
Writing Testbenches
using SystemVerilog



____________________________

Writing Testbenches 
using SystemVerilog 

by
Janick Bergeron 
Synopsys, Inc. 

1 3 



Janick Bergeron 
Verificationguild.com

Writing Testbenches Using SystemVerilog 

Library of Congress Control Number:   2005938214

ISBN-10: 0-387-29221-7 ISBN-10: 0-387-31275-7   (e-book) 
ISBN-13:  9780387292212 ISBN-13:   9780387312750 (e-book) 

Printed on acid-free paper. 

 2006 Springer Science+Business Media, Inc. 
All rights reserved. This work may not be translated or copied in whole or in part without 
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring 
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or 
scholarly analysis. Use in connection with any form of information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar terms, 
even if they are not identified as such, is not to be taken as an expression of opinion as to 
whether or not they are subject to proprietary rights. 

Printed in the United States of America.   

9  8  7  6  5  4  3  2  1                

springer.com 



Writing Testbenches using SystemVerilog v

TABLE OF CONTENTS

About the Cover xiii

Preface xv
Why This Book Is Important . . . . . . . . . . . . . . . . . . . xvi
What This Book Is About  . . . . . . . . . . . . . . . . . . . . . xvi
What Prior Knowledge You Should Have . . . . . . . . xviii
Reading Paths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii
Why SystemVerilog? . . . . . . . . . . . . . . . . . . . . . . . . . xix

VHDL and Verilog  . . . . . . . . . . . . . . . . . . . . . . . . . . . .xix
Hardware Verification Languages  . . . . . . . . . . . . . . . . xx

Code Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
For More Information  . . . . . . . . . . . . . . . . . . . . . . . xxii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . xxii

CHAPTER 1 What is Verification? 1
What is a Testbench? . . . . . . . . . . . . . . . . . . . . . . . . . . 1
The Importance of Verification  . . . . . . . . . . . . . . . . . . 2
Reconvergence Model . . . . . . . . . . . . . . . . . . . . . . . . . 4
 The Human Factor  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Automation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Poka-Yoke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6



Table of Contents

vi Writing Testbenches using SystemVerilog

Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
What Is Being Verified?  . . . . . . . . . . . . . . . . . . . . . . . 7

Equivalence Checking  . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Property Checking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Functional Verification . . . . . . . . . . . . . . . . . . . . . . . . . 10

Functional Verification Approaches  . . . . . . . . . . . . . .11
Black-Box Verification  . . . . . . . . . . . . . . . . . . . . . . . . . 11
White-Box Verification . . . . . . . . . . . . . . . . . . . . . . . . . 13
Grey-Box Verification  . . . . . . . . . . . . . . . . . . . . . . . . . 14

Testing Versus Verification . . . . . . . . . . . . . . . . . . . . 15
Scan-Based Testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Design for Verification  . . . . . . . . . . . . . . . . . . . . . . . . . 17

Design and Verification Reuse . . . . . . . . . . . . . . . . . 18
Reuse Is About Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Verification for Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Verification Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

The Cost of Verification . . . . . . . . . . . . . . . . . . . . . . 20
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 2 Verification Technologies 23
Linting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

The Limitations of Linting Technology . . . . . . . . . . . . . 25
Linting SystemVerilog Source Code  . . . . . . . . . . . . . . . 27
Code Reviews  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Stimulus and Response  . . . . . . . . . . . . . . . . . . . . . . . . . 30
Event-Driven Simulation  . . . . . . . . . . . . . . . . . . . . . . . 31
Cycle-Based Simulation  . . . . . . . . . . . . . . . . . . . . . . . . 33
Co-Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Verification Intellectual Property . . . . . . . . . . . . . . . . 38
Waveform Viewers  . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Code Coverage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Statement Coverage  . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Path Coverage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Expression Coverage  . . . . . . . . . . . . . . . . . . . . . . . . . . 45
FSM Coverage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
What Does 100 Percent Code Coverage Mean?  . . . . . 48

Functional Coverage  . . . . . . . . . . . . . . . . . . . . . . . . . 49



Writing Testbenches using SystemVerilog vii

Coverage Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Cross Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Transition Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
What Does 100 Percent Functional Coverage Mean? . 54

Verification Language Technologies . . . . . . . . . . . . . 55
Assertions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Simulated Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Formal Assertion Proving  . . . . . . . . . . . . . . . . . . . . . . 59

Revision Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
The Software Engineering Experience . . . . . . . . . . . . . 62
Configuration Management  . . . . . . . . . . . . . . . . . . . . . 63
Working with Releases  . . . . . . . . . . . . . . . . . . . . . . . . . 65

Issue Tracking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
What Is an Issue?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
The Grapevine System  . . . . . . . . . . . . . . . . . . . . . . . . . 68
The Post-It System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
The Procedural System . . . . . . . . . . . . . . . . . . . . . . . . . 69
Computerized System  . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Code-Related Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Quality-Related Metrics  . . . . . . . . . . . . . . . . . . . . . . . . 73
Interpreting Metrics  . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

CHAPTER 3 The Verification Plan 77
The Role of the Verification Plan  . . . . . . . . . . . . . . . 78

Specifying the Verification  . . . . . . . . . . . . . . . . . . . . . . 78
Defining First-Time Success . . . . . . . . . . . . . . . . . . . . . 79

Levels of Verification  . . . . . . . . . . . . . . . . . . . . . . . . 80
Unit-Level Verification  . . . . . . . . . . . . . . . . . . . . . . . . . 81
Block and Core Verification  . . . . . . . . . . . . . . . . . . . . . 82
ASIC and FPGA Verification  . . . . . . . . . . . . . . . . . . . . 84
System-Level Verification  . . . . . . . . . . . . . . . . . . . . . . . 84
Board-Level Verification . . . . . . . . . . . . . . . . . . . . . . . . 85

Verification Strategies         . . . . . . . . . . . . . . . . . . . . 86
Verifying the Response  . . . . . . . . . . . . . . . . . . . . . . . . . 86

From Specification to Features  . . . . . . . . . . . . . . . . . 87
Block-Level Features  . . . . . . . . . . . . . . . . . . . . . . . . . . 90
System-Level Features  . . . . . . . . . . . . . . . . . . . . . . . . . 91



Table of Contents

viii Writing Testbenches using SystemVerilog

Error Types to Look For . . . . . . . . . . . . . . . . . . . . . . . . 91
Prioritize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Design for Verification  . . . . . . . . . . . . . . . . . . . . . . . . . 93

Directed Testbenches Approach  . . . . . . . . . . . . . . . . 96
Group into Testcases . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
From Testcases to Testbenches . . . . . . . . . . . . . . . . . . . 98
Verifying Testbenches  . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Measuring Progress  . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Coverage-Driven Random-Based Approach . . . . . . 101
Measuring Progress  . . . . . . . . . . . . . . . . . . . . . . . . . . 101
From Features to Functional Coverage . . . . . . . . . . . 103
From Features to Testbench  . . . . . . . . . . . . . . . . . . . . 105
From Features to Generators . . . . . . . . . . . . . . . . . . . 107
Directed Testcases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

CHAPTER 4 High-Level Modeling 113
High-Level versus RTL Thinking  . . . . . . . . . . . . . . .113

Contrasting the Approaches . . . . . . . . . . . . . . . . . . . . 115
You Gotta Have Style! . . . . . . . . . . . . . . . . . . . . . . . .117

A Question of Discipline . . . . . . . . . . . . . . . . . . . . . . . 117
Optimize the Right Thing  . . . . . . . . . . . . . . . . . . . . . . 118
Good Comments Improve Maintainability . . . . . . . . . 121

Structure of High-Level Code . . . . . . . . . . . . . . . . . 122
Encapsulation Hides Implementation Details  . . . . . . 122
Encapsulating Useful Subprograms . . . . . . . . . . . . . . 125
Encapsulating Bus-Functional Models . . . . . . . . . . . . 127

Data Abstraction  . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2-state Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Struct, Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Union  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Associative Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
From High-Level to Physical-Level  . . . . . . . . . . . . . . 146

Object-Oriented Programming  . . . . . . . . . . . . . . . . 147
Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Inheritance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



Writing Testbenches using SystemVerilog ix

Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
The Parallel Simulation Engine . . . . . . . . . . . . . . . . 159

Connectivity, Time and Concurrency . . . . . . . . . . . . . 160
The Problems with Concurrency . . . . . . . . . . . . . . . . . 160
Emulating Parallelism on a Sequential Processor . . . 162
The Simulation Cycle  . . . . . . . . . . . . . . . . . . . . . . . . . 163
Parallel vs. Sequential  . . . . . . . . . . . . . . . . . . . . . . . . 169
Fork/Join Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . 170
The Difference Between Driving and Assigning . . . . . 173

Race Conditions        . . . . . . . . . . . . . . . . . . . . . . . . 176
Read/Write Race Conditions . . . . . . . . . . . . . . . . . . . . 177
Write/Write Race Conditions  . . . . . . . . . . . . . . . . . . . 180
Initialization Races . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Guidelines for Avoiding Race Conditions . . . . . . . . . . 183
Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Portability Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Events from Overwritten Scheduled Values  . . . . . . . . 186
Disabled Scheduled Values . . . . . . . . . . . . . . . . . . . . . 187
Output Arguments on Disabled Tasks . . . . . . . . . . . . . 188
Non-Re-Entrant Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 188
Static vs. Automatic Variables  . . . . . . . . . . . . . . . . . . 193

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

CHAPTER 5 Stimulus and Response 197
Reference Signals  . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Time Resolution Issues  . . . . . . . . . . . . . . . . . . . . . . . . 199
Aligning Signals in Delta-Time . . . . . . . . . . . . . . . . . . 201
Clock Multipliers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Asynchronous Reference Signals  . . . . . . . . . . . . . . . . 205
Random Generation of Reference Signal Parameters  206
Applying Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Simple Stimulus  . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Applying Synchronous Data Values  . . . . . . . . . . . . . . 212
Abstracting Waveform Generation . . . . . . . . . . . . . . . 214

Simple Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Visual Inspection of Response . . . . . . . . . . . . . . . . . . . 217
Producing Simulation Results . . . . . . . . . . . . . . . . . . . 217
Minimizing Sampling  . . . . . . . . . . . . . . . . . . . . . . . . . 219
Visual Inspection of Waveforms  . . . . . . . . . . . . . . . . . 220



Table of Contents

x Writing Testbenches using SystemVerilog

Self-Checking Testbenches  . . . . . . . . . . . . . . . . . . . . . 221
Input and Output Vectors  . . . . . . . . . . . . . . . . . . . . . . 221
Golden Vectors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Self-Checking Operations . . . . . . . . . . . . . . . . . . . . . . 224

 Complex Stimulus  . . . . . . . . . . . . . . . . . . . . . . . . . 227
Feedback Between Stimulus and Design  . . . . . . . . . . 228
Recovering from Deadlocks  . . . . . . . . . . . . . . . . . . . . 228
Asynchronous Interfaces . . . . . . . . . . . . . . . . . . . . . . . 231

Bus-Functional Models  . . . . . . . . . . . . . . . . . . . . . . 234
CPU Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
From Bus-Functional Tasks to Bus-Functional Model 236
Physical Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Configurable Bus-Functional Models  . . . . . . . . . . . . 243

Response Monitors  . . . . . . . . . . . . . . . . . . . . . . . . . 246
Autonomous Monitors . . . . . . . . . . . . . . . . . . . . . . . . . 249
Slave Generators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Multiple Possible Transactions . . . . . . . . . . . . . . . . . . 255

Transaction-Level Interface . . . . . . . . . . . . . . . . . . . 258
Procedural Interface vs Dataflow Interface . . . . . . . . 259
What is a Transaction? . . . . . . . . . . . . . . . . . . . . . . . . 263
Blocking Transactions  . . . . . . . . . . . . . . . . . . . . . . . . 265
Nonblocking Transactions  . . . . . . . . . . . . . . . . . . . . . 265
Split Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

CHAPTER 6 Architecting Testbenches 279
Verification Harness  . . . . . . . . . . . . . . . . . . . . . . . . 280
Design Configuration  . . . . . . . . . . . . . . . . . . . . . . . 284

Abstracting Design Configuration  . . . . . . . . . . . . . . . 285
Configuring the Design . . . . . . . . . . . . . . . . . . . . . . . . 288
Random Design Configuration . . . . . . . . . . . . . . . . . . 290

Self-Checking Testbenches  . . . . . . . . . . . . . . . . . . . 292
Hard Coded Response  . . . . . . . . . . . . . . . . . . . . . . . . 294
Data Tagging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Reference Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Scoreboarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Integration with the Transaction Layer  . . . . . . . . . . . 302



Writing Testbenches using SystemVerilog xi

Directed Stimulus  . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Random Stimulus . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Atomic Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Adding Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Constraining Sequences  . . . . . . . . . . . . . . . . . . . . . . . 316
Defining Random Scenarios . . . . . . . . . . . . . . . . . . . . 320
Defining Procedural Scenarios  . . . . . . . . . . . . . . . . . 322

System-Level Verification Harnesses  . . . . . . . . . . . 327
Layered Bus-Functional Models . . . . . . . . . . . . . . . . . 328

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

CHAPTER 7 Simulation Management 333
Transaction-Level Models . . . . . . . . . . . . . . . . . . . . 333

Transaction-Level versus Synthesizable Models  . . . . 334
Example of Transaction-Level Modeling  . . . . . . . . . . 335
Characteristics of a Transaction-Level Model . . . . . . 337
Modeling Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Writing Good Transaction-Level Models  . . . . . . . . . . 342
Transaction-Level Models Are Faster  . . . . . . . . . . . . 347
The Cost of Transaction-Level Models . . . . . . . . . . . . 348
The Benefits of Transaction-Level Models . . . . . . . . . 349
Demonstrating Equivalence  . . . . . . . . . . . . . . . . . . . . 351

Pass or Fail? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Managing Simulations . . . . . . . . . . . . . . . . . . . . . . . 355

Configuration Management  . . . . . . . . . . . . . . . . . . . . 355
Avoiding Recompilation or SDF Re-Annotation . . . . . 358
Output File Management  . . . . . . . . . . . . . . . . . . . . . . 361
Seed Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Running Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Regression Management . . . . . . . . . . . . . . . . . . . . . . . 367

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

APPENDIX A Coding Guidelines 371
File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Filenames  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Style Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376



Table of Contents

xii Writing Testbenches using SystemVerilog

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Naming Guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . 384
Capitalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Portability Guidelines  . . . . . . . . . . . . . . . . . . . . . . . 391

APPENDIX B Glossary 397

Index 401



Writing Testbenches using SystemVerilog xiii

ABOUT THE COVER

The cover of the first edition of Writing Testbenches featured a pho-
tograph of the collapse of the Quebec bridge (the cantilever steel
bridge on the left1) in 1907. The ultimate cause of the collapse was
a major change in the design specification that was not verified. To
save on construction cost, the engineer in charge of the project
increased the span of the bridge from 1600 to 1800 feet, turning the
project into the longest bridge in the world, without recalculating
weights and stresses.

In those days, engineers felt they could span any distances, as ever
longer bridges were being successfully built. But each technology
eventually reaches its limits. Almost 100 years after its completion
in 1918 (after a complete re-design and a second collapse!), the
Quebec bridge is still the longest cantilever bridge in the world.
Even with all of the advances in civil engineering and composite
material, cantilever bridging technology had reached its limits.

You cannot realistically hope to keep applying the same solution to
ever increasing problems. Even an evolving technology has its
limit. Eventually, you will have to face and survive a revolution that
will provide a solution that is faster and cheaper.

1. Photo: © Rock Santerre, Centre de Recherche en Géomatique, Univer-
sité Laval, Québec City, Québec, Canada
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Replacing the Quebec bridge with another cantilever structure is
estimated to cost over $600 million today. When it was decided to
span the St-Lawrence river once more in 1970, the high cost of a
cantilever structure caused a different technology to be used: a sus-
pension bridge. The Pierre Laporte Bridge, visible on the right, has
a span of 2,200 feet and was built at a cost of $45 million. It pro-
vides more lanes of traffic over a longer span at a lower cost and
weight. It is better, faster and cheaper. The suspension bridge tech-
nology has replaced cantilever structures in all but the shortest
spans.

Directed testcases, as described in the first edition, were the cantile-
ver bridges of verification. Coverage-driven constrained-random
transaction-level self-checking testbenches are the suspension
bridges. This methodology revolution, introduced by hardware ver-
ification languages such as e and OpenVera and as described in the
second edition of Writing Testbenches, make verifying a design bet-
ter, faster and cheaper. Hardwave verification languages have dem-
onstrated their productivity in verifying today’s multi-million gate
designs.

SystemVerilog brings the HVL technology to the masses, as a true
industry standard, with consistent syntax and simulation semantics
and built in the simulators you already own. It is no longer neces-
sary to acquire additional tools nor integrate different languages.
Like the Pierre Laporte Bridge, which today carries almost all the
traffic across the river, you should use these productive methods for
writing the majority of your testbenches.

I’m hoping, with this new book, to facilitate your transition from
ad-hoc, directed testcase verification to a state-of-the-art verifica-
tion methodology using a language you probably have at your fin-
gertip.
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PREFACE

If you survey hardware design groups, you will learn that between
60% and 80% of their effort is dedicated to verification. This may
seem unusually large, but I include in "verification" all debugging
and correctness checking activities, not just writing and running
testbenches. Every time a hardware designer pulls up a waveform
viewer, he or she performs a verification task. With today’s ASIC
and FPGA sizes and geometries, getting a design to fit and run at
speed is no longer the main challenge. It is to get the right design,
working as intended, at the right time.

Unlike synthesizable coding, there is no particular coding style nor
language required for verification. The freedom of using any lan-
guage that can be interfaced to a simulator and of using any features
of that language has produced a wide array of techniques and
approaches to verification. The continued absence of constraints
and historical shortage of available expertise in verification, cou-
pled with an apparent under-appreciation of and under-investment
in the verification function, has resulted in several different ad hoc
approaches. The consequences of an informal, ill-equipped and
understaffed verification process can range from a non-functional
design requiring several re-spins, through a design with only a sub-
set of the intended functionality, to a delayed product shipment.
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WHY THIS BOOK IS IMPORTANT

In 2000, the first edition of Writing Testbenches was the first book
specifically devoted to functional verification techniques for hard-
ware models. Since then, several other verification-only books have
appeared. Major conferences include verification tracks. Universi-
ties, in collaboration with industry, are offering verification courses
in their engineering curriculum. Pure verification EDA companies
are offering tools to improve productivity and the overall design
quality. Some of these pure verification EDA companies have gone
public or have been acquired, demonstrating that there is significant
value in verification tools and IP. All of these contribute to create a
formal body of knowledge in design verification. Such a body of
knowledge is an essential foundation to creating a science of verifi-
cation and fueling progress in methodology and productivity.

In 2003, the second edition presented the latest verification tech-
niques that were successfully being used to produce fully functional
first-silicon ASICs, systems-on-a-chip (SoC), boards and entire
systems. It built on the content of the first edition—transaction-
level self-checking testbenches—to introduce a revolution in func-
tional verification: coverage-driven constrained-random verifica-
tion using proprietary hardware verification languages.

This book is not really a new edition of the previous Writing Test-
benches books. Nor is it a completely new book. I like to think of it
as the 2½ edition. This book presents the same concepts as the
second edition. It simply uses SystemVerilog as the sole implemen-
tation vehicle. The languages used in the second edition are still
available. Therefore it is still a useful book on its own.

WHAT THIS BOOK IS ABOUT

I will first introduce the necessary concepts and tools of verifica-
tion, then I’ll describe a process for planning and carrying out an
effective functional verification of a design. I will also introduce
the concept of coverage models that can be used in a coverage-
driven verification process.

It will be necessary to cover some SystemVerilog language seman-
tics that are often overlooked in textbooks focused on describing
the synthesizable subset or unfamiliar to traditional Verilog users.
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These unfamiliar semantics become important in understanding
what makes a well-implemented and robust testbench and in pro-
viding the necessary control and monitor features.

I will also present techniques for applying stimulus and monitoring
the response of a design, by abstracting the physical-level transac-
tions into high-level procedures using bus-functional models. The
architecture of testbenches built around these bus-functional mod-
els is important to create a layer of abstraction relevant to the func-
tion being verified and to minimize development and maintenance
effort. I also show some strategies for making testbenches self-
checking.

Creating random testbenches involves more than calling the $ran-
dom system task. I will show how random stimulus generators,
built on top of bus-functional models, can be architected and
designed to be able to produce the desired stimulus patterns. Ran-
dom generators must be easily externally constrained to increase
the likelihood that a set of interesting patterns will be generated.

Transaction-level modeling is another important concept presented
in this book. It is used to parallelize the implementation and verifi-
cation of a design and to perform more efficient simulations. A
transaction-level model must adequately emulate the functionality
of a design while offering orders of magnitudes in simulation per-
formance over the RTL model. Striking the correct level of accu-
racy is key to achieving that performance improvement.

This book has one large omission: assertions and formal verifica-
tion. It is not that they are not important. SystemVerilog includes
constructs and semantics for writing assertions and coverage prop-
erties using temporal expressions. Formal verification is already an
effective methodology for verifying certain classes of designs. It is
simply a matter of drawing a line somewhere. There are already
books on assertions1 or formal verification. This book focuses on
the bread-and-butter of verification for the foreseeable future:
dynamic functional verification using testbenches

1. Cohen, Venkataramanan and Kumari, "SystemVerilog Assertion Hand-
book", VhdlCohen Publishing, 2005
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WHAT PRIOR KNOWLEDGE YOU SHOULD HAVE

This book focuses on the functional verification of hardware
designs using SystemVerilog. I expect the reader to have at least a
basic knowledge of VHDL, Verilog, OpenVera or e. Ideally, you
should have experience in writing models and be familiar with run-
ning a simulation using any of the available VHDL or Verilog sim-
ulators. There will be no detailed description of language syntax or
grammar. It may be a good idea to have a copy of a language-
focused textbook or the SystemVerilog Language Reference Manual
as a reference along with this book. I do not describe a synthesiz-
able subset, nor limit the implementation of the verification tech-
niques to using that subset. Verification is a complex task: The
power of the SystemVerilog language will be used to its fullest.

I also expect that you have a basic understanding of digital hard-
ware design. This book uses several hypothetical designs from var-
ious application domains (video, datacom, computing, etc.). How
these designs are actually specified, architected and then imple-
mented is beyond the scope of this book. The content focuses on the
specification, architecture, then implementation of the verification
of these same designs.

Once you are satisfied with the content of this book and wish to put
it in practice, I recommend you pick up a copy of the Verification
Methodology Manual for SystemVerilog1 (VMM). It is a book I co-
authored and wrote as a series of very specific guidelines on how to
implement testbenches using SystemVerilog. It uses all of the pow-
erful concepts introduced here. It also includes a set of base classes
that implements generic functionality that every testbench needs.
Why re-invent the wheel? I will refer to the first edition of the
VMM at relevant points in this book where further techniques,
guidelines or support can be found.

READING PATHS

You should really read this book from cover to cover. However, if
you are pressed for time, here are a few suggested paths. 

1. Janick Bergeron, Eduard Cerny, Alan Hunter and Andrew Nightingale, 
"Verification Methodology Manual for SystemVerilog", Springer 2005, 
ISBN 0-387-25538-9
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If you are using this book as a university or college textbook, you
should focus on Chapter 4 through 6 and Appendix A. If you are a
junior engineer who has only recently joined a hardware design
group, you may skip Chapters 3 and 7. But do not forget to read
them once you have gained some experience.

Chapters 3 and 6, as well as Appendix A, will be of interest to a
senior engineer in charge of defining the verification strategy for a
project. If you are an experienced designer, you may wish to skip
ahead to Chapter 3. 

If you have a software background, Chapter 4 and Appendix A may
seem somewhat obvious. If you have a hardware design and RTL
coding mindset, Chapters 4 and 7 are probably your best friends. 

If your responsibilities are limited to managing a hardware verifica-
tion project, you probably want to concentrate on Chapter 3, Chap-
ter 6 and Chapter 7.

WHY SYSTEMVERILOG?

SystemVerilog is the first truly industry-standard language to cover
design, assertions, transaction-level modeling and coverage-driven
constrained random verification.

VHDL and Verilog
VHDL and Verilog have shown to be inadequate for verification.
Their lack of—or poor—support for high-level data types, object
oriented programming, assertions, functional coverage and declara-
tive constraints has prompted the creation of specialized languages
for each or all of these areas. Using separate languages creates inte-
gration challenges: they may use a different syntax for the same
concepts, have different semantics, introduce race conditions and
render the simulation less efficient. SystemVerilog unifies all of
these areas under a consistent syntax, coherent semantics, with
minimal race conditions and with global optimization opportuni-
ties.

In my experience, Verilog is a much abused language. It has the
reputation for being easier to learn than VHDL, and to the extent
that the initial learning curve is not as steep, it is true. SystemVer-
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ilog, being a superset of Verilog, benefits from the same smooth ini-
tial learning curve. However—like VHDL—Verilog and
SystemVerilog provide similar concepts: sequential statements, par-
allel constructs, structural constructs and the illusion of parallelism.

These concepts must be learned. Because of its lax requirements,
Verilog lulls the user into a false sense of security. The user believes
that he or she knows the language because there are no syntax
errors or because the simulation results appear to be correct. Over
time, and as a design grows, race conditions and fragile code struc-
tures become apparent, forcing the user to learn these important
concepts. Languages have the same area under the learning curve.
VHDL’s is steeper but Verilog’s goes on for much longer. Some
sections in this book take the reader farther down the Verilog learn-
ing curve.

SystemVerilog continues in Verilog’s footstep. Does that mean that
VHDL is dead? Technically, all VHDL capabilities are directly
available in SystemVerilog. And with the many capabilities avail-
able in SystemVerilog not available in VHDL, there are no longer
any technical reasons to use VHDL1. However, that decision is
never a purely technical one. There will be VHDL legacy code for
years to come. And companies with large VHDL legacies will con-
tinue to use it, if only in a co-simulation capacity. There is also an
effort by the VHDL IEEE Working Group to add these missing
capabilities to VHDL, known as VHDL-200x. Whether or not you
wish—or can afford—to wait for a me too language is again a busi-
ness decision.

Hardware Verification Languages
Hardware verification languages (HVLs) are languages that were
specifically designed to implement testbenches efficiently and pro-
ductively. Commercial solutions include OpenVera from Synopsys
and e from Cadence. Open-source solutions include the SystemC
Verification Library (SCV) from Cadence and Jeda from Juniper
Networks. There are also a plethora of home-grown solutions based
on Perl, SystemC, C++ or TCL. SystemVerilog includes all of the

1. Before anyone paints me as a Verilog bigot, I wish to inform my readers 
that I learned VHDL first and have always had a slight preference 
toward VHDL over Verilog.
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features of a hardware verification language. When using System-
Verilog, it is no longer necessary to use a separate language for ver-
ification.

Making use of the verification features of SystemVerilog involves
more than simply learning a new syntax. Although one can con-
tinue to use a Verilog-like directed methodology with SystemVer-
ilog, using it appropriately requires a shift in the way verification is
approached and testbenches are implemented. The directed verifi-
cation strategy used with Verilog is the schematic capture of verifi-
cation. Using SystemVerilog with a constraint-driven random
verification strategy is the synthesis of verification. When used
properly, it is an incredible productivity boost (see Figure 2-16 on
page 56).

Does SystemVerilog mean that OpenVera, e and the other propri-
etary verification and assertion languages are going to die? The
answer is a definite no. SystemVerilog was created by merging
donated features and technologies from proprietary languages. It
did not invent nor create anything new other than integrating these
features and technologies under a consistent syntax and semantics.
The objectives of SystemVerilog are to lower the adoption and
ownership cost of verification tools and to create a broader market-
place through industry-wide support.

SystemVerilog accomplishes these objectives by being an industry
standard. But the problem with industry standards is that they
remain static while the semiconductor technologies continue to
advance. SystemVerilog will more than meet the needs of 90 per-
cent of the users for years to come. But leading edge users, who
have adopted HVLs years ago and are already pushing their limits,
will not be satisfied by SystemVerilog for very long. Proprietary
tools and languages will continue to evolve with those leading edge
projects. Hopefully, their trail-blazing efforts will be folded back
into a future version of SystemVerilog, where their art can become
science.

CODE EXAMPLES

A common complaint I received about the first edition was the lack
of complete examples. You’ll notice that in this book, like the first
two, code samples are still provided only as excerpts. I fundamen-
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tally believe that this is a better way to focus the reader’s attention
on the important point I’m trying to convey. I do not want to bury
you under pages and pages of complete but dry (and ultimately
mostly irrelevant) source code.

FOR MORE INFORMATION

If you want more information on topics mentioned in this book, you
will find links to relevant resources in the book-companion Web
site at the following URL:

http://janick.bergeron.com/wtb

In the resources area, you will find links to publicly available utili-
ties, documents and tools that make the verification task easier. You
will also find an errata section listing and correcting the errors that
inadvertently made their way in this edition.1
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“Everyone knows
 debugging is twice as hard

 as writing a program
 in the first place”

- Brian Kernighan
“Elements of Programming Style”

1974
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CHAPTER 1 WHAT IS VERIFICATION?

Verification is not a testbench, nor is it a series of testbenches. Veri-
fication is a process used to demonstrate that the intent of a design
is preserved in its implementation. We all perform verification pro-
cesses throughout our daily lives: balancing a checkbook, tasting a
simmering dish, associating landmarks with symbols on a map.
These are all verification processes.

In this chapter, I introduce the basic concepts of verification, from
its importance and cost, to making sure you are verifying that you
are implementing what you want. I present the differences between
various verification approaches as well as the difference between
testing and verification. I also show how verification is key to
design reuse, and I detail the challenges of verification reuse.

WHAT IS A TESTBENCH?

The term “testbench” usually refers to simulation code used to cre-
ate a predetermined input sequence to a design, then optionally to
observe the response. Testbenches are implemented using System-
Verilog, but they may also include external data files or C routines.

Figure 1-1 shows how a testbench interacts with a design under
verification (DUV). The testbench provides inputs to the design and
watches any outputs. Notice how this is a completely closed sys-
tem: no inputs or outputs go in or out. The testbench is effectively a
model of the universe as far as the design is concerned. The verifi-



What is Verification?

2 Writing Testbenches using SystemVerilog

cation challenge is to determine what input patterns to supply to the
design and what is the expected output of a properly working
design when submitted to those input patterns.

THE IMPORTANCE OF VERIFICATION

70% of design 
effort goes to 
verification.

Today, in the era of multi-million gate ASICs and FPGAs, reusable
intellectual property (IP), and system-on-a-chip (SoC) designs, ver-
ification consumes about 70% of the design effort. Design teams,
properly staffed to address the verification challenge, include engi-
neers dedicated to verification. The number of verification engi-
neers can be up to twice the number of RTL designers.

Verification is 
on the critical 
path.

Given the amount of effort demanded by verification, the shortage
of qualified hardware design and verification engineers, and the
quantity of code that must be produced, it is no surprise that, in all
projects, verification rests squarely in the critical path. The fact that
verification is often considered after the design has been completed,
when the schedule has already been ruined, compounds the prob-
lem. It is also the reason verification is the target of the most recent
tools and methodologies. These tools and methodologies attempt to
reduce the overall verification time by enabling parallelism of
effort, higher abstraction levels and automation.

Verification time 
can be reduced 
through parallel-
ism.

If efforts can be parallelized, additional resources can be applied
effectively to reduce the total verification time. For example, dig-
ging a hole in the ground can be parallelized by providing more
workers armed with shovels. To parallelize the verification effort, it
is necessary to be able to write—and debug—testbenches in paral-
lel with each other as well as in parallel with the implementation of
the design.

Figure 1-1.
Generic
structure of a 
testbench and 
design under 
verification

Design
under

Verification

Testbench
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Verification time 
can be reduced 
through abstrac-
tion.

Providing higher abstraction levels enables you to work more effi-
ciently without worrying about low-level details. Using a backhoe
to dig the same hole mentioned above is an example of using a
higher abstraction level.

Using abstrac-
tion reduces 
control over 
low-level
details.

Higher abstraction levels are usually accompanied by a reduction in
control and therefore must be chosen wisely. These higher abstrac-
tion levels often require additional training to understand the
abstraction mechanism and how the desired effect can be produced.
If a verification process uses higher abstraction levels by working
at the transaction- or bus-cycle levels (or even higher ones), it will
be easier to create large amount of stimulus. But it may be difficult
to produce a specific sequence of low-level zeroes and ones. Simi-
larly, using a backhoe to dig a hole suffers from the same loss-of-
control problem: The worker is no longer directly interacting with
the dirt; instead the worker is manipulating levers and pedals. Dig-
ging happens much faster, but with lower precision and only by a
trained operator.

Lower levels of 
abstraction must 
remain visible.

It may be necessary to navigate between levels of abstraction. Veri-
fication can be accomplished using a bottom-up approach where
the interface blocks and physical level details are verified first. The
protocol levels can then be verified without having to worry about
the physical signals. Verification can also be accomplished using a
top-down approach where the protocol-level functionality is veri-
fied first using a transaction-level model without any physical-level
interfaces. The details of the physical transport mechanisms can
then be added later.

The transition between levels of abstraction may also occur dynam-
ically during the execution of a testbench. The testbench may gen-
erally work at a high-level of abstraction, verifying the correctness
of protocol-level operations. The testbench can then switch to a
lower level of abstraction to inject a physical-level parity error to
verify that protocol-level operations remain unaffected. Similarly,
the backhoe operator can let a worker jump into the hole and use a
shovel to uncover a gas pipeline.

Verification time 
can be reduced 
through automa-
tion.

Automation lets you do something else while a machine completes
a task autonomously, faster and with predictable results. Automa-
tion requires standard processes with well-defined inputs and out-
puts. Not all processes can be automated. For example, holes must
be dug in a variety of shapes, sizes, depths, locations and in varying



What is Verification?

4 Writing Testbenches using SystemVerilog

soil conditions, which render general-purpose automation impossi-
ble.

Verification faces similar challenges. Because of the variety of
functions, interfaces, protocols and transformations that must be
verified, it is not possible to provide a general purpose automation
solution for verification, given today’s technology. It is possible to
automate some portion of the verification process, especially when
applied to a narrow application domain. Tools automating various
portions of the verification process are being introduced. For exam-
ple, there are tools that will automatically generate bus-functional
models from a higher-level abstract specification. Similarly, tren-
chers have automated digging holes used to lay down conduits or
cables at shallow depths.

Randomization 
can be used as 
an automation 
tool.

For specific domains, automation can be emulated using random-
ization. By constraining a random generator to produce valid inputs
within the bounds of a particular domain, it is possible to automati-
cally produce almost all of the interesting conditions. For example,
the tedious process of vacuuming the bottom of a pool can be auto-
mated using a broom head that, constrained by the vertical walls,
randomly moves along the bottom. After a few hours, only the cor-
ners and a few small spots remain to be cleaned manually. This type
of automation process takes more computation time to achieve the
same result, but it is completely autonomous, freeing valuable
resources to work on other critical tasks. Furthermore, this process
can be parallelized1 easily by concurrently running several random
generators. They can also operate overnight, increasing the total
number of productive hours.

RECONVERGENCE MODEL 

The reconvergence model is a conceptual representation of the veri-
fication process. It is used to illustrate what exactly is being veri-
fied.

1. Optimizing these concurrent processes to reduce the amount of overlap 
is another question!
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Do you know 
what you are 
actually verify-
ing?

One of the most important questions you must be able to answer is:
"What are you verifying?" The purpose of verification is to ensure
that the result of some transformation is as intended or as expected.
For example, the purpose of balancing a checkbook is to ensure that
all transactions have been recorded accurately and confirm that the
balance in the register reflects the amount of available funds.

Verification is 
the reconcilia-
tion, through 
different means, 
of a specifica-
tion and an out-
put.

Figure 1-2 shows that verification of a transformation can be
accomplished only through a second reconvergent path with a com-
mon source. The transformation can be any process that takes an
input and produces an output. RTL coding from a specification,
insertion of a scan chain, synthesizing RTL code into a gate-level
netlist and layout of a gate-level netlist are some of the transforma-
tions performed in a hardware design project. The verification pro-
cess reconciles the result with the starting point. If there is no
starting point common to the transformation and the verification, no
verification takes place.

The reconvergence model can be described using the checkbook
example as illustrated in Figure 1-3. The common origin is the pre-
vious month’s balance in the checking account. The transformation
is the writing, recording and debiting of several checks during a
one-month period. The verification reconciles the final balance in
the checkbook register using this month’s bank statement.    

 THE HUMAN FACTOR

If the transformation process is not completely automated from end
to end, it is necessary for an individual (or group of individuals) to

Figure 1-2.
Reconvergent 
paths in 
verification

Transformation

Verification

Figure 1-3.
Balancing a 
checkbook is a 
verification
process

Recording Checks

Reconciliation

Balance from
last month’s

statement

Balance from
latest

statement
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interpret a specification of the desired outcome and then perform
the transformation. RTL coding is an example of this situation. A
design team interprets a written specification document and pro-
duces what they believe to be functionally correct synthesizeable
HDL code. Usually, each engineer is left to verify that the code
written is indeed functionally correct.

Verifying your 
own design veri-
fies against your 
interpretation, 
not against the 
specification.

Figure 1-4 shows the reconvergence model of the situation
described above. RTL coding requires interpretation of a written
specification. If the same person performs the verification, then the
common origin is that interpretation, not the specification.

In this situation, the verification effort verifies whether the design
accurately represents the implementer’s interpretation of that speci-
fication. If that interpretation is wrong in any way, then this verifi-
cation activity will never highlight it.

Any human intervention in a process is a source of uncertainty and
unrepeatability. The probability of human-introduced errors in a
process can be reduced through several complementary mecha-
nisms: automation, poka-yoke or redundancy.

Automation

Eliminate
human interven-
tion.

Automation is the obvious way to eliminate human-introduced
errors in a process. Automation takes human intervention com-
pletely out of the process. However, automation is not always pos-
sible, especially in processes that are not well-defined and continue
to require human ingenuity and creativity, such as hardware design.

Poka-Yoke

Make human 
intervention
foolproof.

Another possibility is to mistake-proof the human intervention by
reducing it to simple, and foolproof steps. Human intervention is
needed only to decide on the particular sequence or steps required

Figure 1-4.
Reconvergent 
paths in 
ambiguous
situation

RTL coding

Verification

Interpre-
tation

Specifi-
cation
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to obtain the desired results. This mechanism is also known as
poka-yoke in Total Quality Management circles. It is usually the
last step toward complete automation of a process. However, just
like automation, it requires a well-defined process with standard
transformation steps. The verification process remains an art that,
to this day, does not lend itself to fool-proof steps.

Redundancy

Have two indi-
viduals check 
each other’s 
work.

The final alternative to removing human errors is redundancy. It is
the simplest, but also the most costly mechanism. Redundancy
requires every transformation path to be duplicated. Every transfor-
mation accomplished by a human is either independently verified
by another individual, or two complete and separate transforma-
tions are performed with each outcome compared to verify that
both produced the same or equivalent output. This mechanism is
used in high-reliability environments, such as airborne and space
systems. It is also used in industries where later redesign and
replacement of a defective product would be more costly than the
redundancy itself, such as ASIC design.

A different per-
son should ver-
ify.

Figure 1-5 shows the reconvergence model where redundancy is
used to guard against misinterpretation of an ambiguous specifica-
tion document. When used in the context of hardware design,
where the transformation process is writing RTL code from a writ-
ten specification document, this mechanism implies that a different
individual must verify that implementation.

WHAT IS BEING VERIFIED?

Choosing the common origin and reconvergence points determines
what is being verified. These origin and reconvergence points are
often determined by the tool used to perform the verification. It is
important to understand where these points lie to know which trans-
formation is being verified. Formal verification, property checking,

Figure 1-5.
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functional verification, and rule checkers verify different things
because they have different origin and reconvergence points.

Formal verifica-
tion does not 
eliminate the 
need to write 
testbenches.

Formal verification is often misunderstood initially. Engineers
unfamiliar with the formal verification process often imagine that it
is a tool that mathematically determines whether their design is cor-
rect, without having to write testbenches. Once they understand
what the end points of the formal verification reconvergent paths
are, you know what exactly is being verified.

The application of formal verification falls under two broad catego-
ries: equivalence checking and property checking.

Equivalence Checking

Equivalence 
checking com-
pares two mod-
els.

Figure 1-6 shows the reconvergence model for equivalence check-
ing. This formal verification process mathematically proves that the
origin and output are logically equivalent and that the transforma-
tion preserved its functionality.

It can compare 
two netlists.

In its most common use, equivalence checking compares two
netlists to ensure that some netlist post-processing, such as scan-
chain insertion, clock-tree synthesis or manual modification1, did
not change the functionality of the circuit.

It can detect 
bugs in the syn-
thesis software.

Another popular use of equivalence checking is to verify that the
netlist correctly implements the original RTL code. If one trusted
the synthesis tool completely, this verification would not be neces-
sary. However, synthesis tools are large software systems that
depend on the correctness of algorithms and library information.
History has shown that such systems are prone to error. Equiva-
lence checking is used to keep the synthesis tool honest. In some
rare instances, this form of equivalence checking is used to verify

Figure 1-6.
Equivalence
checking paths

Synthesis

Equivalence
Checking

RTL or
Netlist

RTL or
Netlist

1. Text editors remain the greatest design tools!
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that manually written RTL code faithfully represents a legacy gate-
level design.

Equivalence checking can also verify that two RTL descriptions are
logically identical. Proving their equivalence avoids running
lengthy regression simulations when only minor non-functional
changes are made to the source code to obtain better synthesis
results. Modern equivalence checkers can even deal with sequential
differences between RTL models, such as rearchitected FSMs or
data pipelines.

Equivalence 
checking found 
a bug in an arith-
metic operator.

Equivalence checking is a true alternative path to the logic synthe-
sis transformation being verified. It is only interested in comparing
Boolean and sequential logic functions, not mapping these func-
tions to a specific technology while meeting stringent design con-
straints. Engineers using equivalence checking found a design at
Digital Equipment Corporation (now part of HP) to be synthesized
incorrectly. The design used a synthetic operator that was function-
ally incorrect when handling more than 48 bits. To the synthesis
tool’s defense, the documentation of the operator clearly stated that
correctness was not guaranteed above 48 bits. Since the synthesis
tool had no knowledge of documentation, it could not know it was
generating invalid logic. Equivalence checking quickly identified a
problem that could have been very difficult to detect using gate-
level simulation.

Property Checking

Property check-
ing proves asser-
tions about the 
behavior of the 
design.

Property checking is a more recent application of formal verifica-
tion technology. In it, assertions or characteristics of a design are
formally proven or disproved. For example, all state machines in a
design could be checked for unreachable or isolated states. A more
powerful property checker may be able to determine if deadlock
conditions can occur.

Another type of assertion that can be formally verified relates to
interfaces. Using the SystemVerilog property specification lan-
guage, assertions about the interfaces of a design are stated and the
tool attempts to prove or disprove them. For example, an assertion
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might state that, given that signal ALE will be asserted, then either
the DTACK or ABORT signal will be asserted eventually.

Assertions must 
not be trivial.

The reconvergence model for property checking is shown in
Figure 1-7 . The greatest obstacle for property checking technology
is identifying, through interpretation of the design specification,
which assertions to prove. Of those assertions, only a subset can be
proven feasibly. Furthermore, for a proof to be useful, assertions
must not be trivial restatements of the behavior already captured by
the RTL code. They should be based on external requirements that
the design must meet.

Assertions are 
good at check-
ing temporal 
relationships of 
synchronous 
signals.

Current technology has difficulties proving high-level assertions
about a design to ensure that complex functionality is correctly
implemented. It would be nice to be able to concisely assert that,
given specific register settings, a sequence of packets will end up at
a set of outputs in some relative order. Unfortunately, there are two
obstacles in front of this goal. First, property checking technology
is limited in its capacity to deal with complex designs. Second, the
assertion languages with formal semantics can efficiently describe
cycle-based temporal relationships between low-level signals and
simple transformations. Their inherent RTL or cycle-based nature
makes it difficult to state high-level transformation properties.

Functional Verification

Functional veri-
fication verifies 
design intent.

The main purpose of functional verification is to ensure that a
design implements intended functionality. As shown by the recon-
vergence model in Figure 1-8, functional verification reconciles a
design with its specification. Without functional verification, one
must trust that the transformation of a specification document into

Figure 1-7.
Property 
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RTL code was performed correctly, without misinterpretation of the
specification’s intent.

You can prove 
the presence of 
bugs, but you 
cannot prove 
their absence.

It is important to note that, unless a specification is written in a for-
mal language with precise semantics,1 it is impossible to prove that
a design meets the intent of its specification. Specification docu-
ments are written using natural languages by individuals with vary-
ing degrees of ability in communicating their intentions. Any
document is open to interpretation. One can easily prove that the
design does not implement the intended function by identifying a
single discrepancy. The converse, sadly, is not true: No one can
prove that there are no discrepancies. Functional verification, as a
process, can show that a design meets the intent of its specification.
But it cannot prove it. Similarly, no one can prove that flying rein-
deers or UFOs do not exist. However, producing a single flying
reindeer or UFO would be sufficient to prove the opposite!

FUNCTIONAL VERIFICATION APPROACHES

Functional verification can be accomplished using three comple-
mentary approaches: black-box, white-box and grey-box.

Black-Box Verification

Black-box veri-
fication cannot 
look at or know 
about the inside 
of a design.

With a black-box approach, functional verification is performed
without any knowledge of the actual implementation of a design.
All verification is accomplished through the available interfaces,
without direct access to the internal state of the design, without
knowledge of its structure and implementation. This method suffers
from an obvious lack of visibility and controllability. It is often dif-

Figure 1-8.
Functional 
verification
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RTL Coding

Functional
Verification

Specifi-
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1. Even if such a language existed, one would eventually have to show 
that this description is indeed an accurate description of the design 
intent, based on some higher-level ambiguous specification. 
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ficult to set up an interesting state combination or to isolate some
functionality. It is equally difficult to observe the response from the
input and locate the source of the problem. This difficulty arises
from the frequent long delays between the occurrence of a problem
and the appearance of its symptom on the design’s outputs.

Testcase is inde-
pendent of 
implementation.

The advantage of black-box verification is that it does not depend
on any specific implementation. Whether the design is imple-
mented in a single ASIC, RTL code, transaction-level model, gates,
multiple FPGAs, a circuit board or entirely in software, is irrele-
vant. A black-box functional verification approach forms a true
conformance verification that can be used to show that a particular
design implements the intent of a specification, regardless of its
implementation. A set of black-box testbenches can be developed
on a transaction-level model of the design and run, unmodified, on
the RTL model of the design to demonstrate that they are equiva-
lent. Black-box testbenches can be used as a set of golden test-
benches.

My mother is a veteran of the black-box approach: To prevent us
from guessing the contents of our Christmas gifts, she never puts
any names on the wrapped boxes1. At Christmas, she has to cor-
rectly identify the content of each box, without opening it, so it can
be given to the intended recipient. She has been known to fail on a
few occasions, to the pleasure of the rest of the party!

In black-box 
verification, it is 
difficult to con-
trol and observe 
specific features.

The pure black-box approach is impractical in today’s large
designs. A multi-million gates ASIC possesses too many internal
signals and states to effectively verify all of its functionality from
its periphery. Critical functions, deep into the design, will be diffi-
cult to control and observe. Furthermore, a design fault may not
readily present symptoms of a flaw at the outputs of the ASIC. For
example, the black-box ASIC-level testbench in Figure 1-9 is used
to verify a critical round-robin arbiter. If the arbiter is not com-
pletely fair in its implementation, what symptoms would be visible
at the outputs? This type of fault could only be found through per-
formance analysis using several long simulations to identify dis-
crepancies between the actual throughput of a channel compared
with its theoretical throughput. And a two percent discrepancy in a

1. To my wife’s chagrin who likes shaking any box bearing her name.
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channel throughput in three overnight simulations can be explained
so easily as a simple statistical error...   

White-Box Verification 

White box veri-
fication has inti-
mate knowledge 
and control of 
the internals of a 
design.

As the name suggests, a white-box approach has full visibility and
controllability of the internal structure and implementation of the
design being verified. This method has the advantage of being able
to set up an interesting combination of states and inputs quickly, or
to isolate a particular function. It can then easily observe the results
as the verification progresses and immediately report any discrep-
ancies from the expected behavior.

White-box veri-
fication is tied to 
a specific imple-
mentation.

However, this approach is tightly integrated with a particular imple-
mentation. Changes in the design may require changes in the test-
bench. Furthermore, those testbenches cannot be used in gate-level
simulations, on alternative implementations or future redesigns. It
also requires detailed knowledge of the design implementation to
know which significant conditions to create and which results to
observe.

White-box tech-
niques can aug-
ment black-box 
approaches.

White-box verification is a useful complement to black-box verifi-
cation. This approach can ensure that low-level implementation-
specific features behave properly, such as counters rolling over
after reaching their end count value or datapaths being appropri-
ately steered and sequenced. The white-box approach can be used
only to verify the correctness of the functionality, while still relying
on the black- or grey-box stimulus. Assertions are ideal for imple-
menting white-box checks in RTL code. For example, Figure 1-10
shows the black-box ASIC-level environment shown in Figure 1-9
augmented with assertions to verify the functional correctness of
the round-robin arbiter. Should fairness not be implemented cor-
rectly, the white-box checks would immediately report a failure.
The reported error would also make it easier to identify and confirm

Figure 1-9.
Black-box
verification of 
a low-level 
feature

ASIC-Level
Stimulus

ASIC-Level
Response



What is Verification?

14 Writing Testbenches using SystemVerilog

the cause of the problem, compared to a two percent throughput
discrepancy.  

Checkered-box 
is used in sys-
tem-level verifi-
cation.

A checkered-box verification approach is often used on SoC design
and system-level verification. A system is defined as a design com-
posed of independently designed and verified components. The
objective of system-level verification is to verify the system-level
features, not re-verify the individual components. Because of the
large number of possible states and the difficulty in setting up inter-
esting conditions, system-level verification is often accomplished
by treating it as a collection of black-boxes. The independently-
designed components are treated as black-boxes, but the system
itself is treated as a white-box, with full controllability and observ-
ability.

Grey-Box Verification  
Grey-box verification is a compromise between the aloofness of a
black-box verification and the dependence on the implementation
of white-box verification. The former may not fully exercise all
parts of a design, while the latter is not portable.

Testcase may 
not be relevant 
on another 
implementation.

As in black-box verification, a grey-box approach controls and
observes a design entirely through its top-level interfaces. How-
ever, the particular verification being accomplished is intended to
exercise significant features specific to the implementation. The
same verification of a different implementation would be success-
ful, but the verification may not be particularly more interesting
than any other black-box verification. A typical grey-box test case
is one written to increase coverage metrics. The input stimulus is
designed to execute specific lines of code or create a specific set of
conditions in the design. Should the structure (but not the function)

Figure 1-10.
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of the design change, this test case, while still correct, may no
longer contribute toward better coverage.

Add functions to 
the design to 
increase control-
lability and 
observability

A typical grey-box strategy is to include some non-functional mod-
ifications to provide additional visibility and controllability. Exam-
ples include additional software-accessible registers to control or
observe internal states, speed up a real-time counter, force the rais-
ing of exceptions or modify the size of the processed data to mini-
mize verification time. These registers and features would not be
used during normal operations, but they are often valuable during
the integration phase of the first prototype systems.

Verification 
must influence 
the design.

For non-functional features required by the verification process to
exist in a design, verification must be considered as an integral part
of a design. When architecting a design, the verifiability of that
architecture must be assessed at the same time. If some architec-
tural features promise to be difficult to verify or exercise, additional
observability or controllability features must be added. This process
is called design-for-verification.

White-box can-
not be used in 
parallel with 
design.

The black-box and grey-box approaches are the only ones that can
be used if the functional verification is to be implemented in paral-
lel with the implementation using a transaction-level model of the
design (see “Transaction-Level Models” on page 333). Because
there is no detailed implementation to know about beforehand,
these two verification strategies are the only possible avenue.

TESTING VERSUS VERIFICATION 

Testing verifies 
manufacturing.

Testing is often confused with verification. The purpose of the
former is to verify that the design was manufactured correctly. The
purpose of the latter is to ensure that a design meets its functional
intent.

Figure 1-11.
Testing vs. 
Verification

HW Design

Verification

Specifi-
cation Netlist Silicon

Manufacturing

Testing



What is Verification?

16 Writing Testbenches using SystemVerilog

Figure 1-11 shows the reconvergence models for both verification
and testing. During testing, the finished silicon is reconciled with
the netlist that was submitted for manufacturing.

Testing verifies 
that internal 
nodes can be 
toggled.

Testing is accomplished through test vectors. The objective of these
test vectors is not to exercise functions. It is to exercise physical
locations in the design to ensure that they can go from 0 to 1 and
from 1 to 0 and that the change can be observed. The ratio of physi-
cal locations tested to the total number of such locations is called
test coverage. The test vectors are usually automatically generated
to maximize coverage while minimizing vectors through a process
called automatic test pattern generation (ATPG).

Thoroughness of 
testing depends 
on controllabil-
ity and observ-
ability of 
internal nodes.

Testing and test coverage depends on the ability to set internal
physical locations to either 1 or 0, and then observe that they were
indeed appropriately set. Some designs have very few inputs and
outputs, but these designs have a large number of possible states,
requiring long sequences to observe and control all internal physi-
cal locations properly. A perfect example is an electronic wrist-
watch: It has three or four inputs (the buttons around the dial) and a
handful of outputs (the digits and symbols on the display). How-
ever, if it includes chronometer and calendar functions, it has bil-
lions of possible state combinations (hundreds of years divided into
milliseconds). At speed, it would take hundreds of years to take
such a design through all of its possible states.

Scan-Based Testing 

Linking all reg-
isters into a long 
shift register 
increases
controllability 
and observabil-
ity.

Fortunately, scan-based testability techniques help reduce this prob-
lem to something manageable. With scan-based tests, all registers
inside a design are hooked-up in a long serial chain. In normal
mode, the registers operate as if the scan chain was not there (see
Figure 1-12(a)). In scan mode, the registers operate as a long shift
register (see Figure 1-12(b)). 

To test a scannable design, the unit under test is put into scan mode,
then an input pattern is shifted through all of its internal registers.
The design is then put into normal mode and a single clock cycle is
applied, loading the result of the normal operation based on the
scanned state into the registers. The design is then put into scan
mode again. The result is shifted out of the registers (at the same
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time the next input pattern is shifted in), and the result is compared
against the expected value.

Scan-based test-
ing puts restric-
tions on design.

This increase in controllability and observability, and thus test cov-
erage, comes at a cost. Certain restrictions, called design-for-test-
ability, are put onto the design to enable the insertion of a scan
chain and the automatic generation of test patterns. These restric-
tions include, but are not limited to: fully synchronous design, no
derived or gated clocks and use of a single clock edge. The topic of
design-for-testability is far greater and complex than this simple
introduction implies. For more details, books and papers specializ-
ing on the subject should be consulted.

The benefits of 
scan-based test-
ing far out-
weighs the 
drawbacks of 
these restric-
tions.

Hardware designers introduced to scan-based testing initially rebel
against the restrictions imposed on them. They see only the imme-
diate area penalty and their favorite design technique rendered ille-
gal. However, the increased area and additional design effort are
quickly outweighed when a design can be fitted with one or more
scan chains, when test patterns are generated and high test coverage
is achieved automatically, at the push of a button. The time saved
and the greater confidence in putting a working product on the mar-
ket far outweighs the added cost for scan-based design.

Design for Verification
Design practices need to be modified to accommodate testability
requirements. Isn’t it acceptable to modify those same design prac-
tices to accommodate verification requirements?

Verification 
must be consid-
ered during 
specification.

With functional verification requiring more effort than design, it is
reasonable to require additional design effort to simplify verifica-
tion. Just as scan chains are put in a design to improve testability
without adding to the functionality, it should be standard practice to
add non-functional structures and features to facilitate verification.
This approach requires that verification be considered at the outset

Figure 1-12.
Scan-based
testing
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of a project, during its specification phase. Not only should the
architect of the design answer the question, “What is this supposed
to do?” but also, “How is this thing going to be verified?”

Typical design-for-verification techniques include well-defined
interfaces, clear separation of functions in relatively independent
units, providing additional software-accessible registers to control
and observe internal locations and providing programmable multi-
plexers to isolate or bypass functional units. 

DESIGN AND VERIFICATION REUSE 

Today, design reuse is a fact of life. It is the best way to overcome
the difference between the number of transistors that can be manu-
factured on a single chip and the number of transistors engineers
can take advantage of in a reasonable amount of time. This differ-
ence is called the productivity gap. Design reuse was originally
thought to be a simple concept that would be easy to put in practice.
The reality proved—and continues to prove—to be more problem-
atic.

Reuse Is About Trust

You won’t use 
what you do not 
trust.

The major obstacle to design reuse is cultural. Engineers have little
incentive and willingness to incorporate an unknown design into
their own. They do not trust that the other design is as good or as
reliable as one designed by themselves. The key to design reuse is
gaining that trust.

Proper func-
tional verifica-
tion
demonstrates 
trustworthiness 
of a design.

Trust, like quality, is not something that can be added to a design
after the fact. It must be built-in, through the best possible design
practices. Trustworthiness can be demonstrated through a proper
verification process. By showing the user that a design has been
thoroughly and meticulously verified according to the design speci-
fication, trust can be built and communicated much faster. Func-
tional verification is the only way to demonstrate that the design
meets, or even exceeds, the quality of a similar design that an engi-
neer could do himself or herself.
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Verification for Reuse

Reusable 
designs must be 
verified to a 
greater degree of 
confidence.

If you create a design, you have a certain degree of confidence in
your own abilities as a designer and implicitly trust its correctness.
Functional verification is used only to confirm that opinion and to
augment that opinion in areas known to be weak. If you try to reuse
a design, you can rely only on the functional verification to build
that same level of confidence and trust. Thus, reusable designs must
be verified to a greater degree of confidence than custom designs.

All claims, pos-
sible configura-
tions and uses 
must be verified.

Because reusable designs tend to be configurable and programma-
ble to meet a variety of possible environments and applications, it is
necessary to verify a reusable design under all possible configura-
tions and for all possible uses. All claims made about the reusable
design must be verified and demonstrated to users.

Verification Reuse

Testbench com-
ponents can be 
reused also.

If portions of a design can be reused, portions of testbenches can be
reused as well. For example, Figure 1-13 shows that the bus-func-
tional model used to verify a design block (a) can be reused to ver-
ify the system that uses it (b).

Verification 
reuse has its 
challenges.

There are degrees of verification reuse, some easier to achieve, oth-
ers facing difficulties similar to design reuse. Reusing BFMs across
different testbenches and test cases for the same design is a simple
process of properly architecting a verification environment. Reus-
ing testbench components or test cases in a subsequent revision of
the same design presents some difficulties in introducing the verifi-
cation of the new features. Reusing a testbench component between
two different projects or between two different levels of abstraction
has many challenges that must be addressed when designing the
component itself.

Figure 1-13.
Reusing
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testbench in 
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Salvaging is not 
reuse.

Salvaging is reusing a piece of an existing testbench that was not
expressly designed to be reused. The suitability of the salvaged
component will vary greatly depending on the similarities between
the needs of the design to be verified and those of the original
design. For example, a BFM that was designed to verify an inter-
face block (as in Figure 1-13 (a)) may not be suitable for verifying a
system using that interface block.

Block- and sys-
tem-level test-
benches put 
different 
requirements on 
a BFM.

Block-level verification must exercise the state machines and
decoders used in implementing the interface protocol. This verifica-
tion requires a transaction-level BFM with detailed controls of the
protocol signals to vary timing or inject protocol errors. However,
the system-level verification must exercise the high-level function-
ality that resides behind the interface block. This verification
requires the ability to encapsulate high-level data onto the interface
transactions. The desired level of controllability resides at a much
higher level than the signal-level required to verify the interface
block. 

THE COST OF VERIFICATION 

Verification is a necessary evil. It always takes too long and costs
too much. Verification does not directly generate a profit or make
money: After all, it is the design being verified that will be sold and
ultimately make money, not the verification. Yet verification is
indispensable. To be marketable and create revenues, a design must
be functionally correct and provide the benefits that the customer
requires.

As the number 
of errors left to 
be found 
decreases, the 
time—and
cost—to identify 
them increases.

Verification is a process that is never truly complete. The objective
of verification is to ensure that a design is error-free, yet one cannot
prove that a design is error-free. Verification can show only the
presence of errors, not their absence. Given enough time, an error
will be found. The question thus becomes: Is the error likely to be
severe enough to warrant the effort spent identifying it? As more
and more time is spent on verification, fewer and fewer errors are
found with a constant incremental effort expenditure. As verifica-
tion progresses, it has diminishing returns. It costs more and more
to find each remaining error.

Functional verification is similar to statistical hypothesis testing.
The hypothesis under test is: "Is my design functionally correct?"
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The answer can be either yes or no. But either answer could be
wrong. These wrong answers are Type II and Type I mistakes,
respectively.

False positives 
must be 
avoided.

Figure 1-14 shows where each type of mistake occurs. Type I mis-
takes, or false negatives, are the easy ones to identify. The verifica-
tion is finding an error where none exist. Once the misinterpretation
is identified, the implementation of the verification is modified to
change the answer from “no” to "yes," and the mistake no longer
exists. Type II mistakes are the most serious ones: The verification
failed to identify an error. In a Type II mistake, or false positive sit-
uation, a bad design is shipped unknowingly, with all the potential
consequences that entails.

Shipping a bad design may result in simple product recall or in the
total failure of a space probe after it has landed on another planet.
Similarly, drug companies faces Type II mistakes on a regular basis
with potentially devastating consequences: In spite of positive clin-
ical test results, is a dangerous drug being released on the market? 

With the future of the company potentially at stake, the 64-thousand
dollar question in verification is: "How much is enough?" The func-
tional verification process presented in this book, along with some
of the tools described in the next chapter attempt to answer that
question.

The 64-million dollar question is: "When will I be done?” Knowing
where you are in the verification process, although impossible to
establish with certainty, is much easier to estimate than how long it
will take to complete the job. The verification planning process
described in Chapter 3 creates a tool that enables a verification

Figure 1-14.
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manager to better estimate the effort and time required to complete
the task at hand, to the degree of certainty required.

SUMMARY

Verification is a process, not a set of testbenches.

Verification can be only accomplished through an independent path
between a specification and an implementation. It is important to
understand where that independence starts and to know what is
being verified.

Verification can be performed at various levels of the design hierar-
chy, with varying degrees of visibility within those hierarchies. I
prefer a black-box approach because it yields portable testbenches.
Augment with grey and white-box testbenches to meet your goals.

Consider verification at the beginning of the design. If a function
would be difficult to verify, modify the design to give the necessary
observability and controllability over the function.

Make your verification components reusable across different test-
benches, across block and system-level testbenches and across dif-
ferent projects.
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CHAPTER 2 VERIFICATION 
TECHNOLOGIES

As mentioned in the previous chapter, one of the mechanisms that
can be used to improve the efficiency and reliability of a process is
automation. This chapter covers technologies used in a state-of-the-
art functional verification environment. Some of these technolo-
gies, such as simulators, are essential for the functional verification
activity to take place. Others, such as linting or code coverage tech-
nologies, automate some of the most tedious tasks of verification
and help increase the confidence in the outcome of the functional
verification. This chapter does not contain an exhaustive list of ver-
ification technologies, as new application-specific and general pur-
pose verification automation technologies are regularly brought to
market.

It is not neces-
sary to use all 
the technologies 
mentioned.

As a verification engineer, your job is to use the necessary technol-
ogies to ensure that the verification process does not miss a signifi-
cant functional bug. As a project manager responsible for the
delivery of a working product on schedule and within the allocated
budget, your responsibility is to arm your engineers with the proper
tools to do their job efficiently and with the necessary degree of
confidence. Your job is also to decide when the cost of finding the
next functional bug has increased above the value the additional
functional correctness brings. This last responsibility is the heaviest
of them all. Some of these technologies provide information to help
you decide when you’ve reached that point.
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A tool may 
include more 
than one tech-
nology.

This chapter presents various verification technologies separately
from each other. Each technology is used in multiple EDA tools. A
specific EDA tool may include more than one technology. For
example, “super linting” tools leverage linting and formal technolo-
gies. Hybrid- or semi-formal tools use a combination of simulation
and formal technologies.

Synopsys tools 
are mentioned.

Being a Synopsys employee at the time of writing this book, the
commercial tools I mention are provided by Synopsys, Inc. Other
EDA companies supply competitive products. All trademarks and
service marks, registered or not, are the property of their respective
owners.

LINTING

Linting technol-
ogy finds com-
mon 
programmer 
mistakes.

The term “lint” comes from the name of a UNIX utility that parses
a C program and reports questionable uses and potential problems.
When the C programming language was created by Dennis Ritchie,
it did not include many of the safeguards that have evolved in later
versions of the language, like ANSI-C or C++, or other strongly-
typed languages such as Pascal or ADA. lint evolved as a tool to
identify common mistakes programmers made, letting them find
the mistakes quickly and efficiently, instead of waiting to find them
through a dreaded segmentation fault during execution of the pro-
gram.

lint identifies real problems, such as mismatched types between
arguments and function calls or mismatched number of arguments,
as shown in Sample 2-1. The source code is syntactically correct
and compiles without a single error or warning using gcc version
2.96.

However, Sample 2-1 suffers from several pathologically severe
problems:

1. The my_func function is called with only one argument instead 
of two.

2. The my_func function is called with an integer value as a first 
argument instead of a pointer to an integer.

Problems are 
found faster than 
at runtime.

As shown in Sample 2-2, the lint program identifies these prob-
lems, letting the programmer fix them before executing the pro-
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gram and observing a catastrophic failure. Diagnosing the problems
at runtime would require a debugger and would take several min-
utes. Compared to the few seconds it took using lint, it is easy to see
that the latter method is more efficient.

Linting does not 
require stimulus.

Linting has a tremendous advantage over other verification technol-
ogies: It does not require stimulus, nor does it require a description
of the expected output. It performs checks that are entirely static,
with the expectations built into the linting tool itself.

The Limitations of Linting Technology

Linting can only 
identify a certain 
class of prob-
lems.

Other potential problems were also identified by lint. All were fixed
in Sample 2-3, but lint continues to report a problem with the invo-
cation of the my_func function: The return value is always ignored.
Linting cannot identify all problems in source code. It can only find
problems that can be statically deduced by looking at the code
structure, not problems in the algorithm or data flow. 

Sample 2-1.
Syntactically
correct K&R 
C source code

int my_func(addr_ptr, ratio)
   int   *addr_ptr;
   float ratio;
{
   return (*addr_ptr)++;
}

main()
{
   int my_addr;
   my_func(my_addr);
}

Sample 2-2.
Lint output for 
Sample 2-1

src.c(3): warning: argument ratio unused in 
function my_func
src.c(11): warning: addr may be used before set
src.c(12): warning: main() returns random value 
to invocation environment
my_func: variable # of args.    src.c(4)  ::  
src.c(11)
my_func, arg. 1 used inconsistently     
src.c(4)  ::  src.c(11)
my_func returns value which is always ignored
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For example, in Sample 2-3, linting does not recognize that the
uninitialized my_addr variable will be incremented in the my_func
function, producing random results. Linting is similar to spell
checking; it identifies misspelled words, but cannot determine if the
wrong word is used. For example, this book could have several
instances of the word “with” being used instead of “width”. It is a
type of error the spell checker (or a linting tool) could not find.

Many false neg-
atives are 
reported.

Another limitation of linting technology is that it is often too para-
noid in reporting problems it identifies. To avoid letting an error go
unreported, linting errs on the side of caution and reports potential
problems where none exist. This results into a lot of false errors.
Designers can become frustrated while looking for non-existent
problems and may abandon using linting altogether.

Carefully filter 
error messages!

You should filter the output of linting tools to eliminate warnings or
errors known to be false. Filtering error messages helps reduce the
frustration of looking for non-existent problems. More importantly,
it reduces the output clutter, reducing the probability that the report
of a real problem goes unnoticed among dozens of false reports.
Similarly, errors known to be true positive should be highlighted.
Extreme caution must be exercised when writing such a filter: You
must make sure that a true problem is not filtered out and never
reported.

Naming conven-
tions can help 
output filtering.

A properly defined naming convention is a useful technique to help
determine if a warning is significant. For example, the report in
Sample 2-4 about a latch being inferred on a signal whose name

Sample 2-3.
Functionally
correct K&R 
C source code

int my_func(addr_ptr)
   int *addr_ptr;
{
   return (*addr_ptr)++;
}

main()
{
   int my_addr;
   my_func(&my_addr);
   return 0;
}
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ends with “_lat” could be considered as expected and a false warn-
ing. All other instances would be flagged as true errors.

Do not turn off 
checks.

Filtering the output of a linting tool is preferable to turning off
checks from within the source code itself or via a command line
option. A check may remain turned off for an unexpected duration,
potentially hiding real problems. Checks that were thought to be
irrelevant may become critical as new source files are added.

Lint code as it is 
being written.

Because it is better to fix problems when they are created, you
should run lint on the source code while it is being written. If you
wait until a large amount of code is written before linting it, the
large number of reports—many of them false—will be daunting
and create the impression of a setback. The best time to identify a
report as true or false is when you are still intimately familiar with
the code.

Enforce coding 
guidelines.

Linting, through the use of user-defined rules, can also be used to
enforce coding guidelines and naming conventions1. Therefore, it
should be an integral part of the authoring process to make sure
your code meets the standards of readability and maintainability
demanded by your audience.

Linting SystemVerilog Source Code

Linting System-
Verilog source 
code catches 
common errors.

Linting SystemVerilog source code ensures that all data is properly
handled without accidentally dropping or adding to it. The code in
Sample 2-5 shows a SystemVerilog model that looks perfect, com-
piles without errors, but eventually produces incorrect results.

Problems may 
not be obvious.

The problem lies with the use of the byte type. It is a signed 8-bit
value. It will thus never be equal to or greater than 255 as specified
in the conditional expressions. The counter will never saturate and

Sample 2-4.
Output from a 
hypothetical 
SystemVer-
ilog linting 
tool

Warning: file decoder.sv, line 23: Latch 
inferred on reg "address_lat".
Warning: file decoder.sv, line 36: Latch 
inferred on reg "next_state".

1. See Appendix A for a set of coding guidelines.
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roll over instead. A simple change to “bit [7:0]” fixes the problem.
But identifying the root cause may be difficult using simulation and
waveforms. It is even possible that the problem will never be exer-
cised because no testbench causes the counter to (normally) satu-
rate or the correct effect of the saturation is never checked in the
self-checking structure. Linting should report this discrepancy
immediately and the bug would be fixed in a few minutes, without a
single simulation cycle.

Linting may 
detect some race 
conditions.

Sample 2-6 shows another example. It is a race condition between
two concurrent execution branches that will yield an unpredictable
result (this race condition is explained in details in the section titled
“Write/Write Race Conditions” on page 180). This type of error
could be easily detected through linting. 

Linting may be 
built in simula-
tors.

SystemVerilog simulators may provide linting functionality. Some
errors, such as race conditions, may be easier to identify during a
simulation than through static analysis of the source code. The race
condition in Sample 2-6 is quickly identified when using the +race
command line option of VCS.

Sample 2-5.
Potentially
problematic 
SystemVer-
ilog code

module saturated_counter(output done,
                         input  rst,
                         input  clk);

byte counter;
always_ff @(posedge clk)
begin
   if (rst) counter <= 0;
   else if (counter < 255) counter++;
end

assign done = (counter == 255);

endmodule

Sample 2-6.
Race condition 
in SystemVer-
ilog code

begin
   integer i;
   ...
   fork
      i = 1;
      i = 0;
   join
   ...
end
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Linting tools 
may leverage 
formal technol-
ogy.

Linting tools may use formal technologies to perform more com-
plex static checks. Conversely, property checking tools may also
provide some lint-like functionality. Some errors, such as unreach-
able lines of code or FSM transitions, require formal-like analysis
of the conditions required to reach executable statements or states
and whether or not these conditions can be produced.

Code Reviews

Reviews are per-
formed by peers.

Although not technically linting, the objective of code reviews is
essentially the same: Identify functional and coding style errors
before functional verification and simulation. Linting can only
identify questionable language uses. It cannot check if the intended
behavior has been coded. In code reviews, the source code pro-
duced by a designer is reviewed by one or more peers. The goal is
not to publicly ridicule the author, but to identify problems with the
original code that could not be found by an automated tool.
Reviews can identify discrepancies between the design intent and
the implementation. They also provide an opportunity for suggest-
ing coding improvements, such as better comments, better structure
or the use of assertions.

Identify qualita-
tive problems 
and functional 
errors.

A code review is an excellent venue for evaluating the maintain-
ability of a source file, and the relevance of its comments and asser-
tions. Other qualitative coding style issues can also be identified. If
the code is well understood, it is often possible to identify func-
tional errors or omissions.

Code reviews are not new ideas either. They have been used for
many years in the software design industry. They have been shown
to be the most effective quality-enhancing activity. Detailed infor-
mation on how to conduct effective code reviews can be found in
the resources section at:

http://janick.bergeron.com/wtb

SIMULATION 

Simulate your 
design before 
implementing it.

Simulation is the most common and familiar verification technol-
ogy. It is called “simulation” because it is limited to approximating
reality. A simulation is never the final goal of a project. The goal of
all hardware design projects is to create real physical designs that
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can be sold and generate profits. Simulation attempts to create an
artificial universe that mimics the future real design. This type of
verification technology lets the designers interact with the design
before it is manufactured, and correct flaws and problems earlier.

Simulation is 
only an approxi-
mation of real-
ity.

You must never forget that a simulation is an approximation of real-
ity. Many physical characteristics are simplified—or even
ignored—to ease the simulation task. For example, a four-state dig-
ital simulation assumes that the only possible values for a signal are
0, 1, unknown, and high-impedance. However, in the physical—
and analog—world, the value of a signal is a continuous function of
the voltage and current across a thin aluminium or copper wire
track: an infinite number of possible values. In a discrete simula-
tion, events that happen deterministically 5 nanoseconds apart may
be asynchronous in the real world and may occur randomly.

Simulation is at 
the mercy of the 
descriptions 
being simulated.

Within that simplified universe, the only thing a simulator does is
execute a description of the design. The description is limited to a
well-defined language with precise semantics. If that description
does not accurately reflect the reality it is trying to model, there is
no way for you to know that you are simulating something that is
different from the design that will be ultimately manufactured.
Functional correctness and accuracy of models is a big problem as
errors cannot be proven not to exist.

Stimulus and Response

Simulation 
requires stimu-
lus.

Simulation is not a static technology. A static verification technol-
ogy performs its task on a design without any additional informa-
tion or action required by the user. For example, linting and
property checking are static technologies. Simulation, on the other
hand, requires that you provide a facsimile of the environment in
which the design will find itself. This facsimile is called a test-
bench. Writing this testbench is the main objective of this book.
The testbench needs to provide a representation of the inputs
observed by the design, so the simulation can emulate the design’s
responses based on its description.

The simulation 
outputs are vali-
dated exter-
nally, against 
design intents.

The other thing that you must not forget is that a simulation has no
knowledge of your intentions. It cannot determine if a design being
simulated is correct. Correctness is a value judgment on the out-
come of a simulation that must be made by you, the engineer. Once
the design is subjected to an approximation of the inputs from its
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environment, your primary responsibility is to examine the outputs
produced by the simulation of the design’s description and deter-
mine if that response is appropriate.

Event-Driven Simulation

Simulators are 
never fast 
enough.

Simulators are continuously faced with one intractable problem:
They are never fast enough. They are attempting to emulate a phys-
ical world where electricity travels at the speed of light and millions
of transistors switch over one billion times in a second. Simulators
are implemented using general purpose computers that can execute,
under ideal conditions, in the order of a billion sequential instruc-
tions per second. The speed advantage is unfairly and forever
tipped in favor of the physical world.

Outputs change 
only when an 
input changes.

One way to optimize the performance of a simulator is to avoid
simulating something that does not need to be simulated. Figure 2-1
shows a 2-input XOR gate. In the physical world, even if the inputs
do not change (Figure 2-1(a)), voltage is constantly applied to the
output, current is continuously flowing through the transistors (in
some technologies), and the atomic particles in the semiconductor
are constantly moving. The interpretation of the electrical state of
the output as a binary value (either a logic 1 or a logic 0) does not
change. Only if one of the inputs change (as in Figure 2-1(b)), can
the output change.

Change in val-
ues, called 
events, drive the 
simulation pro-
cess.

Sample 2-7 shows a SystemVerilog description (or model) of an
XOR gate. The simulator could choose to execute this model con-
tinuously, producing the same output value if the input values did
not change. An opportunity to improve upon that simulator’s per-
formance becomes obvious: do not execute the model while the
inputs are constants. Phrased another way: Only execute a model
when an input changes. The simulation is therefore driven by

Figure 2-1.
Behavior of an 
XOR gate

(a) (b) (c)

1..1
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0..1
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changes in inputs. If you define an input change as an event, you
now have an event-driven simulator.

Sometimes, 
input changes do 
not cause the 
output to 
change.

But what if both inputs change, as in Figure 2-1(c)? In the logical
world, the output does not change. What should an event-driven
simulator do? For two reasons, the simulator should execute the
description of the XOR gate. First, in the real world, the output of
the XOR gate does change. The output might oscillate between 0
and 1 or remain in the “neither-0-nor-1” region for a few hun-
dredths of picoseconds (see Figure 2-2). It just depends on how
accurate you want your model to be. You could decide to model the
XOR gate to include the small amount of time spent in the
unknown (or x) state to more accurately reflect what happens when
both inputs change at the same time.

Descriptions 
between inputs 
and outputs are 
arbitrary.

The second reason is that the event-driven simulator does not know
apriori that it is about to execute a model of an XOR gate. All the
simulator knows is that it is about to execute a description of a 2-
input, 1-output function. Figure 2-3 shows the view of the XOR
gate from the simulator’s perspective: a simple 2-input, 1-output
black box. The black box could just as easily contain a 2-input
AND gate (in which case the output might very well change if both
inputs change), or a 1024-bit linear feedback shift register (LFSR).

Sample 2-7.
SystemVer-
ilog model for 
an XOR gate

assign Z = A ^ B;

Figure 2-2.
Behavior of an 
XOR gate 
when both 
inputs change

A

B
Z

A

B

Figure 2-3.
Event-driven
simulator view 
of an XOR 
gate
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The mechanism of event-driven simulation introduces some limita-
tions and interesting side effects that are discussed further in
Chapter 4.

Acceleration 
options are often 
available in 
event-driven
simulators

Simulation vendors are forever locked in a constant battle of beat-
ing the competition with an easier-to-use, faster simulator. It is pos-
sible to increase the performance of an event-driven simulator by
simplifying some underlying assumptions in the design or in the
simulation algorithm. For example, reducing delay values to identi-
cal unit delays or using two states (0 and 1) instead of four states (0,
1, x and z) are techniques used to speed-up simulation. You should
refer to the documentation of your simulator to see what accelera-
tion options are provided. It is also important to understand what
the consequences are, in terms of reduced accuracy, of using these
acceleration options.

Cycle-Based Simulation
Figure 2-4 shows the event-driven view of a synchronous circuit
composed of a chain of three 2-input gates between two edge-trig-
gered flip-flops. Assuming that Q1 holds a zero, Q2 holds a one and
all other inputs remain constant, a rising edge on the clock input
would cause an event-driven simulator to simulate the circuit as fol-
lows:

1. The event (rising edge) on the clock input causes the execution 
of the description of the flip-flop models, changing the output 
value of Q1 to one and of Q2 to zero, after some small delay.

Figure 2-4.
Event-driven
simulator view 
of a 
synchronous
circuit
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2. The event on Q1 causes the description of the AND gate to exe-
cute, changing the output S1 to one, after some small delay.

3. The event on S1 causes the description of the OR gate to exe-
cute, changing the output S2 to one, after some small delay.

4. The event on S2 causes the description of the XOR gate to exe-
cute, changing the output S3 to one after some small delay.

5. The next rising edge on the clock causes the description of the 
flip-flops to execute, Q1 remains unchanged, and Q2 changes 
back to one, after some small delay.

Many intermedi-
ate events in 
synchronous cir-
cuits are not 
functionally rel-
evant.

To simulate the effect of a single clock cycle on this simple circuit
required the generation of six events and the execution of seven
models (some models were executed twice). If all we are interested
in are the final states of Q1 and Q2, not of the intermediate combi-
natorial signals, then the simulation of this circuit could be opti-
mized by acting only on the significant events for Q1 and Q2: the
active edge of the clock. Phrased another way: Simulation is based
on clock cycles. This is how cycle-based simulators operate.

The synchronous circuit in Figure 2-4 can be simulated in a cycle-
based simulator using the following sequence:

Cycle-based 
simulators col-
lapse combina-
torial logic into 
equations.

1. When the circuit description is compiled, all combinatorial 
functions are collapsed into a single expression that can be used 
to determine all flip-flop input values based on the current state 
of the fan-in flip-flops.
For example, the combinatorial function between Q1 and Q2 
would be compiled from the following initial description:

S1 = Q1 & ’1’
S2 = S1 | ’0’
S3 = S2 ^ ’0’

into this final single expression:

S3 = Q1

The cycle-based simulation view of the compiled circuit is 
shown in Figure 2-5.

2. During simulation, whenever the clock input rises, the value of 
all flip-flops are updated using the input value returned by the 
pre-compiled combinatorial input functions.
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The simulation of the same circuit, using a cycle-based simulator,
required the generation of two events and the execution of a single
model. The number of logic computations performed is the same in
both cases. They would have been performed whether the “A” input
changed or not. As long as the time required to perform logic com-
putation is smaller than the time required to schedule intermediate
events,1 and there are many registers changing state at every clock
cycle, cycle-based simulation will offer greater performance.

Cycle-based 
simulations have 
no timing infor-
mation.

This great improvement in simulation performance comes at a cost:
All timing and delay information is lost. Cycle-based simulators
assume that the entire simulation model of the design meets the
setup and hold requirements of all the flip-flops. When using a
cycle-based simulator, timing is usually verified using a static tim-
ing analyzer.

Cycle-based 
simulators can 
only handle syn-
chronous cir-
cuits.

Cycle-based simulators further assume that the active clock edge is
the only significant event in changing the state of the design. All
other inputs are assumed to be perfectly synchronous with the
active clock edge. Therefore, cycle-based simulators can only sim-
ulate perfectly synchronous designs. Anything containing asyn-
chronous inputs, latches or multiple-clock domains cannot be
simulated accurately. Fortunately, the same restrictions apply to
static timing analysis. Thus, circuits that are suitable for cycle-
based simulation to verify the functionality are suitable for static
timing verification to verify the timing.

Co-Simulators
No real-world design and testbench is perfectly suited for a single
simulator, simulation algorithm or modeling language. Different

Figure 2-5.
Cycle-based
simulator view 
of a 
synchronous
circuit
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1. And it is. By a long shot.
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components in a design may be specified using different languages.
A design could contain small sections that cannot be simulated
using a cycle-based algorithm. Some portion of the design may
contain some legacy blocks coded in VHDL or be implemented
using analog circuitry.

Multiple simula-
tors can handle 
separate por-
tions of a simu-
lation.

To handle the portions of a design that do not meet the requirements
for cycle-based simulation, most cycle-based simulators are inte-
grated with an event-driven simulator. As shown in Figure 2-6, the
synchronous portion of the design is simulated using the cycle-
based algorithm, while the remainder of the design is simulated
using a conventional event-driven simulator. Both simulators
(event-driven and cycle-based) are running together, cooperating to
simulate the entire design.

Other popular co-simulation environments provide VHDL, System-
Verilog, SystemC, assertions and analog co-simulation. For exam-
ple, Figure 2-7 shows the testbench (written in SystemVerilog) and
a mixed-signal design co-simulated using a SystemVerilog digital
simulator and an analog simulator.

Figure 2-6.
Event-driven
and cycle-
based co-
simulation

Event-Driven
Simulator

Cycle-Based
Simulator

Async Path

Figure 2-7.
Digital and 
analog co-
simulation

SystemVerilog
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Analog
Simulator

DUV

Testbench
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All simulators 
operate in 
locked-step.

During co-simulation, all simulators involved progress along the
time axis in lock-step. All are at simulation time T1 at the same
time and reach the next time T2 at the same time. This implies that
the speed of a co-simulation environment is limited by the slowest
simulator. Some experimental co-simulation environments imple-
ment time warp synchronization where some simulators are
allowed to move ahead of the others.

Performance is 
decreased by the 
communication 
and synchroni-
zation overhead.

The biggest hurdle of co-simulation comes from the communica-
tion overhead between the simulators. Whenever a signal generated
within a simulator is required as an input by another, the current
value of that signal, as well as the timing information of any change
in that value, must be communicated. This communication usually
involves a translation of the event from one simulator into an
(almost) equivalent event in another simulator. Ambiguities can
arise during that translation when each simulation has different
semantics. The difference in semantics is usually present: the
semantic difference often being the requirement for co-simulation
in the first place.

Translating val-
ues and events 
from one simu-
lator to another 
can create ambi-
guities.

Examples of translation ambiguities abound. How do you map Sys-
temVerilog’s 128 possible states (composed of orthogonal logic
values and strengths) into VHDL’s nine logic values (where logic
values and strengths are combined)? How do you translate a volt-
age and current value in an analog simulator into a logic value and
strength in a digital simulator? How do you translate an x or z value
into a 2-state C++ value?

Co-simulation 
should not be 
confused with 
single-kernel 
simulation.

Co-simulation is when two (or more) simulators are cooperating to
simulate a design, each simulating a portion of the design, as shown
in Figure 2-8. It should not be confused with simulators able to read
and compile models described in different languages. For example,
Synopsys’ VCS can simulate a design described using a mix of
SystemVerilog, VHDL, OpenVera and SystemC. As shown in
Figure 2-9, all languages are compiled into a single internal repre-
sentation or machine code and the simulation is performed using a
single simulation engine.  
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VERIFICATION INTELLECTUAL PROPERTY

You can buy IP 
for standard 
functions.

If you want to verify your design, it is necessary to have models for
all the parts included in a simulation. The model of the RTL design
is a natural by-product of the design exercise and the actual objec-
tive of the simulation. Models for embedded or external RAMs are
also required, as well as models for standard interfaces and off-the-
shelf parts. If you were able to procure the RAM, design IP, specifi-
cation or standard part from a third party, you should be able to
obtain a model for it as well. You may have to obtain the model
from a different vendor than the one who supplies the design com-
ponent.

It is cheaper to 
buy models than 
write them your-
self.

At first glance, buying a simulation model from a third-party pro-
vider may seem expensive. Many have decided to write their own
models to save on licensing costs. However, you have to decide if
this endeavor is truly economically fruitful: Are you in the model-
ing business or in the chip design business? If you have a shortage
of qualified engineers, why spend critical resources on writing a
model that does not embody any competitive advantage for your
company? If it was not worth designing on your own in the first
place, why is writing your own model suddenly justified?

Figure 2-8.
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Your model is 
not as reliable as 
the one you buy.

Secondly, the model you write has never been used before. Its qual-
ity is much lower than a model that has been used by several other
companies before you. The value of a functionally correct and reli-
able model is far greater than an uncertain one. Writing and verify-
ing a model to the same degree of confidence as the third-party
model is always more expensive than licensing it. And be assured:
No matter how simple the model is (such as a quad 2-input NAND
gate, 74LS00), you’ll get it wrong the first time. If not functionally,
then at least with respect to timing or connectivity.

There are several providers of verification IP. Many are written
using a proprietary language or C code; others are provided as non-
synthesizeable SystemVerilog source code. For intellectual prop-
erty protection and licensing technicalities, most are provided as
compiled binary or encrypted models. Verification IP includes, but
is not limited to functional models of external and embedded mem-
ories, bus-functional models for standard interfaces, protocol gener-
ators and analyzers, assertion sets for standard protocols and black-
box models for off-the-shelf components and processors.

WAVEFORM VIEWERS

Waveform view-
ers display the 
changes in sig-
nal values over 
time.

Waveform viewing is the most common verification technology
used in conjunction with simulators. It lets you visualize the transi-
tions of multiple signals over time, and their relationship with other
transitions. With a waveform viewer, you can zoom in and out over
particular time sequences, measure time differences between two
transitions, or display a collection of bits as bit strings, hexadecimal
or as symbolic values. Figure 2-10 shows a typical display of a
waveform viewer showing the inputs and outputs of a 4-bit syn-
chronous counter.

Figure 2-10.
Hypothetical 
waveform
view of a 4-bit 
synchronous
counter
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Waveform viewing is indispensable during the authoring phase of a 
design or a testbench. With a viewer, you can casually inspect that 
the behavior of the code is as expected. They are needed to diag- 
nose, in an efficient fashion, why and when problems occur in the 
design or testbench. They can be used interactively during the sim- 
ulation, but more importantly offline, after the simulation has com- 
pleted. As shown in Figure 2-11, a waveform viewer can play back 
the events that occurred during the simulation that were recorded in 
some trace file. 
 
 

Event 
Database

File

 Waveform 
Viewer 

Simulation
Engine Models 

 
 
 
 
Viewing waveforms as a post-processing step lets you quickly 
browse through a simulation that can take hours to run. However, 
keep in mind that recording trace information significantly reduces 
the performance of the simulator. The quantity and scope of the sig- 
nals whose transitions are traced, as well as the duration of the 
trace, should be limited as much as possible. Of course, you have to 
trade-off the cost of tracing a greater quantity or scope of signals 
versus the cost of running the simulation over again to get a trace of 
additional signals that turn out to be required to completely diag- 
nose the problem. If it is likely or known that bugs will be reported, 
such as the beginning of the project or during a debugging iteration, 
trace all the signals required to diagnose the problem. If no errors 
are expected, such as during regression runs, no signal should be 
traced. 

 
In a functional verification environment, using a waveform viewer 
to determine the correctness of a design involves interpreting the 
dozens (if not hundreds) of wavy lines on a computer screen against 
some expectation. It can be an acceptable verification method used 
two or three times, for less than a dozen signals. As the number of 
signals and transitions increases, so does the number of relation- 
ships that must be checked for correctness. Multiply that by the 
duration of the simulation, Multiply again by the number of simula- 
tion runs. Very soon, the probability that a functional error is 
missed reaches one hundred percent. 
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Some viewers 
can compare 
sets of wave-
forms.

Some waveform viewers can compare two sets of waveforms. One
set is presumed to be a golden reference, while the other is verified
for any discrepancy. The comparator visually flags or highlights
any differences found. This approach has two significant problems.

How do you 
define a set of 
waveforms as 
“golden”?

First, how is the golden reference waveform set declared “golden”?
If visual inspection is required, the probability of missing a signifi-
cant functional error remains equal to one hundred percent in most
cases. The only time golden waveforms are truly available is in a
redesign exercise, where cycle-accurate backward compatibility
must be maintained. However, there are very few of these designs.
Most redesign exercises take advantage of the process to introduce
needed modifications or enhancements, thus tarnishing the status of
the golden waveforms.

And are the dif-
ferences really 
significant?

Second, waveforms are at the wrong level of abstraction to compare
simulation results against design intent. Differences from the
golden waveforms may not be significant. The value of all output
signals is not significant all the time. Sometimes, what is significant
is the relative relationships between the transitions, not their abso-
lute position. The new waveforms may be simply shifted by a few
clock cycles compared to the reference waveforms, but remain
functionally correct. Yet, the comparator identifies this situation as
a mismatch.

Use assertions 
instead.

You should avoid using waveform viewing to check a response. It
should be reserved for debugging. Instead of looking for specific
signal relationships in a waveform viewer, specify these same rela-
tionships using assertions. The assertions will be continuously and
reliably checked, for the entire duration of the simulation, for all
simulations. They will provide a specification of the intended func-
tionality of the design. Should your design be picked up by another
designer, your original intent will be communicated along with
your original code.

CODE COVERAGE

Did you forget 
to verify some 
function in your 
code?

Code coverage is a technology that can identify what code has been
(and more importantly not been) executed in the design under veri-
fication. It is a technology that has been in use in software engineer-
ing for quite some time. The problem with a design containing an
unknown bug is that it looks just like a perfectly good design. It is
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impossible to know, with one hundred percent certainty, that the
design being verified is indeed functionally correct. All of your
testbenches simulate successfully, but are there sections of the RTL
code that you did not exercise and therefore not triggered a func-
tional error? That is the question that code coverage can help
answer.

Code must first 
be instrumented.

Figure 2-12 shows how code coverage works. The source code is
first instrumented. The instrumentation process simply adds check-
points at strategic locations of the source code to record whether a
particular construct has been exercised. The instrumentation mech-
anism varies from tool to tool. Some may use file I/O features avail-
able in the language (i.e., use $write statements in SystemVerilog).
Others may use special features built into the simulator.

No need to 
instrument the 
testbenches.

Only the code for the design under verification needs to be covered
and thus instrumented. The objective of code coverage is to deter-
mine if you have forgotten to exercise some code in the design. The
code for the testbenches need not be traced to confirm that it has
executed. If a significant section of a testbench was not executed, it
should be reflected in some portion of the design not being exer-
cised. Furthermore, a significant portion of testbench code is exe-
cuted only if errors are detected. Code coverage metrics on
testbench code are therefore of little interest.

Trace informa-
tion is collected 
at runtime.

The instrumented code is then simulated normally using all avail-
able, uninstrumented, testbenches. The cumulative traces from all
simulations are collected into a database. From that database,
reports can be generated to measure various coverage metrics of the
verification suite on the design.

Figure 2-12.
Code coverage 
process
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The most popular metrics are statement, path and expression cover-
age.

Statement Coverage

Statement and 
block coverage 
are the same 
thing.

Statement coverage can also be called block coverage, where a
block is a sequence of statements that are executed if a single state-
ment is executed. The code in Sample 2-8 shows an example of a
statement block. The block named acked is executed entirely when-
ever the expression in the if statement evaluates to true. So counting
the execution of that block is equivalent to counting the execution
of the four individual statements within that block.

But block 
boundaries may 
not be that obvi-
ous.

Statement blocks may not be necessarily clearly delimited. In Sam-
ple 2-9, two statement blocks are found: one before (and including)
the wait statement, and one after. The wait statement may have
never completed and the execution was waiting forever. The subse-
quent sequential statements may not have executed. Thus, they
form a separate statement block.

Did you execute 
all the state-
ments?

Statement, line or block coverage measures how much of the total
lines of code were executed by the verification suite. A graphical
user interface usually lets the user browse the source code and
quickly identify the statements that were not executed. Figure 2-13
shows, in a graphical fashion, a statement coverage report for a
small portion of code from a model of a modem. The actual form of

Sample 2-8.
Block vs. 
statement exe-
cution

if (dtack == 1’b1) begin: acked
   as     <= 1’b0;
   data   <= 16’hZZZZ;
   bus_rq <= 1’b0;
   state  <= IDLE;
end: acked

Sample 2-9.
Blocks sepa-
rated by a wait
statement

address <= 16’hFFED;
ale     <= 1’b1;
rw      <= 1’b1;
wait (dtack == 1’b1);
read_data = data;
ale     <= 1’b0;
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the report from any code coverage tool or source code browser will
likely be different.

Why did you not 
execute all state-
ments?

The example in Figure 2-13 shows that two out of the eight execut-
able statements—or 25 percent—were not executed. To bring the
statement coverage metric up to 100 percent, a desirable goal1, it is
necessary to understand what conditions are required to cause the
execution of the uncovered statements. In this case, the parity must
be set to either ODD or EVEN. Once the conditions have been
determined, you must understand why they never occurred in the
first place. Is it a condition that can never occur? Is it a condition
that should have been verified by the existing verification suite? Or
is it a condition that was forgotten?

Add testcases to 
execute all state-
ments.

If the conditions that would cause the uncovered statements to be
executed should have been verified, it is an indication that one or
more testbenches are either not functionally correct or incomplete.
If the condition was entirely forgotten, it is necessary to add to an
existing testbench, create an entirely new one or make additional
runs with different seeds.

Path Coverage

There is more 
than one way to 
execute a 
sequence of 
statements.

Path coverage measures all possible ways you can execute a
sequence of statements. The code in Sample 2-10 has four possible
paths: the first if statement can be either true or false. So can the
second. To verify all paths through this simple code section, it is

Figure 2-13.
Example of 
statement
coverage

if (parity == ODD || parity == EVEN) begin
   tx <= compute_parity(data, parity);
   #(tx_time);
end
tx <= 1’b0;
#(tx_time);
if (stop_bits == 2) begin
   tx <= 1’b0;
   #(tx_time);
end

1. But not necessarily achievable. For example, the default clause in a 
fully specified case statement should never be executed.



Code Coverage

Writing Testbenches using SystemVerilog 45

necessary to execute it with all possible state combinations for both
if statements: false-false, false-true, true-false, and true-true.

Why were some 
sequences not 
executed?

The current verification suite, although it offers 100 percent state-
ment coverage, only offers 75 percent path coverage through this
small code section. Again, it is necessary to determine the condi-
tions that cause the uncovered path to be executed. In this case, a
testcase must set the parity to neither ODD nor EVEN and the num-
ber of stop bits to two. Again, the important question one must ask
is whether this is a condition that will ever happen, or if it is a con-
dition that was overlooked.

Limit the length 
of statement 
sequences.

The number of paths in a sequence of statements grows exponen-
tially with the number of control-flow statements. Code coverage
tools give up measuring path coverage if their number is too large
in a given code sequence. To avoid this situation, keep all sequen-
tial code constructs (always and initial blocks, tasks and functions)
to under 100 lines.

Reaching 100 percent path coverage is very difficult.

Expression Coverage

There may be 
more than one 
cause for a con-
trol-flow 
change.

If you look closely at the code in Sample 2-11, you notice that there
are two mutually independent conditions that can cause the first if
statement to branch the execution into its then clause: parity being
set to either ODD or EVEN. Expression coverage, as shown in
Sample 2-11, measures the various ways decisions through the code

Sample 2-10.
Example of 
statement and 
path coverage

if (parity == ODD || parity == EVEN) begin
   tx <= compute_parity(data, parity);
   #(tx_time);
end
tx <= 1’b0;
#(tx_time);
if (stop_bits == 2) begin
   tx <= 1’b0;
   #(tx_time);
end
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are made. Even if the statement coverage is at 100 percent, the
expression coverage is only at 50 percent.

Once more, it is necessary to understand why a controlling term of
an expression has not been exercised. In this case, no testbench sets
the parity to EVEN. Is it a condition that will never occur? Or was it
another oversight?

Reaching 100 percent expression coverage is extremely difficult.

FSM Coverage

Statement cov-
erage detects 
unvisited states.

Because each state in an FSM is usually explicitly coded using a
choice in a case statement, any unvisited state will be clearly identi-
fiable through uncovered statements. The state corresponding to an
uncovered case statement choice was not visited during verifica-
tion.

FSM coverage 
identifies state 
transitions.

Figure 2-14 shows a bubble diagram for an FSM. Although it has
only five states, it has significantly more possible transitions: 14
possible transitions exist between adjoining states. State coverage
of 100 percent can be easily reached through the sequence Reset, A,
B, D, then C. However, this would yield only 36 percent transition
coverage. To completely verify the implementation of this FSM, it
is necessary to ensure the design operates according to expectation
for all transitions. 

Sample 2-11.
Example of 
statement and 
expression
coverage

if (parity == ODD || parity == EVEN) begin
   tx <= compute_parity(data, parity);
   #(tx_time);
end
tx <= 1’b0;
#(tx_time);
if (stop_bits == 2) begin
   tx <= 1’b0;
   #(tx_time);
end
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FSM coverage 
cannot identify 
unintended or 
missing transi-
tions.

The transitions identified by FSM coverage tools are automatically
extracted from the implementation of the FSM. There is no way for
the coverage tool to determine whether a transition was part of the
intent, or if an intended transition is missing. It is important to
review the extracted state transitions to ensure that only and all
intended transitions are present.

What about 
unspecified 
states?

The FSM illustrated in Figure 2-14 only shows five specified states.
Once synthesized into hardware, a 3-bit state register will be neces-
sary (maybe more if a different state encoding scheme, such as one-
hot, is used). This leaves three possible state values that were not
specified. What if some cosmic rays zap the design into one of
these unspecified states? Will the correctness of the design be
affected? Logic optimization may yield decode logic that creates an
island of transitions within those three unspecified states, never let-
ting the design recover into specified behavior unless reset is
applied. The issues of design safety and reliability and techniques
for ensuring them are beyond the scope of this book. But it is the
role of a verification engineer to ask those questions.

Formal verifica-
tion may be bet-
ter suited for 
FSM verifica-
tion.

The behavior of a FSM is a combination of its state transition
description and the behavior of its input signals. If those input sig-
nals are themselves generated by another FSM or follow a specific
protocol, it is possible that certain transitions cannot be taken or
states cannot be reached. A property checker tool may be able to
formally determine which states are reachable and which transi-
tions are possible—including invalid states and transitions. It may
also be able to formally verify that a specific state encoding, such as
one-hot, is never violated.

Figure 2-14.
Example FSM 
bubble 
diagram Reset
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What Does 100 Percent Code Coverage Mean?

Completeness
does not imply 
correctness.

The short answer is: The entire design implementation was exe-
cuted. Code coverage indicates how thoroughly your entire verifi-
cation suite exercises the source code. But it does not provide an
indication, in any way, about the correctness or completeness of the
verification suite. Figure 2-15 shows the reconvergence model for
automatically extracted code coverage metrics. It clearly shows that
it does not help verify design intent, only that the RTL code, correct
or not, was fully exercised.

Results from code coverage should be interpreted with a grain of
salt. They should be used to help identify corner cases that were not
exercised by the verification suite or implementation-dependent
features that were introduced during the implementation. You
should also determine if the uncovered cases are relevant and
deserve additional attention, or a consequence of the mindlessness
of the coverage tool.

Code coverage 
lets you know if 
you are not 
done.

Code coverage indicates if the verification task is not complete
through low coverage numbers. A high coverage number is by no
means an indication that the job is over. For example, the code in an
empty module will always be 100 percent covered. If the function-
ality that ought to be implemented in that module is not verified, all
testbenches will pass without errors. Code coverage is an additional
indicator for the completeness of the verification job. It can help
increase your confidence that the verification job is complete, but it
should not be your only indicator.

Code coverage 
tools can be 
used as profil-
ers.

When developing models for simulation only, where performance
is an important criteria, code coverage can be used for profiling.
The aim of profiling is the opposite of code coverage. The aim of
profiling is to identify the lines of codes that are executed most
often. These lines of code become the primary candidates for per-
formance optimization efforts.

Figure 2-15.
Reconvergent 
paths in 
automated
code coverage
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FUNCTIONAL COVERAGE

Did you forget 
to verify some 
condition?

Functional coverage is another technology to help ensure that a bad
design is not hiding behind passing testbenches. Although this tech-
nology has been in use at some companies for quite some time, it is
a recent addition to the arsenal of general-purpose verification
tools. Functional coverage records relevant metrics (e.g., packet
length, instruction opcode, buffer occupancy level) to ensure that
the verification process has exercised the design through all of the
interesting values. Whereas code coverage measures how much of
the implementation has been exercised, functional coverage mea-
sures how much of the original design specification has been exer-
cised.

It complements 
code coverage.

High functional coverage does not necessarily correlate with high
code coverage. Whereas code coverage is concerned with recording
the mechanics of code execution, functional coverage is concerned
with the intent or purpose of the implemented function. For exam-
ple, the decoding of a CPU instruction may involve separate case
statements for each field in the opcode. Each case statement may be
100 percent code-covered due to combinations of field values from
previously decoded opcodes. However, the particular combination
involved in decoding a specific CPU instruction may not have been
exercised.

It will detect 
errors of omis-
sion.

Sample 2-12 shows a case statement decoding a CPU instruction.
Notice how the decoding of the RTS instruction is missing. If you
rely solely on code coverage, you will be lulled in a false sense of
completeness by having 100 percent coverage of this code. For
code coverage to report a gap, the unexercised code must apriori
exist. Functional coverage does not rely on actual code. It will
report gaps in the recorded values whether the code to process them
is there or not.

Sample 2-12.
Example of 
coding error 
undetectable
by code cover-
age

enum {ADD, SUB, JMP, RTS, NOP} opcode;
...
case (opcode)
   ADD: ...
   SUB: ...
   JMP: ...
   default: ...
endcase
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It must be manu-
ally defined.

Code coverage was quickly adopted into verification processes
because of its low adoption cost. It requires very little additional
action from the user: usually the specification of an additional com-
mand-line option when compiling your code. Functional coverage,
because it is a measure of values deemed to be interesting and rele-
vant, must be manually specified. Since relevance and interest are
qualities that are extracted from the intent of the design, functional
coverage is not something that can be automatically extracted from
the RTL source code. Your functional coverage metrics will be only
as good as what you implement.

Metrics are col-
lected at runtime 
and graded.

Like code coverage, functional coverage metrics are collected at
runtime, during a simulation run. The values from individual runs
are collected into a database or separate files. The functional cover-
age metrics from these separate runs are then merged for offline
analysis. The marginal coverage of individual runs can then be
graded to identify which runs contributed the most toward the over-
all functional coverage goal. These runs are then given preference
in the regression suite, while pruning runs that did not significantly
contribute to the objective.

Coverage data 
can be used at 
runtime.

SystemVerilog provides a set of predefined methods that let a test-
bench dynamically query a particular functional coverage metric.
The testbench can then use the information to modify its current
behavior. For example, it could increase the probability of generat-
ing values that have not been covered yet. It could decide to abort
the simulation should the functional coverage not have significantly
increased since the last query. 

Although touted as a powerful mechanism, it is no silver bullet.
Implementing the dynamic feedback mechanism is not easy: You
have to correlate your stimulus generation process with the func-
tional coverage metric, and ensure that one will cause the other to
converge toward the goal. Dynamic feedback works best when
there is a direct correlation between the input and the measured
coverage, such as instruction types. It may be more efficient to
achieve your goal with three or four runs of a few simple test-
benches without dynamic feedback than with a single run of a much
more complex testbench.
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Coverage Points

Did I generate 
all interesting 
and relevant val-
ues?

A coverage point is the sampling of an individual scalar value or
expression. The objective of a coverage point is to ensure that all
interesting and relevant values have been observed in the sampled
value or expression. Examples of coverage points include, but are
not limited to, packet length, instruction opcode, interrupt level, bus
transaction termination status, buffer occupancy level, bus request
patterns and so on.

Define what to 
sample.

It is extremely easy to record functional coverage and be inundated
with vast amounts of coverage data. But data is not the same thing
as information. You must restrict coverage to only (but all!) values
that will indicate how thoroughly your design has been verified. For
example, measuring the value of the read and write pointers in a
FIFO is fine if you are concerned about the full utilization of the
buffer space and wrapping around of the pointer values. But if you
are interested in the FIFO occupancy level (Was it ever empty? Was
it ever full? Did it overflow?), you should measure and record the
difference between the pointer values.

Define where to 
sample it.

Next, you must decide where in your testbench or design is the
measured value accurate and relevant. For example, you can sam-
ple the opcode of an instruction at several places: at the output of
the code generator, at the interface of the program memory, in the
decoder register or in the execution pipeline. You have to ensure
that a value, once recorded, is indeed processed or committed as
implied by the coverage metric. 

For example, if you are measuring opcodes that were executed,
they should be sampled in the execution unit. Sampling them in the
decode unit could result in false samples when the decode pipeline
is flushed on branches or exceptions. Similarly, sampling the length
of packets at the output of the generator may yield false samples: If
a packet is corrupted by injecting an error during its transmission to
the design in lower-level functions of the testbench, it may be
dropped.

Define when to 
sample it.

Values are sampled at some point in time during the simulation. It
could be at every clock cycle, whenever the address strobe signal is
asserted, every time a request is made or after randomly generating
a new value. You must carefully choose your sampling time. Over-



Verification Technologies

52 Writing Testbenches using SystemVerilog

sampling will decrease simulation performance and consume data-
base resources without contributing additional information. 

The sampled data must also be stable so race conditions must be
avoided between the sampled data and the sampling event (see
“Read/Write Race Conditions” on page 177). To reduce the proba-
bility that a transient value is being sampled, functional coverage in
SystemVerilog can be sampled at the end of the simulation cycle,
before time is about to advance (see “The Simulation Cycle” on
page 163) when the strobe option is used. 

Define why it is 
covered.

If functional coverage is supposed to measure interesting and rele-
vant values, it is necessary to define what makes those values so
interesting and relevant. For example, measuring the functional
coverage of a 32-bit address will yield over 4 billion “interesting
and relevant” values. Not all values are created equal—but most
are. Values may be numerically different but functionally equiva-
lent. By identifying those functionally equivalent values into a sin-
gle bin, you can reduce the number of interesting and relevant
values to a more manageable size. For example, based on the
decoder architecture, addresses 0x00000001 through 0x7FFFFFFF
and addresses 0x80000000 through 0x8FFFFFFE are functionally
equivalent, reducing the number of relevant and interesting values
to 4 bins (min, 1 to mid, mid to max-1, max).

It can detect 
invalid values.

Just as you can define bins of equivalent values, it is possible to
define bins of invalid or unexpected values. Functional coverage
can be used as an error detecting mechanism, just like an if state-
ment in your testbench code. However, you should not rely on func-
tional coverage to detect invalid values. Functional coverage is an
optional runtime data collection mechanism that may not be turned
on at all times. If functional coverage is not enabled to improve
simulation performance and if a value is defined as invalid in the
functional coverage only, then an invalid value may go undetected.

It can report 
holes.

The ultimate purpose of functional coverage is to identify what
remains to be done. During analysis, the functional coverage
reporting tool can compare the number of bins that contain at least
one sample against the total number of bins. Any bin that does not
contain at least one sample is a hole in your functional coverage. By
enumerating the empty bins, you can focus on the holes in your test
cases and complete your verification sooner rather than continue to
exercise functionality that has already been verified. 



Functional Coverage

Writing Testbenches using SystemVerilog 53

For this enumeration to be possible, the total number of bins for a
coverage point must be relatively small. For example, it is practi-
cally impossible to fill the coverage for a 32-bit value without
broad bins. The number of holes will be likely in the millions, mak-
ing enumeration impossible. You should strive to limit the number
of possible bins as much as possible.

Cross Coverage

Did I generate 
all interesting 
combinations of 
values?

Whereas coverage points are concerned with individual scalar val-
ues, cross coverage measures the presence or occurrence of combi-
nations of values. It helps answer questions like, “Did I inject a
corrupted packet on all ports?” “Did we execute all combinations of
opcodes and operand modes?” and “Did this state machine visit
each state while that buffer was full, not empty and empty?” Cross
coverage can involve more than two coverage points. However, the
number of possible bins grows factorially with the number of
crossed points.

Similar to cover-
age points.

Mechanically, cross coverage is identical to coverage points. Spe-
cific values are sampled at specific locations at specific points in
time with specific value bins. The only difference is that two or
more values are sampled instead of one. To ensure that crossed val-
ues are consistent, they must all be sampled at the same time. In
SystemVerilog, only coverage points specified within the same cov-
ergroup can be crossed.

Transition Coverage

Did I generate 
all interesting 
sequences of 
values?

Whereas cross coverage is concerned with combinations of scalar
values at the same point in time, transition coverage measures the
presence or occurrence of sequences of values. Transition coverage
helps answer questions like, “Did I perform all combinations of
back-to-back read and write cycles?” “Did we execute all combina-
tions of arithmetic opcodes followed by test opcodes?” and “Did
this state machine traverse all significant paths?” Transition cover-
age can involve more than two consecutive values of the same cov-
erage point. However, the number of possible bins grows factorially
with the number of transition states.

Similar to cover-
age points.

Mechanically, transition coverage is identical to coverage points.
Specific values are sampled at specific locations at specific points
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in time with specific bins. The only difference is that a sample is
said to have occurred in a bin after two or more consecutive cover-
age point samples instead of one. The other difference is that transi-
tions can overlap, hence two transition samples may be composed
of the same coverage point sample.

Similar to FSM 
path coverage.

Conceptually, transition coverage is identical to FSM path coverage
(see “FSM Coverage” on page 46). Both record the consecutive
values at a particular location of the design (for example, a state
register), and both compare against the possible set of paths. But
unlike FSM coverage tools, which are limited to state registers in
RTL code, transition coverage can be applied to any coverage
points in testbenches and the design under verification.

Transition cov-
erage reflects 
intent.

Because transition coverage is manually specified from the intent
of the design or the implementation, it provides a true independent
path to verifying the correctness of the design and the completeness
of the verification. It can detect invalid transitions as well as specify
transitions that may be missing from the implementation of the
design.

What Does 100 Percent Functional Coverage Mean?

It indicates com-
pleteness of the 
test suite, not 
correctness.

Functional coverage indicates which interesting and relevant condi-
tions were verified. It provides an indication of the thoroughness of
the implementation of the verification plan. Unless some bins are
defined as invalid, it cannot provide an indication, in any way,
about the correctness of those conditions or of the design’s
response to those conditions. Functional coverage metrics are only
as good as the functional coverage model you have defined. An
overall functional coverage metric of 100 percent means that
you’ve covered all of the coverage points you included in the simu-
lation. It makes no statement about the completeness of your func-
tional coverage model.

Results from functional coverage should also be interpreted with a
grain of salt. Since they are generated by additional testbench con-
structs, they have to be debugged and verified for correctness
before being trusted. They will help identify additional interesting
conditions that were not included in the verification plan.
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Functional cov-
erage lets you 
know if you are 
done.

When used properly, functional coverage becomes a formal specifi-
cation of the verification plan. Once you reach 100 percent func-
tional coverage, it indicates that you have created and exercised all
of the relevant and interesting conditions you originally identified.
It confirms that you have implemented everything in the verifica-
tion plan. However, it does not provide any indication of the com-
pleteness of the verification plan itself or the correctness of the
design under such conditions.

If a metric is not 
interesting,
don’t measure it.

It is extremely easy to define functional coverage metrics and gen-
erate many reports. If coverage is not measured according to a spe-
cific purpose, you will soon drown under megabytes of functional
coverage reports. And few of them will ever be close to 100 per-
cent. It will also become impossible to determine which report is
significant or what is the significance of the holes in others. The
verification plan (see the next chapter) should serve as the func-
tional specification for the coverage models, as well as for the rest
of the verification environment. If a report is not interesting or
meaningful to look at, if you are not eager to look at a report after a
simulation run, then you should question its existence.

VERIFICATION LANGUAGE TECHNOLOGIES

Verilog is a sim-
ulation lan-
guage, not a 
verification lan-
guage.

Verilog was designed with a focus on describing low-level hard-
ware structures. Verilog-2001 only introduced support for basic
high-level data structures. Verilog thus continued to lack features
important in efficiently implementing a modern verification pro-
cess. These shortcomings were the forces being the creation of
hardware verification languages, such as Synopsys’ OpenVera.
Having demonstrated their usefulness, the value-add functionality
of HVLs has been incorporated in SystemVerilog.

Verification lan-
guages can raise 
the level of 
abstraction.

As mentioned in Chapter 1, one way to increase productivity is to
raise the level of abstraction used to perform a task. High-level lan-
guages, such as C or Pascal, raised the level of abstraction from
assembly-level, enabling software engineers to become more pro-
ductive. Similarly, the SystemVerilog verification constructs are
able to raise the level of abstraction compared to plain Verilog. Sys-
temVerilog can provide an increase in level of abstraction while
maintaining the important concepts necessary to interact with hard-
ware: time, concurrency and instantiation. The SystemVerilog fea-
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tures that help raise the level of abstraction include: class, object-
oriented class extensions and temporal properties.

SystemVerilog 
can automate 
verification.

If higher levels of abstraction and object-orientedness were suffi-
cient, then C++ would have long been identified as the best solu-
tion1: It is free and widely known. SystemVerilog provides
additional benefits, as shown in Figure 2-16. It can automate a por-
tion of the verification process by randomly generating stimulus,
collecting functional coverage to identify holes then easily add or
modify constraints to create more stimulus targeted to fill those
holes. To support this productivity cycle, SystemVerilog offers con-
strainable random generation, functional coverage measurement
and an object-oriented code extension mechanism.   

SystemVerilog 
can implement a 
coverage-driven 
constrained ran-
dom approach.

SystemVerilog can be used as if it was a simple souped-up version
of Verilog. SystemVerilog will make implementing directed test-
benches easier than plain Verilog—especially the self-checking
part. But if you want to take advantage of the productivity cycle
shown in Figure 2-16, the verification process must be
approached—and implemented—in a different fashion. 

This change is just like taking advantage of the productivity offered
by logic synthesis tools: It requires an approach different from
schematic capture. To successfully implement a coverage-driven
constrained random verification approach, you need to modify the
way you plan your verification, design its strategy and implement
the testcases. This new approach is described in “Coverage-Driven
Random-Based Approach” on page 101.

1. C++ still lacks a native concept of time, concurrency and instantiation.

Figure 2-16.
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ASSERTIONS

Assertions 
detect condi-
tions that should 
always be true.

An assertion boils down to an if statement and an error message
should the expression in the if statement become false. Assertions
have been used in software design for many years: the assert()
function has been part of the ANSI C standard from the beginning.
In software for example, assertions are used to detect conditions
such as NULL pointers or empty lists. VHDL has had an assert
statement from day one too, but it was never a popular construct.

Hardware asser-
tions require a 
form of tempo-
ral language.

An immediate assertion, like an if statement, simply checks that, at
the time it is executed, the condition evaluates to TRUE. This sim-
ple zero-time test is not sufficient for supporting assertions in hard-
ware designs. In hardware, functional correctness usually involves
behavior over a period of time. Some hardware assertions such as,
“This state register is one-hot encoded.” or “This FIFO never over-
flows.” can be expressed as immediate, zero-time expressions. But
checking simple hardware assertions such as, “This signal must be
asserted for a single clock period.” or “A request must always be
followed by a grant or abort within 10 clock cycles.” require that
the assertion condition be evaluated over time. Thus, assertions
require the use of a temporal language to be able to describe rela-
tionships over time.

There are two 
classes of asser-
tions.

Assertions fall in two broad classes: those specified by the designer
and those specified by the verification engineer. 

• Implementation assertions are specified by the designers. 
• Specification assertions are specified by the verification engi-

neers.

Implementation 
assertions ver-
ify assumptions.

Implementation assertions are used to formally encode the
designer’s assumptions about the interface or implementation of the
design or conditions that are indications of misuse or design faults.
For example, the designer of a FIFO would add assertions to detect
if it ever overflows or underflows or that, because of a design limi-
tation, the write and read pulses are ever asserted at the same time.
Because implementation assertions are specified by the designer,
they will not detect discrepancies between the functional intent and
the design. But implementation assertions will detect discrepancies
between the design assumptions and the implementation.
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Specification 
assertions ver-
ify intent.

Specification assertions formally encode expectations of the design
based on the functional intent. These assertions are used as a func-
tional error detection mechanism and supplement the error detec-
tions performed in the self-checking section of testbenches.
Specification assertions are typically white-box strategies because
the relationships between the primary inputs and outputs of a mod-
ern design are too complex to be described efficiently in System-
Verilog’s temporal languages. For example, rather than relying on
the scoreboard to detect that an arbiter is not fair, it is much simpler
to perform this check using a white-box assertion.

Simulated Assertions

The OVL started 
the storm.

Assertions took the hardware design community by storm when
Foster and Bening’s book1 introduced the concept using a library of
predefined Verilog modules that implemented a set of common
design assertions. The library, available in source form as the Open
Verification Library,2 was a clever way of using Verilog to specify
temporal expressions. Foster, then at Hewlett-Packard, had a hidden
agenda: Get designers to specify design assertions he could then try
to prove using formal methods. Using Verilog modules was a con-
venient solution to ease the adoption of these assertions by the
designers. The reality of what happened next proved to be even
more fruitful.

They detect 
errors close in 
space and time 
to the fault.

If a design assumption is violated during simulation, the design will
not operate correctly. The cause of the violation is not important: It
could be a misunderstanding by the designer of the block or the
designer of the upstream block or an incorrect testbench. The rele-
vant fact is that the design is failing to operate according to the
original intent. The symptoms of that low-level failure are usually
not visible (if at all) until the affected data item makes its way to the
outputs of the design and is flagged by the self-checking structure. 

An assertion formally encoding the design assumption immediately
fires and reports a problem at the time it occurs, in the area of the
design where it occurs. Debugging and fixing the assertion failure

1. Harry Foster and Lionel Bening, “Principles of Verifiable RTL Design,”
second edition, Kluwer Academic Publisher, ISBN 0-7923-7368-5.

2. See http://www.eda.org/ovl.



Assertions

Writing Testbenches using SystemVerilog 59

(whatever the cause) will be a lot more efficient than tracing back
the cause of a corrupted packet. In one of Foster’s projects, 85% of
the design errors where caught and quickly fixed using simulated
assertions.

Your model can 
tell you if things 
are not as 
assumed.

SystemVerilog provides a powerful assertion language. But it also
provides constructs designed to ensure consistent results between
synthesis and simulation. Sample 2-14 shows an example of a syn-
thesizeable unique case statement, which can be used to replace the
full case directive shown in Sample 2-13. In both cases, the synthe-
sis tool is instructed that the case statement describes all possible
non-overlapping conditions. But it is possible for an unexpected
condition to occur during simulation. If that were the case, the sim-
ulation results would differ from the results produced by the hard-
ware implementation. If a pragma is used, as in Sample 2-13, the
unexpected condition would only be detected if it eventually pro-
duces an incorrect response. If the unique case statement is used,
any unexpected condition will be immediately reported near the
time and place of its occurence. 

Formal Assertion Proving

Is it possible for 
an assertion to 
fire?

Simulation can show only the presence of bugs, never prove their
absence. The fact that an assertion has never reported a violation
throughout a series of simulations does not mean that it can never
be violated. Tools like code and functional coverage can satisfy us
that a portion of a design was thoroughly verified—but there will
(and should) always be a nagging doubt.

Sample 2-13.
full case direc-
tive

case (mode[1:0]) // synopsys full_case
2’b00: ...
2’b10: ...
2’b01: ...
endcase

Sample 2-14.
unique case
statement

unique case (mode[1:0])
2’b00: ...
2’b10: ...
2’b01: ...
endcase
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Property check-
ing can mathe-
matically prove 
or disprove an 
assertion.

Formal tools called property checkers or assertion provers can
mathematically prove that, given an RTL design and some assump-
tions about the relationships of the input signals, an assertion will
always hold true. If a counter example is found, the formal tool will
provide details on the sequence of events that leads to the assertion
violation. It is then up to you to decide if this sequence of events is
possible, given additional knowledge about the environment of the
design.

Some assertions 
are used as 
assumptions.

Given total freedom over the inputs of a design, it may be possible
to violate assertions about its implementation. The proper operation
of the design may rely on the proper behavior of the inputs, subject
to limitations and rules that must be followed. These input signals
usually come from other designs that do not behave (one hopes!)
erratically and follow the rules. When proving some assertions on a
design, it is thus necessary to supply assertions on the inputs or
state of the design. The latter assertions are not proven. Rather, they
are assumed to be true and used to constrain the solution space for
the proof.

Assumptions
need to be 
proven too.

The correctness of a proof depends on the correctness of the
assumptions1 made on the design inputs. Should any assumption be
wrong, the proof no longer stands. An assumption on a design’s
inputs thus becomes an assertion to be proven on the upstream
design supplying those inputs.

Semi-formal
tools combine 
property check-
ing with simula-
tion.

Semi-formal tools are hybrid tools that combine formal methods
with simulation. Semi-formal tools are used to bridge the gap
between the capacity of current formal analysis engines and the size
and complexity of the design to be verified. Rather than try to prove
all assertions from the reset state, they use intermediate simulation
information—such as the current state of a design—as a starting
point for proving or disproving assertions.

Use formal 
methods to 
prove cases 
uncovered in 
simulation.

Formal verification does not replace simulation or make it obsolete.
Simulation (including simulated assertions) is the lawnmower of
the verification garden: It is still the best technology for covering
broad swaths of functionality and for weeding out the easy-to-find

1. The formal verification community calls these input assertions “con-
straints.” I used the term “assumptions” to differentiate them from ran-
dom-generation constraints, which are randomization concepts.
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and some not-so-easy-to-find bugs. Formal verification puts the fin-
ishing touch on those hard-to-reach corners in critical and impor-
tant design sections and ensures that the job is well done. Using
functional coverage metrics collected from simulation (for exam-
ple, request patterns on an arbiter), conditions that remain to be ver-
ified are identified. If those conditions would be difficult to create
within the simulation environment, it may be easier to prove the
correctness of the design for the remaining uncovered cases.

Formal verifica-
tion should 
replace ad hoc 
unit-level verifi-
cation.

When a designer completes the coding of a design unit—a single or
a few modules implementing some elementary function—he or she
verifies that it works as intended. This verification is casual and
usually the waveform viewer is used to visually inspect the correct-
ness of the response. As mentioned in “Waveform Viewers” on
page 39, assertions should be used to specify the signal relation-
ships that define the implementation as “correct” instead of looking
for them visually. Once these relationships are specified using
assertions, why not try to prove or disprove them using formal tech-
nology instead of simulating the design?   

Assertion speci-
fication is a 
complex topic.

This simple introduction to assertions does not do justice to the
richness and power—and ensuing complexity—of assertions.
Entire books have already been written about the subject and
should be consulted for more information. Chapter 3 and 7 of the
Verification Methodology Manual for SystemVerilog provide a lot
of guidelines for using assertions with simulation and formal tech-
nologies.

REVISION CONTROL

Are we all look-
ing at the same 
thing?

One of the major difficulties in verification is to ensure that what is
being verified is actually what will be implemented. When you
compile a SystemVerilog source file, what is the guarantee that the
design engineer will use that exact same file when synthesizing the
design?

When the same person verifies and then synthesizes the design, this
problem is reduced to that person using proper file management
discipline. However, as I hope to have demonstrated in Chapter 1,
having the same person perform both tasks is not a reliable func-
tional verification process. It is more likely that separate individuals
perform the verification and synthesis tasks.
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Files must be 
centrally man-
aged.

In very small and closely knit groups, it may be possible to have
everyone work from a single directory, or to have the design files
distributed across a small number of individual directories. Every-
one agrees where each other’s files are, then each is left to his or her
own device. This situation is very common and very dangerous:
How can you tell if the designer has changed a source file and
maybe introduced a functional bug since you last verified it?

It must be easy 
to get at all the 
files, from a sin-
gle location.

This methodology is not scalable either. It quickly breaks down
once the team grows to more than two or three individuals. And it
does not work at all when the team is distributed across different
physical or geographical areas. The verification engineer is often
the first person to face the non-scalability challenge of this environ-
ment. Each designer is content working independently in his or her
own directories. Individual designs, when properly partitioned,
rarely need to refer to some other design in another designer’s
working directory. As the verification engineer, your first task is to
integrate all the pieces into a functional entity. That’s where the dif-
ficulties of pulling bits and pieces from heterogeneous working
environments scattered across multiple file servers become
apparent.

The Software Engineering Experience

HDL models are 
software 
projects!

For over 30 years, software engineering has been dealing with the
issues of managing a large number of source files, authored by
many different individuals, verified by others and compiled into a
final product. Make no mistake: Managing a synthesis-based hard-
ware design project is no different than managing a software
project.

Free and com-
mercial tools are 
available.

To help manage files, software engineers use source control man-
agement systems. Some are available, free of charge, either bundled
with the UNIX operating systems (RCS, CVS, SCCS), or distrib-
uted by the GNU project (RCS, CVS) and available in source form
at:

ftp://prep.ai.mit.edu/pub/gnu

Commercial systems, some very sophisticated, are also available.

All source files 
are centrally 
managed.

Figure 2-17 shows how source files are managed using a source
control management system. All accesses and changes to source
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files are mediated by the management system. Individual authors
and users interact solely through the management system, not by
directly accessing files in working directories.

The history of a 
file is main-
tained.

Source code management systems maintain not only the latest ver-
sion of a file, but also keep a complete history of each file as sepa-
rate versions. Thus, it is possible to recover older versions of files,
or to determine what changed from one version to another. It is a
good idea to frequently check in file versions. You do not have to
rely on a backup system if you ever accidentally delete a file.
Sometimes, a series of modifications you have been working on for
the last couple of hours is making things worse, not better. You can
easily roll back the state of a file to a previous version known to
work.

The team owns 
all the files.

When using a source management system, files are no longer
owned by individuals. Designers may be nominally responsible for
various sections of a design, but anyone—with the proper permis-
sions—can make any change to any file. This lets a verification
engineer fix bugs found in RTL code without having to rely on the
designer, busy trying to get timing closure on another portion of the
design. The source management system mediates changes to files
either through exclusive locks, or by merging concurrent modifica-
tions.

Configuration Management

Each user works 
from a view of 
the file system.

Each engineer working on a project managed with a source control
system has a private view of all the source files (or a subset thereof)
used in the project. Figure 2-18 shows how two users may have two

Figure 2-17.
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different views of the source files in the management system.
Views need not be always composed of the latest versions of all the
files. In fact, for a verification engineer, that would be a hindrance.
Files checked in on a regular basis by their authors may include
syntax errors, be simple placeholders for future work, or be totally
broken. It would be very frustrating if the model you were trying to
verify kept changing faster than you could identify problems with
it.

Configurations 
are created by 
tagging a set of 
versions.

All source management systems use the concept of symbolic tags
that can be attached to specific versions of files. You may then refer
to particular versions of files, or set of files, using the symbolic
name, without knowing the exact version number they refer to. In
Figure 2-18, the user on the left could be working with the versions
that were tagged as “ready to simulate” by the author. The user on
the right, the system verification engineer, could be working with
the versions that were tagged as “golden” by the block-level verifi-
cation engineer.

Configuration 
management 
translates to tag 
management.

Managing releases becomes a problem of managing tags, which can
be a complex task. Table 2-1 shows a list of tags that could be used
in a project to identify the various versions of a file as it progresses
through the design process. Some tags, such as the “Version_M.N”
tag, never move once applied to a specific version. Others, such as
the “Submit” tag, move to newer versions as the development of the
design progresses. Before moving a tag, it may be a good idea to
leave a trace of the previous position of a tag. One possible mecha-
nism for doing so is to append the date to the tag name. For exam-
ple, the old “Submit” version gets tagged with the new tag
“Submit_060302” on March 2nd, 2006 and the “Submit” tag is
moved to the latest version.

Figure 2-18.
User views of 
managed
source files design.sv1.1..1.56

cpuif.sv 1.1..1.32
tb.sv 1.1..1.49

Vault
design.sv1.53
cpuif.sv 1.28
tb.sv 1.38

design.sv1.41
cpuif.sv 1.17
tb.sv 1.38
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Working with Releases
Views can become out-of-date as new versions of files are checked
into the source management system database and tags are moved
forward.

Releases are 
specific configu-
rations.

The author of the RTL for a portion of the design would likely
always work with the latest version of the files he or she is actively
working on, checking in and updating them frequently (typically at
relevant points of code development throughout the day and at the
end of each day). Once the source code is syntactically correct and
its functionality satisfies the designer (by proving all embedded
assertions or using a few ad hoc testbenches), the corresponding
version of the files are tagged as ready for verification.

Table 2-1.
Example tags 
for release 
management

Tag Name Description

Submit Ready to submit to functional verification.
Author has verified syntax correctness and
basic level of functionality.

Bronze Passes a basic set of functional testcases.
Release is sufficiently functional for integra-
tion.

Silver Passes all functional testcases.

Gold Passes all functional testcases and meets cod-
ing coverage guidelines (requires additional
corner-case testcases).

To_Synthesis Ready to submit to synthesis. Usually
matches “Silver” or “Gold”.

To_Layout Ready to submit to layout. Usually matches
“Gold”.

Version_M.N Version that was manufactured. Matches cor-
responding “To_Layout” release. Future ver-
sions of the same chip will move tags beyond
this point.

ON_YYMMDD Some meaningful release on the specified
date.
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Users must 
update their 
view to the 
appropriate 
release.

You, as the verification engineer, must be constantly on the look-
out for updates to your view. When working on a particularly diffi-
cult testbench, you may spend several days without updating your
view to the latest version ready to be verified. That way, you main-
tain a consistent view of the design under test and limit changes to
the testbenches, which you make. Once the actual verification and
debugging of the design starts, you probably want to refresh your
view to the latest “ready-to-verify” release of the design before run-
ning a testbench.

Update often. When using a concurrent development model where multiple engi-
neers are working in parallel on the same files, it is important to
check in modifications often, and update your view to merge con-
current modifications even more often. If you wait too long, there is
a greater probability of collisions that will require manual resolu-
tion. The concept of concurrently modifying files then merging the
differences sounds impossibly risky at first. However, experience
has shown that different functions or bug fixes rarely involve modi-
fication to the same lines of source code. As long as the modifica-
tions are separated by two or three lines of unmodified code,
merging will proceed without any problems. Trust me, concurrent
development is the way to go!

You can be noti-
fied of new 
releases.

An interesting feature of some source management systems is the
ability to issue email notification whenever a significant event
occurs. For example, such a system could send e-mail to all verifi-
cation engineers whenever the tag identifying the release that is
ready for verification is moved. Optionally, the e-mail could con-
tain a copy of the descriptions of the changes that were made to the
source files. Upon receiving such an e-mail, you could make an
informed decision about whether to update your view immediately.

ISSUE TRACKING

All your bug are 
belong to us!

The job of any verification engineer is to find bugs. Under normal
conditions, you should expect to find functional irregularities. You
should be really worried if no problems are being found. Their
occurrence is normal and do not reflect the abilities of the hardware
designers. Even the most experienced software designers write
code that includes bugs, even in the simplest and shortest routines.
Now that we’ve established that bugs will be found, how will you
deal with them?



Issue Tracking

Writing Testbenches using SystemVerilog 67

Bugs must be 
fixed.

Once a problem has been identified, it must be resolved. All design
teams have informal systems to track issues and ensure their resolu-
tions. However, the quality and scalability of these informal sys-
tems leaves a lot to be desired.

What Is an Issue?

Is it worth wor-
rying about?

Before we discuss the various ways issues can be tracked, we must
first consider what is an issue worth tracking. The answer depends
highly on the tracking system used. The cost of tracking the issue
should not be greater than the cost of the issue itself. However, do
you want the tracking system to dictate what kind of issues are
tracked? Or, do you want to decide on what constitutes a trackable
issue, then implement a suitable tracking system? The latter posi-
tion is the one that serves the ultimate goal better: Making sure that
the design is functionally correct.

An issue is anything that can affect the functionality of the design:

1. Bugs found during the execution of a testbench are clearly 
issues worth tracking.

2. Ambiguities or incompleteness in the specification document 
should also be tracked issues. However, typographical errors 
definitely do not fit in this category.

3. Architectural decisions and trade-offs are also issues.
4. Errors found at all stages of the design, in the design itself or in 

the verification environment should be tracked as well.
5. If someone thinks about a new relevant testcase, it should be 

filed as an issue.

When in doubt, 
track it.

It is not possible to come up with an exhaustive list of issues worth
tracking. Whenever an issue comes up, the only criterion that deter-
mines whether it should be tracked, is its effect on the correctness
of the final design. If a bad design can be manufactured when that
issue goes unresolved, it must be tracked. Of course, all issues are
not created equal. Some have a direct impact on the functionality of
the design, others have minor secondary effects. Issues should be
assigned a priority and be addressed in order of that priority.

You may choose 
not to fix an 
issue.

Some issues, often of lower importance, may be consciously left
unresolved. The design or project team may decide that a particular
problem or shortcoming is an acceptable limitation for this particu-
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lar project and can be left to be resolved in the next incarnation of
the product. The principal difficulty is to make sure that the deci-
sion was a conscious and rational one!

The Grapevine System

Issues can be 
verbally 
reported.

The simplest, and most pervasive issue tracking system is the
grapevine. After identifying a problem, you walk over to the hard-
ware designer’s cubicle (assuming you are not the hardware
designer as well!) and discuss the issue. Others may be pulled into
the conversation or accidentally drop in as they overhear something
interesting being debated. Simple issues are usually resolved on the
spot. For bigger issues, everyone may agree that further discussions
are warranted, pending the input of other individuals. The priority
of issues is implicitly communicated by the insistence and fre-
quency of your reminders to the hardware designer.

It works only 
under specific 
conditions.

The grapevine system works well with small, closely knit design
groups, working in close proximity. If temporary contractors or
part-time engineers are on the team, or members are distributed
geographically, this system breaks down as instant verbal commu-
nications are not readily available. Once issues are verbally
resolved, no one has a clear responsibility for making sure that the
solution will be implemented.

You are con-
demned to 
repeat past mis-
takes.

Also, this system does not maintain any history. Once an issue is
resolved, there is no way to review the process that led to the deci-
sion. The same issue may be revisited many times if the implemen-
tation of the solution is significantly delayed. If the proposed
resolution turns out to be inappropriate, the team may end up going
in circles, repeatedly trying previous solutions. Without history, you
are condemned to repeat it. There is no opportunity for the team to
learn from its mistakes. Learning is limited to individuals, and to
the extent that they keep encountering similar problems.

The Post-It System

Issues can be 
tracked on little 
pieces of paper.

When teams become larger, or when communications are no longer
regular and casual, the next issue tracking system that is used is the
3M Post-It™ note system. It is easy to recognize at a glance: Every
team member has a number of telltale yellow pieces of paper stuck
around the periphery of their computer monitor.



Issue Tracking

Writing Testbenches using SystemVerilog 69

If the paper dis-
appears, so does 
the issue.

This evolutionary system only addresses the lack of ownership of
the grapevine system: Whoever has the yellow piece of paper is
responsible for its resolution. This ownership is tenuous at best.
Many issues are “resolved” when the sticky note accidentally falls
on the floor and is swept away by the janitorial staff.

Issues cannot be 
prioritized.

With the Post-It system, issues are not prioritized. One bug may be
critical to another team member, but the owner of the bug may
choose to resolve other issues first simply because they are simpler
and because resolving them instead reduces the clutter around his
computer screen faster. All notes look alike and none indicate a
sense of urgency more than the others.

History will 
repeat itself.

And again, the Post-It system suffers from the same learning dis-
abilities as the grapevine system. Because of the lack of history,
issues are revisited many times, and problems are recreated
repeatedly.

The Procedural System

Issues can be 
tracked at group 
meetings.

The next step in the normal evolution of issue tracking is the proce-
dural system. In this system, issues are formally reported, usually
through free-form documents such as e-mail messages. The out-
standing issues are reviewed and resolved during team meetings.

Only the big-
gest issues are 
tracked.

Because the entire team is involved and the minutes of meetings are
usually kept, this system provides an opportunity for team-wide
learning. But the procedural system consumes an inordinate amount
of precious meeting time. Because of the time and effort involved
in tracking and resolving these issues, it is usually reserved for the
most important or controversial ones. The smaller, less important—
but much more numerous—issues default back to the grapevine or
Post-It note systems.

Computerized System

Issues can be 
tracked using 
databases.

A revolution in issue tracking comes from using a computer-based
system. In such a system, issues must be seen through to resolution:
Outstanding issues are repeatedly reported loud and clear. Issues
can be formally assigned to individuals or list of individuals. Their
resolution need only involve the required team members. The com-
puter-based system can automatically send daily or weekly status
reports to interested parties. 
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A history of the decision making process is maintained and
archived. By recording various attempted solutions and their effec-
tiveness, solutions are only tried once without going in circles. The
resolution process of similar issues can be quickly looked-up by
anyone, preventing similar mistakes from being committed repeat-
edly.

But it should not 
be easier to track 
them verbally or 
on paper.

Even with its clear advantages, computer-based systems are often
unsuccessful. The main obstacle is their lack of comparative ease-
of-use. Remember: The grapevine and Post-It systems are readily
available at all times. Given the schedule pressure engineers work
under and the amount of work that needs to be done, if you had the
choice to report a relatively simple problem, which process would
you use: 

1. Walk over to the person who has to solve the problem and ver-
bally report it.

2. Describe the problem on a Post-It note, then give it to that same 
person (and if that person is not there, stick it in the middle of 
his or her computer screen).

3. Enter a description of the problem in the issue tracking database 
and never leave your workstation?

It should not 
take longer to 
submit an issue 
than to fix it.

You would probably use the one that requires the least amount of
time and effort. If you want your team to use a computer-based
issue tracking system successfully, then select one that causes the
smallest disruption in their normal work flow. Choose one that is a
simple or transparent extension of their normal behavior and tools
they already use. 

I was involved in a project where the issue tracking system used a
proprietary X-based graphical interface. It took about 15 seconds to
bring up the entire interface on your screen. You were then faced
with a series of required menu selections to identify the precise
division, project, system, sub-system, device and functional aspect
of the problem, followed by several other dialog boxes to describe
the actual issue. Entering the simplest issue took at least three to
four minutes. And the system could not be accessed when working
from home on dial-up lines. You can guess how successful that sys-
tem was...
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Email-based
systems have the 
greatest accep-
tance.

The systems that have the most success invariably use an e-mail-
based interface, usually coupled with a Web-based interface for
administrative tasks and reporting. Everyone on your team uses e-
mail. It is probably already the preferred mechanism for discussing
issues when members are distributed geographically or work in dif-
ferent time zones. Having a system that simply captures these e-
mail messages, categorizes them and keeps track of the status and
resolution of individual issues (usually through a minimum set of
required fields in the e-mail body or header), is an effective way of
implementing a computer-based issue tracking system.

METRICS

Metrics are 
essential man-
agement tech-
nologies.

Managers love metrics and measurements. They have little time to
personally assess the progress and status of a project. They must
rely on numbers that (more or less) reflect the current situation.

Metrics are best 
observed over 
time to see 
trends.

Metrics are most often used in a static fashion: “What are the values
today?” “How close are they to the values that indicate that the
project is complete?” The odometer reports a static value: How far
have you travelled. However, metrics provide the most valuable
information when observed over time. Not only do you know where
you are, but also you can know how fast you are going, and what
direction you are heading. (Is it getting better or worse?)

Historical data 
should be used 
to create a base-
line.

When compared with historical data, metrics can paint a picture of
your learning abilities. Unless you know how well (or how poorly)
you did last time, how can you tell if you are becoming better at
your job? It is important to create a baseline from historical data to
determine your productivity level. In an industry where the manu-
facturing capability doubles every 18 months, you cannot afford to
maintain a constant level of productivity.

Metrics can help 
assess the verifi-
cation effort.

There are several metrics that can help assess the status, progress
and productivity of functional verification. Two have already been
introduced: code and functional coverage.

Code-Related Metrics

Code coverage 
may not be rele-
vant.

Code coverage measures how thoroughly the verification suite
exercises the source code being verified. That metric should climb



Verification Technologies

72 Writing Testbenches using SystemVerilog

steadily toward 100 percent over time. From project to project, it
should climb faster, and get closer to 100 percent. 

However, code coverage is not a suitable metric for all verification
projects. It is an effective metric for the smallest design unit that is
individually specified (such as an FPGA, a reusable component or
an ASIC). But it is ineffective when verifying designs composed of
sub-designs that have been independently verified. The objective of
that verification is to confirm that the sub-designs are interfaced
and cooperate properly, not to verify their individual features. It is
unlikely (and unnecessary) to execute all the statements.

The number of 
lines of code can 
measure imple-
mentation effi-
ciency.

The total number of lines of code that is necessary to implement a
verification suite can be an effective measure of the effort required
in implementing it. This metric can be used to compare the produc-
tivity offered by new verification technologies or methods. If they
can reduce the number of lines of code that need to be written, then
they should reduce the effort required to implement the verification.

Lines-of-code
ratio can mea-
sure complexity.

The ratio of lines of code between the design being verified and the
verification suite may measure the complexity of the design. His-
torical data on that ratio could help predict the verification effort for
a new design by predicting its estimated complexity.

Code change 
rate should trend 
toward zero.

If you are using a source control system, you can measure the
source code changes over time. At the beginning of a project, code
changes at a very fast rate as new functionality is added and initial
versions are augmented. At the beginning of the verification phase,
many changes in the code are required by bug fixes. As the verifica-
tion progresses, the rate of changes should decrease as there are
fewer and fewer bugs to be found and fixed. Figure 2-19 shows a
plot of the expected code change rate over the life of a project.
From this metric, you are able to determine if the code is becoming
stable, or identify the most unstable sections of a design.

Figure 2-19.
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Quality-Related Metrics

Quality is sub-
jective, but it 
can be mea-
sured indirectly.

Quality-related metrics are probably more directly related with the
functional verification than other productivity metrics. Quality is a
subjective value, yet, it is possible to find metrics that correlate
with the level of quality in a design. This is much like the number
of customer complaints or the number of repeat customers can be
used to judge the quality of retail services.

Functional cov-
erage can mea-
sure testcase 
completeness.

Functional coverage measures the range and combination of input
and output values that were submitted to and observed from the
design, and of selected internal values. By assigning a weight to
each functional coverage metric, it can be reduced to a single func-
tional coverage grade measuring how thoroughly the functionality
of the design was exercised. By weighing the more important func-
tional coverage measures more than the less important ones, it gives
a good indicator of the progress of the functional verification. This
metric should evolve rapidly toward 100 percent at the beginning of
the project then significantly slow down as only hard-to-reach func-
tional coverage points remain.

A simple metric 
is the number of 
known issues.

The easiest metric to collect is the number of known outstanding
issues. The number could be weighed to count issues differently
according to their severity. When using a computer-based issue
tracking system, this metric, as well as trends and rates, can be eas-
ily generated. Are issues accumulating (indicating a growing qual-
ity problem)? Or, are they decreasing and nearing zero?

Code will be 
worn out even-
tually.

If you are dealing with a reusable or long-lived design, it is useful
to measure the number of bugs found during its service life. These
are bugs that were not originally found by the verification suite. If
the number of bugs starts to increase dramatically compared to his-
torical findings, it is an indication that the design has outlived its
useful life. It has been modified and adapted too many times and
needs to be re-designed from scratch. Throughout the normal life
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cycle of a reusable design, the number of outstanding issues exhib-
its a behavior as shown in Figure 2-20.

Interpreting Metrics

Whatever gets 
measured gets 
done.

Because managers rely heavily on metrics to measure performance
(and ultimately assign reward and blame), there is a tendency for
any organization to align its behavior with the metrics. That is why
you must be extremely careful to select metrics that faithfully rep-
resent the situation and are correlated with the effect you are trying
to measure or improve. If you measure the number of bugs found
and fixed, you quickly see an increase in the number of bugs found
and fixed. But do you see an increase in the quality of the code
being verified? Were bugs simply not previously reported? Are
designers more sloppy when writing their code since they’ll be
rewarded only when and if a bug is found and fixed?

Make sure met-
rics are corre-
lated with the 
effect you want 
to measure.

Figure 2-21 shows a list of file names and current version numbers
maintained by two different designers. Which designer is more pro-
ductive? Do the large version numbers from the designer on the left
indicate someone who writes code with many bugs that had to be
fixed? Or, are they from a cautious designer who checkpoints
changes often?

On the other hand, Figure 2-22 shows a plot of the code change rate
for each designer. What is your assessment of the code quality from
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Figure 2-21.
Using version 
numbers as a 
metric

alu_e.vhd 1.15
alu_rtl.vhd 1.234
decoder_e.vhd 1.12
decoder_rtl.vhf 1.155
dpath_e.vhd 1.7
dpath_rtl.vhd 1.176

cpuif_e.vhd 1.2
cpuif_rtl.vhd 1.4
regfile_e.vhd 1.1
regfile_rtl.vhf 1.7
addr_dec_e.vhd 1.3
addr_dec_rtl.vhd 1.6
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the designer on the left? It seems to me that the designer on the
right is not making proper use of the revision control system. 

Figure 2-22.
Using code 
change rate as 
a metric
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SUMMARY

Despite reporting many false errors, linting and other static code
checking technologies are still the most efficient mechanism for
finding certain classes of problems.

Simulators are only as good as the model they are simulating. Sim-
ulators offer many performance enhancing options and the possibil-
ity to co-simulate with other languages or simulators.

Assertion-based verification is a powerful addition to any verifica-
tion methodology. This approach allows the quick identification of
problems, where and when they occur.

Verification-specific SystemVerilog features offer an increase in
productivity because of their specialization to the verification task
and their support for coverage-driven random-based verification.

Use code and functional coverage metrics to provide a quantitative
assessment of your progress. Do not focus on reaching 100 percent
at all cost. Do not consider the job done when you’ve reached your
initial coverage goals.

Use a source control system and an issue tracking system to man-
age your code and bug reports.
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CHAPTER 3 THE VERIFICATION PLAN

In this chapter, I describe the verification plan as a specification of
the functional verification process and of the testbench infrastruc-
ture that will be necessary to support it. It is used to define what is
first-time success, how a design is verified and which testbenches
are written.

The design project that sits before you will propel your company to
new levels of market share and profitability. A few system archi-
tects have designed and specified a system that should meet perfor-
mance and cost goals. Several design leaders, using the system
specification, have been working on writing detailed functional
specification documents for each of the ASICs and FPGAs that are
required to build this new product. Teams of hot-shot hardware
designers are being assembled to implement each ASIC or FPGA.
Using the detailed specification documents for each device, they
are coming up with a detailed implementation schedule. So far, it
appears that the project will meet its production deadline.

You are in charge of the verification for this design. Not only must
this product be on time, but also it must be functionally correct. The
commercial success and profitability of the product depends on it.
You have been asked by the project manager to produce a detailed
schedule for the verification and define your staffing requirements.
How can you determine either?
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THE ROLE OF THE VERIFICATION PLAN

Traditionally, 
verification is an 
ad-hoc process.

In a traditional verification process, your decision would be simple.
In fact, your own position would not exist. Verification would be
left to each hardware designer to do as they wish. It would be per-
formed as time allows. And everybody’s fingers would be crossed
hoping that system integration will be smooth and that any serious
design flaws can be fixed or worked-around by the software. Many
devices would be implemented in FPGAs, trading additional per-
unit costs for flexibility in fixing problems later found during sys-
tem integration.

Technologies 
exist to help 
determine when 
you are done.

The technologies described in the previous chapter will help during
your verification effort. Code coverage, functional coverage, bug
discovery rate and code change rates are metrics that indicate how
much progress you have made toward your goal. But they are like
stock market indices or batting averages: They provide a snapshot
of the current situation and, if recorded over time, show trends and
progression. However, they cannot be used to predict the future.1

Specifying the Verification

You need a 
method to deter-
mine when you 
will be done.

Today’s question is about producing a schedule. You must deter-
mine, as reliably as possible, when the verification will be com-
pleted to the required degree of confidence. Unless you have a
detailed specification of the work that needs to be accomplished,
you cannot determine how many people you need, nor how long it
is going to take or even if you are doing work that needs to be done.
That’s what the verification plan is about.

Start from the 
design specifica-
tion.

Before you can decide on a plan of attack for the verification, a
specification document for the design to be verified must exist. And
it must exist in written form. “Folklore” specifications that describe
the design as, “The same thing as we did before, but at twice the
clock rate and with these additional features.” are insufficient.
Often, the design specification is implemented using two separate
documents written at different abstraction levels. 

1. However, many financial and sports pundits make a good living predict-
ing an essentially random process. With enough pundits, you can 
always find one that has made the correct “prediction”.
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• The first is the architectural specification, which details the 
functional requirements of the device. 

• The second is the implementation specification, which describes 
the particular implementation of the architecture down to the 
block level. 

The verification plan can start to be written once the architectural
specification document is complete. It can be augmented with
implementation-specific testcases once the implementation docu-
ment is complete.

The specifica-
tion document is 
the golden refer-
ence.

The specification document is the common source for the verifica-
tion and implementation efforts. It is the golden reference and the
rule of law. Later, when discrepancies are found between the
response expected by the testbench and the one produced by the
design under verification, the specification document arbitrates and
decides which one has the correct answer. If necessary, the specifi-
cation document should be elaborated to remove any ambiguity.
The specification document must exist before the implementation.
The implementation must follow the specification. If the specifica-
tion depends on or is a consequence of the implementation, it will
be impossible to verify because the specification will change every
time the implementation changes.

The verification 
plan is the speci-
fication docu-
ment for the 
verification 
effort.

Today’s million-gate ASIC and SoC designs cannot proceed with-
out a detailed specification document being written first. With the
verification effort being 100 percent to 200 percent of the RTL
design effort, why should it proceed without a specification docu-
ment of its own? The verification plan is the specification docu-
ment for the verification effort.

Defining First-Time Success

If, and only if, it 
is in the plan, 
will it be veri-
fied.

The verification plan provides a forum for the entire design team to
define what first-time success is. It is a mechanism that ensures all
essential features are appropriately verified. If you want first-time
success, you must identify which features must be exercised under
which conditions and what the expected response should be. The
verification plan documents which features are a priority and which
ones are optional. In the face of schedule pressure, the decision to
drop features from the first-time success requirements becomes a
conscious one. The alternative is to live with whatever happens to
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work when the decision to ship the design cuts off the verification
effort like a guillotine. Some of the features, essential for market
acceptance, might fall in the basket.

From the verifi-
cation plan, a 
detailed sched-
ule can be cre-
ated.

The verification plan creates a line in the sand that cannot be
crossed without endangering the success of the project in the mar-
ket place. Once the plan is written, you know how many testcases
must be created, how complex they need to be and how they depend
on each other. You can define a detailed verification schedule, and
allocate tasks to resources, parallelizing verification as much as
possible. Once the RTL passes all of the testcases, and you are sat-
isfied with the coverage and bug-rate metrics, the design can be
shipped. Not before.

The team owns 
the verification 
plan.

It is important for everyone involved with the design project to real-
ize that they have a stake in the verification plan. The responsibility
of an RTL designer is not to design RTL. That’s only a means to an
end. His or her responsibility is to produce a working design. The
entire design team must contribute to the verification plan, to make
sure that it is complete and correct.

This process is 
not revolution-
ary.

The process used to write a verification plan is not new. It has been
used for decades by NASA, the FAA and aerospace companies to
ensure that the ultra-reliable systems they were implementing met
their specifications. This process has been used for software as well
as for hardware designs. 

LEVELS OF VERIFICATION

Verification can 
be performed at 
various levels of 
granularity.

The first question, when planning the verification, is to determine
the level of granularity for the verification effort. A design is poten-
tially composed of several levels. Some have a physical partition,
such as printed circuit boards, FPGAs and ASICs. Others have a
logical partition, such as synthesized units and blocks, reusable
cores or sub-systems. As illustrated in Figure 3-1, each level of
granularity is best suited for a particular verification objective. 

Deciding 
between levels 
of granularity 
involves trade-
offs.

Smaller partitions are easier to verify because they offer greater
controllability and observability. It is easier to set up interesting
conditions and state combinations and to observe if the response is
as expected in a block than in a system. With larger partitions, the
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integration of the smaller partitions it contains is implicitly verified
at the cost of lower controllability and observability.

Verifying at a 
given level of 
granularity 
requires stable 
interfaces.

Because the verification requires a significant implementation
effort, any partition being verified must have relatively stable inter-
faces and intended functionality. If the interfaces keep changing, or
functionality keeps being moved from one partition to another, the
testbenches will constantly need to be changed with little progress
being made. Once you’ve decided on specific partitions to be veri-
fied, their interface and overall functionality must be specified early
on and remain as stable as possible. Ideally, each verified partition
should have its own specification document or, at a minimum, its
own section in the specification document.

Unit-Level Verification

Implementation 
determines the 
content of this 
partition.

Design units are modules. They are created to facilitate the imple-
mentation or the synthesis process. They vary from the relatively
small (e.g., FIFOs and state machines) to the complex (e.g., PCI
slave interface and DSP datapaths). Their interfaces and functional-
ity tend to vary a lot over time, as implementation details highlight

Figure 3-1.
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shortcomings in the initial design. They usually do not have an
independent specification document to verify against either.

Use ad-hoc veri-
fication for 
design units.

Because these design units do not have a specification document to
very against, they are better left to an ad-hoc verification process.
The designer himself verifies the basic operation of the unit by
proving assertions embedded in the unit or by using casual test-
benches. The objective of this verification is to ensure that there are
no syntax errors in the RTL code, and that basic functionality is
operational. It is not to create a regressionable test suite and obtain
high code coverage.

They are too 
numerous to 
thoroughly ver-
ify indepen-
dently.

The high number of design units in any project makes a verification
process implemented at that level too time consuming. Each would
require a custom verification environment, as described in Chapters
5 and 6. The precious verification resources would spend an inordi-
nate amount of time creating stimulus generators and response
monitors for a myriad of ever-changing interfaces. Writing a lot of
simple testbenches is just as much work, if not more, as writing a
few complex ones. And verification at the subsystem or system-
level would still be required to verify the integration of these design
units.

Unit-level veri-
fication may be 
required in some 
cases.

Not all units are created equal. For the highly sensitive and complex
functional units, it may be more efficient to perform unit-level veri-
fication to have sufficient levels of controllability and observability
and reach the desired level of confidence. A design unit is then con-
sidered a block.

Block and Core Verification

Design blocks 
are verified 
independently.

A design block is composed of one or more design units. A design
block is the smallest partition to be independently verified. It is that
independent verification that differentiates a unit from a block. The
verification plan identifies the design blocks. Identifying the appro-
priate blocks is critical in balancing the total number of verification
environments and testbenches that will need to be written and the
required controllability and observability to verify the complete
design. Blocks need not all be of the same size nor at the same level
of design hierarchy. Some blocks may be large, others may be
small, but they tend to require a similar amount of verification
effort.
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Reusable design 
cores are inde-
pendent of any 
particular use.

Reusable cores are blocks designed to an independent specification.
They are intended to be used as-is and unchanged in many different
designs. Their reusability can be limited to a single product, the
entire product family, or they could be applicable to any product
requiring their functionality. They must be designed—and thus ver-
ified—independent of any one usage. It is a good idea to use asser-
tions (see “Assertions” on page 57) to specify restrictions and
requirements on the inputs of reusable components. They help
ensure that the reused components are always used as intended.

Architect the 
design to facili-
tate block-level 
verification.

Your design should be architected to make block-level verification
as relevant and complete as possible. Partition the design so the fea-
tures to be verified are completely contained within a block and can
be verified on a stand-alone basis. Once verified, these features can
be assumed to work during the verification of the higher levels. If
the features to be verified at the block level require interaction with
other blocks, they have to be re-verified at a higher-level where the
features are fully contained, to ensure that the integration correctly
implements them.

Minimize the 
number of 
unique inter-
faces.

Reusable components and blocks should be designed using stan-
dardized interfaces. These interfaces can be designed to standard
on-chip buses, or industry-standard external physical interfaces.
The verification components used to stimulate and monitor these
interfaces can be themselves reused across the various verification
environments used to verify different reusable components, differ-
ent blocks or the systems where they are used. The verification
effort can be leveraged across multiple components, thus minimiz-
ing the overall investment in verification. Chapter 6 will detail how
to architect a testbench to promote the creation and use of reusable
verification components.

Blocks need a 
regression test 
suite.

Blocks are expected to be functionally correct. When they are mod-
ified, either to fix problems that were found, or to enhance their
functionality, you must make sure that they remain functionally
correct. This is accomplished by implementing a regression suite
that verifies the correctness of the block after any modification.
Checking the equivalence of the new version with the previous ver-
sion using formal verification would not really work unless the
modifications were not functional. Adding functionality or fixing
problems, by definition, makes the new version of the design not
equivalent to the previous one.
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They need thor-
ough code and 
functional cov-
erage.

Design blocks must be verified as thoroughly as possible. Their
functionality must be assumed as correct when performing system-
level verification. A system-level verification environment is the
wrong environment to verify the functionality of a design block.

ASIC and FPGA Verification

The physical 
partition is an 
ideal verifica-
tion level.

ASICs and FPGAs are physical partitions. They form a natural par-
tition for verification because their interfaces and functionality do
not change very much after the initial specification of the system
and the completion of their specification documents.

They may have 
to be treated as 
systems.

The ever increasing densities offered by semiconductor technology
enables ever increasing integration of complex functionality into a
single device. To manage this complexity from a design and verifi-
cation standpoint, devices are often designed as a collection of
independently designed and verified blocks, usually reusable but
not necessarily so. In that case, the ASIC is called a System-on-a-
Chip (SoC) and its verification resembles a system-level verifica-
tion process, as described in the next section. The bulk of the func-
tional verification is performed using block-level verification.

FPGAs now 
require an 
ASIC-like veri-
fication process.

Traditionally, FPGAs were able to survive an ad-hoc, or even a
completely missing, verification process. Their ease of programma-
bility, often without additional component costs, allowed their func-
tionality to be modified up to the last minute. But today’s million-
gate FPGAs, even with only 50 percent effective usage, can imple-
ment functions that are too complex to verify and debug during
integration. Their functionality must be verified from the RTL
code, before synthesis and implementation.

System-Level Verification

A system need 
not follow phys-
ical boundaries.

Everybody’s definition of a system is different. In this book, a sys-
tem is a logical partition composed of independently verified
blocks or sub-systems. A system could thus be composed of a few
reusable components and cover a subset of an SoC ASIC. A system
could also be composed of several ASICs physically located on
separate printed circuit boards, as illustrated in Figure 3-2.

The verification 
focuses on inter-
action.

Individual blocks are specified and designed by separate individu-
als or teams with assumptions about how they will interact with
other blocks. These assumptions made by different people are a
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prime source of bugs. System-level verification thus focuses on the
interactions among the individual blocks instead of the functional-
ity implemented in each one. The latter is better verified at the
block-level. The system verification engineer has to rely on the
individual blocks being functionally correct. 

The testcase 
defines the sys-
tem.

Since systems are logical partitions, they can be composed of any
number of blocks, regardless of their physical location. Which sys-
tem to use and verify depends on the testcases that are determined
to be interesting and significant. To minimize the simulation over-
head, it is preferable to use the smallest possible system necessary
to execute the specified testcase. However, the number of possible
systems being very large, a set of “standard” systems should be
defined. The same system is used for many testcases even if, in
some cases, some of the included blocks are not required.

Board-Level Verification

Board-level 
models are gen-
erated from the 
board design 
tool.

The primary objective of board-level verification is to confirm that
the “system” captured by the board design tool is correct. Unlike a
logical system model, the model for the board design must be auto-
matically generated by the board capture tool. When verifying the
board design, or any other physical partition, you must make sure
that what is being verified is what will be manufactured. There
must be a direct link between the captured design and what is simu-
lated. Automatic generation of the board-level model from the cap-
ture tool provides that link. A logical system model has no such
restriction: It can be manually generated for the system of interest.

Many compo-
nents on a board 
do not fit in a 
digital simula-
tion environ-
ment.

The main difficulty with board-level models is obtaining suitable
models for all the components. Also, generating a model out of a
board design tool involves introducing approximations. For exam-
ple, how do you represent capacitors in a digital simulation envi-
ronment? Analog devices, connectors, opto-couplers and other

Figure 3-2.
Logical
system
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Board
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components used in board-level designs do not translate easily in a
digital simulation environment either.

VERIFICATION STRATEGIES             

Decide on a 
black- or white-
box approach 
for various lev-
els of granular-
ity.

Given the functionality that needs to be verified, you must decide
on a strategy for carrying out the verification. You must decide on
the level of granularity where verification will be accomplished.
You must also decide on the invasiveness of the verification
approach that will be used for each level of granularity. Testcases
can be either white-box or black-box, depending on the visibility
and knowledge you have of the internal implementation of each
unit under verification (see “Black-Box Verification” on page 11
and “White-Box Verification” on page 13).

Decide on the 
level of abstrac-
tion where the 
testcases will be 
specified.

You also need to decide the level of abstraction where the bulk of
the verification will be performed. With higher levels of abstrac-
tion, you have less detailed control over the timing and coordina-
tion of the stimulus and response, but it is easier to generate large
amount of stimulus and observe the response over a long period of
time. If detailed controls are required to perform certain testcases, it
may be necessary to work at a lower level of abstraction.

A processor 
interface could 
be verified at the 
cycle or device 
driver level.

For example, verifying a processor interface can be accomplished
at the individual read and write cycle levels. But that requires each
testcase to have an intimate knowledge of the memory-mapped reg-
isters and how to program them. That same interface could be
driven at the device driver level. The testcase would have access to
a set of high-level procedural calls to perform complete operations.
Each operation is composed of many individual read and write
cycles to specific memory-mapped registers, but the testcase is
removed from these implementation details.

Verifying the Response

Plan how you 
will check the 
response.

Deciding how to apply the stimulus is relatively easy. You are under
complete control of its timing and content. It is verifying the
response that is difficult. You must plan how you will determine the
expected response, then how to verify that the design provided the
response you expected. The section titled, “Self-Checking Test-
benches” on page 292 suggests several techniques for implement-
ing output verification.
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Some responses 
are difficult to 
verify in the 
simulation.

Throughout this book, implementing self-checking testbenches is
recommended (see “Simple Output” on page 216). But, it can
sometimes be difficult for a testbench to verify a response that can
be recognized immediately as right or wrong by a human. For
example, verifying a graphic engine involves checking the output
picture for expected content. A self-checking simulation would be
very good at verifying individual pixels in the picture. But a human
would be more efficient in recognizing a filled red circle. The veri-
fication strategy must find a way to automate these types of
testcases.

Detect errors as 
early as possi-
ble.

It may be more efficient to have the simulation produce a set of out-
puts that can be later compared against a set of reference outputs.
The result of a simulation can be further processed outside of the
simulator to determine success or failure. However, it is more effi-
cient to detect problems as early as possible. When the response is
checked within the simulation, the error is identified while the
model is near the state that produced the error. It is then easier to
diagnose and fix the cause of the error.         

FROM SPECIFICATION TO FEATURES

Identify fea-
tures.

The first step in writing a verification plan is to identify the features
that will be verified. From the specification document, you enumer-
ate all the features that are described and thus must be verified.
Other team members, especially the system architects and RTL
designers, contribute additional features to be verified. These addi-
tional features may not have been obvious in the specification to
someone unfamiliar with the purpose or characteristics of the
design. Other features may become significant once a particular
implementation is chosen. In The Art of Verification1, Haque, Mich-
elson and Khan propose using a methodical approach for extracting
significant and relevant features to verify by first looking at the
interfaces, then the functions, then finally the corner cases implied
by the chosen architecture.

1. Faisal Haque, Jon Michelson and Khizar Khan, “The Art of Verification 
with VERA,” http://www.verificationcentral.com
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Enumerate inter-
face-based fea-
tures.

For every interface on the design to be verified, enumerate every
feature it suggests that must be verified. The interface-based fea-
tures can be obtained by asking questions such as:

• What transactions must be applied?
• What range of values?
• What sequences of transactions?
• What are the relevant transaction densities? 
• What protocol violations should the design be able to sustain?
• What are the relevant interactions between this interface and 

other interfaces or internal design structures? 
• Do transactions on an interface need to be synchronized with 

those of another interface? 

A subset of the interface-based feature list for a Universal Asyn-
chronous Receiver Transmitter (UART) is shown in Sample 3-1. 

Identify func-
tion-based fea-
tures.

Following the major data paths through the design1, enumerate
every transformation and decision that must be verified. The func-
tion-based features can be obtained by asking questions such as: 

• What are all the relevant configurations? 

Sample 3-1.
Some of the 
interface-
based features 
of a UART 
design

1. The Clear-To-Send (CTS) pin must be asserted when the 
UART can accept a new word to be transmitted via the CPU 
interface.

2. The Data Terminal Ready (DTR) pin must be asserted when 
there is a received word ready to be read by the CPU inter-
face.

3. Read and write cycles to addresses other than 0 through 4 are 
ignored.

4. Back-to-back read/read, read/write, write/write and write/
read cycles within the address space are supported.

5. All bits in the configuration registers are readable, writable 
and non-volatile.

1. As specified in the architecture specification document, not in the 
implementation.
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• What are the possible transformations that can be performed on 
the data? 

• What are the possible sequences of transformation? 
• What are the sensitive data values for triggering transforma-

tions?
• What are the sensitive values that affect each transformation?
• Where should the transformed data end up? 
• How is the data ordering affected? 
• What error detection mechanisms exist and how are they trig-

gered?
• How do error mechanisms report errors? 
• What happens to erroneous data? 

A subset of the function-based feature list for a UART is shown in
Sample 3-2.

List architec-
ture-based fea-
tures.

Finally, based on detailed knowledge of the architecture of the
design, identify the conditions that will stress the design and push it
toward its limit. The architecture-based features can be obtained by
asking questions such as: 

• Can I overflow or underflow a buffer? If so, what should hap-
pen?

• Where are the resource bottlenecks? 
• Can multiple requests for these resources occur at the same 

time?
• Can a transformation path affect, prevent or block another? 

Sample 3-2.
Some of the 
function-based 
features of a 
UART design

1. Data bits are sent and received serially with the least signifi-
cant bit first.

2. Data bytes are sent in the same order in which they were 
written.

3. Data bytes are read in the same order in which they were 
received.

4. Parity is generated according to configured mode.
5. Parity is checked according to configured mode.
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A subset of the architecture-based feature list for a UART is shown
in Sample 3-3.

Label each fea-
ture.

Features should be labeled and have a short description. The feature
should be described in terms of what conditions need to be verified
and the expected result, not how it is to be implemented. Each fea-
ture should be cross-referenced to the section or paragraph in the
specification document that describes it in detail. Ideally, the speci-
fication document should also contain a cross-reference to the fea-
ture list in the verification plan. Specify features for the proper level
of verification. The feature label should be used in error messages
when it is found to be violated. Including feature labels in error
messages will help in identifying what was assumed to have gone
wrong and in assessing if the behavior is indeed incorrect.

Assign features 
to a suitable ver-
ification level.

When enumerating features, be careful to include them in the verifi-
cation plan for the proper verification level. Some features are bet-
ter verified at the block level, while others must be verified at the
(sub)system level. Very often, there will be a large number of fea-
tures concerned with verifying a critical function or unit in your
design. If the design partition implementing that function or con-
taining that unit is not being verified independently, now is the time
to reconsider your verification approach. It may be an indication
that the unit needs to be verified independently to achieve the nec-
essary level of confidence.

Block-Level Features

They are fully 
contained within 
the block being 
verified.

A block can be a unit, a reusable component, or an entire ASIC.
Block-level features are fully contained within the block being ver-
ified. They do not involve system-level interaction with other
blocks. Their correctness can be determined without depending on
a subsequent verification of the integration of the block into a high-
level system.

Sample 3-3.
Some of the 
architecture-
based features 
of a UART 
design

1. Receiving one more byte while the receive buffer is full will 
cause that byte to be dropped.

2. The Clear-to-Send (CTS) signal reflects the status of the 
transmit buffer (asserted when not full).

3. Data is received and transmitted in full-duplex.
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The bulk of the features will be block-level features. These features
are assumed to be functional when the block is used in a system-
level verification.

System-Level Features

Minimize sys-
tem-level fea-
tures.

A system can be a subset of an ASIC, a few ASICs from different
boards, an entire board design or the complete product. Because of
the large size and long runtime of system-level simulations, it is
necessary to minimize the features verified at this level. Whenever
something is identified as a system-level feature, question whether
it can be verified as a block-level feature instead. For example, in
the design illustrated in Figure 3-3, the MX block can select
between the data from blocks ID0 or ID1 under software control. Is
the switching feature a system-level feature? The answer is no. The
switching feature is entirely contained within the MX block and is
thus a block-level feature.

System-level 
features include 
connectivity, 
flow control and 
inter-operability.

System-level features are usually limited to connectivity, flow-con-
trol and inter-operability. For example, the connectivity from the
input ports to the output port would be a system-level feature. In
verifying the connectivity, it is necessary to switch the input from
the ID0 stream to the ID1 stream. But the switching is not the pri-
mary objective of the verification and would be assumed to work.

Another system testcase would be verifying that full input FIFOs in
the MX block creates back-pressure through the ID0 and ID1 blocks
and stops the flow of data until the congestion clears.

Error Types to Look For

Assume design 
tools do not 
introduce func-
tional errors.

When listing features to be verified, there is an implicit assumption
about the errors that are likely to occur and should be found. Func-
tional verification must focus on finding functional errors in the
design. It is not the responsibility of functional verification to make

Figure 3-3.
Example of a 
system
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sure that the design tools are bug-free. Functional simulation
ensures that the design was implemented as specified without inter-
pretation errors or problems introduced by the designers. For exam-
ple, running all functional testbenches on the gate-level netlist only
verifies that the synthesis tool works properly. Formal verification
and static timing analysis are better technologies to accomplish this
task.

Likely errors are 
different based 
on the capture 
technology used.

The types of errors that can be made are different when using dif-
ferent capture technologies. When schematic capture is used, con-
nectivity errors, such as reversed bit orders in a bus, or mis-
connected individual bits within a bus, are very common. In an
RTL coding and logic synthesis environment, this type of error is
not likely to occur: If a bus is properly connected, either all the bits
work, or none do. Linting can detect some connectivity problems
such as multiple drivers on a wire or an output that goes nowhere
and would be a better technology for identifying these types of
problems.

Look for func-
tional errors.

Common errors in a synthesis-based design flow include wrong
polarities, protocol violations or incorrect computations. The type
of stimulus that proved useful in the days of schematic capture,
such as walking ones and zeroes may not be as useful in an RTL
design verification. A pair of patterns of alternating ones and
zeroes, for example “0xAAAA” followed by “0x5555”, is usually
sufficient. 

Using signatures in the data stream is another efficient technique to
detect functional errors. A signature can be as simple as a sequen-
tial number to help detect missing or repeating data items. A signa-
ture can also encode either the source or the expected destination of
a data item. For example, the data associated with an address in a
write cycle could contain a portion of the address and an identifica-
tion of the bus master issuing the cycle. The section titled, “Data
Tagging” on page 295 details how to use signatures to verify a class
of designs.

Prioritize

Prioritize the 
features.

Not all features are created equal. Once they are enumerated, they
must be prioritized. Some features are must-have for the design to
properly function or to meet the demands of the market. This is the
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stage that defines first-time success. These features must operate
properly for the design to be shipped. The completion of the verifi-
cation of these features gates the successful completion of the
project and the testbenches verifying these features are often on the
critical path. The must-have features need to be thoroughly verified
for all possible configuration and usage options.

Less important 
features receive 
less attention.

The should-have features are secondary for the commercial success
of the design. They may simply offer expansion capabilities or dif-
ferentiation from the competition. The main objective is to verify
their basic functionality for correct operation. If time and resources
allow, more detailed verification of these features may be accom-
plished. The verification of these features may be cancelled if
schedule pressure forces the reallocation of resources to the verifi-
cation of more important features.

Some features 
are verified only 
as time allows.

The nice-to-have features are purely optional. They are verified
only as time allows, usually in a primitive fashion. The reality of
today’s design schedule almost guarantees that they’ll never be ver-
ified!

Make an 
informed deci-
sion when cut-
ting back on the 
verification 
effort.

The prioritization of the features to be verified lets a project man-
ager make informed decisions when schedule pressures make it
necessary to eliminate some planned activities. The verification
effort can be trimmed starting with features that were predeter-
mined to be less important. If a greater impact of the project com-
pletion date is required and must-have features are dropped from
the verification, the decision will be a conscious one as these prior-
ities were clearly identified as critical to the initial marketing objec-
tives. Cutting the verification effort of must-have features requires a
conscious re-evaluation of the marketing objectives for the project.

Design for Verification

Hard-to-verify 
features will be 
identified.

At this stage of the verification planning, hard-to-verify features
will be identified. They can be difficult to verify because the chosen
partition lacks suitable controllability or observability of the fea-
tures. An example would be the verification that an embedded 64-
bit counter properly rolls over and that the processing algorithm
works properly across the roll-over point. The difficulty may be
because of a poor choice in verification granularity. In that case, a
smaller partition containing the hard-to-verify features should be
used. The difficulty may also be due to the choice of implementa-
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tion architecture or an artifact of the design itself. If a smaller parti-
tion cannot be used, or would not ease the verification of these
features, a grey- or white-box approach must be taken.

Modify the 
design to aid 
verification.

The advantage of planning the verification up front is that you can
still influence the implementation of the design. If some features
prove to be too difficult to verify given the current architecture and
feature set of the design, have the design modified to include addi-
tional features to aid in their verification. Hardware design engi-
neers will no doubt complain about adding functionality that is not
really needed by the design. However, if the alternative is to create
a design you cannot verify, what choice do they have? These fea-
tures have always proven to be useful during lab integration of sam-
ple parts.

Provide state 
pre-load func-
tions.

If the design contains long counters or other state conditions which
require hundreds or thousands of cycles to reach from reset, make
sure they can be pre-loaded to an arbitrary value via a memory-
mapped register. Ideally, their current value should be available for
read back through the same register. In the previous example, a
series of 8 bytes in the address space of the design could be allo-
cated to pre-loading and reading back the value of the 64-bit
counter.

Provide datapath 
by-pass paths.

The correct implementation of long data paths can also be difficult
to verify if you do not have detailed control over all the operands.
For example, speech synthesizers are simple digital signal process-
ing designs with a datapath that shapes random noise1. You have
complete control over the coefficients applied to the data samples to
form specific sounds. However, you do not have control over one
critical element: the primary input data value. That’s an internally-
generated random number. To properly verify the operation of this
datapath, you need control over its initial input value.

As shown in Figure 3-4, the design should include a mechanism to
use a programmable constant input value instead of a random num-
ber as input to the datapath. Conversely, you should also be able to

1. It is used to produce consonant sounds, such as the sh sound. It is then 
mixed with a shaped base frequency used to produce vowel sounds, 
such as the a sound, which hopefully creates intelligible speech.
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read back the output of the random number generator to ensure that
it is indeed producing random numbers.

Pop quiz: Why is the read-back point located after the multiplexer
that selects between the normal operation using the random number
generator and the programmable static value, and not at the output
of the random number generator?1

Provide sample 
points.

If observability is the problem but not controllability, adding sam-
ple points readable through memory-mapped registers can help
ease the verification of some features. If the address space allocated
to the design is at a premium, these sample points could be multi-
plexed into a single address location, using a second address to
select which point is currently being sampled.

Provide error 
injection mecha-
nism.

If the design includes error and exception detection mechanisms,
you may want to have provisions to force the detection of an error
or exception. For example, verifying the maskability of interrupts is
very time consuming if the design has to be coerced into every
exception condition. The same task is rendered considerably easier
if a simple register write can manually raise the same interrupts. Of
course, the task of verifying that the exception condition raises the
interrupt remains. The decision to include error injection should be
carefully considered. If it is for hardware verification only, it may
not be properly documented for the software engineers. This feature
may be accidentally turned on when a device driver writes a value
that was thought to be inoffensive.

Figure 3-4.
Verifiable 
datapath for a 
speech
synthesizer
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1. You want to verify that, when the datapath is put into normal operation 
mode, the multiplexer is functionally correct and the input value is 
indeed coming from the random number generator.
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DIRECTED TESTBENCHES APPROACH

With directed testbenches, individual features are verified using
individual testbenches. The stimulus is manually crafted to exercise
that feature. The response is verified against the symptoms that
would appear should the feature not be correctly implemented.

Use for small 
number of 
testcases.

Before you embark on the directed testbenches path, you need to
consider its lack of scalability. This approach can be managed and
completed if the total number of testcases is in the low hundreds.
But as the number of testcases grows, so does the number of test-
benches. A project with over a thousand identified testcases would
require over a year to complete using a directed approach. For a
larger number of testcases, some form of testbench automation is
necessary to complete the task within an acceptable time frame.
Currently, the best method of testbench automation is the coverage-
driven random-based approach (see page 101).

Group into Testcases

Group features 
with similar ver-
ification require-
ments.

Features naturally fall into groups. Some features require similar
configuration, granularity or verification strategy to perform their
verification. To maximize productivity, these features should be
grouped together and assigned to the same verification engineer.
For example, all features related to the CPU interface should be
grouped together. As another example, verifying the baud rate,
number of data bits and parity generation of a UART falls within
the same group. Each group of feature verification forms a testcase.

Cross-reference 
into the feature 
list.

Each testcase should be labeled and given a short description of its
objective. Its description should contain a list of the features veri-
fied in this testcase. The feature list should also be annotated with
cross-references to the testcases where a particular feature is being
verified. If a feature does not have a cross-reference to a testcase, it
is not being verified.

Define depen-
dencies.

The description of a testcase should also contain a list of the fea-
tures assumed to be operational and functionally correct. From
these dependencies, you can determine the order in which the
testcases must be written, and identify any parallelism opportunities
in the testbench development effort.
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Specify the 
testcase stimu-
lus.

The sequence and characteristics of the stimulus for the testcase
must also be described. For example, describe the various opera-
tions or bus cycles that must be performed. It is a good idea to fill
all non-relevant or background data with random values or transac-
tions.

Specify the 
acceptance crite-
ria.

More than just the expected response, the testcase specification
must state how the response will be determined as valid. This
includes expected values, timing and protocol. For example, the
output of a packet processor could be determined as correct solely
on the basis of the destination address matching the output port
where it appeared. Or, a more stringent requirement could be speci-
fied, such as packets from different sources showing up in the
proper order and interleaved with a proper distribution.

Specify what 
errors to look 
for.

One of the more explicit ways of describing acceptance criteria is to
state exactly which errors to look for. For example, making sure
that a packet comes out with a correct CRC value. Another example
is to describe events that are mutually exclusive, such as the asser-
tion of the full and empty flags in a FIFO. Being explicit about what
errors to look for lets a verification engineer, who is not intimately
familiar with the design, implement a highly reliable testbench.

Inject errors to 
make sure they 
are detected.

Never trust a testbench that does not produce error messages. Every
testcase should include some error injection mechanism to make
sure that errors are detected and reported by the testbench. The
absence of an error message would be a failure condition for that
testcase. For example, a testcase verifying the parity generation in a
UART should purposefully misconfigure the parity in the UART to
make sure that the testbench detects a wrong parity. Of course, the
testbench must not abort the simulation as soon as the error mes-
sage is issued and must declare success if and only if the error mes-
sage is issued.

Define func-
tional coverage 
points.

The purpose of a directed testcase is implicit in its directness. The
stimulus of a directed testcase is hard-coded. Therefore you know
what it will do. If it executes without error, the targeted function
will have been exercised. But what if the design changes in a way
that the targeted function is no longer exercised without producing
an error? For example, a directed testcase designed to fill a FIFO
would no longer accomplish its goal should the size of the FIFO be
increased. Directed testcases should include functional coverage
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points to positively confirm that they continue to accomplish what
they were intended to do.

From Testcases to Testbenches

Testcases natu-
rally fall into 
groups.

Just like features, testcases naturally fall into groups. They require a
similar configuration of the design, use the same abstraction level
for the stimulus and response, generate similar stimulus, determine
the validity of the response using a similar strategy, or verify
closely-related features. For example, the testcase verifying that a
UART properly transmits data can be grouped with the testcase that
verifies its configuration controls. Both need similar stimulus (a
variety of data words to transmit), and both verify the correctness of
the output in a similar fashion (is the data value identical, with no
parity error).

Group testcases 
into testbenches.

Each group of testcases is then divided into testbenches. A popular
division, the one used in this book, is one testcase per testbench.
The minimization of SystemVerilog compilation time, or the time
spent back-annotating a large gate-level netlist with a correspond-
ingly large Standard Delay File (SDF) may dictate that a minimum
number of testbenches be created by grouping several testcases into
a single testbench.

Cross-reference 
testbenches with 
testcases.

Each testbench should be labeled and uniquely identified. This
identifier should be used as the filename where the top-level code
for the testbench is implemented. For each testbench, enumerate the
list of testcases it implements. Then cross-reference each testbench
into the testcase list. The description of a testcase should contain
the name of the testbench where it is implemented. If a testbench is
not identified, a testcase has not yet been implemented.

Allocate each 
group to an 
engineer.

Regardless of the division of testcases into testbenches, allocate
each group of testcases to a verification engineer. Testcases in the
same group have similar implementation requirements. They can
build on the implementation of previous testcases in the group. The
first testbench takes the longest to write. But as engineers responsi-
ble for each testcase group gain experience and debug their verifi-
cation infrastructure, a lot can be reused, often through cut-and-
paste, in subsequent testbenches. The name of the individual to
whom a testbench has been assigned should be recorded in the veri-
fication plan. That person is responsible for implementing the test-
bench according to its specification.
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Verifying Testbenches

How do you ver-
ify that test-
benches 
implement the 
verification 
plan?

The purpose of the verification effort and writing testbenches is to
verify that a design meets its specification. If the verification plan is
the specification for the verification effort, how do you verify that
the testbenches implement their specification? How can you pre-
vent a significant portion of a testcase from being skipped because
of human error? Testbenches often include temporary code struc-
tures to bypass large sections to speed up the debugging of a critical
section. How can you make sure that they are taken out, returning
the testbench to implementing the entire set of testcases it is sup-
posed to contain?

Verify test-
benches through 
peer reviews.

As described in “The Human Factor” on page 5, one way to verify a
transformation performed by a human (in this case, writing a test-
bench from a specification), is to provide redundancy. Once com-
pleted, testbenches should be reviewed by other verification
engineers to ensure that they implement the specification of the
testcases they contain. For more details, refer to section “Code
Reviews” on page 29. The simulation output log should also be
reviewed to ensure that the execution of the testbench follows the
specification as well. To that effect, the testbench should produce
regular notice messages. It should state what stimulus is about to be
generated, and what error or response is being checked. The output
log should ultimately contain, in a bullet form, the specification of
the testcases that have been executed.

Directed test-
benches may 
become obso-
lete.

What if there is a design change and a directed testbenches,
although successful, no longer exercises the feature is was designed
to verify? For example, the size of a memory or FIFO could be
increased. Any testcase involved in verifying the correct operation
of that memory or FIFO would still be successful, but it would no
longer verify the entire memory or FIFO. How can you ensure that
directed testcases remain relevant and useful?

Use functional 
coverage.

Another redundant path is functional coverage measurement. By
specifying, through a functional coverage model, what you expect a
directed testcase to accomplish, you can obtain a positive confirma-
tion that the testcase was indeed executed. After a directed test-
bench is run, the functional coverage metrics should meet 100
percent of the goal. Since the stimulus was manually coded, it is
deterministic and should fill 100 percent of the relevant and inter-
esting coverage points. For example, a directed testcase that is sup-
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posed to verify a FIFO should fill a functional coverage of that
FIFO. Should it fail to fill or empty the FIFO, as defined in the cov-
erage model, the functional coverage metric for the test will not
reach 100 percent.

Measuring Progress

Testcase com-
pletion measures 
progress.

In a directed testbench approach, progress is measured using a sim-
ple table. On one dimension, all of the testcases are listed. On the
other, the current status of each testcase is tracked throughout its
lifetime: assigned, coded, running, passing, reviewed/covered.
Figure 3-5  shows the progress of a directed testbench approach.
Initially, little progress is made because the verification infrastruc-
ture is being developed and the design is being debugged. Once the
first testcase completes successfully, the progress will accelerate as
less and less bugs remain to be found, and more and more verifica-
tion infrastructure code is reused. This acceleration may not trans-
late into an accelerated testcase completion rate as testcases
become increasingly complex to implement.

When are you 
done?

The completion of all testcases does not necessarily indicate that
the verification task is over. Code coverage metrics can indicate
that the original set of testcases is not as thorough as imagined and
additional testcases must be created to increase the code coverage
scores to more acceptable levels. In reality, “done” is usually
defined when you have to ship the design and you are confident
enough that the must-have features are working properly.

Figure 3-5.
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COVERAGE-DRIVEN RANDOM-BASED APPROACH

The SystemVerilog productivity cycle (“Verification Language
Technologies” on page 55) rests on constrained random verifica-
tion. You can use SystemVerilog to implement a directed testcase
approach as described in the previous section. Its high-level pro-
gramming language constructs would facilitate the implementation
of testcases. However, it would only increase the slope of the
testcase completion curve somewhat (Figure 3-5), not alter the
nature of the curve. Changing the curve itself requires changing
how verification is approached.

Random verifi-
cation still pro-
vides valid 
stimulus.

Random verification does not mean that you randomly apply zeroes
and ones to every input signal in the design. This would not repre-
sent an accurate usage of the design and would not accomplish any-
thing. With random verification, the inputs are subjected to valid
individual operations, such as a read cycle or an ethernet packet. It
is the sequence and timing of these operations and the content of
the data transferred that is random. Through the addition of con-
straints, a random testbench can be steered toward exercising spe-
cific features.

Measuring Progress

There are too 
many testcases.

Today’s multi-million gate ASICs contain hundreds of features to
be verified for hundreds of different combinations of data values.
Assuming a bug-free design and a team of highly productive engi-
neers who can code and debug a self-checking testbench in three
days, a team of 10 verification engineers (a rarity by today’s stan-
dards) would require over seven months to implement 500
testcases. The number of testcases cannot be reduced. Throwing
more engineers at the problem quickly produces diminishing
returns. The only way to reduce the verification time is to write
more testcases in less time. In other words, exercise the same func-
tionality with less code.

Testcases exer-
cise more than 
the target fea-
ture.

Although each testbench, when verifying a testcase, considers the
target feature in isolation, applying stimulus to the design exercises
other features at the same time. Since progress, in a directed
approach, is tracked by associating features with testbenches, how
can you track progress against features that are not explicitly coded
and verified in a testbench?
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Measure func-
tional coverage, 
not features.

The solution is to measure progress against functional coverage
points that will identify whether a feature has been exercised. The
objective becomes filling a functional coverage model of your
design rather than writing a series of testcases. You could fill this
coverage model using large directed testbenches. Or you could let a
random testbench create the testcases and exercise the features for
you. Figure 3-6 shows progress using a coverage-driven approach
with a random testbench against the traditional directed approach.
The former trades-off longer initial testbench development time for
more productive feature coverage in the long run. The promised
ultimate productivity gain should not be measured on this qualita-
tive plot: It depends highly on your commitment to this approach,
and your experience in writing random generators that can be con-
strained easily (“Random Stimulus” on page 307). 

You will 
develop more 
confidence.

Directed testcases can only find bugs you were looking for. Ran-
dom simulations will create conditions that you have not thought of
when writing your verification plan. They create unexpected condi-
tions and hit corner cases. They also reduce the bias introduced by
the verification engineer when coding directed testbenches. Instead
of creating input sequences that are easy or familiar to code, they
create more thorough stimulus. Because your design will have been
exercised under a larger number of conditions (compared to a
directed approach during the same time period), the overall quality
of the design will be higher.

This approach 
requires com-
mitment.

Using a constraint-driven approach requires commitment. Under
pressure, it is too easy to fall back to writing directed testcases. A
critical component of this approach is that you need to simulate
your testbench and your design to know how much functional cov-

Figure 3-6.
Progress of a 
coverage-
driven
testbench 
approach

Time%
 o

f F
un

ct
io

na
l C

ov
er

ag
e 100%

Directed
Approach

Coverage-Driven
Approach



Coverage-Driven Random-Based Approach

Writing Testbenches using SystemVerilog 103

erage you have achieved. If the RTL model is not available on time
(and it never is), how can you debug your self-checking random
testbench? How can you show that the verification team is making
progress towards its functional coverage goals? The easy answer is
to start writing testcases as directed pseudo-random testbenches
that implicitly fill functional coverage points. That puts you back
on the staircase curve. A better approach is to stage the RTL deliv-
ery to enable simulations as early as possible and to use a transac-
tion-level model of the design under verification. For more details
on transaction-level models, see “Transaction-Level Models” on
page 333.

From Features to Functional Coverage

Start with func-
tional coverage.

In a coverage-driven approach, functional coverage is used to iden-
tify which testcases were executed instead of explicitly coding
those testcases. Thus, it is important to implement functional cover-
age models and collect functional coverage measurements right
from the start. Functional coverage is not like code coverage. The
latter is often added to the verification process toward the end to
measure how thoroughly the code is being exercised and to identify
implementation code that was not exercised. Functional coverage is
used from the beginning of the project to record which testcases
and conditions were automatically created by the random generator.
If you are not using functional coverage in tandem with your ran-
dom environment, I’m afraid you are only doing directed testcases
with random stimulus filling.

Measure symp-
toms of data 
indicative of 
feature.

Each feature presents a characteristic or symptom in the input data
stream, the design configuration or the internal state of the design
that must be exercised. Functional coverage must identify, then
record, those characteristics and symptoms. Sample 3-4 shows a
description of the functional coverage items used to identify that
the interface-based features identified in Sample 3-1 have been
exercised.

Define your 
goal.

Functional coverage can help you measure your progress only if
your goals are explicitly defined. It will also make analysis of the
functional coverage easier. The progress will be measured against a
constant goal. If the goals are intellectually defined every time you
analyze a functional coverage report, then these goals are subject to
human error. There will also be a tendency to minimize the impor-
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tance of holes toward the end of the project as you subconsciously
justify your progress against the looming deadline. Sample 3-5
describes the functional coverage goals for each of the functional
coverage points identified in Sample 3-4. Different features may
use the same coverage point but imply a broader goal.

Understand the 
complexity of 
the goal.

Don’t make your goal more accurate or precise than it needs to be.
The more coverage point bins that must be filled to meet your goal,
the more work it is going to be. With cross-coverage, the number of
bins that must be filled grows exponentially. For example, it is not
realistic to attempt to cover all possible values for a 32-bit address
for both read and write cycles: That is over 8 billion values. Define
bins for equivalent values or combinations of values to minimize
the number of samples required to meet your goal. Functional cov-
erage tools have a practical limit on the total number of bins that
must be filled to provide a measure of the coverage.

Question,
reduce, inform.

It is very easy to collect a large number of functional coverage met-
rics. But the more functional coverage data you have, the harder it
becomes to analyze the results. Always question the relevance of a
functional coverage point. If you start to ignore some coverage
point reports or are not looking forward to the next report, you
should probably not collect it. There is a fundamental difference
between data and information. Haphazard functional coverage
points only provide data that must be analyzed. Well-chosen func-

Sample 3-4.
Functional 
coverage for 
interfaced-
based features 
of a UART 
design

1. Level of the Clear-to-Send (CTS) pin. 
2. Level of the Data-Ready (DTR) pin.
3. CPU cycle kind crossed with address.
4. CPU cycle kind transition.
5. CPU cycle kind crossed with address crossed with data.

Sample 3-5.
Functional 
coverage goals 
for interfaced-
based features 
of a UART 
design

1. A least one value of 0 and 1 observed. 
2. At least one value of 0 and 1 observed.
3. At least one read and write cycle with address greater 4.
4. All combinations of read and write cycles.
5. At least one read and write cycle for each address equal to 

configuration register and with individual bits equal to 
0 and 1.
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tional coverage points with well-defined goals provide information
that is immediately meaningful. For example, if a FIFO must be
exercised across its operating range, measuring the values of the
read and write pointers would be data. Measuring the difference
between the read and write pointers with goals stated as empty, full
and neither would be much more meaningful. Crossed with some
critical pointer regions (such as roll-over points), this latter func-
tional coverage point will provide much more relevant information.

Functional cov-
erage definition 
is an evolving 
art.

Developing a good functional coverage model of your verification
plan is not easy. This section has described the necessary steps only
in the broadest of terms. Functional coverage modeling is a topic
that can and should be developed into a science with well-defined
processes. The book Functional Verification Coverage Measure-
ment and Analysis by Andrew Piziali is an excellent text on func-
tional coverage modeling. Although it uses the e language as
implementation medium, the coverage modeling process outlined
in the book can just as easily be implemented using SystemVerilog.

From Features to Testbench

Identify how 
correctness will 
be determined.

Note that the functional coverage points described above do not
make any reference to the correctness of the results. Correctness is
the responsibility of the self-checking portion of the testbench.
Given the features that must be verified, you have to determine how
its correctness is going to be confirmed. The process is similar to
identifying the expected response in a directed testcase exercising
that feature. The difference is that you do not know the timing or
ordering of the stimulus that will trigger the feature. Errors can be
detected by a failure of the random testbench to operate properly,
by explicitly comparing output data against expected data in the
self-checking structure, or white-box assertions on the design itself.
The list of error detection mechanisms becomes a detailed specifi-
cation of the self-checking random testbench. Sample 3-6 shows
the error detection mechanism that will confirm the correctness of
the features identified in Sample 3-1.

Identify termi-
nation mecha-
nisms.

It is easy to terminate a directed testcase: Once you are done apply-
ing the stimulus necessary to exercise the target feature, you simply
terminate the simulation. But a random testbench is not about exer-
cising a single feature. How do you know when to stop? You have
to plan for several termination mechanisms that can be triggered or
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turned off through additional constraints on the random testbench
or a simple procedural call at the beginning of a simulation run.
Any one termination mechanism, once triggered will cause the
orderly shutdown of the simulation. 

There are several popular termination mechanisms. A watchdog
timer is useful to prevent deadlocked simulations: It must be reset
at regular intervals, otherwise the simulation is terminated. A time
bomb helps prevent run-away simulations: It will terminate the
simulation after a predetermined amount of time. An idle detector
will stop the simulation when all of the output interfaces have been
idle for some time. A simple data item counter will terminate the
simulation after a specified number of data items was sent to or
received from the design. Functional coverage feedback can termi-
nate the simulation if the metrics are not significantly increasing or
if the coverage goal has been reached.

You can run for 
a long time, or 
you can run 
many times.

You can generate a lot of random data using two strategies: You can
run a random source for a long time, or you can run a random
source many times, for a short time, each time with a different seed.
If the random source is truly random and the seeds are chosen as
not to repeat a previous sequence, then the quality of the resulting
random data should be the same. However, the effects on a simula-
tion of each strategy are quite different.

Plan for many 
short runs.

A long simulation will be cumbersome to reproduce if the error is
detected toward the end. Furthermore, since a single simulation run
will typically use a single configuration of the device, you will have
less opportunities to verify different configurations. Your device
may also find itself in a particular corner of the state space and

Sample 3-6.
Error detection 
for interfaced-
based features 
of a UART 
design

1. Data source will wait for Clear-to-Send (CTS) pin to be 
asserted before writing the next data to send. If it is not func-
tional, no data will be transmitted.

2. Data sink will wait for the Data-Terminal-Ready (DTR) pin 
to be asserted before reading the next received data. If it is 
not asserted, no data will be received.

3. Covered by #4.
4. Verify that read cycles return expected values given the pre-

vious values written, writability of bits and reset value, size 
and presence of registers.

5. Covered by #4.
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remain in that corner. Continuing to apply more stimulus under
those conditions is unlikely to yield increased functional coverage. 

Using the many-short-runs strategy, you can reproduce a problem
more quickly, run many more configurations and quickly traverse
the state space. If your device requires a lot of simulation cycles to
reach certain states after reset, consider state-forcing mechanisms
as described in “Design for Verification” on page 93.

From Features to Generators

Identify stimu-
lus require-
ments.

To be able to fill your coverage goals, it will be necessary for the
random generators to generate the necessary stimulus, with the nec-
essary characteristics and necessary timing. It is very simple to gen-
erate a single packet or instruction with random content. But this
simple random generation approach is likely insufficient if you
need the ability to generate packets of different lengths, lots of con-
secutive packets of the same length, straight-through instruction
sequences, nested loop structures, invalid or corrupted data or syn-
chronized data across multiple random streams. 

A random generator that will be able to exercise the required fea-
tures does not happen by accident. It has to be designed and archi-
tected to produce the required data sequences. Sample 3-7 shows
the random generator requirements necessary to exercise the fea-
tures identified in Sample 3-1.

Constraints
become prefera-
ble to more 
seeds.

What if, after multiple random simulations, some of your functional
coverage points remain unfilled? You could run more simulations
with additional seeds, or you could add constraints to your test-
bench to increase the probability (hopefully to 100 percent) of fill-
ing at least one of the remaining functional coverage points. The
latter, although requiring more work on your part, is likely to be the
more productive avenue, especially if hundreds of previous runs

Sample 3-7.
Generator
requirements
for interfaced-
based features 
of a UART 
design

1. Generate send data stream.
2. Generate receive data stream.
3. Generate read or write cycles.
4. Covered by #3.
5. Covered by #3.
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failed to produce the necessary inputs to fill those coverage points.
The gap in your functional coverage measurements could also be a
symptom of a functional problem in your random generators or ver-
ification environment. It is possible that a lingering constraint is
preventing the generation of input sequences that will cause the
functional coverage points to be filled.

Identify con-
strainable
dimensions.

When architecting your random generator, it is necessary to con-
sider the available constraint mechanisms. Traditionally, different
random streams were produced by physically altering the code of
the random generator. As shown in Figure 3-7, altering the code of
the random generator effectively created a different random genera-
tor for each testbench.  

To minimize the amount of duplicated code and the amount of new
code that must be written to fill additional functional coverage
points (and thus to be more productive), it is better to design a ran-
dom generator that can be constrained easily, from the outside, as
illustrated in Figure 3-8. Writing a random generator that can be
constrained easily from the outside does not happen by accident.
The section titled “Random Stimulus” on page 307 shows how to
write such generators. Sample 3-8 shows the constraint mecha-
nisms that must be available in the generators to exercise the fea-
tures in Sample 3-1.  

Figure 3-7.
Different 
random 
generators
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Randomly gen-
erate the device 
or testbench 
configutation.

It is easy to conceive of randomly generating data streams through-
out a simulation. But you can just as easily randomly generate data
that is used only once, at the beginning of the simulation. For exam-
ple, configurable or programmable devices are often verified using
only a few configurations hard-coded in the testbench or an exter-
nal file. And most simulations are usually run using one of those
configurations.

Why not randomly generate the device configuration then down-
load it into the device? The device configuration descriptor is then
used by the self-checking structure to predict the response accord-
ing to the current configuration. Similarly, you could randomly gen-
erate the configuration of the testbench. For example, when
verifying an ethernet switch, why not randomly generate the num-
ber of devices on each port, their speed and their station MAC
addresses? Then use functional coverage measurement on the ran-
domly generated configuration to know which configurations and
combinations of configuration parameters were verified.

Constrain con-
figurations if 
necessary.

Your self-checking structure does not yet support all possible
device configurations? Or, you are unable to “compile” all possible
configurations into register writes? Or, you are migrating from a
Verilog testbench that can use only two configurations through
$readmemh tasks? No problem. Simply constrain the configuration
generator to generate only the supported configurations. Once you
are able to support additional configurations, remove the con-
straints accordingly.

Directed Testcases

Identify low-
probability
testcases.

There are some features that will have a low probability of being
exercised through random stimulus. For example, verifying that
interrupt bits are maskable would require that the mask bits be ran-
domly set to one and zero while the associated interrupt bits were

Sample 3-8.
Constraint 
requirements
for interfaced-
based features 
of a UART 
design

1. No constraints.
2. No constraints.
3. Must be able to constrain address.
4. Must be able to constrain type of cycle in sequences of 

cycles.
5. Must be able to constrain address and data.
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set and cleared (i.e., fill the cross-coverage of the interrupt bit value
with the mask bit value, for all interrupt bits). Given that interrupts
usually signal exceptional events in a design, it will likely take a
very long time for random stimulus to completely verify this fea-
ture. These features are probably better verified using directed
testcases.

May be imple-
mented using 
constraints.

Writing a directed testcase does not necessarily imply using a
directed procedural implementation. If the random generators were
designed to be highly constrainable, it is possible to constrain them
so much that they will produce directed stimulus. For example, to
verify the maskability of a particular interrupt, you would constrain
the CPU cycle generator to write a zero then a one in the appropri-
ate position at the interrupt mask register address. You would then
constrain the data generators to cause the interrupt condition. Once
the condition is detected, constrain the CPU cycle generator to
write a zero and then a one in the mask bit again. An assertion
would verify that the external interrupt would be asserted only
when the interrupt condition is not masked. However, if the most
productive approach is to write a directed procedural testcase, the
random environment can be suspended to allow access to the trans-
action layer of the bus-functional model.

The first 
testcases are the 
simplest but also 
the toughest.

When a new version of the design first hits the verification team, it
is subjected to a few simple testcases. The objective of these
testcases is to verify that the basic functionality of the design oper-
ates correctly. Once it passes these initial trivial tests, it will be sub-
jected to high volumes of traffic to thoroughly verify the design. 

These first trivial testcases, although very simple, are the toughest
ones to pass. You may spend weeks running the same simple tests.
Because they are used on immature code, they catch the most bugs.
These early trivial testcases usually involve performing a write
cycle followed by a read cycle, or transmitting a single packet, or
executing a few straight-through instructions.

Trivial testcases 
can be random.

Because of their simplicity, you could be tempted to write the first
trivial testcases as directed testcases. Given well-designed genera-
tors, they are usually much simpler to write as constrained tests. For
example, constraining the test to two cycles, where the first one
must be a write cycle, the second must be a read cycle and both
addresses must be the same. Or, constrain the packet generator to
generating only one packet for the entire simulation. Or, constrain
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the instruction generator to generate only arithmetic opcodes with-
out any branches. Once the initial trivial tests pass successfully, you
remove these constraints and let the now-debugged random envi-
ronment loose on the design.

See Chapter 6 of 
the VMM.

For guidelines on how to implement functional coverage models
using SystemVerilog, see the section titled "Functional Coverage
Implementation" starting on page 266 of the Verification Methodol-
ogy Manual for SystemVerilog.

SUMMARY

Write a verification plan. It is the specification for all testcases and
supporting testbench functions. Implement and verify from a com-
mon specification. Do not verify an implementation.

Define the various levels of granularity used to verify the design:
block, unit, reusable core, FPGA, ASIC, subsystem, system, board.
Trade off greater visibility and controllability for fewer testbenches
and more integration tests.

Define the self-checking strategy that will be used to detect errors.

Identify features from the design specification, and enumerate
which features must be verified.

Consider verification early in the design phase. Architect the design
as needed to make it as easy to verify as possible.

You can use a directed testbench approach if the number of
testcases is small. For each feature, specify a testcase. Implement
each testcase in a separate testbench.

Define a functional coverage model from the enumerated features.
From those same features, identify the degrees of freedom and con-
straint dimensions of the generators required to generate the stimu-
lus that will exercise each feature. Use your coverage model to
decide which feature to target next and how to best exercise it.     
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CHAPTER 4 HIGH-LEVEL MODELING

A skilled verification engineer must break the “RTL mindset” that
most hardware engineers, out of necessity, have grown into. To effi-
ciently accomplish the verification task, you must be well versed in
behavioral (i.e., non-synthesizable and highly algorithmic) and
transaction-level descriptions. To reliably and correctly use the
high-level constructs of SystemVerilog, it is necessary to under-
stand the side effects of the simulation algorithm and the limitations
of the language—and to understand ways to circumvent those side
effects and limitations. This understanding was not required to
write RTL models successfully.

HIGH-LEVEL VERSUS RTL THINKING

This section illustrates the differences between the approaches to
writing an RTL model and to writing a high-level model.

Many guide-
lines help code 
RTL models.

All experienced hardware design engineers are very comfortable
with writing synthesizable models. The models conform to a well-
defined subset of the SystemVerilog language and follow one of a
few coding styles. Numerous RTL coding guidelines have been
published.1 They help designers obtain efficient implementations:

1. See “IEEE P1364.1 Standard for Verilog Register Transfer Level Syn-
thesis” prepared by the Verilog Synthesis Interoperability Working 
Group of the Design Automation Standards Committee.
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low area, high speed or low power. Guidelines, such as the ones
shown in Sample 4-1, can help a novice designer avoid undesirable
hardware components, such as latches, internal buses or tristate
buffers. More importantly, guidelines such as the ones shown in
Sample 4-2, can help maintain identical behavior between the syn-
thesizable model and the gate-level implementation.   

The adherence to the synthesizable subset and proper coding guide-
lines can be verified easily using linting (more details are in the sec-
tion titled "Linting" on page 24). After several months of
experience, the subset becomes very natural to hardware designers.
It matches their mental model of a hardware design: state machines,
operators, multiplexers, decoders, latches and clocks etc.

Do not use RTL-
like code when 
writing test-
benches.

The synthesizable subset is adequate for describing the implemen-
tation of a particular design. The subset is dictated by the synthesis
technology, not by someone with a warped sense of humor playing
a practical joke on the entire industry. It is designed to describe
hardware structures and logical transformations between registers,
matching the capability of logic synthesis technology. However,
this subset quickly becomes insufficient when writing testbenches
that were never intended to be implemented in hardware. System-
Verilog has a rich set of constructs and statements. If you have an
RTL mindset when writing testbenches and limit yourself to using a
coding style designed to describe relatively low-level hardware
structures, you will not take full advantage of SystemVerilog’s

Sample 4-1.
RTL coding 
guidelines to 
avoid undesir-
able hardware 
structures

1. To avoid latches, set all outputs of combinatorial blocks to 
default values at the beginning of the block.

2. To avoid internal buses, do not assign regs from two separate 
always blocks.

3. To avoid tristate buffers, do not assign the value 1'bz.

Sample 4-2.
RTL coding 
guidelines to 
maintain simu-
lation behavior

1. All inputs must be listed in the sensitivity list of a combinato-
rial block.

2. The clock and asynchronous reset must be in the sensitivity 
list of a sequential block.

3. Use a nonblocking assignment when assigning to a reg
intended to be inferred as a flip-flop.
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power. The verification task will be needlessly tedious and compli-
cated.

Contrasting the Approaches
The example below shows a simple handshaking protocol. Your
task is to write the SystemVerilog code that implements the simple
handshaking protocol shown in Figure 4-1. The protocol detects
that an acknowledge signal (ACK) is asserted (high) after a request-
ing signal (REQ) is asserted (high). Once the acknowledge signal is
detected, the requesting signal is deasserted, and the protocol then
waits for the acknowledge signal to be deasserted.

RTL-Thinking Example. A hardware designer, with an RTL
mindset, will immediately implement the state machine shown in
Figure 4-1. The corresponding SystemVerilog code is shown in
Sample 4-3. This relatively simple behavior required 21 lines of
code and two always blocks to describe, and two additional states in
a potentially more complex state machine.

Focus on behav-
ior, not imple-
mentation.

High-Level-Thinking Example. A verification engineer, with a
high-level mindset, will instead focus on the behavior of the proto-
col, not its implementation as a state machine. The corresponding
code is shown in Sample 4-4. The functionality can be described
behaviorally using only four statements. 

High-level mod-
els are faster to 
write.

Modeling this simple protocol using high-level constructs should
require less than 10% of the time required to model it using synthe-
sizable constructs. Not only is there less code to write (20%), but it
is also simpler, requiring less effort to ensure that it is correct.

High-level mod-
els simulate 
faster.

Another benefit of high-level modeling is the increase in simulation
performance. Assuming that there is a long delay between a change
in the request and the corresponding acknowledgement, the simula-

Figure 4-1.
State diagram 
for 
handshaking 
protocol

REQ = 1 REQ = 0ACK = = 1

ACK = = 0 ACK = = 1

ACK = = 0
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tion of the synthesizable model would still execute the always_ff
block at every rising edge of the clock (because that always block is
sensitive to that transition of the clock signal). The always block
containing the high-level description would wait for the proper con-
dition of the acknowledge signal, resuming execution only when
the protocol is satisfied. If the acknowledge signal replies after a 10
clock-cycle delay, this represents a reduction of process execution
from 20 in the synthesizable version to 2 in the behavioral one, or a
1000 percent increase in simulation performance. 

Sample 4-3.
Synthesizable 
SystemVer-
ilog code for 
simple hand-
shaking proto-
col

enum {...,
      MAKE_REQ,
      RELEASE,
      ...} state, next_state;
...
always_comb
begin
   next_state <= state;
   case (state)
   ...
   MAKE_REQ: begin
      req <= 1’b1;
      if (ack) next_state <= RELEASE;
   end
   RELEASE: begin
      req <= 1’b0;
      if (!ack) next_state <= ...;
   end
   ...
   endcase
end

always_ff @(posedge clk)
begin
   if rst state <= ...;
   else state <= next_state;
end

Sample 4-4.
High-level
SystemVer-
ilog code for 
simple hand-
shaking proto-
col

always
begin
   ...
   req <= ’1’;
   wait (ack);
   req <= ’0’;
   wait (!ack);
   ...
end
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YOU GOTTA HAVE STYLE!

The synthesizable subset puts several constraints on the coding
style you may use. Even with these restrictions, many less experi-
enced hardware designers manage to write RTL code that is diffi-
cult to understand and maintain. There are no such restrictions with
high-level modeling. With this complete and thorough freedom, it
is not surprising that even experienced designers produce testbench
code that is unmaintainable, fragile and not portable.

A Question of Discipline

Write maintain-
able, robust 
code.

There are no laws against writing bad code. If you do, the conse-
quences do not involve personal fines or prison terms. However, the
consequences do involve a real economic cost to your employer.
Your code will need to be modified: either to fix a functional error,
to extend its functionality or to adapt it to a new design. When (not
if) your code needs to be modified, it will take the person in charge
of making that modification more time than would otherwise have
been required had the code been written properly the first time.
Under extreme conditions, your code may even have to be re-writ-
ten entirely.1

My first job after graduating from university was to design and
implement a portion of a logic synthesis tool using the C language.
In those days, I had been writing code in various languages for over
eight years, and I measured my performance as a software engineer
by the cleverness of my implementations of algorithms. I felt really
proud of myself when I was able to craft a complex computation
into a “poetic” one-liner.

Invest time now, 
save support 
time later.

I soon came to realize the error of my ways. During the eight previ-
ous years, I always wrote “disposable” code: The programs were
either short-lived (school assignments or personal projects), or they
had a narrow audience (utilities for university professors or a learn-
ing aid for a particular class). Never had I written a program that
would live for several years and be used by dozens of persons, each
with their own sophisticated needs and attempting to use my pro-
gram in ways I had never intended or even thought of. As I found

1. Do not think, “It won’t be my problem.” You may very well be that per-
son and you may not be able to understand your own code weeks later.
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myself having to fix many problems reported by users, I had diffi-
culties understanding my own code written only weeks before. I
quickly learned that time invested in writing better code up front
would be saved many times over in subsequent support efforts.

Optimize the Right Thing
You should always strive for maintainability. Maintainability is
important even when writing synthesizable code. Before optimizing
some aspect of your code, make sure it really needs improvement.
If your code meets all of its constraints, it does not need to be opti-
mized. Maintainability is the most important aspect of any code you
write because understanding and supporting code is the most
expensive activity.

Saving lines 
actually costs 
money.

There is no economic reason to reduce the number of lines of code.
Unless, of course, it also improves the maintainability. Saving one
line of code, with an average of 50 characters per line, saves only
50 bytes on the storage medium. With 40GB hard drives costing
less than $80 in 20021, this represents a savings of one hundred
thousandth of one cent ($0.00000001). The time saved in typing,
assuming an extremely slow typing speed of one character per sec-
ond and a loaded labor rate for an engineer at $100,000 a year2,
amounts to $0.69. However, if saving that line reduces the under-
standability of the code where it will require an additional five min-
utes to figure out its operation, the additional cost incurred amounts
to $4.17. The total loss from reducing code by one line equals
$3.48. And that is for a single line and a single instance of mainte-
nance.

Optimizing per-
formance costs 
money.

Similar costs are incurred when optimizing code for performance.
These optimizations usually reduce maintainability and must be
done only when absolutely required. If the code meets its con-
straints as is, do not optimize it. That principle applies to synthesiz-
able code as well. The example in Sample 4-5 is a design example
provided in the Vera distribution. It is a synthesizable description of
a 2-bit round-robin arbiter.

1. 93% cheaper in the 3 years since the first edition of this book!
2. That, however, is pretty much the same...
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RTL code can be 
too close to 
schematic cap-
ture.

Several aspects of maintainable code were used in Sample 4-5:
Identifiers are meaningful and the code is properly indented. How-
ever, the continuous assignment statements implementing the com-
binatorial decoding suggest that the author was thinking in terms of
boolean equations, maybe even working from a schematic design,
not in terms of functionality of the design. 

This approach simplifies the understanding of the final implemen-
tation at the cost of functional understanding. From each concurrent
statement, it is easy to figure out the logic gates and flip-flops nec-
essary to implement. But try to figure out what happens to the con-

Sample 4-5.
Synthesizable 
code for 2-bit 
round-robin 
arbiter

/*
##############################################
# PROPRIETARY AND CONFIDENIAL                #
# SYSTEMS SCIENCE INC.                       #
# COPYRIGHT (c) 1995 BY SYSTEMS SCIENCE INC. #
##############################################
*/
module rrarb(request, grant, reset, clk);
input  [1:0] request;
output [1:0] grant;
input        reset;
input        clk;
wire         winner;
reg          last_winner
reg    [1:0] grant;
wire   [1:0] next_grant;

assign next_grant[0] =
   ~reset & (request[0] &
              (~request[1] | last_winner));

assign next_grant[1] =
   ~reset & (request[1] &
              (~request[0] | ~last_winner));

assign winner =
   ~reset & ~next_grant[0] &
   (last_winner | next_grant[1]);

always @ (posedge clk)
begin
   last_winner = winner;
   grant = next_grant;
end
endmodule
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tent of the last_winner register when there are no requests, or add a
third request and grant signal pair. Understanding or modifying the
functionality is much more difficult. Other potential problems are
the race conditions created by using the blocking assignments in the
always block (for more details, see “Read/Write Race Conditions”
on page 177).

Specify func-
tion first, opti-
mize
implementation
second—and
only if needed.

The code shown in Sample 4-6 implements the same function, but it
is described with respect to its functionality, not its gate-level
implementation. The code sample simplifies the understanding of
the function but makes no attempt at describing the final implemen-
tation. It is much easier to figure out what happens to the content of
the last_winner register when there are no requests or to add a new
request and grant signal pair. The synthesized results should be
close to that of the previous model. The synthesized results should
not be a concern until it is demonstrated that the results do not meet
area, timing or power constraints. Your primary concern should be
maintainability, unless shown otherwise. 

Sample 4-6.
Synthesizable 
code for 2-bit 
round-robin 
arbiter

module rrarb(request, grant, reset, clk);
input  [1:0] request;
output [1:0] grant;
input        reset;
input        clk;

reg [1:0] grant;
reg last_winner;
always_ff @ (posedge clk)
begin
   grant <= 2’b00;
   if (reset) last_winner <= 0;
   else if (request != 2’b00) begin: find_winner
      reg winner;
      case (request)
         2’b01: winner = 0;
         2’b10: winner = 1;
         2’b11: winner = last_winner+1;
      endcase
      grant[winner] <= 1’b1;
      last_winner   <= winner;
   end: find_winner
end
endmodule
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Good Comments Improve Maintainability
If reducing the number of lines of code actually increases the over-
all cost of a design, the same argument applies to comments. One
could argue that reducing the number of lines of code can yield a
better program, since there are fewer statements to understand and
debug. However, the primary purpose of comments is explicitly to
improve maintainability of code. No one can argue that reducing
their number can lead to better code.

You can write 
bad comments.

However, just as there is bad code, there are bad comments. Obso-
lete or outdated comments are worse than no comments at all since
they create confusion. Comments that are cryptic or assume some
particular knowledge may not be very useful either. One of the most
common mistakes in commenting code, illustrated in Sample 4-7, is
to describe in written language what the code actually does.

Unless you are trying to learn SystemVerilog, this comment is self-
evident and redundant. It does not add any information. Any reader
familiar with SystemVerilog would have understood the functional-
ity of the statement. Comments should describe the intent and pur-
pose of the code, as illustrated in Sample 4-8. It is information that
is not readily available to someone unfamiliar with the design.

Assume an inex-
perienced audi-
ence.

When commenting code, you should assume that your audience is
composed of junior engineers who are familiar with the language,
but not with the design. Ideally, it should be possible to strip a file
of all of its source code and still understand its functionality based
on the comments alone.

Sample 4-7.
Poor com-
ment in Sys-
temVerilog

// Increment addr
addr++;

Sample 4-8.
Proper com-
ments in Sys-
temVerilog

// In burst mode, the bytes are written in
// consecutive addresses. Need to access the
// next address to verify that the next byte
// was properly saved.
addr++;
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STRUCTURE OF HIGH-LEVEL CODE

This section describes techniques to structure and encapsulate high-
level code for maximum maintainability. Encapsulation can be used
to hide implementation details and package reusable code elements.

RTL models are 
structured
according to 
implementation
needs.

Structuring code is the process of allocating portions of the func-
tionality to different modules or entities. These modules or entities
are then connected together to provide the complete functionality of
the design. There are many guidelines covering the structure of syn-
thesizable code. That structure has a direct impact on the ease of
meeting timing requirements. The structure of a synthesizable
model is dictated by the limitations of the synthesis tools, often
with little regard to the functionality.

Testbenches are 
structured
according to 
functional 
needs.

A testbench implemented using high-level SystemVerilog code
does not face similar restrictions. You are free to structure your
code any way you like. For maintainability reasons, high-level code
is structured according to functionality or need. If a function is par-
ticularly complex, it is easier to break it up into smaller, easier to
understand subfunctions. Or, if a function is required more than
once, it is easier to code and verify it separately. Then you can use it
as many times as necessary with little additional efforts. System-
Verilog code can be structured using task, function, class, module,
program, interface, package or inheritance.

Encapsulation Hides Implementation Details
Encapsulation is an application of the structuring principle. The
idea behind encapsulation is to hide implementation details and
decouple the usage of a function from its implementation. That
way, the implementation can be modified or optimized without
affecting the users, as long as the interface is not modified.

Keep declara-
tions as local as 
possible.

The simplest encapsulation technique is to keep declarations as
local as possible. This technique avoids accidental interactions with
another portion of the code where the declaration is also visible. A
common problem in SystemVerilog is illustrated in Sample 4-9:
Two always blocks contain a for-loop statement using the register i
as an iterator. However, the declaration of i is global to both blocks.
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They will interfere with each other’s execution and produce unex-
pected results.

In SystemVer-
ilog, put local 
declarations in 
begin/end
blocks.

In SystemVerilog, you can declare registers local to a begin/end
block. A proper way of encapsulating the declarations of the itera-
tors so they do not affect the module-level environment is to declare
them locally in each always block, as shown in Sample 4-10. Prop-
erly encapsulated, these local variables cannot be accidentally
accessed by other always or initial blocks and create unexpected
behavior.

Sample 4-9.
Improper 
encapsulation
of local 
objects in Ver-
ilog

int i;

always
begin
   for (i = 0; i < 32; i = i + 1) begin
      ...
   end
end

always
begin
   for (i = 15; i >= 0; i = i - 1) begin
      ...
   end
end

Sample 4-10.
Proper encap-
sulation of 
local objects 
in SystemVer-
ilog

always
begin

int i;
   for (i = 0; i < 32; i = i + 1) begin
      ...
   end
end

always
begin

int i;
   for (i = 15; i >= 0; i = i - 1) begin
      ...
   end
end
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SystemVerilog 
tasks and func-
tions can contain 
local variables.

Other locations where you can declare local registers in SystemVer-
ilog include tasks and functions, after the declaration of their argu-
ments. An example can be found in Sample 4-11.

Minimize the 
scope of local 
variables.

In SystemVerilog, local variable declarations can be located at the
beginning of any begin/end block. And since blocks can be located
anywhere in sequential code to create local scope regions, local
variables can be created while minimizing their scope and potential
undesirable interaction. For example, Sample 4-12 shows how a
local iterator variable can be created in the middle of a long
sequence of statements by creating a local scope region.

Inline the decla-
ration of iterator 
variables.

The scope of variables used solely as for-loop iterators can be fur-
ther reduced by declaring them within the loop statement, often
eliminating the need for a begin/end block. Sample 4-13 shows how
the local iterator variable can be declared and created within the

Sample 4-11.
Local declara-
tions in tasks 
and functions

task send(input [7:0] data);
reg         parity;

   ...
endtask

function [31:0] average(input [31:0] val1,
                        input [31:0] val2);

 reg   [32:0] sum;

   sum = val1 + val2;
   average = sum / 2;
endfunction

Sample 4-12.
Local declara-
tions in Sys-
temVerilog

function bit eth_frame::compare(eth_frame to);
   compare = 0;
   ...
   if (this.data_len !== to.data_len) return;

begin
      int i;
      for (i = 0; i < this.data_len; i++) begin
         if (this.data[i] !== to.data[i])
            return;
      end

end
   ...
   compare = 1;
endfunction: compare
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for-loop statement. Note that the loop iterator variable is an auto-
matic variable. It is allocated every time the loop is entered and
freed once the loop exits.

Encapsulating Useful Subprograms
Some functions and procedures are useful across an entire project
or between many testbenches. One possibility would be to replicate
them wherever they are needed. This obviously increases the
required maintenance effort. It also duplicates information that was
already captured. SystemVerilog has classes, modules, programs,
interfaces and packages to encapsulate any declaration used in
more than one partition.

Example: error 
reporting rou-
tines.

One example of procedures that are used by many testbenches are
the error reporting routines. To have a consistent error reporting
format (which can be parsed easily later to check the result of a
regression), a set of standard routines are used to issue messages
during simulation. When using SystemVerilog, they should be
implemented as void functions, within a message class. The Verifi-
cation Methodology Manual for SystemVerilog defines a very flexi-
ble message reporting class named vmm_log and detailed
guidelines for using it. See the section titled "Message Service"
starting on page 134 of the Verification Methodology Manual for
SystemVerilog for more details.

Functions 
should be pack-
aged in a class
and used via a 
local instance.

It is preferable to use classes to encapsulate shared declarations.
They can be used anywhere. They offer a protection mechanism for
data and procedures that users should not be allowed to use directly.
And they can be user-extended in case a user wants to add to or
modify the packaged declarations. Functions and tasks in a class—
called methods—are accessed through a local instance of the class.

Sample 4-13.
Local declara-
tions in Sys-
temVerilog

function bit eth_frame::compare(eth_frame to);
   compare = 0;
   ...
   if (this.data_len !== to.data_len) return;
   for (int i = 0; i < this.data_len; i++) begin
      if (this.data[i] !== to.data[i])
         return;

end
   ...
   compare = 1;
endfunction: compare
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The SystemVerilog implementation, shown in Sample 4-14 and
used in Sample 4-15, can be compiled on its own since the func-
tions are contained within a compilation unit. The encapsulating
class will be added to the $root name space—and thus should be
carefully named to avoid collisions. Classes unlike modules, must
be explicitly instantiated using the new constructor.          

static variables
can replace glo-
bal variables.

It is also possible to include global variables, such as an error
counter in the class. In the usage example shown in Sample 4-15,
there will be an instance of error and warning counters for each
instance of the class. In this case, it would be preferable to have a
single instance of those counter values. This can be accomplished
by declaring them as static, as shown in Sample 4-16. 

This is basic 
object-oriented 
programming.

Encapsulating procedures and the state variables they operate on in
the same construct is the primary technique in object-oriented pro-
gramming. SystemVerilog’s class is an object-oriented construct. It
supports inheritance and polymorphism. These important object-
oriented concepts will be introduced in “Object-Oriented Program-
ming” on page 147.

Sample 4-14.
Packaging of 
functions and 
tasks in Sys-
temVerilog

class syslog;

int warnings = 0;
int errors = 0;

function void warning(input string msg);
   $write("WARNING at %t: %s", msg);
   warnings++;
endfunction: warning
...
endclass: syslog

Sample 4-15.
Using tasks 
packaged
using a class
in SystemVer-
ilog

module testcase;

syslog log = new;

initial
begin
   ...
   if (...) log.error("Unexpected response");
   ...

log.terminate;
end
endmodule
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Encapsulating Bus-Functional Models
In Chapter 5, I describe how stimulus applied to the design under
verification via complex waveforms and protocols can be imple-
mented using tasks. These tasks, called bus-functional models, are
typically used by many testbenches throughout a project. If they
model a standard interface, such as a PCI bus or a Utopia interface,
they can even be reused between different projects. Properly pack-
aging these tasks facilitates their use and distribution.

Figure 4-2 shows a block diagram of a bus-functional model. On
one side, it drives and samples low-level signals according to a pre-
defined protocol. On the other side, tasks are available to initiate a
transaction with the specified data values. The latter is called a pro-
cedural interface.

Task arguments 
are passed by
value only.

In SystemVerilog, you might be tempted to implement the bus-
functional model using a task where the low-level signals are
passed to the tasks, so it can be reused to drive different sets of sig-
nals. By default, SystemVerilog arguments are passed by value
when the task is called and when it returns. At no other time can a
value flow into or out of a task via its interface. For example, the
task shown in Sample 4-17 would never work. The assignment to
the bus_rq variable cannot affect the outside until the task returns.
The task cannot return until the wait statement sees that the bus_gt

Sample 4-16.
Global vari-
ables in Sys-
temVerilog

class syslog;

static int warnings = 0;
static int errors = 0;

function void warning(input string msg);
   $write("WARNING at %t: %s", msg);
   warnings++;
endfunction: warning
...
endclass: syslog

Figure 4-2.
Block diagram 
of a bus-
functional 
model

Bus
Functional

Model

addr
data
rw
ale
vald

read(...)

write(...)
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signal was asserted. But the value of bus_gt cannot change from the
value it had when the task was called. 

Task arguments 
can be passed by
reference.

SystemVerilog arguments can be passed by reference if the ref
attribute is added to the argument declaration. Passing by reference
is like passing a pointer as the argument. When passed by reference,
any change on the outside is immediately reflected inside the task.
And any change made inside the task is immediately reflected out-
side. For example, the task shown in Sample 4-18 would work. The
assignment to the bus_rq variable will affect the outside. The task
will return when the wait statement sees that the bus_gt signal was
asserted.  

Encapsulate sig-
nals and BFM 
tasks in inter-
face.

However, only variables can be passed by reference through task
arguments. Physical signals are nets and thus cannot be used as task
arguments. Physical signals can be encapsulated in an interface, as
shown in Sample 4-19. The bus-functional model tasks can also be
located in the interface, with the physical signals directly accessi-
ble. This also simplifies calling the tasks as the (potentially numer-

Sample 4-17.
By default, 
task arguments 
in SystemVer-
ilog are passed 
by value

class arbiter;
...
// This task will not work...
task request(output logic bus_rq,
             input  logic bus_gt);
   // The new value does not "flow" out
   bus_rq <= 1’b1;
   // And changes do not "flow" in
   wait bus_gt == 1’b1;
endtask: request
...
endclass: arbiter

Sample 4-18.
By default, 
task arguments 
in SystemVer-
ilog are passed 
by value

class arbiter;

task request(ref output logic bus_rq,
             ref input  logic bus_gt);
   // The new value will "flow" out
   bus_rq <= 1’b1;
   // And changes will "flow" in
   wait bus_gt == 1’b1;
endtask: request

endclass: arbiter
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ous) signals need not be enumerated on the argument list for every
call.

Pass signals to 
classes using a 
virtual interface.

Bus-functional model tasks can be encapsulated in an interface.
However, interfaces do not support the object-oriented program-
ming model in SystemVerilog. Only classes do. It is not possible to
protect local declarations in an interface. Nor is it possible to extend
it to add new bus-functional methods or modify the existing ones to
inject errors. Bus-functional model tasks can still be encapsulated
in a class while physical signals are bundled in an interface. Sample
4-20 shows a class encapsulating bus-functional model tasks for an
ethernet MII interface and an interface encapsulating its physical
signals. Notice how the interface is passed as an argument to the
constructor and saved in a local variable using the virtual attribute.
Each instance of the bus-functional model class operates on a sin-
gle set of physical signals through the virtual interface, maintaining
internal state variables belonging to that one interface. 

Specify the vir-
tual interface
binding when 
instantiating the 
bus-functional 
class.

To create an instance of a bus-functional model encapsulated in a
class, call its constructor. Each instance will be connected to the
interface specified in that instance’s constructor. Thus, different
instances of the same class can be connected to different physical
signals. Sample 4-21 shows an example instantiating two instances
of the MII bus-functional model, each connected to a different
interface.

See Chapter 4 of 
the VMM.

See the section titled "Transactors" starting on page 161 of the Veri-
fication Methodology Manual for SystemVerilog provides detailed
guidelines and further techniques on encapsulating bus-functional
models in classes and interface signals in interfaces.

Sample 4-19.
Encapsulating 
physical sig-
nals and tasks 
in interface.

interface arbiter;
logic bus_rq;
logic bus_gt;

task request;
   bus_rq <= 1’b1;
   wait bus_gt == 1’b1;
endtask: request
endinterface: arbiter
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DATA ABSTRACTION

Synthesizable
models are lim-
ited to bits and 
vectors.

The limitation of logic synthesis technology has forced the synthe-
sizable subset into dealing only with data formats that are clearly
implementable: bits, vectors of bits and integers. SystemVerilog
adds enums and structs to the synthesizable set, but the various ele-

Sample 4-20.
Class with vir-
tual interface

interface eth_mii_if;
   logic tx_clk, txd, tx_en;
   logic rx_clk, rxd, rx_dv;
   logic col, crs;
endinterface: eth_mii_if

class eth_mii_mac;
   local virtual eth_mii_if sigs;

   task new(virtual eth_mii_if sigs);
      this.sigs = sigs;
   endtask: new

   task send(input eth_frame frame);
      @ (posedge this.sigs.tx_clk);
      ...
   endtask: sends

   task receive(output eth_frame frame);
      @ (posedge this.sigs.rx_clk);
      ...
   endtask: receive
endclass: eth_mii_mac

Sample 4-21.
Instantiating 
bus-functional 
model class

module testbench;

eth_mii_if if0();
eth_mii_if if1();

eth_switch dut(if0, if1, ...);

eth_mii_mac bfm[2];

initial
begin
   bfm[0] = new(if0);
   bfm[1] = new(if1);
   ...
end
endmodule: testbench
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ments of the struct must themselves be bits, bit vectors or integers.
High-level models have no such restrictions. You are free to use any
data representation that fits your need.

Work at the 
same level as the 
design under 
verification.

You must be careful not to let an RTL mindset artificially limit your
choice, or to keep you from moving to a higher level of abstraction.
You should approach the verification problem at the same level of
granularity as the “unit of work” for the design. For an ethernet
switch, it is an ethernet MAC frame. For an IP cell router, the unit
of work is an entire IP packet. For a SONET framer, the unit of
work is a SONET frame. For a video compressor, the unit of work
is either a video line or an entire frame, depending on the granular-
ity of the compression. The interesting conditions and testcases are
much easier to set up at that level than at the low-level bit interface.

SystemVerilog provides excellent support for abstracting data into
high-level representations. This section will only outline how cer-
tain data types can be used. You are invited to consult a book on the
language to learn the details of all available data types.

2-state Data Types

Some types are 
4-state.

The SystemVerilog types logic, reg, wire, integer and time are 4-
state types. Each bit in these types can represent 0, 1, X or Z. This
means that each bit of data requires at least two bits of implementa-
tion. Low-level hardware modeling requires 4-state logic to more
accurately represent the possible logic values on a physical signal.
But in high-level modeling, the values X or Z are usually not
required nor useful.

Prefer 2-state 
types.

If a 4-state representation is not absolutely required, use 2-state
types in preference to 4-state types. They will require less memory
to implement than their 4-state counterpart and will simulate faster.
The 2-state types are bit, int, real and shortreal.

Struct, Class
Structs and classes are used to represent information composed of
various smaller pieces of different types. They can be used to model
packets, frames, instructions, commands, floating-point numbers,
etc. Sample 4-22 shows a struct used to model an IEEE single-pre-
cision floating-point number. Sample 4-23 shows the declaration
for a class used to represent an ATM cell. An ATM cell is a fixed-
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length 53-byte packet with 48 bytes of user data. Which one should
be used? 

Structs are bun-
dles of bits, like 
integer.

A struct is an integral type, just like integer or reg. Whenever you
declare a variable of a struct type, the necessary number of bits is
automatically allocated. If you assign a struct variable to another, or
pass a struct as an argument to a function or task, as shown in Sam-
ple 4-24, all of the bits are copied. A struct simply creates addi-
tional structure to the collection of bits it represents. It is possible to
specify a literal value for a struct. Furthermore, if a struct is
declared packed1, as shown in Sample 4-25, the bits of the struct
fields are laid out consecutively in memory, as shown in Figure 4-3.
This allows the struct to be transparently converted to and from bit
vectors or integer values.   

Sample 4-22.
Struct for a 
floating-point
value.

typedef struct {
   bit        sign;
   bit [24:0] mantissa;
   bit [ 5:0] exponent;
} ieee_sp_float

Sample 4-23.
Class for an 
ATM cell

class atm_cell;
   bit [11:0] vpi;
   bit [15:0] vci;
   bit [ 2:0] pt;
   bit        clp;
   bit [ 7:0] hec;
   bit [ 7:0] payload[48];
endclass: atm_cell

1. There are restrictions on the types that can be used within a packed 
struct. See the SystemVerilog LRM for more details.

Sample 4-24.
Struct vari-
ables.

function ieee_sp_float abs(ieee_sp_float v);
   v.sign = 0;
   abs = v;
endfunction: abs

ieee_sp_float v1, v2;
v1 = {1, 24’h800, 6’h0};
v2 = v1;
v1 = abs(v1);
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Classes are 
dynamic and 
must be explic-
itly instantiated.

A class is a dynamic type. Whenever you declare a variable of a
class type, all you get is a reference1 initialized to null. The neces-
sary number of bits to hold the content of the class must be explic-
itly allocated. If you assign a class variable to another, or pass a
class as an argument to a function or task, only the reference is cop-
ied, not the actual class instance. It is not possible to specify a lit-
eral value for a class. A class can be converted to and from bit
vectors by using explicit packing and unpacking functions.  

Structs are not 
object-oriented.

The biggest difference between class and struct is that the class is
the only type in SystemVerilog that supports the object-oriented

Sample 4-25.
Packed struct
for a floating-
point value.

typedef struct packed {
   bit        sign;
   bit [24:0] mantissa;
   bit [ 5:0] exponent;
} ieee_sp_float

Figure 4-3.
Layout of a 
packed struct.

ExponentMantissaSign
0563031

1. A reference is similar to a pointer.

Sample 4-26.
Class vari-
ables.

class atm_cell;
   ...
   function atm_cell copy();
      copy = new;
      copy.vpi = this.vpi;
      ...
   endfunction: copy
endclass: atm_cell
...
initial
begin
   atm_cell c1, c2, c3;
   c1 = new;
   c1.vpi = 12’hABC;
   ...
   c2 = c1;        // c1 & c2 refer to same
                   // instance
   c3 = c2.copy(); // c2 & c3 differ
                   // but have same content
end
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programming model. It can contain tasks and functions to operate 
on its content. It can be extended to add or modify an existing class. 
It can protect its content against unauthorized access or usage. 
Methods can be declared virtual to support polymorphism and 
make their operation instance-specific. More on classes and object- 
oriented programming will be presented in “Object-Oriented Pro- 
gramming” on page 147. 

Use classes. 
 
 
 
 
 
 
 
 
 
 
 
 
Union 
 
Unions are vari- 
able structs. 
 
 
 
 
 
 
 
----------------------- 
Sample 4-27. 
LLC informa- 
tion in payload 
using union. 
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Because of their greater flexibility compared to struct, classes are 
preferred when writing testbenches and transaction-level models. 
structs, because of their closer association with bits, are more suit- 
able for describing a synthesizable model of the design. Because 
testbenches typically have to create thousands of stimulus datum 
and record their corresponding expected response, the dynamic 
nature of class instances will help minimize memory consumption. 
The ability to move references to large chunks of data, instead of 
the data itself, will lead to a more runtime efficient testbench as 
well. 
 
 
 
Unions provide different or optional fields on top of the same bits. 
Packed unions are useful for having the ability to look at the same 
bits through different types or layout. For example, the first few 
bytes of an ethernet frame may carry link-layer information. It may 
be useful to have the ability to look at these bytes as straight pay- 
load bytes or structured LLC information, as shown in Sample 4- 
27. 

 
 

class eth_frame; 
     . . . 
     bit [15:0] typ_len; 
     union packed { 
        bit [7:0] data[1500]; 
        struct packed { 
           bit [7:0] dsap; 
           bit [7:0] ssap; 
           bit [7:0] control; 
           bit [7:0] data[1497]; 
        } llc; 
      } payload; 
      bit [31:0] fcs; 
   endclass: eth_frame; 
 

Writing Testbenches using SystemVerilog 
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Pure unions are 
unsafe.

Unions allow bits to be written using one type and read using
another type, a potential type loophole. For example, an ethernet
frame may or may not contain four additional header bytes carrying
virtual LAN label information. This could be modeled using a pure
union as shown in Sample 4-28. The VLAN label data could be
used whether or not it is present: nothing prevents its access if the
frame does not contain it, as shown in Sample 4-29. Furthermore,
the model of the frame requires an indication to let users know
whether to use the vlan.label or vlan.no_label field.   

Tagged unions
provide value 
safety.

A tagged union provides type safety by allowing access to a union
field only if it is appropriately tagged. The virtual LAN label infor-
mation in an ethernet frame can be modelled using a tagged union
as shown in Sample 4-30. There is no longer a need for an explicit
indication of which flavor of the union to use as it is built in the
tagged union itself. As shown in Sample 4-31, the VLAN label
fields cannot be accessed in an unlabeled frame.     

Avoid unions. Although unions appear simple, elegant and attractive, they create
more problems than they solve when the time comes to randomize
them. If different fields of different types share the same bits, what
are the semantics of constraining the different fields? Should there
be a single solution for the shared bits that satisfy all the con-
straints, from the different type perspectives? Or should only the

Sample 4-28.
Optional fields 
using union.

class eth_frame;
   ...
   bit is_labelled;

union {
      void no_label;
      struct {
         bit [ 2:0] user_pri;
         bit        cfi;
         bit [11:0] id;
      } label;
   } vlan;
   bit [15:0] typ_len;

...
endclass: eth_frame;

Sample 4-29.
Type loophole 
in union.

eth_frame fr = new;
fr.is_labelled = 0;
...
if (fr.vlan.label.id == 12’hABC) ...
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constraints from one perspective be satisfied? In that case, which
one? Tagged unions could solve the latter dilemma by using the tag
to determine which perspective to use. Unfortunately, the System-
Verilog language does allow the value of the tag itself to be con-
strained. It would thus not be possible to randomly select between
different tag alternatives, possibly constrained by other field values.

Unions should 
be implemented 
in-line.

Sample 4-32 shows a class modeling an ethernet MAC frame with
optional virtual LAN labelling. When the is_labelled class property
is non-zero (i.e., true), the cfi, user_pri and vlan_id class properties
are assumed to be valid and “exist”. When the is_labelled class
property is zero (i.e., false), these subsequent properties are not rel-
evant and do not “exist”. When referring to the content of the class,
like in a pure union, it will be necessary to check the is_labelled
class property to determine whether the other class properties
“exist” and process the frame accordingly. Because the optional
class properties are always present and are separate from other class
properties, they can be constrained and solved for like any other

Sample 4-30.
Optional fields 
using tagged
union.

class eth_frame;
   ...

union tagged {
      void no_label;
      struct {
         bit [ 2:0] user_pri;
         bit        cfi;
         bit [11:0] id;
      } label;
   } vlan;
   bit [15:0] typ_len;

...
   function new(bit is_labelled);
      if (is_labelled) begin
         this.vlan = tagged label {0, 0, 0};
      else this.vlan = tagged no_label;
   endfunction: new
   ...
endclass: eth_frame;

Sample 4-31.
Invalid access 
in tagged
union.

eth_frame fr = new(0);
...
if (fr.vlan.label.id == 12’hABC) ... // Error!
if (fr matches tagged tag) begin
   if (fr.vlan.label.id == 12’hABC) ... // OK
end
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class property. However, the optional class properties remain acces-
sible at all times, without a mechanism to prevent their use, so the
same programmer discipline required to use a pure union is
required.

Unions can be 
implemented
using composi-
tion.

Inlining all possible optional class properties requires that memory
be allocated for all of them, even if they are not going to be used. If
the number and size of optional class properties is small, that is not
a problem. If a data model needs to present several different varia-
tions, each independent of each other—for example PCI Express
control frames—it may be more appropriate to use composition to
model optional class properties. Sample 4-33 shows a class model-
ing an ethernet MAC frame with optional virtual LAN labelling
using composition. When the vlan class property is non-null, the
cfi, user_pri and vlan_id class sub-properties are valid and exist.
When the vlan class property is null, these class sub-properties do
not exist. When referring to the content of the class, like in a pure
union, it will be necessary to check the vlan class property to deter-
mine whether the other class sub-properties are present and process
the frame accordingly. Composition, like tagged unions, has a built-
in mechanism to prevent references to absent class properties. If an
absent class property is accessed, the null sub-class reference will
cause a run-time error. However, composition has some additional
requirements related to randomization, constraining and solving.
Because randomization does not allocate memory, it will be neces-
sary to allocate all of the subclasses composing the randomized
class in the pre_randomize() method, then prune the class from
unnecessary composed subclasses based on the result of the ran-
domization in the post_randomize() method. 

Sample 4-32.
In-lined 
optional class 
properties.

class eth_frame;
   bit [47:0] da;
   bit [47:0] sa;
   bit        is_labelled;  // VLAN control
   bit [ 2:0] user_pri;   // VLAN
   bit        cfi;        // VLAN
   bit [11:0] vlan_id;    // VLAN
   bit [15:0] len_typ;
   ...
endclass: eth_frame
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Inheritance 
should not be 
used to replace 
unions.

You may be tempted to replace unions using inheritance1 as shown
in Sample 4-34. First, a base class represents the data model with-
out any optional class property. Then, derived classes are used to
add various optional class properties. Although very object-ori-
ented, this approach creates several limitations. 

• First, you will not be able to randomly generate a mix of datum, 
sometimes with optional class properties, sometimes not. Each 
derivative creates a new data type. Once an instance of a type is 
created, it cannot be modified. Each time it will be randomized, 
it will produce random values for that type and no other. 

• Second, you will not be able to create combinations of optional 
class properties easily. Because multiple inheritance is not sup-
ported, you cannot recombine multiple derived classes into a 
single one containing multiple optional class properties. With 
single inheritance, you would have to create a new type for each 
possible combination of optional class properties. This quickly 
grows to a significant number, which grows exponentially when 
testbench-specific additions must be made to the data model.

See Chapter 4 of 
the VMM.

See guidelines 4-68 to 4-72 of the Verification Methodology Man-
ual for SystemVerilog specifies guidelines for modeling data struc-
tures with optional data fields.

Sample 4-33.
Optional class 
properties
implemented
using compo-
sition.

class eth_vlan_label;
   bit [ 2:0] user_pri;
   bit        cfi;
   bit [11:0] vlan_id;
endclass: eth_vlan_label

class eth_frame;
   bit [47:0]     da;
   bit [47:0]     sa;
   eth_vlan_label vlan;
   bit [15:0]     len_typ;
   ...
endclass: eth_frame

1. Inheritance will be discussed in more detail in “Inheritance” on 
page 153.
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Arrays

There are 
packed and 
unpacked arrays.

SystemVerilog defines two types of array: packed and unpacked.
Packed arrays can only be made of single-bit types and their dimen-
sions are specified to the left of the variable name, as shown in
Sample 4-35. Packed arrays are implemented as consecutive bits
and can be implicitly used as signed or unsigned integer values.
Unpacked arrays can be of any type. They are declared with their
dimensions specified to the right of the variable name, as shown in
Sample 4-36. Unlike packed arrays, the content of an unpack array
cannot be treated like an integral value. Each element of an
unpacked array is an individual value.  

Sample 4-34.
Optional class 
properties
implemented
using single 
inheritance.

class eth_frame;
   bit [47:0] da;
   bit [47:0] sa;
   bit [15:0] len_typ;
   ...
endclass: eth_frame

class eth_vlan_frame extends eth_frame;
   bit [ 2:0] user_pri;
   bit        cfi;
   bit [11:0] vlan_id;
   ...
endclass: eth_vlan_frame

class eth_control_frame extends eth_frame;
   bit [15:0] opcode;
   ...
endclass: eth_control_frame

class eth_control_vlan_frame extends eth_frame;
   bit [ 2:0] user_pri;
   bit        cfi;
   bit [11:0] vlan_id;
   bit [15:0] opcode;
   ...
endclass:eth_control_vlan_frame

Sample 4-35.
Packed array 
declarations.

bit             [ 7:0] a_byte;
logic     [3:0] [ 7:0] q_quadword;
eth_frame       [31:0] scoreboard;   // INVALID
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Only unpacked
arrays will be 
considered.

From a high-level modeling perspective, packed arrays are no dif-
ferent than any other scalar types. Therefore, only unpacked arrays
will be considered in this section.

Single-dimensional arrays are useful data structures for represent-
ing linear information such as ordered data sequences, look-up
tables or memories. Two-dimensional arrays are used for planar
data such as graphics or video frames. Three-dimensional arrays are
not frequently used, but they could find an application in represent-
ing data for video compression applications such as MPEG. Arrays
with greater numbers of dimensions have rare applications, espe-
cially in hardware verification.

Dynamic arrays 
have unspecified 
size.

A dynamic array is an unpacked array with an unspecified dimen-
sion size. The actual size of the array is specified and allocated at
runtime. The size can be modified—shrunk or grown—at any time
during the simulation. 

Arrays are typi-
cally located in 
consecutive
memory ele-
ments.

As shown in Figure 4-4, array elements are typically located in con-
secutive memory locations. They are accessed by computing their
address using an offset from a base address. Random access, array
truncation and element replacement are efficient operations. But
element insertion, element deleting and array lengthening are
expensive operations that require copying a potentially large num-
ber of elements to maintain the integrity of the consecutive memory
locations. For these types of operations, a queue may be more

Sample 4-36.
Unpacked
array declara-
tions.

bit       eight_bits[8];
logic     sixteen_bits[4][4];
eth_frame scoreboard[32];

Sample 4-37.
Dynamic array 
declaration
and sizing.

eth_frame sb[];
...
sb = new[32];               // 32 elements
sb = new[sb.size()*2] (sb); // Double its size
sb.delete();                  // Flush it
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appropriate. See “Queues” on page 141 for more information on
queues.

Multi-dimen-
sional arrays 
must be mapped 
onto a single 
dimensional 
structure.

Even though SystemVerilog offers multi-dimensional arrays, they
must be mapped to the linear hardware memory of the host com-
puter. That hardware memory is only one-dimensional. Figure 4-5
shows a two-dimensional array mapped into a linear memory.
Indexing an element requires knowing the length of each preceding
row. To make these (often highly repeated) calculations efficient in
large multi-dimensional arrays, it is necessary to have fixed-sized
dimensions. That is why dynamic arrays are limited to single
dimension arrays. 

Use arrays of 
classes of arrays 
for multi-dimen-
sional dynamic 
arrays.

Multi-dimensional dynamic arrays can be emulated by using a
dynamic array of classes containing a dynamic array. Since this
multi-dimensional array is composed of independent one-dimen-
sional arrays, the size and number of each dimension can vary.
However, looking up one element will require looking up each indi-
vidual dimension. Sample 4-38 shows a definition, instantiation
and reference of a two-dimensional dynamic array of RGB values.  

Queues

Queues are 
implemented
using links.

Queues are used to represent ordered linear information and, as
such, are very similar to one-dimensional arrays. However, they
guarantee constant-time insertion and removal of individual ele-
ments either at the end or the beginning of the queue. To support the
constant time insertion and deletion, they fundamentally differ from
arrays in their implementation. As shown in Figure 4-6, queue ele-
ments are located in independent memory locations. The linear and

Figure 4-4.
Array
elements in 
memory
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Figure 4-5.
Mapping a 
4x4 array to a 
linear memory
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ordered relationship is created by a series of pointers, starting from
a head pointer, that points to each subsequent element in the queue.
Queues are frequently doubly-linked in the reverse direction, start-
ing from a tail pointer, to facilitate some queue operations1. To sup-
port constant time access to its elements via an ordinal reference, an
indexing mechanism is super-imposed on the linked elements. 

Sample 4-38.
Two-dimen-
sional
dynamic array.

class rgb;
   bit [7:0] red;
   bit [7:0] green;
   bit [7:0] blue;
endclass: rgb

class line;
   rgb pixels[];
   function new(int unsigned n);
      this.pixels = new [n];
   endfunction: new
endclass: line

class picture;
   line lines[];
   function new(int unsigned x,y);
      this.lines = new [x];
      foreach (this.lines[i]) begin
         this.lines[i] = new(y);
      end
   endfunction: new
endclass: picture

...
picture vga = new(480, 640);
rgb center = vga.lines[240].pixels[320];

1. The actual implementation of queues in a specific simulator may differ.

Figure 4-6.
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Queues can be 
more efficient 
than arrays.

Because of their different implementation, queues are easier to use
than arrays if their grow and shrink many times during a simulation.
Arrays must allocate consecutive memory for their entire size,
whereas the memory used by queues grows and shrinks by one ele-
ment at a time as the number of elements they contain increases or
decreases. Elements can be appended or prepended at little cost. All
that is required is a re-orientation of the pointer sequence to include
or remove the element. 

Queues have a 
rich set of pre-
defined meth-
ods.

Queues come with a rich set of operators, such as appending or
prepending to a queue, removing the element at the head or tail,
inserting or deleting an element at an arbitrary offset within the
queue, finding out its length or iterating over all of its elements.

Associative Arrays

They are arbi-
trarily indexed.

Associative arrays are used for non-ordinal or non-consecutive
indexing operations. The elements in an associative array are not
considered ordered from index 0 through index N-1. Instead, they
are randomly stored based on an efficient indexing mechanism that
can use any type—even a string or class reference—as indexing
value. The element is stored in the array associated with that arbi-
trary index value. Pre-defined methods exist to check the existence
of an element at a particular index, delete an existing element, or
iterate through all of the elements in the array.

They can be 
used to model 
large memories.

One of the best applications of an associative array is to model a
large memory. In system-level simulations, you may have to pro-
vide a model for a large amount of memory. With the amount of
memory available in today’s systems, and the overhead associated
with modeling them, you may find that you do not have a computer
with enough resources to simulate your system-level model effi-
ciently. For example, if you model a memory with 32-bits of
addressable bytes using an array of logic, the amount of memory
consumed by this array alone exceeds 8GB (four logic values
requiring 2 bits to represent each logic bit times 8 bits per byte
times 4GB).

Only the sec-
tions of the 
memory cur-
rently in use 
need to be mod-
eled.

In any simulation, it is unlikely that all memory locations are
required. Usually, the accesses are limited to a few regions within
the memory address space. An associative array can be used to
model a very large memory in a fashion similar to a cache memory.
Only regions of the memory that are currently in use are stored in
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the array. When a particular location is accessed, the array is
checked for the region of interest, allocating a new region as neces-
sary. Figure 4-7 shows a conceptual view of an address space where
only the portions that are actively used are physically allocated.
This type of partial memory model is called sparse memory model.

An associative 
array can be 
used to model a 
sparse memory.

Sample 4-39 shows a class encapsulating a sparse memory model.
It has a method to locate and return any address of interest. Con-
versely, a method is provided to store a specified value at a speci-
fied memory location. This model could also include usage
assertions, such as reading uninitialized memory locations or over-
writing unread memory values.   

They can 
improve score-
boarding perfor-
mance.

Looking up a large scoreboard for a specific expected response,
given an observed response can be an expensive operation. For
example, it may be necessary to look up packets based on the con-
tent of their destination address. Looking up an ethernet MAC
frame based on a 48-bit destination address would require an array
with over 281 billion elements. Assuming only minimum-size
MAC frames, this array would consume 18 million gigabytes!
Using an associative array, it is much more efficient to allocate only
those locations for which we already have an expected MAC frame.

Figure 4-7.
Sparse 
memory
model

04Gb

= Allocated region

Sample 4-39.
Sparse mem-
ory model 
using an asso-
ciative array.

class sparse_memory;
   local logic [7:0] mem[bit [63:0]];

   function logic [7:0] read(bit [63:0] addr);
      read = 8’hXX;
      if (this.mem.exists(addr)) begin
         read = this.mem[addr];
      end
   endfunction: read

   function void write(bit   [63:0] addr,
                       logic [ 7:0] data);
      this.mem[addr] = data;
   endfunction: read
endclass: spare_memory
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Files

External input 
files complicate 
configuration 
management.

I recommend avoiding external input files for testbenches. Configu-
ration management of the testbench and the design under verifica-
tion is complex enough. Without good practices, it is very difficult
to make sure that you are simulating the right version of the correct
model together with the proper implementation of the right test-
bench. If you must add to the mix making sure you have the right
version of input files, often generated by scripts from some other
format of some other files, configuration management grows expo-
nentially in complexity. For example, many use files to initialize
SystemVerilog memories, as shown in Sample 4-40.

Understanding the implementation of the testcase now requires
looking at two files and understanding their interaction. If the file
always contains the same data for the same testcase, it can be
replaced with an explicit initialization of the memory in the Sys-
temVerilog code, as shown in Sample 4-41. Now, only a single file
needs to be managed and understood. In some cases, using external
files is unavoidable, such as when using input data that was pro-
duced by an external program or recorded from actual data streams.

Files can pro-
gram bus-func-
tional models.

Programmable testbenches are architected around programmable
bus-functional models and checkers, and can be programmed via an
external input file. The “program” can be as simple as a sequence of
data patterns or as complex as a pseudo assembly language with
opcodes and operands interpreted by an engine implemented in

Sample 4-40.
Initializing a 
memory using 
an external file

module testcase;

reg [7:0] pattern [0:55];

initial $readmemh(pattern, "pattern.memh");

endmodule

Sample 4-41.
Explicitly ini-
tializing a 
memory

module testcase;

reg [7:0] pattern [0:55] = {8’h00,
                            8’hFF,
                            ...
                            8’hC0};

endmodule
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SystemVerilog. However, this approach to programmable bus-func-
tional models makes it impossible to drive these bus-functional
models from higher level bus-functional models, such as random
data generators. It will also make it extremely difficult to coordi-
nate or synchronize a particular operation of the bus-functional
model with some external events or other bus-functional model. It
requires the introduction of synthetic synchronization instructions.

Use SystemVer-
ilog as the BFM 
programming 
language.

If a new synchronization mechanism is required, a new instruction
must be added. It is easier to “program” a bus-functional model
using the testbench language (which is a rich high-level language)
with calls to the procedural interface of the bus-functional model.
The program, being part of the testbench code, has visibility over
the necessary states of the design or other bus-functional model to
coordinate and synchronize them effectively. The procedural inter-
face can also be accessed from higher-level bus-functional models.

Do not use input 
files to define 
constraints

An input file can also be a set of limit values for constraints in a
randomly-driven bus-functional model. But this limits testcases to
modifying constraint boundary conditions. Testcases cannot add
entirely new constraints or relax existing ones.

External files 
can eliminate 
recompilation.

Using external input files can save a lot of compilation time if you
use a compiled simulator. If you can modify your testcase by modi-
fying external input files, it is not necessary to recompile the model
of the design under verification nor the testbench. For large designs,
this compilation time can be significant, especially for a gate-level
design with SDF back-annotation. However, your SystemVerilog
simulator, such as VCS, may provide an incremental compile and
link usage model to minimize the recompilation time between sim-
ulations if only the testbench changes.

From High-Level to Physical-Level
It is very unlikely that high-level data types are directly usable by
any device that must be verified. Any complex data structure has to
be mapped to bits, bytes, addresses and registers. They are sent to
or received from the design using a physical-level interface using a
more basic data representation, such as a bit, byte or word, usually
including synchronization, framing or handshaking signals. In
Chapter 5, I show techniques using bus-functional models for
applying high-level data to a design via a low-level physical inter-
face (and vice-versa on the output side).
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Packed data 
types have 
implicit map-
ping.

All packed data types in SystemVerilog have an implicit mapping
to physical bits. They have a well-defined mapping to integer or
packed single-dimension array of bits. These are then more useful
for the design specification than testbench, where the granularity of
data items tends to be coarser and higher level.

Encapsulate 
streaming opera-
tions.

The streaming operators can be used to translate to and from a
series of discrete variables, such as a set of class properties, and a
stream of physical-level values. As described by guidelines 4-77
and 4-78 of the Verification Methodology Manual for SystemVer-
ilog, these operations should be encapsulated in packing and
unpacking methods.

OBJECT-ORIENTED PROGRAMMING

SystemVerilog 
is object-ori-
ented.

Object-oriented programming is a methodology that has been used
with great success in software engineering for many years. It is the
next evolutionary step in language design after structured program-
ming (i.e., the removal of the “go to” statement and introduction of
subprograms and control structures). Object-oriented used to be one
of those buzzwords used to describe almost everything. In this
book, object-oriented is used to identify a methodology that makes
use of (and a language that supports) classes, inheritance and poly-
morphism. SystemVerilog’s class data type meets this definition of
object-oriented.

Classes

Objects are data 
and procedures 
together.

Classes are a collection of variables and subprograms that create
object types. Objects are instances of a class. A class defines an
object’s state as a collection of data members. A class also defines
all possible operations on the object using methods. In SystemVer-
ilog, data members are called class properties while methods are
functions and tasks declared within the class. Sample 4-39 shows an
example of a class declaration.

Everything is 
modeled as an 
object.

Physical data types, such as packets, frames and cells, are modeled
as objects. Their various fields are data members. Methods exist to
calculate and check the value of any CRC or error protection field,
translate the field values to and from a sequence of physically trans-
mitted bytes and segment a large object into a series of smaller
ones. Processor instructions are modeled as objects. Their opcode
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and various operands are data members. Methods exist to produce
the object code value, relocate branch destination values and dis-
play the current value as an assembly code statement. Floating
point values—which are not directly supported by SystemVer-
ilog—are modeled as objects. Data members represent their integer
and fractional parts. Methods perform arithmetic and logical opera-
tions, translate to and from a fixed-point value or display the float-
ing-point number using a user-specified format. 

Bus-functional
models are also 
objects.

Bus-functional models are objects. Their interface signals are data
members. Methods implement the procedural interface. A design
configuration is modeled as an object. The routing table, coefficient
array or interface configuration parameters are modeled using data
members. Methods are used to download the configuration speci-
fied in the data members in the design, or generate a random design
configuration.

Scoreboards are 
objects.

A scoreboard (see “Scoreboarding” on page 300 for more details on
scoreboards) is modeled as an object. The queues of expected out-
put data sequences are data members. Methods exist to transform a
new input data value according to the current design configuration,
compare an output data value against expected ones and check the
scoreboard for any losses at the end of the simulation.

Testbenches can 
be objects.

An entire testbench can be an object in which the bus-functional
models and scoreboards sub-objects are data members. Methods
implement the reset procedure, main testcase sequence and termi-
nation procedures. 

Data members 
consume mem-
ory. Methods do 
not.

By default, each data member is local to each object instance.
Methods, however, are global to the class. For example, if there are
1,000 instances of the eth_frame class (see Sample 4-32), there are
1,000 instances of the da property but only a single instance of the
code implementing the to_bytes function. The memory required to
implement the data members will be replicated for each object
instance. Methods will not consume more memory, whether an
object is instantiated only once or 1,000 times. If memory con-
sumption starts to be a problem, focus on the data members of the
objects with the most instances.

Data members 
can be global.

It is often necessary to have information that will be shared among
all instances of an object. For example, if each object has its own
instance of an error counter, it would be difficult to determine the
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number of error messages that were produced during a simulation.
If that error counter is global, that task becomes much easier.
Another example is automatically assigning unique ID numbers to
each object instance. A global ID number source is the only way to
ensure uniqueness. In SystemVerilog, a data member global to the
class is declared using the static attribute, as shown in Sample 4-42.   

module, inter-
face, struct and 
package are not 
objects.

You may be tempted to conclude that all of SystemVerilog is
object-oriented since modules, interfaces and packages can contain
both variables (data members) and functions and tasks (methods).
These constructs are not object oriented because modules are not
true objects. modules and interfaces are hierarchical constructs, not
data structures. They cannot be assigned. nor passed to tasks or
functions as arguments. They cannot be compared or used in
expressions. packages may also look like objects: They can contain
data (shared variables) and tasks and functions (methods). In addi-
tion to presenting all of the same non-object behaviors that modules
and interface do, packages cannot be instantiated. Even though a
package may be used in many files, a single instance exists for the
entire elaborated simulation model. And if that weren’t enough,

Sample 4-42.
Global data 
members

class sim_status;
static integer n_errors = 0;

endclass: sim_status

class eth_frame;
sim_status status;

   ...
      if (this.compute_fcs() !== this.fcs) begin
         printf(“Bad FCS”);
         this.status.n_errors++;
      end
   ...
endclass: eth_frame

class eth_mii_mac;
sim_status status;

   ...
      if (col === 1’b1 && crs !== 1’b1) begin
         printf(“Collision without carrier\n”);
         this.status.n_errors++;
      end
   ...
endclass: mii
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none of these constructs support inheritance nor polymorphism,
which are other key aspects of object-orientedness.

Objects have 
public and pri-
vate declara-
tions.

The concept behind objects is to encapsulate data and its transfor-
mation operations to present to the user a coherent and stable inter-
face. As the object evolves or is modified, the interface visible to
the user should remain constant. To help enforce this, objects usu-
ally have two separate declaration spaces: public and private decla-
rations. Public declarations are accessible from the outside of the
object (i.e., by the users), whereas private declarations are only
accessible from within the object (i.e., by the implementer). 

If the public interface is never modified (or modified in such a way
as not to impact the user), the entire private implementation can be
modified or re-written without affecting the users. By default, dec-
larations are public. In SystemVerilog, to make a declaration pri-
vate, use the local attribute, as shown in Sample 4-39. Any local
data members or methods will not be externally accessible.

Keep non-ran-
domized data 
members pri-
vate.

Once a data member has been made public, you can count on other
objects to make direct use of it. It is not possible to control its
access, nor ensure that its value remains consistent with other data
members. For example, the length property in Sample 4-43 can be
modified independently of the data property. It is very easy for a
user to corrupt the internal state of the object by directly operating
on the data members. Traditional object-oriented practice com-
mands that all accesses to an object be done through methods.
These methods can ensure that the value of the properties are coher-
ent at all times, as shown in Sample 4-44. However, if you end up
with a pair of set_data() and get_data() methods for each data
member, then internal coherency is probably not required, or you
are providing methods with too low a level of abstraction. You
might as well make the data members public.

Make rand data 
members public.

SystemVerilog places an additional requirement for making a data
member public: It is not possible to externally constrain a private
data member since it is not accessible. All randomized data mem-
bers must be public to allow them to be constrained. More on con-
straints and randomization will be discussed in “Random Stimulus”
on page 307.    
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Reference and 
instance are dif-
ferent things.

When declaring an class variable, all you are declaring is a refer-
ence (or a pointer) to an instance of a specific class. By default,
class variables do not refer to any instance (Figure 4-8(a)). They
must first be initialized by allocating an instance of a class created
using new. When assigning a class variable to another, all you are
doing is making a copy of the reference, not a copy of the instance
(Figure 4-8(b)). If one of these two references modifies the
instance, it is modified for both class variables since they both refer
to the same instance. A common mistake is to put references to
instances in a queue, but keep using the same reference to generate
new values, as shown in Sample 4-45. Since there is a single call to
new, a single instance of the ATM cell object exists. The queue ends
up containing several references to the last value of the cell, instead
of references to 10 different random cells as expected. Similarly,

Sample 4-43.
Unsafe object 
state

class byte_list;
   integer length = 0;
   bit [7:0] data[];
endclass: byte_list

program ignoramus_use;
   byte_list my_list = new;

initial begin
   my_list.length = 100;
   my_list.data = new[1] ({1});
   // List is corrupted: array has 1 element,
   // NOT 100.
end
endprogram

Sample 4-44.
Safe object 
state

class byte_list;
local integer length = 0;
local bit [7:0] data[];

   extern task resize(integer length);
endclass: byte_list

program ignoramus_user;
   byte_list my_list = new;

initial begin
   my_list.length = 100;  // Syntax error!
   my_list.resize(100);
   // List now has 100 element
end
endprogram
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when comparing two class variables, you are comparing their refer-
ence, not their content. If both variables refer to the same instance,
the comparison will be true (Figure 4-8(b)). If both objects refer to
two different objects (even if they have identical content), the com-
parison will be false (Figure 4-8(c)).

Comparison and 
copying can be 
shallow or deep.

Because copying or comparing class variables only deals with the
references, methods must be used to perform comparison or copy
functions. If the instances being compared also contain references
to other objects, how are these handled? If only the references are
used, then the operation is said to be shallow (Figure 4-9(a)). If the
operation is applied recursively down the hierarchy of instances,
the operation is said to be deep (Figure 4-9(b)). In SystemVerilog,
the new constructor can be used to perform a shallow copy opera-
tion, but comparison and deep copy methods must be written manu-
ally for each class.

Figure 4-8.
Class
reference vs. 
class instance

Sample 4-45.
Common mis-
take with 
object refer-
ence

atm_cell cell = new;
atm_cell cells[$];

while (cells.size() < 10) begin
   cell.randomize();
   cells.push(cell);
end

mac_frame fr1;
mac_frame fr2;

fr1 fr2

null null

(a)

fr1 = new;
fr2 = fr1;

fr1 fr2

(b)

ABC

fr2 = new;
fr1 = new fr2;

fr1 fr2

(c)

XYZ XYZ

fr1 = = fr2 fr1 != fr2

Figure 4-9.
Shallow and 
deep
operations

... = new dot;

pixel pixel

(a)

rgb

... = dot.copy()

pixel pixel

(b)

rgb rgb

shallow deep

class rgb;
   byte red;
   byte green;
   byte blue;
endclass: rgb
class pixel;
   int x;
   int y;
   rgb color;
endclass: pixel
pixel dot = new;
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Standard meth-
ods must be pro-
vided.

When defining a new class, you should always provide the methods
usually required for using and manipulating instances of that class.
You should try to provide these methods using a consistent name
and argument to avoid dealing with meaningless differences
between various classes. For example, methods to display the
object in a meaningful human-readable format always prove indis-
pensable. Other methods that should be included are deep-copy,
deep-compare, packing to and from a list of bytes, words or quads,
calculating and checking error-protection fields, checking the inter-
nal consistency of data members and converting to and from other
object types.

See Chapter 4 of 
the VMM.

The section titled "Data and Transactions" starting on page 140 of
the Verification Methodology Manual for SystemVerilog specifies
several guidelines for modeling data using classes and the methods
that are required to provide with each class.

Inheritance

Classes can 
build upon other 
classes.

What if there is a class that does almost everything you need, but it
is missing only that one little feature, what do you do? The tradi-
tional approach would dictate that you make a copy of the useful
code, call it something else, and make the necessary modifications.
But this has just created additional code that must be maintained
and understood. With inheritance, your needs can be built upon
existing classes—even those you do not have source code for—by
only specifying the desired difference in behavior. Any unchanged
behavior is automatically inherited from the original class. Any
changes made to the original class are also automatically inherited
by the new class, reducing maintenance efforts. The original class is
called the parent or base class. The new class inheriting from the
base class is called a derived class.

Derived classes 
can overload 
parent members 
and methods.

The difference in functionality between a derived class and a parent
class can be expressed by adding new data members and methods,
adding to the parent’s methods or replacing data members and
methods with new ones. For example, the verification of your
design requires that you inject ethernet MAC frames with corrupted
FCS values. But the ethernet MAC frame class shown in Sample 4-
32 always has a good FCS value. You can create a new ethernet
MAC frame object that can have a bad FCS value, based on the
value of a control property,1 using inheritance, as shown in Sample
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4-46. Notice how the new version of the compute_fcs() method
adds functionality to the parent methods. In SystemVerilog, you can
refer to overloaded data members and methods in the parent class
using the super prefix. 

Children take 
after their par-
ent.

Because derived classes are extensions of their base class, they
remain valid instances of their base class. As shown in Sample 4-
47, they can be assigned to base class variables without any type
conversion (i.e., automatic downcasting). From that point on, they
will be viewed as if they were an instance of the base class. An
instance of a derived class, referred to as a base class, can be
assigned back to a derived class variable with explicit upcasting.
Upcasting an instance of the base class or of a derived class on a
different inheritance branch (or lineage) causes an error. To prevent
runtime errors when you cannot rely on implicit knowledge of an
object’s lineage, it is always possible to test the lineage of an object
by using the $cast() system task in a scalar context. it will return 0
(i.e. false) if the casting operation is not allowed.  

This compatibility of a derived class with its base class makes all
code and models that already operate on the base class available to
operate on the derived class—without their knowledge. For exam-
ple, as shown in Sample 4-48, the derived MAC frame class with
potential bad FCS values can be downcasted to the base class and

1. Why not make this derived class always a bad frame? Because generat-
ing a stream containing a mix of good and bad frames would require 
instantiating a mix of different classes. This way, only one class needs 
to be instantiated. The class will decide on its own whether the frame is 
good. And this approach is easier to constrain.

Sample 4-46.
Adding func-
tionality 
through inher-
itance

class eth_frame_may_be_bad extends eth_frame;
   bit is_bad;

   function bit [31:0] compute_fcs();
      compute_fcs = super.compute_fcs();
      if (this.is_bad) begin
         bit [4:0] i = random;
         compute_fcs[i] ^= 1;
      end
   endfunction: compute_fcs
endclass: eth_frame_may_be_bad
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sent through the existing MII bus-functional model from Sample 4-
20.   

Declarations can 
be semi-private.

Derived classes cannot access any private declaration in the base
class. It is often necessary to let a derived class have more intimate
knowledge of the internal state and implementation of a base class
than what is visible through the public interface. Declarations can
have the protected attribute. This makes them visible only to the
base class and any derived classes. Protected data members and
methods are “semi-private” declarations shared only between a
base class and its derived classes. When implementing a derived
class, it is assumed that you have a more intimate knowledge of a
base class (how it works, what it depends on) than a casual user.
That is why it is possible to gain greater visibility into a base class
(if allowed by the base class author). As a user of a class, do not
casually create derived classes simply to get at the protected mem-

Sample 4-47.
Downcasting 
and upcasting 
an inheritance 
tree.

class instruction; ...
class arith_instr extends instruction; ...
class branch_instr extends instruction; ...
class cond_branch_instr extends branch_instr; ...

instruction       instr;
arith_instr       arith;
branch_instr      br;
cond_branch_instr br_if;
...
instr = arith;     // OK: downcasting
arith = br;        // ERROR: different lineage
instr = br_if;     // OK: downcasting

$cast(br, instr);  // upcasting

$cast(arith, instr); // ERROR: instance on wrong
                     //        lineage

if ($cast(arith, instr)) begin
   ... // OK: Exec’d if correct lineage
end

Sample 4-48.
Using code 
written for the 
base class with 
a derived class

eth_mii              bfm   = new(...);
eth_frame_may_be_bad tx_fr = new;

bfm.send(tx_fr);
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bers and methods. Usually, these are not safeguarded as well as the
public interface and are more subject to being modified.

Inheritance and 
instance are dif-
ferent things.

When building a new class upon an existing class, should you
inherit from it or simply instantiate it as a data member in the new
class? That depends on the relationship between the two classes. If
the new class is a different way of looking at the older class, but
fundamentally represents the same object, then inheritance should
be used. The corruptible ethernet MAC frame in Sample 4-46 is a
perfect example. The objective of this new class is not to create a
completely separate and new object. It is to add a new capability to
the existing one. Whether good or bad, this new ethernet frame can
still be viewed and treated like the old one—albeit with a small,
hidden difference. 

Another example is the pixel and RGB objects shown in Figure 4-9.
If you already have a color object and want to build a pixel object
that has a color specification, you should instantiate the color object
as a data member of the pixel object, not derive from it. Why?
Because a pixel is not a color. A color is only an attribute of a pixel,
just like its position on the screen.

Polymorphism

Polymorphism
means multiple 
forms.

The term “polymorphism” means to have many forms. The concept
of polymorphism was hinted at when I talked about the automatic
downcasting of a derived class when using existing methods that
deal with the base class, as shown in Sample 4-48. A class has the
ability to take the form of an instance of any of its base classes. You
can create an entire genealogy of classes. Classes on different
branches can be treated as if they were the same class, when viewed
as a common base class. If all classes are derived from a single root
class, they can all be viewed as instances of that root base class.
Polymorphism lets you write “generic” methods that can deal with
any objects based on a “generic” base class.

A class can be 
designed to be 
used only as a 
base.

Polymorphism does not happen by accident. You have to plan your
class genealogy to isolate common and useful functions in base
classes. Sometimes, the common information exists, but does not
make sense as a complete object. It would be a mistake to create an
instance of such a base class because the base class is not designed
to represent an object on its own. Rather, the base class is designed
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to take advantage of polymorphism and create a single set of opera-
tions generic to that base class. 

For example, ATM cells come in two flavors: UNI and NNI. Both
have the same size, both have a large number of common fields.
They only differ by their interpretation of the first 12 bits, as shown
in Figure 4-10. To take advantage of the polymorphism between the
two ATM cell flavors, you can create an any_atm_cell class that
contains all the common fields. Derived classes will be used to add
the fields unique to each flavor. But the class any_atm_cell should
not be allowed to be instantiated on its own: it is not a valid ATM
cell! A user must always use one of the derived classes. It is possi-
ble to have the compiler enforce this usage by declaring the base
class as virtual. As shown in Sample 4-49, attempting to “new” an
instance of a virtual class is an error.  

Which method 
is called?

Dealing with class references and type casting is relatively simple.
The value of a reference stays the same while the casting operation
lets the compiler provide runtime type checking. The bigger ques-
tion is, when a method is overloaded or extended in a derived class,
like the compute_fcs() method in Sample 4-46, which version is
called when an instance of a derived class is referred to as an
instance of its base class?

A parent can act 
like a child.

By default, the original method in the base class is called. If the
methods are declared as virtual, the overloaded method is called.
Sample 4-50 shows how a method in the base class (which is never
overloaded) makes use of a virtual method. The header error check
(HEC) computation requires operating on all header bytes—which
vary depending on the cell’s flavor. When the compute_hec()
method invokes the virtual pack_header() method, what is called is

Figure 4-10.
Differences in 
UNI and NNI 
ATM cells

gfc vpi

7 0

vpi vci

vci

vci

UNI ATM Cell

vpi
7 0

vpi vci

vci

vci

NNI ATM Cell
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the extended method found in the particular extension correspond-
ing to the instance. The list of bits returned by pack_header() will
always contain all of the header bits, regardless of the actual flavor
of the ATM cell instance.

Methods are 
usually virtual.

In SystemVerilog, most methods should be declared virtual to give
the possibility of being adapted to the extensions of each derived
class and maintain the behavior expected by existing code that uses
the original base class.

Randomization 
is a virtual pro-
cess.

The predefined method randomize() and constraint blocks are vir-
tual. This means that, when randomizing a base class variable that
refers to a derived class instance, the derived class is being random-
ized, subject to the constraints and overloaded pre_randomize() and
post_randomize() methods in the derived class.

No multiple 
inheritance.

Classes can be derived from a single base class only. It is not possi-
ble to have a class be derived from more than one base class, nor is
it possible to recombine different derivatives of a common base

Sample 4-49.
Using virtual
classes

virtual any_atm_cell;
   bit [11:0] vci;
   ...
endclass: any_atm_cell

class uni_atm_cell extends any_atm_cell;
   bit [3:0] gfc;
   bit [7:0] vpi;
endclass: uni_atm_cell

class nni_atm_cell extends any_atm_cell;
   bit [11:0] vpi;
endclass: nni_atm_cell
...
any_atm_cell a_cell;
uni_atm_cell uni_cell = new;
nni_atm_cell nni_cell = new;

a_cell = new;       // ERROR: Cannot instantiate
                    // a virtual class
a_cell = uni_cell;
a_cell = nni_cell;
$cast(nni_cell, a_cell);
$cast(uni_cell, a_cell); // Runtime error: a_cell
                         // refers to a nni_cell
                           // instance
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class into a single class that encompasses both extensions. The lack
of multiple inheritance is often mentioned by OO purists as a sine
qua non condition that favors C++. Multiple inheritance appears to
be an elegant solution to the modeling of unions in classes, instead
of inlining or composition. However, multiple inheritance would
not address the requirements posed by randomization and con-
straints (see “Union” on page 134), two concepts absent in C++ and
other general-purpose object-oriented languages.

THE PARALLEL SIMULATION ENGINE

C and C++ lack 
essential con-
cepts for hard-
ware modeling.

Why hasn’t C been used as a hardware description language instead
of creating Verilog, VHDL, SystemVerilog and many others?
Because the basic C language lacks three fundamental concepts
necessary to model hardware designs: connectivity, time and con-
currency. Basic C++ also lacks the necessary features to support the
verification productivity cycle: randomization, constrainability and
functional coverage measurement.

Sample 4-50.
Using virtual
methods

class any_atm_cell;
   ...
   function bit [7:0] compute_hec();
      logic [7:0] header[4];
      pack_header(header);
      ...
   endfunction: compute_hec
   virtual function void
      pack_header(ref logic [7:0] bits[4]);
endclass: any_atm_cell

class uni_atm_cell extends any_atm_cell;
   ...
   virtual function void
      pack_header(ref logic [7:0] bits[4]);
      bits = >> 8 {gfc, vpi, vci, clp, pt};
   endfunction: pack_header
endclass: uni_atm_cell

class nni_atm_cell extends any_atm_cell;
   ...
   virtual function void
      pack_header(ref logic [7:0] bits[4]);
      bits = >> 8 {vpi, vci, clp, pt};
   endfunction: pack_header
endclass: nni_atm_cell
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Connectivity, Time and Concurrency
Connectivity is the ability to describe a design using simpler blocks
then connecting them together. Schematic capture tools are perfect
examples of connectivity support.

Time is the ability to represent how the internal state of a design
evolves over time and to control its progression and rate. This con-
cept is different from execution time which is a simple measure of
how long a program runs.

Concurrency is the ability to describe actions that occur at the same
time, independently of each other.

C and C++ can 
be extended.

Many extensions and coding styles for C or C++ exist that include
some or all of these concepts. SystemC is a set of C++ classes to
introduce the concept of connectivity, time and concurrency. The
SystemC Verification Library is a set of C++ classes that provides
support for randomization, constraints and temporal expressions.

The connectivity, time and concurrency concepts are very impor-
tant to understand when learning to model using a modeling lan-
guage. Each language implements them in a different fashion, some
easier to understand than the others. 

For example, connectivity in SystemVerilog is implemented by
directly instantiating modules and interfaces within modules, and
connecting the pins of the modules and interfaces to wires or regis-
ters. Time is implemented by using timing control statements such
as @ and wait. Concurrency is implemented through separate
always and initial blocks. Concurrency is described in further detail
in the following sections. 

The Problems with Concurrency

You write better 
testbenches 
when you under-
stand concur-
rency.

When writing testbenches, it becomes necessary to understand how
concurrency is implemented and how concurrency affects the exe-
cution of the various components of the testbench and how they
create potential race conditions.

Many testbenches are written with a severe lack of understanding
of concurrency. In the best case, the execution and overall control
structure of the testbench code is difficult to follow and maintain. In
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the worst case, the testbench fails to execute properly on a different
simulator, on different versions of the same simulator or when
using different command-line options. The understanding of con-
currency is often what separates the experienced designer from the
newcomers.

There are two problems with concurrency. The first one is in
describing concurrent systems. The second is executing them.

Concurrent sys-
tems are diffi-
cult to describe.

Since computers were created, computer scientists have tried to fig-
ure out a way to take advantage of the increased performance
offered by multi-processor machines. They are relatively easy to
build and many parallel architectures have been designed. How-
ever, they proved much more difficult to program. I do not know if
that difficulty originated with the mindset imposed by the early Von
Neumann architecture still used in today’s processors, or by an
innate limitation of our intellect.

Concurrent sys-
tems are 
described using 
a hybrid 
approach.

Human beings are adept at performing relatively complex tasks in
parallel. For example, you can drive in heavy traffic while carrying
a conversation with a passenger. But it seems that we are better at
describing a process or following instructions in a sequential man-
ner. For example, a recipe is always described using a sequence of
steps. The description of concurrent systems has evolved into a
hybrid approach. Individual processes running in parallel with each
other are themselves described using sequential instructions. For
example, a dessert recipe includes instructions for the cake and the
icing as separate instructions that can be performed in parallel, but
the instructions themselves follow a sequential order.

SystemVerilog 
models are con-
current threads 
described 
sequentially.

A similar principle is used in SystemVerilog. The concurrent
threads are the always and initial blocks, the continuous signal
assignment statements and statements in fork/join statements. The
exact behavior of each concurrent construct is described individu-
ally using sequential statements.

Every always and initial block, every continuous assignment and
every forked statement in a SystemVerilog model execute in paral-
lel with each other, but internally each executes sequentially. It is a
common misconception that SystemVerilog’s initial blocks mean
“initialize”. initial blocks are identical to always blocks except that
they execute only once. They are removed from the simulation once
the last statement in the initial block executes. They are executed in
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no particular order compared to other execution threads1. Because
they are regular simulation threads, assignments made in initial
blocks cause events on the assigned variables. However, assign-
ment of initializer values specified in variable declarations, as
shown in Sample 4-51, are not execution threads: they are per-
formed before the start of the simulation (in lieu of the default ‘x
initial value) and thus do not cause any events on the initialized
variables..

Emulating Parallelism on a Sequential Processor

Concurrent 
threads must be 
executed on sin-
gle processor 
machines.

If you look inside the workstation that you use to simulate your
model, you will see that there is a single processor. Even if you
have a multi-processor machine, you can always write a model with
one more concurrent thread than you have processors available.
How do you execute a parallel description on a single processor,
which is itself a sequential machine?

Multi-tasking 
operating sys-
tems are like 
simulators.

If you use a modern computer, you probably have a windowing
graphical interface. During normal day-to-day use, you are very
likely to have several windows open at once, each of them running
a different application. On multi-user machines, there may be sev-
eral others running a similar environment on the same computer.
The applications running in all of these windows appear to work all
in parallel even though there is a single sequential processor to exe-
cute them. How is that possible? You probably answered time-shar-
ing. With time-sharing, each application uses the entire processor
for small portions of time. Each application has its turn according to
priority and activity. If the performance of the processor and operat-
ing system is high enough, the interruptions in the execution of a
program are below our threshold of detection: It appears as if each
program runs smoothly 100% of the time, in parallel with all the
others.

1. Simulators would be free to execute initial blocks first.

Sample 4-51.
Initialized 
variable decla-
ration.

int i = 0;
...
class sim_results;
   static n_errors = 0;
endclass: sim_results
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Simulators are 
time-sharing
engines.

A simulator works using the same principle. Each always and ini-
tial block or thread has the simulation engine for some portion of
time. Each appears to be executing in parallel with the others when,
in fact, they are each executed sequentially, one after another. There
is one important difference in the time-sharing process of a simula-
tor. Unlike a multi-tasking operating system, the simulator assumes
that the various parallel threads cooperate to obtain fair access to
the simulation resources.

Simulators do 
not have time 
slice limits.

In an operating system, every thread has a limit on the amount of
processor time it can have during each execution slice. Once that
limit is exhausted, the thread is kicked out of the processor to be
replaced by another. There is no such limit in a simulator. Any exe-
cution thread keeps executing until it explicitly requests to be
kicked out. Thus, it is possible in a simulation to have an execution
thread grab the simulation engine and never let it go. Ensuring that
the parallel threads properly cooperate in a simulation is a large part
of understanding how concurrency is implemented.

Processes simu-
late until they 
execute a tim-
ing statement.

In SystemVerilog, an execution thread simulates, and keeps simu-
lating, until an active timing control statement—@, #, or wait—is
executed1. When the timing control statement is executed, the exe-
cuting thread is kicked out of the simulation engine and replaced by
another one. This thread remains “out of circulation” until the con-
dition it is waiting for is realized. If an execution thread does not
execute some form of an active timing control statement2, it
remains in the simulation engine, locking all other processes out.

The Simulation Cycle

There are mod-
ule and pro-
gram threads.

There are two kinds of concurrent threads in SystemVerilog: mod-
ule threads and program threads. Module threads are intended to
model the design whereas program threads are intended to model
the testbench. Threads are made of always and initial blocks, con-
current signal assignments and forked threads. Program threads are
composed of initial blocks, concurrent signal assignments and
forked threads defined inside program blocks. Program threads are

1. That is not strictly true but that is what happens in practice.
2. Some timing control statements can be inactive if the condition they are 

supposed to wait for is already true.
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also composed of class methods1 instantiated in a program block
and invoked by a program thread. Program threads further include
pass/fail action block in properties. All other threads are module
threads.

A program 
thread can exe-
cute as a mod-
ule thread.

Note that the definition of a program thread depends on the location
of the code, as shown in Sample 4-52. If a program thread calls a
task implemented in a module and the execution of the thread is
blocked within that module task, the thread will resume as a module
thread. It will return to a program thread once its execution blocks
in a non-module task. Because module code cannot call program
code, it is not possible for a module thread to execute as program
thread. To avoid this confusing switch in execution semantics, pro-
gram threads should not invoke module code—a good testbench
coding practice regardless. 

1. The execution of class methods as module or program threads is not 
clearly defined in the SystemVerilog standard and is being clarified by 
the P1800 Working Group. Verify with your simulator which exact 
interpretation is being used.

Sample 4-52.
Module and 
program
threads.

module tb_top;

bit clk = 0;
always #10 clk = ~clk; // Module thread

task wait_for_clk;
   @ (posedge clk);    // Module thread
endtask

endmodule

program test;

initial begin
   @ (posedge tb_top.clk);    // Program thread
   tb_top.wait_for_clk;
   @ (posedge tb_top.clk);    // Program thread
end
endprogram
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Simulators exe-
cute module 
threads at the 
current time, 
then assign zero-
delay nonblock-
ing values.

Figure 4-11 shows the SystemVerilog simulation cycle. For a given
timestep, the simulation engine first samples any value used by
clocking blocks and properties. The simulation engine then exe-
cutes all of the module threads that can be executed. While execut-
ing, these module threads may perform assignments of future
values using nonblocking assignments. Once all module threads
have executed (i.e., they are all waiting for something), the simula-
tor assigns any nonblocking values scheduled for the current
timestep (i.e. zero-delay assignments). Module threads sensitive to
the new values are then executed. This cycle continues until there
are no more module threads that can be executed at the current
timestep and there are no more zero-delay nonblocking values.

Program threads 
are executed 
after assertions
are evaluated.

When there are no more available module threads that can be exe-
cuted, the simulator evaluates all assertions using the values sam-
pled at the beginning of the timestep. The simulator then executes
all program threads that can be executed. While executing, the pro-
gram threads may make nonblocking assignments. Once all pro-
gram threads have executed (i.e., they are all waiting for
something), the simulator assigns any nonblocking values sched-
uled for the current timestep (i.e. zero-delay assignments) made
from the program threads. Any module threads sensitive to the new
values are then executed, restarting the module thread execution
cycle. This cycle continues until there are no more program threads
that can be executed at the current timestep and there are no more
zero-delay nonblocking values.

Figure 4-11.
SystemVerilog 
simulation 
cycle
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Simulators then 
advance time or 
starve.

If there is nothing left to be done at the current time, there must be
either:

1. A thread waiting for a specific amount of time
2. A nonblocking value to be assigned after a non-zero delay 

If one of the conditions is present, the simulator advances time to
the next time period where there is useful work to be done. The
simulator then assigns a nonblocking value, which causes threads
sensitive to the signals assigned these values to be executed, or exe-
cutes threads that were waiting. If neither of the conditions are true,
then the simulation stops on its own, having reached a quiescent
state and suffering from event starvation.

Simulators do 
not increment 
time step by 
step.

The simulator does not increment time by a basic time unit,
timestep or time increment. Regardless of the simulation resolution,
the simulation advances time as far as necessary, in a single step, to
the next point in time where there is useful work to do. Usually, that
point in time is the delay in the clock generator. Increasing the sim-
ulation time resolution should not significantly decrease the simula-
tion performance of a behavioral or RTL model.

Simulation 
progresses but 
time does not 
advance in zero-
delay cycles.

The state of the simulation progresses along two axes: zero-time
and simulation time. As threads are simulated and new values are
assigned after zero delays, the state of the simulation evolves and
progresses, but time does not advance. Since time does not
advance, but the state of the simulation evolves, these zero-delay
cycles where threads are evaluated and zero-delay nonblocking val-
ues are assigned are called delta-cycles1. The simulation progresses
first along the delta axis then along the real-time axis, as shown in
Figure 4-12. It is possible to write models that simulate entirely
along the delta-time axis. It is also possible to write models that are
unintentionally stuck in delta cycles, preventing time from advanc-
ing. 

Program threads 
eliminate race 
conditions.

Having separate module and program threads allow testbenches to
react to the results of design states and assertions without any race
conditions. Program threads are evaluated once all transient events
in the design have been flushed out. They are executed based on the

1. I borrowed this term from VHDL. SystemVerilog does not explicitly 
defines a term for zero-delay cycles.
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final—for this timestep—values of module variables. It is still pos-
sible to have race conditions between module threads and between
program threads, but not across them.

Synchronous 
design signals 
behave differ-
ently to pro-
gram threads.

RTL coding guidelines requiring the use of nonblocking assign-
ments to all inferred flip-flops—and enforced by the always_ff
block—ensure that no race conditions exist between module
threads. In traditional Verilog, with only one kind of execution
thread, the same technique could be used to prevent races between
the design and the testbench. But in SystemVerilog, with test-
benches executing as program threads, a different behavior is
observed. Because program threads are executed after all nonblock-
ing assignments are made, any testbench always block sensitive to
the clock, will execute after the state of the synchronous variable
has been updated. A program thread will see the new value of the
synchronous variable whereas a module thread would see its previ-
ous value, as illustrated in Sample 4-53. In that example, only the
$write statement in the module always block would display a value
of zero at the first clock edge after reset. The $write statement in the
program initial block would always display a value of one.   

Intra-assign-
ment delay 
could be used.

When sampling synchronous signals at the active clock edge, the
intent is to sample their current value, immediately before it is
updated by that active clock edge. The RTL coding style in Verilog
worked because of the nature of the nonblocking assignment which
creates an infinitesimal delay between the clock and the updating of
synchronous variables. In SystemVerilog, that infinitesimal delay is
not long enough to maintain the current state of a synchronous vari-
able into the program thread execution cycle. One solution would
be to add an intra-assignment delay to all nonblocking assignments
to synchronous variables, as shown in Sample 4-54. But this is not
accepted by all synthesis tools, nor would it be compatible with the
large body of existing RTL code out there.

Figure 4-12.
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Synchronous 
module signals 
must be sampled 
using a clocking
block.

Instead of relying on the proper coding of the assignment state-
ments in the design, using a clocking block resolves the problem by
using the sampled value of a synchronous variable. These values
are sampled when first going into a simulation timestep, before the
variables have had a chance of being updated. Therefore, the sam-
pled value is the true value before the active edge of the clock, the
one the testbench intends to use. Sample 4-55 shows the same code
as Sample 4-53, but with a consistent view of synchronous vari-

Sample 4-53.
Synchronous 
variables in 
module and 
program
threads.

module design(...);
...
bit flag;
always_ff @(posedge clk)
begin
   if (rst) flag <= 0;
   else     flag <= 1;
end

always @(posedge clk)
begin
   if (!rst) $write(“Mod: flag = %b\n”, flag);
end

endmodule: design

program test;

initial begin
   forever @ (posedge design.clk)
   begin
      if (!design.rst) begin
         $write(“Pgm: flag = %b\n”,
                design.flag);
      end
   end
end
endprogram: test

Sample 4-54.
Synchronous 
variables
assigned with 
intra-assign-
ment delay.

module design(...);
...
bit flag;
always_ff @(posedge clk)
begin
   if (rst) flag <= #1 0;
   else     flag <= #1 1;
end
endmodule: design
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ables between the design and the testbench. More details on how
the clocking block is used with interfaces and transactors will be
presented in “Physical Interfaces” on page 238.   

Parallel vs. Sequential

Use sequential 
descriptions as 
much as possi-
ble.

As explained earlier, humans can understand sequential descrip-
tions much easier than concurrent descriptions. Anything that is
described using a single sequence of statements is easier to under-
stand and maintain than the equivalent behavior described using
parallel constructs. The independence of their location and ordering
in the source file adds to the complexity of concurrent descriptions.
A concurrent description that would be relatively easy to under-
stand can be obfuscated by simply separating the pertinent concur-
rent statements with a few other unrelated concurrent constructs.
Therefore, functionality should be described using sequential con-
structs as much as possible.

A frequent misuse of sequential constructs involves the initializa-
tion of variables. For example, Sample 4-56 shows a clock genera-
tor implemented using two concurrent constructs: an initial and an
always block.

Sample 4-55.
Synchronous 
variables in 
module and 
program
threads sam-
pled using a 
clocking 
block.

program test;
...
clocking cb @ (posedge design.clk);
   input rst  = design.rst;
   input flag = design.flag;
endclocking: cb

initial begin
   forever @(cb)
   begin
      if (!cb.rst) $write(“Pgm: flag = %b\n”,
                          cb.flag);
   end
end
endprogram: test

Sample 4-56.
Misuse of con-
currency

reg clk;
initial clk = 1’b0;
always #50 clk = ~clk;
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However, generating a clock is an inherently sequential process: It
starts at one value then toggles between one and zero at a constant
rate. A better description, using a single concurrent construct, is
shown in Sample 4-57. Better yet, to avoid generating a clock event
at time zero, the clk variable should be initialized via an initializer
value, as shown in Sample 4-58.   

Deterministic
sequential
behavior does 
not need concur-
rency.

Another less obvious case of misused concurrency happens when
the behavior of the various processes is deterministically sequential
because of the data flow. For example, Sample 4-59 shows an
always block labeled P2 that can execute only once the always
block labelled P1 triggers the event do. The P1 block then waits for
the completion of block P2 before resuming its execution. The
sequence of execution cannot be other than the first half of P1, P2,
then the second half of P1.

The implementation in Sample 4-60 shows the equivalent function-
ality, implemented using a single block. Not only is the execution
flow easier to follow, but also it does not require the control events
do and done.

Fork/Join Statement

Control flow 
may alternate 
between sequen-
tial and concur-
rent regions.

The overall control flow for a testcase often involves a sequence of
sequential steps followed by concurrent ones. For example, verify-
ing a configuration of a design may require configuring the device
through several consecutive reads and writes via the CPU interface,
then concurrently sending and receiving data. This process is then

Sample 4-57.
Proper use of 
concurrency

reg clk;
initial
begin
   clk = 1’b0;
   forever #50 clk = ~clk;
end

Sample 4-58.
Better use of 
concurrency

reg clk = 1’b0;
always #50 clk = ~clk;
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repeated for another configuration. Figure 4-13 shows a control
flow diagram of such a control structure.

Implement using 
a fork/join state-
ment.

The easiest way to implement this type of control flow structure is
to use a fork/join statement. This statement dynamically creates
concurrent threads within a region of sequential code. SystemVer-
ilog has many flavors of the join statement to define how sequential
execution resumes after the fork/join statement, as illustrated in

Sample 4-59.
Deterministic
sequential exe-
cution.

event do, done;

always
begin: P1
   // First half of P1
   ...
   -> do;
   @(done);
   // Second half of P1
   ...
end: P1

always
begin: P2
   @(do);
   // All of P2
   ...
   -> done;
end: P2

Sample 4-60.
Simplified 
sequential exe-
cution.

always
begin: P1_2
   // First half of P1
   ...
   // All of P2
   ...
   // Second half of P1
   ...
end: P1_2

Figure 4-13.
Series of 
sequential and 
concurrent
control flows
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Figure 4-14(a). For example, the code in Sample 4-61 waits for the
maximum of Ta, Tb and Tc. 

The join condi-
tion can have 
many flavors.

The join condition may have different flavors. By default, the code
after a fork/join statement resumes only once all of the branches
have completed their respective execution. Sometimes it may be
useful to continue execution as soon as one of the branches com-
pletes its execution, as illustrated in Figure 4-14(b) or simply fork
the subthreads and continue the execution of the main thread with-
out interruption, as illustrated in Figure 4-14(c). Sample 4-62
shows how the join_none statement is used to generate an event at
regular intervals until it is eventually acknowledged. 

join_any does 
not terminate 
other branches.

Sample 4-63 shown another way of implementing the same func-
tionality. Notice the presence of the disable statement after the

Figure 4-14.
Execution
threads in 
fork/join
statements

Sample 4-61.
Example of 
using the fork/
join statement

initial
begin
   ...

fork
      #(Ta);
      #(Tb);
      #(Tc);

join
   ...
end
endmodule

fork
(a)

join fork
(b)
join_any fork

(d)
join; disablefork

(c)
join_none

Sample 4-62.
Variant of the 
fork/join state-
ment.

...
fork: req_until_ack
   forever begin
      ->req;
      #10;
   end
join_none
@(ack);
disable req_until_ack;
...
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join_any. The other branches of the fork/join_any statement keep
executing after execution resumes after the join, as illustrated in
Figure 4-14(b). Your functionality may require that they be allowed
to complete in parallel. But if they must be aborted, as is the case in
Sample 4-63, they must be aborted explicitly using the disable
statement.

Use disable fork
with care.

Instead of using the named disable statement to forcibly terminate
the execution of all branches inside the named fork/join statement,
it can be terminated by using the disable fork statement. However,
the disable fork statement will terminate all subthreads started by
the thread using that statement. This may terminate threads that
were previously started and not targeted for termination. For exam-
ple, the code in Sample 4-64 uses a base class to implement some
generic functionality in concurrent threads. The class extension
accidentally terminates the generic functionality by using the dis-
able fork.

The Difference Between Driving and Assigning

Assignments 
write a value to 
a memory loca-
tion.

Regular programming languages provide variables that can contain
arbitrary values of the appropriate type. They are implemented as
simple memory locations. Assigning to these variables is the simple
process of storing a value into that memory location. SystemVerilog
variables operate in the same way. When an assignment is com-
pleted, whether blocking or nonblocking, the newly assigned value
overwrites any previous value in the memory location. Previous
assignments have no effects on the final result. Regular assign-
ments behave like a multiplexer. A single value from all of the
potential contributors is somehow selected.

Sample 4-63.
fork/join_any
statement

...
fork: req_until_ack
   @(ack);
   forever begin
      ->req;
      #10;
   end
join_any
disable req_until_ack;
...
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The last assign-
ment deter-
mines the value.

For example, in Sample 4-65, the value of the register R goes from
x to 5 to 4 to 3 to 2 to 1, then finally to 0. Since R is a variable
shared by all three concurrent blocks, a single memory location
exists. Whatever value was assigned last by a concurrent block, is
the value stored in the variable..

SystemVerilog 
has the concept 
of a wire.

The variable is sufficient for ordinary sequential programming lan-
guages. When describing hardware, a construct that can describe
the behavior of a wire used to connect multiple devices together
must be provided. Figure 4-15 shows a wire, presumably part of a
data bus, connected to several devices. Each device, using a tristate
driver, can drive a value onto the wire. The final logic value on the
wire depends on all the individual values being driven, not just the
last one, like a variable.

Individual val-
ues from con-
nected devices 
must be driven 
continuously 
onto the wire.

To model connectivity via a wire properly, any value driven by a
device must be driven continuously onto that wire, in parallel with
the other driving values. The final value on that wire depends on all
of the continuously driven individual values. 
For example, on a tristate wire, the individual driven values of z, 1,
weak-0 and z would produce a final result of 1. Figure 4-16 shows
the implementation of the wire driver in SystemVerilog. 

Sample 4-64.
Unintended
consequences
of using dis-
able fork

class xactor;
   virtual task main();
      fork
         // Generic functionality
         ...
      join_none
   endtask: main
endclass: xactor

class my_bfm extends xactor;
   virtual task main();
      super.main();
      forever begin
         fork
            // Extended functionality

           ...
         join_any
         ...
         disable fork; // Also kills generic
                       // functionality
      end
   endtask: main
endclass: my_bfm
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In SystemVerilog, this continuous drive is implemented using a
continuous assignment while the final value is determined by the
type of wire being used (wire, wor, wand or trireg) and the strength
of the individual driven values..

Each concurrent 
construct has its 
own, single 
driver.

Parallel drivers on a wire require concurrent constructs to describe
them. Many inexperienced engineers, when learning to code for
synthesis try to implement the design shown in Figure 4-17 using
the code shown in Sample 4-66. Unfortunately, since a single regis-
ter is used with variable assignments in sequential code, a multi-

Sample 4-65.
Assignments
to a shared 
variable.

module assignments;
int R;

initial R <= #20 3;

initial
begin
   R = 5;
   R = #35 2;
end

initial
begin
   R <= #100 1
   #15 R = 4;
   #220;
   R = 0;
end

endmodule

Figure 4-15.
Multiple
drivers on a 
wire

Figure 4-16.
Implementa-
tion of 
continuous
drive value resolution

register continuous
assignment

wire
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plexer is synthesized instead of the expected parallel drivers. The
proper solution requires three concurrent constructs, one for each
driver, and is shown in Sample 4-67.                  

RACE CONDITIONS       

The simulation 
cycle creates 
race conditions.

If you refer to Figure 4-11 and the section titled “Emulating Paral-
lelism on a Sequential Processor” on page 162, you will see that
parallel threads are executed one after another, during the same
timestep. The order in which the threads are executed is not deter-

Figure 4-17.
Simple design 
with three 
tristate drivers

Sample 4-66.
Implementa-
tion using a 
multiplexer

module simple(A, B, C, SEL, Z);
input        A, B, C;
input  [1:0] SEL;
output       Z;

reg Z;
always @ (A or B or C or SEL)
begin
   case (SEL)
   2’b00: Z = 1’bz;
   2’b01: Z = A;
   2’b10: Z = B;
   2’b11: Z = C;
   endcase
end
endmodule

Sample 4-67.
Implementa-
tion using 
three tristate 
drivers

module simple(A, B, C, SEL, Z);
input        A, B, C;
input  [1:0] SEL;
output       Z;

assign Z = (SEL == 2’b01) ? A : 1’bz;
assign Z = (SEL == 2’b10) ? B : 1’bz;
assign Z = (SEL == 2’b11) ? C : 1’bz;

endmodule

111001

A B C

SEL

Z
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ministic. Race conditions exist when multiple concurrent threads
compete for the same shared resource over the same time period.

RTL coding 
guidelines hide 
race conditions

Race conditions are conveniently eliminated when limiting yourself
to writing synthesizable code. But once you start using all the fea-
tures of the language, you may find yourself with code that is not
portable across different simulators, different versions of the same
simulator or by using different command-line arguments. Any
change in the simulation algorithm that causes concurrent threads
to be executed in a different order will yield different simulation
results.

Shared vari-
ables can create 
race conditions.

All variables in SystemVerilog are shared among concurrent
threads within their scope (except for automatic variables).
Depending on the order in which these concurrent threads read or
write these shared variables, different values may be observed.

Read/Write Race Conditions
A read/write race condition happens when two concurrent threads
attempt to read and write the same shared variable in the same
timestep. If you look at the code in Sample 4-68, you will notice
that the first always block assigns the variable count while the sec-
ond one displays it. But both threads execute at the rising edge of
the clock.

Sample 4-68.
Example of a 
read/write race 
condition

module rw_race(clk);
input clk;

integer count;

always @ (posedge clk)
begin
   count = count + 1;
end

always @ (posedge clk)
begin
   $write("Count is equal to %0d\n", count);
end

endmodule
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The execution 
order determines 
the final result.

Let’s assume that the current value of count is 10. If the first block
is executed first, the value of count is updated to 11. When the sec-
ond block is executed, the value 11 is displayed. However, if the
second block executes first, the value of 10 is displayed, the value
of count being incremented only when the first block executes later.

Some read/write 
race conditions 
can be solved by 
using nonblock-
ing assignments.

This type of race condition can be solved easily by using a non-
blocking assignment, such as shown in Sample 4-69. Referring
again to Figure 4-11: When the first block executes, the nonblock-
ing assignment schedules the new value of 11, with a delay of zero,
to the next timestep. When the second block executes, the value of
count is still 10. The new value is assigned to count only when all
blocks executing at this timestep are executed, creating a delta
cycle.

Prefer sequential 
over parallel 
code.

Using a nonblocking or signal assignment resolves the race condi-
tion by introducing an infinitesimal delay between the write and the
read operation. You should avoid creating parallel threads when a
single sequential thread would do the same job, as shown in Sample
4-70.

Continuous 
assignments cre-
ate races.

A more insidious read/write race condition can occur between
always or initial blocks and continuous assignments. Examine the
code in Sample 4-71 closely. What value of out will be displayed?
The answer depends on the simulator and the command line you are
using. 

Sample 4-69.
Avoiding a 
read/write race 
condition 
using a non-
blocking 
assignment

module rw_race(clk);
input clk;

integer count;

always @ (posedge clk)
begin
   count <= count + 1;
end

always @ (posedge clk)
begin
   $write(“Count is equal to %0d\n", count);
end

endmodule
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Some simula-
tors do not inter-
rupt blocks to 
execute continu-
ous assignments.

When the initial block assigns a new value to count, a simulator
could choose to schedule the execution of the continuous assign-
ment for the next timestep, since it is sensitive to count. The execu-
tion of the initial block is not interrupted and the value of out
displayed is the one it had after initialization, since the continuous
assignment has not yet been executed.

Some do. Another simulator could choose to execute the continuous assign-
ment as soon as count is assigned in the initial block. The execution
of the initial block is interrupted after the assignment to count while
the continuous assignment is executed. The execution of the initial
block resumes immediately afterwards.

This type of race 
condition can-
not be avoided 
easily.

Unfortunately, this type of error condition is not as easy to avoid or
eliminate as the one between two blocks. When writing high-level
code, you must be careful about the timing between assignments to
registers in the right-hand side of a continuous assignment and
reading the wire driven by it. To make matters worse, the race con-
dition may involve non-zero delays as well as multiple continuous

Sample 4-70.
Avoiding a 
read/write race 
condition 
using sequen-
tial code

module rw_race(clk);
input clk;

integer count;

always @ (posedge clk)
begin
   $write(“Count is equal to %0d\n", count);
   count <= count + 1;
end

endmodule

Sample 4-71.
A riddle

module rw_race;

wire [7:0] out;
assign out = count + 1;

integer count;
initial
begin
   count = 0;
   $write("Out = %b\n", out);
end

endmodule
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assignment statements, such as in Sample 4-72. A read/write race
condition occurs if the delay between the time the right-hand side
of a continuous assignment is updated, and the time any wire on the
left-hand side is read, is equal to the propagation delay of all inter-
vening continuous assignments. Figure 4-18 illustrates the timing
of these race conditions. The only way to avoid such race condi-
tions is to avoid using continuous assignments for internal decoding
logic.  

Write/Write Race Conditions
A write/write race condition occurs when two concurrent threads
write to the same register at the same timestep. If you look at the
code in Sample 4-73, you will notice that both branches of the fork/
join statement assign the variable flag under different conditions
and both execute at any change of the clock. This setup creates a
write/write race condition if both conditions are true.

The execution 
order determines 
the final result.

If you refer one more time to Figure 4-11 and the section titled
“Emulating Parallelism on a Sequential Processor” on page 162,
you will see that both threads are executed one after another, during

Sample 4-72.
Another read/
write race con-
dition

module rw_race;

wire [7:0] out, tmp;
integer count;
assign #1 out = tmp - 1;
assign #3 tmp = count + 1;

initial
begin
   count = 0;
   #4;
   // "out" will be 0 or x’s.
   $write("Out = %b\n", out);
end

endmodule

Figure 4-18.
Timing of a 
read/write
race condition

Delay

Continuous Assignment(s)

always or
initial block

Write Read
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the same timestep. Again, the order in which the threads execute is
not deterministic. Let’s assume that both conditions are true. If the
first thread is executed first, the value of flag is updated to zero.
When the second thread is executed, the value of flag is updated to
one. However, if the second thread executes first, the value of flag
is updated to one, then it is updated to zero when the first thread
executes later.

Nonblocking
assignments do 
not solve the 
problem.

You might be tempted to use the same solution to eliminate the race
condition as was used to eliminate the read/write race condition, as
shown in Sample 4-74. Using nonblocking assignments simply
moves the write/write race condition from the variable assignment
to the scheduling of the nonblocking value. If the first thread exe-
cutes first, the nonblocking value zero is scheduled for the next
timestep. When the second thread executes, the nonblocking value

Sample 4-73.
Example of a 
write/write 
race condition

program test;

bit flag;

initial
begin
   fork
      @(clk) if (<cond1>) flag = 0;
      @(clk) if (<cond2>) flag = 1;
   join_none
end
endprogram: test

Sample 4-74.
Another exam-
ple of a write/
write race con-
dition

module ww_race(clk);
input clk;

reg flag;

always @ (posedge clk)
begin
   if (<cond1>) flag <= 0;
end

always @ (posedge clk)
begin
   if (<cond2>) flag <= 1;
end

endmodule
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one is also scheduled for the next timestep, overwriting the previ-
ously scheduled value of zero. If the threads execute in the opposite
sequence, the scheduled value of zero overwrites the previously
scheduled value of one.

There is no way 
out of this one.

There is no mechanism to prevent this type of race condition. The
logic of your model must make sure that both conditions are never
true at the same time. It would be a good practice to put an assertion
in your model to verify that it is indeed always the case.

Pop quiz! Why can’t you have a write/write race condition on a wire?1

Initialization Races

initial blocks are 
no different then 
always blocks.

The most frequent race conditions can be found at the beginning of
the simulation, when all threads are executed for the first time.
Everything is initialized to its respective specified initializer value
or x if none are specified. Then the simulation starts normally. It is a
common misconception that initial blocks are used to initialize
variables. Initial blocks are identical to always blocks, except that
they execute only once, whereas always blocks execute forever, as
if they were stuck in an infinite loop.

Initial blocks are 
not executed 
first.

When the simulation is started, the initial and always blocks are
executed one after another, in any order. The initial blocks are not
executed first—although doing so would not be illegal and some
simulators may do just that. Most simulators, for no other reason
than to be compatible with Verilog-XL and legacy code containing
race conditions, first execute blocks in the same order as they are
specified in the file2. But the subsequent execution order is not so
deterministic.

When simulating the code in Sample 4-75 using an XL-compliant
simulator, the first always block would be executed and suspended
immediately, waiting for the rising edge of the clock. The initial
block is executed next, assigning the new value of one to the vari-
able named clk, which was previously initialized to x. A transition

1. Because wires are driven, not assigned. The value from each parallel 
construct would contribute to the final logic value on the wire, without 
overwriting the other.

2. You should avoid depending on this behavior.
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from x to one being considered a rising edge, the first always block
sees the event and is scheduled to be executed again at the next
timestep. However, since the last always block was not yet exe-
cuted, and thus is not waiting for the rising edge of the clock, it
does not see this edge. When the last block is finally executed, it is
also immediately suspended, waiting for the next rising edge on clk.
An XL-compliant simulator would therefore execute the body of
the first always block, but not the second. However, that is not a
requirement. If a simulator chooses to execute the initial block first,
the body of neither block would execute at time zero.

Guidelines for Avoiding Race Conditions
Race conditions can be avoided if you follow strict coding guide-
lines. These guidelines differ from typical RTL coding guidelines
because of the stricter rules on using blocking vs. nonblocking
assignment or the use of continuous assignment statements. RTL
coding guidelines are designed to fit the model to the inferred hard-
ware structure. Testbenches use the full language, and as such
require guidelines designed to fit the model to the underlying simu-
lation engine.

1. If a variable is declared outside of a concurrent thread structure, 
assign to it using a nonblocking assignment. Reserve the block-
ing assignment for variables local to the thread.

2. Assign to a variable from a single concurrent thread.
3. Use continuous assignments to drive inout pins only. Avoid 

using them to model internal combinatorial functions. Prefer 

Sample 4-75.
Race condition 
at simulation 
startup

module init_race;
reg clk;

always @ (posedge clk)
begin
   $write("Block #1 at %t\n", $time);
end

initial clk = 1’b1;

always @ (posedge clk)
begin
   $write("Block #3 at %t\n", $time);
end

endmodule
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sequential code in a large always block to several continuous 
assignments.

4. Use initializers to assign initial values. Do not assign any value 
at time 0.

5. Use clocking blocks to sample synchronous module variables in 
program threads.

Semaphores

Use semaphores. The problem with guidelines is that there is no way to ensure that
everyone follows them. Competing access to shared resources by
concurrent threads is an old problem with an equally old solution:
the semaphore. When traffic coming from multiple directions (the
concurrent thread) needs to cross an intersection (the shared
resource), a traffic light (the semaphore) is used to make sure that
only one direction of traffic gets to cross the intersection at the
same time. A semaphore can be used to ensure that only one thread
executes their portion of code that can potentially create a race con-
dition.

A semaphore is 
a write/write 
race condition 
put to good use.

A semaphore is a shared variable that is set by a single execution
thread only if the semaphore is currently cleared. That thread is
then responsible for clearing the semaphore after completing its
access to the shared resource. Sample 4-76 shows an implementa-
tion of a semaphore1 in SystemVerilog. The in_use variable indi-
cates whether the semaphore is set. If the lock task is invoked while
the in_use variable is set to 1, the thread waits until the lock task is
eventually cleared. The unlock task clears the semaphore. 

This would not 
work on a true 
parallel system.

The key to the proper operation of the semaphore implementation
shown in Sample 4-76 is the while loop in the lock task. Let’s
assume that three concurrent threads are vying for the semaphore
by calling the lock task at the exact same simulation cycle. Because
concurrent threads are really executed sequentially, one at the time,
one of these threads (lets call it #1) will execute first. The in_use
register being equal to 1’bx, the condition of the while loop will be
false and it will set the semaphore and return from the lock task.

1. Computer scientists have a very narrow definition of a semaphore that 
is probably not met by this implementation. However, it is good enough 
for now.
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Threads #2 and #3 run, one after another, and get to the while loop.
Because in_use is now set to 1’b1, they enter the while loop and
wait for in_use to be not identical to 1’b1. Eventually thread #1 will
release the semaphore by calling the unlock task. This will wake up
threads #2 and #3. One of them (let’s pick #2) will run first, find the
condition of the while loop false, set the semaphore then return
from the lock task. When thread #3 runs, it finds the condition of
the while loop still true (because of thread #2) and waits again.

This semaphore 
may not be fair.

This simple semaphore implementation relies on the ordering of
thread execution to ensure that access is fair. If the simulator imple-
ments a first-in-first-out execution order on the wait statement (i.e.
the thread that has been waiting the longest is run first), then the
semaphore will be fair. If it uses a last-in-first-out execution order
(i.e. the thread with the most recent invocation of the wait statement
executes first), then this semaphore will be completely unfair. This
simple implementation would also not work if a thread does not
suspend its execution between the unlock and lock task calls: Since
in_use had just been cleared by the unlock task, the while loop
would not be entered and the thread would acquire the semaphore
again.

Semaphores are 
built-in System-
Verilog.

SystemVerilog comes with a predefined semaphore object. Unlike
the user-defined semaphore shown in Sample 4-76, the predefined
semaphore is guaranteed to be fair, would work in a potential paral-
lel implementation of SystemVerilog and includes the concept of
keys, where a number of identical shared resources can be managed
using a single semaphore. See Sample 4-83 for an example of using
a predefine semaphore.      

Sample 4-76.
A SystemVer-
ilog sema-
phore

module semaphore;

bit in_use;

task lock;
while (in_use === 1’b1) wait (in_use !== 1’b1);

   in_use = 1’b1;
endtask

task unlock;
in_use = 1’b0;

endtask
endmodule
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PORTABILITY ISSUES   

Two compliant 
simulators can 
produce differ-
ent results.

In my many years of consulting in design verification, I have yet to
see a single testbench that simulates with identical results on differ-
ent simulators. Half the time, these same testbenches can produce
different results by using different command-line options or use a
different version of the same simulator! Yet, all simulators are fully
compliant with the IEEE standard. Most of the time, the differences
are due to race conditions (see “Race Conditions” on page 176).
Sometimes, the differences are due to different interpretations of
the standard: Many implementation details were left unspecified or
existing discrepancies between simulators were also declared
“unspecified”. Simulator vendors are thus free to implement these
unspecified portions of the standard any way they want, yielding
different simulation results.

The primary 
cause is the 
author’s lack of 
experience.

The primary cause of the simulation differences are the authors.
SystemVerilog appears easy to learn because it produces the
expected response rather quickly. Making sure that the results are
reproducible under different conditions is another matter. Learning
the idiosyncrasies of the language are what takes time and differen-
tiates an experienced modeler from a new one. It is possible to write
testbenches that will simulate with identical results on all simula-
tors and with all command-line options. 

Events from Overwritten Scheduled Values
If a scheduled value is overwritten by another scheduled value, can
the original value cause an event? The answer to that question is
left undefined by the SystemVerilog standard. If you look at the
code in Sample 4-77, will anything be displayed at time 10?

Overwriting a 
scheduled value 
may generate an 
event.

Figure 4-19 shows the queue of scheduled future values for register
strobe just before the last statement of the initial block is about to
execute. After executing that last statement, and scheduling the new
value of zero after ten time units in the future, what happens to the
previously scheduled value of one? Is it removed? Is it left there? If
so, which value will be assigned to strobe ten time units from now?
Only zero (and thus not generating an event on strobe) or both in
zero-time (and generating an event)? The answer to this question is
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simulator dependent. In asynchronous descriptions, avoid overwrit-
ing previously scheduled values using nonblocking assignments.

Disabled Scheduled Values

Nonblocking
assignment val-
ues may be 
affected by the 
disable state-
ment.

The SystemVerilog standard does not specify what happens to still-
pending values that were scheduled using a nonblocking assign-
ment within a block that is disabled. Consider the code in Sample 4-
78. When a reset condition is detected, the always block modeling
the CPU interface is disabled to restart it from the beginning. What
should happen to the various values assigned to the CPU interface
signals data and dtack using nonblocking assignments, but that may
not have been assigned to the variables yet? Depending on the sim-
ulator you are using, these values may be removed from the sched-
uled value queue and never make it to the intended variables, or
they may remain unaffected by the disable statement. Avoid dis-
abling a block where nonblocking assignments are performed.

Sample 4-77.
Overwriting
scheduled val-
ues

module events;

reg stobe;

always @ (strobe)
begin
   $write("Stobe is %b\n", strobe);
end

initial
begin
   strobe = 1’b0;
   strobe <= #10 1’b1;
   strobe <= #10 1’b0;
end

endmodule

Figure 4-19.
Event queue 
on strobe

0
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Output Arguments on Disabled Tasks

Output values 
may not make it 
out of disabled 
tasks.

Another area where the behavior of SystemVerilog is left unspeci-
fied is the value of output arguments in disabled tasks. Look at the
code in Sample 4-79. The read task has an output argument return-
ing the value that was read. Within the task, a disable statement is
used to abort its execution at the end of the read cycle. Because the
entire task was disabled, whether the value of rdat is copied out into
the register actual used to invoke the task is not specified in the
SystemVerilog standard.

Use the return
statement
instead.

In some simulators, the value of actual is updated with the value of
rdat, effectively completing the read cycle. In some others, the
value of actual remains unchanged, leaving the read cycle incom-
plete. This unspecified behavior can be avoided easily by using the
return statement instead of disabling the task itself, as shown in
Sample 4-80. 

Non-Re-Entrant Tasks
This is not an 
unspecified 
behavior.

Unless a task is declared as automatic, they are not re-entrant. Non-
re-entrant tasks are not really an unspecified behavior in System-
Verilog. All simulators have non-re-entrant tasks because every
declaration in a SystemVerilog model, except for classes, is static.
By default, no declaration is dynamically allocated upon invocation
of a subprogram or entry into a block of code.

Sample 4-78.
Nonblocking 
assignments 
potentially
affected by a 
disable state-
ment

module cpuif(...);

always
begin: if_logic
   ...
   data  <= #(Ta) read_val;
   dtack <= #(Tack) 1’b1;
   @ (negedge ale);
   data  <= #(Thold) 32’bz;
   dtack <= #(Thold) 1’b0;
   ...
end

always wait (reset == 1’b1)
begin
   disable if_logic;
   wait (reset != 1’b1);
end
endmodule
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The same mem-
ory space is used 
for all invoca-
tions of a task.

When you declare a task or a function, the memory space for its
arguments and all other locally declared variables is allocated at
compile time. There is a single location for the subprogram and all
of its local variables. The memory is not allocated at runtime each
time the task or function is invoked. Every time a subprogram is
invoked, the same memory space is used. This reuse of memory
space does not cause problems in functions or in tasks that do not
include @, # or wait statements because the local data space is used
in a single invocation. The memory space is no longer in use by the
time a second invocation is made. However, if a task contains tim-
ing control statements, it may still be active when a second invoca-
tion is made.

A second invo-
cation clobbers 
the data space of 
an active prior 
invocation.

Examine the code in Sample 4-81. The task named write contains
timing control statements and is invoked from two different initial
blocks. In Figure 4-20(a), the content of the arguments, local to the
task, is shown after the invocation from the first initial block. While

Sample 4-79.
Unspecified 
behavior of 
disabled tasks

task read(input  [7:0] radd,
          output [7:0] rdat);
   ...
   if (valid) begin
      rdat = data;
      disable read;
   end
   ...
endtask

initial
begin: test_procedure
   reg [7:0] actual;

   read(8’hF0, actual);
   ...
end

Sample 4-80.
Using return
instead of dis-
able.

task read(input  [7:0] radd,
          output [7:0] rdat);
   ...
   if (valid) begin
      rdat = data;
      return;
   end
   ...
endtask
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this first invocation is waiting, the second initial block is executed1

and invokes the write task again, setting its local arguments to the
values shown in Figure 4-20(b). When the first invocation resumes,
it continues its execution, using the arguments provided by the sec-
ond invocation: Its data space was overwritten. The first invocation
goes on to write the value 8’h34 at address 8’h5A. 

Concurrent task 
activations may 
not be so obvi-
ous.

The concurrent invocation of the same task in Sample 4-81 is pretty
obvious. But most of the time, the conditions where a task is acti-
vated more than once are much more obscure. In a large verifica-
tion environment, with numerous tasks invoked under a complex
control structure, it is very easy to concurrently activate a task and
corrupt an entire testcase without you, or the simulator, being aware
of it.

automatic tasks 
are re-entrant.

In SystemVerilog, tasks can be made re-entrant by declaring them
automatic. This causes the arguments and local variables to be
dynamically created upon invocation of the task. Because these
variables are no longer static, they cannot be referred to externally
using a hierarchical name, nor can they be displayed on a waveform

1. This specific execution order is only an example. The initial blocks 
could execute in reverse order with equally catastrophic results.

Sample 4-81.
Non-re-entrant 
task

task write(input [7:0] wadd,
           input [7:0] wdat);
   ad_dt <= wadd;
   ale   <= 1’b1;
   rw    <= 1’b1;
   @ (posedge rdy);
   ad_dt <= wdat;
   ale   <= 1’b0;
   @ (negedge rdy);
endtask

initial write(8’h5A, 8’h00);
initial write(8’hAD, 8’h34);

Figure 4-20.
Task data 
space

8’h5Awadd

8’h00wdat

(a)
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(b)
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viewer. Furthermore, making a task re-entrant only solves the local
data part of the problem. Separate threads still exist with the poten-
tial for race conditions to shared variables. For example, if the task
in Sample 4-81 were made re-entrant by adding the keyword auto-
matic, would the problem be solved? No. Even though each thread
would have their correct respective values of the address and data
to write, both will assign to the same shared variables ad_dt, ale
and rw, creating write/write race conditions (see “Write/Write Race
Conditions” on page 180).

Use a sema-
phore to detect 
concurrent task 
activation.

The best approach to avoid this fatal condition is to use a sema-
phore to detect concurrent activation or protect against the write/
write race condition. When using automatic tasks, a semaphore will
ensure proper operation of the task, as shown in Sample 4-82.

A semaphore 
does not help 
non-re-entrant 
tasks.

Semaphores can only help protect shared resources if they are used
before the shared resource is accessed. The solution shown in Sam-
ple 4-82 would not work for a non-re-entrant task because the data
space of the task was already corrupted. It is too late. One solution
would be to use the semaphore before the non-re-entrant task is
invoked, as shown in Sample 4-83. What if someone forgets to use
the semaphore before calling the task?

You can detect 
concurrent task 
activation.

A modified version of the semaphore can be used to detect concur-
rent activation of a non-re-entrant task. As shown in Sample 4-84,
the state of the semaphore indicates whether the task is currently
activated. If the task is invoked while the key in the semaphore is
checked out, the simulation is terminated. Because the data space of
the task has already been clobbered, it is not possible to recover
from the error. Terminating the simulation is the only option. The

Sample 4-82.
Using a sema-
phore in a re-
entrant task

semaphore sem = new(1);

task automatic write(input [7:0] wadd,
                     input [7:0] wdat);

sem.get(1);
   ...

sem.put(1);
endtask
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problem must be fixed by retiming the access to the task (usually
through a semaphore) to ensure that no concurrent invocation takes
place.

I always put a semaphore around any non-re-entrant task. This let
my model tell me immediately if I misused it. I could immediately
fix the problem, without having to diagnose a testbench failure back
to a concurrent task activation. The time invested in adding the

Sample 4-83.
Using a sema-
phore with a 
non-re-entrant
task

semaphore sem = new(1);

task write(...);
...
endtask

initial
begin

sem.get(1);
   write(8’h5A, 8’h00);

sem.put(1);
end

initial
begin

sem.get(1);
   write(8’hAD, 8’h34);

sem.put(1);
end

Sample 4-84.
Guarding non-
re-entrant task

task write(input [7:0] wadd,
           input [7:0] wdat);

   semaphore sem = new(1);

if (!sem.try_get(1)) $stop;

   ad_dt <= wadd;
   ale   <= 1’b1;
   rw    <= 1’b1;
   @ (posedge rdy);
   ad_dt <= wdat;
   ale   <= 1’b0;
   @ (negedge rdy);

sem.put(1);
end
endtask
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semaphore was well worth it. If the task I wrote was to be used by
others, the message produced by the concurrent activation detection
specifically stated that the error was not in my task code, but in
their use of it and to go look for a concurrent activation. This has
saved me many technical support calls.

Static vs. Automatic Variables

Variables are 
static by default.

Unless declared in a dynamic context—within a class or an auto-
matic task—all variables in SystemVerilog are static by default.
Static variables are not really an unspecified behavior in System-
Verilog but can be a source of unexpected behavior. A single copy
exists for a static variable. It is created and initialized at the begin-
ning of the simulation and is reused by all threads referencing that
variable. A variable in a dynamic scope or explicitly declared as
automatic is created and initialized every time a thread enters the
scope in which the dynamic variable is declared.

Static variables 
are initialized 
only once.

Variables are initialized only when they are created. Because static
variables are created only once, at the beginning of the simulation,
they are thus initialized only once. For someone with a non-Verilog
background, that may produce some unexpected behavior, as illus-
trated in Sample 4-85. The variable count is a static variable. It will
be initialized to zero only once, at the beginning of the simulation.
Even if the design operates correctly, the value of count will even-
tually exceed the limit of 10 because it is never reset back to zero
when the task is invoked. The expected behavior can be obtained by
either declaring the count variable as automatic as shown in Sample
4-86, or explicitly initializing it to zero at the beginning of the task
as shown in Sample 4-87.   

Sample 4-85.
Static vari-
ables in loops.

task bus_request;
   int count = 0;
   req <= 1;
   while (gnt != 1) begin
      @ (posedge clk);
      count++;
   end
   if (count > 10) $write(...);
endtask: bus_request
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Only one 
instance of static 
variables exists.

Static variables are created only once, at the beginning of the simu-
lation. Only one copy exists, no matter how many threads enter the
scope where they are declared. Again, this may produce some
unexpected behavior, as illustrated in Sample 4-88. Variable id is
static. Only one copy exists. Therefore, every thread forked off
inside the for-loop will be sharing the same variable and checking
for the same index within the ack array. The intended functionality
can be obtained by declaring the id variable automatic as shown in
Sample 4-89  

Sample 4-86.
Automatic 
variables in 
loops.

task bus_request;
automatic int count = 0;

   req <= 1;
   while (gnt != 1) begin
      @ (posedge clk);
      count++;
   end
   if (count > 10) $write(...);
endtask: bus_request

Sample 4-87.
Initializing 
static vari-
ables in loops.

task bus_request;
   int count;

count = 0;
   req <= 1;
   while (gnt != 1) begin
      @ (posedge clk);
      count++;
   end
   if (count > 10) $write(...);
endtask: bus_request

Sample 4-88.
Static vari-
ables in fork/
join state-
ments.

int i;
...
for (i = 0; i < 10; i++) begin
   fork
      begin
         int id = i;
         while (ack[id] != 1) @ (posedge clk);
         ...
      end
   join_none
end
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Sample 4-89.
Automatic 
variables in 
fork/join state-
ments.

int i;
...
for (i = 0; i < 10; i++) begin
   fork
      begin
         automatic int id = i;
         while (ack[id] != 1) @ (posedge clk);
         ...
      end
   join_none
end
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SUMMARY

When writing testbenches, think function, not implementation.
Abandon the RTL coding mindset. Do not think in terms of logic,
registers and state machines. Think in terms of data transformation,
program state and execution flow.

Your first objective is to write maintainable code. Write relevant
comments that describe your intent, not the code. Optimize for per-
formance only when necessary.

Minimize the scope of your variables as much as possible. Declare
local variables in the scope where they are needed.

Package reusable subprograms and bus-functional models in
classes to facilitate their reuse. Maintain separate name spaces as
much as possible. Make sure that it is possible to have multiple
instances of a bus-functional model connected to different interface
signals without interference or collisions.

Use data abstraction. Collect related data into classes, arrays and
queues.

Separate public interfaces from private implementation. Plan your
class inheritance and take advantage of polymorphism to create
generic bus-functional models and utility subprograms.

Understand the concurrency model used in simulating SystemVer-
ilog. It will help write more efficient models and avoid race condi-
tions. Use semaphores to protect shared resources.

Understand the unspecified portion of the SystemVerilog standard.
This portion is a source of non-portability between different Sys-
temVerilog simulators, versions and command-line options.
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CHAPTER 5 STIMULUS AND RESPONSE

The purpose of writing testbenches is to apply stimulus to a design
and observe the response. That response must then be compared
against the expected behavior.

Generating stimulus is the process of providing input signals to the
design under verification as shown in Figure 5-1. From the perspec-
tive of the stimulus generator, every input of the design is an output
of the generator.

Monitoring is the process of observing output signals from the
design under verification as shown in Figure 5-2. From the perspec-
tive of the response monitor, every output of the design is an input
of the monitor.

Figure 5-1.
Stimulus 
generation

Design
under

Verification

Stimulus
Generation

Figure 5-2.
Response
monitoring

Response
Monitoring

Design
under

Verification
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This chapter 
shows how to 
apply stimulus 
and observe 
response.

In this chapter, I show how to generate stimulus and observe
responses. I also show how to abstract data flowing to and from the
design from a physical level composed of 1’s, 0’s and elapsed time
to a transaction level composed of data objects and procedures. The
greatest challenge with stimulus is making sure it is an accurate
representation of the environment, not just a simple case. When
monitoring responses, one has to be careful not to miss any data and
detect as many errors as possible.

The next chapter 
shows how to 
structure a test-
bench.

In the next chapter, I show how to best structure the stimulus gener-
ators and response monitors to create a layered self-checking envi-
ronment. Constrainable random generation is then added on top of
the stimulus generators and response monitors. If you prefer a top-
down perspective, I recommend you start with the next chapter then
come back to this one.

REFERENCE SIGNALS

Clock signals 
must be gener-
ated with care.

Because a clock signal has a very simple repetitive pattern, it is one
of the first and most fundamental signals to generate. It is also the
most critical signal to generate accurately. Many other signals use
clock signals to synchronize themselves.

Use a module 
thread.

Generate the clock signals using a module thread. Program threads
are designed to be reactive to the events occurring in the design.
Clock signals are the primary cause of these events. The design
reacts to clock events. The always blocks generating the clock sig-
nals should be inside a module, as shown in Sample 5-1.

Explicitly ini-
tialize the clock 
variable.

The code to generate a 50 percent duty-cycle 100MHz clock signal
is shown in Sample 5-1. Using a statement like clk = ~clk
depends on the proper initialization of the clock signal to a value
different than the default value of 1'bx. Initializing the clock vari-
ables using an explicit initializer value also prevents the generation
of clock events at time zero, potentially creating initialization race
conditions, as described in “Initialization Races” on page 182. 

Sample 5-1.
Generating a 
50% duty-
cycle clock

module tb_top;
bit clk = 0;
always #5 clk = ~clk;
...
endmodule
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Any repetitive 
waveform is 
easy to generate.

Waveforms with deterministic edge-to-edge relationships with an
easily identifiable period also are easy to generate. It is a simple
process of generating each edge in sequence, at the appropriate
time. For example, Figure 5-3 outlines an apparently complex
waveform. However, Sample 5-2 shows that it is simple to gener-
ate.

Time Resolution Issues

Integer division 
may speed-up 
the clock.

When generating waveforms in SystemVerilog, you must select the
appropriate timescale and precision to properly place the edges at
the correct offset in time. When using an expression, such as
cycle/2, to compute delays, you must make sure that integer
operations do not truncate a fractional part. For example, the clock
generated in Sample 5-3 produces a period of 14 nanoseconds
because of truncation caused by the integer division.

The time-scale 
may affect the 
timing of edges.

If the precision of the currently active timescale is not sufficiently
high, delay values are rounded up or down. When this happens to
the delay values of clock signals, it shifts the relative position of the
clock edges. For example, the clock generated in Sample 5-4 pro-

Figure 5-3.
Apparently
complex
waveform

Sample 5-2.
Generating a 
deterministic
waveform

always
begin
   S = 1’b0; #20ns;
   S = 1’b1; #10ns;
   S = 1’b0; #10ns;
   S = 1’b1; #20ns;
   S = 1’b0; #50ns;
   S = 1’b1; #10ns;
   S = 1’b0; #20ns;
   S = 1’b1; #10ns;
   S = 1’b0; #20ns;
   S = 1’b1; #40ns;
   S = 1’b0; #20ns;
   ...
end

S
10 ns
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duces a period of 16 nanoseconds because of rounding the result of
the real division to an integer value. 

Because the timescale in Sample 5-5 offers the necessary precision
for a 7.5 nanoseconds half-period, only this model generates a 50
percent duty-cycle clock signal with a precise 15 nanoseconds
period.  

Sample 5-3.
Truncation 
errors in stim-
ulus genera-
tion

‘timescale 1ns/1ns
module testbench;
...
bit clk = 0;
parameter cycle = 15;
always
begin
   #(cycle/2);  // Integer division
   clk =~clk;
end
endmodule

Sample 5-4.
Rounding 
errors in stim-
ulus genera-
tion

‘timescale 1ns/1ns
module testbench;
...
bit clk = 0;
parameter cycle = 15;
always
begin
   #(cycle/2.0);   // Real division
   clk = ~clk;
end
endmodule

Sample 5-5.
Proper preci-
sion in stimu-
lus generation

‘timescale 1ns/100ps
module testbench;
...
bit clk = 0;
parameter cycle = 15;
always
begin
   #(cycle/2.0);
   clk = ~clk;
end
endmodule
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Aligning Signals in Delta-Time

Delta delays are 
functionally 
equivalent to 
real delays.

In the specification shown in Figure 5-4, the transition of clk2 is
aligned with a transition on clk. There are many ways of generating
these two signals. Depending on the approach used, these aligned
transitions may occur in the same delta cycle, or in different delta
cycles. Although delta-cycle delays are considered zero-delays by
the simulator, functionally they have the same effect as real delays. 

A derived waveform, such as the one shown in Figure 5-4, appar-
ently is easy to generate. A simple always block, sensitive to the
proper edge of the original signal as shown in Sample 5-6, and
voila! Even the waveform viewer shows that it is right!

Watch for delta 
delays in 
derived wave-
forms.

The problem is not visually apparent. Because of the simulation
cycle (See “The Simulation Cycle” on page 163.), there is a delta
cycle between the rising edge of the base clock signal and the tran-
sition on the derived clock signal, as shown in Figure 5-5. Any data
transferred from the base clock domain to the derived clock domain
goes through this additional delta cycle delay. In a zero-delay simu-
lation, such as a transaction-level or RTL model, this additional
delta-cycle delay can have the same effect as an entire clock cycle
delay. 

Figure 5-4.
Derived
waveform
specification

Sample 5-6.
Improperly 
generating a 
derived wave-
form

always @(posedge clk)
begin
   clk2 <= ~clk2;
end

clk
clk2

Figure 5-5.
Delta delay in 
derived
waveform

clk
clk2

∆
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Propagation 
delays make it 
work in the real 
world.

Why is it that generating divided clocks in simulation the same way
it is done in the real world does not work? Because, in synchronous
designs, there is always a race condition between the clk-to-D-input
path and the clk-to-clk2 path of adjacent flip-flops. This constant
race condition is solved by making sure that the delay through the
clk-to-D path is always longer than the delay through the clk-to-
clk2 path. In the real world, these signal propagation delays will
never be zero. Device physics and clock skew management pro-
vides a simple solution. In zero-time transaction-level or RTL mod-
els, propagation delays are composed of delta cycles. If the number
of delta cycles in the clk-to-D path is smaller than the number of
delta cycles in the clk-to-clk2 path, an entire clock cycle delay will
be lost.

Align derived 
signals in delta-
time.

The solution is surprisingly similar to that used in the real world. It
is necessary to minimize the delta-cycle skew between the base and
derived signals. This skew can be completely eliminated by align-
ing their respective edges in delta time. The only way to perform
this task is to re-derive the base signal through a divide-by-1 opera-
tion, as shown in Sample 5-7 and illustrated in Figure 5-6. The base
signal is never used by other threads. Instead, they must use the
divide-by-1 signal. 

Differential data 
signals need not 
be aligned.

When generating a differential data signal pair, it is not necessary to
align both polarities in the same delta cycle. Adding an inversion
delay in one of the phase signals only adds to the clock-to-D-input
path delay. This technique goes in the right direction to solve the
race condition. As shown in Sample 5-8, the inversion of the d sig-
nal in the connection to the dn pin may introduce an additional delta
cycle in the d-to-dn path compared to the d-to-dp path. 

Figure 5-6.
Generation of 
aligned 
derived signals

Sample 5-7.
Properly gen-
erating a 
derived wave-
form

always @(clk)
begin
   clk1 <= clk;
   if (clk == 1’b1) clk2 <= ~clk2;
end

clk
Generator

Base clk
div-by-1 clk

To design
div-by-N clk
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Clock Multipliers

Implemented 
using PLLs.

Many designs have a very high-speed front-end interface that is
driven using a multiple of a recovered clock or the lower-frequency
system clock. This clock multiplication is performed using an inter-
nal or external PLL (phase locked loop). PLLs are inherently ana-
log circuits. They are very costly to simulate in a digital simulator.
When an internal PLL is used, the analog component that imple-
ments the PLL is often modeled as an empty module. It is up to the
testbench to create an appropriate multiplied clock signal in a
behavioral fashion.

The reference 
clock could 
become the 
derived clock.

A simple strategy is to reverse the role of the reference and derived
clock. Since clock dividers are so easy to model, you could gener-
ate the high-frequency clock then use it to derive the lower-fre-
quency system-clock. Sample 5-9 shows a model for a multiply-by-
4 clock generator using the divide-by-4 strategy. But this only
works under two conditions: The reference clock is also an input to
the design, and the frequency of the reference clock is known and
fixed.

Synchronize the 
multiplied clock 
to the reference 
clock.

The first condition can be eliminated by synchronizing the multi-
plied clock signal with the reference clock. It will be possible to
generate the multiplied clock signal even if the reference clock is
supplied by the design. Sample 5-10 shows a model of a multiply-
by-4 clock generator, synchronized with an input reference clock.
But the problem of the hard-coded multiplied clock period remains.
This model assumes a reference clock with an 80 nanoseconds
period. What if the reference clock has a different frequency in a

Sample 5-8.
Generating
differential 
data signals

wire [15:0] d;

bfm cpu(..., .d(d), ...);
design dut (..., .dp(d), .dn(~d), ...);

Sample 5-9.
Generating
clock multi-
ples by divi-
sion

bit clk1 = 0;
bit clk4 = 0;
always
begin
   repeat (4) #10 clk4 <= ~clk4;
   clk1 <= ~clk1;
end
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different simulation run? How can we generalize this model into a
generic clock-multiplier PLL model?

Measure the 
period of the ref-
erence clock.

Why not let the model learn the period of the reference signal? You
can measure the time difference between two consecutive edges,
divide this value by 4, and voila! A generic PLL model. Sample 5-
11 shows a PLL model with a continuous measure of the reference
signal. As the frequency of the reference clock signal changes, the
frequency of the multiplied clock will adapt.  

Sample 5-10.
Synchroniz-
ing multiplied 
clock to input 
reference
clock

always @(clk)
begin
   clk4 <=       ~clk4;
   clk4 <= #10ns  clk4;
   clk4 <= #20ns ~clk4;
   clk4 <= #30ns  clk4;
end

Sample 5-11.
Adaptive
clock multi-
plier model

module pll(input  bit ref_clk,
           output bit out_clk);
parameter FACTOR = 4;

initial
begin
   real stamp;

out_clk = 1’b0;
   @(ref_clk);
   stamp = $realtime;

   forever begin
      real period;

      @(ref_clk);
      period = ($realtime - stamp)/FACTOR;
      stamp = $realtime;

      repeat (FACTOR-1) begin
         out_clk = ~out_clk;
         #(period);
      end
      out_clk = ~out_clk;
   end
end
endmodule
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Watch that time-
scale!

The usual words of caution (see “Time Resolution Issues” on
page 199) apply regarding the precision of the timescale. The com-
puted period of the multiplied signal is a real value that will likely
have a fractional part. The actual delay value between two consecu-
tive edges of the multiplied clock will be the computed value
rounded to the current timescale precision. If the size of this error is
small enough compared to the period of the reference signal, this
should not cause a problem.

Asynchronous Reference Signals
Figure 5-7 shows a specification for two unrelated clock signals.
They are used by two separate clock domains in the design under
verification. clk100 is a 100 MHz signal while clk33 is a 33 MHz
signal. You could be tempted to model these two clock signals as
shown in Sample 5-12, using the higher frequency signal as a refer-
ence to generate the lower-frequency one with a divide-by-3 strat-
egy. This approach will indeed generate the waveforms shown in
Figure 5-7. But that is only one of the possible solutions, and one
that may not highlight some classes of problems.  

Alignment on 
paper is not a 
specification.

The problem comes from the inference that the waveforms are
aligned simply because they are aligned in the figure. There are no
explicit or implicit timing relationships between the two signals as
there is no timing arrow going from an edge in one waveform to an
edge in the other waveform. Drawing tools have a grid system that
facilitates drawing straight lines. But they also have the side effect

Figure 5-7.
Unrelated 
waveform
specification

Sample 5-12.
Improperly 
generating
unrelated
waveform

always @(clk100)
begin
   int count = 0;

   count = count + 1;
   if (count == 3) begin
      clk33 <= ~clk33;
      count = 0;
   end
end

clk100

clk33
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of aligning objects. When writing a specification, you must be care-
ful that these implicit alignments do not create the illusion of a rela-
tionship. When reading a specification, do not assume a
relationship unless it is explicitly stated.

Generate unre-
lated signals in 
separate threads.

Sample 5-13 shows a better way to generate these unrelated clock
signals. Since they are not synchronized in any way, they are gener-
ated using separate concurrent threads. This separation will make it
easier to modify the frequency of one signal without affecting the
frequency of the other. Also, notice how each signal is explicitly
skewed at the beginning of the simulation to avoid having the edges
aligned at the same simulation time. This approach is a good prac-
tice to highlight potential problems in the clock-domain crossing
portion of the design. By varying these initial signal skew values, it
will be possible to verify the correct functionality of the design
across different asynchronous clock relationships.  

Random Generation of Reference Signal Parameters

All signals are 
related in simu-
lation.

In the previous section, I explained why unrelated signals should be
modeled as separate threads and skewed with respect to each other
to avoid creating an implicit relationship that does not exist
between them. The truth is: There is no way to accurately model
unrelated signals. Each waveform is described with respect to the
current simulation time. Because all waveforms are described using
the same built-in reference, they are all implicitly related. Even
though I made my best effort to avoid modeling any relationship
between the two clock signals generated in Sample 5-13, they are
related because of the deterministic nature of the simulator. Unless I
manually modify one of the timing parameters, they will maintain
the same relationship in all simulations.

Asynchronous 
means random.

When we say that two signals are asynchronous to each other, we
are saying that they have a random phase relationship. That phase
relationship will be different every time and cannot be predicted.
When I specified explicit skew delay values in Sample 5-13, I intro-

Sample 5-13.
Generating
unrelated
waveforms

bit clk100 = 0;
initial #2 forever #5 clk100 = ~clk100;

bit clk33 = 0;
initial #5 forever #15 clk33 = ~clk33;
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duced certainty where there wasn’t any. These delay values should
be generated randomly to increase the chances that, over the thou-
sands of simulation runs the design will be subjected to, any prob-
lem related to clock skews will be highlighted.

Avoid using 
$random.

One solution would be to call $random to generate the delay values,
as shown in Sample 5-14. But this strategy can only produce evenly
distributed delay values. It would not be possible to modify the dis-
tribution of delay values toward more interesting corner cases, or
constrain the delay values against each other to create interesting
conditions.

Use skew vari-
ables initialized 
with $random.

Instead, as shown in Sample 5-15, use skew variables initialized
using $random to determine the initial skew of each asynchronous
waveform. Although it appears that little has been gained compared
with Sample 5-14, this approach allows a testbench to modify or
constrain the skew values. Notice the #1 delay inserted before the
actual skew delay. This allows the testbench code, written in a pro-
gram thread, to run and potentially replace the skew values before
they are used. Sample 5-16 shows how a testbench can generate and
replace new skew values with constrained random values that are
deemed more interesting.        

Sample 5-14.
Generating
unrelated
waveforms
using random 
skew

bit clk100 = 0;
initial #({$random} % 10)
   forever #5 clk100 = ~clk100;

bit clk33 = 0;
initial #({$random} % 30)
   forever #15 clk33 = ~clk33;

Sample 5-15.
Generating
unrelated
waveforms
using skew 
variables

bit clk100 = 0;
int clk100_skew = {$random} % 10;
initial #1 #(clk100_skew)
   forever #5 clk100 = ~clk100;

bit clk33 = 0;
int clk33_skew = {$random} % 30;
initial #1 #(clk33_skew)
   forever #15 clk33 = ~clk33;
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Applying Reset

Synchronized 
signals must be 
properly mod-
eled.

The first signal to be generated after the clock signals is the hard-
ware reset signal. The reset signal must be shaped properly to reset
the design correctly. The generation of a synchronous reset signal
should also reflect its synchronization with any clock signal. For
example, consider the specification for a reset signal shown in
Figure 5-8. The code in Sample 5-17 shows how such a waveform
is generated frequently.

Race conditions 
can be created 
easily between 
synchronized 
signals.

There are two problems with the way these two waveforms are gen-
erated in Sample 5-17. The first problem is functional: There is a
race condition between the clk and rst signals. At simulation time
150, and again later at simulation time 350, both variables are
assigned at the same timestep. Because the blocking assignment is
used for both assignments, one of them is assigned first. A block
sensitive to the falling edge of clk may execute before or after rst is
assigned. From the perspective of that block, the specification

Sample 5-16.
Randomly
generating
new skew val-
ues

program test;
initial
begin
   std::randomize(tb_top.clk100_skew,
                  tb_top.clk33_skew) with {
      tb_top.clk100_skew == tb_top.clk33_skew;
   };
   ...
end
endprogram

Figure 5-8.
Reset
waveform
specification

Sample 5-17.
Improperly 
generating a 
synchronous
reset

bit clk = 0;
always #50 clk = ~clk;

bit rst = 0;
initial
begin
   #150 rst = 1’b1;
   #200 rst = 1’b0;
end

clk
rst

100 ns
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shown in Figure 5-8 could appear to be violated. The race condition
can be eliminated by using nonblocking assignments, as shown in
Sample 5-18. Both clk and rst signals are assigned between
timesteps when no blocks are executing. If the design under verifi-
cation uses the falling edge of clk as the active edge, rst is
already—and reliably—assigned.

Lack of main-
tainability can 
introduce func-
tional errors.

The second problem, which is just as serious as the first one, is
maintainability of the description. You could argue that the first
problem is more serious, since it is functional. The entire simula-
tion can produce the wrong result under certain conditions. Main-
tainability has no such functional impact. Or has it? What if you
made a change as simple as changing the phase or frequency of the
clock. How would you know to change the generation of the reset
signal to match the new clock waveform?

Conditions in 
real life are dif-
ferent than those 
in this book.

In the context of Sample 5-18, with Figure 5-8 nearby, you would
probably adjust the generation of the rst signal. But outside of this
book, in the real world, these two blocks could be separated by hun-
dreds of lines, or even be in different files. The specification is usu-
ally a document three centimeters thick, printed on both sides. The
timing diagram shown in Figure 5-8 could be buried in an anony-
mous appendix, while the pressing requirements of changing the
clock frequency or phase was stated urgently in an email message.
And you were busy debugging this other testbench when you
received that pesky email message! Would you know to change the
generation of the reset signal as well? I know I would not.

Model the syn-
chronization 
within the gen-
eration.

Waiting for an apparently arbitrary delay cannot guarantee synchro-
nization with respect to the delay of the clock generation. A much
better way of modeling synchronized waveforms is to include the
synchronization in the generation of the dependent signals, as
shown in Sample 5-19. The proper way to synchronize the rst sig-

Sample 5-18.
Race-free gen-
eration of a 
synchronous
reset

bit clk = 0;
always #50 clk <= ~clk;

bit rst = 0;
initial
begin
   #150 rst <= 1’b1;
   #200 rst <= 1’b0;
end
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nal with the clk signal is for the generator to wait for the significant
synchronizing event, whenever it may occur. The timing or phase
of the clock generator can be modified now, without affecting the
proper generation of the rst waveform. From the perspective of a
design sensitive to the falling edge of clk, rst is reliably assigned
one delta-cycle after the clock edge.

Reset may need 
to be applied 
repeatedly dur-
ing a simulation.

There is a problem with the way the rst waveform is generated in
Sample 5-19. The initial block runs only once and is eliminated
from the simulation once completed. There is no way to have it exe-
cute again during a simulation. What if it were necessary to reset
the device under verification multiple times during the same simu-
lation? An example is the “hardware reset” testcase that verifies
proper reset operation: After setting some internal registers, the
hardware reset must be applied to verify that these registers return
to their reset value. The ability to control reset application is also
very useful. This control lets testbenches perform preparatory oper-
ations before resetting the design and starting the actual stimulus.

Generate reset 
from within a 
module task.

The proper mechanism to encapsulate statements that you may
need to repeat during a simulation is to use a task as shown in Sam-
ple 5-20. To repeat the reset signaling, simply call the task. To
maintain the behavior of using an initial block to reset the device
under verification automatically at the beginning of the simulation
(which may or may not be desirable), simply call the task in an ini-
tial block.

Reset task 
should be in pro-
gram.

It will be possible to invoke the reset task in the module from the
testbench program threads. The testbench will thus be able to reset
the design any time the reset is required. An alternative would be to
put the reset task in a program task, as shown in Sample 5-21.

Sample 5-19.
Proper genera-
tion of a syn-
chronous reset

bit clk = 0;
always #50 clk = ~clk;

bit rst = 0;
initial
begin
   @ (negedge clk);
   rst <= 1’b1;
   @ (negedge clk);
   @ (negedge clk);
   rst <= 1’b0;
end



Reference Signals

Writing Testbenches using SystemVerilog 211

Because modules cannot call program tasks, it will be necessary for
each testbench to call the reset program task to reset the DUT.
However, this gives the testbench better control over the reset
parameters and its coordination with other device stimuli, not just
the clock. The section titled “Simulation Control” starting on page
124 of the Verification Methodology Manual for SystemVerilog
defines a simulation sequence methodology that includes a pre-
defined step for applying hardware reset to the design under verifi-
cation. 

Sample 5-20.
Encapsulating 
the generation 
of a synchro-
nous reset

module tb_top;

bit clk = 0;
bit rst = 0;
always #50 clk = ~clk;
...
task hw_reset
   rst = 1’b0;
   @ (negedge clk);
   rst <= 1’b1;
   @ (negedge clk);
   @ (negedge clk);
   rst <= 1’b0;
endtask: hw_reset
initial hw_reset;
...
endmodule

Sample 5-21.
Synchronous 
reset program 
task.

program test;

task hw_reset
   tb_top.rst <= 1’b0;
   @ (negedge tb_top.clk);
   tb_top.rst <= 1’b1;
   @ (negedge tb_top.clk);
   @ (negedge tb_top.clk);
   tb_top.rst <= 1’b0;
endtask: hw_reset

initial
begin
   hw_reset;
   ...
end
endprogram
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Are you paying 
attention?

Pop quiz: What is missing from the hw_reset task in Sample 5-20
and Sample 5-21? The answer can be found in this footnote.1

SIMPLE STIMULUS 

In this section, I explain how to generate deterministic waveforms.
Various techniques are developed to generate stimulus signals in
the best way. I also demonstrate how to encapsulate and package
signal generation operations using simple bus-functional models.

Applying Synchronous Data Values

There is a race 
condition
between the 
clock and data 
signal.

Sample 5-22 shows how you could generate a zero-delay synchro-
nous data waveform. This approach is identical to the way flip-
flops are inferred in an RTL model. As illustrated in Figure 5-9,
there is a delay between the edge on the clock and the transition on
data, but the delay is a single delta cycle. In terms of simulation
time, there is no delay. For RTL models, this infinitesimal clock-to-
Q delay is sufficient to model the behavior of synchronous circuits
properly. However, this delay assumes that all clock edges are
aligned in delta time (see “Aligning Signals in Delta-Time” on
page 201). If you are generating both clock and data signals from
the outside of the model of the design under verification, you have
no way of ensuring that the total number of delta-cycle delays
between the clock and the data is maintained and that the data sig-
nal will arrive before the clock.  

1. The task hw_reset contains delay control statements. The task should 
contain a semaphore to detect concurrent activation. You can read more 
about this issue in “Non-Re-Entrant Tasks” on page 188.

Sample 5-22.
Zero-delay
generation of 
synchronous
data

initial
begin
   @ (negedge tb_top.clk);
   tb_top.data <= ...;
   @ (negedge tb_top.clk);
   tb_top.data <= ...;
   ...
end;
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The clock may 
be delayed more 
than the data.

For many possible reasons, the clock signal may be delayed by
more delta cycles than its corresponding data signal. These delays
could be introduced by using different I/O pad models for the clock
and data pins. They could also be introduced by the clock distribu-
tion network, which does not exist on the data signal. If the clock
signal is delayed more than the data signal, even in zero-time as
shown in Figure 5-10, the effect is the same as removing an entire
clock cycle from the data path.

Delay the data 
from the active 
clock edge.

Interface specifications never specify zero-delay values. A physical
interface always has a real delay between the active edge of a clock
signal and its synchronous data. When generating synchronous
data, always provide a real delay between the active edge and the
transition on the data signal, as shown in Sample 5-23, or synchro-
nize the data signal with the inactive edge of the clock.

Use a clocking
block.

Properly generating synchronous data requires that values gener-
ated for each cycle from different statements follow the exact same
proper approach. Should the timing requirements or synchroniza-
tion of the synchronous signal be modified, all statements driving
that signal must be consistently updated. Using a clocking block
decouples synchronization specification from functional specifica-

Figure 5-9.
Synchronous 
data
waveforms

clk
data

∆

Figure 5-10.
Delta delays in 
clock path

Sample 5-23.
Non-zero-
delay genera-
tion of syn-
chronous data

initial
begin
   @ (negedge tb_top.clk);
   tb_top.data <= #1 ...;
   @ (negedge tb_top.clk);
   tb_top.data <= #1 ...;
   ...
end

clk

data
∆

clk + 4∆
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tion. The clocking block defines the active clock edge and the hold
time of the synchronous signal. The code generating the stimulus
only needs to worry about the consecutive values of the signal, as
shown in Sample 5-24. 

Abstracting Waveform Generation

Input vectors are 
difficult to write 
and maintain.

Using synchronous test values, also known as test vectors, to verify
a design is rather cumbersome. They are hard to interpret and diffi-
cult to specify correctly. For example, using cycle-by-cycle values
to verify a synchronously resetable D flip-flop with a 2-to-1 multi-
plexer on the input, as shown in Figure 5-11, could be stimulated
using the vectors shown in Sample 5-25.

Use tasks to 
encapsulate 
operations.

It would be easier if the operation accomplished by the test vectors
were abstracted. The device under verification can perform only
one of three things: 

• A synchronous reset,
• Load from input d0, or
• Load from input d1

Sample 5-24.
Using a clock-
ing block to 
drive synchro-
nous values.

clocking cb @ (negedge tb_top.clk);
   output #1 data = tb_top.data;
endclocking: cb

initial
begin
   @(cb);
   cb.data <= ...;
   @(cb);
   cb.data <= ...;
   ...
end

Figure 5-11.
2-to-1 input 
sync reset D 
flip-flop

clk

rst

d0
d1
sel
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Instead of providing test vectors to perform these operations repeat-
edly, why not provide subprograms that perform these operations?
All that will be left is to call the subprograms in the appropriate
order with the appropriate data.

Try to apply the 
worst possible 
combination of 
inputs.

The task to perform the synchronous reset is very simple. It needs
to assert the rst input, then wait for the active edge of the clock. But
what about the other inputs? You could decide to leave them
unchanged, but is that the worst possible case? What if the reset
was not functional and the device loaded one of the inputs and that
input was set to 0? It would be impossible to differentiate the wrong
behavior from the correct one. To create the worst possible condi-
tion, both d0 and d1 inputs must be set to 1. The sel input can be set
randomly, since either input selection should be functionally identi-
cal. An implementation of the reset procedure is shown in Sample
5-26.

Sample 5-25.
Test vectors 
for 2-to-1 
input sync 
reset D flip-
flop

clocking cb @ (negedge tb_top.clk);
   output #1 data = {tb_top.rst,
                     tb_top.d0,
                     tb_top.d1,
                     tb_top.sel};
endclocking: cb

initial
begin
   // Input
   @(cb); cb.data <= 4’b1110;
   @(cb); cb.data <= 4’b0100;
   @(cb); cb.data <= 4’b1111;
   @(cb); cb.data <= 4’b0011;
   @(cb); cb.data <= 4’b0010;
   @(cb); cb.data <= 4’b0011;
   @(cb); cb.data <= 4’b1111;
   ...
end

Sample 5-26.
Abstracting
the synchro-
nous reset 
operation

task sync_reset;
begin
   cb.rst <= 1’b1;
   cb.d0  <= 1’b1;
   cb.d1  <= 1’b1;
   cb.sel <= $random;
   @(cb);
endtask: sync_reset
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Pass input val-
ues as argu-
ments to the 
subprogram.

The other operations this design can perform is to load input d0 or
d1. The task to perform the “load d0” operation is shown in Sample
5-27. Unlike resetting the design, loading data can have different
input values: It can load either a one or a zero. The value of the
input to load is passed as an argument to the task. The worst condi-
tion is created when the other input is set to the complement of the
input value. If the device is not functioning properly and is loading
from the wrong input, then the result will be clearly wrong.

Stimulus gener-
ated with 
abstracted oper-
ations is easier 
to write and 
maintain.

Once operation abstractions are available, providing the proper
stimulus to the design under verification is easy to write and under-
stand. Compare the code in Sample 5-28 with the code of Sample 5-
25. If the polarity of the rst input were changed, which verification
approach would be easiest to understand and modify?     

SIMPLE OUTPUT

Generating stimulus is only half of the job. Actually, it is more like
25 percent of the job. The other parts, verifying that the output is as
expected and collecting functional coverage measurements, is
much more time consuming and error prone. There are various
ways the output can be checked against expectations. The outputs
have varying degrees of applicability and repeatability. In this sec-

Sample 5-27.
Abstracting
the load opera-
tion

task load_d0(input bit data);
   cb.rst <= 1’b0;
   cb.sel <= 1’b0;
   cb.d0  <=  data;
   cb.d1  <= ~data;
   @ (cb);
endtask: load_d0

Sample 5-28.
Verifying the 
design using 
operation 
abstractions

initial
begin
   sync_reset;
   load_d0(1);
   sync_reset;
   load_d1(1);
   load_d0(0);
   load_d1(1);
   sync_reset;
   ...
end
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tion, I will review techniques, some good, some not so good, for
verifying simple responses.

Visual Inspection of Response

Results can be 
printed.

The most obvious method for verifying the output of a simulation is
to inspect the results visually. The visual display can be an ASCII
printout of the input and output values at specific points in time, as
shown in Sample 5-29. 

Producing Simulation Results

To print simula-
tion results, you 
must model the 
signal sampling.

The specific points in time that are significant for a particular
design or testbench are always different. Which signals are signifi-
cant is also different and may change as the simulation progresses.
If you know which time points and signals are significant for deter-
mining the correctness of the simulation results, you have to be able
to model that knowledge. Producing the proper simulation results
involves modeling the behavior of the signal sampling.

Many sampling 
techniques can 
be used.

There are many sampling techniques, each as valid as the other. The
correct sampling technique depends on your needs and on what
makes the simulation results significant. Just as you have to decide
which input sequence is relevant for the functionality you are trying
to verify, you must also decide on the output sampling that is rele-

Sample 5-29.
ASCII view of 
simulation 
results

     r  s
     sddeqq
Time t01l b
-----------
0100 1110xx
0105 111001
0200 010001
0205 010010
0300 111110
0305 111101
0400 001101
0405 001110
0500 001010
0505 001010
0600 001110
0605 001110
0700 111110
0705 111101
...
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vant for determining the success or failure of the function under
verification.

You can sample 
at regular inter-
vals.

The simplest sampling technique is to sample the relevant signals at
a regular interval. The interval can be an absolute delay value, as
illustrated in Sample 5-30, or the interval can be a reference signal
such as the clock, as illustrated in Sample 5-31. Note how the
$strobe statement is used instead of $write or $display. This ensures
that the displayed values are the final, stable values for the current
simulation cycle and not some intermediate transient value.. 

You can sample 
based on a sig-
nal changing 
value.

Another popular sampling technique is to sample a set of signals
whenever one of them changes. This technique is used to reduce the
amount of data produced during a simulation when signals do not
change at a constant interval. 

To sample a set of signals, simply make an always block sensitive
to the signals whose changes are significant, as shown in Sample 5-
32. The set of signals displayed and monitored can be different.
SystemVerilog has a built-in task, called $monitor, to perform this
sampling when the set of displayed and monitored signals are iden-
tical. 

An example of using the $monitor task is shown in Sample 5-33.
The behavior of the $monitor statement in Sample 5-33 is different
than the always block in Sample 5-32: the former will display on
any change of the rst, d0, d1, sel, q or qb signals, whereas the latter
will only display on changes of the q or qb signals. Note that simu-

Sample 5-30.
Sampling at a 
delay interval

parameter INTERVAL = 10;
always
begin
   #(INTERVAL);
   $strobe(...);
end

Sample 5-31.
Sampling 
based on a ref-
erence signal

always @(negedge clk)
begin
   $strobe(...)
end
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lations are limited to a single active $monitor task. Any subsequent
call to $monitor replaces the previous monitor. 

Minimizing Sampling

To improve sim-
ulation perfor-
mance, 
minimize sam-
pling.

The use of an output device on a computer slows down the execu-
tion of any program. Therefore, recording simulation output
reduces the performance of the simulation. To maximize the speed
of a simulation, minimize the amount of simulation output pro-
duced during its execution. 

An active $monitor task can be turned on and off by using the
$monitoron and $monitoroff tasks, respectively. If you are using an
explicit sampling always block, you should include sampling mini-
mization techniques in your model, as illustrated in Sample 5-34. A
very efficient way of minimizing sampling is to have the stimulus
turn on the sampling when an interesting section of the testcase is
entered, as shown in Sample 5-35. 

Sample 5-32.
Sampling 
based on sig-
nal changes

always @(q, qb)
begin
   $strobe("...", rst, d0, d1, sel, q, qb);
end

Sample 5-33.
Sampling 
using the 
$monitor task

initial
begin
   $monitor("...", rst, d0, d1, sel, q, qb);
end

Sample 5-34.
Minimizing
sampling

always
begin

wait (<interesting_condition>);
while (<interesting_condition>) begin

      @ (q, qb;)
      $strobe(“...”, rst, d0, d1, sel, q, qb);
   end
end
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Visual Inspection of Waveforms

Results are bet-
ter viewed when 
plotted over 
time.

Waveform displays usually provide a more intuitive visual repre-
sentation of simulation results. Figure 5-12 shows the same infor-
mation as Sample 5-29, but using a waveform view. The waveform
view has the advantage of providing a continuous display of many
values over the entire simulation time, not just at specific time
points as in a text view. Therefore, you need not specify or model a
particular sampling technique. The signals are continuously sam-
pled, usually into an efficient database format. Sampling for wave-
forms must be turned on explicitly. It is a tool-dependent1 process
that is different for each tool.

Sample 5-35.
Controlling 
the sampling 
from the stim-
ulus

initial
begin
   $monitor("...", rst, d0, d1, sel, q, qb);

$monitoroff;
   sync_reset;
   load_d0(1);
   sync_reset;

$monitoron;
   load_d1(1);
   load_d0(0);
   load_d1(1);
   sync_reset;

$monitoroff;
   ...
end

1. SystemVerilog has a standard waveform database called the VCD file. 
Although all waveform viewers can display simulation results from a 
VCD file, all of the more advanced viewers use their own proprietary 
database to store additional signal information.

Figure 5-12.
Waveform 
view of 
simulation 
results

clk
rst
d0
d1
sel

q
qb
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Minimize the 
number and 
duration of sam-
pled signals.

The default behavior is to sample all signals during the entire simu-
lation. The waveform sampling process consumes a significant por-
tion of the simulation resources. Reducing the number of signals
sampled, or reducing the duration of the sampling, increases the
simulation performance. However, it is a trade-off with running a
simulation multiple times to obtain traces of signals that were found
to be necessary for diagnosing the cause of a functional error in a
previous iteration. During a typical verification process, all signals
should be sampled at the beginning, when the number of bugs is
significant and their location is unknown. As the code stabilizes and
simulations move to greater levels of integration, less and less sig-
nals are sampled. During regression runs, no signals are sampled.
The rule of thumb is: If you expect the simulation to fail, sample a
lot of signals; if you expect it to pass, don’t sample any.  

Self-Checking Testbenches

Visual inspec-
tion is not 
acceptable.

The model of the D flip-flop with a 2-to-1 input mux being verified
has a functional error. Can you identify it using either views of the
simulation results in Sample 5-29 or Figure 5-12? How long did it
take to diagnose the problem?1

Code the 
response with 
the stimulus.

This example was for a very simple design, over a very short period
of time, and for a very small number of signals (and you knew there
was a bug). Imagine visually inspecting simulation results spanning
hundreds of thousands of clock cycles, and involving hundreds of
input and output signals. Then imagine repeating this visual inspec-
tion for every testbench and for every simulation of every test-
bench. The probability that you will miss identifying an error is
equal to one hundred percent. You must automate the process of
comparing the simulation results against the expected outputs.

Input and Output Vectors

Specify the 
expected output 
values for each 
clock cycle.

The first step in automating output verification is to include the
expected output with the input stimulus for every clock cycle. The
vector application task in Sample 5-24 can be easily modified to
include the comparison of the output signals with the specified out-

1. The logic value on input d0 is ignored and a 1 is always loaded.
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put vector, as shown in Sample 5-36. The testcase becomes a series
of input/output test vectors, as shown in Sample 5-37. 

Test vectors 
require synchro-
nous interfaces.

The main problem with input and output test vectors (other than the
fact that they are very difficult to specify, maintain and debug), is
that they require perfectly synchronous interfaces. If the design
under verification contains interfaces in different clock domains,
each interface requires its own test vector stream. If any interface
contains asynchronous signals, the signals have to be either exter-
nally synchronized before vectors are applied, or treated as syn-
chronous signals, therefore under-constraining the verification.

Golden Vectors

A set of refer-
ence simulation 
results can be 
used.

The next step toward automation of response verification is the use
of golden vectors. It is a simple extension of the manufacturing test
process where devices are physically subjected to a series of quali-
fying test vectors. A set of reference output results, determined to
be correct, are kept in a file or database. The simulation outputs are

Sample 5-36.
Application of 
input and veri-
fication of out-
put data vec-
tors

task apply_vector(input [...] in_data,
                  input [...] out_data);
   cb.in_data <= in_data;
   @(cb);
   fork
      begin
         @(cb)
         if (cb.out_data !== out_data) ...;
      end
   join_none
endtask: apply_vector

Sample 5-37.
Input/output
test vectors for 
2-to-1 input 
sync reset D 
flip-flop

initial
begin
   // In: rst, d0, d1, sel
   // Out: q, qb
   apply_vector(4’b1110, 2’b00);
   apply_vector(4’b0100, 2’b10);
   apply_vector(4’b1111, 2’b00);
   apply_vector(4’b0011, 2’b10);
   apply_vector(4’b0010, 2’b01);
   apply_vector(4’b0011, 2’b10);
   apply_vector(4’b1111, 2’b00);
   ...
end
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captured in a similar format during a simulation. They are then
compared against the reference results. Golden vectors have an
advantage over input/output vectors because the expected output
values need not be specified in advance.

Text files can be 
compared using 
diff.

If the simulation results are kept in ASCII files, the simplest com-
parison process involves using the UNIX diff utility. The diff output
for the simulation results shown in Sample 5-29 is shown in Sample
5-38. You can appreciate how difficult the subsequent task of diag-
nosing the functional error will be.

Waveforms can 
be compared by 
a specialized 
tool.

Waveform comparators can be used also. They are tools similar to
waveform viewers and are usually built into one. Waveform com-
parators compare two sets of waveforms then highlight the differ-
ences on a graphical display. The display of a waveform
comparator might look something like the results illustrated in
Figure 5-13. Identifying the problem is easier since you have access
to the entire history of the simulation in a single view.

Sample 5-38.
diff output of 
comparing
ASCII view of 
simulation 
results

14c2
>0505 001010
>0600 001110
--------
<0505 001001
<0600 001110
...

Figure 5-13.
Waveform 
differences in 
simulation 
results

clk
rst
d0
d1
sel

q

qb
q(gold)

qb(gold)
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Golden vectors 
must still be 
inspected visu-
ally.

The main problem with golden simulation results is that they need
to be inspected visually to be determined as “golden”. This self-
checking technique only reduces the number of times a set of simu-
lation responses must be verified visually, not the need for visual
inspection. The result from each testbench must still be manually
confirmed as good.

Golden vectors 
do not adapt to 
changes.

Another problem: Reference simulation results do not adapt to
modifications in the design under verification that may only affect
the timing of the result, without affecting its functional correctness.
For example, an extra register may be added in the datapath of a
design to help meet timing constraints. All that was added was a
pipeline delay. The functionality was not modified. Only the
latency was increased. If that latency is irrelevant to the functional
correctness of the overall system, the reference vectors must be
updated to reflect that change.

Golden vectors 
require a signifi-
cant mainte-
nance effort.

Reference simulation results must be inspected visually for every
testcase, and modified or regenerated whenever a change is made to
the design, each time requiring visual inspection. Using reference
vectors is a high-maintenance, low-efficiency self-checking strat-
egy. Verification vectors should be used only when a design must be
100 percent backward compatible with an existing device, signal
for signal, clock cycle for clock cycle. In those circumstances, the
reference vectors never change and never require visual inspection
as they are golden by definition.

Separate the ref-
erence vectors 
along clock 
domains.

Reference simulation results also work best with synchronous inter-
faces. If you have multiple interfaces in separate clock domains, it
is necessary to generate reference results for each domain in a sepa-
rate file. If a single file is used, the asynchronous relationship
between the clock domains may result in the samples from different
domains being written in a different order. The ordering difference
is not functionally relevant, but would be flagged as an error by the
comparison tool.

Self-Checking Operations
For simple operations on simple devices, it may be possible to ver-
ify the response on an operation-by-operation basis. For example,
the task shown in Sample 5-26 can include the verification that the
flip-flop was reset properly as shown in Sample 5-39. Similarly, the
task used to apply the stimulus to load data from d0 shown in Sam-
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ple 5-27 can be modified to include the verification of the output, as
shown in Sample 5-40. The testcase shown in Sample 5-28 now
becomes entirely self-checking. 

Make sure the 
output is veri-
fied properly.

The problem with output verification is that you can’t identify a
functional discrepancy if you are not looking at it. Using an if state-
ment to verify the output in the middle of a stimulus thread only
looks at the output value for a brief instant. That may be acceptable,
but this technique does not say anything about the stability of that
output. For example, the tasks in Sample 5-39 and Sample 5-40
only check the value of the output at a single point in time.

Sample 5-39.
Verifying the 
sync reset 
operation

task sync_reset;
begin
   cb.rst <= 1’b1;
   cb.d0  <= 1’b1;
   cb.d1  <= 1’b1;
   cb.sel <= $random;
   @(cb);
   fork
      begin
         @(cb);
         if (cb.q  !== 1’b0 ||
             cb.qb !== 1’b1) ...
      end
   join_none
endtask: sync_reset

Sample 5-40.
Verifying the 
load operation

task load_d0(input data);
   cb.rst <= 1’b0;
   cb.sel <= 1’b0;
   cb.d0  <=  data;
   cb.d1  <= ~data;
   @ (cb);
   fork
      begin
         @(cb);
         if (cb.q  !== data ||
             cb.qb !== ~data) ...
      end
   join_none
endtask: load_d0
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Figure 5-14 shows the complete specification for the flip-flop. The
verification sampling point is shown as well.

Make sure you 
verify the out-
put over the 
entire significant 
time period.

To verify the functionality of the design properly and completely, it
is necessary to verify that the output is stable, except for the short
period after the rising edge of the clock. That could be verified eas-
ily using a static timing analysis tool and a set of suitable con-
straints to verify against. If you want to perform the verification as
part of a functional simulation, the stability of the output cannot be
verified from the same task that applies the input. Stability is a
property that must be checked at all times, not just after applying
new stimulus. Therefore, a concurrent stability check thread must
exist, independent of the stimulus thread, to be ready to react to any
unexpected changes, as shown in Sample 5-41. The stimulus task
still checks the correctness of the output value. The stability moni-
tor simply verifies that the output remains stable, whatever its
value.

Low-level 
checks may 
have to be 
located in the 
design.

Notice how the stability check in Sample 5-41 is located in the flip-
flop design module itself, not the testbench program. The prefer-
ence in the simulation cycle for module threads over program
threads would filter out any transient output value made from a
module thread. These transient values may not be visible to the pro-
gram threads if they eventually resolve to the same initial value.
The check could have been implemented in a separate module,
using cross-module (white-box) references to observe the appropri-
ate signals within the design module, but it would have required
one such module for every instance of the design module. Locating
the check inside the design module simplifies overall maintenance
and it can be surrounded by appropriate directives to eliminate it
from synthesis. 

A property
could not have 
been asserted.

Properties are cycle-based sequences of boolean expressions. The
stability check requires an asynchronous, self-timed expression.
Note that the stability check initial block is an assertion. An asser-

Figure 5-14.
Timing 
specification
for the flip-
flop

clk

inputs

q/qb

TholdTsetup
Td

Verify
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tion is simply a check for a property to be true. It does not need to
make use of the property construct. Some assertions are better
implemented using behavioral code.

 COMPLEX STIMULUS

This section introduces more complex stimulus generation scenar-
ios through the use of bus-functional models. I start with reactive
stimulus, where the stimulus or its timing depends on answers from
the device under verification. I also show how to avoid wasting pre-
cious simulation cycles by getting caught in deadlock conditions.

Generating 
inputs may 
require cooper-
ating with the 
design.

Applying stimulus to a clock or reset input or applying cycle-by-
cycle test vectors is straightforward. You are under complete con-
trol of the timing of the input signal. However, if the interface being
driven contains handshaking or flow-control signals, the generation
of the stimulus requires cooperation with the design under verifica-
tion.

Sample 5-41.
Verifying the 
stability of 
flip-flop out-
puts

module muxff(...);
...
‘ifndef SYNTHESIS
initial
begin
   // wait for the first clock edge
   @ (posedge clk);
   forever begin
      // Ignore changes for Td after clock edge
      #(Td);
      // Watch for a change before the next clk
      fork: stability_mon
         @ (q or qb) $write("...");
         @ (posedge clk);
      join_any
      disable stability_mon;
   end
end
‘endif
endmodule
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Feedback Between Stimulus and Design

Without feed-
back, verifica-
tion can be 
under-con-
strained.

Figure 5-15 shows the specification for a simple bus arbiter. If you
were to verify the design of the arbiter using test vectors applied at
every clock cycle, as described in “Input and Output Vectors” on
page 221, you would have to assume a specific delay between the
assertion of the req signal and the assertion of the grt signal. Any
delay value between one and five clock cycles would be function-
ally correct, but the only reliable choice is a delay of five cycles.
Similarly, a delay of three clock cycles would have to be made for
the release portion of the verification. These choices, however,
severely under-constrain the verification. If you want to stress the
arbiter by issuing requests as fast as possible, you would want to
know when the request was granted and released, so it could be
reapplied as quickly as possible.

Stimulus gener-
ation can wait 
for feedback 
before proceed-
ing.

If, instead of using input and output test vectors, you are using
encapsulated operations to verify the design, you can modify the
operation to wait for feedback from the design under verification
before proceeding. You should also include any timing and func-
tional verification in the feedback monitoring to ensure that the
design responds in an appropriate manner. Sample 5-42 shows the
bus_request operation task. The task samples the grt signal at every
clock cycle, and immediately returns once it detects that the bus
was granted. With a similarly implemented bus_release task, a
testcase that stresses the arbiter under maximum load can be written
easily, as shown in Sample 5-43. 

Recovering from Deadlocks

A deadlock may 
prevent the 
testcase from 
running to com-
pletion.

There is a risk inherent to using feedback in generating stimulus:
The stimulus now depends on the proper operation of the design
under verification to complete. If the design does not provide the
feedback as expected, the stimulus generation may be halted, wait-
ing for a condition that will never occur. For example, consider the
bus_request task in Sample 5-42. What happens if the grt signal is

Figure 5-15.
Specification
for a simple 
arbiter

clk
req

grt
1≤Td≤5 cycles 2≤Tr≤3 c.



Complex Stimulus

Writing Testbenches using SystemVerilog 229

never asserted? The task remains stuck in the while loop and never
returns.

A deadlocked 
simulation
appears to be 
running cor-
rectly.

If this were to occur, the simulation would still be running, merrily
going around and around the while loop. The simulation time would
advance at each tick of the clock. The CPU usage of your worksta-
tion would show near 100 percent usage. The only symptom that
something is wrong would be that no messages are produced on the
simulation’s output log and the simulation runs for much longer
than usual. If you are watching the simulation run and expect regu-
lar messages to be produced during its execution, you would
quickly recognize that something is wrong and manually interrupt
it.

Sample 5-42.
Verifying the 
bus request 
operation

program test;

clocking cb @(posedge tb_top.clk);
   output req = tb_top.req;
   input  grt = tb_top.grt;
endclocking: cb

task bus_request;
   automatic int cycle_count = 0;
   cb.req <= 1’b1;
   while (cb.grt != 1’b1) begin
      @(cb);
      cycle_count++;
   end
   assert 1 <= cycle_count && cycle_count <= 5;
end: bus_request
...
endprogram: test

Sample 5-43.
Stressing the 
bus arbiter

program test;
...
initial
begin
   repeat (10) begin
      bus_request;
      bus_release;
   end
end
endprogram: test
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A deadlocked 
simulation
wastes regres-
sion runs.

But what if there is no one watching the simulation, such as during
a regression run? Regressions are large scale simulation runs where
all available testcases are executed. They are used to verify that the
functionality of the design under verification is still correct after
modifications. Because of the large number of testcases involved in
a regression, the process is automated to run unattended, usually
overnight and on many computers. If a design modification creates
a deadlock situation, all testcases scheduled to execute subse-
quently will never run, as the deadlocked testcase never terminates.
The opportunity of detecting other problems in the regression run is
wasted. It will be necessary to wait for another 24-hour period
before knowing if the new version of the design meets its functional
specification.

Eliminate the 
possibility of 
deadlock condi-
tions.

When generating stimulus, you must make sure that there is no pos-
sibility of a deadlock condition. You must assume that the feedback
condition you are waiting for may never occur. If the feedback con-
dition fails to happen, you must then take appropriate action. It
could include terminating the testcase, or jumping to the next por-
tion of the testcase that does not depend on the current operation, or
retrying the operation after some delay. Sample 5-42 was modified
as shown in Sample 5-44 to use an assertion to avoid the deadlock
condition created if the arbiter failed and the grt signal was never
asserted. 

Sample 5-44.
Avoiding 
deadlock in 
the bus request 
operation

program test;

clocking cb @(posedge tb_top.clk);
   output req = tb_top.req;
   input  grt = tb_top.grt;
endclocking: cb

property grt_within_5;
   $rose(tb_top.req)
      |-> ##[1:5] $rose(tb_top.ack);
endproperty
assert grt_within_5 @(posedge tb_top.clk);

task bus_request;
   cb.req <= 1’b1;
   while (cb.grt != 1’b1) @(cb);
end: bus_request
...
endprogram: test
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Operation tasks 
could return sta-
tus.

If a failure of the feedback condition is detected, terminating the
simulation on the spot, as shown in Sample 5-44, is easy to imple-
ment. If you want more flexibility in handling a non-fatal error, you
might want to let the testcase handle the error recovery, instead of
handling it inside the operation task. The task must provide an indi-
cation of the status of the operation’s completion back to the
testcase. Sample 5-45 shows the bus_request task that includes an
OK status flag indicating whether the bus was granted. The testcase
is then free to retry the bus request operation until it succeeds, as
shown in Sample 5-46. Notice how the testcase takes care of avoid-
ing its own deadlock condition if the bus request operation never
succeeds.

Asynchronous Interfaces

Test vectors 
under-constrain 
asynchronous 
interfaces.

Creating synchronous input data and verifying synchronous output
values is simple. The inputs are all applied at the same time. The
outputs are all verified at the same time. And this process is
repeated at regular intervals. In every design, there is some refer-
ence signal that can be used to synchronize generation and sam-
pling operations. But many interfaces, although implemented using

Sample 5-45.
Returning sta-
tus in the bus 
request opera-
tion

program test;

clocking cb @(posedge tb_top.clk);
   output req = tb_top.req;
   input  grt = tb_top.grt;
endclocking: cb

task bus_request(output bit ok);
   automatic int cycle_count = 0;
   ok = 0;
   cb.req <= 1’b1;
   while (cb.grt != 1’b1) begin
      @(cb);
      if (cycle_count++ > 100) begin
         cb.req <= 1’b0;
         return;
      end
   end
   assert 1 <= cycle_count && cycle_count <= 5;
   ok = 1;
end: bus_request
...
endprogram: test
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synchronous finite state machines and edge-triggered flip-flops, are
specified in an asynchronous fashion. The implementer has arbi-
trarily chosen a clock to streamline the physical implementation of
the interface. If that clock is not part of the specification, it should
not be part of the verification. For example, Figure 5-16 shows an
asynchronous specification for a bus arbiter. Given a suitable clock
frequency, the synchronous specification shown in Figure 5-15
would be functionally equivalent.

Verify the syn-
chronous imple-
mentation 
against the asyn-
chronous speci-
fication.

Even though a clock may be present in the implementation, if it is
not part of the specification, you cannot use it to generate stimulus
nor to verify the response. You would be verifying against a partic-
ular implementation, not the specification. If a clock is present, and
the timing constraints make reference to clock edges, then you must
use it to generate stimulus and verify response. For example, a PCI
bus is synchronous. A verification of a PCI interface must use the
PCI system clock to verify any implementation.

High-level code 
does not require 
a clock like RTL 
code.

Testbenches are written using high-level code. Transaction-level
models do not require a clock. A clock is an artifice of the imple-
mentation methodology and is required only for RTL code. The bus

Sample 5-46.
Handling fail-
ures in the 
bus_request
task

program test;
...
initial
begin
   bit ok;
   int attempts = 0;

   forever begin
      bus_request(ok);
      if (ok) break;
      attempts++;
      assert attempts < 5;
   end
   ...
end
endprogram: test

Figure 5-16.
Asynchronous 
specification
for a simple 
arbiter

req

grt
0≤Td≤60 ns 10≤Tr≤30 ns.
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request phase of the asynchronous interface specified in Figure 5-
16 can be verified asynchronously with the bus_request task shown
in Sample 5-47. Notice how the bus request operation does not use
a clock for timing control. Also, notice how it uses the definitely
non-synthesizeable fork/join statement to wait for the rising edge of
grt for a maximum of 60 nanoseconds. 

Consider all 
possible failure 
modes.

There is one problem with the bus request operation in Sample 5-
47. What if the arbiter was functionally incorrect and left the grt
signal always asserted? Both models would never see a rising edge
on the grt signal. They would eventually exhaust their maximum
waiting period then detect grt as asserted, indicating a successful
completion. To detect this possible failure mode, the bus request
operation must verify that the grt signal is not asserted prior to
asserting the req signal, as shown in Sample 5-48.

Were you pay-
ing attention?

Pop quiz: what is missing from all those task implementations?1

Sample 5-47.
Verifying the 
asynchronous
bus request 
operation

task bus_request(output bit ok);
   req = 1’b1;

fork: wait_for_grt
      #60ns;
      @ (posedge grt);
   join_any
   disable wait_for_grt;
   ok = (grt == 1’b1);
endtask: bus_request

Sample 5-48.
Verifying all 
failure modes 
in the asyn-
chronous bus 
request opera-
tion

task bus_request(output bit ok);
   if (grt == 1’b1) begin
      ok = 0;
      return;
   end
   req = 1’b1;
   fork: wait_for_grt
      #60ns;
      @ (posedge grt);
   join_any
   disable wait_for_grt;
   ok = (grt == 1’b1);
endtask: bus_request



Stimulus and Response

234 Writing Testbenches using SystemVerilog

BUS-FUNCTIONAL MODELS

Operations are 
abstracted 
through bus-
functional mod-
els.

Although I have avoided using the term bus-functional model, all of
the tasks abstracting operations on the design shown earlier are bus-
functional models, albeit very simple ones. Operations, also known
as transactions, encapsulated using tasks can be very complex. The
examples shown earlier were very simple and dealt with only a few
signals. Real-life interfaces are more complex. But they can be
encapsulated just as easily. These transactions may even return val-
ues to be verified against expected response or modify the stimulus
sequence. As shown in Figure 4-2, a bus-functional model abstracts
transactions on a physical-level interface into a procedural inter-
face. Bus-functional models can be used to generate stimulus as
well as monitor the response of a design. Very often, a single bus-
functional model performs both operations.

CPU Transactions

CPU interfaces 
are popular bus 
functional mod-
els.

The first image that probably came to your mind when you read the
term “bus-functional model” was an interface to a processor.
Abstracted processor bus transactions are the most popular and
common bus-functional models. Figure 5-17 shows the specifica-
tion for the write cycle for an Intel 386SX processor bus. Sample 5-
49 shows the corresponding bus-functional model procedure.  

1. They all include timing control statements. They should have a sema-
phore to detect concurrent activation. See “Non-Re-Entrant Tasks” on 
page 188.

Figure 5-17.
Specification
for the write 
cycle of a 
386sx 
processor

Wait State

Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2 Φ1

clk
addr
ads
rw

ready
data

<4

<4

<4
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Bus models can 
adapt to a differ-
ent number of 
wait states.

To generate stimulus for this interface using synchronous test vec-
tors, you would have to assume a specific number of wait cycles to
complete the write operation at the right time. With high-level mod-
els of the transaction, you need not enforce a particular number of
wait cycles and adapt to any valid bus timing. In Sample 5-49, the
wait cycles are introduced by the timing control statement inside
the do loop.

Bus-functional
procedures can 
return values.

All of the abstracted transactions shown so far were unidirectional.
Data always flowed from the testbench through the bus-functional
task where the data was applied to the design and outputs were
checked for correctness. What if determining the correctness of the
output required visibility over multiple operations? What if only the
relevant output values for this testcase were known and the others
were to be ignored?  Bus-functional tasks can just as easily sample
output and return it instead of comparing the output against sup-
plied expected responses. The sampled value can then be processed
by the testbench where the value can be dealt with according to the
needs of the testcase. For example, Sample 5-50 shows the read
operation of the 386SX interface. Notice how the value read is not
compared against an expected value. The value read is instead
returned through an output argument.

You can perform 
read-modify-
write operations.

It now becomes easy to perform read-modify-write operations.
With abstracted transactions and the full power of a high-level lan-
guage, you can perform a read operation that returns whatever
value was read at the specified address, manipulate the read value,
then use the modified value in a subsequent write transaction. Sam-
ple 5-51 shows a portion of a testcase where the read_cycle and

Sample 5-49.
Model for the 
write cycle 
operation

task write_cycle(input bit [23:0] wadd,
                 input bit [31:0] wdat);
   do @ (cb) while (cb.phi != 2);
   cb.addr <= wadd;
   cb.ads  <= 1’b0;
   cb.rw   <= 1’b1;
   cb.data <= wdat;
   repeat (2) @ (cb);
   cb.ads  <= 1’b1;
   do @(cb) while (cb.phi != 2 ||
                   cb.ready != ’0’);
   cb.data <= ’z;
endtask: write_cycle
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write_cycle tasks are used to perform a read-modify-write opera-
tion.

From Bus-Functional Tasks to Bus-Functional Model

Bus-functional
tasks are pack-
aged into bus-
functional mod-
els.

A complete bus-functional model is composed of many bus-func-
tional tasks. Each transaction supported by a particular physical
interface is implemented using a different procedure. Collected
together in a class as described in “Encapsulating Bus-Functional
Models” on page 127, they create a complete bus-functional model
for a specific interface.

Tasks may be re-
entrant, but bus-
functional mod-
els are not.

In “Non-Re-Entrant Tasks” on page 188, I discussed the problem
caused by non-re-entrant tasks. By encapsulating the transaction
procedures in a class, which is dynamic, making the tasks re-entrant
by default, you’d think that the problem would be solved, right?
Wrong. Sample 5-52 shows the bus-functional tasks for the i386SX
packed into a class. Although the read and write tasks are now fully

Sample 5-50.
Model for the 
read cycle 
operation

task read_cycle(input  bit [23:0] radd,
                output bit [31:0] rdat);
   do @(cb) while (phi != 2);
   cb.addr <= radd;
   cb.ads  <= 1’b0;
   cb.rw   <= 1’b0;
   repeat (2) @ (cb);
   cb.ads  <= 1’b1;
   do @(cb) while (cb.phi != 2 ||
                   cb.ready != 1’b0);
   rdat = cb.data;
endtask: read_cycle

Sample 5-51.
Performing a 
read-modify-
write opera-
tion

program test;
...
initial
begin
   const bit [23:0] cfg_reg = 24’h000316;
   bit [31:0] tmp;
   ...
   read_cycle(cfg_reg, tmp);
   tmp(13:9) := "01101";
   write_cycle(cfg_reg, tmp);
   ...
end
endprogram: test
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re-entrant, what happens if two separate threads concurrently
invoke the same task? The local data space of the task is preserved,
but not the value of the (static) interface signals. The two concur-
rent transactions will interfere with each other trying to execute at
the same time on the same physical interface. The same problem
will occur even if two different bus-functional tasks in the same
bus-functional model are concurrently invoked. 

Put a sema-
phore on the 
bus-functional 
model.

If two or more threads must read from (or write to) the design, the
operations must be coordinated. To pipeline concurrent operations,
it is necessary to put a semaphore around the entire bus-functional
model. Much like a semaphore was used to detect concurrent invo-
cation of a non-re-entrant task, it will be used to detect concurrent
invocation of transactions in a non-re-entrant bus-functional model.
Sample 5-53 shows how a bus-functional model can be protected
against concurrent transactions using a semaphore. It is up to you to
decide, should the semaphore detect a concurrent transaction,
whether to wait for the bus-functional model to become available or
to terminate with an error. 

SystemVerilog 
is not signifi-
cantly better for 
physical-level 
bus-functional 
models.

With almost all of the examples in the previous sections looking
like pure Verilog, I would not be surprised if you double-checked
the title of this book to make sure it says “SystemVerilog”. System-
Verilog is not significantly better than good old Verilog in imple-
menting physical-level bus-functional models. Low-level bus-
functional models simply translate an abstracted representation of a
transaction into 1’s and 0’s applied or sampled at individual clock
cycles. Signal assignments, signal sampling and waiting for the

Sample 5-52.
Packaged
i386SX bus-
functional 
model

class i386sx;
   virtual i386sx_if sigs;
   ...
   virtual task read(input  bit [23:0] radd,
                     output bit [31:0] rdat);
      this.sigs.cb.addr <= radd;
      ...
   endtask: read

   virtual task write(input bit [23:0] wdd,
                      input bit [31:0] wdat);
      this.sigs.cb.addr <= wadd;
      ...
   endtask: write
endclass: i386sx
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next clock edge uses the same statements as in pure Verilog because
it does not need the increased levels of abstraction offered by the
features that make SystemVerilog.

SystemVerilog 
is significantly 
better above the 
physical level.

SystemVerilog becomes clearly superior once we stop dealing with
the physical interface because of its support for high-level data
types, object-orientedness and randomization. SystemVerilog
allows for a simpler transaction-layer interface. The transaction
descriptors will be easier to model and manipulate using object-ori-
ented methods and transaction descriptors will be easier to generate
using constrainable randomization.

Physical Interfaces

Collect all sig-
nals in an inter-
face.

Bus-functional models encapsulated in classes can access physical
signals in one of two ways: through hierarchical—white-box—ref-
erences or through a virtual interface. Using hierarchical references
would make the bus-functional model class specific to a particular
set of interface signals. It would not be possible to reuse the model
in a different testbench or instantiate it more than once in the same
testbench without copying it and modifying the references. The
only mechanism that will make bus-functional models reusable
within or across testbenches is the virtual interface. This implies

Sample 5-53.
Protected
i386SX bus-
functional 
model

class i386sx;
local semaphore sem;

   virtual i386sx_if sigs;
   ...
   virtual task read(input  bit [23:0] radd,
                     output bit [31:0] rdat);
      if (!this.sem.try_get(1)) ...;
      this.sigs.cb.addr <= radd;
      ...
      this.sem.put(1);
   endtask: read

   virtual task write(input bit [23:0] wdd,
                      input bit [31:0] wdat);
      if (!this.sem.try_get(1)) ...;
      this.sigs.cb.addr <= wadd;
      ...
      this.sem.put(1);
   endtask: write
endclass: i386sx



Bus-Functional Models

Writing Testbenches using SystemVerilog 239

that all physical-level signals required by the bus-functional model
be encapsulated in an interface as shown in Sample 5-54. 

Define clocking
blocks for each 
clocking 
domain.

Synchronous signals are better sampled and driven through clock-
ing blocks. It simplifies the maintenance of the synchronization and
delay specifications and properly samples synchronous data from
the module domain to the program domain. Each clock domain
requires a separate clocking block, as shown in Sample 5-55. Note
how the asynchronous signals crs and col are not included in any
clocking blocks.

Can use a single 
interface for all 
perspectives on 
a physical inter-
face.

The interface definitions in Sample 5-54 and Sample 5-55 imply a
definite direction to the signals in that interface. Data is transmitted
on the tx... signals and received on the rx... signals. That is correct if
the bus-functional model implements the MAC-layer functionality
in the ethernet protocol. If the bus-functional model were to imple-
ment the PHY-layer functionality, the data flow would need to be
reversed. In reality, you often need both bus-functional models,

Sample 5-54.
Physical inter-
face for MII 
bus-functional 
model

interface mii_mac_if;

wire       tx_clk;
reg  [3:0] txd;
reg        tx_en;
reg        tx_er;
wire       rx_clk;
wire [3:0] rxd;
wire       rx_dv;
wire       rx_er;
wire       crs;
wire       col;
...
endinterface: mii_mac_if

Sample 5-55.
Clocking 
domains in 
physical inter-
face.

interface mii_mac_if;
...
clocking tx @(posedge tx_clk);
   output #1 txd, tx_en, tx_er;
endclocking: tx

clocking rx @(posedge rx_clk);
   input #1 rxd, rx_dv, rx_er;
endclocking: rx

endinterface: mii_mac_if
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because the system you are designing has components on either
side of that physical interface, and both components need to be
independently verified. You’ll also see how bus-functional models
are useful for writing transaction-level models in Chapter 7, which
requires the complementary flavor of bus-functional models.
Because both bus-functional model flavors are usually needed, you
have the choice of implementing two interface declarations—one
for each flavor—or a single interface declaration that supports both
flavors.

Define all sig-
nals as wire or 
logic.

If an interface is declared to be agnostic to the perspective or per-
sonality a bus-functional model can have on its signals, then it must
not imply any directionality in the signals themselves. The interface
becomes a collection of wires that are used to exchange information
between a bus-functional model and a design or between two bus-
functional models. Sample 5-56 shows the same signals as in Sam-
ple 5-54, but this time without any implied directions. 

Synchronous 
signals in clock-
ing blocks are 
defined as inout.

clocking blocks also indicate directionality. To allow the clocking
blocks to be used by any bus-functional model, regardless of its
perspective on the physical interface, the synchronous signals in
each clock domain must be defined as inout, as shown in Sample 5-
57, compared to Sample 5-55.

Don’t wait for 
clock edges.

It is only natural to use a Verilog coding style when coding using
SystemVerilog. But this style can create problems. Consider the
MII MAC-layer bus-functional model in Sample 5-58. This is obvi-
ously a model for a synchronous interface active on the negative
edge of the clock, right? Wrong. Timing synchronization is speci-

Sample 5-56.
Physical inter-
face signals

interface mii_if;

wire       tx_clk;
wire [3:0] txd;
wire       tx_en;
wire       tx_er;
wire       rx_clk;
wire [3:0] rxd;
wire       rx_dv;
wire       rx_er;
wire       crs;
wire       col;
...
endinterface: mii_if
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fied in the clocking blocks of the interface declaration, not by the
sequential statements. Should the synchronization be changed, only
the clocking blocks should need changing. This style may also  use
wrong input values because of the module vs program thread simu-
lation cycles. A better style, shown in Sample 5-59, lets the clock-
ing block synchronization mechanism define the timing of the
transaction.    

Specify virtual 
interface to con-
nect to via the 
constructor.

All class-encapsulated bus-functional model examples so far had a
virtual interface data member that was used to access the physical
interface of the bus-functional model. This data member must be

Sample 5-57.
Bidirectional
clocking 
domains in 
physical inter-
face.

interface mii_if;
...
clocking tx @(posedge tx_clk);
   input #1 output #1 txd, tx_en, tx_er;
endclocking: tx

clocking rx @(posedge rx_clk);
   input #1 output #1 rxd, rx_dv, rx_er;
endclocking: rx

endinterface: mii_if

Sample 5-58.
Verilog cod-
ing style in 
SystemVerilog

class mii_mac_bfm;
   virtual mii_if sigs;
   ...
   virtual task rx(output eth_frame frame);
      ...
      do @ (posedge this.sigs.rx_clk)
         while (this.sigs.rx_dv != 1);
      do @ (posedge this.sigs.rx_clk)
         while (this.sigs.rx_dv == 1 &&
                this.sigs.rxd   == 4’b0101);
      if (this.sigs.rxd != 4’b0111) ...
      while (this.sigs.rx_dv == 1) begin
         @ (posedge this.sigs.rx_clk);
         byte[7:4] = this.sigs.rxd;
         ...
         @ (posedge this.sigs.rx_clk);
         byte[3:0] = this.sigs.rxd;
         ...
      end
      ...
   endtask: rx
endclass: mii_mac_bfm
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set somehow. Module pins are connected when the module is
instantiated. This way, the same module may be used more than
once but connected to different signals. Similarly, a virtual interface
in a bus-functional model is connected when the bus-functional
model is instantiated. Because the bus-functional model is encapsu-
lated in a class, it is instantiated when its constructor is invoked.
Therefore, the virtual interface connection is specified as a con-
structor argument, as shown in Sample 5-60. The virtual interface is
connected when a new instance of the bus-functional model is cre-
ated by calling the constructor and specifying an interface instance
it is bound to via a cross-module reference, as shown in Sample 5-
61.   

Sample 5-59.
Proper coding 
style in Sys-
temVerilog

class mii_mac_bfm
   virtual mii_if sigs;
   ...
   virtual task rx(output eth_frame frame);
      ...
      do @ (this.sigs.rx)
         while (this.sigs.rx_dv != 1);
      do @ (this.sigs.rx)
         while (this.sigs.rx_dv == 1 &&
                this.sigs.rxd   == 4’b0101);
      if (this.sigs.rxd != 4’b0111) ...
      while (this.sigs.rx_dv == 1) begin
         @ (this.sigs.rx);
         byte[7:4] = this.sigs.rxd;
         ...
         @ (this.sigs.rx);
         byte[3:0] = this.sigs.rxd;
         ...
      end
      ...
   endtask: rx
endclass: mii_mac_bfm

Sample 5-60.
Virtual inter-
face as con-
structor argu-
ment.

class mii_mac_bfm;
   virtual mii_if sigs;
   ...
   function new(virtual mii_if sigs);
      this.sigs = sigs;
   endfunction: new
endclass: mii_mac_bfm
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See the VMM. The section titled “Signal Layer” on page 107 of the Verification
Methology Manual for SystemVerilog provides additional guide-
lines and techniques for implementing and encapsulating physical
interfaces.

Configurable Bus-Functional Models

Protocols can 
have config-
urable elements.

A protocol specification may contain configuration options. For
example, the assertion level for a particular control signal may be
configurable to either high or low. Each option has a small impact
on the operation of the interface. Taken individually, you could cre-
ate a different task for each configuration. The problem would be
relegated to the testcase in deciding which flavor of the operation to
invoke. You would also have to maintain several nearly identical
models.

Simple config-
urable elements 
become com-
plex when 
grouped.

Taken together, the number of possible configurations explodes fac-
torially.1 It would be impractical to provide a different task for each
possible configuration. It is much easier to include configurability
in the bus-functional model itself. An RS-232 interface, shown in
Figure 5-18, is the perfect example of a highly configurable, yet
simple interface. Not only is the polarity of the parity bit config-
urable, but also its presence, as well as the number of data bits
transmitted. And to top it all, because the interface is asynchronous,
the duration of each pulse is also configurable. Assuming eight pos-
sible baud rates, five possible parities, seven or eight data bits, and

Sample 5-61.
Binding a vir-
tual interface 
in a class 
instance.

module tb_top;
mii_if if0();
...
endmodule

program test;
mii_mac_bfm mac = new(tb_top.if0);
...
endprogram: test

1. Exponential growth follows a Kn curve. Factorial growth follows a n! 
curve, where n! = 1 x 2 x 3 x 4 x ... x (n-2) x (n-1) x n.
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one or two stop bits, there are 160 possible combinations of these
four configurable parameters.

Write a config-
urable bus-func-
tional model.

Instead of writing 160 flavors of the same transaction, it is much
easier to model the configurability itself, as shown in Sample 5-62.
Configuration parameters tend to remain static during an entire
simulation (unless the corresponding design can be re-configured
on-the-fly, and this on-the-fly reconfiguration is the objective of the
test). They must also be consistent across different bus-functional
tasks within the same bus-functional model. Rather than passing
“constant” information through the interface of each bus-functional
task, it is better located in the bus-functional model encapsulating
structure (see “Encapsulating Bus-Functional Models” on
page 127) alongside the bus-functional tasks where it can be
accessed directly.

Create a config-
uration class.

Configuration parameters should be implemented as properties in a
configuration class. An instance of the configuration class would
be passed to the bus-functional model via its constructor, alongside
the interface binding. Using a separate configuration class will
make it easier to create random configurations and to ensure that
multiple instances of the bus-functional model have an identical
configuration. The current configuration should be kept in a local
class property to prevent it from being modified without the bus-
functional model knowing about it or at the wrong time. If it is pos-
sible for a bus-functional model to be reconfigured during a simula-
tion—such as the RS-232 model—a reconfigure method should be
provided. That method can check that the configuration is valid,
that it is an appropriate time for the bus-functional model to be
reconfigured—e.g. it is idle—and to perform the necessary opera-
tions to notify the bus-functional model tasks of the new configura-
tion. What important safety measure is missing from Sample 5-62?1   

Figure 5-18.
Specification
for the RS-232 
interface

Data bits (7 or 8)Start bit Parity
bit

(optional)

Stop bit(s)
(1 or 2)

Duration
(baud rate)
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See the VMM. Guidelines 4-104 through 4-107 of the Verification Methodology
Manual for SystemVerilog specify similar guidelines for imple-
menting configurable transactors.

1. The entire bus-functional model should be protected using a semaphore 
to prevent concurrent access to the interface signals. See “From Bus-
Functional Tasks to Bus-Functional Model” on page 236.

Sample 5-62.
Model for a 
configurable
bus-functional 
model

class rs232_cfg;
   int unsigned baud_rate;
   enum {NONE, ODD, EVEN, MARK, SPACE} parity;
   bit data8;
   bit stop2;
endclass: rs232_cfg

class rs232;
   virtual rs232_if sigs;

local rs232_cfg  cfg;

   function new(virtual rs232_if sigs,
                rs232_cfg cfg);
      this.sigs = sigs;
      this.cfg  = cfg;
   endfunction: new

   function void reconfigure(rs232_cfg cfg);
      ...
      this.cfg = cfg;
   endfunction: reconfigure

   task send(bit [7:0] data);
      time duration = 1s / this.cfg.baud_rate;
      int i;

      this.sigs.tx <= 1’b0;
      #(duration);
      i = (this.sigs.data8) ? 8 : 7;
      while (i-- > 0) begin
         this.sigs.tx <= data[i];
         #(duration);
      end
      ...
      this.sigs.tx <= 1’b1;

    #(duration * (this.sigs.stop2+1));
   endtask: send
   ...
endclass: rs232
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RESPONSE MONITORS

Response trans-
actions can be 
encapsulated.

Earlier in this chapter, we encapsulated input transactions to
abstract the stimulus generation from individual signals and wave-
forms to generating sequences of operations. A similar abstraction
can be used for verifying the response. The repetitiveness of output
signals within a transaction can be taken care of and verified inside
the bus-functional model. Then the testbench only needs to worry
about the correctness of the data carried by the transaction. Sample
5-63 is an example of a bus-functional procedure for an RS-232
monitor.

Verifying the 
data in the 
response moni-
tor is too restric-
tive.

The response verification operation, as encapsulated in Sample 5-
63, has a very limited application. It can be used only to verify that
the response matches a pre-defined expected value, with no parity
error. Can you imagine other possible uses? What if the response
can be any value within a predetermined set or range? What if the
response is to be ignored until a specific sequence of output values
is seen? What if the response, once verified, needs to be fed back to
the stimulus generation? What if the parity value is expected to be
incorrect? What if responses were to be ignored if the parity bit is
invalid? The usage possibilities are endless. It is not possible, a pri-
ori, to determine all of them nor to provide a single interface that
satisfies all of their needs.

Sample 5-63.
RS-232 serial 
receive bus-
functional 
monitor

class rs232;
   ...
   task receive(input bit [7:0] expect);
      ...
      @ (negedge this.sigs.rx); // Wait 4 start
      #(duration * 0.5);     // Shift sample 50%
      data[7] = 1’b0;
      i = (this.sigs.data8) ? 8 : 7;
      while (i-- > 0) begin
         #(duration);
         data[i] = this.sigs.rx;
      end
      if (data !== expect) ...
      ...
   endtask: receive
   ...
endclass: rs232
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Separate moni-
toring from 
value verifica-
tion.

The most flexible implementation for an response transaction bus-
functional task is simply to return to the caller whatever output
value was just received. It will be up to a “higher authority” to
determine if this value is correct or not. The RS-232 receiver was
modified in Sample 5-64 to return the byte received without verify-
ing its correctness. The correctness of the parity is also returned.

Consider all 
possible failure 
modes.

The bus-functional task shown in Sample 5-64 has some potential
problems and limitations. What if the output signal being monitored
is dead and the start bit is never received? This task will wait for-
ever. It may be a good idea to provide a maximum delay to wait for
the start bit via an additional argument, as shown in Sample 5-65, or
to compute a sensible maximum delay based on the baud rate.
Notice how a default argument value is used in the task definition to
avoid forcing the user to specify a value when it is not relevant, as
shown in Sample 5-65, or to avoid modifying existing code that
was written before the additional argument was added.

Do not arbi-
trarily constrain 
the transaction.

The width of pulses is not verified in the implementation of the RS-
232 receive operation in Sample 5-64. Should it? If you assume that
the task is used in a controlled 100 percent digital environment,
then verifying the pulse width might make sense. This task also
could be used in system-level verification, where the serial signal
was digitized from a noisy analog transmission line as illustrated in
Figure 5-19. In that environment, the shape of the pulse, although

Sample 5-64.
RS-232 serial 
receive bus-
functional task 
without verify-
ing correctness 
of response 
received

class rs232;
   ...
   task receive(output bit [7:0] data,
                output bit       valid);
      ...
      @ (negedge this.sigs.rx); // Wait 4 start
      #(duration * 0.9); // Sample @ 90% of pulse
      data[7] = 1’b0;
      i = (this.sigs.data8) ? 8 : 7;
      while (i-- > 0) begin
         #(duration);
         data[i] = this.sigs.rx;
      end
      ...
      valid = (parity === this.sigs.rx);
      ...
   endtask: receive
   ...
endclass: rs232
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unambiguously carrying valid data, most likely does not meet the
rigid requirements of a clean waveform for a specific baud rate. Just
as in real life, where modems fail to communicate properly if their
baud rates are not compatible, an improper waveform shape is
detected as invalid data being transmitted.

Generation and 
monitoring per-
tains to the abil-
ity to initiate a 
transaction.

We have already seen that input transactions sometimes have to
monitor some output signals from the design under verification.
The same is true for a response monitor. Sometimes, the monitor
has to provide data back as an answer to an “output” transaction.
This reporting blurs the line between stimulus and response. Isn’t a
stimulus bus-functional task that verifies the control or feedback
signals from the design also doing response checking? Isn’t a moni-
tor task that replies with control flow signals back to the design also
doing stimulus generation? The terms generator and monitor
become meaningless if they are attached to the direction of the sig-

Sample 5-65.
Providing an 
optional time-
out for the RS-
232 serial 
receive trans-
action

class rs232;
   ...
   task receive(output bit [7:0] data,
                output bit       valid,
                input  time      timeout = 0);
   begin: receive_task
      ...
      fork: timer
         if (timeout > 0) begin
            #(timeout);
            data = 8’hXX;
            valid = 0;
            disable receive_task
         end
      join_none
      @ (negedge this.sigs.rx); // Wait 4 start
      disable timer
      ...
   end: receive_task
   endtask: receive
   ...
endclass: rs232

Figure 5-19.
Modification
to the serial 
signal in a real 
system

RS232
Tx

RS232
Rx
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nals being generated or monitored. They regain their meaning if
you attach them to the initiation of transactions. If a task initiates
the transaction under full control of the testbench, it is a stimulus
generator. If the task sits there and waits for a transaction to be ini-
tiated by the design, then it is a response monitor.

Monitors must 
always be moni-
toring.

Bus-functional model tasks must be invoked by the testbench.
Invoking a bus-functional task either initiates a stimulus transaction
or initiates the expectation of a response transaction. What if the
design happens to initiate a response transaction but the testbench
had not called the appropriate bus-functional model response task?
At best, the design will detect that the testbench is not ready to
receive data because some control flow signals were left at an
appropriate level at the completion of the previous response trans-
actions. But this would result in back-pressure building up inside
the design and would not verify the design under maximum
throughput. Typically however, output data would “spill” and a gap
would be created in the output data stream. At worst, the design
will fail to operate correctly because the output transaction protocol
will be violated due to missing feedback signals. What if the test-
bench invokes the response task just a few cycles too late, after the
design has already initiated a response transaction? A transaction
protocol violation is likely to be reported. To avoid the false errors
introduced by the misalignment of the response transaction in the
testbench and the design, response monitors should always be
active and monitoring the design output interface.

Autonomous Monitors

Decouple tim-
ing of transac-
tion and timing 
of response 
checking.

Since the testbench is not responsible for the initiation of the
response transaction, why give it the responsibility for the initiation
of the response monitoring procedure? Testbenches are not usually
interested in the timing of the output transaction; testbenches are
interested only in verifying that the output data is correct. There-
fore, we can decouple the monitoring of the physical interface sig-
nals from the retrieval of the output data. As illustrated in Figure 5-
20, an independent thread can continuously monitor the output
transactions. Output data is extracted from each transaction and put
into a FIFO. The testbench retrieves the next output data that was
received from the front of the FIFO.
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Add a concur-
rent thread in the 
bus-functional 
model.

The bus-functional response task is invoked within a concurrent
thread running inside the bus-functional model, as shown in Sample
5-66. An independent thread can be created by simply forking a for-
ever loop. Note how the receive_thread() task is declared as local.
This will prevent a user from calling the internal-only method
directly. Note also how the receive thread is started in the construc-
tor. This will cause the bus-functional monitor to start operating as
soon as it is instantiated, without additional requirements from the
user.  

Output data is 
buffered in a 
queue.

As response data is extracted from the response transactions, it is
added to a FIFO to be retrieved later by the testbench. For simple
interfaces, such as RS-232, the buffered data is a simple byte, con-
catenated with its parity-correctness indicator. For more complex
interfaces, such as SONET/SDH, the buffered data would be an
entire frame. It is not possible to predict how many such data items
will need to be buffered before we get the testbench’s attention.
Therefore, it must be accumulated in a queue (see “Queues” on

Figure 5-20.
Structure of an 
autonomous 
monitor

FIFO
Data

Retrieval Testbenchi/f
Monitor

Sample 5-66.
Autonomous
RS-232
response mon-
itor

class rs232;
local bit [8:0] fifo[$];

   ...
   function new(...);
      ...
      fork
         this.receive_thread();
      join_none
   endfunction: new

   local task receive_thread();
      forever begin
         automatic bit [8:0] resp;
         this.receive(resp[7:0], resp[8]);
         this.fifo.push_back(resp);
      end
   endtask: receive_thread
   ...
endclass: rs232
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page 141) that will grow as data is collected from the output and
shrink as data is retrieved by the testbench.

Data collection 
could be 
optional.

What if, for a particular testcase, a testbench does not need to
examine the response from an interface? Data would accumulate in
the FIFO, consuming an ever increasing amount of memory. Hope-
fully, the simulation would terminate before running out of mem-
ory—but that is not likely. The active monitor on that interface is
still requried because the protocol may need to be terminated and
any protocol-level errors must be checked for—even if the transac-
tion-level response is to be ignored. It should be possible to config-
ure the monitor to extract data from output transactions, verify
adherence to the protocol and providing necessary feedback signals
but turn off data accumulation. As shown in Sample 5-67, protocol
correctness will be monitored without data being accumulated.

Can provide 
blocking or non-
blocking model.

The bus-functional monitor should provide a task to retrieve the
next response transaction that was received. This raises a question:
What do we do when there is no response data for the testbench?
One solution is to wait for data to become available. But what if the
testbench needs to turn its attention elsewhere while the response
retrieval task is stuck waiting for data? A better solution is to give
the choice to the testbench whether to wait if there is no response
data. The testbench should be able to ask the bus-functional moni-
tor if their is response data available before attempting to retrieve it,
as shown in Sample 5-68.

Sample 5-67.
Optional data 
collection

class rs232;
   ...
   local task receive_thread();
      forever begin
         automatic bit [8:0] resp;
         this.receive_data(resp[7:0], resp[8]);
         if (!this.cfg.sink) begin
            this.fifo.push_back(resp);
         end
      end
   endtask: receive_thread
   ...
endclass: rs232
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Decoupling 
implies that 
transaction tim-
ing is not rele-
vant.

Decoupling the monitoring of the physical signals from the verifi-
cation of the response requires that the timing of the response not
be relevant to determine functional correctness. As long as the
response comes out, the design works. This decoupling is actually
one of the great benefits of using high-level testbenches: As the
design is modified and pipeline stages are added or removed, the
testbench need not be modified. But what if it is functionally impor-
tant that response comes out after a specific (or range of) number of
clock cycles? If it is important, it must be stated in the design spec-
ification document. If it is in the design specification document, it
must be verified. If it must be verified, the testbench must be able to
verify the timing of the response.

Transaction tim-
ing can be veri-
fied through 
time-stamping.

Verifying timing does not mean that it must be verified where and
when the transaction started (or completed). Timing also can be
verified by comparing timestamps. To satisfy the need of both types
of testbenches, one where transaction timing is relevant, the other
where it is not, timing information should be added to the extracted
data. The testbench is then free to compare or ignore the timing
information. There is one problem though: Where is the timestamp
information stored? The response data structure may not have addi-
tional fields to store that information. It may not be possible to
modify the original data structure to add the necessary field. If the
original data structure is potentially reusable in other projects or
testbenches, you are adding project- or testbench-specific informa-
tion to a shared object. If everyone did the same, it quickly would
grow into an unmaintainable mess that could not be trusted to be

Sample 5-68.
Nonblocking 
data retrieval 
procedure

class rs232;
   ...
   local bit [8:0] fifo[$];

   function bit data_avail();
      return this.fifo.size() > 0;
   endfunction: data_avail

   task receive(output bit [7:0] data,
                output           valid);
      while (!this.data_avail())
         @(this.fifo);
      {valid, data} = this.fifo.pop_front();
   endtask: receive
   ...
endclass: rs232
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functionally correct. Instead, extend the original object to add your
required information, leaving the original data structure intact.
Sample 5-69 shows an extension and timestamping example.

See
vmm_channels.

The section titled “Transaction-Level Interfaces” starting on page
171 of the Verification Methodology Manual for SystemVerilog”
specifies a mechanism—the channel—that can be used readily for
implementing autonomous monitors and handle the decoupling of
monitoring and data retrieval functions.

Slave Generators

Response moni-
tors may need to 
reply with 
“input” data.

How do you verify an interface used by the design to fetch data?
Typical examples include the instruction fetch interface on a pro-
cessor or an external memory interface on a design. The transac-
tions are initiated by the design, not the testbench. Therefore, it falls
under the category of response monitor. But the transactions do not
produce any response data. Instead, they require and consume input
data. It is the responsibility of the testbench to supply the data to
complete the transaction in a timely manner. Of course, in those
cases, the correctness of the data is implied. It will have to be veri-
fied elsewhere when it (or its descendent) shows up at another
interface.

Slave genera-
tors must ask the 
testbench.

Because of the time-sensitive nature of the transaction, it is not pos-
sible to decouple the monitoring of the output interface and the gen-
eration of the reply data. The testbench must be ready to supply

Sample 5-69.
Timestamping 
output data

class stamped_eth_frame extends eth_frame;
   time started;
   time completed;
endclass: stamped_eth_frame

class mii_mac_bfm;
   ...
   local task rx(output stamped_eth_frame fr);
      ...
      fr = new;
      fr.started = $time;
      ...
      fr.completed = $time;
   endtask: rx
   ...
endclass: mii_mac_bfm
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stimulus data at all times in response to a transaction initiated by
the design. The difficulty is how to get the testbench’s attention
when required.

The testbench 
must always call 
a standby task.

By having the testbench constantly call a standby task, its attention
can be obtained by returning from it. The testbench can then exe-
cute testcase-specific code to generate the input data that is  sup-
plied by immediately calling the standby task again. Sample 5-70
shows a bus-functional model monitoring the instruction fetch
interface of a CPU. Rather than pre-generating the code before the
simulation and statically loading it into a memory model, this bus-
functional model lets the testbench dynamically generate instruc-
tions on-the-fly. Notice the fetch task. It is the standby task used by
the testbench to provide the instruction opcode fetched from the
specified address. Sample 5-71 shows how a testbench could use
this standby task to implement a random instruction generator
stream.

Standby tasks 
create reusable 
slave bus-func-
tional models.

Why bother with these standby task calls? Why not simply go in the
bus-functional model, add the code we need directly in there and be
done with it? That would be the simple way out, but one that will
create maintenance challenges later on. This approach makes one
big assumption: that you have access to the source code to begin

Sample 5-70.
Bus-func-
tional model 
with standby 
task

class code_mem;
   ...
   event fetch, ready;
   local task monitor_thread();
      forever begin
         @ (negedge this.sigs.as);

      fetch.address = addr;
         -> this.fetch;
         @ (this.ready);
         this.sigs.data <= fetch.opcode;
         this.sigs.rdy  <= 1’b0;
         ...
      end
   endtask: monitor_thread

   task fetch(output [31:0] address,
              input  [31:0] opcode);
      -> this.ready;
      @ (this.fetch);
   endtask: fetch
endclass: code_mem
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with. If you wrote the bus-functional model yourself, you do. But it
also could be a very large bus-functional model purchased from a
third party who will only supply compiled or encrypted code to pro-
tect their interests. What if different testbenches need different
extensions to the bus-functional model? Are you going to create a
different copy for each? What about reusing that bus-functional
model in the next revision of the project or in a different project
altogether? By specializing a bus-functional model to the specific
needs of your testbench(es), you have made reusing it and incorpo-
rating upgrades and bug fixes more difficult. You saved a little ini-
tially, but lost a lot more in the long run.

See the reactive 
response com-
pletion model in 
VMM.

The section titled “Reactive Response” starting on page 192 of the
Verification Methodology Manual for SystemVerilog shows how the
generic vmm_channel mechanism can be used to implement an
even more flexible interface mechanism to slave generators. That
interface mechanism is called a request/response completion
model.

Multiple Possible Transactions

The next trans-
action on an out-
put interface 
may not be pre-
dictable.

You may be in a situation where more than one type of transaction
can happen on an output interface. Each would be valid and you
cannot predict which specific operation will come next. Then how
do you decide which standby task to call? An example would be a
processor that executes an unknown stream of instructions. You
cannot predict (without detailed knowledge of the processor archi-
tecture and instruction streams) whether a read or a write cycle will
appear next on the data memory interface.

Sample 5-71.
Using the 
standby task

program test;

code_mem pmem = new(...);

initial
forever begin
   bit [31:0] addr, opcode;

pmem.fetch(addr, opcode);
   opcode = generate_opcode(addr);
end
...
endprogram
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Use a transac-
tion descriptor.

How do you write a response monitor when you do not know what
kind of transaction comes next? You must write a bus-functional
task that identifies the next transaction after it has started. It verifies
the preamble to all transactions on the output interface until it
becomes unique to a specific transaction. It then builds a transac-
tion descriptor containing any information collected so far to iden-
tify, to the testbench via the standby task, which transaction is
currently underway. It is then up to the testbench to supply the nec-
essary (and correct) information to complete the verification of the
transaction.

Sample 5-72 shows a transaction descriptor for a read or write
cycle. The response monitor bus-functional model in Sample 5-73
identifies whether the next transaction from the design is a read or a
write cycle and fills in as much of the descriptor as it can. Since the
address already has been sampled by the time the decision of the
type of cycle was made, the address will be valid in both read and
write cycles. If a read cycle is observed, the transaction descriptor
is completely filled in and no further response is expected from the
testbench. If a write cycle is observed, the data class property is left
unfilled. That will be the response expected from the testbench and
driven back to the design. Sample 5-74 shows how this transaction
descriptor is used by the testbench                 

See the reactive 
response com-
pletion model in 
VMM.

The section titled “Reactive Response” starting on page 192 of the
Verification Methodology Manual for SystemVerilog shows how the
generic vmm_channel mechanism can be used to implement a more
flexible interface mechanism to slave generators that handles multi-
ple possible transactions. That interface mechanism is called a
request/response completion model.

Sample 5-72.
Transaction 
descriptor.

class ram_trans;
   enum {READ, WRITE} kind;
   bit [31:0] addr;
   bit [31:0] data;
endclass: ram_trans
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Sample 5-73.
Monitoring 
many possible 
output transac-
tions

class ram_bfm;
   ...
   ram_trans tr;
   local task monitor_thread();
      forever begin
         do
            @ (negedge this.sigs.ale);
         while (this.sigs.cs == 1’b1);
         this.tr = new;
         this.tr.addr = this.sigs.addr;
         this.tr.kind = (this.sigs.rw == 1’b1) ?
            ram_trans::READ : ram_trans::WRITE;
         this.tr.data = this.sigs.data;
         -> do_cycle;
         if (this.tr.kind == ram_trans::WRITE)
         begin
            @ (cycle_done);
            this.sigs.data <= tr.data;
         end
      end
   endtask: monitor_thread()

   task mem_cycle(inout ram_trans tr);
      this.tr = tr;
      @ (do_cycle);
      ->cycle_done;
      tr = this.tr;
   endtask: mem_cycle
endclass: ram_bfm

Sample 5-74.
Handling 
many possible 
output opera-
tions

...
forever begin
   ram_trans tr;

mem_cycle(tr);
   case (tr.kind)
   ram_trans::READ :
      tr.data = read_cycle(tr.addr);
   ram_trans::WRITE:
      write_cycle(tr.addr, tr.data);
   endcase
end
...
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TRANSACTION-LEVEL INTERFACE

Testbenches are 
removed from 
the physical 
level.

As illustrated in Figure 5-21, the purpose of bus-functional models
is to remove the testbench from the repetitive physical-level details.
The bus-functional model lets the testbench concentrate on the data
to be supplied, on the data that was produced and how it is sup-
posed to have been transformed. Once you have a reliable set of
bus-functional models, it makes writing testbenches faster and eas-
ier. In this section, I will describe how to design a transaction-level
interface. The next chapter will describe how to structure a test-
bench by combining bus-functional models with coherent transac-
tion-level interfaces.  

The transaction 
interface must 
be designed.

Throughout this chapter, the procedural interface of the bus-func-
tional models evolved from the particular transaction being dis-
cussed. It was optimized according to the particular point I was
trying to make while presenting advantages and disadvantages of
various alternatives. Each task was written and evolved indepen-
dently of each other. The purpose of this chapter thus far was the
generation and monitoring of physical-level signals, not the design
of a transaction interface. Using this process to write a complete
bus-functional model will likely result in an awkward and clumsy
transaction-level interface dictated by the physical-level details, not
the requirements of the testbenches that must use it. The transaction
interface of a bus-functional model must be designed and planned,
just like the testcases or the design.

Declare. When designing a bus-functional model, write the transaction-level
interface first. This is akin to writing the header file in C. Code the
descriptors, methods, task and function declarations that make up
the entire transaction-level interface of your bus-functional model.
Leave the body or the implementation of each method empty. This
style will let you focus on the transaction-level interface across all

Figure 5-21.
Transaction 
level testbench

Testcases

Design
under
Verif.

Bus
Funct.
Model

Bus
Funct.
Model

Transaction Layer
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of the transactions. You must start thinking about the needs of the
testcases, not the implementation of the bus-functional models.
This is the stage where you address questions like “How does the
testbench know when and how this transaction completed?” and
“How much work can I do without the testbench’s attention?” You
have to strike a balance between abstraction and controllability.
You have to consider the requirements of each testcase, the self-
checking mechanism and functional coverage measurement.

Document. Next, write the user documentation for the bus-functional model.
Yes, documentation. It is the only way to ensure that the documen-
tation will reflect the content of the bus-functional model accu-
rately and that it will exist at all. It also presents an opportunity to
think about the purpose of each element of the transaction interface
and the usage model of the bus-functional model. The documenta-
tion will have to describe the functionality and interaction of each
element, often highlighting inconsistencies or difficulties that were
not considered when coding the interface. Review and iterate over
the declaration and the documentation until your have specified a
bus-functional model that will meet all of your requirements.

Implement. With the declaration and documentation of each task completed, the
implementation of the bus-functional model becomes a simple cod-
ing exercise. During the implementation, you will discover misun-
derstanding in the specification of the physical interface
specification. You will encounter functionality that cannot be
implemented as intended. You will find inconsistencies in the bus-
functional model specification. Update the transaction interface and
the documentation as required.

Procedural Interface vs Dataflow Interface

The task called 
may decide the 
transaction.

So far, all transaction-level interfaces shown in code samples were
procedural interfaces. The nature of transactions was determined by
the task being called. If I wanted to execute a read cycle, I simply
invoked a read task. If I wanted to execute a write cycle, I invoked
a write task. It is a simple model that works well on the stimulus
side, but breaks down quickly on the response or slave side. As
described in “Multiple Possible Transactions” on page 255, a trans-
action descriptor and a single task has to be used to deal with the
unpredictable nature of observed transactions.
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Tasks compli-
cate randomiza-
tion.

A procedural interface also starts to break down when random stim-
ulus is required. As described in “Random Stimulus” on page 307,
randomization and constraints in SystemVerilog are built on top of
the object-oriented framework and classes—and for good reasons
also explained in that section. Using a transaction descriptor makes
the transaction immediately randomizable and constrainable. A
procedural approach requires that the randomization be explicitly
modeled using random control flows and random variables, such as
randcase or $random. Procedural random description cannot lever-
age the constraint language nor the constraint solver built into Sys-
temVerilog.

Tasks compli-
cate transaction-
level connectiv-
ity.

In all previous examples, the testcases were implemented directly
on top of the bus-functional models connected to the physical inter-
faces of the DUV. Testcases “connected” to bus-functional models
by calling the tasks in their procedural interface. But what if those
testcases had to be run on a similar design with a slightly different
physical interface and thus a slightly different bus-functional
model? They would all have to be modified to change the old task
calls to the new ones.

A mailbox can 
be used as trans-
action-level
interface.

If the required transactions are described using a descriptor, all that
is required to have that transaction executed is to pass it to the bus-
functional model for execution. By using a mailbox to exchange
transaction descriptors, testcases and bus-functional models only
need to agree on a particular mailbox to exchange a particular
stream of transactions. Connecting to a different transactor simply
requires that the new transactor understands the same descriptors
and uses the same mailbox. None of the testcases need to be modi-
fied. Using a mailbox carrying transaction descriptors to connect
testcases and transactors is like using a wire carrying electrons to
connect two design components. 

Figure 5-22.
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Mailboxes are a 
transaction-level
interface.

Sample 5-75 shows a bus-functional model with a mailbox-based
transaction-level interface. The mailbox is the encapsulation mech-
anism for the transaction-level interface, much like the virtual
interface was the encapsulation mechanism for the physical-level
interface. In fact, compare the implementation of the two interface
levels in Sample 5-75 and Sample 5-60. Both are specified via the
constructor, both are maintained in a class property.  

Mailboxes 
enable transac-
tion-level bus-
functional mod-
els.

The traditional bus-functional models, like all the bus-functional
models shown so far, are physical-level bus-functional models.
They are tied to a specific physical-level interface and provide a
transaction-level interface to abstract the physical-level transac-
tions. With mailboxes providing a transaction-level connectivity
mechanism, bus-functional models need not be tied to physical
interfaces but can be purely implementation-independent transac-
tion-level bus-functional models. For example, the PCI Express

Sample 5-75.
Mailbox-based
transaction-
level interface

class bus_trans;
   enum {READ, WRITE} kind;
   ...
endclass: bus_trans;
typedef mailbox #(bus_trans) bus_trans_mbox;

class bus_master;
   ...
   bus_trans_mbox inbox;

   function new(...,
                bux_trans_mbox inbox);
      ...
      this.inbox = inbox;
      fork
         this.execute_thread();
      join_none
   endfunction: new

   local task execute_thread();
      forever begin
         bus_trans tr;
         this.inbox.get(tr);
         case (tr.kind)
            ...
         endcase
      end
   endtask: extecute_thread;
endclass: bus_master
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protocol has a well-defined Transaction Level (TL) and Datalink
Level (DL) behavior but no implementations. A TL and DL PCI
Express bus-functional model could be written as a pure transac-
tion-level BFM. These higher-level bus-functional models have a
transaction-level interface on both sides, as illustrated in Figure 5-
23.

Use a mailbox 
for each data 
stream.

A mailbox will transfer transaction descriptors, in order, from a
source to a destination. The source is the thread that calls the put()
method. The destination is the thread that calls the get() method.
There is no way to enforce the flow of transactions through a mail-
box. To avoid confusion, they should remain unidirectional, with
transactions flowing always in the same direction. Bus-functional
models that transmit and receive information should use two mail-
boxes: one for transmitted transactions and the others for received
transactions. Because transactions are transmitted in order, a bus-
functional model that has multiple priorities or different classes of
service should use one mailbox per priority or class of service. This
will avoid blocking a high-priority transaction because the mailbox
is filled with low-priority transactions.

Testbench 
requirements 
favor dataflow 
interfaces.

Notice how all of the arguments in this section had nothing to do
whatsoever with the physical protocol implementing the transac-
tions. All of the previous examples focused on the requirements of
those physical protocols and used a procedural interface to meet
them. But once you consider the needs of the testbench—the user of
the bus-functional model—it becomes apparent that a descriptor-
based interface is more useful.

See
vmm_channels.

The section titled “Tranaction-Level Interfaces” starting on page
171 of the Verification Methodology Manual for SystemVerilog
specifies a very flexible and powerful mailbox-like mechanism
called vmm_channels. It also shows how various completion mod-
els can be implemented using that mechanism.

You may start 
with a proce-
dural interface.

You may decide that your testcase requirements do not make a data-
flow transaction-level interface a worthwhile investment. You’d

Figure 5-23.
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rather stick to a procedural interface. That’s quite alright. But
remember that even procedural interfaces need to use transaction
descriptors—see section titled "Multiple Possible Transactions" on
page 255. If it turns out that a dataflow interface is required, it can
be added in front of a procedural interface. Simply add the code
shown in Sample 5-75 then invoke the appropriate task in the case
statement in the execute_thread() task.

What is a Transaction?

A transaction is 
an atomic opera-
tion.

Earlier in this chapter, a transaction was defined as an operation on
a physical interface. With mailboxes allowing bus-functional mod-
els to be free from physical interfaces, a transaction becomes a
more generic concept. A transaction is the smallest  operation or
data transfer that can be executed to completion by a bus-functional
model. Note that what is “smallest” for a high-level bus-functional
model can be divided into smaller lower-level transactions, which
are in turn the smallest operations that can be executed on a lower-
level bus-functional model. For example, a transaction for a USB
function BFM is an entire USB transfer, which is implemented by
executing USB transactions on a USB device BFM which is in turn
implemented by transmitting and receiving USB packets on a USB
port BFM which is implemented by toggling or monitoring a physi-
cal signal.

Transactions can 
transfer a vari-
able number of 
bytes.

Most of the transactions used so far were simple fixed-size transac-
tions. The amount of data transmitted to or from the design was
identical in each occurrence of the transactions. For example, an
RS-232 interface always transmits a single byte. Most physical
interfaces nowadays deal with variable-length data. For example,
all ethernet interfaces deal with MAC frames between 64 and 1,518
bytes long. In a PCI interface, the maximum number of bytes that
can be transferred in a read or write cycle is not even specified. A
variable-length protocol can be built on top of a fixed-length physi-
cal interface. For example, a PPP transaction over an RS-232 link
will transmit and receive variable-length packets, one byte at a
time. How do you design a transaction interface that can handle
those differences? The easiest solution is to provide enough mem-
ory for the largest amount of data and a “length” specification indi-
cating how many data elements are actually valid. But always
specifying the maximum number of data is inefficient and wastes
memory.
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Use a queue or 
an array.

Use a queue or an array as part of the transaction descriptor or as
the type of the task argument. Sample 5-76 shows the implementa-
tion of an ethernet frame, using an array for the variable data. Sam-
ple 5-77 shows that same variable-length ethernet frame used as an
argument of a task, making it possible to send ethernet frames of
any (even invalid) lengths efficiently. Sample 5-78 shows that same
variable-length ethernet frame used in a mailbox-based transaction-
level interface   

How do we 
know when and 
how a transac-
tion completed?

Monitors report on observed transactions, including any error that
may have occured. Status class properties in the transaction
descriptor reported by the monitor indicate the status of the transac-
tion. A monitor may even choose to filter out bad transactions as
they would not be recognized by the design anyway. But what
about stimulus transactions? It is easy to determine which transac-
tion to execute and, for master bus-functional models, when to exe-

Sample 5-76.
Variable-
length transac-
tion descriptor.

class eth_frame;
   bit [47:0] da;
   bit [47:0] sa;
   bit [15:0] len_typ;
   bit [ 7:0] data[];
   bit [31:0] fcs;
   ...
endclass: eth_frame
typedef mailbox #(eth_frame) eth_frame_mbox;

Sample 5-77.
Using a vari-
able-length
transaction 
descriptor.

class mii_mac_bfm;
   ...
   task send(eth_frame fr);
      ...
   endtask: send
   ...
endclass: mii_mac_bfm

Sample 5-78.
Using a vari-
able-length
transaction 
descriptor with 
mailboxes.

class mii_mac_bfm;
   ...
   function new(...,
                eth_frame_mbox tx,
                eth_frame_mbox rx);
      ...
   endfunction: new
   ...
endclass: mii_mac_bfm
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cute them. But how do we know when their execution has
completed and whether or not they executed succesfully?

Blocking Transactions

The transaction 
completes when 
the task returns.

In a procedural interface, the unspoken assumption was that, when
the task used to execute a transaction returned, the transaction exec-
tion was completed. The task could also include output arguments
to report on the execution status.

Supports in-
order transac-
tions only.

This execution and completion model can only support in-order
transactions. Because of the blocking nature of the procedural inter-
face, it is not possible to submit multiple transactions and let the
bus-functional model choose which one to execute next. If out-of-
order execution is required, then a different mechanism for indicat-
ing the completion and status of a transaction is needed.

put() cannot 
implement
blocking trans-
actions.

In a dataflow interface, transactions are submitted for execution in a
mailbox by calling its put() method. However, for put() to block,
the mailbox must already be full—i.e. there must already be a trans-
action currently being executed. When the mailbox is empty, put()
immediately returns before the bus-functional model even has had a
chance to execute it. Furthermore, a mailbox can be configured as
full with more than one transaction descriptor in it or even to be
unbounded, causing repeated invocations of put() to immediately
return. Therefore, you cannot assume that the transaction has com-
pleted once put() returns.

See the VMM. The section titled “In-Order Atomic Execution Model” starting on
page 177 of the Verification Methodology Manual for SystemVer-
ilog shows how a vmm_channel can be used to implement blocking
transactions

Nonblocking Transactions

Transactions 
may be executed 
without block-
ing the test-
bench.

What if the testbench needs to be able to perform other tasks while
transactions are being executed? With a blocking procedural inter-
face, an additional thread and a completion indication must be cre-
ated to allow the execution of the testcase to continue, as shown in
Sample 5-79.
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Signal the com-
pletion in the 
descriptor.

This same mechanism can be encapsulated in the transaction
descriptors used by the dataflow transaction-level interface. The
completion of the transaction is indicated by triggering the event in
the transaction descriptor, as shown in Sample 5-80. The bus-func-
tional model can also annotate the transaction descriptor with status
information that will be assumed valid and available to the test-
bench once the event has been triggered. The testcase, after submit-
ting the transaction to the mailbox, simply waits for the event to be
triggered, as shown in Sample 5-81.   

Sample 5-79.
Forking a 
blocking inter-
face.

initial
begin
   bus_status status;
   event      done;
   fork
      begin
         bfm.read(..., status);
         -> done;
      end
   join_none
   ...
end

Sample 5-80.
Event-based
transaction 
completion

class bus_trans;
   enum {READ, WRITE} kind;
   ...
   event done;
   enum {UNKNOWN, OK, ERROR} status = UNKNOWN;
endclass: bus_trans;
typedef mailbox #(bus_trans) bus_trans_mbox;

class bus_master;
   ...
   local task execute_thread();
      forever begin
         bus_trans tr;
         this.inbox.get(tr);
         case (tr.kind)
            ...
         endcase
         tr.status = ...;
         -> tr.done;
      end
   endtask: extecute_thread;
endclass: bus_master
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Blocking is a 
special case.

A blocking transaction is a special case of a nonblocking transac-
tion. It can be implemented my immediately waiting for the trans-
action completion indication, as shown in Sample 5-81.

Supports out-of-
order execution.

This transaction completion and status indication mechanism can
support an out-of-order transaction execution model. Multiple
transactions can be submitted, either by calling the procedural inter-
face multiple times1, or by submitting multiple transaction descrip-
tors in the input mailbox.

See the VMM. The section titled “Out-of-Order Atomic Execution Model” starting
on page 182 of the Verification Methodology Manual for System-
Verilog shows how a vmm_channel can be used to implement non-
blocking transactions

Split Transactions

Transactions 
may be com-
posed of sub-
transactions.

Many high-performance bus protocols have split transactions. For
example, a read transaction could be composed of separate address
and data tenures. The bus master can perform the address tenure.
While the target device performs the work and buffers data, the
master can perform other bus transactions to other devices. The
master either polls or is interrupted by the first device when it is
ready to complete the read transaction. The master then performs
the second tenure, transferring data from the device, completing the
read transaction. The same target device may be able to handle sev-
eral split and non-split transactions concurrently. Split transactions
may also include out-of-order completion.

Sample 5-81.
Waiting for 
transaction 
completion

initial
begin
   bus_trans tr = new();
   tr.kind = READ;
   ...
   inbox.put(tr);
   @tr.done;
   if (tr.status != bus_trans::OK) ...
   ...
end

1. Make sure the task is declared as automatic or these concurrent invoca-
tions will clobber each other! See section titled "Non-Re-Entrant Tasks" 
on page 188.
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Provide tenure 
procedures.

Whatever transaction-level interface you decide on, the bus-func-
tional model will have to perform those tenures. They should be
implemented as separate sub-transactions. As long as they exist,
you should make them public to enable a testbench to have detailed
control over the atomic tenures on the physical interface. For exam-
ple, a testbench may need to create a specific sequence of tenures
and transactions to exercise a particular corner case. If the testbench
is too far removed from the physical interface, it may not be possi-
ble to create. The low-level tenure sub-transactions should be used
only by the very few testcases responsible for verifying the physical
interface logic.

Provide an inter-
face to the com-
plete 
transactions.

For any verification project, the bulk of the testcases are concerned
with higher-level functionality, not physical interface logic. They
do not depend on the split nature of the transaction and do not
require detailed control of the physical interface. Having to deal
with the tenures would make writing those testbenches tedious and
cumbersome. You should provide an interface to the split transac-
tion that makes it look like an atomic operation. Internally, it would
execute the tenures as required. But from the testbench’s perspec-
tive, it would appear like an ordinary transaction. The transaction
execution would wait until the split transaction completes and
returns with the completed data and status.

Provide non-
blocking trans-
action interface.

To support a mix of split and non-split transactions, with non-split
transactions executing between the tenures of a split transaction,
you should provide a nonblocking transaction interface. A proce-
dural transaction-level interface may very well wait while the initial
tenure of the split transaction is applied. But it should be nonblock-
ing in that it would not wait for the completion of the split transac-
tion. It would return instead with an indication of the status of the
split transaction—whether it was accepted by the target device—
and a mechanism for alerting the testbench that the transaction has
been completed. Sample 5-82 shows an implementation of such a
procedural interface: the response of the task is a reference to a
transaction completion descriptor that contains completion and sta-
tus indication. Sample 5-83 shows how such a procedure would be
used. It is easy to fork separate threads that will wait for the com-
pletion of the split transaction and verify their correctness. Imple-
menting a nonblocking transaction completion mechanism using a
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mailbox-based interface has already been shown in the previous
section.           

See the VMM. The section titled “Non-Atomic Transaction Execution” starting on
page 185 of the Verification Methodology Manual for SystemVer-
ilog shows how vmm_channels can be used to implement split
transactions.

Sample 5-82.
Nonblocking 
procedural
transaction 
interface

class split_read_resp;
   enum {DECLINED, PENDING, RETRY, ABORT, OK}
      status;
   bit [7:0] data[];
   event completed;
endclass: split_read_resp

class bfm;
   ...
   task split_read(input  bit [23:0] addr,
                   input  int len,
                   output split_read_resp resp);
      resp = new;
      if (this.setup_split_read(addr, len)) begin
         resp.status = DECLINED;
         return;
      end
      resp.status = PENDING;
      this.register_split_read(addr, len,
                               result);
   endtask: split_read
endclass: bfm

Sample 5-83.
Using a non-
blocking pro-
cedural trans-
action-level 
interface

split_read_resp resp;

master0.split_read(‘h000FFF, 32, resp);
if (resp.status == split_read_resp::PENDING)
   fork
      check_split_response(0x000FFF, 32, resp);
   join_none
...
task check_split_response(bit [23:0]      addr,
                          int             len,
                          split_read_resp resp);
   @resp.completed;
   if (data.size() != len) ...
   ...
endtask: check_split_response
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Exceptions

Transactions 
may be retried.

In many protocols, transactions may fail not because they are
invalid but because one of the parties involved in the transaction is
busy or is out-of-sync. The transaction should be retried at a later
time. Only after a certain number of retries is a transaction consid-
ered failed. Should the bus-functional model do the retrying or
should you let the testbench worry about it?

Let the bus-
functional 
model do the 
retry.

The bus-functional model should make its best possible effort to
complete a transaction. That includes retrying transactions that did
not complete initially. Testbenches should not be burdened with the
repetitive retry operations. On the other hand, a testbench may need
to have control over the number of retries, or whether to even allow
a transaction to be retried. The transaction-level interface could
have a parameter specifying the maximum number of attempts.
Once the transaction has been tried for the specified number of
attempts, it is considered failed. A testbench that does not wish a
transaction to be retried would simply specify a single attempt. A
default value for the number of attempts (usually specified in the
protocol) could also be provided so it would not need to be speci-
fied for each invocation—only when a different value is required.
Sample 5-84 shows an example of an MII ethernet procedural inter-
face with control over the number of transmission attempts. 

Can add excep-
tion controls to 
transaction
descriptor.

If a dataflow interface is used, the additional parameters can be
included in the transaction descriptor, as shown in Sample 5-85.
That is fine if there is a one-to-one correspondence between the
transaction descriptor and the bus-functional model that can inject

Sample 5-84.
Retried trans-
action

class eth_mac_bfm;
   ...
   task send(input  mac_frame frame,
             output bit       success,
             input  int       attempts = 10);
      while (attempts-- > 0) begin
         ...
            success = 1;
            return;
         ...
      end
      success = 0;
   endtask: send
endclass: eth_mac_bfm
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or report the exception. But what if the same transaction descriptor
can be used on different bus-functional models and protocol, each
with different exceptions? For example, an ethernet frame can be
transmitted using MII, RMII, SMII, GMII, XGMII or XAUI physi-
cal interfaces, each with their specific exceptions. Should the ether-
net frame descriptor thus contain the necessary exception controls
for all of these physical interfaces?  

Transactions are 
composed of 
physical sym-
bols.

For most interfaces, the transaction data is not transmitted in paral-
lel, in a single cycle. Instead, the transaction data is divided into
symbols transmitted sequentially over multiple cycles. For exam-
ple, a byte transmitted over an RS-232 physical interface is trans-
lated into one-bit symbols. An ethernet frame is transmitted as 4-bit
symbols on a MII interface and as 2-bit symbols on a RMII inter-
face. Some symbols may be added to the transaction data by the
protocol for framing, synchronization, or error protection. For
example, an ethernet frame is prefixed with an 8-byte preamble and
a USB packet is prefixed with an 8-bit synchronization pattern.

Symbol-level
parameters must 
be controllable.

For each symbol, a protocol usually has several possible excep-
tions, as well as symbol-level flow control and status indication.
But a transaction-layer interface deals with information for the
entire transaction, not individual symbols. This is fine when verify-
ing functionality that resides behind the interface. But when verify-
ing the implementation of the interface itself, it is necessary to have
detailed control over all relevant symbol-level parameters. One
possible solution is to provide symbol-level parameters for each
symbol necessary to execute a transaction in the transaction-level
interface or transaction descriptor, as shown in Sample 5-86.  

Interpret the 
exception con-
trols when exe-
cuting the 
transaction.

The bus-functional model simply needs to look at the appropriate
exception controls and execute them when appropriate, as shown in
Sample 5-87. Although you should plan for all exceptions required
by your verification plan, there is no need to implement all of them

Sample 5-85.
Exception
controls in 
transaction 
descriptor.

class eth_frame;
   ...
   event done;
   bit success,

   int attempts = 10;
   ...
endclass: eth_frame
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at once. You should start with a bus-functional model that cannot
inject any exceptions and get the basic functionality of the design
debugged first. Once the design’s reaction to exceptions must be
verified, implement them as needed. 

All exceptions 
must be imple-
mented in the 
model.

This approach is simple and direct. But it requires that either the
exception and its control already exist in the bus-functional model,
or that you are able to modify the bus-functional model to add a
new exception to it. What if you do not have access to the source
code of the bus-functional model and it does not support the excep-
tion you need? What if your job is to create a reusable bus-func-
tional model and you do not want users constantly modifying—and
breaking—your model yet you do not want to always have to add
new exceptions to it?

Sample 5-86.
Symbol-level
exception con-
trols in trans-
action descrip-
tor.

class mii_symbol_except;
   enum {NONE, SKIP, CORRUPT, DISABLE} kind;
endclass: mii_symbol_except

class eth_frame;
   ...
   event done;
   bit success,

   int attempts = 10;
   mii_symbol_except mii_exceptions[int];
   ...
endclass: eth_frame

Sample 5-87.
Executing
symbol-level
exceptions

class mii_mac_bfm;
   task send(eth_frame fr);
      bit [3:0] symbols[];
      ...
      foreach (symbols[i]) begin
         if (fr.mii_exceptions.exists[i]) begin
            ...
         end
         ...
      end
      ...
   endtask: send
endclass: mii_mac_bfm
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A bus-functional 
model can exe-
cute user-
defined code.

What if a bus-functional model could be extended with user-
defined code? This would mean that the user could make it do
things it was not originally coded to do. It would mean it would not
have to be able to do everything from day one. It would mean a
simpler bus-functional model that could meet the unpredictable
needs of different verification environments. Callbacks allow bus-
functional models to execute user-defined code. Callbacks are
invoked by the bus-functional models at appropriate points in the
execution of the transaction. In C, callbacks are implemented using
pointers to functions. But pointers to functions do not exist in Sys-
temVerilog. Experienced C users often point to this apparent lack as
a fatal flaw in SystemVerilog. They are wrong. In an object oriented
programming model, virtual methods are used instead of pointers to
functions. And SystemVerilog supports those just fine.

Use virtual call-
back method.

In SystemVerilog, callbacks are implemented using virtual meth-
ods. The default implementation of a callback should be to return
an innocuous value to eliminate the requirement that all testbenches
overload the callback method to render a bus-functional model
functionally correct. Testbench-specific code can replace the
default implementation by providing an overloaded definition in a
derived class. Information can be passed between the bus-func-
tional model and the callback method through arguments or through
public or protected class properties. Sample 5-88 shows a callback
invoked just before an ethernet frame is to be transmitted by a MII
interface. The callback is extended in a testbench, as shown in Sam-
ple 5-89, to introduce a delay before the transmission of every
frame. The bus-functional model in Sample 5-88 is able to accept
only one callback extension. The cbs class property could be made
into a queue to accept a series of callback extensions, each dealing
with different aspects of a testcase or testbench.       

Callbacks can 
modify default 
behavior.

It is easy to write a bus-functional model that implements and exe-
cutes a protocol as fast as possible and without any errors. But
when it comes time to verify the design interfacing to that protocol,
that is not the most interesting. You need to be able to make the
bus-functional model deviate from its default behavior. Callbacks
can be used to do that. The nice thing about callbacks is that you
need not extend them. So by default, a bus-functional model will
operate as fast as possible and without errors. But for those times
where you need it to do something different, a callback is there to
give you that control. For example, as shown in Sample 5-89, a
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callback can be used to potentially modify the answer of a USB
device to an IN transaction. By default, the answer is an ACK. But
the callback can be extended to answer with a NAK, STALL or not
answer at all. 

Provide symbol-
level callbacks.

Callbacks can be defined to provide controllability down to the
symbol level. Before transmitting or receiving a symbol, a callback
should be called with the necessary arguments to let a testbench
modify the default symbol-level behavior. For example, Sample 5-
91 shows a symbol-level callback method for a slave PCI memory

Sample 5-88.
Bus-func-
tional model 
callback
method

class mii_mac_cbs;
   virtual task pre_frame_tx(mii_mac_bfm bfm,
                             eth_frame    fr,
                             ref bit      drop);
   endtask: pre_frame_tx
   ...
endclass mii_mac_cbs

class mii_mac_bfm;
   mii_mac_cbs cbs = null;
   ...
   task send(eth_frame fr);
      if (this.cbs != null) begin
         bit drop = 0;
         this.cbs.pre_frame_tx(this.fr, drop);
         if (drop) return;
      end
   endtask: send
   ...
endclass: mii_mac_bfm

Sample 5-89.
Overloading
the callback 
method

class my_mii_mac_cbs extends mii_mac_cbs;
   virtual task pre_frame_tx(mii_mac_bfm bfm,
                             eth_frame   fr,
                             ref bit     drop);
      repeat (10) @(bfm.sigs.tx);
   endtask: pre_frame_tx
endclass: my_mii_mac_cbs

initial
begin
   my_mii_mac_cbs cb = new;
   bfm.cbs = cb;
   ...
end
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read interface. It controls symbol-level flow control by introducing
time advances that will delay the assertion of the target-ready sig-
nal. It also controls byte-enable indications, has the possibility of
aborting the transaction or signaling a parity error for this symbol.

Sample 5-90.
Callback to 
modify default 
behavior

class usb_trans;
   typedef enum {ACK, NAK, STALL, NONE} answer;
   ...
endclass: usb_trans
...
class usb_device_cbs;
   virtual function void
      pre_in_ack(usb_device_bfm        bfm,
                 usb_trans             tr,
                 ref usb_trans::answer answ);
   endtask: pre_in_ack
endclass: usb_device_cbs

Sample 5-91.
Symbol-level
callback
method

class pci_slave_cbs;
   virtual task pre_symbol(ref bit [31:0] data,
                           ref bit [ 3:0] be,
                           ref bit        abort,
                           ref bit        perr);
   endtask: pre_symbol
endclass pci_slave_cbs

class pci_slave_bfm;
   ...
   task mem_read_tx();
      ...
      while (...) begin
         ...
         this.sigs.trdy <= 1’b1;
         if (this.cbs != null)
            this.cbs.pre_symbol(data, be,
                                abort, perr);
         if (abort) begin
            this.sigs.abrt = 1’b0;
            return;
         end
         this.sigs.trdy   <= 1’b0;
         this.sigs.data   <= data;
         this.sigs.cmd_be <= be;
         ...
      end
      ...
   endtask: mem_read_tx
endclass: pci_slave_bfm
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Use symbol-
level callbacks 
to inject symbol-
level errors.

From the transaction-level interface, it is simple to inject transac-
tion-level errors such as a bad CRC or a packet that is too short. But
how can you inject errors at the symbol level, such as corrupting a
symbol, violating the handshake protocol or unexpectedly terminat-
ing a transaction? As long as you have control over the symbol-
level parameters in a callback, why not take this opportunity to use
the symbol-level callback to inject symbol-level errors? Simply add
parameters to the symbol-level callback methods for the errors that
can be injected. By default, they are set to not inject any errors. If
they are not modified in the callback, no errors will be injected.

Sample 5-92 shows the transaction-level and symbol-level call-
backs for a MII ethernet interface. From the symbol-level callback,
it is possible to corrupt the symbol, cause the TX_EN signal to be
deasserted, cause the TX_ER signal to be asserted or abort the
frame altogether. When implementing a bus-functional model, it is
necessary to provide every mechanism for breaking the protocol
that the design should be able to sustain.          

Time may not be 
allowed to 
advance during 
a callback.

Is time allowed to advance inside a callback—i.e. can a callback
method be blocking? The answer is: It depends. If the transaction
protocol includes handshaking and flow-control indicators, it is
possible to have time advance while a callback is executed. This
would introduce delays in the execution of the protocol. Other
transaction protocols may suffer a total breakdown if any delay is
introduced, in which case the callback must execute and return in
zero-time.

Sample 5-92.
Transaction 
and symbol-
level call-
backs.

class mii_mac_cbs;
   virtual task pre_frame_tx(mii_mac_bfm bfm,
                             eth_frame   fr,
                             ref bit     drop);
   endtask: pre_frame_tx

   virtual function void
      pre_symbol_tx(mii_mac_bfm bfm,
                    eth_frame   fr,
                    ref bit [3:0] symbol,
                    ref bit       tx_en,
                    ref bit       tx_er,
                    ref bit       abort);
   endfunction: pre_symbol_tx
   ...
endclass mii_mac_cbs
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SystemVerilog has a built-in mechanism for enforcing time restric-
tions on callbacks: Use a task for callback methods that are allowed
to advance time and use a function returning a void type for call-
back methods that must execute in zero-time. For example, as
shown in Sample 5-92, delay can be inserted before the transmis-
sion of an ethernet frame, but once it has started, no delays can be
introduced before a symbol is transmitted.

See the VMM. The section titled “Callback Methods” starting on page 198 of the
Verification Methodology Manual for SystemVerilog provides
detailed guidelines for implementing callbacks in transactors.
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SUMMARY

Model your clock signals in a module. Be careful about time resolu-
tion issues, delta cycle alignment and implicit synchronization of
asynchronous signals.

Encapsulate repetitive physical-level operations into bus-functional
tasks. Collect all of the bus-functional tasks for a physical interface
or protocol into a bus-functional model. Detect concurrent activa-
tion of bus-functional tasks within the same bus-functional model
using a semaphore.

Design an effective transaction-level interface with a suitable trans-
action completion and status notification mechanism.

Provide callbacks in bus-functional models and response monitors
to enable access to symbol-level protocol parameters and inject
symbol-level errors.
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CHAPTER 6 ARCHITECTING 
TESTBENCHES

A testbench need not be a monolithic block. Although Figure 1-1
shows the testbench as a large thing that surrounds the design under
verification, it need not be implemented that way. The design is
also shown in a single block, and it is surely not implemented as a
single unit. Why should the testbench be any different? Figure 6-1
depicts the architecture of a generic testbench. In this chapter, I will
describe how to implement each component.  

The previous 
chapter was 
about low-level 
testbench com-
ponents.

In Chapter 5, we focused on the stimulus and monitoring of the
low-level signals going into and coming out of the device under
verification. I showed how to abstract them into transactions using
bus-functional models. The emphasis was on the stimulus and
response of interfaces and the need for managing separate execu-
tion threads underneath a useful transaction-level interface. If you

Figure 6-1.
Typical 
testbench 
architecture

Self-Checking

Design
under
Verif.

Bus
Funct.
Model

Bus
Funct.
Model

Data & Cfg
Stimulus

Test Function

Verification Harness
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prefer a bottom-up approach to writing testbenches, I suggest you
start with the previous chapter.

This chapter 
focuses on the 
structure of the 
testbench.

This chapter concentrates on implementing the many testcases and
filling the functional coverage models that were identified in your
verification plan. I show how best to structure the bus-functional
models into a transaction-level verification harness. This verifica-
tion harness will create the platform on top of which the self-check-
ing structure and stimulus sources will be built. I also describe how
to create random generators that can be constrained easily, with a
minimum of modifications, to create a complete verification envi-
ronment.

A hypothetical 
design will be 
used to illus-
trate the con-
cepts.

Figure 6-2 shows the interfaces around a hypothetical ATM switch
node design. A management interface allows a processor to read
and write internal registers to configure the switch node. The bus-
functional models shown in Sample 6-1 and Sample 6-2 are also
assumed to be available. This design and bus-functional models
will be used throughout this chapter to illustrate important con-
cepts.    .  

VERIFICATION HARNESS

Create a transac-
tion-level verifi-
cation harness.

All of the testbenches have to interface through an instantiation to
the same design under verification. It is safe to assume that they all
require the use of the same bus-functional models to generate stim-
ulus and to monitor response. Instead of a monolithic block, the
testbenches should be designed with a layer of physical-level bus-
functional models. This physical-level layer, common to all test-
benches for the design under verification, is called the verification
harness. The test functions required to implement the testcases
identified in the verification plan are built on top of the verification

Figure 6-2.
4x4 ATM 
switch design

Utopia L1
Utopia L1
Utopia L1
Utopia L1

Utopia L1
Utopia L1
Utopia L1
Utopia L1

Management

4 x 4
ATM Switch

Node

Clock, reset



 
 
 
 
 

Sample 6-1. 
Utopia Level 1 
ATM-layer  
bus-functional 
model 

 
 
 
 
 
class atm_cell; 
   ... 
endclass: atm_cell 
... 
interface utopia_L1_if; 
   logic       clk; 
   logic [7:0] data; 
   logic       soc; 
   logic       enb; 
   logic       clav; 
 
   clocking cb @ (posedge clk); 
      ... 
   endclocking: cb 
endinterface: utopia_L1_if; 
... 
class utopia_L1_atm_bfm; 
   ... 
   extern function 

 
 
Verification Harness 

 
 
 
 
 
 
 
Sample 6-2. 
Management 
interface bus- 
functional 
model 

 
 
 
 
 
 
 
 
 
 
 
 
 
Encapsulate the 
verification har- 
ness. 

      new(virtual utopia_L1_if tx_sigs, 
          virtual utopia_L1_if rx_sigs); 
   extern task send(atm_cell cell); 
   extern task receive(output atm_cell cell); 
endclass: utopia_L1_atm_bfm 
 
 
interface utopia_mgmt_if; 
   logic [15:0] addr; 
   logic [15:0] data; 
   logic        rd; 
   logic        wr; 
   logic        rdy; 
endinterface: utopia_mgmt_if 
... 
class utopia_mgmt_master_bfm; 
   ... 
   extern function 
      new(virtual utopia_mgmt_if sigs); 
   extern task write(input bit [15:0] wadd, 
                     input bit [15:0] wdat); 
   extern task read(input  bit [15:0] radd, 
                    output bit [15:0] rdat); 
endclass: utopia_mgmt_master_bfm 

harness, as illustrated in Figure 6-3. The test function and the har- 
ness together form a testbench. 

The encapsulation of a transaction-level verification harness is rela- 
tively simple. The design under verification, the clock generators 
and the top-level signals and interfaces are instantiated in a top- 
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level module. The bus-functional model instances and their connec-
tivity to the interface instances are encapsulated in a program or a
class eventually instantiated in a program. The various test func-
tions then instantiate the encapsulated verification harness.
Figure 6-4 depicts the structure of the verification harness for the
ATM switch node and the location of the components in the top-
level module or encapsulating program or class.

Interface 
instances and 
DUV in top-
level module.

The design under verification and the wires connecting to its top-
level pins are instantiated in the top-level module. The clock gener-
ators are also coded in that same module. This will ensure that the
design is simulated as a set of module threads. The top-level mod-
ule for the example design is shown in Sample 6-3.  

Figure 6-3.
Structure of a 
transaction-
level testbench
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module top; 

 
 
Verification Harness 

Sample 6-3. 
Top-level  
module for 
ATM switch  
node 

 
 
 
 
 
 
 
Bus-functional 
models in top- 
level program or  
class. 

 
 
 
 
 
 
 
Sample 6-4. 
Top-level pro- 
gram for ATM 
switch node 

 
 
 
 
 
 
 
 
 
 
Test functions 
use transaction 
interfaces in the 
verification har- 
ness. 

utopia_L1_if   tx_0(), tx_1(), tx_2(), tx_3(); 
utopia_L1_if   rx_0(), rx_1(), rx_2(), rx_3(); 
utopia_mgmt_if mgmt(); 
... 
reg            reset = 0; 
reg            clk   = 0; 
 
switch_node dut(tx_0.clk, ..., clk, reset); 
 
always #5 clk = ~clk; 
 
endmodule: top 

 
The bus-functional models are instantiated in a top-level program 
or class that will eventually be instanted in a program. This ensures 
that the testbench executes as program threads and can reliably 
react to events and assertions in the design. Sample 6-4 shows the 
bus-functional models instantiated in a program whereas Sample 6- 
5 shows them instantiated in a class. Both look very similar but I 
prefer to use a class as it has a few advantages over a program 
which will be discussed in the next section.      

 

program harness; 
 
utopia_L1_bfm  atm0 = new(top.tx_0, rx_0); 
utopia_L1_bfm  atm1 = new(top.tx_1, rx_1); 
utopia_L1_bfm  atm2 = new(top.tx_2, rx_2); 
utopia_L1_bfm  atm3 = new(top.tx_3, rx_3); 
utopia_mgmt_bfm cpu = new(top.mgmt); 
 
task reset; 
   top.rst <= 1; 
   repeat (3) @(negedge top.clk); 
   top.rst <= 0; 
endtask 
 
endprogram 

 

A complete verification harness provides a transaction-level 
abstraction of the design to be verified. It provides a foundation on 
which the data generation mechanism, the self-checking structure 
and the functional coverage measurements are built. Test functions 
are implemented by using the transaction-level interface elements 
in the bus-functional models and verification harness itself. These 
interface elements are accessed using hierarchical references in a 
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class harness; 

Sample 6-5. 
Top-level  
class for ATM  
switch node 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sample 6-6. 
Test function 
using a verifi- 
cation harness 

 
 
 
 
 
 
 
 
 
 
See the VMM. 

   utopia_L1_bfm   atm0 = new(top.tx_0, rx_0); 
   utopia_L1_bfm   atm1 = new(top.tx_1, rx_1); 
   utopia_L1_bfm   atm2 = new(top.tx_2, rx_2); 
   utopia_L1_bfm   atm3 = new(top.tx_3, rx_3); 
   utopia_mgmt_bfm cpu  = new(top.mgmt); 
 
   task reset; 
      top.rst <= 1; 
      repeat (3) @(negedge top.clk); 
      top.rst <= 0; 
   endtask 
 
endclass: harness 

 

single instance of the verification harness. Sample 6-6 shows a par- 
tial test function that configures the device then injects an ATM cell 
in one of the ports. 

 

program my_test; 
 
harness th = new; 
 
initial 
begin 
   atm_cell cell; 

th.cpu.write(16’h0001, 16’h0010); 
   ... 

th.atm0.send(cell); 
   ... 
   $finish; 
end 
 
endprogram: my_test 

 

The section titled “Testbench Architecture” starting on page 104 of 
the Verification Methodology Manual for SystemVerilog provides 
additional techniques and guidelines for architecting a verification 
harness and test functions. 

 

DESIGN CONFIGURATION 
 
Most designs 
require configu- 
ration. 
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Unless you are verifying a very simple design, or an implementa- 
tion unit of a much larger design, it will be necessary to perform 
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Avoid using one 
or two configu- 
rations. 

 
 
Design Configuration 

 

certain configuration operations before it will be possible to apply 
stimulus to and observe response from the design. Configuration 
may be as simple as enabling some data path, or it may be as com- 
plicated as generating, then downloading, firmware code. It may 
involve writing to internal registers, writing to an embedded mem- 
ory or setting external pins to particular levels. 

Because of the often complex nature of a device configuration, it is 
not unusual for verification to proceed with only one or two device 
configurations. Device configurations are maintained as a series of 
register write operations that “magically” produce a configuration. 
The testbenches are then written according to the configuration 
usually loaded. Unfortunately, this will likely prevent some bugs 
from being uncovered. Some unexpected correlation may exist 
between different configuration parameters. If these parameters are 
not exercised, the correlation will not be highlighted. 

 

Abstracting Design Configuration 
 
Model the con- 
figuration. 
 
 
 
 
 
 
 
 
 
 
 
 
 

A harness class 
is easier to make 
configurable. 

Instead of relying on an implicit knowledge of the current design 
configuration, why not create a high-level model of the config- 
urable elements of the design? That model could then be used by 
the self-checking structure (see “Self-Checking Testbenches” on 
page 292) to determine the correctness of the response. For exam- 
ple, a design could have an input pin that can be used to select 
between two different management interfaces. As illustrated in 
Sample 6-7, you can use an enumerated type to model the currently 
selected interface. That enumerated type can then be passed to the 
verification harness to instantiate the proper bus-functional model 
based on the interface configuration. The verification harness 
would also use the value to determine the polarity used to drive the 
interface selection pin. 

If the configurability of the device requires a configurable verifica- 
tion harness, putting the harness in a class will make implementing 
and controlling the configuration much easier than in a program. A 
program is like a module. The structure of a program is more or less 
predefined and can only be controlled during elaboration using if- 
and for-generate statements. Once the simulation has started, the 
structure of the verification harness program cannot be modified. 
The structure of a class, on the other hand, is determined at run- 
time by its constructor. When implementing the constructor, you 
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class utopia_mgmt_intel_bfm 

Sample 6-7. 
Modeling 
interface con- 
figuration 
using e 
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   extends utopia_mgmt_bfm; 
   ... 
endclass: utopia_mgmt_intel_bfm 
 
class utopia_mgmt_motorola_bfm 
   extends utopia_mgmt_bfm; 
   ... 
endclass: utopia_mgmt_motorola_bfm 
... 
class device_cfg; 
   enum {INTEL, MOTOROLA} mgmt_mode; 

   ... 
endclass: device_cfg 
 
class harness; 
   ... 
   utopia_mgmt_bfm cpu;; 
   ... 
   function new(device_cfg cfg); 
      case (cfg.mgmt_mode) 
      device_cfg::INTEL: begin 
         utopia_mgmt_intel_bfm m = new(...); 
         this.cpu = m; 
         top.int_mot = 0; 
      end 
      device_cfg::MOTOROLA: begin 
         utopia_mgmt_motorola_bfm m = new(...); 
         this.cpu = m; 
         top.int_mot = 1; 
      end 
      endcase 
   endfunction 
   ... 
endclass: harness 

 

have access to the full power of the SystemVerilog language to 
determine how to construct the verification harness. And because it 
is constructed at runtime, not elaboration time, it is possible to have 
the testcase influence the configuration of the design and the verifi- 
cation harness before it is constructed. That is why I prefer to 
encapsulate my verification harnesses in classes rather than pro- 
grams. As a secondary benefit, I have access to the object-oriented 
programming features of the harness class to make testcase-specific 
extensions to the harness or create a harness base class where I can 
locate device-independent functionality. 
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See vmm_env. 
 
 
 
 
Do not model 
the implementa- 
tion of the con- 
figuration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sample 6-8. 
Modeling con- 
figuration 
function, not 
implementa- 
tion 

 

Collect all 
device configu- 
ration informa- 
tion in a single 
class. 
 
 
 
 
Design configu- 
ration may 
include test con- 
figuration. 

 
 
Design Configuration 

 

The section titled “Simulation Control” starting on page 124 of the 
Verification Methodology Manual for SystemVerilog defines a base 
class vmm_env and usage guidelines for creating a verification har- 
ness class. 

Even though the configuration of the device is expressed in terms 
of ones and zeroes in various bit fields in various registers, it is not 
necessary to use the same approach when modeling a device con- 
figuration. Instead of maintaining an image of the register values, 
model the purpose and function of the configuration. A high-level 
description of the device configuration will be much easier to use in 
the self-checking structure and won’t necessitate the interpretation 
of low-level bit fields. 
 
For example, the configuration of the switch table in the example 
ATM switch node design could be implemented as a series of bits in 
a register. If bit x in register y is set, then any cell with a VPI value 
equal to y is forwarded to output port x. As shown in Sample 6-8, 
the same information can be modeled in a more abstract fashion by 
using an array of a queues of integers. Cells with a VPI value of y 
are forwarded to all ports whose number is found in the queue at 
index y of the array. 

 

class to_ports; 
   bit [1:0] number[$]; 
endclass: to_ports 
class device_cfg; 
   ... 
   to_ports table[256]; 
   ... 
endclass: device_cfg; 

 
As shown in Sample 6-7 and Sample 6-8, it is good practice to col- 
lect all device configuration information under a single descriptor. 
This technique makes it easier to pass it to the verification harness 
and the self-checking structure. Collecting device configuration 
information will also make it possible to create constraints and rela- 
tionships between various configuration items and include methods 
to ensure internal consistency. 

The “design” configuration may include configuration parameters 
that are outside of the design itself but influence the stucture or 
behavior of the testbench in which it sits. If your design can be used 
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Architecting Testbenches 

 

in different system configurations, why limit the testbench structure 
to just one of the possibilities? For example, a USB hub design 
could be surrounded by a configurable number of devices. Some 
devices would be low speed, others full speed. Some could have 
asynchronous endpoints, others have multiple interfaces with alter- 
nate settings. Some devices actually could be another instance of 
the USB hub with further devices connected to it. Based on the test 
configuration, the necessary instances of the design under verifica- 
tion are created and connected to the necessary instances of bus- 
functional models. 

 

Configuring the Design 
 
Compile the 
configuration 
description into 
bit fields. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Sample 6-9. 
Translating a 
high-level 
configuration 
descriptor 
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Once the device configuration is captured in an instance of the con- 
figuration descriptor, it will be necessary to configure the design to 
match. This step will necessitate the translation of the various con- 
figuration items into the appropriate bit field values in the appropri- 
ate registers. This step may seem like a daunting task—and it 
usually is—but it is simply coding the process you would have to 
perform intellectually otherwise. This translation will provide for a 
better documentation of the device configuration process. This 
translation will also ensure that configuring the design to match is 
repeatable, should the location of various bits fields be reorganized 
or their encoding modified. Sample 6-9 shows how the switch table 
in Sample 6-8 could be compiled into the corresponding bit field 
values in the corresponding registers. 

 

class device_cfg; 
   ... 
   to_ports table[256]; 
 
   task apply(utopia_mgmt_bfm cpu); 
      bit [15:0] entry; 
 
      for (this.table[i]) begin 
         entry = 0; 
         for (this.table[i].number[j]) begin 
             entry[table[i].number[j]] = 1; 
         end 
         cpu.write(16’h0800 + i, entry); 
      end 
   endtask: apply 
endclass: device_cfg 
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Grow the con- 
figuration capa- 
bility. 
 
 
 
 
 
 
 
 
 
 
Assert that  
unsupported  
configurations 
are not used. 

 
 
 
 
 
 
 
 
Sample 6-10. 
Detecting 
unsupported 
configurations 

 
 
Design Configuration 

 

It is not necessary to implement the translation process of the entire 
configuration descriptor from day one. The first simulations will 
likely be performed using a simple device configuration, leaving 
the bulk of the configuration parameters in their default state. 
Therefore, translate only that part of the configuration descriptor 
that is relevant for these first simulations. As more and more con- 
figuration parameters are being verified or are supported by the 
self-checking structure, they should be added to the translation pro- 
cess similarly. Eventually, you will end up with the entire configu- 
ration descriptor appropriately translated and programmed into the 
device. 

While the configuration translation process does not support certain 
configuration parameters, you must ensure that they are not acci- 
dentally used in a simulation. The translation procedure must check 
that all unsupported configuration parameters are at their default 
values. Sample 6-10 shows the translation process for the manage- 
ment interface configuration signal. Because one of the modes is 
not currently available (because the bus-functional model may not 
be ready yet), it will report an error if the unsupported configuration 
is attempted. 

 

class harness; 
   ... 
   utopia_mgmt_bfm cpu;; 
   ... 
   function new(device_cfg cfg); 
      case (cfg.mgmt_mode) 
      device_cfg::INTEL: begin 
         $write(“ERROR: Intel-style mgmt not 
                available yet...”); 
         $finish; 
      end 
      device_cfg::MOTOROLA: begin 
         utopia_mgmt_motorola_bfm m = new(...); 
         this.cpu = m; 
         top.int_mot = 1; 
      end 
      endcase 
   endfunction 
   ... 
endclass: harness 
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Random Design Configuration 

Randomize the 
configuration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sample 6-11. 
Randomizable 
configuration 
descriptor 

 
 
 
 
 
 

Add constraints 
to match limita- 
tions. 
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Once you have a descriptor capable of coherently describing any 
possible configuration of your design, why bother specifying it 
manually? You’d probably always be specifying the same configu- 
ration anyway, which is exactly the problem we were trying to 
avoid. If you can generate random instructions, packets or data 
items, why not generate a random device configuration as well? By 
using a different randomly generated device configuration in each 
simulation run, you quickly will cover many more combinations. If 
an unintended correlation between parameters exists, it is likely to 
be exposed. Sample 6-11 shows a randomizable configuration 
descriptor. Because the configuration descriptor is already encapsu- 
lated in a class, all that was required was the use of the rand 
attribute on the class properties modelling the configurable parame- 
ters. 

 

class to_ports; 
rand bit [1:0] number[$]; 

endclass: to_ports 
class device_cfg; 

rand enum {INTEL, MOTOROLA} mgmt_mode; 
rand to_ports table[256]; 

 
   task apply(utopia_mgmt_bfm cpu); 
      ... 
   endtask: apply 
endclass: device_cfg 

 
But what about the limitations of your configuration translation 
procedure? If an unsupported configuration is generated, it will 
cause an error to be reported. You should maintain a set of con- 
traints that match the current limitation in the device configuration 
support. As more and more of the configuration parameters are sup- 
ported, constraints are removed. Sample 6-12 shows the constraints 
that would be added to all simulation runs temporarily to prevent a 
configuration, unsupported by the verification harness shown in 
Sample 6-10, from being generated. Of course, at the end of your 
verification project, that constraint block should be empty because 
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Sample 6-12. 
Support limi- 
tation con- 
straints 

 
 
Add constraints 
to generate sim- 
ple debug con- 
figurations. 
 
 
 
 
 
 
 
Use functional 
coverage to 
identify configu- 
rations that were 
verified. 
 
 
 
 
 
Randomize con- 
figuration in 
harness. 

 
 
Design Configuration 

 

your verification harness should support all functions required by 
your testcases.   

 

class device_cfg; 
   ... 
   constraint unsupported { 

      mgmt_mode != INTEL; 
   } 

endclass: device_cfg 
 
Likewise, a completely random configuration is not likely to be 
useful for the first simulations. In the early stage of a project, a 
design will contain many functional bugs. They will be easier to 
identify and debug if a simple configuration is used. The first simu- 
lations should be executed with constraints on the configuration 
descriptor to generate a simple configuration. Once the design sim- 
ulates successfully, these constraints are removed to increase imme- 
diately the number of configuration combinations that can be 
verified. 

If the device configuration is generated randomly, how do you 
know which configurations you have verified? Simple: A device 
configuration is treated just like a feature of the design. All interest- 
ing and relevant configurations should be identified in the verifica- 
tion plan. They should be included in the functional coverage 
model of the design. Functional coverage measurements will iden- 
tify which configurations were indeed verified and the ones that 
remain to be verified. 

To ensure that the design and test configuration is randomized as 
often as possible, it should be randomized in the verification har- 
ness as shown in Sample 6-13. It also avoids having to repeatedly 
code the configuration randomization in every testcase. Each 
testcase will have to call a configure() method to have the selected 
configuration applied to the device under verification as shown in 
Sample 6-14. This gives the opportunity to the testcase of modify- 
ing the randomized configuration, or re-randomize it under differ- 
ent constraints before applying it. It is also a better approach than 
having each testcase invoke the device_cfg::apply() method 
directly because device configuration may impact the configuration 
of the verification harness itself. By encapsulating the configuration 
process in a harness method, the harness is free to perform all nec- 
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essary steps to configure the device and the verification harness in a 
consistent and coherent fashion.   

 

class harness; 
Sample 6-13. 
Randomizing 
configuration 
in harness 
 
 
 
 
 
 
 
 
 

Sample 6-14. 
Testcase with 
random device 
configuration 

 
 
 
 
 
 

See vmm_env. 

   device_cfg cfg; 
   ... 
   function new(); 
      ... 
      if (!cfg.randomize()) ... 
   endfunction: new 
 
   task configure(); 
      this.cfg.apply(this.cpu); 
   endtask: configure 
   ... 
endclass: harness 
 
 
program test; 
 
harness th = new; 
 
initial 
begin 
   ... 
   th.configure(); 
   ... 
end 
endprogram: test 

 

Guidelines 4-33, 4-34, 4-40 and 4-42 of the Verification Methodol- 
ogy Manual for SystemVerilog describe how a configurable verifi- 
cation environment should be implemented when using the 
vmm_env base class. 

 

SELF-CHECKING TESTBENCHES 
 
Testbenches 
must be self- 
checking. 
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As discussed in “Verifying the Response” on page 86, visually 
inspecting simulation results to determine functional correctness is 
not an acceptable long-term strategy. Whatever intellectual process 
you would go through to identify an error visually in the simulation 
result must be coded in your testbench. This technique will let the 
testbench detect errors and declare success or failure on its own. 
Coding error detection into your testbenches will free you to work 
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Define what to 
check. 
 
 
 
 
 
 
 
 
Some checks are 
implemented as 
assertions. 
 
 
 
 
 

Many are imple- 
mented as test- 
bench code. 
 
 
 

It will be the 
most complex  
portion of your 
testbench. 
 
 
 
 
 
Why is this sec- 
tion so short? 
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on other tasks while the design is autonomously subjected to hun- 
dreds of simulations. 

The problem with verification is that you cannot find an error 
where you are not looking. It is therefore necessary, during the ver- 
ification planning stage, to identify all of the failure modes that 
must be checked for and how they can be detected. Typical correct- 
ness criteria include data transformation, data ordering, protocol 
correctness, data losses and design state. The requirement of the 
self-checking mechanism must be specified and reviewed to ensure 
that a potential failure will not go undetected. 

Some failure modes will be easier to detect using assertions on the 
design itself. Checks that should be formally verified must also be 
implemented using assertions. Many are implementation-specific 
failure modes, such as buffer overflows, and should be coded 
directly in the RTL. Others will be to check for signal-level rela- 
tionships on interface signals. These can be coded in the interface 
declaration containing the signals in question. 

Failure modes dealing with higher level errors, such as data trans- 
formation, ordering or computations, are better detected behavior- 
ally in the testbench itself. The expressiveness of the property 
language does not really lend itself well for high-level or end-to- 
end response checking. 

After the completion of a project, you will find that the largest, 
most complex component of the testbenches is the self-checking 
structure. It will have been the portion that required the most 
authoring and maintenance effort. The self-checking structure is 
also the most critical portion as it is responsible for declaring the 
functional correctness of the design. It will embody a duplication of 
the specified functionality of the design under verification. 

If the self-checking structure is the most complex and largest por- 
tion of a verification project, why is it such a small portion of this 
book? That’s because the bulk of the functionality in the self-check- 
ing structure will be to model the expected functionality of the 
design under verification. That is unique to every design and cannot 
be described in a generic fashion in a book. Each class of function 
requires different approaches and different mechanisms for identi- 
fying failures. Each class of design could be the topic of its own 
book. 
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General imple- 
mentation tech- 
niques are 
presented. 
 
 
 
 
 
See the VMM. 

 

This section presents various techniques for implementing the self- 
checking structure. Which one to use depends on the class of design 
under verification. The techniques can also be used in combination. 
Some techniques depend on the availability of reference models. 
Others rely on the availability of unmodified data payloads. Once 
you have specified the requirements of the self-checking structure, 
use the necessary techniques to implement them. 

The section titled “Self-Checking Structures” starting on page 246 
of the Verification Methodology Manual for SystemVerilog describe 
similar and additional self-checking techniques and provides guide- 
lines for implementing them. 

 

Hard Coded Response 
 
Some tech- 
niques require  
hard-coded  
stimulus and 
configuration. 
 
 
 
 
 
 
 
 
It must be repli- 
cated for each  
testcase. 
 
 
 

Errors can slip 
through easily. 
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The self-checking strategy used to verify the muxed flip-flop in 
“Self-Checking Testbenches” on page 221 relied on hard coded 
response checking. The function and configuration of the device 
under verification was very simple. The response could be checked 
for each individual input value. To hardcode a response in a test- 
bench requires a known configuration and a known input stream. It 
is therefore only applicable to directed testcases. Sample 6-15 
shows the pseudo-code for a directed testcase with a hardcoded 
response on the ATM switch node design. The objective of this 
testcase is to verify that cells from every input port can be switched 
to every output port. 

Each testcase is supposed to verify a different feature of the design. 
Each testcase needs a different configuration or a different input 
data stream. Each testcase will thus yield a different response. If a 
hard-coded response strategy is used, it will be necessary to repli- 
cate the response checking in each testbench. 

Because the response being checked is crafted to the testcase, it 
tends to ignore other potential problems. It is assumed that the other 
functions operate correctly and that any problem would be caught 
by the testcase targeting those functions. Should an unexpected cor- 
relation or corner case exist, it will likely go undetected if it is acci- 
dentally created in a testcase that focuses on different features. 
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Sample 6-15. 

 
 
 
 
 
Program configuration: 
   for x in 0..3: 
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Pseudo-code 
for hardcoded  
response 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Tagging 
 
Transactions 
must have 
untouched data 
fields. 
 
 

Use the 
untouched fields 
to encode the 
expected tran- 
formation. 
 
 
 
 
 
 
 
This simplifies 
the testbench 
control struc- 
ture. 

      vpi x -> output port #x 
for out_port in 0..3: 

fork 
{ 

      for in_port in 0..3: 
         generate atm cell with: 
            vpi == out_port; 
            vci == in_port; 
         send cell on port(in_port); 
   } 

   { 

      for in_port in 0..3: 
         wait for cell on port(out_port); 
         assert cell.vpi == out_port; 
         assert cell.vci == in_port; 
   } 

   join 
 
 
 

Many designs use some of the input information for processing, 
sometimes transforming it, but leave other portions of the input 
untouched and forward it, intact, all the way through the design to 
an output. Examples abound in the datacom industry. They include 
ethernet hubs, IP routers, ATM switches and SONET framers. 

The portion of the data input that passes untouched through the 
design under verification can be put to good use. It is often called 
payload and the term packet or frame often is used to describe the 
unit of data processed by the design. You must first determine, 
through a proper check, that the payload information is indeed not 
modified by the design. Subsequently, the payload information can 
be used to describe the expected destination, position and transfor- 
mation for this packet. For each packet received, the output monitor 
uses the information in the payload to determine if the packet was 
processed appropriately. 

This self-checking strategy usually lends itself to the simplest self- 
checking structures. All of the intelligence is located in independent 
output monitors. The control of this type of testbench is simple 
because all the processing (stimulus and specification of the 
expected response) is performed in a single location: the stimulus 
generator. Some minor orchestration between the generators may 
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be required in some testcases when it is necessary to synchronize
traffic patterns to create interesting scenarios. Figure 6-5 shows the
structure of a testbench using data tagging to verify the example
switch node design example. 

Include all nec-
essary informa-
tion in the 
payload to deter-
mine functional 
correctness.

The payload must contain all necessary information to determine if
a particular packet came out of the appropriate output, in the proper
sequence and with the appropriate transformation of its control
information. For example, assume the success criteria is that the
packets for a given input stream be received in the proper order by
the proper output port. The payload should contain a unique stream
identifier, a sequence number and an output port identifier, as
shown in Figure 6-6. 

The output monitor needs to verify that the output identifier
matches its own identifier. It also needs to verify that the sequence
number is equal to the previously received sequence number in that
stream plus one, as outlined in Sample 6-16. A CRC value is used
to verify that the payload was indeed not modified by the design. 

Use data tagging 
in collaboration 
with scoreboard-
ing.

Should it be possible for a packet to have a payload too short to
contain all of the tag information, another self-checking strategy—
such as scoreboarding—must be used in concert with data tagging.
When present in the payload, the tag information is used by the out-
put monitor to quickly search the scoreboard to confirm correctness
of the received object. When not available, the scoreboard is

Figure 6-5.
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Sample 6-16. 
Implementa- 
tion using pay- 
load informa- 

 
 
 
 
 
forever begin 
   atm_cell cell; 
 
   th.uL1_0.receive(cell); 
   // Cell was corrupted? 

 
 
Self-Checking Testbenches 

tion to 
determine 
functional cor- 
rectness 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cannot be used 
within system- 
level context. 

   if (cell.payload[47] !== cell.payload_crc()) 
   begin 
      ... 
      continue; 
   end 
   // Cell is for this port? 
   if (cell.payload[0] !== my_id) ... 
   // Packet in correct sequence? 
   if (last_seq[cell.payload[1]] + 1 != 
       {cell.payload[2], cell.payload[3]}) ... 

   // Reset sequence number 
   last_seq[cell.payload[1]] = 
      {cell.payload[2], cell.payload[3]}; 

end 
 

searched normally, to ensure that the received object is indeed 
expected. For more details on scoreboarding, see “Scoreboarding” 
on page 300. 

Data tagging assumes that some portion of the stimulus is available 
to be used without interference from the design under verification. 
This may be true for a stand-alone design block. But every payload 
has an ultimate system-level purpose. Once put in a system, the 
payload fields may be used to carry higher-level information. For 
example, the payload bytes in an ethernet frame may carry IP pack- 
ets. If you intend to reuse your block-level self-checking structure 
at the system-level, data tagging may not be an appropriate strategy. 

 

Reference Models 
 
You can use a 
reference model. 
 
 
Reference mod- 
els rarely exist. 

As illustrated in Figure 6-7, the reference model and the design 
under verification are subjected to the same stimulus and their out- 
put is monitored and compared for discrepancies constantly. 

The problem with this strategy is that reference models rarely exist. 
Reference models are available only during a re-design exercise 
where backward compatibility is required and when they form an 
integral part of the specification. Pure backward compatible re- 
designs are rare as the re-design is often used as an opportunity to 
increase performance, add to the number of ports or add new fea- 
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tures. That only leaves reference models that exist as part of the
specification.

It is a popular 
strategy for pro-
cessors.

Some classes of designs are not fully specified on paper. Rather,
they are specified using an executable model that was used to
explore architectural and performance trade-offs. Because the
model is the specification, it is golden by definition. It is the typical
approach used for general-purpose, digital signal and graphics pro-
cessors.

The model need 
not run concur-
rently.

Often, the difficulty of integrating the reference model with the
design simulation prevents it from being simulated concurrently
with the design. The output is thus compared in a post-processing
step, as illustrated in Figure 6-8. The input can be generated exter-
nally similarly when the reference model includes a suitable data
generator, as depicted in Figure 6-9. 
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It is a force 
behind C-based 
verification. 
 
 
 
 

SystemVerilog 
can interface 
with C models 
 
 
Rerefence mod- 
els can be writ- 
ten in 
SystemVerilog 
too! 
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The fact that these reference models are usually implemented in C 
or C++ is a force behind using C or C++ as a simulation language 
for the design and verification. It is thought that by using a common 
language the design and verification can proceed smoothly from 
system-level and architectural-specification down to detailed 
implementation. 

SystemVerilog has a well-defined interface mechanism to C/C++ 
models. It is possible to develop a testbench in SystemVerilog that 
uses a reference model written in C or C++. The technicalities of 
integrating such models are beyond the scope of this book. 

Reference models are often transaction-level models written as part 
of the architectural exploration of the design specification. It is 
often used to make trade-offs between hardware and software func- 
tions and analyze the overall performance of the system. Because 
this is the area where SystemC is well suited, there is a belief that 
these models must therefore be written in SystemC. That may very 
well be the case—but that need not be the case. Chapter 7 intro- 
duces transaction-level models using SystemVerilog and the tech- 
niques presented can be used to create reference models. 

 

Transfer Function 
 
Model the data 
transformation. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-10. 
Reproducing 
the 
transformation 
to predict 
output 

A transfer function is used to reproduce any data transformation 
performed by the design to determine which output value to expect, 
as illustrated in Figure 6-10. The transfer function is often used in 
concert with a scoreboard (see “Scoreboarding” on page 300). The 
transfer function uses the design configuration descriptor to per- 
form the same transformation. Data transformation is not limited to 
computation and modification of fields and values inside each data 
item. Data transformation also includes the generation of new data 
items (for example IP segments from a TCP packet), the identifica- 
tion of ordering and destination for the data item and computation 
of the next state of the design when executing an instruction. 
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It’s not the same 
as a reference 
model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scoreboarding 
 
A scoreboard is 
a data structure. 
 
 
 
 
 
 

A scoreboard 
holds expected 
data. 
 
 
 
 
 
 
 
 
The data struc- 
ture depends on 
the self-check- 
ing require- 
ments. 
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Isn’t a transfer function the same thing as a reference model? 
Figure 6-10 sure looks like Figure 6-7!1 The answer is no, for sev- 
eral reasons. First, a transfer function does not exist a priori. Sec- 
ond, it is not golden by definition. As simulations will be run and 
errors reported, there will be as many errors in the transfer function 
as in the design itself. Third, a transfer function model does not pre- 
dict the response as accurately as a reference model. When a packet 
or an instruction is sent from the stimulus generator to the transfer 
function, it is transformed then stored into the scoreboard or for- 
warded to the response monitor. The response monitor will have to 
perform more intelligent checks to deal with the uncertainty in the 
transfer function when checking the observed response. With a ref- 
erence model, the response checking is a simple observed-against- 
expected comparison process. 
 
 
 
The definition of scoreboard is definitely not standardized across 
the industry. For some, it is the entire self-checking structure, 
including the transfer function or reference model, the expected 
data storage mechanism and the output comparison function. In this 
book, the definition of scoreboard is limited to the data structure 
used to hold the expected data for ease of comparison against the 
monitored output values. 

A scoreboard is a data structure that holds data expected to be 
received by the output monitor. As illustrated in Figure 6-11, the 
transfer function adds data to the scoreboard. Any data received by 
the output monitor is compared against the data in the scoreboard. 
If an identical data item is found, the design produced the expected 
response. If an identical data item is not found in the scoreboard, an 
error is reported. At the end of the simulation, any data items left in 
the scoreboard were lost in the design—which may or may not be 
an error. 

Just as there is no single definition of scoreboard, there isn’t a sin- 
gle scoreboard kind or structure. Each scoreboard is designed to 
meet the needs of the self-checking requirements. Some score- 
boards are simply scalar variables holding just one data item at a 
 
 

1. In fact, one was cut and pasted from the other! 
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time. Some scoreboards are arrays of queues of data items. A score-
board may be centralized into a single data structure or it may be
distributed in the comparison functions attached to each output
monitor. The self-checking structure of a testbench may be com-
posed of a single scoreboard or of a series of scoreboards daisy-
chained into one another.

Use a queue if 
ordering is 
important.

If the design is supposed to maintain the original order of the input
data stream, the scoreboard is usually implemented using a queue.
The output produced by a functionally correct design would be
found, in order, in the queue. If multiple data streams are multi-
plexed onto a single data stream with no ordering relationship
between them, use one queue per input stream. Any data item
received from the design must be found at the head of one of the
queues. The scoreboard for the example ATM switch node design
would be composed of four sets of four queues: one set per output
port, one queue per input port. An ATM cell would be added to the
appropriate queue based on the input port where it is injected and
the expected destination ports.

Optimize the 
look-up func-
tion.

When a new data item is received from the design by an output
monitor, it must be compared against a data item in the scoreboard.
For simple designs, it may be necessary only to look at the data
item at the head of a very specific queue. For more complex designs
where data losses are possible or ordering is difficult to predict, out-
put data may come in an apparently random order. It is therefore
important to make the look-up operation as efficient as possible to
identify the output data as valid or not quickly. If you have to search
through all of the data items in the entire scoreboard, simulations

Figure 6-11.
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will take forever to run. Associative arrays can be useful to mini- 
mize the cost of look-up operations. 

Refer to a data  
structure book. 
 
 
 
 
 
 
 
 
 
 
 
 
See the VMM. 

Designing a scoreboard is about designing a suitable data structure 
that will meet the self-checking requirements of the design. It has to 
be efficient, both in terms of runtime and storage. A scoreboard that 
is expected to hold thousands of very large packets must be given a 
lot of careful attention. You have to watch out for memory leaks as 
objects are discarded after being compared. It would be pointless 
for me to describe in this book what has been the object of several 
other books. Lists, hash functions, circular buffers, lookup tables, 
queues, indexing strategies and the like have already been 
described better than I ever could. I recommend you look up the 
computer science section of your local technical bookstore for a 
textbook on data structures. 

The section titled “Scoreboarding” starting on page 249 of the Veri- 
fication Methodology Manual for SystemVerilog specifies guide- 
lines for implementing scoreboards. 

 

Integration with the Transaction Layer 
 
The self-check- 
ing structure 
must be visible 
globally. 
 
 
 
 
 
 
Encapsulate the 
self-checking 
structure. 
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The self-checking structure must be accessible from almost every 
component of the testbench. The configuration generator needs to 
pass the device configuration descriptor to it. The testcases and 
stimulus generators need to forward generated input data to it. The 
bus-functional models need to inform the self-checking structure of 
any unexpected events that occurred during the data transmission. 
Output monitors must indicate that new output data has been 
received to verify its correctness. 

Whatever strategy is used to make the self-checking structure visi- 
ble to all components of the testbench, it will be easier if it is encap- 
sulated as a single object. I prefer to use a class as it will be possible 
to pass references to the self-checking structure around if necessary 
while making global hierarchical references still possible through a 
well-known reference. Provide a nonblocking transaction-level 
interface that will be used to notify the self-checking structure of 
new data being injected or received. Sample 6-17 shows the defini- 
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Sample 6-17. 
Definition of  
the self-check- 
ing structure 
for the ATM  
switch node 

 
 

Put a reference 
to the self- 
checking struc- 
ture in a global 
variable. 

 
 
 
 
Sample 6-18. 
Self-checking 
structure 
instance. 

 
 
 
 
 
 
 
 
For each trans- 
action on the 
design, notify  
the scoreboard. 
 
 
 
 
 
See the VMM. 
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tion of a possible self-checking structure for the example ATM 
switch node. 

 

class self_check; 
   cfg: device_cfg; 
 
   extern function void sent(atm_cell cell, 
                             int      on_port; 
   extern function void 
      received(atm_cell cell, 
               int      on_port); 
endclass: self_check 

 
One way to make the self-checking structure visible to all compo- 
nents of the testbench is to have a reference to its instance in a glo- 
bal variable. Since everything is globally accessible in 
SystemVerilog, the question simply becomes on deciding where to 
put it and under what name. Personally, I like to instantiate it in the 
harness, under the name sb or sc, as shown in Sample 6-18. 

 

class harness; 
   ... 
   self_check sb; 
   ... 
   function new(); 
      this.sb = new; 
   endfunction: new 
   ... 
   task configure(); 
      this.sb.cfg = this.cfg; 
      this.cfg.apply(this.cpu); 
   endtask: configure 
endclass: harness 

 

Once the self-checking structure is globally visible, it is simple to 
implement monitoring threads in the verification harness or extend 
the callbacks in the bus-functional models to invoke the proper 
transaction-level procedures in the self-checking structure at the 
proper time. Sample 6-19 shows how to complete the integration of 
the self-checking structure with the transaction-layer verification 
harness.      

Guidelines 5-43 through 5-48 and the section titled “Integration 
with the Transactors” starting on page 253 of the Verification Meth- 
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fork 

Sample 6-19. 
Integrating the 
self-checking 
structure in the 
verification 
harness 

   forever begin 
      atm_cell cell; 
      this.atm0.receive(cell); 
      this.sb.received(cell, 0); 
   end 
join_none 

 

odology Manual for SystemVerilog specifies guidelines for encap- 
sulating and integrating scoreboards in a verification environment. 

 
 

DIRECTED STIMULUS 
 
Stimulus is 
hardcoded. 

 
 
 
 
 
 
 
 
 
Sample 6-20. 
Directed stim- 
ulus 

 
 
 
 
 
 
 
 
 
 
Procedural inter- 
faces imply 
directed tests. 
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Directed stimulus is specified in the verification plan and hard- 
coded for each testcase. Executing a testcase requires simulating 
the testbench that includes the directed stimulus for that testcase. It 
is used to implement each directed testcase specified using the 
approach defined in “Directed Testbenches Approach” on page 96. 
Sample 6-20 shows a directed testcase used to debug a CPU inter- 
face: It “generates” a write cycle followed by a read cycle at the 
same address and verifies that the readback value is correct. 

 

program simple; 
 
harness th = new; 
 
initial 
begin 
   bit [15:0] actual; 
 
   th.cpu.write(16’h00FF, 16’hABCD); 
   th.cpu.read(16’h00FF, actual); 
   if (actual !== 16’hABCD) ... 
   $finish; 
end 
endprogram: simple 

 
A procedural transaction-level interface, like the one used to write 
the testcase in Sample 6-20, usually imply directed testcases and 
make creating random stimulus more difficult. A dataflow transac- 
tion-level interface, on the other hand, makes writing random stim- 
ulus much easier (see “Random Stimulus” on page 307) but appears 
to make writing directed stimulus impossible. Not true. In fact, 
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Sample 6-21. 
Directed data- 
flow-based 
stimulus 

 
 
 
 
 
 
 
 
 
 
 
 
 
Can include ran- 
dom filling. 
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randomly. 
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dataflow interfaces support directed stimulus just as well as proce- 
dural interfaces. The difference is that a directed transaction 
descriptor must be created before calling the injection procedure. 
Sample 6-21 shows the same testcase as Sample 6-20, this time 
using a dataflow interface.   

 

program simple; 
 
harness th = new; 
 
initial 
begin 
   cpu_trans tr = new; 
 
   tr.kind = cpu_trans::WRITE; 
   tr.addr = 16’h00FF; 
   tr.data = 16’hABCD; 
   th.cpu.inbox.put(tr); 
   @(tr.done); 
   th.cpu.inbox.put(tr); 
   @(tr.done); 
   if (tr.data !== 16’hABCD) ... 
end 
endprogram: simple 

 
Directed stimulus need not be specified 100 percent. The part that is 
coded explicitly usually only pertains to the testcase being imple- 
mented. The data that is deemed irrelevant for this testcase is usu- 
ally filled with random—but valid—values. For example, the 
content of an ethernet frame could be filled with random values, 
except for the VLAN label that is the objective of the testcase. The 
sequence of VLAN label values would be hardcoded in the testcase 
while the remaining data fields would be generated randomly. Ran- 
dom filling works best when using transaction descriptors and data- 
flow transaction-level interfaces. Sample 6-22 shows an example of 
directed stimulus for an instruction stream. The content of the oper- 
ands is randomized while the actual sequence of opcodes is hard- 
coded. 

Directed testcases often concentrate on a single data stream when 
creating a stimulus sequence. The other streams are left idle or can 
be generated randomly. In the ATM switch node example, directed 
stimulus can be specified for the cell stream on port #0 while ran- 
dom traffic is injected in the other ports, as shown in Sample 6-23. 
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instr.randomize() with { 

Sample 6-22. 
Random-filled 
directed 
instruction 
sequence stim- 
ulus 
 
 
 
 
 
 
 
 
Sample 6-23. 
Random back- 
ground stimu- 
lus 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Directed stimu- 
lus implements 
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   opcode == CMP; 
}; 

... 
repeat (3) begin 
   instr.randomize() with { 

      opcode == NOP; 
   }; 

end 
... 
instr.randomize() with { 

   opcode == BLT; 
}; 

... 
 
 
program test; 
 
harness th = new(); 
 
initial 
begin 
   th.configure(); 
   fork 
      bg_noise(1); 
      bg_noise(2); 
      bg_noise(3); 
   join_none 
   ... 
   th.atm[0].inbox.put(cell); 
   ... 
end 
 
task bg_noise(int on_port); 
   atm_cell celll; 
 
   forever begin 
      cell = new; 
      cell.randomize(); 
      th.atm[on_port].inbox.put(cell); 
   end 
endtask: bg_noise 
endprogram: test 

 

Even though some random stimulus was used, the nature of 
directed stimulus is always tied to a specific testcase. Each directed 
testbench can be tied to a specific testcase. It was written specifi- 
cally to implement that testcase and no other. If there are one hun- 
dred directed testcases to write, there will be one hundred sets of 
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See the VMM. 

 
 
Random Stimulus 

 

directed stimulus. Any random stimulus included in directed 
testcases is usually ignored in the response checking. 

The section titled “Directed Stimulus” starting on page 219 of the 
Verification Methodology Manual for SystemVerilog specifies 
guidelines for implementing directed stimulus in a random verifica- 
tion environment. 

 

RANDOM STIMULUS 
 
Generators cre- 
ate the stimulus. 
 
 
 
 
 
 

Random genera- 
tion is more than 
calling $ran- 
dom. 

 
Random stimulus is created by a random generator that can be con- 
strained according to the requirement of the verification plan. Exe- 
cuting a testcase requires simulating the random testbench with a 
seed that will hit the functional coverage point that corresponds to 
the testcase. They are used to create automated verification envi- 
ronments specified using the approach defined in “Coverage- 
Driven Random-Based Approach” on page 101. 

Random stimulus generation in SystemVerilog has evolved far 
beyond random generation of individual scalar values using the 
$random system task. The generation components of a verification 
environment are designed to generate two subsets of all possible 
stimuli autonomously. The first is that subset that is legal, i.e., the 
possible inputs. The second is that subset of the first that is defined 
by the functional coverage models of the verification plan. 

 

Atomic Generation 
 
Generating a 
stream of ran- 
dom data is easy. 
 
 
 
 
 
 
Define termina- 
tion mecha- 
nisms. 

Sample 6-24 shows a simple random ATM cell generator. It should 
be encapsulated in a class, like a bus-functional model. In fact, gen- 
erators are output-only bus-functional models. Their output is a 
transaction-level interface, the stream of generated random transac- 
tions. The same code could be used to generate CPU instructions, 
bus cycles, digitized signal samples or any other input data stream 
required by the design under verification. 

The simple random generator in Sample 6-24 will always generate 
100 cells then terminate. This number is completely arbitrary and is 
unlikely to satisfy the needs of all testcases. During initial design 
debug stage, generating just a single data item is often required. A 
random testbench must run for much longer to increase the likeli- 
hood that functional coverage points will be hit. Generators should 
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Simple ran- 
dom generator 
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   ... 
   function new(); 
      ... 
      fork 
         this.main(); 
      join_none 
   endfunction: new 
 
   task main(); 
      atm_cell cell; 
 
      repeat (100) begin 
         cell = new; 
         if (!cell.randomize()) ... 
         ... 
      end 
   endtask: main 
endclass: atm_gen 

 

have several termination mechanisms that can be armed at the start 
of the simulation (such as the number of objects to generate) or 
externally triggered by the testbench. Sample 6-25 shows a genera- 
tor that, by default, will generate an infinite number of objects. It 
will also not start immediately, leaving time for the testbench to 
configure the device before starting to generate stimulus. The gen- 
erator also can be suspended at anytime by calling the stop() 
method. Sample 6-26 shows how a debug testcase can configure the 
generator to generate a single cell on a randomly selected port and 
no cells on the others.   

A random generator “bus-functional model” is like a monitor bus- 
functional model: it produces an output stream of transaction 
descriptors. In this case, they are not observed transactions but ran- 
domly generated transactions. This stream of transactions must be 
forwarded to the bus-functional model that will apply them to the 
design under verification. How are random generators integrated 
with the rest of the bus-functional models in the verification har- 
ness? 

The simplest solution is to create an execution thread that will sim- 
ply forward transactions from the generator to the bus-functional 
model. The forwarding thread can also perform any translation 
required between the transaction-level interface of the generator 
and the transaction-level interface of the bus-functional model. It 
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class atm_gen; 
   ... 
   int stop_after = -1; 
 
   function new(); 
      ... 
   endfunction: new 
 
   function void start(); 
      fork 
         this.main(); 
      join_none 
   endfunction: start 
 
   function void stop(); 
      this.stop_after = 0; 
   endfunction: stop 
 
   virtual task main(); 
      atm_cell cell; 
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Sample 6-26. 
Debug testcase 
injecting a sin- 
gle cell on ran- 
dom port 

 
      while (this.stop_after != 0) begin 
         cell = new; 
         if (!cell.randomize()) ... 
         ... 
         if (this.stop_after > 0) begin 
            this.stop_after--; 
         end 
      end 
   endtask: main 
endclass: atm_gen 
 
 
program test; 
 
harness th = new; 
initial 
begin 
   bit [1:0] the_one = $random; 
   foreach (th.gen[i]) begin 
      th.gen[i].stop_after = (i == the_one); 
   end 
   ... 
end 
endprogram 

 

can also notify the self-checking structure of the transaction about 
to be executed. Sample 6-27 shows how a forwarding thread can 
move transaction descriptors from an output mailbox in the genera- 
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tor and translate them to a procedural interface in the bus-functional 
model. Notice how the output mailbox is created with a bound of 
one. This will ensure that the mailbox will fill up and cause the gen- 
eration thread to block. The generation thread will resume once the 
mailbox is empty.    

 

class harness; 
Sample 6-27. 
Forwarding 
thread to inte- 
grate generator 
and BFM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can use shared 
mailboxes. 
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straints is hard. 
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   cpu_trans_mbox  outbox; 
   cpu_trans_gen   gen; 
   utopia_mgmt_bfm cpu; 
   ... 
   function new(); 
      ... 
      this.outbox = new(1); 
      this.gen = new(this.outbox); 
      fork 
         forever begin: forwarding_thread 
            cpu_trans tr; 
            this.outbox.get(tr); 
            case (tr.kind) 
            cpu_trans::WRITE: 
               this.cpu.write(tr.addr, tr.data); 
            cpu_trans:READ: 
               this.cpu.read(tr.addr, tr.data); 
            endcase 
         end 
      join_none 
   endfunction: new 
   ... 
endclass: harness 

 
If the generate and bus-functional model it needs to connect to both 
use mailboxes and the same transaction descriptor, they can be 
directly connected to each other by sharing the same mailbox. As 
shown in Sample 6-28, the output mailbox of the generator is the 
input mailbox of the bus-functional model. With directly connected 
bus-functional models, callbacks must be used to tap the flow of 
transactions between the two bus-functional models and notify the 
scoreboard of the transaction being executed or observed.   

What if a testcase requires that a stream of cells with the same VPI 
value be injected? Or that only write cycles within a narrow address 
range be generated? Or samples with negative values? Or no branch 
instructions? Adding constraints to the simple generator shown in 
Sample 6-25 requires that the entire generation method be replaced, 
as shown in Sample 6-29. This results in a lot of duplicated code 
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class harness; 
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Sample 6-28. 
Directly con- 
nected genera- 
tor and BFM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample 6-29. 
Replacing ran- 
dom genera- 
tion method 

   utopia_mgmt_trans_mbox gen_to_cpu; 
   utopia_mgmt_trans_gen  gen; 
   utopia_mgmt_bfm        cpu; 
   ... 
   function new(); 
      ... 
      this.gen_to_cpu = new(1); 
      this.gen = new(.outbox(this.gen_to_cpu)); 
      this.cpu = new(.inbox(this.gen_to_cpu)); 
   endfunction: new 
   ... 
endclass: harness 

 

and a methodology similar to using directed stimulus. And the new 
generator would have to be substituted in the verification harness 
instead of the plain unconstrained generator. As illustrated in 
Figure 6-12, a different random generator would be created for each 
testcase. The idea behind the productivity cycle depicted in 
Figure 2-16 is to write just one generator that can be steered toward 
the uncovered functional coverage points by adding constraints 
with as little modifications as possible, as illustrated in Figure 6-13.   

 

class my_atm_gen extends atm_gen; 
   task main(); 
      atm_cell cell; 
 
      while (this.stop_after != 0) begin 
         bit ok; 
         cell = new; 
         ok = cell.randomize() with { 

            vpi == 0; 
         }; 

         if (!ok) ... 
         ... 
         if (this.stop_after > 0) begin 
            this.stop_after--; 
         end 
      end 
   endtask: main 
endclass: my_atm_gen 
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Figure 6-12. 
Different 
random  
generators 
 
 
Figure 6-13. 
Constraining a 
single random 
generator 
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The simplest mechanism for adding constraints is to add them to 
the class being randomized. For example, the constraint forcing the 
generation of a stream of ATM cells with a VPI value equal to 0 can 
be added to the ATM cell class as shown in Sample 6-30. The prob- 
lem with this approach is that the constraint will apply to every 
instance of the object in all future simulations and models. If the 
objective was to inject a specific condition for a specific testcase or 
simulation, this approach will not work. 

 

class atm_cell; 
   ... 
   constraint vpi_is_0 { 

      vpi == 0; 
   } 

endclass: atm_cell 
 
If a constraint is not supposed to apply at all times, it should be 
turned OFF in the constructor. It can then be turned ON only when 
required. For example, the constraint added to the ATM cell class in 
Sample 6-30 is turned OFF in Sample 6-31. The constraint will 
apply to a randomized instance only if it is explicitly turned ON. 

The problem with the simple generator in Sample 6-25 is that it ran- 
domizes a local variable to generate data items. The variable is not 
visible externally to allow the testcase to turn the relevant con- 
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Sample 6-31. 
Adding con- 
straints turned 
OFF by 
default 

 
 
 
 
 
class atm_cell; 
   ... 
   constraint vpi_is_0 { 

      vpi == 0; 
   } 

 
   function new(); 
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Sample 6-32. 
Randomizing 
a public class  
property 
instead of a 
local variable 
 
 
 
 
 
 
 
 
 
 
Sample 6-33. 
Controlling 
constraints in 
randomized 
instance 

      this.vpi_is_0.constraint_mode(0); 
   endfunction: new 
endclass: atm_cell 

 

straint blocks ON. By randomizing a public class property instead 
of a local variable, as shown in Sample 6-32, you can control the 
constraints in the randomized instance as shown in Sample 6-33. 
For a constraint to apply to a single stream, turn the relevant con- 
straint block ON in the randomized class property for the generator 
instance of that stream.   

 

class atm_gen; 
   ... 
   atm_cell randomized_cell; 
   ... 
   virtual task main(); 
      while (this.stop_after != 0) begin 
         this.randomized_cell = new; 
         ok = this.randomized_cell.randomize(); 
         if (!ok) ... 
         this.outbox.put(this.randomized_cell); 
         if (this.stop_after > 0) begin 
            this.stop_after--; 
         end 
      end 
   endtask: main 
endclass: atm_gen 
 
 
program corner_case; 
 
harness th = new; 
initial 
begin 
   ... 
   th.gen[0].randomized_cell. 
      vpi_is_0.constraint_mode(1); 
   ... 
end 
endprogram: corner_case 
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There is still a problem with the generator in Sample 6-32: It keeps 
randomizing a different instance. The randomized instance keeps 
changing and must be controlled as shown Sample 6-33 before each 
and every randomization. That’s too much work. Instead, random- 
ize a single instance whose value is then copied into a new instance. 
These new instances will create the stream of generated data items, 
as shown in Sample 6-34. 

 

class atm_gen; 
   ... 
   atm_cell randomized_cell; 
   ... 
   function new(); 
      this.randomized_cell = new; 
   endfunction: new 
   ... 
   virtual task main(); 
      while (this.stop_after != 0) begin 
         atm_cell cell; 
 
         ok = this.randomized_cell.randomize(); 
         if (!ok) ... 
         cell = this.randomized_cell.copy(); 
         this.outbox.put(cell); 
         if (this.stop_after > 0) begin 
            this.stop_after--; 
         end 
      end 
   endtask: main 
endclass: atm_gen 

 
The constraint in Sample 6-31 was added to the original class mod- 
eling the ATM cell. If all of the constraints required to generate all 
of the input conditions required by all testcases to meet your cover- 
age goals are added to that one class, it will soon become unman- 
ageable. Furthermore, a generic model, such as an ATM cell, can be 
reused across projects. It should not be polluted with project or 
testcase-specific additions. Constraints should be added in a 
derived class as shown in Sample 6-35. Use a different extension 
for each testcase.  

This technique does not appear to be helpful, as the generator is still 
making use of the base class, not the derived class in Sample 6-35. 
Therefore the new constraints are not used. One solution would be 
to change the generator to use an instance of the derived class, but 
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Adding con- 
straints in a 
derived class 
 
 
 
 
 
 
 
 
 
 
 
Sample 6-36. 
Adding con- 
straints via a 
derived class. 

 
 
 
 
 
 
 
 
 
Extend 
pre_randomize()  
or  
post_randomize( 
), as needed. 
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class constrained_atm_cell extends atm_cell; 
   constraint vpi_is_0 { 

      vpi == 8’h00; 
   } 

endclass: constrained_atm_cell 

you’ll end-up modifying the generator for each constraint set. 
Remember that a derived class is compatible with its base class and 
that the randomize() method is a virtual method. We can simply 
sneak an instance of the derived class in lieu of the original ran- 
domized instance, and the generator won’t even be aware that it is 
now generating a data stream subject to additional constraints! 
Sample 6-36 shows how to do so for a specific instance of a gener- 
ator. 

 

class constrained_atm_cell extends atm_cell; 
   ... 
endclass: constrained_atm_cell 
 
program corner_case; 
 
harness th = new; 
initial 
begin 

constrained_atm_cell cell = new; 
   th.gen[0].randomized_cell = cell; 
   ... 
end 
endprogram: corner_case 

 

Constraints are powerful, but sometimes cannot express a particular 
condition that needs to be generated. You can execute procedural 
code before or after the randomization process by extending the 
predefined pre_randomize() and post_randomize() methods. You 
could use pre_randomize() to initialize some non-randomized fields 
or call constraint_mode() or rand_mode(). You could use 
post_randomize() to compute or corrupt CRC values, as illustrated 
in Sample 6-37. CRC values must be computed—and thus cor- 
rupted—in the post_randomize() method because method calls 
should not be used in constraint expressions1. When overloading 
the pre_randomize() or post_randomize() methods, do not forget to 
invoke their original version in the parent class using 
super.pre_randomize() or super.post_randomize(). This approach 
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will ensure that any procedural operations required to randomize 
the parent class successfully are executed. 

 

class may_be_bad_atm_cell extends atm_cell; 
Sample 6-37. 
Randomly cor- 
rupted HEC 
value 

 
 
 
 
 
 
 
See the VMM. 

   rand bit is_bad; 
   function void post_randomize(); 
      super.post_randomize(); 
      if (is_bad) begin 
         bit [7:0] hec = $random; 
         while (hec == this.hec) begin 
            hec = $random; 
         end 
      end 
   endfunction: post_randomize 
endclass: may_be_bad_atm_cell 

 
The sections titled “Random Stimulus” starting on page 213 and 
“Atomic Generation” starting on page 231 of the Verification Meth- 
odology Manual for SystemVerilog specifies guidelines for imple- 
menting highly constrainable and reusable stimulus generators and 
using the predefined vmm_atomic_gen. 

 

Constraining Sequences 
 
Generating 
atomic elements 
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In the previous section, data items were generated randomly, inde- 
pendent of each other. This technique is going to create some inter- 
esting conditions but is unlikely to generate all of the conditions 
required to meet your functional coverage goals. The design under 
verification has data and temporal behavior, each of which must be 
verified. The temporal properties of applied stimuli must be as flex- 
ible and diverse as the data properties to verify the temporal behav- 
ior easily. You must include a mechanism that will make it possible 
to express constraints describing a sequence of data items that will 
exercise the temporal features of the design. 

It is possible to express stream-specific constraints using a unique 
stream identifier in a conditional expression. The same mechanism 
can be used to specify constraints applicable to data items at a spe- 
 
 

1. Because methods are usually invoked without arguments and usually 
make use of random variables in the class being randomized, the solver 
would not know which variables to solve before calling the method. 
Thus the method may be called with unsolved-for variable values. 
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cific index within a sequence. The random generator from Sample 
6-34 has been modified in Sample 6-38 to increment an object 
index after each random generation. Constraints specific to the 
position of the object within the sequence can then be specified 
using that unique object identifier, as shown in Sample 6-39.   

 

class atm_gen; 
   ... 
   int cell_idx = 0; 
   atm_cell randomized_cell; 
 
   virtual task main(); 
      while (this.stop_after != 0) begin 
         ... 
         this.randomized_cell.cell_idx = 
            cell_idx++; 
         ok = this.randomized_cell.randomize(); 
         ... 
      end 
   endtask: main 
endclass: atm_gen 
 
 
class constrained_atm_cell extends atm_cell; 
   constraint rotating_vpi { 

      vpi == cell_idx % 4; 
   } 

endclass: constrained_atm_cell 
 

Using a unique object identifier allows specifying sequence-spe- 
cific constraints. But they can be specified only as independent val- 
ues. It is not possible to express constraints that refer to previously 
or subsequently generated values. For example, how would you 
generate a sequence of ATM cells with random VPI values with no 
two consecutive identical values? The solution is to randomize an 
array instead of a single object. Array constraints can refer to any 
elements in the array. Sample 6-40 shows the previous generator, 
modified to generate an array instead of a single object. Sample 6- 
41 shows how to add constraints to avoid generating two identical 
consecutive VPI values.       

You may have noticed that, in Sample 6-40, the sequence is imple- 
mented using a dynamic array. Presumably, the length of the array 
determines the length of the sequence. Using a dynamic array thus 
allows for variable-length sequences. But how long is a sequence? 
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   rand atm_cell randomized_cells[]; 
endclass: atm_cell_seq 
 
class atm_gen; 
   ... 
   atm_cell_seq randomized_seq; 
 
   virtual task main(); 
      while (this.stop_after != 0) begin 
         ... 
         ok = this.randomized_seq.randomize(); 
         ... 
      end 
   endtask: main 
endclass: atm_gen 
 
 
class my_atm_cell_seq extends atm_cell_seq; 
   constraint not_conseq_vpi { 

      foreach (cells[i]) { 

         if (i > 0) { 

            cells[i].vpi != cells[i-1].vpi; 
         } 

      } 

   } 

endclass: my_atm_cell_seq 
 

How is the size of the dynamic array determined? Can the length of 
a sequence be random as well? 

In SystemVerilog, randomization and memory allocation are two 
different things. Memory is allocated first—either statically or via 
constructors—then the content of the allocated memory is random- 
ized. This means that the size of a dynamic array must be decided 
before it is randomized. This implies that the dynamic array must 
be as long as the longest possible sequence. To implement random- 
length sequences, simply randomize a length class property, con- 
strained to be less than or equal to the length of the dynamic array, 
as shown in Sample 6-42. 

During a consulting engagement, I had spent several days helping a 
customer write a random-based self-checking environment to verify 
a CPU interface on an RTL design. After explaining and imple- 
menting the concepts shown in this section, the engineer I was 
working with interjected, “But the first testcase I’ll want to run, 
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class atm_cell_seq; 
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Sample 6-42. 
Random- 
length 
sequences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Need to define 
multiple 
sequences. 

   rand atm_cell randomized_cells[]; 
   rand int length; 
 
   constraint random_length {| 

      length > 0; 
      length <= randomized_cells.size(); 
   } 

endclass: atm_cell_seq 
 
class atm_gen; 
   ... 
   atm_cell_seq rand_seq; 
 
   virtual task main(); 
      while (this.stop_after != 0) begin 
         ... 
         ok = this.rand_seq.randomize(); 
         for (int i = 0; 
               i <= this.rand_seq.length; 
               i++) begin 
            cell = this.rand_seq.cells[i].copy(); 
            ... 
         end 
         ... 
      end 
   endtask: main 
endclass: atm_gen 

 

when the RTL is delivered tomorrow, is a simple write followed by 
a read. I don’t need this fancy generation and constraint mechanism 
yet.” I replied that his first testcase was simply a very simple ran- 
dom sequence: Constrain the sequence of transactions to a length of 
two, the first transaction to be a write cycle and the second transac- 
tion to be a read cycle at the same address as the previous one. 
Instead of writing a separate testcase, only a few additional lines 
creating a simple sequence were sufficient. Once the initial debug 
of the design was over, these constraints were removed, subjecting 
the RTL code to a lot of different input sequences with no addi- 
tional testbench development effort. The sequence constraints can 
be found in Sample 6-43. 

The sequences defined using the constraint mechanism shown in 
this section would be generated over and over by the generator. 
Each simulation would generate the same sequence in each genera- 
tor. It is more efficient to have multiple interesting sequences be 
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class trivial_seq extends cpu_trans_seq; 

Sample 6-43. 
Defining a 
first-test 
sequence 

 
 
 
 
 
 
 
 
Define scenar- 
ios to increase 
functional cov- 
erage. 
 
 
 
 
 
 
Scenarios can 
define directed 
testcases. 

   constraint trivial { 

      length == 2; 
      trans[0].kind == WRITE; 
      trans[1].kind == READ; 
      trans[0].addr == trans[1].addr; 
   } 

endclass: trivial_seq 
 

generated randomly, one after another in a single simulation. Dif- 
ferent instances of the same generator could generate the same 
sequence at the same time or generate different sequences. 

Left unconstrained, random generators will generate valid but most 
likely uninteresting input sequences. By defining scenarios, genera- 
tors will be constrained to generate a series of constrained 
sequences, focused on interesting cases. One scenario is usually the 
“random” sequence i.e., no constraints at all. As holes in functional 
coverage are identified, scenarios are added to the verification envi- 
ronment to steer the generators toward the uncovered areas of the 
solution space. 

If you have the necessary control variables, it is possible to specify 
a directed testcase as a series of constraints. By specifying a set of 
constraints for which there is only one solution, you have created a 
scenario that implements a directed testcase. If scenarios can also 
be defined procedurally, a directed testcase can also be described as 
a procedural scenario. A directed testcase then becomes one possi- 
ble scenario amongst all possible scenarios. It could be randomly 
generated as part of a longer stream of random scenarios. 

 

Defining Random Scenarios 
 
Randomize a 
kind class prop- 
erty. 
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To be able to generate multiple scenarios one after the other, it is 
necessary to randomize the array differently, according to different 
scenario constraints. Each randomization of the array defines a sce- 
nario. The generator in Sample 6-42 is modified in Sample 6-44 to 
include a random kind class property. This randomly-selected prop- 
erty selects the scenario that will be generated. Scenarios are 
defined in individual constraint blocks, conditionally based on the 
value of the kind class property.  

 
 
 
 
Writing Testbenches using SystemVerilog 



 
 
 
 
 
class atm_cell_seq; 

 
 
Random Stimulus 

Sample 6-44. 
Generating 
scenarios 

 
 
 
 
 
 
 
 
 
 
 
 
Define a new 
scenario by add- 
ing an enumeral 
and a constraint 
block. 

 
 
 
Sample 6-45. 
Defining new 
scenarios 

 
 
 
 
 
 
 
 
 
 
Testcases can 
control distribu- 
tion. 

   typedef enum {ATOMIC} scenario_name; 

   rand scenario_name kind; 
   rand atm_cell randomized_cells[]; 
   rand int length; 
 
   constraint random_length { 

      length > 0; 
      length <= randomized_cells.size(); 
   } 

 
   constraint atomic_scenario { 

      if (kind == ATOMIC) length == 1; 
   } 

   ... 
endclass: atm_cell_seq 

 
The default atomic scenario simply generates a single random cell. 
To create new scenarios representing interesting sequences of trans- 
actions, add a new enumeral to the enumerated type identifying the 
scenario, then specify the scenario constraints in a separate con- 
straint block, as shown in Sample 6-45.    

 

class atm_cell_seq; 
   typedef enum {ATOMIC, SAME_VPI} scenario_name; 

   ... 
   constraint same_vpi { 

      if (kind == SAME_VPI) { 

         foreach (cells[i]) { 

            if (i > 0) { 

               cells[i].vpi == cells[i-1].vpi; 
            } 

         } 

      } 

   } 

   ... 
endclass: atm_cell_seq 

 

Specific testcases may want to control the distribution or selection 
of the randomly generated scenarios. Some testcases may want to 
restrict the stimulus to a particular scenario. Others may want to 
favor some scenarios over others. This testcase specific distribution 
can be created by deriving a testcase-specific scenario definition 
class with additional distribution constraints on the kind class prop- 
erty and substituted in the randomized sequence instance, as shown 
in Sample 6-46. 
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class my_scenarios extends atm_cell_seq; 

Sample 6-46. 
Modifying 
scenario distri- 
bution. 

   kind dist {1 :/ ATOMIC; 10 :/ SAME_VPI}; 

endclass: my_scenarios 
 
program test; 
harness th = new; 
 
initial 
begin 
   my_scenarios sc = new; 
   th.gen[0].rand_seq = sc; 
   ... 
end 
endprogram: test 

 

Defining Procedural Scenarios 
 
Some scenarios 
are easier to 
define procedur- 
ally. 
 
 
 
 
 
 
 
 
Use a virtual 
method. 
 
 
 
 
 
 
 
 
 
Use the randse- 
quence state- 
ment. 
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Sometimes scenarios are easier to define procedurally than with 
constraints. For example, generating one thousand times the same 
transaction is easier and more efficient to accomplish by generating 
a single transaction that is then repeated one thousand times using a 
repeat statement. Another example involves waiting for some con- 
dition in the design. Constraints are solved in zero-time. They can- 
not be solved for a few transactions, then wait for a FIFO to fill up, 
then solved for the remaining transactions. But a procedural defini- 
tion can. It can generate and apply stimulus while a FIFO is not full, 
then switch to different stimulus once the FIFO is detected as full. 

By default, a random scenario is applied through a bus-functional 
model as fast as possible. If that default behavior is implemented in 
a virtual task, that behavior can be modified for some or all scenar- 
ios. Sample 6-47 shows the sequence generator using an apply() 
virtual task to execute a scenario. This apply() method can be used 
to specify procedural scenarios, as shown in Sample 6-48. Note 
how procedural scenarios are defined using the randomly selected 
kind class property. This allows random scenarios to be randomly 
intermixed with other procedural or random scenarios.   

Scenarios can also be described using the sequence generator. A 
sequence generator ruleset is defined using the randsequence state- 
ment. A scenario is described as a production rule, often making 
use of other production rules. Thus scenarios can be described in 
terms of other scenarios. A second type of production rule describes 
a weighted choice between equivalent scenarios. For someone with 
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Sample 6-47. 

 
 
 
 
 
class atm_cell_seq; 
   ... 

 
 
Random Stimulus 

Executing sce- 
narios via a 
virtual 
method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sample 6-48. 
Defining a 
procedural 
scenario. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A production 
rule is like a task 
definition. 

   virtual task apply(atm_cell_mbox outbox); 
      for (int i = 0; i < this.length; i++) begin 
         outbox.put(this.cells[i].copy()); 
      end 
   endtask: apply 
endclass: atm_cell_seq 
 
class atm_gen; 
   ... 
   atm_cell_seq rand_seq; 
 
   virtual task main(); 
      while (this.stop_after != 0) begin 
         ... 
         ok = this.rand_seq.randomize(); 
         this.rand_seq.apply(this.outbox); 
         ... 
      end 
   endtask: main 
endclass: atm_gen 
 
 
class atm_cell_seq; 
   typedef enum {ATOMIC, SAME_VPI, 

                 REPEAT_100} scenario_name; 
   ... 
   virtual task apply(atm_cell_mbox outbox); 
      case (kind) 
      REPEAT_100: begin 
         this.cells[0].randomize(); 
         repeat(100) begin 
            outbox.put(this.cells[0].copy()); 
         end 
      end 
      default: super.apply(outbox); 
      endcase 
   endtask: apply 
endclass: atm_cell_seq 

 

an RTL background, the reverse-YACC syntax of the sequence gen- 
erator is really bizarre. But once you realize it is a simple front-end 
to small subprograms and the randcase statement, it becomes easy 
to understand. 

A production rule is similar to defining a small task or function. 
When invoked, it will “execute” its definition. For example, the 
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ruleset in Sample 6-49 is functionally equivalent to defining the 
tasks in Sample 6-50. A rule can return values and be passed argu- 
ments. Refer to section 12.16 of the SystemVerilog Language Ref- 
erence Manual for a complete description of the sequence 
generator.  

 

virtual task apply(atm_cell_mbox outbox); 
Sample 6-49. 
Sequence gen- 
erator ruleset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The choice 
weights can be 
expressions. 
 
 
 
 
 
 

Do not create 
random-length 
sequences using 
recursive rules. 
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   case (kind) 
   SEQGEN: 
      randsequence (SCENARIOS) { 

         SCENARIOS: RANDOM_CELL := 1 
                  | SAME_VPI := 2; 
 
         RANDOM_CELL: { 

            this.cells[0].randomize(); 
            outbox(this.cells[0].copy()); 
         } 

 
         SAME_VPI: 
            RANDOM_CELL 
            { 

               this.cells[0].vpi.rand_mode(0); 
            } 

            repeat (this.length-1) RANDOM_CELL 
            { 

               this.cells[0].vpi.rand_mode(1); 
            } 

      } 

   ... 
   endcase 
endtask: apply 

 
The weights assigned to the different choices in an alternative rule 
can be expressions, just like the weights in the equivalent randcase 
statement. By making these weights public properties of the 
sequence descriptor, each simulation run can pick and choose 
which scenarios will be enabled and the probability a particular sce- 
nario will be generated. For example, in Sample 6-51, the simula- 
tion run will only use the “debug testcase” scenario in the 
descriptor shown in Sample 6-52.   

Rules can be recursive. For example, Sample 6-53 shows a ruleset 
that creates a sequence of ATM cells. The number of cells in the 
sequence is random, determined by the number of times the 
CELL_STREAM rule is selected over the RANDOM_CELL rule. 
This style works just fine except for one thing: The length of the 
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Sample 6-50. 
Equivalent 
task defini- 
tions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sample 6-51. 
Selecting sce- 
narios 

 
 
 
 
 
 
 
 
 
 
 
 

Generate the 
length first, then 
generate the 
sequence. 

 
 
Random Stimulus 

 
 
virtual task apply(atm_cell_mbox outbox); 
   task SCENARIOS(); 
      randcase 
      1: RANDOM_CELL(); 
      2: SAME_VPI(); 
      endcase 
   endtask: SCENARIOS 
 
   task RANDOM_CELL(); 
      this.cells[0].randomize(); 
      outbox.put(this.cells[0].copy()); 
   endtask: RANDOM_CELL 
 
   task SAME_VPI(); 
      RANDOM_CELL(); 
      this.cells[0].vpi.rand_mode(0); 
      repeat (this.length-1) RANDOM_CELL(); 
      this.cells[0].vpi.rand_mode(1); 
   endtask: SAME_VPI 
 
   case (kind) 
   SEQGEN: SCENARIOS(); 
   ... 
   endcase 
endtask: apply 
 
 
program initial_debug; 
harness th = new; 
initial 
begin 
   th.gen.null_weight = 0; 
   ... 
end 
endprogram: initial_debug 

 

sequence is not distributed evenly. The probability that the length of 
the sequence is one is 10 percent. The probability that it is two is 9 
percent (0.9). The probability that it is three is 8.1 percent (0.1 x 0.9 
x 0.9 x 0.1). The probability that it is N is 0.9N/10. Furthermore, the 
length of the sequence cannot be constrained other than by playing 
with the selection weights. 

A better approach is to generate the length of the sequence first. 
That value can be subjected to constraints and have an even distri- 
bution. Once the length of the sequence is decided, you generate the 
sequence using a repeat statement. To that effect, the already-exist- 
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class trans_seq 

Sample 6-52. 
Variable  
weight sce- 
nario selection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sample 6-53. 
Recursive 
rules 

 
 
 
 
 
 
 
Rulesets and 
rules cannot be  
virtual. 
 
 
 
 
 
 
 
 
 
See the VMM. 
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   trans trs[] 
   ... 
   integer null_weight = 1; 
   integer debug_weight = 1; 
 
   virtual task apply(trans_mbox outbox); 
      case (kind) 
      SEQGEN: 
         randsequence (SCENARIOS) { 

            SCENARIOS: NULL    := null_weight 
                     | DBG_TST := debug_weight; 
 
            ... 
         } 

      ... 
      endcase 
   endtask: apply 
endclass: trans_seq 
 
 
CELL_STREAM: CELL_STREAM RANDOM_CELL  := 90 
           | RANDOM_CELL              := 10; 
 
RANDOM_CELL: { 

   this.cells[0].randomize(); 
   outbox.put(this.cells[0].copy()); 
} 

 

ing length class property in the sequence descriptor can be used, as 
shown in Sample 6-49. 

An important limitation of the sequence generator is that produc- 
tion rules and entire rulesets cannot be virtual. It is not possible to 
extend an existing generator using a sequence generator ruleset 
without modifying its source code. If you want to be able to add 
new production rules or modify existing rules or entire rulesets, I 
suggest you use the equivalent task style, as shown in Sample 6-50. 
If each task or function is defined as virtual, it will be simple to 
extend a ruleset by creating a derived generator class. Virtual tasks 
and functions can still make use of the sequence generator and the 
randsequence statement to describe their respective scenarios. 

The section titled “Scenario Generation” starting on page 232 of the 
Verification Methodology Manual for SystemVerilog specifies 
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Sample 6-54. 
Generating 
variable- 
length 

 
 
 
 
 
class seq_length; 
   integer value; 
   constraint valid { 

      value > 0; 
   } 

 
 
System-Level Verification Harnesses 

sequences    constraint reasonable { 

      value < 50; 
   } 

endclass: seq_length 
 
class atm_gen; 

seq_length len; 
   ... 
   task main(); 
      ... 
      randseq (...) { 

         ... 
         CELL_STREAM: { 

            void = this.len.randomize(); 
         } <repeat (this.len.value) RANDOM_CELL>; 
         ... 
      } 

   endtask: main 
endclass: atm_gen 

 

guidelines for implementing highly flexible scenario generators and 
using the predefined vmm_scenario_gen. 

 

SYSTEM-LEVEL VERIFICATION HARNESSES 
 
More than one 
harness is 
needed. 
 
 
 
 
 
 
 
Use system- 
level transac- 
tions. 

 
A project is rarely composed of a single design block, requiring 
only one verification harness and one set of testbenches. A typical 
project involves multiple blocks tied together into a system. Each of 
those blocks is verified independently. The block integration into a 
system is then verified. Each block and system requires its own ver- 
ification harness. When creating or procuring bus-functional mod- 
els for a project, you must consider the needs of all harnesses, not 
just those for a single block. 

What is a transaction at the block level is usually not a transaction 
at the system level. For example, a block may simply interact with 
an ethernet interface to recover ethernet frames. As far as the block 
is concerned, a transaction is an ethernet frame. But an entire sys- 
tem may extract the IP fragments from the payload of ethernet 
frames, reassemble these IP fragments into IP packets then perform 
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IP-layer routing functions. The IP packets are then segmented and
encapsulated back into ethernet frames to be retransmitted. In such
a system, a transaction is an entire IP packet, not an ethernet frame.
The bus-functional models in a system-level harness must support
system-level transactions.

Layered Bus-Functional Models

Bus-functional
models should 
implement pro-
tocol layers.

Traditionally, bus-functional models were tied to a specific physical
interface. As shown in Figure 6-14, a monolithic IP-packet bus-
functional model would have accepted IP packets on its transac-
tion-level interface side and produce physical signals on the other.
This type of bus-functional model would not be able to reuse or
provide any functionality that was required by the block-level har-
nesses. Each harness would require its own bus-functional model
with its corresponding transaction-level abstraction. Similarly, the
transaction-level behavior of monolithic bus-functional models
could not be reused from or provided to other bus-functional mod-
els that implemented the same system-level functionality but on
different physical-level interfaces. Instead, system-level bus-func-
tional models should be layered according to the layers of the pro-
tocol they are implementing, as shown in Figure 6-15. The
transaction-level interface mechanism used to encapsulate monitors
and generators can be used to create bus-functional models inde-
pendently from physical interfaces.  

Layers are 
somewhat arbi-
trary.

Protocol layers may be obvious in datacom systems where the pro-
tocols themselves are layered according to the ISO model. For
example, a USB application would be layered according to packets,

Figure 6-14.
Monolithic IP-
level bus-
functional 
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Figure 6-15.
Layered IP-
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transactions and transfers. But even non-datacom applications have
similar layers. For example, a graphic system could be composed of
pixels, vertices, surfaces and 3D object layers. If you can decom-
pose your system-level functionality into separate functional
blocks, then you can decompose your system-level transactions into
similar functional layers.

Bus-functional
models can be 
shared across 
harnesses.

With bus-functional models following the same layers as the func-
tionality they implement, they can be composed into the appropri-
ate combination to create the necessary abstraction layers in
system-level verification harnesses. Figure 6-16 shows three differ-
ent (partial) verification harnesses, for two blocks and one system,
each sharing several bus-functional models. 

Tests may be 
reused.

If the abstraction layer and functionality are maintained across
block of system-level harnesses, the testcases written on one har-
ness can be reused on the other. For example, the IP fragment
extraction functionality verified in Figure 6-16(b) is independent of
the physical interface used to transfer ethernet frames. All tests
written on that harness should be reusable, unmodified, on the sys-
tem-level harness shown in Figure 6-16(c).

Figure 6-16.
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Block-level tests 
may be used as 
integration tests.

For some blocks and systems, it may be useful to execute block-
level tests within the system context to verify that the integration of
the block has not affected its functionality. Note that this process
does not actually verify any new system-level functionality or
increase the block-level coverage. It is simply ensuring that block-
level functionality is preserved within the context of the system. In
a bus-centric system, it may even be useful to execute block level
tests from multiple blocks concurrently to verify the correctness of
concurrent block-level operations.

Layered BFMs 
help port block-
level tests.

Figure 6-17 shows how a bus-functional model can be introduced
in a block-level stimulus path to undo the function of the design
block hiding the system bus interface that used to be visible at the
block level. If the access block is a bridge, a simple address remap-
ping function needs to be introduced. If the access block is a pro-
cessor, write and read cycles simply need to be turned into store and
load instructions. If the access block is an MPEG4 decoder, you
might have picked the wrong block to go through. 

See the VMM. Chapter 8 of the Verification Methodology Manual for SystemVer-
ilog specifies guidelines and additional abstraction techniques for
verifying system-level designs.

Figure 6-17.
Porting block-
level tests to 
the system-
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Summary 

 
 
 
Encapsulate bus-functional tasks in a class. Provide a suitable trans- 
action-level interface. Layer your bus-functional models according 
to the functional layers in the application. 
 
Create a transaction-level test harness encapsulating all of the bus- 
functional model instances and clock generators connected to the 
design under verification. 
 
Provide a high-level device configuration descriptor. Interpret the 
descriptor value to configure the design under verification at the 
beginning of the simulation. 
 
Generate the device configuration randomly. Use functional cover- 
age measurements to determine which configuration (or combina- 
tion of configurations) has been verified. Use constraints to limit 
configurations to currently supported or interesting values and 
combinations. 
 
Make your testbench self-checking. Build the self-checking struc- 
ture on top of the transaction-level test harness. 
 
Self-checking can be implemented using a reference model, by tag- 
ging data, by using a transfer function with a scoreboard or any 
combination of the above. 
 
Generate directed stimulus by invoking the proper transaction-level 
procedures directly. 
 
When writing random generators, provide a constraint mechanism 
that can describe all of the interesting and relevant input sequences. 
 
Provide unique identifiers for each generator instance and data 
instance to allow stream-specific and order-specific constraints to 
be expressed. 
 
Write random generators that generate random sequences. Define 
scenarios to increase your functional and code coverage. 
 
Directed and initial debug testcases can be described as tightly con- 
strained random scenarios. 
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CHAPTER 7 SIMULATION
MANAGEMENT

Simulation must 
be managed.

In “Revision Control” on page 61, I described how tools can help
manage source code. In “Issue Tracking” on page 66, I described
how issues and bugs can be tracked to ensure they are resolved. In
this chapter, I address the simulation management issues. I describe
how to debug your testbenches efficiently using transaction-level
models. Often overlooked but important topics, such as terminating
your simulation, reporting errors and determining success or failure
are covered. We also discuss configuration management: How do
you know you are simulating what you think you are simulating?

TRANSACTION-LEVEL MODELS

This section demonstrates how transaction-level models can benefit
a design project. These benefits can be realized only if the model is
written with the proper perspective. This section also shows how to
model exceptions properly and explains how to demonstrate a
transaction-level model to be equivalent to an RTL model.

Testbenches 
need a model to 
be debugged.

You have decided which testcases and functional coverage mea-
surements are needed to verify a design functionally. Your best ver-
ification engineers are developing the verification harness, self-
checking structure and random-generators. Hardware design engi-
neers are working furiously on the RTL model, but it will not be
available for several weeks. Meanwhile, the verification harness
and self-checking structure continue to be written. When all is said
and done, the amount of code written for the verification will sur-
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pass the amount of RTL code. You are looking at writing thousands
of lines of code without being able to debug them. Furthermore,
when writing a constrainable random environment, you need a
model to exercise your generators to ensure that they offer the con-
straint capabilities required to generate interesting input scenarios.

Transaction-
level models are 
used to debug 
testbenches.

What if someone walked up to you and offered you a model, avail-
able at the same time as early versions of the verification environ-
ment can be simulated, that runs one hundred times faster than the
RTL model and that looks and feels just like the real thing? You
could start debugging your verification environment even before
the RTL is ready. Because this model simulates faster, the debug
cycles would be shorter. By the time the RTL is available to simu-
late, you’d probably have most of the scenarios covering your
entire input functional coverage model defined and debugged. The
design schedule could be shortened and the verification would no
longer be squarely on the critical path. Sounds too good to be true?
I’m offering exactly such a model: It is called a transaction-level
model.

Transaction-
level models can 
be written using 
SystemVerilog.

There is a tendency in the industry to associate transaction-level
models with SystemC. Although SystemC is perfectly suited for
writing transaction-level models, SystemVerilog is just as good.
Unless you need a model written in C/C++ to integrate with soft-
ware or ship to your own customers, there is no real practical reason
to introduce another language in your verification process. System-
Verilog offers all of the necessary constructs for writing transac-
tion-level models. And with today’s direct compilation technology,
there is no technical reason for a model written at the same level of
abstraction, to run significantly faster when written in SystemC
compared to SystemVerilog.

Transaction-Level versus Synthesizable Models

Transaction-
level models are 
not synthesiz-
able.

A model that can be translated automatically into a gate-level
implementation by a synthesis tool, such as Synopsys’ Design
Compiler, is called a Register-Transfer-Level or RTL model. It also
may be called a synthesizable model. A transaction-level model
describes the black-box functionality of a design, without having to
be synthesizable. The Virtual Socket Interface Alliance uses the
term functional model.
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High-level code 
is not just for 
testbenches.

In “High-Level versus RTL Thinking” on page 113, I described the
characteristics of high-level code compared with synthesizable
code. Using high-level descriptions for testbenches is acceptable
easily by most design engineers. After all, the testbench will never
be implemented in hardware so they never give any thought as to
how they would go about it. Their mind hasn’t been influenced by
an implementation architecture or by a synthesizable description of
the testbench’s functionality. They are still open to describing this
functionality using high-level code.

Writing a trans-
action-level
model requires a 
different mind-
set than writing 
an RTL model.

Writing a truly transaction-level model of a design requires a
greater mental leap. You may have already started to think of a
design’s functionality in terms of state machines, datapaths, opera-
tors, memory interfaces and other implementation details. This
mindset can be created simply because the functional specification
document was written with these implementation details in mind.
To write a proper transaction-level model, you have to focus on the
functionality, not the implementation. If the implementation starts
to color your thinking, you’ll simply write what I call an “RTL++”
model.

Example of Transaction-Level Modeling

RTL++ models 
may be synthe-
sizable using 
behavioral syn-
thesis.

For example, consider the specification in Sample 7-1. How would
you write a transaction-level description of this functionality? Most
would write something similar to the description shown in Sample
7-2. Clearly, this description is not synthesizable using logic syn-
thesis tools. However, it happens to be synthesizable using behav-
ioral synthesis tools such as Synopsys’ Behavioral Compiler. The
design is synthesizable behaviorally because the description was
tainted by the specification: There is an implicit state machine and
everything happens at the active edge of the clock. 

Sample 7-1.
Specification
of a debounce 
circuit

The debounce circuit samples the input at every clock cycle. The
debounced version of the input changes state only when eight
consecutive samples of the input have the same polarity.
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A transaction-
level model 
should be 
refined into a 
synthesizable 
model.

The objective of a transaction-level model is to represent the func-
tionality of a design faithfully, in a way that is easy to write and
simulate. The transaction-level model is designed to help verifica-
tion, and indirectly, the implementation. When written properly, a
transaction-level model cannot be refined into a model synthesiz-
able by today’s logic synthesis tools.

For example, what is the functionality of the debounce circuitry
specified in Sample 7-1? It prevents pulses on the primary input,
narrower than 8 clock periods, from making it to the debounced
output. The functionality is similar to a buffer with a significant
inertial delay. This behavior can be modeled using a single System-
Verilog statement, as shown in Sample 7-3. The continuous assign-
ment statement uses the inertial delay model built in
SystemVerilog. If required, please refer to a suitable SystemVerilog
reference book for a detailed description of inertial delays. 

Delays cannot 
be synthesized.

The description in Sample 7-3 is far from being synthesizable. It is
not possible to synthesize a specific inertial delay. The other limita-
tion of that description is the need to know the sampling clock
period. It could be specified using a parameter or a transaction-
level model configuration descriptor, but the transaction-level
model would not adjust to different clock periods as the real imple-

Sample 7-2.
RTL++ 
description of 
debounce cir-
cuit

reg debounced;
always @ (posedge clk)
begin: debounce
   if (bouncing != debounced) begin
      repeat (7) begin
         @ (posedge clk);
         if (bouncing == debounced)
            disable debounce;
      end
      debounced <= bouncing;
   end
end

Sample 7-3.
Transaction-
level descrip-
tion of 
debounce cir-
cuitry

assign #(8*cycle) debounced = bouncing;
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mentation would. If this is an important requirement, the clock
period could be determined at runtime by sampling two consecutive
edges. Sample 7-4 shows how this sampling could be performed.
Notice how the clock cycle is measured only once to improve simu-
lation performance. It is unlikely that the clock period will change
significantly during a simulation. Computing the clock period at
every clock cycle simply would consume simulation resources
without accomplishing additional work.

Characteristics of a Transaction-Level Model

They are parti-
tioned for main-
tenance.

A transaction-level model is partitioned differently from a synthe-
sizable model. The latter is partitioned to help the synthesis pro-
cess. Partitioning is decided along implementation lines, producing
a design with several instances arranged in a wide and shallow
structure.

Transaction-level models are partitioned according to generally
accepted software engineering practices. Transaction-level models
tend to be partitioned according to main functional boundaries to
avoid maintaining one large file, or to allow more than one author
to write it. Duplication of function in a model, such as many inter-
faces of the same type, is also implemented using multiple
instances of a single description. Transaction-level models tend to

Sample 7-4.
Measuring the 
clock period in 
the debounce 
circuitry

module debounce(input  bouncing,
                output debounced,
                input  clk);

time cycle = 8 * 10ns;

initial
begin
   time stamp;

   @ (posedge clk);
stamp := $time;

   @ (posedge clk);
cycle = $time - stamp;

end

assign #(8*cycle) debounced = bouncing;
endmodule
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have very few instances creating a narrow and shallow structure of
large blocks.

They do not use 
a clock.

A clock signal is an implementation artifice for synchronous design
methodologies. These implementation methodologies are function-
ally irrelevant. A transaction-level model does not change state syn-
chronously with a clock. Instead, a transaction-level model uses
many different synchronization mechanisms—one of which could
be a clock edge. While an RTL model continuously recomputes and
updates the value of inferred registers, a transaction-level model
performs computations only when necessary.

Consider the RTL model in Sample 4-3 on page 116: The always_ff
block is executed every time the clock rises. The signal named state
is assigned at every rising edge of the clock signal, regardless of the
value of next_state.

The equivalent transaction-level model in Sample 4-4 on page 116,
on the other hand, does not even use a clock. Instead, it acts on the
only functionally significant event: the change in ack. This behav-
ioral model changes the only functionally significant state, the state
of the req output.

A clock would be used only when data needs to be sampled or pro-
duced synchronously with a clock signal. Examples of synchronous
interfaces include PCI or Utopia Level 1. The clock signals for syn-
chronous interfaces are usually externally generated and are not
used any further by the transaction-level model.

Transaction-
level models do 
not use FSMs.

Synthesizable models are littered with finite state machines. They
are the primary synchronous design methodology for implementing
control algorithms. When writing software using a language like
C++, you would not usually implement it as a series of cooperating
finite state machines. The language does not lend itself very well to
that.

Instead, the control algorithm and the data transformations would
be part of the control flow of the program. The model’s state would
depend on the current values of the variables and the location of the
statement under execution in the program sequence.
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Transaction-level models follow a similar strategy. Consider the
example in Sample 4-3 on page 116. The state of the RTL model is
determined by the value of the state register and the current input
values. The same code is executed over and over. On the other
hand, the state of the behavioral model shown in Sample 4-4 on
page 116 depends only on which wait statement is being executed
currently.

Data can remain 
at a high-level of 
abstraction.

The skills of the hardware engineer reside in mapping a complex
functionality into the very primitive resources available in hard-
ware. Everything must be implemented using a binary value, with a
small number of bits, and reduced to integer arithmetic. A transac-
tion-level model can make use of the high-level data types provided
by the language, such as enumerals, floating-point numbers,
classes, multi-dimensional arrays and queues. The section titled
“Data Abstraction” on page 130 illustrates many examples of using
high-level data abstraction instead of using representations suitable
for implementation.

Data structures 
are designed for 
ease-of-use, not 
implementation.

In a synthesizable model, the format of the data structures are orga-
nized to make implementation possible. For example, imagine that
a routing table in a packet router is composed logically of 256-bit
records with various fields. The router is specified to support 1,024
possible routes and the table is maintained by an external processor
through a 16-bit wide interface.

The physical implementation of the routing table is likely to use a
16-bit RAM with 16K locations. Whenever the routing engine per-
forms a table lookup, it has to read a block of 16 words to build the
entire 256-bit routing record.

If the table maintenance via the CPU interface has a much lower
frequency than packet routing, a transaction-level model would
instead optimize the data structure for the table look-up and routing
operation. The routing table would be implemented using an array
with 1,024 locations, each containing a complete 256-bit routing
entry. It could probably use a associative array to minimize memory
usage as well. The table would look the same from the CPU’s per-
spective, with each 16-bit access being performed at the right offset
within the record identified by the upper 10 bits of addresses. Sam-
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ple 7-5 shows an implementation of the CPU access into the routing
table of the transaction-level model.

Interfaces may 
be implemented 
using bus-func-
tional models.

The testbench is a transaction-level model of the environment. To
make implementation more efficient, Chapters 5 and 6 explained
how bus-functional models are used and located in a testcase-inde-
pendent verification harness. The bus-functional models abstract
data from the physical level to a functional level where they are
simpler to process using high-level code.

The same strategy can be used when writing a transaction-level
model that must present pin-true physical interfaces. Bus-functional
models are used for each interface around the periphery of the
model. Data is transformed at the transaction level and moved from
bus-functional model to bus-functional model according to the
function of the device. And as Figure 7-1 shows, you will likely be
able to reuse the bus-functional models written for the testbench in
your transaction-level model.

Sample 7-5.
Mapping a 
narrow access 
in a wide data 
structure

bit [255:0] table[1024];

always
begin: cpu_access
   bit [255:0] entry;
   ...
   entry = table[addr[13:4]];
   if (read) data = entry[addr[3:0]*16 +: 16];
   else begin
      entry[addr[3:0]*16 +: 16] = data;
      table[addr[13:4]] = entry;
   end
   ...
end

Figure 7-1.
Structure of a 
UART test 
harness and 
behavioral
model
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Modeling Reset

Reset is part of 
the RTL coding 
style.

Modeling exceptions can take of lot of time and introduce a lot of
intricacies in an otherwise simple algorithm description. When
writing a synthesizable description, modeling the effect of reset on
the state elements is defined in the supported coding style. For
example, Sample 7-6 shows how an asynchronous reset is modeled
to reset a finite state machine. Resetting an entire RTL model is
accomplished by including the logic to handle the reset exception in
each always block that infers a register.

Transaction-
level models 
must reset vari-
ables and execu-
tion points.

As described in the previous section, the state of a transaction-level
model is not just composed of the values of the variables. It also
includes the location of the statement currently being executed in
the sequence of statements describing each concurrent execution
thread. To reset a transaction-level model, you need not just reset
the content of the variables. You must also reset the execution to a
specific statement, usually at the top of the always blocks. For
example, resetting the always block shown in Sample 7-7 would
require resetting the variables and signal drivers to their initial val-
ues, as well as restarting the execution of the always block at the
top.

Disable all the 
blocks on reset

Resetting a transaction-level model in SystemVerilog is easy and
elegant. When an exception is detected, all you need to do is disable
all the blocks in the model using the disable statement. The always
blocks restart their execution from the top. Note that, as described
in “Disabled Scheduled Values” on page 187, pending values
assigned using a nonblocking assignment may remain in the event
queue and clobber the reset state of a variable in some SystemVer-
ilog simulator.

Sample 7-6.
Modeling an 
asynchronous
reset in RTL

always_ff @ (posedge clk
             iff rst == 1 or negedge rest)
begin
   if (rst) state <= IDLE;
   else begin
      case (state)
         ...
      endcase
   end
end
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Use a forever
loop in initial
blocks.

Only the initial blocks present a difficulty. Since they only run once
in a simulation, they cannot be disabled since they are no longer
active. If they are still active, disabling them would simply make
them inactive immediately. They cannot be replaced by always
blocks because program can only contain initial blocks. To include
initial blocks in the reset handler, simply turn their body into a for-
ever loop with an infinite wait statement at the bottom. Sample 7-7
shows an original transaction-level model. Sample 7-8 shows the
same model, this time with the proper handling of reset exceptions
using the disable statement. 

Encapsulate the 
disable state-
ments in a task.

It is good practice to encapsulate all disable statements into a single
task to perform a reset of a transaction-level model. Multiple reset
sources and exception detection can call this task to perform the
reset operation. This technique also reduces maintenance to a single
location when always blocks are added or removed. The reset task
can also be called using a hierarchical reference when a higher-
level module in a complex transaction-level model needs to reset all
its lower-level components. This approach is more efficient than
having to create and assert a synthetic reset signal broadcast
through the pins of all interfaces in the model. Sample 7-9 shows
the reset handler of Sample 7-8 modified to use a task to disable all
of the blocks.

Writing Good Transaction-Level Models
Many attempts 
to write transac-
tion-level mod-
els fail.

I have seen and heard of many projects where the use of transac-
tion-level models was attempted, but without producing much ben-
efit over RTL models. Often, the transaction-level model was

Sample 7-7.
Transaction-
level blocks to 
be reset

initial count = 0;
always
begin
   strobe <= 1’b0;
   wait (go);
   while (go) begin
      count++;
      @sync;
   end
   strobe <= 1’b1;
   #10;
   strobe <= 1’b0;
   wait (ack);
   count = 0;
end
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abandoned in favor of the RTL model as soon as the latter became
available. The transaction-level model failed to exhibit any of the
benefits outlined in “The Benefits of Transaction-Level Models” on
page 349.

Sample 7-8.
Transaction-
level model 
with reset 
detection and 
handling

initial
forever begin: init
   count = 0;

wait (0);
end

always
begin: main
   strobe <= 1’b0;
   wait (go);
   while (go) begin
      count = count + 1;
      @ sync;
   end
   strobe <= 1’b1;
   #10;
   strobe <= 1’b0;
   wait (ack);
end

always
begin
   // Detect reset exception
   ...

disable init;
disable main;

end

Sample 7-9.
Encapsulating 
the disable
statements in a 
task

task reset;
   disable init;
   disable main;
endtask

always
begin
   // Detect reset exception
   ...

reset;
end
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Writing a good 
transaction-level
model requires 
specialized 
skills.

Further investigation into those failed attempts usually reveals that
the transaction-level model was written by experienced hardware
designers. Unfortunately, their valuable skills were not appropriate
to writing good transaction-level models. Their level of thinking
was still too close to the implementation and they had difficulty
thinking in terms of higher levels of abstraction. Very often, there
was the implicit intent of refining the transaction-level model into a
synthesizable model. This is a fatal mistake as it is conducive to
low-level thinking that yields not a behavioral model, but an
“RTL++” model.

Focus on the rel-
evant functional 
details.

All the techniques illustrated in this chapter, as well as in Chapter 4,
can be used and still yield a poor transaction-level model. A good
transaction-level model captures the details that are functionally
relevant and does not include implementation artifices. For exam-
ple, the latency of a design—the number of clock cycles necessary
for an input to be transformed into an output—is usually not func-
tionally relevant1. If you insist on writing a model that is clock-
cycle accurate with the actual implementation, you may be spend-
ing a lot of maintenance effort and adding a lot of complexity for a
characteristic that may not be important functionally.

At first glance, 
latency seems a 
significant char-
acteristic.

To many, saying that latency may not be a relevant functional detail
and should not be modeled sounds like a recipe for disaster. But if
you take a step back from your design, ignoring its implementation
details, does it really matter whether a particular output comes
exactly N cycles after the corresponding input was sampled? As
long as the order of these outputs is the same, is the time at which
they come out significant?

Consider the speech synthesizer design illustrated in Figure 3-4 on
page 95. To produce audible speech, coefficients must be modified
at regular intervals to produce the different sequences of sounds
that compose normal speech.

For example, to say “cat”, the coefficients would be modified to
create the sequence of sounds “k”, “a”, “a”, “a”, “t”, “t”. From
these coefficients, a digitized sound waveform should come out at a
8 KHz sample rate. The delay between the time the coefficients are

1. But if it is relevant, then it should be modeled.
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set and the corresponding sound is synthesized is irrelevant, as long
as it is under the limit of perception by the user. A similar argument
can be made for packet routers: It does not really matter how long it
takes for packets to transit through a routing node; what matters is
that they eventually come out in the same order.

In some cases, 
latency is signif-
icant.

The only time where a “detail” like latency is significant is when
the design under verification does not have complete visibility and
control over all elements of a system-level transaction. A system-
level transaction is the smallest amount of data than can be pro-
cessed by the system: an atomic operation. For example, a packet
router’s system-level transaction is an entire packet. In a speech
synthesizer, it is a phoneme. In a hardware tester, it is a complete
vector with input and expected output values. If the design under
verification only processes a portion of the system-level transac-
tion, it is important that the latencies in the reconvergent paths are
identical so the system-level transaction is reassembled properly.

For example, the input formatter in a hardware tester, as illustrated
in Figure 7-2, only processes the input value. For the corresponding
expected output value to be checked at the proper time, it must have
the exact same latency as the Expect Delay design.1 In a packet
router, as illustrated in Figure 7-3, if the packet is dismembered to
be routed by a different switching node, each node must have an
identical latency for the packet to be put back together properly. If
you mix behavioral and RTL models in a system-level verification,
and each has a different latency, the system-level simulation would
become a very effective packet scrambler!

1. Actually, since the latter is easier to design, its latency is made to match 
that of the input formatter, whatever it may be.

Figure 7-2.
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Do not let the 
testbench dic-
tate what is 
functionally rel-
evant.

The reason most often cited for making a transaction-level model
clock-cycle accurate with the implementation is to be able to pass
the same cycle-oriented testbenches. If the testbenches enforce a
specific latency, they are verifying a specific implementation, not a
specification.1 I hope I have explained successfully how to write
testbenches that are independent of the latency of the design under
verification in Chapters 5 and 6. If your testbenches do not expect a
specific latency, then you need not model it.

Details relevant 
at the system-
level can be 
back-annotated.

An implementation “detail”, such as latency, may not be relevant to
the functionality of the stand-alone design under verification. How-
ever, it may be critical for the proper operation of the system-level
design. If that is the case, such as the example designs shown in
Figure 7-2 and Figure 7-3, the behavioral model still may be mod-
eled as if the latency was not important and perform its transforma-
tion in zero-time. At appropriate points in the input or output paths,
programmable delay pipelines can be introduced so the exact
latency of the implementation can be back-annotated into the trans-
action-level model. The transaction-level model would then model
the functionality of the synthesizable model at a clock-accurate
level. Sample 7-10 shows a configurable delay pipeline to adjust
the latency of a transaction-level model.

Specify the 
functionality, 
not the imple-
mentation.

Another big obstacle to writing good and efficient transaction-level
models is the level of the specification for the design. If it is written
at a very low level, it becomes difficult to abstract significant func-
tionality and discard irrelevant implementation details. I once had
to write a transaction-level model for a customer whose functional

Figure 7-3.
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1. Unless of course a specific latency is required, in which case it should 
be specified in the specification document. And if something is speci-
fied, it should be modeled and verified.
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specification was done using technology-independent schematics
using a general-purpose drawing tool. Each block was specified
independently with no description of the overall functionality. Not
only did it make the job of writing RTL code that met timing
requirements difficult, it made writing a transaction-level model
impossible. After 10 weeks, I had a model that was barely faster
than the RTL model. But after those 10 weeks, I was able to piece
the entire design together in my mind and understand the intended
functionality. I scrapped the first model and rewrote it entirely in
under two weeks. That newer model outperformed the RTL model.
Had the specification been written at an appropriate level in the first
place, a more effective behavioral model could have been written
from the start.

Transaction-Level Models Are Faster

They are faster 
to write.

As shown in “High-Level versus RTL Thinking” on page 113, a
high-level model is much faster to write simply because the func-
tionality is described using significantly fewer statements than an
RTL model. Furthermore, transaction-level models do not need to
meet physical timing or other implementation constraints. They are
written with the sole purpose to describe the functionality of a
design.

They are faster 
to debug.

The fewer statements, the fewer bugs. Bugs are easier to identify
because of the simpler descriptions. The code is written based on a
functional description. The code is not cluttered by directives aimed
at a synthesis tool or twisted to be synthesized into specific hard-
ware structures. Transaction-level models also tend to use fewer
parallel constructs, instead preferring large sequential descriptions

Sample 7-10.
Configurable 
delay pipeline

initial
begin
   const int unsigned delay = 10;
   transaction pipeline[$];

   repeat (delay) pipeline.push_back(new);
   forever begin
      always @ (posedge clk);
      actual_ouput = pipeline.pop_front();
      pipeline.push_back(output);
   end
end
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in a few blocks. Sequential code is much easier to debug than paral-
lel code, since it does not involve synchronization or data exchange
intricacies.

They are faster 
to simulate.

Less code used to describe a function should naturally simulate
faster. But the greatest contributor to the increase in simulation
speed of a transaction-level model over a synthesizable model is
avoiding the use of the synthesizable subset itself. Look at all the
always blocks used to infer registers. Each and every one of them is
sensitive to the clock. If you remember the discussion on event-
driven simulation in “The Parallel Simulation Engine” on page 159,
you know that this sensitivity causes all of these threads to be
scheduled for execution after each event on the clock signal,
whether their internal state needs to change or not.

In a typical ASIC, activity levels are well below 40%. This means
that well over 60% of the always blocks are evaluated for no rea-
son. A transaction-level model only executes when there is useful
work to be done. The load it puts on the simulator is much lower. In
the small example illustrated in “Contrasting the Approaches” on
page 115, the activity in the high-level model is estimated to be 10
times lower than in the equivalent RTL model.

They are faster 
to bring to “mar-
ket”.

Being faster to write and debug, a transaction-level model takes sig-
nificantly less time to develop to a level where it can be used in a
system-level model. With transaction-level models, you are able to
start system-level simulations sooner. Because they also simulate
faster, you are able to run more of them, on less expensive hard-
ware.

The Cost of Transaction-Level Models

Transaction-
level models 
require addi-
tional authoring 
effort.

Someone has to write these transaction-level models. If you use
your existing resources, it means that the coding of the RTL model
will be delayed. If you do not want to affect the schedule of the syn-
thesizable model, you will have to hire additional resources to write
the transaction-level model. But being a completely separate
model, it is a task that is easy to parallelize with the implementation
effort. And writing a transaction-level model is not as costly as
writing an RTL model. A transaction-level model that is sufficient
to start simulating and debugging the testbenches should not take
more than two person-weeks to produce. A complete model with all
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of the functionality of the design under verification should not take
more than five percent of the effort required to write an equivalent
RTL model.

The mainte-
nance requires 
additional
efforts.

When was the last time you were involved in a design project
where the functional specification did not change? Whenever a
functional or architectural change is made, the transaction-level
model needs to be modified. Often, these modifications are dictated
by the RTL model because the technology cannot implement the
original design and still meet timing requirements. Some of these
implementation-driven changes can be planned for and made easy
to modify, such as the latency. More significant changes may
require rewriting a significant portion of the transaction-level
model. Toward the end of a project, when schedule pressure is at its
greatest, it often leads to the decision of abandoning the transac-
tion-level model in favor of focusing on the RTL.1 However, most
of the modifications to an RTL model are made to meet timing
goals and do not affect the functionality of the design and thus
should not require modification of the transaction-level model. 

The Benefits of Transaction-Level Models

Audit the speci-
fication.

Most specification reviews I have attended focus on high-level
functions and on the spelling and grammatical errors in the docu-
ment. The missing functional details were often left to be discov-
ered during RTL coding. Decisions regarding these functional
details were usually then made according to the ease of implemen-
tation. There is nothing like writing a model to make you thor-
oughly read a specification document.

For example, after you’ve coded a particular function that occurs
under some condition, you’ve come to the else part of the if state-
ment. What should be done when the condition does not occur?
Flip, flip, flip through the specification document. Not a word.
You’ve just found a case of incomplete specification! Since you are
writing the transaction-level model faster than the RTL model,
you’ll reach that section of the specification earlier than the RTL
designers. By the time the RTL model incorporates this functional-

1. An error in my opinion. See the next section titled “The Benefits of 
Transaction-Level Models”.
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ity, it will have been specified. A similar process occurs with incon-
sistencies in the specification. When the RTL model is written,
there are fewer problems in the specification, and thus it takes less
time to write.

Develop and 
debug the test-
benches in par-
allel with the 
RTL coding.

Testbenches are implemented using code, just as RTL models are. If
the RTL model requires debugging, so do the testbenches. Since a
transaction-level model is available much earlier than the RTL
code, you are able to debug the testbenches earlier as well. You are
debugging the transaction-level model and the testbenches effec-
tively while the RTL is being written. And because the transaction-
level model simulates faster than the RTL model, the testbench
debug cycles are much shorter.

Once the RTL is available, you will have a whole series of
debugged testbenches. Whenever an error is detected, it likely will
be due to an error in the RTL model. If you decide to abandon the
maintenance of the transaction-level model after the RTL is avail-
able, debugging the testbenches (which will also need to be modi-
fied whenever the RTL is modified significantly) will take much
longer. It is important to maintain the transaction-level model to
keep reaping its benefits for the entire duration of the project.

System verifica-
tion can start 
earlier.

Figure 7-4 shows a design process that uses transaction-level mod-
els for developing the testbenches and the functional verification of
the system. Figure 7-5 shows a comparative timeline for a design
and verification process with and without transaction-level models.
The design process is somewhat shortened by using a transaction-
level model because the testbenches are already debugged. But the
greatest saving comes from system verification. The transaction-
level model is available sooner than the RTL model, so functional
verification can start much earlier. Because a transaction-level
model is much smaller and simulates more efficiently than the
equivalent RTL model, you are able to create models of larger sys-
tems, execute longer testcases and run on ordinary hardware plat-
form configurations. If the transaction-level model is demonstrated
to be equivalent to the RTL model, the latter never needs to be
brought into the system-level verification. For systems incorporat-
ing very large designs, a transaction-level model may be that which
makes system verification even possible.
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It can be used as 
an evaluation 
and integration 
tool by your cus-
tomers.

If your design is to be available as reusable intellectual property or
a chipset, a transaction-level model can be a powerful marketing
tool. Since it only describes functionality, not implementation, and
it is far from being synthesizable, the transaction-level model
should not convey intellectual property information.1 A customer
could start using the transaction-level model while the legal issues
with licensing the RTL model are being resolved. The system-level
models could be used as application notes. The transaction-level
model could be used to start the integration of your design into your
customer’s design. Since reusing intellectual property is about
time-to-market, a behavioral model can be an effective tool to help
your customers improve the odds that they will meet their market
window.

Demonstrating Equivalence

The RTL and TL 
models must be 
equivalent.

The greatest benefit from creating a transaction-level model comes
from system verification. To use it instead of the RTL model in a
simulation or as a marketing tool, you have to demonstrate that both
are an equivalent representation of the design. I use the term dem-

Figure 7-4.
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1. Unless the intellectual property is in the function itself, such as a DSP 
algorithm.
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onstrate because I do not think it will ever be possible to prove
mathematically that they are equivalent.

Equivalence checking can prove that an RTL model is equivalent to
a gate-level model or to another RTL model because they are struc-
turally very similar. A properly written transaction-level model
would use a completely different modeling approach that would be
very difficult to correlate mathematically with the equivalent RTL
model.

Demonstrate 
equivalence by 
using the same 
test suite.

The only way to demonstrate that the transaction-level and the RTL
models are equivalent is to verify both of them using the same veri-
fication environment. If both models pass the same testcases, from
a system-level perspective, it should not matter which one you are
using. For a testcase to be executable on both models, it must not
depend on a specific implementation. Based on the testcase taxon-
omy described in “Functional Verification Approaches” on page 11,
only black- and grey-box testcases can be used to demonstrate
equivalence. Both are executed through the same physical inter-
face. Both do not depend on a particular implementation of the
design under verification. The grey-box testcases may not be very
relevant to the transaction-level model as they are designed to test a
particular implementation-specific feature in the RTL model, but
should nonetheless execute successfully.

PASS OR FAIL?

This section describes how the ultimate failure or success of a self-
checking testbench is determined.

The absence of 
errors is not a 
sufficient condi-
tion.

The goal of a testbench is to determine if the design under verifica-
tion passes or fails a simulation. But how do you determine if the
design passed the simulation? Is it by the absence of error mes-
sages? What if the simulation never ran at all? It could be caused by
a lack of licenses, or a runtime error such as running out of memory
or experiencing a power failure, or a simple syntax error in your
source code. You need positive proof that the simulation ran to
completion successfully.

Produce and 
look for a termi-
nation message.

Do not rely on a time bomb to terminate your simulation. Nor
should you attempt to have the simulation terminate by itself
through event starvation. Each simulation should be terminated
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intentionally. Upon termination, it should produce a message that
the simulation was terminated normally. If that message is not
present, you must assume that the simulation did not run to comple-
tion and failed. To terminate a simulation from within the testbench,
use the $finish statement. Sample 7-11 illustrates the use of an
explicit termination statement. 

An error in the 
testbench could 
prevent error 
detection.

What if there is a functional problem in your testbench? That error
could prevent the testbench from detecting any errors at all. This
would clearly be a false-positive situation. You should always
ensure that your testbench is functionally correct as part of your
testcases. Error detection can be verified by injecting errors deliber-
ately in the design under verification. These errors can be intro-
duced by simply misconfiguring the design for the expected output.
For example, a UART could be configured with the wrong parity
setting to verify that the output monitor detects the bad parity.

Provide consis-
tent error mes-
sage formats.

The final pass or fail judgment could be made by a script parsing
the simulation output log file, counting all error messages from all
sources. To facilitate the implementation of such a script, use a con-
sistent error format. This style is best accomplished by using a mes-
sage log package that produces consistent headers, as shown in
Sample 7-12. 

Keep track of 
success or fail-
ure in the log 
service.

By using a single message log service as shown in Sample 7-13, it
is possible for the simulation to keep track of its own success or
failure by checking that no error messages were issued. By includ-
ing a simulation termination function, the final pass or fail indica-

Sample 7-11.
Terminating a 
simulation

program test;
harness th = new;

initial
begin
   ...
   $write(“Simulation terminated normally...\n”);

$finish;
end
endprogram
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tion can be determined by the simulation, without using a script to
parse the output log.

Assertions have 
predefined error 
reporting sys-
tem tasks.

SystemVerilog has a set of predefined error message system tasks
that are usually used for specifying user-defined messages in asser-
tions. If any error message is issued through one of the predefined
system tasks, the simulator will issue and format the messages, not
a user-defined message log service. The message service will thus
be unable to properly declare a failure. However, if these pre-

Sample 7-12.
Simulation log 
service.

class syslog;
static integer n_errs = 0;

task warning;
   $write("WARNING at %t: ");
endtask

task error;
   n_errs++;
   $write("*ERROR* at %t: ");
endtask

endclass

Sample 7-13.
Determining
pass or fail in 
the simulation 
log package

module log;

integer n_errs;

task warning;
   $write("WARNING at %t: ");
endtask

task error;
   n_errs = n_errs + 1;
   $write("*ERROR* at %t: ");
endtask

task terminate;
begin
   $write("Simulation %0sED\n",
          (n_errs) ? "FAIL" : "PASS");
   $finish;
end
endtask

endmodule
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defined system tasks are used only when assertions fail, the simula-
tor will be able to report a failure.

Using a script to 
parse the simu-
lation output log 
is still a good 
idea.

Using a message log service is not sufficient to determine if a
testcase is successful. Other errors could have been generated
before the simulation started, when the log service is not available.
Other error messages generated by the simulator itself—such as
default assertion failure messages and solver failures—would not
be issued by the log service. You still need to confirm the presence
of the termination message to verify that the testcase was executed
properly in its entirety. Errors could also have been produced by
some verification IP using its own log service. The output log pars-
ing script can also detect the presence of errors or warnings issued
by the simulation management tools, linting tools, syntax errors,
elaboration warnings and other possible error conditions not visible
to the testbench log service.

See vmm_log. The section titled “Message Service” starting on page 134 of the
Verification Methodology Manual for SystemVerilog specifies a
powerful message service and guidelines for using it.

MANAGING SIMULATIONS

Are you simulat-
ing the right 
model?

You’ve defined your verification task through a verification plan.
You have a verification harness with many bus-functional models
and utilities. Several testcases using that verification harness have
been written and you can choose between the RTL and transaction-
level model to simulate them. How do you bring all of these com-
ponents together in a single simulation? How can you reproduce a
simulation? And more importantly, how do you make sure that
what you simulate is what will be built?

Configuration Management

A configuration 
is the set of 
models used in a 
simulation.

Configuration management is different from source management.
Source management, as described in “Revision Control” on
page 61, deals with changes to source files and the set of source
files making up a particular release. Configuration management
deals with the particular set of models you decide to use in a partic-
ular simulation. For a specific design, a single configuration would
be composed of a specific test function, the verification harness
used by that test function and the model of the design to be exer-
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cised by the testbench. In a system-level simulation, the configura-
tion would also include that particular mix of models used to
populate the system model.

It must be easy 
to specify a par-
ticular configu-
ration.

The only information required to define a particular configuration
is the identity of the test function, the verification harness and the
model of the design under verification. The problem is that each
configuration component is composed potentially of several source
files and design units. Many individuals contribute to the creation
of these source files and design units. Their number and names may
change throughout the project. It is not realistic to expect every
engineer who needs to run a simulation to know exactly what
makes up a particular component of the desired simulation. Just as
bus-functional models abstract the data from the physical imple-
mentation level, configuration management abstracts the details of
the structure of a model and the files that describe it.

Use a script to 
create a configu-
ration.

The most efficient way to abstract the configuration details from the
user is to provide a script that expands a test name and an abstrac-
tion level for the design under verification into their respective sim-
ulation components. Different scripts have to be used for different
designs, file system structures and simulators. To simplify the user
interface and minimize the amount of repeated information, scripts
infer pathnames and expect particular set-up files.

For example, Sample 7-14 shows the command line of a hypotheti-
cal script named sim_design used to simulate a configuration com-
posed of the test named “basic_tx” on the transaction-level model.
It is followed by a configuration composed of the testcase named
“overflow_rx” on the RTL model.

There are many 
ways of specify-
ing files.

There are six different ways to include a source file into a System-
Verilog simulation:

1. Specify the filename on the command line.
2. Specify the name of a file containing a list of filenames, using 

the -f option.

Sample 7-14.
Configuration 
script com-
mand line

% sim_design -t basic_tx
% sim_design -r overflow_rx
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3. Specify a directory to search for files likely to contain the defi-
nition of a missing module, using the -y option. The files used in 
the simulation depend on the +libext command-line option.

4. Specify the name of a file that may contain the definition of 
missing modules, using the -v option.

5. Include a source file inside another using the `include directive. 
The actual file included in the simulation depends on the 
+incdir command-line option.

6. Locate files in virtual libraries specified in a library search order 
in a configuration.

Use ‘include or 
the configura-
tion.

Of all the mechanisms for specifying input source files in System-
Verilog, only the ‘include and configuration mechanisms can be
source-controlled and reproduced reliably. They are also the only
mechanisms that are defined formally as part of the language and
not left to the tool implementation.

Use a configura-
tion for each 
model of the 
design.

Each available model of the design should be specified using its
own configuration. For example, if you have a transaction-level
model, two versions of the RTL model (one for FPGAs, the other
for the final ASIC) and two gate-level models (one mapped to
FPGA gates, the other mapped to ASIC gates), there should be five
different configurations available.

Use ‘include for 
the verification 
harness and 
testcases.

The configuration is designed for the static structure of SystemVer-
ilog models: module, interface, program and package instances. It
is not designed for class instances. It is not possible, using a config-
uration to specify which version of a class to instantiate in the veri-
fication harness or testcases. The verification harness should
implicitly support all possible configurations of the design. All the
files required by the verification harness and testcases should be
included using a ‘include directive. A suitable ‘ifndef/‘define/‘endif
structure should protect all bus-functional model and harness com-
ponent files against multiple inclusion, as shown in Sample 7-15.

Include files at 
$root level.

When a file is included by another file using the ‘include directive,
it is included as-is within the scope where the ‘include directive is
specified. Files should be coded to be included in the $root scope,
i.e. outside of any other scope, at the primary file level. This will
ensure that files are compilable stand-alone and do not require
some additional context to be used. It will also ensure that files are
included in a known and consistent context.
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Used files 
should report 
name and ver-
sion.

For additional confidence and a positive confirmation of the files
and version of the files used in a simulation, you should have each
file report its name and revision number. Sample 7-15 shows how
to use a module containing a single initial block and RCS keywords
to perform this task. All modules included in the compilation are
included in the simulation, even if they are not instantiated. If each
file contains a suitably uniquely named module, it can be used to
display the filename and revision information. This mechanism
requires that all source files be designed to be included or compiled
in the $root scope, as recommended in the previous paragraph.. 

Avoiding Recompilation or SDF Re-Annotation

This section 
may not be 
applicable.

With some simulators, compiling the entire design under verifica-
tion and the verification harness for each testcase may take a long
time. To minimize the amount of time spent recompiling code that
does not change from testcase to testcase, it may be necessary to
use a compile-once, run many times strategy. Other simulators may
provide negligible compilation times or incremental compilation
technology that does not present this problem.

Back-annotation is a process used only with gate-level models. Due
to their large size, they are excruciatingly painful to simulate in
terms of performance and resource requirements. The purpose of
gate-level simulation is to verify that the synthesis tool has synthe-
sized the RTL description correctly without modifying the func-
tional behavior. The purpose of gate-level simulation is also to
verify that there are no timing violations. In most circumstances,
these checks are better performed using an equivalence checking
static timing analysis tool (see “Equivalence Checking” on page 8).

Sample 7-15.
File reporting 
its filename 
and revision

‘ifndef ATM_CELL__SV
‘define ATM_CELL__SV

module file_atm_cell_sv;
initial $write("Configuration: $Header$\n");
endmodule

class atm_cell;
   ...
endclass: atm_cell

‘endif
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SDF files are 
used to model 
accurate delays.

In a gate-level model, each gate is modeled using delays estimated
from average output load conditions. However, in a real gate-level
netlist, each gate is subject to different output loads: The gates drive
different numbers of inputs, and the length of the wires connecting
the output of the gate to the driven inputs are different. Each con-
tributes to the load on the output of the gate, producing different
loads for different instances of the same gate.

To be more accurate, gate-level simulations are back-annotated
with delay values calculated from the physical netlist or the layout
geometries. These more accurate delay values are stored in a Stan-
dard Delay File. The SDF file is read by the simulator and each
delay value replaces the average delay estimate for each instance.
Thus, each gate instance can have a different delay value. The delay
between an output pin and each of its driven input pins also can be
different.

SDF annotation 
can take a long 
time.

Gate-level netlists can contain a few million gates and several mil-
lion pin-to-pin nets or connections. Each must be annotated with a
new delay value. This process can be very time consuming and
should be minimized whenever possible. If you have to recompile
your model for each testcase, you have to perform the back-annota-
tion each time as well.

Use compiled 
back-annotation 
whenever possi-
ble.

Compiled simulators usually offer compile-time back-annotation of
a gate-level model. In that mode, the back-annotation of the delay
values is performed once at compile time. Different testcases can be
configured to run on the design in separate simulations without
requiring that the back-annotation process be repeated.

Concatenate 
testcases to min-
imize back-
annotation.

Reducing compilation time can only be accomplished by minimiz-
ing the number of times the simulation is compiled. To compile the
simulation only once for multiple testcases, you need to concate-
nate each testcase into a single simulation. The simulation is then
invoked multiple times, to execute each testcase separately. It may
also be possible to sequence separate testcases into a single simula-
tion. However, concatenating testcases at run-time will create
reproducibility challenges: what if a bug is found in a test when it
runs after a hundred other tests? How can the bug be efficiently
reproduced and debugged by running just that one testcase?.

Encapsulate 
testcases.

For testcases to be compilable into the same simulation, they must
not interfere with each other. Therefore, any testcase-specific decla-
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rations must be localized to that testcase only. This can be accom-
plished by encapsulating testcases into their own class. Within that
class, they are free to make local declarations without affecting
other testcases. Simply pass a reference to the verification harness
to the test class either at construction time, as shown in Sample 7-
16. The test procedure itself is then encapsulated in a run() method.
If a testcase was originally implemented using multiple initial
blocks, they should be forked from within the run() method. Deriv-
ing all testcase classes from a common base class is a good idea to
facilitate some of the tasks that will be discussed in the following
paragraphs.

Reset the state 
of the verifica-
tion harness.

Testcases must be able to execute, whether they are the first or last
testcase to be run in the sequence. Therefore, the initial state of the
verification harness must be the same at the start of a testcase,
regardless of the execution order of that testcase. After completion,
a testcase should reset the state of the verification harness to the
same state it found it at the start. Resetting a verification harness
involves more than simply resetting the execution threads in the
bus-functional models. It involves removing any callbacks intro-
duced by the testcase. It also involves returning random generators
to their default, unconstrained state by restoring the default ran-
domized instances that were replaced by constrained extensions. If
random stability is required between consecutive testcases, the state
of the random generators must also be restored.

The design need 
not be reset.

Whether the design itself is reset and reconfigured is up to the
testcase. The response checking or purpose of a testcase may
depend on a specific configuration and initial state of the design—
especially directed testcases. But some testcases may be able to

Sample 7-16.
Encapsulated 
testcase

class test1 extends testcase;
   harness th;

   function new(harness th);
      this.th = th;
   endfunction

   virtual task run();
      ... // Testcase procedure
   endtask: run
endclass: test1
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explore additional corner cases if they can and are allowed to exe-
cute from an arbitrary design state.

Instantiate and 
run all known 
testcases.

A simulation must be able to run all known tests included in the
compilation. This can be done by instantiating all known testcases
in an array or queue of tests, as shown in Sample 7-17. The array
can then be traversed to identify and run the required tests. 

Identify
testcases using 
user-defined 
options.

The initial block invokes the run() method of all known testcases.
To control which testcases are run and which ones are not, each
run() method contains an if statement that tests for a user-defined
command-line option. That way, you might run only a subset of
testcases instead of all of them. Sample 7-17 shows how all
testcases are created and run. Sample 7-18 shows how the run()
method of each testcase checks if it is selected based on a user-
defined command-line option. The +all_testcases user-defined
option can be used to run all testcases. Notice how the use of a
testcase base class and the object-oriented programming model
greatly simplifies the implementation of each test selection. Sample
7-19 shows an example of each usage with a VCS-compiled simu-
lation. Notice how it was unnecessary to recompile the model to
execute different testcases. 

Output File Management

Simulations pro-
duce output 
files.

A simulation usually creates at least one output file. For example,
VCS simulations generate a copy of the output messages in a file

Sample 7-17.
Instantiating 
and running 
known 
testcases.

program tests;

harness th = new;
testcase known_tests[$];

initial
begin
   test1 tc = new(th);
   known_tests.push_back(tc);
   ...
   foreach (known_tests[i]) begin
      known_tests[i].run();
   end
   $finish;
end
endprogram: tests
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named vcs.log by default. Another frequently produced output file
is the file containing the signal trace information for a waveform
viewer. These output files are valuable. They are used to determine
if the simulation was successful. They should be saved after each
simulation run and parsed or post-processed to determine success
or failure.

Multiple simula-
tions can clob-
ber each other’s 
files.

When you run only one simulation at a time, you can save them by
renaming them after the completion of the simulation. That way,
you can keep a history of testcases that were run on the design
under verification. However, if you run multiple simulations in par-
allel, usually on different machines, the output files from one simu-
lation can clobber those of another. If you rely on default or
hardcoded filenames, you will not be able to run simulations in par-
allel. You must be able to name files differently for different
testcases.

Specify output 
filenames on the 
command line in 
your simulation 
run script.

A few default output filenames can be changed from the command
line. For example, the -l option can usually be used to change the
name of the output log file. In “Configuration Management” on
page 355, I recommended that you use a script to help manage the
configuration of a simulation. That same script can also manage the
naming of the output files according to the name of the testcase.

Sample 7-18.
Testcase selec-
tion mecha-
nism.

class testcase;
   function bit is_selected(string name);
      is_selected =
         $test$plusargs("all_testcases") ||
         $test$plusargs({"run_", name});
   endfunction: is_selected
endclass: testcase

class test1 extends testcase
   ...
   virtual task run();
      if (!super.is_selected(“test1”)) return;
      ... // Testcase procedure
   endtask: run
end
endmodule

Sample 7-19.
Running dif-
ferent
testcases

% vcs -f all_tests.f -f gate/design.f \
      -f phy/sdf.f
% ./simv +run_testcase3 +run_testcase7
% ./simv +all_testcases
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Sample 7-20 shows how a perl script can use the name of the
testcase specified on the command line to rename the output log
file.

Name created 
files after the 
testcase.

If files are created by the verification harness, they should be
named according to the testcase that caused them to be created.
This can be accomplished by simply using an argument to the veri-
fication harness constructor instead of a hard-coded name and pass
the testcase name to the verification harness as a constructor argu-
ment. String variables can be concatenated using the usual concate-
nation operator to create unique filenames. Sample 7-21 and
Sample 7-22 show an example.   

Sample 7-20.
Simulation run 
script

require "getopts.pl";
&usage if &getopts("hr") || $opt_h || !@ARGV;

sub usage {
   print <<USAGE;
Usage: $0 [-r] {testcase}
  -r   Use the RTL model instead of behavioral
USAGE
   exit (1);
}

$design = ($opt_r) ? "rtl" : "beh";
$prefix  = "vcs -R -f $design/design.f ";

foreach $test (@ARGV) {
   $command = "$prefix -f tests/$test.f";
   $command .= " -l logs/$test.log";
   system($command);
}

Sample 7-21.
Generating
unique file 
names

class harness;
   ...
   local string testname
   int results;

   function new(string testname);
      this.testname = testname;
      results = $fopen({testname, ".out"});
      ...
   endfunction: new
endclass
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Seed Management

Seeds contrib-
ute random sta-
bility.

The main concern with random stimulus is reproducing a simula-
tion that detected a functional error. Random stability allows the
same input sequence to be generated if the same initial seed is used,
even in the presence of some changes in the source code. Any
instance that is not affected by randomization-related source code
changes—such as additional constraints or random objects—will
always produce the same pseudo-random sequence in two different
simulations if the same seed is used, even if other instances are
affected by such changes. Random stability involves more than
using the same seed. A C++ model using the random() function is
not randomly stable as any change in randomization-related code
will affect all subsequent calls to the function in the entire model.
With random stability, the effects are localized in the modified
instance.

Don’t always 
use the default 
seed.

SystemVerilog uses a default seed unless a different seed is speci-
fied. Most people keep using the default seed over and over until
the simulation runs error free, then they consider their job done.
Using the same seed will generate the same input sequence. You
will not be verifying or debugging your environment under differ-
ent conditions. Before declaring your environment or bus-func-
tional model “done”, verify it with different seeds.

Pick random 
seeds.

Your SystemVerilog simulator may be able to pick a random seed
automatically using a specific command-line option. If not, it must
have a command-line option to manually specify a specific seed.
That value can be a random value generated by a suitable function
in your simulation run script or the output of the simple C program
shown in Sample 7-23. Do not generate a random seed based on the
current system time from within SystemVerilog because, by the
time the seed is set, some constructors may already have been

Sample 7-22.
Specifying
unique file 
names

program test1;
harness th = new(“test1”);

initial
begin
   ...
end
endprogram: test1
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invoked, initializing the local random source for those instances
from the default seed. 

Seed used is dis-
played.

Whatever seed is being used in a simulation, its value must be
known so it can be reused. Simulation scripts should display the
value of the seed used at the beginning of a simulation, as shown in
Sample 7-24. This display makes it possible to associate the results
in an output log file with a particular seed. 

Associate out-
put files with 
seeds.

Simulation results are the product of a simulation run with a spe-
cific seed. Performing another simulation run, using the exact same
code, but with a different seed will yield different results. It is there-
fore important to associate results with a specific seed. Once this
association exists, results can be reproduced. They also can be
graded to identify which seeds contribute most toward the final ver-
ification objective.

Include the seed 
in all output file 
names.

If the same output filename is used by two simulations of the same
code but using different seeds, the results from the first simulation
will be lost. You should include the seed value in all output path-
names. This technique can be done by putting all output files in a
seed-specific directory or by including the seed value in the file-
name itself.

REGRESSION

A regression 
ensures back-
ward compati-
bility.

A regression suite ensures that modifications to the design remain
backward compatible with previously verified functionality. Many
times, a change in the design made to fix a problem detected by a

Sample 7-23.
Generating a 
random seed

#include <stdlib.h>
#include <time.h>
main() {
  srandom(time(NULL));
  printf("%d\n", random());
  exit(0);
}

Sample 7-24.
Random seed 
display in sim-
ulation script

...
$seed = ‘random‘;
print “Random seed is $seed\n”;
‘simv +ntb_random_seed=$seed ...‘
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testcase, will break functionality that was verified previously. Once
a testbench is written and debugged to simulate successfully, you
must make sure that it continues to be successful throughout the
duration of the design project.

Running Regressions

Regressions are 
run at regular 
intervals.

As individual self-checking testbenches are completed, they are
added to a master list of testbenches included in the regression sim-
ulation. This regression simulation is run at regular intervals, usu-
ally nightly. For directed testcases, simulations are run one after
another. For random-based testbenches, simulations are run repeat-
edly using different seeds. As the number of testbenches or the size
of the functional coverage space grows, it may not be possible to
complete a full regression simulation overnight.

Divide directed 
testcases into 
two groups.

Directed testcases can then be classified into two groups: One
group is run every night, while the second group is included only in
regressions run over a weekend. Testcases selected for the first
group should be the ones that verify the basic functionality of the
design.

Rank seeds. With random-based testbenches, rank seeds based on their incre-
mental contribution to the overall functional coverage goal. Select
the seeds that provide the greatest contribution and start the regres-
sion simulation with those. If there is still time left in the regression
period, continue with additional, randomly selected seeds.

Testbenches 
may have a fast 
mode to speed 
up regressions.

Another approach is to provide a fast mode to testcases where only
a subset of the functionality is verified during overnight regression
simulations, or simulations are run for shorter periods of time with
the same seed. The full-length simulation would be performed only
during individual simulations or regression simulations over a
weekend. The fast mode could be turned on using a user-defined
command-line option, as shown in Sample 7-25. . 

Use a script to 
run regressions.

A regression script could invoke each testbench in the regression
test suite, for a specific number of seeds, using the simulation con-
figuration script used to invoke individual simulations, as discussed
in “Configuration Management” on page 355. If the number and
duration of testbenches in the regression suite make it impossible to
run a regression simulation in the allotted time, you will want to
consider parallel simulations. If you do, it is necessary that test-
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benches be designed to produce results independently from each
other, as discussed in “Output File Management” on page 361. Par-
allel simulations can be managed using readily available utilities,
such as pmake or LSF.

Regression Management

Check out a 
fresh view with 
local copies.

Not all source files are suitable for regression runs. If you are using
your revision control system properly, you should be checking in
files at times convenient for you, not convenient for the regression
run. The latest version of a file might contain code that was not ver-
ified at all or that might even have syntax errors. You do not want to
waste a regression simulation on files that were not debugged prop-
erly. Before running a regression, you should checkout a complete
view of the source control database, populated with local copies
whose revisions are tagged as being suitable for regression testing.
This tag is applied by verification and design engineers once they
have confidence in the basic functionality of the code and are ready
to submit that particular revision of the testbench or the design to
regression. Sample 7-26 shows an example of tagging a particular
view of a file system, then checkout the particular files associated
with a tag at a later time using CVS.

Sample 7-25.
Implementing 
a fast mode

% simv ... +fastmode

program testcase;
...
initial
begin
   // Repeat only 4 times in fast mode
   repeat (($test$plusarg("+fastmode"))?4:256)
      begin
         ...
      end
   syslog.terminate;
end
endprogram

Sample 7-26.
Tagging and 
retrieving a 
particular revi-
sion of a view

% cvs tag -R regress
...
% cvs update -dA -rregress
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Put a time bomb 
in all simula-
tions.

One of the greatest killers of regression simulations, second only to
the infinite loop, is the simulation that never terminates. A simula-
tion will run forever if a condition you are waiting for never occurs.
The clock generator keeps the simulation alive by generating events
continuously. Time advances until the maximum value is reached,
which, in modern simulators using 64-bit time values, will take a
long time! To prevent a testcase from hanging a regression simula-
tion, include a time bomb in all simulations. This time bomb should
go off after a delay long enough to allow the normal operations of
the testcase to complete without interruption. Sample 7-27 shows a
time bomb, included in the verification harness in Sample 7-28.
The time bomb could be modified to include a virtual interface that,
when observed with an event, would reset the fuse. 

Do not rely on a 
time bomb for 
normal termina-
tion.

The time bomb should be used only to prevent runaway simulations
from running forever. It should not be used to terminate a testcase
under normal conditions. It would be impossible to distinguish
between a successful completion of the testcase and a deadlock
condition. Furthermore, the time bomb would require fine tuning
every time the testbench or design is modified to avoid the testcase
from being interrupted prematurely or wasting simulation cycles by
running for too long.

Automatically 
generate a report 
after each 
regression run.

Once the regression simulations are completed, the success or fail-
ure of each testcase in the regression suite should be checked using
the output log scan script (see “Pass or Fail?” on page 352.) The
results are then summarized into a single regression report outlining
which particular testbench and seed was successful or unsuccessful.
It is a good idea to have the regression script mail the report to all
the engineers in the design team to ensure that the design remains

Sample 7-27.
Time bomb 
class

class timebomb;
   function new(time fuse);
      #(fuse);
      $write("Boom!\n");
      $finish;
   endfunction
endclass: timebomb;

Sample 7-28.
Using the time 
bomb

class harness;
   timebomb bomb = new(12ms);
   ...
endclass: harness
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backward compatible at all times. Reviewing this report also should
be the first item on the agenda in any design team meeting. 
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SUMMARY

Write a transaction-level model to help debug your verification
environment sooner and faster.

Transaction-level models are not the same as RTL models but must
pass the same verification suite.

Transaction-level models enable system-level verification.

Carefully model exceptions in transaction-level models.

Use a common error reporting mechanism.

Use a script to look for the absence of error messages and the pres-
ence of the termination message to declare if a simulation com-
pleted successfully.

Manage your models and the components of the verification envi-
ronment using configuration techniques.

Have simulations report the filename and version number in the
output log file.

Have a mechanism for reporting—and later specifying—a seed
used for a particular simulation run.

Separate output files for each testbench and each seed used to simu-
late each testbench.

Run regression simulations at regular intervals, using a tagged ver-
sion of the design and verification environment.

Include a time bomb in all simulations to prevent a single testbench
from blocking an entire regression run.
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APPENDIX A CODING GUIDELINES

There have been many sets of coding guidelines published for Ver-
ilog, but historically they have focused on the synthesizable subset
and the target hardware structures. Writing testbenches involves
writing a lot of code and also requires coding guidelines. These
guidelines are designed to enhance code maintainability and read-
ability, as well as to prevent common or obscure mistakes.

Guidelines can 
be customized.

The specifics of a guideline may not be important. It is the fact that
it is specified and that everyone does it the same way that is impor-
tant. Many of the guidelines presented here can be customized to
your liking. If you already have coding guidelines, keep using
them. Simply augment them with the guidelines shown here that are
not present in your own.

Define guide-
lines as a group, 
then follow 
them.

Coding guidelines have no functional benefits. Their primary con-
tribution is toward creating a readable and maintainable design.
Having common design guidelines makes code familiar to anyone
familiar with the implied style, regardless of who wrote it. The pri-
mary obstacle to coding guidelines are personal preferences. It is
important that the obstacle be recognized for what it is: personal
taste. There is no intrinsic value to a particular set of guidelines.
The value is in the fact that these guidelines are shared by the entire
group. If even one individual does not follow them, the entire group
is diminished.

Enforce them! Guidelines are just that: guidelines. The functionality of a design or
testbench will not be compromised if they are not followed. What
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will be compromised is their maintainability. The benefit of follow-
ing guidelines is not immediately obvious to the author. It is there-
fore a natural tendency to ignore them where inconvenient. Coding
guidelines should be enforced by using a linting tool or code
reviews.

See the Verifica-
tion Methodol-
ogy Manual for 
SystemVerilog.

The guidelines presented in this appendix are simple coding guide-
lines. For methodology implementation guidelines, refer to the Ver-
ification Methodology Manual for SystemVerilog. That book is
entirely written as a series of guidelines to implement a state of the
art verification methodology using SystemVerilog.

FILE STRUCTURE

Use an identical directory structure for every project.

Using a common directory structure makes it easier to locate design
components and to write scripts that are portable from one engi-
neer's environment to another. Reusable components and bus-func-
tional models that were designed using a similar structure will be
more easily inserted into a new project.

Example project-level structure:

.../bin/ Project-wide scripts/commands
doc/ System-level specification documents
SoCs/ Data for SoCs/ASICs/FPGA designs
boards/ Data for board designs
systems/ Data for system designs
mech/ Data for mechanical designs
shared/ Data for shared components

At the project level, there are directories that contain data for all
design and testbench components for the project. Components
shared, unmodified, among SoC/ASIC/FPGA, board and system
designs and testbenches are located in a separate directory to indi-
cate that they impact more than a single design. At the project level,
shared components are usually verification and interface models.

Some “system” designs may not have a physical correspondence
and may be a collection of other designs (SoCs, ASICs, FPGAs and
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boards) artificially connected together to verify a subset of the sys-
tem-level functionality.

Each design in the project has a similar structure. Example of a
design structure for an SoC:

SoCs/name/ Data for ASIC named "name"
doc/ Specification documents
bin/ Scripts specific to this design
tl/  Transaction-level model
rtl/ Synthesizable model
syn/ Synthesis scripts & logs
phy/ Physical model and SDF data
verif/ Verif env and simulation logs

SoCs/shared/ Data for shared ASIC components

Components shared, unmodified, between SoC designs are located
in a separate directory to indicate that they impact more than a sin-
gle design. At the SoC level, shared components include bus-func-
tional models, processor cores, soft and hard IP and internally
reused blocks.

Use relative pathnames.

Using absolute pathnames requires that future use of a bus-func-
tional model, component or design be installed at the same location.
Absolute pathnames also require that all workstations involved in
the design have the design structure mounted at the same point in
their file systems. The name used may no longer be meaningful,
and the proper mount point may not be available.

If full pathnames are required, use preprocessing or environment
variables.

Put a Makefile with a default 'all' target in every source directory.

Makefiles facilitate the compilation, maintenance, and installation
of a design or model. With a Makefile the user need not know how
to build or compile a design to invoke “make all”. Top-level make-
files should invoke make on lower level directories.
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Example “all” makefile rule:

all: subdirs ...

SUBDIRS = ...
subdirs:

for subdir in $(SUBDIRS); do \
   (cd $$subdir; make); \
done

Use a single module, interface, program or package in a file.

A file should contain a single compilation unit. This will minimize
the amount of recompilation in incremental compilation simulators.
It will also simplify identifying the location of components in the
file system.

Specify files required by the current file using the `include directive.

Whether you include a file using the ‘include directive or by nam-
ing it on the command line, the result is the same. A SystemVerilog
compilation is the simple concatenation of all of its input files. If
each file includes all of the file is depends on to compile success-
fully, you only need to specify one file on the command line: the
top-level file.

Surround source files with ‘ifndef, ‘define and ‘endif directives.

It is very likely that more than one file would depend on the same
file. If each file includes all of the file it depends on, the file would
included more than once, causing compilation errors. By surround-
ing source files with conditional compilation directives, it will be
compiled only once, even if it is included multiple times.

‘ifndef DESIGN__SV
‘define DESIGN__SV

module design(...);
...
endmodule
‘endif
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Filenames

Name files containing SystemVerilog source code using the *.sv suffix. Name
files containing Verilog-2001 source code using the *.v suffix.

SystemVerilog introduced new reserved words that may have been
used as user identifiers in Verilog-2001 source code. Tools must
have a way to differentiate between the two versions of Verilog.

Use filename extensions that indicate the content of the file.

Tools often switch to the proper language-sensitive function based
on the filename extension. Use a postfix on the filename itself if
different (but related) contents in the same language are provided.
Using postfixes with identical root names causes all related files to
show up next to each other when looking up the content of a direc-
tory.

Example of poor file naming:

design.svt Testbench
design.svb Transaction-level model
design.svr RTL model
design.vg Gate-level model

Example of good file naming:

design_tb.sv Testbench
design_tl.sv Transaction-level model
design_rtl.sv RTL model
design_gate.v Gate-level model
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STYLE GUIDELINES

Comments

Put the following information into a header comment for each source file:
copyright notice, brief description, revision number and maintainer name and
contact data.

Example (under RCS or CVS):

//
// (c) Copyright MMCC, Company Name
// All rights reserved.
//
// This file contains proprietary and confidential
// information. The content or any derivative work
// can be used only by or distributed to licensed
// users or owners.
//
// Description:
// This script parses the output of a set of
//    simulation log files and produces a
//    regression report.
//
// Maintainer: John Q. Doe <jdoe@domain.com>
// Revision : $Revision$

Use a trailer comment describing revision history for each source file.

The revision history should be maintained automatically by the
source management software. Because these can become quite
lengthy, put revision history at the bottom of the file. This location
eliminates the need to wade through dozens of lines before seeing
the actual code.

Example (under RCS or CVS):

//
// History:
//
// $Log$
//
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Use comments to describe the intent or functionality of the code, not its
behavior.

Comments should be written with the target audience in mind: A
junior engineer who knows the language, but is not familiar with
the design, and must maintain and modify the design without the
benefit of the original designer’s help.

Example of a useless comment:

// Increment i
i++;

Example of a useful comment:

// Move the read pointer to the next input element
i++;

Preface each major section with a comment describing what it does, why it
exists, how it works and assumptions on the environment.

A major section could be an always or initial block, an interface, a
clocking block, a task, a function, a program, a class or a package.

It should be possible to understand how a piece of code works by
looking at the comments only and by stripping out the source code
itself. Ideally, it should be possible to understand the purpose and
structure of an implementation with the source code stripped from
the file, leaving only the comments.

Describe each argument in individual comments.

Describe the purpose, expected valid range, and effects of each
module, interface, program, function or task arguments and return
value. Whenever possible, show a typical usage.

Example:

//
// Function to determine if a testcase
// has been selected to be executed
//
// Example: if (!is_selected(“test1”)) return;
//
function bit         // TRUE if selected
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   is_selected(
      string name);  // Name of the testcase

Delete bad code; do not comment-out bad code.

Commented-out code begs to be reintroduced. Use a proper revi-
sion control system to maintain a track record of changes.

Layout

Lay out code for maximum readability and maintainability.

Saving a few lines or characters only saves the time it takes to type
it. Any cost incurred by saving lines and characters will be paid
every time the code has to be understood or modified.

Use a minimum of three spaces for each indentation level.

An indentation that is too narrow (such as 2), does not allow for
easily identifying nested scopes. An indentation level that is too
wide (such as 8), quickly causes the source code to reach the right
margin.

Write only one statement per line.

The human eye is trained to look for sequences in a top-down fash-
ion, not down-and-sideways. This layout also gives a better oppor-
tunity for comments.

Limit line length to 72 characters. If you must break a line, break it at a conve-
nient location with the continuation statement and align the line properly within
the context of the first token.

Printing devices are still limited to 80 characters in width. If a
fixed-width font is used, most text windows are configured to dis-
play up to 80 characters on each line. Relying on the automatic line
wrapping of the display device may yield unpredictable results and
unreadable code.

Example of poor code layout:

#10
expect = $realtobits((coefficient * datum)
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+ 0.5);

Example of good code layout:

#10 expect = $realtobits((coefficient * datum)
+ 0.5);

Use a tabular layout for lexical elements in consecutive declarations, with a
single declaration per line.

A tabular layout makes it easier to scan the list of declarations
quickly, identifying their types, classes, initial values, etc. If you
use a single declaration per line, it is easier to locate a particular
declaration. A tabular layout also facilitates adding and removing a
declaration.

Example of poor declaration layout:

int unsigned counta, countb;
float c = 0.0;
bit [31:0] sum;
logic [6:0] z;

Example of good declaration layout:

int unsigned counta;
int unsigned countb;
float        c       = 0.0;
bit   [31:0] sum;
logic [ 6:0] z;

Declare ports and arguments in logical order according to purpose or func-
tionality; do not declare ports and arguments according to direction.

Group port declarations that belong to the same interface. Grouping
port declarations facilitates locating and changing them to a new
interface. Do not order declarations output first, data input second,
and control signals last because it scatters related declarations.
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Use named ports when calling tasks and functions or instantiating modules,
interfaces and programs. Use a tabular layout for lexical elements in consecu-
tive associations, with a single association per line.

Using named ports is more robust than using port order. Named
ports do not require any change when the argument list of a subrou-
tine or subunit is modified or reordered. Furthermore, named ports
provide for self-documenting code as it is unnecessary to refer to
another section of the code to identify what value is being passed to
which argument. A tabular layout makes it easier to scan the list of
arguments being passed to a subprogram quickly. If you use one
named port per line, it is easier to locate a particular association. A
tabular layout also facilitates adding and removing arguments.

Example of poor association layout:

fifo in_buffer(voice_sample_retimed,
               valid_voice_sample, overflow, ,
               voice_sample, 1'b1, clk_8kHz,
               clk_20MHz);

Example of good association layout:

fifo in_buffer(.data_in (voice_sample),
.valid_in (1'b1),
.clk_in (clk_8kHz),
.data_out (voice_sample_retimed),
.valid_out (valid_voice_sample),
.clk_out (clk_20MHz),
.full (overflow),
.empty ());

Structure

Encapsulate repeatedly used operations or statements in subroutines.

By using tasks or functions, maintenance is reduced significantly.
Code only needs to be commented once and bugs only need to be
fixed once. Using subprograms also reduces code volume.
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Example of poor expression usage:

// sign-extend both operands from 8 to 16 bits
operand1 = {{8 {ls_byte[7]}}, ls_byte};
operand2 = {{8 {ms_byte[7]}}, ms_byte};

Example of proper use of subprogram:

// sign-extend an 8-bit value to a 16-bit value
function [15:0] sign_extend;
   input [7:0] value;
   sign_extend = {{8 {value[7]}}, value};
endfunction

// sign-extend both operands from 8 to 16 bits
operand1 = sign_extend(ls_byte);
operand2 = sign_extend(ms_byte);

Use a maximum of 50 consecutive sequential statements in any statement
block.

Too many statements in a block create many different possible
paths. This layout makes it difficult to grasp all of the possible
implications. It may be difficult to use a code coverage tool with a
large statement block. A large block may be broken down using
subprograms.

Use no more than three nesting levels of flow-control statements.

Understanding the possible paths through several levels of flow
control becomes difficult exponentially. Too many levels of deci-
sion making may be an indication of a poor choice in processing
sequence or algorithm. Break up complex decision structures into
separate subprograms.

Example of poor flow-control structure:

if (a == 1 && b == 0) begin
case (val)
4:
5: while (!done) begin

if (val % 2) begin
odd = 1;
if (choice == val) begin

for (j = 0; j < val; j++) begin
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select[j] = 1;
end
done = 1;

end
end
else begin

odd = 0;
end

end
0: for (i = 0; i < 7; i++) begin

select[j] = 0;
end

default:
z = 0;

endcase
end
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Example of good flow-control structure:

function void
process_selection(int val);

odd = 0;
while (!done) begin

if (val % 2) begin
odd = 1;

end
if (odd && choice == val) begin

for (j = 0; j < val; j++) begin
select[j] = 1;

end
done = 1;

end
end

endfunction: process_selection

if (a == 1 && b == 0) begin
case (val)
0: for (i = 0; i < 7; i++) begin

select[j] = 0;
end

4:
5: process_selection(val);
default:

z = 0;
endcase

end

Debugging

Include a mechanism to exclude all debug statements automatically.

Debug information should be excluded by default and should be
enabled automatically via a control file or command-line options.
Do not comment out debug statements and then uncomment them
when debugging. This approach requires significant editing. When
available, use a preprocessor to achieve better runtime perfor-
mance.
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Example of poor debug statement exclusion:

// $write("Address = %h, Data = %d\n", 
//        address, data);

Example of proper debug statement exclusion:

‘ifdef DEBUG
   $write("Address = %h, Data = %d\n", 
           address, data);
‘endif

NAMING GUIDELINES

These guidelines suggest how to select names for various user-
defined objects and declarations. Additional restrictions on naming
can be introduced by more specific requirements.

Capitalization

Use lowercase letters for all user-defined identifiers.

Using lowercase letters reduces fatigue and stress from constantly
holding down the Shift key. Reserve uppercase letters for identifiers
representing special functions.

Do not rely on case mix for uniqueness of user-defined identifiers.

The source code may be processed eventually by a case-insensitive
tool. The identifiers would then lose their uniqueness. Use naming
to differentiate identifiers.
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Example of bad choice for identifier:

typedef struct {
byte red;
byte green;
byte blue;

} RGB;
...
begin

RGB rgb;
...

end

Example of better choice for identifier:

typedef struct {
byte red;
byte green;
byte blue;

} rgb_typ;
...
begin

rgb_typ rgb;
...

end

Use uppercase letters for constant identifiers (runtime or compile-time).

The case differentiates between a symbolic literal value and a vari-
able.

Example:

module block(...);
...
`define DEBUG
parameter WIDTH = 4;
typedef enum {RESET_ST, RUN_ST, ...} state_typ;
...
endmodule
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Separate words using an underscore; do not separate words by mixing upper-
case and lowercase letters

It can be difficult to read variables that use case to separate word
boundaries. Using spacing between words is more natural. In a
case-insensitive language or if the code is processed through a case-
insensitive tool, the case convention cannot be enforced by the
compiler. 

Example of poor word separation:

int readIndexInTable = 0;

Example of proper word separation:

int read_index_in_table = 0;

Identifiers

Do not use reserved words of popular languages or languages used in the
design process as user-defined identifiers.

Not using reserved words as identifiers avoids having to rename an
object to a synthetic, often meaningless, name when translating or
generating a design into another language. Popular languages to
consider are C, C++, VHDL, PERL, OpenVera and e.

Use meaningful names for user-defined identifiers, and use a minimum of five
characters.

Avoid acronyms or meaningless names. Using at least five charac-
ters increases the likelihood of using full words.

Example of poor identifier naming:

if (e = 1) begin
c = c + 1;

end

Example of good identifier naming:

if (enable = 1) begin
count = count + 1;
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end

Name objects according to function or purpose; avoid naming objects accord-
ing to type or implementation.

This naming convention produces more meaningful names and
automatically differentiates between similar objects with different
purposes.

Example of poor identifier naming:

count8 <= count8 + 8'h01;

Example of good identifier naming:

addr_count <= addr_count + 8'h01;

Do not use identifiers that are overloaded or hidden by identical declarations
in a different scope.

If the same identifier is reused in different scopes, it may become
difficult to understand which object is being referred to.

Example of identifier overloading:

reg [7:0] address;

begin: decode
integer address;

address = 0;
...

end

Example of good identifier naming:

reg [7:0] address;

begin: decode
integer decoded_address;
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decoded_address = 0;
...

end

Use this. when referring to data members.

Explicitly using this. documents that you are referring to a data
members instead of a variable currently in scope. Variables in scope
are usually declared nearby whereas data members can be inherited
and their declarations located in different files. Furthermore, it
avoid having to come up with artificially different names for the
same thing in method arguments.

Example of data member reference:

class bfm;
   virtual interf sigs;
   function new(virtual interf sigs);
      this.sigs = sigs;
   endfunction: new
endclass: bfm

Use suffixes to differentiate related identifiers semantically.

The suffix could indicate object kind such as: type, constant, signal,
variable, flip-flop etc., or the suffix could indicate pipeline process-
ing stage or clock domains.

Name all begin blocks.

Declarations inside an unnamed block cannot be accessed using
hierarchical references. Naming a block makes it possible to be
explicitly disabled. If a block is not named, some features in debug-
ging tools may not be available. Labeling also provides for an addi-
tional opportunity to document the code.

Example of a named block:

foreach (data[i]) begin: scan_bits_lp
...

end
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Label closing “end” keywords.

The start and end of a block may be separated by hundreds of lines.
Labeling matching end keywords facilitates recognizing the end of
a particular construct.

Example:

module FIFO(...);
...
endmodule: FIFO

Constants

Use symbolic constants instead of “magic” hard-coded numeric values.

Numeric values have no meaning in and of themselves. Symbolic
constants add meaning and are easier to change globally. This result
is especially true if several constants have an identical value but a
different meaning. Parameters, enumerals and ‘define symbols.

Example of poor constant usage:

int table[256];

for (i = 0; i <= 255; i++) ...

Example of good constant usage:

parameter TABLE_LENGTH = 256;

int table[TABLE_LENGTH];

for (i = 0; i < TABLE_LENGTH; i++) ...

Number multi-bit objects using the range N:0.

Using this numbering range avoids accidental truncation of the top
bits when assigned to a smaller object. This convention also pro-
vides for a consistent way of accessing bits from a given direction.
If the object carries an integer value, the bit number represents the
power-of-2 for which this bit corresponds.
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Example:

parameter width = 16;

reg [ 7:0] byte;
reg [ 31:0] dword;
reg [width-1:0] data;

Do not specify a bit range when referring to a complete vector.

If the range of a vector is modified, all references would need to be
changed to reflect the new size of the vector. Using bit ranges
implicitly means that you are referring to a subset of a vector. If you
want to refer to the entire vector, do not specify a bit range.

Example of poor vector reference:

bit [15:0] count;
...
count[15:0] <= count[15:0] + 1;
carry <= count[15];

Example of proper vector reference:

bit [15:0] count;
...
count <= count + 1;
carry <= count[15];

Preserve names across hierarchical boundaries.

Preserving names across hierarchical boundaries facilitates tracing
signals up and down a complex design hierarchy. This naming con-
vention is not applicable when a unit is instantiated more than once
or when the unit was not designed originally within the context of
the current design.

It will also enable the use of the implicit port connection capability
of SystemVerilog.
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PORTABILITY GUIDELINES

Start every module with a `resetall directive.

Compiler directives remain active across file boundaries. A module
inherits the directives defined in earlier files. This inheritance may
create compilation-order dependencies in your model. Using the
`resetall directive ensures that your module is not affected by previ-
ously defined compiler directives and will be self-contained prop-
erly.

Avoid using `define symbols.

`define symbols are global to the compilation and may interfere
with other symbols defined in another source file. For constant val-
ues, use parameters. If `define symbols must be used, undefine
them by using `undef when they are no longer needed.

Example of poor style using `define symbols:

`define CYCLE 100
`define ns * 1
always
begin

#(`CYCLE/2 `ns);
clk = ~clk;

end

Example of good style avoiding `define symbols:

parameter CYCLE = 100;
`define ns * 1
always
begin

#(CYCLE/2 `ns);
clk = ~clk;

end
`undef ns

Minimize identifiers in shared name spaces.

A shared name space is shared among all of the components imple-
mented using the same language. When components define the
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same identifier in a shared name space, a collision will occur when
they are integrated in the same simulation. Minimize your con-
sumption of shared name spaces.

SystemVerilog has two shared name space: $root (module names,
program names, interface names, primitive names, package names,
global class names, global task and function names, etc...) and
‘define symbols.

Use prefixes to differentiate identifiers in shared space.

When declaring an identifier in a shared name space, prefix it with
a unique prefix that will ensure it will not collide with a similar
identifier declared in another component. The suffix used has to be
unique to the author or the authoring group or organization.

Example of poor shared identifier naming:

‘define DEBUG

Example of good shared identifier naming:

‘define MII_DEBUG

Use a nonblocking assignment for variables used outside the always or initial
block where the variable was assigned.

Using nonblocking assignments prevents race conditions between
blocks that read the current value of the variable and the block that
updates the variable value. This assignment guarantees that simula-
tion results will be the same across simulators or with different
command-line options.

Example of coding creating race conditions:

always @ (s)
begin

if (s) q = q + 1;
end

always @ (s)
begin

$write("Q = %b\n", q);
end
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Example of good portable code:

always @ (s)
begin

if (s) q <= q + 1;
end

always @ (s)
begin

$write("Q = %b\n", q);
end

Assign variables from a single always or initial block.

Assigning variables from a single block prevents race conditions
between blocks that may be setting a variable to different values at
the same time. This assignment convention guarantees that simula-
tion results will be the same across simulators or with different
command-line options.

Example of coding that creates race conditions:

always @ (s)
begin

if (s) q <= 1;
end

always @ (r)
begin

if (r) q <= 0;
end

Example of good portable code:

always @ (s or r)
begin

if (s) q <= 1;
else if (r) q <= 0;

end
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Do not disable tasks with output or inout arguments.

The return value of output or inout arguments of a task that is dis-
abled is not specified in the SystemVerilog standard. Use the return
statement or disable an inner begin/end block instead. This tech-
nique guarantees that simulation results will be the same across
simulators or with different command-line options.

Example of coding with unspecified behavior:

task cpu_read(output [15:0] rdat);
...
if (data_rdy) begin

rdat = data;
disable cpu_read;

end
...

endtask

Example of good portable code:

task cpu_read(output [15:0] rdat);
...
if (data_rdy) begin

rdat = data;
return;

end
...

endtask

Do not disable blocks containing nonblocking assignments with delays.

What happens to pending nonblocking assignments performed in a
disabled block is not specified in the SystemVerilog standard. Not
disabling this type of block guarantees that simulation results will
be the same across simulators or with different command-line
options.

Example of coding with unspecified behavior:

begin: drive
addr <= #10 16'hZZZZ;
...
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end 
 
always @ (rst) 
begin 

if (rst) disable drive; 
end 

 
 
Do not read a wire after updating a register in the right-hang side of a continu- 
ous assignment, after a delay equal to the delay of the continuous assign- 
ment.                 
 

The Verilog standard does not specify the order of execution when 
the right-hand side of a continuous assignment is updated. The con- 
tinuous assignment may be evaluated at the same time as the 
assignment or in the next delta cycle. 
 
If you read the driven wire after a delay equal to the delay of the 
continuous assignment, a race condition will occur. The wire may 
or may not have been updated. 
 

Example creating a race condition: 
 
assign qb = ~q; 
assign #5 qq = q; 
initial 
begin 

Q = 1’b0; 
$write(“Qb = %b\n”, qb); 
#5; 
$write(“QQ = %b\n”, qq); 

end 

 
Do not use the bitwise operators in a Boolean context. 

 
Bitwise operators are for operating on bits. Boolean operators are 
for operating on Boolean values,. They are not always interchange- 
able and may yield different results. Use the bitwise operators to 
indicate that you are operating on bits, not for making a decision 
based on the value of particular bits. 
 
Some code coverage tools cannot interpret a bitwise operator as a 
logical operator and will not provide coverage on the various com- 
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ponents of the conditions that caused the execution to take a partic-
ular branch.

Example of poor use of bitwise operator:

reg [3:0] BYTE;
reg VALID
if (BYTE & VALID) begin
   ...
end

Example of good use of Boolean operator:

reg [3:0] BYTE;
reg VALID
if (BYTE != 4’b0000 && VALID) begin
   ...
end
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APPENDIX B GLOSSARY

ASIC Application-specific integrated circuit.

ATM Asynchronous Transfer Mode.

ATPG Automatic test pattern generation.

BFM Bus-functional model.

CAD Computed aided design.

CPU Central processing unit.

CRC Cyclic redundancy check.

CTS Clear to send.

DFT Design for test.

DFV Design for verification.

DSP Digital signal processing.

DTR Data terminal ready.

EDA Electronic design automation.
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EPROM Erasable programmable read-only memory.

FAA Federal aviation agency (US government).

FCS Frame check sequence (ethernet).

FIFO First in, first out.

FPGA Field-programmable gate array.

FSM Finite state machine.

GB Gigabytes.

Gb Gigabits.

GMII Gigabit Medium-Independent Interface (ethernet)

ID Identification.

HDL Hardware description language

HEC Header error check (ATM).

HVL Hardware verification language.

IEEE Institute of electrical and electronic engineers.

IP Internet protocol, intellectual property

LAN Local area network.

LFSR Linear feedback shift register.

LLC Link layer control (ethernet).

MAC Media access control (ethernet).

MII Media independent interface (ethernet).

MPEG Moving picture expert group.



Writing Testbenches using SystemVerilog 399

NASA National aeronautic and space agency (US government).

NNI Network-network interface (ATM).

OO Object-oriented.

OOP Object-oriented programming.

OVL Open verification library.

PC Personal computer.

PCI PC component interface.

PLL Phase-locked loop.

RAM Random access memory.

RGB Red, green and blue (video).

ROM Read-only memory.

RMII Reduced Medium-Independent Interface (ethernet)

RTL Register transfer level.

SDF Standard delay file.

SDH Synchronous digitial hierarchy (european SONET).

SMII Serial Medium-Independent Interface (ethernet)

SNAP (ethernet).

SOC System on a chip.

SOP Subject-oriented programming.

SONET Synchronous optical network (north-american SDH).

UART Universal asynchronous receiver transmitter.
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UFO Unidentified flying object.

UNI User-network interface (ATM).

VHDL VHSIC hardware description language.

VHSIC Very high-speed integrated circuit

VLAN Virtual local area network (ethernet).

VMM Verification Methodology Manual for SystemVerilog (published by
Springer).

VPI Virtual path identifier (ATM).

XAUI Ten gigabit Adaptor Universal Interface (ethernet)

XGMII Ten Ggabit Medium-Independent Interface (ethernet)
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INDEX

dynamic 140
modeling memory 143
multi-dimensional 141
packed 139
randomizing 317
scoreboard 144
unpacked 139
usage 140

ASIC verification 84
Assertions 57–61

formal proof 59
implementation 57
simulation 58
specification 58

Assigning values 173
Associative arrays 143–144

scoreboard 144
usage 143

Asynchronous reference signals 205
Asynchronous stimulus 231
ATPG 16
Automatic tasks 190
Automatic variables

vs. static 193
Automation

eliminating human error 6
using randomization 4
when to use 3

Symbols
$cast 154
$monitor 218
$strobe 218

Numerics
2-state

vs 4-state 131

A
Abstraction

design configuration 285
granularity for verification 86
transactions 258
verification

abstraction, higher levels 3
Abstraction of data 130–147
Accelerated simulation 33
Adding constraints 312

Random stimulus
adding constraints 314

Advancing time 166
Arguments

pass by reference 128
pass by value 127
passing 127

Arrays 139–141
associative 143–144
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Autonomous response monitor 249

B
Base class 153
Behavioral modeling 113–193

PLL 203
Black-box verification 11
Block

definition of 82
vs. system 84
vs. unit 82

Block-level features 90
Block-level verification 82
Board-level verification 85
bugs

proving absence of 11
Bus-functional model 234–244

callback method 254
callback methods 273, 274
clocking block 239
configuration 243
configuration class 244
constructor 241, 261
encapsulated in interface 128
encapsulated using class 129
error injection 276
generator 307
in SystemVerilog 237
in transaction-level models 340
instances 283
monitor vs. generator 248
nonblocking 268
packaging 236
physical interface 238
procedural interface 258
processor 234
programmable 146
reconfiguration 244
re-entrancy 236
reuse 19, 329
transaction-level 261
virtual interface 238, 241

By 254

C
Callback methods 273

blocking vs. nonblocking 276
virtual methods 273

Callback procedures 254
Capitalization

naming guidelines 384
Casting 154
Class 131–134, 147–153

application in modeling 147
base 153
bus-functional models 148
casting 154
comparison 152
copying 152
data member 147
derived 153
methods 147
multiple inheritance 158
packing 133
private members 150
protected members 155
protection 150, 155

and randomization 150
public members 150
random members 150
reference vs. instance 151
static 148
virtual 156
virtual interface 129
vs. interface 149
vs. module 149
vs. object 147
vs. Package 149
vs. struct 131

Clock multipler 203
Clock signals 198–207

asynchronous 205
multiplier 203
parameters, random generation 206
skew 201
threads 198
time resolution 199

Clocking block 168
clock edge 240

Code coverage 41–48
100%, meaning of 48
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code-related metrics 71
expression coverage 45
FSM coverage 46
path coverage 44
statement coverage 43

Code reviews 29
Coding guidelines 371–396
Comments

guidelines 376
quality of 121

Compilation
minimizing 146

Composition 137
randomization 137

Concurrency
definition of 160
describing 161
execution order 162
misuse of 169
problems with 160
threads 161
with fork/join statement 170

Configuration
functional coverage 291
implementation 289
randomly generating 109

Configuration class 287
Configuring the design 288
Connectivity

definition of 160
Constants

naming guidelines 389
Constrainable generator 108
Constraint_mode() 312
Constraints

adding 312, 314
turning off 312

constructor 241
Core-level verification 82
Co-simulators 35
Costs for optimizing 118
Coverage

code 41
expression 45
FSM 46

path 44
statement 43

functional 49
cross 53
point 51
transition 53

Coverage-driven verification 101–111
CPU bus-functional models 234
Cross-coverage 53
Cycle-accurate transaction-level 

models 346
Cycle-based simulation 33

D
Data abstraction 130–147

see also Arrays
see also Class
see also Files
see also Queues
see also Struct
see also Union
transaction descriptor 256

Data generation
abstracting 214
asynchronous 231
synchronous 212

Data tagging 295
Deadlock

avoiding 228
Debug, and random configuration 291
Debug, and random strategy 110
Deep compare 152
Deep copy 152
Delta cycles 166
Derived class 153
Design configuration 284–292

abstraction 285
downloading 288
generation 290
random 290

Design for verification 17, 83
Directed stimulus 304–307

random filling 305
transaction-level interface 304
vs random 305
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Directed testcases, and random 
strategy 109

Directed verification 96–100
random 109
testbenches 98
testcases 96

disable 341
Disable fork 173
Driving values 174
Dynamic arrays 140
Dynamic constraints 312

E
Effort 2
Encapsulating

bus-functional models 127
reset generation 210
subprograms 125
technique 122
test harness 281

Equivalence checking 8
Error messages 353
Error reporting 354
Error types 91
Event-driven simulation 31
Exceptions 270
Execution time

vs. simulation time 160
Expression coverage 45

F
False negative 20
False positive 20
Filenames

guidelines 375
Files 145–146

managing 145
Minimizing recompilation 146

First-pass success 79
Fork/join

Disable fork 173
join_any 173
join_none 172

Fork/join statement 170
Formal tools

hybrid 60

semi-formal 60
Formal verification

see also Equivalence checking
see also Property checking
vs simulation 60

FPGA verification 84
FSM coverage 46
Functional 49
Functional coverage 49–55

100%, meaning of 54
coverage point 51
cross 53
definition 50
from features 103
model 103
point 51
transition 53

Functional verification
black-box 11
grey-box 14
purpose of 10
white-box 13

G
Generating clocks

asynchronous domains 205
multiplier 203
parameters, random generation 206
skew 201
timescale 199

Generating reset signals 208–212
Generating waveforms 199
Generator

as bus functional models 307
randomizing instance 312
transaction-level interface 308

Generator vs. monitor 248
Generators

constraints 108
design 107
random 307
slaves 253
specification 107

Grey-box verification 14
Guidelines

capitalization 384
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code layout 378
code syntax 380
comments 376
constants 389
debugging 383
file naming 375
filenames 375
general coding 376–384
identifiers 386
naming 384–390

H
HDL

see also Verification languages
vs. verification languages xx

High-level modeling 113–193
Hybrid formal tools 60

I
Identifiers

naming guidelines 386
Implementation assertions 57
Inheritance 153–156

multiple 138, 158
randomization 138
vs. instance 156
vs. union 138

Instance vs.referece 151
Intellectual property 38–39

make vs. buy 38
protection 39
transaction-level models 351

Interface
instantiating 281
virtual, binding 129
vs. class 149

Issue tracking 66–71
computerized system 69
grapevine system 68
Post-it system 68
procedural system 69

L
Language, choosing xix–xxi
Linked lists 143
Linting 24–29

code reviews 29
limitations of 25
with SystemVerilog 27

Lists
see Queues

M
Mailbox

shared 310
Maintaining code

commenting 121
optimizing 118

Make vs. buy 38
Managing random seeds 364
Memory

modeling using associative 
array 143

Message format 353
Methods

virtual 157
Metrics 71–75

code-related metrics 71
interpreting 74
quality-related metrics 73

Model checking
see also Property checking

Modeling
code structure 122–129
costs for optimizing 118
data abstraction 130–147
encapsulating

bus-functional models 127
subprograms 125
technique 122

improving maintainability 121
parallelism 159–176
portability 186–193
race conditions 176–185

avoiding 183
initialization 182
read/write 177
write/write 180

RTL-thinking example 115
Modeling, high-level 113–193
Module
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vs. class 149
Module threads 163
Monitor

see also Response monitor
Monitor vs. generator 248
Multi-dimensional arrays 141

N
Naming

capitalization guidelines 384
constants 389
filenames 375
guidelines 384–390
identifiers 386

Nonblocking response monitor 249

O
Object

vs. class 147
Object-oriented

classes 147
comparison 152
copying 152
data protection 150
inheritance 153–156
inheritance vs. instance 156
instance vs. inheritance 156
instance vs. reference 151
multiple inheritance 158
object instance 151
objects 147
polymorphism 156–159
private members 150
protected members 155
public members 150
virtual classes 156
virtual methods 157

Object-oriented programming 147–159
OVL 58

P
Package

vs. class 149
Packed struct 132
Packed union 134
Packing 147

Packing classes 133
Parallelism 159–176

concurrency problems 160
driving vs assigning 173
emulating 162
misuse of concurrency 169
simulation cycle 163

Path coverage 44
PLL 203
Poka-yoke 6
Polymorphism 156–159
Portability

automatic tasks 190
non-re-entrant tasks 188
scheduled nonblocked value 186
see also Race conditions
using disable statement 187
using ouput arguments 188
using semaphores 191

Post_randomize() 315
Pre_randomize() 315
Private class members 150
Procedural scenarios 322
Processor bus-functional models 234
Productivity cycle 56
Productivity gap 18
Profiling 48
Program threads 163
Programming

object-oriented 147–159
Property checking 9, 60
Public class members 150

Q
Queues 141–143

usage 143

R
Race conditions 176–185

avoiding 183
clocking block 168
initialization 182
program threads vs. module 

threads 166
read/write 177
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read/write and synchronized 
waveforms 208

semaphore 184
write/write 180

Random clock parameters 206
Random scenarios

defining 320
directed stimulus 320
procedural scenarios 322

Random sequences 316
randsequence 322
scenarios 319

Random stability 364
Random stimulus 307–327

adding constraints 310, 312
atomic generation 307
atomic vs. sequence 316
scenarios 319
sequences 316
stopping 307
trivial stimulus 318
vs. directed 305
vs. random function 307

Random system configuration 287
Random verification 101–111

configuration 109, 290
constraints 107
coverage model 103
debug testcases 110, 291
directed testcases 109
generators 107
managing seeds 364
progress, measuring 101
system configuration 287
testbenches 105

Randomization
automation 4

Randsequence 322
generating variable-length 

sequences 324
limitations 326

Reconvergence model 4–5
Redundancy 7, 99
Reference model 297

vs. transfer function 300

Reference vs. instance 151
Regression

management 367
running 366

Regression testing
for reusable components 83

Reset
encapsulation 210
modeling 341

Response 197–277
verifying 86

Response monitor 246–256
autonomous 249
buffering 250
callback procedures 254
multiple transactions 255
response interface model 249
slave generator 253
timestamping 252
timing 252
transaction descriptor 256
vs generator 248
vs. bus-functional models 248

Response, verifying 216–221
inspecting response visually 217
inspecting waveforms visually 220
minimizing sampling 219
sampling output 217

Retried transactions 270
Reuse

and verification 18–20
bus-functional models 19
level of verification 80
salvaging 20
slave generators 254
trust 18
verification of components 82

Revision control 61–66
configuration management 63
working with releases 65

S
Scan-based testing 16
Scoreboading

associative arrays 144
Scoreboarding 300, 303
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encapsulation 302
interface 302
optimization 301
ordering 301
structure 301

SDF back-annotation 358
see also Self-checking
Self 292
Self-checking 221–227, 292–303

assertions 226, 293
behavioral checks 293
complexity 293
data tagging 295
datacom 295
failure modes 293
golden vectors 222
hard coded 294
input and output vectors 221
reference model 297
scoreboard structure 300
scoreboarding 300, 303
simple operations 224
test harness, integration with 302
transaction-level 302
transaction-level model 299
transfer function 299

Semaphore 184, 191
in bus-functional models 236

Semi-formal tools 60
Shallow compare 152
Shallow copy 152
Simulation

vs formal verification 60
Simulation cycle 163

advancing time 166
SystemVerilog 165

Simulation management 333–369
configuration management 355–363
output files 361
output files and seeds 365
pass or fail 352–355
regression 365–369
SDF back-annotation 358
seed and output files 365
seeds 364

Simulation time
vs. execution time 160

Simulators 29–37
acceleration 33
assertions 58
co-simulators 35
cycle-based simulation 33
event-driven simulation 31
single-kernel 37
stimulus and response 30

Slave generators 253
Sparse memory model 144
Specification assertions 58
Split transactions 267
Statement coverage 43
Static class members 148
Static variables

vs. automatic 193
Status of transactions 270
Stimulus 197–277

abstracting data generation 214
asynchronous interfaces 231
clocks 198–207
complex 227–233
deadlocks, avoiding 228
feedback from design 228
random 307–327
reference signals 198–212
simple 212–216

aligning waveforms 201
synchronous data 212
waveforms 199

Stimulus, directed 304–307
Stream generator 322
Struct 131–134

packed 132
vs. class 131

Symbol 271
Synchronous signal

sampling using clocking block 168
Synchronous signals

sampling in program threads 167
System

definition of 84
vs. block 84



Writing Testbenches using SystemVerilog 409

System configuration 287
System-level

transactions 327
System-level features 91
System-level testbench 327–330
System-level verification 84

T
Tagged union 135

randomizing 136
Task arguments 127
Test harness 280–284

encapsulation 281
Testbench

definition 1
system-level 327–330

Testbench configuration
configuration

testbench 288
Testbenches

random 105
stopping 106
verifying 99

Testbenches, architecting 279–330
Testbenches, self-checking 221–227, 

292–303
Testing

and verification 15–18
scan-based 16

Threads 161
execution order 162
module 163
program 163

Time
definition of 160
precision 166
resolution 199–200

Timescale 199–200
Timestamping transactions 252
Top-level environment 283

encapsulating in a class 285
Top-level module 281
Top-level program 283
Transaction

error injection 270
Transaction descriptor 256

error injection 270
Transaction-level interface 258–277

connecting transactors 310
constructor 261
creation 258
directed stimulus 304
mailboxes 260
procedural 304
procedural vs. dataflow 259
task-based 260

Transaction-level model 299, 333–352
characteristics 337
cost 348
example 335
good quality 342
reset 341
speed 347
vs. RTL model 334

Transactions
blocking 265
completion 264
completion status 270
definition 263
error injection 276
multiple possible 255
nonblocking 265
out-of-order 267
physical-level error injection 271
retries 270
split 267
status 265
system-level 327
variable length 263

Transfer function 299
vs. reference model 300

Transition coverage 53
Type I error 20
Type II error 20

U
Union 134–138

composition 137
inlining 136
packed 134
tagged 135
using 135
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vs. inheritance 138
Unit

definition 81
vs. block 82

Unit-level verification 81

V
Variables

automatic vs. static 193
Verification

ad-hoc 82
and design reuse 18–19
and testing 15–18
ASIC 84
black-box verification 11
block-level 82
board-level 85
checking result of transformation 4
core-level 82
cost 20
definition of 1
designing for 17
effort 2
FPGA 84
functional verification 10, 11–15
grey-box verification 14
importance of 2–4
improving accuracy of 7, 99
need for specifying 78
plan 77–111
purpose of 4
reusable components 82
strategies for 86–87
system-level verification 84
technologies 23–75
testbenches, verifying 99
types of mistakes 20
unit-level 81
vs. testing 15–18
white-box verification 13
with reconvergence model 4–5

Verification languages xx, 55–56
productivity cycle 56
vs. HDL xx

Verification plan
architecture-based features 89

block-level features 90
coverage-driven 101–111
definition of 79
design for verification 93
directed 96–100

testbenches 98
testcases 96

error types 91
function-based features 88
identifying features 87–92
interface-based features 88
levels of verification 80–86
prioritizing features 92
random

configuration 109
coverage model 103
debug testcases 110
directed testcases 109
generators 107
progress, measuring 101
termination conditions 106
testbenches 105

random-based 101–111
role of 78–80
schedule 80
strategies 86–87
success, definition of 79
system-level features 91
verifying testbenches 99

Verification reuse 19–20
Verification strategies 86–87

directed verification 96
random verification 101
verifying the response 86

Verification technologies 23–75
see also Assertions
see also Code coverage
see also Functional coverage
see also Intellectual property
see also Issue tracking
see also Linting
see also Metrics
see also Revision control
see also Simulators
see also Verification languages
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see also Waveform viewers
Verilog

vs. SystemVerilog xx
vs. VHDL xix

Verilog vs. VHDL xix
VHDL

vs. SystemVerilog xx
vs.Verilog xix

VHDL vs. Verilog xix
Virtual classes 156
Virtual interfaces

binding 129
Virtual methods 157

W
Waveform comparators 41
Waveform viewers 39–41

limitations of 40
White-box verification 13

Z
Zero-delay cycles 166
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