND flash capacity ratio is enough for the representative workloads
with a fixed M-SCM latency of 100 ns/sector. On the other hand, a faster speed can
be achieved by increasing the chip area for memory chip design. For example, write
speed can be increased by enlarging the internal write unit and read speed can be
improved by adding select devices for the reduction of bit line capacitance. When
the speed of M-SCM is increased, the maximum throughput of the hybrid
M-SCM/3D-NAND flash SSD is improved. As shown in Fig. 12.17, the write
performance of the hybrid SSD saturates when the capacity of the M-SCM is over a
threshold for a proxy server application (prxy_0), which is a hot and random
intensive [11]. For other workloads such as Financial1, which is from a financial
server, there is no trend of saturating when increasing the M-SCM/3D-NAND flash

0

20

40

60

80

100

0 20 40 60 80 100

Av
er

ag
e

ov
er

w
rit

e
Random write request (%)

Financial1

prxy_0
prxy_1

tpcc-mysql

src1_0 proj_2

(II) Hot and Seq.

(I) Hot and Random

(III) Cold and Random

(IV) Cold and Seq.

Hot

Cold

RandomSequential

Fig. 12.16 SSD workload
classification according to the
data activity and size [14]

0

20

40

60

80

100

0 50 100 150 200

W
rit

e
pe

rf
or

m
an

ce
 (M

B
/s

ec
)

M-SCM capacity (MB)

Speed constraint

Fast M-SCM (WR: 1.5μs, RD: 0.3μs)

Slow M-SCM (WR: 15μs, RD: 3μs)

More capacity is required for a
low speed memory chip

Financial1

0

200

400

600

800

1000

0 500 1000 1500

W
rit

e
pe

rf
or

m
an

ce
 (M

B
/s

ec
)

M-SCM capacity (MB)

Fast M-SCM (WR: 0.5μs, RD: 0.1μs)

Slow M-SCM (WR: 2μs, RD: 0.4μs)

Write performance saturates
over a M-SCM capacity

Speed
constraint

prxy_0

Fig. 12.17 SSD write performance dependency on the M-SCM capacity, latency and application
[24]

360 C. Sun and K. Takeuchi

capacity ratio. From the evaluation results of various workloads, the write perfor-
mance of the hybrid M-SCM/3D-NAND flash SSD is workload/application
dependent. Moreover, less M-SCM capacity is required for a faster speed M-SCM
to reach the target application throughput. From the system point of view, there is a
tradeoff between the M-SCM capacity requirement and M-SCM speed. Thus, there
would be a cost-effective M-SCM chip design for a certain application, which is
discussed in [11] by establishing optimistic and pessimistic SCM area cost models.

The minimum M-SCM capacity for the hybrid SSD is shown in Fig. 12.18 by
analyzing the SSD workload. It illustrates the relationship between the accumulated
sector write frequency and the address range of the write user data. For example,
25 % access frequency at 20 % user data address range means 25 % of the accesses
occur at the top 20 % address of the user data. The turning point of the curve
indicates the end of the frequently accessed data, usually random data, which
requires high input output per second (IOPS). High slope value of the curve shows
the most critical data, determining the minimum M-SCM capacity for the hybrid
SSD. For Financial1 workload, M-SCM capacity should be over 40 % of the user
data size to cover 75 % of the sector accesses. However, due to the temporal and
spatial localities, the actual required SCM capacity as a write cache buffer is much
smaller than 40 %. The rising trend of the curve is consistent with the results in
Fig. 12.17. Increasing M-SCM capacity is effective to improve the hybrid SSD
throughput for Financial1 workload. Further, as the slope value of the “Financial1”
curve is smaller than that of prxy_0 and prxy_1, increasing SCM capacity is more
effective for boosting the performance of the proxy server applications (prxy_0 and
prxy_1). From Fig. 12.18, M-SCM capacity of less than 20 % of the user data size
is enough for the proxy server application.

Since the conventional planar scaling of the NAND flash memory is facing
various limitations making it harder and harder to reduce the fabrication cost and
guarantee the memory reliability, 3D technology becomes a viable way to continue
the trend of bit cost reduction for the NAND flash memory. Several 3D-NAND

0%

25%

50%

75%

100%

0% 20% 40% 60% 80% 100%

Ac
cu

m
ul

at
ed

 s
ec

to
r

ac
ce

ss
 fr

eq
ue

nc
y

Workload user data address range

Financial1
tpcc-mysql
prxy_0
prxy_1
proj_2
src1_0

Min. M-SCM capacity
(prxy_1)

Fig. 12.18 Minimum M-SCM capacity requirement

12 System-Level Considerations on Design of 3D NAND Flash Memories 361

flash architectures have been proposed. For example, terabit cell array transistor
(TCAT) [15], Pipe-Shaped bit-cost scalable (P-BiCS) [16], vertical stacked array
transistor (VSAT) [17], and dual control gate surrounding floating gate (DC-SF)
[18]. There are two types of the 3D array: vertical channel and vertical gate. The
current flows vertically and horizontally for the vertical channel type array and
vertical gate array, respectively. 3D-NAND increases the bit density in the vertical
direction (Z-dimension) in additional to the XY-dimensions. In case of the PiBCS
3D-NAND flash memory, the capacity of the 3D-NAND flash is increased by
stacking more layers, which also compensates the problem of the reduced cell
density in the XY-dimensions due to the non-scalable BiCS hole’s diameter [19].

For design of the 3D-NAND flash memory, the NAND organization is critically
important to the performance and cost of the circuits. A group of NAND flash
memory cells is connected in series as a NAND flash string. Multiple NAND flash
strings sharing the same substrate consists a NAND flash block as the erase unit. By
asserting a high voltage on the substrate to eject the electrons from the floating gate
of the memory cells in the block, the erase operation is executed. In the block, the
memory cells connected with the same word-line is a page. It is the read/write unit.
With the scaling, there is an increasing trend for the page and block sizes of the

250 160 130 90 70 50 43 32 24 16 15
0

2

4

6

8

1

2

4

8

16

32

B
lo

ck
 s

iz
e

(M
B

)

Pa
ge

 s
iz

e
(B

yt
e)

Technology node (nm)

Page size
Block size

Fig. 12.19 Trend of NAND
flash block and page sizes [1,
20–23]

W
L

de
co

de
r

Memory
array

Memory
array

W
L

de
co

de
r

BL decoder BL decoder

3D-NAND flash
chip design (1)

Page size Page size

W
L

de
co

de
r

Memory
array

BL decoder

3D-NAND flash
chip design (2) Page size

WL: word-line
BL: bit-line

Fig. 12.20 Chip design of
the 3D-NAND flash memory
[24]

362 C. Sun and K. Takeuchi

NAND flash memory, as shown in Fig. 12.19 [1, 20–23]. The typical size of the
NAND flash page size is 8 kB and block size is 2 MB (256 pages in a block). With
the advent of 3D-NAND flash memory, larger page and block sizes can be easily
adopted. Take P-BiCS 3D-NAND for example, the block size of the NAND flash is
doubled by doubling the stack layers. On the other hand, as shown in Fig. 12.20,
adopting a large page size design reduces the word-line decoder area overhead of
the NAND flash memory chip compared to the design of adopting a small page size
[24]. However, it is not true that larger page or block size is better for the per-
formance of the real-world applications.

Figure 12.21 shows the evaluation results of the block size sensitivity analysis
for the all 3D-NAND flash memory [24]. The page size is fixed to 16 kB. Take

0.0

0.5

1.0

1.5

2.0

2.5

W
rit

e
pe

rf
or

m
an

ce
 (M

B
/s

ec
)

3D-NAND flash block size (KB)

prxy_0

25% 50% 100%
3D-NAND Over-provisioning

Acceptable

0
10
20
30
40
50
60
70
80

W
rit

e
pe

rf
or

m
an

ce
 (M

B
/s

ec
)

3D-NAND flash block size (KB)

proj_2

25% 50% 100%
3D-NAND Over-provisioning

Acceptable

Fig. 12.21 Block size
evaluation of the all
3D-NAND flash memory
[24]. 2 MB is the typical
block size [25]

12 System-Level Considerations on Design of 3D NAND Flash Memories 363

prxy_0, a firewall/web proxy server workload for example, there is a maximum
value for the write performance of the all 3D-NAND flash SSD with a certain
capacity. Too small or too large block size decreases the write performance. Large
block size may induce long GC latency while small block size will reduce the erase
throughput. Assuming 10 % write performance is tolerable for the all 3D-NAND
flash SSD, the acceptable block sizes for the all 3D-NAND flash memory with 25,
50 and 100 % over-provisioning are 2, 4 and 8 MB, respectively. Higher all
3D-NAND flash SSD capacity accepts a larger block size. Moreover, for the proj_2,
a project directories sever workload (cold and sequential), the write performance
saturates when the block size is over a threshold. Even the block size is as large as
16 MB, there is no write performance degradation, which is great for the appli-
cation of 3D-NAND flash. It is because such workload seldom leads to the trig-
gering of the GC. The cold and sequential data just fill in the block.

The analyses of page size sensitivity of the all 3D-NAND flash SSD are pre-
sented in Fig. 12.22 [24]. The block size is fixed to 4 MB. Similar to the block size
sensitivity, over large page size or small page size degrades the write performance

0.0

0.5

1.0

1.5

2.0

W
rit

e
pe

rf
or

m
an

ce
 (M

B
/s

ec
)

3D-NAND flash page size (KB)

Financial1

25% 50% 100%
Acceptable

3D-NAND Over-provisioning

0
10
20
30
40
50
60
70
80

W
rit

e
pe

rf
or

m
an

ce
 (M

B
/s

ec
)

3D-NAND flash page size (KB)

proj_2

25% 50% 100%
3D-NAND Over-provisioning

Acceptable

Fig. 12.22 Page size
evaluation of the all
3D-NAND flash memory
[24]. 8 kB is the typical page
size [25]

364 C. Sun and K. Takeuchi

of the all 3D-NAND flash SSD. Large page size is good for the sequential write
throughput but the page overwrite count would be large (more page overwrite
overhead). In addition, fewer pages exist in the case of larger page size. Thus, the
GC will be triggered more frequently. In contrast, small page size induces less page
overwrite overhead but it is not good for sequential writes. Further, more pages may
need to be copied during GC. From the experimental results, for workloads like
Financial1 a financial online transaction processing (OLTP) sever workload, the
acceptable page sizes are the same at 25, 50 and 100 % SSD capacity overprovi-
sioning cases. Only for proj_2 that is cold and sequential, larger page size is
acceptable for a larger SSD capacity over-provisioning.

Moreover, larger block and page sizes are acceptable for the M-SCM/3D-NAND
flash hybrid SSD, as shown in Figs. 12.23 and 12.24 [24]. Fix the page size as 16 kB

0

15

30

45

60

75

H
yb

rid
 S

SD

w
rit

e
pe

rf
or

m
an

ce
 (M

B
/s

ec
)

3D-NAND flash page size (KB)

tpcc-mysql

Typical product page size

Acceptable

0

4

8

12

A
ll

3D
-N

A
N

D
 S

SD

w
rit

e
pe

rf
or

m
an

ce
 (M

B
/s

ec
)

3D-NAND flash page size (KB)

tpcc-mysql

Typical product page size

Acceptable

Fig. 12.24 Page size evaluation of the hybrid M-SCM/3D-NAND flash memory [24]

0
10
20
30
40
50
60
70
80

H
yb

rid
 S

SD

w
rit

e
pe

rf
or

m
an

ce
 (M

B
/s

ec
)

3D-NAND flash block size (KB)

prxy_0

Typical product block size

Acceptable

0

0.5

1

1.5

A
ll

3D
-N

A
N

D
 S

SD

w
rit

e
pe

rf
or

m
an

ce
 (M

B
/s

ec
)

3D-NAND flash block size (KB)

prxy_0

Typical product block size

Acceptable

Fig. 12.23 Block size evaluation of the hybrid M-SCM/3D-NAND flash memory [24]

12 System-Level Considerations on Design of 3D NAND Flash Memories 365

and 3D-NAND flash over-provisioning as 25 % for the prxy_0 workload. The
acceptable block size is 2 MB in the case of the all 3D-NAND flash SSD, which is the
same size of the current typical NAND flash block size [25]. In the case of the hybrid
M-SCM/3D-NAND flash SSD, the M-SCM/3D-NAND flash capacity ratio is set as
8.5 %. Assuming the bottom line of the design of the hybrid SSD is its write per-
formance should be larger than that of the all 3D-NAND flash SSD, the acceptable
block size of the hybrid SSD is 4 MB, which is 2 times that of the 3D-NAND flash
acceptable block size. It indicates that with M-SCM, the stacking layers of the
3D-NAND flash could be doubled for the prxy_0 workload. As shown in Fig. 12.24,
the typical page size of the NAND flash product is 8 kB [25]. The acceptable page
sizes for the all 3D-NAND flash SSD and hybrid M-SCM/3D-NAND flash SSD are
128 and 512 kB, respectively, with the tpcc-mysql (a relational database workload).

The comparison results of the 3D-NAND flash design for the all 3D-NAND
flash SSD and hybrid M-SCM/3D-NAND flash SSD are summarized in Fig. 12.25
[24]. With M-SCM, the acceptable block and page sizes are enlarged by 4 times and
64 times, respectively. The 3D-NAND flash stacking layers could be quadruple for
the hybrid SSD compared with the all 3D-NAND flash SSD, without any write
performance degradation.

10
12
14

3D
-N

A
N

ze
 (M

B
) Hybrid SSD

4x

6
8

10

ce
pt

ab
le

bl

oc
k

si
z

0
2
4A

cc b

0
Firewall/web

proxy
(prxy_0)

Relational
database

(tpcc-mysql)

Financial
OLTP

(Financial1)

Project
directories

(proj_2)

1024

4096

D

All 3D-NAND SSD

All 3D-NAND SSD

Hybrid SSD

64

256

1024

3D
N

A
N

ze
 (K

B
)

Hybrid SSD

64x

16

64

ce
pt

ab
le

pa
ge

 s
iz 64x

4x

Fig. 12.25 Comparison of the acceptable 3D-NAND flash page and block sizes for all 3D-NAND
flash SSD and hybrid M-SCM/3D-NAND SSD [24]

366 C. Sun and K. Takeuchi

12.3.4 All S-SCM SSD

When the SCM technology matures and the cost is reduced to be competitive to that
of the NAND flash memory, the all S-SCM SSD becomes a viable solution to
replace the current NAND flash-based SSD. In this section, we present the wear
leveling, S-SCM I/O data toggle rate, S-SCM latency design for the all S-SCM SSD.

For S-SCM candidates like ReRAM, the device endurance is limited (107 for
50 nm HfO2 ReRAM [26]), although it is high compared with the NAND flash
memory. Therefore, wear leveling is required for S-SCM. A simple wear leveling
algorithm is shown in Fig. 12.26, which is operated in a page-level. Thus, a wear
leveling triggering threshold δ is maintained for each page of the S-SCM. Further,
to monitor the endurance of each sector (512 Byte), that is the minimum access unit
in the block device, the write/erase (W/E) cycle for each sector is maintained. When
the maximum W/E cycle of the sectors in the page i is smaller than δpage(i), in-place
page overwrite is executed. Otherwise, the wear leveling is triggered. During the
wear leveling, the data in the old page i is read out, merged with the new data and
written to a new page j. After that, the wear leveling triggering threshold of page i is
updated with a constant window threshold σ, to raise the bar of the wear leveling
triggering. Actually, there are many hot spots (some addresses are frequently

δpage(i): Wear leveling triggering threshold for page i
σ: weal leveling window threshold

Write new data to a page i

Each sector W/E
cycle < δpage(i) ?

Read page i data

Update

N

Y

Start

End

Wear leveling

Mark page i as free

δpage(i) =δpage(i) + σ

Merge new data and
write page j

Fig. 12.26 Wear leveling
algorithm flowchart for all
S-SCM SSD [27]

12 System-Level Considerations on Design of 3D NAND Flash Memories 367

written) in the workload, the endurance of the all S-SCM SSD can be greatly
enhanced with the wear leveling. For instance, with σ = 5, the maximum W/E cycle
of the sector in the S-SCM without the wear leveling is over 3000 times higher than
that of the all S-SCM SSD with wear leveling procedure.

By adjusting the value of σ, the wear leveling triggering interval can be con-
trolled. A small σ triggers the wear leveling easily to make all pages wear out
evenly. However, such configuration would degrade the all S-SCM SSD perfor-
mance due to the additional page-copy operations. Therefore, σ could be adjusted to
balance the SSD performance and endurance [27].

Figure 12.27 shows the all S-SCM SSD write performance dependency on the
I/O data toggle rate, S-SCM latency (assuming the some read and write latency) and
applications [27]. M-SCM latency is set as 100 ns/sector. Different from the
3D-NAND flash based SSD, there is little write performance dependency on the
applications. The trend is the same. The slight difference is due to the S-SCM wear
leveling and total write data size. When S-SCM speed is faster, a higher data toggle
rate should be adopted to fully exploit the write performance of the all S-SCM SSD.
By keeping S-SCM latency as 1 μs, the speeds of the all S-SCM SSD and hybrid
M-SCM/3D-NAND flash SSD are compared in Fig. 12.28a, which illustrates the
breakpoint of the I/O data toggle rate at 25 % fixed M-SCM/3D-NAND flash ratio
[27]. Take tpcc-mysql workload for example, over 500 MHz I/O data toggle rate
makes the all S-SCM SSD faster than the hybrid M-SCM/3D-NAND flash SSD. On
the other hand, at a fixed I/O data toggle rate of 1066 MHz, the breakpoint of the
S-SCM latency can be analyzed, as shown in Fig. 12.28b [27]. Faster S-SCM

0

200

400

600

800

1000

1200

1400

1600

0 400 800 1200 1600 2000 2400

A
ll

S-
SC

M
 S

SD

W
rit

e
Pe

rf
or

m
an

ce
 (M

B
/s

ec
)

I/O data toggle rate (MHz)

Financial1

100ns
500ns
1μs
5μs

0

200

400

600

800

1000

1200

1400

1600

0 400 800 1200 1600 2000 2400

A
ll

S-
SC

M
 S

SD
W

rit
e

pe
rf

or
m

an
ce

 (M
B

/s
ec

)

I/O data toggle rate (MHz)

prxy_0

100ns
500ns
1μs
5μs

Read/write latency

Fig. 12.27 All S-SCM SSD
write performance
dependency on the I/O data
toggle rate, S-SCM latency
and applications [27]

368 C. Sun and K. Takeuchi

device creates a faster all S-SCM SSD. In the case of the Financial1 workload, the
hybrid M-SCM/3D-NAND flash SSD owns a faster speed than the all S-SCM SSD
if the S-SCM latency is over 5 μs.

Moreover, the cost of each SSD can be compared easily according to the
capacity configurations of the memories inside the SSD, by assuming the bit cost of
each memory device.

It is interesting to know how speedy storage system can be achieved by SCM,
compared with the NAND flash. Expression (12.1) shows the calculation of the
latency of a page write operation TNAND, where TCMD·N is the latency of issuing the
program command and programming addresses, TIO·N is the time of loading the
data into the data register of the NAND flash memory, TMEM·N is the time of storing
the data from the data register to the memory array (array programming time).

TNAND ¼ TCMD�N þ TIO�N þ TMEM�N ð12:1Þ

TCMD·N is only a few clocks long. Compared with TIO·N and TMEM·N, it is
negligible small. TIO·N is inversely proportional to the data toggle rate PToggle·N,
defined by the NAND flash interface, as shown in formula (12.2), where LNAND is
the NAND flash page size and WDAT·N is the width of the data bus.

0

1

2

3

4

5

6
(a)

(b)

0 400 800 1200 1600 2000 2400

W
rit

e
sp

ee
d

ra
tio

 o
f a

ll
S-

SC
M

 S
SD

 o
ve

r h
yb

rid
 S

SD

I/O data toggle rate (MHz)

Financial1
tpcc-mysql
prxy_0

S-SCM latency = 1 sμ

Hybrid SSD
M-SCM ratio = 25%

All S-SCM
SSD faster

0
0.5

1
1.5

2
2.5

3
3.5

4

0 1 2 3 4 5 6 7 8 9 10 11 12

W
rit

e
sp

ee
d

ra
tio

 o
f a

ll
S-

SC
M

 S
SD

 o
ve

r h
yb

rid
 S

SD

S-SCM latency (μs)

Financial1
tpcc-mysql
prxy_0

Hybrid SSD
M-SCM ratio = 25%

All S-SCM
SSD faster

I/O data toggle rate
= 1066MHz

Fig. 12.28 Write speed
comparison of the all S-SCM
SSD and hybrid
M-SCM/3D-NAND flash
SSD [27]

12 System-Level Considerations on Design of 3D NAND Flash Memories 369

TIO�N ¼ LNAND
WDAT�N

	 1
PToggle�N

ð12:2Þ

When the data toggle rate PToggle·N is high, TIO·N is reduced. Usually, TIO·N
should be much smaller than TMEM·N. If TIO·N is comparable or even higher than
TMEM·N, the interface becomes the memory device performance bottleneck. On the
other hand, a page cache program may be supported by the NAND flash memory,
which uses the internal cache register to improve the NAND flash program
throughput, as shown in Fig. 12.29. During the 1st program data storing from the
data register to the memory array, the 2nd program data can be input to the page
cache. By the page cache, the TCMD·N and TIO·N are hidden. As a result, the latency
of writing N NAND flash pages TN can be calculated by (12.3) and (12.4).

TN ¼ TCMD�N þ TIO�N þN 	 TMEM�N ð12:3Þ

TN ¼ TCMD�N þ TIO�N þ LDAT
LNAND

�

	 TMEM�N ð12:4Þ

Note that (12.4) is true only when the TMEM·N is much longer than the TCMD·N

and TIO·N. When the TIO·N is large, the page cache cannot completed be hidden.
Moreover, the page cache does not work in the random write case. Without page
cache effect, the sequential write latency of the NAND flash memory is expressed
by (12.5):

TN ¼ LDAT
LNAND

�

	 ðTCMD�N þ TIO�N þ TMEM�NÞ ð12:5Þ

Additionally, the sequential write throughput ratio of the SCM device is
expressed by (12.6), where the write unit of SCM is LSCM. TCMD·S is the latency of

TCMD⋅N TIO⋅N TMEM⋅N

1st page program

2nd page program

Write w/o page cache

TCMD⋅N TIO⋅N TMEM⋅N

1st page program

2nd page program

Write w/ page cache

TIO⋅N TMEM⋅N

TIO⋅N TMEM⋅NTCMD⋅N

TCMD⋅N

Fig. 12.29 Page cache operation of the NAND flash memory

370 C. Sun and K. Takeuchi

issuing the program command and programming addresses, TIO·S is the time of
loading the data into the data register of the SCM, TMEM·S is the time of storing the
data from the data register to the memory array (array programming time).
Since SCM is fast, page cache is not designed.

TS ¼ LDAT
LSCM

�

	 ðTCMD�S þ TIO�S þ TMEM�SÞ ð12:6Þ

According to formulas (12.2), (12.4) and (12.6), the SCM and NAND flash
device write performance ratio RS/N can be estimated by expression (12.7) without
the considerations of the GC and overwrites in NAND flash only SSD and wear
leveling in All SCM SSD. WDAT·S is the memory bus width of SCM. PToggle·S is the
data toggle rate of the SCM.

RS=N ¼
TCMD�N þ TIO�N þ LDAT

LNAND

l m
	 TMEM�N

LDAT
LSCM

l m
	 ðTCMD�S þ TIO�S þ TMEM�SÞ

LNAND
WDAT�N

	 1
PToggle�N

þ LDAT
LNAND

l m
	 TMEM�N

LDAT
LSCM

l m
	 ð LSCM

WDAT�S
	 1

PToggle�S
þ TMEM�SÞ

ð12:7Þ

Assuming TMEM·N = 1.6 ms, LNAND = 16,384 Bytes (32 sectors), LSCM = 512
Bytes (1 sector), PToggle·N = 400 Mbps/pin, PToggle·S = 1066 Mbps/pin,
WDAT·N = 1 Byte and WDAT·S = 1 Byte. The relationship of RS/N and TMEM·S is
shown in Fig. 12.30. From Fig. 12.30, it can be found that single SCM chip can
achieve over 1000-times performance gain than the single NAND flash chip if SCM
write latency is below 1 μs. For randomwrites (LDAT < LNAND), RS/N is equivalent to
the IOPS ratio of the SCMover theNANDflashmemory. IOPS is used as themetric of

0.1

1

10

100

1000

10000

10 100 1000 10000 100000 1000000 10000000

R
S/

N

S-SCM latency TMEM. S (ns)

512
1024
2048
4096
8192
16384

Write data size (Bytes)

Fig. 12.30 S-SCM and 3D-NAND flash memory throughput ratio

12 System-Level Considerations on Design of 3D NAND Flash Memories 371

the randomwrite performance. If SCMhas a latency of 100 μs,RS/N is less than 100 at
anyLDAT.Furthermore,RS/N becomes less than1when theLDAT > LNAND.Thus, such
a long latency SCM device is not cost-efficient. The curves almost overlap in
Fig. 12.30 at the condition of LDAT > LNAND (sequential write), which shows the
lowest RS/N that the SCM can achieve. Below 50 μs, the SCM still has a higher
performance than the NAND flash memory. However, the SCM is slower than the
NAND flash memory if its latency is over 50 μs. It indicates that the NAND flash is
good for the sequential write, thanks to the low write energy of the memory cell. In
other words, achieving over 1000-times sequential write performance boost
(>1 NAND flash page size) for SCM device is extremely difficult.

A recent ReRAM device [28] and MLC NAND flash memory [29] presented in
ISSCC 2014 have the program latencies 10 μs/2048 Bytes and 1185 μs/16 kB,
respectively. Comparing the SSDs made of these two devices, the performance gain
of the all ReRAM SSD with 512 B random data pattern can be over 100-times
(over 50-times at 4 kB random data pattern). To improve the system performance
gain, the SCM chip latency should be further reduced or the device program current
has to be reduced for increasing the number of parallel program cells (corre-
sponding to LSCM).

For the enterprise applications, the random data access is the bottleneck. Since
the real workload is the mixture of random and sequential data, MB/s is still used as
the overall performance metric throughout the chapter. The average IOPS IOPSAvg
can be calculated by formula (12.8):

IOPSAVG ¼ ThroughputAVG 	 1024
RSAVG

ð12:8Þ

where RSAVG is the average request size (kB) and ThroughputAVG is the average
SSD performance (MB/s). If the SSD average write performance is 20 MB/s with
the 512 Byte random write data pattern, the average IOPS is equal to 40,960. When
the SSD is tested with 4 kB random data, the average SSD IOPS is 5120.

12.4 Summary and Conclusion

Three techniques are presented in this chapter to improve the write performance of
the 3D-NAND flash-based SSD. Table 12.1 summarizes the pros and cons of the
techniques in this chapter. The SEA-SSD and LBA scrambled SSD are short-term
solutions, which co-design the middleware and SSD controller. To overcome the
hurdle of limited write performance of the NAND flash memory, hybrid
M-SCM/3D-NAND flash memory SSD is the mid solution which is able to improve
the conventional all 3D-NAND flash SSD write performance by over 10 times. In
the long run, all S-SCM SSD is promising. With the system proposals like the
SEA-SSD and LBA scrambler, the latency design parameters for the 3D-NAND
flash memory are relieved. On the other hand, a larger page size and block size can

372 C. Sun and K. Takeuchi

be accepted for the NAND flash memory by introducing M-SCM into the SSD,
which is good for the design of the 3D-NAND flash memory. Due to the write
performance dependency on the application, custom 3D-NAND flash design
enables the performance optimization for each application.

Table 12.1 3D-NAND flash design with system-level considerations

Solution Pros Cons Implications for 3D-NAND
flash design

SEA-SSD [3]
(short-term)

• Low cost
• Use upper
layer
information

• Low data
management
complexity

• Only for
database
application

• Relaxed latency and
endurance design
constraints for 3D-NAND
flash based SSD by
integrating these
techniques

• Larger page and block
sizes are acceptable for
hybrid
M-SCM/3D-NAND flash
SSD, compared with the
all 3D-NAND flash SSD

• Customized 3D-NAND
flash design enables write
performance optimization
for each application

LBA scrambler [10]
(short-term)

• Low cost
• Eliminate page
fragmentation
due to
unaligned
writes

• Enhance write
speed for all
representative
SSD
workloads

• More DRAM
capacity is
required for
tables

• Interface may
need to be
modified

Hybrid
M-SCM/3D-NAND
flash hybrid SSD
[13] (mid-term)

• Cost-effective
(compared to
all M-SCM
SSD)

• Improve SSD
write speed,
power and
reliability
greatly

• Complicated
tiered
storage/cache
algorithm is
required

All S-SCM SSD
[27] (long-term)

• Little write
performance
dependency on
application

• In-place
overwrite

• No garbage
collection is
required

• >100 times
SSD write
speed boost is
possible

• High cost
(currently)

• S-SCMs like
ReRAM are
still in early
development
stage

12 System-Level Considerations on Design of 3D NAND Flash Memories 373

References

1. K. Takeuchi, Novel co-design of NAND flash memory and NAND flash controller circuits for
sub-30 nm low-power high-speed solid-state drives (SSD). IEEE J. Solid-State Circ. 44(4),
1227–1234 (2009)

2. K. Takeuchi et al., A 56 nm CMOS 99 mm2 8 Gb multi-level NAND flash memory with
10-MB/s program throughput. IEEE J. Solid-State Circ. 42(1), 219–232 (2007)

3. C. Sun et al., SEA-SSD: a storage engine assisted SSD with application-coupled simulation
platform. IEEE Trans. Circ. Syst. I 62(1), 120–129 (2015)

4. FusionIO, http://www.fusionio.com/press-releases/fusion-io-software-development-kit-
enables-native-flash-memory-access

5. A.M. Caulfield et al., Moneta: a high-performance storage array architecture for
next-generation, non-volatile memories, in Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) (2010), pp. 385–395

6. A.M. Caulfield et al., Providing safe, user space access to fast, solid state disks, in Proceedings
of the International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2012), pp. 387–400

7. A. Trivedi et al., Unified high-performance I/O: one stack to rule them all, in Proceedings of
the USENIX Workshop on Hot Topics in Operating Systems (HotOS) (2013)

8. S. Peter et al., Towards high-performance application-level storage management, in
Proceedings of the Workshop on Hot Topics in Storage and File System (HotStorage) (2014)

9. Synopsys Platform Architect, http://www.synopsys.com/Systems/ArchitectureDesign/Pages/
PlatformArchitect.aspx

10. C. Sun et al., LBA scrambler: a NAND flash aware data management scheme for
high-performance solid-state drives. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
(2015 in press)

11. C. Sun et al., Cost, capacity and performance analyses for hybrid SCM/NAND flash SSD.
IEEE Trans. Circ. Syst. I 61(8), 2360–2369 (2014)

12. H. Fujii et al., x11 performance increase, x6.9 endurance enhancement, 93 % energy reduction
of 3D TSV-integrated hybrid ReRAM/MLC NAND SSDs by data fragmentation suppression,
in IEEE Symposium on VLSI Circuits (2012), pp. 134–135

13. C. Sun et al., A high performance and energy-efficient cold data eviction algorithm for
3D-TSV hybrid ReRAM/MLC NAND SSD. IEEE Trans. Circ. Syst. I 61(2), 382–392 (2014)

14. C. Sun et al., SCM capacity and NAND over-provisioning requirements for SCM/NAND flash
hybrid enterprise SSD, in Proceedings on International Memory Workshop (IMW) (2013),
pp. 64–67

15. J. Jang et al., Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for
ultra high density NAND flash memory, in IEEE Symposium on VLSI Technology (2009),
pp. 192–193

16. R. Katsumata et al., Pipe-shaped BiCS flash memory with 16 stacked layers and
multi-level-cell operation for ultra high density storage devices, in IEEE Symposium on
VLSI Technology (2009), pp. 136–137

17. J. Kim et al., Novel Vertical-Stacked-Array-Transistor (VSAT) for ultra-high-density and
cost-effective NAND flash memory devices and SSD (Solid State Drive), in IEEE Symposium
on VLSI Technology (2009), pp. 186–187

18. S.J. Whang et al., Novel 3-dimentional dual control-gate with surrounding floating-gate
(DC-SF) NAND flash cell for 1 Tb file storage application, in IEEE International Electron
Devices Meeting (IEDM) (2010), pp. 668–671

19. K. Miyaji et al., Control gate length, spacing, channel hole diameter, and stacked layer number
design for bit-cost scalable-type three-dimensional stackable NAND flash memory. Jpn.
J. Appl. Phys. 53, 024201 (2014)

374 C. Sun and K. Takeuchi

20. C. Lee et al., A 32 Gb MLC NAND-flash memory with Vth-endurance-enhancing schemes in
32 nm CMOS, in Proceedings IEEE International Solid-State Circuits Conference (ISSCC),
Feb 2010, pp. 446–447

21. K. Fukuda et al., A 151 mm2 64 Gb MLC flash memory in 24 nm cmos technology, in
Proceedings on IEEE International Solid-State Circuits Conference (ISSCC), Feb 2011,
pp. 198–199

22. S. Choi et al., A 93.4 mm2 64 Gb MLC NAND-flash memory with 16 nm cmos technology,
in Proceedings on IEEE International Solid-State Circuits Conference (ISSCC), Feb 2014,
pp. 328–329

23. M. Sako et al., A low-power 64 Gb MLC NAND-flash memory in 15 nm cmos technology, in
Proceedings on IEEE International Solid-State Circuits Conference (ISSCC), Feb 2014,
pp. 128–129

24. C. Sun et al., A workload-aware-design of 3D-NAND flash memory for enterprise SSDs, in
International Symposium on Quality Electronic Design (ISQED), March 2014, pp. 554–561

25. Micron Technology Inc., MT29512G08CUCAB data sheet, Nov 2009, http://micron.com
26. K. Higuchi et al., Evaluation of voltage vs. pulse width modulation and feedback during

set/reset verify-programming to achieve 10 million cycles for 50 nm HfO2 ReRAM.
Solid-State Electron. 91, 67–73 (2014)

27. T. Onagi et al., Design guidelines of storage class memory based solid-state drives to balance
performance, power, endurance and cost. Jpn. J. Appl. Phys. (JJAP) (2015 in press)

28. R. Fackenthal et al., A 16 Gb ReRAM with 200 MB/s write and 1 GB/s read in 27 nm
technology, in Proceedings on IEEE International Solid-State Circuits Conference (ISSCC),
Feb 2014, pp. 338–339

29. M. Helm et al., A 128 Gb MLC NAND-flash device using 16 nm planar cell, in Proceedings
on IEEE International Solid-State Circuits Conference (ISSCC), Feb 2014, pp. 326–327

12 System-Level Considerations on Design of 3D NAND Flash Memories 375

Index

A
Array slits, 171, 172
Asymmetrical VSAT (A-VSAT), 110, 113,

114
Asymmetric coding, 330, 335, 347

B
Back ground pattern dependency (BPD), 214
Bad block, 352
BCH code, 22, 281, 287, 288, 296, 298,

300–303, 322, 324, 326, 328–331, 335
Belief propagation decoding, 304, 313, 337,

338
Berlekamp-Massey, 289, 291, 294, 299
BE-SONOS, 201, 203, 204, 210, 215, 216
BiCS array, 87, 90, 95, 100, 106, 107, 178, 181
Binary-input AWGN channel, 285, 318, 322
Binary symmetric channel, 300
Bit error rate (BER), 21, 125, 284, 285, 296,

305, 316, 318
Bit flipping decoding, 302, 340, 343
Bitline contacts, 119, 121, 164, 170, 180, 183,

186, 190, 193, 211
Bitline coupling, 64, 65, 69, 71, 77, 80
Bitline density, 174, 186
Bitline discharge, 213
Bitline parasitic capacitance, 71
Bitline pitch, 189
Bitline selector (BLS), 86, 90–92, 95, 96, 115,

130–132, 134, 143, 169, 174, 176, 178,
179, 181

Blocking layer, 38–40
Blocking oxide, 36, 40, 41, 43, 85, 96, 112
Boosted channel potential, 74
Bracket-shape, 190, 191
Bracket-shape BL contacts, 190, 191

C
Capacitive coupled, 67, 146
Cell-type string select transistor, 180
CG to FG contact, 69
Channel (CH), 129
Channel capacity, 198
Channel coding theorem, xix
Channel encoder, 293
Channel wrapped around by gate, 85
Check nodes, 302, 313, 314, 338–343
Chien, 252, 289, 293–295, 297, 299
Circulant, 304, 308, 309, 314
Coarse/fine programming, 15
Code rate, 283, 285, 287, 296, 300, 304, 322,

345, 347
Column of pillars, 186
Common source line (CSL), 204, 210, 211,

213, 215, 216
Consumer SSD, 18
Conventional Floating Gate (C-FG) Flash Cell,

77, 129, 131
Conventional Pillars (Hole), 169
Correction capability, 283, 286, 296, 298, 300,

302
Coupling dielectric, 204
Cross point array, 9
Cross point memory, 9
Cyclic code, 337

D
2.5D, 267, 269, 270
Density, bitline, 174
Density evolution, xxi
Depletion-mode, 78, 86
Detection capability, 286
Double-sided staircase structure, 92
Double-stair die stacking, 274

© Springer Science+Business Media Dordrecht 2016
R. Micheloni (ed.), 3D Flash Memories, DOI 10.1007/978-94-017-7512-0

377

Dual control-gate with surrounding floating
gate (DC-SF) flash cell, 55, 56, 57, 59,
146–148, 151, 362

Dummy control gate (CG), 121, 160
Dummy layers, 180
Dummy wordline, 121, 160, 203

E
Edge disturb, 35, 36
Electrical erase, 74–76
Encoder, 290, 293, 294, 296, 298, 304, 305,

307, 309, 323
Enterprise MLC, 12, 13
Enterprise SSD, 5–7, 9, 12, 13, 15, 16, 18, 28,

316
Erasable unit, 65
Erase pulse, 31, 75
Erase saturation, 37, 41, 43, 215
Erase verify (EV), 75
Erase voltage, 75, 82, 216
Erratic bits, 30, 32
Error correction codes (ECC), 13–15, 17, 21,

22, 24, 33, 60, 67, 193, 282–285, 289, 296,
319, 322, 352

Error floor, 305, 311, 316, 317, 319, 322,
337–339, 345, 347

Error locator polynomial, 289–292
Extended sidewall control gate (ESCG) flash

cell, 55, 57, 142, 148, 151, 152

F
Fan-out, 108, 113, 115, 179, 180, 184, 267,

269, 270
Fan-out connections, 185, 189
Fan-out of CGs, 115, 193
Filler, 89
FinFET, 200, 202
Flash card, 5, 18, 19, 271
Flash channel, 294, 323, 333, 334
Flash controller, 12, 25
Flash memory cards, 271
Floating gate coupling, 60, 75
Floorplan, 273
Fowler Nordheim tunneling, 30, 32, 74

G
Galois field, 287, 290, 292
Gate-all-around (GAA), 41, 199, 201
Gate-induced drain leackage GIDL, 36, 216,

120
Gate replacement, 115
Generator matrix, 285, 304, 307, 308
Ground select line (GSL), 204, 216

H
Hamming distance, 286, 334
Hard decision, 285, 305, 338
Hard decoding, 318
High channel potential, 73
Horizontal channel, 41, 77, 78, 85, 129, 158,

202, 204
Horizontal channel and gate, 85
Horizontal channel and vertical gate, 85
Horizontal channel (HC-FG) flash cell, 157
Hot hole injection HHI, 38

I
Incremental step pulse programming (ISPP)

algorithm, 42
Inhibit scheme, 73
In-package electrical interconnects, 265
Interpoly dielectric (IPD), 59, 67, 129, 146
Inter wordline dielectric (IWD), 68, 69
Inverted electrical S/D scheme, 142
IPD layer, 68

K
Known Good Die, 268

L
Likelihood ratio (LR), 305
Local self-boosting, 212
Logical block, 262, 353, 355
Logical page, 64, 67, 136, 356, 359
Low-density parity-check (LDPC) codes, 22,

302–305, 307–311, 316, 318, 319, 321,
336–339, 341, 343, 345, 347

M
Macaroni body, 89, 90, 200
Matrix ip-well, 75
Metal mesh, 95, 136, 170
Minimum Incremental Layer cost (MiLC), 207,

208, 211
Min-sum decoding, 313, 314, 318
Miscorrection probability, 299
MLC, 11, 12, 20, 21, 31, 32, 34, 48, 53, 56, 57,

64, 71, 121, 160, 219, 254, 255, 296, 305,
338, 351, 372

Monolithic Even-Odd rows of Pillars (MEOP),
182–184, 190, 193

MRAM, 26
Multi-channel, 293
Multi-chip package (MCP), 24
Multi-die, 24
Multimediacard MMC, 2, 3, 5, 19, 24
Multi-plane, 6

378 Index

Multiple MEOPs, 183
Mutual information, 337

N
NVMe, 9, 14

O
Odd pillars, 174, 180, 183, 184
ONFI, 15, 20, 21
Out-package electrical interconnects, 265
Over programming, 214

P
Package fills, 265
Page buffer (PB), 65, 160, 162, 213, 273
Page size, 122, 174, 204, 359, 362–365, 369,

372
Paired even odd pillars, 183
Parallel BCH, 293, 296
Parasitic capacitance, 275
Parity bits, 283, 287, 288, 296
Parity-check matrix, 326, 327, 336, 338, 339,

341
Pass disturb, 34, 49, 74, 200, 219
PCIe, 2, 5–9, 14, 28
PCRAM, 26
P/E cycle, 30, 31, 34, 324, 330
Perfect code, 299
Peterson Estimation, 300
Pillar contact, 186
Pipe-shaped bit cost scalable (P-BICS), 85, 92,

95, 96, 100, 101, 106, 178, 180, 362
PN diodes, 208
Polysilicon channel, 89, 199, 200, 203, 218
Program after erase (PAE), 75
Program disturb, 34, 49, 74, 106, 121, 170,

171, 174, 183, 200, 214, 218
Program inhibit, 73, 215
Program pulse, 72, 125
Program saturation, 37
Program step, 81, 125
Program verify, 214, 218

Q
Quasi cyclic (QC) LDPC code, 304
QLC, 16, 22, 28, 64, 71, 319

R
Raw bit error rate (RBER), 282, 283, 293, 296
Read disturb, 33, 34, 43, 80, 106, 136,

170–172, 182, 184, 185, 189, 193, 212, 219
Read margin, 37, 75
ReRAM, 27, 249, 253, 350, 358, 367, 372
Row of pillars, 116, 183

S
Self boosted erase inhibit (SBEI), 74
Self boosted program inhibit (SBPI), 74
Self-boost program, 73
Self-boost program inhibit scheme, 73, 74
Sense amplifier (SA), 213, 250
Separated sidewall control gate (S-SCG) flash

cell, 151, 152
Shallow trench insulation (STI), 68
Shannon limit, 284, 285, 302
Sidewall control pillar (SCP) flash cell, 155,

156
Side wall oxide (SWOX), 68, 69
Single gate vertical channel (SGVC), 201, 202
SLC, 11–13, 31, 48, 64, 71, 87, 305
Soft decision, 285, 338
Soft decoding, 302, 318, 319
SONOS, 36–39, 116, 121, 200, 215
Source line (SL), 70, 80, 130
Source line contact, 183, 186, 189
Source line overhead (SLOH), 193
Source line plate, 95, 96, 122, 135, 161, 184,

193
Source line selector (SLS), 86, 130
Split-bitline, 204, 209
SSL island-gate, 210
Stacked NAND, 78, 158
Staggered bitline contacts, 121, 186, 187
Staggered pillars, 121, 172, 175, 177, 178, 186,

193
Staircase die stacking, 273
Storage class memories, 26, 350
String select line (SSL), 73, 203, 216
String select transistor, 69, 180, 209
Syndrome, 286, 289–291, 294, 298
Systematic code, 286

T
Tanner graph, 302, 303, 311, 322, 338, 339,

341–343, 345, 347
Terabit cell array transistor (TCAT), 46, 362
Through silicon vias (TSV), 24–26, 264–266,

268–270, 275, 277
TLC, 11, 12, 16–18, 20–23, 28, 59, 64, 71,

122, 160, 220, 296, 305, 319, 322–330,
332, 333, 335

Toggle mode, 15
Trap assisted tunneling (TAT), 31
Trapping set, 316, 317, 338, 342, 343, 345
Tunnel dielectric, 241
Tunnel oxide (TOX), 68, 129

U
Unselected blocks, 74, 80, 216

Index 379

Unselected wordline, 73
U-shaped, 95

V
Variables nodes, 313
Verify operation, 31, 72
Vertical channel and horizontal gate, 85
Vertical channel NAND (VC-NAND), 41
Vertical gate NAND (VG-NAND), 207
Vertical recess array transistor (VRAT), 106
Vertical source line contacts, 183, 188

Vertical stacked array transistor (VSAT), 362
V-NAND, 86, 106, 121, 122, 126

W
Weighted probability, 299
Wordline decoder, 65

Z
Zig-zag die stacking, 274
Z-VRAT (zigzag VRAT), 110

380 Index

