
SystemVerilog Reference

Product Version 9.2

July 2010

© 1995-2010 Cadence Design Systems, Inc. All rights reserved worldwide.

Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks, contact the
corporate legal department at the address shown above or call 800.862.4522.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered
trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this publication
may violate copyright, trademark, and other laws. Except as specified in this permission statement, this publication may
not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior
written permission from Cadence. This statement grants you permission to print one (1) hard copy of this publication
subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary

notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be discontinued

immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment
on the part of Cadence. The information contained herein is the proprietary and confidential information of Cadence or
its licensors, and is supplied subject to, and may be used only by Cadence’s customer in accordance with, a written
agreement between Cadence and its customer. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness
of the information contained in this document. Cadence does not warrant that use of such information will not infringe
any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use
of such information.

Patents: Cadence products described in this document are protected by U.S. Patents 5,095,454, 5,418,931,
5,606,698, 6,487,704, 7,039,887, 7,055,116, 5,838,949, 6,263,301, 6,163,763, 6,301,578

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Licensed Copyrights: This software includes, in binary form, a software package called CUDD V.2.4.1 1995–2004,
Regents of the University of Colorado. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: Redistributions of source code must
retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. Neither the name of the University of Colorado nor the names of its
contributors may be used to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SystemVerilog Reference

July 2010 3 Product Version 9.2

1
Overview of SystemVerilog . 15

Availability of Constructs within Simulators . 15
SystemVerilog in Simulation . 15
SystemVerilog VPI Extensions . 15
SystemVerilog Assertions . 16
SystemVerilog Coverage . 16
SystemVerilog with AMS . 16
SystemVerilog Examples . 16
Language Support . 17
Getting Help . 17

About Online Help . 17
Getting Help on Commands to Run Tools . 19
Getting Help on Tool Messages . 19
Other Documentation . 20
Customer Support . 20

2
Compiling SystemVerilog Constructs . 23

Using ncvlog . 23
Using the irun Utility . 23
SystemVerilog and the PLI tf_nodeinfo() Interface . 24

3
List of Supported Constructs . 25

4
Convenience Enhancements. 31

Literal Value Assignments . 31

Contents

SystemVerilog Reference

July 2010 4 Product Version 9.2

Matching End Names . 31
Time Unit and Time Precision . 33
.name Implicit Port Connection . 34
Dot Star (.*) Implicit Port Connection . 35

5
Data Types. 37

Data Types Overview . 37
Overview of Verilog Data Types . 38

Primitive Data Types . 38
User-Defined Data Types . 39

logic Data Type . 40
bit Data Type . 41
byte, shortint, int, and longint Data Types . 42
Chandle Data Type . 43
Strings . 43

String Operators . 44
String Methods . 45
Strings and System Tasks . 48
Using Strings with Classes . 48
Using Strings with Packages . 49
Using Strings within begin...end Blocks . 50
Declaring a Fixed Array of Strings . 50
Declaring Arrays and Queues of Strings . 51
Using Elements of a Dynamic Array of Strings . 52
Using Strings as Parameters and localparams . 53
Using Out-of-Module References to Strings . 54
Limitations on Strings . 55

typedef Declaration . 56
Limitations on Typedefs . 56
Creating a New Data Type Definition . 57
Handling Data Type Visibility . 59

enum Data Type . 60
Limitations on Enumerations . 61
Declaring an Enumeration . 62

SystemVerilog Reference

July 2010 5 Product Version 9.2

Specifying Enumeration Constants . 63
Treating Enumeration Objects as Bit Vectors . 64
Enumeration Type Checking . 65
Enumeration Type Methods . 65

Structures . 67
Packed Structures . 68
Unpacked Structures . 70
Debugging Structures . 73

Unions . 73
uwire Nets . 77
Static Casting . 78

Casting to Real Data Types . 79
Casting to Vector Width . 80
Casting a Class Handle . 81
Limitations on Type Casting . 81

Limitations on Data Types . 81

6
Arrays . 83

Packed and Unpacked Arrays . 84
Limitations on Packed and Unpacked Arrays . 86

Array Querying Functions . 87
Dynamic Arrays . 89

Access Methods for Dynamic Arrays . 89
Limitations on Dynamic Arrays . 96

Associative Arrays . 99
Access Methods for Associative Arrays . 99
Limitations on Associative Arrays . 102

Queues . 105
Access Methods for Queues . 106
Limitations on Queues . 111

Array Manipulation Methods . 114
Limitations on Array Methods . 118

Array Equality Operators . 119
Arrays as Function Return Types . 120

SystemVerilog Reference

July 2010 6 Product Version 9.2

Debugging Queues and Arrays . 122

7
Data Declarations. 123

Value Parameters . 123
Type Parameters . 124

Defining Type Parameters . 124
Limitations on Type Parameters . 125

Const Constants . 126
Declaring Variables with Initializers . 128
Declaring Local Variables in Unnamed Blocks . 128
Continuous Assignments to Variables . 129

Restrictions on Continuous Assignments to Variables . 130
Limitations on Continuous Assignments . 132

Automatic Design Unit Qualifier . 132

8
Classes . 133

Declaring a Class Data Type . 133
Working with Constructors . 135
Inheritance . 136
Protecting Class Members . 136
Abstract Classes and Virtual Methods . 138
Parameterized Classes . 139

Declaring Parameterized Classes . 139
Extending Parameterized Classes . 140
Static Variables and Class Specializations . 142
Scoped Types and Expressions . 143
Class Specialization Type Checking . 144
Limitations on Parameterized Classes . 144

Additional Features . 146
Limitations on Classes . 147
Debugging Classes . 148

SystemVerilog Reference

July 2010 7 Product Version 9.2

9
Operators and Expressions . 149

Supported Operators . 149
Assignment Operators . 150
Wild Equality and Wild Inequality Operators . 150
Case Equality Operators for Real Values . 151
Set Membership Operator . 151

Limitations on Set Membership Operations . 152
Assignment Patterns . 152

Limitations on Assignment Patterns . 154
Aggregate Expressions . 155

10
Procedural Statements. 157

Unique and Priority Decision Statements . 157
do...while Loop . 160
for Loop . 160
foreach Loop . 161

Limitations on the foreach Loop . 164
return, break, and continue Jump Statements . 164
final Blocks . 165
iff Event Control Qualifier . 165
always_* Blocks . 165
fork...join . 166

fork...join . 166
fork...join_none . 166
Limitations on fork...join_any . 168

wait fork . 169
disable fork . 169

11
Tasks and Functions . 173

Multiple Statements in Tasks and Functions . 173
Function Output Arguments . 173

SystemVerilog Reference

July 2010 8 Product Version 9.2

Default Direction in Task and Function Declarations . 174
Void Functions . 175
Discarding Function Return Values . 175
Passing Task and Function Arguments by Reference . 175

Limitations on Passing Task and Function Arguments by Reference 177
Specifying Default Argument Values for Tasks and Functions . 179
Passing Task and Function Arguments by Name . 179
Optional Arguments for Tasks and Functions . 180
File I/O System Tasks/Functions and SystemVerilog . 181

12
Random Constraints . 183

Random Variables . 183
Limitations on Random Variables . 185

Constraint Blocks . 186
Limitations on Constraint Blocks . 187
External Constraint Blocks . 187
Inheritance . 187
Set Membership . 187
Distribution . 188
Implication . 190
if...else Constraints . 190
Iterative Constraints . 191
Global Constraints . 192
solve...before Constraints . 192
Static Constraint Blocks . 193
Functions in Constraints . 193

Randomization Methods . 194
The randomize() Method . 194
pre_randomize() and post_randomize() . 195

In-Line Constraints (randomize() with) . 195
Activating and Inactivating Random Variables with rand_mode() 195

Limitations on rand_mode() . 196
Activating and Inactivating Constraints with constraint_mode() 196
In-Line Random Variable Control . 197

SystemVerilog Reference

July 2010 9 Product Version 9.2

Randomizing Scope Variables (std::randomize()) . 198
Specifying Constraints . 200
Limitations on In-Line Scope Randomization Constraints . 202

Random Number System Functions and Methods . 202
The $urandom Function . 202
The $urandom_range Function . 203
The srandom() Method . 204
Additional System Functions and Methods . 204

Random Stability . 205
Random Weighted Case (randcase) . 205
Random Sequence Generator (randsequence) . 206

Declaring a randsequence Block . 206
if...else Production Statements . 207
Case Production Statements . 207
Repeat Production Statements . 208
Limitations on randsequence Blocks . 209

Debugging Random Constraints . 209

13
Interprocess Synchronization and Communication 211

Semaphores . 211
Limitations on Semaphores . 213

Mailboxes . 214
Mailbox Methods . 215
Limitations on Mailboxes . 219

Events . 220
Non-Blocking Event Trigger . 221
Persistent Trigger . 222

Event Variables . 223

14
Clocking Blocks . 225

Declaring a Clocking Block . 225
Types of Clocking Items . 227

Defining Default Skews and Clocking Direction . 228

SystemVerilog Reference

July 2010 10 Product Version 9.2

Defining Clocking Items . 229
Using Hierarchical Expressions . 230
Defining Default Clocking Blocks . 231
Specifying Cycle Delays and Clocking Drives . 231
Debugging Clocking Blocks . 233

15
Program Blocks . 235

Declaring a Program Block . 235
Supported Constructs for Program Blocks . 235
Unsupported Constructs . 236
Nesting Program Blocks . 237

Working with Variable Assignments . 237
Referencing Program Block Variables . 238
Instantiating Program Blocks . 238
New Program Design Unit . 239
Understanding the $exit() Control Task . 239

16
Assertions . 243

Immediate Assertions . 243
Concurrent Assertions . 243

17
Hierarchy. 245

Packages . 245
Declaring a Package . 247
Referencing Data in a Package . 247
Controlling Visibility of Names within Packages: The import Statement 248
Debugging Packages . 251

Compilation Units . 252
Supported External Declarations . 253
Explicitly Referencing External Declarations . 254
Limitations on Compilation Units . 254

SystemVerilog Reference

July 2010 11 Product Version 9.2

Port Declarations . 254
Declarations of Input and Output Ports . 256
Port connections . 260

18
Interfaces . 263

Declaring an Interface . 265
Creating Design Units . 267
Using the Interface as a Module Port . 267
Limitations on Interfaces . 268
Interface Array Ports . 269

Supported Uses for Interface Array Ports . 269
Using Arrays of Interfaces in Interface Array Ports . 270
Limitations on Interface Array Ports . 272

Referencing an Interface . 272
Working with Modports . 273

Defining a Modport . 275
Selecting Which Modport to Use . 275
Limitations on modports . 276

Declaring Tasks and Functions in Interfaces . 277
Virtual Interfaces . 277

Syntax and Usage . 278
Virtual Interface Support . 278
Limitations on Virtual Interfaces . 282

Working with Interfaces and Timing . 282

19
System Functions. 283

Out-of-Module Reference ($root) . 283
Expression Size System Function ($bits) . 283
$sformatf and $psprintf . 285

Limitations on $sformatf . 286
Sampled Value Functions in Procedural Blocks . 286

$rose and $fell Sampled Value Functions . 286
$past Sampled Value Function . 287

SystemVerilog Reference

July 2010 12 Product Version 9.2

$sampled Sampled Value Function . 287
$stable Sampled Value Function . 288
Arguments to Sampled Value Functions . 288
Clocking Events for Sampled Value Functions . 288
Sampled Value Function Example . 289

Assertion System Functions . 290

20
Compiler Directives. 293

`define . 293
`begin_keywords and `end_keywords . 294

Limitations on ‘begin_keywords and ‘end_keywords . 295
Reserved Keywords for IEEE 1800 . 297

`remove_keyword and `restore_keyword . 299
ncvlog -rmkeyword . 299
`remove_keyword and `restore_keyword Compiler Directives 300
Limitations on Remove and Restore Keywords . 300

21
Direct Programming Interface . 303

Importing Functions and Tasks using DPI . 303
pure and context Properties . 304
Importing C Functions and Tasks . 305
Importing SystemC Functions and Tasks . 309
Generating a Header File for Imported Functions and Tasks 312

Exporting SystemVerilog Functions and Tasks using DPI . 313
Exporting Functions and Tasks to C . 313
Exporting SystemVerilog Functions and Tasks to SystemC 317

Using typedef with SystemC Data Types . 319
Tasks That Consume Time . 321
Using DPI with the Simulator . 322

Using the irun Utility with DPI . 323
Using the Incisive Simulator with DPI . 325

Disabling DPI Tasks and Functions . 329
Debugging DPI Import and Export Functions . 330

SystemVerilog Reference

July 2010 13 Product Version 9.2

DPI Accessor Functions . 330
DPI Examples . 332

Using DPI with C . 333
Using DPI with SystemC . 335
Using scSetScopeByName in SystemVerilog . 336
Unpacked Structs as Formal Arguments to DPI-C Import Functions 337
Unpacked Structs as Formal Arguments to DPI-SC Import Functions 339

Index. 341

SystemVerilog Reference

July 2010 14 Product Version 9.2

SystemVerilog Reference

July 2010 15 Product Version 9.2

1
Overview of SystemVerilog

The IEEE 1800 standard for SystemVerilog describes a large set of extensions to the existing
IEEE Verilog-2001 standard. This set of enhancements provides new capabilities for
modeling hardware at the RTL and system level, along with a powerful set of new features for
verifying model functionality.

This reference guide tells you how to enable the SystemVerilog constructs, and describes the
constructs in the IEEE 1800 standard that are supported by the simulator. For information
about the simulator, refer to the Verilog Simulation User Guide.

Availability of Constructs within Simulators

Cadence offers several simulators. All of the features described in this book are supported
within the Incisive Enterprise Simulator - XL (IES-XL). However, some of the constructs
described in this document are not available with the Incisive Enterprise Simulator - L (IES-
L). These constructs include classes, semaphores, program blocks, and clocking blocks.

SystemVerilog in Simulation

For information about how to simulate a design that contains SystemVerilog constructs,
including information about how to view and debug SystemVerilog constructs using Tcl or the
Cadence® Simulation Analysis Environment (SimVision), refer to SystemVerilog in
Simulation.

SystemVerilog VPI Extensions

Because the SystemVerilog VPI standard is still evolving, Cadence does not support
SystemVerilog VPI extensions in the current release.

Existing user and third-party PLI and VPI applications that already work for designs without
SystemVerilog language extensions will continue to work on those designs. However, these
existing applications might fail if applied to designs that contain SystemVerilog constructs.

../svsim/svsimTOC.html#firstpage
../svsim/svsimTOC.html#firstpage

SystemVerilog Reference
Overview of SystemVerilog

July 2010 16 Product Version 9.2

SystemVerilog Assertions

Note: SystemVerilog assertions are available only if you have an Incisive license.

Support for SystemVerilog assertions is documented in the Assertion Writing Guide and
the SVA Quick Reference.

SystemVerilog Coverage

Note: SystemVerilog coverage is available only if you have an Incisive license.

Support for SystemVerilog coverage is documented in the “Functional Coverage” chapter of
the ICC User Guide.

SystemVerilog with AMS

You can simulate a design that contains both AMS and SystemVerilog code, but with the
following limitations:

■ If an AMS scope is instantiated inside a SystemVerilog scope, it cannot have any non-
digital ports.

■ If a SystemVerilog scope is instantiated inside an AMS scope, it cannot have non-digital
objects connected to its ports.

You can use the multi-step invocation mode (ncvlog, ncelab, ncsim) to simulate mixed AMS/
SystemVerilog designs by using separate invocations of ncvlog with the appropriate option,
then compiling the SystemVerilog and AMS portions of the design.

SystemVerilog Examples

This document contains small examples for each of the supported SystemVerilog constructs.
For complete examples, refer to the following:

■ SystemVerilog Engineering Notebook—Examples of various SystemVerilog
constructs. You can download the examples and run them using the simulator.

■ SystemVerilog DPI Engineering Notebook—Examples of SystemVerilog DPI. You
can download the examples and run them using the simulator.

■ Examples Reference Guide—Lists the examples located within your installation.

SystemVerilog Reference
Overview of SystemVerilog

July 2010 17 Product Version 9.2

Language Support

This document uses the following terms:

■ Verilog or Verilog-2001—Refers to the IEEE Std. 1364-2001 standard for the Verilog
Hardware Description Language

■ IEEE 1800—Refers to the IEEE 1800 Standard for SystemVerilog: Unified Hardware
Design, Specification and Verification Language.

Getting Help

This section describes:

■ About Online Help on page 17

■ Getting Help on Commands to Run Tools on page 19

■ Getting Help on Tool Messages on page 19

■ Other Documentation on page 20

About Online Help

Documentation for SystemVerilog is provided in HTML and in PDF format.

The online documentation system consists of

■ The Cadence documentation window

This window lets you find and open any of the books shipped with the products that you
ordered. You can list books by product name, by product family, or by document type. For
example, you can list all manuals, all Product Notes documents, or all Known Problems
and Solutions documents. When you select a document, it is opened in your Web
browser. The system automatically starts the browser, if necessary.

■ Manuals in HTML format

Each HTML document has both hyperlinked cross-references and a toolbar with buttons
that let you navigate through the documentation system. Using the buttons on the
toolbar, you can redisplay the documentation window, move forward and backward
through chapters, display the Table of Contents, open a PDF file for printing, or open the
search page. You can also send an e-mail directly to Cadence publications with
comments about the document that you are viewing.

SystemVerilog Reference
Overview of SystemVerilog

July 2010 18 Product Version 9.2

■ A PDF (Portable Document Format) file for each document, so you can print the entire
document or sections of a document.

■ A powerful search tool that lets you search for information in documents for a product
family or for specific products. You can also search individual documents.

Click the Help button on the toolbar of any document to open the Cadence Documentation
User Guide, which contains a complete description of how to use the online documentation
system.

Invoking the Documentation System

There are two ways to open the online help for the simulator:

■ From the Cadence documentation window.

To invoke the Cadence documentation window on UNIX or Linux, use the Cadence Help
command.

% cdnshelp

On the Cadence documentation window, click on a category name to show the
documents in that category. Then double-click a manual title to load that manual into your
web browser.

■ From the Help menu on the graphical user interface.

If you are using a graphical user interface, such as NCLaunch or the SimVision analysis
environment, pull down the Help menu and select the name of the online manual that
you want to view. For example, if you are simulating a Verilog design, select Verilog
Simulation User Guide to open the online help for the simulator.

Help can also be accessed from forms on the graphical interface. Click on the Help
button on the bottom right of the form to get online help.

To open the Cadence documentation window, click the Library button at the top of any
document displayed in the browser.

Printing Documents From the Online Documentation System

The View/Print PDF button opens a PDF file in Adobe Acrobat® Reader. You can print the
entire document or print a section of the document by specifying a range of page numbers.

A hyperlinked list of contents (a “bookmark” list) is available for navigating the print document
online. Hyperlinked cross-references in the HTML version are reformatted to include page

SystemVerilog Reference
Overview of SystemVerilog

July 2010 19 Product Version 9.2

numbers in the printed copy, so that you can find the referenced page easily when reading
the printed version.

Searching Documents

The built-in search mechanism lets you search various groupings of books or individual
books. You can:

■ Search all installed documents.

■ Search all documents for specific products or product families.

■ Search one or more specific books.

The Search tool lets you perform many different types of full-text search queries. You can
search for text phrases or exact words, use Boolean AND, OR, and NOT operators, use
special operators such as CASE (for case-sensitive searches) or NEAR (to search for words
near each other), or use wildcard characters for substitution.

Getting Help on Commands to Run Tools

You can display a list of options for any of the simulator tools and utilities by typing the tool or
utility name followed by the -help option.

The -help option displays a list of the command options for the specified tool with a brief
description of each option.

Syntax:

% tool_name -help

Examples:

% ncvlog -help

% ncvhdl -help

% ncelab -help

% ncsim -help

% ncupdate -help

Getting Help on Tool Messages

Use the nchelp utility to display extended help on the brief messages generated by the
compiler, elaborator, and simulator.

SystemVerilog Reference
Overview of SystemVerilog

July 2010 20 Product Version 9.2

Syntax:

% nchelp [options] tool_name message_code

You can enter the message_code argument in lowercase or uppercase.

Examples:

% nchelp ncvlog BADCLP

% nchelp ncvlog badclp

% nchelp ncelab cuvwsp

% nchelp ncsim NOSNAP

Other Documentation

A wealth of other documentation related to Cadence products is available on the Cadence
Online Support website, a technical support service for Cadence software users. The service
is available to all customers who have a software support services agreement. Cadence
Online Support contains product information, datasheets, information about what’s new in the
latest release, application notes, white papers, information about Cadence services, such as
training, customer support, and methodology services, and so on.

http://support.cadence.com

Customer Support

There are several ways that you can get help with your Cadence product:

■ Customer support

Cadence is committed to keeping your design teams productive by providing answers to
technical questions, the latest software updates, and education services to keep your
skills updated. For information about Cadence support, go to the following web site:

http://www.cadence.com/support

■ Cadence Online Support

Customers with a maintenance contract with Cadence can obtain current information
about the tools at the following web site:

http://support.cadence.com

http://www.cadence.com/support
http://support.cadence.com
http://support.cadence.com

SystemVerilog Reference
Overview of SystemVerilog

July 2010 21 Product Version 9.2

■ Feedback about documentation

Contact Cadence Customer Support to file a CCR if you find:

❑ An error in the manual

❑ An omission of information in a manual

❑ A problem using the Cadence Help documentation system

SystemVerilog Reference
Overview of SystemVerilog

July 2010 22 Product Version 9.2

SystemVerilog Reference

July 2010 23 Product Version 9.2

2
Compiling SystemVerilog Constructs

This section describes the ways you can compile a SystemVerilog design using the simulator.

Using ncvlog

To compile a design that contains SystemVerilog constructs, use the -sv option with ncvlog:

% ncvlog -sv systemverilog_source_files

Note: SystemVerilog has added many new keywords. Therefore, Verilog legacy code that
uses SystemVerilog keywords as identifiers will not compile if you use the -sv switch. In
these cases, you can either

■ Specify the set of reserved keywords in effect, using the SystemVerilog
`begin_keywords and `end_keywords compiler directives

■ Remove and restore specific keywords, using the compiler ncvlog -rmkeyword
command-line option, or the Cadence `remove_keyword and `restore_keyword
compiler directives

Refer to “`begin_keywords and `end_keywords” on page 292 and “`remove_keyword and
`restore_keyword” on page 297 for more information.

See the Verilog Simulation User Guide for details about simulating Verilog designs.

Using the irun Utility

You can use the irun utility to run the simulator by specifying all input files and all command-
line options on a single command line. The irun utility determines the language of a file by its
extension, then maps the file to its appropriate compiler. For example:

% irun -linedebug -access rwc -gui vlogfile1.v vlogfile2.v systemv1.sv systemv2.sv

In this example, irun will compile the .v files using ncvlog and the .sv files using ncvlog
-sv. After the input files have been compiled, irun automatically invokes ncelab to elaborate
the design. In the example command line, the -access option is passed to the elaborator to

SystemVerilog Reference
Compiling SystemVerilog Constructs

July 2010 24 Product Version 9.2

provide read access to simulation objects. After the elaborator has generated a simulation
snapshot, ncsim is invoked with SimVision.

For each file type, there is a command-line option that you can use to change, or add to, the
list of defined file extensions. For example, the default extensions for SystemVerilog files are
.sv, .svp, .SV, and .SVP. You can add .mysv to the list of SystemVerilog file extensions by
using the -sysv_ext option. For example:

irun top.sv dut.v test.mysv -sysv_ext .sv, .svp, .SV, .SVP, .mysv

When you use an extension option, the built-in defaults are removed, and you must specify
all of the different extensions to be recognized.

Note: Compiling files using the irun utility is an alternative to using the `begin_keywords
and `end_keywords directives when you want to distinguish Verilog files from SystemVerilog
files. However, this utility does not automatically support files that contain a mixture of Verilog
and SystemVerilog. For those cases, you can use the `begin_keywords and
`end_keywords compiler directives within the .sv file, and compile the file using irun.

For more information about irun, refer to the irun User Guide. For information about using
the irun utility with DPI, refer to “Using the irun Utility with DPI” on page 321.

SystemVerilog and the PLI tf_nodeinfo() Interface

The PLI tf_nodeinfo() interface is not compatible with SystemVerilog designs. Therefore,
you cannot compile SystemVerilog designs with the -nomempack option, or elaborate
SystemVerilog designs with the -arr_access option.

For more information about these options, refer to the Verilog Simulation User Guide.

SystemVerilog Reference

July 2010 25 Product Version 9.2

3
List of Supported Constructs

Table 3-1 on page 25 lists the SystemVerilog constructs that are supported in the current
release. This table summarizes the supported constructs, with a reference to the relevant
section numbers in the IEEE 1800-2005 standard. Refer to the construct’s relevant section
within this book for information about what the current release supports, and any limitations
that might apply.

Note: The section numbers shown in this table are the section numbers where most of the
information in the LRM can be found. In many cases, a section can contain information related
to more than one construct, and information related to a particular construct can be in more
than one section.

Table 3-1 SystemVerilog Constructs Supported in the Current Release

IEEE 1800 Section SystemVerilog Construct

3.3 Literal Value Assignments on page 31

3.5 and 10.3 (for time units)

19.10 (for timeunit and
timeprecision)

Time Unit and Time Precision on page 33

4 Data Types Overview on page 37

■ const

■ logic, bit

■ byte, shortint, int, longint

4.2 uwire Nets on page 77

4.6 Chandle Data Type on page 43

4.7 Strings on page 43

4.9 typedef Declaration on page 56

4.10 enum Data Type on page 60

SystemVerilog Reference
List of Supported Constructs

July 2010 26 Product Version 9.2

4.11 Structures on page 67

Unions on page 73

4.14 Static Casting on page 78

5 Arrays on page 83

5.2 Packed and Unpacked Arrays on page 84

5.5 Array Querying Functions on page 87

5.6 Dynamic Arrays on page 89

5.9 Associative Arrays on page 99

5.14 Queues on page 105

5.15.1 Array Manipulation Methods on page 114

6.6 Declaring Local Variables in Unnamed Blocks on page 126

6.7 and 11.5 Continuous Assignments to Variables on page 127

7 Classes on page 131

Classes are supported within the Incisive Enterprise
Simulator - XL (IES-XL). However, classes are not available
with the Incisive Enterprise Simulator - L (IES-L).

8 Operators and Expressions on page 147

8.2 Increment and decrement operators

8.3 Assignment Operators on page 148

8.5 Wild Equality and Wild Inequality Operators on page 148

8.13 Assignment Patterns on page 150

8.15 Aggregate Expressions on page 153

8.19 Set Membership Operator on page 149

10.10 iff event control qualifier

10.4 Unique and Priority Decision Statements on page 155

unique if, unique case
priority if, priority case

10.5.1 do...while Loop on page 158

Table 3-1 SystemVerilog Constructs Supported in the Current Release, continued

IEEE 1800 Section SystemVerilog Construct

SystemVerilog Reference
List of Supported Constructs

July 2010 27 Product Version 9.2

10.5.2 for Loop on page 158

10.5.3 foreach Loop on page 159

10.6 return, break, and continue Jump Statements
on page 162

10.7 final Blocks on page 163

11.2, 11.3, and 11.4 always_* Blocks on page 163

11.6 fork...join on page 164

11.8.2 disable fork on page 167

11.8.1 wait fork on page 167

12.2 and 12.3 Multiple Statements in Tasks and Functions on page 171

12.3 Default Direction in Task and Function Declarations on
page 172

12.3.2 Discarding Function Return Values

12.3 Function Output Arguments on page 171

function func(input integer a, input integer b,
output integer x, output integer y);

12.3.1 Void Functions on page 173

function void myprint (integer a);

12.4.5 Optional Arguments for Tasks and Functions on page 178

12.4.4 Passing Task and Function Arguments by Name on
page 177

12.4.2 Passing Task and Function Arguments by Reference on
page 173

12.4.3 Specifying Default Argument Values for Tasks and Functions
on page 177

13 Random Constraints on page 181

13.3 Random Variables on page 181

13.4 Constraint Blocks on page 184

13.5 Randomization Methods on page 192

Table 3-1 SystemVerilog Constructs Supported in the Current Release, continued

IEEE 1800 Section SystemVerilog Construct

SystemVerilog Reference
List of Supported Constructs

July 2010 28 Product Version 9.2

13.6 In-Line Constraints (randomize() with) on page 193

13.7 Activating and Inactivating Random Variables with
rand_mode() on page 193

13.8 Activating and Inactivating Constraints with
constraint_mode() on page 194

13.10 In-Line Random Variable Control on page 195

13.11 Randomizing Scope Variables (std::randomize()) on
page 196

13.12 Random Number System Functions and Methods on
page 200

13.13 Random Stability on page 203

13.15 Random Weighted Case (randcase) on page 203

13.16 Random Sequence Generator (randsequence) on page 204

14.2 Semaphores on page 209

Semaphores are supported within the Incisive Enterprise
Simulator - XL (IES-XL). However, semaphores are not
available with the Incisive Enterprise Simulator - L (IES-L).

14.3 Mailboxes on page 212

Mailboxes are supported within the Incisive Enterprise
Simulator - XL (IES-XL). However, mailboxes are not
available with the Incisive Enterprise Simulator - L (IES-L).

14.5.2 Non-Blocking Event Trigger on page 219

14.5.4 Persistent Trigger on page 220

14.7 Event Variables on page 221

15 Clocking Blocks on page 223

Clocking blocks are supported within the Incisive Enterprise
Simulator - XL (IES-XL). However, clocking blocks are not
available with the Incisive Enterprise Simulator - L (IES-L).

Table 3-1 SystemVerilog Constructs Supported in the Current Release, continued

IEEE 1800 Section SystemVerilog Construct

SystemVerilog Reference
List of Supported Constructs

July 2010 29 Product Version 9.2

16 Program Blocks on page 233

Program blocks are supported within the Incisive Enterprise
Simulator - XL (IES-XL). However, program blocks are not
available with the Incisive Enterprise Simulator - L (IES-L).

17 SystemVerilog Assertions

Support for SystemVerilog assertions is documented in the
Assertion Writing Guide and the SVA Quick Reference.

Note: SystemVerilog assertions are available only if you
have an Incisive license.

18 SystemVerilog Coverage

Support for SystemVerilog coverage is documented in the
“Functional Coverage” chapter of the ICC User Guide.

Note: SystemVerilog coverage is available only if you have
an Incisive license.

19 Hierarchy on page 243

■ Packages

■ Port declarations

■ Compilation units

19.11.3 .name Implicit Port Connection on page 34

19.11.4 Dot Star (.*) Implicit Port Connection on page 35

19.4 Out-of-Module Reference ($root) on page 281

20 Interfaces on page 261

22.4 Expression Size System Function ($bits) on page 281

23.2 `define on page 291

23.4 `begin_keywords and `end_keywords on page 292

26 Direct Programming Interface on page 301

Table 3-1 SystemVerilog Constructs Supported in the Current Release, continued

IEEE 1800 Section SystemVerilog Construct

SystemVerilog Reference
List of Supported Constructs

July 2010 30 Product Version 9.2

10.8
(for begin...end and
fork...join)

12.2 (for tasks)

12.3 (for functions)

7.2 (for classes)

15.2 (for clocking blocks)

16.2 (for program blocks)

19.2 (for packages)

19.5 (for modules)

20.2 (for interfaces)

Matching End Names on page 31

For example:

begin: blockA

...

end: blockA

Not applicable

(This is a Cadence
extension)

`remove_keyword and `restore_keyword on page 297

Table 3-1 SystemVerilog Constructs Supported in the Current Release, continued

IEEE 1800 Section SystemVerilog Construct

SystemVerilog Reference

July 2010 31 Product Version 9.2

4
Convenience Enhancements

Convenience enhancements are constructs that help make it easier to model in Verilog.

Literal Value Assignments

SystemVerilog lets you specify unsized literal single-bit values with a preceding apostrophe
('), but without the base specifier. This enhancement lets you fill a vector of any width with any
logic value, without having to specify the vector size of the literal value. All bits of the vector
on the left-hand side of the assignment are set to the specified value.

■ '0 – Fill all bits with 0

■ '1 – Fill all bits with 1

■ 'Z or 'z – Fill all bits with Z

■ 'X or 'x – Fill all bits with X

For example:

reg [127:0] data;

data = ’1; // Sets all bits of data to 1
data = ’z; // Sets all bits of data to Z
data = ’X; // Sets all bits of data to X

Matching End Names

SystemVerilog lets you specify a matching ending name for named blocks of code. This
feature helps make the code more readable and easier to maintain.

The end name is preceded by a colon, and the specified name must be exactly the same as
the name with which it is paired. A warning message is issued if the names are different.

You can specify a matching end name after the following keywords:

■ end

SystemVerilog Reference
Convenience Enhancements

July 2010 32 Product Version 9.2

begin : block_identifier
...
end : block_identifier

■ join

fork : block_identifier
...
join : block_identifier

■ endtask

task task_identifier
...
endtask : task_identifier

■ endfunction

function function_identifier
...
endfunction : function_identifier

■ endclass

class class_identifier
...
endclass : class_identifier

■ endclocking

clocking clocking_identifier
. . .
endclocking: clocking_identifier

■ endprogram

program program_identifier
. . .
endprogram: program_identifier

■ endpackage

package package_identifier
. . .
endpackage: package_identifier

■ endmodule

module module_identifier
...
endmodule : module_identifier

■ endinterface

interface interface_identifier
...
endinterface : interface_identifier

SystemVerilog Reference
Convenience Enhancements

July 2010 33 Product Version 9.2

Time Unit and Time Precision

In Verilog-2001, time values are specified with a number without a time unit. For example,

initial
#5 clock = 1;

always
#50 clock = ~clock;

The time unit and time precision can be specified with the `timescale compiler directive.
You can specify this directive in one or more files, and you can specify directives with different
time unit and time precision values for different modules in the design. When the source files
are compiled and a `timescale directive is encountered, that directive remains in effect
until another `timescale directive is encountered. Therefore, the time units and time
precision that are used for a source file without a ̀ timescale directive depend on the order
in which the source files are compiled, which can cause simulation results to vary for different
simulation runs.

SystemVerilog provides two enhancements to control the specification of time units for time
values, which remove ambiguity and the file order dependency problem associated with the
`timescale directive.

■ A time unit can be specified with a time value.

The time unit can be s, ms, us, ns, ps, or fs. There can be no whitespace between the
time value and the time unit. For example:

0.1ns
40ps
#10ns clock = ~clock;
r = <= #1ns a;

Note: The SystemVerilog LRM states that the time unit can also be step. This is not
supported in the current release.

■ Time units and time precision can be specified within a module with the keywords
timeunit and timeprecision.

As with the `timescale directive, the units that can be specified with the timeunit
and timeprecision keywords are s, ms, us, ns, ps, or fs, and the units can be
specified in multiples of 1, 10, or 100. There can be no whitespace between the time
value and the time unit.

These declarations can be specified within a module, package, or interface. The
declarations must appear immediately after the module, package, or interface
declaration. For example:

module test #(parameter MSB = 3, LSB = 0)
(output reg [MSB:LSB] x,

SystemVerilog Reference
Convenience Enhancements

July 2010 34 Product Version 9.2

input wire [MSB:LSB] a,
input wire [7:0] b,
input wire enable);

timeunit 1ns;
timeprecision 10ps;

initial
begin

$display($time,,,"x=%d", x);
#20 $finish;

end

endmodule

The scope of a timeunit or timeprecision declaration is limited to the design unit
in which it is declared. There can be only one time unit and one time precision for the
design unit. The timeunit and/or timeprecision declaration can be repeated as
later items, but the values must match the original values exactly.

In the current release, the time unit and precision for a time value are determined according
to the following search order:

1. Use the time unit specified as part of the time value.

2. Use the time unit and precision specified with the timeunit and timeprecision
keywords.

3. Use the time unit and precision specified with the ̀ timescale compiler directive that is
currently in effect.

4. Use the simulator’s default time unit and precision.

.name Implicit Port Connection

In Verilog-2001, you can instantiate a module using named port connections. The syntax
requires you to specify the port name used in the module declaration, followed by the name
used in the instantiating module. For example:

module top;
wire data, clk, clr, q, qb;

flop u1 (.data(data), .clock(clk), .clear(clr), .q(q), .qb(qb));
...

endmodule

module flop (input data, clock, clear, output q, qb);
...
...

endmodule

SystemVerilog Reference
Convenience Enhancements

July 2010 35 Product Version 9.2

When you connect module instance ports in this way, the width of the port does not have to
match the width of the net or variable connected to the port.

SystemVerilog simplifies this syntax for cases where the name of the port matches the name
of the net or variable connected to the port. If the names match, and if the data types on each
side of the port are compatible, you can specify only the port name. For example, in the code
shown above, the data port is connected to the data net. This connection can be specified
as .data.

Verilog named port connections must be used if the names do not match. Implicit .name port
connections can be combined with named port connections. In the example above, the port
connections can be written as follows:

flop u1 (.data, .clock(clk), .clear(clr), .q, .qb);

Note: The SystemVerilog LRM specifies that the size of the port must match the size of the
net or variable connected to the port. In the Cadence implementation, this restriction is not
imposed, but a warning is issued if the size of the net or variable does not match the size of
the port.

As in Verilog-2001, you cannot mix positional port connections and named port connections
in a module instantiation.

Dot Star (.*) Implicit Port Connection

In addition to using .name implicit port connections in the port list of a module instantiation
(see “.name Implicit Port Connection” on page 34), SystemVerilog also provides the .*
construct to further simplify the syntax for connecting ports by name.

The .* implicit port connection is used in the port list of a module instantiation as a shorthand
for named port connections. Each unconnected port in the module definition is connected to
a variable, wire, or interface with the same name declared in the instantiating module.

As with .name implicit port connections, the name of the port must match the name of the net
or variable connected to the port, and the data types connected together must be compatible.
Verilog-2001 named port connections must be used for any connections that cannot be
inferred by .*.

Note: The SystemVerilog LRM specifies that the size of the port must match the size of the
net or variable connected to the port. In the Cadence implementation, this restriction is not
imposed, but a warning is issued if the size of the net or variable does not match the size of
the port.

Note: In the current release, the following restrictions apply to the use of .* implicit port
connections:

SystemVerilog Reference
Convenience Enhancements

July 2010 36 Product Version 9.2

■ .* cannot be used inside a generate block.

■ .* can be used only in the instantiation of a Verilog or SystemVerilog module or interface.
For example, the construct cannot be used in the instantiation of an analog block, a
VHDL block, or a SystemC® block.

The following example uses the .* syntax in the module instantiation:

module top;
wire data, clk, clr, q, qb;

flop u1 (.*, .clock(clk), .clear(clr));
...

endmodule

module flop (input data, clock, clear, output q, qb);
...
...

endmodule

You can use only one .* token in the port list. When the implicit .* port connection is mixed
with named port connections, as in the example shown above, or with .name implicit port
connections, you can place the .* token anywhere in the port list.

As in Verilog-2001, you cannot mix positional port connections with named port connections
in a module instantiation.

SystemVerilog Reference

July 2010 37 Product Version 9.2

5
Data Types

Data Types Overview

In Verilog-2001, all logic values manipulated during simulation are 4-state. That is, the logic
values in the simulation belong to the set 0, 1, X (unknown), and Z (high impedance). The
logic value represented by a variable or net always belongs to this set of four values at any
time.

Verilog 2001 defines the following data types for storing integers:

SystemVerilog introduces one new 4-state data type (logic) and several 2-state data types.
In the current release, the following 4-state and 2-state data types have been implemented:

Data type Description Default

reg 4-state, user-defined vector size unsigned

integer 32-bit 4-state integer signed

time 64-bit 4-state integer unsigned

Data type Description Default

logic 1-bit 4-state integer, user-defined vector size

See “logic Data Type” on page 40.

unsigned

bit 1-bit 2-state integer, user-defined vector size

See “bit Data Type” on page 41.

unsigned

byte 8-bit 2-state integer or ASCII character

See “byte, shortint, int, and longint Data Types” on
page 42.

signed

SystemVerilog Reference
Data Types

July 2010 38 Product Version 9.2

Overview of Verilog Data Types

Verilog data objects have two attributes:

■ The kind of the object (parameter, variable, or net)

The object kind indicates what you can do with the object. For example, only parameters
can be modified with defparam statements, and only variables can be assigned by
procedural assignments.

Note: The simulator supports the defparam statement only for parameters and
defparam expressions that are legal in Verilog. The defparam statement is not
supported for SystemVerilog data types.

■ The data type of the object (integer, real, scalar bit, bit vector, and so on)

The data type of an object indicates the values that the object can take. For example, an
object of type real can take the value 3.14, while an object of a bit vector type can take
the value 4’b0xz1.

These two object attributes are largely orthogonal. For example, a net can be of almost any
data type, and a bit vector can be the data type of almost any kind of object.

A data type is a set of values. The Verilog data types fall into two groups:

■ Primitive Data Types, whose values cannot be defined in terms of other values or data
types.

■ User-Defined Data Types, whose values are constructed from other values or data types.

Primitive Data Types

Verilog data types include a small number of primitive data types that serve as a basis for
the value system. The values of a primitive data type cannot be defined in terms of other
values or data types.

shortint 16-bit 2-state integer signed

int 32-bit 2-state integer signed

longint 64-bit 2-state integer signed

Data type Description Default

SystemVerilog Reference
Data Types

July 2010 39 Product Version 9.2

Verilog-2001 has two primitive data types: a 4-state bit type, and a real type. SystemVerilog
introduces a name, logic, for the existing 4-state data type. SystemVerilog also introduces
a 2-state bit type called bit. The extended language has three primitive data types: logic,
bit, and real. These primitive data type names are all reserved words.

The following variable declarations use the primitive data type names:

real realvar; // A real-valued variable

logic logicvar; // A 4-state variable

bit bitvar; // A 2-state variable

See “logic Data Type” on page 40 for details about the logic data type. See “bit Data Type”
on page 41 for details about the bit data type.

User-Defined Data Types

In addition to primitive data types, the data type system includes data types that have values
constructed from other values. These data types are called user-defined data types
because you must describe how the values are constructed. For example, a Verilog bit vector
is a user-defined data type because you must include a range to indicate the number of bits
and how to index the vector.

You can describe the characteristics of a user-defined data type directly in an object
declaration. For example, the following declarations define two 8-bit-wide 4-state variables
called byte_var1 and byte_var2:

logic [7:0] byte_var1;
logic [7:0] byte_var2;

SystemVerilog enhances the language by introducing the typedef declaration, which you
can also use to describe the characteristics of a user-defined data type. A typedef
declaration gives the data type a name that you can use in other declarations. The following
example shows how to define the same two variables using a typedef declaration:

typedef logic [7:0] bits8; // The name of this data type is bits8
bits8 byte_var1;
bits8 byte_var2;

See “typedef Declaration” on page 56 for details about the typedef declaration.

Some user-defined data types are so common that they have been given special predefined
status in the language. Their names are reserved words, and you can use them without
specifying the construction of their values. The Verilog-2001 predefined data types are
integer, time, and realtime. The integer data type represents a 4-state 32-bit signed
integer. SystemVerilog introduces new predefined data types, byte, shortint, int, and
longint to represent 2-state signed integers of 8, 16, 32, and 64 bits, respectively. See

SystemVerilog Reference
Data Types

July 2010 40 Product Version 9.2

“byte, shortint, int, and longint Data Types” on page 42 for more information about these new
data types.

logic Data Type

In Verilog-2001, all logic values manipulated during simulation are 4-state. That is, the logic
values in the simulation belong to the set 0, 1, X (unknown), and Z (high impedance). The
logic value represented by a variable or net always belongs to this set of four values at any
time.

SystemVerilog gives this 4-state data type a name: logic. This keyword is simply the name
of the 4-state bit type; it does not imply an object kind. The logic keyword can be used in
any context in which a data type is allowed when you want to declare a 4-state object. For
example, logic is used to explicitly state the data type in the following parameter, variable,
and net declarations:

parameter logic p = 1’b0; // 1-bit wide 4-state parameter
logic v; // 1-bit wide 4-state variable
logic [63:0] v2; // 64-bit wide 4-state variable
wire logic w; // 1-bit wide 4-state net

These declarations are equivalent to the following Verilog-2001 declarations:

parameter p = 1’b0;
reg v;
reg [63:0] v;
wire w;

You can also use the logic data type on ports. Output ports that are declared as a logic
data type are considered variables by default. In the following example, the answer port is
declared as a logic data type, and is considered a variable by default.

module mymod(result, one, two);
output logic result;
input wire one;
input wire two;

assign result = one & two;
endmodule

Note: When you use the logic data type on an output port, a variable is added to its
connections. The added variables are then subject to continuous assignments. The
continuous assignments for these added variables can affect optimization, and can cause
performance degradation, depending on the number of levels in your design, and the number
of continuous assignments. To prevent the addition of variables to a port’s connections, you
can declare the port to also be a wire. For example:

...
output wire logic inputA;
...

SystemVerilog Reference
Data Types

July 2010 41 Product Version 9.2

Refer to “Continuous Assignments to Variables” on page 127 for more information about
continuous assignments.

logic and reg Data Types

In Verilog-2001, the reg keyword is special, in that it implies both a data type (4-state logic)
and an object kind (variable). Unlike other keywords that imply data type, such as integer,
reg cannot be used to declare a parameter or a net.

In SystemVerilog, reg is a data type with the same semantics as logic. Both keywords
specify that an object is 4-state, without saying anything about what kind of object it is. That
is, reg does not imply that an object is a variable, as opposed to a net or parameter. For
example, the following declarations are supported:

reg [31:0][7:0] mdv;

typedef reg signed [31:0] myIntT;

struct packed { reg [1:9] m1; reg m2; } packedStructVar;

enum reg [1:0] {high, moderate, low, off} eVar = off;

function reg func(input x);

 ...

endfunction

parameter reg x = 0; // Same as: parameter logic x = 0;

module m(inout reg x); // Module port is a net, not a variable

Note: The IEEE 1800 standard states that the reg keyword cannot immediately follow a net
type keyword, such as wire or tri. The reg keyword can be used in a net or port declaration
if there are lexical elements between the net type and reg keywords. For example:

wire reg x; // Illegal--reg follows net type wire

inout tri reg y; // Illegal--reg follows net type tri

wor scalared reg[3:0] z; // Legal--scalared separates wor and reg

In these cases, use the logic keyword instead of reg.

bit Data Type

SystemVerilog adds support for a 2-state logic data type called bit. This keyword is simply
the name of the 2-state bit type. As with logic, it does not imply an object kind. The bit data
type differs from logic in that bit only stores the 2-state values of 0 and 1.

You can declare parameters and variables to be of type bit. Nets cannot be declared as bit.

SystemVerilog Reference
Data Types

July 2010 42 Product Version 9.2

The bit data type is used in exactly the same way the logic type is used. For example:

parameter bit p = 0; // Parameter p can only be 0 or 1
bit v; // 1-bit wide 2-state variable
bit [63:0] v2; // 64-bit wide 2-state variable

Treatment of 2-state objects varies, depending on the object kind:

■ bit parameters are initialized to the value specified in the parameter declaration. You
can override the initial value in the same way that 4-state parameters are overridden.

■ bit variables are initialized to 0.

■ It is possible to assign an X or a Z to a bit variable; X and Z values are converted to 0.

byte, shortint, int, and longint Data Types

In Verilog-2001, the integer data type is a 32-bit vector of 4-state values that holds signed
integer numbers. The Cadence data type extensions allow integer to be used as a general-
purpose data type. You can use it in any context in which a data type is allowed. For example:

wire integer w; // wire of type integer

input integer p; // input port of type integer

SystemVerilog introduces new 2-state data types for storing integer numbers:

■ byte

A vector of eight 2-state bit values for holding either a signed integer number or a single
ASCII character.

■ shortint

A vector of 16 2-state bit values for holding a signed integer number.

■ int

A vector of 32 2-state bit values for holding a signed integer number.

■ longint

A vector of 64 2-state bit values for holding a signed integer number.

Nets cannot be declared as a 2-state data type.

A variable declared as a 2-state data type is initialized to 0.

When an object declared as a 2-state data type is assigned a value, any X or Z values in the
elements of the new value are converted to 0.

SystemVerilog Reference
Data Types

July 2010 43 Product Version 9.2

The following are some example declarations using the new data types:

int v; // A variable of type int
input int p2; // An input port of type int
parameter int w2 = 289; // A parameter of type int
shortint errors; // A variable of type shortint
parameter longint reset_count = 0; // A parameter of type longint

enum byte {steady, rising, falling} barometer; // An 8-bit 2-state enumeration
// variable

Chandle Data Type

SystemVerilog adds a special chandle data type, which is used to store and pass C or C++
pointers in and out of DPI imported or exported tasks and functions. The syntax for a
chandle declaration is as follows:

chandle variable_name;

where variable_name is a valid identifier. The chandle data types are initialized to the
value null, with a value of zero on the C side.

For example, the following uses chandle data types to pass C pointers as arguments to
imported DPI functions:

import "DPI-C" function chandle func10_dpi_ch (inout chandle hndl);

Note: A chandle pointer cannot be relocated by the simulator, because it points directly into
user memory. When you restart a snapshot, chandle pointers restore the value they had
when the snapshot was last saved. This result might cause unexpected behavior if your DPI
code tries to deference a chandle pointer after a restore operation, because the chandle
pointer might have changed since the last save operation. A warning message is issued when
you try to restore a snapshot that contains chandle pointers.

Note: In the current release, you cannot declare a chandle inside an unpacked structure.

Strings

SystemVerilog introduces a string data type, which represents a variable-length text string.
The syntax for a string data type is as follows:

string string_identifier [= initial_value];

where the initial_value can be a string literal or an empty string “”.

The string data type has the following characteristics:

■ A string literal can be assigned to a string data type.

SystemVerilog Reference
Data Types

July 2010 44 Product Version 9.2

■ The length of the string data type can vary during simulation.

When a string literal is assigned to an integral variable or an unpacked array of bytes of
a different size, the string literal is truncated. The string data type eliminates this
situation—when a value is assigned to a string variable, its length adjusts accordingly.

■ A single character of a string variable is of type byte.

■ The indexes of a string variable are numbered from 0 to N-1, where N is the length of
the string. The 0 corresponds to the first character of the string, and N-1 corresponds to
the last character of the string.

■ If a string literal contains the special “\0” character, this character is ignored.

String Operators

The following table describes the SystemVerilog string operators that are supported in the
current release.

Operator Description

s1 == s2 The equality operator checks whether two strings are equal.

s1 != s2 The inequality operator checks whether two strings are
different.

s1 < s2
s1 <= s2
s1 > s2
s1 >= s2

The comparison operators use the compare() string
method. If the given condition is true, these relational
operators return 1. Both operands can be of type string, or
one of them can be a string literal.

{s1, s2,...,sN} The concatenation operator can take strings or string
literals. If at least one operand is of type string, the
expression evaluates to the concatenated string and is of type
string.

If all operands are string literals, the expression behaves like a
Verilog concatenation of integral types. If the result is then
used in another expression that involves string types, the
expression is converted to type string.

SystemVerilog Reference
Data Types

July 2010 45 Product Version 9.2

String Methods

SystemVerilog provides built-in methods for working with strings. The current release
supports the following string methods:

{multiplier{s1}} The replication operator replicates a string by the number of
times specified by multiplier. The s1 value must be a
string or string literal.

The multiplier must be an integral type, and can be
constant or non-constant:

■ If multiplier is non-constant or s1 is a string type, the
result is a string containing N concatenated copies of s1,
where N is the multiplier.

■ If multiplier is constant and s1 is a literal, the
expression behaves like a numeric replication in Verilog.

If the result is used in another expression involving string
types, it is implicitly converted to a string type.

s1[index] The indexing operator returns the ASCII code for the given
index. If the given index is out of range, the operator returns 0.

Method Syntax Description

len() str.len() Returns the length of the specified string

putc() str.putc(i, c) Replaces the ith character of the string with
the given integral value c

getc() str.getc(i) Returns the ASCII code of the ith character of
the specified string

toupper() str.toupper() Returns the uppercase of the specified string

tolower() str.tolower() Returns the lowercase of the specified string

itoa() str.itoa(i) Stores the ASCII representation of i into the
string

atoi() str.atoi() Returns the integer corresponding to the
ASCII decimal representation in str

Operator Description

SystemVerilog Reference
Data Types

July 2010 46 Product Version 9.2

Example 5-1 Using String Methods and Operators

The following example illustrates the supported string methods and operations.

module top;

// Declares a string data type.
string mystring = "hello world";
string newstring= "he\0llo big world"; // The \0 character will be ignored.
string string_pi = "3.1415";
real real_pi;
int i;

atobin() str.atobin() Returns the binary value corresponding to the
ASCII binary representation in str

atohex() str.atohex() Returns the hexadecimal value corresponding
to the ASCII hexadecimal representation in
str

atooct() str.atooct() Returns the octal value corresponding to the
ASCII octal representation in str

hextoa() str.hextoa(i) Stores the ASCII hexadecimal representation
of the ith character of the specified string

octtoa() str.octtoa(i) Stores the ASCII octal representation of the
ith character of the specified string

bintoa() str.bintoa(i) Stores the ASCII binary representation of the
ith character of the specified string

compare() str.compare(s) Compares str and s

icompare() str.icompare(s) Compares str and s, but the comparison is
case-insensitive

atoreal() str.atoreal() Returns the real number corresponding with
the ASCII decimal representation in str

realtoa() str.realtoa(r) Stores the ASCII real representation of r into
str

substr str.substr(i, j) Returns a new string that is a substring formed
using the characters in positions i and j of
str

If i < 0, j < i, or j >= str.len(), this
method returns an empty string.

Method Syntax Description

SystemVerilog Reference
Data Types

July 2010 47 Product Version 9.2

initial begin
$display ("Value of string is: %s", mystring);
i = mystring.len(); // Returns the length of the string.
$display("%d characters long", i);

// Displays the ASCII code for the given characters.
$display("%s", mystring.getc(0));
$display("%s", mystring.getc(1));
$display("%s", mystring.getc(2));
$display("%s", mystring.getc(3));
$display("%s", mystring.getc(4));

// Changes the string to uppercase
mystring = mystring.toupper();
$display ("My new string in uppercase: %s", mystring);

// Displays the string in lowercase
$display("My new string in lowercase: %s", mystring.tolower());
$display("First string is:%s", mystring);
$display("Second string is:%s", newstring);

// Compares two strings
if (newstring == mystring)
$display("The strings are the same.");

else
$display("These strings are not the same.");

if (newstring != mystring)
$display("Again, they are not the same.");

else
$display("These strings are the same.");

// Uses the indexing operator to replace characters
mystring[0] = "Y";
mystring[5] = "W";
$display("New string %s", mystring);

// substr() method extracts "WORLD" from "YELLOWWORLD"
$display("Short string is %s", mystring.substr(6,10));

// Converts string to a real value
real_pi = string_pi.atoreal();
$display("String pi is %s", string_pi);
$display("Real pi is %f", real_pi);

end

endmodule

This example produces the following output:

Value of string is: hello world
11 characters long
h
e
l
l
o

My new string in uppercase: HELLO WORLD
My new string in lowercase: hello world

SystemVerilog Reference
Data Types

July 2010 48 Product Version 9.2

First string is: HELLO WORLD
Second string is: hello big world

These strings are not the same.
Again, they are not the same.

New string YELLOWWORLD

Short string is WORLD

String pi is 3.1415
Real pi is 3.141500

Strings and System Tasks

The following system tasks have been enhanced so they can accept string variables as
arguments: $display, $write, $strobe, $monitor, $fdisplay, $fwrite, $fstrobe,
$fmonitor, $sscanf, and $fopen.

Using Strings with Classes

The current release supports strings within classes as

■ Default class members (public or automatic)

■ Static, local, or protected class members

■ Local and global constant class members

You can perform the following operations on a string that is a member of a class:

■ Initializing the string within a constructor

■ Passing the string as an argument to an automatic or static function or task that is within
the class. The actual string can be a member of the same class, or can be declared
outside the class.

■ Using the string with any of the supported operators and methods. See “String
Operators” on page 44 and “String Methods” on page 45.

■ Using the string as an argument to system tasks and functions

■ Using the string as the return type for an automatic or static function that is declared
inside the class

■ Using the string with the this and super keywords

■ You can declare a function that returns the string as extern.

SystemVerilog Reference
Data Types

July 2010 49 Product Version 9.2

■ A virtual function can return the string and take the string as an argument.

The following example illustrates how to use strings within a class.

Example 5-2 Using Strings with Classes
module top;
class demo_class;

static string s; // Static class member
string s1;
string s2;
string s3;
function new();

s1 = "first_string"; // Initialized within a constructor
s2 = "second_string";

endfunction
function string concat_string(); // Function that returns a string

return {s1.toupper(),"",s2.toupper()}; //Uses string methods and operators
endfunction
task format_string(string s1); // String passed as an argument
$sformat(s, "Output of %s", s1); // String as an argument of a system task

endtask
endclass
demo_class dc;
initial begin

dc = new;
dc.s3 = {dc.s1,"", dc.s2};
if (dc.s3.toupper() == dc.concat_string())

$display("Correct");
else

$display("Not Correct");
dc.format_string("format_string");
$display(dc.s);

end
endmodule

This code will produce the following output:

Correct
Output of format_string

Using Strings with Packages

A string can be declared as a public, static, local, or protected member of a class that is
declared inside a package. The following is supported for strings that are members of a class
declared within a package:

■ Initializing the string inside a constructor

■ Passing the string as an argument to a task or function inside the class

■ Using the string as an argument to system tasks and functions

■ Applying the this and super keywords to this type of string

SystemVerilog Reference
Data Types

July 2010 50 Product Version 9.2

■ A virtual function can return this type of string and take the string as an argument

■ Using any of the supported operators and methods on this type of string; see “String
Operators” on page 44 and “String Methods” on page 45

■ Declaring a function that returns this type of string within a class

Using Strings within begin...end Blocks

Strings can be declared as static within begin...end blocks for the following types of
statements:

You can perform the following operations on strings that are declared within a begin...end
block:

■ Assigning a string literal or string variable to another string

■ Passing a string as an argument to tasks or functions

■ Using the string with any of the supported operators and methods. See “String
Operators” on page 44 and “String Methods” on page 45.

Declaring a Fixed Array of Strings

You can declare a fixed array of type string within the following scopes: modules, program
blocks, tasks, functions, packages, and classes.

You can perform the following operations on the index of a fixed array of strings:

■ Assigning the string index to a string literal or string variable

■ Using the string index as an argument to system tasks or functions

■ Passing the string index as an argument (input, output, or inout) to a user-defined
task or function

■ Using the string index with any of the supported operators and methods; see “String
Operators” on page 44 and “String Methods” on page 45

initial always case, casex, and casez

repeat while forever

for fork...join do...while

SystemVerilog Reference
Data Types

July 2010 51 Product Version 9.2

The following example illustrates how to use a fixed array of strings.

Example 5-3 Fixed Array of Strings
module top;

string s1[10];
string s = "one";
function string func(string s2);
return s2.substr(1,4);

endfunction
initial begin

#0;
s1[0] = "zero"; // String literal is initialized to the index of the string

array
s1[1] = s; // String variable is initialized to the index of the string array
$display("Print index %c", s1[0][1]); // Uses the indexing operator
if(s1[0]==s1[1]) // Uses the equality operator

$display("Incorrect");
else

$display("Relational operator is working correctly");
s1[2] = {s1[0],"",s1[1]}; // Uses concatenation operator
$display("Print concatenation result", s1[2]);
$display("Length of first index:%d", s1[1].len()); // Uses the len method
s1[3] = s1[2].toupper(); // Uses the toupper method
$display("Print toupper", s1[3]);
s1[4] = func(s1[3]); // Index of string array is passed as an argument to a

// function that returns a string that is assigned to the
// index of a string array.

$display("After function return", s1[4]);
s1[5] = "hi";
$sformat(s1[5],"%s","hello"); // Index of string array as an argument to a

// system task
$display("after sformat", s1[5]);

end
endmodule

This example will produce the following output:

Print index e
Relational operator is working correctly
Print concatenation result zero one
Length of first index: 3
Print toupper ZERO ONE
After function return ERO
After sformat hello
Index 3 changed

Declaring Arrays and Queues of Strings

You can declare fixed arrays, dynamic arrays, queues, and associative arrays of type string
within module, program block, task, function, package, and class scopes.

You can perform the following operations on the index of an array or queue of strings:

■ Assigning the string index to a string literal or string variable

SystemVerilog Reference
Data Types

July 2010 52 Product Version 9.2

■ Using the string index as an argument to system tasks or functions

■ Passing the string index as an argument (input, output, or inout) to a user-defined
task or function

■ Using the string index with any of the supported operators and methods; see “String
Operators” on page 44 and “String Methods” on page 45

An element of an array or queue of strings is a string. The current release supports the same
functionality for strings as for the elements of an array or queue of strings. In turn, whatever
is not supported for strings is also not supported for elements of an array of strings. This rule
applies to only the elements of an array or queue of strings. The entire array or queue is
subject to the same limitations as defined for that type of array. See “Arrays” on page 83.

Using Elements of a Dynamic Array of Strings

An element of a dynamic array of strings is a string. The current release supports the same
functionality for strings and for elements of a dynamic array of strings. In turn, whatever is not
supported for strings is also not supported for elements of a dynamic array of strings.

Note: This applies only to elements of a dynamic array of strings. The entire dynamic array,
however, is subject to the same limitations as defined for dynamic arrays. See “Arrays” on
page 83.

For example, for the following dynamic array of strings:

string dyn_arr[];
string s1;
...
dyn_arr = new[10];
...

You can perform the following operations on this array, because they are supported for the
string data type.

■ Bit select on an element of a dynamic array of strings

dyn_arr[0] = "abc";

■ Pass it as an inout/input/output parameter to a function

func(dyn_arr[0])

■ Assign an element of the dynamic array of strings to a string

s1 = dyn_arr[0];

■ Functions can return an element of a dynamic array of strings

s1 = func(dyn_arr[0]);

■ Event controls are supported for elements of a dynamic array of strings

SystemVerilog Reference
Data Types

July 2010 53 Product Version 9.2

always @ (dyn_arr[0])

Using Strings as Parameters and localparams

A string can be declared as a parameter or localparam inside a module. In the current
release, a string parameter can be

■ Assigned while instantiating a module

■ Assigned to other string variables

■ An argument to system tasks and functions

■ Passed as an argument to user-defined functions and tasks

■ Used with the supported String Operators and String Methods—except for the itoa(),
hextoa(), octtoa(), and bintoa() methods, because it is illegal to change string
parameter values at simulation time

Example 5-4 Using String Parameters
module sub;

parameter string test = "hello"; // Declares a string parameter
string test1;
function string func(string s);

func = s;
$display(func);

endfunction
initial begin
$display(test);

 test1 = test; // String parameter is assigned to a string variable
$display(test1);
if (test1 == test) // Equality operator
$display("correct");
test1 = {test, "hello"}; // Concatenation operator
$display(test1);
$display("byte : %c",test[1]); // Indexing operator
$display("len : ",test.len()); // len method
$display("getc : ",test.getc(0)); // getc method
$display("toupper : ",test.toupper()); // toupper method

if (!test1.compare(test)) // compare method
$display("correct");
$display("atoi : ", test.atoi()); // atoi method
test1 = func(test); // string parameter passed as an argument
$display(test1);
test1 = "";
$sformat(test1,"%s",test); // String parameter passed as an argument to

// sformat
$display(test1);

end
endmodule

module top;

SystemVerilog Reference
Data Types

July 2010 54 Product Version 9.2

sub #("hi")t1();
endmodule

This example produces the following simulation results:

hi
hi
correct
hihello
byte : i
len : 2
getc : 104
toupper : HI
atoi : 0
hi
hi
hi

Using Out-of-Module References to Strings

Out-of-module references (OOMRs) to strings are supported in the following cases:

■ OOMR to a string in an assignment statement

■ OOMR to a string in a relational expression

■ OOMR to a string in a conditional concatenation expression

■ OOMR to a string in a case statement

For example:

module x ();
string s, s1, s2, s3, s4, s5;
function automatic string fs(input string s1, output string s2, inout string

s3, ref string s4);
s2 = s1;
s3 = s2.toupper();
s4 = s3;
s4[0] = s1[0];
s4 = {s4,"-----"};
return s3;

endfunction
endmodule

module y (input var string s1, output var string s2);
initial begin

#0;
$display(s1);
s2 = "changed";

end
endmodule

module test;
x xx1();
y yy1(xx1.s1, xx1.s5);
initial begin

SystemVerilog Reference
Data Types

July 2010 55 Product Version 9.2

xx1.s = "hello";
xx1.s1 = xx1.s;
if (xx1.s1==xx1.s)

$display ("correct");
void’($sscanf(xx1.fs(xx1.s,xx1.s1,xx1.s2,xx1.s3),"%s", xx1.s2));
$display(xx1.s,xx1.s1, xx1.s2, xx1.s3, xx1.s4);
xx1.s4 = xx1.s1 != xx1.s3 ? xx1.s1 : xx1.s2;
$display(xx1.s4);
case (xx1.s1)

"HELLO" : begin
$display("incorrect");

end
xx1.s4 : begin
$display("correct");

end
default $display("No match for any case!!!!");

endcase
#1;
$display(xx1.s5);

end
endmodule

The output from this code looks like the following:

ncsim> run
correct
hellohelloHELLOhELLO-----
hello
correct
hello
changed

Limitations:

■ Built-in methods are not supported for OOMRs to strings.

■ OOMRs to strings that are members of a class are not supported

Limitations on Strings

The following summarizes the features in the LRM that are not supported in the current
release. Differences between the specification shown in the LRM and the Cadence
implementation are also listed.

■ Declaring the string data type, or assigning a string literal or string variable to a
string, is supported within a module, program block, task, function, package, or class.
The current release does not support strings within unpacked structures.

Strings within unpacked structures are supported.

■ You cannot use string indexing on class selects that are arguments to system tasks or
functions. For example, where c1 is a class:

$sformat(str,"%x", c1[2].s); // Invalid

SystemVerilog Reference
Data Types

July 2010 56 Product Version 9.2

■ If a string is a member of a dynamic or fixed array of a class, you cannot use it as an
argument to a system task or function. For example:

c c1[10];
$sformat(str, "%s", c1[2].s); // Invalid

■ Strings cannot be declared in a for loop that is inside a generate statement. For
example:

module test;
integer j=0;
genvar i;

generate
for(i=4; i>1; i=i-1) begin : gen1

typedef logic [0:7] w_type;

logic [7:0] A;
string B ; // Invalid

end
endgenerate

...
endmodule

■ You cannot use string members of a class in port mapping or with the scope resolution
operator.

■ Strings are not supported within parameterized mailboxes.

■ String variables cannot be passed by reference to a task or function.

typedef Declaration

A typedef declaration gives a data type a name that you can use in other declarations. The
advantage of using a typedef is that you can characterize the data type in a single place,
then refer to that description in as many other declarations as you like. By referring to a
common definition for the data type, you can guarantee that a set of objects share the same
data type characteristics, such as width, array size, and signedness. Another common use for
naming data types is to provide descriptive information for the object declarations that use
them. This technique can help to make the code more self-documenting and easier to read.

Limitations on Typedefs

This section summarizes the features in the SystemVerilog standard that are not supported
in the current release.

■ The LRM states that a type can be used before it is defined. For example:

typedef foo;

SystemVerilog Reference
Data Types

July 2010 57 Product Version 9.2

foo f = 1;

typedef int foo;

This form is not supported.

■ The LRM allows references to type identifiers defined within an interface through ports,
provided that they are locally redefined before being used. This feature is not supported.

Creating a New Data Type Definition

A typedef declaration begins with the keyword typedef. The nature of the rest of the
declaration depends on what kind of data type you want to declare. The syntax is essentially
the same as that of an object declaration, with the data type name appearing in the location
where you normally put the object name.

In the following example, a type named bits8 is used to declare two variables with the same
data type characteristics—4-state, 8 bits wide. In this example, the name bits8 is a synonym
for logic [7:0].

typedef logic [7:0] bits8; // The name of this data type is "bits8"
bits8 byte_var1;
bits8 byte_var2;

The following declarations illustrate the syntax for different kinds of data types:

// A scalar type called logic_type
typedef logic logic_type;

// An unsigned vector type called vector_type
typedef logic [31:0] vector_type;

// A signed vector type called signed_vector_type
typedef logic signed [31:0] signed_vector_type;

// An array type called array_type
typedef logic [7:0] array_type [15:0][15:0];

A typedef declaration does not create a new data type. It simply introduces a new name for
a data type. The data type itself is defined by the form of its values and the associated
operators. The fact that a data type has a name does not imply any special treatment. The
same compatibility and conversion rules apply to its values.

In the Cadence implementation, you can use a data type name in the declaration of
parameters, variables, nets, ports, functions, and tasks. The following code fragments show
where the data type name appears in the different kinds of Verilog declarations:

// The name of this 32-bit bit vector data type is addressT
typedef logic [31:0] addressT;

// Variable
addressT v1;

SystemVerilog Reference
Data Types

July 2010 58 Product Version 9.2

// Net
wire addressT w1;

// Port
inout addressT p1;

// Parameter
parameter addressT default_value = 32’h00000000;

// Task or function argument
input addressT value_in;

// Function
function addressT checksum;

Example 5-5 Defining Shared Data Type Characteristics

In this example, a typedef declaration is used to define a set of shared data type
characteristics in a single place. The data type name is then used in other declarations and
in another typedef declaration.

localparam BUS_WIDTH = 32; // Address and data are the same size
localparam DMA_BURST = 4; // How many data words are transferred

// Create a name, busT, for data and address buses
typedef logic [BUS_WIDTH:1] busT;

// Declare two variables of type busT
busT IOaddress_reg, IOdata_reg;

// Declare two nets of type busT
wire busT IOaddress, IOdata;

// Declare a data type called dmaT, constructed from type busT
typedef busT dmaT [DMA_BURST-1:0];

The shared width characteristics of the data and address buses are captured in the data type
definition of busT. This data type name is then used to declare two variables,
IOaddress_reg and IOdata_reg; two nets, IOaddress and IOdata; and another data
type, the array type dmaT.

Example 5-6 Providing Descriptions for Object Declarations

In this example, the data type names declared in typedef declarations do not define any
data type characteristics, but provide descriptive information for the object declarations that
use them.

typedef integer flagsT;
typedef flagsT maskT;

typedef enum maskT {
SIGBUS = 32’h00000001,
SIGSEGV = 32’h00000002,
SIGTRAP = 32’h00000004,
SIGILL = 32’h00000008,

SystemVerilog Reference
Data Types

July 2010 59 Product Version 9.2

SIGFPE = 32’h00000010
} flag_bitT;

task set_flag (inout flagsT flags, input flag_bitT flag_bit);
flags = flags | flag_bit;

endtask

task clear_flag (inout flagsT flags, input flag_bitT flag_bit);
flags = flags & ~flag_bit;

endtask

These declarations define a set of flag bits and utility routines for setting and clearing a given
flag bit. The flagsT data type is simply another name for integer, and the maskT data type
is simply another name for flagsT, so there are three different names for the same data type.

The new names provide additional descriptive information for the object declarations that use
them. These distinct names are used as the enumeration base type and the task argument
types, to make the semantic nature of these items very clear.

Handling Data Type Visibility

Like macros, data type names must be declared before they are used. A data type declaration
can appear outside of a module declaration, or in any location in which an object declaration
is allowed.

The information about a data type—that is, the information in its declaration—must be known
at the time when you compile the declarations that use it. Because hierarchical references
cannot be resolved until the design hierarchy has been created, you cannot use a hierarchical
name to refer to a data type.

The following visibility rules apply to data type names:

■ If a data type name is declared inside a block, the name is visible only within that block.

■ If a data type name is declared inside a module, the data type name is visible only within
that module.

■ If a data type name is declared outside of a module, the data type declaration is treated
lexically in the order in which it is encountered in the description. That is, the data type
name is visible in any module that follows the data type declaration.

The following example shows a data type that is declared outside of a module so that it
can be used in declaring and instantiating a module with ANSI-style parameter
declarations:

typedef enum { FALSE, TRUE } booleanT;

module test #(parameter booleanT do_random_test = FALSE);
...

SystemVerilog Reference
Data Types

July 2010 60 Product Version 9.2

...
endmodule

module top;
test #(TRUE) t1 ();
...
...

endmodule

Like other forms of declaration, the name of a data type must be unique in the immediate
scope in which it is declared. Two data type declarations that introduce the same name within
the same scope are not allowed, even if the data types they describe are identical. This is true
even if the declarations appear in the scope by including the same file with `include. Two
data type declarations introducing the same name might appear in separate compilation
units.

enum Data Type

SystemVerilog introduces enumerated data type declarations. Enumerated data types let you
declare a variable that has a list of valid values. Each value in the list has an associated user-
defined name. You can use these meaningful names to specify the values that the variable
can have.

Using enumerations can make the code easier to read and debug. Like constant names
defined with `define macros, you can use the constant names in your Verilog code.
However, unlike `define macros, you can also see the values as names in the Waveform
Viewer, use the constant names in Tcl commands, and see the values as names in the output
of Tcl commands.

With SystemVerilog enumerations, you can also use a shorthand that allows a sequence of
enumeration values to be defined using a simple array-like notation. You might find it
convenient in defining the enumeration values in an enumeration data type. For example, a
declaration as the following:

typedef enum { a[3] } et;

contains the enumerated type range a[3]. This enumeration declaration is equivalent to the
longer:

typedef enum { a0, a1, a2 } et;

Similarly, the declaration:

typedef enum { a[4:2] } et;

is equivalent to:

typedef enum { a4, a3, a2 } et;

SystemVerilog Reference
Data Types

July 2010 61 Product Version 9.2

If there is initialization in the context of this shorthand, it applies to the first enumeration value.
For example:

typedef enum { a[3] = 5 } et;

is equivalent to:

typedef enum { a0 = 5, a1, a2 } et;

Example 5-7 Using Enumeration Declaration Shorthand

SystemVerilog Code:

module top;

typedef enum { x[2], y[3:1] = 12 } t;
t v;
int i;
initial begin

$display("Values for enumeration type t...");
for (i = 1, v = v.first(); i <= v.num(); v = v.next(), i++)

$display(" %s with the value %0d", v.name(), v);
end

endmodule

Produces the following output:

Values for enumeration type t...

x0 with the value 0

x1 with the value 1

y3 with the value 12

y2 with the value 13

y1 with the value 14

Limitations on Enumerations

This section summarizes the features in the SystemVerilog standard that are not supported
in the current release. Differences between the specification shown in the LRM and the
Cadence implementation are also listed.

■ Hierarchical references to enumeration constants are not supported.

■ The LRM states that if a value is explicitly specified for an enumeration constant, the
value is a constant expression that can include references to parameters, local
parameters, genvars, other named constants, and so on. In the current release, the
constant expression is restricted to be a simple number, optionally preceded by a +/-.

SystemVerilog Reference
Data Types

July 2010 62 Product Version 9.2

Declaring an Enumeration

The definition of an enumerated data type is introduced by the keyword enum. The definition
includes a list of the enumeration constants, and, optionally, a data type and/or vector width.

As with all data types, you can define an enumeration in an object declaration, as shown in
the following examples:

enum { clear, warning, error } status;

enum { clear, warning, error } status = clear;

enum int { overflow, underflow, io_error } error_codes;

enum logic [1:0] { overflow, underflow, io_error } error_codes;

You can also define an enumeration in a typedef declaration. For example:

typedef enum { overflow, underflow, io_error } error_codes_t;

typedef enum bit { FALSE, TRUE } boolean;

typedef enum bit { FALSE=1’b0, TRUE=1’b1 } boolean;

typedef enum logic [2:0] { MOVop, SUBop, ANDop, ADDop, ORop, LDop, XORop }
opcode_t;

Depending on how you declare an enumeration, it is a bit or a bit vector.

■ If you do not include a range or a data type name, the base type defaults to int. For
example, the following declaration

typedef enum { overflow, underflow, io_error } error_codes_t;

is equivalent to

typedef enum int { overflow, underflow, io_error } error_codes_t;

■ If you specify the logic or bit type without a range, as in the following declaration, the
enumeration is a scalar.

typedef enum bit { FALSE, TRUE } boolean;

■ If you specify a range, as in the following declaration, the enumeration is a vector.

typedef enum logic [2:0] { MOVop, SUBop, ANDop, ADDop, ORop, LDop, XORop }
opcode_t;

The following code fragments show different ways to declare the error_code enumeration
as a 32-bit signed bit vector:

// The default is int
typedef enum { OVERFLOW, UNDERFLOW, MEMLIMIT, BUSERR } error_code;

// Explicitly including the data type name
typedef enum int { OVERFLOW, UNDERFLOW, MEMLIMIT, BUSERR } error_code;

// With a bit type, range, and signed specification
typedef enum logic signed [31:0] { OVERFLOW, UNDERFLOW, MEMLIMIT, BUSERR }

error_code;

SystemVerilog Reference
Data Types

July 2010 63 Product Version 9.2

// With another user-defined data type
typedef logic signed [31:0] my_integer;
typedef enum my_integer { OVERFLOW, UNDERFLOW, MEMLIMIT, BUSERR } error_code;

Specifying Enumeration Constants

Enumeration constants are names for a set of constant values. These constants belong to the
same namespace as the enclosing declaration. This means that if two enumeration
declarations are visible in the same place, all of their enumeration constant names must be
unique.

The value represented by a name in the enumeration list is the same type as the enum type
itself, which defaults to int. The first name in the list has a value of 0, the second name has
a value of 1, the third name has a value of 2, and so on. For example, in the following
enumeration, the enumeration constants suspended and active have the values 0 and 1,
respectively.

enum { suspended, active } process_status;

You can explicitly declare a value for names in the enumerated list. For example:

typedef enum logic [2:0] {WAIT=3’b001, LOAD=3’b010, READY=3’b100} states_m;

If you do not specify a value for a name, the value of the previous name in the list is
incremented by one. In the following example, the value of A is 1, the value of B is 2, the value
of C is 5, and the value of D is 6.

enum {A=1, B, C=5, D} enum_list;

Each name in the list must have a unique value. For example:

enum {E=1, F, G=2, D} enum_list2;

causes the following compilation error, because both B and C have the value 2:
ncvlog: *E,SVEDUP (test.sv,8|14): Enumeration constant ’G’ has the same value
as enumeration constant ’F’. For a given enumeration type, each enumeration
constant must have a unique value.

If the data type is a 4-state type, you can assign the values X or Z to a name. For example:

enum logic {H=0, I=1, J=1’bx, D=1’bz} enum_list3;

If you assign the value X or Z to a name, the following name must have an explicit value
assigned. For example, the following is an error because D does not have an explicit value.

enum logic {K=0, L=1, M=1'bx, D=1'bz} enum_list4;

SystemVerilog Reference
Data Types

July 2010 64 Product Version 9.2

Treating Enumeration Objects as Bit Vectors

Enumeration data types are a special form of bit or bit vector. That is, depending on how you
declare the enumerated data type, the enumeration objects are bits or bit vectors. For
example, in the following declaration, the enumeration constants are scalars.

enum logic { OVERFLOW, UNDERFLOW } error_code;

In the following declaration, the enumeration constants are vectors.

typedef enum logic [2:0] {
idle = 3’b001,
read_cycle = 3’b010,
write_cycle = 3’b100 } fsm_states;

fsm_states state = idle;

All vector operations and semantics apply to vector enumeration objects. For example,
enumeration objects that are vectors can be the subject of bit-selects and part-selects. The
normal semantics for initialization, assignment (except for type checking, see “Enumeration
Type Checking”), and value conversion (sign extension and truncation) also apply. For
example, the variable state, in the example shown above, will start simulation as all X’s, and
transition to the value of idle in the first simulation cycle.

The value of an enumeration constant with an explicit encoding is determined by the standard
vector assignment semantics, as though the value were assigned to an object of that data
type. If there is a width mismatch between the value and the vector width, truncation or
extension of the value will occur. An error is issued only when an application of the
assignment changes the value. For example:

enum logic[1:0]{
WAIT = 1,
LOAD = 2,
READY = 4} stateA;

In this example, the values of WAIT and LOAD do not cause an error message because they
can be represented in two bits (unsigned). However, the value of READY cannot be
represented in this way, which causes the following compilation error message for this
enumeration constant:

ncvlog: *E,SVECTR (test.sv,14|10): Truncation occurred converting the
enumeration constant expression for ’READY’ into a value of this enumeration
type.

SystemVerilog Reference
Data Types

July 2010 65 Product Version 9.2

Enumeration Type Checking

SystemVerilog enumeration data types are strongly typed, in that when an enum object is
assigned a value, the data type of that value must match the data type of the enum object.
For example:

enum {s, m, l} sizes;
typedef enum {red, green, blue } colorT;
colorT color;
int i;
initial begin
color = green; // Valid. Both have the same data type.
color = m; // Invalid. Data type mismatch.

...
end

When an enum object is used in an expression, it is automatically converted to the underlying
numeric type for the enum. For example:

i = green + 1; // green is automatically converted to int 1, so i = 2.

An enum variable cannot be assigned a value that is outside the enumeration set, unless you
use an explicit cast. For example:

color = colorT'(1); // Valid. Static cast converts 1 to colorT.

Enumeration Type Methods

SystemVerilog provides a set of methods that you can use to display information about an
enumeration.

Method Description

first() Returns the value of the first member in an enumeration.

last() Returns the value of the last member in an enumeration.

next() Returns the value of the next member in the enumeration, based
on the given value. If the given value is the last member in the
enumeration, returns the value of the first member. If the given
value is not a member of the enumeration, returns the default
initial value.

This method also takes an optional parameter, which indicates
how many values to go forward.

SystemVerilog Reference
Data Types

July 2010 66 Product Version 9.2

For example:

module top;

typedef enum byte {seattle, austin, calcutta = 15, louisville, london = 100 }
Cities;

Cities city = city.first();

initial
forever begin
$display("%n has the internal value %d", city, city);
if (city == city.last()) break;
city = city.next();

end

initial begin
$display("Total number of cities is %d", city.num());
city = calcutta;
$display("%n + 2 is %n", city, city.next(2));
city = louisville;
$display ("%n - 3 is %n", city, city.prev(3));

end
endmodule

This code produces the following output:

seattle has the internal value 0
austin has the internal value 1
calcutta has the internal value 15
louisville has the internal value 16
london has the internal value 100
Total number of cities is 5
calcutta + 2 is london
louisville - 3 is seattle
ncsim: *W,RNQUIE: Simulation is complete.
ncsim> exit

prev() Returns the value of the previous member in the enumeration,
based on the given value. If the given value is the first member in
the enumeration, returns the value of the last member. If the
given value is not a member of the enumeration, returns the
default initial value.

This method also takes an optional parameter, which indicates
how many values to go backward.

num() Returns the number of elements in an enumeration.

name() Returns the string representation of the given enumeration value.
If the given value is not a member of the enumeration, returns the
default initial value.

Method Description

SystemVerilog Reference
Data Types

July 2010 67 Product Version 9.2

In the current release, the following features are not supported:

■ Cascaded enumeration methods are not supported. For example:

city = city.first().next(); // Not supported
...
city = city.first(); // Use this code instead
city = city.next();

■ Enumeration methods are not supported for array elements or members of a structure.
For example:

Cities cityArray[10];
city = cityArray[2].next(); // Not supported

...
city = cityArray[2]; // Use this code instead
city = city.next();

■ Enumeration methods are not supported for hierarchical references or OOMRs. For
example, the following code

module m;
enum {cold, hot} temp = hot;

endmodule

module top;
m i();
initial $display(i.temp); // OOMR to enum variable is supported
initial $display(i.temp.first()); // enum method on OOMR not supported

endmodule

causes the following error message:

ncelab: *E,NLMETH (./test.sv,8|30): Built-in method calls are not presently
supported on non-local objects (i.e., referenced with hierarchical names),
array elements or structure members).

Structures

Verilog does not have a convenient way to group related data objects under a common name.
SystemVerilog introduces C-like structures to Verilog that can group related data objects,
where each member in the structure is called a field. Fields can be standard data types, such
as time, int, and logic; user-defined data types; or other structures.

Structures are declared using the struct keyword, and a simple structure declaration looks
like the following:

struct {
structure_fields;
...
} structure_name;

In SystemVerilog, there are two kinds of structures: packed and unpacked. By default,
structures are unpacked. You can explicitly declare a structure as packed by using the

SystemVerilog Reference
Data Types

July 2010 68 Product Version 9.2

packed keyword. A packed structure consists of bit fields that are packed together in memory
without gaps. The following lists some of the differences between packed and unpacked
structures:

■ Packed structures, unlike unpacked structures, can be treated as normal vectors. The
first member in a packed structure has the most significance, while the following
members have decreasing significance. Packed structures can be indexed like normal
vectors—for example, packedStruct[3]. Packed structures can also be used as a
whole, with arithmetic and logical operators.

■ Packed structures can have only integral values that can be represented as a vector,
such as int and byte. Packed structures cannot contain unpacked structures, real or
shortreal variables, unpacked unions, or unpacked arrays. SystemVerilog cannot
pack a structure if any of the fields cannot be represented as a vector. These restrictions
do not apply to unpacked structures.

You can reference the whole group of fields by using the structure’s name, or access a
member of the structure by using its field name. Structure members are accessed as follows:

<structure_name>.<field_name>

For example, the following assigns a value of 0 to field1 in structure test1_var:

test1_var.field1 = 0;

Structures can contain data objects of different types and sizes. For example, the following
illustrates a simple declaration for a packed structure:

typedef struct packed{
integer field1;
logic[7:0] field2;

}test1;

Packed Structures

The Cadence implementation supports the following functionality for packed structures:

■ Packed structures that can be applied to variables, parameters, and nets. For example:

test1 test1_var;

parameter test1 test1_parameter = 2;

wire test1 test1_wire;

■ SystemVerilog unpacked arrays of packed structures

■ Type parameter members

■ SystemVerilog packed arrays of packed structures. For example:

wire struct packed { logic [2:0][1:0] a1; } [7:0] myArray;

SystemVerilog Reference
Data Types

July 2010 69 Product Version 9.2

■ Mixing 2-state and 4-state packed structures. If any data type within a packed structure
is 4-state, the whole structure is 4-state. When reading 2-state members, there is an
implicit conversion from 4-state to 2-state. When writing 2-state members, there is an
implicit conversion from 2-state to 4-state. For example:

struct packed { logic m1; bit m2; } v;

■ Assigning patterns to members of packed structures. See “Assignment Operators” on
page 148 for information about assignment patterns.

Limitations on Packed Structures

This section summarizes the features in the SystemVerilog standard that are not supported
in the current release for packed structures. Differences between the specification shown in
the LRM and the Cadence implementation are also listed.

■ Out-of-module references to members of a packed structure are not supported. For
example, given the following code, an out-of-module reference of the form
top.mystruct.member is not supported.

module top;
struct packed {

int member;
} mystruct;

endmodule

Declaring a Packed Structure

Packed structures are defined by using the packed keyword. For example:

struct packed {
logic m1;
logic m2;
} packed_test;

You can create a data type from a structure by using the typedef keyword. When you
declare a structure as a user-defined type, storage is not allocated. For fields within a
structure to store values, you must declare a variable of that data type. For example, the
previous example can look like this:

// Structure definition
typedef struct packed {

logic m1;
logic m2;
} p_test;

// Variable of the data type
p_test packed_test;

You can define a structure where its fields are other structures. For example:

SystemVerilog Reference
Data Types

July 2010 70 Product Version 9.2

struct packed {
p_test x;
p_test y;

} coordinate;

Unpacked Structures

The Cadence implementation supports the following functionality for unpacked structures:

■ Unpacked structure members with the following data types:

❑ Any data type allowed for members of a packed structure

❑ The real data type

❑ The string data type

❑ Unpacked structures

❑ Type parameters

❑ A fixed-size unpacked array data type

■ Variables of an unpacked structure type. For example:

struct { integer i1, i2; } mystruct;

■ Member selection for unpacked structure variables—for example, struct.member

■ Unpacked structures as task and function arguments and function return types

■ Unpacked structure assignments for variables

These variable assignments are subject to the type-compatibility requirements enforced
by the SystemVerilog LRM. For example:

// Unpacked structure data types
typedef struct { real x; real y;} cartesianCoordinateT;
typedef struct { real magnitude; real angle; } polarCoordinateT;

// Variables of the unpacked structure data type
cartesianCoordinateT cartesian;
polarCoordinateT polar1, polar2;

// Conversion function
function polarCoordinateT convert(input cartesianCoordinateT x);
...
endfunction

polar1 = polar2; // Supported
polar1 = cartesian; // Causes compilation error due to type
mismatch
polar1 = convert(cartesian); // Supported

■ Assignment patterns to members of packed structures; for example:

SystemVerilog Reference
Data Types

July 2010 71 Product Version 9.2

struct { integer age, weight; }
alfred = '{weight: 155, age: 36 },
ella = '{27, 155},
ginger = '{age:27, default:155};

See “Assignment Operators” on page 148 for more information about assignment
patterns.

■ Conditional, logical equality (==), and case equality (===) operators on unpacked
structures; for example:

struct { byte b; real r; } v1, v2, v3;
...

// Assigns v1 to either v2 or v3, depending on the how v1 compares to v3
using
// logical equality
v1 = (v1 == v3) ? v2 : v3;

■ Arrays of unpacked structures; for example:

typedef struct{
integer length, width, depth;

} dimensionsT;

dimensionsT arrayOfDimensions[250]; // Supported

Using Unpacked Structures in Classes

In the current release, unpacked structures are supported within classes. The following
summarizes the supported functionality:

■ Unpacked struct variables can be declared within classes, including classes that are
declared within packages or modules.

■ User-defined unpacked struct types can be used within a class.

■ Unpacked struct members can be declared within a class.

■ You can assign a class struct member to another class struct member of the same
type:

C cc1, cc2;

cc1.st1 = cc2.st1;

■ Within a class, you can declare a function that returns a struct and that has input,
output, inout, or ref arguments that are structures.

■ You can use the logical equality operators, == and !=, with class struct variables:

if (cc.s1 == cc1.st1)

■ Unpacked structures can be declared as static members of a class:

SystemVerilog Reference
Data Types

July 2010 72 Product Version 9.2

class C;
static struct {

...
}st1;

endclass

■ Unpacked structures can be declared as public, local, or protected members of a class.

■ You can use type parameters as struct members:

class c#(type t1 = bit, type t2 = bit);
typedef struct {

t1 m1;
t2 m2;

} st;
...

endclass

■ You can nest unpacked structures within a class:

class C;
struct {
int a;
struct {

real b;
}st2;

}st1;
endclass

Limitations on Unpacked Structures

The following list summarizes the features in the SystemVerilog standard that are not
supported in the current release.

■ The following data types are not supported for members of an unpacked structure:

❑ string

❑ associative arrays

❑ dynamic arrays

❑ classes

❑ queues

❑ events

■ The Cadence implementation does not support initializing members of an unpacked
structure. For example:

typedef packed {
logic [3:0] ab1 = 4’b0101; // Not supported
}myInitType;

myInitType myInitVar;

SystemVerilog Reference
Data Types

July 2010 73 Product Version 9.2

■ Nets of an unpacked structure data type are not supported.

wire struct {integer i1, i2; } wu; // Not supported

■ Parameters of an unpacked structure data type are not supported.

parameter struct {integer a1, a2; } ab; // Not supported

■ Unpacked structure variables are not supported within constant functions.

■ Net ports that have an unpacked structure data type are not supported.

module m3(i1, i2, i3, o1, o2, o3);
typedef struct {integer m1; logic [7:0] m2; } upsT;
input upsT i1; // Not supported, i1 is a net port
input wire upsT i2; // Not supported, i2 is a net port
input var upsT i3; // Supported, i3 is a variable port
output upsT o1; // Supported, o1 is a variable port
output wire upsT o2; // Not supported, o2 is a net port
output var upsT o3; // Supported, o3 is a variable port

endmodule

■ Out-of-module references to an unpacked structure variable, or to members of an
unpacked structure, are not supported, including unpacked structures that are declared
within classes.

■ Unpacked structures are not supported within packages.

■ Non-blocking assignments are not supported on class objects that contain unpacked
structures. Non-blocking assignments are also not supported on unpacked structures or
unpacked structure members that are elements of a class.

■ Unpacked struct members cannot be used in sensitivity lists:

always @ (cc.st1)

■ You cannot use class struct variables with relational operators (<, <=, >, >=).

if (cc.st1 < cc1.st1)

■ You cannot use the $bits() function on class struct variables.

Debugging Structures

For information about how to debug structures using the Tcl command-line interface or the
SimVision analysis environment, refer to SystemVerilog in Simulation.

Unions

The SystemVerilog union data type is similar to the C union data type. A union is a storage
element; it is a collection of variables of different types and sizes. A SystemVerilog union is

../svsim/svsimTOC.html#firstpage

SystemVerilog Reference
Data Types

July 2010 74 Product Version 9.2

similar to a SystemVerilog structure in that it can be packed or unpacked, it can have
members, and its members are accessed in the same way as structures. However, members
of a union share the same storage space, which means a union can store values of different
types at different times. The same stored value can be viewed as if it was a different type by
accessing the value through different members.

Unions are declared using the union keyword. A simple union declaration looks like the
following:

union [tagged] [packed [signing]] {union_members} union_name;

For example:

union {
int a;
bit [52:0] b;

} myunion;

Note: The result for unpacked unions might not match that of a packed union, or an unpacked
union from another tool.

Limitations on Unions

The current release supports packed and unpacked unions as described in the LRM, with the
following exceptions:

■ Tagged unions are not supported.

■ Unpacked unions cannot be passed using the direct programming interface (DPI).This
limitation is not mentioned in the IEEE 1800 standard, but is part of the IEEE 2008 draft
LRM.

SystemVerilog Reference
Data Types

July 2010 75 Product Version 9.2

Example 5-8 Packed Union

The following example illustrates how unions can provide different representations of the
same data.

When you run this example, the simulator displays the first byte of the header:

% irun -access rwc packed_atm.sv
...
ncsim> run
header is 5000000000
Simulation stopped via $stop(1) at time 0 FS + 0
./packed_atm.sv:29 $stop;

typedef struct packed {
bit [3:0] GFC;
bit [7:0] VPI;
bit [15:0] VCI;
bit [2:0] PTI;
bit CLP;
bit [7:0] HEC;
bit [0:47] [7:0] PAYLOAD;
} uniType;

typedef struct packed {
bit [0:4] [7:0] HEADER;
bit [0:47][7:0] PAYLOAD;

} head_pay_format;

typedef union packed {
uniType uni;
head_pay_format hpf;

} ATMcell;

module test();

ATMcell cell1;

initial begin

cell1.uni.GFC = 4’h5;
$display("header is %h",cell1.hpf.HEADER);
$stop;

end
endmodule

Union used to hold the two
representations; both members
are packed structures

Two representations of the
ATM UNI cell’s header

Writes to Generic Flow Control
(GFC)

Reads the first byte of the
header

SystemVerilog Reference
Data Types

July 2010 76 Product Version 9.2

Example 5-9 Unpacked Union

The following example illustrates how untagged unions can be updated by one member type,
and read as a value of another member type—causing a type loophole, where the union
stores a value of one type and misinterprets the bits as another type.

typedef union{
logic [7:0] L8;
integer I32;
real c_d;

} unpackedunion;

module test();

unpackedunion uu;

initial begin
uu.L8 = 8’h8a;
$display("logic is %h",uu.L8);
$display("integer is %h",uu.I32);
$display("real is %e",uu.c_d);
$stop;

end
endmodule

Unpacked union with three
members of different data types

When you run this example, results are not consistent:

% irun -access rwc unpacked_union.sv
...
ncsim> run

logic is 8a
integer is ffffff8a
real is -NaN
Simulation stopped via $stop(1) at time 0 FS + 0
./unpacked_union.sv:17 $stop;
ncsim> value uu
’{L8:8’h8a, I32:-118, c_d:nan}

Valid read

However, all results
are not guaranteed
to return the correct
data type

SystemVerilog Reference
Data Types

July 2010 77 Product Version 9.2

uwire Nets

Verilog net types, such as wire and trireg, determine how the value of a net is computed
from its drivers. The current release supports a new net type, uwire, for single-driver nets.

Note: Cadence implemented this new net type in the IUS5.4 production release, before it
was approved by the IEEE for inclusion in the SystemVerilog standard. Cadence called this
new net type wone. Beginning with the first IUS5.4 hotfix release (IUS5.4-S1), if you try to use
the wone keyword, an error is generated telling you to use the equivalent uwire net type
instead.

You can use the uwire net type to enforce a restriction that a given net has at most one driver.
A uwire net behaves like a single-driver wire net. The value of a uwire net is the value of
its driver, if it has one. If the net has no driver, its value is Z. During elaboration, a check is
performed for multiple drivers for the uwire net. The elaborator generates an error if multiple
drivers are detected.

A uwire net cannot be connected to a bidirectional terminal of a tran network.

It is an error to connect a uwire net to an AMS wreal net.

The following design defines a uwire net called toggle. It has two drivers: a gate output in
module top, and an implicit continuous assignment for the connection to the output port of
the toggle_driver module:

`timescale 1ns/1ns

module top;

uwire toggle;

toggle_driver td (toggle);

not #1 delay_toggle (toggle, toggle);

initial
begin

$monitor($stime, "toggle = %b", toggle);
#10 $finish;

end
endmodule

module toggle_driver (output reg toggle = 1’b0);

always #1 toggle = ~toggle;

endmodule

Because the uwire net has two drivers, the elaborator generates the following error:

ncelab: *E,UWIREM: Multiple drivers detected on a ’uwire’ net (top.toggle).

SystemVerilog Reference
Data Types

July 2010 78 Product Version 9.2

You do not need to specify the uwire net type on all of the ports connected to your net. The
uwire net type has precedence over all other net types, except for supply0 and supply1.

The coercion of a net to uwire can cause a change in behavior for some types of nets. In
such cases, the elaborator issues a warning. For example, connecting a uwire to a trireg
results in the following kind of warning:

ncelab: *W,UWIREC (./test.v,7|23): Incompatible port connection to ’uwire’ net
top.toggle; ’uwire’ dominates, and ’trireg’ semantics are not in effect.

When different net types are connected through a module port, and one or both of the net
types is uwire, the resulting net type is determined as follows:

You can use the `default_nettype compiler directive to make the uwire net type the
default for all of your nets.

Static Casting

SystemVerilog adds the ability to change the data type of a value using a cast (’) operation.
Static casts have the following syntax:

casting_type ’ (expression)

In this type of cast, the value of expression is converted to the data type specified by the
casting_type.

Example 5-10 Simple Static Cast

Net Type 1 Net Type 2 Resolution Warning?

uwire uwire uwire No

uwire wire/tri uwire No

uwire wand/triand uwire Yes

uwire wor/trior uwire Yes

uwire trireg uwire Yes

uwire tri0 uwire Yes

uwire tri1 uwire Yes

uwire supply0 supply0 No

uwire supply1 supply1 No

SystemVerilog Reference
Data Types

July 2010 79 Product Version 9.2

typedef enum { red=0, green=1, blue=2} colorT;
colorT v;
v = colorT’(1); // Type cast
$display("v: %s", v.name()); // Displays the value ‘green’

In this example, the type cast colorT’ (1) converts the value 1 to the data type colorT,
which is equivalent to green.

Example 5-11 Static Cast with a Scope Resolution Operator
module simple;

class abc;
typedef enum bit {RD, WR} dir_t;
dir_t dir;

endclass
abc a=new;
initial begin
abc::dir_t dir;
dir=abc::dir_t’ (1); //Type cast
#1 $display("Direction is %n", dir);

end
endmodule

In this example, the type cast dir=abc::dir_t’ (1) converts the value 1 to the data type
dir_t, which is equivalent to WR.

Example 5-12 Static Cast with a Vector
typedef logic [3:0] vec4T;
reg [7:0] vec8V;
...
vec8V = 8’b11111111;
$display("vec8v truncated to vec4T: %b", vec4T’(vec8V));
// Displays value "1111"
...

In this example, the static type cast vec4T’(vec8V) converts the value of vec8V—
8’b11111111—to a vector of width 4.

Casting to Real Data Types

SystemVerilog allows casting of casting_type to be real or realtime types, their
typedefs, or a type parameter resolving to one of their types. Similarly, the data type of
expression can be one of these data types. The intended use models are converting an
integer value to a real value, and a real value to an integer value within an expression.

Example 5-13 Static Cast to real Types

SystemVerilog code:

SystemVerilog Reference
Data Types

July 2010 80 Product Version 9.2

module top;
real x = 3.14;
initial $display(int'(x));

int i = 3;
real y = real'(i);
initial $display(y + 0.14);

endmodule

Produces the following output:

ncsim> run

3

3.14

ncsim: *W,RNQUIE: Simulation is complete.

Casting to Vector Width

Casting to a vector width causes the value of an expression to be truncated or extended so
that its width matches the width specified in the cast. When casting to a width, a static cast
has the following abstract syntax:

constant_primary ’(expression)

where constant_primary is evaluated to a positive number and the result of
expression is converted to be a vector of that width.

You can also use casting to signed or unsigned, which causes the value of an expression
to be converted to either a signed or unsigned quantity. When changing the sign, a static cast
has the following abstract syntax:

signing ’(expression)

where signing is one of the reserved words signed or unsigned. The effect is to convert
the result of expression to be either signed or unsigned.

Example 5-14 Casting to Vector Width and Changing Sign

SystemVerilog code:

module top;
int x = -1;
reg [3:0] y = 7;
initial begin

$display("%0d cast to unsigned is %0d", x, unsigned'(x));
$display("%b cast to width 2 is %b", y, 2'(y));

end
endmodule

Produces the following output:

ncsim> run

SystemVerilog Reference
Data Types

July 2010 81 Product Version 9.2

-1 cast to unsigned is 4294967295

0111 cast to width 2 is 11

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

Casting a Class Handle

Using SystemVerilog static cast lets you convert a class handle to an assignment-compatible
class type. Thus, you can explicitly cast a class handle to have a different class data type. If
the class handle cannot be cast to the target class type due to the SystemVerilog assignment
compatibility rules, an error is generated.

Example 5-15 Static Cast of a Class Handle
class automobile;

int odometer;
endclass

class volvo extends automobile;
string import_date;
endclass

volvo my_volvo = new;
// Explicitly cast 'my_volvo' to be an 'automobile'
automobile my_auto = automobile'(my_volvo);
// This will cause a type-check error:
initial begin

// Cannot cast 'my_auto' to be a 'volvo'
$display(volvo'(my_auto));

end

Limitations on Type Casting

In the current release, type casts have the following limitation:

■ The casting_type cannot be a reference to a type parameter.

Limitations on Data Types

This section summarizes the syntax constructs in the SystemVerilog LRM that are not
supported in the current release. Differences between the specification shown in the LRM
and the Cadence implementation are also listed.

■ The fps_covergroup_identifier data type alternative is not supported in the
current release.

■ shortreal is not allowed as a non_integer_type.

SystemVerilog Reference
Data Types

July 2010 82 Product Version 9.2

SystemVerilog Reference

July 2010 83 Product Version 9.2

6
Arrays

Arrays are used to hold elements of a declared data type. In Verilog-2001, arrays can be
multidimensional, and can be declared for all data types. Verilog-2001 arrays use the
following syntax:

data_type vector_width array_name array_dimension

For example:

reg [4:0] student_id [0:7]; // Array of 8 student_ids. Each student_id is
// 5 bits wide.

integer msk[0:63]; // Array of 64 integer values

wire array_w[7:0][5:0]; // Multidimensional array of wires

SystemVerilog array declarations use the following syntax:

data_type packed_dimensions array_name unpacked_dimensions

where

■ packed_dimensions—Dimensions preceding the name of the array indicate a
packed array.

■ unpacked_dimensions—Dimensions following the name of the array indicate an
unpacked array.

For example:

integer chk [3:0][7:0][3:0]; // Multidimensional unpacked array

bit [7:0][3:0] chk1; // Multidimensional packed array

SystemVerilog enhances arrays by

■ Allowing unpacked arrays of any data type, including the event data type

■ Allowing multidimensional packed arrays

■ Adding dynamic arrays, which let you change the size of one of the dimensions in an
unpacked array

Storage for a dynamic array is allocated during simulation.

SystemVerilog Reference
Arrays

July 2010 84 Product Version 9.2

■ Adding associative arrays

These arrays are best used when the size of a collection of variables is unknown, or
when data space is limited. Storage for an element in an associative array is not allocated
until that element is accessed.

■ Adding queues

Queues are used to collect elements of a declared data type. Queues are declared like
arrays, but use $ for the range.

Packed and Unpacked Arrays

In Verilog, vectors can consist of single-bit data types, such as reg or wire, and the vector
range is declared just before the signal name. In SystemVerilog, vector declarations are
called packed arrays. For example, the following declares a packed array called addr that
is 41 bits wide:

reg [0:40] addr; // One-dimensional packed array

Packed arrays are used to divide a vector into its subfields so that the subfields can be
accessed as array elements. Packed arrays can be made up of single-bit types, other packed
arrays, or packed structures. Packed arrays are always represented as a contiguous set of
bits.

SystemVerilog enhances arrays by letting you declare multidimensional packed arrays. For
example, the following declares an array of four 6-bit sub-arrays:

bit [3:0][5:0] addr2; // Two-dimensional packed array

The Cadence implementation supports the following functionality for packed arrays:

■ Packed arrays whose element type is another packed array. Specifically, the Cadence
implementation supports multidimensional vectors.

logic [8:1] [16:1] v1 [63:0] [31:0];

reg [128:1] x;

...

x = v1[4][7];

...

■ Packed arrays of enumerations. In the following example, p is a packed array of
enumeration vectors.

typedef enum bit [7:0] {x, y, z} t;

parameter t [31:0] p = 0;

SystemVerilog Reference
Arrays

July 2010 85 Product Version 9.2

■ Packed structures with packed array members. In the following example, w1 is a packed
structure with a multidimensional packed array member:

wire struct packed {
logic [2:0][1:0] m;
} w1;

■ Packed arrays of packed structures. In the following example, w3 is a packed array of
packed structures, where each structure has a two-dimensional packed array member.

wire struct packed {
logic [2:0][1:0] m;
} [7:0] w3;

■ Verilog arrays of packed arrays.

■ Assignment patterns for assigning to elements of a packed array. See “Assignment
Patterns” on page 150 for information about assignment patterns.

Unpacked arrays are declared by placing the dimensions right after the array name, which
is similar to the Verilog style of array declarations. Unlike packed arrays, an unpacked array
can be of any type, and might or might not be represented as a contiguous set of bits. For
example:

wire n [0:32]; // One-dimensional unpacked array of 33 one-bit nets

int m [7:0][3:0]; // Two-dimensional unpacked array of 32-bit int variables

The Cadence implementation supports the following functionality for unpacked arrays:

■ Unpacked arrays whose size is specified by a single positive number.

Instead of a range, SystemVerilog allows the use of a single positive number to denote
the size of an unpacked array, where [size] is the same as [0:size-1]. For example:

logic v[4]; // Same as: logic v[0:3];

wire [5:0] w[10][0:4][20]; // Same as: wire [5:0] w[0:9][0:4][0:19];

parameter aSize = 3000;

typedef int myArray[aSize]; // Same as: typedef int myArray[0:aSize-1];

logic v1[0]; // Illegal. Array size must be positive.

Note: This feature is not available for packed array dimensions. For example, the
following declaration is invalid:

logic [8] eightBits; // Invalid. [8] is a vector dimension.

■ Assignments between unpacked array variables. The current release enforces the
SystemVerilog type-compatibility requirements for assignments to unpacked arrays. For
example:

integer fourintA[4];
integer fourintB[4];
integer fiveint[5];

SystemVerilog Reference
Arrays

July 2010 86 Product Version 9.2

int fourint[4];
...
task showSum(input integer x[4]);
...
endtask
...
fourintA = fourintB; // Valid
showSum(fourintB); // Valid
fourintA = fiveint; // Invalid
showSum(fourint); // Invalid

■ Unpacked arrays as arguments to tasks and functions, and as function return types. For
example, the following function accepts an unpacked array input argument and returns
an unpacked array function.

typedef reg [31:0] registerSetT[16];
registerSet myregs;
function registerSetT negateRegisters(input registerSetT regs);
...
endfunction
...
myRegs = negateRegisters(myRegs);

■ Conditional logical equality (==) and case equality (===) operations on unpacked arrays.

■ Assignment patterns for assigning to elements of an unpacked array. For example:

int upa [0:3];
intial upa = '{0,1,2,3}; // Assignment to an unpacked array

See “Assignment Patterns” on page 150 for information about assignment patterns.

■ Unpacked arrays that are involved in assignments, function and task argument passing
and value return, and conditional and equality operations cannot be given by an out-of-
module reference, or be variable inside a class.

Limitations on Packed and Unpacked Arrays

This section summarizes the features in the SystemVerilog standard that are not supported
in the current release.

■ In Verilog, you can select only a single element of an array. SystemVerilog enhances
arrays by allowing the selection of one or more contiguous elements of an array. This
selection is called a slice. Selecting an array slice in SystemVerilog is similar to
performing a constant part select or indexed part select in Verilog.

The Cadence implementation supports only SystemVerilog slices of packed arrays,
where the array is a one-dimensional array of scalars. The implementation supports
slicing only the last dimension of a multidimensional vector.

The implementation does not support slices on unpacked arrays.

SystemVerilog Reference
Arrays

July 2010 87 Product Version 9.2

For example:

module top;
logic [7:0][4:0] mdv;
logic arr [9:0];
logic [1:0] twoScalars;
logic [9:0] tenScalars;

initial begin
twoScalars = mdv[7][1:0]; // Valid, slice of a one-dimensional

// packed array of scalars
tenScalars= mdv[7:6]; // Invalid, slice does not occur

// at last dimension
twoScalars= arr[7:6]; // Invalid, slice of an unpacked array
end

endmodule

Array Querying Functions

The current release supports the SystemVerilog system functions that are used to return
information about the dimensions of a given array or integral data type, or of data objects of
such a data type.

In the current release:

■ Array query functions are supported for fixed arrays and integral data types. They are not
supported for dynamic arrays.

■ Array query functions can be used in class objects and to access class properties. They
are also supported for packed arrays in class objects. However, they are not supported
for unpacked arrays in class objects.

The supported system functions are the following:

$left Returns the left bound (most significant bit) of the dimension.

$right Returns the right bound (least significant bit) of the
dimension.

$low Returns the minimum of $left and $right of the
dimension.

$high Returns the maximum of $left and $right of the
dimension.

$increment Returns 1 if $left is greater than or equal to $right, and -
1 if $left is less than $right.

SystemVerilog Reference
Arrays

July 2010 88 Product Version 9.2

Note the following for array-querying functions:

■ The $dimensions and $unpacked_dimensions functions take one argument—the
array identifier. For example:

// Returns the number of dimension for myarr, or zero if it is integral
a = $dimensions(myarr);

All of the other functions take two arguments—the array identifier (required) and
dimension (optional). For example:

// Returns the most significant bit of myarr’s second dimension
a = $left(myarr, 2);

Note: If the dimension is not specified, it defaults to 1. If you specify a dimension that is
out of range, this function returns x.

■ All of these functions return an integral data type.

■ When used with fixed arrays, these functions can act as constant functions and can be
passed as an elaboration parameter.

The following example shows the use of these system functions:

module test();

logic [6:9] [10:14] word;
parameter p = $left(word, 2);
int a = $left(word, 1) ;

$size Returns the number of elements in the dimension. This is
also equal to $high - $low + 1.

$dimensions For packed, unpacked, dynamic, and static arrays, this
function returns the number of dimensions in the array.

For the string data type, and other non-array data types
that are equivalent to simple bit vector types, this function
returns 1.

For all other types, this function returns zero.

Note: In the current release, you cannot use array querying
functions with dynamic arrays.

$unpacked_dimensions For static and dynamic arrays, this function returns the
number of unpacked dimensions.

For all other types, this function returns zero.

Note: In the current release, you cannot use array querying
functions with dynamic arrays.

SystemVerilog Reference
Arrays

July 2010 89 Product Version 9.2

initial begin
void’($size(word, 2));
$display("a = %d \n", a);
$display("Size = %d \n", $size(word, 1));
$display("Left bound = %d \n", $left(word, 1));
$display("Right bound = %d \n", $right(word, 1));
$display("Low = %d \n", $low(word, 1));
$display("High = %d \n", $high(word, 1));
$display("Increment = %d \n", $increment(word, 1));
$display("Dimensions = %d \n", $dimensions(word));
$display("Unpacked dimensions = %d \n", $unpacked_dimensions(word));

end
endmodule

This code produces the following simulation results:

a = 6
Size = 4
Left bound = 6
Right bound = 9
Low = 6
High = 9
Increment = -1
Dimensions = 2
Unpacked dimensions = 0

Dynamic Arrays

SystemVerilog enhances Verilog arrays with the addition of dynamic arrays. A dynamic
array is one dimension of an unpacked array, whose number of elements can be set or
changed during simulation. Storage for a dynamic array is allocated during simulation. The
syntax for dynamic array declarations is as follows:

data_type array_name[];

For example:

int x[]; // Dynamic array of ints
bit [4:0] y[]; // Dynamic array of 5-bit vectors
string dynstr[]; // Dynamic array of strings

typedef int da[]; // User-defined dynamic array
da d;

Access Methods for Dynamic Arrays

SystemVerilog offers the following built-in methods for use with dynamic arrays:

■ new[]—A function that creates a dynamic array of the specified size. It initializes the
newly-created array elements with the elements of a specified array, or to an initial default
value. The syntax for the new[] function is as follows:

dyn_array = new [size][(old_dyn_array)]

SystemVerilog Reference
Arrays

July 2010 90 Product Version 9.2

where

❑ [size] is an expression that specifies the number of elements in the array, and
must be a non-negative integral expression. The index of a dynamic array is always
[0:size-1].

❑ [old_dyn_array] is an optional argument. When specified, the elements of
dyn_array are initialized to the elements of old_dyn_array. Otherwise, the
elements of dyn_array are initialized to their initial default value. The
old_dyn_array must be a dynamic array of the same type as dyn_array, but
can have a different size.

For example:

integer myaddr[]; // Declares the dynamic array

myaddr = new[50]; // Creates a 50-element array, with an index of 0 to
// 49, and array elements are initialized to x.
// The index of a dynamic array is always [0:size-1].

myaddr= new[60](myaddr); // Resizes the array, while preserving its
// previous content

...
integer newaddr[];
newaddr = new[70](myaddr); // Copies the content of myaddr into newaddr

■ size()—A method that returns the size of the dynamic array.

The built-in size() method returns the current size of the dynamic array, or returns zero
if the array is empty. The syntax for the size() method is as follows:

array_name.size()

For example:

int ab[];
...
ab = new[10]; // Creates a 10-element array
$display("%d", ab.size()); // Displays 10

■ delete()—A method that removes all storage for a dynamic array.

The built-in delete() method removes all storage within a given dynamic array,
resulting in an empty array. The syntax for the delete() method is as follows:

array_name.delete()

For example:

ab.delete(); // Deletes the array created in the last example
$display("%d", ab.size()); // Displays zero

Note: You can also use the {} construct to empty an array. For example:

a = {} // Deletes the content of the array

SystemVerilog Reference
Arrays

July 2010 91 Product Version 9.2

Example 6-1 Accessing Out-of-Bound Elements of a Dynamic Array

If you try to write to an out-of-bound index of a dynamic array, the simulation issues a warning
message. If you try to read an out-of-bound index of a dynamic array, the simulator does not
issue an error message, but displays the default value. For example:

module top;
string dyn_arr[]; // Dynamic array of strings
initial begin

dyn_arr = new[10];
dyn_arr[0] = "ABC";
$display("value = %d\n", dyn_arr[0]); // Displays ABC
#5;
dyn_arr[13] = "ABC"; // Writes to an out-of-bound index. Causes warning.
$display("value=%d\n", dyn_arr[14]); // Reads an out-of-bound index.

// Displays a null string, which
// is the default value for strings.

end
endmodule

Example 6-2 Fixed Arrays of Dynamic Arrays

You can declare a fixed array of dynamic arrays. For example, the following declares a fixed
array called fa_da where each element is a dynamic array, and each element in the dynamic
array is of type int:

int fa_da[0:3][]; // Fixed array of dynamic arrays

For example:

module top;
string fada[0:3][]; // Declares a fixed array of dynamic arrays
int i,j,k;

initial begin
k=100;
for(i=0;i<2;i++)
begin
fada[i]=new[4]; // Allocates a dynamic array of size 4
$display("Value is %d",fada[i].size()); // Displays the size of fada
for(j=0;j<2;j++)
begin
fada[i][j]="Hello";
$display("Value is %s",fada[i][j]); // Displays the value of fada

end
end

end
endmodule
...
ncsim> run
Value is 4
Value is Hello
Value is Hello
Value is 4
Value is Hello
Value is Hello

SystemVerilog Reference
Arrays

July 2010 92 Product Version 9.2

ncsim: *W,RNQUIE: Simulation is complete.
ncsim> exit

Example 6-3 Dynamic Arrays of Fixed Arrays

The following example shows full array assignment, passing an array by value, passing an
array by reference, port variable connection, reading and writing of full bit select:

module top;
integer da[][0:4];
integer da1[][0:4];
integer da2[][0:4][0:4];
integer fa[0:4];
initial begin

$display ("value = %d\n"; // Displays X
$display ("$bits = %d\n, $bits(da)); // Displays 0
// Creates a dynamic array containing a fixed array of 5 integers:
da = new[10];
// Copies a full dynamic array to another dynamic array:
da = da1;
// Assigns a fixed array to a bit select of a dynamic array:
da[3] = fa;
// Writes to a bit select:
da[3][2] = 1;
// Reads from a bit select:
$display ("value of element da[3][2] = %d\n", da[3][2]);
da2 = new[5];
da2[3][4] = fa;

endmodule

Example 6-4 Dynamic Arrays of Queues

This example shows full array assignment, passing an array by value, passing an array by
reference, port variable, reading and writing of full bit select:

module top;
integer da[][$];
integer da1[][$];
integer queue[$];
initial begin

$display (“value = %d\n”, da[0][0]); // displays x
$display (“$bits = %d\n”, $bits(da)); // displays 0
da = new[10] ; //creates a dynamic array that contains a queue within it
da = da1; // copying full dynamic array to another
da[3] = queue; // fixed array assignment
da[4] = queue[4:5] // part select of queues
da[5] = da[4][4:5] // part select of queues
da[6] = da[2].find (x) with (x> 3);
da[3][0] = 1; // writing bit select
$display (“value of element da[3][2] = %d\n”, da[3][2]); // read bit select

endmodule

SystemVerilog Reference
Arrays

July 2010 93 Product Version 9.2

Example 6-5 Assigning an Entire Fixed Array to a Dynamic Array

An assignment of a fixed array to a dynamic array of a compatible type creates a new dynamic
array with a size equal the length of the fixed array. Correspondence of elements is defined
as leftmost to leftmost and rightmost to rightmost, irrespective of index values, as shown in
the following example:

module top;
int da[];
int fa[5];
initial begin

fa[0]=2;
da=fa;

end
endmodule

module top;
int da[];
int fa[4:1];
initial begin

da = new[4];
da[0] = 4;
fa = da;
$display (“fa[4] = %d\n”, fa[4]); // da[0] maps to fa[4]

end
endmodule

Example 6-6 Assigning an Entire Dynamic Array to a Fixed Array

You can assign a dynamic array to a fixed array of an equivalent type of the same size. The
size checking is performed at run time, and, if the size of the arrays are different, an error is
issued with no operation performed. Correspondence of elements is defined as leftmost to
leftmost and rightmost to rightmost, irrespective of index values:

module top;
int da[];
int fa[6:4];
initial begin

da=new[3];
da[0]=2;
fa=da; // da[0] corresponds to fa[6]

end
endmodule

Example 6-7 Passing Dynamic Arrays by Reference to Tasks and Functions

Passing a piece of a dynamic array by reference to a task or function is not supported. You
can pass only whole objects by reference to a task or function.

module top;
string dyn_arr[];
initial begin
dyn_arr = new[10];
func(dyn_arr); // Calls a time-consuming task
$display("size = %d\n", dyn_arr.size());

SystemVerilog Reference
Arrays

July 2010 94 Product Version 9.2

end
initial
$monitor("value - %s time =", dyn_arr[3], $time);
task automatic func(ref string dyn_arr[]); // Passes dynamic array by

// reference
dyn_arr[3] = "abc"; // Task changes the value of dyn_array;

// the new value is visible to the module
#2;
dyn_arr = new[20]; // Resizes the array
#3;
dyn_arr.delete(); // Deletes the dynamic array
#5;

endtask
endmodule

This example produce the following simulation results:

value - abc time = 0
value - time = 2
value - time = 5
size = 0

Example 6-8 Passing Fixed Arrays by Value to Tasks and Functions

You can pass a fixed array by value to a task or function that accepts dynamic arrays of a
compatible type. For example, the following example passes fixed array fa to task t1, which
is a task that is set up to accept a dynamic array:

module top;
task t1(int da[]);
$display("%d", da[0]);

endtask
int fa[5];
initial begin

fa[0]=2;
t(fa); // Passes fixed array to task t1

end
endmodule

Example 6-9 Passing Dynamic Arrays by Value to Tasks and Functions

You can pass a dynamic array by value to a task or function that accepts fixed arrays of a
compatible type. For example, the following passes dynamic array da to task t2, which is a
task that is set up to accept a fixed array:

module top;
task t2(int fa[10]);
$display("%d", fa[0]);

endtask
int da[];
initial begin

da = new[10];
da[0] =2;
t2(da); // Passes dynamic array to task t2

end
endmodule

SystemVerilog Reference
Arrays

July 2010 95 Product Version 9.2

Example 6-10 Assigning Fixed-Size Arrays to Dynamic Arrays

You can assign a fixed-size array to a dynamic array, if each element is of an equivalent type.
For example:

module top;
int da[];
int fa[5];
initial begin

fa[0] = 2;
da = fa; // Creates a new dynamic array of the same size as fa

end
endmodule

Example 6-11 Assigning Dynamic Arrays to Fixed-Size Arrays

In the current release, you can assign a dynamic array to a fixed-sized array, if they have same
size and are of equivalent types.

For example:

module top;
int da[];
int fa[6:4];
initial begin

da = new[3];
da[0] = 2;
fa = da; // da[0] maps to fa[6]

end
endmodule

Example 6-12 Assigning an Entire Dynamic Array to Another

You can assign a dynamic array to another dynamic array with an equivalent element type:

class C;
int a;

endclass

class C1 extends C;
int b;

endclass

C da_cls[];
C1 da_cls1[];
C da_cls2[];
int fa_int[0:3];
int da_int[];
int da_int1[];
bit [0:31]da_bit[];
string da_str[];
string da_str1[];
da_int = new[4]];
da_int = da_bit /* gives TYPEERR at compile time*/
da_cls = da_cls1 /* gives TYPEERR at compile time*/
da_int = fa_int /* gives TYPEERR at compile time*/
fa_int = da_int /* gives TYPEERR at compile time */

SystemVerilog Reference
Arrays

July 2010 96 Product Version 9.2

da_int = da_int1 /* assigns an entire queue to another*/
da_cls = da_cls2 /* assigns an entire queue to another*/
da_str = da_str1 /* assigns an entire queue to another*/

Limitations on Dynamic Arrays

This section summarizes the features in the SystemVerilog standard that are not supported
in the current release. Differences between the specification shown in the LRM and the
Cadence implementation are also listed.

■ The Cadence implementation supports dynamic arrays of

❑ bit

❑ logic

❑ byte

❑ shortint

❑ int

❑ longint

❑ integer

❑ string

❑ real

❑ Enumerated data types

❑ Packed arrays of bit, logic, and reg

❑ Packed and unpacked structures

❑ Mailboxes

❑ Semaphores

❑ Fixed and associative arrays

❑ Classes

■ The Cadence implementation does not support dynamic arrays within multidimensional
arrays.

■ Dynamic arrays are supported

❑ On module ports

SystemVerilog Reference
Arrays

July 2010 97 Product Version 9.2

❑ At the top level of a module, interface, package, class, or program block

❑ In global compilation units

❑ Within tasks, functions, and class methods

Dynamic arrays are not supported within structures. For example, if a structure is defined
within a module, a dynamic array declaration within the structure is not currently allowed.

■ Dynamic arrays are supported within begin...end blocks that are in the following:

❑ Modules, program blocks, and interfaces, including if...else, while, and for
loops declared within these scopes

❑ Tasks and functions

❑ for generate, if generate, case generate

❑ fork...join, repeat, and forever loops

❑ always blocks

❑ final statements

❑ casex and casez statements

❑ Named blocks

■ Dynamic arrays can be declared as public, static, local, or protected members of
a class that is declared within a package.

■ Multidimensional dynamic arrays are not supported; for example:

reg [0:7] arr[]; // Supported
int int_array[]; // Supported
reg [0:7] arr1[][]; // Unsupported
int int_arr[][]; // Unsupported

■ Assignments made to a part select of a dynamic array are not supported in the current
release.

module test_top;
int arrA[0:7];
int dynarr[];
int dynarr1[];
initial begin

dynarr = new[8];
dynarr1 = new[8];
dynarr[0:2] = arrA[0:2]; // Unsupported
dynarr1[0:2] = dynarr[0:2]; // Unsupported

end
endmodule

SystemVerilog Reference
Arrays

July 2010 98 Product Version 9.2

■ The Cadence implementation specifies an upper limit of (2**31-1) for dynamic arrays.
In the following example, the parser issues a warning if N is greater than (2**31-1). In
this case, the elaborator and simulator will continue with undefined behavior.

dyn_arr = new[N];

■ While the Cadence implementation supports OOMRs and hierarchical references for
dynamic arrays, there is a limitation which does not allow calling methods of the dynamic
array class using hierarchical references. However, you can make such method calls
using local objects after assigning an out-of-scope instance of dynamic array to a local
declaration of the same kind.

■ Passing a part select or element of a dynamic array by reference to a task or function is
not supported. You can pass only whole objects by reference to a task or function. For
example:

task automatic func(ref dynarr[]); // Legal
task automatic func1(ref dynaarr[0]); // Not supported

Dynamic arrays cannot be passed as input, output, or inout types to a task or
function.

■ You cannot use an event control on an entire dynamic array, or on a part select of a
dynamic array. However, you can use an event control on an individual element of a
dynamic array:

int da[];
always @(da) // On entire array. Not supported.
...
always @(da[0:2]) // On part select of the array. Not supported.
...
always @(da[0]) // On an array element. Supported.
...

You cannot use an event control on a part select of a fixed array of dynamic arrays.

Note: All of these limitations apply also to dynamic arrays of strings and classes.

■ The current release supports the sum() array reduction method, but only with dynamic
arrays, as shown in the following example:

module top;
byte da[];
int i;
initial begin

da = new[5];
for (i = 0; i < 5; i ++)

da[i] = i;
i = da.sum();
$display(i); // i becomes 10

end
endmodule

■ The current release does not support the and(), or(), product(), or xor()
methods.

SystemVerilog Reference
Arrays

July 2010 99 Product Version 9.2

■ The current release does not support assigning fixed arrays to dynamic arrays and vice
versa via port variables.

■ Array assignments involving complex expressions like concatenation are not supported.

■ Usage of an entire array is allowed only in assignment statement (not in sensitivity lists
or in system task and functions).

Associative Arrays

SystemVerilog enhances Verilog arrays with the addition of associative arrays. An
associative array is declared using a data type as its special array size. The syntax for
declaring an associative array is as follows:

data_type array_id [index_type]

where:

■ data_type is the data type of the array elements.

■ array_id is the array name.

■ index_type specifies the data type that will be used as an index.

The following are examples of associative array declarations:

logic my_array[integer]; // Associative array with an integer index
...
typedef int foo;
foo myfoo[int]; // Associative array constructed from a typedef

typedef int a_t[string]; // User-defined associative array
a_t a;

Storage for members of an associative array is allocated when that member is created.
Associative arrays are best used when you have limited data space, or when the size of the
collection of variables is unknown.

For a list of unsupported features, refer to “Limitations on Associative Arrays” on page 102.

Access Methods for Associative Arrays

This section uses the following example to describe the built-in methods that provide access
into associative arrays:

module MyMod;
int myArr[byte];
int myVar;
byte myIndex;

SystemVerilog Reference
Arrays

July 2010 100 Product Version 9.2

byte i;
initial begin

myVar = 5;
myIndex = 45;
myArr[34] = 1;
myArr[-66] = myVar;
myArr[myIndex] = 13;

end
endmodule

■ num() method—Returns the number of entries for an associative array. Returns zero for
empty arrays. For example, the following prints “3 items in my array”:

myVar = myArr.num();
$display("%d items in my array", myVar);

■ delete() method—Removes elements in an associative array. The syntax for this
method is as follows:

array_name.delete([input index]);

where index is an optional index of the appropriate type. If index is specified, the
delete() method removes the entry at the specified index. If index is unspecified, the
delete() method removes all of the elements in the array.

For example:

myArr.delete(34); // Deletes entry whose index is 34

■ exists() method—Indicates whether an array element exists for a particular index.
Returns 1 if the element exists; otherwise returns 0. The syntax for this method is as
follows:

array_name.exists(input index);

where index is an index of the appropriate type.

For example, the following displays “Index 45 exists”, because an element exists with an
index of 45:

if (myArr.exists(45))
$display("Index 45 exists");

else
$display("Index 45 does not exist");

■ first() method—Assigns to the given index variable the value of the first or smallest
index in the associative array. Returns 0 if the array is empty; otherwise returns 1. The
syntax for this method is as follows:

array_name.first(ref index);

where index is an index of the appropriate type.

For example:

if (myArr.first(i));
$display ("The first index of the array is %d", i);

SystemVerilog Reference
Arrays

July 2010 101 Product Version 9.2

■ last() method—Assigns to the given index the value of the last or largest index in the
associative array. Returns 0 if the array is empty; otherwise returns 1. The syntax for this
method is as follows:

array_name.last(ref index);

where index is an index of the appropriate type.

For example:
if (myArr.last(i));

$display ("The last index of the array is %d", i);

■ next() method—Locates an entry with an index that is greater than the specified index.
If it finds an entry, the method assigns the index of the located entry to the index variable,
then returns 1. If it cannot find an entry, the method returns 0, and the index variable is
unchanged. The syntax for this method is as follows:

array_name.next(ref index);

where index is an index of the appropriate type.

For example:

if (myArr.first(i));
do
$display ("%d in the current index", i);

while
(myArr.next(i));

■ prev() method—Locates an entry with an index that is smaller than the specified index.
If it finds an entry, the method assigns the index of the located entry to the index variable,
then returns 1. If it cannot find an entry, the method returns 0, and the index variable is
unchanged. The syntax for this method is as follows:

array_name.prev(ref index);

where index is an index of the appropriate type.

For example:

if (myArr.last(i));
do
$display ("%d in the current index", i);

while
(myArr.prev(i));

end

Example 6-13 Assigning One Associative Array to Another

An associative array can be assigned to another associative array with an equivalent element
type and with the same index type.

class C;
int a;

endclass

SystemVerilog Reference
Arrays

July 2010 102 Product Version 9.2

class C1 extends C;
int b;

endclass

int aa_int_cls [C];
int aa_int_cls1[C1];
C aa_cls [int];
C1 aa_cls1[int];
C aa_cls2[int];
int aa_w[*];
int aa_int[int];
int aa_int1[int];
int aa_int2[longint];
bit [0:31]aa_bit[int];
aa_w = aa_int; /* wildcard associative arrays can be assigned to another
wildcard associative array. TYPEERR at compile time.*/
aa_int = aa_bit /* gives TYPEERR at compile time*/
aa_int = aa_int2; /* gives TYPEERR at compile time*/
aa_int_cls = aa_int_cls1 /* gives TYPEERR at compile time*/
aa_cls = aa_cls1 /* gives TYPERR at compile time */
aa_int = aa_int1 /* assigns an entire associative array to another*/
aa_cls = aa_cls /* assigns an entire associative array to another*/

Example 6-14 Passing Associative Arrays by Value to Task and Functions

An associative array can be assigned to another associative array with an equivalent element
type and with the same index type. For example, for the following declaration:

task fun (int aa [int])

consider these actuals:

int aa [int] // allowed

int aa [longint] // not allowed

Limitations on Associative Arrays

This section summarizes the associative array features in the SystemVerilog standard that
are not supported in the current release. Differences between the specification shown in the
LRM and the Cadence implementation are also listed.

■ Although the LRM states that an associative array can use any data type allowed for
fixed-size arrays, the Cadence implementation supports only the following:

❑ int

❑ integer

❑ logic

❑ bit

❑ reg

SystemVerilog Reference
Arrays

July 2010 103 Product Version 9.2

❑ shortint

❑ byte

❑ longint

❑ time

❑ class

❑ string

❑ real

❑ Events

❑ Packed and unpacked structures

❑ Mailboxes

❑ Semaphores

❑ Enumerated data types

❑ User-defined packed types

❑ Unpacked structures

❑ Packed structures

❑ Virtual interfaces

The Cadence implementation does not support the following complex data types for
associative arrays:

❑ Multidimensional arrays

■ The Cadence implementation supports associative array declarations on module ports,
and in modules, interfaces, classes, packages, programs, tasks, functions, global
compilation units, and class methods.

Associative arrays are not supported within generates, unless they are enclosed in a
begin...end block.

■ Associative arrays are supported within begin...end blocks that are in the following:

❑ Modules, program blocks, and interfaces, including if...else, while, and for
loops declared within these scopes.

Associative arrays are not supported in any other sub-scopes of a module, interface,
or program.

SystemVerilog Reference
Arrays

July 2010 104 Product Version 9.2

❑ Tasks and functions

❑ for generate, if generate, case generate

❑ fork...join, repeat, and forever loops

❑ always blocks

❑ final statements

❑ casex and casez statements

❑ Named blocks

■ Associative arrays can be declared as public, static, local, or protected members
of a class that is inside a package, module, interface, or program block.

■ The Cadence implementation supports strings, integers, user-defined packed types,
class handles, and wildcards (*) as index types to associative arrays. However, the user-
defined types described in LRM are not supported. The Cadence implementation does
not support complex user-defined types.

■ The Cadence implementation supports limited indexing into associative arrays, through
bit selects. A bit select can be a constant or dynamic value. For example:

a = myArray[0];
myArray[1] = a;

If you try to read a value that does not exist, the simulator returns the default initial value
for the array type, as specified in Table 5-1 of the LRM. If you specify an invalid index
during a write operation, the simulator ignores the write.

■ The LRM describes the concatenation syntax and how to specify default values for
associative arrays. These features are not supported in the current release.

int a1[int] {default:1}; // Unsupported

■ The Cadence implementation does not support OOMRs or hierarchical references. You
can reference an associative array only from the scope in which it was declared.
However, if an associative array is declared within a package, you can reference it from
other scopes.

■ In the Cadence implementation, you can update values in an associative array through
calls to the methods discussed in “Access Methods for Associative Arrays” on page 99,
or through standard blocking assignments. You can only use blocking assignments to
assign a single bit-select item; blocking assignments cannot be a part of a complex
expression, such as concatenation or part selects.

The Cadence implementation does not support other methods of updating values, which
include forces, continuous assignments, or non-blocking assignments.

SystemVerilog Reference
Arrays

July 2010 105 Product Version 9.2

■ Passing a piece of an associative array by reference to a task or function is not
supported. You can pass only whole objects by reference to a task or function.

■ Assignments to a part select of an associative array are not supported in the current
release. For example:

int aa[int];
int aa1[int];
initial begin

aa[0:3] = aa1[0:3]; // Not supported--part-select assignment
end

■ You cannot use an event control on an entire associative array, or on a part select of an
associative array. However, you can use an event control on an individual element of an
associative array:

int aa[byte];
always @(aa) // Not supported on entire array
always @(aa[0:2]) // Not supported on part select of the array
always @(aa[0]) // Supported on an array element

■ In the current release, associative arrays can be declared as rand, but not as randc.
For more information, see “Limitations on Random Variables” on page 183.

■ Array assignments involving complex expressions like concatenation are not supported.

■ Usage of an entire array is allowed only in assignment statement (not in sensitivity lists
or in system task and functions).

Queues

For examples that you can download and run, refer to the SystemVerilog Engineering
Notebook.

SystemVerilog introduces the queue construct, which is a variable-sized collection of
elements of a declared data type. Queues are similar to one-dimensional, unpacked arrays
whose size can increase or decrease automatically.

A queue is declared like an array, but uses a dollar sign ($) for its range. The maximum size
of an array can be limited by specifying an optional constant_expression as its last
index. The syntax for declaring a queue is as follows:

data_type queue_id [$[:constant_expression]]

For example:

int myArray[0:63]; // A standard array of 64 integers
int myQueue[$]; // A queue of integers
bit q1[$:63]; // A queue with a maximum size of 64 bits

typedef int foo; // A queue constructed from a typedef

../svNtbk/svNtbkTOC.html#firstpage
../svNtbk/svNtbkTOC.html#firstpage

SystemVerilog Reference
Arrays

July 2010 106 Product Version 9.2

foo q2[$];

typedef int q_t[$]; // A user-defined queue
q_t q;

Queue members are identified by numbers that represent their position in the queue. Zero
represents the leftmost (first) member of the queue, and $ represents the rightmost (last)
member.

Access Methods for Queues

This section describes the built-in methods that provide access into queues.

■ size() method—Returns the number of elements in a queue. Returns 0 for empty
queues. For example:

int ww55[$];
q = ww55.size(); // Returns 0

Note: When used in a constraint expression, the built-in .size() method of a queue
has the appearance of a state variable. The constraint will not set the size of a rand
queue. This is a limitation outlined by the LRM.

■ insert() method—Inserts the specified item at the specified index position. For
example, the following inserts element 0 at position 15 within the queue called ww55.

ww55.insert(0,15);

■ delete() method—Deletes the element at the specified position. For example, the
following deletes the element at position 0 within the queue called ww55:

ww55.delete(0);

The argument to the delete() method is optional. If the argument is missing, the entire
contents of the queue are deleted.

ww55.delete(); // Deletes contents of myq

Note: You can also use the ‘{} construct to empty a queue. For example:

q = ‘{} // Deletes the content of the queue

■ pop_front() method—Removes and returns the first element in a queue. For
example, the following removes and returns the first element in ww55:

q = ww55.pop_front();

■ pop_back() method—Removes and returns the last element in a queue. For example,
the following removes and returns the last element in ww55.

q = ww55.pop_back();

■ push_front() method—Inserts the specified element at the beginning of the queue.
For example, the following inserts 1 at the beginning of queue ww55:

SystemVerilog Reference
Arrays

July 2010 107 Product Version 9.2

ww55.push_front(1);

■ push_back() method—Inserts the specified element at the end of the queue. For
example, the following inserts 15 at the end of queue ww55:

ww55.push_back(15);

Example 6-15 Queues of Fixed Arrays

This example shows full array assignment to a queue, passing a queue by value, passing a
queue by reference, port variable connection, reading and writing of full bit select:

module top;
integer q[$][0:4];
integer q1[$][0:4];
integer q2[$][0:4][0:4];
integer fa[0:4];
initial begin

$display (“value = %d\n”, q[0][0]); // x
q = q1; // copying full queue to another
q[0] = fa; // fixed array assignment
q[0]][2] = 1; // writing bit select
$display (“value of element q[0][2] = %d\n”, q[0][2]); // reading bit

select
q2[0][0] = fa

endmodule

Example 6-16 Fixed Arrays of Queues

This example shows full array assignment to a queue, passing a queue by value, passing a
queue by reference, port variable connection, reading and writing of full bit select:

module top;
integer fa_q[0:4][$];
integer fa_q1[0:4][$];
integer fa_q2[0:4][0:4][$]
integer fa[0:4];
integer q[$];
initial begin

$display (“value = %d\n”, fa_q[0][0]); // x
fa_q = fa_q1; // copying full fixed array of queues to another
fa_q[0]= q; // queue assignment
fa_q[0]][2] = 1; // writing bit select
$display (“value of element fa_q[0][2] = %d\n”, fa_q[0][2]); // read bit

select
endmodule

Example 6-17 Queues of Associative Arrays

This example shows full array assignment to a queue, passing a queue by value, passing a
queue by reference, port variable connection, reading and writing of full bit select:

module top;
integer q[][*]];
integer q1[$][*];

SystemVerilog Reference
Arrays

July 2010 108 Product Version 9.2

integer aa[*];
initial begin

$display (“value = %d\n”, q[0][0]); // x
q = q1; // copying full dynamic array to another
q[0]] = aa; // associative array assignment
q1 = q[4:5] // part select of queues
q1 = q.find (x) with (x> 3); //gives an error
q1 = q.find (x) with (x[0]> 3); // works
q[0][0] = 1; // writing bit select
$display (“value of element q[0][0] = %d\n”, q[0][0]); // reading bit

select
endmodule

Example 6-18 Assigning One Queue to Another

A queue be assigned to another queue with an equivalent element type and with the same
maximum size.

class C;
int a;

endclass

class C1 extends C;
int b;

endclass

C q_cls[$];
C1 q_cls1[$];
C q_cls2[$];
int q_int[$];
int q_int1[$];
int q_int2[$:3];
bit [0:31]aa_bit[$];
string q_str[$];
string q_str1[$];
q_int = q_bit /* gives TYPEERR at compile time*/
q_int = q_int2; /* gives TYPEERR at compile time, maximum size differs*/
q_cls = q_cls1 /* gives TYPEERR at compile time*/
q_int = q_int1 /* assigns an entire queue to another*/
q_cls = q_cls2 /* assigns an entire queue to another*/
q_str = q_str1 /* assigns an entire queue to another*/

Example 6-19 Passing a Queue by Value to Tasks and Functions

You can pass a queue by value to another queue with an equivalent element type and with
the same maximum size. For example, for the following declaration:

task fun (int q [$])

consider the these actuals:

int q [$] // allowed

longint q_1 [$] // not allowed, TYPEERR

int q[$:3] // not allowed, TYPERR

Example 6-20 Using Slices of Queue on Right-Hand Side of an Assignment

SystemVerilog Reference
Arrays

July 2010 109 Product Version 9.2

You can use queue slices on the right-hand side of an assignment, if the element types of
queues on both the right-hand side and left-hand side are equivalent. For example:

int q[$];
int q1[$:9];
int q2 [$:2];
int q3[$:3];
int q4[$:4];
q = q1[1:7]; // Gives TYPERR error at elab time because maximum size of

// queues differ.
q = q [7:1] // Yields an empty queue and gives a warning during simulation
q = q[1:1] // Yields a queue with one item
q = q[-1:5] is same as q = q[0:5];
q = q [1:b] where b > $(last index) is same as q[1:$]
q = q2 [4:5]; // Gives an error because maximum size differs.
q[0] = 3;
q[1] = 4;
q[2] = 5;
q = q[1:2] ; // Yields a queue with only two items in it.

Example 6-21 Passing Slices of Queue by Value to Tasks and Functions

You can pass a queue slice by value to another queue whose element is of equivalent type.
For example, a task declared as follows:

task fun (int q [$])

is passed the following queue slices:

int q [$] // Declaration
q[0:6] // Allowed
longint q_1 [$] // Declaration
q_1[0:8] // Not allowed; gives TYPEERR at compile time

Example 6-22 Assigning a Queue to a Dynamic Array

You can assign a queue to a dynamic array of a compatible type. The assignment creates a
new dynamic array with a size equal to the length of the queue. Element correspondence is
defined as leftmost to leftmost, rightmost to rightmost, irrespective of index values, as shown
in the following example:

module top;
int da[];
int q[$];
initial
begin

q[0]=2;
da=q;
end

initial
$display ("Size of da is %d\n", da.size()); // Size of da is 1

endmodule

Example 6-23 Passing a Queue by Value to Tasks and Functions

SystemVerilog Reference
Arrays

July 2010 110 Product Version 9.2

You can pass a queues by value to another queue with an equivalent element type and with
the same maximum size. For example, for the following declaration:

task fun (int q [$])

consider the following actuals:

int q [$] // allowed

longint q_1 [$] // not allowed, TYPEERR

int q[$:3] // not allowed, TYPERR

Example 6-24 Passing a Queue by Value to a Task or Function as Dynamic Array

A subroutine that accepts a dynamic array can be passed a queue of a compatible type. Rules
 for assigning a queue to a dynamic array, defined above, are applicable. For example:

module top;
task t(int da[]);

$display("%d",da[0]); // Value is 2
endtask
int q[$];
initial
begin

q[0]=2;
t(q);

end
endmodule

Example 6-25 Connecting a Queue to a Dynamic Array via a Port Variable

In the following example, the actual argument is a dynamic array, and the formal argument is
an output variable of a queue and of compatible type in the port connection:

module top;
int da[];
bot b1(da);
initial #1 $display ("size of da is %d\n", da.size()); // Size is 2

endmodule

module bot (output var int q[$]);
initial q[0] = 1;
initial q[1] = 1;

endmodule

In this example, the actual argument is a queue, and the formal argument is an input variable
of a dynamic array and of equivalent type in the port connection:

module top;
int q[$];
initial q[0] = 1
initial q[1] = 1;
bot b1 (q);

endmodule

module bot (input var int da[]);

SystemVerilog Reference
Arrays

July 2010 111 Product Version 9.2

initial #1 $display ("size of da is %d\n", da.size()); // Size is 2
endmodule

Note: The following scenarios are not supported, and generate an error for incompatible
type:

■ The actual argument is a dynamic array and the formal argument is an input variable of
a queue and of compatible type in the port connection.

■ The actual argument is a queue, and the formal argument is an output variable of a
dynamic array and of equivalent type in the port connection.

Limitations on Queues

This section summarizes the features in the SystemVerilog standard that are not supported
for queues in the current release. Differences between the specification shown in the LRM
and the Cadence implementation are also listed.

■ The Cadence implementation supports only the following data types for queues:

❑ int

❑ integer

❑ logic

❑ bit

❑ reg

❑ shortint

❑ byte

❑ longint

❑ time

❑ class

❑ string

❑ real

❑ Packed unions

❑ Unpacked structs

❑ Packed and unpacked structures

SystemVerilog Reference
Arrays

July 2010 112 Product Version 9.2

❑ Fixed and associative arrays

❑ Mailboxes

❑ Semaphores

❑ Enumerated data types

❑ User-defined packed types

❑ Virtual interfaces

The Cadence implementation does not support the following complex data types for
queues

❑ Multidimensional arrays

❑ Events

■ The Cadence implementation supports queue declarations on module ports and within
modules, interfaces, classes, packages, program blocks, tasks, functions, global
compilation units, and class methods. Queues are not supported within generates,
unless enclosed in a begin...end block.

■ Queues are supported within begin...end blocks that are in the following:

❑ Modules, program blocks, and interfaces, including if...else, while, and for
loops declared within these scopes.

Queues are not supported in any other sub-scopes of a module, interface, or
program.

❑ Tasks and functions

❑ for generate, if generate, case generate

❑ fork...join, repeat, and forever loops

❑ always blocks

❑ final statements

❑ casex and casez statements

❑ Named blocks

■ Queues can be declared as public, static, local, or protected members of a class
that is inside a package, module, interface, or program block.

■ The Cadence implementation supports limited indexing into queues, through bit-selects.
A bit select can be a constant or dynamic value. For example:

SystemVerilog Reference
Arrays

July 2010 113 Product Version 9.2

a = myQueue[0];
myQueue[1] = a;

If you try to read a value that does not exist, the simulator returns the default initial value
for the queue, as specified in Table 5-1 of the LRM. If you specify an invalid index during
a write operation, the simulator ignores the write.

■ The LRM specifies a concatenation-like syntax for initializing queues and part-select
operations. The Cadence implementation does not support these features. For example,
the following is not supported:

int q1[$] = {1,2,3}; // Invalid

■ The Cadence implementation does not support OOMRs or hierarchical references. You
can reference a queue only from the scope in which it was declared. However, if the
queue is declared within a package, you can reference it from other scopes.

■ In the Cadence implementation, you can update values in a queue through calls to the
methods discussed in “Access Methods for Queues” on page 106, or through standard
blocking assignments. You can use blocking assignments to assign only a single bit-
select item; blocking assignments cannot be a part of a complex expression, such as
concatenation or part selects.

The Cadence implementation does not support other methods of updating values, which
include forces, continuous assignments, or non-blocking assignments.

■ Passing a piece of a queue by reference to a task or function is not supported. You can
pass only whole objects by reference to tasks and functions.

■ You can pass a queue or a part select of a queue by value to: a task, function, method,
or another queue that has the same element type and maximum size.

package p;
typedef reg [0:45] q_type[$]; // Queue typedef
 function void copy_print_q (q_type q); // Passes queue by value to

// a function
...
endfunction

...
endpackage

■ You can use $ in operations on a queue’s index. For example:

myQueue[$+1] = 1;
e = myQueue[$-1];

However, the following is not supported:

myqueue = myqueue {myqueue[0:pos-1], e, myqueue[pos:$]};
//Not supported. $ in concatenation expressions.

■ Assigning an entire queue to another queue is supported, but they must be compatible—
that is, they have the same element type and maximum size:

SystemVerilog Reference
Arrays

July 2010 114 Product Version 9.2

int q[$];
int q1[$];
...
q = q1; // Whole assignment

Note: Entire queues are supported only in assignments. You cannot use entire queues
in other places such as a system task, system function, or sensitivity list.

■ Part selects of a queue are not supported on the left-hand side of an assignment. Part
selects of queues are supported on the right-hand side of an assignment, provided the
element types on the right and left sides are equivalent.

int q[$];
int q1[$:9];
int q2[$];
...
q = q1[1:7]; // Illegal; maximum sizes are different
q[0:3] = q1[0:3]; // Not supported; part select on left side
q = q2[0:5]; // Supported; right and left sides of equivalent types

■ Indexed part selects of queues are not supported.

■ You cannot use an event control on an entire queue, or on a part select of a queue.
However, you can use an event control on an individual element of a queue.

int q[$];
always @(q) // Not supported on entire queue
always @(q[0:2]) // Not supported on part select
always @(q[0]) // Supported on an element of the queue

■ Usage of an entire array is allowed only in assignment statement (not in sensitivity lists
or in system task and functions).

Array Manipulation Methods

SystemVerilog provides array locator and array reduction methods, which are built-in
methods used to search through the indices of an array for a given expression. In
SystemVerilog, array methods operate on any unpacked array, including queues and
associative arrays, but have a queue return type.

Array manipulation methods have the following syntax:

array_id.array_method (iterator_argument) with (expression)

where:

■ array_id specifies the array to traverse.

■ array_method specifies the array method.

■ iterator_argument specifies the name of the variable to use in the with
expression. This variable is implicitly declared, and its scope is the with expression.

SystemVerilog Reference
Arrays

July 2010 115 Product Version 9.2

This variable is optional. If you do not designate a variable, the method uses the default
name item.

■ expression is used to iterate over the elements of the given array.

For example:

int IQ[$], qi[$];

qi = IQ.find(x) with (x > 5); // Searches for all elements greater than 5
qi = IQ.find_index with (item == 3); // Searches for indices of items equal to 3

Table 6-1 Array Locator Methods

Method Description

find() Finds all of the elements that satisfy the given
expression. Traverses the array from front to back.

find_first() Finds the first element that satisfies the given expression.
Traverses the array from front to back.

find_first_index() Returns the index of the first element that satisfies the
given expression. Traverses the array from front to back.

find_index() Returns the indexes of all elements that satisfy the given
expression. Traverses the array from front to back.

find_last() Returns the last element that satisfies the given
expression. Traverses the array from back to front.

find_last_index() Returns the index of the last element that satisfies the
given expression. Traverses the array from back to front.

min() Returns the element with the minimum value or whose
expression evaluates to a minimum.

max() Returns the element with the maximum value or whose
expression evaluates to a maximum.

unique() Returns all elements with unique values or whose
expression evaluates to a unique value. The queue
returned contains one and only one entry for each of the
values found in the array. The ordering of the returned
elements is unrelated to the ordering of the original array.

SystemVerilog Reference
Arrays

July 2010 116 Product Version 9.2

Note:

■ If relational operators (<, >, ==) are defined for the element type of the given array, then
it is optional to use the with clause.

For a QDA of element type integral (int, bit, packed array, packed struct, logic)
or real, the with clause may be skipped as the required relational operators can be
applied directly to the array elements.

■ If relational operators (<, >, ==) are not defined for the element type of the given array,
then it is mandatory to use the with clause.

A queue of queue of int (that is, int q[$][$]) q has an element type as queue of int,
on which the operators < and > are not defined. Therefore, the with clause is
mandatory.

■ When the with clause is specified, the relational operators (<, >, ==) are defined for the
type of the expression.

Expressions are not expected to be boolean, except for the find locator methods. So,
we may have expressions of the form (item.size() + 5), where item may be a queue.
And because the relational operators (<, >, ==) apply to the entire expression, such an
expression is supported.

Example 6-26 Using Array Locator Methods

1.

module top;
int myAA[*], qi[$];
initial begin

myAA[2] = 2;
myAA[4] = 1;
myAA[8] = 0;
myAA[16] = 100;
myAA[32] = 344;
myAA[64] = 344;
myAA[128] = 35;

unique_index() Returns the indices of all elements with unique values or
whose expression evaluates to a unique value. The queue
returned contains one and only one entry for each of the
values found in the array. The ordering of the returned
elements is unrelated to the ordering of the original array.
The index returned for duplicate valued entries may be the
index for one of the duplicates.

Method Description

SystemVerilog Reference
Arrays

July 2010 117 Product Version 9.2

myAA[256] = 100;
myAA[512] = 456780;
myAA[1024] = 345;

qi = myAA.find(x) with (x < 6); // Returns a queue of {2,1,0}
qi = myAA.find_first with (item == 100); // Returns a queue of {100}
qi = myAA.find with (item == 100); // Returns a queue of {100,100}
qi = myAA.find_last with (item > 340); // Returns a queue of {345}
qi = myAA.find_first_index with (item == 35); // Returns a queue of {128}
qi = myAA.find_first_index(s) with (s > 456700); // Returns a queue of

// {512}
qi = myAA.find_last_index with (item == 344); // Returns a queue of {64}
qi = myAA.find_first_index(s) with (s == 100); // Returns a queue of {16}

end
endmodule

2.

int f[6]; // values: 1, 6, 2, 6, 8, 6
int d[]; // values: 2, 4, 6, 8, 10
int q[$]; // values: 1, 3, 5, 7
int tq[$];

tq = q.min(); // {1}
tq = d.max(); // {10}
tq = f.unique(); // {1, 6, 2, 8}

3.

module arr_me;

string SA[10], qs[$];
int IA[int], qi[$];

initial begin
SA[1] = “Bob”;
SA[2] = “Abc”;
SA[3] = “Henry”;
SA[4] = “John”};
SA[5] = “Bob”;
IA[2]=3;
IA[3]=13;
IA[5]=43;
IA[8]=36;
IA[55]=237;
IA[28]=39;

// Find smallest item
qi = IA.min; // 3

// Find string with largest numerical value
qs = SA.max with (item.atoi); // to test

// Find all unique string elements
qs = SA.unique; // { “Bob”, “Abc”, “Henry”, “John” }

// Find all unique strings in lowercase
qs = SA.unique(s) with (s.tolower); // { “bob”, “abc”, “henry”, “john” }

end
endmodule

SystemVerilog Reference
Arrays

July 2010 118 Product Version 9.2

Table 6-2 Array Reduction Methods

Array reduction methods may be applied to any unpacked array of integral values to reduce
the array to a single value. The expression within the optional with clause is used to specify
the values to use in the reduction. The values produced by evaluating this expression for each
array element are used by the reduction method. This is in contrast to the array locator
methods where the with clause is used as a selection criteria.

The method returns a single value of the same type as the array element type or, if specified,
the type of the expression in the with clause. The with clause may be omitted if the
corresponding arithmetic or boolean reduction operation is defined for the array element type.
If a with clause is specified, the corresponding arithmetic or boolean reduction operation is
defined for the type of the expression.

Example 6-27 Using Array Reduction Methods
byte b[] = { 1, 2, 3, 4 };
int y;
y = b.xor with (item + 4); // y becomes 12 => 5 ^ 6 ^ 7 ^ 8

Limitations on Array Methods

■ In the current release, array manipulation methods are supported only for queues,
dynamic arrays, and associative arrays.

■ As per the SystemVerilog LRM, the index locator methods for associative arrays are not
allowed for wildcard-indexed associative arrays.

Method Description

and Returns the bitwise AND (&) of all of the array elements or,
if a with clause is specified, returns the bitwise AND of the
values yielded by evaluating the expression for each array
element.

or Returns the bitwise OR (|) of all of the array elements or,
if a with clause is specified, returns the bitwise OR of the
values yielded by evaluating the expression for each array
element.

xor Returns the bitwise XOR (̂) of all of the array elements or,
if a with clause is specified, returns the bitwise XOR of the
values yielded by evaluating the expression for each array
element..

SystemVerilog Reference
Arrays

July 2010 119 Product Version 9.2

Array Equality Operators

The following operators are allowed on queues and dynamic arrays:

■ Logical equality operators (==, !=)

If, due to unknown or high-impedance bits in the operands, the relation is ambiguous, the
result of logical equality and logical inequality operators (== and !=) is a 1-bit unknown
value (x).

■ Case equality operators (===, !==)

For the result of the case equality and case inequality operators (=== and !==) to be
equal, bits that are x or z must be included in the comparison and match. The result of
these operators always is a known value, either 1 or 0.

If the two operands of a comparison operator are aggregate expressions, they should be of
equivalent type. Dynamic array, associative array, and queue types are equivalent if they are
the same kind of array (dynamic, associative, or queue), have equivalent index types (for
associative arrays), and have equivalent element types.

If the types are not equivalent, an error message is issued. For example, if a dynamic array
is compared with a queue, the simulator reports an error.

Example 6-28 Using Array Equality Operators

1.

module top;
int da[];
int da1[];

da = new [10];
da1 = new[10];
if (da == da1)

$display (“equal”);
else

$display (“unequal”); // output is unequal as the entries in da have value X

if (da === da1) //case equality operator,this will match up x’s also.
$display (“equal;”); // output equal will be printed.

else
$display (“unequal”);

2.

Class C;
Int a;

endclass
C q[$];
C q1[$:6];
Initial begin

q[0] = new;

SystemVerilog Reference
Arrays

July 2010 120 Product Version 9.2

q[0].a = 45;
q1[0] =new;
q1[0].a = 45;
if (q == q1)

$display (“equal”);
else

$display (“unequal”); // output is unequal as the entries in q have different
class handles

q1[0] = q[0];
if (q == q1)

$display (“equal”); // output is equal as the entries in q have same
class handles

else
$display (“unequal”);

3.

string aa[int];
string aa1[int];
initial begin

aa[0] = “CADENCE”;
aa1[10] = “CADENCE”
if (aa == aa1)

$display (“equal”);
else

$display (“unequal”); // output is unequal as the entries in aa have
different index

aa1[0] = “CADENCE”;
aa1[10] = “”;
if (aa == aa1)

$display (“equal”); // output is equal as the entries in aa have the same
data and index values

else
$display (“unequal”); //

Arrays as Function Return Types

In SystemVerilog, you can declare and define functions that return queues, associate arrays,
and dynamic arrays, both single and multi-dimensional arrays.

The following multi-dimensional arrays are the currently supported as function return types:

■ Dynamic arrays of fixed arrays

■ Fixed arrays of dynamic arrays

■ Fixed arrays of dynamic arrays of fixed arrays

■ Dynamic arrays of queues

In addition, the following multi-dimensional arrays are supported when you provide the -SVEA
option to the simulator:

■ Queues of associative arrays

SystemVerilog Reference
Arrays

July 2010 121 Product Version 9.2

■ Fixed arrays of queues

Note: If there is a current limitation on data types for these arrays, that limitation also applies
to the return values of functions.

Example 6-29 Functions Returning Queues, Dynamic Arrays, and Associative Arrays
module top ();

typedef int ida[];
typedef int iqa[$];
typedef int iaa[*];

ida d;
iqa q;
iaa a;

initial begin
d = retDA(5);
q = retQA(5);
a = retAA(5);

end

function ida retDA(int size);
static ida ld;
/*function body manipulating ld*/
return ld;

endfunction

function iqa retQA(int size);
static iqa lq;
/*function body manipulating lq*/
return lq;

endfunction

function iaa retAA(int size);
static iaa la;
/*function body manipulating la*/
return la;

endfunction

endmodule

Example 6-30 Functions Returning Multi-Dimensional Arrays
module top ();

typedef int ifa[5][$];
typedef int ida[][$];

ifa f;
ida d;

initial begin
f = retFA(5);
d = retDA(5);

end

function ifa retFA(int size);
static int lf[5][$];
/*function body manipulating lf*/
return lf;

endfunction

SystemVerilog Reference
Arrays

July 2010 122 Product Version 9.2

function ida retDA(int size);
static int ld[][$];
/*function body manipulating ld*/
return ld;

endfunction

endmodule

Debugging Queues and Arrays

For information about how to debug queues and arrays using the Tcl command-line interface
or the SimVision analysis environment, refer to SystemVerilog in Simulation.

../svsim/svsimTOC.html#firstpage

SystemVerilog Reference

July 2010 123 Product Version 9.2

7
Data Declarations

Value Parameters

For value parameters, the value is defined during elaboration and persists throughout
simulation. Value parameters are defined with data types and default values. Data
parameters can be defined using the non-ANSI style:

parameter data_type parameter_name = value;

For example:

module m();
parameter type tp = c1; // Where c1 is a previously-declared class data type

endmodule

Value parameters can also be defined using the ANSI style for classes or any design unit:

#(parameter data_type parameter_name = value);

For example:

class elementManager #(parameter integer elementCount = 100, parameter type
elementType = int);
...

endclass

Note: The parameter keyword is optional in the port list format:

class elementManager #(integer elementCountB = 50);
...

The current release supports only integral data types for value parameters. Integral data
types include shortint, int, longint, byte, bit, logic, reg, integer, time, packed
array data types, packed structure data types, and enumeration data types.

Value parameters cannot be declared with a data type that, in any way, references a type
parameter.

SystemVerilog Reference
Data Declarations

July 2010 124 Product Version 9.2

Type Parameters

The current release supports type parameters, which are described in the IEEE standard. For
a list of limitations, refer to “Limitations on Type Parameters” on page 125.

Type parameters are parameters that specify a data type, using the keyword type. The
parameter is bound to the specific data type during elaboration and throughout simulation.

Notes:

■ Type parameters are not local parameters; they cannot be preceded by the keyword
local. Furthermore, type parameters are not specparams; they cannot be placed within
specify blocks or preceded by the prefix spec.

■ A defparam statement cannot assign to a type parameter.

Note: The simulator supports the defparam statement only for parameters and
defparam expressions that were legal in Verilog. The defparam statement is not
supported for SystemVerilog data types.

■ In an assignment to, or override of, a type parameter, the right-hand expression
represents a data type.

Defining Type Parameters

Type parameters can be defined in any design unit, such as modules, packages, interfaces,
and programs; as well as in any block, such as tasks, functions, begin...end, and
fork...join. Because packages and blocks cannot be overridden, defining type
parameters within them might not be useful.

Type parameters can be defined using the non-ANSI style:

parameter type parameter_name = data_type;

For example:

module m();
parameter type tp = c1; // Where c1 is a previously-declared class data type

endmodule

Type parameters can also be defined using the ANSI style for classes or any design unit:

#(parameter type parameter_name = data_type);

For example:

module elementManager #(integer elementCount = 100, parameter type
elementType = int);
...

SystemVerilog Reference
Data Declarations

July 2010 125 Product Version 9.2

var elementType elements[elementCount];
...

endmodule

Note: The parameter keyword is optional in the port list format.

In this example, the elementManager module defines a value parameter called
elementCount, and a type parameter called elementType. The elements variable is also
declared; this variable is an array whose size is given by the elementCount parameter, and
whose data type is given by the elementType parameter.

When this module is instantiated, the data type will be associated with its type parameter. For
example:

module test();
class C;
...
endclass

// Following overrides value and type parameters
elementManager #(200, C) inst();

// Following provides overrides using named assignments
elementManager #(.elementType(int), .elementCount(200)) inst2();

// Following uses default values
elementManager #() inst3();

endmodule

The inst instance of the elementManager module assigns the value of 200 to the
elementCount parameter, and associates the C data type with the elementType
parameter. Within this instance, the elements variable is an array of 200 class handles for
class C.

Additional Examples

You can use type parameters as the data type of a type parameter:

parameter type tp1 = C; // C is a previously declared class data type
tp myvar; // Variable using type parameter as data type

You can use type parameters as an array index type:

parameter type tp2 = C2; // Where C2 is a previously declared class data type
tp1 aa[tp2]; // Used as the element and array index type

You can use type parameters within the built-in mailbox class:

mailbox #(tp1) mbox; // Uses type parameter in a mailbox

Limitations on Type Parameters

In the current release:

SystemVerilog Reference
Data Declarations

July 2010 126 Product Version 9.2

■ All assignments to type parameters must resolve to integral types, class data types,
strings, or real types; they cannot resolve to unpacked structs, queues, dynamic or
associative arrays, fixed arrays, mailboxes, or semaphores.

■ Type parameters of non-class data types can be used as elements of a queue, dynamic
or associative array, index of an associative array, or mailbox.

Type parameters of non-class data types cannot be used as members or elements of a
vector or static array. They cannot have built-in methods called on them, such as
str.len().

■ References to type parameters are restricted to type parameter assignments and
overrides.

■ Variables declared with a type parameter as their data type cannot be used

❑ Within a clocking block as an input, output, or inout declaration

❑ In OOMRs

■ Type parameters can be used as class data types, but not as class templates. For
example, the following results in an error:

class C4#(b = 1);
...
endclass
parameter type tp5 = C4;
tp5 #(37) myvar2; // Unsupported

Const Constants

In SystemVerilog, you can declare a variable as a constant by using the const keyword.
Constants declared as const are assigned after elaboration. The const keyword is
supported for variable declarations, in ref arguments, and on class properties.

The current release enforces the following LRM limitations:

■ The value of a const variable can only be set in an initializer on the variable declaration.
Assigning a const variable in any other context will result in an error.

■ Assigning to a const ref argument will result in an error.

Example
typedef union packed {

struct packed {
byte b1;
byte b2;
} by_byte;
bit [16:0] B16;

SystemVerilog Reference
Data Declarations

July 2010 127 Product Version 9.2

} u_1;

// Following assignment causes an error, because it assigns to a
// const ref argument

function automatic void myfunc (const ref int fi);
fi = 12; // Error

endfunction

module test();

const logic [3:0] d =4’ha; // Packed variable const
const u_1 u1 = 16’habcd; // Union const
event e1;
const event e2 = e1; // Named event const
logic [3:0] b = 4’h0;

// Following assignments cause an error, because they are made outside of an
// initializer of the variable declaration

initial begin
d[0] = b[0]; // Assignment through bit select
d[2:1] = b[2:1]; // Assignment through part select
d = 4’ha; // Packed variable
u1.B16 = 16’hfedc; // Assignment through union member
e2 = null; // Event
myfunc(10);

end

endmodule

When you run this example, you get error messages for assigning to a const ref argument,
and for assigning a value to a constant variable outside of variable initialization:

irun non_class_const_support.sv
...
d[0] = b[0]; // Error detected, bit select
ncvlog: *E,CONASN (non_class_const_support.sv,20|2): Constant variable cannot
be assigned outside of an initialization.
...
fi = 12; // Error detected, const ref arg
|
ncvlog: *E,CONASN (non_class_const_support.sv,8|3): Constant variable cannot
be assigned outside of an initialization.

SystemVerilog Reference
Data Declarations

July 2010 128 Product Version 9.2

Declaring Variables with Initializers

Variables can be declared in the following ways:

int myint, myint2; // Short form; data type followed by the instances
var myvar; // Using the keyword var. Data type is optional.

// Defaults to type logic.
int a = 0; // With an initializer

In SystemVerilog, initialization values for static variables are executed before initial or
always blocks. This behavior is unlike Verilog, where static variables behave like any other
initial block. Also, initializers in SystemVerilog do not need to be simple constants.

In the current release, static variables with an initializer that are declared within a procedural
scope—such as tasks, functions, and named/unnamed blocks—must use the static
keyword:

task mytask;
static int b = 1; // Static keyword is required
...
endtask

This limitation was introduced in the Accellera 3.1a LRM, but was removed in the IEEE 1800
standard.

Declaring Local Variables in Unnamed Blocks

In Verilog-2001, you can declare local variables in named begin...end or fork...join
blocks. A local variable declared in a named block can be referenced by using a hierarchical
path. For example, in the following code, there are two variables named i, which are
referenced by the hierarchical names foo.i and foo.loop.i.

module foo (...);
integer i;
...
initial

begin: loop
integer i;
for (i = 0; i < 10; i = i + 1)

begin
...
end

end

In SystemVerilog, you can declare local variables in unnamed blocks, as well as in named
blocks. For example:

initial
begin

integer i;
for (i = 0; i < 10; i = i + 1)

begin

SystemVerilog Reference
Data Declarations

July 2010 129 Product Version 9.2

...
end

end

Variables declared in an unnamed block are visible to the unnamed block and any nested
blocks below it. However, because the block has no name, the variables cannot be referenced
using hierarchical paths.

Continuous Assignments to Variables

In Verilog-2001, a net can be written by one or more continuous assignments or primitive
outputs, or through module ports. The left-hand side of a continuous assignment can only be
a net data type, such as wire. The continuous assignment is a driver of the net, and nets
can have any number of drivers. A net cannot be procedurally assigned. Variables, on the
other hand, cannot be used on the left-hand side of continuous assignments. Variables can
only be used on the left-hand side of procedural assignments.

SystemVerilog removes this restriction and permits continuous assignments to variables, in
addition to nets. You can assign to a variable with a continuous assignment, and whenever
any of the inputs in the right-hand side expression of the assignment changes, the expression
is evaluated and the result becomes the new value of the variable.

In the following example, the answer port is a variable that is the target of a continuous
assignment. Whenever left or right changes value, the answer variable is updated
automatically with the new value of left & right.

module and2(answer, left, right);
output logic answer;
input wire left;
input wire right;

assign answer = left & right;
endmodule

Note: Using the logic data type on a port can affect optimization and performance.

A variable can also be connected to an output port in a module instantiation, or to the output
of a primitive. Semantically, this connection acts as an implicit continuous assignment, in
which the variable is being continuously assigned the value of the output port.

In the following example, the result variable in the top module is passed to an output port
in a module instantiation. There is no explicit continuous assignment to result, but one is
implied by the connection to the output port in the module instantiation. The result variable
is automatically updated with each change in the value of the answer output port in the
instanced module.

module and2(answer, left, right);
output answer;

SystemVerilog Reference
Data Declarations

July 2010 130 Product Version 9.2

...
endmodule

module top;
wire left;
wire right;
reg result;
and2 and2 (result, left, right);

endmodule

The SystemVerilog LRM specifies that a variable can have only a single source for its value.
If a variable is used on the left-hand side of a continuous assignment, that assignment is the
only one permitted for that variable. See “Restrictions on Continuous Assignments to
Variables” on page 130 for more information.

See “Limitations on Continuous Assignments” on page 132 for information about restrictions
on continuous assignments to variables in the current release.

Restrictions on Continuous Assignments to Variables

The LRM states that you cannot have multiple continuous assignments to the same variable,
mix continuous assignments and procedural assignments for the same variable, or use a
variable on the left-hand side of a continuous assignment and connect the same variable to
the output port of a module.

For an atomic variable—that is, a scalar or real variable—two rules apply:

■ There can be at most one continuous assignment to the variable.

logic v1;
...
assign v1 = 0; // Continuous assignment to variable v1
assign v1 = 1; // Error--second continuous assignment to v1
...

■ If there is a continuous assignment to the variable, the variable cannot also have any
procedural assignments—blocking or non-blocking procedural assignments, procedural
continuous assignments, or declared variable initialization.

logic v2;
...
assign v2 = 0; // Continuous assignment to variable v2
initial

begin
v2 = 1; // Error--mix of continuous and procedural assignments

// for v2.
end

...

logic v3, v4;
...
assign v3 = 0; // Continuous assignment to variable v3
always @(v4)

SystemVerilog Reference
Data Declarations

July 2010 131 Product Version 9.2

v3 <= v4; // Error--mix of continuous and procedural assignments
// for v3.

...

logic v7 = 1; // Treated as a procedural assignment
...
assign v7 = 0; // Error. Mix of continuous and procedural assignments

// for v7
...

For whole vectors, the rules for scalars given above apply. If the vector is not updated as a
whole, each element of the vector can have its own continuous assignment. No element can
have multiple continuous assignments. It is illegal to use both continuous assignments and
procedural assignments to the elements of a vector.

logic [1:0] v1;
...
// This is legal: one continuous assignment for index 1 and another for index 0.
assign v1[1] = 0;
assign v1[0] = 0;
...

logic [1:0] v2;
wire w;
...
assign v2[1] = 0; // Continuous assignment for index 1
always @(w)

v2[2] <= w; // Error; mix of continuous and procedural assignments
// for the elements of v2, even though the vector indexes
// are different.

...

parameter integer p = 1;
logic [1:0] v3;
...
assign v3[p:0] = 0; // Counts as a continuous assignment for each element

// of the part select.
assign v3[1] = 0; // An error if the value of parameter p after elaboration

// is 1, because index 1 will then have multiple
// continuous assignments.

For unpacked arrays, the rules are similar to those for vectors, with the exception that the
individual array elements can be updated in different ways. For example, one element might
be updated with a continuous assignment, while another element might be the subject of a
procedural assignment. For any individual array element, however, at most one continuous
assignment can be used. A continuous assignment cannot be combined with a procedural
assignment.

logic v1[1:0];
...
// This is legal: one continuous assignment for index 1 and one for index 0.
assign v1[1] = 0;
assign v1[0] = 0;
...

logic v2[1:0];
wire w;

SystemVerilog Reference
Data Declarations

July 2010 132 Product Version 9.2

...
assign v2[1] = 0; // Continuous assignment for index 1
always @(w)

v2[2] <= w; // Legal; mixing continuous and procedural assignments
// for the elements of v2 is OK, as long as the indexes
// are different.

...

parameter integer p = 1;
logic v3[1:0];
...
initial

begin
v3[p] = 0; // Procedural assignment

end
assign v3[1] = 0; // An error if the value of parameter p after elaboration is 1,

// because index 1 will have a procedural assignment and a
// continuous assignment.

Limitations on Continuous Assignments

In the current release, there are two restrictions on the implementation of continuous
assignments to variables.

■ Delays on continuous assignments to variables are not supported. Any delay specified
in a continuous assignment is ignored.

■ If a variable is driven by a continuous assignment and the variable is forced and then
released, the continuous assignment is not immediately re-evaluated upon release. The
variable retains its existing value, in the same way that the variable will if it is driven by
procedural assignments rather than by a continuous assignment.

Automatic Design Unit Qualifier

You can use the automatic keyword with module, program, interface, and package
declarations. The automatic qualifier causes all tasks and functions in that design unit to
be treated as automatic by default, unless explicitly declared to have static storage class. All
variables in those tasks and functions are also as automatic by default.

Because IES does not support automatic variables outside of tasks and functions, variables
declared in procedural blocks, in initial and always blocks remain static by default. The
compiler issues a warning when such a variable is declared as automatic.

Note: The ncdc decompiler does not decompile the qualifier on the design unit. Instead, it
decompiles the design as it was treated by IUS, with the qualifier added to each of the tasks
and functions that was treated as automatic.

SystemVerilog Reference

July 2010 133 Product Version 9.2

8
Classes

SystemVerilog introduces a new class data type, which is used in object-oriented (OO)
programming. A class is a user-defined data type that can encapsulate data members and
methods. Data members and methods are used together to define the functionality and
characteristics of an object.

Classes bring the following aspects of OO programming to SystemVerilog: inheritance,
encapsulation, polymorphism, and abstract-type modeling.

This chapter provides a basic overview of SystemVerilog classes. For more information, see
the IEEE 1800 standard.

Note: Classes are supported within the Incisive Enterprise Simulator - XL (IES-XL).
However, classes are not available with the Incisive Enterprise Simulator - L (IES-L).

Declaring a Class Data Type

The following is an example of a simple class:

module myModule;
class MyClass;

integer p1;

task myTask(input integer i);
p1 = i;

endtask

function integer myFunc();
myFunc = p1;

endfunction
endclass:MyClass

endmodule

This example defines a class called MyClass, which has one data member called p1 and two
methods called myTask() and myFunc().

Note: In the current release, classes cannot be declared globally. Class data types and class
variables can be declared within a module or package. For more information about packages,
see “Packages” on page 243.

SystemVerilog Reference
Classes

July 2010 134 Product Version 9.2

To use MyClass, you must create a variable using MyClass as its data type. For example:

module test_top;

class MyClass;
...
endclass:MyClass

// Creates variables of MyClass type
MyClass c1;
...

endmodule

This example creates a class variable called c1, whose value is an instance handle to an
instance of class MyClass. An instance handle is a value that points to or represents a
particular class object. A class object can have only one instance handle, and an instance
handle can point to only one class object. However, multiple class variables can have the
same instance handle.

Variables must be initialized. For example:

module test_top;
class MyClass;
...
endclass:MyClass
MyClass c1;
initial begin

// Initializes the variable
c1 = new;

end
...

endmodule

This example uses the new function to initialize the c1 variable to an instance of the MyClass
class.

Tip

In SystemVerilog, uninitialized variables are given a default value of null. To
determine whether a variable is uninitialized, you can check its value versus null. For
example:

if (c1 == null) c1 = new;

For more information about the new function, see “Working with Constructors” on page 135,
and the IEEE 1800 standard.

You can create a class variable and initialize it at the same time. For example, the following
statement declares and initializes a variable:

MyClass c1 = new;

SystemVerilog Reference
Classes

July 2010 135 Product Version 9.2

You can use the variable to access class data members and methods within a class object.
For example, the following shows different ways to use variable c1 to access commands
within MyClass:

c1.p1 = 5; // Accesses data member p1 in MyClass

c1.myTask(2); // Accesses myTask() in MyClass and assigns 2 to input b

Note: Refer to the IEEE 1800 standard for information about how you can declare static class
data members and methods.

Working with Constructors

This section describes the new function, which was introduced in “Declaring a Class Data
Type” on page 133. The new function, which is also called a class constructor, is used to
initialize an object at the time of its declaration. For example:

ClassA c = new;

This declaration creates a new instance of the ClassA class, and initializes the instance
using the new function. Every class has a built-in new function. However, you can also specify
any special initialization requirements by defining your own new function within a class. For
example:

class ClassA;
...
integer a;
function new();

a = 0; // Insert special initialization here
endfunction

endclass:ClassA

You can also customize an instance at run time by passing arguments to a new function. For
example:

ClassA c = new(5, 2);

where the corresponding class declaration might look like the following:

class ClassA;
integer a1, a2;
function new(input int arg1, input int arg2);

a1 = arg1;
a2 = arg2;

endfunction
endclass:ClassA

Caution

Calling virtual functions from constructors can cause unexpected
results.

SystemVerilog Reference
Classes

July 2010 136 Product Version 9.2

Inheritance

In SystemVerilog, you can create new classes that are based on existing classes. For
example, the following declares a class called ExtClass that contains a variable of
Class_AB:

class Class_AB;
integer p1;
task t (input integer i);
p1 = i;

endtask

virtual function integer f();
f = p1;

endfunction
endclass: Class_AB

class ExtClass;
Class_AB ext_ab; // Variable of type Class_AB
...

endclass:ExtClass

Although this example is legal, SystemVerilog offers a more efficient way to extend a class—
through the extends keyword. When you extend a class, the derived class inherits all of the
data members and methods of the parent class. However, a derived class can add its own
data members and methods. In the following example, ExtendClass extends Class_AB,
inherits its data members, and adds properties of its own:

class ExtendClass extends Class_AB;
integer p2;
task t (input integer i);

p1 = 2 * i;
p2 = 4 * i;

endtask

virtual function integer f ();
f = this.p1 + 1;

endfunction
endclass:ExtendClass

Virtual class members are described in “Protecting Class Members” on page 136.

Note: The IEEE 1800 standard describes $cast dynamic casting, which is used to cast a
handle from a base class to a derived class. The current release supports only $cast
dynamic casting on classes.

Protecting Class Members

This section describes the keywords you can use to protect data members against accidental
modification.

SystemVerilog Reference
Classes

July 2010 137 Product Version 9.2

■ local—Local members are available only to methods within the same class. Local
members are not available to subclasses, but can be accessed from different instances
within the same class. For example (taken from the LRM):

class Packet;
local integer i;
function integer compare (Packet other);

compare = (this.i == other.i);
endfunction

endclass

For more information about the local keyword, see the IEEE 1800 standard.

■ protected—Protected members are similar to local members, but are visible inside
subclasses.

For more information about the protected keyword, see the IEEE 1800 standard.

■ const—Use the const keyword to declare read-only members. For example, the
following defines a1 as a const and as a protected member:

class ObsC;
 const protected int a1;
....

endclass

There are two types of const declarations: global and instance.

❑ Global constants assign a value to a member at the time of the declaration. For
example, the following declares const a1 with an initial value as a part of its
declaration:

class ObsC;
 const protected int a1 = 2;
....

endclass

A global const can be assigned a value only within its declaration.

❑ Instance constants assign a value within the new() function—also called the
constructor—of the class. For example:

class ObsC;
 const protected int a1;
...
function new();

a1 = 2;
endfunction

endclass

For more information about the const keyword, see the IEEE 1800 standard.

Note: These keywords do not have a predefined order. However, you can specify them only
once per member, and you cannot have a member that is declared both as protected and
as local.

SystemVerilog Reference
Classes

July 2010 138 Product Version 9.2

Abstract Classes and Virtual Methods

Abstract classes and virtual methods are described in the IEEE standard.

Use the virtual keyword to specify that a class can be extended by other classes, but
cannot be instantiated. For example, the following declares a virtual class called virClass
that can be extended by derived classes, but cannot be instantiated:

virtual class virClass;
...

endclass

The IEEE 1800 standard also describes how a virtual class can provide only a prototype for
a virtual method, by specifying it without a body. For example:

virtual class BasePacket;
virtual function integer send(bit[31:0] data); // Provides a prototype
endfunction

endclass

class EtherPacket extends BasePacket;
function integer send(bit[31:0] data);
// Body of declaration
...
endfunction

endclass

Prior to IUS 8.2, the simulator implemented this functionality, in that it treated virtual methods
without declarations or statements as prototypes. Starting with the 8.2 release, the simulator
treats virtual methods as prototypes only when they use the pure virtual keyword.

For example:

virtual class BasePacket;
pure virtual function integer send(bit[31:0] data); // Provides a prototype

endclass

class EtherPacket extends BasePacket;
function integer send(bit[31:0] data);
// Body of declaration
...
endfunction

endclass

The pure keyword must be used before the virtual keyword. Any other ordering will
produce an error. The pure virtual syntax is set to become a part of the next IEEE
standard for SystemVerilog.

SystemVerilog Reference
Classes

July 2010 139 Product Version 9.2

Parameterized Classes

Much like functions and modules, SystemVerilog classes can be parameterized.
Parameterized classes eliminate having to write code repeatedly for objects that are similar
to each other, but might have different parameters. Classes can be parameterized by using

■ Value Parameters

■ Type Parameters (limitations apply; refer to “Limitations on Type Parameters” on
page 123)

You can instantiate instances of a parameterized class as you can for modules or interfaces.

Declaring Parameterized Classes

A parameterized class declaration is called a generic class, which is similar to template
classes in C++. Parameterized class declarations have parameter port lists. Each parameter
declaration within that port list has a default value. You can use the typical Verilog module
instantiation and parameter override, by position or name, to provide parameter values. If a
specialization does not override a particular parameter, the parameter takes its default value
as defined in the class declaration.

For example, the following defines a generic register class:

class register #(parameter int i = 5);
...
endclass: register

In the current release, the parameter keyword is optional, and you can declare a parameter
port list as #():

class registerB #(int size = 8);
...
class registerC #();
...

You can instantiate the register class with new parameter values, creating a new data type.
The combination of the generic class and its actual parameter values is called a class
specialization or variant. Specializations use the following syntax:

<class_name> #() id;

The following defines two specializations of the register class:

register #() r1 = new; // Specialization of register using default
// parameter values

register #(7) r2 = new; // Specialization of register where i = 7

The current release also supports a non-standard syntax for creating specializations:

SystemVerilog Reference
Classes

July 2010 140 Product Version 9.2

class_name id;

For example:

register r3;

Example: Creating Class Specializations

The following module contains a generic vector class, which includes a size parameter.
When the class is instantiated with new parameter values, it is called a class specialization.

class vector #(int size = 1);
bit [size-1:0] a;

endclass
module test();

vector vi = new;
vector #(10) vten; // Object with vector of size 10; uses parameter

// association by position
vector #(.size(2)) vtwo; // Object with vector of size 2; uses parameter

// association by name
vector #() vone; // Object with default vector of size 1

vector voneNS; // Object with default vector of size 1,
// uses non-standard syntax

endmodule

Class specializations can be used with typedef statements. They can also be used to create
class variables:

typedef vector #(10) Vten; // Class with vector of size 10
typedef vector #() V_one; // Class type with vector of size 1 (uses default)
vector #(4) var1; // Class variable var1 of data type vector #(4)

A typedef statement that designates a class specialization can be used as the data type for
a class variable:

typedef vector #(4) class_spec_4_t;
class_spec_4_t var2;

Extending Parameterized Classes

You can extend a parameterized class using the extends keyword. The extends
class_type declaration can be a class specialization, a nested class specialization, or a
class specialization of a class that is declared within a package. The class from which a class
specialization extends can be a parameterless class type, or a specialization of a class with
parameters.

SystemVerilog Reference
Classes

July 2010 141 Product Version 9.2

Example: Extending Parameterized Classes

In the following example, class C extends D#(4), which is a class specialization of a class
that is declared within a package called types. The D#(4) specialization sets the value of
parameter l to 4 so, for class C and any specialization of C, the value of parameter l will
always be 4.

package types;
class D #(parameter l = 0);
int md = l;
endclass

class C #(parameter logic [6:0] p = 0) extends D #(4);
logic [p:0]mc = p;
function new();
$display ("mc = %d, p = %d", mc, p);

endfunction // New
endclass

endpackage

module top;
import types::*;
class A extends C #(2);
task print();

$display ("md from base D = %d", md);
endtask

endclass

A a = new;

initial begin
$display ("a.md = %d", a.md);
a.print();
a.md = 8;
a.print();

end
endmodule

When this example is simulated, it produces the following output:

% irun test.sv
...
ncsim> run
mc = 2, p = 2
a.md = 4
md from base D = 4
md from base D = 8
ncsim: *W,RNQUIE: Simulation is complete.
ncsim> exit

Parameter assignments of D specializations can reference any parameters in the parameter
list of C. For example, the following declares class E, which extends a specialization of D. The
specialization D #(q) references parameter q, which is in the parameter port list of C:

class E #(parameter p = 1) extends D #(p);
..
endclass
E #(4) e4; // E specialization, where q = 4 and p = 4

SystemVerilog Reference
Classes

July 2010 142 Product Version 9.2

The current release does not support OOMRs as specialization values for the extends class
type.

E #(u1.q) voomr; // Invalid. Contains OOMR.

For more information about the typedef class within a parameterized class, refer to
“Limitations on Parameterized Classes” on page 144.

Static Variables and Class Specializations

When a parameterized class contains a static variable, each specialization of that class
will have its own unique copy of the variable. For example:

class vector #(int size = 1);
 bit [size-1:0] a;
static int count = 0;
function void disp_count();
$display ("count: %d of size %d", count, size);

endfunction
endclass

In this example, the count variable can be accessed only through the disp_count()
method. Each specialization of the vector class has its own unique copy of count.

Example: Sharing Static Variables among Class Specializations

The current release supports using non-parameterized base classes to share static members
and methods among different class specializations. In the following example, static member
count is in a non-parameterized class called base, and is shared among variables ci, di,
ei, and fi, regardless of the specialization of generic class C.

class base;
static int count;

endclass

class C #(int i = 5 , string str = "8.1") extends base ;
function void Cfunc();
count = count + i ;
$display ("i:%d, str:%s, count:%d",i,str,count);

endfunction
endclass

module test #(int m =2);

int val = 8;

C ci = new;
C #(.str("8.2")) di = new;
C #(.i(7)) ei = new;
C #(.i(5)) fi = new;

initial begin
ci.Cfunc;

SystemVerilog Reference
Classes

July 2010 143 Product Version 9.2

#5 di.Cfunc;
#10 ei.Cfunc;
#15 fi.Cfunc;

end

endmodule

When this example is simulated, it produces the following output

% irun test.sv
...
i: 5, str:8.1, count: 5
i: 5, str:8.2, count: 10
i: 7, str:8.1, count: 17
i: 5, str:8.1, count: 22

Scoped Types and Expressions

You can use the class scope resolution operator (::) within class specializations to access
identifiers within the scope of a class.

For example, if classA contains data type dataB, you can access dataB from outside
classA using classA::dataB. Class specializations can use the scope resolution operator
to select scoped data types.

Example: Selecting Scoped Data Types within Class Specializations

The following example shows how to access a scoped data type from a class specialization.
It declares a parameterized class C, which has a data type called myvect.

class C #(parameter int lb = 7);
typedef bit [lb:0]myvect;
...

endclass

module test();

C #(15) :: myvect a; //a is a 15-bit vector
C #(.lb(31)) :: myvect b; //b is a 31-bit vector

initial begin
$display("a is %b",a);
$display("b is %b",b);

end
endmodule

This example produces the following results:

% irun test.sv
...
a is 0000000000000000
b is 00000000000000000000000000000000
ncsim: *W,RNQUIE: Simulation is complete.
ncsim> exit

SystemVerilog Reference
Classes

July 2010 144 Product Version 9.2

Class Specialization Type Checking

Class specialization data types are subject to type checking. In SystemVerilog, class data
type assignments are unidirectional.

You can assign a derived class type to any of its parent classes. However, you must use
dynamic casting to assign an object of a parent class type to an object of a derived class type.
To assign one class type specialization to another class specialization of the same class
declaration, the specializations must match. Class specializations match if the following are
true for each parameter in the specializations:

■ If the parameter is a type parameter, the types in each class specialization are matching
types.

■ If the parameter is a value parameter, the parameter type and value are the same in each
class specialization.

All matching specializations of a generic class represent the same data type. The set of
matching specializations of a generic class are defined by the context of the class declaration.
If the generic class is declared within a package, it is visible throughout the whole system,
and all of the matching specializations for that generic class are of the same type. For other
contexts, such as modules and programs, each instance of the scope in which the generic
class declaration is contained creates a unique generic class, which defines a new set of
matching specializations.

Limitations on Parameterized Classes

The following summarizes the parameterized class features in the LRM that are not
supported in the current release. Differences between the specification shown in the LRM
and the Cadence implementation are also listed.

■ OOMRs to variables of a class specialization data type are not supported.

■ The operators currently allowed on non-parameterized classes—assignment, equality,
inequality, and the conditional operators—are also supported for class specializations.

■ The parameter expression within a parameterized typedef statement must be a single
expression. It cannot contain a min:typ:max expression.

■ You cannot specialize a class data type that has already been specialized. For example:

class vector #(int size = 1, type T = bit);
T [size-1:0] a;

endclass

typedef vector #(10) Vtenbit;
typedef Vtenbit #(.T(logic)) Vtenlogic; // Invalid

SystemVerilog Reference
Classes

July 2010 145 Product Version 9.2

■ The following declarations, listed in the LRM, are not supported within a parameterized
class declaration:

❑ class_constraint

❑ covergroup_declaration

■ According to the LRM, the defparam statement might be removed from future releases
of the SystemVerilog language. The simulator supports the defparam statement only for
parameters and defparam expressions that are legal in Verilog. The defparam
statement is not supported for SystemVerilog data types.

You cannot use defparam statements on class parameters.

However, the effects of a defparam statement can propagate to a class parameter, if the
defparam statement is applied to a module parameter that depends on a class
parameter. In the current release, defparam statements are supported for module value
parameters, but only if the module value parameter depends on a class data type that is
declared within the same module instance. Furthermore, if a defparam is applied to a
module value parameter, the parameter can be used only in a class data type parameter
assignment list.

For example, the following is supported:

module top;
parameter p = 1;
class C #(q = 0);
...
endclass
C#(p) h = new;
m u1 ();

endmodule

module m;
defparam top.p = 3; // Valid. Change in value of p propagates to C#(p),

endmodule // which is a data type declared in the same
// scope as p.

The following is not supported:

module top;
parameter p = 1;
class C #(q = p);
...
endclass
C#() h = new;
m u1 ();

endmodule

module m;
defparam top.p = 3; // Invalid. Change in value of p propagates to q,

endmodule // which is declared in the class declaration scope.

The following is not supported:

SystemVerilog Reference
Classes

July 2010 146 Product Version 9.2

module top;
parameter p = 1;
class base #(parameter q = 0);
...
endclass
class C extends base #(p);
...
endclass

C#() h = new;
m u1 ();

endmodule

module m;
defparam top.p = 3; // Invalid. Change in value of p propagates to the

endmodule // data type base#(p), in extended class C.

The following is not supported:

module top;
parameter p = 1;
class C;

logic [p:0] m1;
endclass
C#() h = new;
m u1 ();

endmodule

module m;
defparam top.p = 3; // Change in value of p propagates to [p:0],

endmodule // which is declared in class C. Not supported
// because the range and parameter are in
// different scopes.

Additional Features

For more information about the following aspects of SystemVerilog classes, refer to the IEEE
1800 standard. The Cadence implementation of classes supports all of these features:

■ Overridden Members—Describes how SystemVerilog classes handle overridden
members.

■ Super—Describes how to refer to members of a parent class from a derived class.

■ Casting—Describes how to assign a subclass variable to a variable in a higher class.

■ Chaining Constructors—Describes the initialization sequence within inherited classes.

■ Polymorphism—Describes how a base-class variable can hold a sub-class object and
reference the sub-class methods directly.

■ Class Scope Resolution Operator—Describes how to uniquely identify members of a
class using the :: operator.

SystemVerilog Reference
Classes

July 2010 147 Product Version 9.2

■ Typedef Class—Describes how to declare a class variable before declaring the class
itself.

■ Classes and Structures—Describes the difference between classes and structures.

Note: This section also describes global class definitions, which are unsupported in the
current release. Instead, the current release supports packages. Refer to “Packages” on
page 243.

■ Memory Management—Describes the SystemVerilog automatic memory management
system.

Limitations on Classes

The following summarizes the class features in the LRM that are not supported in the current
release. Differences between the specification shown in the LRM and the Cadence
implementation are also listed.

■ Global class definitions are unsupported. Instead, the current release supports
packages. Refer to “Packages” on page 243.

■ Out-of-module references (OOMRs) to class variables are not supported. For example:

package p;
class class_type;
endclass:class_type

endpackage

import p::class_type;

module top;
class_type v;
...
initial

v = bot.c // Not supported in the current release
...

endmodule

module bot (...);
class_type c = new;
...

endmodule

References to class variables in a package are supported. For example:

package p;
class class_type;
endclass:class_type

class_type c;
...

endpackage

SystemVerilog Reference
Classes

July 2010 148 Product Version 9.2

import p::*;

module top;
class_type v;
...
initial

v = c // Supported in the current release
...

endmodule

■ Class variables passed to OOMR tasks or functions, or to tasks or functions declared in
a package, are not supported in the current release. For example:

package p;
class class_type;
endclass:class_type

endpackage

import p::class_type;

module top;
class_type v;
...
initial

bot.mytask(v) // Class variable passed to OOMR task not supported
// in the current release

...
endmodule

module bot (...);
task (input class_type arg_mytask);
...
endtask

...
endmodule;

Debugging Classes

For information about how to debug classes using the Tcl command-line interface or the
SimVision analysis environment, see SystemVerilog in Simulation.

../svsim/svsimTOC.html#firstpage

SystemVerilog Reference

July 2010 149 Product Version 9.2

9
Operators and Expressions

Verilog does not have increment and decrement operators, and lacks the C assignment
operators, such as +=. SystemVerilog adds these operators to the language.

Supported Operators

The current release supports the following:

Note: This table summarizes the supported operators. If an operator is supported in the
current release but has limitations, a link to its documentation is provided. If the current
release supports the operator without limitations, refer to the IEEE 1800 standard for its
documentation.

Assignment Operators on page 150 = += -= *= /=
%= &= |= ^= <<= >>=
<<<= >>>=

Increment and Decrement Operators ++ and --

Wild Equality and Wild Inequality Operators on
page 150

==? !=?

Case Equality Operators for Real Values on
page 151

=== and !==

“Set Membership Operator” on page 151 inside

Aggregate Expressions on page 155

SystemVerilog Reference
Operators and Expressions

July 2010 150 Product Version 9.2

Assignment Operators

SystemVerilog includes the simple assignment operator, =, and the following C assignment
operators and special bit-wise assignment operators:

+= -= *= /= %=

&= |= ^= <<= >>=

<<<= >>>=

These operators combine an operation with the assignment. For example:

abc += xyz; // Add right-hand side to left-hand side, then assign
// Same as xyz = xyz + abc;

i *= 3; // Same as i = i * 3;

a[i] += 2; // Same as a[i] = a[i] + 2;

You can use these assignment operators as statements, but you cannot use them in
expressions.

Wild Equality and Wild Inequality Operators

SystemVerilog adds an equality operator (==?) called the wildcard equality operator. This
operator is similar to the == operator, in that it performs different kinds of bit-wise
comparisons. The ==? operator treats Xs and Zs on the right-hand side of the operation as
wildcards. Bit positions with Xs and Zs on the right-hand side will automatically match as a
result of a wildcard, essentially masking them out of the comparison. The remaining bit
positions will participate in a logical comparison, as with ==.

The wildcard inequality operator is !=?.

Note: The Accellera 3.1a LRM introduced symmetric operators (=?= and !?=). These
operators, which have been removed in the IEEE 1800 standard, have been retained in the
Cadence implementation for backward compatibility, but their use is discouraged.

Examples:

reg [3:0] op;
op = 4’b100X;

if (op ==? 4’b1XXX) // True
if (op ==? 4’b1000) // Unknown
if (op ==? 4’b100X) // True
if (op ==? 4’b000X) // False
if (op !=? 4’b000X) // True

SystemVerilog Reference
Operators and Expressions

July 2010 151 Product Version 9.2

Case Equality Operators for Real Values

Cadence extends case equality operators (=== and !==) to allow real valued operands in
Verilog-AMS designs. You can use the case equality operators for real values in the same
manner as for logic values. Equality is determined by examining the bit pattern of the
operands and returning 1 if they are equal, and 0 otherwise. Thus, an expression comparing
two real values r1 and r2 as the following:

r1 === r2

is equivalent to the expression

$realtobits(r1) == $realtobits(r2)

and the expression

r1 !== r2

is equivalent to the expression

$realtobits(r1) != $realtobits(r2)

Example of comparing the Verilog-AMS `wrealXState and `wrealZState values:

module foo(in, out);
input var real in;
output var logic out;

always @(in)
begin
if(in === `wrealZState)

out = 1'b1;
else if(in === `wrealXState)

out = 1'bx;
else

out = 1'b0;
end

endmodule

Note: Because case equality operators are not allowed on real operands by the
SystemVerilog and Verilog LRM, a message is issued on their use to warn you that your HDL
is not standard Verilog. This warning is printed only for modules that are not compiled with
the -ams option.

Set Membership Operator

The set membership operator, inside, uses the following syntax:

expression inside {open_range_list}

The expression value can be any singular expression, which can be a real type, or any
integral type, including enums, packed structs, and packed arrays.

SystemVerilog Reference
Operators and Expressions

July 2010 152 Product Version 9.2

The open_range_list can contain individual expressions of singular type, and ranges
containing such expressions. Expressions that are aggregate arrays are not supported.

The inside operator checks the expression value against the value or range of values
in the open_range_list to determine whether the expression is part of the set specified
in the list. The members of the set are scanned until a match is found, then the operation
returns 1’b1. Once a match is found, no further checks are made.

If no matches are found, the operation returns 1’b0. If no matches are found, but some of the
compare results were X, the operation returns 1’bx.

Note: If there are X values in a comparison to a range, the simulator gives the same result
for that comparison as if it had been written as ((value >= left) && (value <= right)). If either
part of the comparison is 0, the result of the comparison against the range will be 0, even if
the other part is X.

You can use the inside operator in any context where expressions are allowed in the
language, such as constant expressions, continuous assignments, procedural code, and
assertions.

For information about using the inside operator in randomization constraints, see “Set
Membership” on page 185.

Limitations on Set Membership Operations

■ The current release does not support event handles, class handles, chandles, and
strings.

■ Range bounds containing $ as a value are not supported

■ Aggregate arrays are not supported as open_range_list values

Assignment Patterns

SystemVerilog introduces a construct called an assignment pattern that can be used to
describe patterns of assignments to array elements and structure members. In an
assignment pattern, you specify the correspondence between a collection of expressions and
the elements of an array or the members of a structure. An assignment pattern uses the
following syntax, which can be used on the left-hand or right-hand side of an assignment:

typeName'{key:value;{,key:value}}

or

'{key:value;{,key:value}}

SystemVerilog Reference
Operators and Expressions

July 2010 153 Product Version 9.2

Note: The current release does not support assignment patterns on the left-hand side of
assignments.

An assignment pattern consists of braces, keys, and values. The whole construct is prefixed
with a simple apostrophe, to distinguish the construct from a Verilog concatenation, or with a
full type qualification (typeName’). Full type qualifications can be used wherever an
expression syntax is allowed. On the other hand, you can prefix an assignment pattern with
a simple apostrophe, but only when the data type can be determined by the target of the
assignment pattern, or by the data being assigned. For example:

typedef struct packed {int a, b;} packT;
packT p1 = packT'{a:0, b:1}; // Legal. Provides the datatype.
packT p2 = '{a:0, b:1}; // Legal. Datatype from LHS.

In the current release, assignment patterns can consist of array literals and structure literals.
Array and structure literals are assignment patterns that use constant member expressions.
The current release does not support assignment patterns that use variables.

There are six different techniques for specifying an assignment pattern:

■ Indexed—Uses an index value to locate the member to which to assign the value. For
example:

typedef logic [1:0] t;
...
t p1 = t'{1:0, 0:1};

Associations by index value do not apply to structures.

■ Type—Assigns the value to subelements with the specified data type. For example, the
following assigns the value t'{0,0} to all subelements whose data type is t:

typedef t [4:2] t2;

t2 p2 = t2'{t:t'{0,0}};

■ Default—Uses the default keyword to assign a value to all of the subelements of the
data object that have not been matched by either an index or type key. For example:

t p3 = '{default:1}; // Sets all elements to 1
t p4 = '{1:0, default:1}; // Sets all elements, except the element at index

// 1, to 1

■ Positional—Assigns values by position. The first value is assigned to the first
subelement, the second value is assigned to the second subelement, and so on. For
example:

t p5 = t'{0, 1}; // Is the same as the following assignment
t p6 = t'{1:0, 0:1};

■ Member—Assigns the value to the subelement with the specified member name. For
example:

typedef struct packed {bits8 m; logic [23:0] n; } t3;

SystemVerilog Reference
Operators and Expressions

July 2010 154 Product Version 9.2

t3 p7 = '{n:5, m:3}; // Assigns 5 to the structure member named n, and 3 to
// the structure member named m

Associations by member name do not apply to arrays.

■ Replication—Copies the given expression a constant number of times. For example:

t pi = t'{2{0}}; // Same as t'{0,0};

Mixing association styles in one assignment pattern is not allowed by the SystemVerilog
standard. For example, when assigning to a structure, you cannot mix associations by
member name (member:value) and positional notation, as in the following example:

typedef logic [7:0] bits8;
typedef struct packed { bits8 m; logic [23:0] n; } t;
...
parameter t pc = ’{m:3, 5}; // Illegal

Limitations on Assignment Patterns

The following assignment pattern features in the SystemVerilog standard are not supported
in the current release:

■ The following types of assignment patterns are not supported:

❑ Associations by type

■ Assignment patterns can be used only as the right-hand side of an assignment. Using
an assignment pattern as the left-hand side of an assignment is not supported. For
example:

logic a, b, c, d;
typedef logic [3:0] t;
‘{a, b, c, d} = t; // Not supported

■ The assignment pattern syntax cannot be used for port expressions. For example:

typedef struct packed {int a; byte b;} packT;

module top;
bottom b (‘{a:0, b:1}); // Not supported

endmodule

However, you can use assignment patterns as arguments to tasks and functions. For
example:

module bottom (input packT packer);
task taskT (output packT out, input packT in);
out = in;
endtask

packT one, two;
initial task(one, '{416, 73}); // Supported

endmodule

SystemVerilog Reference
Operators and Expressions

July 2010 155 Product Version 9.2

■ Using a full type qualification (typeName’) is required for

❑ Assignment patterns assigned to out-of-module references

❑ Port connection expressions

Aggregate Expressions

Aggregate expressions, data types, and data objects are used to reference a collection of
singular values. In SystemVerilog, aggregate expressions can be used in

■ Unpacked structure and array data objects

■ Unpacked structure and array constructors

■ Multi-element slices of unpacked arrays

In the current release, aggregate expressions can be

■ Copied through assignments

■ Used as arguments to tasks and functions

■ Compared, using equality or inequality operators, against other aggregate expressions
of the same type

■ Used with conditional operators

However, for these uses, the current release supports only unpacked structures and fixed-
size arrays of the following data type elements:

■ Integral data types

■ real

■ Unpacked structures

■ Unpacked fixed-size arrays, but the element data type must be one of the first three data
types listed above

The current release does not support out-of-module references to these variables, and
aggregates from array slicing or a member of an unpacked structure.

SystemVerilog Reference
Operators and Expressions

July 2010 156 Product Version 9.2

SystemVerilog Reference

July 2010 157 Product Version 9.2

10
Procedural Statements

In Verilog, procedural statements are introduced using the following keywords:

SystemVerilog has the following types of control flow within a process:

■ Selection, loops, and jumps

■ Task and function calls

■ Sequential and parallel blocks

■ Timing control

Unique and Priority Decision Statements

According to the Verilog-2001 standard, case statements must evaluate the case selection
statements in the order in which they are listed. The if...else decisions must also be
evaluated in source code order. This rule implies that there is a priority to the case selection
items or series of if...else...if statements. To maintain priority ordering in the
hardware implementation, priority-encoded logic is required. Often, however, the order of the
decision statements is not important, and synthesis tools might optimize out the priority-
encoded logic if the tool determines that the branches of the decision are mutually exclusive
(unique). Strict coding guidelines must be followed to avoid mismatches between the
interpretation of the model by simulation and synthesis tools.

initial Enables the statement once at the beginning of the simulation

final Executes the statement once at the end of simulation

always Includes always_comb, always_latch, and always_ff

task Executes the statement whenever the task is called

function Executes the statement whenever the function is called, and returns a
value

SystemVerilog Reference
Procedural Statements

July 2010 158 Product Version 9.2

In addition, the Verilog-2001 standard does not require that these decision statements always
execute a branch of code.

SystemVerilog adds the keywords unique and priority, which can be used before if and
case/casex/casez statements.

■ The unique keyword indicates that the order of the decision statements is not important,
and that they can be evaluated in parallel.

Examples:

always_comb
unique case(a)

0: $display("0");
1: $display("1");
default: $display("Value is not 0 or 1");

endcase

always_comb
unique if (a == 0) $display("0");
else if (a == 1) $display("1");
else $display("Value is not 0 or 1");

The SystemVerilog LRM specifies that when a case or if statement is specified as
unique, the software tools will verify that all of the decision conditions are mutually
exclusive, and that they must generate a warning if more than one condition is true, or
can be true. Tools are also required to generate a warning if the case or if statement
is evaluated and no branch is executed. For example, the simulator generates a warning
message for the following code because both the first and second conditions are true.

a = 3;
b = 4;

unique if (a < b)
c = 1;

else if (a < 5)
c = 2;

else if (a > b)
c = 3;

SystemVerilog Reference
Procedural Statements

July 2010 159 Product Version 9.2

■ The priority keyword indicates that the order of the decision statements is important,
and that tools must maintain the priority encoding. The selection items or series of
if...else...if statements are evaluated in order, and the first match is used.

Examples:

reg [2:0] a;

priority if (a[2:1] == 0) $display("0 or 1");
else if (a[2] == 0) $display("2 or 3");
else $display("4 to 7");

reg [2:0] a;

priority casez(a)
3’b00?: $display("0 or 1");
3’b0??: $display("2 or 3");
default: $display("4 to 7");

endcase

The SystemVerilog LRM specifies that when a case or if statement is specified as
priority, there must be at least one true condition. Tools must generate a warning if
the case or if statement is evaluated and no branch is executed. For example, the
simulator generates a warning message for the following code because neither condition
is true.

a = 3;

priority if (a = 0)
c = 0;

else if (a = 1)
c = 1;

Suppressing Semantic Checks for Unique and Priority Statements

By default, the simulator performs the checks that SystemVerilog requires for unique and
priority constructs. This semantic checking can have an impact on simulation
performance.

Use the ncelab -svperf command-line option to enhance performance by disabling the
checking for unique and priority violations.

Examples:

The following option is the default. Both unique and priority constructs are checked, and
warning messages are generated for all violations.

ncelab -svperf -up // Same as -svperf -u-p

The following option disables checking of both unique and priority constructs.

ncelab -svperf +up // Same as -svperf +u+p

SystemVerilog Reference
Procedural Statements

July 2010 160 Product Version 9.2

The following option disables checking of unique constructs, but enables checking of
priority constructs.

ncelab -svperf +u // Same as +svperf+u-p

do...while Loop

Verilog provides for, while, repeat, and forever loops. SystemVerilog enhances loops
by providing the do...while loop and foreach loop.

In the Verilog while loop, the condition expression is tested at the beginning of the loop. If
the expression evaluates to false, the loop is not executed. If the expression starts out as
false, the loop is not executed at all.

The do...while loop construct has the following syntax.

do statement_or_statement_block while (condition)

For a do...while loop, the condition is evaluated after the statement or statement block has
been executed. The statements in the loop will be executed at least once whenever the loop
is encountered. For example:

i=0;
do begin

a[i] = i;
i = i + 1;

end
while (i < 10);

for Loop

In Verilog-2001, the variable used to control a for loop must be declared before the loop. This
technique can cause problems if you inadvertently use the same loop control variable to
control loops in two or more concurrent procedural blocks, because one loop can modify the
variable while another loop is still using it. To avoid this situation, you must either declare
different variables at the module level, or declare local variables within named begin...end
blocks.

Verilog-2001 also allows only one initial assignment statement and one step assignment
statement in a for loop.

SystemVerilog enhances for loops in two ways:

■ The loop control variable can be declared within the for loop itself. In the following
example, two loop control variables with the same name are declared.

SystemVerilog Reference
Procedural Statements

July 2010 161 Product Version 9.2

module foo;
...

initial
begin

for (integer i = 0; i < 10; i++)
...

end

initial
begin

for (integer i = 15; i >= 0; i--)
...

end
...
endmodule

This example creates a local variable within the loop that other loops cannot affect.

Variables declared in a for loop initialization statement are automatic variables.
Because they are created when the loop is invoked, and destroyed when the loop exits,
they cannot be used outside of the for loop in which they are declared, and they cannot
be referenced using a hierarchical name.

■ Multiple initializer and step statements are allowed. Multiple initial assignment
statements and step assignment statements are separated by commas. For example:

for (integer i = 0, integer j = 0; i < 10; i++, j++)

In the current release, the following is not supported:

■ genvar variables within for generate loops

■ Modports within for loops

foreach Loop

Verilog provides for, while, repeat, and forever loops. SystemVerilog enhances loops
by providing the foreach loop. The foreach construct specifies iteration over the elements
of an array. It is defined in the IEEE 1800 standard, as follows:

foreach (array_identifier [loop_variables]) statement

The foreach construct specifies the following:

■ array_identifier—Designates an array, which can be a fixed-size, dynamic, or
associative array. The array_identifier must be a simple identifier.

■ loop_variables—A list of loop variables, where each variable corresponds to a
dimension of the array.

SystemVerilog Reference
Procedural Statements

July 2010 162 Product Version 9.2

Loop variables cannot use the same identifier as the array, and the number of loop
variables must not exceed the number of array dimensions. If a loop variable is not
specified, there is no iteration over the dimensions of the array.

The type of the loop variable automatically matches the type of the array index.

Although the IEEE 1800 standard specifies that array_identifier must be a simple
identifier, the current release allows hierarchical identifiers that have the following syntax:

ps_or_hierarchical_array_identifier ::=
[implicit_class_handle . | class_scope | package_scope]
hierarchical_array_identifier

implicit_class_handle ::= this | super | this . super

class_scope ::= class_type ::

package_scope ::= package_identifier ::
| $unit ::

hierarchical_array_identifier ::= hierarchical_identifier

hierarchical_identifier ::=
[$root] {identifier constant_bit_select . } identifier

constant_bit_select ::= { [constant_expression] }

This extension allows array specifications that have the same syntax, even if they are not
hierarchical names. For example, it allows non-constant indexes and names that are class or
structure members (see Example 10-2 on page 163).

Note: This extension covers only the procedural foreach statement, not the constraint
foreach.

Example 10-1 foreach Loop versus repeat Loop

The foreach construct is similar to the Verilog repeat loop. However, the repeat loop
takes a number to designate how many times the loop must be executed, while the foreach
loop uses the array bounds to specify the repeat count.

For example:

module myforeach;
int a[5][3][4];

initial begin
foreach (a[lv]) begin
$display ("Value of lv is %d",lv);
end
#1 $finish;

end
endmodule

The foreach iterates lv from 0 to 4 to produce the following simulation output:

Value of lv is 0
Value of lv is 1

SystemVerilog Reference
Procedural Statements

July 2010 163 Product Version 9.2

Value of lv is 2
Value of lv is 3
Value of lv is 4

Example 10-2 foreach Syntax

This example illustrates the following syntax for foreach:

foreach(items[i].ops[ii]);

where i and ii are variables. In this case, only the variables in the final bracket [ii] are
treated as indexes for the foreach loop. The [i] variables are treated as a part of the
hierarchical identifier for the array.

Note: This syntax is supported in the current release, although it is not specified by the IEEE
1800 standard. In the standard, indexes in the array_identifier must be constant.

In the following example, foreach loops are nested to iterate over both arrays.

module top;
class c;
int arr[];

endclass

c carr[5];

initial
begin
foreach (carr[i])

begin
carr[i] = new;
carr[i].arr = new[i];
foreach (carr[i].arr[j])

carr[i].arr[j] = i * 10 + j;
end

// The foreach loops are nested in order to iterate over both arrays
foreach (carr[i])
foreach (carr[i].arr[j])
 $display("carr[%0d].arr[%0d] = %0d", i, j, carr[i].arr[j]);

end
endmodule
...

% irun -sv foreach.v

...
ncsim> run
carr[1].arr[0] = 10
carr[2].arr[0] = 20
carr[2].arr[1] = 21
carr[3].arr[0] = 30
carr[3].arr[1] = 31
carr[3].arr[2] = 32
carr[4].arr[0] = 40
carr[4].arr[1] = 41
carr[4].arr[2] = 42
carr[4].arr[3] = 43

SystemVerilog Reference
Procedural Statements

July 2010 164 Product Version 9.2

ncsim: *W,RNQUIE: Simulation is complete.

Limitations on the foreach Loop

The current release has the following limitations on the foreach loop:

■ The LRM states that loop variables are implicitly declared as automatic variables.

The current release does not support automatic variables outside of automatic tasks and
functions. Therefore, loop variables are declared as automatic only when the foreach
construct is within an automatic task or function. Otherwise, the loop variable is implicitly
declared as a static variable.

■ The array_identifier cannot be an associative array with wildcard indexes. This
limitation is expected to be part of the next revision of the standard.

return, break, and continue Jump Statements

Verilog-2001 provides the disable statement, which is used to jump to the end of a named
statement group or to exit from a task. The disable statement requires additional block
names, and can create code that is non-intuitive.

SystemVerilog includes the C jump statements return, break, and continue.

■ The return statement can be used only in a task or function. This statement can be
used to

❑ Exit a task

❑ Exit a non-void function and return a value. The return must have an expression
of the correct type

return expression;

❑ Exit a void function

return;

■ The break statement can be used only in a loop. This statement jumps out of the loop.

break;

■ The continue statement can be used only in a loop. This statement jumps to the end
of the loop and executes the loop control, if present. Named begin...end blocks are
not required.

continue;

SystemVerilog Reference
Procedural Statements

July 2010 165 Product Version 9.2

A block of code cannot be disabled if it contains a return, break, or continue that can
exit the block.

final Blocks

A final block is similar to an initial block, except that it executes when simulation ends,
without delays. The only statements allowed within a final block are those that are legal in
functions.

Note: The end of simulation does not cause an implicit call to $finish.

You can use a final block to display statistical information about the simulation.

Example:

final
begin

$display("Ending Simulation Time: %d", $time);
$display("Clock Cycles: %d", nCycles);

end

iff Event Control Qualifier

System Verilog adds an iff qualifier to the @ event control. This construct provides
conditional qualification of the event control.

The event expression is evaluated when the expression before the iff qualifier changes
value, but it is triggered only if the expression after the iff qualifier is true.

Examples:

// Event expression is evaluated when d changes value, and triggers
// if enable is equal to 1.
always @(d iff enable == 1)

q <= d;

// Event expression is evaluated at posedge clk, and triggers if enable
// is equal to 1 and preload changes value.
always @(posedge clk iff enable == 1, preload)

q <= d;

always_* Blocks

System Verilog adds three specialized procedural blocks that reduce the ambiguity of the
general purpose Verilog always block. These specialized blocks can be used to indicate
design intent to simulation, synthesis, and formal verification software tools.

SystemVerilog Reference
Procedural Statements

July 2010 166 Product Version 9.2

■ always_comb—Indicates that the intent of the procedural block is to model
combinational logic.

■ always_latch—Indicates that the intent of the procedural block is to model latched
logic behavior.

■ always_ff—Indicates that the intent of the procedural block is to model sequential
logic behavior.

fork...join

The Verilog fork...join block statement spawns multiple processes that execute in
parallel. Each statement is a separate process, and statements that follow a fork...join
are blocked from execution until all of the spawned processes have completed execution.

SystemVerilog enhances the fork...join statement by adding fork...join_any and
fork...join_none blocks. These additions provide three options for specifying when the
parent forking process is to resume execution.

The current release also includes extensions to fork...join and fork...join_none.

fork...join

The fork...join statement has been extended so that the statement is now allowed in
automatic tasks and functions, including inside local scopes.

fork...join_none

The fork...join_none statement has been extended to be allowed in functions.

fork...join Statements that follow a fork...join are blocked from
execution until all of the spawned processes have completed
execution.

fork...join_any Statements that follow a fork...join_any are blocked from
execution until any one of the spawned processes has
completed execution.

fork...join_none Statements that follow a fork...join_none are not blocked
from execution while the spawned processes are executing.

SystemVerilog Reference
Procedural Statements

July 2010 167 Product Version 9.2

In SystemVerilog, delaying statements—such as delay controls, event controls, wait
statements, and task calls—are not allowed in functions. Before this release,
fork...join_none statements were not allowed within functions, because they are not
useful without delaying statements. This restriction has been removed.

In the current release

■ fork...join_none statements are allowed inside functions

■ Delaying statements are allowed inside fork...join_none statements that are within
functions

■ Tasks whose delays only occur within a fork...join_none are considered non-time-
consuming tasks by the direct programming interface (DPI)

When called by the same type of process, the behavior of a fork...join_none statement
in a function is the same as the behavior of a fork...join_none statement in a task. As
with tasks, the process that called the function is considered the parent thread of all threads
created by the fork...join_none statement.

The following restrictions apply to fork...join_none:

■ Only the following processes can call a fork...join_none statement: initial
blocks, always blocks, variable declaration initializers, and processes created by fork.

In particular, fork...join_none statements cannot be executed by the following,
because doing so will cause a run-time error: non-blocking assignments, regular and
procedural continuous assignments, force, nonblocking event triggers, final blocks,
particular system tasks ($monitor, $strobe, $async$*), or an evaluation of a user-
defined system task or function argument by PLI. For example:

module top;

function f;
input i;

fork
#10 $display("in f");

join_none
f = i;

endfunction

integer r, x;
event e;

initial
begin
// Subprocesses that produce run-time errors

// Nonblocking assignments
r <= f(x);
 r <= #3 f(x);
r <= #(f(x)) 0;

SystemVerilog Reference
Procedural Statements

July 2010 168 Product Version 9.2

r <= @(f(x)) 0;
r <= repeat(2) @x f(x);
r <= repeat(2) @(f(x)) 0;
r <= repeat(f(x)) @x 0;
r[f(x)] <= 0;

// Nonblocking event triggers
->> #(f(x)) e;
->> @(f(x)) e;
->> repeat(2) @(f(x)) e;
->> repeat(f(x)) @x e;

// System tasks that create subprocesses
$monitor(f(x));
$strobe(f(x));

// Force statement
force r = f(x);

// Procedural continuous assignment
assign r = f(x);
end

always @e $display(r);

endmodule

■ The Verilog disable statement will not disable subprocesses created by a
fork...join_none. However, these subprocesses can be disabled using the
disable fork statement.

■ The current release supports fork...join_none subprocesses inside local scopes
(begin...end or fork...join) that declare their own automatic variables, and local
automatic scopes inside fork...join_none subprocesses. However, you cannot use
return, break, or continue statements to exit these kinds of scopes. For example,
the following illustrates an unsupported break statement within a local automatic scope.

task automatic t;
int i;
for (i = 0; i < 10; i++)
begin: loop1
int j; // Local automatic variable
j = i;
fork
#1 $display(j); // j is visible to the following join_none subprocess
join_none
if (j == last)

break; // Unsupported; uses break to leave the loop1 scope
end: loop1

endtask

Limitations on fork...join_any

In the current release, the following restrictions apply to fork...join_any:

SystemVerilog Reference
Procedural Statements

July 2010 169 Product Version 9.2

■ The Verilog disable statement will not disable subprocesses created by a
fork...join_any statement. However, these subprocesses can be disabled using the
disable fork statement.

■ The current release supports fork...join_any subprocesses inside local scopes
(begin...end or fork...join) that declare their own automatic variables, and local
automatic scopes inside fork...join_any subprocesses. However, you cannot use
return, break, or continue statements to exit these kinds of scopes.

wait fork

Use the SystemVerilog wait fork statement to ensure that all spawned processes have
completed their execution.

In the following example, the getvalue task waits for all four processes to complete before
returning to its caller.

Example 10-3 Using the wait fork Construct
task automatic getvalue;

fork
taskA(); // Start taskA and taskB at the same time.
taskB();

join_any // Block until either taskA or taskB completes.

fork
taskC(); // Start taskC and taskD at the same time.
taskD();

join_none

wait fork; // Block until all four tasks have completed.
endtask

Note: The wait fork statement waits only for processes or threads that were directly
spawned by the waiting process or thread. The wait fork statement does not wait for any
descendents or subprocesses. To wait for all descendents of a process, each descendent
must wait for all of its own spawned processes to complete execution before the descendent
can terminate.

disable fork

SystemVerilog provides the disable fork statement, which disables all active threads of a
calling process, including any subprocesses that were spawned by any of those threads.

SystemVerilog Reference
Procedural Statements

July 2010 170 Product Version 9.2

Unlike the disable statement, which terminates the execution of a named block, regardless
of its relationship to the calling process, the disable fork statement terminates only the
processes that were forked by the calling thread.

In the following example, the disable fork statement terminates all three threads forked by
the getvalue process, regardless of whether they have finished execution:

task automatic getvalue;
input [8:0] value;
input [8:0] num;

begin
#(num) $display("Delay of %d. Value of %d.", num, value);

end
endtask

initial begin
fork
#1 getvalue (11, 8);
#1 getvalue (4, 6);
#1 getvalue (8, 5);

join_none
#5 disable fork;
...

end

SystemVerilog Reference
Procedural Statements

July 2010 171 Product Version 9.2

However, in the following example, the disable fork statement is blocked until one of the
getvalue processes has completed execution. It then terminates the two outstanding
getvalue processes.

...
initial begin
fork
#1 getvalue (11, 8);
#1 getvalue (4, 6);
#1 getvalue (8, 5);

join_any
#5 disable fork;
...

end

SystemVerilog Reference
Procedural Statements

July 2010 172 Product Version 9.2

SystemVerilog Reference

July 2010 173 Product Version 9.2

11
Tasks and Functions

Several enhancements to tasks and functions are included in the SystemVerilog LRM.

Multiple Statements in Tasks and Functions

In Verilog-2001, you must enclose multiple statements in a task or function within a
begin...end block. SystemVerilog does not require you to enclose multiple statements with
begin...end.

For example, Verilog 2001 requires:

function bounds_err(input integer a, input integer lower);
integer upper;

begin
upper = lower + 255;
if (a > upper || a < lower)

bounds_err = 1;
else

bounds_err = 0;
end

endfunction

SystemVerilog infers the begin...end, and executes the multiple statements sequentially.

function bounds_err(input integer a, input integer lower);
integer upper;

upper = lower + 255;
if (a > upper || a < lower)

bounds_err = 1;
else

bounds_err = 0;

endfunction

Function Output Arguments

In Verilog-2001, functions can have only inputs. The only output is the single return value.

SystemVerilog Reference
Tasks and Functions

July 2010 174 Product Version 9.2

SystemVerilog allows the formal arguments of functions to be declared with the same
directional specifiers as tasks, so that a function can have any number of outputs in addition
to the return value. The arguments can be declared as

■ input—Copy the value in at the beginning of the function call.

■ output—Copy the value out at the end of the function call.

■ inout—Copy the value in at the beginning, and out at the end, of the function call.

Note: SystemVerilog also lets you declare a task or function argument as ref. Refer to
“Passing Task and Function Arguments by Reference” on page 175.

Examples:

function void myfunc;
input integer a;
input integer b;
output integer x;
output integer y;

...
endfunction

function void myfunc(input integer a, input integer b, output integer x,
output integer y);

...
endfunction

You cannot call a function with output or inout arguments from

■ An event expression

■ An expression within a procedural continuous assignment

■ An expression that is not within a procedural statement

Default Direction in Task and Function Declarations

When using ANSI-style declarations in tasks and functions, if the direction of an argument is
not specified, the direction is the direction of the previous argument in the list. If the direction
of the first argument is not specified, the default is input. In the following example, the formal
argument a defaults to input. No direction is specified for argument b, so it is also an input.
Arguments x and y are both outputs.

function void myfunc (integer a, integer b, output integer x, y);
...
endfunction

SystemVerilog Reference
Tasks and Functions

July 2010 175 Product Version 9.2

Void Functions

In Verilog-2001, a function must return a value. The return value is specified by assigning a
value to an implicitly declared internal variable with the same name as the function. For
example:

function myfunc (input a, b);
myfunc = a * b - 1;

endfunction

The function call is an operand in an expression. For example:

x = y + myfunc(c, d);

SystemVerilog allows functions to be declared as data type void, which do not have a return
value. For example:

function void myprint (integer a);
...
endfunction

Void functions have the syntax and semantic restrictions of non-void functions, but they are
called as statements, like Verilog tasks. For example:

myprint(a);

Discarding Function Return Values

In SystemVerilog, you can discard a function’s return value by casting the function to the void
data type. For example, the following discards the return value of myclass.randomize():

void’(myclass.randomize());

Passing Task and Function Arguments by Reference

In Verilog-2001, arguments are passed to tasks and functions by value using a copy-in/copy-
out mechanism. When a task or function is called, the argument is copied into the task or
function. The argument value then becomes local to the task or function, and is not visible
outside the task or function. When the task or function is finished executing, the argument is
copied out to the caller of the task or function. Unfortunately, passing by value is undesirable
when you have large arguments, or if you have programs that need to share data that is not
declared as global.

SystemVerilog lets you pass arguments by reference. Instead of copying an argument value,
a reference to the original argument is passed to the task or function. Passing by reference
offers the following:

SystemVerilog Reference
Tasks and Functions

July 2010 176 Product Version 9.2

■ Unlike the pass by value mechanism, changes to a referenced argument are visible
outside the task or function. Conversely, changes to a referenced argument outside the
task or function are also visible within the task or function.

■ Tasks can be reused to generate waveforms and transactions on different variables,
which is beneficial in testbench environments.

The syntax for passing argument values by reference is as follows:

subroutine (ref type argument);

For example:

task my_task(ref reg in1, ref reg in2);
begin
...
end

endtask

The ref keyword cannot be used with other direction keywords—input, output, or inout.
For example, the following is illegal:

task check_status (ref input integer in1);
...

The LRM states that arguments that are passed by reference must match exactly and that
auto-casting, promotion, or conversion is not allowed. For example, you cannot pass an
integer by reference when the formal argument is not of type int.

In the following example, a module called submod defines an array called my_array and a
variable of type int called my_int. These objects are passed as arguments in a call to
mytask. In mytask, the formal arguments are defined as ref arguments. Within the
submod module, the formal argument in1 is an alias for my_array, and the formal argument
in2 is an alias for my_int.

...

module submod;
parameter LEFT = 1;
parameter RIGHT = 0;
reg [LEFT:RIGHT] my_vector;
integer my_int;

initial begin
#1 my_task(.in1(my_vector), .in2(my_int)); // Passes objects as arguments

end

task automatic my_task(
ref reg [1:0] in1, // References my_vector using alias in1
ref integer in2); // References my_int using alias in2
begin

$display("in1(%d)", in1);
$display("in2(%d)", in2);

end

SystemVerilog Reference
Tasks and Functions

July 2010 177 Product Version 9.2

endtask
endmodule

The current release also supports:

■ Passing automatic variables by reference

The following example passes the value of automatic variable b:

task automatic mytask(ref int a);
int b;
b = a;

if (b > 1)
mytask(b); // Supported

endtask

■ Automatic tasks or functions that pass a ref argument by reference

task automatic mytask (ref int r, inout int io);
int depth;
if (depth > 0) begin
mytask(r, io); // Valid to pass r by reference
mytask(io, r); // Valid to pass io and r by reference

end
endtask

■ Passing an enum by reference

typedef enum {red, green, blue} color;

task mytask(ref color color_var);
...
endtask

■ Passing variables by reference to automatic tasks

Limitations on Passing Task and Function Arguments by Reference

The following summarizes the features in the LRM that are not supported in the current
release. Differences between the specification shown in the LRM and the Cadence
implementation are also listed.

■ ref arguments can be scalars and vectors of type bit, logic, and reg. A ref
argument can also be of type int, shortint, longint, byte, real, and a packed
structure. The Cadence implementation supports passing arrays of type int,
shortint, longint, byte, real, packed structures, enumerations, logic, bit, and
reg. For example:

ref bit a; // A scalar bit is valid

ref bit [3:1] a; // A bit vector is valid

ref bit a[0:3]; // A bit array is valid

ref int a; // A scalar int is valid

SystemVerilog Reference
Tasks and Functions

July 2010 178 Product Version 9.2

ref int a[0:3]; // An int array is valid

Although it is not explicitly stated in the LRM, the Cadence implementation does not
support the passing of a member of an array, or a member of a packed structure, by
reference to a task or function.

■ Although it is not explicitly stated in the LRM, the Cadence implementation does not
support part selects that travel through ref arguments. For example, the following is not
supported:

module test_top;
...
reg [15:0] a;
task rotate(ref [3:0] op);
...
endtask

rotate(a[15:12]); // Invalid
endmodule

■ Although it is not explicitly stated in the LRM, the Cadence implementation does not
support out-of-module references to ref arguments. For example, the following
illustrates illegal out-of-module reference (OOMR) access to a task’s reference
arguments:

module test_top;
reg [31:0] a;
integer b;

initial begin
#1 my_task(.in1(a), .in2(b));
#1 test_top.my_task.in1 = 1; // Illegal OOMR write to ref argument
#1 b = my_task.in2; // Illegal OOMR read from ref argument

end

task my_task(ref reg [1:32] in1, ref integer in2);
begin
//I llegal OOMR read from ref argument
#1 $display("in1(%d)", test_top.my_task.in1);

// Illegal OOMR read from ref argument
#1 $display("in2(%d)", my_task.in2);

end
endtask

endmodule

SystemVerilog Reference
Tasks and Functions

July 2010 179 Product Version 9.2

Specifying Default Argument Values for Tasks and
Functions

SystemVerilog lets you specify default values for task and function formal arguments with a
direction of input, inout, or ref. Specifying default values is allowed only with ANSI-style
declarations.

When the task or function is called, an argument with a default value can be omitted from the
call, and the default value will be used for that call. An error is generated if a formal argument
without a default value is not passed in a value when the task or function is called.

The following example, taken from the SystemVerilog LRM, declares a task called read. Two
of the formal arguments have default values.

task read(int j = 0, int k, int data = 1);
...
endtask;

This task can be called using various arguments, as follows:

read(, 5); // Same as read(0, 5, 1);
read(, 5,); // Same as read(0, 5, 1);
read(2, 5); // Same as read(2, 5, 1);
read(, 5, 7); // Same as read(0, 5, 7);
read(1, 5, 2); // Same as read(1, 5, 2);
read(); // Error because argument k has no default value

You can use any value compatible with the formal parameter expression as a default
argument to a task or function.

Passing Task and Function Arguments by Name

In Verilog-2001, values must be passed to task or function arguments in the same order in
which the formal arguments are defined. This rule can cause errors if values are passed in
the wrong order.

SystemVerilog lets you pass arguments by name, as well as by position. Named arguments
can be passed in any order. The syntax is the same as that used for named port connections
to a module instance.

Example:

task read(int j = 0, int k, int data = 1);
...
endtask;

SystemVerilog Reference
Tasks and Functions

July 2010 180 Product Version 9.2

The following calls to the read task pass arguments by name. If an argument is not specified,
the default value is used. A value for argument k must be specified, because no default value
is defined.

read(.j(2), .k(5), .data(3)); // read(2, 5, 3);
read(.k(5), .data(3), .j(2)); // read(2, 5, 3);
read(.j(2), .k(5)); // read(2, 5, 1);
read(.k(5)); // read(0, 5, 1);

If both positional and named arguments are specified in a call, all positional arguments must
precede the named arguments. For example:

read(2, 5, .data(7)); // read(2, 5, 7);
read(.k(5), 2, 5); // Error because named arg precedes positional arg

Optional Arguments for Tasks and Functions

In Verilog-2001, tasks and functions must have at least one argument. SystemVerilog
removes this restriction. For example:

module top;
int count;
function int myfunc (input int a = 0);

...
endfunction

initial begin
count = myfunc(3); // Valid in Verilog-2001 and SystemVerilog
count = myfunc(); // Valid in SystemVerilog, but not in Verilog-2001

end
endmodule

SystemVerilog Reference
Tasks and Functions

July 2010 181 Product Version 9.2

File I/O System Tasks/Functions and SystemVerilog

Some built-in file I/O system tasks and functions have been enhanced to support
SystemVerilog constructs. The following table list the tasks and functions, and the supported
SystemVerilog constructs.

File I/O System Task/Function Supported SystemVerilog Constructs

$swrite, $swriteb,
$swriteh, $swriteo

Data types shortint, int, longint, byte, bit,
logic, string, chandle

Union members and packed unions

Struct members and packed structs

Enums

Queues

Associative arrays, dynamic arrays

Classes

Clocking blocks, semaphores, programs

Interfaces

$fwrite, $fwriteb,
$fwriteh, $fwriteo

Data types shortint, int, longint, byte, bit,
logic, string, chandle

Union members and packed unions

Struct members and packed structs

Enums

Queues

Associative arrays, dynamic arrays

Classes

Clocking blocks, semaphores, programs

Events

Interfaces

SystemVerilog Reference
Tasks and Functions

July 2010 182 Product Version 9.2

In addition, you can find a complete description of the Verilog file I/O tasks and functions in
the “Modeling Your Hardware” topic of the Verilog Simulation User Guide.

$sscanf
$fscanf

shortint, int, longint, byte, bit, logic, string

chandle (cannot put a value)

Union members and packed unions

Packed structs and packed struct members

Enums

Dynamic arrays

Classes

Clocking blocks

Semaphores (cannot put a value)

Programs

Events (cannot put a value)

Interfaces

$fread shortint, int, longint, byte, bit, logic

Union members of type reg, integer, shortint, int,
longint, byte, bit, logic

Struct members of type reg, integer, shortint, int,
longint, byte, bit, logic for individual members

Classes (with valid types)

Clocking block (with valid types)

Semaphores (cannot put a value)

Programs (with valid types)

Events (cannot put a value)

Interfaces (with valid types)

File I/O System Task/Function Supported SystemVerilog Constructs

../ncvlog/modeling.html#firstpage

SystemVerilog Reference

July 2010 183 Product Version 9.2

12
Random Constraints

The IEEE 1800 standard describes random constraints, which can be used to generate
constraint-driven tests. Unlike traditional directed testing, random testing can help create
tests for unique, hard-to-find cases.

In SystemVerilog, you can specify constraints that restrict the values that can be assigned to
rand or randc variables. A solver within the simulator processes constraints, and chooses
values for the rand or randc variables that satisfy the constraints. If some constraints are
overly restrictive, in that some random values cannot be satisfied, the solver issues an
overconstrained message and terminates the randomization attempt.

Similar to methods, constraints are treated like class members. You can specify a constraint
in a class or a derived class. For example, the following defines the myClass class with three
variables: a, b, and c.

class myClass;
rand bit [3:0] a, b, c;
constraint c1 {c == a + b;}

endclass

The c1 constraint limits the value of c to the sum of a and b.

To generate random values for the variables in this class, you can use the randomize()
method, which is described in the LRM, and in “The randomize() Method” on page 194:

task chkSuccess(myClass myc);
int success;
success = myc.randomize(); // Generates random values for a, b, and c

endtask

Note: The constraint solver and random number generator (RNG) used in SystemVerilog
randomization might include optimizations not included in previous releases, so the random
number stream can differ from release to release.

Random Variables

You can declare random class variables using the rand or randc keywords, where

SystemVerilog Reference
Random Constraints

July 2010 184 Product Version 9.2

■ The rand modifier defines standard random variables, where the solver distributes
values equally over a range. For example, if the following declaration is not associated
with a constraint, the solver picks a random value between 0 and 3 with a uniform
distribution:

rand bit [1:0] d;

In this example, there is a 1 in 4 chance that the solver will repeat a value during
successive calls to randomize().

■ The randc modifier defines random-cyclic variables, where the solver goes through all
of the values in a random permutation of the specified range. For the following example,
the solver generates a random initial permutation using the possible range of values for
e.

randc bit [1:0] e;

An initial permutation for this declaration might be 2, 0, 1, 3. If there are successive calls
to randomize(), the solver returns the values in this order. When the solver runs out of
values within the initial permutation, it automatically generates a new permutation.

The randc variables can only be of type bit or enumerated types.

The current release supports the following:

■ rand handles for classes

■ rand arrays, where the array element type can be a

❑ handle

❑ integer, shortint, byte, or bit

❑ bit vector

■ Multidimensional rand arrays

■ Aliased rand handles, where two or more handles refer to the same class instance.

module top;
class class1;
rand int rint1;

endclass
class class2;
rand class1 ch1a;
class1 ch1b;
constraint con1 { ch1a.rint1 == 200; }

endclass
class2 ch2;
int res;

initial begin
ch2 = new;
ch2.ch1a = new;
ch2.ch1b = ch2.ch1a; // ch2.ch1a and ch2.ch1b refer to the same object

SystemVerilog Reference
Random Constraints

July 2010 185 Product Version 9.2

ch2.ch1b.rint1 = 100;
res = ch2.randomize();
// ch2.ch1b.rint1 is now 200, even though ch2.ch1b is not rand
$display("ch2.ch1b.rint1 = %d", ch2.ch1b.rint1);

end
endmodule

■ Null rand handles

module top;
class class1;
rand int rint1;
constraint con1 { rint1 == 200; }

endclass
class class2;
rand class1 ch1a;
rand class1 ch1b;

endclass
class2 ch2;
int res;
initial begin
ch2 = new;
ch2.ch1a = new;
// ch2.ch1b is null
ch2.ch1a.rint1 = 100;
res = ch2.randomize(); // Does not consider ch2.ch1b, since it is null
$display("ch2.ch1a.rint1 = %d", ch2.ch1a.rint1);

end
endmodule

Limitations on Random Variables

The following summarizes the random variable features in the LRM that are not supported in
the current release. Differences between the specification shown in the LRM and the
Cadence implementation are also listed.

■ In the Cadence implementation, rand is supported for fixed-size arrays, associative
arrays, and dynamic arrays. The elements of these arrays can be integral types, such as
integer, bit, and bit vector, or class handles.

■ rand is supported for associative arrays. However, the array index and element type of
the associative arrays must be an integral type, such as integer, bit, and bit vector;
[*] is also supported. Strings and class handle are not supported.

For rand associative arrays, the index must be an integral type, and the width is limited
to 64 bits.

■ Constraint blocks can contain non-rand associative arrays. For example:

...
opcode code[int];
constraint c1 {opcode[RESET] == 1 -> rand_var != CLEAR;}

SystemVerilog Reference
Random Constraints

July 2010 186 Product Version 9.2

Constraint blocks that contain rand associative arrays cannot contain an expression that
requires a new item to be inserted into an associative array. Only the values of existing
associative array items can be changed by a randomize call. Although this rule is not
specified in the IEEE 1800 Standard, it is outlined in Mantis 2113. This limitation also
applies to non-rand associative arrays within constraint blocks. For example:

module top;
class class1;
rand int aa[int];
constraint c1 { aa[100] == 123; }

// In the next constraint, the randomize call will fail, because there is
// no item at aa[200]
constraint c2 { aa[200] == 234; }

endclass

class1 ch1 = new;

initial begin
ch1.aa[100] = 12; // Insert an item at aa[12]
assert(ch1.randomize());

ch1.aa[200] = 13; // Insert an item at aa[13]
assert(ch1.randomize()); // This randomize call will be OK
end

endmodule

■ randc arrays are not supported.

■ rand is not supported for unpacked structures.

■ In the Cadence implementation, randc variables have a maximum size of 16 bits, and
randc enums have a maximum size of 32 bits.

■ rand variables are supported in function calls. However, rand arrays are not supported
in function calls.

Constraint Blocks

A constraint block is a class member that lists expressions used to limit the range of a
variable, or to define the relationship between variables. The following is the simplified syntax
for a constraint block.

constraint constraint_identifier
{constraint_expression [;constraint_expression]; }

For example:

class myClass;
rand integer len;
constraint db {len > 0;} // Specifies that len must be greater than zero

endclass:myClass

SystemVerilog Reference
Random Constraints

July 2010 187 Product Version 9.2

Limitations on Constraint Blocks

The following summarizes the constraint block features in the LRM that are not supported in
the current release. Differences between the specification shown in the LRM and the
Cadence implementation are also listed.

■ In a constraint expression, the left and right operands of the ** (exponentiation) operator
must be constants.

■ The LRM states that only 2-state values are supported within constraints, but the LRM
does not describe what happens to 4-state variable values. In the Cadence
implementation, 4-state values are converted to 2-state values. This implementation
supports the LRM, which specifies that X and Z values are converted to zero.

External Constraint Blocks

The current release supports external constraint blocks.

Inheritance

The current release supports inheritance in constraint blocks, which is similar to inheritance
for class variables, tasks, and functions. The current release supports constraint inheritance
as described in the LRM. That is, a constraint in a derived class that uses the same name as
a constraint in its parent classes overrides the base class constraints. Otherwise, all
constraints are inherited as-is from the parent class.

Set Membership

The current release supports the inside operator, which is defined in the SystemVerilog
LRM.

For example, the following specifies that the legal random values that can be assigned to
rand variable a are 3, 4, or 5:

class set_example;
rand integer a;
constraint setA {a inside {3, 4, 5};}

endclass

In the following example, the randc variable my_randc will cycle through values in the
ranges 0 through 20, and 60 through 90:

class set_example1;
randc byte my_randc;

SystemVerilog Reference
Random Constraints

July 2010 188 Product Version 9.2

constraint con1 {my_randc inside {[0:20], [60:90]};}
endclass

The following illustrates a set membership constraint that contains dynamic arrays.
Associative arrays and queues are also supported.

class c;

bit [7:0] da[];
rand bit [1:0] control;
rand bit [15:0] addr;

constraint restrict_idx_search {
 (control == 0) -> { addr inside {[0:10]}; }
 (control == 1) -> { addr inside { da}; }
 (control == 2) -> { addr[15:8] inside { da}; }
 }

constraint sb { solve control before addr;}
endclass : c
...

You can also use the inside operator outside of the constraint block, as shown in the
following code:

module m;
initial

if (1 inside { 1, 2 })
$display("It works");

endmodule

Distribution

Randomization constraints can specify sets of weighted values called distributions.
Assuming that no other constraints are specified, the probability of selecting a legal value in
the list is proportional to its specified weight.

Defining a Distribution Expression

To define a distribution expression, use the dist operator. The syntax is similar to that used
for set membership, in that you specify a set of legal values as a comma-separated list of
single values or ranges. You can specify a weight for each term in the list by using one of the
following operators:

■ :=

Assigns a weight to the item. If the item is a range, assigns the weight to every value in
the range.

■ :/

SystemVerilog Reference
Random Constraints

July 2010 189 Product Version 9.2

Assigns a weight to the item. If the item is a range, assigns the weight to the range as a
whole.

Specifying a weight is optional. If you do not specify a weight, the default is := 1.

In the following example, the set of legal random values that can be assigned to variable b is
100, 200, or 300. Because no weights are specified, the weighted ratio is 1-1-1.

class dist_example;
rand integer b;
constraint c1 {b dist {100, 200, 300};}

endclass

In the following example, the constraint specifies that b is equal to 100, 200, or 300, but with
a weighted ratio of 1-2-3.

constraint c2 {b dist {100 := 1, 200 := 2, 300 := 3};}

The following example specifies that b is equal to 100, 101, 102, 200, or 300 with a weighted
ratio of 1-1-1-2-3.

constraint c3 {b dist {[100:102] := 1, 200 := 2, 300 := 3};}

The following example uses the :/ operator, which applies the weight to the range as a
whole. Variable b must be 100, 101, 102, 200, or 300 with a weighted ratio of 1/3-1/3-1/3-2-3.

constraint c4 {b dist {[100:102] :/ 1, 200 := 2, 300 := 3};}

You can use the dist operator within conditional statements. For example:

constraint c1 {if (cmd==READ) addr dist {12’h0 :=1, 12’h0 :=1, 12’h0 :=1};

You can use the dist operator on a member of a structure. For example:

type struct {
bit [7:0] data;
bit [15:0] addr;
} op;

rand op foo;

constraint data_dist {foo.addr dist 100 := 1, 200 := 2, 300 := 3;} //Supported

Limitations on Distribution Expressions

The following distribution features in the LRM are not supported in the current release.
Differences between the specification shown in the LRM and the Cadence implementation
are also listed.

■ There are no limitations on the distribution expression, which is to the left of the dist
operator. The distribution expression can be any legal expression. There are also no
limitations on range expressions.

SystemVerilog Reference
Random Constraints

July 2010 190 Product Version 9.2

Weight expressions, however, cannot contain rand variables, randc variables, or
function calls.

■ A rand variable can have only one distribution constraint.

■ If a := weight operator applies to a range, the range expressions cannot include any
rand variables.

Implication

The implication operator (->) constrains random values only if a condition is successful. The
syntax for the constraint is as follows:

expression -> constraint_set

where

■ expression is any valid SystemVerilog integral expression

■ constraint_set is any valid constraint or unnamed constraint set

If the expression is true, the random numbers are constrained by constraint_set. If
expression is false, the solver ignores the constraint_set.

The following expression constrains payload to less than 100 when mode is SMALL, greater
than 10000 when mode is LARGE, or unconstrained when mode is neither SMALL nor LARGE:

constraint payC {mode == SMALL -> payload < 100; mode == LARGE -> payload > 10000;}

Note: The implication operator is bidirectional. In the previous example, the value of
payload constrains mode, but the value of mode also constrains payload.

Because the implication operator is bidirectional (a->b), if expression b is false, then a must
also be false.

if...else Constraints

Similar to the Implication operator, the if...else style of specifying constraints uses a
conditional expression, in that random values are constrained when a condition is met. The
syntax for if...else constraints is as follows:

if(expression) constraint_set [else constraint_set]

where

■ expression is any valid SystemVerilog integral expression

SystemVerilog Reference
Random Constraints

July 2010 191 Product Version 9.2

■ constraint_set is any valid constraint or unnamed constraint block; a
constraint_set can contain a group of constraints

If the expression is true, the random numbers are constrained by the first
constraint_set. If expression is false, the random numbers are constrained by the
second, optional constraint_set.

An if...else statement and an implication statement are equivalent. For example, the
following constraints have the same effect, where payload must be constrained to less than
100 when mode is SMALL, and greater than 10000 when mode is LARGE:

constraint payD {mode == SMALL -> payload < 100; mode == LARGE -> payload > 10000;}

constraint payE {if (mode == SMALL) payload < 100;
else if (mode == LARGE) payload > 10000;}

Because the else is optional, there might be confusion when associating an if with an else
in nested if...else statements. To avoid confusion, SystemVerilog associates an else
with the last if that is missing an else. In the following example, the else relates to the
second if:

constraint payF {if (mode != SMALL) if (mode == LARGE) payload > 10000;
else payload < 100;}

Iterative Constraints

An iterative constraint expression uses loop variables and indexing expressions to specify
iteration over elements in an array. The syntax for an iterative constraint expression is as
follows:

foreach (array_identifier [loop_variables]) constraint_set

loop_variables::=[index_variable_identifier]
{,[index_variable_identifier]}

For example, the following constrains the elements of the array called myArray to be in the
set (2, 3, 5, 6, 10):

class myClass;
rand byte myArray[];
constraint myCons {foreach (myArray[i]) myArray[i] inside {2, 3, 5, 6, 10};}
...

endclass

Note: In the IEEE 1800 standard, the array in a foreach statement must be a simple
identifier. The current release extends this requirement to allow hierarchical identifiers. This
implementation is not supported in the IEEE 1800 standard, but it is set to be a part of future
releases of the SystemVerilog language. For more information, see “foreach Loop” on
page 159.

Limitations on iterative constraints in the current release

SystemVerilog Reference
Random Constraints

July 2010 192 Product Version 9.2

■ The index variable must be an integer type.

■ Function calls are supported within foreach constraint expressions. However, if the
foreach expression is within an in-line constraint, it cannot contain function calls that
have a foreach loop index as an argument.

Global Constraints

Global constraints are constraint expressions that contain random variables from other
objects. In the current release, constraint expressions can contain variables that are declared
in modules, packages, and classes. For example, the following illustrates the use of rand
class handles. This example applies two constraints to the rand variable rand_int_1, so
that its value is between 11 and 19.

module top;

class c1;
rand int rand_int_1;
constraint con1 { rand_int_1 > 10; }

endclass

class c2;
rand c1 c1h;
constraint con2 { c1h.rand_int_1 < 20; }

endclass

c2 c2h;
integer res;

initial begin
repeat(5) begin
c2h = new;
c2h.c1h = new;
res = c2h.randomize();
$display("res = %d, c2h.c1h.rand_int_1 = %d", res, c2h.c1h.rand_int_1);

end
end

endmodule

solve...before Constraints

Generally, random values are chosen with equal probability—that is, all values have the same
chance of being chosen by the solver. However, you can use the solve...before
keywords in a randomization constraint to specify that a particular combination of legal values
occurs more often than others. A solve...before constraint has the following syntax:

constraint constraint_identifier
{solve identifier_list before identifier_list;}

SystemVerilog Reference
Random Constraints

July 2010 193 Product Version 9.2

The identifier_list contains only random variables with integral values. You cannot
impose variable ordering on randc variables, because randc variables are always solved
first. For example:

class myclass;
rand bit r1;
rand bit [7:0] r2;
constraint con1 { r1 -> r2 == 1; }
constraint order {solve r1 before r2; }

endclass

In this example, the solve...before directive lets you specify that the value of r1 must be
chosen independently from the value of r2, giving r1 equal probability of having the value 0
or 1. Without the solve...before directive, r1 and r2 are determined together, giving r1
almost zero probability of being 1.

The current implementation of solve...before supports all of the legal uses outlined by
the LRM.

Static Constraint Blocks

The current release supports the static keyword, which is used to declare static constraint
blocks. When a constraint block is declared as static, the constraint_mode() method
affects all of the instances of the specified constraint, in all objects.

Functions in Constraints

Function calls are supported in constraint expressions.

In the current release, when a function is called from a constraint expression

■ The function must return an integral type

■ The arguments to the function call cannot contain rand variables

■ The function cannot contain a randomize call

For example:

class class1;
rand int rint1;
function int fun1(input int arg1);

fun1 = 2 * arg1;
endfunction

constraint c1 { rint1 == fun1(2); }

endclass

SystemVerilog Reference
Random Constraints

July 2010 194 Product Version 9.2

Note: According to the LRM, the functions that are called in constraints cannot have side
effects, but this requirement is not strictly checked.

Randomization Methods

The current release supports all of the behavior described in the IEEE 1800 standard.

The randomize() Method

The built-in randomize() method generates random values for all active random variables
within an object, and are subject to the active constraints within the object. The
randomize() function returns 1 if it successfully assigns all of the random variables within
an object to a valid value. Otherwise, it returns 0.

The following example defines a class with random variables i1, i2, and i3. It then proceeds
to validate whether the solver was able to generate valid random values for these variables:

module top;
integer debug;
integer success, x1;

class class1;
rand integer i1, i2, i3; // Define random variables
integer i10;
constraint c1 { i1 > 10; i1 < 20; }
constraint c2 { i2 > i1; i2 < 100; }
constraint c3 { i3 > i2; i3 < i10; }

endclass

class1 p1;

initial begin
debug = 1;
p1 = new;
p1.i10 = 1000;
for (x1 = 0; x1 < 10; x1 = x1 + 1) begin

p1.i1 = 0;
p1.i2 = 0;
p1.i3 = 0;

success = p1.randomize(); // Generate random values for i1, i2, and i3

if (debug == 1) begin // Validate whether randomize() was successful
$display("\nsuccess = %d", success);

end
end

end
endmodule

Note: When a constraint contains randc variables, the solver generates the randc variable
values first, and these variables become state variables within the constraint. In this case,

SystemVerilog Reference
Random Constraints

July 2010 195 Product Version 9.2

randomize() might fail to find a solution. In the current release, the solver will not repeat its
attempts to reach a solution to the constraint.

pre_randomize() and post_randomize()

The pre_randomize() and post_randomize() methods are discussed in the IEEE 1800
standard.

The current release supports the built-in pre_randomize() and post_randomize()
methods, which are called by the randomize() method before and after it computes random
variables. You can override these methods when you want to perform operations before or
immediately after randomization. If these methods are overridden, they must call their
associated parent class methods. Otherwise, pre- and post- randomization processing steps
are skipped.

In-Line Constraints (randomize() with)

Declaring in-line constraints with the randomize()...with construct is supported,
including the local:: qualifier. For example:

res = bus.randomize() with {atype == low;};

In-line constraints can refer to local variables. For example:

class c;
function void do_rand(input int limit);
int rc;
rc = randomize(class_property) with {class_property < limit;} //Supported

endfunction
endclass

Activating and Inactivating Random Variables with
rand_mode()

Random variables can be activated or inactivated using the rand_mode() method. All
random variables are initially active. A random variable that has been inactivated is treated
as a state variable, and is not randomized by the randomize() method.

You can call the rand_mode() method as a task or a function.

■ When called as a task, the argument to rand_mode (1 or 0) determines the operation to
be performed. The syntax is as follows:

object[.random_variable].rand_mode(value);

SystemVerilog Reference
Random Constraints

July 2010 196 Product Version 9.2

where:

❑ object is the object in which the variable is defined.

❑ random_variable is the name of the variable to activate or inactivate; if no
variable is specified, the action applies to all random variables in the object

❑ value can be either 1 or 0

The value 1 activates the specified variable, or all variables if no variable is specified.
The value 0 inactivates the specified variable, or all variables if no variable is
specified.

■ When called as a function, rand_mode() returns 1 if the variable is active, or 0 if the
variable is inactive. The syntax is as follows:

object.random_variable.rand_mode();

For example:

class Foo;
rand integer p1, p2;

endclass

Foo myFoo = new;
initial begin

int result;
myFoo.rand_mode(0); // Inactivate all variables in object myFoo
myFoo.p1.rand_mode(1); // Activate variable p1 in object myFoo
result = myFoo.p1.rand_mode(); // Sets result to 1 because p1 is enabled

end

Limitations on rand_mode()

The Cadence implementation supports using the rand_mode() method for packed arrays,
packed structures, full unpacked arrays, and elements of fixed-size unpacked arrays.
However, the rand_mode() method is not supported for unpacked structures.

Activating and Inactivating Constraints with
constraint_mode()

Constraints can be activated or inactivated using the constraint_mode() method. All
constraints are initially active. Constraints that are inactive are ignored by the randomize()
method.

The constraint_mode() method can be called as a task or a function.

SystemVerilog Reference
Random Constraints

July 2010 197 Product Version 9.2

■ When called as a task, the argument to constraint_mode (1 or 0) determines the
operation to be performed. The syntax is as follows:

object[.constraint_identifier].constraint_mode(value);

where

❑ object is the object in which the variable is defined

❑ constraint_identifier is the name of the constraint to activate or inactivate;
if no constraint is specified, the action applies to all constraints in the object

❑ value can be either 1 or 0.

The value 1 activates the specified constraint, or all constraints if no constraint is
specified. The value 0 inactivates the specified constraint, or all constraints if no
constraint is specified.

■ When called as a function, constraint_mode() returns 1 if the constraint is active, or
0 if the constraint is inactive. The syntax is as follows:

object.constraint_identifier.constraint_mode();

For example:

class c;
rand bit cm1,cm2;
constraint con1 {cm1 < 4;}
constraint con2 {cm2 == cm1;}

endclass

c cd = new;

initial begin
int result;
cd.constraint_mode(0); // Disables all constraints in object cd
cd.con1.constraint_mode(1); // Enables constraint con1 in object cd
result = cd.con1.rand_mode(); // Sets result to 1 because con1 is active

end

In-Line Random Variable Control

You can temporarily control the randomized variables within a class object or instance by
calling the randomize() method with arguments. When the randomize() method is called
with arguments, the arguments specify the variables that should be randomized within a class
object—all other variables within the object are considered state variables, and are not
randomized. For example:

module top();
class c;

rand integer p1, p2;
integer b1, b2;
...

SystemVerilog Reference
Random Constraints

July 2010 198 Product Version 9.2

endclass

c pc1;

initial begin
byte res;
pc1 = new;
res = pc1.randomize(); // Randomize p1 and p2
res = pc1.randomize(p1); // Randomize only p1
res = pc1.randomize(b1); // Randomize only b1
res = pc1.randomize(p1, p2, b1, b2); // Randomize p1, p2, b1, and b2

end
endmodule

Randomizing Scope Variables (std::randomize())

SystemVerilog introduces a scope randomization function, std::randomize(), which lets
you assign unconstrained or constrained random values to variables that are visible in the
current scope.

The syntax of the scope randomization function is as follows:

[std::]randomize([variable_identifier_list])
[with {constraint_expression [;constraint_expression]; }];

Although it is not specifically mentioned in the LRM, each constraint expression must be
followed by a semicolon. For example:

success = randomize (Bytes) with {Bytes > 0}; // Invalid

success = randomize (Bytes) with {Bytes > 0;}; // Valid

Only integral type variables can be randomized. Wires and non-integral types, such as real,
are not allowed. The following variable data types are supported:

■ integer

■ logic

■ reg

■ int

■ bit

■ byte

■ shortint

■ longint

■ Enumerated data types

SystemVerilog Reference
Random Constraints

July 2010 199 Product Version 9.2

■ Packed structures

The Cadence implementation supports packed structures, but with the following
limitations:

❑ Packed structures must be at the module level. Packed structures that are defined
within classes cannot be used in calls to scope randomize.

❑ Packed structures that are defined in a package cannot be used in calls to scope
randomize.

❑ Packed structures cannot be used in distribution expressions or set membership
expressions.

❑ Nested structures are unsupported.

❑ When a member of a packed structure is an array, a bit or part select of that packed
structure is unsupported. For example:

module test_top;
integer r;

typedef struct packed {
bit [7:0] rl;

} struct_t;

struct_t sl;

initial begin
r = randomize(s1) with {sl.rl[2:1]==3;}; // Unsupported
r = randomize(sl) with {sl.rl == 6;}; // Supported

end
endmodule

In the following example, std::randomize() is called with two variables as arguments,
wide and i. The function assigns new random values to these variables.

logic [127:0] wide;
integer i;
int success;

success = randomize(wide, i);

The scope randomize function returns 1 if all of the random variables have been set to valid
values. Otherwise, it returns 0.

The scope randomize function can be called with no arguments. In this case, the function acts
as a checker, and simply returns its status.

Note: The scope randomization construct is not guaranteed to give the same result across
simulators from different EDA vendors. One EDA vendor can, and probably will, return
different sequences of random numbers than the Cadence simulator. Furthermore, it is not

SystemVerilog Reference
Random Constraints

July 2010 200 Product Version 9.2

guaranteed that the Cadence simulator will give the same sequence of random numbers from
one major release to the next.

Specifying Constraints

Constraints determine the legal values that can be assigned to the local scope variables. To
specify constraints, use the with clause. Enclose the constraint expressions in curly braces.

randomize(a, b, c) with {constraint_expression;};

randomize(a, b, c) with {constraint_expression; constraint_expression;};

In the following example, the wide and i variables are given random values, subject to the
constraint that i must be less than 32.

logic [127:0] wide;
integer i;
int success;

success = randomize(wide, i) with {i < 32;};

In the following example, the wide and i variables are given random values, subject to the
constraint that i must be less than 32, and the 0th bit of wide must be 0.

success = randomize(wide, i) with {i < 32; wide[0] == 0;};

The randomization returns 1 if it succeeds, and 0 if it is overconstrained. For example, the
following call will return 0:

success = randomize(i) with {i < 32; i > 32;};

The current implementation of the scope randomization construct supports the
SystemVerilog constraint expressions described in “Constraint Blocks” on page 186.

Examples:

■ Set membership—For example, the set of legal random values that can be assigned to
variable a is 3, 4, or 5:

module top;
integer i;
int success;
integer a, a2;
integer num_iterations;

initial
begin

a = 0;
num_iterations = 8;

process::self.srandom(20);

for (i = 0; i < num_iterations; i = i + 1)
begin

SystemVerilog Reference
Random Constraints

July 2010 201 Product Version 9.2

// a must be 3, 4, or 5.
success = randomize(a) with { a inside {3, 4, 5}; };
if (success != 1) $display("Failed");
if (!((a >= 3) && (a <= 5))) $display("Failed");

end
end

endmodule

The following call to the randomize function specifies that the legal values that can be
assigned to variable a are 3, 4, 5, 10, 11, 12, 13, 14, 15, and 16.

success = randomize(a) with { a inside {3, 4, 5, [10:16]}; };

The negated form of the inside operator specifies that the expression is excluded from
the set of legal values. The syntax is:

with { !(expression inside {set_of_values}); };

In the following example, the first inside operator specifies that a must be 10–16. The
second inside operator specifies that a cannot be 11–15. Therefore, the set of legal
values that can be assigned to a is 10 or 16.

success = randomize(a) with {
a inside { [10:16] };
!(a inside { [11:15] });
};

■ Distribution—For example, the following specifies that the set of legal random values that
can be assigned to variable a2 is 100, 200, or 300. Because no weights are specified,
the weighted ratio is 1-1-1.

success = randomize(a2) with {
a2 dist {100, 200, 300};
};

The following specifies that a2 is equal to 100, 200, or 300, with a weighted ratio of 1-2-3.

success = randomize(a2) with {
a2 dist {100 := 1, 200 := 2, 300 := 3};
};

The following specifies that a2 is equal to 100, 101, 102, 200, or 300, with a weighted
ratio of 1-1-1-2-3.

success = randomize(a2) with {
a2 dist { [100:102] := 1, 200 := 2, 300 := 3 };
};

The following example uses the :/ operator to apply the weight to the range as a whole.
Variable a2 must be 100, 101, 102, 200, or 300, with a weighted ratio of 1/3-1/3-1/3-2-3.

success = randomize(a2) with {
a2 dist { [100:102] :/ 1, 200 := 2, 300 := 3 };
};

■ Implication—The following specifies that payload must be constrained to less than 100
when mode is SMALL, greater than 10000 when mode is LARGE, or unconstrained when
mode is neither SMALL nor LARGE:

SystemVerilog Reference
Random Constraints

July 2010 202 Product Version 9.2

success = randomize(payload) with {mode == SMALL -> payload < 100;
mode == LARGE -> payload > 10000;};

■ if...else constraints—The following specifies that payload must be constrained to less
than 100 when mode is SMALL, and greater than 10000 when mode is LARGE:

success = randomize(payload) with {if (mode == SMALL) payload < 100;
else if (mode == LARGE) payload > 10000;};

Limitations on In-Line Scope Randomization Constraints

In-line scope randomization constraints have the same limitations as constraints that are
declared in classes. For more information, see “Limitations on Constraint Blocks” on
page 187.

Random Number System Functions and Methods

Several enhancements to random number system functions and methods are described in
the SystemVerilog LRM. This section lists the enhancements that are supported in the current
release.

The $urandom Function

SystemVerilog offers a function called $urandom, which supplements the Verilog $random
task used to generate random numbers. Unlike $random, the $urandom function generates
unsigned, 32-bit random numbers and offers thread stability. The syntax for $urandom is

value = $urandom [(seed)] ;

where seed is an optional, integral expression used to determine the sequence of the
generated numbers. For example:

module top;
int value;
initial begin

value = $urandom (2); // Sets the seed for the current process
// thread to 2

value = $urandom; // Generates a 32-bit random number
end

endmodule

The following example from the IEEE 1800 standard is incorrect, because $urandom is a
function.

bit [64:1] addr;

$urandom(254); // Initializes the generator
addr = {$urandom, $urandom }; // 64-bit random number
number = $urandom & 15; // 4-bit random number

SystemVerilog Reference
Random Constraints

July 2010 203 Product Version 9.2

The second line should be:

value = $urandom(254); // Initializes the generator

or, you can cast the function call to void:

void'$urandom(254); // Initializes the generator

The number generator generates pseudo-random numbers, in that the sequence of
generated numbers can be reproduced exactly by using the same seed. To generate truly
random numbers, you can specify a seed using a non-deterministic source, such as the
current time of day, or you can read values of seeds from a file.

The $urandom function offers thread stability, in that the random number values do not
depend on the order of thread execution. Refer to the SystemVerilog LRM for more
information.

The $urandom_range Function

SystemVerilog offers a new function called $urandom_range, which generates a random
number within a specified range, and offers thread stability. The syntax for $urandom_range
is as follows:

integer value;
value = $urandom_range(maxval, minval);

where maxval and minval are unsigned, 32-bit integral expressions that specify the size
of the range. In the following example, $urandom_range returns a random value from 3 to 6.

address = $urandom_range(6,3);

If minval is omitted, zero is used as a default. In the following example, $urandom_range
returns a random number from 0 to 6.

address = $urandom_range(6);

If minval is greater than maxval, the two values are swapped so that the first value is
always larger than, or equal to, the second value. In the following example,
$urandom_range returns a random value from 2 to 6.

address = $urandom_range(2,6);

In the following example, $urandom_range always returns 4:

address = $urandom_range(4,4);

SystemVerilog Reference
Random Constraints

July 2010 204 Product Version 9.2

The srandom() Method

Random number streams in SystemVerilog are associated with processes (threads). Each
thread has its own independent RNG for all randomization calls invoked from that thread, and
the RNG is guaranteed to produce the same sequence of random values from one simulation
run to the next.

The LRM describes how each RNG is seeded. The seed for each Verilog process is obtained
from the next random number generated by the process’s parent process. If the process does
not have a parent—for example, an initial block in a module instance—the seed is
obtained from the next random number generated by the RNG of the module instance. You
can manually set the RNG seed for subsequent calls to a process’s RNG by using the
SystemVerilog srandom() method.

You can set a seed for a stream with a call to the srandom() method of the current process,
as follows:

// Set the seed for the random number stream associated
// with the current process to 300.
process::self.srandom(300);

where

■ process is a predefined, built-in class that implements fine-grained process control.

■ self is a static member function of the built-in process class that returns an object
representing the current process.

■ srandom is a built-in member function of every object that manually sets the seed for the
random number generation for that object—in this case, the current process.

Note: While the simulator recognizes this special form for seeding the RNG, the built-in
process class is not implemented in the current release, and the self static member
function is not supported in a general context.

Additional System Functions and Methods

The current release supports the following random number system functions and methods:

■ get_randstate()

■ set_randstate()

SystemVerilog Reference
Random Constraints

July 2010 205 Product Version 9.2

Random Stability

The current release supports all of the properties of random stability, which are described in
the IEEE 1800 standard.

Random Weighted Case (randcase)

The randcase statement is a case statement that randomly selects one of its branches,
based on a branch weight. The probability of selecting a branch is determined by its weight,
divided by the sum total of all weights.

The weights must be non-negative integral expressions, and they cannot be greater than 64
bits wide. Negative signed expressions are treated as unsigned expressions.

For example:

randcase
2 : result = 1;
5 : result = 2;
3 : result = 3;

endcase

In this example, the first branch is given a weight of 2, the second 5, and the third 3. The sum
of all weights is 10. The probability of selecting each branch is as follows:

■ 20% probability of selecting branch result = 1;

■ 50% probability of selecting branch result = 2;

■ 30% probability of selecting branch result = 3;

If a weight of 0 is specified for a branch, that branch will be ignored. If all branches specify 0
weights, no branch is taken, and a warning is generated.

Weights are not limited to constants, but can be arbitrary expressions. For example:

randcase
a + b : result = 1;
a - b : result = 2;
32’b0 : result = 3;

endcase

SystemVerilog Reference
Random Constraints

July 2010 206 Product Version 9.2

Random Sequence Generator (randsequence)

To determine whether an utterance of a language is valid, parsers use the language’s BNF
notation to generate a program that can validate the utterance. SystemVerilog offers a
different approach, through random sequence generators.

A random sequence generator randomly generates a valid representation of a language,
which you can use to stimulate a design under test. To specify a random sequence generator,
use the randsequence keyword.

Declaring a randsequence Block

A randsequence block is composed of productions. A production has a name, and
contains a list of production items. Production items are defined in the order in which they will
be streamed, and can be classified into terminals and non-terminals. A terminal is an item
that cannot be divided, and needs only its associated block of code; while a non-terminal item
can be defined in terms of terminals, or other non-terminals.

The following is the simplified syntax for a randsequence block:

randsequence ([production_identifier])
production_list;

endsequence

For the complete syntax, refer to the IEEE 1800 standard, Syntax 13-12.

The following example defines a randsequence block:

randsequence(test)
// Defines test in terms of its non-terminals
test: one two done;

// Defines one as a choice between “up” and “down”
one: up | down;

// Defines two as a choice between “smile” and “frown”
two: smile | frown;

// Defines terminals that display the production name
done: { $display("done"); };
up: { $display("up"); };
down: { $display("down"); };
smile: { $display("smile"); };
frown: { $display("frown"); };

endsequence

This example has the following possible sequences:

up smile done
up frown done

SystemVerilog Reference
Random Constraints

July 2010 207 Product Version 9.2

down smile done
down frown done

In this example, the test production is defined in terms of three non-terminals: test, one,
and two. When the non-terminals are generated, they are decomposed into their
productions. A production item can contain multiple productions, separated by the | symbol.
This | symbol indicates a group of choices, from which the generator will choose at random.
In this example, one specifies a choice between up and down, and two specifies a choice
between smile and frown.

The remaining productions in this example are terminals, in that they are specified solely by
their code block. In this example, the done, up, down, smile, and frown terminals display
their production name.

if...else Production Statements

Productions can be made conditional using an if...else production statement, which uses
the following syntax:

if(expression) true_productionitem [else false_productionitem]

where expression is any expression that evaluates to a Boolean value. When the
expression is evaluated, if it is true, the true_productionitem is generated; otherwise,
the optional false_productionitem is generated.

For example:

module top;
int i1 = 100;
initial begin
randsequence (P1)

P1 : if(i1 == 100) P2 else P3;
P2 : {$display("P2");};
P3 : {$display("P3");};

endsequence
end

endmodule

Case Production Statements

The case production statement, which is used to select a production from a set of
alternatives, has the following syntax:

case (expression)
expression {,expression}: production_item1;
expression {,expression}: production_item2;
expression {,expression}: production_item3;
...
default: default_production;

endcase

SystemVerilog Reference
Random Constraints

July 2010 208 Product Version 9.2

The value of the case expression is evaluated and compared to each of the production
expressions, in the order in which they are written. For the first production expression that
matches, its corresponding production is generated. If none of the production expressions
match the case expression, the optional default_production is generated. For
example:

module top;
int i1 = 100;
initial begin
randsequence (P1)

P1 : case (i1)
100 : P2;
default : P2;
300 : P3;

endcase;
P2 : {$display("P2");};
P3 : {$display("P3");};

endsequence
end

endmodule

Note: You can have only one default statement within a case production statement.

Repeat Production Statements

To generate a production a set number of times, use the repeat production statement. This
statement has the following syntax:

repeat(expression) production_item

where expression is a non-negative integral value that specifies how many times to
generate the specified production_item. For example, the following displays “My
sequence” ten times:

module top;
int i1 = 100;
initial begin
randsequence (P1)
P1 : repeat (10) P2;
P2 : {$display("P2");};

endsequence
end

endmodule

A repeat production statement cannot be terminated prematurely. To terminate a repeat
production statement, you can terminate the entire randsequence block using a break
statement.

SystemVerilog Reference
Random Constraints

July 2010 209 Product Version 9.2

Limitations on randsequence Blocks

This section summarizes the randsequence features in the SystemVerilog LRM that are not
supported in the current release. Differences between the specification shown in the LRM
and the Cadence implementation are also listed.

■ The LRM states that you can use the rand join production control to randomly
interleave multiple production sequences, while preserving the order of each sequence.

Cadence does not support interleaved productions.

■ The LRM states that you can use arguments within productions. The LRM gives the
following example:

randsequence(main)
main: first second gen;
first: add | dec;
second: pop | push;
...
gen (string s = "done"): {$display(s);}; // Argument within a production

endsequence

Cadence does not support arguments within productions.

■ The LRM states that productions can return values using the return statement. The
LRM gives the following example:

randsequence (bin_op)
...
bit[7:0] value : {return $urandom}; // Returns an 8-bit value
string operator : add:=5{return "+";}

| dec := 2 {return "-" ;} // Returns a string
| mult := 1 {return "*";}

;
endsequence

Cadence does not support productions with return values.

Debugging Random Constraints

For information about how to debug random constraints using the Tcl command-line interface,
ncsim, or the SimVision analysis environment, refer to SystemVerilog in Simulation.

../svsim/svsimTOC.html#firstpage

SystemVerilog Reference
Random Constraints

July 2010 210 Product Version 9.2

SystemVerilog Reference

July 2010 211 Product Version 9.2

13
Interprocess Synchronization and
Communication

SystemVerilog introduces a powerful set of synchronization and communication mechanisms
that you can use to control the interactions that occur between dynamic processes used to
model a complex system or a highly dynamic, reactive testbench. These additions include
semaphore and mailbox built-in classes, and enhancements to the named event data type.

Semaphores

Note: Semaphores are supported within the Incisive Enterprise Simulator - XL (IES-XL).
However, semaphores are not available with the Incisive Enterprise Simulator - L (IES-L).

A semaphore is a built-in class that can be used for synchronization and the mutual exclusion
of resources. If you have a shared resource that can only be accessed by a set number of
processes at any given time, you can use a semaphore to enforce the set of rules to access
the resource.

When a semaphore is created, it contains a specific number of keys. When a process wants
to use the resource, it must first obtain a key from the semaphore. The waiting queue for a
semaphore is first-in first-out. This does not guarantee the order in which processes will arrive
at the queue, only that the semaphore will preserve the order of their arrival. Once the
maximum number of processes has been reached, all others must wait until a sufficient
number of keys is returned.

The following is the prototype for the semaphore class:

class semaphore;
function new(int keyCount = 0);
task put(int keyCount = 1);
task get(int keyCount = 1);
function int try_get(int keyCount = 1);

endclass

Semaphores are a part of the built-in std package, so they are implicitly imported into the
compilation-unit scope of every compilation unit. This means that semaphores are available
in any other scope.

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 212 Product Version 9.2

Note: The semaphore class can be redefined, because the semaphore identifier is not a
reserved keyword and can be used as a regular identifier.

Examples of creating a queue, dynamic array, or associative array of semaphores.

semaphore sm_aa[int]; // AA of semaphore indexed by int

semaphore sm_da[]; //Dynamic array of semaphore

semaphore sm_q[$]; //queue of semaphore

You can declare semaphores in the scopes of modules, program blocks, classes, packages,
static tasks, static functions, and interfaces.

The semaphore class provides the following methods:

■ new()—The new() constructor creates the semaphore, and has an integer argument,
keyCount, that is used to create the desired number of keys. The keycount argument
defaults to 0. For example, the following creates a semaphore called sem1 with 4 keys.

semaphore wantKeys; // Declares a semaphore data type
...
initial begin
wantKeys = new(4); // Initializes the semaphore with 4 keys

...

■ get()—The get() task obtains keys for a semaphore. The number of keys to obtain is
passed as an argument to get(). The default number of keys is 1. For example, the
following shows a process that asks for all of the keys and blocks until they are available.

...
wantKeys.get(4); // Attempt to procure all keys
...

A call to get() can be time-consuming because, if all of the desired keys are not
available, get() blocks subsequent statements and waits for all of the remaining keys.

■ put()—The put() task returns keys so that other processes can use them. For
example:

...
wantKeys.get(4);
...
wantKeys.put(4);
...

■ try_get()—The try_get() function is used to obtain keys without blocking. Unlike
the get() task, the try_get() function checks key availability without blocking
subsequent calls. If the try_get() function is successful in procuring the desired
number of keys, it returns 1. Otherwise, it returns 0. For example:

...
if (wantKeys.tryget(4))

pr();
else
...

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 213 Product Version 9.2

Example 13-1 Using Semaphore Methods
class c;

semaphore s[*];
semaphore s_da[];
semaphore s_q[$];

endclass

module top;
int i;
c obj;

initial
begin

obj = new;
obj.s[1] = new(2);
obj.s[2] = new(1);
obj.s_da = new[3];
obj.s_da[1] = new(1);
obj.s_q[0] = new(2);
obj.s.first(i);
$display("trying to get : %d",obj.s[i].try_get(1));
$display("trying to get : %d",obj.s_q[0].try_get(1));
$display("trying to get: %d",obj.s_da[i].try_get(3);
obj.s.next(i);
$display("trying to get: %d",obj.s[i].try_get(2));

end

Simulation output:

ncsim> run
trying to get: 1
trying to get: 1
trying to get: 0
trying to get: 0

Limitations on Semaphores

In the current release, the following are supported for semaphores:

■ Semaphores are supported in modules, program blocks, classes, packages, static tasks,
static functions, and interfaces.

■ Semaphores can be declared as public, static, local, or protected members of a
class.

■ Semaphores can be passed as arguments to tasks, functions, and class methods.

Because semaphores are classes, they are subject to the same limitations as classes. In
addition to the class limitations, semaphores also have the following limitations:

■ Semaphores cannot be used within generate statements or declared on ports.

■ Semaphores cannot be used in the index of an associative array.

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 214 Product Version 9.2

■ While the Cadence implementation supports OOMRs and hierarchical references of
semaphores, there is a limitation which does not allow calling methods of the semaphore
class using hierarchical references. However, you can make such method calls using
local objects after assigning an out-of-scope instance of semaphores to a local
declaration of the same kind.

The following is an example of using OOMRs of semaphores:

module top;
semaphore sm;
integer i = 2;
sm = new(i);
sm.get(i);
bot bot_inst();

endmodule

module bot;
semaphore sm_l;
integer j = 2;
sm_l = top.sm;
sm_l.put(j);

endmodule

■ The LRM states that semaphores “can be used as base classes for deriving additional
higher level classes.” This feature is not supported in the current release.

■ According to the LRM, semaphores can use the std:: syntax. With this syntax, the
code can easily distinguish between semaphores and any overrides of semaphores. The
current release does not support this syntax.

Mailboxes

Note: Mailboxes are supported within the Incisive Enterprise Simulator - XL (IES-XL).
However, mailboxes are not available with the Incisive Enterprise Simulator - L (IES-L).

For a complete example using a mailbox that you can download and run, see the
SystemVerilog Engineering Notebook.

Mailboxes provide a form of direct communication between processes, where data can be
exchanged between a sending process and its designated recipient.

SystemVerilog mailboxes operate like real mailboxes. A process places a message inside a
mailbox so that another process can retrieve it. The message stays within the mailbox until it
is retrieved. If the receiving process checks the mailbox before the sending process has
deposited the message, the receiving process can either wait for the message to arrive, or
check back at a later time.

A SystemVerilog mailbox is a built-in class. The following is the prototype for the mailbox
class:

../svNtbk/svNtbkTOC.html#firstpage

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 215 Product Version 9.2

class mailbox #(type T = dynamic_singular_type);
function new(int bound = 0);
function int num();
task put(T message);
function int try_put (T message);
task get(ref T message);
function int try_get(ref T message);
task peek (ref T message);
function int try_peek (ref T message);

endclass

Note: The ref arguments used in the get(), try_get(), peek(), and try_peek()
methods are subject to the limitations described in “Limitations on Passing Task and Function
Arguments by Reference” on page 175.

The following is the syntax for creating a mailbox:

mailbox mailbox_name;

For example:

mailbox mymailbox;

mailbox mbox_aa[int]; // AA of mailbox indexed by int

mailbox mbox_da[]; //Dynamic array of mailbox

mailbox mbox_q[$]; //Queue of mailbox

You can declare mailboxes in the scopes of module, program block, classes, packages, static
tasks, static functions, and interfaces.

In the current release, you can use the Tcl describe command on the handle of a mailbox
to display the number of messages inside the mailbox.

describe -handle 2

Mailbox Methods

The built-in mailbox class provides the following methods:

■ new()—The new() constructor creates the mailbox. It has an integer argument, bound,
that is used to determine whether the mailbox is bounded or unbounded. If the bound
argument is set to a non-zero number, the mailbox is bounded, and the number
represents the maximum number of messages that the mailbox can contain. When a
process tries to place a message in a mailbox that has reached its bound limit, the
process will be suspended until space is available.

When the bound argument is set to zero, the mailbox is unbounded, and can contain an
unlimited number of messages. Unbound mailboxes never suspend a thread in a send
operation.

The default bound argument is 0.

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 216 Product Version 9.2

Example:

mymailbox = new(0); // mailbox is unbounded, default

mymailbox = new(5); // mailbox queue can contain 5 messages

mymailbox = new(-10); // generates warning; default of 0 is used instead

mymailbox_da = new [5] // dynamic array of mailbox of sized 5

■ num()—The num() method returns the number of messages currently in the mailbox.

For example:

i = mymailbox.num();

■ put()—The put() method places a message in the mailbox. If a process tries to use
the put() method on a mailbox that is full, the call will block until space is available. For
example, the following tries to put a message called msg1 in myMailbox.

mymailbox.put(c1); //c1 is a class handle

Note: The put() method stores the messages in the mailbox in FIFO order. In other
words, the first message that is put in is the first one to pop out.

■ try_put()—The try_put() method is similar to put(), except that it is non-
blocking. If the mailbox is not full, the method places the message in the mailbox and
returns a positive integer. If the mailbox is full, this method returns 0.

Note: The try_put() method stores the messages in the mailbox in FIFO order.

■ get()—The get() method retrieves one message, if one is available, from the
specified mailbox’s queue. If the message is not available, the call blocks until the
message is available. If the type of the message variable does not match the type of
message in the mailbox, a run-time error occurs. For example:

class c;
endclass

class d extends c;
endclass

class x;
endclass

c c1;
d d1;
x x1;
...
mymailbox.put(d1);
mymailbox.get(x1); // Invalid. Types do not match.
mymailbox.get(c1); // Valid.

■ try_get()—The try_get() method is similar to get(), except that it is non-
blocking. If the mailbox is empty, this method returns 0. If the type of the message
variable does not match the type of message in the mailbox, this method returns a

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 217 Product Version 9.2

negative integer. If a message is available, and its type matches the message variable
type, this method retrieves the message and returns a positive integer. For example:

j = mymailbox.try_get(c1); // Value of j will be 0.
mymailbox.put(c1);
j = mymailbox.try_get(x1); // x1 does not change and value of j will be -1.
j = mymailbox.try_get(c2); // Value of j will be 1.

■ peek()—The peek() method copies one message, if it is available, from the mailbox.
This method is useful when you want to copy a message from a mailbox without deleting
it from the mailbox. If the message is not available, the call blocks until the message is
available.

■ try_peek()—The try_peek() method is similar to the peek() method, except that
it is non-blocking. If the mailbox is empty, this method returns 0. If the type of the
message variable does not match the type of message in the mailbox, this method
returns a negative integer. If a message is available, and its type matches the message
variable type, this method copies the message and returns a positive integer.

Note: You can pass bit selects of an array as arguments to the mailbox methods.

Example 13-2 Using Mailbox Methods
class c;
mailbox mbx1[*];
mailbox mbx1_da[];
endclass

module top;
integer i,j,k,l;
int p1, p2;
longint idx;
c obj;

initial
begin

obj = new;
obj.mbx1_da = new[5];
obj.mbx1_da[1] = new(2);
obj.mbx1[1] = new(0);
obj.mbx1[2] = new(-2);

$display ("handle of mbx[1] = %d , mbx[2] = %d\n", obj.mbx1[1], obj.mbx1 [2]);
$display ("handle of mbx_da[1] = %d, mbx_da[2] \n", obj.mbx1_da[1],

obj.mbx1_da[2]);

#1;
obj.mbx1[1].put(1);
p1= obj.mbx1[1].try_put(2);
if (p1 == 0)

$display("mbx1[1] is full");
obj.mbx1[2].put(3);
p2=obj.mbx1[2].try_put(4);
if (p2 == 0)

$display("mbx1[2] is full");
$display("number of messages in a mailbox mbx1[1] \n",obj.mbx1[1].num());
$display("number of messages in a mailbox mbx2[1] \n",obj.mbx1[2].num());

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 218 Product Version 9.2

$display("number of messages in a mailbox mbx1 \n",obj.mbx1.num());
$display("size of mailbox mbx1_qa \n",obj.mbx1_da.size());

#1;
obj.mbx1.first(idx);
obj.mbx1[idx].peek(i);
p1 = obj.mbx1[idx].try_peek(j);
if (p1 == 0)

$display("no more messages in mbx1[1]");
obj.mbx1.next(idx);
obj.mbx1[idx].peek(k);
p2 = obj.mbx1[idx].try_peek(l);
if (p2 == 0)

$display("no more messages in mbx1[2]");
$display("number of messages in a mailbox mbx1[1] \n",obj.mbx1[1].num());
$display("number of messages in a mailbox mbx2[1] \n",obj.mbx1[2].num());
$display("number of messages in a mailbox mbx1 \n",obj.mbx1.num());

end

always @(i)
$display ("value of i after fetching the message = %d\n", i);

always @(j)
$display ("value of j after fetching the message = %d\n", j);

always @(k)
$display ("value of k after fetching the message = %d\n", k);

always @(l)
$display ("value of l before fetching the message = %d\n", l);

Endmodule

Simulation output:

ncsim> run
obj.mbx1[2] = new(-2);

ncsim: *W,MBXKBG (./test.v,18|17): Negative key value encountered for a mailbox.
The default of 0 will be used instead [SystemVerilog].

handle of mbx[1] = 7 , mbx[2] = 9
handle of mbx_da[1] = 4 , mbx_da[2] = 9

number of messages in a mailbox mbx1[1]

2

number of messages in a mailbox mbx2[1]

2

number of messages in a mailbox mbx1_da[1]

$display("number of messages in a mailbox mbx1_da[1] \n",obj.mbx1_da[2].num());

ncsim: *W,MBOHDL (./test.v,35|75): A method was encountered on a null mailbox
[SystemVerilog].

0

number of messages in a mailbox mbx1

2

number of messages in a mailbox mbx1_da

5

number of messages in a mailbox mbx1[1]

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 219 Product Version 9.2

2

number of messages in a mailbox mbx2[1]

2

number of messages in a mailbox mbx1

2

value of i after fetching the message = 1

value of j after fetching the message = 1

value of k after fetching the message = 3

value of l before fetching the message = 3

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> heap -report

Dynamic Array: 1 [48 bytes]

Assoc Array: 1 [96 bytes] including 1 prototypes and 2 elements

Class: 1 [32 bytes]

Mailbox: 3 [304 bytes]

Mailbox Entry: 5 [160 bytes]

total objects: 15 [640 bytes]

ncsim> exit

Limitations on Mailboxes

The following summarizes the mailbox features in the SystemVerilog standard that are not
supported in the current release. Differences between the specification shown in the LRM
and the Cadence implementation are also listed.

■ Only the following data types can be passed as arguments to the put(), try_put(),
get(), try_get(), peek(), and try_peek() mailbox methods:

❑ Class handles

❑ shortint, int, longint, byte, integer

❑ bit, logic, reg

❑ Packed arrays of types bit, logic, and reg

■ Mailboxes and fixed arrays of mailboxes can be declared only within modules, program
blocks, tasks, functions, classes, interfaces, and packages.

■ While the Cadence implementation supports OOMRs and hierarchical references of
mailboxes, there is a limitation which does not allow calling methods of the mailbox class
using hierarchical references. However, you can make such method calls using local
objects after assigning an out-of-scope instance of mailboxes to a local declaration of the
same kind. The following example illustrates this scenario:

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 220 Product Version 9.2

// This is not allowed:
top.mbox.put();

// This is allowed:
l_mbox = top.mbox;
l_mbox.put();

where mbox is an instance of the mailbox defined in module top.

The following is an example of using OOMRs of mailboxes:

module top;
mailbox #(int) mbox;
int i = 10, j;
initial begin

mbox = new;
mbox.put(i);
mbox.get(j);
$display(“From top: mbox”, j);

end
bot bot_inst();

endmodule

module bot;
mailbox #(int) mboxl;
initial begin

mboxl = top.mbox;
$display("From bot: mboxl >> ", mboxl.num());

end
endmodule

■ Mailboxes cannot be passed as module ports to tasks and functions. You can, however,
pass mailboxes as arguments to tasks, functions, and class methods.

■ Although mailboxes are a built-in class, they cannot be extended.

■ Parameterized mailboxes are not supported.

■ Initializing a fixed array of mailboxes is not support.

■ If mb1 and mb2 are fixed arrays of mailboxes, mb1=mb2 is not supported.

■ Strings are not supported within parameterized mailboxes.

Events

In the current release, events can be

■ Passed by value to tasks and functions

■ Declared within a class or package

The current release does not support events within unpacked structures.

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 221 Product Version 9.2

Non-Blocking Event Trigger

In Verilog, event triggers act like blocking assignments. They immediately trigger the event at
the point at which the trigger is executed, and block the execution of subsequent code until
the event finishes execution.

The triggering of named events in Verilog can often lead to race conditions. The following
example illustrates the problem.

module events;
event e, go;

always @(go)
begin

$display($time,,"Always 1 - triggering e");
-> e;

end

always @(go)
begin

$display($time,,"Always 2 - about to wait on e");
@(e) $display($time,,"Always 2 - wakeup on e");
$finish;

end

always #5 -> go;
endmodule

The run-time output of this description might be

5 Always 1 - triggering e
5 Always 2 - about to wait on e
10 Always 1 - triggering e
10 Always 2 - wakeup on e

or

5 Always 2 - about to wait on e
5 Always 1 - triggering e
5 Always 2 - wakeup on e

SystemVerilog introduces a nonblocking event trigger operator, ->>. The syntax is as follows:

->> [delay_or_event_control] hierarchical_event_identifier;

The ->> operator does not block the execution of subsequent code. The statement creates
a nonblocking assign update event at the time in which the delay control expires, or the even-
control occurs. The triggered event is scheduled to occur at the end of the simulation time slot
in the nonblocking assignment region of the simulation cycle.

The following code shows the first always block from the example shown above rewritten to
use the nonblocking trigger operator.

always @(go)
begin

$display($time,,"Always 1 - triggering e");

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 222 Product Version 9.2

->> e; // Nonblocking trigger guaranteed to run after
// both always blocks.

end

The legal outcomes of the above description are

5 Always 2 - about to wait on e
5 Always 1 - triggering e
5 Always 2 - wakeup on e

or

5 Always 1 - triggering e
5 Always 2 - about to wait on e
5 Always 2 - wakeup on e

Note: Although the order of the always blocks is still arbitrary, both orderings cause the
wakeup on event e to occur at time 5.

Persistent Trigger

In Verilog, events have no logic value or duration. Processes can watch for an event to trigger,
but if a process is not watching at the exact moment that an event is triggered, the event will
go undetected. SystemVerilog introduces the triggered property, which enhances the
event data type by allowing an event to persist throughout the time step in which the event is
triggered. The syntax is as follows:

hierarchical_event_identifier.triggered

The triggered event property evaluates to true, as long as the given event is triggered
within the current time unit. Otherwise, the triggered event property evaluates to false.

The addition of the triggered property helps resolve a common race condition, illustrated
in the following example:

begin
-> eventA
...
end
...
@(eventA)
...

In this example, eventA must occur before the rest of the code can execute, which can cause
a race condition when the event control and eventA occur at the same time. In this case, the
wait might either unblock, or wait until the next eventA. You can eliminate this race condition
using the triggered property and a wait statement:

begin
-> eventA
...
end
...

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 223 Product Version 9.2

wait(eventA.triggered)
...

This code will unblock the calling process as long as the wait executes before or at the same
time unit as the event trigger.

When the .triggered property is used within the wait() construct, the condition waits for
the event.triggered property to become true. If you reach the wait() statement and
the property is true, execution proceeds immediately; otherwise, it will wait for the property to
become true.

Caution

The event.triggered construct is most useful when used within the wait()
construct. While it seems natural to replace @(event) with
@(event.triggered), combining the semantics of the .triggered property
and edge-activated event control @() could produce undesired results.

Note: The current release does not support the .triggered property on OOMRs to a
named event. You can only reference a named event from the scope in which it was declared.

Event Variables

In SystemVerilog, events behave like variables, in that they can be assigned to one another,
assigned a special null value, or compared against each other.

If you have two event type variables called e1 and e2, you can

■ Assign one to the other

When an event is assigned to another event, the two events become merged and they
share the synchronization queue of the event on the right-hand side of the assignment.
However, the assignment affects only subsequent event control or wait operations. For
example, if there are processes waiting on an event at the time it is merged with another
event, the waiting process will never unblock.

e1 = e2; // Merges the two event variables
// After this, events waiting on e1 will never unblock

fork
begin
-> e1; // Also triggers e2

end

begin
wait(e1.triggered); // Unblocks wait process
...

end

SystemVerilog Reference
Interprocess Synchronization and Communication

July 2010 224 Product Version 9.2

begin
wait(e2.triggered); // Also unblocks wait process

end

■ Reclaim an event

You can reset an event type variable by assigning it a special null value. This
disconnects the event variable from its synchronization queue, making the event
variable’s resources available again. For example:

event e1 = null; // Resets e1

Event controls and wait operations on a null event are undefined, and triggering a null
event has no effect. For example:

@ e1; // Undefined
wait (e1.triggered); // Undefined
-> e1; // No effect

■ Compare them

You can use comparison operators (==, !=, ===, and !==) to compare an event variable
to another event variable, or to null. Or, you can check for a Boolean value that will be
0 if the event is null, or 1 otherwise. For example:

if (e1 == null)
$display("e1 is null");

if (e1)
e1 = e2; // Merges e1 and e2 if e1 is not null

SystemVerilog Reference

July 2010 225 Product Version 9.2

14
Clocking Blocks

Note: Clocking blocks are supported within the Incisive Enterprise Simulator - XL (IES-XL).
However, clocking blocks are not available with the Incisive Enterprise Simulator - L (IES-L).

In Verilog-2001, module ports are used to model communication between blocks.
SystemVerilog extends this feature by introducing the interface construct, which encapsulates
the communication between blocks. Although an interface can specify the signals and nets
through which a testbench communicates with its DUT, it cannot explicitly specify timing and
synchronization requirements. To address this limitation, SystemVerilog introduces the
clocking block construct. A clocking block

■ Identifies a clocking domain, which encapsulates clock signals, and the timing and
synchronization requirements of blocks wherein the clock is used.

■ Separates time-related details from the structural, functional, and procedural elements
of a testbench.

■ Helps define the testbench based on transactions and cycles (cycle-based
methodology), as opposed to signals and transition times (event-based methodology).

■ Simplifies the creation of a testbench that does not have race conditions with the DUT.

For a complete example using clocking blocks that you can download and run, refer to the
SystemVerilog Engineering Notebook.

Declaring a Clocking Block

A simple clocking block declaration is as follows; see the SystemVerilog LRM, Syntax for the
complete syntax.

clocking [clocking_identifier] clocking_event;
clocking_items
endclocking[: clocking_identifier]

For example, the following defines a clocking block called c1 that is to be clocked at signal
clk.

../svNtbk/svNtbkTOC.html#firstpage

SystemVerilog Reference
Clocking Blocks

July 2010 226 Product Version 9.2

module test_top;

wire clk;
wire a, b;

clocking c1 @clk;
default input #1ns;
default output #2ns;
input posedge a;
output negedge b;

endclocking: c1

endmodule

The second line of the clocking block declaration specifies a default input skew of 1ns, which
means the testbench must sample input signals at 1ns before the clock edge. The third line
specifies a default output skew of 2ns, which means that outputs must be driven 2ns after
the clock edge. The fourth and fifth lines show how you can reference a clock edge to sample
a value or drive a stimulus.

The items and events specified within a clocking block declaration are order-independent—
there is no required ordering within the scope of a design unit.

Clocking blocks can be declared within modules, interfaces, and program blocks. Clocking
blocks cannot be nested. They cannot be declared within functions, tasks, or packages, or
outside all declarations in a compilation unit.

A clocking block is both a declaration and an instance of that declaration. You do not need a
separate instantiation.

You can access an individual signal within a declared clocking block by using its name, the
dot (.) operator, and the signal identifier. For example:

c_counter.sig // Accesses sig in clocking block c_counter

You can access the clocking event of a clocking block directly, by using the clocking block
name. For example:

clocking dram@(posedge phi1);
inout data;

endclocking
...

always @(dram) // Equivalent to @(posedge phi1)
...

The following lists the features that are supported in the IEEE 1800 standard, but are not
supported in the Cadence implementation.

■ The LRM specifies that names for clocking blocks are optional. The Cadence
implementation supports only unnamed, default clocking blocks that do not contain
clocking items. Unnamed, non-default clocking blocks are not allowed, and produce an

SystemVerilog Reference
Clocking Blocks

July 2010 227 Product Version 9.2

error message in the simulator. See “Defining Default Clocking Blocks” on page 231 for
more information about default clocking blocks.

■ The LRM allows clocking block declarations within generate loop statements. This is
not supported in the Cadence implementation.

Types of Clocking Items

Cadence provides support for multi-dimensional vectors and unpacked arrays as types of
clocking items. Unpacked arrays much be of fixed sizes (that is, Verilog memories). Clocking
items that are non-fixed size arrays (for example, dynamic arrays, queues, strings, and
associative arrays) are not supported. The supported array element types include vectors,
logic scalars and reals. The array element type can be another unpacked array type (that is,
multi-dimensional unpacked arrays are supported).

Restrictions of Clocking Items Types

■ A clocking item cannot be associated with an unpacked array if the array is addressed
using an OOMR.

■ A clocking item cannot be associated with an unpacked array of nets.

These limitations are illustrated by the following examples. The lines labeled LINE 9 and LINE
10 will not be supported with this enhancement; LINE 11 will be supported.

module data;
int x[8];
endmodule

module m(input clk, input var int y[8]);
data d();
wire w[8];
clocking c @(posedge clk);

input a = d.x; // LINE 9: UNSUPPORTED (OOMR TO UNPACKED ARRAY)
input w; // LINE 10: UNSUPPORTED (UNPACKED ARRAY OF NETS)
input y; // LINE 11: SUPPORTED

endclocking
endmodule

■ Associating a clocking item with an unpacked array that is implemented as a sparse array
is not supported.

Example 14-1 Simple Input Case of Clocking Items

This example shows an input clocking item taking on its new value on the positive edge of a
clock change:

module top;
int a[2];

SystemVerilog Reference
Clocking Blocks

July 2010 228 Product Version 9.2

reg clk;
clocking cb @(posedge clk);

input a;
endclocking
initial begin

#1 clk = 0;
#1 a[0] = 1;
#1 a[1] = 2;
#1 clk = 1;

end
always @(cb.a[0], cb.a[1])
$display("At %0d cb.a is {%0d, %0d}", $stime, cb.a[0], cb.a[1]);

endmodule

Output:

At 4 cb.a is {1, 2}

Example 14-2 Simple Output Case of Clocking Items

This example shows an output clocking item driving one of the array elements, with the new
value taking effect when the clocking block is activated by an event:

module top;
int a[2];
event e;
clocking cb @(e);

output a;
endclocking
initial begin

#1 cb.a[0] <= 1;
#1 a[1] = 2;
#1 ->e;

end
always @(a[0], a[1])

$display("At %0d a is {%0d, %0d}", $stime, a[0], a[1]);
endmodule

Output:

At 2 a is {0, 2}

At 3 a is {1, 2}

Defining Default Skews and Clocking Direction

SystemVerilog allows default skews for a single clocking block to be specified on multiple lines
or on a single line. For example, you can use:

clocking c1 @clk;
default input #10ns;
default output #2ns;
...

endclocking: c1

or

SystemVerilog Reference
Clocking Blocks

July 2010 229 Product Version 9.2

clocking c1 @clk;
default input #10ns output #2ns;
...

endclocking: c1

The SystemVerilog LRM gives the following syntax for defining default skews and clocking
direction on a single line:

input [clocking_skew] output [clocking_skew];

The Cadence implementation allows the reverse order. For example:

output [clocking_skew] input [clocking_skew];

A clocking block cannot have multiple default skews with the same type. Although types can
have independent delay controls and edge skews, they can have only one of each. For
example, you cannot have multiple default input skews:

clocking c1 @clk;
default input #10ns;
default input #2ns; // Invalid

However, an edge skew default does not conflict with a delay control skew default. For
example, the following specifies that all inputs will have a 1ns input skew, but will also have
a positive edge skew.

clocking c1 @clk;
default input #1ns;
default input posedge; // Valid

Defining Clocking Items

SystemVerilog allows you to declare clocking items on multiple lines. For example, the
following lines

clocking c1 @clk;
input posedge a;
output negedge a;

endclocking

are the same as

clocking c1 @clk;
input posedge output negedge a;

endclocking

When you declare clock items on multiple lines, SystemVerilog treats them as a summation
of the various directions and skews. A skew is not unset if a clocking item is declared on
multiple lines. For example:

clocking c1 @clk;
input posedge a;
input a; // This line does not unset anything

endclocking

SystemVerilog Reference
Clocking Blocks

July 2010 230 Product Version 9.2

Each direction of a clocking item—input or output—can have only one skew edge, either
posedge or negedge, and one delay control. For example, you cannot have multiple skew
edges and delay controls for the same direction of a clocking item:

clocking c1 @clk;
input posedge a;
input negedge a; // Invalid
output negedge a;
output #1 a;
output #2 a; // Invalid

endclocking

Using Hierarchical Expressions

In SystemVerilog, you can use a hierarchical expression in place of a local port. This
feature lets you specify that the signal that will be associated with the clocking block is
specified by its hierarchical name. A hierarchical expression is introduced using the equal
sign (=). For example:

clocking c1 @clk;
input a = top.cpu.state;

endclocking

You cannot designate multiple hierarchical expressions for the same clocking item. In the
following example, the second designation causes an error message, because a already has
the hierarchical expression top.m.a:

clocking c1 @clk;
input a = top.m.a;
input posedge a = top.m.b; //Invalid

endclocking

The following lists differences between the IEEE 1800 standard and the Cadence
implementation:

■ The Cadence implementation does not support the following use of hierarchical
expressions:

clocking c @clk;
input a.b;

endclocking

Instead, the Cadence implementation supports the following:

clocking c @clk;
input in = a.b;

endclocking

SystemVerilog Reference
Clocking Blocks

July 2010 231 Product Version 9.2

■ The Cadence implementation does not support the concatenation {...} syntax used in
the example in the IEEE 1800 standard. Instead, the Cadence implementation supports
the following usage:

clocking mem @(clock);
input instruction = top.cpu.instr;

endclocking

Defining Default Clocking Blocks

You can specify a default clocking block for all cycle delay operations that occur within a given
module, interface, or program. You can only specify one default clocking block within a
module, interface, or program, and that clocking block is only valid within the scope containing
the clocking specification. In the following example, default clocking block c1 is only valid
within the scope of module m1:

module m1;
wire a;
wire clk;
default clocking c1;

input a;
endclocking

endmodule

The LRM Syntax 15-4 allows a short-form designation of a default clocking block, where the
default is designated separately from its declaration. For example:

module top;
wire a;
wire clk;
default clocking c1; // Designates the default clocking block

clocking c1 @clk; // Clocking block declaration
input a;

endclocking
endmodule

Note: The implied use of the short-form designation is for nested modules and interfaces.
The simulator does not support nested design units, so the Cadence implementation
supports only clocking blocks in non-nested design units.

Specifying Cycle Delays and Clocking Drives

The ## operator is used in the testbench to delay execution by a specified number of clocking
events or clock cycles. This feature is called a cycle delay. For example:

2 // Wait 2 clocking events, using the default clocking block

SystemVerilog Reference
Clocking Blocks

July 2010 232 Product Version 9.2

The makeup of a clocking event depends on the default clocking block. If a default clocking
block has not been specified for the current module, interface, or program, the compiler issues
an error message.

Cycle delays can be used in two kinds of statements:
procedural_timing_control_statement and clocking_drive.

The Verilog procedural_timing_control_statement thread allows cycle delays to be
specified alone. For example:

initial
begin
##1;

end

However, the Verilog procedural_timing_control_statement thread does not allow
cycle delays on the right-hand side of statements. For example:

default clocking c1 @clk;
output a;

endclocking

initial
begin
c1.a <= ##1 b; // Not allowed by procedural_timing_control_statement

end

SystemVerilog introduces the clocking_drive statement, which allows cycle delays on the
right-hand side of statements. For example, the following statement is valid in SystemVerilog.
It specifies to remember the value of b, then drive Data two clock cycles later:

cl.Data <= ##2 b;

The following summarizes the Cadence implementation for clocking drives:

■ You can only use cycle delays on the right-hand side of non-blocking assignments, and
the left-hand value must be a clocking item. For example:

cl.a = ##1 b; // Invalid, the statement must be non-blocking
a <= ##1 b; // Invalid, the left-hand side must be a clocking item
cl.a <= ##1 b; // Valid, if cl.a is a clocking item

■ When a cycle delay is specified on the left-hand side of a non-blocking assignment, and
the left-hand value is a clocking item, it is considered a clocking drive. Otherwise, it is
considered a procedural_timing_control_statement thread. For example:

##1 cl.a <= b; // Considered a clocking drive

##1 a <= b; // Considered a procedural_timing_control_statement
// followed by a non-blocking assignment

■ A cycle delay, regardless of whether it is on the left-hand or right-hand side of an
assignment, is defined by the clocking block of the signal being driven. For example:

##1 bus.Data <= 8’ hz; // Wait 1 bus cycle, then drive Data

SystemVerilog Reference
Clocking Blocks

July 2010 233 Product Version 9.2

bus.Data <= ##2 8’hz; // Wait 2 bus cycles, then drive Data

■ When there is a cycle delay on both sides of an assignment, it is considered a
procedural_timing_control, followed by a clocking drive. For example:

##1 c1.a <= ##2 b;

is the same as

##1;
c1.a <= ##2 b;

Debugging Clocking Blocks

For information about how to debug clocking blocks using the Tcl command-line interface or
the SimVision analysis environment, refer to SystemVerilog in Simulation.

../svsim/svsimTOC.html#firstpage

SystemVerilog Reference
Clocking Blocks

July 2010 234 Product Version 9.2

SystemVerilog Reference

July 2010 235 Product Version 9.2

15
Program Blocks

Note: Program blocks are supported within the Incisive Enterprise Simulator - XL (IES-XL).
However, program blocks are not available with the Incisive Enterprise Simulator - L (IES-L).

SystemVerilog introduces a program block construct. A program block, similar to a module,
facilitates the creation of a testbench, but has special syntax and semantic restrictions. A
program block

■ Provides an entry point to the execution of testbenches

■ Acts as a scope for the data contained in the program block

■ Provides a syntactic context that schedules events in the reactive region

■ Uses a special $exit() system task

For a complete example using program blocks that you can download and run, refer to the
SystemVerilog Engineering Notebook.

Declaring a Program Block

A simple program declaration is as follows; see the SystemVerilog LRM, Syntax 16-1 for the
complete syntax:

program program_identifier[(port_list)];
program_items
endprogram[: program_identifier]

Although program blocks and modules use different keywords, they follow the same general
format. For example, port declarations and end labeling are the same in both constructs.

Supported Constructs for Program Blocks

Program blocks are limited in the type of constructs they can contain. Specifically, the
simulator supports the following BNF constructs within a program block:

■ class_constructor_declaration

../svNtbk/svNtbkTOC.html#firstpage

SystemVerilog Reference
Program Blocks

July 2010 236 Product Version 9.2

■ class_declaration

■ clocking_declaration

■ concurrent_assertion_item

■ concurrent_assertion_item_declaration

■ continuous_assign

■ covergroup_declaration

■ data_declaration

■ function_declaration

■ genvar_declaration

■ initial_construct

■ local_parameter_declaration

■ module_or_generate_item_declaration

■ net_declaration

■ non_port_program_item

■ overload_declaration

■ package_or_generate_item_declaration

■ parameter_declaration

■ specparam_declaration

■ timeunits_declaration

Unsupported Constructs

The IEEE 1800 standard indicates that you cannot include instantiation objects, generate
blocks, specify blocks, defparams, always blocks, UDPs, modules, interfaces, or other
programs within a program block. Specifically, the simulator does not support the following
BNF constructs within a program declaration:

■ generated_module_instantiation

■ specify_block

■ program_declaration

■ module_declaration

SystemVerilog Reference
Program Blocks

July 2010 237 Product Version 9.2

■ parameter_override

■ gate_instantiation

■ udp_instantiation

■ module_instantiation

■ interface_instantiation

■ program_instantiation

■ bind_directive

■ net_alias

■ final_construct

■ always_construct

Nesting Program Blocks

The IEEE 1800 standard states that program declarations can be nested within modules or
interfaces. For example:

module test(...)
int shared;

program p;
. . .
endprogram: p

program p1;
. . .
endprogram: p1

endmodule:test

Note: The Cadence implementation does not support program block declarations that are
nested within modules, packages, or interface declarations. Also, program block declarations
are allowed only at the top-most level.

Working with Variable Assignments

Use blocking assignments (=) to update the values of variables that are local to a program
block. Use non-blocking assignments (<=) to update non-program variables, such as module
variables. If you use a non-blocking assignment with a program variable, or a blocking
assignment with a non-program variable, you will get an error message. For example:

SystemVerilog Reference
Program Blocks

July 2010 238 Product Version 9.2

module design(input wire A);
int B, C;

endmodule

program test(output reg A);

integer int_number;
reg a;

initial begin

// Valid variable assignments
top.t.int_number = 15; // Program variable
top.d.C <= 3; // Non-program variable

// Invalid variable assignments
top.t.a <= int_number + 1; // Program variable
top.d.B = 5; // Non-program variable

end

endprogram

module top;
wire A;
design d(A);
test t(A);

endmodule

Referencing Program Block Variables

References to program block variables can exist within program blocks. However, the IEEE
1800 standard does not allow references to program block variables from outside a program
block.

You can reference program block instances from within modules in the traditional hierarchical
fashion. However, you cannot reference program block instances from within program blocks.

Instantiating Program Blocks

Program blocks, modules, and primitives are instantiated in the same way. The current
release does not support arrays of instances within program blocks. The current
implementation does not support program block instantiation to other languages, such as
VHDL or SystemC.

SystemVerilog Reference
Program Blocks

July 2010 239 Product Version 9.2

New Program Design Unit

Although program blocks are very similar to modules, the LRM definition classifies them as a
different type of Verilog design unit. To account for this difference, the NC library system has
been enhanced to manage the new design unit type.

If you use the -messages option when you compile your source files, the output displays
program. For example:

% ncvlog -nocopyright -messages -sv test.v

file: test.v
program worklib.P

 errors: 0, warnings: 0
...

The default view name for a program is program. For example, worklib.P:program.

You can query the library system for program objects using the ncls utility with the -program
option.

% ncls -program

Understanding the $exit() Control Task

Aside from normal simulation tasks, like $stop and $finish, a program can use the $exit
control task to terminate a program block. The following summarizes the functionality of the
$exit control task within the Cadence implementation:

■ $exit() is a system task that can be called only within program blocks.

You cannot invoke or enable the $exit() call from within a function. You can, however,
invoke the $exit() task from an initial block or task within a program block.

■ Program blocks can call $exit() explicitly or implicitly.

To implicitly call $exit(), a program block must contain an initial block. In the
implicit case, the $exit() task is called after all initial blocks execute their last
statement, regardless of whether that statement has events or processes that occur at a
later time. In the following example, top.p1.r goes through only two transitions, from
unset to 1, then from 1 to 0. The remaining transitions are disabled, because the program
block contains a call to $exit().

program P1;
 integer r;
initial

#1 r = 1;
initial

#10 $display("Keep this going!");
endprogram

SystemVerilog Reference
Program Blocks

July 2010 240 Product Version 9.2

program P2;
initial

begin
#2 top.p1.r = 0;
#2 top.p1.r = 1;
$display("P2 - First Initial Block.");

end
initial

#3 $exit();

initial
forever @(top.p1.r)
$display("r: %b",top.p1.r);

endprogram

module top;
P1 p1();
P2 p2();
endmodule

■ A call to $exit() terminates the program block.

A call to $exit() disables all initial blocks in the specified program block, and their
sub-processes, following the standard rules for disable. In the following example, the call
to $exit() disables both initial blocks, including the first block that has already run.

program P1;
initial

$display("First");

initial
#2 $exit();

endprogram

The simulator does not terminate continuous assignments, tasks, and functions that are
defined within the program block, but are called from other blocks. The simulator will,
however, terminate outstanding non-blocking assignments that are sub-processes of any
of the initial blocks.

If the $exit() call is within a task, the simulator terminates the program block that has
the initial block with the call to $exit()—not the program block in which the task is
defined.

■ The simulator calls $finish() when all program blocks have exited, either implicitly or
explicitly.

In the following example, each program block has an initial block that runs with an
implicit call to $exit(), but only the last implicit call to $exit() triggers the
$finish() call.

...
program P2;

 initial
begin

$display("In program block P2.");

SystemVerilog Reference
Program Blocks

July 2010 241 Product Version 9.2

end

endprogram

program P;
initial

begin
 $display("In program block P.");

end

endprogram
...

■ Calling $exit() terminates all processes spawned by the current program.

SystemVerilog Reference
Program Blocks

July 2010 242 Product Version 9.2

SystemVerilog Reference

July 2010 243 Product Version 9.2

16
Assertions

SystemVerilog assertions are available only if you have an Incisive license. Support for
SystemVerilog assertions is documented in the Assertion Writing Guide and in the SVA
Quick Reference.

Immediate Assertions

Support for SystemVerilog concurrent assertions is documented in the Assertion Writing
Guide and in the SVA Quick Reference.

Concurrent Assertions

Support for SystemVerilog concurrent assertions is documented in the Assertion Writing
Guide and in the SVA Quick Reference.

SystemVerilog Reference
Assertions

July 2010 244 Product Version 9.2

SystemVerilog Reference

July 2010 245 Product Version 9.2

17
Hierarchy

Packages

For information about how to compile a design with packages, refer to “Compiling a Design
with Packages” in SystemVerilog in Simulation.

SystemVerilog introduces a package construct to the Verilog language. A package is a new
Verilog design unit containing declarations that can be shared among modules,
macromodules, interfaces, programs, or other packages.

In the following simple example, the global_types package defines some commonly-used
types. The package is imported by the error_checks module, and the boolean type from
the package is used as the type of the suppress_warnings variable:

package global_types;
typedef enum logic [1:0] { FALSE, TRUE } boolean;
typedef enum logic [2:0] { H=1’b1, L=1’b0, Z=1’bz, X=1’bx } logic_state;

endpackage
import global_types::*;
module error_checks;

...
boolean suppress_warnings;
...

endmodule

A common use of packages is to group a type declaration with a set of tasks or functions that
operate on that type. In this scenario, a module can declare objects of the type, and use the
package tasks and functions to operate on the object data.

A second common use for packages is to define a utility for common use. This sort of package
often uses persistent state and non-reentrancy in its implementation.

The following package example shows a combination of both sorts of use. This example
implements a common error reporting utility.

package messages;
typedef [80*8:1] message_type;
integer error_count = 0;
integer warning_count = 0;
integer error_limit = 1;

../svsim/running.html#firstpage
../svsim/running.html#firstpage

SystemVerilog Reference
Hierarchy

July 2010 246 Product Version 9.2

task report_warning;
input message_type message;
begin

$display("Warning at %0t: %0s", $time, message);
warning_count = warning_count + 1;

end
endtask

task report_error;
input message_type message;
begin

$display("Error at %0t: %0s \n", $time, message);
error_count = error_count + 1;
if (error_count == error_limit) end_simulation;

end
endtask

task end_simulation;
begin

$display (" !! ERROR LIMIT EXCEEDED !!");
$display (" Warnings: %d Errors: %d\n", warning_count, error_count);
$finish;

end
endtask

endpackage

import messages::* ;
module testbench;

...
if (bad_condition) report_error("Unexpected ...");
...

endmodule

A package defines a single, global set of items that can be used by any design unit that
imports that package. Unlike modules, packages cannot be used as structural building blocks
to create multiple copies. However, a package can build on another package by importing the
other package.

The declarations in a package are independent of the structural design hierarchy. Packages
do not contain hierarchy, nor do they contain references to global typedefs or items declared
in modules and primitives. The declarations within a package cannot contain hierarchical
references, unless they refer to items created within the package, or to items made visible by
importing another package. Packages cannot reference items defined within compilation unit
scopes. However, structural elements can depend on items in a package. For example, a
module can connect a global supply in a package to a lower-level component.

In SystemVerilog, you cannot have multiple packages with the same name, even if the
packages are compiled into different libraries. The parser generates an error if there is more
than one package with the same name.

SystemVerilog Reference
Hierarchy

July 2010 247 Product Version 9.2

Declaring a Package

The IEEE 1800 standard describes the package declaration syntax. Not all of the package
items specified in this syntax are supported in the current release.

Attribute instances on package declarations and the items within a package are supported.

The list of declarations supported within a package in the current release is as follows:

■ net_declaration

■ data_declaration

■ task_declaration

■ function_declaration

■ dpi_import_export

■ class_declaration

■ class_constructor_declaration

■ parameter_declaration

■ local_parameter_declaration

■ timeunits_declaration

■ concurrent_assertion_item_declaration

The following declarations, listed in the LRM, are not supported in the current release:

■ anonymous_program

■ extern_constraint_declaration

■ covergroup_declaration

■ overload_declaration

Referencing Data in a Package

There are two ways to use the declarations contained in a package:

■ Reference a package declaration by using its package item reference full name. The
syntax is:

package_identifier::item_name

SystemVerilog Reference
Hierarchy

July 2010 248 Product Version 9.2

In the following example, the boolean type and the logic_state type are referenced
using their package item reference full name.

package global_types;
typedef enum logic [1:0] { FALSE, TRUE } boolean;
typedef enum logic [2:0] { H=1’b1, L=1’b0, Z=1’bz, X=1’bx } logic_state;

endpackage

module error_checks;
...
global_types::boolean suppress_warnings = global_types::FALSE;
global_types::logic_state initial_state = global_types::X;
...

endmodule

■ Use the import statement to provide direct visibility of identifiers within a package. The
import statement allows all or selected identifiers declared in a package to be visible
within the current scope. If an identifier declared in a package is imported, you can refer
to the item by its simple name, without using a package name qualifier.

Note: You cannot use a Verilog out-of-module reference to refer to an item declared in a
package. For example, if variable var is declared in a package called pack, and the variable
is imported into module top, you cannot use top.var to refer to the package item. You must
use the package reference name (pack::var) or the simple name (var).

Controlling Visibility of Names within Packages: The import Statement

The import statement provides control over how and which package items are imported.

The import statement can be placed

■ Outside a design unit—a package, module, UDP, interface, or program

The scope of an import statement that appears outside a design unit declaration
extends to the end of the compilation unit. Such an import statement affects all
following design units in the compilation unit.

■ Inside any declarative scope of a design unit

The scope of an import statement inside a declarative scope extends from where it is
declared to the end of the declarative scope.

The import statement has two forms—wildcard import and explicit import.

Wildcard import Statement

The syntax for wildcard import is:

import package_identifier::*;

SystemVerilog Reference
Hierarchy

July 2010 249 Product Version 9.2

For example:

import IObus_package::*;

Example

In the following example, there are three source files:

■ package.v contains the shared types and declarations.

■ rtl.v is the RTL code of the design. This file must import the package globals,
because it uses the types and variables declared in this package.

■ test.v is the testbench code, which also must import the package. In the source file
test.v, there is a single import statement that applies to both the stimulus module
and the testbench module.

For example:

// File: package.v
package globals;

typedef enum logic { FALSE, TRUE } boolean;
integer error_count;

endpackage

// File: rtl.v
import globals::* ;
module rtl;

...
endmodule

// File: test.v
import globals::* ;
module stimulus;

...
endmodule

module testbench;
...

endmodule

Importing the package with ::* provides potential direct visibility of any of its contents in the
importing scope. In the following example, gnd and vdd, if referenced inside the importing
module by their simple names, will have their declaration from the package made locally
directly visible in the importing module. Because gnd is not referenced inside the top
module, its declaration is not imported. Because vdd is referenced by r = vdd and
globals::, it is imported. However, the local declaration that follows causes a duplicate
symbol error.

// File: package.v
package globals;

integer gnd;
reg vdd;

endpackage

SystemVerilog Reference
Hierarchy

July 2010 250 Product Version 9.2

module top;
reg r;

import globals::*;

initial
r = vdd; // This is globals::vdd; it is imported because there

// is no local declaration for vdd before this reference.

reg vdd; // Declare vdd. Error because there are 2 visible declarations
// for vdd.

endmodule

In the following example, globals::vdd is not imported, because vdd is locally declared
before it is referenced.

// File: package.v
package globals;

int gnd;
reg vdd;

endpackage

module top;
reg r;

import globals::*;
reg vdd; // Declare vdd.

initial
r = vdd; // This is reg vdd; globals::vdd is not imported because vdd

// is locally declared before this reference.
endmodule

If the same symbol is imported from two or more different packages with a wildcard import, a
direct reference to that symbol in the importing design unit is an error, because the
declaration it refers to is ambiguous. However, a package item reference full name can be
used to disambiguate the origin of the declaration.

In the following example, the first initial block contains an error, because there is a direct
reference to vdd, which is defined in two packages.

package p;
reg vdd;

endpackage

package q;
reg vdd;

endpackage

import p::*;
import q::*;
module top;

reg r;
reg r1;
initial

r = vdd; // Error because vdd is ambiguously defined

SystemVerilog Reference
Hierarchy

July 2010 251 Product Version 9.2

initial
r1 = p::vdd; // vdd from package p

initial
r2 = q::vdd; // vdd from package q

endmodule

Explicit import Statement

The explicit import statement allows precise control of the symbols to be imported. The
syntax is as follows:

import package_identifier::identifier[,package_identifier::identifier ...];

With an explicit import, only the symbols referenced by the import are made directly visible.
All other package items are not directly visible. A package reference full name must be used
to refer to the package items not made directly visible by the import statement.

In the following example, the top module explicitly imports two symbols: error_count and
vdd. They are both directly visible inside the top module, even though only vdd is used to
initialize register r. The ground declaration cannot be directly referenced by its simple name,
because it is not an imported item, and a package item reference full name
(globals::ground) is used to refer to the ground declaration.

import globals::error_count, globals::vdd;
module top;

reg r;
reg r0 = globals::ground;

initial
r = vdd;

endmodule

An explicit import is illegal if the imported declaration is already declared in the same scope,
or if it is explicitly imported from another package. However, it is legal to import the same
declared item from the same package multiple times.

Debugging Packages

For information about how to debug packages using the Tcl command-line interface or the
SimVision analysis environment, refer to SystemVerilog in Simulation.

../svsim/svsimTOC.html#firstpage

SystemVerilog Reference
Hierarchy

July 2010 252 Product Version 9.2

Compilation Units

For an example that you can download and run, refer to the “Disabling DPI Tasks and
Functions” example in the SystemVerilog DPI Engineering Notebook.

SystemVerilog adds a concept called compilation units. A compilation unit is a collection of
one or more source files compiled together.

SystemVerilog extends Verilog by allowing declarations outside of a module, interface,
package, or program. Each compilation unit has a compilation unit scope, which contains
all of the external declarations made across all files within the compilation unit. Unlike global
declarations, which are shared by all of the modules that make up a design, compilation unit
scope declarations are visible only to the source files that make up the compilation unit.

By default, all files on a given compilation command line make up a single compilation unit.
To create a separate compilation unit for each source file, you must compile each source file
separately.

For example:

With the default implementation, all three files specified on the command line are grouped
under a single compilation unit, which makes r accessible to modules b and c, even if they
are not defined in the same file. However, if any of these files are compiled separately,
references to r in files file_b.v and file_c.v will become out-of-date.

file_a.v
reg r;
module a;

initial begin
r= 1’b0;

end
endmodule

file_b.v
module b;

initial begin
r = 1;

end
endmodule

Default implementation:
% ncvlog -sv file_a.v file_b.v file_c.v

Separate compilation units:
% ncvlog -sv file_a.v
% ncvlog -sv file_b.v
% ncvlog -sv file_c.v

file_c.v:
module c;
assign r = 1’b1;

endmodule

../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage

SystemVerilog Reference
Hierarchy

July 2010 253 Product Version 9.2

As defined by the LRM, compilation unit scopes cannot access items within other compilation
unit scopes.

Related topics:

■ “Disabling DPI Tasks and Functions” example in the SystemVerilog DPI Engineering
Notebook.

■ “Compiling Source Files into Compilation Units” in SystemVerilog in Simulation.

■ “Viewing Compilation Units in the Design Browser” in SystemVerilog in Simulation.

■ “Debugging Compilation Units in Tcl” in SystemVerilog in Simulation.

Supported External Declarations

SystemVerilog extends Verilog by allowing declarations outside of a module, interface,
package, or program. For example:

declarations
module;

...
endmodule

All of these external declarations in a compilation unit make up the compilation-unit scope.
They can by accessed by any of the constructs defined within the compilation unit.

In the current release, compilation-unit scopes can include the following types of external
declarations:

■ bind directives

■ classes

■ Structures

■ Package import declarations

■ timeprecision and timeunit

■ ‘timescale and ‘include directives

■ Task and function declarations

■ Variable and net declarations

■ Constant declarations

■ Parameters

../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage
../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage
../svsim/running.html#compileunit
../svsim/designobjects.html#simcu
../svsim/debugging.html#tclcu

SystemVerilog Reference
Hierarchy

July 2010 254 Product Version 9.2

■ User-defined types that use typedef, enum, or class

■ Specialized classes

Explicitly Referencing External Declarations

In SystemVerilog, you can explicitly reference a declaration within a compilation unit scope
using $unit and the class scope resolution operator. For example:

bit b;
task foo;

int b;
b = 5 + $unit::b;

endtask
module
...
endmodule

Limitations on Compilation Units

Properties and sequences are not supported within a compilation unit.

Port Declarations

In Verilog-2001, input ports cannot be declared as variables. Output ports can be declared as
variables, but must be connected to a wire. SystemVerilog removes these restrictions.

In SystemVerilog a port can be declared as an interface, or a variable or net of any allowed
data type. The syntax for this type of declaration is as follows:

port_direction port_kind data_type

where port_kind can be the net type keywords or the var keyword, which are used to
declare net and variable assignments.

For example, the following declares two ports of the packed structure type my_type.

typedef struct packed {
logic b;
int i;

} my_type;
...
module mysub(input var my_type in, output my_type out);

always @(in)
out = in;

endmodule

SystemVerilog Reference
Hierarchy

July 2010 255 Product Version 9.2

The following table outlines the default rules that are used when keywords are omitted from
a port declaration.

The current release supports the following variable data types on ports:

■ bit

■ shortint

■ int

■ longint

■ logic

■ byte

■ enum

■ reg

■ real

■ string

■ Classes

Port
Direction

Port
Kind

Data
Type Default

Unspecified Specified Unspecified In a port list, the port direction is inherited from
the previous port. For the first port in a list or a
standalone declaration, the port direction
defaults to inout.

Specified Unspecified Unspecified The port defaults to a net of net type wire. You
can change the default net type using the Verilog
‘default_nettype compiler directive.

input

inout

Unspecified Either The port kind defaults to a net of net type wire.
You can change the default net type using the
Verilog ‘default_nettype compiler directive.

output Unspecified Either The default port kind is based on the port data
type. If the data type is not specified, the port kind
defaults to a net of the default net type. If the data
type is specified, the port kind defaults to variable.

SystemVerilog Reference
Hierarchy

July 2010 256 Product Version 9.2

■ Packed structures

■ Queues

■ Dynamic arrays

■ Associative arrays

■ Packed arrays

■ Unpacked structures

■ Unpacked arrays

Note: The current release does not support the event data type on ports.

Declarations of Input and Output Ports

Input Ports with no Port Kind

You can declare input ports of the following data types:

■ Unpacked arrays (explicit or implicit data types)

■ Unpacked structures

■ Type parameters

Ports declared of these data types are treated as if the port kind were var.

The var keyword is not required for input ports of the following data types because these
types are not legal on input wire ports.

■ Queue

■ Associative array

■ Dynamic array

■ String

■ Class

■ Mailbox

■ Event

■ Semaphore

SystemVerilog Reference
Hierarchy

July 2010 257 Product Version 9.2

■ Process

■ Chandle

■ Union (unpacked)

■ Real

The following example shows declaration of input variable ports (no var keyword required):

typedef struct {
ogic m1;
int m2;

} us_t;

module #(type parameter T = logic) m (
input logic my_array [1:10], // variable input array port explicit datatype
input us_t my_ustruct, // variable input unpacked struct port
input T my_TP // variable input port with type parameter

)

The following example shows acceptable syntax for variable input ports of the data types
listed above:

typedef union {
logic m1;
int m2;

} union_t;

class C;
endclass

module m (
input logic my_dynamic array [], // variable input dynamic array port
input byte my_queue [$], // variable input queue of bytes port
input integer my_aa [string], // variable input port associative array

of integers indexed by strings
input string my_str, // variable input string port
input real my_real, // variable input real port
input mailbox my_mail, // variable input mailbox port
input event my_event, // variable input event port
input semaphore my_sem, // variable input semaphore port
input process my_process, // variable input process port
input chandle my_ch, // variable input chandle port
input string my_str, // variable input string port
input union_t my_un // variable input union port

)

Implicit Array Data Types

In the following example, the port w1 of module mid is an input net array port because it has
an implicit array data type. The simulator treats it as a variable input port. The simulation of
this example, whether it is a net or a variable, displays:

top 00 00

top.m 00 00

SystemVerilog Reference
Hierarchy

July 2010 258 Product Version 9.2

module top;
reg[1:0] w [1:10];
assign w[1] = 2'b00;
mid m (w);
initial #1 $displayb ("%m:", w[1], w[0]);

endmodule // top

module mid (input [1:0] w1 [1:10]);
initial #1 $displayb ("%m:",w1[1], top.w[1]);

endmodule // mid

In the following example, there are two drivers to the same array element 1 of the port m.w1:

■ The continuous assignment from top.w to the port w1

■ The continuous assignment in top.m:

assign w1[1] = 2'b01;

The net w1 is resolved to the value 0x and the simulation displays:

top: 0x xx

top.m : 0x 0x

However, because the variable semantics are applied, the simulator displays the value
assigned from top to mid.

module top;
reg [1:0] w [1:10];
assign w[1] = 2'b00;
mid m (w);
initial #1 $displayb ("%m:", w[1], w[0]);

endmodule // top

module mid (input [1:0] w1 [1:10]);
assign w1[1] = 2'b01;
initial #1 $displayb ("%m:",w1[1], top.w[1]);

endmodule // mid

ncsim> run

top.m 0000

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

If the input port w1 was an output variable port, the simulator would display the value assigned
from mid to top:

module top;
reg [1:0] w [1:10];
assign w[1] = 2'b00;
mid m (w);
initial #1 $displayb ("%m:", w[1], w[0]);

endmodule // top

module mid (output reg [1:0] w1 [1:10]);
assign w1[1] = 2'b01;
initial #1 $displayb ("%m:",w1[1], top.w[1]);

endmodule // mid

SystemVerilog Reference
Hierarchy

July 2010 259 Product Version 9.2

ncsim> run

top.m 0101

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

Input Ports with Explicit var Keyword

These ports are supported with no extensions.

Input Port with Explicit wire Keyword

Wire ports with data types of unpacked arrays (implicit or explicit array data types) and
unpacked structures are not supported. All other data types listed above are illegal for input
wire ports.

Output Ports with no Port Kind

Same extensions as described in Input Ports with no Port Kind on page 256 and in Implicit
Array Data Types on page 257.

Output Ports with var Kind

These ports are supported with no extensions.

Output Ports with wire Kind

These ports have wire semantics with no extensions.

Inout Ports

These ports are wire ports.

Reference Ports

These ports are variable ports and are not supported.

SystemVerilog Reference
Hierarchy

July 2010 260 Product Version 9.2

Port connections

The connections for ports of data types listed in Input Ports with no Port Kind on page 256
are limited to whole variable connections. In particular, port assignment compatible
expressions, such as assignment patterns expressions, or array slices, or array indexed
expression of an object, are not supported. See the LRM specification of port connection
rules in LRM Port Connection Rules for Variable Ports on page 260 and LRM Port Connection
Rules for Net Ports on page 261.

In general, variable in a parent module connected to a variable input port in the child instance
is supported. However, wire in a parent module connected to a variable input port in a child
instance is not supported.

Variable in a parent module connected to a variable output port in the child instance is
supported. However, wire in a parent module connected to a variable output port is not
supported.

LRM Port Connection Rules for Variable Ports

Both sides of a port connection must have assignment compatible data types. If a port
declaration has a variable data type, then its direction controls how it can be connected when
instantiated, as follows:

■ An input port can be connected to any expression of a compatible data type. A
continuous assignment shall be implied when a variable is connected to an input port
declaration. Assignments to variables declared as an input port shall be illegal. If left
unconnected, the port shall have the default initial value corresponding to the data type.

■ An output port can be connected to a variable (or a concatenation) of a compatible data
type. A continuous assignment shall be implied when a variable is connected the output
port of an instance. Procedural or continuous assignments to a variable connected to the
output port of an instance shall be illegal.

■ An output port can be connected to a net (or a concatenation) of a compatible data type.
In this case, multiple drivers shall be permitted on the net as in Verilog.

■ A variable data type is not permitted on either side of an inout port.

■ A ref port shall be connected to an equivalent variable data type. References to the port
variable shall be treated as hierarchal references to the variable it is connected to in its
instantiation. This kind of port cannot be left unconnected.

SystemVerilog Reference
Hierarchy

July 2010 261 Product Version 9.2

LRM Port Connection Rules for Net Ports

If a port declaration has a net type, such as wire, then its direction controls how it can be
connected, as follows:

■ An input port can be connected to any expression of a compatible data type. If left
unconnected, it shall have the value 'z.

■ An output port can be connected to a net or variable (or a concatenation of nets or
variables) of a compatible data type.

■ An inout port can be connected to a net (or a concatenation of nets) of a compatible data
type or left unconnected, but cannot be connected to a variable.

SystemVerilog Reference
Hierarchy

July 2010 262 Product Version 9.2

SystemVerilog Reference

July 2010 263 Product Version 9.2

18
Interfaces

For a complete example using interfaces that you can download and run, refer to the
SystemVerilog Engineering Notebook.

One of the major extensions to the Verilog language proposed in the SystemVerilog LRM is
the interface construct. This construct was created to encapsulate the communication
between blocks of a digital system.

At its lowest level, a SystemVerilog interface is a named bundle of nets or variables that
encapsulates the connectivity between blocks. By declaring an interface, you can define a
group of signals once in one modeling block. The interface can then be instantiated in the
design and accessed through a module port as a single item. This feature eliminates
redundant declarations of the same signals in multiple modules, which can significantly
reduce the size of a description. Grouping signals together in one place also improves design
maintainability. For example, if a change to the port specification is required, the change can
be made in one place instead of in multiple modules.

At a higher level, an interface can encapsulate functionality in addition to connectivity. An
interface can contain data type declarations, tasks and functions, initial and always
blocks, continuous assignments, and so on, so you can define communication protocols,
protocol checking routines, and other verification routines in one place.

This section provides details on the functionality provided in the current release for
SystemVerilog interfaces.

Example 18-1 on page 264 shows a sample design with a simple interface that bundles a
collection of signals. This example, modified from an example shown in the SystemVerilog
LRM, shows the basic syntax for defining, instantiating, and connecting an interface.

../svNtbk/svNtbkTOC.html#firstpage

SystemVerilog Reference
Interfaces

July 2010 264 Product Version 9.2

Example 18-1 Simple Interface Example

interface simple_bus;

logic req, gnt;

logic [7:0] addr, data;

logic [1:0] mode;

logic start, rdy;

endinterface : simple_bus

module top;

logic clk = 0;

simple_bus sb_intf();

memMod mem (sb_intf, clk);

cpuMod cpu (.b(sb_intf), .clk(clk));

endmodule

module memMod(simple_bus a,
input clk);

logic avail;

always @(posedge clk) a.gnt <= a.req & avail;

endmodule

module cpuMod(interface b,
input clk);

...

endmodule

Define the interface.
Interface name is simple_bus.

Instantiate the interface.
Instance name is sb_intf.

Connect interface to module instances.
Module memMod is connected by
position.
Module cpuMod is connected by name.

Declare interface as a module port.
Port is declared as an explicitly-named
interface. This interface port can only be
connected to the simple_bus interface.

Declare module port with an unspecified
(generic) interface. The interface is
selected when cpuMod is instantiated.

a.gnt and a.req are the gnt and
req signals in the sb_intf instance
of the simple_bus interface.

SystemVerilog Reference
Interfaces

July 2010 265 Product Version 9.2

Declaring an Interface

The syntax for an interface declaration is as follows:

interface interface_identifier [(port_list)];
interface_items

endinterface [: interface_identifier]

Any construct that you can use in a module can be used in an interface, with the following
exceptions. The IEEE 1800 standard does not allow the following constructs in an interface,
and these constructs are not supported in the simulator:

■ defparam statements

■ specify blocks

■ alias statements

■ Instances of program blocks, modules, and primitives

SystemVerilog Reference
Interfaces

July 2010 266 Product Version 9.2

Example 18-2 Nested Interface Example

interface ITest;
int a;
int b;
always @(a) $display($time, ": %m.a = %0d", a);
always @(b) $display($time, ": %m.b = %0d", b);

endinterface

interface ITop;
ITest TestIf1();
ITest TestIf2();

endinterface

module SubMod(ITest If_test, input int in1);
initial begin
#210 If_test.a = (1000 * in1) + 11;
#10 If_test.b = (1000 * in1) + 22;

end
endmodule

module TestEnv(ITop If_port);
SubMod sm1(If_port.TestIf1,1);
SubMod sm2(If_port.TestIf2,2);

initial begin
#110 If_port.TestIf1.a = 103;
#10 If_port.TestIf2.a = 203;
#10 If_port.TestIf1.b = 105;
#10 If_port.TestIf2.b = 205;

end
endmodule

module test_top();
ITop main_if();
TestEnv env(main_if);
initial begin

#10 main_if.TestIf1.a = 107;
#10 main_if.TestIf2.a = 207;
#10 main_if.TestIf1.b = 109;
#10 main_if.TestIf2.b = 209;

end
endmodule

When simulated, this example produces the following results:

ncsim> run
10: test_top.main_if.TestIf1.a = 107
20: test_top.main_if.TestIf2.a = 207
30: test_top.main_if.TestIf1.b = 109
...
220: test_top.main_if.TestIf2.b = 2022

ncsim: *W,RNQUIE: Simulation is complete.

Inner interface

Outer interface

Connects the inner interface to
the module instance.

Connects outer interface to the
module instance.

Connects child interface
instances relative to the
interface port.
In the current release, you
cannot use OOMRs, and you
can use only two dot
components: the first must be
the interface port, and the
second must be the child
interface.

Connects the outer interface
“main_if”.

SystemVerilog Reference
Interfaces

July 2010 267 Product Version 9.2

Creating Design Units

Although interfaces are very similar to modules, the LRM definition classifies them as a
different type of Verilog design unit. The NC library system has been enhanced to manage
the new design unit type.

If you use the -messages option when you compile your source files, the output displays
interface. For example,

% ncvlog -nocopyright -messages -sv source.v

file: source.v
interface worklib.simple_bus

errors: 0, warnings: 0
...
...

The default view name for an interface is interface. For example,

worklib.simple_bus:interface

The ncls utility includes a -interface command-line option so that you can query the
library system for compiled interfaces. For example:

% ncls -nocopyright -interface

interface worklib.simple_bus:interface (VST)
interface worklib.simple_bus:interface (SIG) <0x7a6d9d7a>

Using the Interface as a Module Port

You can declare interface ports on modules in the following ways:

■ As a specific type of interface, by using the following syntax:

module module_name (interface_name port_name, other_module_ports);

In the example shown in Example 18-1 on page 264, the memMod module contains an
explicitly-named interface port.

module memMod(simple_bus a, input clk);

This port can be connected only to the interface named simple_bus.

You can also use non-ANSI style declarations. For example:

module memMod(a, clk);
simple_bus a;
input clk;
...

■ As a generic interface port, by using the following syntax:

module module_name (interface port_name, other_module_ports);

SystemVerilog Reference
Interfaces

July 2010 268 Product Version 9.2

In the example shown in Example 18-1 on page 264, the cpuMod module contains a
generic interface port.

module cpuMod(interface b, input clk);

This port can be connected to any interface when the module is instantiated.

The LRM states that a generic interface reference “can only be declared by using the list
of port declaration style of reference. It shall be illegal to declare such a generic interface
reference using the old Verilog-1995 list of port style.” The simulator allows these non-
ANSI style declarations. For example:

module cpuMod(b, clk);
interface b;
input clk;
...

If you use non-ANSI style generic declarations, a warning message is issued saying that
this is not official syntax according to the current LRM.

■ You can declare interface array ports, where a single dimension array limit is specified
after the port name:

module module_name (interface port_name array_dimension);

In the following example, the Dut module connects to an explicitly named interface port
with a dimension width of 4. This port can be connected only to the interface named Ifc:

module Dut (Ifc prta [4:1]);
...

For more information, refer to “Interface Array Ports” on page 269

Note: A port that is declared as an interface must be connected to an interface instance. An
error is generated if an interface port is left unconnected.

Limitations on Interfaces

The following interface features are allowed in the IEEE 1800 standard, but are not supported
in the current release of the simulator:

■ Interfaces connected to ports of the interface

■ Gates and UDPs

■ Wires and ports are supported, but the wires and ports declared in an interface must be
digital wires. Analog wires within interfaces are not supported.

SystemVerilog Reference
Interfaces

July 2010 269 Product Version 9.2

■ Instances of interfaces

In the current release, simple interface instances can be nested within another interface.
For example:

interface Inner;
int a;

endinterface

interface Outer;
Inner inner1(); // Supported

endinterface

However, arrays of instances are not supported within interfaces, and will generate a
parser error. For example:

interface Outer;
Inner inner[1:4](); // Not supported

endinterface

ncvlog: *E,INFINS (test.v,13|19): Instances of modules, interface arrays,
program blocks, and primitives are not allowed within interface or program
block definitions.’[SystemVerilog]’.

■ An interface is instantiated in the same way that modules and primitives are instantiated.
Interfaces must be instantiated at the highest point in the hierarchy where they can be
used. In the current release, interface instances are limited to single instances. Interface
arrays and interfaces in for-generates or if-generates are not supported.

Interface Array Ports

The current release supports interface array port connections, where you place one-
dimensional array limits after the port name. For example:

module Dut (Ifc prta [7:1]);
...
endmodule

For a complete example using interfaces that you can download and run, refer to the
SystemVerilog Engineering Notebook.

Supported Uses for Interface Array Ports

In the current release, you can

■ Assign a bit select of an interface array port to a virtual interface variable:

virtual interface Ifc vi = prta[4];

■ Call a task or function through a bit select of an interface array port:

initial prta[5].mytask();

../svNtbk/svNtbkTOC.html#firstpage

SystemVerilog Reference
Interfaces

July 2010 270 Product Version 9.2

■ Access an interface variable using a bit select of an interface array port:

initial prta[6].a = 5;

■ Pass an interface array port to a submodule:

Submod sm1 (smprta(prta));

Note: All bit selects must be constant expressions. The constant expression index cannot
have an X or Z value, and must lie within the defined array limits.

Using Arrays of Interfaces in Interface Array Ports

In the current release, support for interface array port connections follows the Verilog 2001
array of instances port connection rules. For example, the following declares an array of
interfaces, and passes it to an instance of module Dut, which connects the array of interfaces
to the interface array port called prta:

interface Ifc();
...
endinterface

module test_top();
Ifc ifca [4:1] (); // Array of interfaces instantiation
Dut dut1(.prta(ifca)); // Module instance
...

endmodule

module Dut (Ifc prta [4:1]); // Interface array port
...
endmodule

According to the LRM, the array widths must match in interface array port connections. For
example, the following is illegal, because the widths of the array of interfaces and the module
instance do not match:

module top();
Ifc ifca [3:1] (); // Array of interfaces instantiation
Dut duta [4:1](.prt(ifca)); // Module instance. Width is not the same.

endmodule

module Dut (Ifc prt);
..

The following causes an error, because the array of interfaces and the interface array port
have different widths:

module top();
Ifc ifca [4:1] (); // Array of interfaces instantiation
Dut dut1 (.prta(ifca));

endmodule

module Dut (Ifc prta [5:6]); // Interface array port. Widths do not match.
...

SystemVerilog Reference
Interfaces

July 2010 271 Product Version 9.2

The following also causes an error, because the array of interfaces width is not equal to the
module instance width times the interface array port width:

module top();
Ifc ifca [22:1] (); // Should be 21:1
Dut duta [3:1] (.prta(ifca));

endmodule : top

module Dut (Ifc prta [7:1]);
...
endmodule

You can also pass a bit select of an array of interfaces to the module instance. For example,
the following passes a bit select of array ifca to module instance dut1, connecting it to the
interface array port prta:

module top();
Ifc ifca [4:1] (); // Array of interfaces instantiation
Dut dut1(.prta(ifca[2]); // Module instance.

module Dut (Ifc prta); // Scalar interface port
...
endmodule

However, according to the LRM, you cannot pass a bit select interface array to an interface
array port:

module top();
Ifc ifca [4:1];
Dut dut1(.prta(ifca[4]);

module Dut (Ifc prta [5:6]); // Illegal
...
endmodule

The current release also supports implied bit selects of an array of interfaces to module
instances:

module top();
Ifc ifca [2:4] ();
Dut duta [9:7] (.prt(ifca)); // Connects ifca to interface port of every child
endmodule // array using an implied bit select.

module Dut (Ifc prt);
...
endmodule

Arrays of interfaces can also connect through implied part selects:

module top();
Ifc ifca [6:1] ();
Dut duta [3:1] (.prta(ifca)); // Connects ifca to interface port of every

endmodule // child array using an implied part select.

module Dut (Ifc prta [2:1]);
...

endmodule

SystemVerilog Reference
Interfaces

July 2010 272 Product Version 9.2

According to the LRM, you cannot pass an interface instance to an interface array port:

module top();
Ifc ifc1();
Dut dut1 (.prt(ifc1)); // Illegal. Passes interface instance ifc1

endmodule : top

module Dut (Ifc prt [3:1]);
...

Limitations on Interface Array Ports

The following summarizes the interface array port features in the LRM that are not supported
in the current release.

■ Named interface array ports with modports:

module Dut (Ifc smprta[6:1].Master);

■ Generic interface array ports with modports:

module Dut (interface ifcprta[6:1].Master);

■ Whole array assignments to virtual interface array variables:

module top();
Ifc ifca [3:1] ();
Dut dut1 (.prta(ifca));

endmodule

module Dut (Ifc prta [3:1]);
virtual interface Ifc vidut[3:1] = prta; // Not supported.
endmodule

To work around this, the virtual interface array must be loaded using bit selects:

module Dut (Ifc prta [3:1]);
virtual interface Ifc vidut[3:1];
initial begin
vidut[3] = prta[3];
vidut[2] = prta[2];
vidut[1] = prta[1];

end
endmodule

Referencing an Interface

You cannot reference an interface using a hierarchical path. For example, the following is not
allowed:

module top;
...
memMod mem(some_other_top.the_memory_interface);
...

endmodule

SystemVerilog Reference
Interfaces

July 2010 273 Product Version 9.2

You can reference objects declared in an interface from any module that declares the
interface by using an interface reference. The syntax is as follows:

port_name.interface_signal_name

In the example shown in Example 18-1 on page 264, the memMod module has an interface
port with the port name a.

module memMod(simple_bus a, input clk);

logic avail;

always @(posedge clk) a.gnt <= a.req & avail;

endmodule

Within the memMod module, the gnt and req signals in the interface are referenced as a.gnt
and a.req, respectively.

Working with Modports

While an interface provides a way to define a group of nets or variables in one place to
encapsulate the connectivity between blocks, different modules connected to the interface
might require different views of the interface. For example, a particular signal can be an input
for one module, while the same signal can be an output for another module.

SystemVerilog provides the modport construct, which allows you to customize the interface
for the different modules that are connected to it. Using this construct, you can

■ Provide direction information for module ports

■ Specify which signals defined in the interface are accessible to a module

The following example, modified from examples shown in the SystemVerilog LRM, includes
an interface with two modports named master and slave. This example shows

■ The basic syntax for defining a modport

■ The two ways of selecting which modport a module is to use

The slave modport is selected for the memMod module by specifying the modport when
the module is instantiated in the top module.

The master modport is selected for the cpuMod module by specifying the modport in
the module port declaration of the cpuMod module.

SystemVerilog Reference
Interfaces

July 2010 274 Product Version 9.2

Example 18-3 Interface Example with Modports

interface simple_bus;

logic req, gnt;

logic [7:0] addr, data;

logic [1:0] mode;

logic start, rdy;

modport master (input gnt, rdy, data,

output req, addr, mode, start);

modport slave (input req, addr, mode, start,

output gnt, rdy, data);

endinterface : simple_bus

module top;

logic clk = 0;

simple_bus sb_intf();

memMod mem (.a(sb_intf.slave), .clk(clk));

cpuMod cpu (.b(sb_intf), .clk(clk));

endmodule

module memMod(simple_bus a,
input clk);

logic avail;

always @(posedge clk) a.gnt <= a.req & avail;

endmodule

module cpuMod(simple_bus.master b,
input clk);

...

endmodule

Interface name is simple_bus.

Specify only the interface name. Modport is
selected when memMod is instantiated.

Define modport master.

Define modport slave.

For memMod, modport slave is selected
in memMod module instantiation.

In cpuMod module port declaration,
select modport master.

For cpuMod, modport is
selected in cpuMod definition.

SystemVerilog Reference
Interfaces

July 2010 275 Product Version 9.2

Defining a Modport

Modports are defined within an interface by using the modport keyword. You can define any
number of modports in an interface.

In the current release, you can define a modport that specifies the port direction for ports—
input, output, or inout. For example:

interface myintf;
wire a, b, c, d;

modport master (input a,
input b,
output c,
output d);

modport slave (output a,
output b,
input c,
input d);

endinterface

Modport ports can refer only to nets or variables. Vector sizes or data types are not included
in the modport definitions. Only the port direction is specified. All modport ports must have a
corresponding net or variable declaration within the interface in which they are declared.

As with module port declarations, you can specify multiple ports with one direction keyword.
For example:

modport master (input a, b, output c, d);

This syntax lets you define multiple modports with one keyword, as shown in the following
example:

modport master (input a, b, output c, d),
slave (output a, b, input c,d);

Selecting Which Modport to Use

You can specify which modport a module interface port must use in two places. You can
specify he modport name

■ In the module header, as part of the module port declaration.

You can specify an explicitly-named interface and modport using the following syntax:

module module_name (interface_name.modport_name port_name,
other_ports);

In this case, the interface name selects the interface, and the modport name selects the
modport.

SystemVerilog Reference
Interfaces

July 2010 276 Product Version 9.2

You can also specify a generic interface and modport using the following syntax:

module module_name (interface.modport_name port_name, other_ports);

In the example shown in Example 18-3 on page 274, the modport for the cpuMod
module is specified in the port declaration for the module, as follows:

module cpuMod(simple_bus.master b, input clk);

The instance of the cpuMod module in the top module does not specify the name of the
modport. It just connects the module port to the instance of the interface.

module top;
...
cpuMod cpu (.b(sb_intf), .clk(clk));
...

■ In the port connection with the module instance, using the following syntax:

module_name instance_name (interface_instance_name.modport_name,
other_ports);

The module definition can use either an explicitly-named interface port, or a generic
interface port. For example, in Example 18-3 on page 274, the definition of the memMod
module uses an explicitly-named interface port.

module memMod(simple_bus a, input clk);

The modport for the memMod module is specified in the instantiation statement for the
module, as follows:

memMod mem (.a(sb_intf.slave), .clk(clk));

Note: You can specify which modport to use in both places. If you do, the modport identifier
must be the same. A warning is generated if you specify a modport in one place, and specify
a different modport in the other place. The warning tells you that the modport specified in the
module header as part of the module port declaration is being used instead of the modport
specified on the module instance.

Limitations on modports

The following are allowed in the IEEE 1800 standard, but are not supported for modports in
the current release of the simulator:

■ Modports inside for loops

■ Expressions within modports

SystemVerilog Reference
Interfaces

July 2010 277 Product Version 9.2

Declaring Tasks and Functions in Interfaces

You can declare tasks and functions in an interface by using the same syntax and the same
statements that you used to define tasks and functions in a module. SystemVerilog refers to
tasks and functions defined in an interface as interface methods.

In the current release, you can define interface methods, then call the methods from modules
connected to the interface using an interface reference of the form:

interface_port_name.task_function_name(arguments);

For example:

interface myintf;
logic start;
other_interface_signals
...

task mytask;
...

endtask : mytask
endinterface : myintf

module mymod(myintf a);
...
always @(a.start)

a.mytask;
...

endmodule

Limitations on Tasks and Functions in Interfaces

The following SystemVerilog enhancements related to tasks and functions in interfaces are
not supported in the current release:

■ Defining a task or function in one module, then exporting the task or function through an
interface modport to other modules. The export construct in a modport is not
supported.

■ Defining a task or function in one module, then exporting the task or function to an
interface without using a modport. The extern construct is not supported.

■ Exporting a task name from multiple modules into the same interface. The extern
forkjoin construct is not supported.

Virtual Interfaces

In SystemVerilog, you can declare a virtual interface, which is a variable that represents an
interface instance. Virtual interfaces are meant to separate code that operates on an interface

SystemVerilog Reference
Interfaces

July 2010 278 Product Version 9.2

from the actual code itself. That way, instead of directly manipulating the set of signals within
an interface, you are manipulating a virtual set of signals.

Syntax and Usage

The syntax for a virtual interface is as follows:

virtual interface virtualinterface_identifier

For example:

interface Sbus;
int a;

endinterface

module test_top();
Sbus sbif1(); // Interface instances
Sbus sbif2();

class c;
virtual interface Sbus sbus = null; // Virtual interface of type Sbus

// initialized to null.
virtual interface Sbus vbus = sbif2; // Virtual interface of type Sbus

// initialized to an interface
// instance of the same type.

function new(virtual interface Sbus channel); // Function argument
sbus = channel;
$display("My interface");

endfunction
endclass

initial begin
c myclass;
myclass = new(sbif1);

end

endmodule

Note: The IEEE 1800 standard does not mention that, when declaring a virtual interface, you
must include any specializations for the interface. For example, if there are any parameter
values specified on the interface instance, they must be included in the virtual interface
declaration.

You can use a virtual interface in the same context as a variable.

Virtual Interface Support

The current release supports the following:

■ Virtual interfaces that are declared within a class, module, program block, task, package,
compilation unit, or function

SystemVerilog Reference
Interfaces

July 2010 279 Product Version 9.2

For example:

interface Ifc();
int a;
always @(a) $display($time, ": %m.a = %0d", a); endinterface

// Virtual interface in compilation unit scope
virtual interface Ifc cuvi;

// Virtual interface in package
package p;
virtual interface Ifc pkvi;
endpackage

module test_top();
import p::pkvi;
Ifc ifc1();
Ifc ifc2();
initial begin

#1 pkvi = ifc1;
#1 cuvi = ifc2;
#1 pkvi.a = 111;
#1 cuvi.a = 222;

end
endmodule

■ Passing virtual interfaces by value or reference to a task or function

■ Comparing or assigning virtual interfaces to other virtual interfaces, null, or interface
instances

■ Dereferencing scalar variables, wires, packed arrays, and unpacked arrays

■ Arrays of virtual interfaces

■ Virtual interfaces that call tasks and functions within an interface

For example:

interface bus;
logic a, b;
function void msg();
$display("Can call this function.");

endfunction
endinterface

module test_top();
...
class test_stim;

virtual interface bus vi = null;
function new(virtual bus vbus);
vi = vbus;

endfunction
task run(logic stim);
...
vi.msg(); // Calls function from interface bus

endtask
endclass

SystemVerilog Reference
Interfaces

July 2010 280 Product Version 9.2

...
endmodule

■ Nested interface instances

The current release has limited virtual interface support for nested interface instances.
To next interface instances, you must:

a. Define the inner and outer interfaces.

b. Instantiate the outer interface and its inner children.

c. Declare the virtual interface variables for the outer and inner interfaces.

d. Initialize the outer variable to point to the desired outer interface instance.

e. Using a virtual interface select from the outer virtual variable, access the desired
interface instance. Then, write this to the inner virtual interface variable.

This technique enables access to the inner variables.

Note: You can also use a hierarchical reference to access the desired interface
instance.

f. Using a virtual interface select from the inner virtual interface variable, access the
desired interface instance.

g. If necessary, repeat steps e and f.

Refer to Example 18-4 on page 281.

SystemVerilog Reference
Interfaces

July 2010 281 Product Version 9.2

Example 18-4 Support for Nested Interface Instances

However, in the current release:

■ You cannot use a virtual interface select to write to a child instance. For example:

#10 outvi.TestIf2 = outvi.TestIf1; // Invalid

■ Virtual interfaces cannot directly reference child interface items. For example:

#10 outvi.TestIf1.a = 555; // Invalid

interface ITest;
int a;
int b;
always @(a) $display($time, ": %m.a = %0d", a);
always @(b) $display($time, ": %m.b = %0d", b);

endinterface

interface ITop;
ITest TestIf1();
ITest TestIf2();

endinterface

module test_top();

 ITop main_if();
virtual interface ITest invi;

initial begin
#20 invi = test_top.main_if.TestIf1;

// Writes to test_top.main_if.TestIf1.a
#10 invi.a = 111;
// Writes to test_top.main_if.TestIf1.b
#10 invi.b = 222;

#10 invi = test_top.main_if.TestIf2;
#10 invi.a = 333;
#10 invi.b = 444;

end
endmodule

When simulated, this example produces the following results:

ncsim> run
30: test_top.main_if.TestIf1.a = 111
40: test_top.main_if.TestIf1.b = 222
60: test_top.main_if.TestIf2.a = 333
70: test_top.main_if.TestIf2.b = 444

ncsim: *W,RNQUIE: Simulation is complete.
ncsim> exit

Inner interface

Outer interface

Instantiate the outer interface and its children.

Declare virtual interface variable for
the inner interface instance type.

Using a virtual interface select from
the inner virtual interface variable,
access the desired interface instance.

Use a hierarchical reference to access
the desired child interface instance.
Write this to the inner virtual interface
variable.

SystemVerilog Reference
Interfaces

July 2010 282 Product Version 9.2

Limitations on Virtual Interfaces

The following summarizes the virtual interface features in the LRM that are not supported in
the current release.

■ Virtual interface variable expressions cannot be used as generate items inside a
forgen loop.

■ Out-of-module references to virtual interfaces are not supported.

■ Virtual interfaces cannot reference queues, dynamic arrays, associative arrays, strings,
arrays of classes, or semaphores within an interface.

Working with Interfaces and Timing

The IEEE 1800 standard states that, when a module is connected to an interface, signals
declared in the interface can be used as terminal descriptors in module path delays, and in
timing checks described in a specify block.

In the current release, you cannot reference a signal in an interface as the terminal node
within a specify block or in SDF annotation, including module path delays, interconnect
delays, and timing checks.

SystemVerilog Reference

July 2010 283 Product Version 9.2

19
System Functions

Out-of-Module Reference ($root)

In Verilog, an out-of-module reference (OOMR) can be ambiguous. For example, if you have
a parent instance that contains a child instance at both the top level and in the current
module, the hierarchical path parent.child.var can mean the top-level
parent.child.var or the local parent.child.var.

In Verilog-2001, this ambiguity is resolved by giving priority to the local scope. An OOMR is
resolved by first using a search relative to the enclosing scope. If the object is found using this
relative search, no other search is performed, and access to the top-level path is prevented.

SystemVerilog solves this problem by introducing the $root qualifier, which forces an OOMR
reference to be absolute. The $root qualifier lets you refer explicitly to a top-level instance,
or to an instance path starting from the root of the instantiation tree.

For example:

$root.parent.child.var // Item var within instance child within
// top-level instance parent

Expression Size System Function ($bits)

SystemVerilog adds a $bits system function that returns the number of bits represented by
an expression. The syntax is as follows:

$bits(expression);

SystemVerilog Reference
System Functions

July 2010 284 Product Version 9.2

Examples:

int bitSize;
reg [31:0] x;
reg [7:0] y [0:31];
reg [3:0] z [7:0] [0:15];
...
...
bitSize = $bits(x); // bitSize returns 32
bitSize = $bits(y[3]); // bitSize returns 8
bitSize = $bits(z[3][4]); // bitSize returns 4

When used with fixed-size types, the $bits system function can be used as an elaboration-
time constant. For example:

reg [3:0] a;
reg [$bits(a)-1:0] b;

When used with dynamic arrays during simulation, the $bits() system function returns the
size of the whole dynamic array in bits, which is allocated at that simulation time. For example:

logic c[];

initial begin
$display("$bits(c)=%4d", $bits(c)); // Displays "$bits(c)=0"
c = new[10];
$display("$bits(c)=%4d", $bits(c)); // Displays "$bits(c)=10"
c = new[20];
$display("$bits(c)=%4d", $bits(c)); // Displays "$bits(c)=20"

end

Limitations on the $bits System Function

The following lists the current limitations for the $bits system function:

■ The $bits system function cannot be used in constant expressions that involve dynamic
arrays. For example:

logic c[];
reg [$bits(c)-1:0] d; // Invalid

■ Declarations that involve $bits cannot be evaluated if there is a circular dependency
between the declarations. Although the LRM does not explicitly state this limitation, the
Cadence implementation does not support the following instances that can cause
circular dependencies:

❑ Forward references in constant expressions are not supported. For example:

reg [$bits(b)-1:0] a; // Invalid
reg [$bits(a)-1:0] b;

❑ OOMRs within $bits constant expressions. For example:

reg [$bits(top.cpu1.regfile2.u1.ctl)-1:0] ctl; // Invalid

■ You cannot use the $bits function on class struct variables.

SystemVerilog Reference
System Functions

July 2010 285 Product Version 9.2

$sformatf and $psprintf

The $sformatf and $psprintf system functions are used to pass formatted strings as
arguments to objects of SystemVerilog data types. These two functions provide similar
functionality, except that the string result of $psprintf() is passed back to the user as the
function return value, not placed in the first argument as for $sformat(). Thus, $psprintf
is a function that returns a string. This function can be used with the message macros to
display messages with run-time formatted content. $psprintf() cannot be overridden by a
user-defined system function in PLI.

Although the rest of this section refers to $sformatf, it implies $psprintf as well.

The $sformatf system function is defined as follows:

$sformatf(format_string[, list_of_arguments])

The $sformatf system function interprets the first argument, format_string, as a
format string and processes the remaining arguments as format specifiers for the
format_string. The resulting formatted string is passed as the result of the $sformatf
function. This behavior is different from $sformat, where the formatted string is passed back
as the first argument for $sformat.

For example:

string s;
byte r1 = 1100001;
byte r2 = 1100010;
int r3 = 99;
string format_str ="%c%c%d";
str = $sformatf (format_str, r1, r2, r3);

Here, the values of r1, r2, and r3 are formatted according to the format_str string, and
the resulting string is assigned to the str string. Using $sformat, the result looks like the
following:

$sformat(str, format_str, r1, r2, r3);

In this case, the resulting string is assigned to the first argument string, str.

Note: ncelab issues a warning if the number of actual arguments is not the same as the
number of format specifiers.

The following summarizes how the simulator handles cases where there are too many or not
enough arguments listed for the given format string.

■ When a format string is not specified, the first argument is interpreted as a string %s if it
is of type literal, expression of integral, or a string data type. Otherwise, ncelab issues
an error message, and a snapshot is not created.

SystemVerilog Reference
System Functions

July 2010 286 Product Version 9.2

■ When the number of actual arguments is not the same as the number of format
specifiers, ncsim issues a warning, and uses the default format for the extra arguments.

■ When there are more format specifiers than actual arguments, ncsim issues a warning,
ignores the extra format specifiers, and proceeds.

Limitations on $sformatf

In the current release, the following are not supported:

■ The %p format specifier is supported in $sformatf for the following data types: scalars
(int, real, string), queues, danymic arrays, static arrays.

■ Unpacked arrays of bytes are not supported as arguments to $sformatf.

Sampled Value Functions in Procedural Blocks

According to the SystemVerilog IEEE 1800 standard, sampled value functions can be used
in assertions and procedural blocks. This section describes support for sampled value
functions in procedural blocks.

The sampled value functions access the sampled value of an expression at the current clock
cycle, or at a specific number of cycles in the past.

In the current release, the $fell, $past, $rose, $sampled and $stable functions are
supported only in always blocks. These functions are not supported within other procedural
blocks and with optional gating expressions and clocking events.

Refer to the “Writing SystemVerilog Assertions” chapter of the Assertion Writing Guide for
information about sampled value function support for SystemVerilog Assertions.

$rose and $fell Sampled Value Functions
$rose (expression])

$fell (expression)

$rose returns true if the LSB of the expression changed to 1; otherwise, it returns false.

$fell returns true if the LSB of the expression changed to 0, otherwise, it returns false.

When these functions are called at or before the first clock tick of the clocking event, the result
is computed by comparing the current sampled value of the expression to X.

SystemVerilog Reference
System Functions

July 2010 287 Product Version 9.2

The following example illustrates the use of $rose in an always block with inferred clock:

always @(posedge clk) begin
if($rose(b))

reg1 <= a;
end

In this example, posedge clk is used as the clocking event for $rose. Sampling of the input
expression b is scheduled in the preponed region of the time slot of posedge clk event.
Execution of $rose is scheduled in active region, while variable reg1 is assigned in NBA
region.

The following example illustrates the use of $fell in an always block sensitive to the default
clock:

always @(*) begin
if($fell(b))

reg1 <= a;
end

In this example, because event control expression is not in the form of posedge clk or
negedge clk, the default clock is used for sampling of the input expression b for $fell.

$past Sampled Value Function
$past (expression [, number_of_ticks])

$past returns the sampled value of an expression at a previous time. For example:

always @ (posedge clk)
reg_a <= $past(b)

In this example, the clocking event posedge clk is applied to $past. The $past function
is evaluated in the current occurrence of posedge clk, and returns the value of b sampled
at the previous occurrence of posedge clk.

$sampled Sampled Value Function
$sampled (expression)

$sampled returns the value of the expression sampled in the preponed region of the
simulation time step in which the function is called. The value is stable throughout the
simulation step. Clocking event is not required for this function. The following example
illustrates the use of $sampled in an always block:

always @(clk)
reg1 = $sampled(b);

In this example, b is sampled in the preponed region every time clk changes.

SystemVerilog Reference
System Functions

July 2010 288 Product Version 9.2

$stable Sampled Value Function
$stable (expression)

$stable returns true if the value of an expression did not change during the current clock
cycle; otherwise it returns false. For example:

always @ (posedge clk)
reg_a = $stable(a) ? b : a;

In this example, the clocking event posedge clk is applied to $stable. Expression a is
sampled in the preponed region of the time slot of the clocking event posedge clk.

Arguments to Sampled Value Functions

■ expression specifies the object whose value you want to obtain.

In the current release, expression cannot contain dynamic objects, arrays, unpacked
structures, and unpacked unions. Also, expression cannot contain variables or index
variables in bit or part select expressions.

■ number_of_ticks is an optional argument that specifies the number of clock ticks in
the past. This value must be an integer constant expression, with a value of 1 or greater.
If you do not specify number_of_ticks, it defaults to 1. If the specified clock tick in
the past is before the start of simulation, the returned value from the $past function is a
value of x.

Refer to “Clocking Events for Sampled Value Functions” on page 288 for information
about how to determine the clocking event for $past and $sample.

Clocking Events for Sampled Value Functions

The following rules are used to determine the clocking event for a sampled value function:

■ The inferred clock for the procedural code, if any, is used.

A clock is inferred if the statement is placed in an always block with an event control
abiding by the following rules:

❑ The clock to be inferred must be placed as the first term of the event control as an
edge specifier—posedge expression or negedge expression.

❑ The variables in expression must not be used anywhere in the always block.

■ Otherwise, default clocking is used.

SystemVerilog Reference
System Functions

July 2010 289 Product Version 9.2

Using sampled value functions inside a generate block is not supported when a default
clock is applied according to the notes above, and a default clock is specified in the user’s
code after the generate block.

It is an error if no clocking event for a sampled value function can be determined.

Sampled Value Function Example
‘define HIGH 1

module test ();

reg x = 1’b0;
reg y = 1’b0;
reg clk = 1’b0;
reg a = 1’b0;
 initial begin

#0
clk = 0;
x = 0;
y = 0;
#20;
x = 1;
y = 0;
#20;
x = 1;
y = 1;
#20
x = 1;
y = 1;
#60
x = 1;
y = 1;
$finish;

end

always begin
#10 clk = ~clk;

end

dut inst1(clk, x, y);
endmodule // test

module dut (clk,x,y);
input clk, x, y;
reg x_past, y_past, x_stable, y_stable;
reg x1, y1, x2, y2;
reg [0:3] xv;
parameter P1 = 2;

default clocking @(posedge clk);
endclocking

/* SVF supported usage :
* $past(expression1 [, number_of_ticks])

SystemVerilog Reference
System Functions

July 2010 290 Product Version 9.2

* $stable(expression) */

always @ (posedge clk) begin
 x_past = $past(x); // Number_of_ticks here is 1 and

// clocking event here is posedge clk
 y_past = $past(y, 2);
 x_stable = $stable(x);
 y_stable = $stable(y);

$monitor($time, " Value of x in past at each posedge clk : %b ", $past(x));
end

always ##2 begin
$display($time," x: %b y: %b ",x, y);

 x1 = $past($past(x,2),‘HIGH);
 y1 = $past(x && y, 2);
 x2 = $stable(test.x);
 y2 <= $stable(test.y);
end

always begin // Default clock
xv[0] <= $past((x ^ y), P1);
xv[1] <= $past(test.a);
#5 xv[2] = x & $past({x,y}, 2);
if (x)
xv[3] = $past(y, P1+1);

else
xv[3] = !($stable(y));

end

endmodule : dut

Assertion System Functions

Built-in assertion functions are now supported in HDL. You can use these functions in any
Boolean expression to perform common tests—for example, to determine whether a signal is
one-hot.

SVA system functions have the following syntax:

assert_function(expression);

where expression is a bit vector expression.

The following system functions are included to facilitate common assertion functionality.

SystemVerilog Reference
System Functions

July 2010 291 Product Version 9.2

Table 19-1 SVA System Functions

All of these system functions, except $countones, have a return type of bit.

In the current release, the following data types are not supported for SVA system functions:

■ Dynamic data types

■ reals

■ Unpacked structures

■ Unpacked unions

See “Writing SystemVerilog Assertions” in the Assertion Writing Guide for information
about SVA system function support.

Function Description

$onehot Evaluates the expression and returns true if only one bit is high.
Otherwise, the function returns false.

$onehot0 Evaluates the expression and returns true if zero or one bit is
high. Otherwise, the function returns false.

$isunknown Evaluates the expression and returns true if any bit is X or Z.
Otherwise, the function returns false.

$countones() Evaluates the expression and returns the number of bits whose
value is 1; X and Z values are not counted.

SystemVerilog Reference
System Functions

July 2010 292 Product Version 9.2

SystemVerilog Reference

July 2010 293 Product Version 9.2

20
Compiler Directives

`define

SystemVerilog enhances the `define text substitution macro compiler directive.

■ The macro text can include `". This notation indicates that the macro expansion must
include a quotation mark. For example:

`define msg(x) $time,,, `"Value of x is %d`", x
...
...
$display(`msg(count));

In this example, the macro expands to

$display($time,,, "Value of count is %d", count);

■ The macro text can include ̀ \`". This notation indicates that the macro expansion must
include the escape sequence \". For example:

`define msg(x) $time,,, `"Value of `\`"x`\`" is %d`", x
...
...
$display(`msg(count));

In this example, the macro expands to

$display($time,,, "Value of \"count\" is %d", count);

■ The macro text can include ‘‘. This notation is used to delimit an identifier name without
introducing white space. For example:

‘define join(a) a‘‘_join

SystemVerilog Reference
Compiler Directives

July 2010 294 Product Version 9.2

This example expands

‘join(my)

to

my_join

`begin_keywords and `end_keywords

SystemVerilog has added many new keywords and, unfortunately, these additions can render
some Verilog source files illegal. Specifically, Verilog files that have identifiers that match a
SystemVerilog keyword will not compile on a SystemVerilog compiler. For example, if you
have identifiers such as bit, priority, and do in your Verilog file, it will not compile with a
SystemVerilog compiler. SystemVerilog extends the `begin_keywords and
`end_keywords compiler directives that were introduced in the 1364-2005 standard by
adding the “1800-2005” version_specifier, which defines the set of identifiers to use
as reserved keywords for a particular block of code.

The `begin_keywords and `end_keywords directives

■ Can surround only modules, primitives, interfaces, programs, or packages

These directives must be specified at the top level, and cannot be used within any of
these constructs.

■ Affect only the treatment of identifiers within a block of code; they do not affect semantics,
tokens, or other aspects of the language

■ Can be nested

Nested pairs of ̀ begin_keywords and ̀ end_keywords directives are stacked, which
means that when the compiler encounters an `end_keyword, it goes back to the
version_specifier that was in effect prior to the matching `begin_keywords
directive.

These directives have the following syntax:

`begin_keywords "version_specifier"
...

`end_keywords

where version_specifier can be one of the following:

■ 1364-1995—Indicates that only the identifiers listed as reserved keywords in the IEEE
1364-1995 standard are considered to be reserved words.

■ 1364-2001—Indicates that only the identifiers listed as reserved keywords in the IEEE
1364-2001 standard are considered to be reserved words.

SystemVerilog Reference
Compiler Directives

July 2010 295 Product Version 9.2

■ 1364-2005—Indicates that only the identifiers listed as reserved keywords in the IEEE
1364-2005 standard are considered to be reserved words.

■ 1800-2005—Indicates that only the identifiers listed as reserved keywords in the IEEE
1800 standard are considered to be reserved words.

Examples:

The following does not cause an error, because priority is not a keyword in IEEE 1364-
2001, so it can be used as an identifier:

`begin_keywords "1364-2001"
module test1 (...);

output priority; // Valid
...

endmodule
`end_keywords

The following causes an error because priority is a keyword in IEEE 1800, so it cannot be
used as an identifier.

`begin_keywords "1800-2005"
module test1 (...);

output priority; // Invalid
...

endmodule
`end_keywords

The following example shows how to use `begin_keywords and `end_keywords with
program blocks. The following causes an error, because program and endprogram are not
keywords in IEEE 1364-2005:

`begin_keywords "1364-2005"

program p; // Invalid
...

endprogram: p // Invalid
`end_keywords

To fix the error, use the 1800-2005 version_identifier instead:

`begin_keywords "1800-2005"
program p;
...

endprogram: p
`end_keywords

Limitations on ‘begin_keywords and ‘end_keywords

This section summarizes the keywords features of the IEEE 1800 standard that are not
supported in the Cadence implementation. Differences between the IEEE 1800 specification
and the Cadence implementation are also listed.

SystemVerilog Reference
Compiler Directives

July 2010 296 Product Version 9.2

■ You cannot use the version_specifier to expand the set of keywords that are
implied by the -sv or -v1995 command options for ncvlog.

For example, when you invoke ncvlog without any options, the IEEE 1364-2001
keywords are used by default. In this case, you cannot use the 1800-2005
version_specifier, but you can use the 1364-1995 version_specifier.

To work around this limitation, you can use the irun utility to compile your Verilog and
SystemVerilog files on a single line—without having to use the -sv switch. The irun
utility determines the language of a file by its extension, and maps the file to its
appropriate compiler. By default, Verilog files must use the .v extension and
SystemVerilog must use the .sv extension. For example:

irun vlogfile1.v vlogfile2.v systemv1.sv systemv2.sv

In this example, irun will compile the .v files using the ncvlog command, and the .sv
files using ncvlog -sv.

Note: Compiling files using the irun utility is an alternative to using the
`begin_keywords and `end_keywords directives when you want to distinguish
Verilog files from SystemVerilog files. However, this utility does not automatically support
files that contain a mixture of Verilog and SystemVerilog. For those cases, you can use
the `begin_keywords and `end_keywords compiler directives within the .sv file,
and compile the file using irun.

■ The IEEE 1800 specification indicates that the `begin_keywords must be paired with
an `end_keywords directive. The specification also indicates that a
`begin_keywords is in effect until it reaches its matching `end_keywords directive.

The Cadence implementation does not require a matching `end_keywords directive.
In cases where a matching `end_keywords directive does not exist, the parser issues
a warning message, but continues to parse the code using the set of keywords denoted
by the last ̀ begin_keyword. When the parser reaches the end of the source file, it will
begin parsing the next source file, and the keywords denoted by the last
`begin_keywords will remain in effect. The warning message issued by the parser can
be upgraded to an error message using the -ncerror command-line option.

■ The IEEE 1800 specification does not indicate how the `begin_keywords directive
relates to the `resetall directive, which resets all compiler directives to their default
values.

In the Cadence implementation, the ̀ resetall directive does not affect the current set
of keywords specified by the `begin_keywords directive.

SystemVerilog Reference
Compiler Directives

July 2010 297 Product Version 9.2

Reserved Keywords for IEEE 1800
This section lists the set of reserved keywords for the IEEE 1800 standard.

Table 20-1 IEEE 1800 Reserved Keywords

alias endmodule matches small

always endpackage medium solve

always_comb endprimitive modport specify

always_ff endprogram module specparam

always_latch endproperty nand static

and endspecify negedge string

assert endsequence new strong0

assign endtable nmos strong1

assume endtask nor struct

automatic enum noshowcancelled super

before event not supply0

begin expect notif0 supply1

bind export notif1 table

bins extends null tagged

binsof extern or task

bit final output this

break first_match package throughout

buf for packed time

bufif0 force parameter timeprecision

bufif1 foreach pmos timeunit

byte forever posedge tran

case fork primitive tranif0

casex forkjoin priority tranif1

casez function program tri

cell generate property tri0

chandle genvar protected tri1

SystemVerilog Reference
Compiler Directives

July 2010 298 Product Version 9.2

class highz0 pull0 triand

clocking highz1 pull1 trior

cmos if pulldown trireg

config iff pullup type

const ifnone pulsestyle_
onevent

typedef

constraint ignore_bins pulsestyle_
ondetect

union

context illegal_bins pure unique

continue import rand unsigned

cover incdir randc use

covergroup include randcase uwire

coverpoint initial randsequence var

cross inout rcmos vectored

deassign input real virtual

default inside realtime void

defparam instance ref wait

design int reg wait_order

disable integer release wand

dist interface repeat weak0

do intersect return weak1

edge join rnmos while

else join_any rpmos wildcard

end join_none rtran wire

endcase large rtranif0 with

endclass liblist rtranif1 within

endclocking library scalared wor

endconfig local sequence xnor

Table 20-1 IEEE 1800 Reserved Keywords, continued

SystemVerilog Reference
Compiler Directives

July 2010 299 Product Version 9.2

`remove_keyword and `restore_keyword

The `begin_keywords and `end_keywords compiler directives described in the IEEE
1800 standard and in “`begin_keywords and `end_keywords” on page 294 can be used to
specify the complete set of reserved keywords in effect when a design unit is parsed. For
example, the following compiler directive specifies that only the identifiers listed as reserved
keywords in the IEEE 1364-2001 standard are considered to be reserved words. This
compiler directive will remove all of the keywords introduced in SystemVerilog.

`begin_keywords "1364-2001"

However, in transitioning to SystemVerilog, you might have difficulty with a limited number of
keywords in the new language that conflict with identifiers commonly used in your code. To
provide a way to remove and restore specific keywords, Cadence has implemented a
compiler command-line option, ncvlog -rmkeyword, and the `remove_keyword and
`restore_keyword compiler directives.

The -rmkeyword command-line option and the `remove_keyword directive can be used
to remove a keyword from any set of keywords. That is, their use is not restricted to removing
a keyword from the IEEE 1800 set of keywords.

ncvlog -rmkeyword

Using the -rmkeyword command-line option is convenient if you want to remove a particular
keyword so that it will always be treated as an identifier in all parts of the design. The syntax
is as follows:

-rmkeyword keyword

For example:

-rmkeyword logic

Only one keyword can be specified with -rmkeyword. Use the option multiple times to
remove multiple keywords. For example:

% ncvlog -rmkeyword logic -rmkeyword do test.v

endfunction localparam shortint xor

endgenerate logic shortreal

endgroup longint showcancelled

endinterface macromodule signed

Table 20-1 IEEE 1800 Reserved Keywords, continued

SystemVerilog Reference
Compiler Directives

July 2010 300 Product Version 9.2

`remove_keyword and `restore_keyword Compiler Directives

Use the `remove_keyword and `restore_keyword directives if you need to mix
SystemVerilog code with non-SystemVerilog code.

The `remove_keyword directive removes a specified keyword from the set of keywords.
This feature disables the functionality provided by the keyword, but allows the keyword to be
used as an identifier.

For example:

`remove_keyword logic

You can specify only one keyword. To remove more than one keyword, you must specify each
keyword with a different compiler directive. For example:

`remove_keyword logic

`remove_keyword do

The following syntax generates an error:

`remove_keyword logic do // Illegal syntax

The `restore_keyword directive restores a keyword that was previously removed by
`remove_keyword.

These compiler directives, as for the `begin_keywords and `end_keywords directives,
can only be specified outside a design element—module, primitive, configuration, interface,
program, or package. The `remove_keyword directive affects all source code that follows
the directive, even across code file boundaries.

Interaction with Other Compiler Directives

The `remove_keyword directive and the -rmkeyword command-line option take
precedence over the `begin_keywords and `end_keywords directives. If a keyword is
removed, it is removed from all variations of the language specification, and cannot be
reactivated by starting a new set of keywords using `begin_keywords or
`end_keywords. The only way to restore a keyword is by using `restore_keyword.

The ̀ remove_keyword directive also takes precedence over the ̀ resetall directive. The
set of keywords is not affected by `resetall.

Limitations on Remove and Restore Keywords

This section lists some limitations on the use of the -rmkeyword command-line option and
the `remove_keyword and `restore_keyword directives.

SystemVerilog Reference
Compiler Directives

July 2010 301 Product Version 9.2

■ Removed keywords are still highlighted as keywords in the SimVision GUI.

■ The compiler directives are not specified in any standard, and they might not be
supported by other tools. You can hide the directives from other tools by conditionally
compiling the code using `ifdef INCA or `ifdef CDS_TOOL_DEFINE in the source
code.

SystemVerilog Reference
Compiler Directives

July 2010 302 Product Version 9.2

SystemVerilog Reference

July 2010 303 Product Version 9.2

21
Direct Programming Interface

SystemVerilog introduces a foreign language interface called the Direct Programming
Interface (DPI). DPI provides a simple, straightforward, and efficient way to connect
SystemVerilog and C language code, and to build a design or testbench with components
written in SystemVerilog and C. The current release extends this feature so that DPI can be
used to connect SystemVerilog and SystemC language code.

The following directory contains examples of a SystemVerilog testbench that instantiates a
SystemC reference model and uses DPI calls:

install_dir/tools/systemc/examples/...

For more information about these examples, refer to the Examples Reference Guide.

For more DPI examples that you can download and run, refer to the SystemVerilog DPI
Engineering Notebook.

Importing Functions and Tasks using DPI

With DPI, SystemVerilog code can directly call a C or SystemC function. The functions
implemented in C or SystemC are called imported functions. The imported function name
is imported into the SystemVerilog language using an import declaration.

An import declaration specifies the task or function name, the return data type for functions,
and the types and directions of the formal arguments. The number of arguments must match
the number of arguments in the C or SystemC function, and the data types of the arguments
must be compatible with the C or SystemC function data types.

An import declaration defines a task or function in the scope in which the declaration occurs.
You cannot, therefore, import the same task or function name into the same module multiple
times. However, the same C or SystemC function can be imported into multiple modules.

Imported tasks and functions are called in the same way that native SystemVerilog tasks and
functions are called. Calls of imported tasks and functions are indistinguishable from calls of
SystemVerilog tasks or functions.

../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage
../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage

SystemVerilog Reference
Direct Programming Interface

July 2010 304 Product Version 9.2

In the following example, a C function called hello() is declared in a SystemVerilog module
with an import declaration and then called.

pure and context Properties

By default, a C or SystemC function can be imported as a SystemVerilog function or task.
Both can have input, output, and inout arguments. Functions can have a return value,
or be declared as void. The imported task or function cannot access SystemVerilog data
objects, other than its actual arguments. A call to the imported task or function can read or
write only the actual arguments.

Imported C and SystemC functions can be declared as pure or context. The following is a
brief description of these properties. See the IEEE 1800 standard for a detailed description.

■ pure functions

An imported function can be specified as pure if the result of the function depends solely
on the values of its input arguments. Only non-void functions with no output or inout
arguments can be specified as pure. These functions can have no side effects. For
example, they cannot read or write anything, access global or static variables, or call
other functions.

For example:

import "DPI-C" pure function int calc_parity (input int a);

Specifying a function as pure can often result in improved simulation performance,
because more optimizations can be performed.

Because a task does not have a return value or a result, a function imported as a task
cannot be specified as pure.

■ context functions

An imported task or function must be specified as context if it

C Function
#include<stdio.h>
void hello() {
printf("Greetings from the C function!\n");
}

SystemVerilog
module top;

import "DPI-C" task hello();
...
initial
if (sig == 1) hello();
...

endmodule

SystemVerilog Reference
Direct Programming Interface

July 2010 305 Product Version 9.2

❑ Accesses SystemVerilog data objects other than its actual arguments—for example,
through PLI calls

❑ Calls exported tasks or functions

❑ Accesses SystemC portions of the design

For example:

import "DPI-SC" context function int myclassfunc_func1 ();

Calls of context tasks and functions are specially instrumented, so they can impair
compiler optimizations. Simulation performance can be affected if the context property
is specified when it is not necessary.

Caution

Violating the rules specified in this section, and incorrectly declaring an
imported task or function as pure or context, can result in unpredictable
simulation behavior.

Importing C Functions and Tasks

The syntax in the LRM for declaring a C function imported as a SystemVerilog function is as
follows:

import {"DPI" | "DPI-C" } [context | pure] [c_identifier =] function
function_data_type function_identifier ([tf_port_list]);

Note: The current release supports both “DPI” and “DPI-C” strings for specifying DPI tasks
and functions. However, “DPI-C” is the recommended usage, as it supports the IEEE 1800
standard.

In the current release, import declarations that use DPI-C are allowed only within modules,
packages, interfaces, program blocks, and compilation unit scopes.

For example:

import "DPI-C" function int calc_parity (input int a);

In this example:

■ int is the data type of the function return value.

■ calc_parity is the function identifier used in the SystemVerilog code.

■ The function has one input, which is of type int.

The syntax for declaring a C function imported as a SystemVerilog task is as follows:

SystemVerilog Reference
Direct Programming Interface

July 2010 306 Product Version 9.2

import {"DPI"|"DPI-C"} [context] [c_identifier =] task task_identifier
([tf_port_list]);

For example:

import "DPI-C" task calc_task (input int in1, output int out1);

Specifying a Local Name for the C Function

By default, the task or function identifier in the import declaration is assumed to be the same
as the function identifier in the C code. However, you can use the c_identifier to specify
a name to represent the C function name. The specified name must conform to C identifier
syntax.

In the following example, the calc_parity_func C function is given the name
calc_parity in SystemVerilog.

import "DPI-C" calc_parity_func = function int calc_parity (input int a);

Return Types for Imported C Tasks

In the current release, the following data types are supported for imported function return
types:

■ void, byte, shortint, int, longint, real, string, chandle

■ Scalar values of types bit and logic

Prior to IUS 8.1, imported tasks did not have return values, and C and SystemC functions that
corresponded to an imported task had to return a void type. This requirement has changed.

Because support for the disable construct within DPI-based designs has been added, C
and SystemC functions that correspond to an imported or exported task must return an int
value. For example, the following defines a C task called imp_task, which will be imported
into SystemVerilog:

int imp_task_c (int x, int y){ /* Return type is int */
..int dis_ret;

dis_ret = exp_task_c(x,y); /*Return type is int */
return (dis_ret);

...
}

For backward compatibility, you can use the -dpi_void_task option with ncelab or irun
on existing DPI designs. Designs will not be affected by this new requirement, and will behave
as they did prior to IUS 8.1. However, you must adhere to this new style of DPI function
declaration to use the disable functionality with DPI-based designs.

SystemVerilog Reference
Direct Programming Interface

July 2010 307 Product Version 9.2

See “Disabling DPI Tasks and Functions” on page 329 for more information about the
disable function.

Formal Arguments for Imported C Functions and Tasks

An imported task or function can have zero or more formal arguments.

By default, each formal argument is assumed to be an input to the C function. You can
override this default by explicitly declaring each formal argument as an input, output, or
inout argument. For example:

import "DPI-C" context task calc_task(input int in1, output int out1);

The SystemVerilog data types specified in the import declaration must be compatible with the
actual C function data types. No checking is performed to ensure that the data types are
compatible, and improper declarations can result in unpredictable behavior and erroneous
values.

The LRM lists the data types that are allowed for formal arguments of imported and exported
tasks or functions.

In the current release, the following data types are supported as formal arguments for DPI-C
imported functions and tasks:

■ byte, shortint, int, longint, real, string, and chandle

■ Scalar values of types bit and logic

■ One-dimensional packed arrays of types bit and logic

■ One-dimensional unpacked arrays of type byte, unsigned byte, int, and unsigned
int.

Note: This array type is not supported as a formal argument to imported SystemC
functions and tasks.

■ Multi-dimensional packed arrays of types bit and logic

■ One-dimensional open arrays of the following datatypes are supported:

❑ int, shortint, longint

❑ string, byte

❑ string , byte

❑ Bit vector, logic vector

❑ Bit, logic

SystemVerilog Reference
Direct Programming Interface

July 2010 308 Product Version 9.2

A formal argument is considered to be an open array when one or more of its dimensions
are unspecified. The actual argument can be a fixed or dynamic array.

■ Unpacked structs with members of type longint, shortint, bitvector, int,
unsigned bit, logic, and enums of type int, unsigned int, bit, logic,
longint, shortint, and bitvector. Special rules apply; see “Using Unpacked
Structs as Formal Arguments in DPI-C Import Functions” and “Using Unpacked Structs
as Formal Arguments in DPI-SC Import Functions” on page 308.

Using Unpacked Structs as Formal Arguments in DPI-C Import Functions

Unpacked structs with members of type int, unsigned bit, or logic can be used as
formal arguments to DPI-C imported functions and tasks. They cannot be used as formal
arguments to exported functions and tasks. You will get an error message if a SystemVerilog
unpacked structure contains a member that is not of type int, unsigned bit, or logic,
and is used as a formal argument to a DPI-C import function or task.

The following are required for DPI-C imported functions and tasks:

■ The formal argument in C code must be a pointer to a C struct.

■ The layout of the C and SystemVerilog structs must match—that is, the structs must have
the same number and ordering of fields.

For examples, refer to “Unpacked Structs as Formal Arguments to DPI-C Import Functions”
on page 337 or to the SystemVerilog DPI Engineering Notebook.

Using Unpacked Structs as Formal Arguments in DPI-SC Import Functions

Unpacked structs with members of type int, unsigned bit, or logic can be used as
formal arguments to DPI-SC imported functions and tasks. They cannot be used as formal
arguments to exported functions and tasks. You will get an error message if a SystemVerilog
unpacked struct contains a member that is not of type int, unsigned bit, and logic and
is used as a formal argument to a DPI-SC import function or task.

The following are required for DPI-SC import functions and tasks:

■ The formal argument in SystemC code must be a C struct that can be passed by value,
pointer, or reference. The C struct can contain only C data type fields; SystemC data
types are not supported. The SystemVerilog data types used within a SystemVerilog
unpacked struct will be mapped to C data types, using the DPI-C mapping rules. For
example, bit will map to svBit, and logic will map to svLogic. However, the current
release does not support mapping bit to bool, or logic to sc_logic.

../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage

SystemVerilog Reference
Direct Programming Interface

July 2010 309 Product Version 9.2

To facilitate the conversion of C types to SystemC types, a library of conversion functions
has been added called sc_dpi_convert class. For more information about this library,
refer to “SystemC and HDL Design Hierarchies” in the SystemC Simulation User
Guide.

■ If a SystemVerilog unpacked struct is used as an argument to a DPI-SC imported task
or function, it cannot contain members that use SystemC data types.

■ The layout of the C and SystemVerilog structs must match—that is, the structs must have
the same number and ordering of fields.

■ In DPI-SC imports, the names of the structs must match.

Unlike C, where the linker matches functions by name, regardless of argument types, the
C++ linker matches the entire signature of a function, including its argument types.

For an example, refer to “Unpacked Structs as Formal Arguments to DPI-SC Import
Functions” on page 339.

Importing SystemC Functions and Tasks

A SystemC function can be imported as a SystemVerilog function or task. To import a task or
function, you must:

■ Define the following before the first #include in your SystemC file:

#define NCSC_INCLUDE_TASK_CALLS

■ Declare the task or function using an import declaration in SystemVerilog. See “Import
Declaration Syntax” on page 310.

■ Register the task or function in SystemC using the appropriate NCSC_REGISTER_DPI*
registration macros. See the “SystemC and HDL Design Hierarchies” chapter of the
SystemC Simulation User Guide for more information.

See “DPI Examples” on page 332 for examples.

You can import the following types of SystemC function:

■ Global C++ functions

■ Static and non-static member methods of arbitrary classes

■ Static and non-static member methods of classes that inherit from sc_object

If a class member method inherits from sc_object, you must first specify its scope in
SystemC before invoking it from SystemVerilog. See “Setting the SystemC Scope” on
page 310.

SystemVerilog Reference
Direct Programming Interface

July 2010 310 Product Version 9.2

Import Declaration Syntax

The syntax for declaring a SystemC function imported as a SystemVerilog function is as
follows:

import "DPI-SC" [context | pure] [c_identifier =] function function_data_type
function_identifier ([tf_port_list]);

The “DPI-SC” qualifier is for tasks and functions that are interoperable with SystemC. When
you use the “DPI-SC” qualifier in your import declaration:

■ SystemC functions and tasks are invoked transparently from SystemVerilog

■ The simulator maps the SystemC data types to SystemVerilog data types transparently

For example:

import "DPI-SC" context function void scmod_run (input sc_int[31:0] i1);

In this example:

■ void is the data type of the function return value.

■ scmod_run is the function identifier used in the SystemVerilog code.

■ The function has one input, which is of type sc_int.

The syntax for declaring a SystemC function imported as a SystemVerilog task is as follows:

import "DPI-SC" [context | pure] [c_identifier =] task task_id
([tf_port_list]);

For example:

import "DPI-SC" task sccalc_task (input int in1, output int out1);

In the current release, import declarations that use “DPI-SC” are allowed within modules,
packages, interfaces, program blocks, and compilation unit scopes.

Setting the SystemC Scope

The base class for all objects in the SystemC design hierarchy is sc_object. If you import
a non-static member method of a class that inherits from sc_object, you must set the scope
of its corresponding sc_object instance in SystemC before you can invoke it from
SystemVerilog. In SystemVerilog, you can use the scSetScopeByName() function to pass
the scope information to SystemC. For example:

scSetScopeByName("sctop.scm");

This statement specifies that any subsequent calls to SystemC sc_object class member
methods will use the sctop.scm scope.

SystemVerilog Reference
Direct Programming Interface

July 2010 311 Product Version 9.2

Once a scope is set, it persists until another scSetScopeByName() is used.

Note: You do not need to set the scope for any other type of imported SystemC function or
task, such as global functions, static class member methods, or member methods of an
arbitrary class that do not inherit from sc_object.

See “DPI Examples” on page 332 for an extensive example.

Return Types for Imported SystemC Functions

For SystemC import declarations, the current release supports the same data types listed in
“Return Types for Imported C Tasks” on page 306.

You can use SystemC data types as return types for imported functions, but they require a
typedef. See “Using typedef with SystemC Data Types” on page 319 for guidelines on using
a typedef with SystemC data types.

Prior to IUS 8.1, imported tasks did not have return values, and C and SystemC functions that
corresponded to an imported task had to return a void type. This requirement has changed.

Because support for the disable construct within DPI-based designs has been added, C
and SystemC functions that correspond to an imported or exported task must return an int
value. For example, the following defines a C task called imp_task, which will be imported
into SystemVerilog:

int imp_task_c (int x, int y){ /* Return type is int */
int dis_ret;
dis_ret = exp_task_c(x,y); /*Return type is int */
return (dis_ret);

...
}

For backward compatibility, you can use the -dpi_void_task option with ncelab or irun
for existing DPI designs. Designs will not be affected by this new requirement, and will behave
as they did prior to IUS 8.1. However, you must adhere to this new style of DPI function
declaration to use the disable functionality with DPI-based designs.

Formal Arguments for Imported SystemC Functions and Tasks

For SystemC import declarations, the current release supports the same data types listed in
“Formal Arguments for Imported C Functions and Tasks” on page 307.

You can use the following SystemC data types as formal arguments for imported functions.
The simulator will implicitly map them to SystemVerilog data types.

SystemVerilog Reference
Direct Programming Interface

July 2010 312 Product Version 9.2

Note: Special rules apply for unpacked structures. See “Using Unpacked Structs as Formal
Arguments in DPI-SC Import Functions” on page 308.

Table 21-1 Default Data Type Mapping for Formal Arguments

Note: When used as formal arguments, sc_lv, sc_bv, sc_int, sc_uint, sc_bigint,
and sc_biguint must be declared as vectors.

For example:

import "DPI-SC" task task1 (input sc_int[31:0] i1); // Valid
import "DPI-SC" task task1 (input sc_int i1); // Invalid

SystemC data types can be used only within “DPI-SC” import and export declarations.
Using them in any other context within a SystemVerilog design will result in an error. You can,
however, use a typedef to override the default data mapping listed in Table 21-1 on
page 312. See “Using typedef with SystemC Data Types” on page 319 for guidelines on using
a typedef with SystemC data types.

Generating a Header File for Imported Functions and Tasks

Using the ncelab option -dpiimpheader, you can generate an imported header file that
contains all C function prototypes for corresponding imported functions or tasks declared with
the keyword DPI, DPI-C, or DPI-SC in SystemVerilog. The generated header file can be
included with your C application code to check the consistency of the function prototypes with
their actual declarations or definitions.

Because an imported function/task declaration in SystemVerilog code contains the
SystemVerilog data types as the arguments to the imported function/task, the equivalent
generated C header file uses data mapping between the two languages as defined in
Table 21-1 on page 312.

SystemC Data Type SystemVerilog Data Type

sc_logic
sc_lv

logic

bool
sc_bv
sc_int
sc_uint
sc_bigint
sc_biguint

bit

SystemVerilog Reference
Direct Programming Interface

July 2010 313 Product Version 9.2

In the imported header file, the return value of an imported task is int reflecting the
disabled value, if no elaborator option -dpi_void_task is specified. If you provide a
-dpi_void_task option to ncelab, the return type in the generated imported header file is
void.

If you have unpacked structures as arguments, some naming convention apply as names of
unpacked structures may differ in the two languages. In the created imported header file, a
SystemVerilog structure is named as
name_of_module_or_package__name_of_struct_defined_in_sv. You need
to edit this name if a file with the same name is already included in your C application.

Exporting SystemVerilog Functions and Tasks using DPI

A C function that corresponds to a context import subroutine can directly call a
SystemVerilog task or function. Such SystemVerilog tasks and functions are called exported
tasks and functions. Exported tasks and functions can also be invoked from SystemC
processes.

For example, a SystemVerilog function called hello_sv() is declared in SystemVerilog, and
exported to C using an export declaration:

Exporting Functions and Tasks to C

C functions can call SystemVerilog functions and tasks that are declared using an export
declaration.

Note the following for exported functions and tasks:

■ In the current release, export declarations are allowed only within modules, packages,
interfaces, program blocks, and compilation unit scopes. Export declarations must
appear in the scope in which the task or function is defined.

C Function
#include<stdio.h>

extern void hello_sv(int _a1);

void test(){
...
hello_sv(100);
...
}

SystemVerilog
module top;
export "DPI-C" function hello_sv;
import "DPI-C" context task test();
...

function void hello_sv(input int a);
...
$display("Hello, world %d\n", a);

...
endfunction

endmodule

SystemVerilog Reference
Direct Programming Interface

July 2010 314 Product Version 9.2

■ When using DPI to export functions and tasks, you must include a header file in your C
code. You can create your own header file, or generate a header file using the
-dpiheader switch with ncelab. See “Using DPI with the Simulator” on page 322 for
more information.

■ Exported functions and tasks are subject to the same argument type and result
restrictions as imported functions. See “Formal Arguments for Functions or Tasks
Exported to C” on page 316 for more information.

Export Declaration Syntax

The syntax in the LRM for declaring a SystemVerilog function or task that will be exported to
C is as follows:

export {"DPI" | "DPI-C"} [c_identifier =] function function_identifier;
export {"DPI" | "DPI-C"} [c_identifier =] task task_identifier;

Note: The current release supports both “DPI” and “DPI-C” strings for specifying DPI tasks
and functions. However, “DPI-C” is the recommended usage, because it supports the IEEE
1800 standard.

By default, the function or task identifier in the export declaration is the same as the function
or task identifier in the C code. However, you can use the c_identifier to specify a name
to represent the C function or task name. The C identifier must conform to the C identifier
syntax.

For example, the following specifies that the SystemVerilog function myfunction will be
exported, and that C will use the identifier my_cfunction:

export "DPI-C" my_cfunction = function myfunction;

An export declaration and its corresponding SystemVerilog function definition can appear in
any order. However, the export declaration must occur within the scope for which the function
or task is defined. For example:

module top;
export "DPI-C" c_name= function sv_name1;

function int sv_name1();
begin
...
end

endfunction
endmodule

This declaration can also look like the following:

module top;
function int sv_name1();

begin
...
end

SystemVerilog Reference
Direct Programming Interface

July 2010 315 Product Version 9.2

endfunction
export "DPI-C" c_name= function sv_name1;

endmodule

A c_identifier cannot be used within the same scope for more than one exported
function or task. Also, there can be only one export declaration per task or function within the
same scope. In the following example, although there are multiple export declarations that
correspond to the same C identifier c_name, the example is still valid, because the
declarations exist in different scopes and have the same signatures:

module top;

export "DPI" c_name= function sv_name1;

function int sv_name1(inout int a1, input real a2, output shortint a3,
 inout byte a4);

begin
$display(" \n Value inside the sv_name1 \
...

end
endfunction
...

endmodule

module mid1;

export "DPI" c_name= function sv_name2;

function int sv_name2(inout int a1, input real a2, output shortint a3,
inout byte a4);

begin
$display(" \n Value inside the sv_name2 \
...

end
endfunction
...

endmodule

This example also illustrates how exported functions and tasks can have input, output,
and inout arguments.

An exported function or task can be called only from within a context imported function or
task.

Return Types for Functions Exported to C

In the current release, the following data types are supported for exported function and task
return types:

■ void, byte, shortint, int, longint, real, chandle, and string

■ Scalar values of type bit and logic

SystemVerilog Reference
Direct Programming Interface

July 2010 316 Product Version 9.2

Because support for the disable construct within DPI-based designs was added, C and
SystemC functions that correspond to an imported or exported task must return an int value.
For example, the following defines a C task called imp_task, which will be imported into
SystemVerilog:

int imp_task_c (int x, int y){ /* Return type is int */
int dis_ret;
dis_ret = exp_task_c(x,y); /* Return type is int */
return (dis_ret);

...
}

For backward compatibility, you can use the -dpi_void_task option with ncelab or irun
on existing DPI-C designs. Designs will not be affected by this new requirement and will
behave as they did prior to IUS 8.1. However, you must adhere to this new style of DPI-C
function declaration to use the disable functionality with DPI-based designs.

See “Disabling DPI Tasks and Functions” on page 329 for more information about the
disable function.

Formal Arguments for Functions or Tasks Exported to C

The SystemVerilog data types specified in the export declaration must be compatible with the
actual C function data types. The data types are not checked to ensure that they are
compatible, and improper declarations can result in unpredictable behavior and erroneous
values.

The LRM lists the data types that are allowed for formal arguments of imported and exported
tasks or functions.

In the current release, the following data types are supported as formal arguments for
exported functions and tasks:

■ byte, shortint, longint, int, real, string, and chandle

■ Scalar values of types bit and logic

■ One-dimensional packed arrays of types bit and logic

■ One-dimensional unpacked arrays of type byte, unsigned byte, int, and unsigned
int

Note: This array type is not supported as a formal argument to imported SystemC
functions and tasks.

■ Multi-dimensional packed arrays of types bit and logic

■ Packed structs of types bit and logic

SystemVerilog Reference
Direct Programming Interface

July 2010 317 Product Version 9.2

Exporting SystemVerilog Functions and Tasks to SystemC

SystemC processes can call SystemVerilog functions and tasks that are declared using an
export declaration. Exported functions and tasks can also be called from context
imported functions and tasks that are qualified with “DPI-SC”. Every exported function must

■ Define the following before the first #include in your SystemC file:

#define NCSC_INCLUDE_TASK_CALLS

■ Have an export declaration

See “Export Declaration Syntax” on page 318.

■ Be declared in SystemC as external by using the extern “C” keyword, which will
indicate that the task or function’s definition resides in another source file

See Example on page 335 for an example.

■ Specify its SystemVerilog scope using the svSetScope() function in SystemC

The svSetScope() function has the following syntax:

svSetScope(svGetScopeFromName("scope");

However, if you are calling an exported function from within an imported function,
svSetScope() might not be required; see Example on page 335.

■ Exported functions can be invoked from the following places in a SystemC design:

❑ From a SystemC end_of_elaboration callback that is invoked during simulation

The callback function can invoke exported functions.

❑ From a SystemC start_of_simulation callback

The callback function can invoke exported functions.

❑ From a method process or a thread process

During process execution, a SystemC design can call exported functions.

❑ From the sc_main() function

$call_systemc_function()and $call_systemc_process_nb() can
invoke a SystemC function, or schedule a SystemC process that can further invoke
exported functions.

SystemVerilog Reference
Direct Programming Interface

July 2010 318 Product Version 9.2

You can also call the following accessor functions from each of the places listed above:

Export Declaration Syntax

The syntax for declaring a SystemVerilog function or task that will be exported to SystemC is
as follows:

export "DPI-SC" [c_identifier =] function function_identifier;
export "DPI-SC" [c_identifier =] task task_identifier;

The “DPI-SC” qualifier is for tasks and functions that are interoperable with SystemC. When
you use the “DPI-SC” qualifier in your export declaration:

■ SystemVerilog functions and tasks are invoked transparently from SystemC.

■ The simulator maps the SystemC data types to SystemVerilog data types transparently

By default, the function or task identifier in the export declaration is the same as the function
identifier in the SystemC code. However, you can use the c_identifier to specify a name
to represent the SystemC function. The C identifier must conform to SystemC identifier
syntax. For example, the following specifies that the SystemVerilog function myfunction will
be exported, and that SystemC will use the identifier my_scexp.

export "DPI-SC" my_scexp = function sc_exp;

Return Types for Functions Exported to SystemC

For SystemC export declarations, the current release supports the same data types listed in
“Return Types for Functions Exported to C” on page 315.

You can also use SystemC data types as return types for exported functions but they require
a typedef. See “Using typedef with SystemC Data Types” on page 319 for guidelines on
using a typedef with SystemC data types.

Formal Arguments for Functions or Tasks Exported to SystemC

For SystemC export declarations, the current release supports the same data types listed in
“Formal Arguments for Functions or Tasks Exported to C” on page 316.

svSetScope svGetNameFromScope svGetScopeFromName

svPutUserData svGetUserData svGetScope

SystemVerilog Reference
Direct Programming Interface

July 2010 319 Product Version 9.2

You can also use SystemC data types as formal arguments for exported functions. The
simulator will map them to a SystemVerilog data type. See Table 21-1 on page 312 for a list
of supported SystemC data types.

SystemC data types can be used only within “DPI-SC” import and export declarations.
Using them in any other context within a SystemVerilog design will result in an error. You can,
however, use a typedef to override the default data mapping listed in Table 21-1 on
page 312. See “Using typedef with SystemC Data Types” on page 319 for guidelines on using
a typedef with SystemC data types.

Limitations on Functions and Tasks Exported to SystemC

In the current release

■ Export declarations are allowed only within modules, packages, interfaces, and
compilation unit scopes

■ Export functions can be invoked from SystemC methods and threads

■ Export tasks can be invoked from SystemC threads

These exported tasks can have SystemVerilog blocking constructs that consume
simulation time. For more information about tasks that consume time, refer to “Tasks That
Consume Time” on page 321.

Using typedef with SystemC Data Types

SystemC data types can be used within only “DPI-SC” import and export declarations.
Using them in any other context, without a typedef, will result in an error.

If you use a SystemVerilog typedef to create a new definition for a SystemC data type, the
type definition must satisfy the data type mapping listed in tables 21-2 and 21-3; these tables
apply to both import and export declarations. Otherwise, you will get a compilation error.
If the typedef is used outside “DPI-SC” import or export declarations, the regular
SystemVerilog type definition semantics will apply.

Table 21-2 Data Type Mapping for Function Return Types

SystemC Data Type Valid SystemVerilog Data Types

sc_logic logic, bit

SystemVerilog Reference
Direct Programming Interface

July 2010 320 Product Version 9.2

Table 21-3 Data Type Mapping for Formal Arguments

Note: When using a typedef to map sc_lv, sc_bv, sc_int, sc_unit, sc_bigint, or
sc_biguint to type bit or logic, you must declare these types as vectors. For example:

typedef bit sc_int;
import "DPI-SC" task1 (input sc_int[31:0] i1); // Valid
import "DPI-SC" task2 (input sc_int i1); // Invalid
...
typedef int sc_int;
import "DPI-SC" task3 (input sc_int a1); // Valid

Example 1

typedef int sc_int; // Maps sc_int to type int, which is a valid data type
import "DPI-SC" void func1 (input sc_int a);

The simulator will map sc_int to type int before it invokes the SystemC func1 function.

Example 2

typedef string sc_int; // sc_int cannot be mapped to strings
import "DPI-SC" void func2 (input sc_int a);

This example results in a compilation error, because the typedef maps sc_int to an invalid
type.

bool bit, logic

sc_int
sc_uint
sc_bigint
sc_biguint

int, shortint, longint

SystemC Data Type SystemVerilog Data Type

sc_logic
sc_lv

logic, bit

bool
sc_bv

bit, logic

sc_int
sc_uint
sc_bigint
sc_biguint

bit, int, shortint, longint

SystemC Data Type Valid SystemVerilog Data Types

SystemVerilog Reference
Direct Programming Interface

July 2010 321 Product Version 9.2

Example 3

typedef bit sc_int;
import "DPI-SC" function void openArrayFunc(input sc_int[7:0] a[]);

This example results in an error message, because open arrays are not supported for
typedefs that correspond to SystemC data types.

Tasks That Consume Time

In the current release, SystemVerilog can invoke a DPI import call chain that eventually
consumes time in SystemC or in SystemVerilog. Likewise, SystemC can invoke a DPI export
call chain that eventually consumes time in SystemVerilog or in SystemC. These types of
export call chains can be invoked only from a SystemC thread process. Nested call chains of
arbitrary depth are also supported in this release.

To consume time in SystemC, a task that is imported using “DPI”, “DPI-C”, or “DPI-SC” must
use the wait(...) construct. For more information about the different forms of the
wait(...) construct, see the “SystemC and HDL Design Hierarchies” chapter of the
SystemC Simulation User Guide for more information.

Note: Import tasks defined in SystemVerilog program blocks cannot call wait(...) in
SystemC. This call will result in an error message.

To consume time in SystemVerilog, a task that is exported using “DPI”, “DPI-C”, or
“DPI-SC” can use the following SystemVerilog constructs:

■ fork...join, fork...join_none, and fork...join_any

■ wait fork and wait

■ Semaphores

Semaphores provide a get() method that blocks execution of a process until a key is
available.

■ Mailboxes

Mailboxes provide a put() method that suspends a process until there is enough room
in the queue.

■ Cycle delays

You can introduce cycle delays by using default clocking blocks.

The ## operator delays execution by a specified number of clocking events or clocking
cycles.

SystemVerilog Reference
Direct Programming Interface

July 2010 322 Product Version 9.2

■ Blocking and non-blocking assignments that use delay-based timing controls

The # symbol, a delay-based timing control, specifies how long to wait before executing
a statement. For example:

#5 a = b;
a = #5 9 b;
a <= #4 b;

■ Statements that include event-based timing controls

The @ symbol represents an event-based timing control. It specifies that a statement can
be executed when a signal value changes, or when a specified event has triggered. For
example:

@ (event_identifier)
@(*)
@ a(iff en == 1)

Note: Disabling a SystemVerilog process that is in the middle of a import call chain is not
supported, and will result in a fatal error during run-time.

For example, the following call chains can successfully consume time in the current release:

The semantics for consuming time in a DPI call chain is the same as if the call was occurring
in one language—the language that originated the DPI call chain. In addition, the DPI call
chain can resume execution in the same delta cycle in which the time-consuming condition is
satisfied—or example, if an event is triggered—without artificial delta delays.

See the “SystemC and HDL Design Hierarchies” chapter of the SystemC Simulation User
Guide for more information.

Using DPI with the Simulator

■ Using the irun Utility with DPI on page 323

SystemVerilog:
Calls an imported task
Calls an imported task
Calls an imported task

SystemC:

Issues wait(...)
Calls an exported task
Calls an exported task

Issues @
Calls an imported task Issues wait(...)

Calls an exported task
Calls an exported task
Calls an exported task

Issues @
Calls an imported task
Calls an imported task

Issues wait(...)
Calls an exported task Issues @

SystemVerilog Reference
Direct Programming Interface

July 2010 323 Product Version 9.2

■ Using the Incisive Simulator with DPI on page 325

Using the irun Utility with DPI

With the irun utility, you can run the simulator by specifying all input files and all
command-line options on a single command line. The irun utility determines the language of
a file by its extension, and maps the file to its appropriate compiler.

Importing C Tasks and Functions using irun

To use the irun utility with DPI to import C tasks and functions, use the following command:

% irun -dpiimpheader design_files c_files

Where design_files are the design files that contain the DPI import statement, which
imports the tasks and functions contained in the specified c_files. For example:

% irun -dpiimpheader systemv1.sv systemv2.sv cfile1.c cfile2.c

In this example, irun compiles the .sv files using ncvlog -sv, and the C files using a C
compiler. After the input files have been compiled, irun automatically invokes ncelab to
elaborate the design, and ncsim to simulate the design.

Exporting Tasks and Functions to C using irun

To use the irun utility with DPI to export SystemVerilog tasks and functions, use the following
command:

% irun design_files -dpiheader header_file_name -cpost c_files -end

where

■ design_files—The design files that contain the tasks and functions to export. These
files are compiled using ncvlog -sv before proceeding to elaboration.

Note: By default, SystemVerilog files must have the .sv, .svp, .SV, or .SVP extension.
For more information about how to modify the default extensions, refer to “Compiling
SystemVerilog Constructs” on page 23 or the irun User Guide.

■ header_file_name—You must include a header file in your C files that reference
exported tasks and functions. The -dpiheader header_file_name option
specifies this header file. If the specified header file does not exist, ncelab creates it for
you. If you have your own header file, save the header file in the directory where irun will
be invoked.

SystemVerilog Reference
Direct Programming Interface

July 2010 324 Product Version 9.2

For an example of how to include the header file in your C files, refer to “Debugging DPI
Exported Functions and Tasks” in SystemVerilog in Simulation.

Important

You must create the header file before the C files are compiled.

■ c_files—The C files that reference the exported SystemVerilog tasks and functions.
If your C files contain export functionality, they must be specified between the -cpost
and -end options, so that the irun utility knows to compile these files with a C compiler
after elaboration.

For example:

% irun top.sv -access +rwc -dpiheader myheader.h -cpost add.c -end

In this example, irun compiles the top.sv file using ncvlog -sv, then proceeds to
elaboration. During elaboration, all export declarations are dumped into the myheader.h
file. After elaboration, irun compiles the add.c file using a C compiler, then proceeds to
simulation.

For information about how to export SystemVerilog tasks and functions using the Incisive
simulator, refer to “Exporting SystemVerilog Tasks and Functions using the Incisive
Simulator” on page 326.

For more information about irun, refer to the irun User Guide.

Importing SystemC Tasks and Functions Using irun

To use the irun utility with DPI to import SystemC tasks and functions, use the following
command:

% irun -dpiimpheader design_files systemc_files -sysc

For example:

% irun -dpiimpheader systemv1.sv system2.sv systemcfile.cpp -sysc

In this example, irun compiles the .sv files using ncvlog -sv, and compiles the .cpp file
using the ncsc_run compiler interface.

Note: By default, SystemVerilog files must have the .sv, .svp, .SV, or .SVP extension. For
more information about how to modify the default extensions, see “Compiling SystemVerilog
Constructs” on page 23, or refer to the irun User Guide.

../svsim/svsimTOC.html#firstpage

SystemVerilog Reference
Direct Programming Interface

July 2010 325 Product Version 9.2

Exporting Tasks and Functions to SystemC using irun

To use the irun utility with DPI to export SystemVerilog tasks and functions to SystemC, use
the following command:

% irun -Wcxx -fPIC systemc_files sv_files -sysc

where

■ -Wcxx—Passes the user-specified arguments to C++.

■ -fPIC—Is required for all C and C++ designs that have extern declarations.

■ systemc_files—The SystemC files that reference the exported SystemVerilog
tasks and functions.

■ sv_files—The SystemVerilog files that contain the tasks and functions to export.
These files are compiled using ncvlog -sv before proceeding to elaboration.

Note: By default, SystemVerilog files must have the .sv, .svp, .SV, or .SVP extension. For
more information about how to modify the default extensions, see “Compiling SystemVerilog
Constructs” on page 23, or refer to the irun User Guide.

For example:

% irun -Wcxx -fPIC -dpiimpheader sc.cpp test.sv -sysc

For more information about irun, refer to the irun User Guide.

Using the Incisive Simulator with DPI

This section describes how to import C tasks and functions into SystemVerilog, and how to
export SystemVerilog tasks and functions to C.

To import SystemC functions, or to export SystemVerilog functions to SystemC, see “Using
the irun Utility with DPI” on page 323.

Importing C Tasks and Functions using the Incisive Simulator

To use the Incisive simulator with DPI to import C tasks and functions, do the following:

1. Compile the design using the following command:

% ncvlog -sv design_files

where design_files are the design files that contain the DPI import statement,
which imports the C tasks and functions contained in the specified c_files. For
example:

SystemVerilog Reference
Direct Programming Interface

July 2010 326 Product Version 9.2

% ncvlog -sv top.v

2. Elaborate the design using ncelab. For example:

% ncelab -access +RWC -dpiimpheader top

3. In the current directory, create a single shared object library. See “Compiling and Linking
C Objects into a Single Shared Object Library” on page 327.

4. Simulate the design using ncsim. For example:

% ncsim -messages top

If you compiled and linked your C code into a shared library other than libdpi.ext,
see “Simulating the Elaborated Snapshot of Libraries Other than libdpi.ext” on page 328.

Exporting SystemVerilog Tasks and Functions using the Incisive Simulator

To use the Incisive simulator with DPI to export SystemVerilog tasks and functions:

1. Create a header file.

When using DPI to export tasks and functions, you must first include a header file in your
C code. During elaboration, all export declarations are dumped into the header file. You
can use your own header file, or use ncelab to generate one for you.

If you have your own header file, save it in the directory where the Incisive simulator will
be invoked.

Important

You must create the header file before the C objects are compiled.

Include the header file in your C files that reference the exported tasks and functions. You
must include the header file so that the C symbols corresponding to the exported tasks
and functions are externally visible. For an example of how to include the header file in
your C files, see “Debugging DPI Exported Functions and Tasks in SystemVerilog in
Simulation.

2. Compile and link your C objects into a single shared object library corresponding to your
exported tasks and functions. For instructions, see “Compiling and Linking C Objects into
a Single Shared Object Library” on page 327.

3. Go to “Running the Simulator in Multi-Step Mode” on page 327.

../svsim/svsimTOC.html#firstpage
../svsim/svsimTOC.html#firstpage

SystemVerilog Reference
Direct Programming Interface

July 2010 327 Product Version 9.2

Compiling and Linking C Objects into a Single Shared Object Library

If you are exporting SystemVerilog tasks and functions using the Incisive simulator, you must
compile and link your C objects into a shared library that corresponds to the exported tasks
and functions.

Note: Save the shared library in the directory where ncsim or irun will be invoked, or include
the path to the shared library in the library path environment variable—LD_LIBRARY_PATH
for Solaris and Linux, SHLIB_PATH for HP-UX, or LIBPATH for AIX.

To compile and link your C objects into a shared library using a gcc compiler:

% gcc -fPIC -shared -o libdpi.so add.c -I $CDS_INST_DIR/tools/inca/include

To compile and link your C objects into a shared library using a cc compiler:

% cc -KPIC -G -o libdpi.so -I $CDS_INST_DIR/tools/inca/include add.c

where

■ add.c is the C file to compile

■ libdpi.so is the shared library to build

Note: By default, the simulator looks for a single shared library called libdpi.so for
Solaris, Linux, and AIX; or libdpi.sl for HP-UX. However, the -sv_root and
-sv_lib options to ncsim let you specify a shared library other than libdpi.ext.
These options are discussed in “Running the Simulator in Multi-Step Mode” on page 327.

■ $CDS_INST_DIR is an environment variable that points to your installation

Running the Simulator in Multi-Step Mode

If you are using the multi-step invocation mode of the Incisive simulator and you have your
own header file, do the following:

1. Use the ncvlog command with the -sv command-line option to compile the
SystemVerilog code. For example:

% ncvlog -mess test.v -sv

2. Use the ncelab command to elaborate the design. For example:

% ncelab -mess top

3. Simulate the elaborated snapshot. For example:

% ncsim -mess top

If you compiled and linked your C code into a shared library other than libdpi.ext,
see “Simulating the Elaborated Snapshot of Libraries Other than libdpi.ext” on page 328.

SystemVerilog Reference
Direct Programming Interface

July 2010 328 Product Version 9.2

If you need to generate a header file using ncelab, do the following:

1. Use the ncvlog command with the -sv command-line option to compile the
SystemVerilog code. For example:

ncvlog -mess test.v -sv

2. Use the ncelab command with the -dpiheader command-line option to generate the
header file. For example:

ncelab -mess top -dpiheader /home/john/myheader.h

The -dpiheader switch generates a header file that contains declarations for all of the
C identifiers that correspond to exported tasks and functions contained in the elaborated
snapshot.

The elaborator saves the header file in the directory specified by the -dpiheader
switch.

In your C files that reference the exported tasks and functions, you must include the
header file so that the C symbols corresponding to the exported functions are externally
visible. For an example of how to include the header file in your C files, see “Debugging
DPI Exported Functions and Tasks” in SystemVerilog in Simulation.

Important

You must generate the header file before you compile your C objects.

3. Compile and link your objects into a single shared object library that corresponds to your
exported tasks and functions. For instructions, see “Compiling and Linking C Objects into
a Single Shared Object Library” on page 327.

4. Simulate the elaborated snapshot. For example:

% ncsim -mess top

If you compiled and linked your C code into a shared library other than libdpi.ext,
see “Simulating the Elaborated Snapshot of Libraries Other than libdpi.ext” on page 328.

Simulating the Elaborated Snapshot of Libraries Other than libdpi.ext

If you compiled and linked your C code into a shared library other than libdpi.ext, you
must specify the path and name of the shared library using the -sv_root and -sv_lib
options to ncsim. For example:

% ncsim -mess top -sv_root /a/b/c -sv_lib mylib

where

../svsim/svsimTOC.html#firstpage

SystemVerilog Reference
Direct Programming Interface

July 2010 329 Product Version 9.2

■ -sv_root is a single directory that will be prefixed to any relative path specified by
-sv_lib

■ -sv_lib can be a relative or full pathname that corresponds to a shared library; if you
provide a relative path, it is prefixed by the path specified by -sv_root

For example, the following loads /a/b/c/mylib.ext during simulation:

% ncsim -mess top -sv_root /a/b/c -sv_lib mylib

Using the -sv_root and -sv_lib options with ncsim allows you to load multiple shared
libraries during simulation. For example, the following loads /x/y/myl.ext and
../myl1.ext during simulation:

% ncsim -mess top -sv_root /x/y/ -sv_lib myl -sv_root ../ -sv_lib myl1

Disabling DPI Tasks and Functions

For an example that you can download and run, refer to the SystemVerilog DPI
Engineering Notebook.

In SystemVerilog, tasks can be disabled by using a disable statement. An imported task or
function is considered disabled when it or its parent task is the target of a SystemVerilog
disable statement. In the current release, you can use the disable statement to disable
process call chains that contain DPI imported tasks or functions and exported tasks.

To account for disabled imported tasks, or the exported task that they call, the C code must
follow a certain protocol to programmatically acknowledge that a task has been disabled:

■ Imported C or SystemC tasks must return an int value of 1 to indicate a disable.
Otherwise, they return a value of 0. If a disabled task does not return a value of 1, the
simulator issues an error message.

■ When an imported C or SystemC function is disabled, it must call the svAckDisabled
API function. If a disabled function does not call this API function before it returns to its
parent, the simulator issues an error message.

■ When an exported task is the target of a disable, its parent imported task is not
considered disabled when the exported task returns. The exported task returns 0, and
any calls to svIsDisabledState() return 0. When the parent import task and export
task are disabled, the export task must return an integer value of 1.

Imported tasks and functions, and exported tasks, can determine whether they are disabled
by calling the svIsDisabledState() API function.

The following illustrates an imported C task that calls an exported SystemVerilog task.

../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage
../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage

SystemVerilog Reference
Direct Programming Interface

July 2010 330 Product Version 9.2

In SystemVerilog:

...
import "DPI-C" context task imp_t1(inout int a);
export "DPI-C" task exp_t1;

task exp_t1(output int a);
...
endtask

In C:

extern int exp_t1 (int *a);

int imp_t1(int *a);
{
int ret;
...
ret = exp_t1();
...
return ret;
}

In this example, the imp_t1 and exp_t1 functions return an int. The exp_t1 function will
return 0 unless its parent function, imp_t1, is disabled, in which case exp_t1 will return 1.
The imp_t1 function must check for a disable, and acknowledge any disables by returning 1:

int imp_t1(int *a);
{
int ret;
...
ret = svIsDisabledState();
...
return ret;
}

According to the LRM, the disable statement cannot be used to disable exported functions.

Debugging DPI Import and Export Functions

For information about how to debug DPI import and export functions using the Tcl
command-line interface, see SystemVerilog in Simulation.

DPI Accessor Functions

The following DPI accessor functions are supported in the current release.

../svsim/svsimTOC.html#firstpage

SystemVerilog Reference
Direct Programming Interface

July 2010 331 Product Version 9.2

Table 21-4 Supported DPI Accessor Functions

The following DPI accessor functions are not supported in the current release.

Table 21-5 Unsupported DPI Accessor Functions

svAckDisabledState svGetArrayPtr svGetArrElemPtr1

svGetBitArrElem1 svGetBitArrElem1Vec32 svGetBitArrElem1VecVal

svGetBitselBit svGetBitselLogic svGetCallerInfo

svGetLogicArrElem1 svGetLogicArrElem1Vec32 svGetLogicArrElem1VecVal

svGetNameFromScope svGetPartselBit svGetPartSelectBit

svGetPartSelectLogic svGetPartselLogic svGetScope

svGetScopeFromName svGetSelectBit svGetSelectLogic

svGetUserData svHigh svIsDisabledState

svLeft svLow svPutBitArrElem1

svPutBitArrElem1Vec32 svPutBitArrElem1VecVal svPutBitselBit

svPutBitselLogic svPutLogicArrElem1 svPutLogicArrElem1Vec32

svPutLogicArrElem1VecVal svPutPartselBit svPutPartSelectBit

svPutPartSelectLogic svPutPartselLogic svPutSelectBit

svPutSelectLogic svPutUserData svRight

svSetScope svSizeOfArray

svGet32Bits svGetArrElemPtr3 svGetBitArrElem

svGetArrElemPtr2 svGetBitArrElem2Vec32 svGetBitArrElem2VecVal

svGetBitArrElem2 svGetBitArrElem3Vec32 svGetBitArrElem3VecVal

svGetBitArrElem3 svGetBitArrElemVecVal svGetBits

svGetBitArrElemVec32 svGetLogicArrElem svGetLogicArrElem2

svGetBitVec32 svGetLogicArrElem2VecVal svGetLogicArrElem3

svGetLogicArrElem2Vec32 svGetLogicArrElem3VecVal svGetLogicArrElemVec32

svGetLogicArrElem3Vec32 svGetLogicVec32 svIncrement

SystemVerilog Reference
Direct Programming Interface

July 2010 332 Product Version 9.2

DPI Examples

This section provides extensive examples of using DPI with C and SystemC.

For more DPI examples that you can download and run, see the SystemVerilog DPI
Engineering Notebook.

svGetLogicArrElemVecVal svLength svPutBitArrElem

svPutBitArrElem2 svPutBitArrElem2Vec32 svPutBitArrElem2VecVal

svPutBitArrElem3Vec32 svPutBitArrElem3VecVal svPutBitArrElemVec32

svPutBitArrElemVecVal svPutBitVec32 svPutLogicArrElem

svPutLogicArrElem2 svPutLogicArrElem2Vec32 svPutLogicArrElem2VecVal

svPutLogicArrElem3 svPutLogicArrElem3Vec32 svPutLogicArrElem3VecVal

svPutLogicArrElemVec32 svPutLogicArrElemVecVal svPutLogicVec32

svSizeOfBitPackedArr svSizeOfLogicPackedArr

svDimensions svDpiVersion

svGet64Bits svGetArrElemPtr

../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage
../dpiEngrNtbk/dpiEngrNtbkTOC.html#firstpage

SystemVerilog Reference
Direct Programming Interface

July 2010 333 Product Version 9.2

Using DPI with C

In this example:

■ In SystemVerilog, the top module’s imp_func function invokes the xxx C function.

In SystemVerilog:
module top;

int top_res;
bit b1 = 1’b1;
bit b2 = 1’b1;

import "DPI-C" context xxx = function int imp_func(input bit bin1, inout bit bin2);
export "DPI-C" ccc = function exp_func;

function int exp_func(input bit eb1, output bit eb2);
if(eb1 != eb2)
begin

eb2 = eb1;
return -43;

end
else

return 54;
endfunction

initial
begin

#2 top_res = imp_func(b1,b2);
$display("top_res : %d\n", top_res);

end

endmodule

In C:
#include <stdio.h>
#include "myheader.h"

extern int ccc (unsigned char, unsigned char *);

int xxx (svBit b1, svBit *b2)

{
int res;
printf("Before calling ccc ****** b1: %d, b2 : %d\n", b1, *b2);
res = ccc(b1,b2);
printf(“Res:%d\n”, res);
printf(“After calling ccc ****** b1: %d, b2 : %d\n",b1, *b2);

printf("\n\nBefore calling ccc ****** b1: %d, b2 : %d\n", b1, *b2);
res = ccc(b1,b2);
printf("Res:%d\n”, res);
printf("After calling ccc ****** b1: %d, b2 : %d\n",b1, *b2);
return res
}

Imports the C function called
xxx and calls it imp_func in
SystemVerilog.

Exports the SystemVerilog
function called exp_func
and calls it ccc in C.

Defines exp_func that
will be exported to C.

Invokes the imported
C function xxx.

Declares the exported
SystemVerilog function
xxx as extern.

Defines the imported xxx function.

Invokes the
exported function
exp_func.

Includes the header file
generated by ncelab.

SystemVerilog Reference
Direct Programming Interface

July 2010 334 Product Version 9.2

■ In C, the xxx function calls the ccc function twice, before and after probing the values of
b1 and b2. The call to the ccc function invokes the SystemVerilog exp_func function
with b1 and b2 as svBit type parameters. The return value of the exp_func function
is assigned to res.

For example:

irun -sv test.v testme.c

produces the following simulation result:

Before calling ccc ******b1 : 1, b2 :0
Res : -43
After calling ccc ******b1: 1, b2: 1

Before calling ccc ******b1 : 1, b2 :1
Res : 54
After calling ccc ******b1: 1, b2: 1
top_res: 54

SystemVerilog Reference
Direct Programming Interface

July 2010 335 Product Version 9.2

Using DPI with SystemC

For example:

% irun -Wcxx -fPIC sc.cpp test.sv -sysc

produces the following simulation result:

Inside SystemC value is 17
Inside sc_exp : value is 17

In SystemVerilog (test.sv file):
module scmod

(* integer foreign = "SystemC"; *);
endmodule

module svtop;

scmod scm();
import "DPI-SC" context function void scmod_run (input sc_int[31:0] a);
export "DPI-SC" function sc_exp;

function void sc_exp (input sc_int[31:0] i);
$display(" Inside sc_exp : value is %d ",i);

endfunction

initial begin
scSetScopeByName("svtop.scm");
scmod_run(17);

end
endmodule

In SystemC (sc.cpp file):
#define NCSC_INCLUDE_TASK_CALLS
#include "systemc.h"

extern "C" {
extern void sc_exp(sc_int<32> a);

}

class scmod : public sc_module {
public:
SC_CTOR(scmod) {
}
void scmod_run (sc_int<32> i1) {
cout << "Inside SystemC value is " << i1 << endl;

sc_exp(i1);
}

};

NCSC_MODULE_EXPORT(scmod)
NCSC_REGISTER_DPI_MEMBER_ALIAS(scmod_run,scmod,scmod_run)

Declares the exported
SystemVerilog function
sc_exp as extern.

Imports the SystemC sc_object
class member method
scmod_run and uses a SystemC
type as a formal argument.

Exports the SystemVerilog
function called sc_exp.

Defines sc_exp, which will
be exported to C.

Sets the scope and invokes the
imported sc_object class
member method scmod_run.

Defines the imported
sc_object class member
method scmod_run.

Invokes the exported
function sc_exp.

Registers member
method that inherits
from sc_object.

#define must come before the first
#include of systemc.h.

SystemVerilog Reference
Direct Programming Interface

July 2010 336 Product Version 9.2

Using scSetScopeByName in SystemVerilog

In SystemVerilog (test.sv file):
‘timescale 1 ns/1 ps

module sctop (* integer foreign = "SystemC"; *);
endmodule

module top;
int r1;
byte b1 = "A";
sctop sc();
import "DPI-SC" function int myglobalfunc (input byte a);
import "DPI-SC" function int myclassfunc (input byte a);
initial begin
#10
r1=myglobalfunc(b1);
#10
scSetScopeByName("top.sc");
r1=myclassfunc(b1);
$finish;

end
endmodule

Imports two
SystemC functions.

Sets the scope to top.sc.

Calls an imported function. Requires
scSetScopeByName(), because
myclassfunc() is a member method of a class
that inherits from sc_object.

Calls an imported function. Does not require
scSetScopeByName(), because
myglobalfunc() is global.

In SystemC (sc.cpp file):
#define NCSC_INCLUDE_TASK_CALLS
#include "systemc.h"

int myglobalfunc(char i1) {
cerr << sc_time_stamp() << " starting myglobalfunc - i1 = " << i1
<< endl;
return 0;

}

class sctop : public sc_module {
public:

SC_CTOR(sctop) {
}
int myclassfunc(char i1) {
cerr << sc_time_stamp() << " starting myclassfunc - i1 = " << i1
<< endl;
return 0;

}

};

NCSC_MODULE_EXPORT(sctop)
NCSC_REGISTER_DPI(myglobalfunc)
NCSC_REGISTER_DPI_MEMBER_ALIAS(myclassfunc,sctop,myclassfunc)

Defines the global imported function myglobalfunc().

Defines the sc_object class member method
imported function myclassfunc().

Registers member methods
that inherit from sc_object.

Registers global functions.

#define must come before the first
#include of systemc.h.

SystemVerilog Reference
Direct Programming Interface

July 2010 337 Product Version 9.2

For example:

% irun sc.cpp test.sv -sysc

produces the following results:

10 ns starting myglobalfunc - i1 = A
20 ns starting myclassfunc - i1 = A

Unpacked Structs as Formal Arguments to DPI-C Import Functions

This example demonstrates the guidelines listed in “Using Unpacked Structs as Formal
Arguments in DPI-C Import Functions” on page 308.

In SystemVerilog (test.sv file):
module top;

typedef struct {
int a;
logic b;
bit c;

} mystruct ;

import "DPI-C" task t1(input mystruct b);
mystruct aa;
initial begin
aa.a = 10;
aa.b = 1’bz;
aa.c = 1’b1;
t1(aa);
end

endmodule

In C:
#include<stdio.h>
#include<svdpi.h>

typedef struct {
int a;
svLogic b;
svBit c;

}myCstruct;

int t1(myCstruct *p) {
printf("p->a = %d\n",p->a);
printf("p->b = %d\n",p->b);
printf("p->c = %d\n",p->c);

}

Formal argument in C is a pointer to a
C struct.

Layout of SystemVerilog and C structs
match.

SystemVerilog Reference
Direct Programming Interface

July 2010 338 Product Version 9.2

For example:

% irun testme.c test.sv

produces the following results:

p->a = 10
p->b = 2
p->c = 1

SystemVerilog Reference
Direct Programming Interface

July 2010 339 Product Version 9.2

Unpacked Structs as Formal Arguments to DPI-SC Import Functions

In SystemVerilog (test.sv file):
module top;
typedef struct {
int a;
logic b;
bit c;

} mystruct;

import "DPI-SC" function void sc_imp_func(
input mystruct a1,
input sc_int[0:31] a2
);
mystruct aa;

initial begin
aa.a = 10;
aa.b = 1’bz;
aa.c = 1’b1;
sc_imp_func(aa, 32);

end
endmodule

In SystemC (testme.cpp):
#define NCSC_INCLUDE_TASK_CALLS
#include <systemc.h>
#include "sysc/cosim/sc_dpi_convert.h"

typedef struct {
int a;
svLogic b;
svBit c;

} mystruct;

void sc_imp_func(mystruct a1, sc_int<32> a2) {

int a;
sc_logic b;
bool c;

sc_dpi_convert* converter = sc_dpi_converter();
a = a1.a;
// convert from svLogic to sc_logic
converter->sc_from_logic(b, a1.b);

// convert from svBit to bool
converter->sc_from_bit(c, a1.c);
cerr << "mystruct:" << a << "," << b << "," << c << endl;

}

Formal argument in
SystemC is a C struct.

Struct contains only
C data type fields.

sc_dpi_convert
class used to
convert C types to
SystemC types.

Layout and names of
SystemVerilog and C
structs match.

SystemVerilog Reference
Direct Programming Interface

July 2010 340 Product Version 9.2

For example:

% irun testSC.cpp testSC.sv -sysc

produces the following results:

mystruct:10,Z,1
ncsim: *W,RNQUIE: Simulation is complete.
ncsim> exit

SystemVerilog Reference

July 2010 341 Product Version 9.2

Index

-- operator 149

Symbols
`begin_keywords 23
`end_keywords 23
`remove_keyword 23
`restore_keyword 23
!=? operator 150
.* implicit port connections 35
.name implicit port connections 34
‘begin_keyword 294
‘end_keyword 294
** operator 187
++ operator 149
= operator 150
==? operator 149, 150
=== operator, case equality 149
->> operator 221
$cast dynamic casting 136
$countones() 291
$dimensions array query function 88
$display 48
$exit() 239
$fdisplay 48
$fell 286
$fmonitor 48
$fopen 48
$fstrobe 48
$fwrite 48
$high array query function 87
$increment array query function 87
$isunknown 291
$left array query function 87
$low array query function 87
$monitor 48
$onehot 291
$onehot0 291
$past 286, 287
$right array query function 87
$root 283
$root out-of-module reference 283
$rose 286
$sampled 287
$size array query function 88

$sscanf 48
$stable 288
$strobe 48
$unit 254
$unit_# supported declarations 253
$unpacked_dimensions array query

function 88
$urandom function 202
$urandom_range 203
$write 48

A
accessor functions, for DPI 331
aggregate expressions 155
aliased rand handles, example of 184
always_comb 165
always_ff 165
always_latch 165
AMS 16, 77
and, array reduction method 118
-arr_access 24
array locator methods

example using 116
limitations 118
supported methods on queues 115

array manipulation methods 114
array ports, interfaces 269
array querying functions 87

examples 88
limitations 87
supported functionality 88

array reduction methods
example using 118
supported methods on queues 118

arrays 83
associative 99
debugging 122
dynamic. See dynamic arrays
in constraints 188
manipulation methods 114
of interfaces, example 270
of strings 50, 51
packed 84
querying functions 87

SystemVerilog Reference

July 2010 342 Product Version 9.2

randomizing 185
reduction method 98
unpacked 84

assertion system functions 290
assertions 16, 29
assignment operators 150
assignment patterns

description and syntax 152
with unions 73

associative arrays 99
access methods 99
assigning one associative array to

another 101
limitations 102
of strings 102
passing an associative array by value to

tasks and functions 102
randomizing 105
supported data types 102
supported index types 104

atobin() string method 46
atohex() string method 46
atoi() string method 45
atooct() string method 46
atoreal() string method 46
automatic, design unit qualifier 132

B
bintoa() string method 46
blocking assignments, in program

blocks 237
break statement 164

C
case equality operators, AMS real

values 151
casting

example of 78
limitations 81
static 78
to void 175

chandles 43
inside packages 43
limitations 43

class parameters
supported defparam, example 145
unsupported defparam, examples 145

class scope resolution operator 146
class specializations

creating class variables 140
definition 139
example 140
scoped expressions 143
scoped types 143
static variables 142
type checking 144
with typedef statements 140

class variant 139
classes

debugging 148
declaring 133
global class definitions 147
new function 134
OOMRs 147
parameterized classes 139
specializations 139
static data members 135
static methods 135

clock drive 231
clocking blocks

clock drive 231
clocking direction 228
cycle delays 231
debugging 233
declaring 225
default blocks 231
default skews 228
defining clocking items 229
engineering notebooks 225
examples 225
hierarchical expressions 230
within modports 275

clocking direction, in clocking blocks 228
clocking domain 225
clocking items, defining 229
clocking_drive 232
compare() string method 46
compilation units

$unit 254
compiling, example 252
default implementation 252
limitations 254
package references 246
referencing declarations 254
scope support 253

compilation-unit scopes 253
compiler directives

`define 293

SystemVerilog Reference

July 2010 343 Product Version 9.2

`remove_keyword 299
`restore_keyword 299
‘begin_keyword 294
‘end_keywords 294

compiling C code 327
compiling SystemVerilog

with AMS 16
with irun 296

concurrent assertions 243
constant values, naming 63
constraint blocks

4-state values 187
description 186
distribution 189
exponentiation operators 187
inheritance 187

continue statement 164
continuous assignments to

variables 129 to 132
example 129
restrictions 130, 132

coverage 16
cycle delay 231

D
data members, in classes 133
data type mapping

SystemC to SystemVerilog 311
using typedefs with SystemC types 319

data types ?? to 81
bit 41
byte 42
chandles 43
enumerated 60
for storing integers 37
int 42
limitations 81
logic 40
longint 42
on ports 254
primitive 38
shortint 42
string 43
user-defined 39

debugging
arrays 122
classes 148
clocking blocks 233
packages 251

queues 122
random constraints 209
structures 73
support 15

declaring local variables in unnamed
blocks 128

decrement operator 149
default clocking blocks 231
default skews, in clocking blocks 228
define text substitution macro 293
defparam statement

in class parameters 145
support 145

delete() queue access method 106
direct programming interface

(DPI) 303 to 334
accessor functions, list of

supported 331
accessor functions, list of

unsupported 331
backward compatibility 306, 311
compiling C code 327
context functions 304
creating shared object libraries 327
disabling tasks 306, 311, 329
example using C 333
example using

scSetScopeByName 336
example using SystemC 335
examples 332
export declaration 314, 318

formal arguments 316
return values 315

exported functions 313, 317
exported tasks that consume time 321
import declarations

description 303
formal arguments 307
return values 306
syntax 305, 310

invoking from SystemC designs 317
local names, specifying 306
pure functions 304
required return type 306, 311
using with irun 323
using with the simulator 322
with unions 74

disable construct 329
disable fork 169
disabling DPI tasks 306, 311, 329
distribution constraint

SystemVerilog Reference

July 2010 344 Product Version 9.2

defining 188
limitations 189

do...while loop 160
documentation

additional references 20
printing 18
searching 19
viewing 18

dot operator 55
-dpi_void_task 306, 311
DPI.See also Direct Programming Interface

(DPI)
-dpiimpheader, ncelab option to create

imported header file 312
dynamic arrays

accessing out-of-bound elements 91
assigning an entire dynamic array to a

fixed array 93
assigning an entire dynamic array to

another 95
assigning an entire fixed array to a

dynamic array 93
assigning dynamic arrays to fixed-sized

arrays 95
assigning fixed-sized arrays to dynamic

arrays 95
dynamic arrays of fixed arrays 92
dynamic arrays of queues 92
fixed arrays of 91
fixed arrays of dynamic arrays 91
of strings 52
passing by reference to tasks and

functions 93
passing dynamic arrays by value to tasks

and functions 94
passing fixed arrays by value to tasks

and functions 94

E
engineering notebooks

clocking blocks 225
DPI 303
interfaces 263, 269
list of 16
mailboxes 214
program blocks 235

enum keyword 62
enumerated data type 60 to 67

constants 63

declaring 62
displaying member values 65
enumeration objects 64
limitations 61
methods 65
type checking 65

equality operators example, arrays 119
equality operators on AMS real values,

case 151
equality operators on arrays, case 119
equality operators on arrays, logical 119
event variables 223
events

comparing 223
in classes 220
merging 223
non-blocking event trigger 221
passing to tasks and functions 220
persistent trigger 222
reclaiming 223

example using array equality
operators 119

examples
clocking blocks 225
DPI 303
interfaces 263, 269
mailboxes 214
program blocks 235
queues 105

external declarations
supported 253

F
final blocks 165
find_first_index() array locator method 115
find_first() array locator method 115
find_index() array locator method 115
find_last_index() array locator method 115
find_last() array locator method 115
find() array locator method 115
fixed arrays

of dynamic arrays 91
of strings 50, 51

for generate loop 97, 104, 112
for loop 160
foreach loop 161
function output arguments 173

SystemVerilog Reference

July 2010 345 Product Version 9.2

G
genvar variables 161
get_randstate() 204
getc string method 45
global class definitions 147
global constraints 192

H
help

on commands 17
on documentation 17
on tool messages 17

hextoa() string method 46
hierarchical identifiers 230

I
icompare() string method 46
if...else constraints 190
iff event control qualifier 165
implication constraints 190
import statement 248
importing C functions 303
increment operator 149
inheritance, in constraint blocks 187
initializing variables 128
insert() queue access method 106
inside operator

for randomization constraints 187
syntax and usage 151

installation examples 16
interface array ports

description 269
examples 270
limitations 272
with modports 272

interfaces ?? to 282
array ports 269
declaring 265
declaring tasks and functions 277
engineering notebook 263, 269
examples 263, 269
instantiating 269
modports 273
referencing 272
timing 282

using as a module port 267
interleaved productions 209
irun utility 296

-fPIC option 325
-sysc option 324, 325
-Wcxx option 325

iterative constraints 191
itoa() string method 45

J
jump statements 164

K
keywords, specifying 294

L
legacy code 23
len() string method 45
limitations

‘begin_keywords 295
‘end_keywords 295
$bits system function 284
$sformatf 286
arrays

associative 102
dynamic 96
locator methods 118
packed 86
unpacked 86

assignment patterns 154
classes

general 147
parameterized 144

compilation units 254
const 126
constraint blocks 187
constraints, in-line scope

randomization 202
constraints, iterative 191
continuous assignments 132
data types 81
distribution expressions 189
DPI accessor functions 331
enumerations 61
export to SystemC 319

SystemVerilog Reference

July 2010 346 Product Version 9.2

foreach loop 164
fort...join_any 168
interface array ports 272
interfaces 268
keywords, remove/restore 300
mailboxes 219
modports 276
packed structures 69
pass by reference 177
program block constructs 235
queues 111
rand_mode() 196
randomizing packed structures 199
randsequence blocks 209
semaphores 213
strings 55
tasks and functions in interfaces 277
type casting 81
type parameters 125
typedefs 56
unions 74
unpacked structures 72
variables, random 185
virtual interfaces 282

literal value assignments 31
localparam of strings 53
lowercase strings 45

M
mailboxes

as OOMRs 219
copying a message 217
creating 215
engineering notebooks 214
example 214
extending 219
fixed-arrays of mailboxes 219
limitations 219
methods 215
passing as arguments 220
placing a message 216
prototype 214
retreiving a message 216
returning number of messages 216
supported scopes 219

matching end names 31
max() array locator method 115
min() array locator method 115
mixed-language support 296

modports
description 273
with interface array ports 272
within for loops 161

N
nesting program blocks 237
net type, uwire 77
new function 134
-nomempack 24
non-blocking assignments, in program

blocks 237
non-blocking event trigger 221
non-terminals 206
null rand handles, example of 185

O
octtoa() string method 46
operators ?? to 150

assignment 150
decrement 149
increment 149
wild equality 150

or, array reduction method 118

P
packages 245 to 251

compilation unit references 246
compiling 245
debugging 251
declaring 247
import statement 248
referencing data 247
supported references 246

packed arrays 84
limitations 86
supported functionality 84

packed structures 68 to 70
declaring 69
limitations 69

parameterized classes 139
declaring 139
example 140
extending, example of 140, 141
limitations 144

SystemVerilog Reference

July 2010 347 Product Version 9.2

parameterized port lists 139
scoped expressions 143
scoped types 143
static member variables 142
static variables 142
type parameters 124
value parameters 123

parameterized mailboxes 220
limitation 56
support for 220

parameters
example of 124
type 124
value 123

parameters of strings 53
persistent trigger 222
pop_back() queue access method 106
pop_front() queue access method 106
port declarations 254
primitive data types 38
priority keyword 159
procedural_timing_control_statement 232
productions 206
program blocks

$exit() control task 239
declaring 235
engineering notebook 235
example 235
instantiating 238
restrictions 236, 237
supported constructs 235
syntax 235
variable assignments 237

ps_covergroup_identifier 81
pure virtual 138
push_back() queue access method 107
push_front() queue access method 106
putc string method 45

Q
querying functions, for arrays 87
queues 105

access methods 106
array manipulation methods 114
assigning a queue to a dynamic

array 109
assigning on queue to another 108
connecting a queue to dynamic array via

port variable 110

debugging 122
deleting 106
example using array locator

methods 116
example using array reduction

methods 118
examples 105
fixed arrays of queues 107
indexing into 112
limitations 111
of strings 111
passing a queue by value to tasks and

functions 108, 109
passing a queue by value to tasks and

functions as dynamic array 110
passing slices of queue by value to tasks

and functions 109
queues of associative arrays 107
queues of fixed arrays 107
using slices of queue on right-hand side

of an assignment 108

R
rand 184
rand handles

aliased 184
null 185

rand join 209
randc 184
randcase 205
random constraints

constraint blocks 186
debugging 209

random variables
description 183
limitations 185

random weighted case 205
randomization of scope variables 198
randomize()

description 194
getting different results 183
scope randomization 198

randomize() with 195
randsequence blocks 206 to 207

declaring 206
interleaved productions 209
limitations 209
rand join production control 209

realtoa 46

SystemVerilog Reference

July 2010 348 Product Version 9.2

ref keyword 176
replication, string 45
reserved keywords

IEEE 1800-2005 297
removing 299
specifying 299

return statement 164
-rmkeyword 23, 299

S
sampled value functions 286
scope randomization

constraints, specifying 200
supported constraint expressions 200

scoped expressions 143
scoped types 143
semaphores

description 211
limitations 213
methods 212
passing as arguments to tasks and

functions 213
prototype 211

set membership. See inside operator
set_randstate() 204
shared object library, creating 327
shortreal 81
simulating SystemVerilog designs 15
single-driver nets 77
size() queue access method 106
solve...before constraints 192
srandom() 204
static classes 135
static constraint blocks 193
static keyword 193
static member variables 142
static type casts 78
static variables in class specializations 142
strings

as localparams 53
as parameters 53
comparing 44
concatenation 55
description 43
displaying length 45
dot operator 55
dynamic arrays of strings 52
example 46, 48, 50
example of fixed array of strings 51

limitations 55
lowercase 45
methods 45
operators 44
replication 45
syntax 43
system tasks 48
uppercase 45
with packages 49
within begin...end blocks 50

strings in mailboxes 56
structures

debugging 73
packed structures 67, 68 to ??
unpacked structures 70

substr 46
supported constructs 25
sv* accessor functions 331
svAckDisabled 329
svAckDisabledState 331
svGetArrayPtr 331
svGetArrElemPtr1 331
svGetBitArrElem1 331
svGetBitArrElem1Vec32 331
svGetBitArrElem1VecVal 331
svGetBitselBit 331
svGetBitselLogic 331
svGetCallerInfo 331
svGetLogicArrElem1 331
svGetLogicArrElem1Vec32 331
svGetLogicArrElem1VecVal 331
svGetNameFromScope 331
svGetPartselBit 331
svGetPartSelectBit 331
svGetPartSelectLogic 331
svGetPartselLogic 331
svGetScope 331
svGetScopeFromName 331
svGetSelectBit 331
svGetSelectLogic 331
svGetUserData 331
svHigh 331
svIsDisabledState 329, 331
svLeft 331
svLow 331
svPutBitArrElem1 331
svPutBitArrElem1Vec32 331
svPutBitArrElem1VecVal 331
svPutBitselBit 331
svPutBitselLogic 331
svPutLogicArrElem1 331

SystemVerilog Reference

July 2010 349 Product Version 9.2

svPutLogicArrElem1Vec32 331
svPutLogicArrElem1VecVal 331
svPutPartselBit 331
svPutPartSelectBit 331
svPutPartSelectLogic 331
svPutPartselLogic 331
svPutSelectBit 331
svPutSelectLogic 331
svPutUserData 331
svRight 331
svSetScope 331
svSizeOfArray 331
system functions, assertion 290
SystemC

data type mapping for typedefs 319
debugging exported functions 317
default data type mapping 311
exported functions and tasks 317
exporting using irun 325
import declaration syntax 310
importing using irun 324
limitations 319
sample call chains 322
setting the scope 310

SystemVerilog
examples 16
list of supported constructs 25
simulating 15
using legacy code 23
VPI extensions 15
with AMS 16

-sysv_ext 24

T
tagged unions 74
tasks and functions 173 to 180

default argument values 179
default direction 174
function output arguments 173
in interfaces 277
multiple statements 173
optional arguments 180
parentheses 180
passing arguments by name 179
passing arguments by reference 175
void functions 175

Tcl support 15
terminals 206
text strings 43

tf_nodeinfo() 24
time-consuming tasks

description 321
sample call chains 322
support for 321

tolower() string method 45
toupper() string method 45
trigger

non-blocking event 221
persistent 222

type parameters 124
typedefs

description 56
limitations 56

U
uninitialized objects, default value for 134
unions

description 73
limitations 73, 74
tagged 74
with assignment patterns 73
with DPI 74

unique keyword 158
unique_index() array locator method 116
unique() array locator method 115
unique/priority if 157
unpacked arrays

description 84
limitations 86
supported functionality 85
supported operators 86

unpacked structures
in classes 71
limitations 72
supported functionality 70

uppercase strings 45
user-defined data types 39
uwire net type 78

V
value parameters 123
variables

continuous assignments 129
data types on ports 254
declaring with initializers 128
ordering 192

SystemVerilog Reference

July 2010 350 Product Version 9.2

virtual interfaces
description 277
limitations 282
specializations 278
syntax 278

void
data type 175
functions 175

VPI 15

W
wait fork 169
wild equality operator 150
wone 77

X
xor, array reduction method 118

	Contents
	Overview of SystemVerilog
	Availability of Constructs within Simulators
	SystemVerilog in Simulation
	SystemVerilog VPI Extensions
	SystemVerilog Assertions
	SystemVerilog Coverage
	SystemVerilog with AMS
	SystemVerilog Examples
	Language Support
	Getting Help
	About Online Help
	Getting Help on Commands to Run Tools
	Getting Help on Tool Messages
	Other Documentation
	Customer Support

	Compiling SystemVerilog Constructs
	Using ncvlog
	Using the irun Utility
	SystemVerilog and the PLI tf_nodeinfo() Interface

	List of Supported Constructs
	Convenience Enhancements
	Literal Value Assignments
	Matching End Names
	Time Unit and Time Precision
	.name Implicit Port Connection
	Dot Star (.*) Implicit Port Connection

	Data Types
	Data Types Overview
	Overview of Verilog Data Types
	Primitive Data Types
	User-Defined Data Types

	logic Data Type
	bit Data Type
	byte, shortint, int, and longint Data Types
	Chandle Data Type
	Strings
	String Operators
	String Methods
	Strings and System Tasks
	Using Strings with Classes
	Using Strings with Packages
	Using Strings within begin...end Blocks
	Declaring a Fixed Array of Strings
	Declaring Arrays and Queues of Strings
	Using Elements of a Dynamic Array of Strings
	Using Strings as Parameters and localparams
	Using Out-of-Module References to Strings
	Limitations on Strings

	typedef Declaration
	Limitations on Typedefs
	Creating a New Data Type Definition
	Handling Data Type Visibility

	enum Data Type
	Limitations on Enumerations
	Declaring an Enumeration
	Specifying Enumeration Constants
	Treating Enumeration Objects as Bit Vectors
	Enumeration Type Checking
	Enumeration Type Methods

	Structures
	Packed Structures
	Unpacked Structures
	Debugging Structures

	Unions
	uwire Nets
	Static Casting
	Casting to Real Data Types
	Casting to Vector Width
	Casting a Class Handle
	Limitations on Type Casting

	Limitations on Data Types

	Arrays
	Packed and Unpacked Arrays
	Limitations on Packed and Unpacked Arrays

	Array Querying Functions
	Dynamic Arrays
	Access Methods for Dynamic Arrays
	Limitations on Dynamic Arrays

	Associative Arrays
	Access Methods for Associative Arrays
	Limitations on Associative Arrays

	Queues
	Access Methods for Queues
	Limitations on Queues

	Array Manipulation Methods
	Limitations on Array Methods

	Array Equality Operators
	Arrays as Function Return Types
	Debugging Queues and Arrays

	Data Declarations
	Value Parameters
	Type Parameters
	Defining Type Parameters
	Limitations on Type Parameters

	Const Constants
	Declaring Variables with Initializers
	Declaring Local Variables in Unnamed Blocks
	Continuous Assignments to Variables
	Restrictions on Continuous Assignments to Variables
	Limitations on Continuous Assignments

	Automatic Design Unit Qualifier

	Classes
	Declaring a Class Data Type
	Working with Constructors
	Inheritance
	Protecting Class Members
	Abstract Classes and Virtual Methods
	Parameterized Classes
	Declaring Parameterized Classes
	Extending Parameterized Classes
	Static Variables and Class Specializations
	Scoped Types and Expressions
	Class Specialization Type Checking
	Limitations on Parameterized Classes

	Additional Features
	Limitations on Classes
	Debugging Classes

	Operators and Expressions
	Supported Operators
	Assignment Operators
	Wild Equality and Wild Inequality Operators
	Case Equality Operators for Real Values
	Set Membership Operator
	Limitations on Set Membership Operations

	Assignment Patterns
	Limitations on Assignment Patterns

	Aggregate Expressions

	Procedural Statements
	Unique and Priority Decision Statements
	do...while Loop
	for Loop
	foreach Loop
	Limitations on the foreach Loop

	return, break, and continue Jump Statements
	final Blocks
	iff Event Control Qualifier
	always_* Blocks
	fork...join
	fork...join
	fork...join_none
	Limitations on fork...join_any

	wait fork
	disable fork

	Tasks and Functions
	Multiple Statements in Tasks and Functions
	Function Output Arguments
	Default Direction in Task and Function Declarations
	Void Functions
	Discarding Function Return Values
	Passing Task and Function Arguments by Reference
	Limitations on Passing Task and Function Arguments by Reference

	Specifying Default Argument Values for Tasks and Functions
	Passing Task and Function Arguments by Name
	Optional Arguments for Tasks and Functions
	File I/O System Tasks/Functions and SystemVerilog

	Random Constraints
	Random Variables
	Limitations on Random Variables

	Constraint Blocks
	Limitations on Constraint Blocks
	External Constraint Blocks
	Inheritance
	Set Membership
	Distribution
	Implication
	if...else Constraints
	Iterative Constraints
	Global Constraints
	solve...before Constraints
	Static Constraint Blocks
	Functions in Constraints

	Randomization Methods
	The randomize() Method
	pre_randomize() and post_randomize()

	In-Line Constraints (randomize() with)
	Activating and Inactivating Random Variables with rand_mode()
	Limitations on rand_mode()

	Activating and Inactivating Constraints with constraint_mode()
	In-Line Random Variable Control
	Randomizing Scope Variables (std::randomize())
	Specifying Constraints
	Limitations on In-Line Scope Randomization Constraints

	Random Number System Functions and Methods
	The $urandom Function
	The $urandom_range Function
	The srandom() Method
	Additional System Functions and Methods

	Random Stability
	Random Weighted Case (randcase)
	Random Sequence Generator (randsequence)
	Declaring a randsequence Block
	if...else Production Statements
	Case Production Statements
	Repeat Production Statements
	Limitations on randsequence Blocks

	Debugging Random Constraints

	Interprocess Synchronization and Communication
	Semaphores
	Limitations on Semaphores

	Mailboxes
	Mailbox Methods
	Limitations on Mailboxes

	Events
	Non-Blocking Event Trigger
	Persistent Trigger

	Event Variables

	Clocking Blocks
	Declaring a Clocking Block
	Types of Clocking Items

	Defining Default Skews and Clocking Direction
	Defining Clocking Items
	Using Hierarchical Expressions
	Defining Default Clocking Blocks
	Specifying Cycle Delays and Clocking Drives
	Debugging Clocking Blocks

	Program Blocks
	Declaring a Program Block
	Supported Constructs for Program Blocks
	Unsupported Constructs
	Nesting Program Blocks

	Working with Variable Assignments
	Referencing Program Block Variables
	Instantiating Program Blocks
	New Program Design Unit
	Understanding the $exit() Control Task

	Assertions
	Immediate Assertions
	Concurrent Assertions

	Hierarchy
	Packages
	Declaring a Package
	Referencing Data in a Package
	Controlling Visibility of Names within Packages: The import Statement
	Debugging Packages

	Compilation Units
	Supported External Declarations
	Explicitly Referencing External Declarations
	Limitations on Compilation Units

	Port Declarations
	Declarations of Input and Output Ports
	Port connections

	Interfaces
	Declaring an Interface
	Creating Design Units
	Using the Interface as a Module Port
	Limitations on Interfaces
	Interface Array Ports
	Supported Uses for Interface Array Ports
	Using Arrays of Interfaces in Interface Array Ports
	Limitations on Interface Array Ports

	Referencing an Interface
	Working with Modports
	Defining a Modport
	Selecting Which Modport to Use
	Limitations on modports

	Declaring Tasks and Functions in Interfaces
	Virtual Interfaces
	Syntax and Usage
	Virtual Interface Support
	Limitations on Virtual Interfaces

	Working with Interfaces and Timing

	System Functions
	Out-of-Module Reference ($root)
	Expression Size System Function ($bits)
	$sformatf and $psprintf
	Limitations on $sformatf

	Sampled Value Functions in Procedural Blocks
	$rose and $fell Sampled Value Functions
	$past Sampled Value Function
	$sampled Sampled Value Function
	$stable Sampled Value Function
	Arguments to Sampled Value Functions
	Clocking Events for Sampled Value Functions
	Sampled Value Function Example

	Assertion System Functions

	Compiler Directives
	`define
	`begin_keywords and `end_keywords
	Limitations on ‘begin_keywords and ‘end_keywords
	Reserved Keywords for IEEE 1800

	`remove_keyword and `restore_keyword
	ncvlog -rmkeyword
	`remove_keyword and `restore_keyword Compiler Directives
	Limitations on Remove and Restore Keywords

	Direct Programming Interface
	Importing Functions and Tasks using DPI
	pure and context Properties
	Importing C Functions and Tasks
	Importing SystemC Functions and Tasks
	Generating a Header File for Imported Functions and Tasks

	Exporting SystemVerilog Functions and Tasks using DPI
	Exporting Functions and Tasks to C
	Exporting SystemVerilog Functions and Tasks to SystemC

	Using typedef with SystemC Data Types
	Tasks That Consume Time
	Using DPI with the Simulator
	Using the irun Utility with DPI
	Using the Incisive Simulator with DPI

	Disabling DPI Tasks and Functions
	Debugging DPI Import and Export Functions
	DPI Accessor Functions
	DPI Examples
	Using DPI with C
	Using DPI with SystemC
	Using scSetScopeByName in SystemVerilog
	Unpacked Structs as Formal Arguments to DPI-C Import Functions
	Unpacked Structs as Formal Arguments to DPI-SC Import Functions

	Index

