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Preface

The field of Digital Signal Processing has developed so fast in the last 3 decades
that it can be found in the graduate and undergraduate programs of most uni-
versities. This development is related to the increasingly available technologies
for implementing digital signal processing algorithms. The tremendous growth of
development in the digital signal processing area has turned some of its specialized
areas into fields themselves. If accurate information of the signals to be processed
is available, the designer can easily choose the most appropriate algorithm to
process the signal. When dealing with signals whose statistical properties are
unknown, fixed algorithms do not process these signals efficiently. The solution is
to use an adaptive filter that automatically changes its characteristics by optimizing
the internal parameters. The adaptive filtering algorithms are essential in many
statistical signal processing applications.

Although the field of adaptive signal processing has been the subject of research
for over 4 decades, it was in the eighties that a major growth occurred in research and
applications. Two main reasons can be credited to this growth: the availability of im-
plementation tools and the appearance of early textbooks exposing the subject in an
organized manner. Still today it is possible to observe many research developments
in the area of adaptive filtering, particularly addressing specific applications. In fact,
the theory of linear adaptive filtering has reached a maturity that justifies a text
treating the various methods in a unified way, emphasizing the algorithms suitable
for practical implementation. This text concentrates on studying online algorithms,
those whose adaptation occurs whenever a new sample of each environment signal
is available. The so-called block algorithms, those whose adaptation occurs when
a new block of data is available, are also included using the subband filtering
framework. Usually, block algorithms require different implementation resources
than online algorithms. This book also includes basic introductions to nonlinear
adaptive filtering and blind signal processing as natural extensions of the algorithms
treated in the earlier chapters. The understanding of the introductory material
presented is fundamental for further studies in these fields which are described in
more detail in some specialized texts.
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viii Preface

The idea of writing this book started while teaching the adaptive signal process-
ing course at the graduate school of the Federal University of Rio de Janeiro (UFRJ).
The request of the students to cover as many algorithms as possible made me think
how to organize this subject such that not much time is lost in adapting notations and
derivations related to different algorithms. Another common question was which
algorithms really work in a finite-precision implementation. These issues led me
to conclude that a new text on this subject could be written with these objectives
in mind. Also, considering that most graduate and undergraduate programs include
a single adaptive filtering course, this book should not be lengthy. Although the
current version of the book is not short, the first six chapters contain the core of the
subject matter. Another objective to seek is to provide an easy access to the working
algorithms for the practitioner.

It was not until I spent a sabbatical year and a half at University of Victoria,
Canada, that this project actually started. In the leisure hours, I slowly started this
project. Parts of the early chapters of this book were used in short courses on adap-
tive signal processing taught at different institutions, namely: Helsinki University of
Technology (renamed as Aalto University), Espoo, Finland; University Menendez
Pelayo in Seville, Spain; and the Victoria Micronet Center, University of Victoria,
Canada. The remaining parts of the book were written based on notes of the graduate
course in adaptive signal processing taught at COPPE (the graduate engineering
school of UFRJ).

The philosophy of the presentation is to expose the material with a solid
theoretical foundation, while avoiding straightforward derivations and repetition.
The idea is to keep the text with a manageable size, without sacrificing clarity and
without omitting important subjects. Another objective is to bring the reader up to
the point where implementation can be tried and research can begin. A number of
references are included at the end of the chapters in order to aid the reader to proceed
on learning the subject.

It is assumed the reader has previous background on the basic principles of
digital signal processing and stochastic processes, including: discrete-time Fourier-
and Z-transforms, finite impulse response (FIR) and infinite impulse response (IIR)
digital filter realizations, multirate systems, random variables and processes, first-
and second-order statistics, moments, and filtering of random signals. Assuming
that the reader has this background, I believe the book is self-contained.

Chapter 1 introduces the basic concepts of adaptive filtering and sets a general
framework that all the methods presented in the following chapters fall under. A
brief introduction to the typical applications of adaptive filtering is also presented.

In Chap. 2, the basic concepts of discrete-time stochastic processes are reviewed
with special emphasis on the results that are useful to analyze the behavior of
adaptive filtering algorithms. In addition, the Wiener filter is presented, establishing
the optimum linear filter that can be sought in stationary environments. Chapter
14 briefly describes the concepts of complex differentiation mainly applied to the
Wiener solution. The case of linearly constrained Wiener filter is also discussed,
motivated by its wide use in antenna array processing. The transformation of the
constrained minimization problem into an unconstrained one is also presented.
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The concept of mean-square error surface is then introduced, another useful tool
to analyze adaptive filters. The classical Newton and steepest-descent algorithms
are briefly introduced. Since the use of these algorithms would require a com-
plete knowledge of the stochastic environment, the adaptive filtering algorithms
introduced in the following chapters come into play. Practical applications of the
adaptive filtering algorithms are revisited in more detail at the end of Chap. 2 where
some examples with closed form solutions are included in order to allow the correct
interpretation of what is expected from each application.

Chapter 3 presents and analyzes the least-mean-square (LMS) algorithm in some
depth. Several aspects are discussed, such as convergence behavior in stationary
and nonstationary environments. This chapter also includes a number of theoretical
as well as simulation examples to illustrate how the LMS algorithm performs in
different setups. Chapter 15 addresses the quantization effects on the LMS algorithm
when implemented in fixed- and floating-point arithmetic.

Chapter 4 deals with some algorithms that are in a sense related to the LMS al-
gorithm. In particular, the algorithms introduced are the quantized-error algorithms,
the LMS-Newton algorithm, the normalized LMS algorithm, the transform-domain
LMS algorithm, and the affine projection algorithm. Some properties of these
algorithms are also discussed in Chap. 4, with special emphasis on the analysis of
the affine projection algorithm.

Chapter 5 introduces the conventional recursive least-squares (RLS) algorithm.
This algorithm minimizes a deterministic objective function, differing in this sense
from most LMS-based algorithms. Following the same pattern of presentation of
Chap. 3, several aspects of the conventional RLS algorithm are discussed, such as
convergence behavior in stationary and nonstationary environments, along with a
number of simulation results. Chapter 16 deals with stability issues and quantization
effects related to the RLS algorithm when implemented in fixed- and floating-point
arithmetic. The results presented, except for the quantization effects, are also valid
for the RLS algorithms presented in Chaps. 7–9. As a complement to Chap. 5,
Chap. 17 presents the discrete-time Kalman filter formulation which, despite being
considered an extension of the Wiener filter, has some relation with the RLS
algorithm.

Chapter 6 discusses some techniques to reduce the overall computational com-
plexity of adaptive filtering algorithms. The chapter first introduces the so-called
set-membership algorithms that update only when the output estimation error is
higher than a prescribed upper bound. However, since set-membership algorithms
require frequent updates during the early iterations in stationary environments, we
introduce the concept of partial update to reduce the computational complexity
in order to deal with situations where the available computational resources are
scarce. In addition, the chapter presents several forms of set-membership algorithms
related to the affine projection algorithms and their special cases. Chapter 18
briefly presents some closed-form expressions for the excess MSE and the conver-
gence time constants of the simplified set-membership affine projection algorithm.
Chapter 6 also includes some simulation examples addressing standard as well as
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application-oriented problems, where the algorithms of this and previous chapters
are compared in some detail.

In Chap. 7, a family of fast RLS algorithms based on the FIR lattice realization
is introduced. These algorithms represent interesting alternatives to the computa-
tionally complex conventional RLS algorithm. In particular, the unnormalized, the
normalized, and the error-feedback algorithms are presented.

Chapter 8 deals with the fast transversal RLS algorithms, which are very
attractive due to their low computational complexity. However, these algorithms are
known to face stability problems in practical implementations. As a consequence,
special attention is given to the stabilized fast transversal RLS algorithm.

Chapter 9 is devoted to a family of RLS algorithms based on the QR decomposi-
tion. The conventional and a fast version of the QR-based algorithms are presented
in this chapter. Some QR-based algorithms are attractive since they are considered
numerically stable.

Chapter 10 addresses the subject of adaptive filters using IIR digital filter
realizations. The chapter includes a discussion on how to compute the gradient and
how to derive the adaptive algorithms. The cascade, the parallel, and the lattice
realizations are presented as interesting alternatives to the direct-form realization
for the IIR adaptive filter. The characteristics of the mean-square error surface are
also discussed in this chapter, for the IIR adaptive filtering case. Algorithms based
on alternative error formulations, such as the equation error and Steiglitz–McBride
methods, are also introduced.

Chapter 11 deals with nonlinear adaptive filtering which consists of utilizing a
nonlinear structure for the adaptive filter. The motivation is to use nonlinear adaptive
filtering structures to better model some nonlinear phenomena commonly found in
communication applications, such as nonlinear characteristics of power amplifiers at
transmitters. In particular, we introduce the Volterra series LMS and RLS algorithms
and the adaptive algorithms based on bilinear filters. Also, a brief introduction
is given to some nonlinear adaptive filtering algorithms based on the concepts of
neural networks, namely, the multilayer perceptron and the radial basis function
algorithms. Some examples of DFE equalization are included in this chapter.

Chapter 12 deals with adaptive filtering in subbands mainly to address the
applications where the required adaptive filter order is high, as for example in
acoustic echo cancellation where the unknown system (echo) model has long
impulse response. In subband adaptive filtering, some signals are split in frequency
subbands via an analysis filter bank. Chapter 12 provides a brief review of multirate
systems and presents the basic structures for adaptive filtering in subbands. The
concept of delayless subband adaptive filtering is also addressed, where the adaptive
filter coefficients are updated in subbands and mapped to an equivalent fullband
filter. The chapter also includes a discussion on the relation between subband
and block adaptive filtering (also known as frequency-domain adaptive filters)
algorithms.

Chapter 13 describes some adaptive filtering algorithms suitable for situations
where no reference signal is available which are known as blind adaptive filtering
algorithms. In particular, this chapter introduces some blind algorithms utilizing
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high-order statistics implicitly for the single-input single-output (SISO) equalization
applications. In order to address some drawbacks of the SISO equalization systems,
we discuss some algorithms using second-order statistics for the single-input multi-
output (SIMO) equalization. The SIMO algorithms are naturally applicable in cases
of oversampled received signal and multiple receive antennas. This chapter also
discusses some issues related to blind signal processing not directly detailed here.
Chapters 14–18 are complements to Chaps. 2, 3, 5, 5, and 6, respectively.

I decided to use some standard examples to present a number of simulation
results, in order to test and compare different algorithms. This way, frequent
repetition was avoided while allowing the reader to easily compare the performance
of the algorithms. Most of the end of chapters problems are simulation oriented;
however, some theoretical ones are included to complement the text.

The second edition differed from the first one mainly by the inclusion of chapters
on nonlinear and subband adaptive filtering. Many other smaller changes were
performed throughout the remaining chapters. In the third edition, we introduced
a number of derivations and explanations requested by students and suggested by
colleagues. In addition, two new chapters on data-selective algorithms and blind
adaptive filtering were included along with a large number of new examples and
problems. Major changes took place in the first five chapters in order to make
the technical details more accessible and to improve the ability of the reader in
deciding where and how to use the concepts. The analysis of the affine projection
algorithm was also presented in detail due to its growing practical importance.
Several practical and theoretical examples were included aiming at comparing the
families of algorithms introduced in the book. The fourth edition follows the same
structure of the previous edition, the main differences are some new analytical and
simulation examples included in Chaps. 4–6, and 10. A new Chap. 18 summarizes
the analysis of a set-membership algorithm. The fourth edition also incorporates
several small changes suggested by the readers, some new problems, and updated
references.

In a trimester course, I usually cover Chaps. 1–6 sometimes skipping parts of
Chap. 2 and the analyses of quantization effects in Chaps. 15 and 16. If time allows,
I try to cover as much as possible the remaining chapters, usually consulting the
audience about what they would prefer to study. This book can also be used for
self-study where the reader can examine Chaps. 1–6, and those not involved with
specialized implementations can skip Chaps. 15 and 16, without loss of continuity.
The remaining chapters can be followed separately, except for Chap. 8 that requires
reading Chap. 7. Chapters 7–9 deal with alternative and fast implementations of RLS
algorithms and the following chapters do not use their results.

Note to Instructors

For the instructors this book has a solution manual for the problems written by
Dr. L. W. P. Biscainho available from the publisher. Also available, upon request to
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the author, is a set of master transparencies as well as the MATLABr1 codes for all
the algorithms described in the text. The codes for the algorithms contained in this
book can also be downloaded from the MATLAB central:
http://www.mathworks.com/matlabcentral/fileexchange/3582-adaptive-filtering

1MATLAB is a registered trademark of The MathWorks, Inc.

http://www.mathworks.com/matlabcentral/fileexchange/3582-adaptive-filtering
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Chapter 1
Introduction to Adaptive Filtering

1.1 Introduction

In this section, we define the kind of signal processing systems that will be treated
in this text.

In the last 30 years significant contributions have been made in the signal
processing field. The advances in digital circuit design have been the key techno-
logical development that sparked a growing interest in the field of digital signal
processing. The resulting digital signal processing systems are attractive due to their
low cost, reliability, accuracy, small physical sizes, and flexibility.

One example of a digital signal processing system is called filter. Filtering is
a signal processing operation whose objective is to process a signal in order to
manipulate the information contained in it. In other words, a filter is a device that
maps its input signal to another output signal facilitating the extraction of the desired
information contained in the input signal. A digital filter is the one that processes
discrete-time signals represented in digital format. For time-invariant filters the
internal parameters and the structure of the filter are fixed, and if the filter is linear
then the output signal is a linear function of the input signal. Once prescribed
specifications are given, the design of time-invariant linear filters entails three basic
steps, namely: the approximation of the specifications by a rational transfer function,
the choice of an appropriate structure defining the algorithm, and the choice of the
form of implementation for the algorithm.

An adaptive filter is required when either the fixed specifications are unknown or
the specifications cannot be satisfied by time-invariant filters. Strictly speaking an
adaptive filter is a nonlinear filter since its characteristics are dependent on the input
signal and consequently the homogeneity and additive conditions are not satisfied.
However, if we freeze the filter parameters at a given instant of time, most adaptive
filters considered in this text are linear in the sense that their output signals are linear
functions of their input signals. The exceptions are the adaptive filters discussed in
Chap. 11.

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
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2 1 Introduction to Adaptive Filtering

The adaptive filters are time varying since their parameters are continually
changing in order to meet a performance requirement. In this sense, we can
interpret an adaptive filter as a filter that performs the approximation step online.
In general, the definition of the performance criterion requires the existence of
a reference signal that is usually hidden in the approximation step of fixed-filter
design. This discussion brings the intuition that in the design of fixed (nonadaptive)
filters a complete characterization of the input and reference signals is required in
order to design the most appropriate filter that meets a prescribed performance.
Unfortunately, this is not the usual situation encountered in practice, where the
environment is not well defined. The signals that compose the environment are the
input and the reference signals, and in cases where any of them is not well defined,
the engineering procedure is to model the signals and subsequently design the filter.
This procedure could be costly and difficult to implement on-line. The solution to
this problem is to employ an adaptive filter that performs on-line updating of its
parameters through a rather simple algorithm, using only the information available
in the environment. In other words, the adaptive filter performs a data-driven
approximation step.

The subject of this book is adaptive filtering, which concerns the choice of
structures and algorithms for a filter that has its parameters (or coefficients) adapted,
in order to improve a prescribed performance criterion. The coefficient updating is
performed using the information available at a given time.

The development of digital very large-scale integration (VLSI) technology
allowed the widespread use of adaptive signal processing techniques in a large
number of applications. This is the reason why in this book only discrete-time
implementations of adaptive filters are considered. Obviously, we assume that
continuous-time signals taken from the real world are properly sampled, i.e., they
are represented by discrete-time signals with sampling rate higher than twice their
highest frequency. Basically, it is assumed that when generating a discrete-time
signal by sampling a continuous-time signal, the Nyquist or sampling theorem is
satisfied [1–9].

1.2 Adaptive Signal Processing

As previously discussed, the design of digital filters with fixed coefficients requires
well-defined prescribed specifications. However, there are situations where the
specifications are not available, or are time varying. The solution in these cases is to
employ a digital filter with adaptive coefficients, known as adaptive filters [10–17].

Since no specifications are available, the adaptive algorithm that determines the
updating of the filter coefficients requires extra information that is usually given in
the form of a signal. This signal is in general called a desired or reference signal,
whose choice is normally a tricky task that depends on the application.
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Fig. 1.1 General
adaptive-filter configuration

Adaptive filters are considered nonlinear systems, therefore their behavior
analysis is more complicated than for fixed filters. On the other hand, because the
adaptive filters are self-designing filters, from the practitioner’s point of view their
design can be considered less involved than in the case of digital filters with fixed
coefficients.

The general setup of an adaptive-filtering environment is illustrated in Fig. 1.1,
where k is the iteration number, x.k/ denotes the input signal, y.k/ is the adaptive-
filter output signal, and d.k/ defines the desired signal. The error signal e.k/ is
calculated as d.k/ � y.k/. The error signal is then used to form a performance (or
objective) function that is required by the adaptation algorithm in order to determine
the appropriate updating of the filter coefficients. The minimization of the objective
function implies that the adaptive-filter output signal is matching the desired signal
in some sense.

The complete specification of an adaptive system, as shown in Fig. 1.1, consists
of three items:

1. Application: The type of application is defined by the choice of the signals
acquired from the environment to be the input and desired-output signals.
The number of different applications in which adaptive techniques are being
successfully used has increased enormously during the last 3 decades. Some
examples are echo cancellation, equalization of dispersive channels, system
identification, signal enhancement, adaptive beamforming, noise cancelling, and
control [14–20]. The study of different applications is not the main scope of this
book. However, some applications are considered in some detail.

2. Adaptive-filter structure: The adaptive filter can be implemented in a number
of different structures or realizations. The choice of the structure can influence
the computational complexity (amount of arithmetic operations per iteration) of
the process and also the necessary number of iterations to achieve a desired
performance level. Basically, there are two major classes of adaptive digital filter
realizations, distinguished by the form of the impulse response, namely the finite-
duration impulse response (FIR) filter and the infinite-duration impulse response
(IIR) filters. FIR filters are usually implemented with nonrecursive structures,
whereas IIR filters utilize recursive realizations.
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• Adaptive FIR filter realizations: The most widely used adaptive FIR filter
structure is the transversal filter, also called tapped delay line, that implements
an all-zero transfer function with a canonic direct-form realization without
feedback. For this realization, the output signal y.k/ is a linear combination
of the filter coefficients, that yields a quadratic mean-square error (MSE D
EŒje.k/j2�) function with a unique optimal solution. Other alternative adaptive
FIR realizations are also used in order to obtain improvements as compared to
the transversal filter structure, in terms of computational complexity, speed of
convergence, and finite wordlength properties as will be seen later in the book.

• Adaptive IIR filter realizations: The most widely used realization of adaptive
IIR filters is the canonic direct-form realization [5], due to its simple imple-
mentation and analysis. However, there are some inherent problems related to
recursive adaptive filters which are structure dependent, such as pole-stability
monitoring requirement and slow speed of convergence. To address these
problems, different realizations were proposed attempting to overcome the
limitations of the direct-form structure. Among these alternative structures,
the cascade, the lattice, and the parallel realizations are considered because of
their unique features as will be discussed in Chap. 10.

3. Algorithm: The algorithm is the procedure used to adjust the adaptive filter
coefficients in order to minimize a prescribed criterion. The algorithm is deter-
mined by defining the search method (or minimization algorithm), the objective
function, and the error signal nature. The choice of the algorithm determines
several crucial aspects of the overall adaptive process, such as existence of
suboptimal solutions, biased optimal solution, and computational complexity.

1.3 Introduction to Adaptive Algorithms

The basic objective of the adaptive filter is to set its parameters, �.k/, in such a
way that its output tries to minimize a meaningful objective function involving the
reference signal. Usually, the objective function F is a function of the input, the
reference, and adaptive-filter output signals, i.e., F D F Œx.k/; d.k/; y.k/�. A con-
sistent definition of the objective function must satisfy the following properties:

• Non-negativity: F Œx.k/; d.k/; y.k/� � 0;8y.k/; x.k/, and d.k/.
• Optimality: F Œx.k/; d.k/; d.k/� D 0.

One should understand that in an adaptive process, the adaptive algorithm attempts
to minimize the function F , in such a way that y.k/ approximates d.k/, and as a
consequence, �.k/ converges to �o, where �o is the optimum set of coefficients that
leads to the minimization of the objective function.

Another way to interpret the objective function is to consider it a direct function
of a generic error signal e.k/, which in turn is a function of the signals x.k/, y.k/,
and d.k/, i.e., F D F Œe.k/� D F Œe.x.k/; y.k/; d.k//�. Using this framework,
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we can consider that an adaptive algorithm is composed of three basic items:
definition of the minimization algorithm, definition of the objective function form,
and definition of the error signal.

1. Definition of the minimization algorithm for the function F : This item is the
main subject of Optimization Theory [21,22], and it essentially affects the speed
of convergence and computational complexity of the adaptive process.

In practice any continuous function having high-order model of the parameters can
be approximated around a given point �.k/ by a truncated Taylor series as follows

F Œ�.k/C��.k/� � F Œ�.k/�C gT
�

fF Œ�.k/�g��.k/

C1

2
��T .k/H� fF Œ�.k/�g��.k/ (1.1)

where H� fF Œ�.k/�g is the Hessian matrix of the objective function, and
g� fF Œ�.k/�g is the gradient vector, further details about the Hessian matrix and
gradient vector are presented along the text. The aim is to minimize the objective
function with respect to the set of parameters by iterating

�.k C 1/ D �.k/C��.k/ (1.2)

where the step or correction term ��.k/ is meant to minimize the quadratic
approximation of the objective function F Œ�.k/�. The so-called Newton method
requires the first- and second-order derivatives of F Œ�.k/� to be available at any
point, as well as the function value. These information are required in order
to evaluate (1.1). If H� .�.k// is a positive definite matrix, then the quadratic
approximation has a unique and well-defined minimum point. Such a solution can be
found by setting the gradient of the quadratic function with respect to the parameters
correction terms, at instant k C 1, to zero which leads to

g� fF Œ�.k/�g D �H� fF Œ�.k/�g��.k/ (1.3)

The most commonly used optimization methods in the adaptive signal processing
field are:

• Newton’s method: This method seeks the minimum of a second-order
approximation of the objective function using an iterative updating formula
for the parameter vector given by

�.k C 1/ D �.k/ � �H�1
�

fF Œe.k/�gg� fF Œe.k/�g (1.4)

where � is a factor that controls the step size of the algorithm, i.e., it determines
how fast the parameter vector will be changed. The reader should note that the
direction of the correction term ��.k/ is chosen according to (1.3). The matrix
of second derivatives of F Œe.k/�, H� fF Œe.k/�g is the Hessian matrix of the
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objective function, and g� fF Œe.k/�g is the gradient of the objective function with
respect to the adaptive filter coefficients. It should be noted that the error e.k/
depends on the parameters �.k/. If the function F Œe.k/� is originally quadratic,
there is no approximation in the model of (1.1) and the global minimum of the
objective function would be reached in one step if � D 1. For nonquadratic
functions the value of � should be reduced.

• Quasi-Newton methods: This class of algorithms is a simplified version of the
method above described, as it attempts to minimize the objective function using
a recursively calculated estimate of the inverse of the Hessian matrix, i.e.,

�.k C 1/ D �.k/ � �S.k/g� fF Œe.k/�g (1.5)

where S.k/ is an estimate of H�1
�

fF Œe.k/�g, such that

lim
k!1 S.k/ D H�1

�
fF Œe.k/�g

A usual way to calculate the inverse of the Hessian estimate is through the matrix
inversion lemma (see, for example, [23] and some chapters to come). Also, the
gradient vector is usually replaced by a computationally efficient estimate.

• Steepest-descent method: This type of algorithm searches the objective function
minimum point following the opposite direction of the gradient vector of this
function. Consequently, the updating equation assumes the form

�.k C 1/ D �.k/ � �g� fF Œe.k/�g (1.6)

Here and in the open literature, the steepest-descent method is often also referred
to as gradient method.

In general, gradient methods are easier to implement, but on the other hand,
the Newton method usually requires a smaller number of iterations to reach a
neighborhood of the minimum point. In many cases, Quasi-Newton methods can be
considered a good compromise between the computational efficiency of the gradient
methods and the fast convergence of the Newton method. However, the Quasi-
Newton algorithms are susceptible to instability problems due to the recursive form
used to generate the estimate of the inverse Hessian matrix. A detailed study of the
most widely used minimization algorithms can be found in [21, 22].

It should be pointed out that with any minimization method, the convergence
factor � controls the stability, speed of convergence, and some characteristics of
residual error of the overall adaptive process. Usually, an appropriate choice of
this parameter requires a reasonable amount of knowledge of the specific adaptive
problem of interest. Consequently, there is no general solution to accomplish this
task. In practice, computational simulations play an important role and are, in fact,
the most used tool to address the problem.

2. Definition of the objective function F Œe.k/�: There are many ways to define an
objective function that satisfies the optimality and non-negativity properties for-
merly described. This definition affects the complexity of the gradient vector and
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the Hessian matrix calculation. Using the algorithm’s computational complexity
as a criterion, we can list the following forms for the objective function as the
most commonly used in the derivation of an adaptive algorithm:

• Mean-Square Error (MSE): F Œe.k/� D EŒje.k/j2�
• Least Squares (LS): F Œe.k/� D 1

kC1
Pk

iD0 je.k � i/j2
• Weighted Least Squares (WLS): F Œe.k/� D Pk

iD0 �i je.k � i/j2, � is a
constant smaller than 1

• Instantaneous Squared Value (ISV): F Œe.k/� D je.k/j2
The MSE, in a strict sense, is only of theoretical value, since it requires an
infinite amount of information to be measured. In practice, this ideal objective
function can be approximated by the other three listed. The LS, WLS, and
ISV functions differ in the implementation complexity and in the convergence
behavior characteristics; in general, the ISV is easier to implement but presents
noisy convergence properties, since it represents a greatly simplified objective
function. The LS is convenient to be used in stationary environment, whereas the
WLS is useful in applications where the environment is slowly varying.

3. Definition of the error signal e.k/: The choice of the error signal is crucial for the
algorithm definition, since it can affect several characteristics of the overall al-
gorithm including computational complexity, speed of convergence, robustness,
and most importantly for the IIR adaptive filtering case, the occurrence of biased
and multiple solutions.

The minimization algorithm, the objective function, and the error signal as presented
give us a structured and simple way to interpret, analyze, and study an adaptive
algorithm. In fact, almost all known adaptive algorithms can be visualized in this
form, or in a slight variation of this organization. In the remaining parts of this
book, using this framework, we present the principles of adaptive algorithms. It may
be observed that the minimization algorithm and the objective function affect the
convergence speed of the adaptive process. An important step in the definition of an
adaptive algorithm is the choice of the error signal, since this task exercises direct
influence in many aspects of the overall convergence process.

1.4 Applications

In this section, we discuss some possible choices for the input and desired signals
and how these choices are related to the applications. Some of the classical
applications of adaptive filtering are system identification, channel equalization,
signal enhancement, and prediction.

In the system identification application, the desired signal is the output of the
unknown system when excited by a broadband signal, in most cases a white-noise
signal. The broadband signal is also used as input for the adaptive filter as illustrated
in Fig. 1.2. When the output MSE is minimized, the adaptive filter represents a
model for the unknown system.
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Fig. 1.2 System identification
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Fig. 1.4 Signal enhancement (n1.k/ and n2.k/ are noise signals correlated with each other)

The channel equalization scheme consists of applying the originally transmitted
signal distorted by the channel plus environment noise as the input signal to an
adaptive filter, whereas the desired signal is a delayed version of the original
signal as depicted in Fig. 1.3. This delayed version of the input signal is in general
available at the receiver in a form of standard training signal. In a noiseless case,
the minimization of the MSE indicates that the adaptive filter represents an inverse
model (equalizer) of the channel.

In the signal enhancement case, a signal x.k/ is corrupted by noise n1.k/, and a
signal n2.k/ correlated with the noise is available (measurable). If n2.k/ is used as
an input to the adaptive filter with the signal corrupted by noise playing the role of
the desired signal, after convergence the output error will be an enhanced version of
the signal. Figure 1.4 illustrates a typical signal enhancement setup.

Finally, in the prediction case the desired signal is a forward (or eventually a
backward) version of the adaptive-filter input signal as shown in Fig. 1.5. After
convergence, the adaptive filter represents a model for the input signal and can be
used as a predictor model for the input signal.

Further details regarding the applications discussed here will be given in the
following chapters.
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Fig. 1.6 Desired signal

Example 1.1. Before concluding this chapter, we present a simple example in order
to illustrate how an adaptive filter can be useful in solving problems that lie in
the general framework represented by Fig. 1.1. We chose the signal enhancement
application illustrated in Fig. 1.4.

In this example, the reference (or desired) signal consists of a discrete-time
triangular waveform corrupted by a colored noise. Figure 1.6 shows the desired
signal. The adaptive-filter input signal is a white noise correlated with the noise
signal that corrupted the triangular waveform, as shown in Fig. 1.7.

The coefficients of the adaptive filter are adjusted in order to keep the squared
value of the output error as small as possible. As can be noticed in Fig. 1.8, as the
number of iterations increases the error signal resembles the discrete-time triangular
waveform shown in the same figure (dashed curve). ut
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Chapter 2
Fundamentals of Adaptive Filtering

2.1 Introduction

This chapter includes a brief review of deterministic and random signal
representations. Due to the extent of those subjects, our review is limited to the
concepts that are directly relevant to adaptive filtering. The properties of the
correlation matrix of the input signal vector are investigated in some detail, since
they play a key role in the statistical analysis of the adaptive-filtering algorithms.

The Wiener solution that represents the minimum mean-square error (MSE)
solution of discrete-time filters realized through a linear combiner is also introduced.
This solution depends on the input signal correlation matrix as well as on the
cross-correlation between the elements of the input signal vector and the reference
signal. The values of these correlations form the parameters of the MSE surface,
which is a quadratic function of the adaptive-filter coefficients. The linearly
constrained Wiener filter is also presented, a technique commonly used in antenna
array processing applications. The transformation of the constrained minimization
problem into an unconstrained one is also discussed. Motivated by the importance
of the properties of the MSE surface, we analyze them using some results related to
the input signal correlation matrix.

In practice the parameters that determine the MSE surface shape are not
available. What is left is to directly or indirectly estimate these parameters using the
available data and to develop adaptive algorithms that use these estimates to search
the MSE surface, such that the adaptive-filter coefficients converge to the Wiener
solution in some sense. The starting point to obtain an estimation procedure is to
investigate the convenience of using the classical searching methods of optimization
theory [1–3] to adaptive filtering. The Newton and steepest-descent algorithms are
investigated as possible searching methods for adaptive filtering. Although both
methods are not directly applicable to practical adaptive filtering, smart reflections
inspired on them led to practical algorithms such as the least-mean-square (LMS)

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 2, © Springer Science+Business Media New York 2013

13



14 2 Fundamentals of Adaptive Filtering

[4, 5] and Newton-based algorithms. The Newton and steepest-descent algorithms
are introduced in this chapter, whereas the LMS algorithm is treated in the next
chapter.

Also, in the present chapter, the main applications of adaptive filters are revisited
and discussed in greater detail.

2.2 Signal Representation

In this section, we briefly review some concepts related to deterministic and random
discrete-time signals. Only specific results essential to the understanding of adaptive
filtering are reviewed. For further details on signals and digital signal processing we
refer to [6–13].

2.2.1 Deterministic Signals

A deterministic discrete-time signal is characterized by a defined mathematical
function of the time index k,1 with k D 0;˙1;˙2;˙3; : : :. An example of a
deterministic signal (or sequence) is

x.k/ D e�˛ k cos.!k/C u.k/ (2.1)

where u.k/ is the unit step sequence.
The response of a linear time-invariant filter to an input x.k/ is given by the

convolution summation, as follows [7]:

y.k/ D x.k/ � h.k/ D
1X

nD�1
x.n/h.k � n/

D
1X

nD�1
h.n/x.k � n/ D h.k/ � x.k/ (2.2)

where h.k/ is the impulse response of the filter.2

The Z-transform of a given sequence x.k/ is defined as

Zfx.k/g D X.z/ D
1X

kD�1
x.k/z�k (2.3)

1The index k can also denote space in some applications.
2An alternative and more accurate notation for the convolution summation would be .x � h/.k/
instead of x.k/ � h.k/, since in the latter the index k appears twice whereas the resulting
convolution is simply a function of k. We will keep the latter notation since it is more widely used.
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for regions in the Z-plane such that this summation converges. If the Z-transform
is defined for a given region of the Z-plane, in other words the above summation
converges in that region, the convolution operation can be replaced by a product of
the Z-transforms as follows [7]:

Y.z/ D H.z/ X.z/ (2.4)

where Y.z/, X.z/, and H.z/ are the Z-transforms of y.k/, x.k/, and h.k/,
respectively. Considering only waveforms that start at an instant k � 0 and have
finite power, their Z-transforms will always be defined outside the unit circle.

For finite-energy waveforms, it is convenient to use the discrete-time Fourier
transform defined as

Ffx.k/g D X.e|!/ D
1X

kD�1
x.k/e�|!k (2.5)

Although the discrete-time Fourier transform does not exist for a signal with infinite
energy, if the signal has finite power, a generalized discrete-time Fourier transform
exists and is largely used for deterministic signals [14].

2.2.2 Random Signals

A random variable X is a function that assigns a number to every outcome, denoted
by %, of a given experiment. A stochastic process is a rule to describe the time
evolution of the random variable depending on %, therefore it is a function of two
variables X.k; %/. The set of all experimental outcomes, i.e., the ensemble, is the
domain of %. We denote x.k/ as a sample of the given process with % fixed, where
in this case if k is also fixed, x.k/ is a number. When any statistical operator is
applied to x.k/ it is implied that x.k/ is a random variable, k is fixed, and % is
variable. In this book, x.k/ represents a random signal.

Random signals do not have a precise description of their waveforms. What is
possible is to characterize them via measured statistics or through a probabilistic
model. For random signals, the first- and second-order statistics are most of the
time sufficient for characterization of the stochastic process. The first- and second-
order statistics are also convenient for measurements. In addition, the effect on these
statistics caused by linear filtering can be easily accounted for as shown below.

Let’s consider for the time being that the random signals are real. We start
to introduce some tools to deal with random signals by defining the distribution
function of a random variable as

Px.k/.y/
4D probability of x.k/ being smaller or equal to y
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or

Px.k/.y/ D
Z y

�1
px.k/.z/d z (2.6)

The derivative of the distribution function is the probability density function (pdf)

px.k/.y/ D dPx.k/.y/

dy
(2.7)

The expected value, or mean value, of the process is defined by

mx.k/ D EŒx.k/� (2.8)

The definition of the expected value is expressed as

EŒx.k/� D
Z 1

�1
y px.k/.y/dy (2.9)

where px.k/.y/ is the pdf of x.k/ at the point y.
The autocorrelation function of the process x.k/ is defined by

rx.k; l/ D EŒx.k/x.l/� D
Z 1

�1

Z 1

�1
yzpx.k/;x.l/.y; z/dyd z (2.10)

where px.k/;x.l/.y; z/ is the joint probability density of the random variables x.k/
and x.l/ defined as

px.k/;x.l/.y; z/ D @2Px.k/;x.l/.y; z/

@y@z
(2.11)

where
Px.k/;x.l/.y; z/

4D probability of fx.k/ � y and x.l/ � zg
The autocovariance function is defined as

�2x .k; l/ D EfŒx.k/ �mx.k/�Œx.l/ �mx.l/�g D rx.k; l/ �mx.k/mx.l/ (2.12)

where the second equality follows from the definitions of mean value and autocor-
relation. For k D l , �2x .k; l/ D �2x .k/ which is the variance of x.k/.

The most important specific example of probability density function is the
Gaussian density function, also known as normal density function [15, 16]. The
Gaussian pdf is defined by

px.k/.y/ D 1
p
2	�2x .k/

e
� .y�mx.k//

2

2�2x .k/ (2.13)

wheremx.k/ and �2x .k/ are the mean and variance of x.k/, respectively.
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One justification for the importance of the Gaussian distribution is the central
limit theorem. Given a random variable x composed by the sum of n independent
random variables xi as follows:

x D
nX

iD1
xi (2.14)

the central limit theorem states that under certain general conditions, the probability
density function of x approaches a Gaussian density function for large n. The mean
and variance of x are given, respectively, by

mx D
nX

iD1
mxi (2.15)

�2x D
nX

iD1
�2xi (2.16)

Considering that the values of the mean and variance of x can grow, define

x
0 D x �mx

�x
(2.17)

In this case, for n ! 1 it follows that

px0 .y/ D 1p
2	

e� y2

2 (2.18)

In a number of situations we require the calculation of conditional distributions,
where the probability of a certain event to occur is calculated assuming that another
event B has occurred. In this case, we define

Px.k/.yjB/ D P.fx.k/ � yg \ B/

P.B/

4D probability of x.k/ � y assumingB has occurred (2.19)

This joint event consists of all outcomes % 2 B such that x.k/ D x.k; %/ � y.3 The
definition of the conditional mean is given by

mxjB.k/ D EŒx.k/jB� D
Z 1

�1
ypx.k/.yjB/dy (2.20)

where px.k/.yjB/ is the pdf of x.k/ conditioned on B.

3Or equivalently, such that X.k; %/ � y.
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The conditional variance is defined as

�2xjB.k/ D EfŒx.k/ �mxjB.k/�2jBg D
Z 1

�1
Œy �mxjB.k/�2px.k/.yjB/dy (2.21)

There are processes for which the mean and autocorrelation functions are shift
(or time) invariant, i.e.,

mx.k � i/ D mx.k/ D EŒx.k/� D mx (2.22)

rx.k; i/ D EŒx.k � j /x.i � j /� D rx.k � i/ D rx.l/ (2.23)

and as a consequence

�2x.l/ D rx.l/ �m2
x (2.24)

These processes are said to be wide-sense stationary (WSS). If the nth-order
statistics of a process is shift invariant, the process is said to be nth-order stationary.
Also if the process is nth-order stationary for any value of n, the process is stationary
in strict sense.

Two processes are considered jointly WSS if and only if any linear combination
of them is also WSS. This is equivalent to state that

y.k/ D k1 x1.k/C k2 x2.k/ (2.25)

must be WSS, for any constants k1 and k2, if x1.k/ and x2.k/ are jointly WSS.
This property implies that both x1.k/ and x2.k/ have shift-invariant means and
autocorrelations, and that their cross-correlation is also shift invariant.

For complex signals where x.k/ D xr.k/ C |xi .k/, y D yr C |yi , and z D
zr C |zi , we have the following definition of the expected value

EŒx.k/� D
Z 1

�1

Z 1

�1
ypxr.k/;xi .k/.yr ; yi /dyrdyi (2.26)

where pxr.k/;xi .k/.yr ; yi / is the joint probability density function (pdf) of xr.k/ and
xi .k/.

The autocorrelation function of the complex random signal x.k/ is defined by

rx.k; l/ D EŒx.k/x�.l/�

D
Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
yz�pxr .k/;xi .k/;xr .l/;xi .l/.yr ; yi ; zr ; zi /dyrdyid zrd zi

(2.27)

where � denotes complex conjugate, since we assume for now that we are dealing
with complex signals, and pxr.k/;xi .k/;xr .l/;xi .l/.yr ; yi ; zr ; zi / is the joint probability
density function of the random variables x.k/ and x.l/.
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For complex signals the autocovariance function is defined as

�2x .k; l/ D EfŒx.k/ �mx.k/�Œx.l/ �mx.l/�
�g D rx.k; l/ �mx.k/m

�
x.l/ (2.28)

2.2.2.1 Autoregressive Moving Average Process

The process resulting from the output of a system described by a general linear
difference equation given by

y.k/ D
MX

jD0
bj x.k � j /C

NX

iD1
aiy.k � i/ (2.29)

where x.k/ is a white noise, is called autoregressive moving average (ARMA)
process. The coefficients ai and bj are the parameters of the ARMA process.
The output signal y.k/ is also said to be a colored noise since the autocorrelation
function of y.k/ is nonzero for a lag different from zero, i.e., r.l/ ¤ 0 for some
l ¤ 0.

For the special case where bj D 0 for j D 1; 2; : : : ;M , the resulting process
is called autoregressive (AR) process. The terminology means that the process
depends on the present value of the input signal and on a linear combination of
past samples of the process. This indicates the presence of a feedback of the output
signal.

For the special case where ai D 0 for i D 1; 2; : : : ; N , the process is identified
as a moving average (MA) process. This terminology indicates that the process
depends on a linear combination of the present and past samples of the input signal.
In summary, an ARMA process can be generated by applying a white noise to the
input of a digital filter with poles and zeros, whereas for the AR and MA cases the
digital filters are all-pole and all-zero filters, respectively.

2.2.2.2 Markov Process

A stochastic process is called a Markov process if its past has no influence in the
future when the present is specified [14,15]. In other words, the present behavior of
the process depends only on the most recent past, i.e., all behavior previous to the
most recent past is not required. A first-order AR process is a first-order Markov
process, whereas an N th-order AR process is considered an N th-order Markov
process. Take as an example the sequence

y.k/ D ay.k � 1/C n.k/ (2.30)

where n.k/ is a white-noise process. The process represented by y.k/ is determined
by y.k � 1/ and n.k/, and no information before the instant k � 1 is required. We
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conclude that y.k/ represents a Markov process. In the previous example, if a D 1

and y.�1/ D 0 the signal y.k/, for k � 0, is a sum of white noise samples, usually
called random walk sequence.

Formally, an mth-order Markov process satisfies the following condition: for all
k � 0, and for a fixedm, it follows that

Px.k/ .yjx.k � 1/; x.k � 2/; : : : ; x.0//

D Px.k/ .yjx.k � 1/; x.k � 2/; : : : ; x.k �m// (2.31)

2.2.2.3 Wold Decomposition

Another important result related to any WSS process x.k/ is the Wold decomposi-
tion, which states that x.k/ can be decomposed as

x.k/ D xr.k/C xp.k/ (2.32)

where xr .k/ is a regular process that is equivalent to the response of a stable,
linear, time-invariant, and causal filter to a white noise [14], and xp.k/ is a
perfectly predictable (deterministic or singular) process. Also, xp.k/ and xr.k/
are orthogonal processes, i.e., EŒxr.k/xp.k/� D 0. The key factor here is that the
regular process can be modeled through a stable autoregressive model [17] with
a stable and causal inverse. The importance of Wold decomposition lies on the
observation that a WSS process can in part be represented by an AR process of
adequate order, with the remaining part consisting of a perfectly predictable process.
Obviously, the perfectly predictable process part of x.k/ also admits an AR model
with zero excitation.

2.2.2.4 Power Spectral Density

Stochastic signals that are WSS are persistent and therefore are not finite-energy
signals. On the other hand, they have finite power such that the generalized discrete-
time Fourier transform can be applied to them. When the generalized discrete-time
Fourier transform is applied to a WSS process it leads to a random function of the
frequency [14]. On the other hand, the autocorrelation functions of most practical
stationary processes have discrete-time Fourier transform. Therefore, the discrete-
time Fourier transform of the autocorrelation function of a stationary random
process can be very useful in many situations. This transform, called power spectral
density, is defined as

Rx.e|!/ D
1X

lD�1
rx.l/e�|!l D F Œrx.l/� (2.33)
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where rx.l/ is the autocorrelation of the process represented by x.k/. The inverse
discrete-time Fourier transform allows us to recover rx.l/ from Rx.e|!/, through
the relation

rx.l/ D 1

2	

Z 	

�	
Rx.e

|!/e|!l d! D F�1ŒRx.e|!/� (2.34)

It should be mentioned that Rx.e|!/ is a deterministic function of ! and can be
interpreted as the power density of the random process at a given frequency in the
ensemble,4 i.e., considering the average outcome of all possible realizations of the
process. In particular, the mean squared value of the process represented by x.k/ is
given by

rx.0/ D 1

2	

Z 	

�	
Rx.e|!/d! (2.35)

If the random signal representing any single realization of a stationary process is
applied as input to a linear and time-invariant filter, with impulse response h.k/, the
following equalities are valid and can be easily verified:

y.k/ D
1X

nD�1
x.n/h.k � n/ D x.k/ � h.k/ (2.36)

ry.l/ D rx.l/ � rh.l/ (2.37)

Ry.e|!/ D Rx.e|!/jH.e|!/j2 (2.38)

ryx.l/ D rx.l/ � h.l/ D EŒx�.k/y.k C l/� (2.39)

Ryx.e|!/ D Rx.e|!/H.e|!/ (2.40)

where rh.l/ D h.l/ � h.�l/, Ry.e|!/ is the power spectral density of the output
signal, ryx.k/ is the cross-correlation of x.k/ and y.k/, and Ryx.e|!/ is the
corresponding cross-power spectral density.

The main feature of the spectral density function is to allow a simple analysis of
the correlation behavior of WSS random signals processed with linear time-invariant
systems. As an illustration, suppose a white noise is applied as input to a lowpass
filter with impulse response h.k/ and sharp cutoff at a given frequency !l . The
autocorrelation function of the output signal y.k/will not be a single impulse, it will
be h.k/ � h.�k/. Therefore, the signal y.k/ will look like a band-limited random
signal, in this case, a slow-varying noise. Some properties of the functionRx.e|!/ of
a discrete-time and stationary stochastic process are worth mentioning. The power
spectrum density is a periodic function of !, with period 2	 , as can be verified
from its definition. Also, since for a stationary and complex random process we

4The average signal power at a given sufficiently small frequency range, �!, around a center
frequency !0 is approximately given by �!

2	
Rx.e|!0 /.
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have rx.�l/ D r�
x .l/, Rx.e

|!/ is real. Despite the usefulness of the power spectrum
density function in dealing with WSS processes, it will not be widely used in this
book since usually the filters considered here are time varying. However, it should
be noted its important role in areas such as spectrum estimation [18, 19].

If the Z-transforms of the autocorrelation and cross-correlation functions exist,
we can generalize the definition of power spectral density. In particular, the
definition of (2.33) corresponds to the following relation

ZŒrx.k/� D Rx.z/ D
1X

kD�1
rx.k/z

�k (2.41)

If the random signal representing any single realization of a stationary process is
applied as input to a linear and time-invariant filter with impulse response h.k/, the
following equalities are valid:

Ry.z/ D Rx.z/H.z/H.z
�1/ (2.42)

and
Ryx.z/ D Rx.z/H.z/ (2.43)

where H.z/ D ZŒh.l/�. If we wish to calculate the cross-correlation of y.k/ and
x.k/, namely ryx.0/, we can use the inverse Z-transform formula as follows:

EŒy.k/x�.k/� D 1

2	|

I

Ryx.z/
d z

z

D 1

2	|

I

H.z/Rx.z/
d z

z
(2.44)

where the integration path is a counterclockwise closed contour in the region
of convergence of Ryx.z/. The contour integral above equation is usually solved
through the Cauchy’s residue theorem [8].

2.2.3 Ergodicity

In the probabilistic approach, the statistical parameters of the real data are obtained
through ensemble averages (or expected values). The estimation of any parameter of
the stochastic process can be obtained by averaging a large number of realizations of
the given process, at each instant of time. However, in many applications only a few
or even a single sample of the process is available. In these situations, we need to
find out in which cases the statistical parameters of the process can be estimated by
using time average of a single sample (or ensemble member) of the process. This is
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obviously not possible if the desired parameter is time varying. The equivalence
between the ensemble average and time average is called ergodicity [14, 15].

The time average of a given stationary process represented by x.k/ is calcu-
lated by

OmxN D 1

2N C 1

NX

kD�N
x.k/ (2.45)

If

�2OmxN D lim
N!1Efj OmxN �mxj2g D 0

the process is said to be mean-ergodic in the mean-square sense. Therefore, the
mean-ergodic process has time average that approximates the ensemble average as
N ! 1. Obviously, OmxN is an unbiased estimate of mx since

EŒ OmxN � D 1

2N C 1

NX

kD�N
EŒx.k/� D mx (2.46)

Therefore, the process will be considered ergodic if the variance of OmxN tends to
zero (�2OmxN ! 0) when N ! 1. The variance �2OmxN can be expressed after some

manipulations as

�2OmxN D 1

2N C 1

2NX

lD�2N
�2x .k C l; k/

�

1 � jl j
2N C 1

�

(2.47)

where �2x .kCl; k/ is the autocovariance of the stochastic process x.k/. The variance
of OmxN tends to zero if and only if

lim
N!1

1

N

NX

lD0
�2x .k C l; k/ ! 0

The above condition is necessary and sufficient to guarantee that the process is
mean-ergodic.

The ergodicity concept can be extended to higher order statistics. In particular,
for second-order statistics we can define the process

xl.k/ D x.k C l/x�.k/ (2.48)

where the mean of this process corresponds to the autocorrelation of x.k/, i.e., rx.l/.
Mean-ergodicity of xl .k/ implies mean-square ergodicity of the autocorrelation of
x.k/.
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The time average of xl.k/ is given by

Omxl;N D 1

2N C 1

NX

kD�N
xl.k/ (2.49)

that is an unbiased estimate of rx.l/. If the variance of Omxl;N tends to zero as
N tends to infinity, the process x.k/ is said to be mean-square ergodic of the
autocorrelation, i.e.,

lim
N!1Efj Omxl;N � rx.l/j2g D 0 (2.50)

The above condition is satisfied if and only if

lim
N!1

1

N

NX

iD0
Efx.k C l/x�.k/x.k C l C i/x�.k C i/g � r2x.l/ D 0 (2.51)

where it is assumed that x.n/ has stationary fourth-order moments. The concept of
ergodicity can be extended to nonstationary processes [14], however, that is beyond
the scope of this book.

2.3 The Correlation Matrix

Usually, adaptive filters utilize the available input signals at instant k in their
updating equations. These inputs are the elements of the input signal vector
denoted by

x.k/ D Œx0.k/ x1.k/ : : : xN .k/�
T

The correlation matrix is defined as R D EŒx.k/xH.k/�, where xH.k/ is the
Hermitian transposition of x.k/, that means transposition followed by complex
conjugation or vice versa. As will be noted, the characteristics of the correlation
matrix play a key role in the understanding of properties of most adaptive-filtering
algorithms. As a consequence, it is important to examine the main properties of the
matrix R. Some properties of the correlation matrix come from the statistical nature
of the adaptive-filtering problem, whereas other properties derive from the linear
algebra theory.
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For a given input vector, the correlation matrix is given by

R D

2

6
6
6
4

EŒjx0.k/j2� EŒx0.k/x
�
1 .k/� � � � EŒx0.k/x�

N .k/�

EŒx1.k/x
�
0 .k/� EŒjx1.k/j2� � � � EŒx1.k/x�

N .k/�
:::

:::
: : :

:::

EŒxN .k/x
�
0 .k/� EŒxN .k/x

�
1 .k/� � � � EŒjxN .k/j2�

3

7
7
7
5

D EŒx.k/xH.k/� (2.52)

The main properties of the R matrix are listed below:

1. The matrix R is positive semidefinite.

Proof. Given an arbitrary complex weight vector w, we can form a signal
given by

y.k/ D wHx.k/

The magnitude squared of y.k/ is

y.k/y�.k/ D jy.k/j2 D wHx.k/xH.k/w � 0

The mean-square (MS) value of y.k/ is then given by

MSŒy.k/� D EŒjy.k/j2� D wHEŒx.k/xH.k/�w D wHRw � 0

Therefore, the matrix R is positive semidefinite. ut
Usually, the matrix R is positive definite, unless the signals that compose the
input vector are linearly dependent. Linear-dependent signals are rarely found in
practice.

2. The matrix R is Hermitian, i.e.,

R D RH (2.53)

Proof.

RH D EfŒx.k/xH.k/�H g D EŒx.k/xH.k/� D R ut

3. A matrix is Toeplitz if the elements of the main diagonal and of any secondary
diagonal are equal. When the input signal vector is composed of delayed versions
of the same signal (i.e., xi .k/ D x0.k � i/, for i D 1; 2; : : : ; N ) taken from a
WSS process, matrix R is Toeplitz.
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Proof. For the delayed signal input vector, with x.k/ WSS, matrix R has the
following form

R D

2

6
6
6
4

rx.0/ rx.1/ � � � rx.N /

rx.�1/ rx.0/ � � � rx.N � 1/
:::

:::
: : :

:::

rx.�N/ rx.�N C 1/ � � � rx.0/

3

7
7
7
5

(2.54)

By examining the right-hand side of the above equation, we can easily conclude
that R is Toeplitz. ut

Note that r�
x .i/ D rx.�i/, what also follows from the fact that the matrix R is

Hermitian.
If matrix R given by (2.54) is nonsingular for a givenN , the input signal is said to

be persistently exciting of order N C 1. This means that the power spectral density
Rx.e|!/ is different from zero at least at N C 1 points in the interval 0 < ! �
2	 . It also means that a nontrivial N th-order FIR filter (with at least one nonzero
coefficient) cannot filter x.k/ to zero. Note that a nontrivial filter, with x.k/ as input,
would require at least N C 1 zeros in order to generate an output with all samples
equal to zero. The absence of persistence of excitation implies the misbehavior of
some adaptive algorithms [20, 21]. The definition of persistence of excitation is not
unique, and it is algorithm dependent (see the book by Johnson [20] for further
details).

From now on in this section, we discuss some properties of the correlation matrix
related to its eigenvalues and eigenvectors. A number � is an eigenvalue of the
matrix R, with a corresponding eigenvector q, if and only if

Rq D �q (2.55)

or equivalently
det.R � �I/ D 0 (2.56)

where I is the (N C 1) by (N C 1) identity matrix. Equation (2.56) is called
characteristic equation of R and has (N C1) solutions for �. We denote the (N C1)
eigenvalues of R by �0; �1; : : : ; �N . Note also that for every value of �, the vector
q D 0 satisfies (2.55); however, we consider only those particular values of � that
are linked to a nonzero eigenvector q.

Some important properties related to the eigenvalues and eigenvectors of R,
which will be useful in the following chapters, are listed below.

1. The eigenvalues of Rm are �mi , for i D 0; 1; 2; : : : ; N .

Proof. By premultiplying (2.55) by Rm�1, we obtain

Rm�1Rqi D Rm�1�iqi D �iRm�2Rqi

D �iRm�2�iqi D �2iR
m�3Rqi

D � � � D �mi qi (2.57)
ut
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2. Suppose R has N C 1 linearly independent eigenvectors qi ; then if we form a
matrix Q with columns consisting of the qi ’s, it follows that

Q�1RQ D

2

6
6
6
6
6
6
6
4

�0 0 � � � 0
0 �1

:::
::: 0 � � � :::
:::
::: 0

0 0 � � � �N

3

7
7
7
7
7
7
7
5

D � (2.58)

Proof.

RQ D RŒq0 q1 � � � qN � D Œ�0q0 �1q1 � � ��NqN �

D Q

2

6
6
6
6
6
6
6
4

�0 0 � � � 0
0 �1

:::
::: 0 � � � :::
:::
::: 0

0 0 � � � �N

3

7
7
7
7
7
7
7
5

D Q�

Therefore, since Q is invertible because the qi ’s are linearly independent, we can
show that

Q�1RQ D � ut

3. The nonzero eigenvectors q0, q1, : : : qN that correspond to different eigenvalues
are linearly independent.

Proof. If we form a linear combination of the eigenvectors such that

a0q0 C a1q1 C � � � C aNqN D 0 (2.59)

By multiplying the above equation by R we have

a0Rq0 C a1Rq1 C � � � C aNRqN D a0�0q0 C a1�1q1 C � � � C aN�NqN D 0

(2.60)

Now by multiplying (2.59) by �N and subtracting the result from (2.60), we
obtain

a0.�0 � �N /q0 C a1.�1 � �N /q1 C � � � C aN�1.�N�1 � �N /qN�1 D 0

By repeating the above steps, i.e., multiplying the above equation by R in one
instance and by �N�1 on the other instance, and subtracting the results, it yields



28 2 Fundamentals of Adaptive Filtering

a0.�0 � �N /.�0 � �N�1/q0 C a1.�1 � �N /.�1 � �N�1/q1
C � � � C aN�2.�N�2 � �N�1/qN�2 D 0

By repeating the same above steps several times, we end up with

a0.�0 � �N /.�0 � �N�1/ � � � .�0 � �1/q0 D 0

Since we assumed �0 ¤ �1, �0 ¤ �2, : : : �0 ¤ �N , and q0 was assumed
nonzero, then a0 D 0.

The same line of thought can be used to show that a0 D a1 D a2 D � � � D
aN D 0 is the only solution for (2.59). Therefore, the eigenvectors corresponding
to different eigenvalues are linearly independent. ut
Not all matrices are diagonalizable. A matrix of order (N C 1) is diagonalizable
if it possesses (N C1) linearly independent eigenvectors. A matrix with repeated
eigenvalues can be diagonalized or not, depending on the linear dependency of
the eigenvectors. A nondiagonalizable matrix is called defective [22].

4. Since the correlation matrix R is Hermitian, i.e., RH D R, its eigenvalues are
real. These eigenvalues are equal to or greater than zero given that R is positive
semidefinite.

Proof. First note that given an arbitrary complex vector w,

.wHRw/H D wHRH.wH/H D wHRw

Therefore, wHRw is a real number. Assume now that �i is an eigenvalue of R
corresponding to the eigenvector qi , i.e., Rqi D �iqi . By premultiplying this
equation by qHi , it follows that

qHi Rqi D �iqHi qi D �ikqik2

where the operation kak2 D ja0j2 C ja1j2 C � � � C jaN j2 is the Euclidean norm
squared of the vector a, that is always real. Since the term on the left hand is also
real, kqik2 ¤ 0, and R is positive semidefinite, we can conclude that �i is real
and nonnegative. ut
Note that Q is not unique since each qi can be multiplied by an arbitrary nonzero
constant, and the resulting vector continues to be an eigenvector.5 For practical
reasons, we consider only normalized eigenvectors having length one, that is

qHi qi D 1 for i D 0; 1; : : : ; N (2.61)

5We can also change the order in which the qi ’s compose matrix Q, but this fact is not relevant to
the present discussion.
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5. If R is a Hermitian matrix with different eigenvalues, the eigenvectors are
orthogonal to each other. As a consequence, there is a diagonalizing matrix Q
that is unitary, i.e., QHQ D I.

Proof. Given two eigenvalues �i and �j , it follows that

Rqi D �iqi

and
Rqj D �jqj (2.62)

Using the fact that R is Hermitian and that �i and �j are real, then

qHi R D �iqHi

and by multiplying this equation on the right by qj , we get

qHi Rqj D �iqHi qj

Now by premultiplying (2.62) by qHi , it follows that

qHi Rqj D �jqHi qj

Therefore,
�iqHi qj D �jqHi qj

Since �i ¤ �j , it can be concluded that

qHi qj D 0 for i ¤ j

If we form matrix Q with normalized eigenvectors, matrix Q is a unitary matrix.
ut

An important result is that any Hermitian matrix R can be diagonalized by a
suitable unitary matrix Q, even if the eigenvalues of R are not distinct. The proof
is omitted here and can be found in [22]. Therefore, for Hermitian matrices with
repeated eigenvalues it is always possible to find a complete set of orthonormal
eigenvectors.

A useful form to decompose a Hermitian matrix that results from the last
property is

R D Q�QH D
NX

iD0
�iqiq

H
i (2.63)

that is known as spectral decomposition. From this decomposition, one can easily
derive the following relation
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wHRw D
NX

iD0
�iwHqiq

H
i w D

NX

iD0
�i jwHqi j2 (2.64)

In addition, since qi D �iR�1qi , the eigenvectors of a matrix and of its
inverse coincide, whereas the eigenvalues are reciprocals of each other. As a
consequence,

R�1 D
NX

iD0

1

�i
qiq

H
i (2.65)

Another consequence of the unitary property of Q for Hermitian matrices is
that any Hermitian matrix can be written in the form

R D
hp
�0q0

p
�1q1 : : :

p
�NqN

i

2

6
6
6
4

p
�0qH0p
�1qH1
:::p
�NqHN

3

7
7
7
5

D LLH (2.66)

6. The sum of the eigenvalues of R is equal to the trace of R, and the product of the
eigenvalues of R is equal to the determinant of R.6

Proof.
trŒQ�1RQ� D trŒ��

where, trŒA� D PN
iD0 ai i . Since trŒA0A� D trŒAA0�, we have

trŒQ�1RQ� D trŒRQQ�1� D trŒRI� D trŒR� D
NX

iD0
�i

Also

detŒQ�1 R Q� D detŒR� detŒQ� detŒQ�1� D detŒR� D detŒ�� D
NY

iD0
�i : ut

7. The Rayleigh’s quotient defined as

R D wHRw
wHw

(2.67)

of a Hermitian matrix is bounded by the minimum and maximum eigenvalues,
i.e.,

�min � R � �max (2.68)

6This property is valid for any square matrix, but for more general matrices the proof differs from
the one presented here.
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where the minimum and maximum values are reached when the vector w is
chosen to be the eigenvector corresponding to the minimum and maximum
eigenvalues, respectively.

Proof. Suppose w D Qw0, where Q is the matrix that diagonalizes R, then

R D w0HQHRQw0

w0HQHQw0

D w0H�w0

w0Hw0

D
PN

iD0 �iw0
i
2

PN
iD0 w0

i
2

(2.69)

It is then possible to show, see Problem 14, that the minimum value for the above
equation occurs when wi D 0 for i ¤ j and �j is the smallest eigenvalue.
Identically, the maximum value for R occurs when wi D 0 for i ¤ l , where �l
is the largest eigenvalue. ut

There are several ways to define the norm of a matrix. In this book the norm
of a matrix R, denoted by kRk, is defined by

kRk2 D max
w¤0

kRwk2
kwk2

D max
w¤0

wHRHRw
wHw

(2.70)

Note that the norm of R is a measure of how a vector w grows in magnitude,
when it is multiplied by R.

When the matrix R is Hermitian, the norm of R is easily obtained by using
the results of (2.57) and (2.68). The result is

kRk D �max (2.71)

where �max is the maximum eigenvalue of R.
A common problem that we encounter in adaptive filtering is the solution of a

system of linear equations such as

Rw D p (2.72)

In case there is an error in the vector p, originated by quantization or estimation,
how does it affect the solution of the system of linear equations? For a positive
definite Hermitian matrix R, it can be shown [22] that the relative error in the
solution of the above linear system of equations is bounded by
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k�wk
kwk � �max

�min

k�pk
kpk (2.73)

where �max and �min are the maximum and minimum values of the eigenvalues
of R, respectively. The ratio �max=�min is called condition number of a matrix,
that is

C D �max

�min
D kRkkR�1k (2.74)

The value of C influences the convergence behavior of a number of adaptive-
filtering algorithms, as will be seen in the following chapters. Large value of C
indicates that the matrix R is ill-conditioned, and that errors introduced by the
manipulation of R may be largely amplified. WhenC D 1, the matrix is perfectly
conditioned. In case R represents the correlation matrix of the input signal of an
adaptive filter, with the input vector composed by uncorrelated elements of a
delay line (see Fig. 2.1b, and the discussions around it), then C D 1.

Example 2.1. Suppose the input signal vector is composed by a delay line with a
single input signal, i.e.,

x.k/ D Œx.k/ x.k � 1/ : : : x.k �N/�T

Given the following input signals:

(a)
x.k/ D n.k/

(b)
x.k/ D a cos!0k C n.k/

(c)

x.k/ D
MX

iD0
bin.k � i/

(d)
x.k/ D �a1x.k � 1/C n.k/

(e)
x.k/ D ae|.!0kCn.k//

where n.k/ is a white noise with zero mean and variance �2n ; in case (e) n.k/ is
uniformly distributed in the range �	 to 	 .

Calculate the autocorrelation matrix R for N D 3.

Solution. (a) In this case, we have that EŒx.k/x.k � l/� D �2nı.l/, where ı.l/
denotes an impulse sequence. Therefore,
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R D EŒx.k/xT .k/� D �2n

2

6
6
6
4

1 0 � � � 0
0 1 � � � 0
:::
:::
: : :

:::

0 0 � � � 1

3

7
7
7
5

(2.75)

(b) In this example, n.k/ is zero mean and uncorrelated with the deterministic
cosine. The autocorrelation function can then be expressed as

r.k; k � l/ D EŒa2 cos.!0k/ cos.!0k � !0l/C n.k/n.k � l/�
D a2EŒcos.!0k/ cos.!0k � !0l/�C �2nı.l/

D a2

2
Œcos.!0l/C cos.2!0k � !0l/�C �2nı.l/ (2.76)

where ı.l/ again denotes an impulse sequence. Since part of the input signal is
deterministic and nonstationary, the autocorrelation is time dependent.

For the 3 � 3 case the input signal correlation matrix R.k/ becomes

a2

2

2

6
4

1C cos 2!0k C 2
a2
�2n cos!0 C cos!0.2k � 1/ cos 2!0 C cos 2!0.k � 1/

cos!0 C cos!0.2k � 1/ 1C cos 2!0.k � 1/C 2
a2
�2n cos!0 C cos!0.2.k � 1/� 1/

cos 2!0 C cos 2!0.k � 1/ cos!0 C cos!0.2.k � 1/� 1/ 1C cos 2!0.k � 2/C 2
a2
�2n

3

7
5

(c) By exploring the fact that n.k/ is a white noise, we can perform the following
simplifications:

r.l/ D EŒx.k/x.k � l/� D E

2

4
M�lX

jD0

MX

iD0
bibj n.k � i/n.k � l � j /

3

5

D
M�lX

jD0
bj blCjEŒn2.k � l � j /� D �2n

MX

jD0
bj blCj

0 � l C j � M (2.77)

where from the third to the fourth relation we used the fact thatEŒn.k� i/n.k�
l � j /� D 0 for i ¤ l C j . For M D 3, the correlation matrix has the
following form

R D �2n

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3X

iD0
b2i

2X

iD0
bibiC1

1X

iD0
bibiC2 b0b3

2X

iD0
bibiC1

3X

iD0
b2i

2X

iD0
bibiC1

1X

iD0
bibiC2

1X

iD0
bibiC2

2X

iD0
bibiC1

3X

iD0
b2i

2X

iD0
bibiC1

b0b3

1X

iD0
bibiC2

2X

iD0
bibiC1

3X

iD0
b2i

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.78)
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(d) By solving the difference equation, we can obtain the correlation between x.k/
and x.k � l/, that is

x.k/ D .�a1/lx.k � l/C
l�1X

jD0
.�a1/j n.k � j / (2.79)

Multiplying x.k�l/ on both sides of the above equation and taking the expected
value of the result, we obtain

EŒx.k/x.k � l/� D .�a1/lEŒx2.k � l/� (2.80)

since x.k � l/ is independent of n.k � j / for j � l � 1.
For l D 0, just calculate x2.k/ and apply the expectation operation to the

result. The partial result is

EŒx2.k/� D a21EŒx
2.k � 1/�C EŒn2.k/� (2.81)

therefore,

EŒx2.k/� D �2n

1 � a21
(2.82)

assuming x.k/ is WSS.
The elements of R are then given by

r.l/ D .�a1/jlj
1 � a21

�2n (2.83)

and the 3 � 3 autocorrelation matrix becomes

R D �2n

1 � a21

2

4
1 �a1 a21

�a1 1 �a1
a21 �a1 1

3

5

(e) In this case, we are interested in calculating the autocorrelation of a complex
sequence, that is

r.l/ D EŒx.k/x�.k � l/�

D a2EŒe�|.�!0l�n.k/Cn.k�l//� (2.84)

By recalling the definition of expected value in (2.9), for l ¤ 0,
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r.l/ D a2e|!0l
Z 1

�1

Z 1

�1
e�|.�n0Cn1/pn.k/;n.k�l/.n0; n1/dn0dn1

D a2e|!0l
Z 	

�	

Z 	

�	
e�|.�n0Cn1/pn.k/.n0/pn.k�l/.n1/dn0dn1

D a2e|!0l
Z 	

�	

Z 	

�	
e�|.�n0Cn1/ 1

2	

1

2	
dn0dn1

D a2e|!0l
1

4	2

Z 	

�	

Z 	

�	
e�|.�n0Cn1/dn0dn1

D a2e|!0l
1

4	2

�Z 	

�	
e|n0dn0

� �Z 	

�	
e�|n1dn1

�

D a2e|!0l
1

4	2

�
e|	 � e�|	

|

� ��e�|	 C e|	

|

�

D �a2e|!0l 1
	2
.sin	/.sin	/ D 0 (2.85)

where in the fifth equality it is used the fact that n.k/ and n.k � l/, for l ¤ 0,
are independent.

For l D 0

r.0/ D EŒx.k/x�.k/� D a2e|.!00/ D a2

Therefore,

r.l/ D EŒx.k/x�.k � l/� D a2e|.!0l/ı.l/

where in the 3 � 3 case

R D
2

4
a2 0 0

0 a2 0

0 0 a2

3

5

At the end it was verified the fact that when we have two exponential functions
(l ¤ 0) with uniformly distributed white noise in the range of �k	 to k	 as
exponents, these exponentials are nonorthogonal only if l D 0, where k is a positive
integer. ut

In the remaining part of this chapter and in the following chapters, we will
treat the algorithms for real and complex signals separately. The derivations of
the adaptive-filtering algorithms for complex signals are usually straightforward
extensions of the real signal cases, and some of them are left as exercises.
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2.4 Wiener Filter

One of the most widely used objective function in adaptive filtering is the MSE
defined as

F Œe.k/� D �.k/ D EŒe2.k/� D EŒd2.k/� 2d.k/y.k/C y2.k/� (2.86)

where d.k/ is the reference signal as illustrated in Fig. 1.1.
Suppose the adaptive filter consists of a linear combiner, i.e., the output signal is

composed by a linear combination of signals coming from an array as depicted in
Fig. 2.1a. In this case,

y.k/ D
NX

iD0
wi .k/xi .k/ D wT .k/x.k/ (2.87)

where x.k/ D Œx0.k/ x1.k/ : : : xN .k/�
T and w.k/ D Œw0.k/ w1.k/ : : :wN .k/�T are

the input signal and the adaptive-filter coefficient vectors, respectively.
In many applications, each element of the input signal vector consists of a

delayed version of the same signal, that is: x0.k/ D x.k/; x1.k/ D x.k �
1/; : : : ; xN .k/ D x.k � N/. Note that in this case the signal y.k/ is the result
of applying an FIR filter to the input signal x.k/.

Since most of the analyses and algorithms presented in this book apply equally
to the linear combiner and the FIR filter cases, we will mostly consider the latter
case throughout the rest of the book. The main reason for this decision is that
the fast algorithms for the recursive least-squares solution, to be discussed in the
forthcoming chapters, explore the fact that the input signal vector consists of the
output of a delay line with a single input signal, and, as a consequence, are not
applicable to the linear combiner case.

The most straightforward realization for the adaptive filter is through the direct-
form FIR structure as illustrated in Fig. 2.1b, with the output given by

y.k/ D
NX

iD0
wi .k/x.k � i/ D wT .k/x.k/ (2.88)

where x.k/ D Œx.k/ x.k � 1/ : : : x.k � N/�T is the input vector representing a
tapped-delay line, and w.k/ D Œw0.k/ w1.k/ : : :wN .k/�T is the tap-weight vector.

In both the linear combiner and FIR filter cases, the objective function can be
rewritten as

EŒe2.k/� D �.k/

D E
�
d2.k/� 2d.k/wT .k/x.k/C wT .k/x.k/xT .k/w.k/

�

D EŒd2.k/� � 2EŒd.k/wT .k/x.k/�C EŒwT .k/x.k/xT .k/w.k/� (2.89)
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Fig. 2.1 (a) Linear
combiner; (b) Adaptive
FIR filter

For a filter with fixed coefficients, the MSE function in a stationary environment is
given by

� D EŒd2.k/� � 2wT EŒd.k/x.k/�C wT EŒx.k/xT .k/�w

D EŒd2.k/� � 2wT p C wTRw (2.90)
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where p D EŒd.k/x.k/� is the cross-correlation vector between the desired and
input signals, and R D EŒx.k/xT .k/� is the input signal correlation matrix. As
can be noted, the objective function � is a quadratic function of the tap-weight
coefficients which would allow a straightforward solution for w that minimizes �,
if vector p and matrix R are known. Note that matrix R corresponds to the Hessian
matrix of the objective function defined in the previous chapter.

If the adaptive filter is implemented through an IIR filter, the objective function is
a nonquadratic function of the filter parameters, turning the minimization problem
into a much more difficult one. Local minima are likely to exist, rendering
some solutions obtained by gradient-based algorithms unacceptable. Despite its
disadvantages, adaptive IIR filters are needed in a number of applications where
the order of a suitable FIR filter is too high. Typical applications include data
equalization in communication channels and cancellation of acoustic echo, see
Chap. 10.

The gradient vector of the MSE function related to the filter tap-weight coeffi-
cients is given by7

gw D @�

@w
D
�
@�

@w0

@�

@w1
: : :

@�

@wN

�T

D �2p C 2Rw (2.91)

By equating the gradient vector to zero and assuming R is nonsingular, the optimal
values for the tap-weight coefficients that minimize the objective function can be
evaluated as follows:

wo D R�1p (2.92)

This solution is called the Wiener solution. Unfortunately, in practice, precise
estimations of R and p are not available. When the input and the desired signals
are ergodic, one is able to use time averages to estimate R and p, what is implicitly
performed by most adaptive algorithms.

If we replace the optimal solution for w in the MSE expression, we can calculate
the minimum MSE provided by the Wiener solution:

�min D EŒd2.k/� � 2wT
o p C wT

o RR�1p

D EŒd2.k/� � wT
o p (2.93)

The above equation indicates that the optimal set of parameters removes part of the
power of the desired signal through the cross-correlation between x.k/ and d.k/,
assuming both signals stationary. If the reference signal and the input signal are
orthogonal, the optimal coefficients are equal to zero and the minimum MSE is

7Some books define gw as
h
@�

@w

iT
, here we follow the notation more widely used in the subject

matter.



2.4 Wiener Filter 39

EŒd2.k/�. This result is expected since nothing can be done with the parameters
in order to minimize the MSE if the input signal carries no information about the
desired signal. In this case, if any of the taps is nonzero, it would only increase
the MSE.

An important property of the Wiener filter can be deduced if we analyze the
gradient of the error surface at the optimal solution. The gradient vector can be
expressed as follows:

gw D @EŒe2.k/�

@w
D EŒ2e.k/

@e.k/

@w
� D �EŒ2e.k/x.k/� (2.94)

With the coefficients set at their optimal values, i.e., at the Wiener solution, the
gradient vector is equal to zero, implying that

EŒe.k/x.k/� D 0 (2.95)

or
EŒe.k/x.k � i/� D 0 (2.96)

for i D 0; 1; : : : ; N . This means that the error signal is orthogonal to the elements
of the input signal vector. In case either the error or the input signal has zero mean,
the orthogonality property implies that e.k/ and x.k/ are uncorrelated.

The orthogonality principle also applies to the correlation between the output
signal y.k/ and the error e.k/, when the tap weights are given by w D wo. By
premultiplying (2.95) by wT

o , the desired result follows:

EŒe.k/wT
o x.k/� D EŒe.k/y.k/� D 0 (2.97)

The gradient with respect to a complex parameter has not been defined. For our
purposes the complex gradient vector can be defined as [18]

gw.k/fF.e.k//g D 1

2

�
@F Œe.k/�

@reŒw.k/�
� |

@F Œe.k/�

@imŒw.k/�

	

where reŒ�� and imŒ�� indicate real and imaginary parts of Œ��, respectively. Note that
the partial derivatives are calculated for each element of w.k/.

For the complex case the error signal and the MSE are, respectively, described
by, see Chap. 14 for details,

e.k/ D d.k/ � wH.k/x.k/ (2.98)

and

� D EŒje.k/j2�
D EŒjd.k/j2� � 2refwHEŒd�.k/x.k/�g C wHEŒx.k/xH.k/�w

D EŒjd.k/j2� � 2reŒwHp�C wHRw (2.99)
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where p D EŒd�.k/x.k/� is the cross-correlation vector between the desired and
input signals, and R D EŒx.k/xH.k/� is the input signal correlation matrix. The
Wiener solution in this case is also given by (2.92).

Example 2.2. The input signal of a first-order adaptive filter is described by

x.k/ D ˛1x1.k/C ˛2x2.k/

where x1.k/ and x2.k/ are first-order AR processes and mutually uncorrelated
having both unit variance. These signals are generated by applying distinct white
noises to first-order filters whose poles are placed at �s1 and �s2, respectively.

(a) Calculate the autocorrelation matrix of the input signal.
(b) If the desired signal consists of x2.k/, calculate the Wiener solution.

Solution. (a) The models for the signals involved are described by

xi .k/ D �sixi .k � 1/C 
ini .k/

for i D 1; 2. According to (2.83) the autocorrelation of either xi .k/ is given by

EŒxi .k/xi .k � l/� D 
2i
.�si /jlj
1 � s2i

�2n;i (2.100)

where �2n;i is the variance of ni .k/. Since each signal xi .k/ has unit variance,
then by applying l D 0 to the above equation


2i D 1� s2i

�2n;i
(2.101)

Now by utilizing the fact that x1.k/ and x2.k/ are uncorrelated, the autocorre-
lation of the input signal is

R D
�

˛21 C ˛22 �˛21s1 � ˛22s2
�˛21s1 � ˛22s2 ˛21 C ˛22

�

p D
�

˛2

�˛2s2
�

(b) The Wiener solution can then be expressed as

wo D R�1p

D 1

.˛21 C ˛22/
2 � .˛21s1 C ˛22s2/

2

"
˛21 C ˛22 ˛21s1 C ˛22s2

˛21s1 C ˛22s2 ˛21 C ˛22

#"
˛2

�˛2s2

#
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D 1

.1C ˛22
˛21
/2 � .s1 C ˛22

˛21
s2/2

2

4
1C ˛22

˛21
s1 C ˛22

˛21
s2

s1 C ˛22
˛21
s2 1C ˛22

˛21

3

5

"
˛2
˛21

� ˛2
˛21
s2

#

D ˛2

"
1

˛21C˛22�s1˛21�s2˛22 0

0 1

˛21C˛22Cs1˛21Cs2˛22

#"
1�s2
2

� 1Cs2
2

#

Let’s assume that in this example our task was to detect the presence of x2.k/ in
the input signal. For a fixed input-signal power, from this solution it is possible

to observe that lower signal to interference at the input, that is lower ˛22
˛21

, leads

to a Wiener solution vector with lower norm. This result reflects the fact that
the Wiener solution tries to detect the desired signal at the same time it avoids
enhancing the undesired signal, i.e., the interference x1.k/. ut

2.5 Linearly Constrained Wiener Filter

In a number of applications, it is required to impose some linear constraints on
the filter coefficients such that the optimal solution is the one that achieves the
minimum MSE, provided the constraints are met. Typical constraints are: unity
norm of the parameter vector; linear phase of the adaptive filter; prescribed gains
at given frequencies.

In the particular case of an array of antennas the measured signals can be linearly
combined to form a directional beam, where the signal impinging on the array in
the desired direction will have higher gain. This application is called beamforming,
where we specify gains at certain directions of arrival. It is clear that the array is
introducing another dimension to the received data, namely spatial information.
The weights in the antennas can be made adaptive leading to the so-called adaptive
antenna arrays. This is the principle behind the concept of smart antennas, where a
set of adaptive array processors filter the signals coming from the array, and direct
the beam to several different directions where a potential communication is required.
For example, in a wireless communication system we are able to form a beam for
each subscriber according to its position, ultimately leading to minimization of noise
from the environment and interference from other subscribers.

In order to develop the theory of linearly constrained optimal filters, let us
consider the particular application of a narrowband beamformer required to pass
without distortion all signals arriving at 90ı with respect to the array of antennas.
All other sources of signals shall be treated as interferers and must be attenuated as
much as possible. Figure 2.2 illustrates the application. Note that in case the signal
of interest does not impinge the array at 90ı with respect to the array, a steering
operation in the constraint vector c (to be defined) has to be performed [23].
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Fig. 2.2 Narrowband
beamformer

The optimal filter that satisfies the linear constraints is called the linearly con-
strained minimum-variance (LCMV) filter.

If the desired signal source is sufficiently far from the array of antennas, then we
may assume that the wavefronts are planar at the array. Therefore, the wavefront
from the desired source will reach all antennas at the same instant, whereas the
wavefront from the interferer will reach each antenna at different time instants.
Taking the antenna with input signal x0 as a time reference t0, the wavefront will
reach the i th antenna at [23]

ti D t0 C i
d cos �

c

where � is the angle between the antenna array and the interferer direction of arrival,
d is the distance between neighboring antennas, and c is the speed of propagation
of the wave (3 � 108 m/s).

For this particular case, the LCMV filter is the one that minimizes the array
output signal energy

� D EŒy2.k/� D EŒwT x.k/xT .k/w�

subject to W
NX

jD0
cjwj D f (2.102)
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where

w D Œw0 w1 : : :wN �
T

x.k/ D Œx0.k/ x1.k/ : : : xN .k/�
T

and

c D Œ1 1 : : : 1�T

is the constraint vector, since � D 90ı. The desired gain is usually f D 1.
In the case the desired signal impinges the array at an angle � with respect to the

array, the incoming signal reaches the i th antenna delayed by i d cos �
c

with respect
to the 0th antenna [24]. Let’s consider the case of a narrowband array such that
all antennas detect the impinging signal with the same amplitude when measured
taking into consideration their relative delays, which are multiples of d cos �

c
. In such

a case the optimal receiver coefficients would be

wi D e|!�i

N C 1
(2.103)

for i D 0; 1; : : : ; N , in order to add coherently the delays of the desired incoming
signal at a given direction � . The impinging signal appears at the i th antenna
multiplied by e�|!�i , considering the particular case of array configuration of
Fig. 2.2. In this uniform linear array, the antenna locations are

pi D id

for i D 0; 1; : : : ; N . Using the 0th antenna as reference, the signal will reach the
array according to the following pattern

Qc D e|!t
h
1 e�|! d cos �

c e�|! 2d cos �
c : : : e�|! Nd cos �

c

iT

D e|!t
h
1 e�| 2	� d cos � e�| 2	� 2d cos � : : : e�| 2	� Nd cos �

iT
(2.104)

where the equality !
c

D 2	
�

was employed, with � being the wavelength correspond-
ing to the frequency !.

By defining the variable .!; �/ D 2	
�
d cos � , we can describe the output signal

of the beamformer as

y D e|!t
NX

iD0
wie�| .!;�/i

D e|!tH.!; �/ (2.105)
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where H.!; �/ modifies the amplitude and phase of transmitted signal at a given
frequency !. Note that the shaping function H.!; �/ depends on the impinging
angle.

For the sake of illustration, if the antenna separation is d D �
2
, � D 60ı, and N

is odd, then the constraint vector would be

c D
h
1 e�| 	2 e�|	 : : : e�| N	2

iT

D
h
1 � | � 1 : : : e�| N	2

iT
(2.106)

Using the method of Lagrange multipliers, we can rewrite the constrained
minimization problem described in (2.102) as

�c D EŒwT x.k/xT .k/w�C �.cTw � f / (2.107)

The gradient of �c with respect to w is equal to

gw D 2Rw C �c (2.108)

where R D EŒx.k/xT .k/�. For a positive definite matrix R, the value of w that
satisfies gw D 0 is unique and minimizes �c . Denoting wo as the optimal solution,
we have

2Rwo C �c D 0

2cTwo C �cTR�1c D 0

2f C �cTR�1c D 0

where in order to obtain the second equality, we premultiply the first equation by
cTR�1. Therefore,

� D �2.cTR�1c/�1f

and the LCMV filter is

wo D R�1c.cTR�1c/�1f (2.109)

If more constraints need to be satisfied by the filter, these can be easily
incorporated in a constraint matrix and in a gain vector, such that

CTw D f (2.110)

In this case, the LCMV filter is given by

wo D R�1C.CTR�1C/�1f (2.111)
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Fig. 2.3 The generalized sidelobe canceller

If there is a desired signal, the natural objective is the minimization of the
MSE, not the output energy as in the narrowband beamformer. In this case, it is
straightforward to modify (2.107) and obtain the optimal solution

wo D R�1p C R�1C.CT R�1C/�1.f � CTR�1p/ (2.112)

where p D EŒd.k/ x.k/�, see Problem 20.
In the case of complex input signals and constraints, the optimal solution is

given by

wo D R�1p C R�1C.CHR�1C/�1.f � CHR�1p/ (2.113)

where CHw D f.

2.5.1 The Generalized Sidelobe Canceller

An alternative implementation to the direct-form constrained adaptive filter showed
above is called the generalized sidelobe canceller (GSC) (see Fig. 2.3) [25].

For this structure the input signal vector is transformed by a matrix

T D ŒC B� (2.114)

where C is the constraint matrix and B is a blocking matrix that spans the null space
of C, i.e., matrix B satisfies

BTC D 0 (2.115)

The output signal y.k/ shown in Fig. 2.3 is formed as

y.k/ D wT
u CT x.k/C wT

l BT x.k/

D .Cwu C Bwl /
T x.k/

D .Tw/T x.k/

D NwT x.k/ (2.116)

where w D ŒwT
u wT

l �
T and Nw D Tw.
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The linear constraints are satisfied if CT Nw D f. But as CTB D 0, then the
condition to be satisfied becomes

CT Nw D CT Cwu D f (2.117)

Therefore, for the GSC structure shown in Fig. 2.3 there is a necessary condition
that the upper part of the coefficient vector, wu, should be initialized as

wu D .CT C/�1f (2.118)

Minimization of the output energy is achieved with a proper choice of wl . In
fact, we transformed a constrained optimization problem into an unconstrained one,
which in turn can be solved with the classical linear Wiener filter, i.e.,

min
wl

EŒy2.k/� D min
wl

EfŒyu.k/C wT
l xl .k/�2g

D wl;o

D �R�1
l pl ; (2.119)

where

Rl D EŒxl .k/xTl .k/�

D EŒBT x.k/xT .k/B�

D BT Œx.k/xT .k/�B

D BTRB (2.120)

and

pl D EŒyu.k/ xl .k/� D EŒxl .k/ yu.k/�

D EŒBT x.k/ wT
u CT x.k/�

D EŒBT x.k/ xT .k/Cwu�

D BT EŒx.k/ xT .k/�Cwu

D BTRCwu

D BTRC.CTC/�1f (2.121)

where in the above derivations we utilized the results and definitions from (2.116)
and (2.118).

Using (2.118), (2.120), and (2.121) it is possible to show that

wl;o D �.BT RB/�1BTRC.CTC/�1f (2.122)
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Given that wl;o is the solution to an unconstrained minimization problem of
transformed quantities, any unconstrained adaptive filter can be used to estimate
recursively this optimal solution. The drawback in the implementation of the
GSC structure comes from the transformation of the input signal vector via a
constraint matrix and a blocking matrix. Although in theory any matrix with linearly
independent columns that spans the null space of C can be employed, in many
cases the computational complexity resulting from the multiplication of B by x.k/
can be prohibitive. Furthermore, if the transformation matrix T is not orthogonal,
finite-precision effects may yield an overall unstable system. A simple solution that
guarantees orthogonality in the transformation and low computational complexity
can be obtained with a Householder transformation [26].

2.6 MSE Surface

The MSE is a quadratic function of the parameters w. Assuming a given fixed w,
the MSE is not a function of time and can be expressed as

� D �2d � 2wT p C wTRw (2.123)

where �2d is the variance of d.k/ assuming it has zero-mean. The MSE is a quadratic
function of the tap weights forming a hyperparaboloid surface. The MSE surface is
convex and has only positive values. For two weights, the surface is a paraboloid.
Figure 2.4 illustrates the MSE surface for a numerical example where w has two
coefficients. If the MSE surface is intersected by a plane parallel to the w plane,
placed at a level superior to �min, the intersection consists of an ellipse representing
equal MSE contours as depicted in Fig. 2.5. Note that in this figure we showed three
distinct ellipses, corresponding to different levels of MSE. The ellipses of constant
MSE are all concentric. In order to understand the properties of the MSE surface, it
is convenient to define a translated coefficient vector as follows:

�w D w � wo (2.124)

The MSE can be expressed as a function of �w as follows:

� D �2d � wT
o p C wT

o p � 2wT p C wT Rw

D �min ��wT p � wTRwo C wTRw

D �min ��wT p C wTR�w

D �min � wT
o R�w C wTR�w

D �min C�wTR�w (2.125)

where we used the results of (2.92) and (2.93). The corresponding error surface
contours are depicted in Fig. 2.6.
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Fig. 2.6 Translated contours of the MSE surface

By employing the diagonalized form of R, the last equation can be rewritten as
follows:

� D �min C�wTQ�QT�w

D �min C vT�v

D �min C
NX

iD0
�iv

2
i (2.126)

where v D QT�w are the rotated parameters.
The above form for representing the MSE surface is an uncoupled form, in the

sense that each component of the gradient vector of the MSE with respect to the
rotated parameters is a function of a single parameter, that is

gvŒ�� D Œ2�0v0 2�1v1 : : : 2�N vN �
T

This property means that if all vi ’s are zero except one, the gradient direction
coincides with the nonzero parameter axis. In other words, the rotated parameters
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Fig. 2.7 Rotated contours of the MSE surface

represent the principal axes of the hyperellipse of constant MSE, as illustrated in
Fig. 2.7. Note that since the rotated parameters are the result of the projection of the
original parameter vector �w on the eigenvectors qi direction, it is straightforward
to conclude that the eigenvectors represent the principal axes of the constant MSE
hyperellipses.

The matrix of second derivatives of � as related to the rotated parameters is�. We
can note that the gradient will be steeper in the principal axes corresponding to larger
eigenvalues. This is the direction, in the two axes case, where the ellipse is narrow.

2.7 Bias and Consistency

The correct interpretation of the results obtained by the adaptive-filtering algorithm
requires the definitions of bias and consistency. An estimate is considered unbiased
if the following condition is satisfied

EŒw.k/� D wo (2.127)

The differenceEŒw.k/� � wo is called the bias in the parameter estimate.
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An estimate is considered consistent if

w.k/ ! wo as k ! 1 (2.128)

Note that since w.k/ is a random variable, it is necessary to define in which sense
the limit is taken. Usually, the limit with probability one is employed. In the case
of identification, a system is considered identifiable if the given parameter estimates
are consistent. For a more formal treatment on this subject, refer to [21].

2.8 Newton Algorithm

In the context of the MSE minimization discussed in the previous section, see
(2.123), the coefficient-vector updating using the Newton method is performed as
follows:

w.k C 1/ D w.k/� �R�1gw.k/ (2.129)

where its derivation originates from (1.4). Assuming the true gradient and the matrix
R are available, the coefficient-vector updating can be expressed as

w.k C 1/ D w.k/ � �R�1Œ�2p C 2Rw.k/� D .I � 2�I/w.k/C 2�wo (2.130)

where if � D 1=2, the Wiener solution is reached in one step.
The Wiener solution can be approached using a Newton-like search algorithm,

by updating the adaptive-filter coefficients as follows:

w.k C 1/ D w.k/ � � OR�1
.k/Ogw.k/ (2.131)

where O gw.k/ is an estimate of gw, both atR
�1
.k/ is an estimate of R�1 and O

instant k. The parameter � is the convergence factor that regulates the convergence
rate. Newton-based algorithms present, in general, fast convergence. However,
the estimate of R�1 is computationally intensive and can become numerically
unstable if special care is not taken. These factors made the steepest-descent-based
algorithms more popular in adaptive-filtering applications.

2.9 Steepest-Descent Algorithm

In order to get a practical feeling of a problem that is being solved using the steepest-
descent algorithm, we assume that the optimal coefficient vector, i.e., the Wiener
solution, is wo, and that the reference signal is not corrupted by measurement noise.8

8Noise added to the reference signal originated from environment and/or thermal noise.
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The main objective of the present section is to study the rate of convergence,
the stability, and the steady-state behavior of an adaptive filter whose coefficients
are updated through the steepest-descent algorithm. It is worth mentioning that the
steepest-descent method can be considered an efficient gradient-type algorithm, in
the sense that it works with the true gradient vector, and not with an estimate of it.
Therefore, the performance of other gradient-type algorithms can at most be close
to the performance of the steepest-descent algorithm. When the objective function
is the MSE, the difficult task of obtaining the matrix R and the vector p impairs the
steepest-descent algorithm from being useful in adaptive-filtering applications. Its
performance, however, serves as a benchmark for gradient-based algorithms.

The steepest-descent algorithm updates the coefficients in the following general
form

w.k C 1/ D w.k/ � �gw.k/ (2.132)

where the above expression is equivalent to (1.6). It is worth noting that several
alternative gradient-based algorithms available replace gw.k/ by an estimate Ogw.k/,
and they differ in the way the gradient vector is estimated. The true gradient
expression is given in (2.91) and, as can be noted, it depends on the vector p and the
matrix R, that are usually not available.

Substituting (2.91) in (2.132), we get

w.k C 1/ D w.k/� 2�Rw.k/C 2�p (2.133)

Now, some of the main properties related to the convergence behavior of the
steepest-descent algorithm in stationary environment are described. First, an anal-
ysis is required to determine the influence of the convergence factor � in the
convergence behavior of the steepest-descent algorithm.

The error in the adaptive-filter coefficients when compared to the Wiener solution
is defined as

�w.k/ D w.k/ � wo (2.134)

The steepest-descent algorithm can then be described in an alternative way, that is:

�w.k C 1/ D �w.k/ � 2�ŒRw.k/� Rwo�

D �w.k/ � 2�R�w.k/

D .I � 2�R/�w.k/ (2.135)

where the relation p D Rwo (see (2.92)) was employed. It can be shown from the
above equation that

�w.k C 1/ D .I � 2�R/kC1�w.0/ (2.136)

or
w.k C 1/ D wo C .I � 2�R/kC1Œw.0/� wo� (2.137)
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The (2.135) premultiplied by QT , where Q is the unitary matrix that diagonalizes
R through a similarity transformation, yields

QT�w.k C 1/ D .I � 2�QTRQ/QT �w.k/

D v.k C 1/

D .I � 2��/v.k/

D

2

6
6
6
6
4

1 � 2��0 0 � � � 0

0 1� 2��1
:::

:::
:::

: : :
:::

0 0 1 � 2��N

3

7
7
7
7
5

v.k/ (2.138)

In the above equation, v.k C 1/ D QT�w.k C 1/ is the rotated coefficient-vector
error. Using induction, (2.138) can be rewritten as

v.k C 1/ D .I � 2��/kC1v.0/

D

2

6
6
6
6
4

.1 � 2��0/
kC1 0 � � � 0

0 .1 � 2��1/
kC1 :::

:::
:::

: : :
:::

0 0 .1 � 2��N /kC1

3

7
7
7
7
5

v.0/ (2.139)

This equation shows that in order to guarantee the convergence of the coefficients,
each element 1�2��i must have an absolute value less than one. As a consequence,
the convergence factor of the steepest-descent algorithm must be chosen in the range

0 < � <
1

�max
(2.140)

where �max is the largest eigenvalue of R. In this case, all the elements of the
diagonal matrix in (2.139) tend to zero as k ! 1, resulting in v.k C 1/ ! 0

for large k.
The � value in the above range guarantees that the coefficient vector approaches

the optimum coefficient vector wo. It should be mentioned that if matrix R has
large eigenvalue spread, the convergence speed of the coefficients will be primarily
dependent on the value of the smallest eigenvalue. Note that the slowest decaying
element in (2.139) is given by .1 � 2��min/

kC1.
The MSE presents a transient behavior during the adaptation process that can

be analyzed in a straightforward way if we employ the diagonalized version of R.
Recalling from (2.125) that

�.k/ D �min C�wT .k/R�w.k/ (2.141)
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the MSE can then be simplified as follows:

�.k/ D �min C�wT .k/Q� QT �w.k/

D �min C vT .k/� v.k/

D �min C
NX

iD0
�iv

2
i .k/ (2.142)

If we apply the result of (2.139) in (2.142), it can be shown that the following
relation results

�.k/ D �min C vT .k � 1/.I � 2��/� .I � 2��/v.k � 1/

D �min C
NX

iD0
�i .1 � 2��i /2kv2i .0/ (2.143)

The analyses presented in this section show that before the steepest-descent
algorithm reaches the steady-state behavior, there is a transient period where the
error is usually high and the coefficients are far from the Wiener solution. As can
be seen from (2.139), in the case of the adaptive-filter coefficients, the convergence
will follow .N C 1/ geometric decaying curves with ratios rwi D .1� 2��i /. Each
of these curves can be approximated by an exponential envelope with time constant
�wi as follows [5]:

rwi D e
�1
�wi D 1 � 1

�wi
C 1

2Š�2wi
C � � � (2.144)

In general, rwi is slightly smaller than one, specially in the cases of slowly
decreasing modes that correspond to small values �i and �. Therefore,

rwi D .1 � 2��i/ � 1 � 1

�wi
(2.145)

then

�wi � 1

2��i

for i D 0; 1; : : : ; N .
For the convergence of the MSE, the range of values of� is the same to guarantee

the convergence of the coefficients. In this case, due to the exponent 2k in (2.143),
the geometric decaying curves have ratios given by rei D .1 � 4��i /, that can be
approximated by exponential envelopes with time constants given by

�ei � 1

4��i
(2.146)
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for i D 0; 1; : : : ; N , where it was considered that 4�2�2i 	 1. In the convergence of
both the error and the coefficients, the time required for the convergence depends on
the ratio of the eigenvalues of the input signal. Further discussions on convergence
properties that apply to gradient-type algorithms can be found in Chap. 3.

Example 2.3. The matrix R and the vector p are known for a given experimental
environment:

R D
�

1 0:4045

0:4045 1

�

p D Œ0 0:2939�T

EŒd2.k/� D 0:5

(a) Deduce the equation for the MSE.
(b) Choose a small value for �, and starting the parameters at Œ�1 � 2�T

plot the convergence path of the steepest-descent algorithm in the MSE surface.
(c) Repeat the previous item for the Newton algorithm starting at Œ0 � 2�T .

Solution. (a) The MSE function is given by

� D EŒd2.k/� � 2wT p C wTRw

D �2d � 2Œw1 w2�

�
0

0:2939

�

C Œw1 w2�

�
1 0:4045

0:4045 1

� �
w1
w2

�

After performing the algebraic calculations, we obtain the following result

� D 0:5C w21 C w22 C 0:8090w1w2 � 0:5878w2

(b) The steepest-descent algorithm was applied to minimize the MSE using a
convergence factor � D 0:1=�max, where �max D 1:4045. The convergence
path of the algorithm in the MSE surface is depicted in Fig. 2.8. As can be noted,
the path followed by the algorithm first approaches the main axis (eigenvector)
corresponding to the smaller eigenvalue, and then follows toward the minimum
in a direction increasingly aligned with this main axis.

(c) The Newton algorithm was also applied to minimize the MSE using a conver-
gence factor � D 0:1=�max. The convergence path of the Newton algorithm in
the MSE surface is depicted in Fig. 2.9. The Newton algorithm follows a straight
path to the minimum. ut
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Fig. 2.8 Convergence path of the steepest-descent algorithm
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Fig. 2.9 Convergence path of the Newton algorithm
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2.10 Applications Revisited

In this section, we give a brief introduction to the typical applications where the
adaptive-filtering algorithms are required, including a discussion of where in the real
world these applications are found. The main objective of this section is to illustrate
how the adaptive-filtering algorithms, in general, and the ones presented in the book,
in particular, are applied to solve practical problems. It should be noted that the
detailed analysis of any particular application is beyond the scope of this book.
Nevertheless, a number of specific references are given for the interested reader.
The distinctive feature of each application is the way the adaptive filter input signal
and the desired signal are chosen. Once these signals are determined, any known
properties of them can be used to understand the expected behavior of the adaptive
filter when attempting to minimize the chosen objective function (for example, the
MSE, �).

2.10.1 System Identification

The typical setup of the system identification application is depicted in Fig. 2.10.
A common input signal is applied to the unknown system and to the adaptive filter.
Usually, the input signal is a wideband signal, in order to allow the adaptive filter to
converge to a good model of the unknown system.

Assume the unknown system has impulse response given by h.k/, for k D
0; 1; 2; 3; : : : ;1, and zero for k < 0. The error signal is then given by

e.k/ D d.k/� y.k/

D
1X

lD0
h.l/x.k � l/�

NX

iD0
wi .k/x.k � i/ (2.147)

where wi .k/ are the coefficients of the adaptive filter.

Adaptive
filter

Unknown
system

x(k) e(k)

y(k)

d(k)

+
–

Fig. 2.10 System
identification
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Assuming that x.k/ is a white noise, the MSE for a fixed w is given by

� D EfŒhT x1.k/� wT xNC1.k/�2g
D E

�
hT x1.k/xT1.k/h � 2hT x1.k/xTNC1.k/w C wT xNC1.k/xTNC1.k/w

�

D �2x

1X

iD0
h2.i/� 2�2xhT

�
INC1

01�.NC1/

�

w C wTRNC1w (2.148)

where x1.k/ and xNC1.k/ are the input signal vector with infinite and finite lengths,
respectively.

By calculating the derivative of � with respect to the coefficients of the adaptive
filter, it follows that

wo D hNC1 (2.149)

where

hTNC1 D hT
�

INC1
01�.NC1/

�

(2.150)

If the input signal is a white noise, the best model for the unknown system is
a system whose impulse response coincides with the N C 1 first samples of the
unknown system impulse response. In the cases where the impulse response of
the unknown system is of finite length and the adaptive filter is of sufficient order
(i.e., it has enough number of parameters), the MSE becomes zero if there is no
measurement noise (or channel noise). In practical applications the measurement
noise is unavoidable, and if it is uncorrelated with the input signal, the expected
value of the adaptive-filter coefficients will coincide with the unknown-system
impulse response samples. The output error will of course be the measurement
noise. We can observe that the measurement noise introduces a variance in the
estimates of the unknown system parameters.

Some real world applications of the system identification scheme include
modeling of multipath communication channels [27], control systems [28], seismic
exploration [29], and cancellation of echo caused by hybrids in some communica-
tion systems [30–34], just to mention a few.

2.10.2 Signal Enhancement

In the signal enhancement application, the reference signal consists of a desired
signal x.k/ that is corrupted by an additive noise n1.k/. The input signal of
the adaptive filter is a noise signal n2.k/ that is correlated with the interference
signal n1.k/, but uncorrelated with x.k/. Figure 2.11 illustrates the configuration
of the signal enhancement application. In practice, this configuration is found in
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Adaptive
filter

e(k)n2(k)

x(k) +n1(k)

+
–

Fig. 2.11 Signal enhancement (n1.k/ and n2.k/ are noise signals correlated with each other)

acoustic echo cancellation for auditoriums [35], hearing aids, noise cancellation in
hydrophones [36], cancelling of power line interference in electrocardiography [28],
and in other applications. The cancelling of echo caused by the hybrid in some
communication systems can also be considered a signal enhancement problem [28].

In this application, the error signal is given by

e.k/ D x.k/C n1.k/ �
NX

lD0
wln2.k � l/ D x.k/C n1.k/� y.k/ (2.151)

The resulting MSE is then given by

EŒe2.k/� D EŒx2.k/�C EfŒn1.k/� y.k/�2g (2.152)

where it was assumed that x.k/ is uncorrelated with n1.k/ and n2.k/. The above
equation shows that if the adaptive filter, having n2.k/ as the input signal, is able to
perfectly predict the signal n1.k/, the minimum MSE is given by

�min D EŒx2.k/� (2.153)

where the error signal, in this situation, is the desired signal x.k/.
The effectiveness of the signal enhancement scheme depends on the high

correlation between n1.k/ and n2.k/. In some applications, it is useful to include
a delay of L samples in the reference signal or in the input signal, such that
their relative delay yields a maximum cross-correlation between y.k/ and n1.k/,
reducing the MSE. This delay provides a kind of synchronization between the
signals involved. An example exploring this issue will be presented in the following
chapters.

2.10.3 Signal Prediction

In the signal prediction application, the adaptive-filter input consists of a delayed
version of the desired signal as illustrated in Fig. 2.12. The MSE is given by

� D EfŒx.k/� wT x.k �L/�2g (2.154)
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Fig. 2.12 Signal prediction

The minimization of the MSE leads to an FIR filter, whose coefficients are the
elements of w. This filter is able to predict the present sample of the input signal
using as information old samples such as x.k�L/; x.k�L�1/; : : : ; x.k�L�N/.
The resulting FIR filter can then be considered a model for the signal x.k/ when the
MSE is small. The minimum MSE is given by

�min D r.0/� wT
o

2

6
6
6
6
6
6
6
4

r.L/

r.LC 1/

:

:

:

r.LCN/

3

7
7
7
7
7
7
7
5

(2.155)

where wo is the optimum predictor coefficient vector and r.l/ D EŒx.k/x.k � l/�

for a stationary process.
A typical predictor’s application is in linear prediction coding of speech sig-

nals [37], where the predictor’s task is to estimate the speech parameters. These
parameters w are part of the coding information that is transmitted or stored along
with other information inherent to the speech characteristics, such as pitch period,
among others.

The adaptive signal predictor is also used for adaptive line enhancement (ALE),
where the input signal is a narrowband signal (predictable) added to a wideband
signal. After convergence, the predictor output will be an enhanced version of the
narrowband signal.

Yet another application of the signal predictor is the suppression of narrowband
interference in a wideband signal. The input signal, in this case, has the same
general characteristics of the ALE. However, we are now interested in removing
the narrowband interferer. For such an application, the output signal of interest is
the error signal [35].

2.10.4 Channel Equalization

As can be seen from Fig. 2.13, channel equalization or inverse filtering consists
of estimating a transfer function to compensate for the linear distortion caused
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Fig. 2.13 Channel equalization

by the channel. From another point of view, the objective is to force a prescribed
dynamic behavior for the cascade of the channel (unknown system) and the adaptive
filter, determined by the input signal. The first interpretation is more appropriate
in communications, where the information is transmitted through dispersive chan-
nels [33,38]. The second interpretation is appropriate for control applications, where
the inverse filtering scheme generates control signals to be used in the unknown
system [28].

In the ideal situation, where n.k/ D 0 and the equalizer has sufficient order, the
error signal is zero if

W.z/H.z/ D z�L (2.156)

where W.z/ and H.z/ are the equalizer and unknown system transfer functions,
respectively. Therefore, the ideal equalizer has the following transfer function

W.z/ D z�L

H.z/
(2.157)

From the above equation, we can conclude that if H.z/ is an IIR transfer function
with nontrivial numerator and denominator polynomials, W.z/ will also be IIR. If
H.z/ is an all-pole model, W.z/ is FIR. If H.z/ is an all-zero model, W.z/ is an
all-pole transfer function.

By applying the inverse Z-transform to (2.156), we can conclude that the optimal
equalizer impulse response convolved with the channel impulse response produces
as a result an impulse. This means that for zero additional error in the channel,
the output signal y.k/ restores x.k � L/ and, therefore, one can conclude that a
deconvolution process took place.

The delay in the reference signal plays an important role in the equalization
process. Without the delay, the desired signal is x.k/, whereas the signal y.k/ will
be mainly influenced by old samples of the input signal, since the unknown system
is usually causal. As a consequence, the equalizer should also perform the task of
predicting x.k/ simultaneously with the main task of equalizing the channel. The
introduction of a delay alleviates the prediction task, leaving the equalizer free to
invert the channel response. A rule of thumb for choosing the delay was proposed
and analyzed in [28], where it was conjectured that the best delay should be close to
half the time span of the equalizer. In practice, the reader should try different delays.
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In the case the unknown system is not of minimum phase, i.e., its transfer
function has zeros outside the unit circle of the Z plane, the optimum equalizer is
either stable and noncausal, or unstable and causal. Both solutions are unacceptable.
The noncausal stable solution could be better approximated by a causal FIR filter
when the delay is included in the desired signal. The delay forces a time shift in the
ideal impulse response of the equalizer, allowing the time span, where most of the
energy is concentrated, to be in the causal region.

If channel noise signal is present and is uncorrelated with the channel’s input
signal, the error signal and y.k/ will be accordingly noisier. However, it should be
noticed that the adaptive equalizer, in the process of reducing the MSE, disturbs
the optimal solution by trying to reduce the effects of n.k/. Therefore, in a noisy
environment the equalizer transfer function is not exactly the inverse of H.z/.

In practice, the noblest use of the adaptive equalizer is to compensate for the
distortion caused by the transmission channel in a communication system. The main
distortions caused by the channels are high attenuation and intersymbol interference
(ISI). The ISI is generated when different frequency components of the transmitted
signals arrive at different times at the receiver, a phenomenon caused by the
nonlinear group delay of the channel [38]. For example, in a digital communication
system, the time-dispersive channel extends a transmitted symbol beyond the time
interval allotted to it, interfering in the past and future symbols. Under severe ISI,
when short symbol space is used, the number of symbols causing ISI is large.

The channel impulse response is a time spread sequence described by h.k/ with
the received signal being given by

re.k C J / D x.k/h.J /C
kCJX

lD�1; l¤k
x.l/h.k C J � l/C n.k C J / (2.158)

where J denotes the channel time delay (including the sampler phase). The first term
of the above equation corresponds to the desired information, the second term is the
interference of the symbols sent before and after x.k/. The third term accounts for
channel noise. Obviously only the neighboring symbols have significant influence
in the second term of the above equation. The elements of the second term involving
x.l/, for l > k, are called pre-cursor ISI since they are caused by components of
the data signal that reach the receiver before their cursor. On the other hand, the
elements involving x.l/, for l < k, are called post-cursor ISI.

In many situations, the ISI is reduced by employing an equalizer consisting
of an adaptive FIR filter of appropriate length. The adaptive equalizer attempts
to cancel the ISI in the presence of noise. In digital communication, a decision
device is placed after the equalizer in order to identify the symbol at a given instant.
The equalizer coefficients are updated in two distinct circumstances by employing
different reference signals. During the equalizer training period, a previously chosen
training signal is transmitted through the channel and a properly delayed version
of this signal, that is prestored in the receiver end, is used as reference signal.
The training signal is usually a pseudo-noise sequence long enough to allow the
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Fig. 2.14 Decision-feedback equalizer

equalizer to compensate for the channel distortions. After convergence, the error
between the adaptive-filter output and the decision device output is utilized to update
the coefficients. The resulting scheme is the decision-directed adaptive equalizer.
It should be mentioned that in some applications no training period is available.
Usually, in this case, the decision-directed error is used all the time.

A more general equalizer scheme is the decision-feedback equalizer (DFE)
illustrated in Fig. 2.14. The DFE is widely used in situations where the channel
distortion is severe [38, 39]. The basic idea is to feed back, via a second FIR filter,
the decisions made by the decision device that is applied to the equalized signal.
The second FIR filter is preceded by a delay, otherwise there is a delay-free loop
around the decision device. Assuming the decisions were correct, we are actually
feeding back the symbols x.l/, for l < k, of (2.158). The DFE is able to cancel the
post-cursor ISI for a number of past symbols (depending on the order of the FIR
feedback filter), leaving more freedom for the feedforward section to take care of
the remaining terms of the ISI. Some known characteristics of the DFE are [38]:

• The signals that are fed back are symbols, being noise free and allowing
computational savings.

• The noise enhancement is reduced, if compared with the feedforward-only
equalizer.

• Short time recovery when incorrect decisions are made.
• Reduced sensitivity to sampling phase.

The DFE operation starts with a training period where a known sequence is
transmitted through the channel, and the same sequence is used at the receiver as the
desired signal. The delay introduced in the training signal is meant to compensate
for the delay the transmitted signal faces when passing through the channel. During
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the training period the error signal, which consists of the difference between the
delayed training signal and signal y.k/, is minimized by adapting the coefficients
of the forward and feedback filters. After this period, there is no training signal
and the desired signal will consist of the decision device output signal. Assuming
the decisions are correct, this blind way of performing the adaptation is the best
solution to keep track of small changes in the channel behavior.

Example 2.4. In this example we will verify the effectiveness of the Wiener
solution in environments related to the applications of noise cancellation, prediction,
equalization, and identification.

(a) In a noise cancellation environment a sinusoid is corrupted by noise as follows

d.k/ D cos!0k C n1.k/

with

n1.k/ D �an1.k � 1/C n.k/

jaj < 1 and n.k/ is a zero-mean white noise with variance �2n D 1. The input
signal of the Wiener filter is described by

n2.k/ D �bn2.k � 1/C n.k/

where jbj < 1.
(b) In a prediction case the input signal is modeled as

x.k/ D �ax.k � 1/C n.k/

with n.k/ being a white noise with unit variance and jaj < 1.
(c) In an equalization problem a zero-mean white noise signal s.k/ with variance c

is transmitted through a channel with an AR model described by

Ox.k/ D �a Ox.k � 1/C s.k/

with jaj < 1 and the received signal given by

x.k/ D Ox.k/C n.k/

whereas n.k/ is a zero-mean white noise with variance d and uncorrelated with
s.k/.

(d) In a system identification problem a zero-mean white noise signal x.k/ with
variance c is employed as the input signal to identify an AR system whose
model is described by
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v.k/ D �av.k � 1/C x.k/

where jaj < 1 and the desired signal is given by

d.k/ D v.k/C n.k/

Repeat the problem if the system to be identified is an MA whose model is
described by

v.k/ D �ax.k � 1/C x.k/

For all these cases describe the Wiener solution with two coefficients and
comment on the results.

Solution. Some results used in the examples are briefly reviewed. A 2 � 2 matrix
inversion is performed as

R�1 D 1

r11r22 � r12r21
�
r22 �r12

�r21 r11

�

where rij is the element of row i and column j of the matrix R. For two first-order
AR modeled signals x.k/ and v.k/, whose poles are, respectively, placed at �a and
�b with the same white-noise input with unit variance, their cross-correlations are
given by9

EŒx.k/v.k � l/� D .�a/l
1 � ab

for l > 0, and

EŒx.k/v.k � l/� D .�b/�l
1 � ab

for l < 0, are frequently required in the following solutions.

(a) The input signal in this case is given by n2.k/, whereas the desired signal is
given by d.k/. The elements of the correlation matrix are computed as

EŒn2.k/n2.k � l/� D .�b/jlj
1 � b2

The expression for the cross-correlation vector is given by

9Assuming x.k/ and v.k/ are jointly WSS.
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p D
�

EŒ.cos!0k C n1.k//n2.k/�

EŒ.cos!0k C n1.k//n2.k � 1/�
�

D
�

EŒn1.k/n2.k/�

EŒn1.k/n2.k � 1/�

�

D
�

1
1�ab �

2
n

� a
1�ab �

2
n

�

D
�

1
1�ab

� a
1�ab

�

where in the last expression we substituted �2n D 1.
The coefficients corresponding to the Wiener solution are given by

wo D R�1p D
�
1 b

b 1

� �
1

1�ab
� a
1�ab

�

D
�

1
b�a
1�ab

�

The special case where a D 0 provides a quite illustrative solution. In this
case

wo D
�
1

b

�

such that the error signal is given by

e.k/ D d.k/ � y.k/ D cos!0k C n.k/ � wT
o

�
n2.k/

n2.k � 1/

�

D cos!0k C n.k/ � n2.k/ � bn2.k � 1/

D cos!0k C n.k/C bn2.k � 1/� n.k/ � bn2.k � 1/ D cos!0k

As can be observed the cosine signal is fully recovered since the Wiener filter
was able to restore n.k/ and remove it from the desired signal.

(b) In the prediction case the input signal is x.k/ and the desired signal is x.kCL/.
Since

EŒx.k/x.k � L/� D .�a/jLj

1 � a2

the input signal correlation matrix is

R D
�

EŒx2.k/� EŒx.k/x.k � 1/�

EŒx.k/x.k � 1/� EŒx2.k � 1/�

�

D
"

1
1�a2 � a

1�a2
� a
1�a2

1
1�a2

#
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Vector p is described by

p D
�

EŒx.k C L/x.k/�

EŒx.k C L/x.k � 1/�

�

D
2

4
.�a/jLj

1�a2
.�a/jLC1j

1�a2

3

5

The expression for the optimal coefficient vector is easily derived.

wo D R�1p

D .1 � a2/
"

1
1�a2

a
1�a2

a
1�a2

1
1�a2

#2

4
.�a/L
1�a2

.�a/LC1

1�a2

3

5

D
�
.�a/L
0

�

where in the above equation the value of L is considered positive. The predictor
result tells us that an estimate Ox.k C L/ of x.k CL/ can be obtained as

Ox.k C L/ D .�a/Lx.k/

According to our model for the signal x.k/, the actual value of x.k C L/ is

x.k C L/ D .�a/Lx.k/C
L�1X

iD0
.�a/in.k � i/

The results show that if x.k/ is an observed data at a given instant of time, the
best estimate of x.kCL/ in terms of x.k/ is to average out the noise as follows

Ox.k C L/ D .�a/Lx.k/C E

"
L�1X

iD0
.�a/in.k � i/

#

D .�a/Lx.k/

since EŒn.k � i/� D 0.
(c) In this equalization problem, matrix R is given by

R D
�

EŒx2.k/� EŒx.k/x.k � 1/�
EŒx.k/x.k � 1/� EŒx2.k � 1/�

�

D
"

1
1�a2 c C d � a

1�a2 c
� a
1�a2 c

1
1�a2 c C d

#

By utilizing as desired signal s.k � L/ and recalling that it is a white noise
and uncorrelated with the other signals involved in the experiment, the cross-
correlation vector between the input and desired signals has the following
expression
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p D
�

EŒx.k/s.k �L/�
EŒx.k � 1/s.k �L/�

�

D
�

.�1/LaLc
.�1/L�1aL�1c

�

The coefficients of the underlying Wiener solution are given by

wo D R�1p D 1

c2

1�a2 C 2 dc
1�a2 C d2

"
1

1�a2 c C d a
1�a2 c

a
1�a2 c

1
1�a2 c C d

#�
.�1/LaLc

.�1/L�1aL�1c

�

D .�1/LaLc
c2

1�a2 C 2 cd
1�a2 C d2

"
c

1�a2 C d � c
1�a2

ac
1�a2 � a�1d � a�1c

1�a2

#

D .�1/LaLc
c2

1�a2 C 2 cd
1�a2 C d2

�
d

�a�1d � a�1c

�

If there is no additional noise, i.e., d D 0, the above result becomes

wo D
�

0

.�1/L�1aL�1.1 � a2/
�

that is, the Wiener solution is just correcting the gain of the previously received
component of the input signal, namely x.k� 1/, while not using its most recent
component x.k/. This happens because the desired signal s.k � L/ at instant
k has a defined correlation with any previously received symbol. On the other
hand, if the signal s.k/ is a colored noise the Wiener filter would have a nonzero
first coefficient in a noiseless environment. In case there is environmental noise,
the solution tries to find a perfect balance between the desired signal modeling
and the noise amplification.

(d) In the system identification example the input signal correlation matrix is
given by

R D
�
c 0

0 c

�

:

With the desired signal d.k/, the cross-correlation vector is described as

p D
�

EŒx.k/d.k/�

EŒx.k � 1/d.k/�

�

D
�
c

�ca
�

The coefficients of the underlying Wiener solution are given by

wo D R�1p D
�
1
c
0

0 1
c

� �
c

�ca
�

D
�
1

�a
�
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Note that this solution represents the best way a first-order FIR model can
approximate an IIR model, since

Wo.z/ D 1 � az�1

and

1

1C az�1 D 1 � az�1 C a2z�2 C � � �

On the other hand, if the unknown model is the described FIR model such
as v.k/ D �ax.k � 1/ C x.k/, the Wiener solution remains the same and
corresponds exactly to the unknown system model.

In all these examples, the environmental signals are considered WSS and
their statistics assumed known. In a practical situation, not only the statistics
might be unknown but the environments are usually nonstationary as well. In
these situations, the adaptive filters come into play since their coefficients vary
with time according to measured signals from the environment. ut

2.10.5 Digital Communication System

For illustration, a general digital communication scheme over a channel consisting
of a subscriber line (telephone line, for example) is shown in Fig. 2.15. In either
end, the input signal is first coded and conditioned by a transmit filter. The filter
shapes the pulse and limits in band the signal that is actually transmitted. The signal
then crosses the hybrid to travel through a dual duplex channel. The hybrid is an
impedance bridge used to transfer the transmit signal into the channel with minimal
leakage to the near-end receiver. The imperfections of the hybrid cause echo that
should be properly cancelled.

In the channel, the signal is corrupted by white noise and crosstalk (leakage
of signals being transmitted by other subscribers). After crossing the channel and
the far-end hybrid, the signal is filtered by the receive filter that attenuates high-
frequency noise and also acts as an antialiasing filter. Subsequently, we have a joint
DFE and echo canceller, where the forward filter and echo canceller outputs are
subtracted. The result after subtracting the decision feedback output is applied to the
decision device. After passing through the decision device, the symbol is decoded.

Other schemes for data transmission in subscriber line exist [33]. The one shown
here is for illustration purposes, having as special feature the joint equalizer and
echo canceller strategy. The digital subscriber line (DSL) structure shown here has
been used in integrated services digital network (ISDN) basic access that allows a
data rate of 144 Kbits/s [33]. Also, a similar scheme is employed in the high bit
rate digital subscriber line (HDSL) [32,40] that operates over short and conditioned
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loops [41, 42]. The latter system belongs to a broad class of digital subscriber line
collectively known as XDSL.

In wireless communications, the information is transported by propagating elec-
tromagnetic energy through the air. The electromagnetic energy is radiated to the
propagation medium via an antenna. In order to operate wireless transmissions, the
service provider requires authorization to use a radio bandwidth from government
regulators. The demand for wireless data services is more than doubling each year
leading to foreseeable spectrum shortage in the years to come. As a consequence, all
efforts to maximize the spectrum usage is highly desirable and for sure the adaptive
filtering techniques play an important role in achieving this goal. Several examples
in the book illustrate how the adaptive filters are employed in many communication
systems so that the readers can understand some applications in order to try some
new they envision.

2.11 Concluding Remarks

In this chapter, we described some of the concepts underlying the adaptive filtering
theory. The material presented here forms the basis to understand the behavior of
most adaptive-filtering algorithms in a practical implementation. The basic concept
of the MSE surface searching algorithms was briefly reviewed, serving as a starting
point for the development of a number of practical adaptive-filtering algorithms
to be presented in the following chapters. We illustrated through several examples
the expected Wiener solutions in a number of distinct situations. In addition, we
presented the basic concepts of linearly constrained Wiener filter required in array
signal processing. The theory and practice of adaptive signal processing is also the
main subject of some excellent books such as [28, 43–51].

2.12 Problems

1. Suppose the input signal vector is composed by a delay line with a single input
signal, compute the correlation matrix for the following input signals:

(a)

x.k/ D sin

	

6
k
�

C cos

	

4
k
�

C n.k/

(b)
x.k/ D an1.k/ cos .!0k/C n2.k/

(c)
x.k/ D an1.k/ sin .!0k C n2.k//

4
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(d)
x.k/ D �a1x.k � 1/� a2x.k � 2/C n.k/

(e)

x.k/ D
4X

iD0
0:25n.k � i/

(f)
x.k/ D an.k/e|!0k

In all cases, n.k/; n1.k/, and n2.k/ are white-noise processes, with zero mean
and with variances �2n , �2n1 , and �2n2 , respectively. These random signals are
considered independent.

2. Consider two complex random processes represented by x.k/ and y.k/.

(a) Derive �2xy.k; l/ D EŒ.x.k/ � mx.k//.y.l/ � my.l//� as a function of
rxy.k; l/, mx.k/ andmy.l/.

(b) Repeat (a) if x.k/ and y.k/ are jointly WSS.
(c) Being x.k/ and y.k/ orthogonal, in which conditions are they not corre-

lated?

3. For the correlation matrices given below, calculate their eigenvalues, eigenvec-
tors, and conditioning numbers.

(a)

R D 1

4

2

6
6
4

4 3 2 1

3 4 3 2

2 3 4 3

1 2 3 4

3

7
7
5

(b)

R D

2

6
6
4

1 0:95 0:9025 0:857375

0:95 1 0:95 0:9025

0:9025 0:95 1 0:95

0:857375 0:9025 0:95 1

3

7
7
5

(c)

R D 50�2n

2

6
6
4

1 0:9899 0:98 0:970

0:9899 1 0:9899 0:98

0:98 0:9899 1 0:9899

0:970 0:98 0:9899 1

3

7
7
5
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(d)

R D

2

6
6
4

1 0:5 0:25 0:125

0:5 1 0:5 0:25

0:25 0:5 1 0:5

0:125 0:25 0:5 1

3

7
7
5

4. For the correlation matrix given below, calculate its eigenvalues and eigenvec-
tors, and form the matrix Q.

R D 1

4

�
a1 a2
a2 a1

�

5. The input signal of a second-order adaptive filter is described by

x.k/ D ˛1x1.k/C ˛2x2.k/

where x1.k/ and x2.k/ are first-order AR processes and uncorrelated between
themselves having both unit variance. These signals are generated by applying
distinct white noises to first-order filters whose poles are placed at a and �b,
respectively.

(a) Calculate the autocorrelation matrix of the input signal.
(b) If the desired signal consists of ˛3x2.k/, calculate the Wiener solution.

6. The input signal of a first-order adaptive filter is described by

x.k/ D p
2x1.k/C x2.k/C 2x3.k/

where x1.k/ and x2.k/ are first-order AR processes and uncorrelated between
themselves having both unit variance. These signals are generated by applying
distinct white noises to first-order filters whose poles are placed at �0:5 andp
2
2

, respectively. The signal x3.k/ is a white noise with unit variance and
uncorrelated with x1.k/ and x2.k/.

(a) Calculate the autocorrelation matrix of the input signal.
(b) If the desired signal consists of 1

2
x3.k/, calculate the Wiener solution.

7. Repeat the previous problem if the signal x3.k/ is exactly the white noise that
generated x2.k/.

8. In a prediction case a sinusoid is corrupted by noise as follows

x.k/ D cos!0k C n1.k/

with

n1.k/ D �an1.k � 1/C n.k/
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where jaj < 1. For this case describe the Wiener solution with two coefficients
and comment on the results.

9. Generate the ARMA processes x.k/ described below. Calculate the variance of
the output signal and the autocorrelation for lags 1 and 2. In all cases, n.k/ is
zero-mean Gaussian white noise with variance 0.1.

(a)

x.k/ D 1:9368x.k � 1/� 0:9519x.k � 2/C n.k/

�1:8894n.k � 1/C n.k � 2/

(b)

x.k/ D �1:9368x.k � 1/� 0:9519x.k � 2/C n.k/

C1:8894n.k � 1/C n.k � 2/

Hint: For white noise generation consult for example [15, 16].
10. Generate the AR processes x.k/ described below. Calculate the variance of

the output signal and the autocorrelation for lags 1 and 2. In all cases, n.k/ is
zero-mean Gaussian white noise with variance 0.05.

(a)
x.k/ D �0:8987x.k � 1/� 0:9018x.k � 2/C n.k/

(b)
x.k/ D 0:057x.k � 1/C 0:889x.k � 2/C n.k/

11. Generate the MA processes x.k/ described below. Calculate the variance of
the output signal and the autocovariance matrix. In all cases, n.k/ is zero-mean
Gaussian white noise with variance 1.

(a)

x.k/ D 0:0935n.k/C 0:3027n.k � 1/C 0:4n.k � 2/

C 0:3027n.k � 4/C 0:0935n.k � 5/

(b)
x.k/ D n.k/ � n.k � 1/C n.k � 2/� n.k � 4/C n.k � 5/

(c)

x.k/ D n.k/C 2n.k � 1/C 3n.k � 2/C 2n.k � 4/C n.k � 5/

12. Show that a process generated by adding two AR processes is in general an
ARMA process.
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13. Determine if the following processes are mean ergodic:

(a)
x.k/ D an1.k/ cos.!0k/C n2.k/

(b)
x.k/ D an1.k/ sin.!0k C n2.k//

(c)
x.k/ D an.k/e2|!0k

In all cases, n.k/; n1.k/, and n2.k/ are white-noise processes, with zero
mean and with variances �2n , �2n1 , and �2n2 , respectively. These random
signals are considered independent.

14. Show that the minimum (maximum) value of (2.69) occurs when wi D 0 for
i ¤ j and �j is the smallest (largest) eigenvalue, respectively.

15. Suppose the matrix R and the vector p are known for a given experimental
environment. Compute the Wiener solution for the following cases:

(a)

R D 1

4

2

6
6
4

4 3 2 1

3 4 3 2

2 3 4 3

1 2 3 4

3

7
7
5

p D
�
1

2

3

8

2

8

1

8

�T

(b)

R D

2

6
6
4

1 0:8 0:64 0:512

0:8 1 0:8 0:64

0:64 0:8 1 0:8

0:512 0:64 0:8 1

3

7
7
5

p D 1

4
Œ0:4096 0:512 0:64 0:8�T

(c)

R D 1

3

2

4
3 �2 1

�2 3 �2
1 �2 3

3

5

p D
�

�2 1 � 1

2

�T
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16. For the environments described in the previous problem, derive the updating
formula for the steepest-descent method. Considering that the adaptive-filter
coefficients are initially zero, calculate their values for the first ten iterations.

17. Repeat the previous problem using the Newton method.
18. Calculate the spectral decomposition for the matrices R of Problem 15.
19. Calculate the minimum MSE for the examples of Problem 15 considering that

the variance of the reference signal is given by �2d .
20. Derive (2.112).
21. Derive the constraint matrix C and the gain vector f that impose the condition

of linear phase onto the linearly constrained Wiener filter.
22. Show that the optimal solutions of the LCMV filter and the GSC filter with

minimum norm are equivalent and related according to wLCMV D TwGSC,
where T D ŒC B� is a full-rank transformation matrix with CTB D 0 and

wLCMV D R�1C.CTR�1C/�1f

and

wGSC D
�

.CTC/�1f
�.BTRB/�1BTRC.CT C/�1f

�

23. Calculate the time constants of the MSE and of the coefficients for the examples
of Problem 15 considering that the steepest-descent algorithm was employed.

24. For the examples of Problem 15, describe the equations for the MSE surface.
25. Using the spectral decomposition of a Hermitian matrix show that

R
1
N D Q�

1
N QH D

NX

iD0
�

1
N

i qiq
H
i

26. Derive the complex steepest-descent algorithm.
27. Derive the Newton algorithm for complex signals.
28. In a signal enhancement application, assume that n1.k/ D n2.k/ � h.k/, where

h.k/ represents the impulse response of an unknown system. Also, assume that
some small leakage of the signal x.k/, given by h0.k/ � x.k/, is added to the
adaptive-filter input. Analyze the consequences of this phenomenon.

29. In the equalizer application, calculate the optimal equalizer transfer function
when the channel noise is present.
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Chapter 3
The Least-Mean-Square (LMS) Algorithm

3.1 Introduction

The least-mean-square (LMS) is a search algorithm in which a simplification of
the gradient vector computation is made possible by appropriately modifying the
objective function [1,2]. The LMS algorithm, as well as others related to it, is widely
used in various applications of adaptive filtering due to its computational simplicity
[3–7]. The convergence characteristics of the LMS algorithm are examined in
order to establish a range for the convergence factor that will guarantee stability.
The convergence speed of the LMS is shown to be dependent on the eigenvalue
spread of the input signal correlation matrix [2–6]. In this chapter, several properties
of the LMS algorithm are discussed including the misadjustment in stationary
and nonstationary environments [2–9] and tracking performance [10–12]. The
analysis results are verified by a large number of simulation examples. Chapter 15,
Sect. 15.1, complements this chapter by analyzing the finite-wordlength effects in
LMS algorithms.

The LMS algorithm is by far the most widely used algorithm in adaptive filtering
for several reasons. The main features that attracted the use of the LMS algorithm
are low computational complexity, proof of convergence in stationary environment,
unbiased convergence in the mean to the Wiener solution, and stable behavior when
implemented with finite-precision arithmetic. The convergence analysis of the LMS
presented here utilizes the independence assumption.

3.2 The LMS Algorithm

In Chap. 2 we derived the optimal solution for the parameters of the adaptive filter
implemented through a linear combiner, which corresponds to the case of multiple
input signals. This solution leads to the minimum mean-square error in estimating

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 3, © Springer Science+Business Media New York 2013
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the reference signal d.k/. The optimal (Wiener) solution is given by

wo D R�1p (3.1)

where R D EŒx.k/xT .k/� and p D EŒd.k/x.k/�, assuming that d.k/ and x.k/ are
jointly WSS.

If good estimates of matrix R, denoted by OR.k/, and of vector p, denoted by
Op.k/, are available, a steepest-descent-based algorithm can be used to search the
Wiener solution of (3.1) as follows:

w.k C 1/ D w.k/ � �Ogw.k/

D w.k/C 2�. Op.k/� OR.k/w.k// (3.2)

for k D 0; 1; 2; : : :, where Ogw.k/ represents an estimate of the gradient vector of
the objective function with respect to the filter coefficients.

One possible solution is to estimate the gradient vector by employing instanta-
neous estimates for R and p as follows:

OR.k/ D x.k/xT .k/

Op.k/ D d.k/x.k/ (3.3)

The resulting gradient estimate is given by

Ogw.k/ D �2d.k/x.k/C 2x.k/xT .k/w.k/

D 2x.k/.�d.k/C xT .k/w.k//

D �2e.k/x.k/ (3.4)

Note that if the objective function is replaced by the instantaneous square error
e2.k/, instead of the MSE, the above gradient estimate represents the true gradient
vector since

@e2.k/

@w
D
�

2e.k/
@e.k/

@w0.k/
2e.k/

@e.k/

@w1.k/
: : : 2e.k/

@e.k/

@wN .k/

�T

D �2e.k/x.k/
D Ogw.k/ (3.5)

The resulting gradient-based algorithm is known1 as the least-mean-square (LMS)
algorithm, whose updating equation is

w.k C 1/ D w.k/C 2�e.k/x.k/ (3.6)

where the convergence factor � should be chosen in a range to guarantee conver-
gence.

1Because it minimizes the mean of the squared error.
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Fig. 3.1 LMS adaptive FIR filter

Algorithm 3.1 LMS algorithm
Initialization
x.0/ D w.0/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/ D d.k/� xT .k/w.k/
w.k C 1/ D w.k/C 2�e.k/x.k/

Figure 3.1 depicts the realization of the LMS algorithm for a delay line input
x.k/. Typically, one iteration of the LMS requiresNC2multiplications for the filter
coefficient updating andN C1multiplications for the error generation. The detailed
description of the LMS algorithm is shown in the table denoted as Algorithm 3.1.

It should be noted that the initialization is not necessarily performed as described
in Algorithm 3.1, where the coefficients of the adaptive filter were initialized with
zeros. For example, if a rough idea of the optimal coefficient value is known, these
values could be used to form w.0/ leading to a reduction in the number of iterations
required to reach the neighborhood of wo.
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3.3 Some Properties of the LMS Algorithm

In this section, the main properties related to the convergence behavior of the LMS
algorithm in a stationary environment are described. The information contained
here is essential to understand the influence of the convergence factor � in various
convergence aspects of the LMS algorithm.

3.3.1 Gradient Behavior

As shown in Chap. 2, see (2.91), the ideal gradient direction required to perform a
search on the MSE surface for the optimum coefficient vector solution is

gw.k/ D 2
˚
E
�
x.k/xT .k/

�
w.k/ �E Œd.k/x.k/��

D 2ŒRw.k/ � p� (3.7)

In the LMS algorithm, instantaneous estimates of R and p are used to determine
the search direction, i.e.,

Ogw.k/ D 2
�
x.k/xT .k/w.k/ � d.k/x.k/� (3.8)

As can be expected, the direction determined by (3.8) is quite different from that of
(3.7). Therefore, by using the more computationally attractive gradient direction of
the LMS algorithm, the convergence behavior is not the same as that of the steepest-
descent algorithm.

On average, it can be said that the LMS gradient direction has the tendency to
approach the ideal gradient direction since for a fixed coefficient vector w

EŒOgw.k/� D 2fE �x.k/xT .k/�w �E Œd.k/x.k/�g
D gw (3.9)

hence, vector Ogw.k/ can be interpreted as an unbiased instantaneous estimate of gw.
In an ergodic environment, if, for a fixed w vector, Ogw.k/ is calculated for a large
number of inputs and reference signals, the average direction tends to gw, i.e.,

lim
M!1

1

M

MX

iD1
Ogw.k C i/ ! gw (3.10)
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3.3.2 Convergence Behavior of the Coefficient Vector

Assume that an unknown FIR filter with coefficient vector given by wo is being
identified by an adaptive FIR filter of the same order, employing the LMS algorithm.
Measurement white noise n.k/ with zero mean and variance �2n is added to the
output of the unknown system.

The error in the adaptive-filter coefficients as related to the ideal coefficient
vector wo, in each iteration, is described by the N C 1-length vector

�w.k/ D w.k/ � wo (3.11)

With this definition, the LMS algorithm can alternatively be described by

�w.k C 1/ D �w.k/C 2�e.k/x.k/

D �w.k/C 2�x.k/
�
xT .k/wo C n.k/ � xT .k/w.k/

�

D �w.k/C 2�x.k/
�
eo.k/ � xT .k/�w.k/

�

D �
I � 2�x.k/xT .k/

�
�w.k/C 2�eo.k/x.k/ (3.12)

where eo.k/ is the optimum output error given by

eo.k/ D d.k/ � wT
o x.k/

D wT
o x.k/C n.k/ � wT

o x.k/

D n.k/ (3.13)

The expected error in the coefficient vector is then given by

EŒ�w.k C 1/� D EfŒI � 2�x.k/xT .k/��w.k/g C 2�EŒeo.k/x.k/� (3.14)

If it is assumed that the elements of x.k/ are statistically independent of the elements
of �w.k/ and eo.k/, (3.14) can be simplified as follows:

EŒ�w.k C 1/� D fI � 2�EŒx.k/xT .k/�gEŒ�w.k/�

D .I � 2�R/EŒ�w.k/� (3.15)

The first assumption is justified if we assume that the deviation in the parameters is
dependent on previous input signal vectors only, whereas in the second assumption
we also considered that the error signal at the optimal solution is orthogonal to the
elements of the input signal vector. The above expression leads to

EŒ�w.k C 1/� D .I � 2�R/kC1EŒ�w.0/� (3.16)
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Equation (3.15) premultiplied by QT , where Q is the unitary matrix that
diagonalizes R through a similarity transformation, yields

E
�
QT�w.k C 1/

� D .I � 2�QTRQ/E
�
QT�w.k/

�

D E
�
�w0.k C 1/

�

D .I � 2��/E ��w0.k/
�

D

2

6
6
6
6
4

1 � 2��0 0 � � � 0

0 1 � 2��1
:::

:::
:::

: : :
:::

0 0 1 � 2��N

3

7
7
7
7
5
E
�
�w0.k/

�

(3.17)

where �w0.k C 1/ D QT�w.k C 1/ is the rotated-coefficient error vector. The
applied rotation yielded an equation where the driving matrix is diagonal, making it
easier to analyze the equation’s dynamic behavior. Alternatively, the above relation
can be expressed as

E
�
�w0.k C 1/

� D .I � 2��/kC1E
�
�w0.0/

�

D

2

6
6
6
6
6
4

.1 � 2��0/
kC1 0 � � � 0

0 .1 � 2��1/
kC1 :::

:::
:::

: : :
:::

0 0 .1 � 2��N /
kC1

3

7
7
7
7
7
5

E
�
�w0.0/

�

(3.18)

This equation shows that in order to guarantee convergence of the coefficients in the
mean, the convergence factor of the LMS algorithm must be chosen in the range

0 < � <
1

�max
(3.19)

where �max is the largest eigenvalue of R. Values of � in this range guarantees
that all elements of the diagonal matrix in (3.18) tend to zero as k ! 1, since
�1 < .1�2��i/ < 1, for i D 0; 1; : : : ; N . As a resultEŒ�w0.kC1/� tends to zero
for large k.

The choice of � as above explained ensures that the mean value of the coefficient
vector approaches the optimum coefficient vector wo. It should be mentioned that
if the matrix R has a large eigenvalue spread, it is advisable to choose a value
for � much smaller than the upper bound. As a result, the convergence speed of
the coefficients will be primarily dependent on the value of the smallest eigenvalue,
responsible for the slowest mode in (3.18).



3.3 Some Properties of the LMS Algorithm 85

The key assumption for the above analysis is the so-called independence theory
[4], which considers all vectors x.i/, for i D 0; 1; : : : ; k, statistically independent.
This assumption allowed us to consider�w.k/ independent of x.k/xT .k/ in (3.14).
Such an assumption, despite not being rigorously valid especially when x.k/
consists of the elements of a delay line, leads to theoretical results that are in good
agreement with the experimental results.

3.3.3 Coefficient-Error-Vector Covariance Matrix

In this subsection, we derive the expressions for the second-order statistics of the
errors in the adaptive-filter coefficients. Since for large k the mean value of �w.k/
is zero, the covariance of the coefficient-error vector is defined as

covŒ�w.k/� D EŒ�w.k/�wT .k/� D E
˚
Œw.k/� wo�Œw.k/� wo�

T
�

(3.20)

By replacing (3.12) in (3.20) it follows that

covŒ�w.k C 1/� D E
n�

I � 2�x.k/xT .k/
�
�w.k/�wT .k/

�
I � 2�x.k/xT .k/

�T

C ŒI � 2�x.k/xT .k/��w.k/2�eo.k/xT .k/

C 2�eo.k/x.k/�wT .k/ŒI � 2�x.k/xT .k/�T

C 4�2e2o.k/x.k/x
T .k/

o
(3.21)

By considering eo.k/ independent of �w.k/ and orthogonal to x.k/, the second
and third terms on the right-hand side of the above equation can be eliminated. The
details of this simplification can be carried out by describing each element of the
eliminated matrices explicitly. In this case,

covŒ�w.k C 1/� D covŒ�w.k/�CE
��2�x.k/xT .k/�w.k/�wT .k/

� 2��w.k/�wT .k/x.k/xT .k/

C 4�2x.k/xT .k/�w.k/�wT .k/x.k/xT .k/

C 4�2e2o.k/x.k/x
T .k/

�
(3.22)

In addition, assuming that �w.k/ and x.k/ are independent, (3.22) can be
rewritten as

covŒ�w.k C 1/� D covŒ�w.k/� � 2�EŒx.k/xT .k/�EŒ�w.k/�wT .k/�

� 2�EŒ�w.k/�wT .k/�EŒx.k/xT .k/�

C 4�2E
˚
x.k/xT .k/EŒ�w.k/�wT .k/�x.k/xT .k/

�

C 4�2EŒe2o.k/�EŒx.k/x
T .k/�
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D covŒ�w.k/� � 2�R covŒ�w.k/�

� 2� covŒ�w.k/�R C 4�2A C 4�2�2nR (3.23)

The calculation of A D E
˚
x.k/xT .k/EŒ�w.k/�wT .k/�x.k/xT .k/

�
involves

fourth-order moments and the result can be obtained by expanding the matrix inside
the operation EŒ�� as described in [4] and [13] for jointly Gaussian input signal
samples. The result is

A D 2R covŒ�w.k/� R C R trfR covŒ�w.k/�g (3.24)

where trŒ�� denotes trace of Œ��. Equation (3.23) is needed to calculate the excess
mean-square error caused by the noisy estimate of the gradient employed by the
LMS algorithm. As can be noted, covŒ�w.kC1/� does not tend to 0 as k ! 1, due
to the last term in (3.23) that provides an excitation in the dynamic matrix equation.

A more useful form for (3.23) can be obtained by premultiplying and postmulti-
plying it by QT and Q, respectively, yielding

QT covŒ�w.k C 1/�Q D QT covŒ�w.k/� Q

� 2�QTRQQT covŒ�w.k/�Q

� 2�QT covŒ�w.k/�QQTRQ

C 8�2QT RQQT covŒ�w.k/�QQTRQ

C 4�2QT RQQT trfRQQT covŒ�w.k/�gQ

C 4�2�2nQT RQ (3.25)

where we used the equality QT Q D QQT D I. Using the fact that QT trŒB�Q D
trŒQTBQ�I for any B,

covŒ�w0.k C 1/� D covŒ�w0.k/� � 2�� covŒ�w0.k/� � 2� covŒ�w0.k/��

C 8�2� covŒ�w0.k/��C4�2� tr
˚
� covŒ�w0.k/�

�C4�2�2n�
(3.26)

where covŒ�w0.k/� D EŒQT�w.k/�wT .k/Q�.
As will be shown in Sect. 3.3.6, only the diagonal elements of covŒ�w0.k/�

contribute to the excess MSE in the LMS algorithm. By defining v0.k/ as a vector
with elements consisting of the diagonal elements of covŒ�w0.k/�, and � as a vector
consisting of the eigenvalues of R, the following relation can be derived from the
above equations

v0.k C 1/ D .I � 4��C 8�2�2 C 4�2��T /v0.k/C 4�2�2n�

D Bv0.k/C 4�2�2n� (3.27)



3.3 Some Properties of the LMS Algorithm 87

where the elements of B are given by

bij D
(
1 � 4��i C 8�2�2i C 4�2�2i for i D j

4�2�i�j for i ¤ j :
(3.28)

The value of the convergence factor � must be chosen in a range that guarantees
the convergence of v0.k/. Since matrix B is symmetric, it has only real-valued
eigenvalues. Also since all entries of B are also non-negative, the maximum among
the sum of elements in any row of B represents an upper bound to the maximum
eigenvalue of B and to the absolute value of any other eigenvalue, see pages 53
and 63 of [14] or the Gershgorin theorem in [15]. As a consequence, a sufficient
condition to guarantee convergence is to force the sum of the elements in any row
of B to be kept in the range 0 <

PN
jD0 bij < 1. Since

NX

jD0
bij D 1 � 4��i C 8�2�2i C 4�2�i

NX

jD0
�j (3.29)

the critical values of � are those for which the above equation approaches 1, as for
any � the expression is always positive. This will occur only if the last three terms
of (3.29) approach zero, that is

�4��i C 8�2�2i C 4�2�i

NX

jD0
�j � 0

After simple manipulation the stability condition obtained is

0 < � <
1

2�max CPN
jD0 �j

<
1

PN
jD0 �j

D 1

trŒR�
(3.30)

where the last and simpler expression is more widely used in practice because trŒR�
is quite simple to estimate since it is related to the Euclidean norm squared of the
input signal vector, whereas an estimate �max is much more difficult to obtain. It will
be shown in (3.45) that � controls the speed of convergence of the MSE.

The upper bound obtained for the value of � is important from the practical point
of view, because it gives us an indication of the maximum value of � that could
be used in order to achieve convergence of the coefficients. However, the reader
should be advised that the given upper bound is somewhat optimistic due to the
approximations and assumptions made. In most cases, the value of � should not be
chosen close to the upper bound.



88 3 The Least-Mean-Square (LMS) Algorithm

3.3.4 Behavior of the Error Signal

In this subsection, the mean value of the output error in the adaptive filter
is calculated, considering that the unknown system model has infinite impulse
response and there is measurement noise. The error signal, when an additional
measurement noise is accounted for, is given by

e.k/ D d 0.k/ � wT .k/x.k/C n.k/ (3.31)

where d 0.k/ is the desired signal without measurement noise. For a given known
input vector x.k/, the expected value of the error signal is

EŒe.k/� D EŒd 0.k/� �EŒwT .k/x.k/�C EŒn.k/�

D EŒd 0.k/� � wT
o x.k/C EŒn.k/� (3.32)

where wo is the optimal solution, i.e., the Wiener solution for the coefficient vector.
Note that the input signal vector was assumed known in the above equation, in
order to expose what can be expected if the adaptive filter converges to the optimal
solution. If d 0.k/ was generated through an infinite impulse response system, a
residue error remains in the subtraction of the first two terms due to undermodeling
(adaptive FIR filter with insufficient number of coefficients), i.e.,

EŒe.k/� D E

" 1X

iDNC1
h.i/x.k � i/

#

C EŒn.k/� (3.33)

where h.i/, for i D N C1; : : : ;1, are the coefficients of the process that generated
the part of d 0.k/ not identified by the adaptive filter. If the input signal and n.k/
have zero mean, then EŒe.k/� D 0.

3.3.5 Minimum Mean-Square Error

In this subsection, the minimum MSE is calculated for undermodeling situations
and in the presence of additional noise. Let’s assume again the undermodeling case
where the adaptive filter has less coefficients than the unknown system in a system
identification setup. In this case we can write

d.k/ D hT x1.k/C n.k/

D
h
wT
o h

T
i � x.k/

x1.k/

�

C n.k/ (3.34)
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where wo is a vector containing the first N C 1 coefficients of the unknown system
impulse response, h contains the remaining elements of h. The output signal of an
adaptive filter with N C 1 coefficients is given by

y.k/ D wT .k/x.k/

In this setup the MSE has the following expression

� D E
n
d2.k/ � 2wT

o x.k/wT .k/x.k/ � 2h
T

x1.k/wT .k/x.k/

�2ŒwT .k/x.k/�n.k/C ŒwT .k/x.k/�2
o

D E

�

d2.k/� 2ŒwT .k/ 0T1�
�

x.k/
x1.k/

�

ŒwT
o h

T
�

�
x.k/

x1.k/

�

�2ŒwT .k/x.k/�n.k/C ŒwT .k/x.k/�2
	

D EŒd2.k/� � 2ŒwT .k/ 0T1�R1
�

wo

h

�

C wT .k/Rw.k/ (3.35)

where

R1 D E

��
x.k/

x1.k/

�

ŒxT .k/ xT1.k/�
	

and 01 is an infinite length vector whose elements are zeros. By calculating the
derivative of � with respect to the coefficients of the adaptive filter, it follows that
(see derivations around (2.91) and (2.148))

Owo D R�1trunc fp1gNC1 D R�1trunc

�

R1
�

wo

h

�	

NC1
D R�1truncfR1hgNC1 (3.36)

where truncfagNC1 represents a vector generated by retaining the first N C 1

elements of a. It should be noticed that the results of (3.35) and (3.36) are algorithm
independent.

The minimum mean-square error can be obtained from (3.35), when assuming
the input signal is a white noise uncorrelated with the additional noise signal, that is

�min D EŒe2.k/�min D
1X

iDNC1
h2.i/EŒx2.k � i/�C EŒn2.k/�

D
1X

iDNC1
h2.i/�2x C �2n (3.37)

This minimum error is achieved when it is assumed that the adaptive-filter mul-
tiplier coefficients are frozen at their optimum values, refer to (2.148) for similar
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discussion. In case the adaptive filter has sufficient order to model the process
that generated d.k/, the minimum MSE that can be achieved is equal to the
variance of the additional noise, given by �2n . The reader should note that the
effect of undermodeling discussed in this subsection generates an excess MSE with
respect to �2n .

3.3.6 Excess Mean-Square Error and Misadjustment

The result of the previous subsection assumes that the adaptive-filter coefficients
converge to their optimal values, but in practice this is not so. Although the
coefficient vector on average converges to wo, the instantaneous deviation�w.k/ D
w.k/ � wo, caused by the noisy gradient estimates, generates an excess MSE. The
excess MSE can be quantified as described in the present subsection. The output
error at instant k is given by

e.k/ D d.k/� wT
o x.k/��wT .k/x.k/

D eo.k/ ��wT .k/x.k/ (3.38)

then

e2.k/ D e2o.k/ � 2eo.k/�wT .k/x.k/C�wT .k/x.k/xT .k/�w.k/ (3.39)

The so-called independence theory assumes that the vectors x.k/, for all k, are
statistically independent, allowing a simple mathematical treatment for the LMS
algorithm. As mentioned before, this assumption is in general not true, especially in
the case where x.k/ consists of the elements of a delay line. However, even in this
case the use of the independence assumption is justified by the agreement between
the analytical and the experimental results. With the independence assumption,
�w.k/ can be considered independent of x.k/, since only previous input vectors are
involved in determining�w.k/. By using the assumption and applying the expected
value operator to (3.39), we have

�.k/ D EŒe2.k/�

D �min � 2EŒ�wT .k/�EŒeo.k/x.k/�C EŒ�wT .k/x.k/xT .k/�w.k/�

D �min � 2EŒ�wT .k/�EŒeo.k/x.k/�C E
˚
trŒ�wT .k/x.k/xT .k/�w.k/�

�

D �min � 2EŒ�wT .k/�EŒeo.k/x.k/�C E
˚
trŒx.k/xT .k/�w.k/�wT .k/�

�

(3.40)

where in the fourth equality we used the property trŒA � B� D trŒB � A�. The last term
of the above equation can be rewritten as

tr
˚
EŒx.k/xT .k/�EŒ�w.k/�wT .k/�

�
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Since R D EŒx.k/xT .k/� and by the orthogonality principle EŒeo.k/x.k/� D 0, the
above equation can be simplified as follows:

�.k/ D �min C EŒ�wT .k/R�w.k/� (3.41)

The excess in the MSE is given by

��.k/
4D �.k/ � �min D EŒ�wT .k/R�w.k/�

D EftrŒR�w.k/�wT .k/�g
D trfEŒR�w.k/�wT .k/�g (3.42)

By using the fact that QQT D I, the following relation results

��.k/ D tr
˚
EŒQQT RQQT�w.k/�wT .k/QQT �

�

D trfQ� covŒ�w0.k/�QT g (3.43)

Therefore,

��.k/ D trf� covŒ�w0.k/�g (3.44)

From (3.27), it is possible to show that

��.k/ D
NX

iD0
�iv

0
i .k/ D �T v0.k/ (3.45)

Since

v0
i .k C 1/ D .1 � 4��i C 8�2�2i /v

0
i .k/C 4�2�i

NX

jD0
�j v0

j .k/C 4�2�2n�i

(3.46)

and v0
i .kC1/ � v0

i .k/ for large k, we can apply a summation operation to the above
equation in order to obtain

NX

jD0
�j v0

j .k/ D ��2n
PN

iD0 �i C 2�
PN

iD0 �2i v0
i .k/

1 � �
PN

iD0 �i

� ��2n
PN

iD0 �i
1 � �

PN
iD0 �i

D ��2n trŒR�
1 � �trŒR�

(3.47)
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where the term 2�
PN

iD0 �2i v0
i .k/ was considered very small as compared to the

remaining terms of the numerator. This assumption is not easily justifiable, but is
valid for small values of �.

The excess mean-square error can then be expressed as

�exc D lim
k!1��.k/ � ��2n trŒR�

1 � �trŒR�
(3.48)

This equation, for very small �, can be approximated by

�exc � ��2n trŒR� D �.N C 1/�2n�
2
x (3.49)

where �2x is the input signal variance and �2n is the additional-noise variance.
The misadjustment M , defined as the ratio between the �exc and the minimum

MSE, is a common parameter used to compare different adaptive signal processing
algorithms. For the LMS algorithm, the misadjustment is given by

M
4D �exc

�min
� �trŒR�
1 � �trŒR�

(3.50)

3.3.7 Transient Behavior

Before the LMS algorithm reaches the steady-state behavior, a number of iterations
are spent in the transient part. During this time, the adaptive-filter coefficients
and the output error change from their initial values to values close to that of the
corresponding optimal solution.

In the case of the adaptive-filter coefficients, the convergence in the mean will
follow .N C 1/ geometric decaying curves with ratios rwi D .1 � 2��i /. Each of
these curves can be approximated by an exponential envelope with time constant
�wi as follows (see (3.18)) [2]:

rwi D e
�1
�wi D 1 � 1

�wi
C 1

2Š�2wi
C � � � (3.51)

where for each iteration, the decay in the exponential envelope is equal to the
decay in the original geometric curve. In general, rwi is slightly smaller than
one, especially for the slowly decreasing modes corresponding to small �i and �.
Therefore,

rwi D .1 � 2��i/ � 1 � 1

�wi
(3.52)

then

�wi D 1

2��i
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for i D 0; 1; : : : ; N . Note that in order to guarantee convergence of the tap
coefficients in the mean, � must be chosen in the range 0 < � < 1=�max

(see (3.19)).
According to (3.30), for the convergence of the MSE the range of values for

� is 0 < � < 1=trŒR�, and the corresponding time constant can be calculated
from matrix B in (3.27), by considering the terms in �2 small as compared to the
remaining terms in matrix B. In this case, the geometric decaying curves have ratios
given by rei D .1 � 4��i / that can be fitted to exponential envelopes with time
constants given by

�ei D 1

4��i
(3.53)

for i D 0; 1; : : : ; N . In the convergence of both the error and the coefficients, the
time required for the convergence depends on the ratio of eigenvalues of the input
signal correlation matrix.

Returning to the tap coefficients case, if � is chosen to be approximately 1=�max

the corresponding time constant for the coefficients is given by

�wi � �max

2�i
� �max

2�min
(3.54)

Since the mode with the highest time constant takes longer to reach convergence,
the rate of convergence is determined by the slowest mode given by �wmax D
�max=.2�min/. Suppose the convergence is considered achieved when the slowest
mode provides an attenuation of 100, i.e.,

e
�k

�wmax D 0:01

this requires the following number of iterations in order to reach convergence:

k � 4:6
�max

2�min

The above situation is quite optimistic because � was chosen to be high. As
mentioned before, in practice we should choose the value of � much smaller than
the upper bound. For an eigenvalue spread approximating one, according to (3.30)
let’s choose � smaller than 1=Œ.N C 3/�max].2 In this case, the LMS algorithm will
require at least

k � 4:6
.N C 3/�max

2�min
� 2:3.N C 3/

iterations to achieve convergence in the coefficients.

2This choice also guarantees the convergence of the MSE.
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The analytical results presented in this section are valid for stationary
environments. The LMS algorithm can also operate in the case of nonstationary
environments, as shown in the following section.

3.4 LMS Algorithm Behavior in Nonstationary
Environments

In practical situations, the environment in which the adaptive filter is embedded
may be nonstationary. In these cases, the input signal autocorrelation matrix and/or
the cross-correlation vector, denoted, respectively, by R.k/ and p.k/, are/is varying
with time. Therefore, the optimal solution for the coefficient vector is also a time-
varying vector given by wo.k/.

Since the optimal coefficient vector is not fixed, it is important to analyze if the
LMS algorithm will be able to track changes in wo.k/. It is also of interest to learn
how the tracking error in the coefficients given by EŒw.k/� � wo.k/ will affect the
output MSE. It will be shown later that the excess MSE caused by lag in the tracking
of wo.k/ can be separated from the excess MSE caused by the measurement noise,
and therefore, without loss of generality, in the following analysis the additional
noise will be considered zero.

The coefficient-vector updating in the LMS algorithm can be written in the
following form

w.k C 1/ D w.k/C 2�x.k/e.k/

D w.k/C 2�x.k/Œd.k/ � xT .k/w.k/� (3.55)

Since

d.k/ D xT .k/wo.k/ (3.56)

the coefficient updating can be expressed as follows:

w.k C 1/ D w.k/C 2�x.k/ŒxT .k/wo.k/ � xT .k/w.k/� (3.57)

Now assume that an ensemble of a nonstationary adaptive identification process
has been built, where the input signal in each experiment is taken from the same
stochastic process. The input signal is considered stationary. This assumption results
in a fixed R matrix, and the nonstationarity is caused by the desired signal that
is generated by applying the input signal to a time-varying system. With these
assumptions, by using the expected value operation to the ensemble, with the
coefficient updating in each experiment given by (3.57), and additionally assuming
that w.k/ is independent of x.k/ yields

EŒw.k C 1/� D EŒw.k/�C 2�EŒx.k/xT .k/�wo.k/ � 2�EŒx.k/xT .k/�EŒw.k/�
D EŒw.k/�C 2�Rfwo.k/ � EŒw.k/�g (3.58)
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If the lag in the coefficient vector is defined by

lw.k/ D EŒw.k/� � wo.k/ (3.59)

(3.58) can be rewritten as

lw.k C 1/ D .I � 2�R/lw.k/ � wo.k C 1/C wo.k/ (3.60)

In order to simplify our analysis, we can premultiply the above equation by QT ,
resulting in a decoupled set of equations given by

l0w.k C 1/ D .I � 2��/l0w.k/ � w0
o.k C 1/C w0

o.k/ (3.61)

where the vectors with superscript are the original vectors projected onto the
transformed space. As can be noted, each element of the lag-error vector is
determined by the following relation

l 0i .k C 1/ D .1 � 2��i/l
0
i .k/ � w0

oi .k C 1/C w0
oi .k/ (3.62)

where l 0i .k/ is the i th element of l0w.k/. By properly interpreting the above equation,
we can say that the lag is generated by applying the transformed instantaneous
optimal coefficient to a first-order discrete-time lag filter denoted as L

00

i .z/, i.e.,

L0
i .z/ D � z � 1

z � 1C 2��i
W 0
oi .z/ D L

00

i .z/W
0
oi .z/ (3.63)

The discrete-time filter transient response converges with a time constant of the
exponential envelope given by

�i D 1

2��i
(3.64)

which is of course different for each individual tap. Therefore, the tracking ability of
the coefficients in the LMS algorithm is dependent on the eigenvalues of the input
signal correlation matrix.

The lag in the adaptive-filter coefficients leads to an excess mean-square error.
In order to calculate the excess MSE, suppose that each element of the optimal
coefficient vector is modeled as a first-order Markov process. This nonstationary
situation can be considered somewhat simplified as compared with some real
practical situations. However, it allows a manageable mathematical analysis while
retaining the essence of handling the more complicated cases. The first-order
Markov process is described by

wo.k/ D �wwo.k � 1/C nw.k/ (3.65)
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Fig. 3.2 Lag model in
nonstationary environment

where nw.k/ is a vector whose elements are zero-mean white noise processes with
variance �2w, and �w < 1. Note that .1 � 2��i / < �w < 1, for i D 0; 1; : : : ; N ,
since the optimal coefficients values must vary slower than the adaptive-filter
tracking speed, i.e., 1

2��i
< 1

1��w . This model may not represent an actual system

when �w ! 1, since the EŒwo.k/wT
o .k/� will have unbounded elements if, for

example, nw.k/ is not exactly zero mean. A more realistic model would include
a factor .1 � �w/

p
2 , for p � 1, multiplying nw.k/ in order to guarantee that

EŒwo.k/wT
o .k/� is bounded. In the following discussions, this case will not be

considered since the corresponding results can be easily derived (see Problem 14).
From (3.62) and (3.63), we can infer that the lag-error vector elements are

generated by applying a first-order discrete-time system to the elements of the
unknown system coefficient vector, both in the transformed space. On the other
hand, the coefficients of the unknown system are generated by applying each
element of the noise vector nw.k/ to a first-order all-pole filter, with the pole placed
at �w. For the unknown coefficient vector with the above model, the lag-error vector
elements can be generated by applying each element of the transformed noise vector
n0

w.k/ D QT nw.k/ to a discrete-time filter with transfer function

Hi.z/ D �.z � 1/z
.z � 1C 2��i /.z � �w/

(3.66)

This transfer function consists of a cascade of the lag filter L
00

i .z/ with the all-pole
filter representing the first-order Markov process as illustrated in Fig. 3.2. Using the
inverse Z-transform, the variance of the elements of the vector l0w.k/ can then be
calculated by

EŒl
02
i .k/� D 1

2	|

I

Hi.z/Hi .z
�1/�2wz�1 d z

D
�

1

.1 � �w � 2��i /.1 � �w C 2��i�w/

� � ���i
1 � ��i

C 1 � �w
1C �w

�

�2w

(3.67)

If �w is considered very close to 1, it is possible to simplify the above equation as

EŒl
02
i .k/� � �2w

4��i .1 � ��i / (3.68)

Any error in the coefficient vector of the adaptive filter as compared to the
optimal coefficient filter generates an excess MSE (see (3.41)). Since the lag is one
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source of error in the adaptive-filter coefficients, then the excess MSE due to lag is
given by

�lag D EŒlTw.k/Rlw.k/�

D E
˚
trŒRlw.k/lTw.k/�

�

D tr
˚
REŒlw.k/lTw.k/�

�

D tr
˚
�EŒl0w.k/l0Tw.k/�

�

D
NX

iD0
�iEŒl

02
i .k/�

� �2w
4�

NX

iD0

1

1 � ��i (3.69)

If � is very small, the MSE due to lag tends to infinity indicating that the
LMS algorithm, in this case, cannot track any change in the environment. On
the other hand, for � appropriately chosen the algorithm can track variations in
the environment leading to an excess MSE. This excess MSE depends on the
variance of the optimal coefficient disturbance and on the values of the input signal
autocorrelation matrix eigenvalues, as indicated in (3.69). In the case � is very small
and �w is not very close to 1, the approximation for (3.67) becomes

EŒl
02
i .k/� � �2w

1 � �2w
(3.70)

As a result the MSE due to lag is given by

�lag � .N C 1/�2w
1 � �2w

(3.71)

It should be noticed that �w closer to 1 than the modes of the adaptive filter is the
common operation region, therefore the result of (3.71) is not discussed further.

Now we analyze how the error due to lag interacts with the error generated by
the noisy calculation of the gradient in the LMS algorithm. The overall error in the
taps is given by

�w.k/ D w.k/ � wo.k/ D fw.k/ � EŒw.k/�g C fEŒw.k/� � wo.k/g (3.72)

where the first error in the above equation is due to the additional noise and the
second is the error due to lag. The overall excess MSE can then be expressed as

�total D EfŒw.k/ � wo.k/�
T RŒw.k/ � wo.k/�g

� Ef.w.k/ �EŒw.k/�/T R.w.k/ �EŒw.k/�/g
CEf.EŒw.k/� � wo.k//

TR.EŒw.k/� � wo.k//g (3.73)
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since 2Ef.w.k/ � EŒw.k/�/T R.EŒw.k/� � wo.k//g � 0, if we consider the fact
that wo.k/ is kept fixed in each experiment of the ensemble. As a consequence, an
estimate for the overall excess MSE can be obtained by adding the results of (3.48)
and (3.69), i.e.,

�total � ��2n trŒR�
1 � �trŒR�

C �2w
4�

NX

iD0

1

1 � ��i
(3.74)

If small � is employed, the above equation can be simplified as follows:

�total � ��2n trŒR�C �2w
4�
.N C 1/ (3.75)

Differentiating the above equation with respect to � and setting the result to zero
yields an optimum value for � given by

�opt D
s
.N C 1/�2w
4�2n trŒR�

(3.76)

The�opt is supposed to lead to the minimum excess MSE. However, the user should
bear in mind that the�opt can only be used if it satisfies stability conditions, and if its
value can be considered small enough to validate (3.75). Also this value is optimum
only when quantization effects are not taken into consideration, where for short-
wordlength implementation the best � should be chosen following the guidelines
given in Chap. 15. It should also be mentioned that the study of the misadjustment
due to nonstationarity of the environment is considerably more complicated when
the input signal and the desired signal are simultaneously nonstationary [8, 10–17].
Therefore, the analysis presented here is only valid if the assumptions made
are valid. However, the simplified analysis provides a good sample of the LMS
algorithm behavior in a nonstationary environment and gives a general indication of
what can be expected in more complicated situations.

The results of the analysis of the previous sections are obtained assuming that
the algorithm is implemented with infinite precision.3 However, the widespread use
of adaptive-filtering algorithms in real-time requires their implementation with short
wordlength, in order to meet the speed requirements. When implemented with short-
wordlength precision the LMS algorithm behavior can be very different from what
is expected in infinite precision. In particular, when the convergence factor � tends
to zero it is expected that the minimum mean-square error is reached in steady state;
however, due to quantization effects the MSE tends to increase significantly if � is
reduced below a certain value. In fact, the algorithm can stop updating some filter
coefficients if� is not chosen appropriately. Chapter 15, Sect. 15.1, presents detailed
analysis of the quantization effects in the LMS algorithm.

3This is an abuse of language, by infinite precision we mean very long wordlength.
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3.5 Complex LMS Algorithm

The LMS algorithm for complex signals, which often appear in communications
applications, is derived in Chap. 14. References [18, 19] provide details related to
complex differentiation required to generate algorithms working in environments
with complex signals.

By recalling that the LMS algorithm utilizes instantaneous estimates of matrix
R, denoted by OR.k/, and of vector p, denoted by Op.k/, given by

OR.k/ D x.k/xH.k/

Op.k/ D d�.k/x.k/ (3.77)

The actual objective function being minimized is the instantaneous square error
je.k/j2. According to the derivations in Sect. 14.3, the expression of the gradient
estimate is

Ogw�fe.k/e�.k/g D �e�.k/x.k/ (3.78)

By utilizing the output error definition for the complex environment case and the
instantaneous gradient expression, the updating equations for the complex LMS
algorithm are described by

�
e.k/ D d.k/� wH.k/x.k/
w.k C 1/ D w.k/C �ce

�.k/x.k/
(3.79)

If the convergence factor �c D 2�, the expressions for the coefficient updating
equation of the complex and real cases have the same form and the analysis results
for the real case equally applies to the complex case.4

An iteration of the complex LMS requires N C 2 complex multiplications for
the filter coefficient updating and N C 1 complex multiplications for the error
generation. In a non-optimized form each complex multiplication requires four real
multiplications. The detailed description of the complex LMS algorithm is shown
in the table denoted as Algorithm 3.2. As for any adaptive-filtering algorithm, the
initialization is not necessarily performed as described in Algorithm 3.2, where the
coefficients of the adaptive filter are started with zeros.

4The missing factor 2 here originates from the term 1
2

in definition of the gradient that we opted to
use in order to be coherent with most literature, in actual implementation the factor 2 of the real
case is usually incorporated to the �.
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Algorithm 3.2 Complex LMS algorithm
Initialization
x.0/ D w.0/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/ D d.k/� wH .k/x.k/
w.k C 1/ D w.k/C �ce

�.k/x.k/

3.6 Examples

In this section, a number of examples are presented in order to illustrate the use
of the LMS algorithm as well as to verify theoretical results presented in the
previous sections.

3.6.1 Analytical Examples

Some analytical tools presented so far are employed to characterize two interesting
types of adaptive-filtering problems. The problems are also solved with the LMS
algorithm.

Example 3.1. A Gaussian white noise with unit variance colored by a filter with
transfer function

Hin.z/ D 1

z � 0:5
is transmitted through a communication channel with model given by

Hc.z/ D 1

z C 0:8

and with the channel noise being Gaussian white noise with variance �2n D 0:1.
Figure 3.3 illustrates the experimental environment. Note that x0.k/ is generated

by first applying Gaussian white noise with variance �2in D 1 to a filter with transfer
function Hin.z/. The result is applied to a communication channel with transfer
function Hc.z/, and then Gaussian channel noise with variance �2n D 0:1 is added.
On the other hand, d.k/ is generated by applying the same Gaussian noise with
variance �2in D 1 to the filter with transfer function Hin.z/, with the result delayed
by L samples.
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Fig. 3.3 Channel equalization of Example 3.1

(a) Determine the best value for the delay L.
(b) Compute the Wiener solution.
(c) Choose an appropriate value for � and plot the convergence path for the LMS

algorithm on the MSE surface.
(d) Plot the learning curves of the MSE and the filter coefficients in a single run as

well as for the average of 25 runs.

Solution. (a) In order to determine L, we will examine the behavior of the cross-
correlation between the adaptive-filter input signal denoted by x0.k/ and the
reference signal d.k/.

The cross-correlation between d.k/ and x0.k/ is given by

p.i/ D EŒd.k/x0.k � i/�

D 1

2	|

I

Hin.z/z
�LziHin.z

�1/Hc.z
�1/�2in

d z

z

D 1

2	|

I
1

z � 0:5
z�Lzi

z

1 � 0:5z

z

1C 0:8z
�2in
d z

z

where the integration path is a counterclockwise closed contour corresponding
to the unit circle.

The contour integral of the above equation can be solved through the
Cauchy’s residue theorem. For L D 0 and L D 1, the general solution is

p.0/ D EŒd.k/x0.k/� D �2in

�

0:5�LC1 1

0:75

1

1:4

�

where in order to obtain p.0/, we computed the residue at the pole located at
0:5. The values of the cross-correlation for L D 0 and L D 1 are, respectively

p.0/ D 0:47619

p.0/ D 0:95238
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For L D 2, we have that

p.0/ D �2in

�

0:5�LC1 1

0:75

1

1:4
� 2

�

D �0:09522

where in this case we computed the residues at the poles located at 0:5 and at 0,
respectively. For L D 3, we have

p.0/ D �2inŒ
0:5�LC1

1:05
� 3:4� D 0:4095

From the above analysis, we see that the strongest correlation between x0.k/
and d.k/ occurs for L D 1. For this delay, the equalization is more effective.
As a result, from the above calculations, we can obtain the elements of vector p
as follows:

p D
�
p.0/

p.1/

�

D
�
0:9524

0:4762

�

Note that p.1/ for L D 1 is equal to p.0/ for L D 0.
The elements of the correlation matrix of the adaptive-filter input signal are

calculated as follows:

r.i/ D EŒx0.k/x0.k � i/�

D 1

2	|

I

Hin.z/Hc.z/z
iHin.z

�1/Hc.z
�1/�2in

d z

z
C �2nı.i/

D 1

2	|

I
1

z � 0:5

1

z C 0:8
zi

z

1 � 0:5z

z

1C 0:8z
�2in
d z

z
C �2nı.i/

where again the integration path is a counterclockwise closed contour corre-
sponding to the unit circle, and ı.i/ is the unitary impulse. Solving the contour
integral equation, we obtain

r.0/ D EŒx02.k/�

D �2in

�
1

1:3

0:5

0:75

1

1:4
C �1
1:3

�0:8
1:4

1

0:36

�

C �2n D 1:6873

where in order to obtain r.0/, we computed the residues at the poles located at
0:5 and �0:8, respectively. Similarly, we have that

r.1/ D EŒx0.k/x0.k � 1/�

D �2in

�
1

1:3

1

0:75

1

1:4
C �1
1:3

1

1:4

1

0:36

�

D �0:7937

where again we computed the residues at the poles located at 0:5 and �0:8,
respectively.



3.6 Examples 103

w0

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

w1

Fig. 3.4 Convergence path on the MSE surface

The correlation matrix of the adaptive-filter input signal is given by

R D
�
1:6873 �0:7937

�0:7937 1:6873

�

(b) The coefficients corresponding to the Wiener solution are given by

wo D R�1p

D 0:45106

�
1:6873 0:7937

0:7937 1:6873

� �
0:9524

0:4762

�

D
�
0:8953

0:7034

�

(c) The LMS algorithm is applied to minimize the MSE using a convergence
factor � D 1=40trŒR�, where trŒR� D 3:3746. The value of � is 0:0074.
This small value of the convergence factor allows a smooth convergence path.
The convergence path of the algorithm on the MSE surface is depicted in
Fig. 3.4. As can be noted, the path followed by the LMS algorithm looks like
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a noisy steepest-descent path. It first approaches the main axis (eigenvector)
corresponding to the smaller eigenvalue, and then follows toward the minimum
in a direction increasingly aligned with this main axis.

(d) The learning curves of the MSE and the filter coefficients in a single run are
depicted in Fig. 3.5. The learning curves of the MSE and the filter coefficients,
obtained by averaging the results of 25 runs, are depicted in Fig. 3.6. As can be
noted, these curves are less noisy than in the single run case. ut

The adaptive-filtering problems discussed so far assumed that the signals taken
from the environment were stochastic signals. Also, by assuming these signals were
ergodic, we have shown that the adaptive filter is able to approach the Wiener
solution by replacing the ensemble average by time averages. In conclusion, we
can assume that the solution reached by the adaptive filter is based on time averages
of the cross-correlations of the environment signals.

For example, if the environment signals are periodic deterministic signals, the
optimal solution depends on the time average of the related cross-correlations
computed over one period of the signals. Note that in this case, the solution obtained
using an ensemble average would be time varying since we are dealing with a
nonstationary problem. The following examples illustrate this issue.

Example 3.2. Suppose in an adaptive-filtering environment, the input signal con-
sists of

x.k/ D cos.!0k/

The desired signal is given by

d.k/ D sin.!0k/

where !0 D 2	
M

. In this case M D 7.
Compute the optimal solution for a first-order adaptive filter.

Solution. In this example, the signals involved are deterministic and periodic. If the
adaptive-filter coefficients are fixed, the error is a periodic signal with periodM . In
this case, the objective function that will be minimized by the adaptive filter is the
average value of the squared error defined by

NEŒe2.k/� D 1

M

M�1X

mD0

�
e2.k �m/

�

D NEŒd2.k/� � 2wT Np C wT NRw (3.80)

where

NR D
� NEŒcos2.!0k/� NEŒcos.!0k/ cos.!0.k � 1//�

NEŒcos.!0k/ cos.!0.k � 1//� NEŒcos2.!0k/�

�
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and

Np D � NEŒsin.!0k/ cos.!0k/� NEŒsin.!0k/ cos.!0k � 1/�
�T

The expression for the optimal coefficient vector can be easily derived.

wo D NR�1 Np

Now the above results are applied to the problem described. The elements of the
vector Np are calculated as follows:

Np D 1

M

M�1X

mD0

�
d.k �m/x.k �m/

d.k �m/x.k �m � 1/

�

D 1

M

M�1X

mD0

�
sin.!0.k �m// cos.!0.k �m//

sin.!0.k �m// cos.!0.k �m � 1//
�

D 1

2

�
0

sin.!0/

�

D
�

0

0:3909

�

The elements of the correlation matrix of the adaptive-filter input signal are
calculated as follows:

Nr.i/ D NEŒx.k/x.k � i/�

D 1

M

M�1X

mD0
Œcos.!0.k �m// cos.!0.k �m � i//�

where

Nr.0/ D NEŒcos2.!0.k//� D 0:5

Nr.1/ D NEŒcos.!0.k// cos.!0.k � 1//� D 0:3117

The correlation matrix of the adaptive-filter input signal is given by

NR D
�

0:5 0:3117

0:3117 0:5

�
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The coefficients corresponding to the optimal solution are given by

Nwo D NR�1 Np D
��0:7972
1:2788

�

ut

Example 3.3. (a) Assume the input and desired signals are deterministic and
periodic with periodM . Study the LMS algorithm behavior.

(b) Choose an appropriate value for � in the previous example and plot the
convergence path for the LMS algorithm on the average error surface.

Solution. (a) It is convenient at this point to recall the coefficient updating of the
LMS algorithm

w.k C 1/ D w.k/C 2�x.k/e.k/ D w.k/C 2�x.k/
�
d.k/ � xT .k/w.k/

�

This equation can be rewritten as

w.k C 1/ D �
I � 2�x.k/xT .k/

�
w.k/C 2�d.k/x.k/ (3.81)

The solution of (3.81), as a function of the initial values of the adaptive-filter
coefficients, is given by

w.k C 1/ D
kY

iD0

�
I � 2�x.i/xT .i/

�
w.0/

C
kX

iD0

8
<

:

kY

jDiC1

�
I � 2�x.j /xT .j /

�
2�d.i/x.i/

9
=

;
(3.82)

where we define that
Qk
jDkC1Œ�� D 1 for the second product.

Assuming the value of the convergence factor� is small enough to guarantee
that the LMS algorithm will converge, the first term on the right-hand side of
the above equation will vanish as k ! 1. The resulting expression for the
coefficient vector is given by

w.k C 1/ D
kX

iD0

8
<

:

kY

jDiC1

�
I � 2�x.j /xT .j /

�
2�d.i/x.i/

9
=

;

The analysis of the above solution is not straightforward. Following an alterna-
tive path based on averaging the results in a periodM , we can reach conclusive
results.
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Let us define the average value of the adaptive-filter parameters as follows:

w.k C 1/ D 1

M

M�1X

mD0
w.k C 1 �m/

Similar definition can be applied to the remaining parameters of the algorithm.
Considering that the signals are deterministic and periodic, we can apply the

average operation to (3.81). The resulting equation is

w.k C 1/ D 1

M

M�1X

mD0

�
I � 2�x.k �m/xT .k �m/

�
w.k �m/

C 1

M

M�1X

mD0
2�d.k �m/x.k �m/

D ŒI � 2�x.k/xT .k/�w.k/C 2�d.k/x.k/ (3.83)

For large k and small �, it is expected that the parameters converge to
the neighborhood of the optimal solution. In this case, we can consider that
w.k C 1/ � w.k/ and that the following approximation is valid

x.k/xT .k/w.k/ � x.k/xT .k/ w.k/

since the parameters after convergence wander around the optimal solution.
Using these approximations in (3.83), the average values of the parameters in
the LMS algorithm for periodic signals are given by

w.k/ � x.k/xT .k/
�1
d.k/x.k/ D NR�1 Np

(b) The LMS algorithm is applied to minimize the squared error of the problem
described in Example 3.2 using a convergence factor � D 1=100trŒ NR�, where
trŒ NR� D 1. The value of � is 0:01. The convergence path of the algorithm on the
MSE surface is depicted in Fig. 3.7. As can be verified, the parameters generated
by the LMS algorithm approach the optimal solution. ut

Example 3.4. The leaky LMS algorithm has the following updating equation

w.k C 1/ D .1 � 2��/w.k/C 2�e.k/x.k/ (3.84)

where 0 < � 	 1.
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Fig. 3.7 Convergence path on the MSE surface

(a) Compute the range of values of � such that the coefficients converge in average.
(b) What is the objective function this algorithm actually minimizes?
(c) What happens to the filter coefficients if the error and/or input signals become

zero?

Solution. (a) By utilizing the error expression we generate the coefficient updating
equation given by

w.k C 1/ D fI � 2�Œx.k/xT .k/C �I�gw.k/C 2�d.k/x.k/

By applying the expectation operation it follows that

EŒw.k C 1/� D fI � 2�ŒR C �I�gEŒw.k/�C 2�p

The inclusion of � is equivalent to add a white noise to the input signal
x.n/, such that a value of � is added to the eigenvalues of the input signal
autocorrelation matrix. As a result, the condition for the stability in the mean
for the coefficients is expressed as

0 < � <
1

�max C �
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The coefficients converge to a biased solution with respect to the Wiener
solution and are given by

EŒw.k/� D ŒR C �I��1p

for k ! 1.
(b) Equation (3.84) can be rewritten in a form that helps us to recognize the gradient

expression.

w.k C 1/ D w.k/C 2�.��w.k/C e.k/x.k//

D w.k/� 2�.�w.k/ � d.k/x.k/C x.k/xT .k/w.k// (3.85)

By inspection we observe that in this case the gradient is described by

gw.k/ D 2�w.k/ � 2e.k/x.k/ D 2�w.k/� 2d.k/x.k/C 2x.k/xT .k/w.k/

The corresponding objective function that is indeed minimized is given by

�.k/ D f� jjw.k/jj2 C e2.k/g

(c) For zero input or zero error signal after some initial iterations, the dynamic
updating (3.84) has zero excitation. Since the eigenvalues of the transition
matrix fI � 2�Œx.k/xT .k/ C �I�g are smaller than one, then the adaptive-filter
coefficients will tend to zero for large k. ut

3.6.2 System Identification Simulations

In this subsection, a system identification problem is described and solved by using
the LMS algorithm. In the following chapters the same problem will be solved using
other algorithms presented in the book. For the FIR adaptive filters the following
identification problem is posed:

Example 3.5. An adaptive-filtering algorithm is used to identify a system with
impulse response given below.

h D Œ0:1 0:3 0:0 � 0:2 � 0:4 � 0:7 � 0:4 � 0:2�T

Consider three cases for the input signal: colored noises with variance �2x D 1 and
eigenvalue spread of their correlation matrix equal to 1.0, 20, and 80, respectively.
The measurement noise is Gaussian white noise uncorrelated with the input and
with variance �2n D 10�4. The adaptive filter has eight coefficients.
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(a) Run the algorithm and comment on the convergence behavior in each case.
(b) Measure the misadjustment in each example and compare with the theoretical

results where appropriate.
(c) Considering that fixed-point arithmetic is used, run the algorithm for a set of

experiments and calculate the expected values for jj�w.k/Qjj2 and �.k/Q for
the following case:

Additional noise: white noise with variance �2n D 0:0015

Coefficient wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance �2x D 1:0

(d) Repeat the previous experiment for the following cases

bc D 12 bits, bd D 12 bits.
bc D 10 bits, bd D 10 bits.

(e) Suppose the unknown system is a time-varying system whose coefficients
are first-order Markov processes with �w D 0:99 and �2w D 0:0015. The
initial time-varying-system multiplier coefficients are the ones above described.
The input signal is Gaussian white noise with variance �2x D 1:0, and the
measurement noise is also Gaussian white noise independent of the input
signal and of the elements of nw.k/, with variance �2n D 0:01. Simulate
the experiment described, measure the total excess MSE, and compare to the
calculated results.

Solution. (a) The colored input signal is generated by applying Gaussian white
noise, with variance �2v , to a first-order filter with transfer function

H.z/ D z

z � a
As can be shown from (2.83), the input signal correlation matrix in this case
is given by

R D �2v
1� a2

2

6
6
6
4

1 a � � � a7
a 1 � � � a6
:::
:::
: : :

:::

a7 a6 � � � 1

3

7
7
7
5

The proper choice of the value of a, in order to obtain the desired
eigenvalue spread, is not a straightforward task. Some guidelines are now
discussed. For example, if the adaptive filter is of first order, the matrix R
is two by two with eigenvalues

�max D �2v
1 � a2

.1C a/
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and

�min D �2v
1 � a2

.1 � a/

respectively. In this case, the choice of a is straightforward.
In general, it can be shown that

�max

�min
� jHmax.e|!/j2

jHmin.e|!/j2

For a very large order adaptive filter, the eigenvalue spread approaches

�max

�min
� jHmax.e|!/j2

jHmin.e|!/j2 D
�
1C a

1� a

	 2

where the details to reach this result can be found in page 124 of [20].
Using the above relations as guidelines, we reached the correct values

of a. These values are a D 0:6894 and a D 0:8702 for eigenvalue spreads
of 20 and 80, respectively.

Since the variance of the input signal should be unity, the variance of the
Gaussian white noise that produces x.k/ should be given by

�2v D 1 � a2

For the LMS algorithm, we first calculate the upper bound for � .�max/

to guarantee the algorithm stability, and run the algorithm for�max, �max=5,
and �max=10.

In this example, the LMS algorithm does not converge for�D�max�0:1.
The convergence behavior for�max=5 and�max=10 is illustrated through the
learning curves depicted in Fig. 3.8, where in this case the eigenvalue spread
is 1. Each curve is obtained by averaging the results of 200 independent
runs. As can be noticed, the reduction of the convergence factor leads to
a reduction in the convergence speed. Also note that for � D 0:02 the
estimated MSE is plotted only for the first 400 iterations, enough to display
the convergence behavior. In all examples the tap coefficients are initialized
with zero. Fig. 3.9 illustrates the learning curves for the various eigenvalue
spreads, where in each case the convergence factor is �max=5. As expected
the convergence rate is reduced for a high eigenvalue spread.

(b) The misadjustment is measured and compared with the results obtained
from the following relation

M D �.N C 1/�2x
1 � �.N C 1/�2x
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Table 3.1 Evaluation of the LMS algorithm

Misadjustment �emax �wmax Iterations

� �max
�min

Experiment Theory

0.020000 1 0.2027 0.1905 12.5 25 58
0.012800 20 0.1298 0.1141 102.5 205 473
0.010240 80 0.1045 0.0892 338.9 677.5 1,561
0.010000 1 0.0881 0.0870 25 50 116
0.006401 20 0.0581 0.0540 205 410 944
0.005119 80 0.0495 0.0427 677.5 1,355 3,121

Also, for the present problem we calculated the time constants �wi and
�ei , and the expected number of iterations to achieve convergence using the
relations

�wi � 1

2��i

�ei � 1

4��i

k � �emax ln.100/

Table 3.1 illustrates the obtained results. As can be noted the analytical
results agree with the experimental results, especially those related to the
misadjustment. The analytical results related to the convergence time are
optimistic as compared with the measured results. These discrepancies are
mainly due to the approximations in the analysis.

(c), (d) The LMS algorithm is implemented employing fixed-point arithmetic using
16, 12, and 10 bits for data and coefficient wordlengths. The chosen
value of � is 0:01. The learning curves for the MSE are depicted in
Fig. 3.10. Figure 3.11 depicts the evolution of jj�w.k/Qjj2 with the number
of iterations. The experimental results show that the algorithm still works
for such limited precision. In Table 3.2, we present a summary of the results
obtained from simulation experiments and a comparison with the results
predicted by the theory. The experimental results are obtained by averaging
the results of 200 independent runs. The relations employed to calculate
the theoretical results shown in Table 3.2 correspond to (15.26) and (15.32)
derived in Chap. 15. These relations are repeated here for convenience:

EŒjj�w.k/Qjj2� D �.�2n C �2e /.N C 1/

1� �.N C 1/�2x
C .N C 1/�2w
4��2x Œ1 � �.N C 1/�2x �

�.k/Q D �2e C �2n
1 � �.N C 1/�2x

C .N C 1/�2w
4�Œ1 � �.N C 1/�2x �
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Table 3.2 Results of the finite precision implementation of the LMS
algorithm

�.k/Q EŒjj�w.k/Qjj2�
No. of bits Experiment Theory Experiment Theory

16 1.629 10�3 1.630 10�3 1.316 10�4 1.304 10�4

12 1.632 10�3 1.631 10�3 1.309 10�4 1.315 10�4

10 1.663 10�3 1.648 10�3 1.465 10�4 1.477 10�4
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Fig. 3.12 The excess MSE of the LMS algorithm in nonstationary environment, � D 0:05

The results of Table 3.2 confirm that the finite-precision implementation
analysis presented is accurate.

(e) The performance of the LMS algorithm is also tested in the nonstationary
environment above described. The excess MSE is measured and depicted in
Fig. 3.12. For this example �opt is found to be greater than �max. The value
of � used in the example is 0:05. The excess MSE in steady state predicted
by the relation

�total � ��2n trŒR�
1 � �trŒR�

C �2w
4�

NX

iD0

1

1 � ��i

is 0:124, whereas the measured excess MSE in steady state is 0:118. Once
more the results obtained from the analysis are accurate. ut
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3.6.3 Channel Equalization Simulations

In this subsection an equalization example is described. This example will be used
as pattern for comparison of several algorithms presented in this book.

Example 3.6. Perform the equalization of a channel with the following impulse
response

h.k/ D 0:1 .0:5k/

for k D 0; 1; : : : 8. Use a known training signal that consists of independent binary
samples (�1,1). An additional Gaussian white noise with variance 10�2:5 is present
at the channel output.

(a) Find the impulse response of an equalizer with 50 coefficients.
(b) Convolve the equalizer impulse response at a given iteration after convergence,

with the channel impulse response and comment on the result.

Solution. (a) We apply the LMS algorithm to solve the equalization problem. We
use �max=5 for the value of the convergence factor. In order to obtain �max,
the values of �max D 0:04275 and �2x D 0:01650 are measured and applied in
(3.30). The resulting value of � is 0:2197.

(b) The appropriate value of L is found to be round . 9C50
2
/ D 30. The impulse

response of the resulting equalizer is shown in Fig. 3.13. By convolving this
response with the channel impulse response, we obtain the result depicted in
Fig. 3.14 that clearly approximates an impulse. The measured MSE is 0:3492.

ut

3.6.4 Fast Adaptation Simulations

The exact evaluation of the learning curves of the squared error or coefficients of an
adaptive filter is a difficult task. In general the solution is to run repeated simulations
and average their results. For the LMS algorithm this ensemble averaging leads
to results which are close to those predicted by independence theory [4], if
the convergence factor is small. In fact, the independence theory is a first-order
approximation in � to the actual learning curves of �.k/ [4, 21].

However, for large � the results from the ensemble average can be quite
different from the theoretical prediction [22]. The following example explores this
observation.
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Fig. 3.15 Learning curves for the LMS algorithm with convergence factor � D 0:08, result of
ensemble averages with 10 and 100 independent simulations as well as the theoretical curve

Example 3.7. An adaptive-filtering algorithm is used to identify a system. Consider
three cases described below.

(a) The unknown system has length 10, the input signal is a stationary Gaussian
noise with variance �2x D 1 and the measurement noise is Gaussian white noise
uncorrelated with the input and with variance �2n D 10�4.

(b) The unknown system has length 2, the input signal is a stationary uniformly
distributed noise in the range �0:5 and 0.5, and there is no measurement noise.

(c) Study the behavior of the ensemble average as well as the mean square value
of the coefficient error of an LMS algorithm with a single coefficient, when the
input signal is a stationary uniformly distributed noise in the range �a and a,
and there is no measurement noise.

Solution. (a) Figure 3.15 depicts the theoretical learning curve for the squared
error obtained using the independence theory as well as the curves obtained by
averaging the results of 10 and 100 independent runs. The chosen convergence
factor is � D 0:08. As we can observe the simulation curves are not close to the
theoretical one, but they get closer as the number of independent runs increases.

(b) Figure 3.16 shows the exact theoretical learning curve for the squared error
obtained from [23] along with the curves obtained by averaging the results
of 100, 1,000 and 10,000 independent runs. The chosen convergence factor is
� D 4:00. As we can observe the theoretical learning curve diverges whereas
the simulation curves converge. A closer look at this problem is given in the
next item.
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(c) From (3.12), the evolution of the squared deviation in the tap coefficient is
given by

�w2.k C 1/ D �
1 � 2�x2.k/

�2
�w2.k/

where �w.0/ is fixed, and the additional noise is zero. Note that the evolu-
tion of �w2.k/ is governed by the random factor

�
1 � 2�x2.k/�2. With the

assumptions on the input signal these random factors form an independent, iden-
tically distributed random sequence. The above model can then be rewritten as

�w2.k C 1/ D
(

kY

iD0

�
1 � 2�x2.i/�2

)

�w2.0/ (3.86)

The objective now is to study the differences between the expected value
of �w2.k C 1/ and its ensemble average. In the first case, by using the
independence of the random factors in (3.86) we have that

EŒ�w2.k C 1/� D
(

kY

iD0
E
�
.1 � 2�x2.i//2�

)

�w2.0/

D ˚
E
�
.1 � 2�x2.0//2

��kC1
�w2.0/ (3.87)
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Since the variance of the input signal is �2x D a2

3
and its fourth-order moment is

given by a4

5
, the above equation can be rewritten as

EŒ�w2.k C 1/� D ˚
E
�
.1 � 2�x2.0//2

��kC1
�w2.0/

D
�

1 � 4�a
2

3
C 4�2

a4

5

�kC1
�w2.0/ (3.88)

From the above equation we can observe that the rate of convergence of
EŒ�w2.k/� is equal to lnfE �.1 � 2�x2.0//2�g.

Let’s examine now how the ensemble average of �w2.k/ evolves, for large
k and �, by computing its logarithm as follows:

lnŒ�w2.k C 1/� D
kX

iD0
lnŒ.1 � 2�x2.i//2�C lnŒ�w2.0/� (3.89)

By assuming that lnŒ.1 � 2�x2.i//2� exists and by employing the law of large
numbers [13], we obtain

lnŒ�w2.k C 1/�

k C 1
D 1

k C 1

(
kX

iD0
lnŒ.1 � 2�x2.i//2�C lnŒ�w2.0/�

)

(3.90)

which converges asymptotically to

E
˚
ln
�
.1 � 2�x2.i//2

��

For large k, after some details found in [22], from the above relation it can be
concluded that

�w2.k C 1/ � C e.kC1/EflnŒ.1�2�x2.i//2�g (3.91)

where C is a positive number which is not a constant and will be different
for each run of the algorithm. In fact, C can have quite large values for some
particular runs. In conclusion, the ensemble average of �w2.k C 1/ decreases
or increases with a time constant close to EflnŒ.1 � 2�x2.i//2�g�1. Also it
converges to zero if and only if EflnŒ.1 � 2�x2.i//2�g < 0, leading to a
distinct convergence condition on 2�x2.i/ from that obtained by the mean-
square stability. In fact, there is a range of values of the convergence factor
in which the ensemble average converges but the mean-square value diverges,
explaining the convergence behavior in Fig. 3.16.

Figure 3.17 depicts the curves of lnfE �.1 � 2�x2.0//2�g (the logarithm of
the rate of convergence of mean-square coefficient error) and of EflnŒ.1 �
2�x2.i//2�g as a function of 2�x2.i/. For small values of 2�x2.i/ both curves
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�g as a function of 2�x2.i/

are quite close, however for larger values they are somewhat different in par-
ticular at the minima of the curves which correspond to the fastest convergence
rate. In addition, as the curves become further apart the convergence is faster for
the ensemble average of the squared coefficient error than for the mean-square
coefficient error for large k. ut

3.6.5 The Linearly Constrained LMS Algorithm

In the narrowband beamformer application discussed in Sect. 2.5, our objective was
to minimize the array output power subjecting the linear combiner coefficients to
a set of constraints. Now, let us derive an adaptive version of the LCMV filter by
first rewriting the linearly constrained objective function of (2.107) for the case of
multiple constraints as

�c D E
�
wT x.k/xT .k/w

�C �T
�
CTw � f

�

D wTRw C �T
�
CT w � f

�
(3.92)

where R is the input signal autocorrelation matrix, C is the constraint matrix, and �
is the vector of Lagrange multipliers.
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The constrained LMS-based algorithm [24] can be derived by searching for the
coefficient vector w.kC1/ that satisfies the set of constraints and represents a small
update with respect to w.k/ in the direction of the negative of the gradient (see
(2.108)), i.e.,

w.k C 1/ D w.k/ � �gwf�c.k/g
D w.k/ � �Œ2R.k/w.k/C C�.k/� (3.93)

where R.k/ is some estimate of the input signal autocorrelation matrix at instant k,
C is again the constraint matrix, and �.k/ is the .N C 1/ � 1 vector of Lagrange
multipliers.

In the particular case of the constrained LMS algorithm, matrix R.k/ is chosen as
an instantaneous rank-one estimate given by x.k/xT .k/. In this case, we can utilize
the method of Lagrange multipliers to solve the constrained minimization problem
defined by

�c.k/ D wT .k/x.k/xT .k/w.k/C �T .k/
�
CTw.k/ � f

�

D wT .k/x.k/xT .k/w.k/C �
wT .k/C � fT

�
�.k/ (3.94)

The gradient of �c.k/ with respect to w.k/ is given by

gwf�c.k/g D 2x.k/xT .k/w.k/C C�.k/ (3.95)

The constrained LMS updating algorithm related to (3.93) becomes

w.k C 1/ D w.k/� 2�x.k/xT .k/w.k/� �C�.k/

D w.k/� 2�y.k/x.k/� �C�.k/ (3.96)

If we apply the constraint relation CT w.k C 1/ D f to the above expression, it
follows that

CTw.k C 1/ D f

D CT w.k/� 2�CT x.k/xT .k/w.k/ � �CT C�.k/

D CT w.k/� 2�y.k/CT x.k/ � �CTC�.k/ (3.97)

By solving the above equation for ��.k/ we get

��.k/ D �
CT C

��1
CT Œw.k/ � 2�y.k/x.k/� � �

CTC
��1

f (3.98)

If we substitute (3.98) in the updating (3.96), we obtain

w.k C 1/ D PŒw.k/ � 2�y.k/x.k/�C fc (3.99)
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where fc D C.CT C/�1f and P D I � C.CTC/�1CT . Notice that the updated
coefficient vector given in (3.99) is a projection onto the hyperplane defined by
CTw D 0 of an unconstrained LMS solution plus a vector fc that brings the
projected solution back to the constraint hyperplane.

If there is a reference signal d.k/, the updating equation is given by

w.k C 1/ D Pw.k/C 2�e.k/Px.k/C fc (3.100)

In the case of the constrained normalized LMS algorithm (see Sect. 4.4), the
solution satisfies wT .k C 1/x.k/ D d.k/ in addition to CTw.k C 1/ D f [25].
Alternative adaptation algorithms may be derived such that the solution at each
iteration also satisfies a set of linear constraints [26].

For environments with complex signals and complex constraints, the updating
equation is given by

w.k C 1/ D Pw.k/C �ce
�.k/Px.k/C fc (3.101)

where CHw.k C 1/ D f, fc D C.CHC/�1f and P D I � C.CHC/�1CH .
An efficient implementation for constrained adaptive filters was proposed in [27],

which consists of applying a transformation to the input signal vector based on
Householder transformation. The method can be regarded as an alternative imple-
mentation of the generalized sidelobe canceller structure, but with the advantages
of always utilizing orthogonal/unitary matrices and rendering low computational
complexity.

Example 3.8. An array of antennas with four elements, with inter-element spacing
of 0:15m, receives signals from two different sources arriving at 90ı and 30ı of
angles with respect to the axis where the antennas are placed. The desired signal
impinges on the antenna at 90ı. The signal of interest is a sinusoid of frequency
20 MHz and the interferer signal is a sinusoid of frequency 70 MHz. The sampling
frequency is 2 GHz.

Use the linearly constrained LMS algorithm in order to adapt the array coeffi-
cients.

Solution. The adaptive-filter coefficients are initialized with w.0/ D C.CTC/�1f.
The value of � used is 0.1. Figure 3.18 illustrates the learning curve for the output
signal. Figure 3.19 illustrates details of the output signal in the early iterations where
we can observe the presence of both sinusoid signals. In Fig. 3.20, the details of
the output signal after convergence shows that mainly the desired sinusoid signal
is present. The array output power response after convergence, as a function of the
angle of arrival, is depicted in Fig. 3.21. From this figure, we observe the attenuation
imposed by the array on signals arriving at 30ı of angle, where the interference
signal impinges. ut
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3.7 Concluding Remarks

In this chapter, we studied the LMS adaptive algorithm that is certainly the most
popular among the adaptive-filtering algorithms. The attractiveness of the LMS
algorithm is due to its simplicity and accessible analysis under idealized conditions.
As demonstrated in the present chapter, the noisy estimate of the gradient that
is used in the LMS algorithm is the main source of loss in performance for
stationary environments. Further discussions on the convergence behavior and on
the optimality of the LMS algorithm have been reported in the open literature, see
for example [28–34].

For nonstationary environments we showed how the algorithm behaves assuming
the optimal parameter can be modeled as a first-order Markov process. The analysis
allowed us to determine the conditions for adequate tracking and acceptable excess
MSE. Further analysis can be found in [35].

The quantization effects on the behavior of the LMS algorithm are presented in
Chap. 15. The algorithm is fairly robust against quantization errors, and this is for
sure one of the reasons for its choice in a number of practical applications [36, 37].

A number of simulation examples with the LMS algorithm was presented
in this chapter. The simulations included examples in system identification and
equalization. Also a number of theoretical results derived in the present chapter were
verified, such as the excess MSE in stationary and nonstationary environments, the
finite-precision analysis, etc.

3.8 Problems

1. The LMS algorithm is used to predict the signal x.k/ D cos.	k=3/ using a
second-order FIR filter with the first tap fixed at 1, by minimizing the mean
squared value of y.k/. Calculate an appropriate �, the output signal, and the
filter coefficients for the first ten iterations. Start with wT .0/ D Œ1 0 0�.

2. The signal

x.k/ D �0:85x.k � 1/C n.k/

is applied to a first-order predictor, where n.k/ is Gaussian white noise with
variance �2n D 0:3.

(a) Compute the Wiener solution.
(b) Choose an appropriate value for � and plot the convergence path for the

LMS algorithm on the MSE error surface.
(c) Plot the learning curves for the MSE and the filter coefficients in a single

run as well as for the average of 25 runs.

3. Assuming it is desired to minimize the objective function EŒe4.k/� utilizing a
stochastic gradient type of algorithm such as the LMS. The resulting algorithm
is called least-mean fourth algorithm [38]. Derive this algorithm.
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4. The data-reusing LMS algorithm has the following updating equation

Oel .k/ D d.k/� OwT
l .k/x.k/

OwlC1.k/ D Owl .k/C 2� Oel .k/x.k/ (3.102)

for l D 0; 1; : : : ; L � 1, and

w.k C 1/ D OwL.k/ D OwL�1.k/C 2� OeL�1.k/x.k/ (3.103)

where Ow0.k/ D w.k/.

(a) Compute the range of values of � such that the coefficients converge in
average.

(b) What is the objective function this algorithm actually minimizes?
(c) Compare its convergence speed and computational complexity with the

LMS algorithm.

5. The momentum LMS algorithm has the following updating equation

w.k C 1/ D w.k/C 2�e.k/x.k/C �Œw.k/ � w.k � 1/� (3.104)

for j� j < 1.

(a) Compute the range of values of � such that the coefficients converge in
average.

(b) What is the objective function this algorithm actually minimizes?
(c) Show that this algorithm can have faster convergence and higher misadjust-

ment than the LMS algorithm.

6. An LMS algorithm can be updated in a block form. For a block of length 2 the
updating equations have the following form.

�
e.k/

e.k � 1/

�

D
�

d.k/

d.k � 1/
�

�
�

xT .k/w.k/
xT .k � 1/w.k � 1/

�

D
�

d.k/

d.k � 1/
�

�
�

xT .k/
xT .k � 1/

�

w.k � 1/

�
�
0 2�xT .k/x.k � 1/
0 0

� �
e.k/

e.k � 1/
�

This relation, in a more compact way, is equivalent to
"

e.k/

e.k � 1/

#

D
"
1 �2�xT .k/x.k � 1/

0 1

#
�1 ("

d.k/

d.k � 1/

#

�
"

xT .k/
xT .k � 1/

#

w.k � 1/

)

(3.105)

Derive an expression for a block of length LC 1.
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7. Use the LMS algorithm to identify a system with the transfer function given
below. The input signal is a uniformly distributed white noise with variance
�2x D 1, and the measurement noise is Gaussian white noise uncorrelated with
the input with variance �2n D 10�3. The adaptive filter has 12 coefficients.

H.z/ D 1 � z�12

1 � z�1

(a) Calculate the upper bound for� .�max/ to guarantee the algorithm stability.
(b) Run the algorithm for �max=2, �max=10, and �max=50. Comment on the

convergence behavior in each case.
(c) Measure the misadjustment in each example and compare with the results

obtained by (3.50).
(d) Plot the obtained FIR filter frequency response at any iteration after

convergence is achieved and compare with the unknown system.

8. Repeat the previous problem using an adaptive filter with eight coefficients and
interpret the results.

9. Repeat problem 2 in case the input signal is a uniformly distributed white noise
with variance �2nx D 0:5 filtered by an all-pole filter given by

H.z/ D z

z � 0:9
10. Perform the equalization of a channel with the following impulse response

h.k/ D ku.k/ � .2k � 9/u.k � 5/C .k � 9/u.k � 10/

Using a known training signal that consists of a binary (�1,1) random signal,
generated by applying a white noise to a hard limiter (the output is 1 for positive
input samples and �1 for negative). An additional Gaussian white noise with
variance 10�2 is present at the channel output.

(a) Apply the LMS with an appropriate � and find the impulse response of an
equalizer with 100 coefficients.

(b) Convolve one of the equalizer’s impulse response after convergence with
the channel impulse response and comment on the result.

11. Under the assumption that the elements of x.k/ are jointly Gaussian, show that
(3.24) is valid.

12. In a system identification problem the input signal is generated by an autore-
gressive process given by

x.k/ D �1:2x.k � 1/� 0:81x.k � 2/C nx.k/
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where nx.k/ is zero-mean Gaussian white noise with variance such that �2x D 1.
The unknown system is described by

H.z/ D 1C 0:9z�1 C 0:1z�2 C 0:2z�3

The adaptive filter is also a third-order FIR filter, and the additional noise is
zero-mean Gaussian white noise with variance �2n D 0:04. Using the LMS
algorithm:

(a) Choose an appropriate �, run an ensemble of 20 experiments, and plot the
average learning curve.

(b) Plot the curve obtained using (3.41), (3.45), and (3.46), and compare the
results.

(c) Compare the measured and theoretical values for the misadjustment.
(d) Calculate the time constants �wi and �ei , and the expected number of

iterations to achieve convergence.

13. In a nonstationary environment the optimal coefficient vector is described by

wo.k/ D ��1wo.k � 1/� �2wo.k � 2/C nw.k/

where nw.k/ is a vector whose elements are zero-mean Gaussian white
processes with variance �2w. Calculate the elements of the lag-error vector.

14. Repeat the previous problem for

wo.k/ D �wwo.k � 1/C .1 � �w/nw.k/

15. The LMS algorithm is applied to identify a 7th-order time-varying unknown
system whose coefficients are first-order Markov processes with �w D 0:999

and �2w D 0:001. The initial time-varying-system multiplier coefficients are

wT
o D Œ0:03490 � 0:011 � 0:06864 0:22391 0:55686 0:35798

� 0:0239 � 0:07594�

The input signal is Gaussian white noise with variance �2x D 0:7, and the
measurement noise is also Gaussian white noise independent of the input signal
and of the elements of nw.k/, with variance �2n D 0:01.

(a) For � D 0:05, compute the excess MSE.
(b) Repeat (a) for � D 0:01.
(c) Compute �opt and comment if it can be used.

16. Simulate the experiment described in Problem 15, measure the excess MSE,
and compare to the calculated results.

17. Reduce the value of �w to 0.97 in Problem 15, simulate, and comment on the
results.
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18. Suppose a 15th-order FIR digital filter with multiplier coefficients given below
is identified through an adaptive FIR filter of the same order using the LMS
algorithm.

(a) Considering that fixed-point arithmetic is used, compute the expected value
for jj�w.k/Qjj2 and �.k/Q, and the probable number of iterations before
the algorithm stops updating, for the following case:

Additional noise: white noise with variance �2n D 0:0015

Coefficient wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance �2x D 0:7

� D 0:01

Hint: Utilize the formulas for the time constant in the LMS algorithm and
(15.28).

(b) Simulate the experiment and plot the learning curves for the finite- and
infinite-precision implementations.

(c) Compare the simulated results with those obtained through the closed form
formulas.

wTo D Œ0:0219360 0:0015786 � 0:0602449 � 0:0118907 0:1375379

0:0574545 � 0:3216703 � 0:5287203 � 0:2957797 0:0002043

0:290670 � 0:0353349 � 0:068210 0:0026067 0:0010333 � 0:0143593�

19. Repeat the above problem for the following cases

(a) �2n D 0:01, bc D 12 bits, bd D 12 bits, �2x D 0:7, � D 2:0 10�3.
(b) �2n D 0:1, bc D 10 bits, bd D 10 bits, �2x D 0:8, � D 1:0 10�4.
(c) �2n D 0:05, bc D 14 bits, bd D 14 bits, �2x D 0:8, � D 2:0 10�3.

20. Find the optimal value of � .�opt/ that minimizes the excess MSE given in
(15.32), and compute for � D �opt the expected value of jj�w.k/Qjj2 and
�.k/Q for the examples described in Problem 19.

21. Repeat Problem 18 for the case where the input signal is a first-order Markov
process with �x D 0:95.

22. A digital channel model can be represented by the following impulse response:

Œ�0:001 � 0:002 0:002 0:2 0:6 0:76 0:9 0:78 0:67 0:58

0:45 0:3 0:2 0:12 0:06 0 � 0:2 � 1 � 2 � 1 0 0:1�

The channel is corrupted by Gaussian noise with power spectrum given by

jS.e|!/j2 D 
0j!j3=2

where 
0 D 10�1:5. The training signal consists of independent binary samples
(�1,1).
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Design an FIR equalizer for this problem and use the LMS algorithm. Use a
filter of order 50 and plot the learning curve.

23. For the previous problem, using the maximum of 51 adaptive filter coefficients,
implement a DFE equalizer and compare the results with those obtained with
the FIR filter. Again use the LMS algorithm.

24. Implement with fixed-point arithmetic the DFE equalizer of Problem 23, using
the LMS algorithm with 12 bits of wordlength for data and coefficients.

25. Use the complex LMS algorithm to equalize a channel with the transfer function
given below. The input signal is a four Quadrature Amplitude Modulation
(QAM)5 signal representing a randomly generated bit stream with the signal-

to-noise ratio
�2

Qx

�2n
D 20 at the receiver end, that is, Qx.k/ is the received signal

without taking into consideration the additional channel noise. The adaptive
filter has ten coefficients.

H.z/ D .0:34� 0:27|/C .0:87C 0:43|/z�1 C .0:34 � 0:21|/z�2

(a) Calculate the upper bound for� .�max/ to guarantee the algorithm stability.
(b) Run the algorithm for �max=2, �max=10, and �max=50. Comment on the

convergence behavior in each case.
(c) Plot the real versus imaginary parts of the received signal before and after

equalization.
(d) Increase the number of coefficients to 20 and repeat the experiment in (c).

26. In a system identification problem the input signal is generated from a four
QAM of the form

x.k/ D xre.k/C |xim.k/

where xre.k/ and xim.k/ assume values ˙1 randomly generated. The unknown
system is described by

H.z/ D 0:32C0:21|C .�0:3C0:7|/z�1C .0:5�0:8|/z�2C .0:2C0:5|/z�3

The adaptive filter is also a third-order complex FIR filter, and the additional
noise is zero-mean Gaussian white noise with variance �2n D 0:4. Using the
complex LMS algorithm, choose an appropriate �, run an ensemble of 20
experiments, and plot the average learning curve.

5The M -ary QAM constellation points are represented in by si D Qai C | Qbi , with Qai D
˙ Qd;˙3 Qd; : : : ;˙.pM � 1/ Qd , and Qbi D ˙ Qd ;˙3 Qd; : : : ;˙.pM � 1/ Qd . The parameter Qd is
represents half of the distance between two points in the constellation.
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Chapter 4
LMS-Based Algorithms

4.1 Introduction

There are a number of algorithms for adaptive filters which are derived from the
conventional LMS algorithm discussed in the previous chapter. The objective of the
alternative LMS-based algorithms is either to reduce computational complexity or
convergence time. In this chapter, several LMS-based algorithms are presented and
analyzed, namely, the quantized-error algorithms [1–11], the frequency-domain (or
transform-domain) LMS algorithm [12–14], the normalized LMS algorithm [15],
the LMS-Newton algorithm [16, 17], and the affine projection algorithm [18–26].
Several algorithms that are related to the main algorithms presented in this chapter
are also briefly discussed.

The quantized-error algorithms reduce the computational complexity of the LMS
algorithms by representing the error signal with short wordlength or by a simple
power-of-two number.

The convergence speed in the LMS-Newton algorithm is independent of the
eigenvalue spread of the input signal correlation matrix. This improvement is
achieved by using an estimate of the inverse of the input signal correlation matrix,
leading to a substantial increase in the computational complexity.

The normalized LMS algorithm utilizes a variable convergence factor that
minimizes the instantaneous error. Such a convergence factor usually reduces the
convergence time but increases the misadjustment.

In the frequency-domain algorithm, a transform is applied to the input signal in
order to allow the reduction of the eigenvalue spread of the transformed signal cor-
relation matrix as compared to the eigenvalue spread of the input signal correlation
matrix. The LMS algorithm applied to the better conditioned transformed signal
achieves faster convergence.

The affine projection algorithm reuses old data resulting in fast convergence
when the input signal is highly correlated, leading to a family of algorithms that
can trade-off computational complexity with convergence speed.

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
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4.2 Quantized-Error Algorithms

The computational complexity of the LMS algorithm is mainly due to multi-
plications performed in the coefficient updating and in the calculation of the
adaptive-filter output. In applications where the adaptive filters are required to
operate in high speed, such as echo cancellation and channel equalization, it is
important to minimize hardware complexity.

A first step to simplify the LMS algorithm is to apply quantization to the error
signal, generating the quantized-error algorithm which updates the filter coefficients
according to

w.k C 1/ D w.k/C 2�QŒe.k/�x.k/ (4.1)

where QŒ�� represents a quantization operation. The quantization function is dis-
crete valued, bounded, and nondecreasing. The type of quantization identifies the
quantized-error algorithm.

If the convergence factor � is a power-of-two number, the coefficient updating
can be implemented with simple multiplications, basically consisting of bit shifts
and additions. In a number of applications, such as the echo cancellation in full-
duplex data transmission [2] and equalization of channels with binary data [3], the
input signal x.k/ is a binary signal, i.e., assumes values C1 and �1. In this case,
the adaptive filter can be implemented without any intricate multiplication.

The quantization of the error actually implies a modification in the objective
function that is minimized, denoted by F Œe.k/�. In a general gradient-type algorithm
coefficient updating is performed by

w.k C 1/ D w.k/ � �
@F Œe.k/�

@w.k/
D w.k/� �

@F Œe.k/�

@e.k/

@e.k/

@w.k/
(4.2)

For a linear combiner the above equation can be rewritten as

w.k C 1/ D w.k/C �
@F Œe.k/�

@e.k/
x.k/ (4.3)

Therefore, the objective function that is minimized in the quantized-error
algorithms is such that

@F Œe.k/�

@e.k/
D 2QŒe.k/� (4.4)

where F Œe.k/� is obtained by integrating 2QŒe.k/� with respect to e.k/. Note that
the chain rule applied in (4.3) is not valid at the points of discontinuity ofQŒ��where
F Œe.k/� is not differentiable [6].

The performances of the quantized-error and LMS algorithms are obviously dif-
ferent. The analyses of some widely used quantized-error algorithms are presented
in the following subsections.
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Fig. 4.1 Sign-error adaptive FIR filter: QŒe.k/� D sgnŒe.k/�

4.2.1 Sign-Error Algorithm

The simplest form for the quantization function is the sign (sgn) function defined by

sgnŒb� D
8
<

:

1; b > 0

0; b D 0

�1; b < 0
(4.5)

The sign-error algorithm utilizes the sign function as the error quantizer, where the
coefficient vector updating is performed by

w.k C 1/ D w.k/C 2� sgnŒe.k/� x.k/ (4.6)

Figure 4.1 illustrates the realization of the sign-error algorithm for a delay line
input x.k/. If � is a power-of-two number, one iteration of the sign-error algorithm
requiresNC1multiplications for the error generation. The total number of additions
is 2NC2. The detailed description of the sign-error algorithm is shown in Algorithm
4.1. Obviously, the vectors x.0/ and w.0/ can be initialized in a different way from
that described in the algorithm.
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Algorithm 4.1 Sign-Error Algorithm
Initialization

x.0/ D w.0/ D Œ0 0 : : : 0�T

Do for k � 0
e.k/ D d.k/� xT .k/w.k/
 D sgnŒe.k/�
w.k C 1/ D w.k/C 2�x.k/

The objective function that is minimized by the sign-error algorithm is the
modulus of the error multiplied by two, i.e.,

F Œe.k/� D 2je.k/j (4.7)

Note that the factor two is included only to present the sign-error and LMS
algorithms in a unified form. Obviously, in real implementation this factor can be
merged with convergence factor �.

Some of the properties related to the convergence behavior of the sign-error
algorithm in a stationary environment are described, following the same procedure
used in the previous chapter for the LMS algorithm.

4.2.1.1 Steady-State Behavior of the Coefficient Vector

The sign-error algorithm can be alternatively described by

�w.k C 1/ D �w.k/C 2� sgnŒe.k/� x.k/ (4.8)

where �w.k/ D w.k/ � wo. The expected value of the coefficient-error vector is
then given by

EŒ�w.k C 1/� D EŒ�w.k/�C 2�EfsgnŒe.k/� x.k/g (4.9)

The importance of the probability density function of the measurement noise n.k/
on the convergence of the sign-error algorithm is a noteworthy characteristic. This
is due to the fact that EfsgnŒe.k/� x.k/g D EfsgnŒ��wT .k/x.k/ C n.k/�x.k/g,
where the result of the sign operation is highly dependent on the probability density
function of n.k/. In [1], the authors present a convergence analysis of the output
MSE, i.e., EŒe2.k/�, for different distributions of the additional noise, such as
Gaussian, uniform, and binary distributions.

A closer examination of (4.8) indicates that even if the error signal becomes very
small, the adaptive-filter coefficients will be continually updated due to the sign
function applied to the error signal. Therefore, in a situation where the adaptive
filter has a sufficient number of coefficients to model the desired signal, and there
is no additional noise, �w.k/ will not converge to zero. In this case, w.k/ will be
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convergent to a balloon centered at wo, when � is appropriately chosen. The mean
absolute value of e.k/ is also convergent to a balloon centered around zero, that
means je.k/j remains smaller than the balloon radius r [6].

Recall that the desired signal without measurement noise is denoted as d 0.k/. If it
is considered that d 0.k/ and the elements of x.k/ are zero mean and jointly Gaussian
and that the additional noise n.k/ is also zero mean, Gaussian, and independent of
x.k/ and d 0.k/, the error signal will also be zero-mean Gaussian signal conditioned
on �w.k/. In this case, using the results of the Price theorem described in [29] and
in Papoulis [30], the following result is valid

EfsgnŒe.k/� x.k/g �
s

2

	�.k/
EŒx.k/e.k/� (4.10)

where �.k/ is the variance of e.k/ assuming the error has zero mean. The above
approximation is valid for small values of �. For large �, e.k/ is dependent on
�w.k/ and conditional expected value on �w.k/ should be used instead [3–5].

By applying (4.10) in (4.9) and by replacing e.k/ by eo.k/ � �wT .k/x.k/, it
follows that

EŒ�w.k C 1/� D
(

I � 2�

s
2

	�.k/
EŒx.k/xT .k/�

)

EŒ�w.k/�

C2�
s

2

	�.k/
EŒeo.k/x.k/� (4.11)

From the orthogonality principle we know that EŒeo.k/x.k/� D 0, so that the last
element of the above equation is zero. Therefore,

EŒ�w.k C 1/� D
"

I � 2�
s

2

	�.k/
R

#

EŒ�w.k/� (4.12)

Following the same steps for the analysis of EŒ�w.k/� in the traditional LMS
algorithm, it can be shown that the coefficients of the adaptive filter implemented
with the sign-error algorithm converge in the mean if the convergence factor is
chosen in the range

0 < � <
1

�max

r
	�.k/

2
(4.13)

where �max is the largest eigenvalue of R. It should be mentioned that in case �max
�min

is
large, the convergence speed of the coefficients depends on the value of �min which
is related to the slowest mode in (4.12). This conclusion can be drawn by following
the same steps of the convergence analysis of the LMS algorithm, where by applying
a transformation to (4.12) we obtain an equation similar to (3.17).
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A more practical range for �, avoiding the use of eigenvalue, is given by

0 < � <
1

trŒR�

r
	�.k/

2
(4.14)

Note that the upper bound for the value of � requires the knowledge of the MSE,
i.e., �.k/.

4.2.1.2 Coefficient-Error-Vector Covariance Matrix

The covariance of the coefficient-error vector defined as

covŒ�w.k/� D E
h
.w.k/ � wo/ .w.k/ � wo/

T
i

(4.15)

is calculated by replacing (4.8) in (4.15) following the same steps used in the LMS
algorithm. The resulting difference equation for covŒ�w.k/� is given by

covŒ�w.k C 1/� D covŒ�w.k/�C 2�EfsgnŒe.k/�x.k/�wT .k/g
C2�EfsgnŒe.k/��w.k/xT .k/g C 4�2R (4.16)

The first term with expected value operation in the above equation can be
expressed as

EfsgnŒe.k/�x.k/�wT .k/g D EfsgnŒeo.k/��wT .k/x.k/�x.k/�wT .k/g
D EfEŒsgnŒeo.k/��wT .k/x.k/�x.k/j�w.k/��wT .k/g

whereEŒaj�w.k/� is the expected value of a conditioned on the value of�w.k/. In
the first equality, e.k/ was replaced by the relation d.k/� wT .k/x.k/� wT

o x.k/C
wT
o x.k/ D eo.k/��wT .k/x.k/. In the second equality, the concept of conditioned

expected value was applied.
Using the Price theorem and considering that the minimum output error eo.k/ is

zero-mean and uncorrelated with x.k/, the following approximations result

EfEŒsgnŒeo.k/ ��wT .k/x.k/�x.k/j�w.k/��wT .k/g

� E

(s
2

	�.k/
EŒeo.k/x.k/� x.k/xT .k/�w.k/j�w.k/��wT .k/

)

� �E
(s

2

	�.k/
R�w.k/�wT .k/

)

D �
s

2

	�.k/
RcovŒ�w.k/� (4.17)
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Following similar steps to derive the above equation, the second term with the
expected value operation in (4.16) can be approximated as

EfsgnŒe.k/��w.k/xT .k/g � �
s

2

	�.k/
covŒ�w.k/�R (4.18)

Substituting (4.17) and (4.18) in (4.16), we can calculate the vector v0.k/
consisting of diagonal elements of covŒ�w0.k/�, using the same steps employed
in the LMS case (see (3.26)). The resulting dynamic equation for v0.k/ is given by

v0.k C 1/ D
 

I � 4�
s

2

	�.k/
�

!

v0.k/C 4�2� (4.19)

The value of � must be chosen in a range that guarantees the convergence of v0.k/,
which is given by

0 < � <
1

2�max

r
	�.k/

2
(4.20)

A more severe and practical range for � is

0 < � <
1

2trŒR�

r
	�.k/

2
(4.21)

For k ! 1 each element of v0.k/ tends to

vi .1/ D �

r
	�.1/

2
(4.22)

4.2.1.3 Excess Mean-Square Error and Misadjustment

The excess MSE can be expressed as a function of the elements of v0.k/ by

��.k/ D
NX

iD0
�ivi .k/ D �T v0.k/ (4.23)

Substituting (4.22) in (4.23) yields

�exc D �

NX

iD0
�i

r
	�.k/

2
; k ! 1

D �

NX

iD0
�i

r

	
�min C �exc

2
(4.24)
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since limk!1 �.k/ D �min C �exc. Therefore,

�2exc D �2

 
NX

iD0
�i

!2 �
	�min

2
C 	�exc

2

�

(4.25)

There are two solutions for �2exc in the above equation, where only the positive one is
valid. The meaningful solution for �exc, when � is small, is approximately given by

�exc � �

r
	�min

2

NX

iD0
�i

D �

r
	�min

2
trŒR� (4.26)

By comparing the excess MSE predicted by the above equation with the
corresponding (3.49) for the LMS algorithm, it can be concluded that both can
generate the same excess MSE if � in the sign-error algorithm is chosen such that

� D �LMS

r
2

	
��1

min (4.27)

The misadjustment in the sign-error algorithm is

M D �

r
	

2�min
trŒR� (4.28)

Equation (4.26) would leave the impression that if there is no additional noise
and there are sufficient parameters in the adaptive filter, the output MSE would
converge to zero. However, when �.k/ becomes small, jjEŒ�w.k C 1/�jj in (4.11)
can increase, since the condition of (4.13) will not be satisfied. This is the situation
where the parameters reach the convergence balloon. In this case, from (4.8) we can
conclude that

jj�w.k C 1/jj2 � jj�w.k/jj2 D �4� sgnŒe.k/� e.k/C 4�2jjx.k/jj2 (4.29)

from where it is possible to show that a decrease in the norm of �w.k/ is obtained
only when

je.k/j > �jjx.k/jj2 (4.30)

For no additional noise, first transpose the vectors in (4.8) and postmultiply each
side by x.k/. Next, squaring the resulting equation and applying the expected value
operation on each side, the obtained result is

EŒe2.k C 1/� D EŒe2.k/� � 4�EŒje.k/j jjx.k/jj2�C 4�2EŒjjx.k/jj4� (4.31)



4.2 Quantized-Error Algorithms 145

After convergenceEŒe2.k C 1/� � EŒe2.k/�. Also, considering that

EŒje.k/j jjx.k/jj2� � EŒje.k/j�EŒjjx.k/jj2�

and

EŒjjx.k/jj4�
EŒjjx.k/jj2� � EŒjjx.k/jj2�

we conclude that

EŒje.k/j� � �EŒjjx.k/jj2�; k ! 1 (4.32)

For zero-mean Gaussian e.k/, the following approximation is valid

EŒje.k/j� �
r
2

	
�e.k/; k ! 1 (4.33)

therefore, the expected variance of e.k/ is

�2e .k/ � 	

2
�2 tr2ŒR�; k ! 1 (4.34)

where we used the relation trŒR� D EŒjjx.k/jj2�. This relation gives an estimate of
the variance of the output error when no additional noise exists. As can be noted,
unlike the LMS algorithm, there is an excess MSE in the sign-error algorithm caused
by the nonlinear device, even when �2n D 0.

If n.k/ has frequently large absolute values as compared to ��wT .k/x.k/, then
for most iterations sgnŒe.k/� D sgnŒn.k/�. As a result, the sign-error algorithm
is fully controlled by the additional noise. In this case, the algorithm does not
converge.

4.2.1.4 Transient Behavior

The ratios rwi of the geometric decaying convergence curves of the coefficients
in the sign-error algorithm can be derived from (4.12) by employing an identical
analysis of the transient behavior for the LMS algorithm. The ratios are given by

rwi D
 

1 � 2�
s

2

	�.k/
�i

!

(4.35)

for i D 0; 1; : : : ; N . If � is chosen as suggested in (4.27), in order to reach the same
excess MSE of the LMS algorithm, then

rwi D
 

1� 4

	
�LMS

s
�min

�.k/
�i

!

(4.36)
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By recalling that rwi for the LMS algorithm is .1 � 2�LMS�i/, since 2
	

q
�min
�.k/

< 1,

it is concluded that the sign-error algorithm is slower than the LMS for the same
excess MSE.

Example 4.1. Suppose in an adaptive-filtering environment that the input signal
consists of

x.k/ D e|!0k C n.k/

and that the desired signal is given by

d.k/ D e|!0.k�1/

where n.k/ is a uniformly distributed white noise with variance �2n D 0:1 and !0 D
2	
M

. In this case M D 8.
Compute the input signal correlation matrix for a first-order adaptive filter.

Calculate the value of �max for the sign-error algorithm.

Solution. The input signal correlation matrix for this example can be calculated as
shown below:

R D
�
1C �2n e|!0

e�|!0 1C �2n

�

Since in this case trŒR� D 2:2 and �min D 0:1, we have

�exc � �

r
	�min

2
trŒR� D 0:87�

The range of values of the convergence factor is given by

0 < � <
1

2trŒR�

r
	.�min C �exc/

2

From the above expression, it is straightforward to calculate the upper bound for the
convergence factor that is given by

�max � 0:132 �

4.2.2 Dual-Sign Algorithm

The dual-sign algorithm attempts to perform large corrections to the coefficient
vector when the modulus of the error signal is larger than a prescribed level.
The basic motivation to use the dual-sign algorithm is to avoid the slow convergence
inherent to the sign-error algorithm that is caused by replacing e.k/ by sgnŒe.k/�
when je.k/j is large.
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The quantization function for the dual-sign algorithm is given by

dsŒa� D
�
� sgnŒa�; jaj > 
sgnŒa�; jaj � 

(4.37)

where � > 1 is a power of two. The dual-sign algorithm utilizes the function above
described as the error quantizer, and the coefficient updating is performed as

w.k C 1/ D w.k/C 2� dsŒe.k/�x.k/ (4.38)

The objective function that is minimized by the dual-sign algorithm is given by

F Œe.k/� D
�
2�je.k/j � 2.� � 1/; je.k/j > 
2je.k/j; je.k/j � 

(4.39)

where the constant 2.� � 1/ was included in the objective function to make it
continuous. Obviously the gradient of F Œe.k/� with respect to the filter coefficients
is 2� dsŒe.k/�x.k/ except at points where dsŒe.k/� is nondifferentiable [6].

The same analysis procedure used for the sign-error algorithm can be applied
to the dual-sign algorithm except for the fact that the quantization function is now
different. The alternative quantization leads to particular expectations of nonlinear
functions whose solutions are not presented here. The interested reader should refer
to the work of Mathews [7]. The choices of � and  determine the convergence
behavior of the dual-sign algorithm [7], typically, a large � tends to increase both
convergence speed and excess MSE. A large  tends to reduce both the convergence
speed and the excess MSE. If limk!1 �.k/ 	 2, the excess MSE of the dual-
sign algorithm is approximately equal to the one given by (4.26) for the sign-error
algorithm [7], since in this case je.k/j is usually much smaller than . For a given
MSE in steady state, the dual-sign algorithm is expected to converge faster than the
sign-error algorithm.

4.2.3 Power-of-Two Error Algorithm

The power-of-two error algorithm applies to the error signal a quantization de-
fined by

peŒb� D
8
<

:

sgnŒb�; jbj � 1

2floorŒlog2jbj� sgnŒb�; 2�bdC1 � jbj < 1
�sgnŒb�; jbj < 2�bdC1

(4.40)

where floorŒ�� indicates integer smaller than Œ��, bd is the data wordlength excluding
the sign bit, and � is usually 0 or 2�bd .
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Fig. 4.2 Transfer characteristic of a quantizer with 3 bits and � D 0

The coefficient updating for the power-of-two error algorithm is given by

w.k C 1/ D w.k/C 2� peŒe.k/�x.k/ (4.41)

For � D 2�bd , the additional noise and the convergence factor can be arbitrarily
small and the algorithm will not stop updating. For � D 0, when je.k/j < 2�bdC1
the algorithm reaches the so-called dead zone, where the algorithm stops updating
if je.k/j is smaller than 2�bdC1 most of the time [4, 8].

A simplified and somewhat accurate analysis of this algorithm can be performed
by approximating the function peŒe.k/� by a straight line passing through the
center of each quantization step. In this case, the quantizer characteristics can
be approximated by peŒe.k/� � 2

3
e.k/ as illustrated in Fig. 4.2. Using this

approximation, the algorithm analysis can be performed exactly in the same way
as the LMS algorithm. The results for the power-of-two error algorithm can be
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obtained from the results for the LMS algorithm, by replacing � by 2
3
�. It should

be mentioned that such results are only approximate, and more accurate ones can be
found in [8].

4.2.4 Sign-Data Algorithm

The algorithms discussed in this subsection cannot be considered as quantized error
algorithms, but since they were proposed with similar motivation we decided to
introduce them here. An alternative way to simplify the computational burden of
the LMS algorithm is to apply quantization to the data vector x.k/. One possible
quantization scheme is to apply the sign function to the input signals, giving rise to
the sign-data algorithm whose coefficient updating is performed as

w.k C 1/ D w.k/C 2�e.k/ sgnŒx.k/� (4.42)

where the sign operation is applied to each element of the input vector.
The quantization of the data vector can lead to a decrease in the convergence

speed, and possible divergence. In the LMS algorithm, the average gradient
direction follows the true gradient direction (or steepest-descent direction), whereas
in the sign-data algorithm only a discrete set of directions can be followed. The
limitation in the gradient direction followed by the sign-data algorithm may cause
updates that result in frequent increase in the squared error, leading to instability.
Therefore, it is relatively easy to find inputs that would lead to the convergence of
the LMS algorithm and to the divergence of the sign-data algorithm [6,9]. It should
be mentioned, however, that the sign-data algorithm is stable for Gaussian inputs,
and, as such, has been found useful in certain applications.

Another related algorithm is the sign-sign algorithm that has very simple
implementation. The coefficient updating in this case is given by

w.k C 1/ D w.k/C 2� sgnŒe.k/� sgnŒx.k/� (4.43)

The sign-sign algorithm also presents the limitations related to the quantized-data
algorithm.

4.3 The LMS-Newton Algorithm

In this section, the LMS-Newton algorithm incorporating estimates of the second-
order statistics of the environment signals is introduced. The objective of the
algorithm is to avoid the slow convergence of the LMS algorithm when the input
signal is highly correlated. The improvement in the convergence rate is achieved at
the expense of an increased computational complexity.
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Nonrecursive realization of the adaptive filter leads to an MSE surface that is a
quadratic function of the filter coefficients. For the direct-form FIR structure, the
MSE can be described by

�.k C 1/ D �.k/C gw
T .k/ Œw.k C 1/� w.k/�

C Œw.k C 1/� w.k/�T R Œw.k C 1/� w.k/� (4.44)

�.k/ represents the MSE when the adaptive-filter coefficients are fixed at w.k/ and
gw.k/ D �2p C 2Rw.k/ is the gradient vector of the MSE surface as related to the
filter coefficients at w.k/. The MSE is minimized at the instant k C 1 if

w.k C 1/ D w.k/ � 1

2
R�1gw.k/ (4.45)

This equation is the updating formula of the Newton method. Note that in the
ideal case, where matrix R and gradient vector gw.k/ are known precisely, w.k C
1/ D R�1p D wo. Therefore, the Newton method converges to the optimal solution
in a single iteration, as expected for a quadratic objective function.

In practice, only estimates of the autocorrelation matrix R and of the gradient
vector are available. These estimates can be applied to the Newton updating formula
in order to derive a Newton-like method given by

w.k C 1/ D w.k/ � � OR�1
.k/Ogw.k/ (4.46)

The convergence factor � is introduced so that the algorithm can be protected from
divergence, originated by the use of noisy estimates of R and gw.k/.

For stationary input signals, an unbiased estimate of R is

OR.k/ D 1

k C 1

kX

iD0
x.i/xT .i/

D k

k C 1
OR.k � 1/C 1

k C 1
x.k/xT .k/ (4.47)

since

EŒ OR.k/� D 1

k C 1

kX

iD0
EŒx.i/xT .i/�

D R (4.48)

However, this is not a practical estimate for R, since for large k any change on
the input signal statistics would be disregarded due to the infinite memory of the
estimation algorithm.
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Another form to estimate the autocorrelation matrix can be generated by
employing a weighted summation as follows:

OR.k/ D ˛x.k/xT .k/C .1 � ˛/ OR.k � 1/

D ˛x.k/xT .k/C ˛

k�1X

iD0
.1 � ˛/k�ix.i/xT .i/ (4.49)

where in practice, ˛ is a small factor chosen in the range 0 < ˛ � 0:1. This range
of values of ˛ allows a good balance between the present and past input signal
information. By taking the expected value on both sides of the above equation and
assuming that k ! 1, it follows that

EŒ OR.k/� D ˛

kX

iD0
.1 � ˛/k�iEŒx.i/xT .i/�

D R k ! 1 (4.50)

Therefore, the estimate of R of (4.49) is unbiased.
In order to avoid inverting OR.k/, which is required by the Newton-like algorithm,

we can use the so-called matrix inversion lemma given by

ŒA C BCD��1 D A�1 � A�1BŒDA�1B C C�1��1DA�1 (4.51)

where A, B, C and D are matrices of appropriate dimensions, and A and C are
nonsingular. The above relation can be proved by simply showing that the result of
premultiplying the expression on the right-hand side by A C BCD is the identity
matrix (see problem 21). If we choose A D .1�˛/ OR.k � 1/, B D DT D x.k/, and
C D ˛, it can be shown that

OR�1
.k/ D 1

1 � ˛

2

4 OR�1
.k � 1/�

OR�1
.k � 1/x.k/xT .k/ OR�1

.k � 1/

1�˛
˛

C xT .k/ OR�1
.k � 1/x.k/

3

5 (4.52)

The resulting equation to calculate OR�1
.k/ is less complex to update (of order

N2 multiplications) than the direct inversion of OR.k/ at every iteration (of orderN3

multiplications).
If the estimate for the gradient vector used in the LMS algorithm is applied in

(4.46), the following coefficient updating formula for the LMS-Newton algorithm
results

w.k C 1/ D w.k/C 2 � e.k/ OR�1
.k/x.k/ (4.53)
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Algorithm 4.2 LMS-Newton Algorithm
Initialization

RO �1
.�1/ D ıI .ffi a small positive constant/

w.0/ D x.�1/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/ D d.k/� xT .k/w.k/

RO �1
.k/ D 1

1�˛

"

OR�1
.k � 1/� OR

�1

.k�1/x.k/xT .k/ OR
�1

.k�1/

1�˛
˛ CxT .k/ OR

�1

.k�1/x.k/

#

w.k C 1/ D w.k/C 2 � e.k/ OR�1
.k/x.k/

The complete LMS-Newton algorithm is outlined in Algorithm 4.2. It should be
noticed that alternative initialization procedures to the one presented in Algorithm
4.2 are possible.

As previously mentioned, the LMS gradient direction has the tendency to
approach the ideal gradient direction. Similarly, the vector resulting from the

multiplication of OR�1
.k/ to the LMS gradient direction tends to approach the

Newton direction. Therefore, we can conclude that the LMS-Newton algorithm
converges in a more straightforward path to the minimum of the MSE surface. It can
also be shown that the convergence characteristics of the algorithm is independent
of the eigenvalue spread of R.

The LMS-Newton algorithm is mathematically identical to the recursive least-
squares (RLS) algorithm if the forgetting factor (�) in the latter is chosen such that
2� D ˛ D 1 � � [41]. Since a complete discussion of the RLS algorithm is given
later, no further discussion of the LMS-Newton algorithm is included here.

4.4 The Normalized LMS Algorithm

If one wishes to increase the convergence speed of the LMS algorithm without using
estimates of the input signal correlation matrix, a variable convergence factor is
a natural solution. The normalized LMS algorithm usually converges faster than
the LMS algorithm, since it utilizes a variable convergence factor aiming at the
minimization of the instantaneous output error.

The updating equation of the LMS algorithm can employ a variable convergence
factor�k in order to improve the convergence rate. In this case, the updating formula
is expressed as

w.k C 1/ D w.k/C 2�ke.k/x.k/ D w.k/C� Qw.k/ (4.54)

where �k must be chosen with the objective of achieving a faster convergence.
A possible strategy is to reduce the instantaneous squared error as much as possible.
The motivation behind this strategy is that the instantaneous squared error is a good
and simple estimate of the MSE.

m
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The instantaneous squared error is given by

e2.k/ D d2.k/C wT .k/x.k/xT .k/w.k/� 2d.k/wT .k/x.k/ (4.55)

If a change given by Qw.k/ D w.k/C� Qw.k/ is performed in the weight vector,
the corresponding squared error can be shown to be

Qe2.k/ D e2.k/C 2� QwT .k/x.k/xT .k/w.k/C� QwT .k/x.k/xT .k/� Qw.k/
�2d.k/� QwT .k/x.k/ (4.56)

It then follows that

�e2.k/
4D Qe2.k/ � e2.k/
D �2� QwT .k/x.k/e.k/C� QwT .k/x.k/xT .k/� Qw.k/ (4.57)

In order to increase the convergence rate, the objective is to make �e2.k/ negative
and minimum by appropriately choosing �k .

By replacing� Qw.k/ D 2�ke.k/x.k/ in (4.57), it follows that

�e2.k/ D �4�ke2.k/xT .k/x.k/C 4�2ke
2.k/ŒxT .k/x.k/�2 (4.58)

The value of �k such that @�e
2.k/

@�k
D 0 is given by

�k D 1

2xT .k/x.k/
(4.59)

This value of �k leads to a negative value of �e2.k/, and, therefore, it corresponds
to a minimum point of �e2.k/.

Using this variable convergence factor, the updating equation for the LMS
algorithm is then given by

w.k C 1/ D w.k/C e.k/x.k/
xT .k/x.k/

(4.60)

Usually a fixed convergence factor�n is introduced in the updating formula in order
to control the misadjustment, since all the derivations are based on instantaneous
values of the squared errors and not on the MSE. Also a parameter � should be
included, in order to avoid large step sizes when xT .k/x.k/ becomes small. The
coefficient updating equation is then given by

w.k C 1/ D w.k/C �n

� C xT .k/x.k/
e.k/ x.k/ (4.61)

The resulting algorithm is called the normalized LMS algorithm, and is summarized
in Algorithm 4.3.
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Algorithm 4.3 The Normalized LMS Algorithm
Initialization

x.0/ D Ow.0/ D Œ0 0 : : : 0�T

choose �n in the range 0 < �n � 1

� D small constant
Do for k � 0

e.k/ D d.k/� xT .k/w.k/
w.k C 1/ D w.k/C �n

�CxT .k/x.k/ e.k/ x.k/

The range of values of �n to guarantee stability can be derived by first
considering that EŒxT .k/x.k/� D trŒR� and that

E

�
e.k/x.k/

xT .k/x.k/

�

� EŒe.k/x.k/�
EŒxT .k/x.k/�

Next, consider that the average value of the convergence factor actually applied to
the LMS direction 2e.k/x.k/ is �n

2 trŒR�
. Finally, by comparing the updating formula

of the standard LMS algorithm with that of the normalized LMS algorithm, the
desired upper bound result follows:

0 < � D �n

2 trŒR�
<

1

trŒR�
(4.62)

or 0 < �n < 2. In practice the convergence factor is chosen in the range 0 < �n � 1.

4.5 The Transform-Domain LMS Algorithm

The transform-domain LMS algorithm is another technique to increase the conver-
gence speed of the LMS algorithm when the input signal is highly correlated. The
basic idea behind this methodology is to modify the input signal to be applied to the
adaptive filter such that the conditioning number of the corresponding correlation
matrix is improved.

In the transform-domain LMS algorithm, the input signal vector x.k/ is trans-
formed in a more convenient vector s.k/, by applying an orthonormal (or unitary)
transform [10–12], i.e.,

s.k/ D Tx.k/ (4.63)

where TTT D I. The MSE surface related to the direct-form implementation of the
FIR adaptive filter can be described by

�.k/ D �min C�wT .k/R�w.k/ (4.64)
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Fig. 4.3 Transform-domain adaptive filter

where �w.k/ D w.k/ � wo. In the transform-domain case, the MSE surface
becomes

�.k/ D �min C� OwT
.k/EŒs.k/sT .k/�� Ow.k/

D �min C� OwT
.k/TRTT� Ow.k/ (4.65)

where Ow.k/ represents the adaptive coefficients of the transform-domain filter.
Fig. 4.3 depicts the transform-domain adaptive filter.

The effect of applying the transformation matrix T to the input signal is to rotate
the error surface as illustrated in the numerical examples of Figs. 4.4 and 4.5. It
can be noticed that the eccentricity of the MSE surface remains unchanged by the
application of the transformation, and, therefore, the eigenvalue spread is unaffected
by the transformation. As a consequence, no improvement in the convergence
rate is expected to occur. However, if in addition each element of the transform
output is power normalized, the distance between the points where the equal-error
contours (given by the ellipses) meet the coefficient axes (� Ow0 and � Ow1) and
the origin (point 0 � 0) are equalized. As a result, a reduction in the eigenvalue
spread is expected, especially when the coefficient axes are almost aligned with the
principal axes of the ellipses. Fig. 4.6 illustrates the effect of power normalization.
The perfect alignment and power normalization means that the error surface will
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become a hyperparaboloid spheric, with the eigenvalue spread becoming equal to
one. Alternatively, it means that the transform was able to turn the elements of the
vector s.k/ uncorrelated. Fig. 4.7 shows another error surface which after properly
rotated and normalized is transformed into the error surface of Fig. 4.8.

The autocorrelation matrix related to the transform-domain filter is given by

Rs D TRTT (4.66)

therefore if the elements of s.k/ are uncorrelated, matrix Rs is diagonal, meaning
that the application of the transformation matrix was able to diagonalize the
autocorrelation matrix R. It can then be concluded that TT , in this case, corresponds
to a matrix whose columns consist of the orthonormal eigenvectors of R. The
resulting transformation matrix corresponds to the Karhunen-Loève Transform
(KLT) [28].

The normalization of s.k/ and subsequent application of the LMS algorithm
would lead to a transform-domain algorithm with the limitation that the solution
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would be independent of the input signal power. An alternative solution, without
this limitation, is to apply the normalized LMS algorithm to update the coefficients
of the transform-domain algorithm. We can give an interpretation for the good
performance of this solution. Assuming the transform was efficient in the rotation
of the MSE surface, the variable convergence factor is large in the update of the
coefficients corresponding to low signal power. On the other hand, the convergence
factor is small if the corresponding transform output power is high. Specifically, the
signals si .k/ are normalized by their power denoted by �2i .k/ only when applied in
the updating formula. The coefficient update equation in this case is

Owi .k C 1/ D Owi .k/C 2�

� C �2i .k/
e.k/si .k/ (4.67)

where �2i .k/ D ˛s2i .k/C .1 � ˛/�2i .k � 1/, ˛ is a small factor chosen in the range
0 < ˛ � 0:1, and � is also a small constant to avoid that the second term of the
update equation becomes too large when �2i .k/ is small.
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In matrix form the above updating equation can be rewritten as

Ow.k C 1/ D Ow.k/C 2�e.k/˙�2.k/s.k/ (4.68)

where˙�2.k/ is a diagonal matrix containing as elements the inverse of the power
estimates of the elements of s.k/ added to � .

It can be shown that if � is chosen appropriately, the adaptive-filter coefficients
converge to

Owo D Rs
�1ps (4.69)

where Rs D TRTT and ps D Tp. As a consequence, the optimum coefficient
vector is

Owo D .TRTT /
�1

Tp D TR�1p D Two (4.70)

The convergence speed of the coefficient vector Ow.k/ is determined by the
eigenvalue spread of˙�2.k/Rs .

The requirement on the transformation matrix is that it should be invertible. If
the matrix T is not square (number of columns larger than rows), the space spanned
by the polynomials formed with the rows of T will be of dimensionN C1, but these
polynomials are of order larger thanN . This subspace does not contain the complete
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space of polynomials of orderN . In general, except for very specific desired signals,
the entire space of N th-order polynomials would be required. For an invertible
matrix T there is a one-to-one correspondence between the solutions obtained by the
LMS and transform-domain LMS algorithms. Although the transformation matrix
is not required to be unitary, it appears that no advantages are obtained by using
nonunitary transforms [13].

The best unitary transform for the transform-domain adaptive filter is the KLT.
However, since the KLT is a function of the input signal, it cannot be efficiently
computed in real time. An alternative is to choose a unitary transform that is close
to the KLT of the particular input signal. By close is meant that both transforms
perform nearly the same rotation of the MSE surface. In any situation, the choice of
an appropriate transform is not an easy task. Some guidelines can be given, such as:
(a) Since the KLT of a real signal is real, the chosen transform should be real for real
input signals; (b) For speech signals the discrete-time cosine transform (DCT) is a
good approximation for the KLT [30]; (c) Transforms with fast algorithms should
be given special attention.
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A number of real transforms such as DCT, discrete-time Hartley transform, and
others, are available [30]. Most of them have fast algorithms or can be implemented
in recursive frequency-domain format. In particular, the outputs of the DCT are
given by

s0.k/ D 1p
N C 1

NX

lD0
x.k � l/ (4.71)

and

si .k/ D
r

2

N C 1

NX

lD0
x.k � l/ cos

�

	i
.2l C 1/

2.N C 1/

�

(4.72)

From Fig. 4.3, we observe that the delay line and the unitary transform form a
single-input and multiple-output preprocessing filter. In case the unitary transform
is the DCT, the transfer function from the input to the outputs of the DCT
preprocessing filter can be described in a recursive format as follows:
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Algorithm 4.4 The Transform-Domain LMS Algorithm
Initialization

x.0/ D Ow.0/ D Œ0 0 : : : 0�T

� D small constant
0 < ˛ � 0:1

Do for each x.k/ and d.k/ given for k � 0

s.k/ D Tx.k/
e.k/ D d.k/� sT .k/ Ow.k/
Ow.k C 1/ D Ow.k/C 2 � e.k/˙�2.k/s.k/

Ti .z/ D k0

N C 1
cos �i

ŒzNC1 � .�1/i �.z � 1/
zN Œz2 � .2 cos 2�i /z C 1�

(4.73)

where

k0 D
� p

2 if i D 0

2 if i D 1; :::; N

and �i D 	i
2.NC1/ . The derivation details are not given here, since they are beyond

the scope of this text.
For complex input signals, the discrete-time Fourier transform (DFT) is a natural

choice due to its efficient implementations.
Although no general procedure is available to choose the best transform when

the input signal is not known a priori, the decorrelation performed by the transform,
followed by the power normalization, is sufficient to reduce the eigenvalue spread
for a broad (not all) class of input signals. Therefore, the transform-domain LMS
algorithms are expected to converge faster than the standard LMS algorithm in most
applications [13].

The complete transform-domain LMS algorithm is outlined on Algorithm 4.4.

Example 4.2. Repeat the equalization problem of example 3.1 of the previous
chapter using the transform-domain LMS algorithm.

(a) Compute the Wiener solution.
(b) Choose an appropriate value for � and plot the convergence path for the

transform-domain LMS algorithm on the MSE surface.

Solution. (a) In this example, the correlation matrix of the adaptive-filter input
signal is given by

R D
�
1:6873 �0:7937

�0:7937 1:6873

�

and the cross-correlation vector p is

p D
�
0:9524

0:4762

�
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For square matrix R of dimension 2, the transformation matrix corresponding
to the cosine transform is given by

T D
" p

2
2

p
2
2p

2
2

�
p
2
2

#

For this filter order, the above transformation matrix coincides with the KLT.
The coefficients corresponding to the Wiener solution of the transform-

domain filter are given by

Owo D .TRTT /�1Tp

D
�

1
0:8936

0

0 1
2:4810

� �
1:0102

0:3367

�

D
�
1:1305

0:1357

�

(b) The transform-domain LMS algorithm is applied to minimize the MSE using
a small convergence factor � D 1=300, in order to obtain a smoothly
converging curve. The convergence path of the algorithm in the MSE surface
is depicted in Fig. 4.9. As can be noted, the transformation aligned the
coefficient axes with the main axes of the ellipses belonging to the error surface.
The reader should notice that the algorithm follows an almost straight path to
the minimum and that the effect of the eigenvalue spread is compensated by
the power normalization. The convergence in this case is faster than for the
LMS case. ut

From the transform-domain LMS algorithm point of view, we can consider that
the LMS-Newton algorithm attempts to utilize an estimate of the KLT through
OR�1

.k/. On the other hand, the normalized LMS algorithm utilizes an identity
transform with an instantaneous estimate of the input signal power given by
xT .k/x.k/.

4.6 The Affine Projection Algorithm

There are situations where it is possible to recycle the old data signal in order to im-
prove the convergence of the adaptive-filtering algorithms. Data-reusing algorithms
[18–24, 31] are considered an alternative to increase the speed of convergence in
adaptive-filtering algorithms in situations where the input signal is correlated. The
penalty to be paid by data reusing is increased algorithm misadjustment, and, as
usual, a trade-off between final misadjustment and convergence speed is achieved
through the introduction of a convergence factor.
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Let’s assume we keep the last LC 1 input signal vectors in a matrix as follows:

Xap.k/ D

2

6
6
6
4

x.k/ x.k � 1/ � � � x.k �LC 1/ x.k � L/

x.k � 1/ x.k � 2/ � � � x.k �L/ x.k � L� 1/
:::

:::
: : :

:::
:::

x.k �N/ x.k �N � 1/ � � � x.k � L �N C 1/ x.k �L �N/

3

7
7
7
5

D Œx.k/ x.k � 1/ : : : x.k � L/� (4.74)

We can also define some vectors representing the partial reusing results at a given
iteration k, such as the adaptive-filter output, the desired signal, and the error
vectors.

These vectors are

yap.k/ D XT
ap.k/w.k/ D

2

6
6
6
4

yap;0.k/

yap;1.k/
:::

yap;L.k/

3

7
7
7
5

(4.75)
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dap.k/ D

2

6
6
6
4

d.k/

d.k � 1/
:::

d.k � L/

3

7
7
7
5

(4.76)

eap.k/ D

2

6
6
6
4

eap;0.k/

eap;1.k/
:::

eap;L.k/

3

7
7
7
5

D

2

6
6
6
4

d.k/� yap;0.k/

d.k � 1/� yap;1.k/
:::

d.k �L/ � yap;L.k/

3

7
7
7
5

D dap.k/ � yap.k/ (4.77)

The objective of the affine projection algorithm is to minimize

1

2
kw.k C 1/� w.k/k2

subject to W
dap.k/ � XT

ap.k/w.k C 1/ D 0 (4.78)

The affine projection algorithm maintains the next coefficient vector w.k C 1/ as
close as possible to the current one1 w.k/, while forcing the a posteriori2 error to be
zero.

Using the method of Lagrange multipliers to turn the constrained minimization
into an unconstrained one, the unconstrained function to be minimized is

F Œw.k C 1/� D 1

2
kw.k C 1/� w.k/k2 C �Tap.k/Œdap.k/ � XT

ap.k/w.k C 1/� (4.79)

where �ap.k/ is an .LC 1/ � 1 vector of Lagrange multipliers. The above expres-
sion can be rewritten as

F Œw.k C 1/� D 1

2
Œw.k C 1/� w.k/�T Œw.k C 1/� w.k/�

C
h
dTap.k/� wT .k C 1/Xap.k/

i
�ap.k/ (4.80)

The gradient of F Œw.k C 1/� with respect to w.k C 1/ is given by

gw fF Œw.k C 1/�g D 1

2
Œ2w.k C 1/� 2w.k/� � Xap.k/�ap.k/ (4.81)

1This procedure is known as minimal distance principle.
2The a posteriori error is the one computed with the current available data (up to instant k) using
the already updated coefficient vector w.k C 1/.
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Algorithm 4.5 The Affine Projection Algorithm
Initialization

x.0/ D w.0/ D Œ0 0 : : : 0�T

choose � in the range 0 < � � 1

� D small constant
Do for k � 0

eap.k/ D dap.k/� XT
ap.k/w.k/

w.k C 1/ D w.k/C �Xap.k/



XT
ap.k/Xap.k/C �I

�
�1

eap.k/

After setting the gradient of F Œw.k C 1/� with respect to w.k C 1/ equal to zero,
we get

w.k C 1/ D w.k/C Xap.k/�ap.k/ (4.82)

If we substitute (4.82) in the constraint relation of (4.78), we obtain

XT
ap.k/Xap.k/�ap.k/ D dap.k/ � XT

ap.k/w.k/ D eap.k/ (4.83)

The update equation is now given by (4.82) with �ap.k/ being the solution of
(4.83), i.e.,

w.k C 1/ D w.k/C Xap.k/



XT
ap.k/Xap.k/

��1
eap.k/ (4.84)

The above algorithm corresponds to the conventional affine projection algorithm
[20] with unity convergence factor. A trade-off between final misadjustment and
convergence speed is achieved through the introduction of a convergence factor as
follows

w.k C 1/ D w.k/C �Xap.k/



XT
ap.k/Xap.k/

��1
eap.k/ (4.85)

Note that with the convergence factor the a posteriori error is no longer zero. In fact,
when measurement noise is present in the environment, zeroing the a posteriori
error is not a good idea since we are forcing the adaptive filter to compensate
for the effect of a noise signal which is uncorrelated with the adaptive-filter
input signal. The result is a high misadjustment when the convergence factor is
one. The description of the affine projection algorithm is given in Algorithm 4.5,
where an identity matrix multiplied by a small constant was added to the matrix
XT

ap.k/Xap.k/ in order to avoid numerical problems in the matrix inversion. The
order of the matrix to be inverted depends on the number of data vectors being
reused.

Let’s define the hyperplane S.k/ as follows

S.k/ D fw.k C 1/ 2 R
NC1 W d.k/ � wT .k C 1/x.k/ D 0g (4.86)

It is noticed that the a posteriori error over this hyperplane is zero, that is, given
the current input data stored in the vector x.k/ the coefficients are updated to a
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Fig. 4.10 Coefficient vector
updating for the normalized
LMS algorithm and
binormalized LMS algorithm

point where the error computed with the coefficients updated is zero. This definition
allows an insightful geometric interpretation for the affine projection algorithm.

In the affine projection algorithm the coefficients are computed such that they
belong to anLC1-dimensional subspace 2 R

NC1, where R represents the set of real
numbers, spanned by theLC1 columns of Xap.k/. The objective of having LC1 a
posteriori errors equal to zero has infinity number of solutions, such that any solution
on S.k/ can be added to a coefficient vector lying on S?.k/. By also minimizing
1
2
kw.k C 1/ � w.k/k2 specifies a solution with minimum disturbance. The matrix

Xap.k/.XT
ap.k/Xap.k//

�1XT
ap.k/ represents an orthogonal projection operator on the

L C 1-dimensional subspace of RNC1 spanned by the L C 1 columns of Xap.k/.
This projection matrix has L C 1 eigenvalues equal to 1 and N � L eigenvalues
of value 0. On the other hand, the matrix I � �Xap.k/.XT

ap.k/Xap.k//
�1XT

ap.k/ has
LC 1 eigenvalues equal to 1 and N � L eigenvalues of value 1 � �.

When L D 0 and L D 1 the affine projection algorithm has the normalized
LMS and binormalized LMS algorithms [22] as special cases, respectively. In
the binormalized case the matrix inversion has closed form solution. Figure 4.10
illustrates the updating of the coefficient vector for a two-dimensional problem
for the LMS algorithm, for the normalized LMS algorithm, for the normalized
LMS algorithm with a single data reuse3, and the binormalized LMS algorithm.
Here we assume that the coefficients are originally at Qw when the new data vector
x.k/ becomes available and x.k � 1/ is still stored, and this scenario is used to
illustrate the coefficient updating of related algorithms. In addition, it is assumed
an environment with no additional noise and a system identification with sufficient
order, where the LMS algorithm utilizes a small convergence factor whereas the
remaining algorithms use unit convergence factor. The conventional LMS algorithm
takes a step towards S.k/ yielding a solution w.k C 1/, anywhere between points
1 and 3 in Fig. 4.10, that is closer to S.k/ than Qw. The NLMS algorithm with

3In this algorithm the updating is performed in two steps: Ow.k/ D w.k/C e.k/x.k/
xT .k/x.k/ and w.kC1/ D

Ow.k/C Oe.k�1/x.k�1/

xT .k�1/x.k�1/
, where in the latter case Oe.k�1/ is computed with the previous data d.k�1/

and x.k � 1/ using the coefficients Ow.k/.
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unit convergence factor performs a line search in the direction of x.k/ to yield in a
single step the solution w.kC1/, represented by point 3 in Fig. 4.10, which belongs
to S.k/. A single reuse of the previous data using normalized LMS algorithm
would lead to point 4. The binormalized LMS algorithm, which corresponds to an
affine projection algorithm with two projections, yields the solution that belongs
to S.k � 1/ and S.k/, represented by point 5 in Fig. 4.10. As an illustration, it
is possible to observe in Fig. 4.11 that by repeatedly re-utilizing the data vectors
x.k/ and x.k � 1/ to update the coefficients with the normalized LMS algorithm
would reach point 5 in a zig-zag pattern after an infinite number of iterations. This
approach is known as Kaczmarz method [22].

For a noise-free environment and sufficient-order identification problem, the
optimal solution wo is at the intersection of L C 1 hyperplanes constructed with
linearly independent input signal vectors. The affine projection algorithm with unit
convergence factor updates the coefficient to the intersection. Figure 4.12 illustrates
the coefficient updating for a three-dimensional problem for the normalized and
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binormalized LMS algorithms. It can be observed in Fig. 4.12 that x.k/ and,
consequently, gwŒe

2.k/� are orthogonal to the hyperplane S.k/. Similarly, x.k � 1/
is orthogonal to the hyperplane S.k � 1/. The normalized LMS algorithm moves
the coefficients from point 1 to point 2, whereas the binormalized LMS algorithm
updates the coefficients to point 3 at the intersection of the two hyperplanes.

The affine projection algorithm combines data reusing, orthogonal projections
of L consecutive gradient directions, and normalization in order to achieve faster
convergence than many other LMS-based algorithms. At each iteration, the affine
projection algorithm yields the solution w.k C 1/ which is at the intersection of
hyperplanes S.k/;S.k � 1/; : : : ;S.k �L/ and is as close as possible to w.k/. The
computational complexity of the affine projection algorithm is related to the number
of data vectors being reused which ultimately determines the order of the matrix to
be inverted. Some fast versions of the algorithm can be found in [21, 26]. It is also
possible to reduce computations by employing data-selective strategies as will be
discussed in Chapter 6.

4.6.1 Misadjustment in the Affine Projection Algorithm

The analysis of the affine projection algorithm is somewhat more involved than
some of the LMS-based algorithms. The following framework provides an alterna-
tive analysis approach utilizing the concept of energy conservation [32–36]. This
framework has been widely used in recent literature to analyze several adaptive-
filtering algorithms [36]. In particular, the approach is very useful to analyze the
behavior of the affine projection algorithm in a rather simple manner [35].

A general adaptive-filtering algorithm utilizes the following coefficient updating
form

w.k C 1/ D w.k/ � �Fx.k/fe.k/ (4.87)

where Fx.k/ is a matrix whose elements are functions of the input data and fe.k/ is
a vector whose elements are functions of the error. Assuming that the desired signal
is given by

d.k/ D wT
o x.k/C n.k/ (4.88)

the underlying updating equation can be alternatively described by

�w.k C 1/ D �w.k/� �Fx.k/fe.k/ (4.89)

where�w.k/ D w.k/ � wo.
In the case of the affine projection algorithm

fe.k/ D �eap.k/ (4.90)
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according to (4.77). By premultiplying (4.89) by the input vector matrix of (4.74),
the following expressions result

XT
ap.k/�w.k C 1/ D XT

ap.k/�w.k/C �XT
ap.k/Fx.k/eap.k/

�Q"ap.k/ D �Qeap.k/C �XT
ap.k/Fx.k/eap.k/ (4.91)

where

Q"ap.k/ D �XT
ap.k/�w.k C 1/ (4.92)

is the noiseless a posteriori error vector and

Qeap.k/ D �XT
ap.k/�w.k/ D eap.k/ � nap.k/ (4.93)

is the noiseless a priori error vector with

nap.k/ D

2

6
6
6
4

n.k/

n.k � 1/
:::

n.k � L/

3

7
7
7
5

being the standard noise vector.
For the regularized affine projection algorithm

Fx.k/ D Xap.k/



XT
ap.k/Xap.k/C �I

��1

where the matrix �I is added to the matrix to be inverted in order to avoid numerical
problems in the inversion operation in the cases XT

ap.k/Xap.k/ is ill conditioned.
By solving (4.91), we get

1

�



XT

ap.k/Xap.k/
��1 Qeap.k/� Q"ap.k/

� D



XT
ap.k/Xap.k/C �I

��1
eap.k/

If we replace the above equation in

�w.k C 1/ D �w.k/C �Xap.k/



XT
ap.k/Xap.k/C �I

��1
eap.k/ (4.94)

which corresponds to (4.89) for the affine projection case, it is possible to deduce
that

�w.k C 1/� Xap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

D �w.k/ � Xap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/ (4.95)
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From the above equation it is possible to prove that

E
�k�w.k C 1/k2�C E

�

QeTap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

�

D E
�k�w.k/k2�C E

�

Q"Tap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

�

(4.96)

Proof. One can now calculate the Euclidean norm of both sides of (4.95)

�

�w.k C 1/� Xap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

�T

�
�

�w.k C 1/� Xap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

�

D
�

�w.k/� Xap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

�T

�
�

�w.k/ � Xap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

�

By performing the inner products one by one, the above equation becomes

�wT .k C 1/�w.k C 1/��wT .k C 1/Xap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

�
�

Xap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

�T
�w.k C 1/

C
�

Xap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

�T �

Xap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

�

D �wT .k/�w.k/ ��wT .k/Xap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

�
�

Xap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

�T
�w.k/

C
�

Xap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

�T �

Xap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

�

Since Q"ap.k/ D �XT
ap.k/�w.k C 1/ and Qeap.k/ D �XT

ap.k/�w.k/

k�w.k C 1/k2 C Q"Tap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

CQeTap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/C QeTap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/
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D k�w.k/k2 C QeTap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

CQ"Tap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/C Q"Tap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

By removing the equal terms on both sides of the last equation the following
equality holds

k�w.k C 1/k2 C QeTap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

D k�w.k/k2 C Q"Tap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/ (4.97)

As can be observed no approximations were utilized so far. Now by applying the
expected value operation on both sides of the above equation, the expression of
(4.96) holds. ut

If it is assumed that the algorithm has converged, that is, the coefficients remain
in average unchanged, then E

�k�w.k C 1/k2� D E
�k�w.k/k2�. As a result the

following equality holds in the steady state.

E

�

QeTap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

�

D E

�

Q"Tap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

�

(4.98)

In the above expression it is useful to remove the dependence on the a posteriori
error, what can be achieved by applying (4.91) to the affine projection algorithm
case.

Q"ap.k/ D Qeap.k/� �XT
ap.k/Xap.k/



XT

ap.k/Xap.k/C �I
��1

eap.k/ (4.99)

By substituting (4.98) in (4.99) we get

E

�

QeTap.k/



XT
ap.k/Xap.k/

�
�1 Qeap.k/

�

D E

�

QeTap.k/



XT
ap.k/Xap.k/

�
�1 Qeap.k/

� �QeTap.k/



XT
ap.k/Xap.k/C �I

�
�1

eap.k/

� �eTap.k/



XT
ap.k/Xap.k/C �I

�
�1 Qeap.k/

C �2eTap.k/



XT
ap.k/Xap.k/C �I

�
�1

� XT
ap.k/Xap.k/



XT

ap.k/Xap.k/C �I
�

�1

eap.k/

�

(4.100)
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The above expression can be simplified as

�2E
h
eTap.k/

OSap.k/ ORap.k/ OSap.k/eap.k/
i

D �E
h
QeTap.k/

OSap.k/eap.k/C eTap.k/
OSap.k/Qeap.k/

i
(4.101)

where the following definitions are employed to simplify the discussion

ORap.k/ D XT
ap.k/Xap.k/

OSap.k/ D



XT
ap.k/Xap.k/C �I

��1
(4.102)

By rescuing the definition of the error squared of (3.39) and applying the
expected value operator we obtain

�.k/ D EŒe2.k/� D EŒn2.k/�� 2EŒn.k/�wT .k/x.k/�C EŒ�wT .k/x.k/xT .k/�w.k/�

(4.103)

If the coefficients have weak dependency of the additional noise and applying the
orthogonality principle, we can simplify the above expression as follows

n�.k/ D �2 C EŒ�wT .k/x.k/xT .k/�w.k/�

nD �2 C EŒ Qe2ap;0.k/� (4.104)

where Qeap;0.k/ is the first element of vector Qeap.k/.
In order to compute the excess mean-square error we can remove the value of

EŒ Qe2ap;0.k/� from (4.101). Since our aim is to computeEŒ Qe2ap;0.k/�, we can substitute
(4.93) in (4.101) in order to get rid of eap.k/. The resulting expression is given by

E
h
�.Qeap.k/C nap.k//

T OSap.k/ ORap.k/ OSap.k/.Qeap.k/C nap.k//
i

D E
h
QeTap.k/

OSap.k/.Qeap.k/C nap.k//C .Qeap.k/C nap.k//
T OSap.k/Qeap.k/

i

(4.105)

By considering the noise white and statistically independent of the input signal, the
above relation can be further simplified as

�E
h
QeTap.k/

OSap.k/ ORap.k/ OSap.k/Qeap.k/C nTap.k/
OSap.k/ ORap.k/ OSap.k/nap.k/

i

D 2E
h
QeTap.k/

OSap.k/Qeap.k/
i

(4.106)
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The above expression, after some rearrangements, can be rewritten as

2E
n
trŒQeap.k/QeTap.k/

OSap.k/�
o

� �E
n
trŒQeap.k/QeTap.k/

OSap.k/ ORap.k/ OSap.k/�
o

D �E
n
trŒnap.k/nTap.k/

OSap.k/ ORap.k/ OSap.k/�
o

(4.107)

where we used the property trŒA � B� D trŒB � A�.
In addition, if matrix ORap.k/ is invertible it can be noticed that

OSap.k/ D
h ORap.k/C �I

i�1

D OR�1
ap .k/

h
I � � OR�1

ap .k/C �2 OR�2
ap .k/� �3 OR�3

ap .k/C � � �
i

� OR�1
ap .k/

h
I � � OR�1

ap .k/
i

� OR�1
ap .k/ (4.108)

where the last two relations are valid for � 	 1.
By assuming that the matrix OSap.k/ is statistically independent of the noiseless a

priori error after convergence, and of the noise, the (4.107) can be rewritten as

2tr
n
EŒQeap.k/QeTap.k/�EŒ

OSap.k/�
o

��tr
n
EŒQeap.k/QeTap.k/�EŒ

OSap.k/�
o

C��tr
n
EŒQeap.k/QeTap.k/�

o
D�tr

n
EŒnap.k/nTap.k/�EŒ

OSap.k/�
o

���tr
n
EŒnap.k/nTap.k/�

o

(4.109)

This equation can be further simplified by assuming the noise is white4 and � is
small leading to the following expression

.2 � �/trfEŒQeap.k/QeTap.k/�EŒ
OSap.k/�g D ��2n trfEŒ OSap.k/�g (4.110)

Our task now is to computeEŒQeap.k/QeTap.k/� where we will assume in the process
that this matrix is diagonal dominant whose final result has the following form

EŒQeap.k/QeTap.k/� D AEŒ Qe2ap;0.k/�C �2B�2n

Proof. The i -th rows of (4.92) and (4.93) are given by

Q"ap;i .k/ D �xT .k � i/�w.k C 1/ (4.111)

and

Qeap;i .k/ D �xT .k � i/�w.k/ D eap;i .k/� n.k � i/ (4.112)

4 In this case, EŒnap.k/nTap.k/� D �2n I.
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for i D 0; : : : ; L. Using in (4.91) the fact that XT
ap.k/Fx.k/ � I for small � , then

� Q"ap.k/ D �Qeap.k/C �eap.k/ (4.113)

By properly utilizing in (4.111) and (4.112) the i -th row of (4.91), we obtain

Q"ap;i .k/ D �xT .k � i/�w.k C 1/

D .1 � �/ Qeap;i .k/� �n.k � i/
D �.1 � �/xT .k � i/�w.k/� �n.k � i/ (4.114)

Squaring the above equation, assuming the coefficients are weakly dependent on
the noise which is in turn white noise, and following closely the procedure to derive
(4.96) from (4.95), we get

E
�
.xT .k � i/�w.k C 1//2

� D .1 � �/2E �.xT .k � i/�w.k//2
�C �2�2n

(4.115)

The above expression relates the squared values of the a posteriori and a priori
errors. However, the same kind of relation holds for the previous time instant, that is

EŒ.xT .k � i � 1/�w.k//2� D .1 � �/2EŒ.xT .k � i � 1/�w.k � 1//2�C �2�2n

or

EŒ Qe2ap;iC1.k/� D .1 � �/2EŒ Qe2ap;i .k � 1/�C �2�2n (4.116)

Note that for i D 0 this term corresponds to the second diagonal element of the
matrix EŒQeap.k/QeTap.k/�. Specifically we can compute EŒ Qe2ap;1.k/� as

EŒ.xT .k � 1/�w.k//2� D EŒ Qe2ap;1.k/�

D .1 � �/2EŒ.xT .k � 1/�w.k � 1//2�C �2�2n

D .1 � �/2EŒ Qe2ap;0.k � 1/�C �2�2n (4.117)

For i D 1 (4.116) becomes

EŒ.xT .k � 2/�w.k//2� D EŒ Qe2ap;2.k/�

D .1 � �/2EŒ.xT .k � 2/�w.k � 1//2�C �2�2n

D .1 � �/2EŒ Qe2ap;1.k � 1/�C �2�2n (4.118)
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By substituting (4.117) in the above equation it follows that

EŒ Qe2ap;2.k/� D .1 � �/4EŒ Qe2ap;0.k � 2/�C Œ1C .1 � �/2��2�2n (4.119)

By induction one can prove that

EŒ Qe2ap;iC1.k/� D .1 � �/2.iC1/EŒ Qe2ap;0.k � i � 1/�C
"

1C
iX

lD1
.1 � �/2l

#

�2�2n

(4.120)

By assuming that EŒ Qe2ap;0.k/� � EŒ Qe2ap;0.k � i/� for i D 0; : : : ; L, then

EŒQeap.k/QeTap.k/� D AEŒ Qe2ap;0.k/�C �2B�2n (4.121)

with

A D

2

6
6
6
6
6
4

1

.1 � �/2 0
.1 � �/4

0
: : :

.1 � �/2L

3

7
7
7
7
7
5

B D

2

6
6
6
6
6
6
6
6
6
6
6
4

0

1 0
1C .1 � �/2

: : :

0 1CPi
lD1.1 � �/2l

: : :

1CPL�1
lD1 .1 � �/2l

3

7
7
7
7
7
7
7
7
7
7
7
5

where it was also considered that the above matrix EŒQeap.k/QeTap.k/� was diagonal
dominant, as it is usually the case in practice. Note from the above relation that the
convergence factor � should be chosen in the range 0 < � < 2, so that the elements
of the noiseless a priori error remain bounded for any value of L, in practice there
is no point in using � > 1. ut

We have available all the quantities required to calculate the excess MSE in the
affine projection algorithm. Specifically, we can substitute the result of (4.121) in
(4.110) obtaining

.2 � �/
h
EŒ Qe2ap;0.k/�trfAEŒ OSap.k/�gC�2�2n trfBEŒ OSap.k/�g

i
D ��2n tr

n
EŒ OSap.k/�

o

(4.122)
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The second term on the left-hand side can be neglected in case the signal-to-noise
ratio is high. For small � this term also becomes substantially smaller than the term
on the right-hand side. For � close to one the referred terms become comparable
only for large L, when the misadjustment becomes less sensitive to L. In the
following discussions we will not consider the term multiplied by �2.

Assuming the diagonal elements of EŒ OSap.k/� are equal and the matrix A
multiplying it on the left-hand side is a diagonal matrix, after a few manipulations
it is possible to deduce that

EŒ Qe2ap;0.k/� D �

2 � �
�2n

trfEŒ OSap.k/�g
trfAEŒ OSap.k/�g

D .LC 1/�

2 � �
1 � .1 � �/2

1 � .1 � �/2.LC1/ �
2
n (4.123)

Therefore, the misadjustment for the affine projection algorithm is given by

M D .LC 1/�

2 � �
1 � .1 � �/2

1 � .1 � �/2.LC1/ (4.124)

For large L and small 1 � �, this equation can be approximated by

M D .LC 1/�

.2 � �/ (4.125)

In [23], by considering a simplified model for the input signal vector consisting
of vectors with discrete angular orientation and the independence assumption, an
expression for the misadjustment of the affine projection algorithm was derived,
that is

M D �

2 � �
E

�
1

kx.k/k2
�

trŒR� (4.126)

which is independent of L. It is observed in the experiments that higher number
of reuses leads to higher misadjustment, as indicated in (4.125). The equivalent
expression of (4.126) using the derivations presented here would lead to

M D .LC 1/�

2 � �
E

�
1

kx.k/k2
�

trŒR� (4.127)

which can obtained from (4.123) by considering that

trfEŒ OSap.k/�g � .LC 1/E

�
1

kx.k/k2
�
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and

1

trfAEŒ OSap.k/�g
� trŒR�

for � close to one.

4.6.2 Behavior in Nonstationary Environments

In a nonstationary environment the error in the coefficients is described by the
following vector

�w.k C 1/ D w.k C 1/� wo.k C 1/ (4.128)

where wo.k C 1/ is the optimal time-varying vector. For this case, (4.95) becomes

�w.k C 1/ D � Ow.k/C �Xap.k/



XT
ap.k/Xap.k/C �I

��1
eap.k/ (4.129)

where � Ow.k/ D w.k/ � wo.k C 1/. By premultiplying the above expression by
XT

ap.k/ it follows that

XT
ap.k/�w.k C 1/ D XT

ap.k/� Ow.k/C �XT
ap.k/Xap.k/



XT

ap.k/Xap.k/C �I
�

�1

eap.k/

�Q"ap.k/ D �Qeap.k/C �XT
ap.k/�Xap.k/



XT

ap.k/Xap.k/C �I
�

�1

eap.k/

(4.130)

By solving the (4.130), it is possible to show that

1

�



XT

ap.k/Xap.k/
��1 �Qeap.k/� Q"ap.k/

� D



XT
ap.k/Xap.k/C �I

��1
eap.k/

(4.131)

Following the same procedure to derive (4.95), we can now substitute (4.131) in
(4.129) in order to deduce that

�w.k C 1/� Xap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

D � Ow.k/ � Xap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/ (4.132)

By computing the energy on both sides of this equation as previously performed in
(4.96), it is possible to show that
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E
�k�w.k C 1/k2�CE

�

QeTap.k/



XT
ap.k/Xap.k/

�
�1 Qeap.k/

�

D E
�k� Ow.k/k2�C E

�

Q"Tap.k/



XT
ap.k/Xap.k/

�
�1 Q"ap.k/

�

D E
�k�w.k/C�wo.k C 1/k2�C E

�

Q"Tap.k/



XT
ap.k/Xap.k/

�
�1 Q"ap.k/

�

� E
�k�w.k/k2�C E

�k�wo.k C 1/k2�CE

�

Q"Tap.k/



XT
ap.k/Xap.k/

�
�1 Q"ap.k/

�

(4.133)

where�wo.kC 1/ D wo.k/� wo.kC 1/, and in the last equality we have assumed
that E

�
�wT .k/�wo.k C 1/

� � 0. This assumption is valid for simple models
for the time-varying behavior of the unknown system, such as random walk model
[30]5. We will adopt this assumption in order to simplify our analysis.

The time-varying characteristic of the unknown system leads to an excess
mean-square error. As before, in order to calculate the excess MSE we assume
that each element of the optimal coefficient vector is modeled as a first-order
Markov process. As previously mentioned, this nonstationary environment can be
considered somewhat simplified, but allows a manageable mathematical analysis.
The first-order Markov process is described by

wo.k/ D �wwo.k � 1/C 
wnw.k/ (4.134)

where nw.k/ is a vector whose elements are zero-mean white noise processes with
variance �2w, and �w < 1. If 
w D 1 this model may not represent a real system
when �w ! 1, since the EŒwo.k/wT

o .k/� will have unbounded elements if, for
example, nw.k/ is not exactly zero mean. A better model utilizes a factor 
w D
.1��w/

p
2 , for p � 1, multiplying nw.k/ in order to guarantee thatEŒwo.k/wT

o .k/�

is bounded.
In our derivations of the excess MSE, the covariance of �wo.k C 1/ D wo.k/�

wo.k C 1/ is required. That is

covŒ�wo.k C 1/� D E
�
.wo.k C 1/� wo.k//.wo.k C 1/� wo.k//

T
�

D E
�
.�wwo.k/C 
wnw.k/� wo.k//.�wwo.k/C 
wnw.k/� wo.k//

T
�

D E
˚
Œ.�w � 1/wo.k/C 
wnw.k/�Œ.�w � 1/wo.k/C 
wnw.k/�T

�

(4.135)

5In this model the coefficients change according to wo.k/ D wo.k � 1/C nw.k/.
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Since each element of nw.k/ is a zero-mean white noise process with variance �2w,
and �w < 1, by applying the result of (2.82), it follows that

covŒ�wo.k C 1/� D 
2w�
2
w
.1 � �w/2

1 � �2w
I C 
2w�

2
wI

D 
2w

�
1 � �w
1C �w

C 1

�

�2wI (4.136)

By employing this result, we can compute

E
�k�wo.k C 1/k2� D trfcovŒ�wo.k C 1/�g D .N C 1/

�
2
2w
1C �w

�

�2w (4.137)

We are now in a position to solve (4.133) utilizing the result of (4.137). Again
by assuming that the algorithm has converged, that is, the Euclidean norm of the
coefficients increment remains in average unchanged, then E

�k�w.k C 1/k2� D
E
�k�w.k/k2�. As a result, (4.133) can be rewritten as

E

�

QeTap.k/



XT
ap.k/Xap.k/

��1 Qeap.k/

�

D E

�

Q"Tap.k/



XT
ap.k/Xap.k/

��1 Q"ap.k/

�

C.N C 1/

�
2
2w
1C �w

�

�2w (4.138)

Leading to the equivalent of (4.101) as follows

�2E
h
eTap.k/

OSap.k/ ORap.k/ OSap.k/eap.k/
i

D �E
h
QeTap.k/

OSap.k/eap.k/

CeTap.k/
OSap.k/Qeap.k/

i

C.N C 1/

�
2
2w
1C �w

�

�2w (4.139)

By solving this equation following precisely the same procedure as (4.101) was
solved, we can derive the excess MSE only due to the time-varying unknown
system.

�lag D N C 1

�.2 � �/

�
2
2w
1C �w

�

�2w (4.140)
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By taking into consideration the additional noise and the time-varying parameters
to be estimated, the overall excess MSE is given by

�exc D .LC 1/�

2 � �

1 � .1� �/2

1 � .1 � �/2.LC1/ �
2
n C N C 1

�.2 � �/
�
2
2w
1C �w

�

�2w

D 1

2 � �

(

.LC 1/�
1 � .1 � �/2

1 � .1 � �/2.LC1/ �
2
n C N C 1

�

�
2
2w
1C �w

�

�2w

)

(4.141)

If 
w D 1, L is large, and j1 � �j < 1, the above expression becomes simpler

�exc D 1

2 � �
�

.LC 1/��2n C 2.N C 1/

�.1C �w/
�2w

	

(4.142)

As can be observed, the contribution due to the lag is inversely proportional to the
value of�. This is an expected result since for small values of� an adaptive-filtering
algorithm will face difficulties in tracking the variations in the unknown system.

4.6.3 Transient Behavior

This subsection presents some considerations related to the behavior of the affine
projection algorithm during the transient. In order to achieve this goal we start by
removing the dependence of (4.96) on the noiseless a posteriori error through (4.99),
very much like previously performed in the derivations of (4.100) and (4.101). The
resulting expression is

E
�k�w.k C 1/k2� D E

�k�w.k/k2�C �2E
h
eTap.k/

OSap.k/ ORap.k/ OSap.k/eap.k/
i

��E
h
QeTap.k/

OSap.k/eap.k/C eTap.k/
OSap.k/Qeap.k/

i
(4.143)

Since from (4.93)

eap.k/ D Qeap.k/C nap.k/

D �XT
ap.k/�w.k/C nap.k/

the above expression (4.143) can be rewritten as

E
�k�w.k C 1/k2� D E

�k�w.k/k2�

C�2E
h


��wT .k/Xap.k/CnTap.k/
� OSap.k/ ORap.k/ OSap.k/



�XT

ap.k/�w.k/C nap.k/
�i
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��E
h��wT .k/Xap.k/

� OSap.k/


�XT

ap.k/�w.k/C nap.k/
�

C


��wT .k/Xap.k/C nTap.k/

� OSap.k/


�XT

ap.k/�w.k/
�i

(4.144)

By considering the noise white and uncorrelated with the other quantities of this
recursion, the above equation can be simplified to

E
�k�w.k C 1/k2� D E

�k�w.k/k2� � 2�E
h
�wT .k/Xap.k/ OSap.k/XT

ap.k/�w.k/
i

C�2E
h
�wT .k/Xap.k/ OSap.k/ ORap.k/ OSap.k/XT

ap.k/�w.k/
i

C�2E
h
nTap.k/

OSap.k/ ORap.k/ OSap.k/nap.k/
i

(4.145)

By applying the property that trŒAB� D trŒBA�, this relation is equivalent to

trfcovŒ�w.k C 1/�g D tr ŒcovŒ�w.k/��� 2�tr
n
E
h
Xap.k/ OSap.k/XTap.k/�w.k/�wT .k/

io

C�2tr
n
E
h
Xap.k/ OSap.k/ ORap.k/ OSap.k/XTap.k/�w.k/�wT .k/

io

C�2tr
n
E
h OSap.k/ ORap.k/ OSap.k/

i
E
h
nap.k/nTap.k/

io
(4.146)

By assuming that the �w.k C 1/ is independent of the data and the noise is white,
it follows that

trfcovŒ�w.k C 1/�g D tr
nh

I �E


2�Xap.k/ OSap.k/XT

ap.k/

� �2Xap.k/ OSap.k/ ORap.k/ OSap.k/XT
ap.k/

�i
covŒ�w.k/�

o

C�2�2n tr
n
E
h OSap.k/ ORap.k/ OSap.k/

io
(4.147)

Now by recalling that

OSap.k/ � OR�1
ap .k/

h
I � � OR�1

ap .k/
i

and by utilizing the unitary matrix Q, that in the present discussion diagonalizes
EŒXap.k/ OSap.k/XT

ap.k/�, the following relation is valid

tr
n
covŒ�w.k C 1/�QQT

o
D tr

n
QQT

h
I � E



2�Xap.k/ OSap.k/XTap.k/

� .1 � �/�2Xap.k/ OSap.k/XTap.k/
�i

QQT covŒ�w.k/�QQT
o

C.1 � �/�2�2n tr
n
E
h OSap.k/

io
(4.148)
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Again by applying the property that trŒAB� D trŒBA� and assuming � small, it
follows that

tr
˚
QT covŒ�w.k C 1/�Q

� D tr
n
Q
h
I � QT E



2�Xap.k/ OSap.k/XT

ap.k/

� �2Xap.k/ OSap.k/XT
ap.k/

�
Q
i

QT covŒ�w.k/�QQT
o

C�2�2n tr
n
E
h OSap.k/

io
(4.149)

By defining

�w0.k C 1/ D QT �w.k C 1/

Equation (4.149) can be rewritten as

trfcovŒ�w0.k C 1/�g D tr
n
QTQ

h
I � QT E



2�Xap.k/ OSap.k/XT

ap.k/

� �2Xap.k/ OSap.k/XT
ap.k/

�
Q
i

covŒ�w0.k/�
o

C�2�2n tr
n
E
h OSap.k/

io

D tr
nh

I � 2� O�C �2 O�
i

covŒ�w0.k/�
o

C �2�2n tr
n
E
h OSap.k/

io

(4.150)

where O� is a diagonal matrix whose elements are the eigenvalues of
EŒXap.k/ OSap.k/XT

ap.k/�, denoted as O�i , for i D 0; : : : ; N .

By using the likely assumption that covŒ�w0.k C 1/� and OSap.k/ are diagonal
dominant, we can disregard the trace operator in the above equation and observe
that the geometric decaying curves have ratios rcovŒ�w.k/� D .1� 2� O�i C�2 O�i /. As
a result, according to the considerations in the derivation of (3.52), it is possible to
infer that the convergence time constant is given by

�ei D �covŒ�w.k/�

D 1

� O�i
1

2 � � (4.151)

since the error squared depends on the convergence of the diagonal elements of
the covariance matrix of the coefficient-error vector, see discussions around (3.53).
As can be observed, the time constants for error convergence are dependent on
the inverse of the eigenvalues of EŒXap.k/ OSap.k/XT

ap.k/�. However, since � is not
constrained by these eigenvalues, the speed of convergence is expected to be higher
than for the LMS algorithm, particularly in situations where the eigenvalue spread
of the input signal is high. Simulation results confirm the improved performance of
the affine projection algorithm.
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4.6.4 Complex Affine Projection Algorithm

Using the method of Lagrange multipliers to transform the constrained minimization
into an unconstrained one, the unconstrained function to be minimized is

F Œw.k C 1/� D 1

2
kw.k C 1/� w.k/k2 C re

n
�Tap.k/Œdap.k/�XT

ap.k/w
�.kC1/�

o

(4.152)

where �ap.k/ is a complex .LC 1/ � 1 vector of Lagrange multipliers, and the real
part operator is required in order to turn the overall objective function real valued.
The above expression can be rewritten as

F Œw.k C 1/� D 1

2
Œw.k C 1/� w.k/�H Œw.k C 1/� w.k/�

C1

2
�Hap.k/

h
d�

ap.k/ � XH
ap.k/w.k C 1/

i

C1

2
�Tap.k/

h
dap.k/ � XT

ap.k/w
�.k C 1/

i
(4.153)

The gradient of F Œw.k C 1/� with respect to w�.k C 1/ is given by6

@F Œw.k C 1/�

@w�.k C 1/
D gw�fF Œw.k C 1/�g D 1

2
Œw.k C 1/� w.k/� � 1

2
Xap.k/�ap.k/

(4.154)

After setting the gradient of F Œw.k C 1/� with respect to w�.k C 1/ equal to zero,
the expression below follows

w.k C 1/ D w.k/C Xap.k/�ap.k/ (4.155)

By replacing (4.155) in the constraint relation d�
ap.k/ � XH

ap.k/w.k C 1/ D 0, we
generate the expression

XH
ap.k/Xap.k/�ap.k/ D d�

ap.k/ � XH
ap.k/w.k/ D e�

ap.k/ (4.156)

The update equation is now given by (4.155) with �ap.k/ being the solution of
(4.156), i.e.,

w.k C 1/ D w.k/C Xap.k/



XH
ap.k/Xap.k/

��1
e�

ap.k/ (4.157)

6The reader should recall that when computing the gradient with respect to w�.k C 1/, w.k C 1/

is treated as a constant.
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Algorithm 4.6 Complex Affine Projection Algorithm
Initialization

x.0/ D w.0/ D Œ0 0 : : : 0�T

choose � in the range 0 < � � 1

� D small constant
Do for k � 0

e�

ap.k/ D d�

ap.k/� XH
ap.k/w.k/

w.k C 1/ D w.k/C �Xap.k/



XH
ap.k/Xap.k/C �I

�
�1

e�

ap.k/

This updating equation corresponds to the complex affine projection algorithm with
unity convergence factor. As common practice, we introduce a convergence factor
in order to trade-off final misadjustment and convergence speed as follows

w.k C 1/ D w.k/C �Xap.k/



XH
ap.k/Xap.k/

��1
e�

ap.k/ (4.158)

The description of the complex affine projection algorithm is given in Algorithm 4.6,
where as before a regularization is introduced through an identity matrix multiplied
by a small constant added to the matrix XH

ap.k/Xap.k/ in order to avoid numerical
problems in the matrix inversion.

4.7 Examples

This section includes a number of examples in order to access the performance of
the LMS-based algorithms described in this chapter.

4.7.1 Analytical Examples

Example 4.3 (Stochastic Gradient Algorithm). Derive the update equation for a
stochastic gradient algorithm designed to minimize the following objective function.

E ŒF Œw.k/�� D E
�
ajd.k/� wH

1 .k/x.k/j4 C bjd.k/� wT
2 .k/x.k/j4

�

where

w.k/ D
�

w1.k/

w2.k/

�

and w2.k/ is a vector with real-valued entries. The parameters a and b are also real.
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Solution. The given objective function can be rewritten as

F Œw.k/� D a
˚
.d.k/� wH

1 .k/x.k//
2.d�.k/ � wT

1 .k/x
�.k//2

�

Cb ˚.d.k/ � wT
2 .k/x.k//

2.d�.k/� wT
2 .k/x

�.k//2
�

where by denoting e1.k/ D d.k/ � wH
1 .k/x.k/ and e2.k/ D d.k/ � wT

2 .k/x.k/, it
is possible to compute the gradient expression as

gw�fF Œw.k/�g D
� �2ae�

1 .k/x.k/je1.k/j2
�2be�

2 .k/x.k/je2.k/j2 � 2be2.k/x�.k/je2.k/j2
�

The updating equation is then given by

w.k C 1/ D w.k/ � �

� �2ae�
1 .k/x.k/je1.k/j2

�4b re
�
e�
2 .k/x.k/

� je2.k/j2
�

D w.k/C �

�
2ae�

1 .k/x.k/je1.k/j2
4b re

�
e�
2 .k/x.k/

� je2.k/j2
�

ut

Example 4.4. Normalized LMS Algorithm

(a) A normalized LMS algorithm using convergence factor equal to one has the
following data available

x.0/ D
�
2C �1

2

�

d.0/ D 1

and

x.1/ D
�

1

1C �2

�

d.1/ D 0

where the initial values for the coefficients are zero and �1 and �2 are real-valued
constants. Determine the hyperplanes

S.k/ D fw.k C 1/ 2 R
2 W d.k/ � wT .k C 1/x.k/ D 0g

for two updates.
(b) If the given data belong to an identification problem without additional noise,

what would be the coefficients of the unknown system?
(c) What would be the solution if �1 D �2 D 0?
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Solution. (a) The hyperplanes defined by the given data vectors are respectively
given by

S.0/ D fw.1/ 2 R
2 W 1� .2C �1/w0.1/� 2w1.1/ D 0g

and

S.1/ D fw.2/ 2 R
2 W 0 � w0.2/� .1C �2/w1.2/ D 0g

(b) The solution lies on S.0/\ S.1/. Thus

.2C �1/w0 C 2w1 D 1

w0 C .1C �2/w1 D 0

whose solution is

wo D
"

1C�2
�1C�1�2C2�2�1
�1C�1�2C2�2

#

assuming �1 ¤ 0 and �2 ¤ 0.
(c) For �1 D �2 D 0 the hyperplanes S.1/ and S.2/ are parallel and the solution

before is not valid. In this case there is no solution. ut
Example 4.5 (Complex Normalized LMS Algorithm). Which objective function is
actually minimized by the complex normalized LMS algorithm with regularization
factor � and convergence factor �n?

w.k C 1/ D w.k/C �n

� C xH.k/x.k/
x.k/e�.k/ (4.159)

Assume that � is included for regularization purposes.

Solution. Our main task is to search for an objective function whose stochastic
gradient corresponds to the last term of the above equation. Define

˛ D
�
1

�n
� 1C ˛p�

�

(4.160)

The objective function to be minimized with respect to the coefficients w�.k C 1/

is given by

�.k/ D ˛kw.k C 1/� w.k/k2 C ˛pkd.k/ � xT .k/w�.k C 1/k2 (4.161)
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where

˛p D 1

� C xH.k/x.k/
(4.162)

This result can be verified by computing the derivative of the objective function with
respect to w�.k C 1/ as following described.

@�.k/

@w�.k C 1/
D ˛Œw.k C 1/� w.k/� � ˛px.k/

�
d�.k/ � xH.k/w.k C 1/

�

By setting this result to zero it follows that

�
˛I C ˛px.k/xH.k/

�
w.k C 1/ D ˛w.k/C ˛px.k/d�.k/ � ˛px.k/xH.k/w.k/

C˛px.k/xH.k/w.k/

D �
˛I C ˛px.k/xH.k/

�
w.k/C ˛px.k/e�.k/

This equation can be rewritten as

w.k C 1/ D w.k/C ˛p
�
˛I C ˛px.k/xH.k/

��1
x.k/e�.k/ (4.163)

After applying the matrix inversion lemma, as in (13.28), to compute the inverse
in the above equation we get

�
˛I C ˛px.k/xH.k/

��1 D I
˛

� I
˛

x.k/
�

xH.k/x.k/
˛

C 1

˛p

��1
xH.k/

I
˛

D 1

˛

"

I � x.k/xH.k/
xH.k/x.k/C ˛

˛p

#

Since the above equation will be multiplied on the right-hand side by x.k/, it then
follows that

1

˛

"

I � x.k/xH.k/
xH.k/x.k/C ˛

˛p

#

x.k/ D 1

˛

"
˛

˛p

x.k/
xH.k/x.k/C ˛

˛p

#

D x.k/
˛pxH.k/x.k/C ˛

By employing the relation ˛ D


1
�n

� 1C ˛p�
�

in the expression above it

follows that

x.k/
˛pxH.k/x.k/C ˛

D �nx.k/
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By replacing the above result in (4.163), it is possible to show that

w.k C 1/ D w.k/C �n˛px.k/e�.k/

D w.k/C �n

� C xH.k/x.k/

��1
x.k/e�.k/ ut

Example 4.6 (Transform-Domain LMS algorithm). A transform-domain LMS
algorithm is used in an application requiring two coefficients and employing
the DCT.

(a) Show in detail the update equation related to each adaptive filter coefficient
as a function of the input signal, given � and �2x , where the former is the
regularization factor and the latter is the variance of the input signal x.k/.

(b) Which value of � would generate an a posteriori error equal to zero?

Solution. (a) The transform matrix in this case is given by

T D
" p

2
2

p
2
2p

2
2

�
p
2
2

#

The update equation of the first coefficient is

Ow0.k C 1/ D Ow0.k/C 2�

� C �20 .k/
e.k/s0.k/

D Ow0.k/C 2�p
2.� C �20 .k//

e.k/.x0.k/C x1.k//

and of the second coefficient is

Ow1.k C 1/ D Ow1.k/C 2�

� C �21 .k/
e.k/s1.k/

D Ow1.k/C 2�p
2.� C �21 .k//

e.k/.x0.k/ � x1.k//

where �20 .k/ D �21 .k/ D 1
2
�2x0.k/C 1

2
�2x1 .k/. These variances are estimated by

�2xi .k/ D ˛x2i .k/C .1 � ˛/�2xi .k � 1/, for i D 0; 1, ˛ is a small factor chosen
in the range 0 < ˛ � 0:1, and � is the regularization factor.

(b) In matrix form the above updating equation can be rewritten as

Ow.k C 1/ D Ow.k/C 2�e.k/˙�2.k/s.k/ (4.164)

where ˙�2.k/ is a diagonal matrix containing as elements the inverse of the
power estimates of the elements of s.k/ added to the regularization factor � . By
replacing the above expression in the a posteriori error definition, it follows that
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".k/ D d.k/ � sT .k/ Ow.k C 1/

D d.k/ � sT .k/ Ow.k/ � 2�e.k/sT .k/˙�2.k/s.k/ D 0

leading to

� D 1

2sT .k/˙�2.k/s.k/ ut

4.7.2 System Identification Simulations

In this subsection, a standard system identification problem is described and solved
by using some of the algorithms presented in this chapter.

Example 4.7 (Transform-Domain LMS Algorithm). Use the transform-domain
LMS algorithm to identify the system described in example of Sect. 3.6.2. The
transform is the DCT.

Solution. All the results presented here for the transform-domain LMS algorithm
are obtained by averaging the results of 200 independent runs.

We run the algorithm with a value of � D 0:01, with ˛ D 0:05 and � D 10�6.
With this value of �, the misadjustment of the transform-domain LMS algorithm
is about the same as that of the LMS algorithm with � D 0:02. In Fig. 4.13,
the learning curves for the eigenvalue spreads 20 and 80 are illustrated. First note
that the convergence speed is about the same for different eigenvalue spreads,
showing the effectiveness of the rotation performed by the transform in this case.
If we compare these curves with those of Fig. 3.9 for the LMS algorithm, we
conclude that the transform-domain LMS algorithm has better performance than
the LMS algorithm for high eigenvalue spread. For an eigenvalue spread equal to
20, the transform-domain LMS algorithm requires around 200 iterations to achieve
convergence, whereas the LMS requires at least 500 iterations. This improvement is
achieved without increasing the misadjustment as can be verified by comparing the
results of Tables 3.1 and 4.1.

The reader should bear in mind that the improvements in convergence of the
transform-domain LMS algorithm can be achieved only if the transformation is
effective. In this example, since the input signal is colored using a first-order all-
pole filter, the cosine transform is known to be effective because it approximates
the KLT.

The finite-precision implementation of the transform-domain LMS algorithm
presents similar performance to that of the LMS algorithm, as can be verified by
comparing the results of Tables 3.2 and 4.2. An eigenvalue spread of one is used
in this example. The value of � is 0:01, while the remaining parameter values are
� D 2�bd and ˛ D 0:05. The value of � in this case is chosen the same as for the
LMS algorithm. ut



190 4 LMS-Based Algorithms

–40

–30

–20

–10

0

10

20

30

40

0 50 100 150 200 250 300 350 400

E
st

im
at

ed
 M

S
E

  (
10

 lo
g(

M
S

E
)

Number of iterations, k

20
80

Fig. 4.13 Learning curves for the transform-domain LMS algorithm for eigenvalue spreads: 20
and 80

Table 4.1 Evaluation of the
Transform-Domain LMS
Algorithm

�max
�min

Misadjustment

1 0.2027
20 0.2037
80 0.2093

Table 4.2 Results of the
Finite-Precision
Implementation of the
Transform-Domain LMS
Algorithm

�.k/Q EŒjj�w.k/Qjj2�
No of bits Experiment Experiment

16 1.627 10�3 1.313 10�4

12 1.640 10�3 1.409 10�4

10 1.648 10�3 1.536 10�4

Example 4.8 (Affine Projection Algorithm). An adaptive-filtering algorithm is used
to identify the system described in example of Sect. 3.6.2 using the affine projection
algorithm using L D 0, L D 1 and L D 4. Do not consider the finite-precision
case.

Solution. Figure 4.14 depicts the estimate of the MSE learning curve of the affine
projection algorithm for the case of eigenvalue spread equal to 1, obtained by
averaging the results of 200 independent runs. As can be noticed by increasing
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Fig. 4.14 Learning curves for the affine projection algorithms for L D 0, L D 1, and L D 4,
eigenvalue spread equal 1

L the algorithm becomes faster. The chosen convergence factor is � D 0:4, and
the measured misadjustments are M D 0:32 for L D 0, M D 0:67 for L D 1,
and M D 2:05 for L D 4. In all cases � D 0 is utilized, and for L D 1

in the first iteration we start with L D 0, whereas for L D 4 in the first four
iterations we employ L D 0; 1; 2; and 3, respectively. If we consider that the

term E
h

1
kx.k/k2

i
� 1

.NC1/�2x , the expected misadjustment according to (4.126) is

M D 0:25, which is somewhat close to the measured ones considering the above
approximation as well as the approximations in the derivation of the theoretical
formula.

Figure 4.15 depicts the average of the squared error obtained from 200 inde-
pendent runs for the case of eigenvalue spread equal to 80. Again we verify that
by increasing L the algorithm becomes faster. The chosen convergence factor is
also � D 0:4, and the measured misadjustments for three values of the eigenvalue
spread are listed in Table 4.3. It can be observed that higher eigenvalue spreads do
not increase the misadjustment substantially.

In Fig. 4.16, it is shown the effect of using different values for the convergence
factor, when L D 1 and the eigenvalue spread is equal to 1. For � D 0:2 the
misadjustment is M D 0:30, for � D 0:4 the misadjustment is M D 0:67, and for
� D 1 the misadjustment is M D 1:56. ut
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Fig. 4.15 Learning curves for the affine projection algorithms for L D 0, L D 1, and L D 4,
eigenvalue spread equal 80

Table 4.3 Evaluation of the Affine Projection Algorithm, � D 0:4

Misadjustment, L D 0 Misadjustment, L D 1 Misadjustment, L D 4
�max
�min

Experiment Theory Experiment Theory Experiment Theory

1 0.32 0.25 0.67 0.37 2.05 0.81
20 0.35 0.25 0.69 0.37 2.29 0.81
80 0.37 0.25 0.72 0.37 2.43 0.81

4.7.3 Signal Enhancement Simulations

In this subsection, a signal enhancement simulation environment is described. This
example will also be employed in some of the following chapters.

In a signal enhancement problem, the reference signal is

r.k/ D sin.0:2	k/C nr.k/

where nr.k/ is zero-mean Gaussian white noise with variance �2nr D 10. The input
signal is given by nr.k/ passed through a filter with the following transfer function

H.z/ D 0:4

z2 � 1:36z C 0:79



4.7 Examples 193

0.0001

0.001

0.01

0.1

1

0 50 100 150 200

M
SE

 (
L

og
 s

ca
le

)

Number of iterations, k

mu=0.2
mu=0.4

mu=1

Fig. 4.16 Learning curves for the affine projection algorithms for � D 0:2, � D 0:4, and � D 1

The adaptive filter is a 20th-order FIR filter. In all examples, a delay L D 10 is
applied to the reference signal.

Example 4.9 (Quantized-Error and Normalized LMS Algorithms). Using the sign-
error, power-of-two error with bd D 12, and normalized LMS algorithms:

(a) Choose an appropriate � in each case and run an ensemble of 50 experiments.
Plot the average learning curve.

(b) Plot the output errors and comment on the results.

Solution. The maximum value of � for the LMS algorithm in this example is
0:005. The value of � for both the sign-error and power-of-two LMS algorithms is
chosen 0:001. The coefficients of the adaptive filter are initialized with zero. For the
normalized LMS algorithm �n D 0:4 and � D 10�6 are used. Fig. 4.17 depicts
the learning curves for the three algorithms. The results show that the sign-error
and power-of-two error algorithms present similar convergence speed, whereas the
normalized LMS algorithm is faster to converge. The reader should notice that
the MSE after convergence is not small since we are dealing with an example where
the signal-to-noise ratio is low.

The DFT with 128 points of the input signal is shown in Fig. 4.18 where the
presence of the sinusoid cannot be noted. In the same figure are shown the DFT of
the error and the error signal itself, for the experiment using the normalized LMS
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algorithm. In the cases of DFT, the result presented is the magnitude of the DFT
outputs. As can be verified, the output error tends to produce a signal with the same
period of the sinusoid after convergence and the DFT shows clearly the presence of
the sinusoid. The other two algorithms lead to similar results. ut

4.7.4 Signal Prediction Simulations

In this subsection a signal prediction simulation environment is described. This
example will also be used in some of the following chapters.

In a prediction problem the input signal is

x.k/ D �p
2 sin.0:2	k/C p

2 sin.0:05	k/C nx.k/

where nx.k/ is zero-mean Gaussian white noise with variance �2nx D 1. The adap-
tive filter is a fourth-order FIR filter.

(a) Run an ensemble of 50 experiments and plot the average learning curve.
(b) Determine the zeros of the resulting FIR filter and comment on the results.

Example 4.10 (Quantized-Error and Normalized LMS Algorithms). We solve the
above problem using the sign-error, power-of-two error with bd D 12, and
normalized LMS algorithms.

Solution. In the first step, each algorithm is tested in order to determine exper-
imentally the maximum value of � in which the convergence is achieved. The
choice of the convergence factor is �max=5 for each algorithm. The chosen values
of � for the sign-error and power-of-two LMS algorithms are 0:0028 and 0:0044,
respectively. For the normalized LMS algorithm, �n D 0:4 and � D 10�6 are
used. The coefficients of the adaptive filter are initialized with zero. The learning
curves for the three algorithms are depicted in Fig. 4.19. In all cases, we notice
a strong attenuation of the predictor response around the frequencies of the two
sinusoids. See, for example, the response depicted in Fig. 4.20 obtained by running
the power-of-two LMS algorithm. The zeros of the transfer function from the input
to the output error are calculated for the power-of-two algorithm:

�0:3939I �0:2351˙ |0:3876I �0:6766˙ |0:3422

Notice that the predictor tends to place its zeros at low frequencies, in order to
attenuate the two low-frequency sinusoids.

In the experiments, we notice that for a given additional noise, smaller con-
vergence factor leads to higher attenuation at the sinusoid frequencies. This is an
expected result since the excess MSE is smaller. Another observation is that the
attenuation also grows as the signal-to-noise ratio is reduced, again due to the
smaller MSE. ut
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using the power-of-two LMS algorithm

4.8 Concluding Remarks

In this chapter, a number of adaptive-filtering algorithms were presented derived
from the LMS algorithm. There were two basic directions followed in the derivation
of the algorithms: one direction was to search for simpler algorithms from the
computational point of view, and the other was to sophisticate the LMS algorithm
looking for improvements in performance. The simplified algorithms lead to
low-power, low-complexity and/or high-speed integrated circuit implementations
[31], at a cost of increasing the misadjustment and/or of losing convergence
speed among other things [32]. The simplified algorithms discussed here were the
quantized-error algorithms.

We also introduced the LMS-Newton algorithm, whose performance is indepen-
dent of the eigenvalue spread of the input signal correlation matrix. This algorithm
is related to the RLS algorithm which will be discussed in the following chapter,
although some distinctive features exist between them [41]. Newton-type algorithms
with reduced computational complexity are also known [42, 43], and the main
characteristic of this class of algorithms is to reduce the computation involving the
inverse of the estimate of R.

In the normalized LMS algorithm, the straightforward objective was to find the
step size that minimizes the instantaneous output error. There are many papers
dealing with the analysis [33]-[35] and applications [36] of the normalized LMS
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algorithm. The idea of using variable step size in the LMS and normalized LMS
algorithms can lead to a number of interesting algorithms [37]-[39], that in some
cases are very efficient in tracking nonstationary environments [40].

The transform-domain LMS algorithm aimed at reducing the eigenvalue spread
of the input signal correlation matrix. Several frequency-domain adaptive algo-
rithms, which are related in some sense to the transform-domain LMS algorithm,
have been investigated in the recent years [44]. Such algorithms exploit the whiten-
ing property associated with the normalized transform-domain LMS algorithm, and
most of them update the coefficients at a rate lower than the input sampling rate.
One of the resulting structures, presented in [45], can be interpreted as a direct
generalization of the transform-domain LMS algorithm and is called generalized
adaptive subband decomposition structure. Such structure consists of a small-size
fixed transform, which is applied to the input sequence, followed by sparse adaptive
subfilters which are updated at the input rate. In high-order adaptive-filtering
problems, the use of this structure with appropriately chosen transform-size and
sparsity factor can lead to significant convergence rate improvement for colored
input signals when compared to the standard LMS algorithm. The convergence
rate improvement is achieved without the need for large transform sizes. Other
algorithms to deal with high-order adaptive filters are discussed in Chap. 12.

The affine projection algorithm is very appealing in applications requiring a
trade-off between convergence speed and computational complexity. Although
the algorithms in the affine projection family might have high misadjustment,
their combination with deterministic objective functions leading to data selective
updating results in computationally efficient algorithms with low misadjustment and
high convergence speed [25], as will be discussed in Chap. 6.

Several simulation examples involving the LMS-based algorithms were pre-
sented in this chapter. These examples aid the reader to understand what are the
main practical characteristics of the LMS-based algorithms.

4.9 Problems

1. From (4.16) derive the difference equation for v0.k/ given by (4.19).
2. Prove the validity of (4.27).
3. The sign-error algorithm is used to predict the signal x.k/ D sin.	k=3/

using a second-order FIR filter with the first tap fixed at 1, by minimizing
the mean square value of y.k/. This is an alternative way to interpret how the
predictor works. Calculate an appropriate �, the output signal y.k/, and the
filter coefficients for the first 10 iterations. Start with wT .0/ D Œ1 0 0�.

4. Derive an LMS-Newton algorithm leading to zero a posteriori error.
5. Derive the updating equations of the affine projection algorithm, for L D 1.
6. Use the sign-error algorithm to identify a system with the transfer function

given below. The input signal is a uniformly distributed white noise with
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variance �2x D 1, and the measurement noise is Gaussian white noise
uncorrelated with the input with variance �2n D 10�3. The adaptive filter has
12 coefficients.

H.z/ D 1 � z�12

1C z�1

(a) Calculate the upper bound for� .�max/ to guarantee the algorithm stability.
(b) Run the algorithm for �max=2, �max=5, and �max=10. Comment on the

convergence behavior in each case.
(c) Measure the misadjustment in each example and compare with the results

obtained by (4.28).
(d) Plot the obtained FIR filter frequency response at any iteration after

convergence is achieved and compare with the unknown system.

7. Repeat the previous problem using an adaptive filter with 8 coefficients and
interpret the results.

8. Repeat problem 6 when the input signal is a uniformly distributed white noise
with variance �2nx D 0:5, filtered by an all-pole filter given by

H.z/ D z

z � 0:9
9. In problem 6, consider that the additional noise has the following variances (a)
�2n D 0, (b) �2n D 1. Comment on the results obtained in each case.

10. Perform the equalization of a channel with the following impulse response

h.k/ D ku.k/ � .2k � 9/u.k � 5/C .k � 9/u.k � 10/

using a known training signal consisting of a binary (-1,1) random signal. An
additional Gaussian white noise with variance 10�2 is present at the channel
output.

(a) Apply the sign-error with an appropriate � and find the impulse response
of an equalizer with 15 coefficients.

(b) Convolve the equalizer impulse response at an iteration after convergence,
with the channel impulse response and comment on the result.

11. In a system identification problem, the input signal is generated by an autore-
gressive process given by

x.k/ D �1:2x.k � 1/� 0:81x.k � 2/C nx.k/

where nx.k/ is zero-mean Gaussian white noise with variance such that �2x D 1.
The unknown system is described by

H.z/ D 1C 0:9z�1 C 0:1z�2 C 0:2z�3
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The adaptive filter is also a third-order FIR filter. Using the sign-error
algorithm:

(a) Choose an appropriate �, run an ensemble of 20 experiments, and plot the
average learning curve.

(b) Measure the excess MSE and compare the results with the theoretical value.

12. In the previous problem, calculate the time constant �wi and the expected
number of iterations to achieve convergence.

13. The sign-error algorithm is applied to identify a 7th-order time-varying un-
known system whose coefficients are first-order Markov processes with �w D
0:999 and �2w D 0:001. The initial time-varying system multiplier coeffi-
cients are

wT
o D Œ0:03490�0:011�0:068640:223910:556860:35798�0:0239�0:07594�

The input signal is Gaussian white noise with variance �2x D 0:7, and the
measurement noise is also Gaussian white noise independent of the input signal
and of the elements of nw.k/, with variance �2n D 0:01.
For � D 0:01, simulate the experiment described and measure the excess MSE.

14. Reduce the value of �w to 0.95 in problem 13, simulate, and comment on the
results.

15. Suppose a 15th-order FIR digital filter with multiplier coefficients given
below, is identified through an adaptive FIR filter of the same order using
the sign-error algorithm. Use fixed-point arithmetic and run simulations for the
following case.

Additional noise: white noise with variance �2n D 0:0015

Coefficient wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance �2x D 0:7

� D 0:01

wT
o D Œ0:0219360 0:0015786 � 0:0602449 � 0:0118907 0:1375379

0:0574545 � 0:3216703 � 0:5287203 � 0:2957797 0:0002043
0:290670 � 0:0353349 � 0:068210 0:0026067 0:0010333 � 0:0143593�

Plot the learning curves of the estimates of EŒjj�w.k/Qjj2� and �.k/Q
obtained through 25 independent runs, for the finite- and infinite-precision
implementations.

16. Repeat the above problem for the following cases

(a) �2n D 0:01, bc D 12 bits, bd D 12 bits, �2x D 0:7, � D 10�4.
(b) �2n D 0:1, bc D 10 bits, bd D 10 bits, �2x D 0:8, � D 2:0 10�5.
(c) �2n D 0:05, bc D 14 bits, bd D 16 bits, �2x D 0:8, � D 3:5 10�4.
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17. Repeat problem 15 for the case where the input signal is a first-order Markov
process with �x D 0:95.

18. Repeat problem 6 for the dual-sign algorithm given � D 16 and  D 1, and
comment on the results.

19. Repeat problem 6 for the power-of-two error algorithm given bd D 6 and � D
2�bd , and comment on the results.

20. Repeat problem 6 for the sign-data and sign-sign algorithms and compare the
results.

21. Show the validity of the matrix inversion lemma defined in (4.51).
22. For the setup described in problem 8, choose an appropriate � and run the

LMS-Newton algorithm.

(a) Measure the misadjustment.
(b) Plot the frequency response of the FIR filter obtained after convergence is

achieved and compare with the unknown system.

23. Repeat problem 8 using the normalized LMS algorithm.
24. Repeat problem 8 using the transform-domain LMS algorithm with DFT.

Compare the results with those obtained with the standard LMS algorithm.
25. Repeat problem 8 using the affine projection algorithm.
26. Repeat problem 8 using the transform-domain LMS algorithm with DCT.
27. For the input signal described in problem 8, derive the autocorrelation matrix

of order one (2 � 2). Apply the DCT and the normalization to R in order to
generate OR D ˙�2TRTT . Compare the eigenvalue spreads of R and OR.

28. Repeat the previous problem for R with dimension 3 by 3.
29. Use the complex affine projection algorithm with L D 3 to equalize a channel

with the transfer function given below. The input signal is a four QAM signal
representing a randomly generated bit stream with the signal-to-noise ratio
�2

Qx

�2n
D 20 at the receiver end, that is, Qx.k/ is the received signal without

taking into consideration the additional channel noise. The adaptive filter has
ten coefficients.

H.z/ D .0:34� 0:27|/C .0:87C 0:43|/z�1 C .0:34 � 0:21|/z�2

(a) Run the algorithm for � D 0:1, � D 0:4, and � D 0:8. Comment on the
convergence behavior in each case.

(b) Plot the real versus imaginary parts of the received signal before and after
equalization.

(c) Increase the number of coefficients to 20 and repeat the experiment in (b).

30. Repeat problem 29 for the case of the normalized LMS algorithm.
31. In a system identification problem the input signal is generated from a four

QAM of the form

x.k/ D xre.k/C |xim.k/
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where xre.k/ and xim.k/ assume values ˙1 randomly generated. The unknown
system is described by

H.z/ D 0:32C0:21|C .�0:3C0:7|/z�1C .0:5�0:8|/z�2C .0:2C0:5|/z�3

The adaptive filter is also a third-order complex FIR filter, and the additional
noise is composed of zero-mean Gaussian white noises in the real and
imaginary parts with variance �2n D 0:4. Using the complex affine projection
algorithm with L D 1, choose an appropriate �, run an ensemble of 20
experiments, and plot the average learning curve.

32. Repeat problem 31 utilizing the affine projection algorithm with L D 4.
33. Derive a complex transform-domain LMS algorithm for the case the transfor-

mation matrix is the DFT.
34. The Quasi-Newton algorithm first proposed in [51] is described by the follow-

ing set of equations

e.k/ D d.k/ � wT .k/x.k/

�.k/ D 1

2xT .k/ OR�1
.k/x.k/

w.k C 1/ D w.k/C 2 �.k/ e.k/ OR�1
.k/x.k/

OR�1
.k C 1/ D OR�1

.k/� 2�.k/ .1 � �.k// OR�1
.k/x.k/xT .k/ OR�1

.k/ (4.165)

(a) Apply this algorithm as well as the binormalized LMS algorithm to identify
the system

H.z/ D 1C z�1 C z�2

when the additional noise is a uniformly distributed white noise with variance
�2n D 0:01, and the input signal is a Gaussian noise with unit variance filtered
by an all-pole filter given by

G.z/ D 0:19z

z � 0:9

Through simulations, compare the convergence speed of the two algorithms
when their misadjustments are approximately the same. The later condition can
be met by choosing the � in the binormalized LMS algorithm appropriately.

35. Show the update equation of a stochastic gradient algorithm designed to search
the following objective function.

F Œw.k/� D ajd.k/ � wH.k/x.k/j4 C bjd.k/� wH.k/x.k/j3

36. (a) A normalized LMS algorithm with convergence factor equal to one receives
the following data
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x.0/ D
�
1

2

�

d.0/ D 1

and

x.1/ D
�
2

1

�

d.1/ D 0

with zero initial values for the coefficients. Determine the hyperplanesS.k/

S.k/ D fw.k C 1/ 2 R
2 W d.k/ � wT .k C 1/x.k/ D 0g

for the two updates.
(b) If these data belong to a system identification problem without additional

noise, what would be the optimal coefficients of the unknown system?
37. An adaptive filter is employed to identify an unknown system of order 20 using

sufficient order, and producing a misadjustment of 30%. Assume the input
signal is a white Gaussian noise with unit variance and �2n D 0:01.

(a) For an LMS algorithm what value of � is required to obtain the desired
result?

(b) What about the value of � for the affine projection algorithm with L D 2

and using (4.125)? Is this expression suitable for this case?

38. Given the updating equation

w.k C 1/ D w.k/C �n

� C �2x .k/
e.k/ x.k/

where �2x.k/ D ˛x2.k/C .1 � ˛/�2x .k � 1/, derive the objective function that
the algorithm minimizes. Assume that � � 0 is included only for regularization
purposes.

39. Derive an affine projection algorithm for real signals and one reuse
(binormalized) employing a forgetting factor � such that

Xap.k/ D

2

6
6
6
4

x.k/ �x.k � 1/
x.k � 1/ �x.k � 2/

:::
:::

x.k �N/ �x.k �N � 1/

3

7
7
7
5

D Œx.k/ �x.k � 1/�
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and

dap.k/ D
�

d.k/

�d.k � 1/
�

Describe in detail the objective function being minimized when a convergence
factor � is used.

References
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Chapter 5
Conventional RLS Adaptive Filter

5.1 Introduction

Least-squares algorithms aim at the minimization of the sum of the squares of the
difference between the desired signal and the model filter output [1, 2]. When new
samples of the incoming signals are received at every iteration, the solution for the
least-squares problem can be computed in recursive form resulting in the recursive
least-squares (RLS) algorithms. The conventional version of these algorithms will
be the topic of this chapter.

The RLS algorithms are known to pursue fast convergence even when the
eigenvalue spread of the input signal correlation matrix is large. These algorithms
have excellent performance when working in time-varying environments. All these
advantages come with the cost of an increased computational complexity and some
stability problems, which are not as critical in LMS-based algorithms [3, 4].

Several properties related to the RLS algorithms are discussed including mis-
adjustment, tracking behavior, which are verified through a number of simulation
results.

Chapter 16 deals with the quantization effects in the conventional RLS algorithm.
Chapter 17 provides an introduction to Kalman filters whose special case can be
related to the RLS algorithms.

5.2 The Recursive Least-Squares Algorithm

The objective here is to choose the coefficients of the adaptive filter such that the
output signal y.k/, during the period of observation, will match the desired signal
as closely as possible in the least-squares sense. The minimization process requires
the information of the input signal available so far. Also, the objective function we
seek to minimize is deterministic.

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 5, © Springer Science+Business Media New York 2013
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Fig. 5.1 Adaptive FIR filter

The generic FIR adaptive filter realized in the direct form is shown in Fig. 5.1.
The input signal information vector at a given instant k is given by

x.k/ D Œx.k/ x.k � 1/ : : : x.k �N/�T (5.1)

where N is the order of the filter. The coefficients wj .k/, for j D 0; 1; : : : ; N ,
are adapted aiming at the minimization of a given objective function. In the case of
least-squares algorithms, the objective function is deterministic and is given by

�d .k/ D
kX

iD0
�k�i "2.i/

D
kX

iD0
�k�i �d.i/� xT .i/w.k/

�2
(5.2)

where w.k/ D Œwo.k/ w1.k/ : : :wN .k/�T is the adaptive-filter coefficient vector and
".i/ is the a posteriori output error1 at instant i . The parameter � is an exponential
weighting factor that should be chosen in the range 0 	 � � 1. This parameter
is also called forgetting factor since the information of the distant past has an
increasingly negligible effect on the coefficient updating.

It should be noticed that in the development of the LMS and LMS-based
algorithms we utilized the a priori error. In the RLS algorithms ".k/ is used to

1The a posteriori error is computed after the coefficient vector is updated, and taking into
consideration the most recent input data vector x.k/.
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denote the a posteriori error whereas e.k/ denotes the a priori error. The a posteriori
error will be our first choice in the development of the RLS-based algorithms.

As can be noted, each error consists of the difference between the desired signal
and the filter output, using the most recent coefficients w.k/. By differentiating
�d .k/ with respect to w.k/, it follows that

@�d .k/

@w.k/
D �2

kX

iD0
�k�ix.i/

�
d.i/� xT .i/w.k/

�
(5.3)

By equating the result to zero, it is possible to find the optimal vector w.k/ that
minimizes the least-squares error, through the following relation:

�
kX

iD0
�k�ix.i/xT .i/w.k/C

kX

iD0
�k�ix.i/d.i/ D

2

6
6
6
4

0

0
:::

0

3

7
7
7
5

The resulting expression for the optimal coefficient vector w.k/ is given by

w.k/ D
"

kX

iD0
�k�ix.i/xT .i/

#�1
kX

iD0
�k�ix.i/d.i/

D R�1
D .k/pD.k/ (5.4)

where RD.k/ and pD.k/ are called the deterministic correlation matrix of the input
signal and the deterministic cross-correlation vector between the input and desired
signals, respectively.

In (5.4) it was assumed that RD.k/ is nonsingular. However, if RD.k/ is singular
a generalized inverse [1] should be used instead in order to obtain a solution for w.k/
that minimizes �d .k/. Since we are assuming that in most practical applications the
input signal has persistence of excitation, the cases requiring generalized inverse
are not discussed here. It should be mentioned that if the input signal is considered
to be zero for k < 0 then RD.k/ will always be singular for k < N , i.e., during
the initialization period. During this period, the optimal value of the coefficients
can be calculated, for example, by the backsubstitution algorithm to be presented in
Sect. 9.2.1.

The straightforward computation of the inverse of RD.k/ results in an algorithm
with computational complexity of OŒN 3�. In the conventional RLS algorithm the
computation of the inverse matrix is avoided through the use of the matrix inversion
lemma [1], first presented in the previous chapter for the LMS-Newton algorithm.
Using the matrix inversion lemma, see (4.51), the inverse of the deterministic
correlation matrix can then be calculated in the following form
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Algorithm 5.1 Conventional RLS algorithm
Initialization

SD.�1/ D ıI
where ı can be the inverse of the input signal power estimate

pD.�1/ D x.�1/ D Œ0 0 : : : 0�T

Do for k � 0 W
SD.k/ D 1

�
ŒSD.k � 1/� SD.k�1/x.k/xT .k/SD.k�1/

�CxT .k/SD.k�1/x.k/ �

pD.k/ D �pD.k � 1/C d.k/x.k/
w.k/ D SD.k/pD.k/

If necessary compute
y.k/ D wT .k/x.k/
".k/ D d.k/� y.k/

SD.k/ D R�1
D .k/ D 1

�

�

SD.k � 1/� SD.k � 1/x.k/xT .k/SD.k � 1/

�C xT .k/SD.k � 1/x.k/

�

(5.5)

The complete conventional RLS algorithm is described in Algorithm 5.1.
An alternative way to describe the conventional RLS algorithm can be obtained

if (5.4) is rewritten in the following form

"
kX

iD0
�k�ix.i/xT .i/

#

w.k/ D �

"
k�1X

iD0
�k�i�1x.i/d.i/

#

C x.k/d.k/ (5.6)

By considering that RD.k � 1/w.k � 1/ D pD.k � 1/, it follows that

"
kX

iD0
�k�ix.i/xT .i/

#

w.k/ D �pD.k � 1/C x.k/d.k/

D �RD.k � 1/w.k � 1/C x.k/d.k/

D
"

kX

iD0
�k�ix.i/xT .i/� x.k/xT .k/

#

� w.k � 1/C x.k/d.k/ (5.7)

where in the last equality the matrix x.k/xT .k/ was added and subtracted inside
square bracket on the right side of (5.7). Now, define the a priori error as

e.k/ D d.k/� xT .k/w.k � 1/ (5.8)

By expressing d.k/ as a function of the a priori error and replacing the result in
(5.7), after few manipulations, it can be shown that

w.k/ D w.k � 1/C e.k/SD.k/x.k/ (5.9)
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Algorithm 5.2 Alternative RLS algorithm
Initialization

SD.�1/ D ıI
where ı can be the inverse of an estimate of the input signal power

x.�1/ D w.�1/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/ D d.k/� xT .k/w.k � 1/

.k/ D SD.k � 1/x.k/

SD.k/ D 1
�
ŒSD.k � 1/� .k/ 

T
.k/

�C 
T
.k/x.k/

�

w.k/ D w.k � 1/C e.k/SD.k/x.k/
If necessary compute
y.k/ D wT .k/x.k/
".k/ D d.k/� y.k/

With (5.9), it is straightforward to generate an alternative conventional RLS
algorithm as shown in Algorithm 5.2.

In Algorithm 5.2,  .k/ is an auxiliary vector required to reduce the computa-
tional burden defined by

.k/ D SD.k � 1/x.k/ (5.10)

Further reduction in the number of divisions is possible if an additional auxiliary
vector is used, defined as

�.k/ D .k/

�C T .k/x.k/
(5.11)

This vector can be used to update SD.k/ as follows:

SD.k/ D 1

�

�
SD.k � 1/� .k/�T .k/� (5.12)

As will be discussed, the above relation can lead to stability problems in the RLS
algorithm.

5.3 Properties of the Least-Squares Solution

In this section, some properties related to the least-squares solution are discussed
in order to give some insight to the algorithm behavior in several situations to be
discussed later on.
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5.3.1 Orthogonality Principle

Define the matrices X.k/ and d.k/ that contain all the information about the input
signal vector x.k/ and the desired signal vector d.k/ as follows:

X.k/ D

2

6
6
6
4

x.k/ �1=2x.k � 1/ � � � �.k�1/=2x.1/ �k=2x.0/
x.k � 1/ �1=2x.k � 2/ � � � �.k�1/=2x.0/ 0

:::
:::

:::
:::

x.k �N/ �1=2x.k �N � 1/ � � � 0 0

3

7
7
7
5

D �
x.k/ �1=2x.k � 1/ : : : �k=2x.0/� (5.13)

d.k/ D �
d.k/ �1=2d.k � 1/ : : : �k=2d.0/

�T
(5.14)

where X.k/ is .N C 1/ � .k C 1/ and d.k/ is .k C 1/ � 1.
By using the matrices above defined it is possible to replace the least-squares

solution of (5.4) by the following relation

X.k/XT .k/w.k/ D X.k/d.k/ (5.15)

The product XT .k/w.k/ forms a vector including all the adaptive-filter outputs
when the coefficients are given by w.k/. This vector corresponds to an estimate of
d.k/. Hence, defining

y.k/ D XT .k/w.k/ D �
y.k/ �1=2y.k � 1/ : : : �k=2y.0/

�T
(5.16)

it follows from (5.15) that

X.k/XT .k/w.k/� X.k/d.k/ D X.k/Œy.k/ � d.k/� D 0 (5.17)

This relation means that the weighted-error vector given by

".k/ D

2

6
6
6
4

".k/

�1=2".k � 1/
:::

�k=2".0/

3

7
7
7
5

D d.k/ � y.k/ (5.18)

is in the null space of X.k/, i.e., the weighted-error vector is orthogonal to all row
vectors of X.k/. This justifies the fact that (5.15) is often called normal equation. A
geometrical interpretation can easily be given for a least-squares problem solution
with a single coefficient filter.



5.3 Properties of the Least-Squares Solution 215

Example 5.1. Suppose that � D 1 and that the following signals are involved in the
least-squares problem

d.1/ D
�
0:5

1:5

�

X.1/ D Œ1 � 2�

The optimal coefficient is given by

X.1/XT .1/w.1/ D Œ1 � 2�

�
1

�2
�

w.1/

D X.1/d.1/

D Œ1 � 2�

�
0:5

1:5

�

After performing the calculations the result is

w.1/ D �1
2

The output of the adaptive filter with coefficient given by w.1/ is

y.1/ D
�� 1

2

1

�

Note that

X.1/Œy.1/� d.1/� D Œ1 � 2�
� �1

�0:5
�

D 0

Figure 5.2 illustrates the fact that y.1/ is the projection of d.1/ in the X.1/ direction.
In the general case we can say that the vector y.k/ is the projection of d.k/ onto the
subspace spanned by the rows of X.k/. �

5.3.2 Relation Between Least-Squares and Wiener Solutions

When � D 1 the matrix 1
kC1RD.k/ for large k is a consistent estimate of the input

signal autocorrelation matrix R, if the process from which the input signal was taken
is ergodic. The same observation is valid for the vector 1

kC1pD.k/ related to p if the
desired signal is also ergodic. In this case,
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e

Fig. 5.2 Geometric
interpretation of least-squares
solution

R D lim
k!1

1

k C 1

kX

iD0
x.i/xT .i/ D lim

k!1
1

k C 1
RD.k/ (5.19)

and

p D lim
k!1

1

k C 1

kX

iD0
x.i/d.i/ D lim

k!1
1

k C 1
pD.k/ (5.20)

It can then be shown that

w.k/ D R�1
D .k/pD.k/ D R�1p D wo (5.21)
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when k tends to infinity. This result indicates that the least-squares solution tends
to the Wiener solution if the signals involved are ergodic and stationary. The
stationarity requirement is due to the fact that the estimate of R given by (5.19)
is not sensitive to any changes in R for large values of k. If the input signal is
nonstationary RD.k/ is a biased estimate for R. Note that in this case R is time
varying.

5.3.3 Influence of the Deterministic Autocorrelation
Initialization

The initialization of SD.�1/ D ıI causes a bias in the coefficients estimated by the
adaptive filter. Suppose that the initial value given to RD.k/ is taken into account in
the actual RLS solution as follows:

kX

iD�1
�k�ix.i/xT .i/w.k/ D

"
kX

iD0
�k�ix.i/xT .i/C �kC1

ı
I

#

w.k/

D pD.k/ (5.22)

By recognizing that the deterministic autocorrelation matrix leading to an unbiased
solution does not include the initialization matrix, we now examine the influence
of this matrix. By multiplying SD.k/ D R�1

D .k/ on both sides of (5.22), and by
considering k ! 1, it can be concluded that

w.k/C �kC1

ı
SD.k/w.k/ D wo (5.23)

where wo is the optimal solution for the RLS algorithm.
The bias caused by the initialization of SD.k/ is approximately

w.k/ � wo � ��
kC1

ı
SD.k/wo (5.24)

For � < 1, it is straightforward to conclude that the bias tends to zero as k tends to
infinity. On the other hand, when � D 1 the elements of SD.k/ get smaller when the
number of iterations increase, as a consequence this matrix approaches a null matrix
for large k.

The RLS algorithm would reach the optimum solution for the coefficients after
N C 1 iterations if no measurement noise is present, and the influence of the initial-
ization matrix SD.�1/ is negligible at this point. This result follows from the fact
that after N C 1 iterations, the input signal vector has enough information to allow
the adaptive algorithm to identify the coefficients of the unknown system. In other
words, enough information means the tap delay line is filled with information of the
input signal.
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5.3.4 Steady-State Behavior of the Coefficient Vector

In order to understand better the steady-state behavior of the adaptive-filter
coefficients, suppose that an FIR filter with coefficients given by wo is being
identified by an adaptive FIR filter of the same order employing an LS algorithm.
Also assume that a measurement noise signal n.k/ is added to the desired signal
before the error signal is calculated as follows:

d.k/ D wT
o x.k/C n.k/ (5.25)

where the additional noise is considered to be a white noise with zero mean and
variance given by �2n .

Given the adaptive-filter input vectors x.k/, for k D 0; 1; : : :, we are interested
in calculating the average values of the adaptive-filter coefficients wi .k/, for i D
0; 1; : : : ; N . The desired result is the following equality valid for k � N .

EŒw.k/� D E
n�

X.k/XT .k/
��1

X.k/d.k/
o

D E
n�

X.k/XT .k/
��1

X.k/ŒXT .k/wo C n.k/�
o

D E
n�

X.k/XT .k/
��1

X.k/XT .k/wo

o
D wo (5.26)

where n.k/ D Œn.k/ �1=2n.k � 1/ �n.k � 2/ : : : �k=2n.0/�T is the noise vector,
whose elements were considered orthogonal to the input signal. The above equation
shows that the estimate given by the LS algorithm is an unbiased estimate when
� � 1.

A more accurate analysis reveals the behavior of the adaptive-filter coefficients
during the transient period. The error in the filter coefficients can be described by
the following .N C 1/ � 1 vector

�w.k/ D w.k/ � wo (5.27)

It follows from (5.7) that

RD.k/w.k/ D �RD.k � 1/w.k � 1/C x.k/d.k/ (5.28)

Defining the minimum output error as

eo.k/ D d.k/ � xT .k/wo (5.29)

and replacing d.k/ in (5.28), it can be deduced that

RD.k/�w.k/ D �RD.k � 1/�w.k � 1/C x.k/eo.k/ (5.30)
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where the following relation was used

RD.k/ D �RD.k � 1/C x.k/xT .k/ (5.31)

The solution of (5.30) is given by

�w.k/ D �kC1SD.k/RD.�1/�w.�1/C SD.k/
kX

iD0
�k�ix.i/eo.i/ (5.32)

By replacing RD.�1/ by 1
ı

I and taking the expected value of the resulting
equation, it follows that

EŒ�w.k/�D�kC1

ı
EŒSD.k/��w.�1/CE

"

SD.k/
kX

iD0
�k�ix.i/eo.i/

#

(5.33)

Since SD.k/ is dependent on all past input signal vectors, becoming relatively
invariant when the number of iterations increase, the contribution of any individual
x.i/ can be considered negligible. Also, due to the orthogonality principle, eo.i/
can also be considered uncorrelated to all elements of x.i/. This means that the last
vector in (5.33) cannot have large element values. On the other hand, the first vector
in (5.33) can have large element values only during the initial convergence, since as
k ! 1; �kC1 ! 0 and SD.k/ is expected to have a nonincreasing behavior, i.e.,
RD.k/ is assumed to remain positive definite as k ! 1 and the input signal power
does not become too small. The above discussion leads to the conclusion that the
adaptive-filter coefficients tend to be the optimal values in wo almost independently
from the eigenvalue spread of the input signal correlation matrix.

If we consider the spectral decomposition of the matrix EŒSD.k/� (see (2.65)),
the dependency on the eigenvalues of R can be easily accounted for in the simple
case of � D 1. Applying the expected value operator to the relation of (5.19), we
can infer that

EŒSD.k/� � R�1

.k C 1/
(5.34)

for large k. Now consider the slowest decaying mode of the spectral decomposition
of EŒSD.k/� given by

SDmax D qminqTmin

.k C 1/�min
(5.35)

where �min is the smallest eigenvalue of R and qmin is the corresponding eigenvector.
Applying this result to (5.33), with � D 1, we can conclude that the value of the
minimum eigenvalue affects the convergence of the filter coefficients only in the
first few iterations, because the term kC 1 in the denominator reduces the values of
the elements of SDmax .
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Further interesting properties of the coefficients generated by the LS
algorithm are:

• The estimated coefficients are the best linear unbiased solution to the identifi-
cation problem [1], in the sense that no other unbiased solution generated by
alternative approaches has lower variance.

• If the additive noise is normally distributed the LS solution reaches the Cramer-
Rao lower bound, resulting in a minimum-variance unbiased solution [1]. The
Cramer-Rao lower bound establishes a lower bound to the coefficient-error-
vector covariance matrix for any unbiased estimator of the optimal parameter
vector wo.

5.3.5 Coefficient-Error-Vector Covariance Matrix

So far, we have shown that the estimation parameters in the vector w.k/ converge
on average to their optimal value of the vector wo. However, it is essential to analyze
the coefficient-error-vector covariance matrix in order to determine how good is the
obtained solution, in the sense that we are measuring how far the parameters wander
around the optimal solution.

Using the same convergence assumption of the last section, it will be shown here
that for � D 1 the coefficient-error-vector covariance matrix is given by

cov Œ�w.k/� D E
�
.w.k/� wo/ .w.k/ � wo/

T
� D �2nEŒSD.k/� (5.36)

Proof. First note that by using (5.4) and (5.15), the following relations are verified

w.k/ � wo D SD.k/pD.k/ � SD.k/S�1
D .k/wo (5.37)

D �
X.k/XT .k/

��1
X.k/

�
d.k/ � XT .k/wo

�
(5.38)

D �
X.k/XT .k/

��1
X.k/n.k/ (5.39)

where n.k/ D Œn.k/ �1=2n.k � 1/ �n.k � 2/ : : : �k=2n.0/�T .
Applying the last equation to the covariance of the coefficient-error-vector it

follows that

cov Œ�w.k/� D E
n�

X.k/XT .k/
��1

X.k/EŒn.k/nT .k/�XT .k/
�
X.k/XT .k/

��1o

D E
˚
�2nSD.k/X.k/�XT .k/SD.k/

�

where
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� D

2

6
6
6
6
6
4

1

� 0
�2

0
: : :

�k

3

7
7
7
7
7
5

For � D 1, � D I, it follows that

cov Œ�w.k/� D E
�
�2nSD.k/X.k/XT .k/SD.k/

�

D E
�
�2nSD.k/RD.k/SD.k/

�

D �2nE ŒSD.k/� �

Therefore, when � D 1, the coefficient-error-vector covariance matrix tends to
decrease its norm as time progresses since SD.k/ is also norm decreasing. The
variance of the additional noise n.k/ influences directly the norm of the covariance
matrix.

5.3.6 Behavior of the Error Signal

It is important to understand how the error signal behaves in the RLS algorithm.
When a measurement noise is present in the adaptive-filtering process, the a priori
error signal is given by

e.k/ D d 0.k/ � wT .k � 1/x.k/C n.k/ (5.40)

where d 0.k/ D wT
o x.k/ is the desired signal without measurement noise.

Again if the input signal is considered known (conditional expectation), then

EŒe.k/� D EŒd 0.k/� �E �wT .k � 1/
�

x.k/C EŒn.k/�

D E
�
wT
o � wT

o

�
x.k/CEŒn.k/�

D EŒn.k/� (5.41)

assuming that the adaptive-filter order is sufficient to model perfectly the desired
signal.

From (5.41), it can be concluded that if the noise signal has zero mean, then

EŒe.k/� D 0
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It is also important to assess the minimum mean value of the squared error that is
reachable using an RLS algorithm. The minimum mean-square error (MSE) in the
presence of external uncorrelated noise is given by

�min D EŒe2.k/� D EŒe2o.k/� D EŒn2.k/� D �2n (5.42)

where it is assumed that the adaptive-filter multiplier coefficients were frozen at their
optimum values and that the number of coefficients of the adaptive filter is sufficient
to model the desired signal. In the conditions described the a priori error corresponds
to the minimum output error as defined in (5.29). It should be noted, however, that
if the additive noise is correlated with the input and the desired signals, a more
complicated expression for the MSE results, accounting for the referred correlation.

When employing the a posteriori error the value of minimum MSE, denoted by
�min;p, differs from the corresponding value related to the a priori error. First note
that by using (5.39), the following relation is verified

�w.k/ D SD.k/X.k/n.k/ (5.43)

When a measurement noise is present in the adaptive-filtering process, the a
posteriori error signal is given by

".k/ D d 0.k/ � wT .k/x.k/C n.k/ D ��wT .k/x.k/C eo.k/ (5.44)

The expression for the MSE related to the a posteriori error is then given by

�.k/ D EŒ"2.k/�

D EŒe2o.k/� � 2EŒxT .k/�w.k/eo.k/�C EŒ�wT .k/x.k/xT .k/�w.k/�

(5.45)

By replacing the expression (5.43) in (5.45) above, the following relations follow

�.k/ D E
�
e2o.k/

� � 2E
�
xT .k/SD.k/X.k/n.k/eo.k/

�

CE ��wT .k/x.k/xT .k/�w.k/
�

D �2n � 2E
�
xT .k/SD.k/X.k/

�

2

6
6
6
4

�2n
0
:::

0

3

7
7
7
5

C E
�
�wT .k/x.k/xT .k/�w.k/

�

D �2n � 2E
�
xT .k/SD.k/x.k/

�
�2n C E

�
�wT .k/x.k/xT .k/�w.k/

�

D �min;p C E
�
�wT .k/x.k/xT .k/�w.k/

�
(5.46)

where in the second equality it was considered that the additional noise is uncorre-
lated with the input signal and that eo.k/ D n.k/. This equality occurs when the
adaptive filter has sufficient order to identify the unknown system.
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Note that �min;p related to the a posteriori error in (5.46) is not the same as
minimum MSE of the a priori error, denoted in this book by �min. The last term,
that is EŒ�wT .k/x.k/xT .k/�w.k/�, in (5.46) determines the excess MSE of the
RLS algorithm.

It is possible to verify that the following expressions for �min;p are accurate
approximations

�min;p D ˚
1 � 2E �xT .k/SD.k/x.k/

��
�2n

D ˚
1 � 2tr

�
E

SD.k/x.k/xT .k/

���
�2n

D
�

1 � 2tr

�
1 � �

1 � �kC1 I
�	

�2n

D
�

1 � 2.N C 1/

�
1 � �

1 � �kC1

�	

�2n

D
�

1 � 2.N C 1/

�
1

1C �C �2 C � � � C �k

�	

�2n (5.47)

In the above expression, it is considered that SD.k/ is slowly varying as compared
to x.k/ when � ! 1, such that

E
�
SD.k/x.k/xT .k/

� � E ŒSD.k/�E
�
x.k/xT .k/

�

and that by using (5.55)

E
�
SD.k/x.k/xT .k/

� � 1 � �

1 � �kC1 I

Equation (5.47) applies to the case where � < 1, and as can be observed from
the term multiplying N C 1 there is a transient for small k which dies away when
the number of iterations increases.2 If we fit the decrease in the term multiplying
N C 1 at each iteration to an exponential envelop, the time constant will be 1

�kC1 .
Unlike the LMS algorithm, this time constant is time varying and is not related to
the eigenvalue spread of the input signal correlation matrix.

Example 5.2. Repeat the equalization problem of Example 3.1 using the RLS
algorithm.

(a) Using � D 0:99, run the algorithm and save matrix SD.k/ at iteration 500 and
compare with the inverse of the input signal correlation matrix.

(b) Plot the convergence path for the RLS algorithm on the MSE surface.

2The expression for �min;p can be negative, however, �.k/ is always non-negative.
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Solution. (a) The inverse of matrix R, as computed in the Example 3.1, is given by

R�1 D 0:45106

�
1:6873 0:7937

0:7937 1:6873

�

D
�
0:7611 0:3580

0:3580 0:7611

�

The initialization matrix SD.�1/ is a diagonal matrix with the diagonal
elements equal to 0:1. The matrix SD.k/ at the 500th iteration, obtained by
averaging the results of 30 experiments, is

SD.500/ D
�
0:0078 0:0037

0:0037 0:0078

�

Also, the obtained values of the deterministic cross-correlation vector is

pD.500/ D
�
95:05

46:21

�

Now, we divide each element of the matrix R�1 by

1 � �kC1

1 � � D 99:34

since in a stationary environment EŒSD.k/� D 1��
1��kC1 R�1, see (5.55) for a

formal proof.
The resulting matrix is

1

99:34
R�1 D

�
0:0077 0:0036

0:0036 0:0077

�

As can be noted the values of the elements of the above matrix are close to the
average values of the corresponding elements of matrix SD.500/.

Similarly, if we multiply the cross-correlation vector p by 99:34, the result is

99:34p D
�
94:61

47:31

�

The values of the elements of this vector are also close to the corresponding
elements of pD.500/.

(b) The convergence path of the RLS algorithm on the MSE surface is depicted
in Fig. 5.3. The reader should notice that the RLS algorithm approaches the
minimum using large steps when the coefficients of the adaptive filter are far
away from the optimum solution. �
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Fig. 5.3 Convergence path of the RLS adaptive filter

5.3.7 Excess Mean-Square Error and Misadjustment

In a practical implementation of the recursive least-squares algorithm, the best
estimation for the unknown parameter vector is given by w.k/, whose expected
value is wo. However, there is always an excess MSE at the output caused by the
error in the coefficient estimation, namely �w.k/ D w.k/ � wo. The mean-square
error is (see (5.46))

�.k/ D �min;p C E
n
Œw.k/ � wo�

T x.k/xT .k/ Œw.k/ � wo�
o

D �min;p C E
�
�wT .k/x.k/xT .k/�w.k/

�
(5.48)

Now considering that�wj .k/, for j D 0; 1; : : : ; N , are random variables with zero
mean and independent of x.k/, the MSE can be calculated as follows

�.k/ D �min;p C E
�
�wT .k/R�w.k/

�

D �min;p C E
˚
tr
�
R�w.k/�wT .k/

��

D �min;p C tr
˚
RE

�
�w.k/�wT .k/

��

D �min;p C tr fRcov Œ�w.k/�g (5.49)
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On a number of occasions it is interesting to consider the analysis for � D 1

separated from that for � < 1.

Excess MSE for � D 1

By applying in (5.49) the results of (5.36) and (5.19), and considering that

�min;p D
�

1 � 2N C 1

k C 1

�

�min D
�

1 � 2
N C 1

k C 1

�

�2n

for � D 1 (see (5.42) and (5.47)), we can infer that

�.k/ D
�

1 � 2N C 1

k C 1

�

�2n C tr fREŒSD.k/�g �2n

D
�

1 � 2N C 1

k C 1
C tr

�

R
R�1

k C 1

��

�2n for k ! 1

D
�

1 � 2N C 1

k C 1
C N C 1

k C 1

�

�2n for k ! 1

D
�

1 � N C 1

k C 1

�

�2n for k ! 1

As can be noted the minimum MSE can be reached only after the algorithm has
operated on a number of samples larger than the filter order.

Excess MSE for � < 1

Again assuming that the mean-square error surface is quadratic as considered in
(5.48), the expected excess MSE is then defined by

��.k/ D E
�
�wT .k/R�w.k/

�
(5.50)

The objective now is to calculate and analyze the excess MSE when � < 1. From
(5.30) one can show that

�w.k/ D �SD.k/RD.k � 1/�w.k � 1/C SD.k/x.k/eo.k/ (5.51)

By applying (5.51) to (5.50), it follows that

E
�
�wT .k/R�w.k/

� D 1 C 2 C 3 C 4 (5.52)
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where

1 D �2E
�
�wT .k � 1/RD.k � 1/SD.k/RSD.k/RD.k � 1/�w.k � 1/

�

2 D �E
�
�wT .k � 1/RD.k � 1/SD.k/RSD.k/x.k/eo.k/

�

3 D �E
�
xT .k/SD.k/RSD.k/RD.k � 1/�w.k � 1/eo.k/

�

4 D E
�
xT .k/SD.k/RSD.k/x.k/e2o.k/

�

Now each term in (5.52) will be evaluated separately.

1. Evaluation of 1
First note that as k ! 1, it can be assumed that RD.k/ � RD.k � 1/, then

1 � �2E
�
�wT .k � 1/R�w.k � 1/� (5.53)

2. Evaluation of 2
Since each element of RD.k/ is given by

rd;ij .k/ D
kX

lD0
�k�lx.l � i/x.l � j / (5.54)

for 0 � i; j � N . Therefore,

EŒrd;ij .k/� D
kX

lD0
�k�lEŒx.l � i/x.l � j /�

If x.k/ is stationary, r.i � j / D EŒx.l � i/x.l � j /� is independent of the value l ,
then

EŒrd;ij .k/� D r.i � j /
1 � �kC1

1 � � � r.i � j /
1 � � (5.55)

Equation (5.55) allows the conclusion that

EŒRD.k/� � 1

1 � �
E
�
x.k/xT .k/

� D 1

1 � �R (5.56)

In each step, it can be considered that

RD.k/ D 1

1 � �
R C�R.k/ (5.57)

where�R.k/ is a symmetric error matrix with zero-mean stochastic entries that are
independent of the input signal. From (5.56) and (5.57), it can be concluded that

SD.k/R � .1 � �/ �I � .1 � �/R�1�R.k/
�

(5.58)
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where in the last relation SD.k/�R.k/ was considered approximately equal to

.1 � �/R�1�R.k/

by using (5.56) and disregarding second-order errors.
In the long run, it is known that EŒSD.k/R� D .1 � �/I, that means the second

term inside the square bracket in (5.58) is a measure of the perturbation caused by
�R.k/ in the product SD.k/R. Denoting the perturbation by �I.k/, that is

�I.k/ D .1 � �/R�1�R.k/ (5.59)

it can be concluded that

2 � �.1 � �/E ˚�wT .k � 1/ �I ��IT .k/
�

x.k/eo.k/
�

� �.1 � �/E ��wT .k � 1/
�
EŒx.k/eo.k/� D 0 (5.60)

where it was considered that �wT .k � 1/ is independent of x.k/ and eo.k/, �I.k/
was also considered an independent error matrix with zero mean, and finally we
used the fact that x.k/ and eo.k/ are orthogonal.
3. Following a similar approach it can be shown that

3 � �.1 � �/E
˚
xT .k/ ŒI ��I.k/� �w.k � 1/eo.k/

�

� �.1 � �/E
�
xT .k/eo.k/

�
E Œ�w.k � 1/� D 0 (5.61)

4. Evaluation of 4

4 D E
�
xT .k/SD.k/RSD.k/RR�1x.k/e2o.k/

�

� .1 � �/2E
n
xT .k/ ŒI ��I.k/�2 R�1x.k/

o
�min (5.62)

where (5.58) and (5.29) were used and eo.k/ was considered independent of x.k/
and�I.k/. By using the property that

E
˚
xT .k/ŒI ��I.k/�2R�1x.k/

� D trE
˚
ŒI ��I.k/�2R�1x.k/xT .k/

�

and recalling that �I.k/ has zero mean and is independent of x.k/, then (5.62) is
simplified to

4 D .1 � �/2tr fI C EŒ�I2.k/�g�min (5.63)

where trŒ�� means trace of Œ��, and we utilized the fact that EfR�1x.k/xT .k/g D I.
By using (5.53), (5.60), and (5.63), it follows that

EŒ�wT .k/R�w.k/� D �2EŒ�wT .k � 1/R�w.k � 1/�

C.1 � �/2tr fI C EŒ�I2.k/�g�min (5.64)



5.3 Properties of the Least-Squares Solution 229

Asymptotically, the solution of the above equation is

�exc D 1 � �

1C �
tr
˚
I CE

�
�I2.k/

��
�min (5.65)

Note that the term given by EŒ�I2.k/� is not easy to estimate and is dependent
on fourth-order statistics of the input signal. However, in specific situations, it is
possible to compute an approximate estimate for this matrix. In steady state, it can
be considered for white noise input signal that only the diagonal elements of R and
�R are important to the generation of excess MSE. Even when the input signal is
not white, this diagonal dominance can be considered a reasonable approximation
in most of the cases. From the definition of �I.k/ in (5.59), it follows that

EŒ�I2i i .k/� D .1 � �/2EŒ�r
2
i i .k/�

Œ�2x �
2

(5.66)

where �2x is variance of x.k/. By calculating �R.k/ � ��R.k � 1/ using (5.57),
we show that

�rii .k/ D ��rii.k � 1/C x.k � i/x.k � i/� ri i (5.67)

Squaring the above equation, applying the expectation operation, and using the
independence between�rii .k/ and x.k/, it follows that

E
�
�r2i i .k/

� D �2E
�
�r2i i .k � 1/

�C E
n
Œx.k � i/x.k � i/� ri i �2

o
(5.68)

Therefore, asymptotically

E
�
�r2i i .k/

� D 1

1 � �2
�2
x2.k�i / D 1

1 � �2 �
2
x2

(5.69)

By substituting (5.69) in (5.66), it becomes

E
�
�I2i i .k/

� D 1 � �

1C �

�2
x2

.�2x /
2

D 1� �

1C �
K (5.70)

where K D �2
x2

.�2x /
2 is dependent on input signal statistics. For Gaussian signals,

K D 2 [5].
Returning to our main objective, the excess MSE can then be described as

�exc D .N C 1/
1 � �
1C �

�

1C 1 � �

1C �
K
�

�min (5.71)
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If � is approximately one and K is not very large, then

�exc D .N C 1/
1 � �

1C �
�min (5.72)

this expression can be reached through a simpler analysis [6]. However, the more
complete derivation shown here can give more insight to the interpretation of the
results obtained by using the RLS algorithm, mainly when � is not very close to
one.

The misadjustment formula can be deduced from (5.71)

M D �exc

�min
D .N C 1/

1 � �

1C �

�

1C 1 � �

1C �
K
�

(5.73)

As can be noted, the decrease of � from one brings a fourth-order statistics term
into the picture by increasing the misadjustment. Then, the fast adaptation of the
RLS algorithm, that corresponds to smaller �, brings a noisier steady-state response.
Therefore, when working in a stationary environment the best choice for � would
be one, if the excess MSE in the steady state is considered high for other values of
�. However, other problems such as instability due to quantization noise are prone
to occur when � D 1.

5.4 Behavior in Nonstationary Environments

In cases where the input signal and/or the desired signal are nonstationary, the
optimal values of the coefficients are time variant and described by wo.k/. That
means the autocorrelation matrix R.k/ and/or the cross-correlation vector p.k/
are time variant. For example, typically in a system identification application the
autocorrelation matrix R.k/ is time invariant while the cross-correlation matrix p.k/
is time variant, because in this case the designer can choose the input signal. On the
other hand, in equalization, prediction, and signal enhancement applications both
the input and the desired signal are nonstationary leading to time-varying matrices
R.k/ and p.k/.

The objective in the present section is to analyze how close the RLS algorithm
is able to track the time-varying solution wo.k/. Also, it is of interest to learn
how the tracking error in w.k/ affects the output MSE [5]. Here, the effects of
the measurement noise are not considered, since only the nonstationary effects are
desired. Also, both effects on the MSE can be added since, in general, they are
independent.

Recall from (5.8) and (5.9) that

w.k/ D w.k � 1/C SD.k/x.k/Œd.k/ � xT .k/w.k � 1/� (5.74)
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and

d.k/ D xT .k/wo.k � 1/C e0
o.k/ (5.75)

The error signal e0
o.k/ is the minimum error at iteration k being generated by the

nonstationarity of the environment. One can replace (5.75) in (5.74) in order to
obtain the following relation

w.k/ D w.k � 1/C SD.k/x.k/xT .k/Œwo.k � 1/� w.k � 1/�C SD.k/x.k/e0
o.k/

(5.76)

By taking the expected value of (5.76), considering that x.k/ and e0
o.k/ are

approximately orthogonal, and that w.k � 1/ is independent of x.k/, then

E Œw.k/� D E Œw.k � 1/�C E
�
SD.k/x.k/xT .k/

� fwo.k � 1/�EŒw.k � 1/�g
(5.77)

It is now needed to compute EŒSD.k/x.k/xT .k/� in the case of nonstationary
input signal. From (5.54) and (5.56), one can show that

RD.k/ D
kX

lD0
�k�lR.l/C�R.k/ (5.78)

since EŒRD.k/� D Pk
lD0�k�lR.l/. The matrix �R.k/ is again considered a

symmetric error matrix with zero-mean stochastic entries that are independent of
the input signal.

If the environment is considered to be varying at a slower pace than the memory
of the adaptive RLS algorithm, then

RD.k/ � 1

1 � �
R.k/C�R.k/ (5.79)

Considering that .1 � �/jjR�1.k/�R.k/jj < 1 and using the same procedure to
deduce (5.58), we obtain

SD.k/ � .1 � �/R�1.k/ � .1 � �/2R�1.k/�R.k/R�1.k/ (5.80)

it then follows that

E Œw.k/� D E Œw.k � 1/�C
n
.1� �/E

h
R�1.k/x.k/xT .k/

i

� .1 � �/2E
h
R�1.k/�R.k/R�1.k/x.k/xT .k/

io
fwo.k � 1/ � E Œw.k � 1/�g

� E Œw.k � 1/�C .1 � �/ fwo.k � 1/ � E Œw.k � 1/�g (5.81)

where it was considered that �R.k/ is independent of x.k/ and has zero expected
value.

Now defining the lag-error vector in the coefficients as
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lw.k/ D EŒw.k/� � wo.k/ (5.82)

From (5.81), it can be concluded that

lw.k/ D �lw.k � 1/� wo.k/C wo.k � 1/ (5.83)

Equation (5.83) is equivalent to say that the lag is generated by applying the optimal
instantaneous value wo.k/ through a first-order discrete-time filter as follows:

Li.z/ D � z � 1
z � �Woi .z/ (5.84)

The discrete-time filter transient response converges with a time constant given by

� D 1

1 � � (5.85)

The time constant is of course the same for each individual coefficient. Note that
the tracking ability of the coefficients in the RLS algorithm is independent of the
eigenvalues of the input signal correlation matrix.

The lag in the coefficients leads to an excess MSE. In order to calculate the
MSE suppose that the optimal coefficient values are first-order Markov processes
described by

wo.k/ D �wwo.k � 1/C nw.k/ (5.86)

where nw.k/ is a vector whose elements are zero-mean white-noise processes with
variance �2w, and �w < 1. Note that � < �w < 1, since the optimal coefficients
values must vary slower than the filter tracking speed, that means 1

1�� <
1

1��w .
The excess MSE due to lag is then given by (see the derivations around (3.41))

�lag D E
�
lTw.k/Rlw.k/

�

D E
˚
tr
�
Rlw.k/lTw.k/

��

D tr
˚
RE

�
lw.k/lTw.k/

��

D tr
˚
�E

�
l0w.k/l0Tw.k/

��

D
NX

iD0
�iE

h
l

02
i .k/

i
(5.87)

For �w not close to one, it is a bit more complicated to deduce the excess MSE
due to lag than for �w � 1. However, the effort is worth it because the resulting
expression is more accurate. From (5.84), we can see that the lag-error vector
elements are generated by applying a first-order discrete-time system to the elements
of the unknown system coefficient vector. On the other hand, the coefficients of the
unknown system are generated by applying each element of the noise vector nw.k/



5.4 Behavior in Nonstationary Environments 233

to a first-order all-pole filter, with the pole placed at �w. For the unknown coefficient
vector with the above model, the lag-error vector elements can be generated by
applying the elements of the noise vector nw.k/ to a discrete-time filter with transfer
function

H.z/ D �.z � 1/z
.z � �/.z � �w/

(5.88)

This transfer function consists of a cascade of the lag filter with the all-pole filter
representing the first-order Markov process. The solution for the variance of the lag
terms li can be computed through the inverse Z-transform as follows:

EŒl
02
i .k/� D 1

2	|

I

H.z/H.z�1/�2wz�1 d z (5.89)

The above integral can be solved using the residue theorem as previously shown in
the LMS algorithm case.

Using the solution for the variance of the lag terms of (5.89) for values of �w<1,
and substituting the result in the last term of (5.87) it can be shown that

�lag � tr ŒR��2w
�w.1C �2/� �.1C �2w/

�
1 � �
1C �

� 1 � �w
1C �w

�

D .N C 1/�2w�
2
x

�w.1C �2/� �.1C �2w/

�
1 � �
1C �

� 1 � �w
1C �w

�

(5.90)

where it was used the fact that trŒR� D PN
iD0 �i D .N C 1/�2x , for a tap delay

line. It should be noticed that assumptions such as the correlation matrix R being
diagonal and the input signal being white noise were not required in this derivation.

If � D 1 and �w � 1, the MSE due to lag tends to infinity indicating that the
RLS algorithm in this case cannot track any change in the environment. On the other
hand, for � < 1 the algorithm can track variations in the environment, leading to an
excess MSE that depends on the variance of the optimal coefficient disturbance and
on the input signal variance.

For �w D 1 and � � 1, it is possible to rewrite (5.90) as

�lag � .N C 1/
�2w

2.1� �/�
2
x (5.91)

The total excess MSE accounting for the lag and finite memory is given by

�total � .N C 1/

�
1 � �
1C �

�min C �2w�
2
x

2.1� �/

�

(5.92)

By differentiating the above equation with respect to � and setting the result to zero,
an optimum value for � can be found that yields minimum excess MSE.
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�opt D 1 � �w�x
2�n

1C �w�x
2�n

(5.93)

In the above equation we used �n D p
�min. Note that the optimal value of �

does not depend on the adaptive-filter order N , and can be used when it falls in an
acceptable range of values for �. Also, this value is optimum only when quantization
effects are not important and the first-order Markov model (with �w � 1) is a good
approximation for the nonstationarity of the desired signal.

When implemented with finite-precision arithmetic, the conventional RLS
algorithm behavior can differ significantly from what is expected under infinite
precision. A series of inconvenient effects can show up in the practical
implementation of the conventional RLS algorithm, such as divergence and freezing
in the updating of the adaptive-filter coefficients. Chapter 16 presents a detailed
analysis of the finite-wordlength effects in the RLS algorithm.

5.5 Complex RLS Algorithm

In the complex data case the RLS objective function is given by

�d .k/ D
kX

iD0
�k�i j".i/j2 D

kX

iD0
�k�i jd.i/� wH.i/x.k/j2

D
kX

iD0
�k�i �d.i/� wH.i/x.k/

� �
d�.i/� wT .i/x�.k/

�
(5.94)

Differentiating �d .k/ with respect to the complex coefficient w�.k/ leads to3

@�d .k/

@w�.k/
D �

kX

iD0
�k�ix.i/Œd�.i/� wT .i/x�.k/� (5.95)

The optimal vector w.k/ that minimizes the least-squares error is computed by
equating the above equation to zero that is

3Again the reader should recall that when computing the gradient with respect to w�.k/, w.k/ is
treated as a constant.
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Algorithm 5.3 Conventional complex RLS algorithm
Initialization

SD.�1/ D ıI
where ı can be the inverse of the input signal power estimate

pD.�1/ D x.�1/ D Œ0 0 : : : 0�T

Do for k � 0 W
SD.k/ D 1

�
ŒSD.k � 1/� SD.k�1/x.k/xH .k/SD.k�1/

�CxH .k/SD.k�1/x.k/ �

pD.k/ D �pD.k � 1/C d�.k/x.k/
w.k/ D SD.k/pD.k/

If necessary compute
y.k/ D wH.k/x.k/
".k/ D d.k/� y.k/

�
kX

iD0
�k�ix.i/xH.i/w.k/C

kX

iD0
�k�ix.i/d�.i/ D

2

6
6
6
4

0

0
:::

0

3

7
7
7
5

leading to the following expression

w.k/ D
"

kX

iD0
�k�ix.i/xH.i/

#�1
kX

iD0
�k�ix.i/d�.i/

D R�1
D .k/pD.k/ (5.96)

The matrix inversion lemma to the case of complex data is given by

SD.k/ D R�1
D .k/ D 1

�

�

SD.k � 1/� SD.k � 1/x.k/xH.k/SD.k � 1/
�C xH.k/SD.k � 1/x.k/

�

(5.97)

The complete conventional RLS algorithm is described in Algorithm 5.3.
An alternative complex RLS algorithm has an updating equation described by

w.k/ D w.k � 1/C e�.k/SD.k/x.k/ (5.98)

where

e.k/ D d.k/ � wH.k � 1/x.k/ (5.99)

With (5.98), it is straightforward to generate an alternative conventional RLS
algorithm as shown in Algorithm 5.4.
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Algorithm 5.4 Alternative complex RLS algorithm
Initialization

SD.�1/ D ıI
where ı can be the inverse of an estimate of the input signal power

x.�1/ D w.�1/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/ D d.k/� wH .k � 1/x.k/
 .k/ D SD.k � 1/x.k/

SD.k/ D 1
�
ŒSD.k � 1/�  .k/ 

H
.k/

�C 
H
.k/x.k/

�

w.k/ D w.k � 1/C e�.k/SD.k/x.k/
If necessary compute
y.k/ D wH.k/x.k/
".k/ D d.k/� y.k/

5.6 Examples

In this section, some examples illustrating the performance of the conventional RLS
algorithm are discussed.

5.6.1 Analytical Example

Example 5.3. Assume that an adaptive filter of sufficient order is employed to
identify an unknown system of order N , and produces a misadjustment of 10%.
Assume the input signal is a white Gausssian noise with unit variance and �2n D
0:001.

(a) Compute the value of � required by the RLS algorithm in order to achieve the
desired result when N D 9.

(b) For values in the range 0:9 < � < 0:99, which orders should the adaptive filters
have?

Solution. (a) The desired misadjustment expression as per (5.73) is

M D 0:1 D .N C 1/
1 � �

1C �

�

1C 1 � �
1C �

K
�

D 10a.1C 2a/

where a D 1��
1C� and K D 2. By solving this equation we obtain

a D
� 1
2

˙
q

1
4

C 0:02

2

where the valid solution is
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a D 1

4



�1C p

1C 0:08
�

D 0:0098076

then solving for �

� D 1 � a

1C a
D 0:980507

By employing the simplest expression of (5.72) we obtain

� D
1 � M

.NC1/
1C M

.NC1/
D 1 � 10�2

1C 10�2 D 0:98

whereM is the misadjustment.
(b) Since from (5.73)

1

N C 1
D 1

M

1 � �
1C �

�

1C 1 � �

1C �
K
�

D 10a.1C 2a/

for � D 0:90, a D 0:052631578

1

N C 1
D 0:5817

so that N D 0:7190 and as a result only one coefficient can be employed in the
adaptive filter. For � D 0:99, a D 0:005025125,

1

N C 1
D 0:05075

so thatN D 18:7 and as a result 19 coefficients can be employed in the adaptive
filter.

Using the simplest expression for M , derived from (5.72), the results are
almost the same, since

N D M
1C �

1 � � � 1

for � D 0:90,N D 0:9 meaning that only an adaptive filter with one coefficient
would be able to achieve the desired misadjustment for this value of �. For
� D 0:99, N D 18:9 meaning that adaptive filters up to order 18 would be able
to achieve the desired misadjustment for this value of �. �
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Fig. 5.4 Learning curves for RLS algorithm for eigenvalue spreads: 1, 20, and 80; � D 0:99

5.6.2 System Identification Simulations

In the following subsections, some adaptive-filtering problems described in the last
two chapters are solved using the conventional RLS algorithm presented in this
chapter.

Example 5.4. The conventional RLS algorithm is employed in the identification of
the system described in the Sect. 3.6.2. The forgetting factor is chosen as � D 0:99.

Solution. In the first test, we address the sensitivity of the RLS algorithm to the
eigenvalue spread of the input signal correlation matrix. The measured simulation
results are obtained by ensemble averaging 200 independent runs. The learning
curves of the mean-squared a priori error are depicted in Fig. 5.4, for different
values of the eigenvalue spread. Also, the measured misadjustment in each example
is given in Table 5.1. From these results, we conclude that the RLS algorithm is
insensitive to the eigenvalue spread. It is worth mentioning at this point that the
convergence speed of the RLS algorithm is affected by the choice of �, since a
smaller value of � leads to faster convergence while increasing the misadjustment
in stationary environment. Table 5.1 shows the misadjustment predicted by theory,
calculated using the relation repeated below. As can be seen from this table the
analytical results agree with those obtained through simulations.

M D .N C 1/
1 � �

1C �

�

1C 1 � �
1C �

K
�



5.6 Examples 239

Table 5.1 Evaluation of the
RLS algorithm

Misadjustment
�max
�min

Experiment Theory

1 0.04211 0.04020
20 0.04211 0.04020
80 0.04547 0.04020

Table 5.2 Results of the finite-precision implementation of the RLS algorithm

�.k/Q EŒjj�w.k/Qjj2�
No. of bits Experiment Theory Experiment Theory

16 1.566 10�3 1.500 10�3 6.013 10�5 6.061 10�5

12 1.522 10�3 1.502 10�3 3.128 10�5 6.261 10�5

10 1.566 10�3 1.532 10�3 6.979 10�5 9.272 10�5

The conventional RLS algorithm is implemented with finite-precision arith-
metic, using fixed-point representation with 16, 12, and 10 bits, respectively. The
results presented are measured before any sign of instability is noticed. Table 5.2
summarizes the results of the finite-precision implementation of the conventional
RLS algorithm. Note that in most cases there is a close agreement between the
measurement results and those predicted by the equations given below. These
equations correspond to (16.37) and (16.48) derived in Chap. 16.

EŒjj�w.k/Qjj2� � .1 � �/.N C 1/

2�

�2n C �2e
�2x

C .N C 1/�2w
2�.1 � �/

�.k/Q � �min C �2e C .N C 1/�2w�
2
x

2�.1� �/

For the simulations with 12 and 10 bits, the discrepancy between the measured
and theoretical estimates of EŒjj�w.k/Qjj2� are caused by the freezing of some
coefficients.

If the results presented here are compared with the results presented in Table 3.2
for the LMS, we notice that both the LMS and the RLS algorithms performed
well in the finite-precision implementation. The reader should bear in mind that the
conventional RLS algorithm requires an expensive strategy to keep the deterministic
correlation matrix positive definite, as discussed in Chap. 16.

The simulations related to the experiment described for nonstationary environ-
ments are also performed. From the simulations we measure the total excess MSE,
and then compare the results to those obtained with the expression below.

�exc � .N C 1/
1� �

1C �

�

1C 1� �

1C �
K
�

�min C .N C 1/�2w�
2
x

�w.1C �2/� �.1C �2w/

�
1� �

1C �
� 1� �w
1C �w

�
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An attempt to use the optimal value of � is made. The predicted optimal value, in
this case, is too small and as a consequence � D 0:99 is used. The measured excess
MSE is 0:0254, whereas the theoretical value predicted by the above equation is
0:0418. Note that the theoretical result is not as accurate as all the previous cases
discussed so far, due to a number of approximations used in the analysis. However,
the above equation provides a good indication of what is expected in the practical
implementation. By choosing a smaller value for � a better tracking performance is
obtained, a situation where the above equation is not as accurate. �

5.6.3 Signal Enhancement Simulations

Example 5.5. We solved the same signal enhancement problem described in the
Sect. 4.7.3 with the conventional RLS and LMS algorithms.

Solution. For the LMS algorithm, the convergence factor is chosen �max=5. The
resulting value for � in the LMS case is 0:001, whereas � D 1:0 is used for the RLS
algorithm. The learning curves for the algorithms are shown in Fig. 5.5, where we
can verify the faster convergence of the RLS algorithm. By plotting the output errors
after convergence, we noted the large variance of the MSE for both algorithms. This
result is due to the small signal-to-noise ratio, in this case. Figure 5.6 depicts the
output error and its DFT with 128 points for the RLS algorithm. In both cases, we
can clearly detect the presence of the sinusoid. �

5.7 Concluding Remarks

In this chapter, we introduced the conventional RLS algorithm and discussed various
aspects related to its performance behavior. Much of the results obtained herein
through mathematical analysis are valid for the whole class of RLS algorithms to be
presented in the following chapters, except for the finite-precision analysis since that
depends on the form the internal calculations of each algorithm are performed. The
analysis presented here is far from being complete. However, the main aspects of the
conventional RLS have been addressed, such as: convergence behavior and tracking
capabilities. The interested reader should consult [7–9] for some further results.
Chapter 16 complements this chapter by addressing the finite-precision analysis of
the conventional RLS algorithm.

From the analysis presented, one can conclude that the computational complexity
and the stability in finite-precision implementations are two aspects to be concerned.
When the elements of the input signal vector consist of delayed versions of the same
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signal, it is possible to derive a number of fast RLS algorithms whose computational
complexity is of order N per output sample. Several different classes of these
algorithms are presented in the following chapters. In all cases, their stability
conditions in finite-precision implementation are briefly discussed.
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Fig. 5.6 (a) Output error for the RLS algorithm and (b) DFT of the output error

For the general case where the elements of the input signal vector have different
origins the QR-RLS algorithm is a good alternative to the conventional RLS
algorithm. The stability of the QR-RLS algorithm can be easily guaranteed.
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The conventional RLS algorithm is fully tested in a number of simulation results
included in this chapter. These examples were meant to verify the theoretical results
discussed in the present chapter and to compare the RLS algorithm with the LMS
algorithm.

The LMS algorithm is usually referred to as stochastic gradient algorithm
originated from the stochastic formulation of the Wiener filter which in turn deals
with stationary noises and signals. The RLS algorithm is derived from a determin-
istic formulation meant to achieve weighted least-squares error minimization in a
sequential recursive format. A widely known generalization of the Wiener filter
is the Kalman filter which deals with nonstationary noises and signals utilizing a
stochastic formulation. However, it is possible to show that the discrete-time version
of the Kalman filtering algorithm can be considered to be a generalization of the
RLS algorithm. In Chap. 17 we present a brief description of Kalman filters as well
as its relationship with the RLS algorithm.

5.8 Problems

3
using a second-1. The RLS algorithm is used to predict the signal x.k/ D cos 	k

order FIR filter with the first tap fixed at 1. Given � D 0:98, calculate the output
signal y.k/ and the tap coefficients for the first ten iterations. Note that we aim
the minimization of EŒy2.k/�.

Start with wT .�1/ D Œ1 0 0� and ı D 100.
2. Show that the solution in (5.4) is a minimum point.
3. Show that SD.k/ approaches a null matrix for large k, when � D 1.
4. Suppose that the measurement noise n.k/ is a random signal with zero-

mean and the probability density with normal distribution. In a sufficient-order
identification of an FIR system with optimal coefficients given by wo, show that
the least-squares solution with � D 1 is also normally distributed with mean
wo and covarianceEŒSD.k/�2n �.

5. Prove that (5.42) is valid. What is the result when n.k/ has zero mean and is
correlated to the input signal x.k/?

Hint: You can use the relationEŒe2.k/� D EŒe.k/�2 C�2Œe.k/�, where �2Œ��
means variance of Œ��.

6. Consider that the additive noise n.k/ is uncorrelated with the input and the
desired signals and is also a nonwhite noise with autocorrelation matrix Rn.
Determine the transfer function of a prewhitening filter that applied to d 0.k/C
n.k/ and x.k/ generates the optimum least-squares solution wo D R�1p for
k ! 1.

7. Show that if the additive noise is uncorrelated with d 0.k/ and x.k/, and
nonwhite, the least-squares algorithm will converge asymptotically to the
optimal solution.

8. In Problem 4, when n.k/ is correlated to x.k/, is wo still the optimal solution?
If not, what is the optimal solution?
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9. Show that in the RLS algorithm the following relation is true

�d .k/ D ��d .k � 1/C ".k/e.k/

where e.k/ is the a priori error as defined in (5.8).
10. Prove the validity of the approximation in (5.80).
11. Demonstrate that the updating formula for the complex RLS algorithm is given

by (5.98).
12. Show that for an input signal with diagonal dominant correlation matrix R the

following approximation related to (16.28) and (16.32) is valid.

E
n
NSD

.k/x.k/xT .k/cov
�
�w.k � 1/Q

�
x.k/xT .k/NSD

.k/
o

� �2SD
�4x tr

˚
cov

�
�w.k � 1/Q

��
I

13. Derive (16.35)–(16.37).
14. The conventional RLS algorithm is applied to identify a 7th-order time-varying

unknown system whose coefficients are first-order Markov processes with
�w D 0:999 and �2w D 0:033. The initial time-varying system multiplier
coefficients are

wT
o D Œ0:03490�0:01100�0:068640:223910:556860:35798�0:02390�0:07594�

The input signal is Gaussian white noise with variance �2x D 1 and the
measurement noise is also Gaussian white noise independent of the input signal
and of the elements of nw.k/, with variance �2n D 0:01.

(a) For � D 0:97, compute the excess MSE.
(b) Repeat (a) for � D �opt.
(c) Simulate the experiment described, measure the excess MSE, and compare

to the calculated results.

15. Reduce the value of �w to 0.97 in Problem 14, simulate, and comment on the
results.

16. Suppose a 15th-order FIR digital filter with multiplier coefficients given below
is identified through an adaptive FIR filter of the same order using the
conventional RLS algorithm. Consider that fixed-point arithmetic is used.

Additional noise : white noise with variance �2n D 0:0015

Coefficient wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance �2x D 0:7

� D �opt

wT
o D Œ0:0219360 0:0015786 � 0:0602449 � 0:0118907 0:1375379

0:0574545 � 0:3216703 � 0:5287203 � 0:2957797 0:0002043 0:290670
� 0:0353349 � 0:0068210 0:0026067 0:0010333 � 0:0143593�
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(a) Compute the expected value for jj�w.k/Qjj2 and �.k/Q for the described
case.

(b) Simulate the identification example described and compare the simulated
results with those obtained through the closed form formulas.

(c) Plot the learning curves for the finite- and infinite-precision implementa-
tions. Also, plot EŒjj�w.k/jj2� versus k in both cases.

17. Repeat the above problem for the following cases

(a) �2n D 0:01; bc D 9 bits, bd D 9 bits, �2x D 0:7; � D �opt:

(b) �2n D 0:1; bc D 10 bits, bd D 10 bits, �2x D 0:8; � D �opt.
(c) �2n D 0:05; bc D 8 bits, bd D 16 bits, �2x D 0:8; � D �opt.

18. In Problem 17, compute (do not simulate) EŒjj�w.k/Qjj2�; �.k/Q , and the
probable number of iterations before the algorithm stop updating for � D
1; � D 0:98; � D 0:96, and � D �opt.

19. Repeat Problem 16 for the case where the input signal is a first-order Markov
process with �x D 0:95.

20. A digital channel model can be represented by the following impulse response:

Œ�0:001 � 0:002 0:002 0:2 0:6 0:76 0:9 0:78 0:67 0:58
0:45 0:3 0:2 0:12 0:06 0 � 0:2 � 1 � 2 � 1 0 0:1�

The channel is corrupted by Gaussian noise with power spectrum given by

jS.e|!/j2 D 
0j!j3=2

where 
0 D 10�1:5. The training signal consists of independent binary samples
.�1; 1/.

Design an FIR equalizer for this problem and use the RLS algorithm. Use a
filter of order 50 and plot the learning curve.

21. For the previous problem, using the maximum of 51 adaptive-filter coefficients,
implement a DFE equalizer and compare the results with those obtained with
the FIR equalizer. Again use the RLS algorithm.

22. Use the complex RLS algorithm to equalize a channel with the transfer function
given below. The input signal is a four QAM signal representing a randomly

generated bit stream with the signal-to-noise ratio
�2

Qx

�2n
D 20 at the receiver

end, that is, Qx.k/ is the received signal without taking into consideration the
additional channel noise. The adaptive filter has ten coefficients.

H.z/ D .0:34� 0:27|/C .0:87C 0:43|/z�1 C .0:34 � 0:21|/z�2

(a) Use an appropriate value for � in the range 0.95–0.99, run the algorithm
and comment on the convergence behavior.
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(b) Plot the real versus imaginary parts of the received signal before and after
equalization.

(c) Increase the number of coefficients to 20 and repeat the experiment in (b).

23. In a system identification problem the input signal is generated from a four
QAM of the form

x.k/ D xre.k/C |xim.k/

where xre.k/ and xim.k/ assume values ˙1 randomly generated. The unknown
system is described by

H.z/ D 0:5C 0:2| C .�0:1C 0:4|/z�1 C .0:2� 0:4|/z�2 C .0:2C 0:7|/z�3

The adaptive filter is also a third-order complex FIR filter, and the additional
noise is zero-mean Gaussian white noise with variance �2n D 0:3. Using the
complex RLS algorithm run an ensemble of 20 experiments, and plot the
average learning curve.

24. Apply the Kalman filter to equalize the system

H.z/ D 0:19z

z � 0:9
when the additional noise is a uniformly distributed white noise with variance
�2n D 0:1, and the input signal to the channel is a Gaussian noise with unit
variance.

25. Assume for a sufficient-order system identification application with an accept-
able misadjustment of about 20%. Consider that the input signal is a Gaussion
white noise.

(a) Calculate the appropriate value of � required by the RLS algorithm in order
to achieve this goal considering an unknown system with eight coefficients.

(b) Calculate the value of � for the affine projection algorithm with L D 3.
(c) If the unknown system consisted of a first-order Markov process with �2n D

4�2w and with eight coefficients, what would be �total considering 
w D 1

in (4.134) and �w � 1?
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Chapter 6
Data-Selective Adaptive Filtering

6.1 Introduction

The families of adaptive-filtering algorithms introduced so far present a trade-off
between speed of convergence and the misadjustment after the transient. These
characteristics are easily observable in stationary environments. In general fast-
converging algorithms tend to be very dynamic, a feature not necessarily advan-
tageous after convergence in a stationary environment. In this chapter, an alternative
formulation to govern the updating of the adaptive-filter coefficients is introduced.
The basic assumption is that the additional noise is considered bounded, and the
bound is either known or can be estimated [1]. The key strategy of the formulation
is to find a feasibility set1 such that the bounded error specification is met for any
member of this set. As a result, the set-membership filtering (SMF) is aimed at
estimating the feasibility set itself or a member of this set [2].

As a byproduct, the SMF allows the reduction of computational complexity in
adaptive filtering, since the filter coefficients are updated only when the output
estimation error is higher than the pre-determined upper bound [2, 3].

Set-membership adaptive filters employ a deterministic objective function related
to a bounded error constraint on the filter output, such that the updates belong to a set
of feasible solutions. The objective function resembles the prescribed specifications
of non-adaptive digital filter design. In the latter, any filter whose amplitude
ripples in some frequency bands are smaller than given bounds is an acceptable
solution. The main difference is that in the SMF the considered bound applies to
the time-domain output error. As compared with their competing algorithms such
as the normalized LMS, affine projection, and RLS algorithms [4–11], the SMF
algorithms lead to reduced computational complexity primarily due to data-selective
updates.

1This set is defined as the set of filter coefficients leading to output errors whose moduli fall below
a prescribed upper bound.
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Usually the set-membership algorithms perform updates more frequently during
the early iterations in stationary environments. As such, if these updates entail
more computational complexity than available, some alternative solution is required.
A possible strategy to maintain some control on the amount of computational
resources is to adopt partial update, where only a subset of the adaptive-filter
coefficients are updated at each iteration. The resulting algorithms are collectively
called partial-update (PU) algorithms [12–17].

This chapter presents several alternative set-membership algorithms which are
closely related to the normalized LMS algorithm [7], the binormalized data-reusing
LMS algorithm (here denoted as SM-BNLMS) [10], and the affine projection (SM-
AP) [11] algorithm. In addition, this chapter describes the set-membership affine
projection algorithm with partial update in some detail. The family of algorithms
described in this chapter leads to more flexible management of the computational
resources, in comparison with the algorithms presented in the previous chapters.

6.2 Set-Membership Filtering

The SMF concept is a framework applicable to adaptive-filtering problems that are
linear in parameters. The adaptive-filter output is given by

y.k/ D wT x.k/ (6.1)

where x.k/ D Œx0.k/ x1.k/ : : : xN .k/�
T is the input signal vector, and w D

Œw0 w1 : : :wN �T is the parameter vector.
Considering a desired signal sequence d.k/ and a sequence of input vectors x.k/,

both for k D 0; 1; 2; : : : ;1, the estimation error sequence e.k/ is calculated as

e.k/ D d.k/ � wT x.k/ (6.2)

also for k D 0; 1; 2; : : : ;1. The vectors x.k/ and w 2 R
NC1, where R represents

the set of real numbers, whereas y.k/ and e.k/ represent the adaptive-filter output
signal and output error, respectively. The objective of the SMF is to design w such
that the magnitude of estimation output error is upper bounded by a prescribed
quantity N� . If the value of N� is properly chosen, there are several valid estimates
for w. In summary, any filter parameter leading to a magnitude of the output
estimation error smaller than a deterministic threshold is an acceptable solution.
From the bounded error constraint results a set of filters rather than a single estimate.
If N� is chosen too small there might be no solution.

Assuming that NS denotes the set of all possible input-desired data pairs .x; d /
of interest, it is possible to define � as the set of all possible vectors w leading to
output errors whose magnitudes are bounded by N� whenever .x; d / 2 NS . The set �,
called feasibility set, is given by

� D
\

.x;d /2 NS

˚
w 2 R

NC1 W jd � wT xj � N�� (6.3)
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d(k) − wTx(k) = γ

H(k)

d(k) − wTx(k) = −γ

Fig. 6.1 Constraint set in w
plane for a two-dimension
example

Now let’s consider the practical case where only measured data are available.
Given a set of data pairs fx.i/; d.i/g, for i D 0; 1; : : : ; k, let’s define H.k/ as the
set containing all vectors w such that the associated output error at time instant k is
upper bounded in magnitude by N� . That is,

H.k/ D fw 2 R
NC1 W jd.k/� wT x.k/j � N�g (6.4)

The set H.k/ is usually referred to as the constraint set. The boundaries of H.k/
are hyperplanes. For the two-dimensional case, where the coefficient vector has two
elements, H.k/ comprises the region between the lines where d.k/�wT x.k/ D ˙ N�
as depicted in Fig. 6.1. For more dimensions, H.k/ represents the region between
two parallel hyperplanes in the parameter space w.

Since for each data pair there is an associated constraint set, the intersection of
the constraint sets over all the available time instants i D 0; 1; : : : ; k, is called the
exact membership set  .k/, formally defined as

 .k/ D
k\

iD0
H.i/ (6.5)

The set  .k/ represents a polygon in the parameter space whose location is one of
the main objectives of the set-membership filtering.

For a set of data pairs including substantial innovation, the polygon in w,
 .k/, should become small. This property usually occurs after a large number of
iterations k, when most likely .k/ D  .k�1/ since .k�1/ is entirely contained
in the constraint set H.k/ as depicted in Fig. 6.2a. In this case, the adaptive-filter
coefficients do not need updating because the current membership set is totally
inside the constraint set, resulting in a selection of update which is data dependent.
The selective updating of the set-membership filtering brings about opportunities
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H(k

a

b

)
d(k) − wTx(k) = γ

d(k) − wTx(k) = −γ

ψ(k − 1)

d(k) − wTx(k) = γH(k)

d(k) − wTx(k) = −γ

ψ(k − 1)

Fig. 6.2 Exact membership set  .k/ and its possible intersection with the constraint set H.k/. (a)
Exact membership set,  .k � 1/, contained in the constraint set,  .k � 1/ � H.k/. (b) Exact
membership set,  .k � 1/, not contained in the constraint set,  .k � 1/ ª H.k/

for power and computational savings, so crucial in devices such as mobile terminals.
On the other hand, in the early iterations it is highly possible that the constraint set
reduces the size of the membership-set polygon as illustrates Fig. 6.2b.

At any given time instant, it can be observed that the feasibility set � is a subset
of the exact membership set  .k/. The feasibility set is the limiting set of the exact
membership set because the two sets are equal if the available input-desired data
pairs traverses all signal pairs belonging to NS .

The goal of set-membership adaptive filtering is to adaptively find an estimate
that belongs to the feasibility set. The easiest approach is to compute a point
estimate using, for example, the information provided by the constraint set H.k/
like in the set-membership NLMS algorithm considered in the following section, or
several previous constraint sets like the set-membership affine projection (SM-AP)
algorithm discussed in Sect. 6.4 [10, 11].
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For historical reasons, it is worth mentioning that the first SMF approach
proposed in the literature tries to outer bound  .k/ with ellipsoids and the resulting
algorithms are called optimal bounding ellipsoid (OBE) algorithms [4–6]. These
algorithms bear a close resemblance with the RLS algorithm [2] and have inherent
data selectivity. In the OBE algorithms the membership set is bounded by ellipsoids
comprising the smallest closed set [4–6]. These algorithms are also important but
they are not included as they present higher computational complexity than those
discussed here.

6.3 Set-Membership Normalized LMS Algorithm

The set-membership NLMS (SM-NLMS) algorithm first proposed in [7] has a form
similar to the conventional NLMS algorithm presented in Sect. 4.4. The key idea of
the SM-NLMS algorithm is to perform a test to verify if the previous estimate w.k/
lies outside the constraint set H.k/, i.e., jd.k/� wT .k/x.k/j > N� . If the modulus of
the error signal is greater than the specified bound, the new estimate w.kC1/ will be
updated to the closest boundary of H.k/ at a minimum distance, i.e., the SM-NLMS
minimizes kw.k C 1/ � w.k/k2 subjected to w.k C 1/ 2 H.k/ [18]. The updating
is performed by an orthogonal projection of the previous estimate onto the closest
boundary of H.k/. Figure 6.3 illustrates the updating procedure of the SM-NLMS
algorithm.

In order to derive the update equations, first consider the a priori error e.k/
given by

e.k/ D d.k/� wT .k/x.k/ (6.6)

then, let’s start with the normalized LMS algorithm which utilizes the following
recursion for updating w.k/

.

H(k)
d(k) − wTx(k) = γ

d(k) − wTx(k) = −γ

w(k + 1)

w(k)

Fig. 6.3 Coefficient vector
updating for the
set-membership normalized
LMS algorithm
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w.k C 1/ D w.k/C �.k/

� C xT .k/x.k/
e.k/ x.k/ (6.7)

where in the present discussion �.k/ is the variable step size that should be
appropriately chosen in order to satisfy the desired set-membership updating.

The update should occur either if

e.k/ D d.k/ � wT .k/x.k/ > N�
or

e.k/ D d.k/ � wT .k/x.k/ < � N�
and the a posteriori error should be given by

".k/ D d.k/ � wT .k C 1/x.k/ D ˙ N�

D d.k/ � wT .k/x.k/� �.k/

� C xT .k/x.k/
e.k/ xT .k/x.k/

D e.k/� �.k/

� C xT .k/x.k/
e.k/ xT .k/x.k/ (6.8)

where ".k/ becomes equal to ˙ N� because the coefficients are updated to the closest
boundary of H.k/. Since � , whose only task is regularization, is a small constant it
can be disregarded leading to the following equality

".k/ D e.k/Œ1 � �.k/� D ˙ N� (6.9)

The above equation leads to

1 � �.k/ D ˙ N�
e.k/

(6.10)

where the plus (C) sign applies for the case when e.k/ > 0 and the minus (�) sign
applies for the case where e.k/ < 0. Therefore, by inspection we conclude that the
variable step size, �.k/, is given by

�.k/ D
(
1 � N�

je.k/j if je.k/j > N�
0 otherwise

(6.11)

The updating equations (6.6), (6.11), and (6.7) are quite similar to those of the
NLMS algorithm except for the variable step size �.k/. The SM-NLMS algorithm
is outlined in Algorithm 6.1. As a rule of thumb, the value of N� is chosen aroundp
5�n, where �2n is the variance of the additional noise, some further discussion in

this matter is found in Sect. 6.7 [7, 19].
The reader should recall that the NLMS algorithm minimizes kw.kC1/�w.k/k2

subjected to the constraint that wT .kC1/x.k/ D d.k/, as such it is a particular case
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Algorithm 6.1 The set-membership normalized LMS algorithm
Initialization

x.0/ D w.0/ D Œ0 : : : 0�T

choose N� around
p
5�n

� D small constant
Do for k � 0

e.k/ D d.k/� xT .k/w.k/

�.k/ D
(
1� N�

je.k/j
if je.k/j > N�

0 otherwise

w.k C 1/ D w.k/C �.k/

�CxT .k/x.k/ e.k/ x.k/

of the SM-NLMS algorithm by choosing the bound N� D 0. It should be noticed
that by using a step size �.k/ D 1 in the SM-NLMS whenever w.k/ 62 H.k/,
one performs a valid update since the hyperplane with zero a posteriori error lies in
H.k/. In this case, the resulting algorithm does not minimize the Euclidean distance
kw.k C 1/� w.k/k2 since the a posteriori error is zero and less than N� .

6.4 Set-Membership Affine Projection Algorithm

The exact membership set  .k/ previously defined in (6.5) suggests the use of
more constraint-sets in the update [11]. This section generalizes the concept of set-
membership in order to conceive algorithms whose updates belong to the past LC1

constraint sets. In order to achieve our goal, it is convenient to express  .k/ as

 .k/ D
 
k�L�1\

iD0
H.i/

!0

@
k\

jDk�L
H.j /

1

A D  k�L�1.k/
\
 LC1.k/ (6.12)

where LC1.k/ represents the intersection of the LC1 last constraint sets, whereas
 k�L�1.k/ is the intersection of the first k � L constraint sets. The aim of this
derivation is to conceive an algorithm whose coefficient update belongs to the last
LC 1 constraint-sets, i.e., w.k C 1/ 2  LC1.k/.

Just like in the original affine projection algorithm of Sect. 4.6, we can retain the
last LC 1 input signal vectors in a matrix as follows:

Xap.k/ D Œx.k/ x.k � 1/ : : : x.k � L/� (6.13)

where Xap.k/ 2 R
.NC1/�.LC1/ contains the corresponding retained inputs, with x.k/

being the input-signal vector

x.k/ D Œx.k/ x.k � 1/ : : : x.k �N/�T (6.14)
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The vectors representing the data considered at a given iteration k, such as the
desired signal and error vectors are given by

dap.k/ D

2

6
6
6
4

d.k/

d.k � 1/
:::

d.k � L/

3

7
7
7
5

(6.15)

eap.k/ D

2

6
6
6
4

eap;0.k/

eap;1.k/
:::

eap;L.k/

3

7
7
7
5

(6.16)

where dap.k/ 2 R
.LC1/�1 contains the desired outputs from the LC 1 last time

instants.
Consider that S.k � i C 1/ denotes the hyperplane which contains all vectors w

such that d.k � i C 1/ � wT x.k � i C 1/ D N�i.k/, for i D 1; : : : ; L C 1, where
the parameters N�i.k/ represent the bound constraint to be satisfied by the error
magnitudes after coefficient updating. Some particular choices for the parameters
N�i.k/ are discussed later on, for now any choice satisfying the bound constraint is
valid. That is, if all N�i .k/ are chosen such that j N�i.k/j � N� then S.k � i C 1/ 2
H.k � i C 1/, for i D 1; : : : ; LC 1. Vector N�.k/ 2 R

.LC1/�1 specifies the point in
 LC1.k/, where

N�.k/ D Œ N�1.k/ N�2.k/ : : : N�LC1.k/�T (6.17)

The objective function to be minimized in the set-membership affine projection
(SM-AP) algorithm can now be stated. Perform a coefficient update whenever
w.k/ 62  LC1.k/ in such a way that2

min kw.k C 1/� w.k/k2 (6.18)

subject to:

dap.k/ � XT
ap.k/w.k C 1/ D N�.k/ (6.19)

where the constraint can be rewritten as d.k � i C 1/� xT .k � i C 1/w.k C 1/ D
N�i.k/, for i D 1; : : : ; LC 1. Figure 6.4 illustrates a typical coefficient update related
to the SM-AP algorithm for the case with two coefficients,L D 1 and j N�i .k/j < j N� j,
such that w.k C 1/ is not placed at the border of H.k/.

2The reader should note that in earlier definition of the objective function related to the affine
projection algorithm a constant 1

2
was multiplied to the norm to be minimized. This constant is not

relevant and is only used when it simplifies the algorithm derivation.
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w(k)

H(k − 1)

d(k − 1) − wTx(k − 1) = γ

d(k − 1) − wTx(k − 1) = −γ

H(k)

d(k) − wTx(k) = γ

d(k) − wTx(k) = −γ

d(k − 1) − wTx(k − 1) = γ2(k)

d(k) − wTx(k) = γ1(k)

w(k + 1)

Fig. 6.4 SM-AP algorithm coefficient update

Using the method of Lagrange multipliers [18], the unconstrained function to be
minimized is

F Œw.k C 1/� D kw.k C 1/ � w.k/k2 C �Tap.k/Œdap.k/ � XT
ap.k/w.k C 1/ � N�.k/�

(6.20)

where the vector of Lagrange multipliers, �ap.k/ 2 R
.LC1/�1, is given by

�ap.k/ D �
�ap;1.k/ �ap;2.k/ : : : �ap;LC1.k/

�T
(6.21)

such that the constraints can be rewritten in the above equation as follows

F Œw.k C 1/� D kw.k C 1/� w.k/k2

C
LC1X

iD1
�ap;i .k/Œd.k � i C 1/� xT .k � i C 1/w.k C 1/� N�i .k/�

(6.22)

We solve the minimization problem of (6.18) by first setting the gradient of the
function F Œw.k C 1/� with respect to w.k C 1/ equal to zero, in order to derive the
following equation
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w.k C 1/ D w.k/C
LC1X

iD1

�i .k/

2
x.k � i C 1/

D w.k/C Xap.k/
�ap.k/

2
(6.23)

By premultiplying the above equation by XT
ap.k/ and utilizing the constraints

XT
ap.k/w.k C 1/ D dap.k/ � N�.k/

given in (6.19), we obtain

dap.k/ � N�.k/ D XT
ap.k/w.k/C XT

ap.k/Xap.k/
�ap.k/

2
(6.24)

or alternatively

d.k � i C 1/ � N�i .k/ D xT .k � i C 1/w.k/

C
LC1X

jD1

�j .k/

2
xT .k � i C 1/x.k � j C 1/

for i D 1; : : : ; LC 1.
Equation (6.24) can be rewritten in a more interesting format as

XT
ap.k/Xap.k/

�ap.k/

2
D dap.k/ � XT

ap.k/w.k/� N�.k/
D eap.k/ � N�.k/ (6.25)

leading to

�ap.k/

2
D
h
XT

ap.k/Xap.k/
i�1 �

eap.k/� N�.k/� (6.26)

It is now possible to derive the updating equation by starting from (6.23) with
�ap.k/ being given by (6.26), i.e.,

w.k C 1/ D
(

w.k/C Xap.k/
h
XT

ap.k/Xap.k/
i�1 �

eap.k/� N�.k/� if je.k/j > N�
w.k/ otherwise

(6.27)

where

eap.k/ D Œe.k/ ".k � 1/ : : : ".k �L/�T (6.28)
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Algorithm 6.2 The set-membership affine projection algorithm
Initialization

x.0/ D w.0/ D Œ0 : : : 0�T

choose N� around
p
5�n

� D small constant
Do for k � 0

eap.k/ D dap.k/� XT
ap.k/w.k/

w.k C 1/ D
(

w.k/C Xap.k/
h
XT

ap.k/Xap.k/C �I
i

�1 �
eap.k/� N�.k/� if je.k/j > N�

w.k/ otherwise

with ".k � i/ D d.k � i/ � xT .k � i/w.k/ denoting the a posteriori error
calculated with the data pair of iteration k � i using the coefficients of iteration k.
Algorithm 6.2 describes in detail the general form of the SM-AP algorithm.

Several properties related to the SM-AP algorithm are straightforward to infer.

• For time instants k < L C 1, i.e., during initialization, we can only assume
knowledge of H.i/ for i D 0; 1; : : : ; k. As a result, if an update is needed when
k < LC 1, the algorithm is used with the only k C 1 constraint sets available.

• In order to verify if an update w.k C 1/ is required, we only have to check if
w.k/ 62 H.k/ since due to previous updates w.k/ 2 H.k � i C 1/ holds for
i D 2; : : : ; LC 1.

• By choosing the bound N� D 0, it is possible to verify that the algorithm becomes
the conventional AP algorithm with unity step-size.

6.4.1 A Trivial Choice for Vector N�.k/

In the above discussions no specific choice for the parameters N�i .k/ has been
discussed except for the requirement that the adaptive-filter coefficients should be
in H.k � i C 1/, meaning that j N�i.k/j � N� . There is infinite number of possible
choices for N�i .k/, each leading to a different update.

The most trivial choice would be N�.k/ D 0, i.e., to force the a posteriori errors to
be zero at the last LC 1 time instants. If we replace N�.k/ D 0 in (6.24) and solving
for �ap.k/ the following recursions result

�ap.k/

2
D



XT
ap.k/Xap.k/

��1
eap.k/ (6.29)

The update recursion is given by

w.kC1/ D
(

w.k/CXap.k/



XT
ap.k/Xap.k/

��1
eap.k/ if je.k/j > N�

w.k/ otherwise
(6.30)



260 6 Data-Selective Adaptive Filtering

H(k)

d(k) − wTx(k) = 0

w(k)

d(k − 1) − wTx(k − 1) = 0
H(k − 1) w(k + 1)

d(k − 1) − wTx(k − 1) = γ

d(k − 1) − wTx(k − 1) = −γ

d(k) − wTx(k) = γ

d(k) − wTx(k) = −γ

Fig. 6.5 SM-AP algorithm coefficient updated with zero a posteriori error

The above updating equation is identical to the conventional affine-projection (AP)
algorithm with unity step size whenever an update takes place, that is, w.k/ 62 H.k/.
However, owing to the data selectivity, the SM-AP algorithm leads to considerable
reduction in complexity as compared with the conventional AP algorithm. Figure 6.5
depicts a typical coefficient update, where for illustration purposes w.k/ does not
lie in the zero a posteriori hyperplane belonging to H.k � 1/.

6.4.2 A Simple Vector N�.k/

Any choice for N�i .k/ is valid as long as they correspond to points represented by
the adaptive-filter coefficients in H.k � i C 1/, i.e., j N�i.k/j � N� . One can exploit
this freedom in order to make the resulting algorithm more suitable for a target
application. A particularly simple SM-AP version is obtained if N�i .k/ for i 6D 1

corresponds to the a posteriori error ".k � i C 1/ D d.k � i C 1/ � wT .k/x.k �
i C 1/ and N�1.k/ D e.k/=je.k/j. Since the coefficients were updated considering
previous data pairs then at this point it is true that w.k/ 2 H.k � i C 1/, i.e.,
j".k � i C 1/j D jd.k � i C 1/ � xT .k � i C 1/w.k/j � N� , for i D 2; : : : ; LC 1.
Therefore, by choosing N�i.k/ D ".k � i C 1/, for i ¤ 1, all the elements on the
right-hand side of (6.24) become zero, except for first element.

It is only left now the choice of the constraint value N�1.k/, that can be selected as
in the SM-NLMS algorithm where N�1.k/ is such that the solution lies at the nearest
boundary of H.k/, i.e.,
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H(k − 1)

H(k)

d(k) − wTx(k) = γ

d(k − 1) − wTx(k − 1) = γ2(k − 1)
w(k)

w(k + 1)

d(k) − wTx(k) = −γ

d(k − 1) − wTx(k − 1) = γ

d(k − 1) − wTx(k − 1) = −γ

Fig. 6.6 Simplified SM-AP algorithm coefficient update with constant a posteriori error

N�1.k/ D N� e.k/je.k/j (6.31)

Such choices utilized in (6.25) leads to

XT
ap.k/Xap.k/

�ap.k/

2
D �.k/e.k/u1 (6.32)

where �.k/ D 1 � N�
je.k/j and u1 D Œ1 0 : : : 0�T .

The resulting update equation is then given by

w.k C 1/ D w.k/C Xap.k/
h
XT

ap.k/Xap.k/
i�1

�.k/e.k/u1 (6.33)

where

e.k/ D d.k/� wT .k/x.k/ (6.34)

�.k/ D
(
1 � N�

je.k/j if je.k/j > N�
0 otherwise

(6.35)

This algorithm minimizes the Euclidean distance kw.k C 1/�w.k/k2 subject to the
constraint w.k C 1/ 2  LC1.k/ such that the a posteriori errors at iteration k � i ,
".k � i/, are kept constant for i D 2; : : : ; L C 1. Figure 6.6 illustrates a typical
coefficient updating for the simplified SM-AP algorithm where it is observed that
the a posteriori error related to previous data remains unaltered.
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Algorithm 6.3 The simplified set-membership affine projection algorithm
Initialization

x.0/ D w.0/ D Œ0 : : : 0�T

choose N� around
p
5�n

� D small constant
Do for k � 0

eap.k/ D dap.k/� XT
ap.k/w.k/

�.k/ D
(
1� N�

je.k/j
if je.k/j > N�

0 otherwise

w.k C 1/ D w.k/C Xap.k/
h
XT

ap.k/Xap.k/C �I
i

�1

�.k/e.k/u1

The simplified SM-AP algorithm given by (6.33) will perform an update if and
only if w.k/ 62 H.k/, or e.k/ > N� . The step-by-step description of the simplified
SM-AP algorithm is presented in Algorithm 6.3.

In Chap. 18 we briefly present some analytical results pertaining to simplified
SM-AP algorithm including closed form expressions for the excess MSE in
stationary environments as well as for the convergence behavior.

6.4.3 Reducing the Complexity in the Simplified SM-AP
Algorithm

In the updating expression of (6.33) vector u1 has a special form which can be
exploited in order to reduce the computational complexity.

The inverse matrix in (6.33) can be partitioned as
h
XT

ap.k/Xap.k/
i�1 D

n�
x.k/ QXap.k/

�T �
x.k/ QXap.k/

�o�1

D
�
a bT

b C

�

(6.36)

where

a D �
'T .k/'.k/

��1
(6.37)

b D �
h QXT

ap.k/
QXap.k/

i�1 QXT

ap.k/x.k/a (6.38)

with '.k/ defined as

'.k/ D x.k/ � QXap.k/
h QXT

ap.k/
QXap.k/

i�1 QXT

ap.k/x.k/ (6.39)

where the vector '.k/ 2 R
.NC1/�1, see Problem 12.
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As a result,

Xap.k/
h
XT

ap.k/Xap.k/
i�1

u1 D �
x.k/ QXap.k/

�
�
a

b

�

D �
x.k/ QXap.k/

�
"
1
b
a

#

a

D
�

x.k/ �
h QXT

ap.k/
QXap.k/

i�1 QXT

ap.k/x.k/
�

a

D '.k/
�
'T .k/'.k/

��1
(6.40)

where the last equality follows from (6.37) and (6.39).
An efficient expression for the coefficient update is obtained using the partition

in (6.36), that is

w.k C 1/ D w.k/C '.k/

'T .k/'.k/
e.k/ (6.41)

where '.k/ is defined as in (6.39). This representation of the SM-AP algorithm
is computationally attractive since it utilizes matrices with lower dimensions than

those presented in (6.33), specifically matrix
h QXT

ap.k/
QXap.k/

i
in (6.39) has dimen-

sionL�Lwhereas matrix
h
XT

ap.k/Xap.k/
i

in (6.33) has dimension .LC1/�.LC1/.
The number of reuses L is in most of the cases chosen in the range 0 � L � 5,
therefore the strategy for reducing the computational burden of the inversion brings
about significant benefit.

6.5 Set-Membership Binormalized LMS Algorithms

In the SM-AP algorithm the computational complexity is directly related to the
number of data reuses. The main component of the computational burden is the
information matrix inversion. Since the SM-NLMS algorithm only considers the
constraint set H.k/ in its update, it has low complexity per update whereas its
convergence speed follows the pattern of the NLMS algorithm. Both algorithms
have their convergence speed governed by the eigenvalue spread of the input-
signal correlation matrix. In order to alleviate this drawback while keeping the
implementation complexity as low as possible, an attractive particular solution for
the SM-AP algorithm is the set-membership binormalized LMS (SM-BNLMS)
algorithm. Two algorithms are derived requiring that the solution belongs to the
constraint sets at time instants k and k � 1, i.e., w.k C 1/ 2 H.k/ \ H.k � 1/,
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which are general cases of the binormalized LMS algorithm [20]. The SM-BNLMS
algorithms can be seen as extensions of the SM-NLMS algorithm that use two
consecutive constraint sets for each update, and also as special cases of the SM-
AP algorithms.

Let’s assume S.k � i C 1/, for i D 1; 2, denote the hyperplanes which contain
all vectors w such that d.k � i C 1/ � wT x.k � i C 1/ D N�i.k/, where N�i .k/ are
the values of the bound constraints that should be met in order to validate a given
estimate. Specifically, if N�i .k/, for i D 1; 2, are chosen such that j N�i .k/j � N� , then
S.k � i C 1/ 2 H.k � i C 1/ [10].

Whenever w.k/ 62 H.k/\H.k�1/, we can propose an objective function such as

min kw.k C 1/� w.k/k2
subject to:

d.k/ � xT .k/w.k C 1/ D N�1.k/
d.k � 1/� xT .k � 1/w.k C 1/ D N�2.k/ (6.42)

where the pair of thresholds . N�1.k/; N�2.k// specifies the point in H.k/ \ H.k � 1/

where the final parameter estimate will be placed. The previously shown Fig. 6.4
illustrates how the coefficients are updated to prescribed a posteriori errors deter-
mined by . N�1.k/; N�2.k//.

In principle there is a need to verify if an update according to (6.42) is required,
where such an update can be skip if w.k/ 2 H.k/ \ H.k � 1/. There are ways of
keeping w.k C 1/ 2 H.k � 1/ whenever an update is required, that is, whenever
w.k/ 62 H.k/. This type of solution is discussed further in Sect. 6.5.2. At any
rate, we can solve the general constrained minimization problem of (6.42) for
the binormalized case by applying Lagrange multiplier method, resulting in the
following unconstrained objective function

F Œw.k C 1/� D kw.k C 1/� w.k/k2 C �1.k/Œd.k/ � xT .k/w.k C 1/� N�1.k/�
C�2.k/Œd.k � 1/� xT .k � 1/w.k C 1/� N�2.k/� (6.43)

By computing the gradient of (6.43) with respect to w.k C 1/, setting the result to
zero, we get

w.k C 1/ D w.k/C Xap.k/
�ap.k/

2

D w.k/C Œx.k/ x.k � 1/�
"
�1.k/

2
�2.k/

2

#

(6.44)

where this expression is the specialized form of (6.23) to the binormalized case.
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The Lagrange multipliers are obtained by replacing (6.44) in the constraints of
(6.42) such that
�

xT .k/
xT .k � 1/

�

Œx.k/ x.k � 1/�
"
�1.k/

2
�2.k/

2

#

D
�

d.k/

d.k � 1/

�

�
�

xT .k/
xT .k � 1/

�

w.k/ � N�.k/

D
�

e.k/

".k � 1/
�

�
� N�1.k/

N�2.k/
�

(6.45)

By solving the above equation we obtain

�1.k/

2
D Œe.k/ � N�1.k/� kx.k � 1/k2 � Œ".k � 1/� N�2.k/� xT .k/x.k � 1/

kx.k/k2kx.k � 1/k2 � ŒxT .k � 1/x.k/�2
(6.46)

�2.k/

2
D Œ".k � 1/� N�2.k/� kx.k/k2 � Œe.k/ � N�1.k/� xT .k � 1/x.k/

kx.k/k2kx.k � 1/k2 � ŒxT .k � 1/x.k/�2
(6.47)

where the errors in the above equations are the a priori error at iteration k, defined
as e.k/ D d.k/ � wT .k/x.k/, and the a posteriori error at iteration k � 1, defined
as ".k � 1/ D d.k � 1/� wT .k/x.k � 1/.

The expression for the coefficient update of the SM-BNLMS algorithm is then
given by

w.k C 1/ D
�

w.k/C �1.k/

2
x.k/C �2.k/

2
x.k � 1/ if je.k/j > N�

w.k/ otherwise
(6.48)

Some special forms of the SM-BNLMS algorithm are following discussed.

6.5.1 SM-BNLMS Algorithm 1

The first form of the SM-BNLMS algorithm is derived by employing two steps,
where in each step we minimize the Euclidean distance between the old filter
coefficients and the new update, subjected to the constraint that the new update
lies in constraint set H.k/. Then, we test if the new update belongs in the previous
constraint set H.k � 1/ and if not a new update takes place. Basically, the SM-
BNLMS algorithm 1 performs a step according to the SM-NLMS algorithm and if
the solution belongs to both constraint sets H.k/ and H.k � 1/ no further update
is required. If the initial step moves the solution away from H.k � 1/, then a
second update is performed in order to place the solution at the intersection of
H.k/ and H.k � 1/ at a minimum distance from w.k/. Figure 6.7 illustrates the
coefficient updates according to the situations discussed so far. As desired, the SM-
BNLMS algorithm 1 minimizes kw.k C 1/ � w.k/k2 subject to the constraint that
w.k C 1/ 2 H.k/ \ H.k � 1/.
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H(k)

w(k)

d(k) − wTx(k) = −γ

d(k) − wTx(k) = γ

d(k − 1) − wTx(k − 1) = −γ

d(k − 1) − wTx(k − 1) = γ

H(k − 1) w(k + 1).

H(k)

d(k) − wTx(k) = −γ

d(k) − wTx(k) = γ

d(k − 1) − wTx(k − 1) = γ

d(k − 1) − wTx(k − 1) = −γ

w(k)

w(k + 1)

.

H(k − 1)

a

b

Fig. 6.7 Possible coefficient updates for the SM-BNLMS algorithm 1. (a) w.k C 1/ 2 H.k/ \
H.k � 1/, no further update. (b) w.k C 1/ 62 H.k � 1/, further update

The updating equation for the SM-BNLMS algorithm 1 can be derived by first
performing an orthogonal projection of w.k/ onto the nearest boundary of H.k/
just like in the SM-NLMS algorithm

Ow.k/ D w.k/C �.k/
e.k/x.k/
kx.k/k2 (6.49)
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where�.k/ is the variable convergence factor given by (6.11) and e.k/ is the a priori
output error defined in (6.6). If Ow.k/ 2 H.k�1/, i.e., jd.k�1/� OwT

.k/x.k�1/j � N� ,
no further update is required, therefore w.k C 1/ D Ow.k/. On the other hand, if
Ow.k/ 62 H.k � 1/ a second step is necessary in order to move the solution to the
intersection of H.k/ and H.k � 1/ at a minimum distance. This second step is
performed in the orthogonal direction with respect to the first step, namely x?.k/.
The resulting second updating is then performed in the following form

w.k C 1/ D Ow.k/C O�.k/".k � 1/x?.k/
kx?.k/k2 (6.50)

where

x?.k/ D
�

I � x.k/xT .k/
kx.k/k2

�

x.k � 1/ (6.51)

".k � 1/ D d.k � 1/� OwT
.k/x.k � 1/ (6.52)

O�.k/ D 1 � N�
j".k � 1/j (6.53)

Algorithm 6.4 describes in detail the SM-BNLMS algorithm 1, where we utilized
an explicit form for x?.k/, see Problem 2. It is straightforward to observe that if the
bound of the estimation error is chosen to be zero, i.e., N� D 0, the updating equations
of the SM-BNLMS algorithm 1 coincide with those of binormalized LMS algorithm
with unity step-size [20].

Algorithm 6.4 The set-membership binormalized LMS algorithm 1
Initialization

x.0/ D w.0/ D Œ0 : : : 0�T

choose N� around
p
5�n

� D small constant
Do for k � 0

e.k/ D d.k/� xT .k/w.k/

�.k/ D
(
1� N�

je.k/j
if je.k/j > N�

0 otherwise

Ow.k/ D w.k/C �.k/
e.k/x.k/

�Ckx.k/k2

".k � 1/ D d.k � 1/� OwT
.k/x.k � 1/

O�.k/ D
(
1� N�

j".k�1/j
; if je.k/j > N� and j".k � 1/j > N�

0 otherwise
�1.k/

2
D � O�.k/".k�1/xT .k�1/x.k/

�Ckx.k/k2kx.k�1/k2�ŒxT .k�1/x.k/�2
�2.k/

2
D O�.k/".k�1/kx.k/k2

�Ckx.k/k2kx.k�1/k2�ŒxT .k�1/x.k/�2

w.k C 1/ D Ow.k/C �1.k/

2
x.k/C �2.k/

2
x.k � 1/
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In the SM-BNLMS algorithm 1 if the constraint sets H.k/ and H.k � 1/ are
parallel, the denominator term kx?.k/k2 is zero, since this term is given by

kx?.k/k2 D kx.k � 1/k2 � ŒxT .k � 1/x.k/�2
kx.k/k2

As a result the second step of (6.50) is not performed to avoid division by zero.

6.5.2 SM-BNLMS Algorithm 2

The SM-BNLMS algorithm 2 reduces the computational complexity per update
even further by avoiding the intermediate constraint check required by the SM-
BNLMS algorithm 1. A smart idea to avoid extra computation is, at instant k, to
maintain the value of the a posteriori error ".k � 1/, which utilizes the data from
instant k�1, equal to the constraint threshold, that is by choosing N�2.k/ D ".k�1/.
Since the previous coefficient estimate w.k/ 2 H.k � 1/, then it is a fact that
".k � 1/ � N� . Therefore by choosing N�2.k/ D ".k � 1/ then N�2.k/ � N� . On the
other hand, if we choose N�1.k/ such that the update lies on the closest boundary of
H.k/, i.e., N�1.k/ D N�signŒe.k/�, the new coefficient estimate w.k C 1/ lies on the
nearest boundary of H.k/ such that the a posteriori error at iteration k�1, ".k�1/,
is kept constant. By specializing the updating equation of the general SM-BNLMS
algorithm to the SM-BNLMS algorithm 2 case, we have

w.k C 1/ D w.k/C �0
1.k/

2
x.k/C �0

2.k/

2
x.k � 1/ (6.54)

where

�0
1.k/

2
D �.k/e.k/kx.k � 1/k2

kx.k/k2kx.k � 1/k2 � ŒxT .k � 1/x.k/�2 (6.55)

�0
2.k/

2
D � �.k/e.k/xT .k � 1/x.k/

kx.k/k2kx.k � 1/k2 � ŒxT .k � 1/x.k/�2 (6.56)

�.k/ D
(
1 � N�

je.k/j ; if je.k/j > N�
0 otherwise

(6.57)

Figure 6.6 depicts the update procedure of the SM-BNLMS algorithm 2, whereas
Algorithm 6.5 describes it stepwise.

In the SM-BNLMS algorithm 2 if the constraint sets H.k/ and H.k � 1/ are
parallel, the denominators of the �0

i .k/, for i D 1; 2 are zero. In this case, in order
to avoid division by zero a regularization factor, as in (6.7), is employed instead.
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Algorithm 6.5 The set-membership binormalized LMS algorithm 2
Initialization

x.0/ D w.0/ D Œ0 : : : 0�T

choose N� around
p
5�n

� D small constant
Do for k � 0

e.k/ D d.k/� xT .k/w.k/

�.k/ D
(
1� N�

je.k/j
if je.k/j > N�

0 otherwise
�0

1.k/

2
D �.k/e.k/kx.k�1/k2

�Ckx.k/k2kx.k�1/k2�ŒxT .k�1/x.k/�2
�0

2.k/

2
D � �.k/e.k/xT .k�1/x.k/

�Ckx.k/k2kx.k�1/k2�ŒxT .k�1/x.k/�2

w.k C 1/ D w.k/C �0

1.k/

2
x.k/C �0

2.k/

2
x.k � 1/

6.6 Computational Complexity

A brief comparison of the computational complexity among some algorithms
presented in this chapter is appropriate at this point. The figure of merit considered is
the number of multiplications, additions, and divisions, where it is assumed that the
implementation minimizes the number of divisions, multiplications, and additions
in that order. Table 6.1 lists the computational complexity for several algorithms,
where in the case of the SM-BNLMS algorithm 1 there are two entries since
the update complexity is related to the number of steps a given update requires.
Two steps are required if after the first step Ow.k/ 62 H.k � 1/. The SM-BNLMS
algorithm 2 has fix complexity whenever an update occurs whereas for the SM-
BNLMS algorithm 1 the complexity depends not only on when an update occurs
but also how often the second step takes place. As expected the two versions of the
SM-BNLMS algorithm lead to a small increase in computational complexity when
compared with the SM-NLMS algorithm. On the other hand, the former algorithms
usually require less updates and converge faster than the SM-NLMS algorithm.

The computational complexity reduction is essential in applications where the
filter order is high and the resources are limited. Therefore, special care should
be taken to exploit opportunities to reduce the computational burden, for example,
assuming the value of kx.k � 1/k2 at iteration k is unknown. If kx.k � 1/k2
is known, we can compute kx.k/k2 using only two additional multiplications
through kx.k/k2 D kx.k � 1/k2 C x2.k/ � x2.k � N/, also in case the value
of x2.k�N/ is prestored then only one multiplication is required. This strategy has
been considered when evaluating the multiplication and addition counts of the SM-
BNLMS algorithms. If update occurs at two successive time instants, kx.k � 1/k2
and xT .k � 1/x.k � 2/ have already been computed in the previous update, as a
result, the number of multiplications and additions in such updates can be further
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Table 6.1 Computational complexity in set-membership algorithms

Algorithm Multiplication Addition Division

LMS 2N C 3 2N C 2 0
NLMS 2N C 3 2N C 5 1
SM-NLMS 2N C 4 2N C 6 1
SM-BNLMS 1 (1 step) 3N C 4 3N C 7 1
SM-BNLMS 1 (2 steps) 5N C 13 5N C 16 2
SM-BNLMS 2 3N C 11 3N C 10 1
RLSa 3N 2 C 11N C 8 3N 2 C 7N C 4 1

aThe numbers for the RLS apply to the particular implementation of Algorithm 5.2

reduced by approximately N C 1 for the SM-NLMS algorithm and 2N C 2 for
the SM-BNLMS algorithms 1 and 2, depending on the implementation. Finally,
note that if one continuously computes kx.k/k2 and xT .k/x.k � 1/, regardless if an
update is required or not, the SM-BNLMS algorithm 2 is always more efficient than
SM-BNLMS algorithm 1.

6.7 Time-Varying N�

In this section, an automatic way to choose N� is presented in order to avoid
overbounding and underbounding of such a crucial parameter. In case N� is chosen
too small the feasibility set might become null, whereas if the threshold parameter
is chosen too big the resulting estimate might be meaningless and inconsistent [21].

Let’s first consider the case of channel equalization application such as that of
Fig. 2.13. In a typical multiuser communication environment the noise signal vector
can be composed as follows [22]

n.k/ D nn.k/C nISI.k/C nMAI.k/ (6.58)

where n.k/ D Œn.k/ n.k � 1/ : : : n.k �N/�T , and

• nn.k/ represents the contribution of the environment noise.
• nISI.k/ is the contribution of the intersymbol interference (ISI) originated when

the transmitted signal crosses a channel with memory, in other words, whenever
multiple paths are perceived by the receiver.

• nMAI.k/ accounts for the multi-access interference (MAI), that is, the signals
from other users that reach the receiver.

At the equalizer output, the disturbance due to noise can be accounted for as
follows

yn.k/ D wT .k/n.k/ (6.59)
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Fig. 6.8 Environment noise estimation

where wT .k/ is the equalizer coefficient vector and yn.k/ is the noise signal vector
filtered by the equalizer. As a result, the equalizer output y.k/ is described by

y.k/ D yNn.k/C yn.k/ (6.60)

with yNn.k/ representing the equalized signal when there is no noise at the adaptive-
filter input.

The average power of the disturbance, for a given equalizer with parameters
w.k/, can be calculated as

�2yn
.k/ D EŒy2n .k/� D wT .k/EŒn.k/nT .k/�w.k/ D kw.k/k2�2n .k/ (6.61)

Assuming there is an estimate of �2yn
.k/ denoted as O�2yn

.k/ D kw.k/k2 O�2n .k/ we can
generate a time-varying threshold parameter as follows

N�.k C 1/ D ˛ N�.k/C .1 � ˛/
q
ˇkw.k/k2 O�2n .k/ (6.62)

where ˛ is a forgetting factor and ˇ is a constant to be set. As justified in [19],
a range of values for ˇ leading to a good compromise between misadjustment and
speed of convergence is 4 � ˇ � 5.

In equalization environments the best way to estimate �2n .k/ is to remove the
effect of the detected symbols from x.k/ in order to get a rough estimate of
n.k/ [23–25], and from this estimate compute

O�2n .k C 1/ D ˛ O�2n .k/C .1� ˛/ On2.k/ (6.63)

where again ˛ is a forgetting factor. Figure 6.8 illustrates how the environment noise
can be typically estimated in a general equalizer setup.
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For system identification environment as depicted in Fig. 2.10, an estimate of the
additional noise plus an eventual effect of undermodeling can be calculated from the
output error itself. If the input signal and the additional noise are considered white
noise and uncorrelated, see (2.148) for details, the MSE can be calculated as

� D EŒe2.k/�

D EfŒhT x1.k/� wT xNC1.k/�2 C n2.k/g

D �2x

1X

iDNC1
h2.i/C �2n (6.64)

where x1.k/ and xNC1.k/ are the input signal vector with infinite and finite lengths,
respectively. Likewise the equalization setup, a time-varying threshold parameter for
the system identification application is given by

N�.k C 1/ D ˛ N�.k/C .1 � ˛/
q
ˇ O�2n .k/ (6.65)

where for this case

O�2n .k C 1/ D ˛ O�2n .k/C .1 � ˛/e2.k/ (6.66)

In [19] some analytical expressions are developed in order to provide values
for N�.k/ such that the some prescribed updating rate are nearly satisfied after the
algorithm has reached convergence.

6.8 Partial-Update Adaptive Filtering

In several applications the number of coefficients to be updated might be prohibitive,
therefore some strategies to control the computational complexity is desirable.
In some cases like in acoustics echo cancellation, which might use a few thousands
of adaptive coefficients, the convergence would entail a large number of iterations,
calling for more sophisticated updating algorithms which are inherently more
computationally intensive. A good compromise might be to update only part of
the filter coefficients at each iteration instant, generating a family of algorithms
called partial-update (PU) algorithms. The most widely known PU algorithm in the
literature is the normalized LMS with partial update [12–17], see also [26] for more
specific details.

In this section special emphasis is given to the set-membership partial-update
affine projection (SM-PUAP) algorithms. The combination of the partial-update
with set-membership allows the updating of a selected set of coefficients whenever
an update is needed. The resulting algorithms capitalize not only from the sparse
updating related to the set-membership framework but also from the partial update
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of the coefficients, reducing the average computational complexity. It is expected
that the SM-PUAP algorithms have comparable performance to that of SM-AP algo-
rithms and affine projection algorithms with partial-update whereas computational
complexity is reduced with respect to both updating schemes.

Two versions of the SM-PUAP algorithm are discussed:

• Fix partial update, where a constant number of coefficients is updated whenever
required.

• Variable partial update, where the number of coefficients to be updated varies up
to a maximum prescribed number.

In the partial update adaptation strategy, the main objective is to perform updates
in NM out of the N C 1 adaptive-filter coefficients. The NM coefficients to be updated
at time instant k are selected through an index set I NM.k/ D fi0.k/ : : : i NM�1.k/g
where the indexes fij .k/g NM�1

jD0 are chosen from the set f0 1 : : : N g representing
the available coefficients to be updated. The partition of the N C 1 coefficients
into mutually exclusive subsets, each with NM elements, plays a key role in the
performance and in the effectiveness of the partial-update strategy. As a result,
I NM.k/ varies with the iteration index k such that the NM coefficients to be updated
can change according to the iteration. The choice of which NM coefficients should be
updated is related to the objective function considered in the algorithm derivation.

As already known, in the SM-AP algorithms the new coefficient vector
can be obtained as the vector w.kC 1/ that minimizes the Euclidean distance
kw.kC1/� w.k/k2, subject to the constraint that the moduli of a posteriori errors
fall below certain prescribed threshold. The same idea can be used in order to derive
the SM-PUAP algorithm, specifically the vector w.k C 1/ is chosen by minimizing
the Euclidean distance kw.kC1/�w.k/k2 subject to the constraint w.kC1/ 2 H.k/
in such a way that only NM coefficients are updated. If w.k/ 2 H.k/, there is no
update and the Euclidean distance is zero.

The objective function to be minimized in the set-membership partial-update
affine projection (SM-PUAP) algorithm is following described. A coefficient update
is performed whenever w.k/ 62  LC1.k/ such that

min kw.k C 1/� w.k/k2 (6.67)

subject to:

dap.k/ � XT
ap.k/w.k C 1/ D N�.k/

QCI
NM.k/
Œw.k C 1/� w.k/� D 0 (6.68)

where N�.k/ is a vector determining a point within the constraint set H.k/, such
that j N�i.k/j � N� , for i D 0; 1; : : : ; L. The matrix QCI

NM.k/
D I � CI

NM .k/
is

a complementary matrix of CI
NM .k/

enforcing QCI
NM .k/

w.k C 1/ D QCI
NM .k/

w.k/,
such that only NM coefficients are updated. A possible choice for N�0.k/ is such
that the updated vector belongs to the closest bounding hyperplane in H.k/, i.e.,
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N�0.k/ D N� e.k/=je.k/j. On the other hand, some alternative choices j N�i.k/j � N� ,
for i D 1; 2; : : : ; L, had been discussed. The matrix CI

NM .k/
is a diagonal matrix

that determines the coefficients to be updated at instant k, if an update is required.
This matrix has NM nonzero elements equal to one placed at positions indicated by
I NM.k/.

Applying the method of Lagrange multipliers gives the recursive updating rule

w.k C 1/ D w.k/C CI
NM .k/

Xap.k/
h
XT

ap.k/CI
NM .k/

Xap.k/
i�1 �

eap.k/ � N�.k/�

(6.69)

The updating equation of the SM-PUAP algorithm is given by

w.k C 1/

D
8
<

:
w.k/CCI

NM .k/
Xap.k/

h
XTap.k/CI

NM .k/
Xap.k/

i�1 �
eap.k/� N�.k/� if je.k/j > N�

w.k/ otherwise

(6.70)

As can be noticed from (6.70), for a fixed value of keap.k/ � N�.k/k2, the
Euclidean distance between two consecutive coefficient vectors is minimized if
kXT

ap.k/CI
NM .k/

Xap.k/k is maximized. As a result, a natural choice for the NM
coefficients to be updated are those that will be multiplied by the elements of Xap.k/

with the largest norm.
Like in the case of the SM-AP algorithm of (6.33), it is straightforward to derive

a simplified version of the SM-PUAP algorithm, whose update equation is given by

w.k C 1/ D w.k/C CI
NM .k/

Xap.k/
h
XT

ap.k/CI
NM .k/

Xap.k/
i�1

�.k/e.k/u1 (6.71)

where

e.k/ D d.k/ � wT .k/x.k/ (6.72)

�.k/ D
(
1 � N�

je.k/j if je.k/j > N�
0 otherwise

(6.73)

This algorithm also minimizes the Euclidean distance kw.k C 1/�w.k/k2 subject to
the constraint w.k C 1/ 2  LC1.k/maintaining the values of the a posteriori errors,
".k � i/, at iteration k � i . Note that �.k/ starts with high values, becomes small
when the error reduces, and reaches zero whenever moduli of the errors become
smaller than the threshold. An interesting choice for the index set I NM .k/ specifying
the coefficients to be updated is the NM coefficients leading to the maximum value
of kXT

ap.k/CI
NM .k/

Xap.k/k. Algorithm 6.6 describes in detail the simplified version
of the SM-PUAP algorithm.
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Algorithm 6.6 The simplified set-membership partial-update affine projection
algorithm
Initialization

x.0/ D w.0/ D Œ0 : : : 0�T

choose N� around
p
5�n

� D small constant
Do for k � 0

eap.k/ D dap.k/� XT
ap.k/w.k/

�.k/ D
(
1� N�

je.k/j
if je.k/j > N�

0 otherwise

w.k C 1/ D w.k/C CI
NM .k/

Xap.k/
h
XT

ap.k/CI
NM .k/

Xap.k/C �I
i

�1

�.k/e.k/u1

6.8.1 Set-Membership Partial-Update NLMS Algorithm

The simplest form of the SM-PUAP algorithm is the set-membership partial-update
NLMS (SM-PUNLMS) algorithm. The updating equation of the SM-PUNLMS
algorithm follows directly from (6.71) and is given by

w.k C 1/ D w.k/C �.k/
e.k/CI

NM .k/
x.k/

kCI
NM.k/

x.k/k2 (6.74)

where

�.k/ D
(
1 � N�

je.k/j if w.k/ 62 H.k/, i.e., if je.k/j > N�
0 otherwise

(6.75)

In [15], a number of properties and an interesting geometrical interpretation
of the SM-PU-NLMS algorithm update are provided, some of these results are
discussed here. Figure 6.9 depicts the situation where one coefficient updates out
of three, i.e., NM D 1 and N C 1 D 3. As can be observed, the element x2.k/ is
the largest in magnitude among the elements of x.k/, therefore a natural choice for
CI

NM2
.k/ is a diagonal matrix whose diagonal elements are Œ0 1 0�. The solution

denoted by wSM�NLMS is obtained by an orthogonal projection starting from w.k/
onto the closest boundary of the constraint set H.k/. The angle denoted by � shown
in Fig. 6.9 is the angle between the direction of update CI

NM2
.k/x.k/ D Œ0 x2.k/ 0�

T

and the input vector x.k/. When NM coefficients are updated, the general expression
for the cosine of � in R

NC1 is given by the relation

cos � D kCI
NM .k/

x.k/k
kx.k/k (6.76)
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Fig. 6.9 Partial coefficient update for R3 and NM D 1, where jx2.k/j > jx1.k/j > jx3.k/j

whereas for the case in discussion, the particular expression for the cosine is

cos � D jx2.k/j
pjx1.k/j2 C jx2.k/j2 C jx3.k/j2

The SM-PUNLMS algorithm may face convergence problem whenever trying to
find a solution in the constraint set. If the number of coefficients to be updated is
small, cos � might become small according to (6.76), with � becoming close to 	

2
,

as can be observed in Fig. 6.10. As a result, the solution in the constraint set will
depart from the SM-NLMS solution, and will give rise to stability problems.

A possible solution is to increase NM up to the point where the solution provided
by the SM-PUNLMS algorithm reaches a prescribed closer distance of SM-NLMS
or NLMS solutions. Unfortunately this solution does not impose an upper bound
on the value of NM , and it is highly probable that during initial iterations NM would
be close to the overall number of filter coefficients N C 1. On the other hand, it is
desirable that NM 	 N C 1 in order to make the partial update effective in reducing
the computational complexity.



6.8 Partial-Update Adaptive Filtering 277

w(k)

x(k)

d(k) − wTx(k) = γ

d(k) − wTx(k) = −γ

θ

H(k)

d(k) − wTx(k) = 0

.

CIM (k)x(k)

wSM−NLMS

wNLMS

φ
w(k + 1)

Fig. 6.10 Projection in partial-update algorithms

Let’s first define as NMmax the maximum number of coefficients that can be
updated at any given iteration. It is now required to derive a strategy to control
the number of coefficients to be updated while keeping a bound on the norm of the
update. If kCI

NM .k/
x.k/k2 D kx.k/k2, it is straightforward to verify that the angle �

is equal to 	
2

and wNLMS � w.kC 1/ represents the projection of wNLMS � w.k/ into
CI

NM .k/
x.k/. For angle � < 	

2
the norm of the updating term might become large

in order to meet the error modulus requirement, placing the partial solution far way
from wNLMS and wSM�NLMS. Indeed, whenever� � 	

2
the norm of the updating term

becomes smaller than the one required to turn the a posteriori error equal to zero
(the one reaching wNLMS). Then, an alternative solution is to increase the number
of coefficients to update up to the condition that kCI

NM .k/
x.k/k2 � �.k/kx.k/k2,

for �.k/ D 1 � N�=je.k/j, or NM D NMmax. This strategy will keep the angle �
lower bounded by 	

2
. If NM D NMmax, increase the threshold N� temporarily at the kth

iteration to

N�.k/ D .kx.k/k2 � kCI
NM.k/

x.k/k2/
kx.k/k2 je.k/j (6.77)

Figure 6.11 shows that this strategy temporarily expands the constraint set in order
to allow a feasible solution in the case where the required number of coefficients to
meet a solution in the constraint set exceeds NMmax, at a given iteration.

Another possible strategy for the partial update is to choose the set of coefficients
to be updated in a random manner [17] utilizing randomly partitions of the
N C 1 coefficients consisting of mutually exclusive subsets of NM elements, each
determined by the index set I NM.k/ D fi0.k/ : : : i NM�1.k/g, as previously defined.
This solution avoids the possible instability of the partial-update LMS algorithm
originated by the choice of subsets in a deterministic manner, since in the latter
case it is usually possible to generate input signals in which the algorithm fails to
converge.
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Fig. 6.11 Variable constraint set H.k/ with threshold N�.k/

6.9 Examples

In this section, we illustrate some features of the adaptive-filtering algorithms
presented in this chapter.

6.9.1 Analytical Example

Example 6.1. (a) Derive a set-membership affine projection algorithm usingLD 1

(binormalized) such that a rotation (not a transform-domain rotation) given by

T D
" p

2
2

p
2
2p

2
2

�
p
2
2

#

is performed as follows

eap.k/ D dap.k/ � T�1ŒXT
ap.k/w.k C 1/� D �.k/

(b) How can we choose �.k/ in order to obtain a computationally efficient updating
equation?

Solution. (a) The objective function is given by

min kw.k C 1/ � w.k/k2
subject to W
Tdap.k/ � XT

ap.k/w.k C 1/ D T N�.k/
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As a result by following the same procedure to deduce (6.27), the corresponding
update equation for the SM-AP algorithm becomes

w.kC1/D
(

w.k/CXap.k/
h
XT

ap.k/Xap.k/
i�1

T
�
eap.k/� N�.k/� ifje.k/j> N�

w.k/ otherwise

The last expression in the above equation can be rewritten as

T
�
eap.k/ � N�.k/� D

" p
2
2
.eap;1.k/C eap;2.k/� N�1.k/ � N�2.k/p
2
2
.eap;1.k/ � eap;2.k/ � N�1.k/C N�2.k/

#

ifje.k/j > N�

(b) If eap;1.k/ D N�1.k/ and eap;2.k/ D N�2.k/ there will be no update, and this is
an unacceptable solution. If eap;1.k/C eap;2.k/ D N�1.k/C N�2.k/, the first entry
of the above matrix will be zero leading to computational savings. On the other
hand, if eap;1.k/�eap;2.k/ D N�1.k/� N�2.k/, the second entry of the above matrix
will be zero also leading to computational savings. �

6.9.2 System Identification Simulations

In this subsection, we present system identification simulations employing some
data-selective algorithms.

Example 6.2. An adaptive-filtering algorithm is used to identify the system de-
scribed in the example of Sect. 3.6.2 using the following SM-AP algorithms:

• Set-membership affine projection using L D 0, L D 1 and L D 4.
• Set-membership partial-update affine projection with NM D 5, using L D 0,
L D 1 and L D 2 and only for the eigenvalue spread of 20.

Do not consider the finite-precision case.

Solution. All the results presented here for the affine projection and the SM-AP
algorithms are obtained by averaging the results of 200 independent runs. We first
run the affine projection algorithm with a value of � D 0:18, with � D 10�6. With
this value of �, the misadjustment of the affine projection algorithm is about the
same as that of the LMS algorithm with � D 0:0128 and eigenvalue spread of the
input signal autocorrelation matrix of 20, see Table 3.1. Figure 6.12 illustrates the
learning curves for the eigenvalue spread 80 and distinct values of L. As expected
the convergence speed and the misadjustment increase with the value of L.

Table 6.2 lists the measured misadjustments along with their theoretical values
obtained from (4.125) for distinct versions of the affine projection algorithms.
As expected the misadjustment increases with the values of the reuse factor and
with the ratio �max

�min
.
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Fig. 6.12 Learning curves for the affine projection algorithms for L D 0, L D 1, and L D 4,
eigenvalue spread equal 80

Table 6.2 Evaluation of the affine projection algorithm, � D 0:18

Misadjustment, L D 0 Misadjustment, L D 1 Misadjustment, L D 4
�max
�min

Experiment Theory Experiment Theory Experiment Theory

1 0.1275 0.0989 0.2665 0.1978 0.9554 0.4945
20 0.1458 0.0989 0.2951 0.1978 1.0881 0.4945
80 0.1708 0.0989 0.3157 0.1978 1.2091 0.4945

Figures 6.13–6.15 depict the learning curves for the simplified SM-AP algorithm
for the eigenvalue spreads 1, 20, and 80, respectively. In each figure, distinct values
of L are tested and the value of N� is

p
5�n. As can be observed, the convergence

speed and the misadjustment increase with the value of L. As will be discussed, a
reduction in the misadjustment is achieved at the expense of mild increase in number
of iterations for convergence.

Table 6.3 illustrates the convergence speeds of the affine projection algorithms
and the SM-AP algorithms for distinct input signal eigenvalue spreads and distinct
reuse factors. As can be observed, the SM-AP algorithms have convergence speeds
comparable to the corresponding affine projection algorithms, being better for
low values of L and worse for high values of L. The number of iterations for
convergence is measured whenever the average square error reaches a value 5%
above the noise floor.

Table 6.4 includes the measures misadjustments of the affine projection algo-
rithms and the SM-AP algorithms considering the same input signal eigenvalue
spreads and distinct reuse factors as before. As can be seen, the SM-AP algorithms
have lower misadjustments than the corresponding affine projection algorithms for
higher values of L.
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Fig. 6.13 Learning curves for the SM-AP algorithms for L D 0, L D 1, and L D 4, eigenvalue
spread equal 1
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Fig. 6.14 Learning curves for the SM-AP algorithms for L D 0, L D 1, and L D 4, eigenvalue
spread equal 20
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Fig. 6.15 Learning curves for the SM-AP algorithms for L D 0, L D 1, and L D 4, eigenvalue
spread equal 80

Table 6.3 Convergence speed of the affine projection and SM-AP algorithms

Convergence speed

L D 0 L D 1 L D 4
�max
�min

AP SM-AP AP SM-AP AP SM-AP

1 316 227 213 225 143 201
20 465 344 195 227 137 200
80 644 468 197 229 135 200

Table 6.4 Misadjustment of the affine projection and SM-AP algorithms

Misadjustment

L D 0 L D 1 L D 4
�max
�min

AP SM-AP AP SM-AP AP SM-AP

1 0.1275 0.1542 0.2665 0.1797 0.9554 0.3570
20 0.1458 0.2094 0.2951 0.2793 1.0881 0.5462
80 0.1708 0.2723 0.3157 0.3895 1.2091 0.6934

The SM-PUAP algorithm was set to update only five coefficients per iteration.
For the SM-PUAP algorithm the learning curves are depicted in Fig. 6.16 for distinct
values of L. The values of N� for L D 0; 1; and 2 are

p
5�2n ,

p
7�2n , and

p
17�2n ,

respectively. The corresponding measured misadjustments were 0:1979, 0:3137, and
0:8189. An efficient algorithm for the best selection of the updating coefficients in
the partial-updating affine projection algorithm is an open problem, although some
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Fig. 6.16 Learning curves for the SM-PUAP algorithms for L D 0, L D 1, and L D 2,
eigenvalue spread equal 20

approximate solutions exist [27]. The choice of the coefficients to be updated relies
on a low complexity procedure to sort out the NM columns of XT

ap.k/ consisting of
choosing the ones whose Euclidean norm have higher values. �

6.9.3 Echo Cancellation Environment

The eliminations of echo signals in communication networks and in hands-free
communication environment are challenging problems in which adaptive filtering
plays a major role [28, 29].

The network echo, also known as line echo, is caused by the hybrid transformer
whose main task is to convert the two-wire loop connection between the end user
and the central office into a four-wire circuit. In the two-wire case, the signal in
both directions traverses the two wires, whereas in the four wires the signals in
each direction are separated. Figure 6.17 illustrates a very simplified long-distance
telephone system where the location of the echo canceller is also included. The
four-wire circuit exists only in long-distance connections and the delay included in
Fig. 6.17 accounts for the traveling time of the signal from one hybrid to the other.
Usually the far-end hybrid leaks back to the phone its own transmitted signal giving
rise to the echo. If the echo delay is over 100 ms, its effect in the conversation is
very disturbing. The early solution comprised of echo suppressor, whose aim was
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Fig. 6.17 Two-wire to four-wire conversion in long-distance telephone calls

removing the echo from the talker by cutting off the outgoing hybrid port whenever
an incoming signal is detected. This approach works well for low round trip delays,
but for large delays an adaptive echo canceller is more effective.

Echo cancellers are also used in acoustics echo cancellation problems where its
task is to model the transfer function from the loudspeaker to the microphone in a
given room. This application is more challenging than the network echo cancellation
since the echo path impulse response is much longer, usually well above 500 taps,
and changes quite rapidly. As depicted in Figs. 6.17 and 6.18, the echo cancellation
problems in networks and in acoustics are closely related, with the latter requiring
more sophisticated algorithms such as the subband adaptive filters of Chap. 12.

For both applications two measures of performance are the echo return loss
(ERL) and the echo return loss enhancement (ERLE). The ERL is ratio of the
returned-echo power and the input-signal power, measuring the attenuation faced
by the signal in the echo path. The ERL, measured in dB, is defined as

ERL D �10 log
�2d
�2x

D �10 log
EŒd2.k/�

EŒx2.k/�
(6.78)

The ERLE measures the reduction in the echo obtained by utilizing the echo
canceller, that is

ERLE D �10 log
�2e

�2d
D �10 log

EŒe2.k/�

EŒd2.k/�
(6.79)

For simulation purposes we will utilize the models recommended by the Interna-
tional Telecommunication Union (ITU) in the ITU-T recommendation G.168 for
digital network echo cancellers [30]. The main focus is to highlight the typical
artificial input signals and echo path models utilized to test the performance of
the echo canceller algorithms. The echo cancellers should be disabled during
signaling transmission periods, however, no mention is given here to this and
many other practical issues described in the recommendation related to the actual
implementation of the echo canceller, see [30] for details.
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Fig. 6.18 Echo cancellation setups. (a) Network case. (b) Acoustics echo cancellation case

The tests recommended by the standard ITU-T G.168 utilize particular signals
such as noise, tones, facsimile signals, and a set of composite source signals (CSS).
In our simulations we apply the CSS input signal as input to the echo cancellers.
The CSS simulates speech characteristics in single talk and double talk enabling
a performance test for echo cancellers for speech signals. The CSS consists of
speech signal, non-speech signal and pauses. The speech signal activates the speech
detectors and has approximately 50 msec of duration. The speech signal is followed
by a pseudo-noise signal having constant magnitude Fourier transform whose phase
changes with time. The pause is the third component of the CSS representing an
amplitude modulation to the CSS and the usual pauses during a conversation. The
pause duration ranges from 100 to 150 msec. Figure 6.19 illustrates the CSS for
single talk. The specific timings are:

• Tvst (Speech signal): 48.62 msec
• Tpn (Pseudo noise): 200.00 msec
• Tpst (Pause): 101.38 msec
• Tst1 (Half period): 350.00 msec
• Tst (Full period): 700.00 msec



286 6 Data-Selective Adaptive Filtering

Tvst

Tst1
Tst

TpstTpn TpnTpst Tvst

Fig. 6.19 CSS single talk characteristics

The echo path model according to the recommendation ITU-T G.168 is a linear
digital filter whose impulse response h.k/ is given by

h.k/ D .Ki10
�ERL=20/mi .k � ı/ (6.80)

where ERL is the echo return loss defined in (6.78) and h.k/ consists of a delayed
and attenuated version of any sequence sorted from mi.k/; i D 1; 2; : : : ; 8, for
the channel models 1–8. These models represent channels whose origins range
from hybrid simulation models to measured responses on telephone networks. The
constantsKi are determined by the input signal used in the test [30] and are different
for distinct echo path models.

Just for illustration Table 6.5 shows the sequencem1.k/ composing the echo-path
impulse response. In this case, for CSS-type input signal, the scaling signal should
be signal K1 D 1:39 and the minimum value of the ERL to be used in the test
is 6 dB. The resulting echo-path impulse response is depicted in Fig. 6.20. For the
other cases, please refer to [30].

Example 6.3 (Echo cancellation simulations). For the algorithms pointed below,
run simulations for an echo cancellation experiment consisting of 50 independent
runs describing the average performance for single talk input signal for one of the
eight channel models described in [30], specifically the one described in Table 6.5
with an ERL D 12 dBs. List the resulting ERLE in dB for each algorithm as well
as their respective number of iterations to convergence, measured whenever the
average of the last 100 error signals is 10% above the error in steady state. Utilize
echo cancellers with sufficient order.

• Normalized LMS algorithm
• RLS algorithm
• SM-NLMS algorithm
• The simplified SM-AP algorithm with L D 0; 1; 4

• The SM-PUAP algorithm withL D 0; 1; 4, and NM D floorŒ 2.NC1/
3

�where floorŒ��
indicates the largest integer smaller than Œ��

For channel model 1, depict the learning curves for the simplified SM-AP and the
SM-PUAP algorithms.
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Fig. 6.20 Echo-path impulse response

Solution. The numbers and figures presented in this example are result of averaging
fifty independent runs. The normalized LMS algorithm utilizes a value of � D 0:5,
with the value of the regularization parameter of � D 10�6. The forgetting factor of
the RLS algorithm is � D 0:99. These values of � and � were chosen after some
simulation trials indicating favorable performances of the corresponding algorithms.
In the SM-AP algorithms distinct values ofL are tested and the value of N� is 0:0002.

Figure 6.21 depicts the CSS signal utilized in this example. Figure 6.22 illustrates
the error signal for the simplified SM-AP algorithm with L D 0; 1; 4, where it can
be observed that the error reduces faster for the case with L D 4 since the algorithm
is more sophisticate, even though the convergence speeds for L D 1 and L D 4 are
quite similar. Figure 6.23 shows that with the SM-PUAP algorithm the convergence
speed is not substantially reduced, showing that the partial updating strategy is very
useful. A low complexity way to choose the elements to be updated was to sort out
the NM columns of XT

ap.k/whose Euclidean norm have higher values. The SM-PUAP

algorithm was set to update only 2
3

of the coefficients.
Table 6.6 lists the relevant parameters in the echo cancellation environment,

namely the ERLE in dB for each algorithm as well as their respective convergence
speed. As can be seen in Table 6.6, the algorithms SM-NLMS (L D 0), SM-AP,
and SM-PUAP require less updates than the remaining algorithms compared. The
fastest converging algorithm is the SM-AP (L D 4) but it requires the highest
computational complexity among the set-membership algorithms. The algorithms
SM-AP and SM-PUAP, with L D 4, are faster converging than the RLS while
requiring much less updates and computations. On the other hand the RLS
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Fig. 6.22 Learning curves for the simplified SM-AP algorithm with L D 0; 1; 4

algorithm leads to much higher ERLE than the remaining algorithms followed
by the NLMS. The SM-NLMS and NLMS algorithms have less computations
but are slow converging as compared to the remaining SM-AP algorithms of this
example. �
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Fig. 6.23 Learning curves for the SM-PUAP algorithm L D 0; 1; 4.

Table 6.6 Simulation
results: channel
model—ITU-T G.168, no. 1

Reuse factor L

0 1 4

Updates
SM-AP 1,320 497 290
SM-PUAP 1,335 584 364

Convergence
NLMS 8,423 – –
RLS 6,598 – –
SM-AP 2,716 2,289 1,832
SM-PUAP 2,725 2,303 1,832

ERLE
NLMS 80.30 – –
RLS 307.83 – –
SM-AP 42.96 43.00 43.62
SM-PUAP 43.87 42.72 43.42

6.9.4 Wireless Channel Environment

A typical continuous-time model for mobile communication channels is described
by [31]

Qh.t/ D
IX

iD0

p
piai .t/bi .t � �i / (6.81)
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Table 6.7 Channel model parameters: outdoor to indoor test environment
with Jakes doppler spectrum

Channel A Channel B

Tap
Relative
delay ns

Average
power dB

Relative
delay ns

Average
power dB

1 0 0 0 0
2 110 �9:7 200 �0:9
3 190 �19:2 800 �4:9
4 410 �22:8 1,200 �8:0
5 – – 2,300 �7:8
6 – – 3,700 �23:9

where t is the time variable, pi represents the power of the i th tap weight of the
FIR model, ai .t/ is complex Gaussian process that multiplies the corresponding
transmitted symbol denoted by bi .t � �i /, and �i accounts for the relative delay that
the receiver detects the i th replica of the transmitted symbols.

The power spectrum of ai .t/ is responsible for the rate of fading of the i th replica
(or reflection) of the transmitted symbols. This spectrum is also known as Doppler
spectrum. The complete model requires the specification of the Doppler spectrum
of the tap weights, denoted byRa.f / with f being the analog frequency, the delays
�i , as well as the powers pi , for i D 0; : : : ; I .

The process ai .t/ is the result of a cluster of multipath components that cannot
be resolved by the receiver, arriving within a range of delays.3 Usually for outdoor
environments of mobile communication systems, the model for the Doppler power
spectrum is represented by the Jakes model [22] given by

Ra.f / D

8
<̂

:̂

1
	fD

1r

1�


f
fD

�2
for jf j � fD

0 for jf j > fD

where fD D v
�s

D vfo
c

is the maximum Doppler frequency shift, �s is the carrier

wavelength, v is the mobile velocity in m/s, c is the speed of light (3:00 � 108 m/s),
and fo is the carrier central frequency.

If we assume that the input signal is complex and bandlimited to a bandwidth
around BW, the received signal can be generated by filtering the input signal through
a tapped delay line whose tap coefficients are given by

p
piai .t/ and the delay

elements correspond to T D 1
BW [31].

As an illustration, Table 6.7 lists the parameters of test channel models for an
outdoor to indoor environment to be utilized in simulations. These models originate
from a standard described in [32] for the Universal Mobile Telecommunications

3�i � 1
2BW < � < �i C 1

2BW with BW denoting the bandwidth of the transmitted signal.
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Fig. 6.25 Simulation setup for Jakes model

System (UMTS). In Table 6.7, the delays are relative to the first tap whereas the
power is relative to the strongest tap. The Doppler power spectrum applies to
each tap.

Let’s consider for illustration a typical case of UMTS where the chip duration
is 260:04 nano seconds (ns) for a transmission rate of 3:84 Mc/s (Mega chips per
second). In the case the time difference between two multipath components is at
least 260:04 D 1

3:84
ns, it is possible for the receiver to separate them. For example

according to Table 6.7, in a digital simulation environment where the input signal is
sampled at chip rate for channel B, it will be possible to verify the presence of the
multipath signals of the taps at approximately

• 1 chip from the reference for tap 2
• 3 chips from the reference for tap 3
• 5 chips from the reference for tap 4
• 9 chips from the reference for tap 5
• 14 chips from the reference for tap 6

where it was taken into consideration that the relative delays in the table represent
the time where the energy of the continuous-time reflection reaches its maximum.

The coefficients of a time-varying channel including the Doppler effects can be
generated as depicted in Fig. 6.24, where Nn.t/ is a Gaussian noise source and the
Doppler filter is an approximation of HD.f / D p

Ra.f /. Figure 6.25 shows an
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efficient way to generate the coefficients of the channel model [33, 34], where from
two real-valued Gaussian sources with NN C 1 points we calculate their symmetrical
FFT spectrum [35]. Then we multiply the FFT outputs by HD.f Nm/ where f Nm D
Nm 2fDNNC1 for Nm D 0; 1; : : : ; NN , and the resulting vector is applied as input to an NN C
1 length IFFT. The quadrature and in-phase results are squared at each point in
time, added, with the result square rooted. Finally, an NN C 1-length time series
is generated. In an actual simulation environment the Gaussian noise is generated
with around ˛1 samples per period of the maximum Doppler frequency, that is 1

˛1fD
,

therefore the sampling rate of the channel coefficients is around ˛1fD with ˛1 being
an integer usually chosen in the range 5–12. As can be noticed the coefficients of the
channel model are generated from the Jakes model of the Doppler effect. However,
the system simulation takes place at much higher frequency rate denoted as fsim.
As a result, an interpolation operation given byLsim D floorŒ fsim

˛1fD
� should be applied

to the coefficients of the channel model.

Example 6.4 (CDMA receiver simulations). Consider a downlink connection of a
synchronous direct-sequence code-division multiple access (DS-CDMA) system
with J users, G C 1 chips per symbol and a channel with I C 1 paths. Assume
the user receiver is moving at v D 30:00m/s and the carrier frequency is at
fo D 1:0GHz. We consider a simple model for the channel inspired by the UMTS
test model above described. The channel model should be generated at a simulation
sampling rate of at least fsim D ˛2 � 1

T
D ˛2BW samples per second, with ˛2

being normally an integer ranging from 5 to 12. It is worth emphasizing again that
the channel coefficients will be generated at a much lower rate than the simulation
sampling rate. As a result, some standard interpolation technique [35] should be
used in order to match the channel model generation rate with simulation sampling
rate.

Consider that the chip rate of the CDMA system is 0:5Mc/s (Mega chips per
second) and that we utilize ˛2 D 10 samples per chip to simulate the system.
As such, the CDMA system simulation has sampling rate equal to 5 Msamples/s.
In this case the interpolation factor applied to the chip level signal should be
Linterp D floorŒ 5Mc=s

1
T

� D floorŒ 5Mc=s
BW �, where floorŒ�� indicates the largest integer

smaller than Œ��. The sampling frequency that the channel model should be generated
is then given by

fsim � BWLinterp � ˛1fDLsim

in Msamples/s. In this particular discussion, assuming the input signal sampling
rate equal to the chip rate the interpolation factor Linterp is equal to 10. Note that
in the above discussion we satisfy the sampling theorem by utilizing the complex
envelope, that is the complex lowpass equivalent, of the transmitted signal. This
means the sampling rate is equal to the channel bandwidth.
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Assuming the channel model as described is constant during each symbol
interval, and that the input signal vector x.k/ is given by4

x.k/ D
JX

jD1
Aj bj .k/Cjh.k/C n.k/

D
JX

jD1
Aj bj .k/Cjh.k/C nn.k/C nISI.k/ (6.82)

where x.k/ is an .N C1 D GCI C1/�1 vector and nn.k/ is defined in (6.58). We
consider that nn.k/ is a complex Gaussian noise vector with EŒnn.k/nHn .k/� D �2nI.

The symbols bj .k/ are four QAM given by
p
2
2

f˙1˙ |1g, where the amplitude of
user j is Aj . The channel vector is h.k/ D Œh0.k/ : : : hI .k/�

T and the .N C 1/ �
.I C 1/ convolution matrix Ck contains one-chip shifted versions of the signature
sequence for user j given by sj D Œsj;0 sj;1 : : : sj;G�

T . Matrix Ck has the following
format

Cj D

6
6
6
6
6

2

6
6
6
6
6
6
4

sj;0 0 0 � � � 0

sj;1 sj;0 0 � � � 0

sj;2 sj;1 sj;0 � � � 0
:::

:::
: : :

:::
:::

0 sj;G sj;G�1 � � � sj;G�I
:::

:::
: : :

:::
:::

0 0 � � � 0 sj;G

7
7
7
7
7

3

7
7
7
7
7
7
5

(6.83)

This example aims to access the bit error rate (BER) performance of some
adaptive-filtering algorithms such as:

• Normalized LMS algorithm
• RLS algorithm
• SM-NLMS algorithm
• The simplified SM-AP algorithm with L D 4 and time-varying N�.k/
• The SM-PUAP algorithm with L D 1, and NM D floorŒ .NC1/

1:8
� where floorŒ��

indicates the largest integer smaller than Œ��
The receiver of the DS-CDMA system simulation setup is depicted in Fig. 6.26

where we utilize as spreading sequences the Gold sequences of length G C 1 D 7

listed in Table 6.8 [36]. The Gold sequences are not orthogonal to each other leaving
some multi-access interference from the other users in the CDMA system on the
information of the user of interest, even in synchronous transmission case.

4In an actual implementation x.k/ originates from the received signal after filtering it through a
chip-pulse matched filter and then sampled at chip rate.
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Table 6.8 Length 7 gold
sequences

Sequences Gold sequences

s1 1 0 0 1 0 1 1
s2 1 1 1 0 1 0 0
s3 0 1 1 1 1 1 1
s4 1 1 1 0 0 0 1
s5 1 0 1 0 1 1 0
s6 0 0 0 0 1 0 1
s7 1 1 0 1 1 0 0
s8 0 0 1 1 0 0 0
s9 0 1 0 0 0 1 0

All users are synchronized such that all their information face the same channel
with three paths with relative powers given by 0, �0:9, and �4:9 dB, respectively.
The relative delays between the paths are determined by a uniformly distributed
random variable whose outcome is mapped to integers in the range 1–4, where these
integers represent the number of chips.

The system starts with five users where all the four interferers have transmission
powers 3 dB below the desired user power level. The corresponding signal-to-noise
ratio, defined as the ratio between the desired user symbol energy per bit and the
environment noise, is given by Eb=N0 D 20 dB. The quantity N0=2 corresponds
to power spectral density of the noise for positive and negative frequencies, that
is N0 is average noise power per bandwidth where the noise is measured at the
receiver input. At 2000 symbols, an interferer with the same power as the desired
user power enters the system, whereas two interferers with the same level of power
disconnect. This dynamic behavior aims at addressing, for this particular example,
if some noticeable disturbance to the receiver performance originates from user
access and disconnection from the system.

Plot the evolution of the estimation of the noise plus ISI power as compared with
the actual interference power.

Solution. For this example we measure the results by averaging the outcomes from
50 independent runs. In the case of the normalized LMS algorithm the value of �
is 0:3, whereas the regularization parameter value is � D 10�6. The RLS algorithm
is implemented with � D 0:97. Again these values of � and � were chosen after
some simulation trials. The SM-AP algorithm uses L D 4 and variable N� , whereas
the SM-PUAP algorithm uses L D 1.
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Fig. 6.27 Learning curves for the NLMS, RLS, SM-NLMS, and SM-AP algorithms; 250
iterations

For a better view of the results the channel was allowed to change completely in
an interval of 50 symbols, equivalent to 450 chips. Figure 6.27 depicts the first 450
samples of the learning curves for the algorithms compared in this example, whereas
Fig. 6.28 shows the behavior of these algorithms in the long run. In both figures the
channel changes are noticeable every 350 chips, where the first change occurs at
around 370 chips due to the channel plus spreading delays. As can be observed, the
NLMS, RLS, SM-NLMS, and the SM-AP algorithms were able to track the changes
in the channel to some extent. However, as shown in Fig. 6.29, the simplified SM-
PUAP algorithm with L D 1 using variable N� has very competitive performance
since it is among the fastest converging in such nonstationary environment. Very
similar result is obtained with the simplified SM-AP algorithm which has higher
computational cost. All the algorithms did not show any noticeable distinct behavior
after the entrance and exit of users in the system, mainly due to the fact that the
channel model changes at every 50 symbols was the main source of changes.

Figure 6.30 plots the evolution of the estimated noise and ISI powers as compared
with the actual interference power. The estimated curve was obtained using (6.63)
with ˛ D 0:96. As can be observed, the estimated average power of the interferences
follows closely its actual value for this particular example, except at iteration 2000
when the interference estimate takes a few iterations to track the true interference
power. The accurate estimate of the disturbances turns the SM-AP algorithms very
attractive since virtually no environment-dependent parameter is required to achieve
good overall performance. �
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Fig. 6.28 Learning curves for the NLMS, RLS, SM-NLMS, and SM-AP algorithms
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Fig. 6.30 Interference estimation

6.10 Concluding Remarks

In this chapter, a number of adaptive affine projection algorithms were derived
utilizing the set-membership concept. Although the algorithms in the affine projec-
tion family might have high misadjustment, their combination with deterministic
objective functions leading to data selective updating results in computationally
efficient algorithms with low misadjustment and high convergence speed. The set-
membership family of algorithms can be very attractive for mobile terminals, sensor
arrays, and embedded systems where by avoiding unnecessary computation the
battery life is increased. In stationary environments, the set-membership algorithms
require more frequent updating during the early iterations, as a consequence, if the
computational complexity is of major concern some strategy to reduce even further
the computation count is required. The proposed solution is to introduce the concept
of partial update, in which only a subset of the adaptive filter are updated in each
iteration. It is mentioned that some caution should be exercised in choosing the
selection of the coefficients in order to avoid stability problems. The resulting set-
membership affine projection algorithms with partial update are powerful solutions
to exploit the trade-off between speed of convergence and misadjustment with
computational burden.

It should be mentioned that there are set-membership algorithms with auto-
matic data-reusing factor according to the progress of the algorithm [37, 38].
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Simulation results show that in most of iterations the SM-AP algorithm requires
a small number of reuses, that is in the limit, it becomes the SM-NLMS or the
SM-BNLMS algorithms. The set-membership technique can also be applied to
generate constrained affine projection algorithms with low computational complex-
ity as proposed in [39]. More recently, the concept of set-membership has been
employed in wireless sensor networks aiming at reducing complexity and increasing
robustness [40, 41].

6.11 Problems

1. In a system identification application the unknown system has transfer function
given by

H.z/ D 1

2
� 1

2
z�1

whereas the input signal is a binary .�1; 1/ random signal, and the additional
noise is generated via .� 1

4
; 1
4
/ by tossing a fair coin. Evaluate by hand the first

ten iterations SM-NLMS algorithm.
2. Show that the updating (6.50) is equivalent to the second coefficient updating

of Algorithm 6.4.
3. Repeat Problem 1 for the SM-BNLMS algorithm 1.
4. Repeat Problem 1 for the SM-BNLMS algorithm 2.
5. Perform the equalization of a channel with the following impulse response

h.k/ D ku.k/ � .2k � 9/u.k � 5/C .k � 9/u.k � 10/

using a known training signal consisting of a binary .�1; 1/ random signal.
An additional Gaussian white noise with variance 10�2 is present at the channel
output.

(a) Apply the SM-NLMS algorithm with an appropriate N� and find the impulse
response of an equalizer with 15 coefficients.

(b) Convolve the equalizer impulse response at an iteration after convergence,
with the channel impulse response and comment on the result.

6. In a system identification problem, the input signal is generated by an autore-
gressive process given by

x.k/ D �1:2x.k � 1/� 0:81x.k � 2/C nx.k/

where nx.k/ is zero-mean Gaussian white noise with variance such that �2x D 1.
The unknown system is described by

H.z/ D 1C 0:9z�1 C 0:1z�2 C 0:2z�3
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The adaptive filter is also a third-order FIR filter, and the additional noise is a
zero-mean Gaussian noise with variance given by �2n D 0:001.

Using the SM-BNLMS algorithm:

(a) Choose an appropriate N� , run an ensemble of 20 experiments, and plot the
average learning curve.

(b) Measure the excess MSE.

7. Derive the complex versions of the SM-BNLMS algorithms 1 and 2 to equalize
a channel with the transfer function given below. The input signal is a four-
QAM signal representing a randomly generated bit stream with the signal-to-

noise ratio
�2

Qx

�2n
D 20 at the receiver end, that is, Qx.k/ is the received signal

without taking into consideration the additional channel noise. The adaptive
filter has ten coefficients.

H.z/ D .0:34� 0:27|/C .0:87C 0:43|/z�1 C .0:34 � 0:21|/z�2

(a) Run the algorithm for�.k/ D 0:1, �.k/ D 0:4, and �.k/ D 0:8. Comment
on the convergence behavior in each case.

(b) Plot the real versus imaginary parts of the received signal before and after
equalization.

(c) Increase the number of coefficients to 20 and repeat the experiment in (b).

8. In a system identification problem, the input signal is generated from a four
QAM of the form

x.k/ D xre.k/C |xim.k/

where xre.k/ and xim.k/ assume values ˙1 randomly generated. The unknown
system is described by

H.z/ D 0:32C0:21|C .�0:3C0:7|/z�1C .0:5�0:8|/z�2C .0:2C0:5|/z�3

The adaptive filter is also a third-order complex FIR filter, and the additional
noise is zero-mean Gaussian white noise with variance �2n D 0:04. Derive
and use the complex set-membership normalized LMS algorithm, choose an
appropriate N� , run an ensemble of 20 experiments, and plot the average learning
curve.

9. Repeat Problem 8 utilizing the complex version of SM-AP algorithm, detailed
in Algorithm 6.7 provided, with L D 4.

10. The double threshold SM-AP algorithm can be derived for applications such as
echo cancellation where there is no interest in reducing the error signal power
beyond certain level [42]. Derive an SM-AP algorithm by choosing the vector
N�.k/ in such a way that the echo canceller does not reduce the output error
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Algorithm 6.7 The complex set-membership affine projection algorithm
Initialization

x.0/ D w.0/ D Œ0 : : : 0�T

choose N� around
p
5�n

� D small constant
Do for k � 0

e�

ap.k/ D d�

ap.k/� XH
ap.k/w.k/

�.k/ D
(
1� N�

je.k/j
if je.k/j > N�

0 otherwise

w.k C 1/ D w.k/C Xap.k/
h
XH

ap.k/Xap.k/C �I
i

�1

�.k/e�.k/u1

H(k)

H(k − 1)

d(k) − wTx(k) = γ1

d(k) − wTx(k) = γ2

d(k) − wTx(k) = −γ2

d(k) − wTx(k) = −γ1

d(k) − wTx(k) = 0

d(k − 1) − wTx(k − 1) = ε(k − 1)

w(k)

w(k + 1)

w(k)

w(k)

w(k + 1)

w(k + 1)

w(k + 1)

w(k)

Fig. 6.31 SM-AP algorithm with double threshold

power below the power of the far-end signal. Instead of using as threshold a
single value of N� , the proposed algorithm uses a range for the acceptable output
error value between N�1 and N�2, where N�1 > N�2, as depicted in Fig. 6.31.

11. In applications where the parameters to be estimated are dominated by few
dominant coefficients, that is, they are sparse, it is often desirable to employ
a proportionate adaptation strategy where weights are assigned to parameter
components proportional to their magnitude [37]. The updating equation of the
proportionate SM-AP algorithm is given by

w.k C 1/ D w.k/C P.k/Xap.k/
h
XT

ap.k/Xap.k/
i�1 �

eap.k/ � N�.k/� (6.84)
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where

P.k/ D �.k/

2

6
6
6
6
6
6
6
4

p0.k/ 0 � � � 0

0 p1.k/
:::

::: 0 � � � :::
:::

::: 0

0 0 � � � pN .k/

3

7
7
7
7
7
7
7
5

�.k/ D
(
1 � N�

je.k/j if je.k/j > N�
0 otherwise

and

pi .k/ D 1 � 
�.k/
N C 1

C 
�.k/jwji .k/
PN

iD0 jwji .k/
Use the proportionate adaption algorithm identify a system whose impulse
response is given below.

h.k/ D Œ1 0 0 0:5 0 2�

The input signal is a uniformly distributed white noise with variance �2x D 1,
and the measurement noise is Gaussian white noise uncorrelated with the input
with variance �2n D 5:25 10�3. The adaptive filter has six coefficients.

(a) Use 
 D 0:5, experiment some values of N� and discuss the results.
(b) Plot the obtained FIR filter impulse response at any iteration after conver-

gence is achieved and compare with the unknown system.
(c) Compare the best solution with that obtained by the corresponding SM-AP

algorithm.

12. Prove from (6.36) to (6.39) that

n�
x.k/ QXap.k/

�T �
x.k/ QXap.k/

�o
�
a

b

�

D

2

6
6
6
4

1

0
:::

0

3

7
7
7
5

13. In SM-PUAP algorithm only N C 1 � NM coefficients are updated at a
given iteration. Exploit this fact to derive a reduced complexity algorithm by
generalizing the procedure used to derive (6.36)–(6.41).

14. Identify a typical Channel A model for wireless environment described in
Table 6.7 with the SM-BNLMS algorithm 2, using as input signal a Gaussian
white noise and such that the signal-to-noise ratio at the receiver end is 10 dBs.
Determine through simulations the approximate number of training symbols to
achieve a good channel estimation of sufficient order.
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Chapter 7
Adaptive Lattice-Based RLS Algorithms

7.1 Introduction

There are a large number of algorithms that solve the least-squares problem in a
recursive form. In particular, the algorithms based on the lattice realization are very
attractive because they allow modular implementation and require a reduced number
of arithmetic operations (of order N ) [1–7]. As a consequence, the lattice recursive
least-squares (LRLS) algorithms are considered fast implementations of the RLS
problem.

The LRLS algorithms are derived by solving the forward and backward linear
prediction problems simultaneously. The lattice-based formulation provides the
prediction and the general adaptive filter (joint-process estimation) solutions of
all intermediate orders from 1 to N simultaneously. Consequently, the order of
the adaptive filter can be increased or decreased without affecting the lower order
solutions. This property allows the user to activate or deactivate sections of the
lattice realization in real time according to performance requirements.

Unlike the RLS algorithm previously discussed, which requires only time-
recursive equations, the lattice RLS algorithms use time-update and order-update
equations. A key feature of the LRLS algorithms is that the prediction process
discloses the properties (or the model) of the input signal. The internal signals of the
prediction part retain in a sense nonredundant information of the input signal that
can be utilized in a decoupled form in the following processing. This mechanism is
inherently built in the lattice algorithm derivations.

The performance of the LRLS algorithms when implemented with infinite-
precision arithmetic is identical to that of any other RLS algorithm. However, in
finite-precision implementation each algorithm will perform differently.

In this chapter, several forms of the LRLS algorithm are presented. First, the
standard LRLS algorithm based on a posteriori errors is presented, followed by the
normalized version. The algorithms with error feedback are also derived. Finally,
the LRLS algorithm based on a priori errors is described.

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 7, © Springer Science+Business Media New York 2013
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7.2 Recursive Least-Squares Prediction

The solutions of the RLS forward and backward prediction problems are essential
to derive the order-updating equations inherent to the LRLS algorithms. In both
cases, the results are derived following the same derivation procedure as in the
conventional RLS algorithm, since the only distinct feature of the prediction
problems is the definition of the reference signal d.k/. For example, in the forward
prediction case we have d.k/ D x.k/ whereas the input signal vector has the
sample x.k � 1/ as the most recent data. For the backward prediction case d.k/ D
x.k � i � 1/, where the index i defines the sample in the past which we wish
to predict, and the input signal vector has x.k/ as the most recent data. In this
section, these solutions are studied and the results demonstrate how information can
be exchanged between the forward and backward predictor solutions.

7.2.1 Forward Prediction Problem

The objective of the forward prediction is to predict a future sample of a given input
sequence using the currently available information of the sequence. For example,
one can try to predict the value of x.k/ using past samples x.k � 1/, x.k � 2/ : : : ;

through an FIR prediction filter with i C 1 coefficients as

yf .k; i C 1/ D wT
f .k; i C 1/x.k � 1; i C 1/ (7.1)

where yf .k; i C 1/ is the predictor output signal,

wf .k; i C 1/ D Œwf 0.k/ wf 1.k/ : : :wf i .k/�
T

is the FIR forward prediction coefficient vector, and

x.k � 1; i C 1/ D Œx.k � 1/ x.k � 2/ : : : x.k � i � 1/�T

is the available input signal vector. The second variable included in the vectors of
(7.1) is to indicate the vector dimension, since it is required in the order-updating
equations of the LRLS algorithm. This second variable will be included where
needed in the present chapter.

The instantaneous a posteriori forward prediction error is given by

"f .k; i C 1/ D x.k/ � wT
f .k; i C 1/x.k � 1; i C 1/ (7.2)

For the RLS formulation of the forward prediction problem, define the weighted
forward prediction error vector as

"f .k; i C 1/ D Ox.k/ � XT .k � 1; i C 1/wf .k; i C 1/ (7.3)
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where

Ox.k/ D Œx.k/ �1=2x.k � 1/ �x.k � 2/ : : : �k=2x.0/�T

"f .k; i C 1/ D Œ"f .k; i C 1/ �1=2"f .k � 1; i C 1/ �"f .k � 2; i C 1/ : : : �k=2"f .0; i C 1/�T

and

X.k�1; iC1/D

2

6
6
6
4

x.k�1/ �1=2x.k�2/ � � � �.k�2/=2x.1/ �.k�1/=2x.0/ 0
x.k�2/ �1=2x.k�3/ � � � �.k�2/=2x.0/ 0 0

:::
:::

:::
:::

:::

x.k�i�1/ �1=2x.k�i�2/ � � � 0 0 0

3

7
7
7
5

It is straightforward to show that "f .k; i C 1/ can be rewritten as

"f .k; i C 1/ D XT .k; i C 2/

�
1

�wf .k; i C 1/

�

(7.4)

The objective function that we want to minimize in the least-squares sense is the
forward prediction error given by

�df .k; i C 1/ D "Tf .k; i C 1/"f .k; i C 1/

D
kX

lD0
�k�l "2f .l; i C 1/

D
kX

lD0
�k�l Œx.l/ � xT .l � 1; i C 1/wf .k; i C 1/�2 (7.5)

By differentiating �df .k; iC1/with respect to wf .k; iC1/ and equating the result
to zero, we can find the optimum coefficient vector that minimizes the objective
function, namely,

wf .k; iC1/ D
"

kX

lD0
�k�lx.l�1; iC1/xT .l�1; iC1/

#�1
kX

lD0
�k�lx.l�1; iC1/x.l/

D ŒX.k�1; iC1/XT .k�1; iC1/��1X.k�1; iC1/Ox.k/
D R�1

Df .k � 1; i C 1/pDf .k; i C 1/ (7.6)
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where RDf .k � 1; i C 1/ is equal to the deterministic correlation matrix RD.k � 1/
of order iC1 and pDf .k; iC1/ is the deterministic cross-correlation vector between
x.l/ and x.l � 1; i C 1/.

The exponentially weighted sum of squared errors can be written as (see (7.5)):

�df .k; i C 1/ D
kX

lD0
�k�l

n
x2.l/� 2x.l/xT .l � 1; i C 1/wf .k; i C 1/

C �
xT .l � 1; i C 1/wf .k; i C 1/

�2o

D
kX

lD0
�k�l �x2.l/� x.l/xT .l � 1; i C 1/wf .k; i C 1/

�

C
kX

lD0
�k�l ��x.l/C xT .l � 1; i C 1/

� wf .k; i C 1/
�

xT .l � 1; i C 1/wf .k; i C 1/

D
kX

lD0
�k�l x.l/

�
x.l/ � xT .l � 1; i C 1/wf .k; i C 1/

�

C
"

kX

lD0
� �k�lx.l/xT .l � 1; i C 1/

C wT
f .k; i C 1/

kP

lD0
�k�lx.l � 1; i C 1/xT .l � 1; i C 1/

#

� wf .k; i C 1/ (7.7)

If we replace (7.6) in the second term of the last relation above, it can be shown
by using the fact that RD.k � 1/ is symmetric that this term is zero. Therefore, the
minimum value of �df .k; i C 1/1 is given by

�dfmin
.k; i C 1/ D

kX

lD0
�k�lx.l/Œx.l/ � xT .l � 1; i C 1/wf .k; i C 1/�

D
kX

lD0
�k�lx2.l/� pTDf .k; i C 1/wf .k; i C 1/

D �2f .k/ � wT
f .k; i C 1/pDf .k; i C 1/ (7.8)

1Notice that no special notation was previously used for the minimum value of the RLS objective
function. However, when deriving the lattice algorithms, this definition is necessary.
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By combining (7.6) for wf .k; i/ and (7.8) for �dfmin
.k; i C 1/ the following matrix

equation can be obtained

"
�2f .k/ pTDf .k; i C 1/

pDf .k; i C 1/ RDf .k � 1; i C 1/

#�
1

� wf .k; i C 1/

�

D
"
�dfmin

.k; i C 1/

0

#

(7.9)

Since �2f .k/ D Pk
lD0 �k�lx2.l/ and pDf .k; i C 1/ D Pk

lD0 �k�lx.l�1; iC1/
x.l/, it is possible to conclude that the leftmost term of (7.9) can be rewritten as
" Pk

lD0 �k�lx2.l/
Pk

lD0 �k�lxT .l � 1; i C 1/x.l/
Pk

lD0 �k�lx.l � 1; i C 1/x.l/
Pk

lD0 �k�lx.l � 1; i C 1/xT .l � 1; i C 1/

#

D
kX

lD0
�k�l

�
x.l/

x.l � 1; i C 1/

�

Œx.l/ xT .l � 1; i C 1/�

D RD.k; i C 2/ (7.10)

Therefore,

RD.k; i C 2/

�
1

�wf .k; i C 1/

�

D
"
�dfmin

.k; i C 1/

0

#

where RD.k; i C 2/ corresponds to RD.k/ used in the previous chapter with
dimension i C 2. The above equation relates the deterministic correlation matrix of
order i C 2 to the minimum least-squares forward prediction error. The appropriate
partitioning of matrix RD.k; i C 2/ enables the derivation of the order-updating
equation for the predictor tap coefficients, as will be discussed later.

7.2.2 Backward Prediction Problem

The objective of the backward predictor is to generate an estimate of a past sample
of a given input sequence using the currently available information of the sequence.
For example, sample x.k � i � 1/ can be estimated from x.k; i C 1/, through an
FIR backward prediction filter with i C 1 coefficients as

yb.k; i C 1/ D wT
b .k; i C 1/x.k; i C 1/ (7.11)

where yb.k; i C 1/ is the backward predictor output signal, and

wT
b .k; i C 1/ D Œwb0.k/ wb1.k/ : : :wbi .k/�

T

is the FIR backward prediction coefficient vector.
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The instantaneous a posteriori backward prediction error is given by

"b.k; i C 1/ D x.k � i � 1/� wT
b .k; i C 1/x.k; i C 1/ (7.12)

The weighted backward prediction error vector is defined as

"b.k; i C 1/ D Ox.k � i � 1/� XT .k; i C 1/wb.k; i C 1/ (7.13)

where

Ox.k � i � 1/ D Œx.k � i � 1/ �1=2x.k � i � 2/ : : : �.k�i�1/=2x.0/ 0 : : : 0�T

"b.k; i C 1/ D Œ"b.k; i C 1/ �1=2"b.k � 1; i C 1/ : : : �k=2"b.0; i C 1/�T

and

X.k; i C 1/ D

2

6
6
6
4

x.k/ �1=2x.k � 1/ � � � �.k�1/=2x.1/ �.k/=2x.0/
x.k � 1/ �1=2x.k � 2/ � � � �.k�2/=2x.0/ 0

:::
:::

:::
:::

x.k � i/ �1=2x.k � i � 1/ � � � 0 � � � 0

3

7
7
7
5

The error vector can be rewritten as

"b.k; i C 1/ D XT .k; i C 2/

��wb.k; i C 1/

1

�

(7.14)

The objective function to be minimized in the backward prediction problem is
given by

�db .k; i C 1/ D "Tb .k; i C 1/"b.k; i C 1/

D
kX

lD0
�k�l "2b.l; i C 1/

D
kX

lD0
�k�l Œx.l � i � 1/� xT .l; i C 1/wb.k; i C 1/�2 (7.15)

The optimal solution for the coefficient vector is

wb.k; i C 1/ D
"

kX

lD0
�k�lx.l; iC1/xT .l; iC1/

#�1
kX

lD0
�k�lx.l; i C 1/x.l � i � 1/

D ŒX.k; i C 1/XT .k; i C 1/��1X.k; i C 1/Ox.k � i � 1/

D R�1
Db.k; i C 1/pDb.k; i C 1/ (7.16)
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where RDb.k; i C 1/ is equal to the deterministic correlation matrix RD.k/ of
order i C 1, and pDb.k; i C 1/ is the deterministic cross-correlation vector between
x.l � i � 1/ and x.l; i C 1/.

Using the same procedure to derive the minimum least-squares solution in the
RLS problem, it can be shown that the minimum value of �db .k/ is given by

�dbmin
.k; i C 1/ D

kX

lD0
�k�lx.l � i � 1/Œx.l � i � 1/� xT .l; i C 1/wb.k; i C 1/�

D
kX

lD0
�k�lx2.l � i � 1/� pTDb.k; i C 1/wb.k; i C 1/

D �2b .k/� wT
b .k; i C 1/pDb.k; i C 1/ (7.17)

By combining (7.16) and (7.17), we obtain

�
RDb.k; i C 1/ pDb.k; i C 1/

pTDb.k; i C 1/ �2b .k/

� ��wb.k; i C 1/

1

�

D
" Pk

lD0 �k�lx.l; i C 1/xT .l; i C 1/
Pk

lD0 �k�lx.l; i C 1/x.l � i � 1/
Pk

lD0 �k�lxT .l; i C 1/x.l � i � 1/
Pk

lD0 �k�lx2.l � i � 1/

#

�
��wb.k; i C 1/

1

�

D RD.k; i C 2/

��wb.k; i C 1/

1

�

D
"

0
�dbmin

.k; i C 1/

#

(7.18)

where RD.k; i C 2/ is equal to RD.k/ of dimension i C 2. The above equation
relates the deterministic correlation matrix of order i C 1 to the minimum least-
squares backward prediction error. This equation is important in the derivation of
the order-updating equation for the backward predictor tap coefficients. This issue
is discussed in the following section.

7.3 Order-Updating Equations

The objective of this section is to derive the order-updating equations for the forward
and backward prediction errors. These equations are the starting point to generate
the lattice realization.
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7.3.1 A New Parameter ı.k; i /

Using the results of (7.9) and (7.10), and the decomposition of RD.k; i C 2/ given
in (7.18), we can show that

RD.k; i C 2/

2

4
1

�wf .k; i/

0

3

5 D
�

RD.k; i C 1/ pDb.k; i C 1/

pTDb.k; i C 1/ �2b .k/

�
2

4
1

�wf .k; i/

0

3

5

D

2

6
6
6
4

�dfmin
.k; i/

0

pTDb.k; i C 1/

�
1

�wf .k; i/

�

3

7
7
7
5

D

2

6
4

�dfmin
.k; i/

0
ıf .k; i/

3

7
5 (7.19)

where relation (7.9) was employed in the second equality. From the last element
relation of the above vector and the definition of pDb.k; i C 1/, we obtain

ıf .k; i/ D
kX

lD0
�k�l x.l/x.l � i � 1/�

kX

lD0
�k�lx.l � i � 1/xT .l � 1; i/wf .k; i/

D
kX

lD0
�k�l x.l/x.l � i � 1/�

kX

lD0
�k�lx.l � i � 1/yf .l; i/

D
kX

lD0
�k�l "f .l; i/x.l � i � 1/

and yf .l; i/ D xT .l � 1; i/wf .k; i/ is the output of a forward prediction filter of
order i � 1. Note that the parameter ıf .k; i/ can be interpreted as the deterministic
cross-correlation between the forward prediction error "f .l; i/ with the coefficients
fixed at wf .k; i/ and the desired signal of the backward predictor filter x.l � i �1/.

Similarly, using the results of (7.17) and (7.18) it can be shown that

RD.k; i C 2/

2

6
4

0

�wb.k � 1; i/

1

3

7
5 D

"
�2f .k/ pTDf .k; i C 1/

pDf .k; i C 1/ RD.k � 1; i C 1/

#
2

6
4

0

�wb.k � 1; i/

1

3

7
5
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D

2

6
6
6
4

pTDf .k; i C 1/

"
�wb.k � 1; i/

1

#

0
�dbmin

.k � 1; i/

3

7
7
7
5

D
2

6
4

ıb.k; i/

0
�dbmin

.k � 1; i/

3

7
5 (7.20)

where in the second equality we applied the result of (7.18), and

ıb.k; i/ D
kX

lD0
�k�lx.l � i � 1/x.l/�

kX

lD0
�k�lx.l/xT .l � 1; i/wb.k � 1; i/

D
kX

lD0
�k�lx.l � i � 1/x.l/�

kX

lD0
�k�lx.l/yb.l � 1; i/

D
kX

lD0
�k�l "b.l � 1; i/x.l/

where yb.l �1; i/ D xT .l �1; i/wb.k�1; i/ is the output of a backward prediction
filter of order i � 1 with the input data of instant l � 1, when the coefficients of
the predictor are wb.k � 1; i/. The parameter ıb.k; i/ can be interpreted as the
deterministic cross-correlation between the backward prediction error "b.l � 1; i/

and the desired signal of the forward predictor filter x.l/.
In (7.19) and (7.20) two new parameters were defined, namely ıf .k; i/ and

ıb.k; i/. In the following derivations we will show that these parameters are equal.
If RD.k; i C 2/ is premultiplied by Œ0 � wT

b .k � 1; i/ 1� and postmultiplied by
Œ1 � wf .k; i/ 0�

T , it can be shown that

Œ0 � wT
b .k � 1; i/ 1� RD.k; i C 2/

2

4
1

�wf .k; i/

0

3

5 D ıf .k; i/ (7.21)

By transposing the first and last terms of (7.20) the following relation is obtained

Œ0 � wT
b .k � 1; i/ 1� RD.k; i C 2/ D Œıb.k; i/ 0T �dbmin

.k � 1; i/�

(7.22)

By substituting this result in (7.21), we obtain

Œıb.k; i/ 0T �dbmin
.k � 1; i/�

2

4
1

�wf .k; i/

0

3

5 D ıb.k; i/ (7.23)
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Therefore, from (7.21) and (7.23) we conclude that

ıf .k; i/ D ıb.k; i/ D ı.k; i/ (7.24)

In effect, the deterministic cross-correlations between "f .l; i/ and x.l � i � 1/ and
between "b.l � 1; i/ and x.l/ are equal.

7.3.2 Order Updating of �d
bmin
.k; i / and wb.k; i /

The order updating of the minimum LS error and the tap coefficients for
the backward predictor can be deduced by multiplying (7.19) by the scalar
ı.k; i/=�dfmin

.k; i/, i.e.,

ı.k; i/

�dfmin
.k; i/

RD.k; i C 2/

2

4
1

�wf .k; i/

0

3

5 D

2

6
4

ı.k; i/

0
ı2.k;i/

�dfmin
.k;i/

3

7
5 (7.25)

Subtracting (7.20) from this result yields

RD.k; i C 2/
6

2

6
6
4

ı.k;i/

�dfmin
.k;i/

�wf .k; i/
ı.k;i/

�dfmin
.k;i/

C wb.k � 1; i/

�1

7

3

7
7
5

D
2

4
0

��d
bmin

.k � 1; i/C ı2.k;i/

�dfmin
.k;i/

3

5

(7.26)

Comparing (7.18) and (7.26), we conclude that

�dbmin
.k; i C 1/ D �dbmin

.k � 1; i/ � ı2.k; i/

�dfmin
.k; i/

(7.27)

and

wb.k; i C 1/ D
�

0

wb.k � 1; i/
�

� ı.k; i/

�dfmin
.k; i/

� �1
wf .k; i/

�

(7.28)

7.3.3 Order Updating of �d
fmin
.k; i / and wf .k; i /

Similarly, by multiplying (7.20) by ı.k; i/=�dbmin
.k � 1; i/, we get

ı.k; i/

�dbmin
.k � 1; i/

RD.k; i C 2/

2

4
0

�wb.k � 1; i/

1

3

5 D

2

6
4

ı2.k;i/

�dbmin
.k�1;i/
0

ı.k; i/

3

7
5 (7.29)
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Subtracting (7.29) from (7.19), it follows that

RD.k; i C 2/

2

6
6
6
4

1
ı.k;i/

�dbmin
.k�1;i/wb.k � 1; i/ � wf .k; i/

� ı.k;i/

�dbmin
.k�1;i/

3

7
7
7
5

D
2

4
�d
fmin

.k; i/ � ı2.k;i/

�dbmin
.k�1;i/

0

3

5

(7.30)

Comparing this equation with (7.9), we conclude that

�dfmin
.k; i C 1/ D �dfmin

.k; i/ � ı2.k; i/

�dbmin
.k � 1; i/

(7.31)

and

wf .k; i C 1/ D
�

wf .k; i/

0

�

� ı.k; i/

�dbmin
.k � 1; i/

�
wb.k � 1; i/

�1
�

(7.32)

7.3.4 Order Updating of Prediction Errors

The order updating of the a posteriori forward and backward prediction errors can
be derived as described below. From the definition of a posteriori forward error, we
have

"f .k; i C 1/ D xT .k; i C 2/

"
1

�wf .k; i C 1/

#

D xT .k; i C 2/

2

6
4

1

�wf .k; i/

0

3

7
5C ı.k; i/

�dbmin
.k � 1; i/

xT .k; i C 2/

2

6
4

0

wb.k � 1; i/

�1

3

7
5

D "f .k; i/� 
f .k; i/"b.k � 1; i/ (7.33)

where in the second equality we employed the order-updating (7.32) for the forward
prediction coefficients. The coefficient 
f .k; i/ D ı.k;i/

�dbmin
.k�1;i/ is the so-called

forward reflection coefficient.
The order updating of the a posteriori backward prediction error is obtained by

using (7.28) as
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Fig. 7.1 Least-squares lattice-based predictor

"b.k; i C 1/ D xT .k; i C 2/

"
�wb.k; i C 1/

1

#

D xT .k; i C 2/

2

6
4

0

�wb.k � 1; i/
1

3

7
5C ı.k; i/

�d
fmin

.k; i/
xT .k; i C 2/

2

6
4

�1
wf .k; i/

0

3

7
5

D "b.k � 1; i/ � 
b.k; i/"f .k; i/ (7.34)

where we employed the order-updating equation for the backward prediction
coefficients (7.28) in the second equality. The coefficient 
b.k; i/ D ı.k;i/

�dfmin
.k;i/

is

the backward reflection coefficient.
Equations (7.33) and (7.34) above can be implemented with a lattice section

as illustrated in Fig. 7.1a. An order-increasing lattice-based forward and backward
predictor can be constructed as illustrated in Fig. 7.1b. The coefficients 
b.k; i/ and

f .k; i/ are often called reflection coefficients of the lattice realization.

In the first section of the lattice, the forward and backward prediction errors are
equal to the input signal itself since no prediction is performed before the first lattice
section; therefore

"b.k; 0/ D "f .k; 0/ D x.k/ (7.35)

and

�dfmin
.k; 0/ D �dbmin

.k; 0/ D
kX

lD0
�k�lx2.l/ D x2.k/C ��dfmin

.k � 1; 0/ (7.36)

A closer look at (7.9) and (7.18) leads to the conclusion that the backward and
forward predictors utilize the same information matrix RD.k; iC2/. This result was
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key in deriving the expressions for the a posteriori forward and backward prediction
errors of (7.33) and (7.34). Of particular note, these expressions can be shown to
be independent of the predictor tap coefficients. This result will be proved in the
following section, which will present an updating formula for ı.k; i/ that is not
directly dependent on wf .k; i/ and wb.k � 1; i/.

Now that all order-updating equations are available, it is necessary to derive the
time-updating equations to allow the adaptation of the lattice predictor coefficients.

7.4 Time-Updating Equations

The time-updating equations are required to deal with the new incoming data that
becomes available. Recall that up to this point in this text we have studied adaptive-
filtering algorithms utilizing the new incoming data as soon as it becomes available.
In this section, the time-updating equations for the internal quantities of the lattice
algorithm are derived.

7.4.1 Time Updating for Prediction Coefficients

From (7.6), the time updating of the forward prediction filter coefficients is given by

wf .k; i/ D SD.k � 1; i/pDf .k; i/

D R�1
D .k � 1; i/pDf .k; i/ (7.37)

This is the standard expression for the computation of the optimal coefficient vector
leading to the minimization of the LS objective function and adapted to the forward
prediction case.

The updating formula of SD.k; i/ based on the matrix inversion lemma derived
in the previous chapter (see Algorithm 5.2) for the conventional RLS algorithm can
be used in (7.37). The resulting equation is given by

wf .k; i/ D 1

�

"

SD.k � 2; i/�  .k � 1; i/ T .k � 1; i/

�C T .k � 1; i/x.k � 1; i/

#

pDf .k; i/

D 1

�

�

SD.k � 2; i/�  .k � 1; i/xT .k � 1; i/SD.k � 2; i/
�C T .k � 1; i/x.k � 1; i/

�

� ��pDf .k � 1; i/C x.k/x.k � 1; i/�

D wf .k � 1; i/�  .k � 1; i/xT .k � 1; i/wf .k � 1; i/
�C T .k � 1; i/x.k � 1; i/

C x.k/

�
c

(7.38)
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where in the we have applied the time-recursive updating formula of pDf .k; i/ in
the second equality, and we have replaced SD.k�2; i/pDf .k�1; i/ by wf .k�1; i/
in the second term of the final expression. Vector c is given by

c D SD.k � 2; i/x.k � 1; i/�  .k � 1; i/xT .k � 1; i/SD.k � 2; i/x.k � 1; i/
�C T .k � 1; i/x.k � 1; i/

D �SD.k � 2; i/x.k � 1; i/

�C T .k � 1; i/x.k � 1; i/

It is convenient at this point to recall that  .k � 1; i/ D SD.k � 2; i/x.k � 1; i/

(see (5.10)).
The last term in (7.38) can be simplified if we apply the refined definition based

on (5.11)

�.k � 1; i/ D  .k � 1; i/
�C T .k � 1; i/x.k � 1; i/

(7.39)

where �.k�1; i/ now includes the order index i . Using this definition in the second
and third terms of the last expression of (7.38), it can be shown that

wf .k; i/ D wf .k � 1; i/C �.k � 1; i/Œx.k/ � wT
f .k � 1; i/x.k � 1; i/�

D wf .k � 1; i/C �.k � 1; i/ef .k; i/ (7.40)

where ef .k; i/ is the a priori forward prediction error of a predictor of order i � 1,2

so-called because it utilizes the tap coefficients of the previous instant k � 1.
Following similar steps to those used to derive (7.40), we can show that the time

updating for the backward predictor filter is given by

wb.k; i/ D 1

�

"

SD.k � 1; i/ �  .k; i/ T .k; i/

�C T .k; i/x.k; i/

#

Œ�pDb.k � 1; i/C x.k; i/x.k � i/�

D wb.k � 1; i/ � �.k; i/xT .k; i/wb.k � 1; i/C �.k; i/x.k � i/

D wb.k � 1; i/C �.k; i/eb.k; i/ (7.41)

where eb.k; i/ is the a priori backward prediction error of a predictor filter of order
i � 1.

2The predictor filter is of order i�1whereas the predictor including the desired signal is of order i .
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7.4.2 Time Updating for ı.k; i /

From the computational point of view, it would be interesting to compute the
prediction errors without explicitly using the predictor’s tap coefficients, because
working with these coefficients requires the use of inner products. In order to
achieve this, a time-updating expression for ı.k; i/ is derived. A by-product of this
derivation is the introduction of a new parameter, namely �.k; i/, that is shown to
be a conversion factor between a priori and a posteriori errors.

From the definition in (7.19), we have

ı.k; i/ D pTDb.k; i C 1/

�
1

�wf .k; i/

�

(7.42)

where pDb.k; i C 1/ can be expressed in recursive form as

pDb.k; i C 1/ D
kX

lD0
�k�lx.l; i C 1/x.l � i � 1/

D x.k; i C 1/x.k � i � 1/C �pDb.k � 1; i C 1/ (7.43)

Substituting (7.40) and (7.43) in (7.42), we get

ı.k; i/ D Œx.k � i � 1/xT .k; i C 1/C �pTDb.k � 1; i C 1/�

�
�

1

� wf .k � 1; i/� �.k � 1; i/ef .k; i/

�

D �ı.k � 1; i/C �pTDb.k � 1; i C 1/

�
0

� �.k � 1; i/ef .k; i/
�

Cx.k � i � 1/xT .k; i C 1/

�
1

� wf .k � 1; i/
�

Cx.k � i � 1/xT .k; i C 1/

�
0

� �.k � 1; i/ef .k; i/

�

(7.44)

where the equality of (7.42) for the order index i � 1 was used to obtain the first
term of the last equality.

We now derive two relations which are essential to obtain a time-updating
equation for ı.k; i/. The resulting equation is efficient from the computational point
of view. From the definitions of �.k � 1; i/ and  .k � 1; i/, (see (7.39) and the
comments after (7.38), respectively), it can be shown that
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pTDb.k � 1; i C 1/

�
0

�.k � 1; i/
�

D pTDb.k � 2; i/�.k � 1; i/

D pTDb.k � 2; i/ .k � 1; i/
�C T .k � 1; i/x.k � 1; i/

D pTDb.k � 2; i/SD.k � 2; i/x.k � 1; i/

�C T .k � 1; i/x.k � 1; i/

D wT
b .k � 2; i/x.k � 1; i/

�C T .k � 1; i/x.k � 1; i/

D � eb.k � 1; i/ � x.k � i � 1/

�C T .k � 1; i/x.k � 1; i/
(7.45)

Now using (7.39) it is possible to obtain the relation

xT .k; i C 1/

�
0

�.k � 1; i/

�

D xT .k � 1; i/SD.k � 2; i/x.k � 1; i/

�C T .k � 1; i/x.k � 1; i/

D  T .k � 1; i/x.k � 1; i/

�C T .k � 1; i/x.k � 1; i/ (7.46)

If we recall that the a priori forward prediction error can be computed in the form

xT .k; i C 1/

�
1

�wf .k � 1; i/
�

D ef .k; i/

and by substituting (7.45) and (7.46) into (7.44), after some straightforward
manipulations, we obtain the following time-updating equation for ı.k; i/

ı.k; i/ D �ı.k � 1; i/C �eb.k � 1; i/ef .k; i/

�C T .k � 1; i/x.k � 1; i/
D �ı.k � 1; i/C �.k � 1; i/eb.k � 1; i/ef .k; i/ (7.47)

where

�.k � 1; i/ D �

�C T .k � 1; i/x.k � 1; i/

D 1 � �T .k � 1; i/x.k � 1; i/ (7.48)

The last relation follows from the definition of �.k � 1; i/ in (7.39). Parameter
�.k � 1; i/ plays a key role in the relation between the a posteriori and a priori
prediction errors, as will be demonstrated below.
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In order to allow the derivation of a lattice-based algorithm utilizing only a
posteriori errors, the relationship between the a priori and a posteriori errors is now
derived. The a posteriori forward prediction error is related to the a priori forward
prediction error as

"f .k; i/ D x.k/ � wT
f .k; i/x.k � 1; i/

D x.k/ � wT
f .k � 1; i/x.k � 1; i/� �T .k � 1; i/x.k � 1; i/ef .k; i/

D ef .k; i/Œ1 � �T .k � 1; i/x.k � 1; i/�

D ef .k; i/�.k � 1; i/ (7.49)

Similarly, the relationship between a posteriori and a priori backward prediction
errors can be expressed as

"b.k; i/ D x.k � i/� wT
b .k; i/x.k; i/

D x.k � i/� wT
b .k � 1; i/x.k; i/ � �T .k; i/x.k; i/eb.k; i/

D eb.k; i/Œ1 � �T .k; i/x.k; i/�
D eb.k; i/�.k; i/ (7.50)

Parameter �.k; i/ is often called a conversion factor between a priori and a posteriori
errors.

Using (7.49) and (7.50), (7.47) can be expressed as

ı.k; i/ D �ı.k � 1; i/C "b.k � 1; i/"f .k; i/
�.k � 1; i/ (7.51)

As a general rule each variable of the lattice-based algorithms requires an order-
updating equation. Therefore, an order-updating equation for �.k; i/ is necessary.
This is the objective of the derivations in the following subsection.

7.4.3 Order Updating for �.k; i /

Variable �.k � 1; i/ is defined by

�.k � 1; i/ D 1 � �T .k � 1; i/x.k � 1; i/

where �.k � 1; i/ D SD.k � 1; i/x.k � 1; i/. The relation for �.k � 1; i/ can be
obtained by replacing SD.k�1; i/ by the expression derived by the matrix inversion
lemma of (5.5) and verifying that the resulting simplified expression leads to (7.39).
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By multiplying the expression �.k�1; i/ D SD.k�1; i/x.k�1; i/ by RD.k�1; i/
on both sides, we obtain the following relation

RD.k � 1; i/�.k � 1; i/ D x.k � 1; i/ (7.52)

With this equation, we will be able to derive an order-updating equation for
�.k � 1; i/ with the aid of an appropriate partitioning of RD.k � 1; i/.

By partitioning matrix RD.k � 1; i/ as in (7.19), we get

RD.k � 1; i/

�
�.k � 1; i � 1/

0

�

D
�

RD.k � 1; i � 1/ pDb.k � 1; i � 1/

pTDb.k � 1; i � 1/ �2b .k � 1/

�

�
�
�.k � 1; i � 1/

0

�

D
�

RDb.k � 1; i � 1/�.k � 1; i � 1/

pTDb.k � 1; i � 1/�.k � 1; i � 1/

�

We can proceed by replacing �.k � 1; i � 1/ using (7.52) in the last element of the
above vector, that is,

RD.k � 1; i/
"
�.k � 1; i � 1/

0

#

D
"

RDb.k � 1; i � 1/�.k � 1; i � 1/

pT
Db
.k � 1; i � 1/SDb.k � 1; i � 1/x.k � 1; i � 1/

#

D
"

RDb.k � 1; i � 1/�.k � 1; i � 1/

wT
b
.k � 1; i � 1/x.k � 1; i � 1/

#

D
"

x.k � 1; i � 1/
x.k � i/ � "b.k � 1; i � 1/

#

D x.k � 1; i/ �
"

0
"b.k � 1; i � 1/

#

(7.53)

By multiplying the above equation by SD.k � 1; i/, we have

�
�.k � 1; i � 1/

0

�

D �.k � 1; i/� SD.k � 1; i/
�

0
"b.k � 1; i � 1/

�

(7.54)

If we replace the above relation in the definition of the conversion factor, we deduce

�.k � 1; i/ D 1 � �T .k � 1; i/x.k � 1; i/

D �.k � 1; i � 1/� Œ0T "b.k � 1; i/�T SD.k � 1; i/x.k � 1; i/

(7.55)
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This equation can be expressed into a more useful form by using a partitioned
version of SD.k � 1; i/ given by

SD.k � 1; i/ D
�
0 0T

0 SD.k � 2; i � 1/
�

C 1

�dfmin
.k�1; i�1/

�
1

�wf .k�1; i�1/
� h
1 � wT

f .k � 1; i � 1/
i

(7.56)

The proof of validity of the above expression follows.

Proof. The partitioned expression of RD.k � 1; i/ is

RD.k � 1; i/ D
�
0 0T

0 RD.k � 2; i � 1/

�

C
"

�2f .k � 1/ pTDf .k � 1; i � 1/

pDf .k � 1; i � 1/ 0i�1;i�1

#

(7.57)

By assuming (7.56) is valid and premultiplying it by RD.k � 1; i/ as in (7.57),
it follows that

RD.k�1; i/SD.k�1; i/ D
�
0 0T

0 Ii�1;i�1

�

C
"
0 pTDf .k � 1; i � 1/SD.k � 2; i � 1/

0 0T

#

C 1

�dfmin
.k � 1; i � 1/RD.k � 1; i/

�
�

1

� wf .k � 1; i � 1/
�

Œ1 � wT
f .k � 1; i � 1/�

D
�
0 0T

0 Ii�1;i�1

�

C
"
0 wT

f .k � 1; i � 1/
0 0i�2;i�2

#

C 1

�dfmin
.k � 1; i � 1/

"
�dfmin

.k � 1; i � 1/
0

#

�Œ1 � wT
f .k � 1; i � 1/�

D
"
0 wT

f .k � 1; i � 1/
0 Ii�1;i�1

#

C
"
1 �wT

f .k � 1; i � 1/

0 0i�1;i

#

DIi;i

proving the validity of (7.56). �
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By applying (7.56) in (7.55), we obtain

�.k; i C 1/ D 1 � �T .k; i C 1/x.k; i C 1/

D �.k � 1; i/ � "2f .k; i/

�dfmin
.k; i/

(7.58)

Following a similar method to that used in deriving (7.56), it can be shown that

SD.k � 1; i/ D
�

SD.k � 1; i � 1/ 0i�1
0Ti�1 0

�

C 1

�dbmin
.k�1; i�1/

��wb.k�1; i�1/
1

�
� � wT

b .k � 1; i � 1/ 1�

(7.59)

Now by replacing the above equation in (7.55), we can show that

�.k�1; i/ D �.k�1; i�1/� "b.k�1; i�1/
�dbmin

.k�1; i�1/
��wT

b .k � 1; i � 1/ 1
�

x.k � 1; i/

D �.k � 1; i � 1/� "2b.k � 1; i � 1/
�dbmin

.k � 1; i � 1/ (7.60)

The last equation completes the set of relations required to solve the backward and
forward prediction problems. In the following section, the modeling of a reference
signal (joint-processor estimation) is discussed.

7.5 Joint-Process Estimation

In the previous sections, we considered only the forward and backward prediction
problems and explored some common features in their solutions. In a more general
situation, the goal is to predict the behavior of one process represented by d.k/
through measurements of a related process contained in x.k; i C 1/. Therefore, it is
important to derive an adaptive lattice-based realization to match a desired signal
d.k/ through the minimization of the weighted squared error function given by

�d .k; i C 1/ D
kX

lD0
�k�l "2.l; i C 1/

D
kX

lD0
�k�l Œd.l/ � wT .k; i C 1/x.l; i C 1/�2 (7.61)
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where y.k; i C 1/ D wT .k; i C 1/x.k; i C 1/ is the adaptive-filter output signal and
".l; iC1/ is the a posteriori error at a given instant l if the adaptive-filter coefficients
were fixed at w.k; iC1/. The minimization procedure of �d .k; iC1/ is often called
joint-process estimation.

The prediction lattice realization generates the forward and backward prediction
errors and requires some feedforward coefficients to allow the minimization of
�d .k; i C 1/. In fact, the lattice predictor in this case works as a signal processing
building block which improves the quality of the signals (in the sense of reducing
the eigenvalue spread of the autocorrelation matrix) that are inputs to the output
taps. The question is where should the taps be placed. We give some statistical
arguments for this choice here. First, we repeat, for convenience, the expression of
the backward prediction error:

"b.k; i C 1/ D xT .k; i C 2/

��wb.k; i C 1/

1

�

From the orthogonality property of the RLS algorithm, for k ! 1, we can infer
that

EŒ"b.k; i C 1/x.k � l/� D 0

for l D 0; 1; : : : ; i . From this equation, it is possible to show that

EŒ"b.k; i C 1/xT .k; i C 1/� D 0T

If we postmultiply the above equation by Œ�wb.k; i/ 1�
T , we obtain

E

�

"b.k; i C 1/xT .k; i C 1/

��wb.k; i/

1

�	

D EŒ"b.k; i C 1/"b.k; i/� D 0

This result shows that backward prediction errors of consecutive orders are uncor-
related. Using similar arguments one can show that EŒ"b.k; i C 1/"b.k; l/� D 0, for
l D 0; 1; : : : ; i .

In Problem 4, it is shown that backward prediction errors are uncorrelated with
each other in the sense of time averaging and, as a consequence, should be naturally
chosen as inputs to the output taps. The objective function can now be written as

�d .k; i C 1/ D
kX

lD0
�k�l "2.l; i C 1/

D
kX

lD0
�k�l Œd.l/� O"Tb .k; i C 1/v.l; i C 1/�2 (7.62)
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where O"Tb .k; iC1/ D Œ"b.k; 0/"b.k; 1/ : : : "b.k; i/� is the backward prediction error
vector and vT .k; i C 1/ D Œv0.k/ v1.k/ : : : vi .k/� is the feedforward coefficient
vector.

The main objective of the present section is to derive a time-updating formula
for the output tap coefficients. From (7.61) and (7.62), it is obvious that the
lattice realization generates the optimal estimation by using a parameterization
different from that related to the direct-form realization. We can derive the updating
equations for the elements of the forward coefficient vector using the order-updating
equation for the tap coefficients of the direct-form realization. Employing (7.59), the
equivalent optimal solution with the direct-form realization can be expressed as

w.k; i C 1/ D SD.k; i C 1/pD.k; i C 1/

D
�

SD.k; i/ 0i
0Ti 0

�

pD.k; i C 1/

C 1

�dbmin
.k; i/

��wb.k; i/

1

�

Œ�wT
b .k; i/ 1�pD.k; i C 1/

D
�

w.k; i/
0

�

C ıD.k; i/

�dbmin
.k; i/

��wb.k; i/

1

�

(7.63)

where

ıD.k; i/ D Œ�wT
b .k; i/ 1�pD.k; i C 1/

D �wT
b .k; i/

kX

lD0
�k�lx.l; i/d.l/C

kX

lD0
�k�lx.l � i/d.l/

D
kX

lD0
�k�l "b.l; i/d.l/

and

pD.k; i C 1/ D
kX

lD0
�k�lx.l; i C 1/d.l/

Since

pD.k; i C 1/ D �pD.k � 1; i C 1/C d.k/x.k; i C 1/

and

wb.k; i/ D wb.k � 1; i/C �.k; i/eb.k; i/
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see (7.41), by following the same steps we used to deduce the time update of ı.k; i/
in (7.47), we can show that

ıD.k; i/ D �ıD.k � 1; i/C ".k; i/"b.k; i/

�.k; i/
(7.64)

By calculating the output signal of the joint-process estimator using the order-
updating (7.63) for the direct-form realization, we can show that

wT .k; i C 1/x.k; i C 1/ D ŒwT .k; i/ 0�x.k; i C 1/

C ıD.k; i/

�dbmin
.k; i/

Œ�wT
b .k; i/ 1�x.k; i C 1/ (7.65)

This equation can be rewritten as

y.k; i C 1/ D y.k; i/C ıD.k; i/

�dbmin
.k; i/

"b.k; i/ (7.66)

where it can now be noticed that the joint-predictor output y.k; i C 1/ is a function
of the backward prediction error "b.k; i/. This was the motivation for using the
decomposition of SD.k; i C 1/ given by (7.59) in (7.63).

The feedforward multiplier coefficients can be identified as

vi .k/ D ıD.k; i/

�dbmin
.k; i/

(7.67)

and the a posteriori output error of the adaptive filter of order i from 1 to N are
obtained simultaneously, where

".k; i C 1/ D ".k; i/� vi .k/"b.k; i/ (7.68)

The above result was derived by subtracting d.k/ from both sides of (7.66). The
resulting lattice realization is depicted in Fig. 7.2.

We now have available all the relations required to generate the lattice recursive
least-squares adaptive-filtering algorithm based on a posteriori estimation errors.
The algorithm is described in Algorithm 7.1, which highlights in boxes the terms
that should be saved in order to avoid repeated computation.
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Fig. 7.2 Joint-process estimation lattice realization

Algorithm 7.1 Lattice RLS algorithm based on a posteriori errors
Initialization

Do for i D 0; 1 : : : ; N

ı.�1; i/ D ıD.�1; i/ D 0 (assuming x.k/ D 0 for k < 0)
�dbmin

.�1; i/ D �dfmin
.�1; i/ D � (a small positive constant)

�.�1; i/ D 1

"b.�1; i/ D 0

End

Do for k � 0

�.k; 0/ D 1

"b.k; 0/ D "f .k; 0/ D x.k/ (7.35)
�dbmin

.k; 0/ D �dfmin
.k; 0/ D x2.k/C ��dfmin

.k � 1; 0/ (7.36)
".k; 0/ D d.k/

Do for i D 0; 1 : : : ; N

ı.k; i/ D �ı.k � 1; i/C "b .k�1;i/

�.k�1;i/
"f .k; i/ (7.51)

�.k; i C 1/ D �.k; i/� "2b.k;i/

�dbmin
.k;i/

(7.60)


b.k; i/ D ı.k;i/

�dfmin
.k;i/


f .k; i/ D ı.k;i/

�dbmin
.k�1;i/

"b.k; i C 1/ D "b.k � 1; i/� 
b.k; i/"f .k; i/ (7.34)
"f .k; i C 1/ D "f .k; i/� 
f .k; i/"b.k � 1; i/ (7.33)
�dbmin

.k; i C 1/ D �dbmin
.k � 1; i/� ı.k; i/
b.k; i/ (7.27)

�dfmin
.k; i C 1/ D �dfmin

.k; i/� ı.k; i/
f .k; i/ (7.31)

Feedforward Filtering

ıD.k; i/ D �ıD.k � 1; i/C "b .k;i/

�.k;i/
".k; i/ (7.64)

vi .k/ D ıD.k;i/

�dbmin
.k;i/

(7.67)

".k; i C 1/ D ".k; i/� vi .k/"b.k; i/ (7.68)
End

End
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7.6 Time Recursions of the Least-Squares Error

In this section, we provide a set of relations for the time updating of the minimum
LS error of the prediction problems. These relations allow the derivation of two
important equations involving the ratio of conversion factor of consecutive order
prediction problems, namely �.k�1;iC1/

�.k�1;i/ and �.k;iC1/
�.k�1;i/ . The results provided in this

section are required for the derivation of some alternative lattice algorithms such as
the error feedback, as well as for the fast RLS algorithms of Chap. 8.

By replacing each term in the definition of the minimum weighted least-squares
error for the backward prediction problem by their time-updating equation, we have
(see (7.16) and (7.17))

�dbmin
.k; i/ D �2b .k/� wT

b .k; i/pDb.k; i/

D �2b .k/� �
wT
b .k � 1; i/C eb.k; i/�

T .k; i/
� �
�pDb.k � 1; i/C x.k � i /x.k; i/

�

D �2b .k/� �wT
b .k � 1; i/pDb.k � 1; i/� x.k � i /wT

b .k � 1; i/x.k; i/

� �eb.k; i/�
T .k; i/pDb.k � 1; i/� eb.k; i/�

T .k; i/x.k; i/x.k � i /

D x2.k � i /C ��2b .k � 1/� �wT
b .k � 1; i/pDb.k � 1; i/

�x.k � i /wT
b .k � 1; i/x.k; i/� �eb.k; i/�

T .k; i/pDb.k � 1; i/

�eb.k; i/�T .k; i/x.k; i/x.k � i / (7.69)

By combining the second and third terms, we get

�Œ�2b .k � 1/� wT
b .k � 1; i/pDb.k � 1; i/� D ��dbmin

.k � 1; i/

Similarly, by combining the first, fourth, and sixth terms, we obtain

x.k � i/Œx.k � i/� wT
b .k � 1; i/x.k; i/ � eb.k; i/�

T .k; i/x.k; i/�

D x.k � i/Œeb.k; i/ � eb.k; i/�
T .k; i/x.k; i/�

D x.k � i/eb.k; i/Œ1 � �T .k; i/x.k; i/�

Now by applying these results in (7.69), we can show that

�dbmin
.k; i/ D ��dbmin

.k � 1; i/C x.k � i/eb.k; i/Œ1 � �T .k; i/x.k; i/�
��eb.k; i/�T .k; i/pDb.k � 1; i/

D ��dbmin
.k � 1; i/C x.k � i/eb.k; i/

�eb.k; i/�T .k; i/Œx.k � i/x.k; i/C �pDb.k � 1; i/�
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If we apply the definition of �.k; i/ in (7.39) and (7.16) for the backward
prediction problem, we obtain

�dbmin
.k; i/ D ��dbmin

.k � 1; i/C x.k � i /eb.k; i/� eb.k; i/�
T .k; i/pDb.k; i/

D ��dbmin
.k � 1; i/C x.k � i /eb.k; i/� eb.k; i/xT .k; i/SD.k � 1; i/pDb.k; i/

D ��dbmin
.k � 1; i/C eb.k; i/Œx.k � i /� wT

b .k; i/x.k; i/�

D ��dbmin
.k � 1; i/C eb.k; i/"b.k; i/

D ��dbmin
.k � 1; i/C "2b.k; i/

�.k; i/
(7.70)

Following similar steps to those used to obtain the above equation, we can
show that

�dfmin
.k; i/ D ��dfmin

.k � 1; i/C "2f .k; i/

�.k � 1; i/
(7.71)

From the last two equations, we can easily infer the relations that are useful in
deriving alternative lattice-based algorithms, namely the normalized and error-
feedback algorithms. These relations are

��dbmin
.k � 2; i/

�dbmin
.k � 1; i/ D 1 � "2b.k � 1; i/

�.k � 1; i/�dbmin
.k � 1; i/

D �.k � 1; i C 1/

�.k � 1; i/ (7.72)

and

��dfmin
.k � 1; i/

�dfmin
.k; i/

D 1 � "2f .k; i/

�.k � 1; i/�dfmin
.k; i/

D �.k; i C 1/

�.k � 1; i/
(7.73)

where (7.60) and (7.58), respectively, were used in the derivation of the right-hand-
side expressions of the above equations.

7.7 Normalized Lattice RLS Algorithm

An alternative form of the lattice RLS algorithm can be obtained by applying a
judicious normalization to the internal variables of the algorithm, keeping their
magnitude bounded by one. This normalized lattice is specially suitable for fixed-
point arithmetic implementation. Also, this algorithm requires fewer recursions and
variables than the unnormalized lattices, i.e., only three equations per prediction
section per time sample.
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7.7.1 Basic Order Recursions

A natural way to normalize the backward and forward prediction errors is to divide
them by the square root of the corresponding weighted least-squares error. However,
it will be shown that a wiser strategy leads to a reduction in the number of recursions.
At the same time, we must think of a way to normalize variable ı.k; i/. In the
process of normalizing "f .k; i/; "b.k; i/, and ı.k; i/, we can reduce the number of
equations by eliminating the conversion variable �.k; i C 1/. Note that �.k; i C 1/

is originally normalized. These goals can be reached if the normalization of ı.k; i/
is performed as

ı.k; i/ D ı.k; i/
q
�dfmin

.k; i/�dbmin
.k � 1; i/

(7.74)

By noting that the conversion variable �.k � 1; i/ divides the product
"f .k; i/"b.k � 1; i/ in the time-updating formula (7.51), we can devise a way
to perform the normalization of the prediction errors leading to its elimination.
The appropriate normalization of the forward and backward estimation errors are,
respectively, performed as

"f .k; i/ D "f .k; i/
q
�.k � 1; i/�dfmin

.k; i/
(7.75)

"b.k; i/ D "b.k; i/
q
�.k; i/�dbmin

.k; i/
(7.76)

where the terms
q
�dfmin

.k; i/ and
q
�dbmin

.k; i/ perform the power normalization

whereas
p
�.k � 1; i/ and

p
�.k; i/ perform the so-called angle normalization,

since �.k; i/ is related to the angle between the spaces spanned by x.k � 1; i/ and
x.k; i/.

From the above equations and (7.51), we can show that

ı.k; i/
q
�dfmin

.k; i/�dbmin
.k�1; i/ D �ı.k � 1; i/

q
�dfmin

.k�1; i/�dbmin
.k�2; i/

C"b.k � 1; i/"f .k; i/
q
�dfmin

.k; i/�dbmin
.k � 1; i/

(7.77)

Therefore,

ı.k; i/ D �ı.k � 1; i/

v
u
u
t
�dfmin

.k � 1; i/�dbmin
.k � 2; i/

�dfmin
.k; i/�dbmin

.k � 1; i/
C "b.k � 1; i/"f .k; i/

(7.78)
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We now show that the term under the square root in the above equation can
be expressed in terms of the normalized errors by using (7.72), (7.73), (7.75),
and (7.76), that is,

��dbmin
.k � 2; i/

�dbmin
.k � 1; i/ D �.k � 1; i C 1/

�.k � 1; i/

D 1 � "2b.k � 1; i/

�.k � 1; i/�dbmin
.k � 1; i/

D 1 � "2b.k � 1; i/ (7.79)

and

��dfmin
.k � 1; i/

�dfmin
.k; i/

D �.k; i C 1/

�.k � 1; i/

D 1 � "2f .k; i/

�.k � 1; i/�dfmin
.k; i/

D 1 � "2f .k; i/ (7.80)

Substituting the last two equations into (7.78), we can show that

ı.k; i/ D ı.k � 1; i/
q
.1 � "2b.k � 1; i//.1� "2f .k; i//C "b.k � 1; i/"f .k; i/

(7.81)

Following a similar procedure used to derive the time-updating equation for
ı.k; i/, one can derive the order-updating equation of the normalized forward and
backward prediction errors. In the case of the forward prediction error, the following
order-updating relation results:

"f .k; i C 1/D
h
"f .k; i/ � ı.k; i/"b.k�1; i/

i
v
u
u
t

�dfmin
.k; i/

�dfmin
.k; i C 1/

s
�.k�1; i/
�.k�1; iC1/

(7.82)

Here again, we can express the functions under the square roots in terms of
normalized variables. Using (7.31), (7.74), and (7.77), it can be shown that

"f .k; i C 1/ D "f .k; i/ � ı.k; i/"b.k � 1; i/
q

1 � ı2.k; i/
q
1 � "2b.k � 1; i/

(7.83)
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If the same steps to derive "f .k; i C 1/ are followed, we can derive the order-
updating equation for the backward prediction error as

"b.k; i C 1/ D
h
"b.k � 1; i/� ı.k; i/"f .k; i/

i
v
u
u
t �dbmin

.k � 1; i/
�dbmin

.k; i C 1/

s
�.k � 1; i/
�.k; i C 1/

D "b.k � 1; i/� ı.k; i/"f .k; i/
q

1 � ı
2
.k; i/

q
1 � "2f .k; i/

(7.84)

7.7.2 Feedforward Filtering

The procedure to generate the joint-processor estimator is repeated here, using
normalized variables. Define

ıD.k; i/ D ıD.k; i/
q
�dmin.k; i/�

d
bmin
.k; i/

(7.85)

and

".k; i/ D ".k; i/
q
�.k; i/�dmin.k; i/

(7.86)

Using a similar approach to that used to derive (7.31), one can show that

�dmin.k; i C 1/ D �dmin.k; i/ � ı2D.k; i/

�dbmin
.k; i/

(7.87)

The procedure used to derive the order-updating equations for the normalized
prediction errors and the parameter ı.k; i/ can be followed to derive the equivalent
parameters in the joint-process estimation case. For the a posteriori output error the
following equation results

".k; i C 1/ D
s

�.k; i/

�.k; i C 1/

s
�dmin.k; i/

�dmin.k; i C 1/

h
".k; i/ � ıD.k; i/"b.k; i/

i

D 1
q
1 � "2b.k; i/

1
q

1 � ı2D.k; i/

h
".k; i/ � ıD.k; i/"b.k; i/

i

(7.88)
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The order-updating equation of ıD.k; i/ is (see (7.78))

ıD.k; i/ D
v
u
u
t�2�dmin.k � 1; i/�dbmin

.k � 1; i/

�dmin.k; i/�
d
bmin
.k; i/

ıD.k � 1; i/C ".k; i/"b.k; i/

D
q

.1 � "2b.k; i//.1 � "2.k; i//ıD.k � 1; i/C ".k; i/"b.k; i/ (7.89)

where we used the fact that

��dmin.k � 1; i/
�dmin.k; i/

D 1 � "2.k; i/ (7.90)

The normalized lattice RLS algorithm based on a posteriori errors is described in
Algorithm 7.2.

Notice that in the updating formulas of the normalized errors, the terms involving
the square root operation could be conveniently implemented through separate
multiplier coefficients, namely �f .k; i/; �b.k; i/; and �D.k; i/. In this way, one can
perform the order updating by calculating the numerator first and proceeding with a
single multiplication. These coefficients are given by

�f .k; i C 1/ D 1
q

1 � ı2.k; i/
q
1 � "2b.k � 1; i/

(7.91)

�b.k; i C 1/ D 1
q

1 � ı
2
.k; i/

q
1 � "2f .k; i/

(7.92)

�D.k; i C 1/ D 1
q
1 � "2b.k; i/

q

1 � ı2D.k; i/
(7.93)

With these multipliers it is straightforward to obtain the structure for the joint-
processor estimator depicted in Fig. 7.3.

The unique feature of the normalized lattice algorithm is the reduced number
of equations and variables at the expense of employing a number of square root
operations. These operations can be costly to implement in most types of hardware
architectures. Another interesting feature of the normalized lattice algorithm is that
the forgetting factor � does not appear in the internal updating equations; it appears
only in the calculation of the energy of the input and reference signals. This property
may be advantageous from the computational point of view in situations where there
is a need to vary the value of �. On the other hand, since all internal variables
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Algorithm 7.2 Normalized lattice RLS algorithm based on a posteriori error
Initialization

Do for i D 0; 1 : : : ; N

ı.�1; i/ D 0 (assuming x.k/ D d.k/ D 0 for k < 0/
ıD.�1; i/ D 0

"b.�1; i/ D 0

End

�2x.�1/ D �2d .�1/ D � (� small positive constant)

Do for k � 0

�2x.k/ D ��2x.k � 1/C x2.k/ (Input signal energy)
�2d .k/ D ��2d .k � 1/C d2.k/ (Reference signal energy)
"b.k; 0/ D "f .k; 0/ D x.k/=�x.k/

".k; 0/ D d.k/=�d .k/

Do for i D 0; 1 : : : ; N

ı.k; i/ D ı.k � 1; i/
q
.1� "2b.k � 1; i//.1� "2f .k; i//C "b.k � 1; i/"f .k; i/ (7.81)

"b.k; i C 1/ D "b.k�1;i/�ı.k;i/"f .k;i/q
.1�ı

2
.k;i//.1�"2f .k;i//

(7.84)

"f .k; i C 1/ D "f .k;i/�ı.k;i/"b.k�1;i/
q

.1�ı
2
.k;i//.1�"2b .k�1;i//

(7.83)

Feedforward Filter

ıD.k; i/ D ıD.k � 1; i/

q
.1� "2b.k; i//.1� "2.k; i//C ".k; i/"b.k; i/ (7.89)

".k; i C 1/ D 1q

.1�"2b .k;i//.1�ı
2
D.k;i//

�
".k; i/� ıD.k; i/"b.k; i/

�
(7.88)

End
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are normalized, the actual amplitude of the error signals and other quantities do
not match those in other lattice structures. In fact, from the normalized lattice
structure one can only effectively extract the shape of the frequency model the
structure identifies, since the mapping between the parameters of normalized and
non normalized structures is computationally intensive.

7.8 Error-Feedback Lattice RLS Algorithm

The reflection coefficients of the lattice algorithm have so far been updated in an
indirect way, without time recursions. This section describes an alternative method
of updating the reflection coefficients using time updating. These updating equations
are recursive in nature and are often called direct updating, since the updating equa-
tions used for 
b.k; i/ and 
f .k; i/ in Algorithm 7.1 are dependent exclusively on
quantities other than past reflection coefficients. Algorithms employing the recursive
time updating are called error-feedback lattice RLS algorithms. These algorithms
have better numerical properties than their indirect updating counterparts [3].

7.8.1 Recursive Formulas for the Reflection Coefficients

The derivation of a direct updating equation for 
f .k; i/ starts by replacing ı.k; i/
by its time-updating (7.51)


f .k; i/ D ı.k; i/

�dbmin
.k � 1; i/

D �ı.k � 1; i/
�dbmin

.k � 1; i/ C "b.k � 1; i/"f .k; i/
�.k � 1; i/�dbmin

.k � 1; i/

By multiplying and dividing the first term by �dbmin
.k� 2; i/ and next using (7.72) in

the first and second terms, we obtain


f .k; i/ D ı.k � 1; i/

�dbmin
.k � 2; i/

��dbmin
.k � 2; i/

�dbmin
.k � 1; i/ C "b.k � 1; i/"f .k; i/

�.k � 1; i/�dbmin
.k � 1; i/

D 
f .k � 1; i/
�.k � 1; i C 1/

�.k � 1; i/ C "b.k � 1; i/"f .k; i/�.k � 1; i C 1/

�2.k � 1; i/��dbmin
.k � 2; i/

D �.k � 1; i C 1/

�.k � 1; i/

"


f .k � 1; i/C "b.k � 1; i/"f .k; i/

�.k � 1; i/��dbmin
.k � 2; i/

#

(7.94)
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Similarly, using (7.51) and (7.73), it is straightforward to show that


b.k; i/ D �.k; i C 1/

�.k � 1; i/

"


b.k � 1; i/C "b.k � 1; i/"f .k; i/
�.k � 1; i/��dfmin

.k � 1; i/

#

(7.95)

The feedforward coefficients can also be time updated in a recursive form, by
appropriately combining (7.64), (7.67), and (7.72). The time-recursive updating
equation for vi .k/ is

vi .k/ D �.k; i C 1/

�.k; i/

"

vi .k � 1/C ".k; i/"b.k; i/

�.k; i/��dbmin
.k � 1; i/

#

(7.96)

The error-feedback LRLS algorithm described in Algorithm 7.3 employs (7.94),
(7.95), and (7.96). This algorithm is directly derived from Algorithm 7.1.

Alternative a posteriori LRLS algorithms can be obtained if we replace (7.27)
and (7.31) by (7.70) and (7.72) in Algorithms 7.1 and 7.3, respectively. These
modifications as well as possible others do not change the behavior of the LRLS
algorithm when implemented with infinite precision (long wordlength). However,
differences exist in computational complexity and in the effects of quantization error
propagation.

7.9 Lattice RLS Algorithm Based on A Priori Errors

The lattice algorithms presented so far are based on a posteriori errors; however,
alternative algorithms based on a priori errors exist and one of them is derived in
this section.

The time updating of the quantity ı.k; i/ as a function of the a priori errors was
previously derived (see (7.47)) and is repeated here for convenience.

ı.k; i/ D �ı.k � 1; i/C �.k � 1; i/eb.k � 1; i/ef .k; i/ (7.97)

The time updating of the forward prediction a priori error can be obtained by
using (7.32) as

ef .k; i C 1/ D xT .k; i C 2/

"
1

�wf .k � 1; i C 1/

#

D xT .k; i C 2/

2

6
4

1

�wf .k � 1; i/

0

3

7
5C ı.k � 1; i/

�dbmin
.k � 2; i/

xT .k; i C 2/

2

6
4

0

wb.k � 2; i/

�1

3

7
5

D ef .k; i/� ı.k � 1; i/

�dbmin
.k � 2; i/

eb.k � 1; i/

D ef .k; i/� 
f .k � 1; i/eb.k � 1; i/ (7.98)
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Algorithm 7.3 Error-feedback LRLS algorithm based on a posteriori errors
Initialization

Do for i D 0; 1 : : : ; N


b.�1; i/ D 
f .�1; i/ D vi .�1/ D ı.�1; i/ D 0; �.�1; i/ D 1

�dbmin
.�2; i/ D �dbmin

.�1; i/ D �dfmin
.�1; i/ D � (a small positive constant)

"b.�1; i/ D 0

End

Do for k � 0

�.k; 0/ D 1

"b.k; 0/ D "f .k; 0/ D x.k/ (7.35)
�dfmin

.k; 0/ D �dbmin
.k; 0/ D x2.k/C ��dfmin

.k � 1; 0/ (7.36)
".k; 0/ D d.k/

Do for i D 0; 1 : : : ; N

ı.k; i/ D �ı.k � 1; i/C "b .k�1;i/"f .k;i/

�.k�1;i/
(7.51)

�.k; i C 1/ D �.k; i/� "2b.k;i/

�dbmin
.k;i/

(7.60)


f .k; i/ D �.k�1;iC1/

�.k�1;i/

�


f .k � 1; i/C "b .k�1;i/"f .k;i/

�.k�1;i/
1

��dbmin
.k�2;i/

�

(7.94)


b.k; i/ D �.k;iC1/

�.k�1;i/

�


b.k � 1; i/C "b.k�1;i/"f .k;i/

�.k�1;i/
1

��dfmin
.k�1;i/

�

(7.95)

"b.k; i C 1/ D "b.k � 1; i/� 
b.k; i/"f .k; i/ (7.34)

"f .k; i C 1/ D "f .k; i/� 
f .k; i/"b.k � 1; i/ (7.33)

�dfmin
.k; i C 1/ D �dfmin

.k; i/� ı2.k;i/

�dbmin
.k�1;i/

(7.31)

�dbmin
.k; i C 1/ D �dbmin

.k � 1; i/� ı2.k;i/

�dfmin
.k;i/

(7.27)

Feedforward Filtering

vi .k/ D �.k;iC1/

�.k;i/

�

vi .k � 1/C ".k;i/"b .k;i/

�.k;i/��dbmin
.k�1;i/

�

(7.96)

".k; i C 1/ D ".k; i/� vi .k/"b.k; i/ (7.68)
End

End

With (7.28), we can generate the time-updating equation of the backward
prediction a priori error as

eb.k; i C 1/ D xT .k; i C 2/

2

6
4

0

�wb.k � 2; i/

1

3

7
5� ı.k � 1; i/

�dfmin
.k � 1; i/

xT .k; i C 2/

2

6
4

�1
wf .k � 1; i/

0

3

7
5

D eb.k � 1; i/� ı.k � 1; i/

�dfmin
.k � 1; i/

ef .k; i/

D eb.k � 1; i/� 
b.k � 1; i/ef .k; i/ (7.99)
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The order updating of �.k � 1; i/ can be derived by employing the relations of
(7.50) and (7.60). The result is

�.k � 1; i C 1/ D �.k � 1; i/� �2.k � 1; i/e2b.k � 1; i/

�dbmin
.k � 1; i/ (7.100)

The updating of the feedforward coefficients of the lattice realization based on a
priori errors is performed by the following equations

ıD.k; i/ D �ıD.k � 1; i/C �.k; i/eb.k; i/e.k; i/ (7.101)

e.k; i C 1/ D e.k; i/� vi .k � 1/eb.k; i/ (7.102)

vi .k � 1/ D ıD.k � 1; i/

�dbmin
.k � 1; i/

(7.103)

The derivations are omitted since they follow the same steps of the predictor
equations.

An LRLS algorithm based on a priori errors is described in Algorithm 7.4. The
normalized and error-feedback versions of the LRLS algorithm based on a priori
errors also exist and their derivations are left as problems.

7.10 Quantization Effects

A major issue related to the implementation of adaptive filters is their behavior
when implemented with finite-precision arithmetic. In particular, the roundoff errors
arising from the quantization of the internal quantities of an algorithm propagate
internally and can even cause instability. The numerical stability and accuracy are
algorithm dependent. In this section, we summarize some of the results obtained in
the literature related to the LRLS algorithms [3, 7, 8].

One of the first attempts to study the numerical accuracy of the lattice algorithms
was reported in [7]. Special attention was given to the normalized lattice RLS
algorithm, since this algorithm is suitable for fixed-point arithmetic implementation,
due to its internal normalization. In this study, it was shown that the bias error in the
reflection coefficients was more significant than the variance of the estimate error.
The bias in the estimated reflection coefficients is mainly caused by the quantization
error associated with the calculation of the square roots of Œ1 � "2b.k � 1; i/� and
Œ1 � "2f .k; i/�, assuming they are calculated separately. An upper bound for this
quantization error is given by

msq D 2�b (7.104)

assuming that b is the number of bits after the sign bit and that quantization is per-
formed through rounding. In the analysis, the basic assumption that 1 � � 
 2�bC1
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Algorithm 7.4 LRLS algorithm based on a priori errors
Initialization
Do for i D 0; 1 : : : ; N

ı.�1; i/ D ıD.�1; i/ D 0 .assuming x.k/ D 0 for k < 0/
�.�1; i/ D 1

�dbmin
.�1; i/ D �dfmin

.�1; i/ D � (a small positive constant)
eb.�1; i/ D 0


f .�1; i/ D 
b.�1; i/ D 0

End

Do for k � 0

�.k; 0/ D 1

eb.k; 0/ D ef .k; 0/ D x.k/

�dfmin
.k; 0/ D �dbmin

.k; 0/ D x2.k/C ��dfmin
.k � 1; 0/

e.k; 0/ D d.k/

Do for i D 0; 1 : : : ; N

ı.k; i/ D �ı.k � 1; i/C �.k � 1; i/eb.k � 1; i/ef .k; i/ (7.47)

�.k; i C 1/ D �.k; i/�
�2.k; i/e2b.k; i/

�dbmin
.k;i/

(7.100)

eb.k; i C 1/ D eb.k � 1; i/� 
b.k � 1; i/ef .k; i/ (7.99)
ef .k; i C 1/ D ef .k; i/� 
f .k � 1; i/eb.k � 1; i/ (7.98)


f .k; i/ D ı.k;i/

�dbmin
.k�1;i/


b.k; i/ D ı.k;i/

�dfmin
.k;i/

�dfmin
.k; i C 1/ D �dfmin

.k; i/� ı.k; i/
f .k; i/ (7.31)

�dbmin
.k; i C 1/ D �dbmin

.k � 1; i/� ı.k; i/
b.k; i/ (7.27)

Feedforward Filtering

ıD.k; i/ D �ıD.k � 1; i/C �.k; i/eb.k; i/ e.k; i/ (7.101)

e.k; i C 1/ D e.k; i/� vi .k � 1/eb.k; i/ (7.102)
vi .k/ D ıD.k;i/

�dbmin
.k;i/

(7.103)

End
End

was used. The upper bound of the bias error in the reflection coefficients is given
by [7]

�ı.k; i/ D 2�bC1ı.k; i/
1� �

(7.105)

Obviously, the accuracy of this result depends on the validity of the assumptions
used in the analysis [7]. However it is a good indication of how the bias is generated
in the reflection coefficients. It should also be noted that the above result is valid as
long as the updating of the related reflection coefficient does not stop. An analysis
for the case in which the updating stops is also included in [7].
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The bias error of a given stage of the lattice realization propagates to the
succeeding stages and its accumulation in the prediction errors can be expressed as

�"2b.k; i C 1/ D �"2f .k; i C 1/ � 2�bC2
iX

lD0

ı
2
.k; l/

1 � ı2.k; l/
(7.106)

for i D 0; 1; : : : ; N . This equation indicates that whenever the value of the

parameter ı
2
.k; l/ is small, the corresponding term in the summation is also small.

On the other hand, if the value of this parameter tends to one, the corresponding term
of the summation is large. Also note that the accumulated error tends to grow as the
number of sections of the lattice is increased. In a finite-precision implementation,
it is possible to determine the maximum order that the lattice can have such that the
error signals at the end of the realization still represent actual signals and not only
accumulated quantization noise.

The lattice algorithms remain stable even when using quite short wordlength in
fixed- and floating-point implementations. In terms of accuracy the error-feedback
algorithms are usually better than the conventional LRLS algorithms [3]. The
reduction in the quantization effects of the error-feedback LRLS algorithms is
verified in [3], where a number of examples show satisfactory performance for
implementation with less than 10 bits in fixed-point arithmetic.

Another investigation examines the finite-wordlength implementation employ-
ing floating-point arithmetic of the unnormalized lattice with and without error
feedback [8]. As expected, the variance of the accumulated error in the reflection co-
efficients of the error-feedback algorithms are smaller than that for the conventional
LRLS algorithm. Another important issue relates to the so-called self-generated
noise that originates in the internal stages of the lattice realization when the order
of adaptive filter is greater than necessary. In the cases where the signal-to-noise
ratio is high in the desired signal, the internal signals of the last stages of the lattice
realization can reach the quantization level and start self-generated noise, leading to
an excess mean-square error and possibly to instability. The stability problem can
be avoided by turning off the stages after the one in which the weighted forward and
backward squared errors are smaller than a given threshold.

Example 7.1. The system identification problem described in Chap. 3 (Sect. 3.6.2)
is solved using the lattice algorithms presented in this chapter. The main objective is
to compare the performance of the algorithms when implemented in finite precision.

Solution. We present here the results of using the unnormalized, the normalized
and error-feedback a posteriori lattice RLS algorithms in the system identification
example. All results presented are obtained by running 200 independent experiments
and calculating the average of the quantities of interest. We consider the case of
eigenvalue spread 20, and � D 0:99. Parameter � is 0:1, 0:01, and 0:1 for the
unnormalized, the normalized, and the error-feedback lattice filters, respectively.
The measured misadjustments of the lattice algorithms are given in Table 7.1.
As expected, the results are close to those obtained by the conventional RLS
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Table 7.1 Evaluation of the
lattice RLS algorithms

Algorithm Misadjustment

Unnorm. 0.0416
Error Feed. 0.0407

Table 7.2 Results of the finite-precision implementation of the lattice RLS algorithms

�.k/Q EŒjj�w.k/Qjj2�
No. of bits Unnorm. Norm. Error Feed. Unnorm. Norm. Error Feed.

16 1:563 10�3 8:081 10�3 1:555 10�3 9:236 10�4 2:043 10�3 9:539 10�4

12 1:545 10�3 8:096 10�3 1:567 10�3 9:317 10�4 2:201 10�3 9:271 10�4

10 1:587 10�3 10:095 10�3 1:603 10�3 9:347 10�4 4:550 10�3 9:872 10�4

algorithm, where in the latter the misadjustment is 0:0421. Not included is the result
for the normalized lattice because the a posteriori error is not available, in this case
the measured normalized MSE is 0:00974.

Table 7.2 summarizes the results obtained by the implementation of the lattice
algorithms with finite precision. Parameter � in the finite-precision implementation
is 0:1, 0:04, and 0:5 for the unnormalized, normalized and error-feedback lattices,
respectively. These values assure a good convergence behavior of the algorithms
in this experiment. In short-wordlength implementation of the lattice algorithms,
it is advisable to test whether the denominator expressions of the algorithm steps
involving division are not rounded to zero. In the case of the detection of a zero
denominator, replace its value by the value of the least significant bit. Table 7.2
shows that for the unnormalized and error-feedback lattices, the mean-squared
errors are comparable to the case of the conventional RLS previously shown in
Table 5.2. The normalized lattice is more sensitive to quantization errors due to
its higher computational complexity. The errors introduced by the calculations to
obtain w.k/Q, starting with the lattice coefficients, are the main reason for the
increased values ofEŒjj�w.k/Qjj2� shown in Table 7.2. Therefore, this result should
not be considered as an indication of poor performance of the normalized lattice
implemented with finite precision. �

Example 7.2. The channel equalization example first described in Sect. 3.6.3 is
used in simulations using the lattice RLS algorithm with error feedback. The present
example uses a 25th-order equalizer.

Solution. Applying the error-feedback lattice RLS algorithm, using � D 0:99 with
a 25th-order equalizer, we obtain after 100 iterations the equalizer whose impulse
response is shown in Fig. 7.4. The appropriate value of L for this case is 18. The
algorithm is initialized with � D 0:1.

The convolution of this response with the channel impulse response is depicted
in Fig. 7.5, which clearly approximates an impulse. In this case, the measured MSE
was 0:3056, a value comparable with that obtained with the LMS algorithm in the
example of Sect. 3.6.3. Note that in the LMS case a 50th-order equalizer was used.

�
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Fig. 7.4 Equalizer impulse response, lattice RLS algorithm with error feedback
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Fig. 7.5 Convolution result, lattice RLS algorithm with error feedback
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7.11 Concluding Remarks

A number of alternative RLS algorithms based on the lattice realization were
introduced. These algorithms consist of stages where growing-order forward and
backward predictors of the input signal are built from stage to stage. This feature
makes the lattice-based algorithms attractive in a number of applications where
information about the statistics of the input signal, such as the order of the input
signal model, is useful. Another important feature of the lattice-based algorithms is
their robust performance when implemented in finite-precision arithmetic.

Also, their computational complexity of at least 16N multiplications per output
sample is acceptable in a number of practical situations. However, by starting from
the lattice formulation without making extensive use of order updating, it is possible
to derive the fast transversal RLS algorithms, which can reduce the computational
complexity to orders of 7N multiplications per output sample. The derivation of
these algorithms is the subject of the Chap. 8.

Several interesting topics related to the lattice formulation of adaptive filters have
been addressed in the open literature [9–13]. The geometric formulation of the least-
squares estimation problem can be used to derive the lattice-based algorithms [9] in
an elegant manner. Also, an important situation that we usually find in practice is
the case where the input data cannot be considered zero before the first iteration
of the adaptive algorithm. The derivation of the lattice algorithms that account for
nonzero initial conditions for the input data is found in [10]. Another important
problem is the characterization of the conditions under which the stability of the
lattice algorithm is maintained when perturbations to the normal operation occur
[11]. There is also a family of lattice-based algorithms employing gradient-type
updating equations. These algorithms present reduced computational complexity
and good behavior when implemented with finite-precision arithmetic [12, 13].

A number of simulation examples involving the lattice algorithms were pre-
sented. In these examples the performance of the lattice algorithm was evaluated
in different applications as well as in finite-precision implementations.

7.12 Problems

1. Deduce the time-updating formula for the backward predictor coefficients.
2. Given a square matrix

P D
�

A B
C D

�

where A and D are also square matrices, the inverse of P can be expressed as
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P�1 D
�

A�1ŒI C B.D � CA�1B/�1CA�1� �A�1B.D � CA�1B/�1
�.D � CA�1B/�1CA�1 .D � CA�1B/�1

�

D
�

.A � BD�1C/�1 �.A � BD�1C/�1BD�1
�D�1C.A � BD�1C/�1 D�1ŒI C C.A � BD�1C/�1BD�1�

�

(a) Show the validity of this result.
(b) Use the appropriate partitioned forms of RD.k � 1; i/ to derive the

partitioned forms of SD.k � 1; i/ of (7.56) and (7.59).

3. Derive the time-updating formula of ıD.k; i/.
4. Demonstrate that the backward a posteriori prediction errors "b.k; i/ and
"b.k; j / for i ¤ j are uncorrelated when the average is calculated over time.

5. Justify the initialization of �dbmin
.0/ and �dfmin

.0/ in the lattice RLS algorithm.
6. Derive the a posteriori lattice RLS algorithm for complex input signals.
7. Derive (7.71).
8. Derive the order-updating equation of the normalized forward and backward

errors.
9. Demonstrate the validity of the order-updating formula of the weighted least-

squares error of the joint-process estimation described in (7.88).
10. Derive (7.89).
11. Derive the error-feedback LRLS algorithm based on a priori errors.
12. Derive the normalized LRLS algorithm based on a priori errors.
13. The lattice RLS algorithm based on a posteriori errors is used to predict the

signal x.k/ D sin 	k
4

. Given � D 0:99, calculate the error and the tap
coefficients for the first ten iterations.

14. The normalized lattice RLS algorithm based on a posteriori errors is used to
predict the signal x.k/ D sin 	k

4
. Given � D 0:99, calculate the error and the

multiplier coefficients for the first ten iterations.
15. The error-feedback LRLS algorithm is applied to identify a 7th-order time-

varying unknown system whose coefficients are first-order Markov processes
with �w D 0:999 and �2w D 0:033. The initial time-varying system multiplier
coefficients are

wT
o D Œ 0:03490 � 0:01100 � 0:06864 0:22391 0:55686 0:35798

� 0:02390 � 0:07594�

The input signal is Gaussian white noise with variance �2x D 1 and the
measurement noise is also Gaussian white noise independent of the input signal
and of the elements of nw.k/ with variance �2n D 0:01.

Simulate the experiment above described and measure the excess MSE for
� D 0:97 and � D 0:99.

16. Repeat the experiment described in Problem 15 using the normalized lattice
algorithm.
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17. Suppose that a 15th-order FIR digital filter with the multiplier coefficients
given below is identified through an adaptive FIR filter of the same order using
the unnormalized LRLS algorithm. Considering that fixed-point arithmetic
is used, simulate the identification problem described using the following
specifications:

Additional noise : white noise with variance �2n D 0:0015

Coefficients wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance �2x D 0:7

� D 0:98

wT
o D Œ0:0219360 0:0015786 � 0:0602449 � 0:0118907 0:1375379

0:0574545 � 0:3216703 � 0:5287203 � 0:2957797 0:0002043 0:290670

� 0:0353349 � 0:0068210 0:0026067 0:0010333 � 0:0143593�

Plot the learning curves for the finite- and infinite-precision implementa-
tions. Also plot EŒjj�
f .k; 0/jj2� and EŒjj�
b.k; 0/jj2� versus k in both cases.

18. Repeat the above problem for the following cases:

(a) �2n D 0:01; bc D 9 bits, bd D 9 bits, �2x D 0:7; � D 0:98:

(b) �2n D 0:1; bc D 10 bits, bd D 10 bits, �2x D 0:8; � D 0:98.
(c) �2n D 0:05; bc D 8 bits, bd D 16 bits, �2x D 0:8; � D 0:98.

19. In Problem 17, rerun the simulations for � D 1; � D 0:940. Comment on the
results.

20. Repeat the Problem 18, using the normalized and error-feedback LRLS algo-
rithms. Compare the results for the different algorithms.

21. Repeat Problem 17 for the case where the input signal is a first-order Markov
process with �x D 0:98.

22. Given a channel with impulse response

h.k/ D 0:9k C 0:4k

for k D 0; 1; 2; : : : ; 25, design an adaptive equalizer. The input signal is white
noise with unit variance and the adaptive-filter input signal-to-noise ratio is
30 dB. Use the unnormalized lattice algorithm of order 35.

23. The unnormalized lattice algorithm is used to perform the forward prediction
of a signal x.k/ generated by applying zero-mean Gaussian white noise signal
with unit variance to the input of a linear filter with transfer function given by

H.z/ D 0:5

.1 � 1:512z�1 C 0:827z�2/.1 � 1:8z�1 C 0:87z�2/
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Calculate the zeros of the resulting predictor error transfer function and
compare with the poles of the linear filter.

24. Determine the computational complexity of the Algorithms 7.1–7.4.
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Chapter 8
Fast Transversal RLS Algorithms

8.1 Introduction

Among the large number of algorithms that solve the least-squares problem in a
recursive form, the fast transversal recursive least-squares (FTRLS) algorithms are
very attractive due to their reduced computational complexity [1–7].

The FTRLS algorithms can be derived by solving simultaneously the forward
and backward linear prediction problems, along with two other transversal filters:
the joint-process estimator and an auxiliary filter whose desired signal vector has
one as its first and unique nonzero element (i.e., d.0/ D 1). Unlike the lattice-based
algorithms, the FTRLS algorithms require only time-recursive equations. However,
a number of relations required to derive some of the FTRLS algorithms can be
taken from the previous chapter on LRLS algorithms. The FTRLS algorithm can
also be considered a fast version of an algorithm to update the transversal filter
for the solution of the RLS problem, since a fixed-order update for the transversal
adaptive filter coefficient vector is computed at each iteration.

The relations derived for the backward and forward prediction in the lattice-based
algorithms can be used to derive the FTRLS algorithms. The resulting algorithms
have computational complexity of order N making them especially attractive
for practical implementation. When compared to the lattice-based algorithms, the
computational complexity of the FTRLS algorithms is lower due to the absence of
order-updating equations. In particular, FTRLS algorithms typically require 7N –
11N multiplications and divisions per output sample, as compared to 14N –29N
for the LRLS algorithms. Therefore, FTRLS algorithms are considered the fastest
implementation solutions of the RLS problem [1–7].

Several alternative FTRLS algorithms have been proposed in the literature. The
so-called fast Kalman algorithm [1], which is certainly one of the earlier fast
transversal RLS algorithms, has computational complexity of 11N multiplications
and divisions per output sample. In a later stage of research development in the
area of fast transversal algorithms, the fast a posteriori error sequential technique
(FAEST) [2] and the fast transversal filter (FTF) [3] algorithms were proposed,

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 8, © Springer Science+Business Media New York 2013
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both requiring an order of 7N multiplications and divisions per output sample. The
FAEST and FTF algorithms have the lowest complexity known for RLS algorithms,
and are useful for problems where the input vector elements consist of delayed
versions of a single input signal. Unfortunately, these algorithms are very sensitive
to quantization effects and become unstable if certain actions are not taken [4–6,8].

In this chapter, a particular form of the FTRLS algorithm is presented, where
most of the derivations are based on those presented for the lattice algorithms.
It is well known that the quantization errors in the FTRLS algorithms present
exponential divergence [1–7]. Since the FTRLS algorithms have unstable behavior
when implemented with finite-precision arithmetic, we discuss the implementation
of numerically stable FTRLS algorithms and provide the description of a particular
algorithm [8–10].

8.2 Recursive Least-Squares Prediction

All fast algorithms explore some structural property of the information data in order
to achieve low computational complexity. In the particular case of the fast RLS
algorithms discussed in this text, the reduction in the computational complexity
is achieved for the cases where the input signal consists of consecutively delayed
samples of the same signal. In this case, the patterns of the fast algorithms are
similar in the sense that the forward and backward prediction filters are essential
parts of these algorithms. The predictors perform the task of modeling the input
signal, which as a result allows the replacement of matrix equations by vector and
scalar relations.

In the derivation of the FTRLS algorithms, the solutions of the RLS forward
and backward prediction problems are required in the time-update equations. In this
section, these solutions are reviewed with emphasis on the results that are relevant
to the FTRLS algorithms. As previously mentioned, we will borrow a number of
derivations from the previous chapter on lattice algorithms. It is worth mentioning
that the FTRLS could be introduced through an independent derivation; however,
the derivation based on the lattice is probably more insightful and certainly more
straightforward at this point.

8.2.1 Forward Prediction Relations

The instantaneous a posteriori forward prediction error for an N th-order predictor
is given by

"f .k;N / D x.k/ � wT
f .k;N /x.k � 1;N /

D xT .k;N C 1/

�
1

�wf .k;N /

�

(8.1)
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The relationship between a posteriori and a priori forward prediction error, first
presented in (7.49) and repeated here for convenience, is given by

ef .k;N / D "f .k;N /

�.k � 1;N /
(8.2)

A simple manipulation of (7.73) leads to the following relation for the time
updating of the minimum weighted least-squares error, which will be used in the
FTRLS algorithm:

�dfmin
.k;N / D ��dfmin

.k � 1;N /C ef .k;N /"f .k;N / (8.3)

From the same (7.73), we can obtain the following equality that will also be
required in the FTRLS algorithm:

�.k;N C 1/ D ��dfmin
.k � 1;N /

�dfmin
.k;N /

�.k � 1;N / (8.4)

The updating equation of the forward prediction tap-coefficient vector can be
performed through (7.40) of the previous chapter, i.e.,

wf .k;N / D wf .k � 1;N /C �.k � 1;N /ef .k;N / (8.5)

where �.k � 1;N / D SD.k � 1;N /x.k � 1;N /.
As will be seen, the updating of vector �.k�1;N / to �.k;NC1/ is needed

to update the backward predictor coefficient vector. Also, the last element of
�.k;NC1/ is used to update the backward prediction a priori error and to obtain
�.k;N /. Vector �.k;N C 1/ can be obtained by post-multiplying both sides of
(7.56), at instant k and for order N , by x.k;N C 1/ D Œx.k/ xT .k � 1;N /�T . The
result can be expressed as

�.k;N C 1/ D
�

0

�.k � 1;N /

�

C 1

�dfmin
.k;N /

�
1

�wf .k;N /

�

"f .k;N / (8.6)

However, it is not convenient to use the above equation in the FTRLS algorithm
because when deriving the backward prediction part, it would lead to extra
computation. The solution is to use an alternative recursion involving O�.k;NC1/ D
�.k;NC1/
�.k;NC1/ instead of �.k;N C 1/ (see Problem 7 for further details). The resulting

recursion can be derived after some algebraic manipulations of (8.6) and (8.3)–(8.5),
leading to

O�.k;N C 1/ D
�

0
O�.k � 1;N /

�

C 1

��dfmin
.k � 1;N /

�
1

�wf .k � 1;N /

�

ef .k;N /

(8.7)
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The forward prediction tap-coefficient vector should then be updated using
O�.k � 1;N / as

wf .k;N / D wf .k � 1;N /C O�.k � 1;N /"f .k;N / (8.8)

8.2.2 Backward Prediction Relations

In this subsection, the relations involving the backward prediction problem that are
used in the FTRLS algorithm are derived.

The relationship between a posteriori and a priori backward prediction errors can
be expressed as

"b.k;N / D eb.k;N /�.k;N / (8.9)

It is also known that the ratio of conversion factors for different orders is given by

�.k;N C 1/

�.k;N /
D ��dbmin

.k � 1;N /

�dbmin
.k;N /

(8.10)

see (7.79) of the previous chapter.
We rewrite for convenience the last equality of (7.70), i.e.,

�dbmin
.k;N / D ��dbmin

.k � 1;N /C "2b.k;N /

�.k;N /
(8.11)

This equation can be rewritten as

1C "2b.k;N /

��.k;N /�dbmin
.k � 1;N /

D �dbmin
.k;N /

��dbmin
.k � 1;N / (8.12)

Now we recall that the time updating for the backward predictor filter is given by

wb.k;N / D wb.k � 1;N /C �.k;N /eb.k;N /

D wb.k � 1;N /C O�.k;N /"b.k;N / (8.13)

Following a similar approach to that used to derive (8.7), by first post-multiplying
both sides of (7.59), at instant k and for order N , by x.k;N C 1/ D ŒxT .k;N /
x.k �N/�T , and using relations (8.10), (8.11), and (8.13), we have

� O�.k;N /
0

�

D O�.k;N C 1/� 1

��dbmin
.k � 1;N /

��wb.k � 1;N /

1

�

eb.k;N /

(8.14)
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Note that in this equation the last element of O�.k;N C 1/ was already calculated in
(8.7). In any case, it is worth mentioning that the last element of O�.k;N C 1/ can
alternatively be expressed as

O�NC1.k;N C 1/ D eb.k;N /

��dbmin
.k � 1;N / (8.15)

By applying (8.9), (8.15), and (8.10) in (8.12), we can show that

1C O�NC1.k;N C 1/"b.k;N / D �.k;N /

�.k;N C 1/
(8.16)

By substituting (8.9) into the above equation, we can now derive an updating
equation that can be used in the FTRLS algorithm as

��1.k;N / D ��1.k;N C 1/� O�NC1.k;N C 1/eb.k;N / (8.17)

The updating equations related to the forward and backward prediction problems
and for the conversion factor �.k;N / are now available. We can thus proceed with
the derivations to solve the more general problem of estimating a related process
represented by the desired signal d.k/, known as joint-process estimation.

8.3 Joint-Process Estimation

As for all previously presented adaptive-filter algorithms, it is useful to derive a
FTRLS algorithm that can match a desired signal d.k/ through the minimization of
the weighted squared error. Starting with the a priori error

e.k;N / D d.k/ � wT .k � 1;N /x.k;N / (8.18)

we can calculate the a posteriori error as

".k;N / D e.k;N /�.k;N / (8.19)

As in the conventional RLS algorithm, the time updating for the output tap
coefficients of the joint-process estimator can be performed as

w.k;N / D w.k � 1;N /C �.k;N /e.k;N /

D w.k � 1;N /C O�.k;N /".k;N / (8.20)
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All the updating equations are now available to describe the fast transversal
RLS algorithm. The FRLS algorithm consists of (8.1)–(8.3), (8.7)–(8.8), and (8.4)
related to the forward predictor; equations (8.15), (8.17), (8.9), (8.11), (8.14), and
(8.13) related to the backward predictor and the conversion factor; and (8.18)–
(8.20) related to the joint-process estimator. The FTRLS algorithm is in step-by-step
form as Algorithm 8.1. The computational complexity of the FTRLS algorithm
is 7.N / C 14 multiplications per output sample. The key feature of the FTRLS
algorithm is that it does not require matrix multiplications. Because of this, the
implementation of the FTRLS algorithm has complexity of orderN multiplications
per output sample.

The initialization procedure consists of setting the tap coefficients of the
backward prediction, forward prediction, and joint-process estimation filters to zero,
namely

wf .�1;N / D wb.�1;N / D w.�1;N / D 0 (8.21)

Vector O�.�1;N / is set to 0 assuming that the input and desired signals are zero
for k < 0, i.e., prewindowed data. The conversion factor should be initialized as

�.�1;N / D 1 (8.22)

since no difference between a priori and a posteriori errors exists during the
initialization period. The weighted least-square errors should be initialized with a
positive constant �

� D �dfmin
.�1;N / D �dbmin

.�1;N / (8.23)

in order to avoid division by zero in the first iteration. The reason for introducing
this initialization parameter suggests that it should be a small value. However, for
stability reasons, the value of � should not be small (see the examples at the end of
this chapter).

It should be mentioned that there are exact initialization procedures for the fast
transversal RLS filters with the aim of minimizing the objective function at all
instants during the initialization period [3]. These procedures explore the fact that
during the initialization period the number of data samples in both d.k/ and x.k/
is less than N C 1. Therefore the objective function can be made zero since there
are more parameters than needed. The exact initialization procedure of [3] replaces
the computationally intensive backsubstitution algorithm and is rather simple when
the adaptive-filter coefficients are initialized with zero. The procedure can also be
generalized to the case where some nonzero initial values for the tap coefficients are
available.

As previously mentioned, several fast RLS algorithms based on the transversal
realization exist; the one presented here corresponds to the so-called FTF proposed
in [3]. A number of alternative algorithms are introduced in the problems.
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Algorithm 8.1 Fast transversal RLS algorithm
Initialization

wf .�1; N / D wb.�1; N / D w.�1; N / D 0
O�.�1; N / D 0, �.�1; N / D 1

�dbmin
.�1; N / D �dfmin

.�1; N / D � (a small positive constant)

Prediction Part

Do for each k � 0,

ef .k; N / D xT .k; N C 1/

�
1

�wf .k � 1; N /

�

"f .k; N / D ef .k; N /�.k � 1; N / (8.2)
�dfmin

.k; N / D ��dfmin
.k � 1; N /C ef .k; N /"f .k; N / (8.3)

wf .k; N / D wf .k � 1; N /C O�.k � 1; N /"f .k; N / (8.8)

O�.k; N C 1/ D
�

0
O�.k � 1; N /

�

C 1

��dfmin
.k�1;N /

�
1

�wf .k � 1; N /

�

ef .k; N / (8.7)

�.k; N C 1/ D ��dfmin
.k�1;N /

�dfmin
.k;N /

�.k � 1; N / (8.4)

eb.k; N / D ��dbmin
.k � 1; N / O�NC1.k; N C 1/ (8.15)

��1.k; N / D ��1.k; N C 1/� O�NC1.k; N C 1/eb.k; N / (8.17)
"b.k; N / D eb.k; N /�.k; N / (8.9)
�dbmin

.k; N / D ��dbmin
.k � 1; N /C "b.k; N /eb.k; N / (8.11)

� O�.k; N /
0

�

D O�.k; N C 1/� O�NC1.k; N C 1/

��wb.k � 1; N /

1

�

(8.14)

wb.k; N / D wb.k � 1; N /C O�.k; N /"b.k; N / (8.13)

Joint-Process Estimation

e.k; N / D d.k/� wT .k � 1; N /x.k; N / (8.18)
".k; N / D e.k; N /�.k; N / (8.19)
w.k; N / D w.k � 1; N /C O�.k; N /".k; N / (8.20)

End

8.4 Stabilized Fast Transversal RLS Algorithm

Although the fast transversal algorithms proposed in the literature provide a nice
solution to the computational complexity burden inherent to the conventional RLS
algorithm, these algorithms are unstable when implemented with finite-precision
arithmetic. Increasing the wordlength does not solve the instability problem. The
only effect of employing a longer wordlength is that the algorithm will take
longer to diverge. Earlier solutions to this problem consisted of restarting the
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algorithm when the accumulated errors in chosen variables reached prescribed
thresholds [3]. Although the restart procedure would use past information, the
resulting performance is suboptimal due to the discontinuity of information in the
corresponding deterministic correlation matrix.

The cause for the unstable behavior of the fast transversal algorithms is the
inherent positive feedback mechanism. This explanation led to the idea that if some
specific measurements of the numerical errors were available, they could conve-
niently be fed back in order to make the negative feedback dominant in the error
propagation dynamics. Fortunately, some measurements of the numerical errors can
be obtained by introducing computational redundancy into the fast algorithm. Such
a computational redundancy would involve calculating a given quantity using two
different formulas. In finite-precision implementation, the resulting values for the
quantity calculated by these formulas are not equal and their difference is a good
measurement of the accumulated errors in that quantity. This error can then be fed
back in an attempt to stabilize the algorithm. The key problem is to determine the
quantities where the computational redundancy should be introduced such that the
error propagation dynamics can be stabilized. In the early proposed solutions [5,6],
only a single quantity was chosen to introduce the redundancy. Later, it was shown
that at least two quantities are required in order to guarantee the stability of the
FTRLS algorithm [8]. Another relevant question is where should the error be fed
back inside the algorithm. Note that any point could be chosen without affecting
the behavior of the algorithm when implemented with infinite precision, since the
feedback error is zero in this case. A natural choice is to feed the error back into the
expressions of the quantities that are related to it. That means for each quantity in
which redundancy is introduced, its final value is a combination of the two forms of
computing it.

The FTRLS algorithm can be seen as a discrete-time nonlinear dynamic
system [8]: when finite precision is used in the implementation, quantization errors
will rise. In this case, the internal quantities will be perturbed when compared with
the infinite-precision quantities. When modeling the error propagation, a nonlinear
system can be described that, if properly linearized, allows the study of the error
propagation mechanism. Using an averaging analysis, which is meaningful for
stationary input signals, it is possible to obtain a system characterized by its set
of eigenvalues whose dynamic behavior is similar to that of the error propagation
behavior when k ! 1 and .1 � �/ ! 0. Through these eigenvalues, it is
possible to determine the feedback parameters as well as the quantities to choose
for the introduction of redundancy. The objective here is to modify the unstable
modes through the error feedback in order to make them stable [8]. Fortunately,
it was found in [8] that the unstable modes can be modified and stabilized by the
introduced error feedback. The unstable modes can be modified by introducing
redundancy in �.k;N / and eb.k;N /. These quantities can be calculated using
different relations and in order to distinguish them an extra index is included in
their description.
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The a priori backward error can be described in a number of alternative forms
such as

eb.k;N; 1/ D ��dbmin
.k � 1;N / O�NC1.k;N C 1/ (8.24)

eb.k;N; 2/ D ��wT
b .k � 1;N / 1

�
x.k;N C 1/ (8.25)

and

eb;i .k;N; 3/ D eb.k;N; 2/
i C eb.k;N; 1/Œ1 � 
i �
D eb.k;N; 1/C 
i Œeb.k;N; 2/� eb.k;N; 1/� (8.26)

where the first form was employed in the FTRLS algorithm and the second form
corresponds to the inner product implementation of the a priori backward error. The
third form corresponds to a linear combination of the first two forms where the
numerical difference between these forms is fed back to determine the final value of
eb;i .k;N; 3/ which will be used at different places in the stabilized algorithm. For
each 
i ; i D 1; 2; 3, we choose a different value in order to guarantee that the related
eigenvalues are less than one.

The conversion factor �.k;N / is probably the first parameter to show signs that
the algorithm is becoming unstable. This parameter can also be calculated through
different relations. These alternative relations are required to guarantee that all
modes of the error propagation system become stable. The first equation is given by

��1.k;N C 1; 1/ D ��1.k � 1;N; 3/ �dfmin
.k;N /

��dfmin
.k � 1;N /

D ��1.k � 1;N; 3/
"

1C ef .k;N /"f .k;N /

��dfmin
.k � 1;N /

#

D ��1.k � 1;N; 3/C e2f .k;N /

��dfmin
.k � 1;N /

D ��1.k � 1;N; 3/C O�0.k;N C 1/ef .k;N / (8.27)

where O�0.k;N C 1/ is the first element of O�.k;N C 1/. The above equalities are
derived from (8.4), (8.3), (8.2) and (8.7), respectively. The second expression for the
conversion factor is derived from (8.14) and given by

��1.k;N; 2/ D ��1.k;N C 1; 1/� O�NC1.k;N C 1/eb;3.k;N; 3/ (8.28)

The third expression is

��1.k;N; 3/ D 1C O�T .k;N /x.k;N / (8.29)
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In (8.27), the conversion factor was expressed in different ways, one of which was
first presented in the FTRLS algorithm of [8]. The second form already uses an a
priori backward error with redundancy. The third form can be derived from (7.48)
for the lattice RLS algorithms (see Problem 10).

An alternative relation utilized in the stabilized fast transversal algorithm
involves the minimum forward least-squares error. From (8.3) and (8.7), we can
write

Œ�dfmin
.k;N /��1 D ��1Œ�dfmin

.k � 1;N /��1 � ef .k;N /"f .k;N /

��dfmin
.k � 1;N /�dfmin

.k;N /

D ��1Œ�dfmin
.k � 1;N /��1 �

O�0.k;N /"f .k;N /
�dfmin

.k;N /

From (8.6), we can deduce that

"f .k;N /

�dfmin
.k;N /

D �0.k;N / D O�0.k;N /�.k;N C 1; 1/

With this relation, we can obtain the desired equation as

Œ�dfmin
.k;N /��1 D ��1Œ�dfmin

.k � 1;N /��1 � �.k;N C 1; 1/ O�20.k;N C 1/ (8.30)

where the choice of �.k;NC1; 1/ is used to keep the error-system modes stable [8].
Using the equations for the conversion factor and for the a priori backward

error with redundancy, we can obtain the stabilized fast transversal RLS algorithm
(SFTRLS) whose step-by-step implementation is given as Algorithm 8.2. The
parameters 
i for i D 1; 2; 3 were determined through computer simulation search
[8] where the optimal values found were 
1 D 1:5, 
2 D 2:5, and 
3 D 1. It was
also found in [8] that the numerical behavior is quite insensitive to values of 
i
around the optimal and that optimal values chosen for a given situation work well
for a wide range of environments and algorithm setup situations (for example, for
different choices of the forgetting factor).

Another issue related to the SFTRLS algorithm concerns the range of values for
� such that stability is guaranteed. Results of extensive simulation experiments [8]
indicate that the range is

1 � 1

2.N C 1/
� � < 1 (8.31)

where N is the order of the adaptive filter. It was also verified that the optimal
numerical behavior is achieved when the value of � is chosen as

� D 1 � 0:4

N C 1
(8.32)
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Algorithm 8.2 Stabilized fast transversal RLS algorithm
Initialization

wf .�1; N / D wb.�1; N / D w.�1; N / D 0
O�.�1; N / D 0, �.�1; N; 3/ D 1

�dbmin
.�1; N / D �dfmin

.�1; N / D � (a small positive constant)

1 D 1:5; 
2 D 2:5; 
3 D 1

Prediction Part

Do for each k � 0,

ef .k; N / D xT .k; N C 1/

�
1

�wf .k � 1; N /

�

"f .k; N / D ef .k; N /�.k � 1; N; 3/ (8.2)

O�.k; N C 1/ D
�

0
O�.k � 1; N /

�

C 1

��dfmin
.k�1;N /

�
1

�wf .k � 1; N /

�

ef .k; N / (8.7)

��1.k; N C 1; 1/ D ��1.k � 1; N; 3/C O�0.k; N C 1/ef .k; N / (8.27)

Œ�dfmin
.k; N /��1 D ��1Œ�dfmin

.k � 1; N /��1 � �.k; N C 1; 1/ O�20.k; N C 1/ (8.30)

wf .k; N / D wf .k � 1; N /C O�.k � 1; N /"f .k; N / (8.8)

eb.k; N; 1/ D ��dbmin
.k � 1; N / O�NC1.k; N C 1/ (8.15)

eb.k; N; 2/ D ��wT
b .k � 1; N / 1

�
x.k; N C 1/ (8.25)

eb;i .k; N; 3/ D eb.k; N; 2/
i C eb.k; N; 1/Œ1� 
i � for i D 1; 2; 3 (8.26)
��1.k; N; 2/ D ��1.k; N C 1; 1/� O�NC1.k; N C 1/eb;3.k; N; 3/ (8.28)
"b;j .k; N; 3/ D eb;j .k; N; 3/�.k; N; 2/ j D 1; 2

�dbmin
.k; N / D ��dbmin

.k � 1; N /C "b;2.k; N; 3/eb;2.k; N; 3/ (8.11)
� O�.k; N /

0

�

D O�.k; N C 1/� O�NC1.k; N C 1/

��wb.k � 1; N /

1

�

(8.14)

wb.k; N / D wb.k � 1; N /C O�.k; N /"b;1.k; N; 3/ (8.13)

��1.k; N; 3/ D 1C O�T .k; N /x.k; N / (8.29)

Joint-Process Estimation

e.k; N / D d.k/� wT .k � 1; N /x.k; N / (8.18)
".k; N / D e.k; N /�.k; N; 3/ (8.19)
w.k; N / D w.k � 1; N /C O�.k; N /".k; N / (8.20)

End

The range of values for � as well as its optimal value can be very close to one
for high-order filters. This can be a potential limitation for the use of the SFTRLS
algorithm, especially in nonstationary environments where smaller values for � are
required.

The computational complexity of the SFTRLS algorithm is of order 9N multi-
plications per output sample. There is an alternative algorithm with computational
complexity of order 8N (see Problem 9).
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Fig. 8.1 Fast transversal RLS algorithm: block diagram

Before leaving this section, it is worth mentioning a nice interpretation for
the fast transversal RLS algorithm. The FTRLS algorithm can be viewed as four
transversal filters working in parallel and exchanging quantities with each other,
as depicted in Fig. 8.1. The first filter is the forward prediction filter that utilizes
x.k � 1;N / as the input signal vector, wf .k;N / as the coefficient vector, and
provides quantities "f .k;N /; ef .k;N /, and �dfmin

.k;N / as outputs. The second
filter is the backward prediction filter that utilizes x.k;N / as the input signal vector,
wb.k;N / as the coefficient vector, and provides quantities "b.k;N /; eb.k;N /, and
�dbmin

.k;N / as outputs. The third filter is an auxiliary filter whose coefficients

are given by � O�.k;N /, whose input signal vector is x.k;N /, and whose output
parameter is ��1.k;N /. For this filter, the desired signal vector is constant and equal
to Œ1 0 0 : : : 0�T . The fourth and last filter is the joint-process estimator whose input
signal vector is x.k;N /, whose coefficient vector is w.k;N /, and which provides
the quantities ".k;N / and e.k;N / as outputs.

Example 8.1. The system identification problem described in Sect. 3.6.2 is solved
using the stabilized fast transversal algorithm presented in this chapter. The main
objective is to check the stability of the algorithm when implemented in finite
precision.

Solution. According to (8.31), the lower bound for � in this case is 0:9375. A value
� D 0:99 is chosen. The stabilized fast transversal algorithm is applied to solve the
identification problem and the measured MSE is 0:0432.
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Table 8.1 Results of the
finite-precision
implementation of the
SFTRLS algorithm

�.k/Q EŒjj�w.k/Qjj2�
No. of bits Experiment Experiment

16 1.545 10�3 6.089 10�5

12 1.521 10�3 3.163 10�5

10 1.562 10�3 6.582 10�5

Using � D 2, we ran the algorithm with finite precision and the results are
summarized in Table 8.1. No sign of instability is found for � D 0:99. These
results are generated by ensemble averaging 200 experiments. A comparison of
the results of Table 8.1 with those of Tables 5.2 and 7.2 shows that the SFTRLS
algorithm has similar performance compared to the conventional and lattice-based
RLS algorithms, in terms of quantization error accumulation. The question is which
algorithm remains stable in most situations. Regarding the SFTRLS, for large-order
filters we are left with a limited range of values to choose �. Also, it was found in our
experiments that the choice of the initialization parameter � plays an important role
in the performance of this algorithm when implemented in finite precision. In some
cases, even when the value of � is within the recommended range, the algorithm
does not converge if � is small. By increasing the value of �, we increase the usual
convergence time while keeping the algorithm stable. ut
Example 8.2. The channel equalization example described in Sect. 3.6.3 is also
used in simulations to test the SFTRLS algorithm. We use a 25th-order equalizer
and a forgetting factor � D 0:99.

Solution. In order to solve the equalization problem the stabilized fast transversal
RLS algorithm is initialized with � D 0:5. The results presented here were generated
by ensemble averaging 200 experiments. The resulting learning curve of the MSE
is shown in Fig. 8.2, and the measured MSE is 0:2973. The overall performance
of the SFTRLS algorithm for this particular example is as good as any other RLS
algorithm, such as lattice-based algorithms. ut

8.5 Concluding Remarks

In this chapter we have presented some fast transversal RLS algorithms. This class
of algorithms is computationally more efficient than conventional and lattice-based
RLS algorithms. Some simulation examples were included where the SFTRLS
algorithm was employed. The finite-wordlength simulations are of special interest
for the reader.

A number of alternative FTRLS algorithms as well as theoretical results can be
found in [3]. The derivation of normalized versions of the FTRLS algorithm is also
possible and was not addressed in the present chapter, for this result refer to [7].
The most computationally efficient FTRLS algorithms are known to be unstable.
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Fig. 8.2 Learning curves for the stabilized fast transversal RLS algorithm

The error-feedback approach was briefly introduced that allowed the stabilization
of the FTRLS algorithm. The complete derivation and justification for the error-
feedback approach is given in [8].

In nonstationary environments, it might be useful to employ a time-varying
forgetting factor. Therefore it is desirable to obtain FTRLS algorithms allowing
the use of variable �. This problem was first addressed in [11]. However a
computationally more efficient solution was proposed in [9] where the concept of
data weighting was introduced to replace the concept of error weighting.

The FTRLS algorithm has potential for a number of applications. In particular,
the problem in which the signals available from the environment are noisy version
of a transmitted signal and noisy filtered versions of the same transmitted signal
is an interesting application. In this problem, both the delay and unknown filter
coefficients have to be estimated. The weighted squared errors have to be minimized
while considering both the delay and the unknown system parameters. This problem
of joint estimation can be elegantly solved by employing the FTRLS algorithm [12].

8.6 Problems

1. Show that

�.k;N / D SD.k;N /x.k;N /
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D SD.k � 1;N /x.k;N /
�C xT .k;N /SD.k � 1;N /x.k;N /

Hint: Use the matrix inversion lemma for SD.k;N /.
2. Show that

�N .k � 1;N /� wf;N .k/"f .k;N /

�dfmin
.k;N /

D �"b.k;N /
�dbmin

.k;N /
D �NC1.k;N C 1/

where wf;N .k/ represents the last element of wf .k;N /.
3. Using a proper mixture of relations of the lattice RLS algorithm based on a

posteriori and the FTRLS algorithm, derive a fast exact initialization procedure
for the transversal filter coefficients.

4. Show that the following relations are valid, assuming the input signals are
prewindowed:

detŒSD.k;N C 1/�

detŒSD.k � 1;N /�
D 1

�dfmin
.k;N /

detŒSD.k;N C 1/�

detŒSD.k;N /�
D 1

�dbmin
.k;N /

5. Show that

��1.k;N / D detŒRD.k;N /�

�N detŒRD.k � 1;N /�

Hint: detŒI C AB� D detŒI C BA�.
6. Using the results of Problems 4 and 5, prove that

��1.k;N / D �dfmin
.k;N /

�N �dbmin
.k;N /

7. Derive (8.7) and (8.14). Also show that the use of �.k;N / would increase the
computational complexity of the FTRLS algorithm.

8. If one avoids the use of the conversion factor �.k;N /, it is necessary to use
inner products to derive the a posteriori errors in the fast algorithm. Derive a
fast algorithm without the conversion factor.

9. By replacing the relation for �.k;N; 3/ in the SFTRLS algorithm by the relation

�.k;N / D �N �dbmin
.k;N /

�dfmin
.k;N /

derived in Problem 6, describe the resulting algorithm and show that it requires
order 8N multiplications per output sample.
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10. Derive the (8.29).
11. The FTRLS algorithm is applied to predict the signal x.k/ D sin.	k

4
C 	

3
/.

Given � D 0:98, calculate the error and the tap coefficients for the first 10
iterations.

12. The SFTRLS algorithm is applied to predict the signal x.k/ D sin.	k
4

C 	
3
/.

Given � D 0:98, calculate the error and the tap coefficients for the first 10
iterations.

13. The FTRLS algorithm is applied to identify a 7th-order unknown system whose
coefficients are

wT D Œ0:0272 0:0221 �0:0621 0:1191 0:6116 �0:3332 �0:0190 �0:0572�
The input signal is Gaussian white noise with variance �2x D 1 and the

measurement noise is also Gaussian white noise independent of the input signal
with variance �2n D 0:01.

Simulate the experiment above described and measure the excess MSE for
� D 0:97 and � D 0:98.

14. Repeat Problem 13 for the case where the input signal is a first-order Markov
process with �x D 0:98.

15. Redo Problem 13 using a fixed-point implementation with the FTRLS and
SFTRLS algorithms. Use 12 bits in the fractional part of the signal and
parameter representations.

16. Suppose a 15th-order FIR digital filter with the multiplier coefficients given
below is identified through an adaptive FIR filter of the same order using the
FTRLS algorithm. Assuming fixed-point arithmetic, simulate the identification
problem described in terms of the following specifications:

Additional noise : white noise with variance �2n D 0:0015

Coefficients wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance �2x D 0:7

� D 0:98

wT
o D Œ0:0219360 0:0015786 � 0:0602449 � 0:0118907 0:1375379

0:0574545 � 0:3216703 � 0:5287203 � 0:2957797 0:0002043 0:290670
� 0:0353349 � 0:0068210 0:0026067 0:0010333 � 0:0143593�

Plot the learning curves for the finite- and infinite-precision implementations.
17. Repeat the above problem for the SFTRLS algorithm. Also reduce the

wordlength used until a noticeable (10% increase) excess MSE is observed
at the output.

18. Repeat Problem 16 for the SFTRLS algorithm, using�D 0:999 and �D 0:960.
Comment on the results.
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19. The SFTRLS algorithm is used to perform the forward prediction of a signal
x.k/ generated by applying zero-mean Gaussian white noise with unit variance
to the input of a linear filter with transfer function given by

H.z/ D 0:5

.1 � 1:512z�1 C 0:827z�2/.1 � 1:8z�1 C 0:87z�2/

Calculate the zeros of the resulting predictor error transfer function and
compare with the poles of the linear filter.

20. Perform the equalization of a channel with impulse response given by

h.k/ D 0:96k C .�0:9/k

for k D 0; 1; 2; : : : ; 15. The transmitted signal is zero-mean Gaussian white
noise with unit variance and the adaptive filter input signal-to-noise ratio is
30 dB. Use the SFTRLS algorithm of order 100.
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Chapter 9
QR-Decomposition-Based RLS Filters

9.1 Introduction

The application of QR decomposition [1] to triangularize the input data matrix
results in an alternative method for the implementation of the recursive least-
squares (RLS) method previously discussed. The main advantages brought about by
the recursive least-squares algorithm based on QR decomposition are its possible
implementation in systolic arrays [2–4] and its improved numerical behavior when
quantization effects are taken into account [5].

The earlier proposed RLS algorithms based on the QR decomposition [2, 3]
focused on the triangularization of the information matrix in order to avoid the
use of matrix inversion. However, their computational requirement was of OŒN 2

multiplications per output sample. Later, fast versions of the QR-RLS algorithms
were proposed with a reduced computational complexity of OŒN � [4–11].

In this chapter, the QR-RLS algorithms based on Givens rotations are presented
together with some stability considerations. Two families of fast algorithms are also
discussed [4–11], and one fast algorithm is presented in detail. These fast algorithms
are related to the tapped delay line FIR filter realization of the adaptive filter.

9.2 Triangularization Using QR-Decomposition

The RLS algorithm provides in a recursive way the coefficients of the adaptive filter
which lead to the minimization of the following cost function

�d .k/ D
kX

iD0
�k�i "2.i/ D

kX

iD0
�k�i Œd.i/ � xT .i/w.k/�2 (9.1)

where

x.k/ D Œx.k/ x.k � 1/ : : : x.k �N/�T
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is the input signal vector,

w.k/ D Œw0.k/ w1.k/ : : :wN .k/�
T

is the coefficient vector at instant k, ".i/ is the a posteriori error at instant i , and �
is the forgetting factor.

The same problem can be rewritten as a function of increasing dimension
matrices and vectors which contain all the weighted signal information available
so far to the adaptive filter. These matrices are redefined here for convenience:

XT .k/ D X.k/

D

2

6
6
6
4

x.k/ �1=2x.k � 1/ � � � �.k�1/=2x.1/ �k=2x.0/
x.k � 1/ �1=2x.k � 2/ � � � �.k�1/=2x.0/ 0

:::
:::

: : :
:::

:::

x.k �N/ �1=2x.k �N � 1/ � � � 0 0

3

7
7
7
5

D Œx.k/ �1=2x.k � 1/ : : : �k=2x.0/� (9.2)

y.k/ D X.k/w.k/ D

2

6
6
6
4

y.k/

�1=2y.k � 1/
:::

�k=2y.0/

3

7
7
7
5

(9.3)

d.k/ D

2

6
6
6
4

d.k/

�1=2d.k � 1/
:::

�k=2d.0/

3

7
7
7
5

(9.4)

".k/ D

2

6
6
6
4

".k/

�1=2".k � 1/
:::

�k=2".0/

3

7
7
7
5

D d.k/ � y.k/ (9.5)

The objective function of (9.1) can now be rewritten as

�d .k/ D "T .k/".k/ (9.6)

As shown in Chap. 5, (5.15), the optimal solution to the least-squares problem at a
given instant of time k can be found by solving the following equation

XT .k/X.k/w.k/ D XT .k/d.k/ (9.7)
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However, solving this equation by using the conventional RLS algorithm can be
a problem when the matrix RD.k/ D XT .k/X.k/ and its correspondent inverse
estimate become ill-conditioned due to loss of persistence of excitation of the input
signal or to quantization effects.

The QR decomposition approach avoids inaccurate solutions to the RLS problem
and allows easy monitoring of the positive definiteness of a transformed information
matrix in ill-conditioned situations.

9.2.1 Initialization Process

During the initialization period, i.e., from k D 0 to k D N , the solution of (9.7)
can be found exactly without using any matrix inversion. From (9.7), it can be found
that for k D 0 and x.0/ ¤ 0

w0.0/ D d.0/

x.0/
(9.8)

for k D 1

w0.1/ D d.0/

x.0/

w1.1/ D �x.1/w0.1/C d.1/

x.0/
(9.9)

for k D 2

w0.2/ D d.0/

x.0/

w1.2/ D �x.1/w0.2/C d.1/

x.0/

w2.2/ D �x.2/w0.2/� x.1/w1.2/C d.2/

x.0/
(9.10)

at the instant k, we can show by induction that

wi .k/ D
�

iX

jD1
x.j /wi�j .k/C d.i/

x.0/
(9.11)

The above equation represents the so-called back-substitution algorithm.
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9.2.2 Input Data Matrix Triangularization

After the instant k D N , the above (9.11) is no longer valid and the inversion of
RD.k/ or the calculation of SD.k/ is required to find the optimal solution for the
coefficients w.k/. This is exactly what makes the conventional RLS algorithm more
sensitive to quantization effects and input signal conditioning. The matrix X.k/ at
instant k D N C 1 is given by

X.N C 1/ D

2

6
6
6
6
6
6
4

x.N C 1/ x.N / � � � x.1/

�1=2x.N / �1=2x.N � 1/ � � � �1=2x.0/
�x.N � 1/ �x.N � 2/ � � � 0

:::
:::

: : :
:::

�
NC1
2 x.0/ 0 � � � 0

3

7
7
7
7
7
7
5

D
�
x.N C 1/ x.N / � � �x.1/

�1=2X.N /

�

D
�

xT .N C 1/

�1=2X.N /

�

(9.12)

As it is noted, the matrix X.k/ is no longer upper triangular, and, therefore, the
back-substitution algorithm cannot be employed to find the tap-weight coefficients.

The matrix X.N C 1/ can be triangularized through an orthogonal trian-
gularization approach such as Givens rotations, Householder transformation, or
Gram–Schmidt orthogonalization [1]. Since here the interest is to iteratively apply
the triangularization procedure to each new data vector added to X.k/, the Givens
rotation seems to be the most appropriate approach.

In the Givens rotation approach, each element of the first line of (9.12) can be
eliminated by premultiplying the matrix X.N C 1/ by a series of Givens rotation
matrices given by

QQ.N C 1/ D Q0
N .N C 1/ � Q0

N�1.N C 1/ � � � Q0
0.N C 1/

D

2

6
6
6
6
6
6
4

cos �N .N C 1/ � � � 0 � � � � sin �N .N C 1/
:::

:::

0 IN 0
:::

:::

sin �N .N C 1/ � � � 0 � � � cos �N .N C 1/

3

7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
6
6
4

cos �N�1.N C 1/ � � � 0 � � � � sin �N�1.N C 1/ 0
:::

:::
:::

0 IN�1 0 0
:::

:::
:::

sin �N�1.N C 1/ � � � 0 � � � cos �N�1.N C 1/ 0

0 � � � 0 � � � 0 1

3

7
7
7
7
7
7
7
7
7
5
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� � �

2

6
6
6
6
6
6
6
6
6
4

cos �0.N C 1/ � sin �0.N C 1/ � � � 0 � � � 0
sin �0.N C 1/ cos �0.N C 1/ � � � 0 � � � 0

:::
:::

0 0 IN
:::

:::

0 0

3

7
7
7
7
7
7
7
7
7
5

(9.13)

where Ii is an i by i identity matrix. The rotation angles �i are chosen such that
each entry of the first row of the resulting matrix is zero. Consider first the matrix
product Q0

0.N C 1/X.N C 1/. If:

cos �0.N C 1/x.1/� sin �0.N C 1/�1=2x.0/ D 0 (9.14)

the element in the position .1;N C 1/ of the resulting matrix product will be zero.
If it is further considered that cos2 �0.N C 1/C sin2 �0.N C 1/ D 1, it can be easily
deduced that

cos �0.N C 1/ D �1=2x.0/
p
�x2.0/C x2.1/

(9.15)

sin �0.N C 1/ D x.1/
p
�x2.0/C x2.1/

(9.16)

Next, Q0
1.NC1/ premultiplies Q0

0.NC1/X.NC1/with the objective of generating
a zero element at the position .1;N / in the resulting product matrix. Note that the
present matrix product does not remove the zero of the element .1;N C 1/. The
required rotation angle can be calculated by first noting that the elements .1;N /
and .3;N / of Q0

0.N C 1/X.N C 1/ are, respectively

a D cos �0.N C 1/x.2/� �1=2x.1/ sin �0.N C 1/ (9.17)

b D �x.0/ (9.18)

From these expressions we can compute the elements required in the following
rotation, which are given by

cos �1.N C 1/ D bp
a2 C b2

(9.19)

sin �1.N C 1/ D ap
a2 C b2

(9.20)

In this manner, after the last Givens rotation the input signal information matrix will
be transformed in a matrix with null first row

QQ.N C 1/X.N C 1/ D
�
0 0 � � � 0

U.N C 1/

�

(9.21)
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where U.N C 1/ is an upper triangular matrix.
In the next iteration, the input signal matrix X.N C 2/ receives a new row that

should be replaced by a zero vector through a QR decomposition. In this step, the
matrices involved are the following

X.N C 2/ D
�
x.N C 2/ x.N C 1/ � � � x.2/

�1=2X.N C 1/

�

(9.22)

and

2

6
6
6
6
4

1 0 � � � � � �
0
::: QQ.N C 1/
:::

3

7
7
7
7
5

X.N C 2/ D
2

4
x.N C 2/ x.N C 1/ � � � x.2/

0 0 � � � 0

�1=2U.N C 1/

3

5 (9.23)

In order to eliminate the new input vector through rotations with the corresponding
rows of the triangular matrix �1=2U.N C 1/, we apply the QR decomposition to
(9.23) as follows:

QQ.N C 2/

�
1 0
0 QQ.N C 1/

�

X.N C 2/ D
2

4
0 0 � � � 0

0 0 � � � 0

U.N C 2/

3

5 (9.24)

where again U.N C 2/ is an upper triangular matrix and QQ.N C 2/ is given by

QQ.N C 2/ D Q0
N .N C 2/Q0

N�1.N C 2/ � � � Q0
0.N C 2/

D

2

6
6
6
6
6
6
4

cos �N .N C 2/ � � � 0 � � � � sin �N .N C 2/
:::

:::

0 INC1 0
:::

:::

sin �N .N C 2/ � � � 0 � � � cos �N .N C 2/

3

7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
6
6
4

cos �N�1.N C 2/ � � � 0 � � � � sin �N�1.N C 2/ 0
:::

:::

0 IN 0
:::

:::

sin �N�1.N C 2/ cos �N�1.N C 2/ 0

0 � � � 0 � � � 0 1

3

7
7
7
7
7
7
7
7
7
5
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� � �

2

6
6
6
6
6
6
6
6
6
4

cos �0.N C 2/ 0 � sin �0.N C 2/ � � � 0
0 1 0 � � � 0

sin �0.N C 2/ 0 cos �0.N C 2/ � � � 0
:::

:::
:::

:::
:::

::: IN
0 0 0

3

7
7
7
7
7
7
7
7
7
5

(9.25)

The above procedure should be repeated for each new incoming input signal vector
as follows:

Q.k/X.k/ D QQ.k/
�
1 0
0 QQ.k � 1/

� �
I2 0
0 QQ.k � 2/

�

� � �
�

Ik�N 0
0 QQ.k �N/

�

X.k/ D

2

6
6
4

0

U.k/

3

7
7
5

	

k �N

	

N C 1

(9.26)

„ƒ‚…
NC1

where Q.k/ is a .k C 1/ by .k C 1/ matrix which represents the overall triangular-
ization matrix via elementary Givens rotations matrices Q0

i .m/ for all m � k and
0 � i � N .

Since each Givens rotation matrix is orthogonal, then it can easily be proved that
Q.k/ is also orthogonal (actually orthonormal), i.e.,

Q.k/QT .k/ D IkC1 (9.27)

Also, from (9.27), it is straightforward to note that

Q.k/ D QQ.k/
�
1 0
0 Q.k � 1/

�

(9.28)

where QQ.k/ is responsible for zeroing the latest input vector xT .k/ in the first row
of X.k/. The matrix QQ.k/ is given by

QQ.k/ D

2

6
6
6
6
6
6
4

cos �N .k/ � � � 0 � � � � sin �N .k/
:::

:::

0 Ik�1 0
:::

:::

sin �N .k/ � � � 0 � � � cos �N .k/

3

7
7
7
7
7
7
5
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�

2

6
6
6
6
6
6
6
6
6
4

cos �N�1.k/ � � � 0 � � � � sin �N�1.k/ 0
:::

:::
:::

0 Ik�2 0 0
:::

:::
:::

sin �N�1.k/ � � � 0 � � � cos �N�1.k/ 0
0 � � � 0 � � � 0 1

3

7
7
7
7
7
7
7
7
7
5

� � �

2

6
6
6
6
6
6
6
6
6
4

cos �0.k/ � � � 0 � � � � sin �0.k/ 0
:::

:::
:::

0 Ik�N�1 0 0
:::

:::
:::

sin �0.k/ � � � 0 � � � cos �0.k/ 0

0 IN

3

7
7
7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

NY

iD0
cos �i .k/ � � � 0 � � � �

NY

iD1
cos �i .k/ sin �0.k/

:::
:::

0 Ik�N�1 0
:::

:::

sin �0.k/ cos �0.k/
:::

:::
:::

j�1Y

iD0
cos �i .k/ sin �j .k/ � � � 0 � � � :::

:::
::: � sin �N .k/

N�1Y

iD1
cos �i .k/ sin �0.k/

� � � �
NY

iDjC1
cos �i .k/ sin �j .k/ � � � � sin �N .k/

0
: : :

: : : 0
cos �N�1.k/

cos �N .k/

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(9.29)
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Note that the matrix QQ.k/ has the following general form

N C 1
‚…„ƒ

QQ.k/ D

2

6
6
6
6
6
6
6
6
6
4

� 0 � � � 0 � � � 0 � � � � �
0
::: Ik�N�1 0
� �
::: 0

: : :

� � �

3

7
7
7
7
7
7
7
7
7
5

9
>>=

>>;
N C 1

(9.30)

where � represents a nonzero element. This structure of QQ.k/ is useful for
developing some fast QR-RLS algorithms.

Returning to (9.27), we can conclude that

Q.k/X.k/ D QQ.k/

2

6
6
6
6
6
4

x.k/ x.k � 1/ � � � x.k �N/
0 0 � � � 0
:::

:::
: : :

:::

0 0 � � � 0

�1=2U.k � 1/

3

7
7
7
7
7
5

(9.31)

The first Givens rotation angle required to replace x.k � N/ by a zero is �0.k/
such that

cos �0.k/x.k �N/� sin �0.k/�1=2u1;NC1.k � 1/ D 0 (9.32)

where u1;NC1.k � 1/ is the element .1;N C 1/ of U.k � 1/. Then, it follows that

cos �0.k/ D �1=2u1;NC1.k � 1/

u1;NC1.k/
(9.33)

sin �0.k/ D x.k �N/
u1;NC1.k/

(9.34)

where
u21;NC1.k/ D x2.k �N/C �u21;NC1.k � 1/ (9.35)

From (9.35), it is worth noting that the .1;N C 1/ element of U.k/ is the square
root of the exponentially weighted input signal energy, i.e.,

u21;NC1.k/ D
k�NX

iD0
�ix2.k �N � i/ (9.36)
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In the triangularization process, all the submatrices multiplying each column of
X.k/ are orthogonal matrices and as a consequence the norm of each column in
X.k/ and Q.k/X.k/ should be the same. This confirms that (9.36) is valid. Also, it
can be shown that

kC1X

iD1
x2i;j .k/ D

NC2�jX

iD1
u2i;j .k/ D

kC1X

iD1
�i�1x2.k C 2 � i � j / (9.37)

for j D 1; 2; : : : ; N C 1.
Now consider that the intermediate calculations of (9.31) are performed as

follows:

QQ.k/
2

4
xT .k/

0
�1=2U.k � 1/

3

5 D Q0
N .k/Q0

N�1.k/ � � � Q0
i .k/

2

4
x0
i .k/

0
U0
i .k/

3

5 (9.38)

where x0
i .k/ D Œx0

i .k/x
0
i .k�1/ : : : x0

i .k�NCi/0 : : : 0� and U0
i .k/ is an intermediate

upper triangular matrix. Note that x0
0.k/ D xT .k/, U0

0.k/ D �1=2U.k � 1/, and
U0
NC1.k/ D U.k/. In practice, the multiplication by the zero elements in (9.38)

should be avoided. We start by removing the increasing Ik�N�1 section of QQ.k/ (see
(9.30)), thereby generating a matrix with reduced dimension denoted by Q� .k/. The
resulting equation is

Q� .k/

�
xT .k/

�1=2U.k � 1/

�

D Q0
�N
.k/Q0

�N�1
.k/ � � � Q0

�i
.k/

�
x0
i .k/

U0
i .k/

�

D
�

0
U.k/

�

(9.39)

where Q0
�i
.k/ is derived from Q0

i .k/ by removing the Ik�N�1 section of Q0
i .k/ along

with the corresponding rows and columns, resulting in the following form

Q0
�i
.k/ D

6
6
6
6
6
6

2

6
6
6
6
6
6
4

cos �i .k/ � � � 0 � � � � sin �i .k/ � � � 0
:::

:::
:::

0 Ii 0 � � � 0
:::

:::
:::

sin �i .k/ � � � 0 � � � cos �i .k/ � � � 0
:::

:::
::: IN�i

0 � � � 0 � � � 0

7
7
7
7
7
7

3

7
7
7
7
7
7
5

(9.40)
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The Givens rotation elements are calculated by

cos �i .k/ D ŒU0
i .k/�iC1;NC1�i

ci
(9.41)

sin �i .k/ D x0
i .k �N C i/

ci
(9.42)

where ci D
q
ŒU0

i .k/�
2
iC1;NC1�i C x

02
i .k �N C i/ and Œ��i;j is the .i; j / element of

the matrix.

9.2.3 QR-Decomposition RLS Algorithm

The triangularization procedure above discussed can be applied to generate the
QR-RLS algorithm that avoids the calculation of the SD.k/ matrix of the conven-
tional RLS algorithm. The weighted a posteriori error vector can be written as a
function of the input data matrix, that is

".k/ D

2

6
6
6
4

".k/

�1=2".k � 1/
:::

�k=2".0/

3

7
7
7
5

D

2

6
6
6
4

d.k/

�1=2d.k � 1/
:::

�k=2d.0/

3

7
7
7
5

� X.k/w.k/ (9.43)

By premultiplying the above equation by Q.k/, it follows that

"q.k/ D Q.k/".k/ D Q.k/d.k/ � Q.k/X.k/w.k/

D dq.k/�
�

0
U.k/

�

w.k/ (9.44)

where

"q.k/ D

2

6
6
6
4

"q1.k/

"q2.k/
:::

"qkC1
.k/

3

7
7
7
5

and

dq.k/ D

2

6
6
6
4

dq1.k/

dq2.k/
:::

dqkC1
.k/

3

7
7
7
5
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Since Q.k/ is an orthogonal matrix, (9.6) is equivalent to

�d .k/ D "Tq .k/"q.k/ (9.45)

because

"Tq .k/"q.k/ D "T .k/QT .k/Q.k/".k/ D "T .k/".k/

The weighted-square error can be minimized in (9.45) by calculating w.k/ such
that "qk�NC1

.k/ to "qkC1
.k/ are made zero using a back-substitution algorithm

such as

wi .k/ D
�

iX

jD1
uNC1�i;i�jC1.k/wi�j .k/C dq kC1�i .k/

uNC1�i;iC1.k/
(9.46)

for i D 0; 1; : : : ; N , where
Pi�1

jDi Œ�� D 0. With this choice for w.k/, the minimum
weighted-square error at instant k is given by

�dmin.k/ D
k�NX

iD1
"2qi .k/ (9.47)

An important relation can be deduced by rewriting (9.44) as

dq.k/ D
2

4
dq1 .k/

� � ��
dq2 .k/

3

5 D

2

6
6
6
6
6
6
6
6
6
6
6
4

dq1.k/
:::

dqk�N
.k/

� � � � �
dqk�NC1

.k/
:::

dqkC1
.k/

3

7
7
7
7
7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
6
6
4

"q1.k/
:::

"qk�N
.k/

0
:::

0

3

7
7
7
7
7
7
7
7
7
5

C
�

0
U.k/

�

w.k/ (9.48)

where w.k/ is the optimum coefficient vector at instant k. By examining (9.31) and
(9.44), the right-most side of (9.48) can then be expressed as
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�
"q1 .k/

dq2 .k/

�

D

2

6
6
6
4

"q1.k/
:::

"qk�N
.k/

dq2 .k/

3

7
7
7
5

D QQ.k/

2

6
6
6
6
6
4

d.k/

�1=2

2

6
6
6
4

"q1.k � 1/
:::

"qk�N�1
.k � 1/

dq2 .k � 1/

3

7
7
7
5

3

7
7
7
7
7
5

(9.49)

Using similar arguments around (9.38)–(9.40), and starting from (9.49), the
transformed weighted-error vector can be updated as described below:

QQ.k/
2

4
d.k/

�1=2
�
"q1.k � 1/
dq2 .k � 1/

�

3

5 D Q0
N .k/Q

0
N�1.k/ � � � Q0

i .k/

2

6
4

d 0
i .k/

"0
qi
.k/

d0
q2i
.k/

3

7
5 (9.50)

where d 0
i .k/, "

0
qi
.k/, and d0

q2i
.k/ are intermediate quantities generated during the

rotations. Note that "0
qNC1

.k/ D Œ"q2 .k/ "q3.k/ : : : "qk�N
.k/�T , d 0

NC1.k/ D "q1.k/,
and d0

q2NC1
D dq2.k/.

If we delete all the columns and rows of QQ.k/ whose elements are zeros and
ones, i.e., the Ik�N�1 section of QQ.k/ with the respective bands of zeros below,
above, and on each side of it in (9.30), one would obtain matrix Q� .k/. In this case,
the resulting equation corresponding to (9.49) is given by

d.k/ D
�
"q1.k/

dq2 .k/

�

D Q� .k/

�
d.k/

�1=2dq2 .k � 1/

�

(9.51)

Therefore, we eliminate the vector "0
qNC1

.k/ which is always increasing, such that
in real-time implementation the updating is performed through

d.k/ D Q� .k/

�
d.k/

�1=2dq2 .k � 1/
�

D Q0
�N
.k/Q0

�N�1
.k/ � � � Q0

�i
.k/

"
d 0
i .k/

d0
q2i
.k/

#

(9.52)

Another important relation can be derived from (9.44) by premultiplying both
sides by QT .k/, transposing the result, and postmultiplying the result by the pinning
vector

"Tq .k/Q.k/

2

6
6
6
4

1

0
:::

0

3

7
7
7
5

D "T .k/

2

6
6
6
4

1

0
:::

0

3

7
7
7
5

D ".k/ (9.53)
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Then, from the definition of Q.k/ in (9.28) and (9.29), the following relation is
obtained

".k/ D "q1.k/

NY

iD0
cos �i .k/

D "q1.k/�.k/ (9.54)

This relation shows that the a posteriori output error can be computed without the
explicit calculation of w.k/. The only information needed is the Givens rotation
cosines. In applications where only the a posteriori output error is of interest, the
computationally intensive back-substitution algorithm of (9.46) to obtain wi .k/ can
be avoided.

Now, all the mathematical background to develop the QR-RLS algorithm has
been derived. After initialization, the Givens rotation elements are computed using
(9.41) and (9.42). These rotations are then applied to the information matrix and the
desired signal vector, respectively, as indicated in (9.39) and (9.52). The next step
is to compute the error signal using (9.54). Finally, if the tap-weight coefficients
are required we should calculate them using (9.46). Algorithm 9.1 summarizes the
algorithm with all essential computations.

Example 9.1. In this example, we solve the system identification problem described
in Sect. 3.6.2 by using the QR-RLS algorithm described in this section.

Solution. In the present example, we are mainly concerned in testing the algorithm
implemented in finite precision, since the remaining characteristics (such as:
misadjustment and convergence speed) should follow the same pattern of the
conventional RLS algorithm. We considered the case where eigenvalue spread of
the input signal correlation matrix is 20, with � D 0:99. The presented results
were obtained by averaging the outcomes of 200 independent runs. Table 9.1
summarizes the results, where it can be noticed that the MSE is comparable to the
case of the conventional RLS algorithm (consult Table 5.2). On the other hand, the
quantization error introduced by the calculations to obtain w.k/Q is considerable.
After leaving the algorithm running for a large number of iterations, we found no
sign of divergence.

In the infinite-precision implementation, the misadjustment measured was
0:0429. As expected (consult Table 5.1) this result is close to the misadjustment
obtained by the conventional RLS algorithm. ut

9.3 Systolic Array Implementation

The systolic array implementation of a given algorithm consists of mapping the
algorithm in a pipelined sequence of basic computation cells. These basic cells
perform their task in parallel, such that in each clock period all the cells are
activated. An in-depth treatment of systolic array implementation and parallelization



9.3 Systolic Array Implementation 381

Algorithm 9.1 QR-RLS algorithm

w.�1/ D Œ0 0 : : : 0�T , w0.0/ D d.0/

x.0/

For k D 1 to N (Initialization)
Do for i D 1 to k

wi .k/ D
�

iX

jD1

x.j /wi�j .k/C d.i/

x.0/
(9.11)

End
End

U0

0.N C 1/ D �1=2X.N / (9.12)
d0

q2 0
.N C 1/ D Œ �1=2d.N / �d.N � 1/ : : : �.NC1/=2d.0/�T

For k � N C 1

Do for each k
� 0

�1 D 1

d 0

0.k/ D d.k/

x0

0.k/ D xT .k/
Do for i D 0 to N
ci D

q
ŒU0

i .k/�
2
iC1;NC1�i C x02

i .k �N C i /

cos �i D ŒU0

i .k/�iC1;NC1�i

ci
(9.41)

sin �i D x0

i .k�NCi/

ci
(9.42)

"
x0

iC1
.k/

U0

iC1.k/

#

D Q0

�i
.k/

�
x0

i
.k/

U0

i .k/

�

(9.39)

� 0

i D � 0

i�1 cos �i (9.54)"
d 0

iC1
.k/

d0

q2iC1
.k/

#

D Q0

�i
.k/

"
d 0

i
.k/

d0

q2i
.k/

#

(9.51)

End
d0

q2 0
.k C 1/ D �1=2d0

q2NC1
.k/

U0

0.k C 1/ D �1=2U0

NC1.k/

�.k/ D � 0

N

".k/ D d 0

NC1.k/�.k/ (9.51)
If required compute

d.k/ D
"
d 0

NC1.k/

d0

q2NC1
.k/

#

(9.51)

w0.k/ D dNC2.k/

uNC1;1.k/

Do for i D 1 to N

wi .k/ D
�

iX

jD1

uNC1�i;i�jC1.k/wi�j .k/C dNC2�i .k/

uNC1�i;iC1.k/
(9.46)

End
End

of algorithms is beyond the scope of this text. Our objective in this section is to
demonstrate in a summarized form that the QR-RLS algorithm can be mapped in
a systolic array. Further details regarding this subject can be found in references
[2–4, 12, 13].
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Table 9.1 Results of the
finite-precision
implementation of the
QR-RLS algorithm

�.k/Q EŒjj�w.k/Qjj2�
No. of bits Experiment Experiment

16 1.544 10�3 0.03473
12 1.563 10�3 0.03254
10 1.568 10�3 0.03254

i2

O2

O3

O1

i1

ui,j(l)

If i1=0 then
O1 ← 1, O2 ← 0, O3 ← i2
ui,j = λui,j

Otherwise

c ← λ2u2
i,j(l) + i21

O1 ← cos θi−1 = λui,j(l)
c

O2 ← sin θi−1 = i1
c

O3 ← i2O1
ui,j(l + 1) ← c
End

i2

i3O2

O3

ui,j(l)
O1

i1

O1 ← i2
O2 ← i3
O3 ← i1i2 − i3λui,j(l)
ui,j(l + 1) ← i1i3 + i2λui,j(l)

a

b

Fig. 9.1 Basic cells: (a)
Angle processor, (b) Rotation
processor

A Givens rotation requires two basic steps. The first step is the calculation of the
sine and cosine which are the elements of the rotation matrix. The second step is the
application of the rotation matrix to given data. Therefore, the basic computational
elements required to perform the systolic array implementation of the QR-RLS
algorithm introduced in the last section are the angle and the rotation processors
shown in Fig. 9.1. The angle processor computes the cosine and sine, transferring
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__d2 (k–5)

d(k–4)

x (k–3)

__d3 (k-6)

__d4 (k–7)

__d5 (k–8)

u3,1 (k–6)

u2,1 (k–5)

u1,1 (k–4) u1,2 (k–3) u1,3 (k–2) u1,4 (k–1)

u2,3 (k–3)u2,2 (k–4)

u3,2 (k–5)

z –1

z –1

z –1

1

+

z –1
u4,1(k–7)

ε(k − 9)

Fig. 9.2 QR-Decomposition systolic array for N=3

the results to outputs 1 and 2, respectively, whereas in output 3 the cell delivers
a partial product of cosines meant to generate the error signal as in (9.54). The
rotation processor performs the rotation between the data coming from input 1 with
the internal element of the matrix U.l/ and transfers the result to output 3. This
processor also updates the elements of U.l/ and transfers the cosine and sine values
to the neighboring cell on the left.

Now, imagine that we have the upper triangular matrix U.k/ arranged below
the row consisting of the new information data vector as in (9.31), or equivalently
as in (9.39). Following the same pattern, we can arrange the basic cells in order
to compute the rotations of the QR-RLS algorithm as shown in Fig. 9.2, with the
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input signal x.k/ entering the array serially. In this figure, do not consider for this
moment the time indexes and the left-hand side column. The input data weighting
is performed by the processors of the systolic array.

Basically, the computations corresponding to the triangularization of (9.31) are
performed through the systolic array shown in Fig. 9.2, where at each instant of
time an element of the matrix U.k/ is stored in the basic processor as shown inside
the building blocks. Note that these stored elements are skewed in time and are
initialized with zero. The left-hand cells store the elements of the vector d.k/
defined in (9.51), which are also initialized with zero and updated in each clock
cycle. The column on the left-hand side of the array performs the rotation and stores
the rotated values of the desired signal vector which are essential to compute the
error signal.

In order to allow the pipelining, the outputs of each cell are computed at the
present clock period and made available to the neighboring cells in the following
clock period. Note that the neighboring cells on the left and below a given cell are
performing computations related to a previous iteration, whereas the cells on the
right and above are performing the computations of one iteration in advance. This
is the pipelining scheme of Fig. 9.2.

Each row of cells in the array implements a basic Givens rotation between one
row of �U.k � 1/ and a vector related to the new incoming data x.k/. The top row
of the systolic array performs the zeroing of the last element of the most recent
incoming x.k/ vector. The result of the rotation is then passed to the second row
of the array. This second row performs the zeroing of the second-to-last element
in the rotated input signal. The zeroing processing continues in the following rows
by eliminating the remaining elements of the intermediate vectors x0

i .k/, defined in
(9.38), through Givens rotations. The angle processors compute the rotation angles
that are passed to each row to perform the rotations.

More specifically, returning to (9.31), at the instant k, the element x.k � N/ of
x.k/ is eliminated by calculating the angle �0.k/ in the upper angle processor. The
same processor also performs the computation of u1;NC1.k/ that will be stored and
saved for later elimination of x.k�NC1/, which occurs during the triangularization
of X.kC1/. In the same period of time, the neighboring rotation processor performs
the computation of u1;N .k� 1/ using the angle �0.k� 1/ that was received from the
angle processor in the beginning of the present clock period k. The modifications
to the first row of the U.k/ matrix and to the vector d.k/ related to the desired
signal are performed in the first row of the array, due to the rotation responsible
for the elimination of x.k � N/. Note that the effect of the angle �0.k/ in the
remaining elements of the first row of U.k/ will be felt only in the following
iterations, one element each time, starting from the right- to the left-hand side.

The second row of the systolic array is responsible for the rotation corresponding
to �1.l/ that eliminates the element x0

1.l � N C 1/ of x0
1.l/ defined in (9.38). The

rotation �1.l/ of course modifies the remaining nonzero elements of x0
1.l/ generating

x0
2.l/, whose elements are calculated by the rotation processor and forwarded to the

next row through output 3.
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uN+1-i,i-2(k–8) uN+1-i,i-1(k–8) uN+1-i,i+1(k–8)
wi(k–8)

wi-1(k–8)

__d5-i(k–8)

wi-2(k–8)wi-3(k–8)

yi(2) yi(3)yi(0) yi(1)

uN+1-i,i(k–8)

wi = 0 for i < 0
Do for i = 0; 1; : : : ;N
yi(N − i) = 0
Do for l= N − i + 1; : : : ; N
yi(l) = yi(l − 1) + uN+1−i,i−N+l(k − 8)wi−N+l−1(k − 8)
End

wi(k − 8) =
d5−i(k − 8) − yi(3)
uN+1−i,i+1(k − 8)

End

Fig. 9.3 Systolic array and algorithm for the computation of w.k/

Likewise, the .i C 1/th row performs the rotation �i .l/ that eliminates x0
i .l �

N C i/ and also the rotation in the vector d.l/.
In the bottom part of the systolic array, the product of "q1.l/ and �.l/ is calculated

at each clock instant, in order to generate a posteriori output error given by ".l/. The
output error obtained in a given sample period k corresponds to the error related to
the input data vector of 2.N C 1/ clock periods before.

The systolic array of Fig. 9.2 exhibits several desirable features such as local
interconnection, regularity, and simple control circuitry, that yields a simple imple-
mentation. A possible problem, as pointed out in [13], is the need to distribute a
single clock throughout a large array, without incurring any clock skew.

The presented systolic array does not allow the computation of the tap-weight
coefficients. A solution pointed out in [13] employs the array of Fig. 9.2 by freezing
the array and applying an appropriate input signal sequence such that the tap-
weight coefficients are made available at the array output ".l/. An alternative way
is to add a systolic array to solve the back-substitution problem [13]. The array is
shown in Fig. 9.3 with the corresponding algorithm. The complete computation of
the coefficient vector w.k/ requires 2NC1 clock samples. In this array, the square
cells produce the partial products involved in (9.11). The round cell performs the
subtraction of the sum of the product result with an element of the vector d.k � 8/,
namely d5�i .k � 8/. This cell also performs the division of the subtraction result
by the element uNC1�i;iC1.k � 8/ of the matrix U.k � 8/. Starting with i D 0, the
sum of products has no elements and as a consequence the round cell just performs
the division d5�i .k�8/

uNC1�i;iC1.k�8/ . On the other hand, for i D N all the square cells are
actually taking part in the computation of the sum of products.

Note that in this case, in order to obtain wN .k � 8/, the results of all the cells
starting from left to right must be ready, i.e., there is no pipelining involved.
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Example 9.2. Let us choose a simple example, in order to illustrate how the systolic
array implementation works, and compare the results with those belonging to the
standard implementation of the QR-RLS algorithm. The chosen order is N D 3 and
the forgetting factor is � D 0:99.

Suppose that in an adaptive-filtering environment, the input signal consists of

x.k/ D sin.!0k/

where !0 D 	
250

.
The desired signal is generated by applying the same sinusoid to an FIR filter

whose coefficients are given by

wo D Œ1:0 0:9 0:1 0:2�T

Solution. First consider the results obtained with the conventional QR-RLS algo-
rithm. The contents of the vector d.k/ and of the matrix U.k/ are given below for
the first four iterations.

Iteration k D 1

d.k/ D 6

2

6
4

0:0000

0:0000

0:0000

0:0126

7

3

7
5 U.k/ D 6

2

6
4

0:0000 0:0000 0:0000 0:0000

0:0000 0:0000 0:0000 0:0000

0:0000 0:0000 0:0000 0:0000

0:0126 0:0000 0:0000 0:0000

7

3

7
5 (9.55)

Iteration k D 2

d.k/ D 6

2

6

4

0:0000

0:0000

0:0364

0:0125

7

3

7

5 U.k/ D 6

2

6

4

0:0000 0:0000 0:0000 0:0000

0:0000 0:0000 0:0000 0:0000

0:0251 0:0126 0:0000 0:0000

0:0125 0:0000 0:0000 0:0000

7

3

7

5 (9.56)

Iteration k D 3

d.k/ D 6

2

6

4

0:0000

0:0616

0:0363

0:0124

7

3

7

5 U.k/ D 6

2

6
6
4

0:0000 0:0000 0:0000 0:0000

0:0377 0:0251 0:0126 0:0000

0.0250 0.0125 0:0000 0:0000

0:0124 0:0000 0:0000 0:0000

7

3

7
7
5

(9.57)

Iteration k D 4

d.k/ D 6

2

6
4

0:0892

0:0613

0:0361

0:0124

7

3

7
5 U.k/ D 6

2

6
4

0:0502 0:0377 0:0251 0:0126

0:0375 0:0250 0:0125 0:0000

0:0249 0:0124 0:0000 0:0000

0.0124 0:0000 0:0000 0:0000

7

3

7
5 (9.58)
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Iteration k D 5

d.k/ D

2

6
6
4

0:1441

0:0668

0:0359

0:0123

3

7
7
5 U.k/ D

2

6
6
4

0:0785 0:0617 0:0449 0:0281

0:0409 0:0273 0:0136 0:0000

0:0248 0:0124 0:0000 0:0000

0:0123 0:0000 0:0000 0:0000

3

7
7
5 (9.59)

The data stored in the systolic array implementation represent the elements of
the vector d.k/ and of the matrix U.k/ skewed in time. This data is shown below
starting from the fourth iteration, since before that no data is available to the systolic
array.

Observe when the elements of the U.k/ appear stored at the systolic array.
For example, consider the highlighted elements. In particular, the element .4; 1/
at instant k D 4 appears stored in the systolic array at instant k D 10, whereas
the elements .3; 1/ and .3; 2/ at instant k D 3 appear stored in the systolic array at
instants k D 8 and k D 7, respectively. Following the same line of thought, it is
straightforward to understand how the remaining elements of the systolic array are
calculated.

Iteration k D 4

2

6
6
4

0:

0:

0:

0:

3

7
7
5

2

6
6
4

0: 0: 0: 0:0126

0: 0: 0:

0: 0:

0:

3

7
7
5 (9.60)

Iteration k D 5

2

6
6
4

0:

0:

0:

0:

3

7
7
5

2

6
6
4

0: 0: 0:0251 0:0281

0: 0: 0:0126

0: 0:

0:

3

7
7
5 (9.61)

Iteration k D 6

2

6
6
4

0:

0:

0:

0:

3

7
7
5

2

6
6
4

0: 0:0377 0:0449 0:0469

0: 0:0251 0:0125

0: 0:0126

0:

3

7
7
5 (9.62)

Iteration k D 7

2

6
6
4

0:

0:

0:

0:

3

7
7
5

2

6
6
6
4

0:0502 0:0617 0:0670 0:0686

0:0377 0:0250 0:0136

0:0251 0.0125
0:0126

3

7
7
7
5

(9.63)
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Iteration k D 8

2

6
6
4

0:0892

0:0616

0:0364

0:0126

3

7
7
5

2

6
6
6
4

0:0785 0:0870 0:0913 0:0927

0:0375 0:0273 0:0148

0.0250 0:0124

0:0125

3

7
7
7
5

(9.64)

Iteration k D 9

2

6
6
4

0:1441

0:0613

0:0363

0:0125

3

7
7
5

2

6
6
4

0:1070 0:1141 0:1179 0:1191

0:0409 0:0297 0:0160

0:0249 0:0124

0:0124

3

7
7
5 (9.65)

Iteration k D 10

2

6
6
4

0:2014

0:0668

0:0361

0:0124

3

7
7
5

2

6
6
4

0:1368 0:1430 0:1464 0:1475

0:0445 0:0319 0:0170

0:0248 0:0123

0.0124

3

7
7
5 (9.66)

Iteration k D 11

2

6
6
4

0:2624

0:0726

0:0359

0:0124

3

7
7
5

2

6
6
4

0:1681 0:1737 0:1768 0:1778

0:0479 0:0340 0:0180

0:0246 0:0123

0:0123

3

7
7
5 (9.67)

It is a good exercise for the reader to examine the elements of the vectors and ma-
trices in (9.60)–(9.67) and detect when these elements appear in the corresponding
vectors d.k/ and matrices U.k/ of (9.55)–(9.59). ut

9.4 Some Implementation Issues

Several articles related to implementation issues of the QR-RLS algorithm such
as the elimination of square root computation [14], stability and quantization error
analyses [15–18] are available in the open literature. In this section, some of these
results are briefly reviewed.

The stability of the QR-RLS algorithm is the first issue to be concerned
when considering a real implementation. Fortunately, the QR-RLS algorithm
implemented in finite precision was proved stable in the bounded input/bounded
output sense in [16]. The proof was based on the analysis of the bounds for the
internal recursions of the algorithm [16, 17]. From another study based on the
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quantization-error propagation in the finite-precision implementation of the
QR-RLS algorithm, it was possible to derive the error recursions for the main
quantities of the algorithm, leading to the stability conditions of the QR-RLS
algorithm [18]. The convergence on average of the QR-RLS algorithm can be
guaranteed if the following inequality is satisfied [18]:

�1=2 k QQQ.k/ k2� 1 (9.68)

where the two norm k � k2 of a matrix used here is the square root of the largest
eigenvalue and the notation Œ��Q denotes the finite-precision version of Œ��. Therefore,

k QQQ.k/ k2D MAXi

q
cos2Q �i .k/C sin2Q �i .k/ (9.69)

where MAXi Œ�� is the maximum value of Œ��. The stability condition can be rewritten
as follows:

� � 1

MAXi Œcos2Q �i .k/C sin2Q �i .k/�
(9.70)

It can then be concluded that keeping the product of the forgetting factor and
the maximum eigenvalue of the Givens rotations smaller than unity is a sufficient
condition to guarantee the stability.

For the implementation of any adaptive algorithm, it is necessary to estimate
quantitatively the dynamic range of all internal variables of the algorithm in order
to determine the length of all the registers required in the actual implementation.
Although this issue should be considered in the implementation of any adaptive-
filtering algorithm, it is particularly relevant in the QR-RLS algorithms due to
their large number of internal variables. The first attempt to address this problem
was reported in [17], where expressions for the steady-state values of the cosines
and sines of the Givens rotations were determined, as well as the bounds for the
dynamic range of the information stored in the processing cells. The full quantitative
analysis of the dynamic range of all internal quantities of the QR-RLS algorithm
was presented in [18] for the conventional and systolic-array forms. For fixed-point
implementation, it is important to determine the internal signal with the largest
energy such that frequent overflow in the internal variables of the QR-RLS algorithm
can be avoided. The first entry of the triangularized information matrix can be shown
to have the largest energy [18] and its steady-state value is approximately

u0;0.k/ � �xp
1 � �

(9.71)

where �2x is the variance of the input signal.
The procedure to derive the results above discussed consists of first analyzing the

QR-RLS algorithm for ideal infinite-precision implementation. The second step is
modeling the quantization errors and deriving the recursive equations that include
the overall error in each quantity of the QR-RLS algorithm [18]. Then conditions to
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guarantee the stability of the algorithm could be derived. A further step is to derive
closed-form solutions to the mean-squared values of the deviations in the internal
variables of the algorithm due to finite-precision operations. The main objective in
this step is to obtain the excess mean-square error and the variance of the deviation
in the tap-weight coefficients. Analytical expressions for these quantities are not
very simple unless a number of assumptions about the input and reference signals
are assumed [18]. However, they are useful to the designer.

9.5 Fast QR-RLS Algorithm

For the derivation of the fast QR-RLS algorithms, it is first necessary to study the
solutions of the forward and backward prediction problems. As seen in Chaps. 7 and
8, the predictor solutions were also required in the derivation of the lattice-based and
the fast transversal RLS algorithms.

A family of fast QR-RLS algorithms can be generated depending on the follo-
wing aspects of their derivation:

• The type of triangularization applied to the input signal matrix, taking into
consideration the notation adopted in this book where the first element of the data
vectors corresponds to the most recent data. The upper triangularization is related
to the updating of forward prediction errors, whereas the lower triangularization
involves the updating of backward prediction errors.

• The type of error utilized in the updating process, namely, if it is a priori or a
posteriori error.

Table 9.2 shows the classification of the fast QR-RLS algorithms indicating the
references where the specific algorithms can be found. Although these algorithms
are comparable in terms of computational complexity, those based on backward
prediction errors (which utilize lower triangularization of the information matrix)
are numerically stable when implemented in finite precision. This good numerical
behavior is related to backward consistency and minimal properties inherent to these
algorithms [20].

In this section, we start with the application of the QR decomposition to the lower
triangularization of the input signal information matrix. Then, the decomposition is
applied to the backward and forward prediction problems. This type of triangular-
ization is related to the updating of backward prediction errors.

A fast QR-RLS algorithm is derived by performing the triangularization of the
information matrix in this alternative form, namely by generating a lower triangular

Table 9.2 Classification of
the fast QR-RLS algorithms

Prediction

Error type Forward Backward

A priori [9] [10, 11]
A posteriori [4] [8, 19]
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matrix, and by first applying the triangularization to the backward linear prediction
problem. Originally, the algorithm to be presented here was proposed in [5] and later
detailed in [7] and [8]. The derivations are quite similar to those presented for the
standard QR-RLS algorithm. Therefore, we will use the previous results in order to
avoid unnecessary repetition. In order to accomplish this objective while avoiding
confusion, the following notations are, respectively, used for the triangularization
matrix and the lower triangular matricesQ andU . These matrices have the following
forms

U.k/ D

2

6
6
6
4

0 0 � � � 0 u1;NC1
0 0 � � � u2;N u2;NC1
:::

:::
:::

uNC1;1 uNC1;2 � � � uNC1;N uNC1;NC1

3

7
7
7
5

(9.72)

QQ.k/ D

2

6
6
6
6
6
6
6
6
6
4

cos �N .k/ � � � 0 � � � � sin �N .k/ 0
:::

:::
:::

0 Ik�N�1 0
:::

:::
:::

:::

sin �N .k/ � � � 0 � � � cos �N .k/ 0
0 IN

3

7
7
7
7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
6
6
4

cos �N�1.k/ � � � 0 � � � � sin �N�1.k/ 0
:::

:::
:::

0 Ik�N 0
:::

:::
:::

:::

sin �N�1.k/ � � � 0 � � � cos �N�1.k/ 0

0 � � � 0 � � � 0 IN�1

3

7
7
7
7
7
7
7
7
7
5

� � �

2

6
6
6
6
6
6
4

cos �0.k/ � � � 0 � � � � sin �0.k/
:::

:::

0 Ik�1 0
:::

:::

sin �0.k/ � � � 0 � � � cos �0.k/

3

7
7
7
7
7
7
5

(9.73)

The triangularization procedure has the following general form

Q.k/X.k/ D QQ.k/
�
1 0
0 QQ.k � 1/

� �
I2 0
0 QQ.k � 2/

�

� � �
�

Ik�N 0
0 QQ.k �N/

�

X.k/
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D

2

6
6
4

0

U.k/

3

7
7
5

	

k �N
	

N C 1

(9.74)

„ƒ‚…
NC1

where Q.k/ is a .k C 1/ by .k C 1/ matrix which represents the overall triangular-
ization matrix.

As usual the multiplication by zero elements can be avoided by replacing QQ.k/
by Q� .k/, where the increasing Ik�N�1 section of QQ.k/ is removed very much like
in (9.38) and (9.39). The resulting equation is

Q� .k/

�
xT .k/

�1=2U.k � 1/
�

D Q0
�N
.k/Q0

�N�1
.k/ � � �Q0

�i
.k/

�
x0
i .k/

U 0
i .k/

�

(9.75)

whereQ0
�i
.k/ is derived fromQ0

i .k/ by removing the Ik�N�1 section of Q0
i .k/ along

with the corresponding rows and columns, resulting in the following form

Q0
�i
.k/ D

2

6
6
6
6
6
6
6
6
6
6
6
6
4

cos �i .k/ � � � 0 � � � � sin �i .k/ � � � 0
:::

:::
:::

0 IN�i 0 � � � 0
:::

:::
:::

sin �i .k/ � � � 0 � � � cos �i .k/ � � � 0
:::

:::
::: Ii

0 � � � 0 � � � 0

3

7
7
7
7
7
7
7
7
7
7
7
7
5

(9.76)

The Givens rotation elements are calculated by

cos �i .k/ D ŒU 0
i .k/�NC1�i;iC1

ci
(9.77)

sin �i .k/ D x0
i .k � i/

ci
(9.78)

where ci D
q
ŒU 0
i .k/�

2
NC1�i;iC1 C x

02
i .k � i/, and Œ��i;j denotes the .i; j / element

of the matrix.

9.5.1 Backward Prediction Problem

In the backward prediction problem, the desired signal and vector are respectively

db.k C 1/ D x.k �N/ (9.79)
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db.k C 1/ D

2

6
6
6
6
6
6
6
6
6
6
6
4

x.k �N/

�1=2x.k �N � 1/
:::

�
k�N
2 x.0/

0
:::

0

3

7
7
7
7
7
7
7
7
7
7
7
5

(9.80)

The reader should note that in the present case an extra row was added to the vector
db.k C 1/. For example, the dimension of db.k C 1/ is now .k C 2/ by 1. The
backward-prediction-error vector is given by

"b.k C 1/ D db.k C 1/� X.k C 1/wb.k C 1/

D ŒX.k C 1/ db.k C 1/�

��wb.k C 1/

1

�

(9.81)

The triangularization matrix Q.k C 1/ of the input data matrix can be applied to
the backward prediction error resulting in

Q.k C 1/"b.k C 1/ D Q.k C 1/db.k C 1/�
�

0
U.k C 1/

�

wb.k C 1/ (9.82)

or equivalently

"bq.k C 1/ D dbq.k C 1/�
�

0
U.k C 1/

�

wb.k C 1/ (9.83)

From equations and (9.81) and (9.83), it follows that

"bq.k C 1/ D Q.k C 1/ŒX.k C 1/ db.k C 1/�

��wb.k C 1/

1

�

D

2

6
6
6
6
6
4

"bq1.k C 1/

0 "bq2.k C 1/
:::

"bqk�NC1
.k C 1/

U.k C 1/ xq3 .k C 1/

3

7
7
7
7
7
5

��wb.k C 1/

1

�

(9.84)

Also note that

ŒX.k C 1/ db.k C 1/� D X.NC2/.k C 1/ (9.85)
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where X.NC2/.k C 1/ is an extended version of X.k C 1/, with one input signal
information vector added. In other words, X.NC2/.k C 1/ is the information matrix
that would be obtained if one additional delay was added at the end of the delay line.

In order to avoid increasing vectors in the algorithm, "bq1.kC1/, "bq2.kC1/, : : : ,
"bqk�N

.k C 1/ can be eliminated in (9.84) through Givens rotations, as follows:

Qb.k C 1/"bq.k C 1/ D Qb.k C 1/

2

6
6
6
6
6
4

"bq1.k C 1/

0 "bq2.k C 1/
:::

"bqk�NC1
.k C 1/

U.k C 1/ xq3 .k C 1/

3

7
7
7
7
7
5

��wb.k C 1/

1

�

D
2

4
0 0

jj"b.k C 1/jj
U.k C 1/ xq3 .k C 1/

3

5
��wb.k C 1/

1

�

(9.86)

Note that by induction ŒU �NC1�i;iC1.k C 1/ D jj"b;i .k C 1/jj, where
jj"b;i .k C 1/jj2 corresponds to the least-square backward prediction error of an
.i � 1/th-order predictor.

9.5.2 Forward Prediction Problem

In the forward prediction problem, the following relations are valid1:

df .k/ D x.k C 1/ (9.87)

df .k/ D

2

6
6
6
6
4

x.k C 1/

�1=2x.k/
:::

�
kC1
2 x.0/

3

7
7
7
7
5

(9.88)

"f .k/ D df .k/ �
�

X.k/
0

�

wf .k/ (9.89)

where df .k/ is the desired signal, df .k/ is the desired signal vector, and "f .k/ is
the error signal vector.

1The reader should note that here the definition of forward prediction error is slightly different
from that used in Chaps. 7 and 8, where in the present case we are using the input and desired
signals one step ahead. This allows us to use the same information matrix as the conventional
QR-Decomposition algorithm of Sect. 9.2.3.
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Now, we can consider applying the QR decomposition, as was previously done
in (9.74) to the forward prediction error above defined. It should be noted that in
the present case an extra row was added to the vectors "f .k/ and df .k/, as can be
verified in the following relations:

"f .k/ D
2

4df .k/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X.k/

0

3

5
�

1

�wf .k/

�

(9.90)

and

"fq.k/ D
�Q.k/ 0

0 1

�
2

4df .k/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X.k/

0

3

5
�

1

�wf .k/

�

D

2

6
6
6
6
6
6
4

"fq1.k/
::: 0

"fqk�N
.k/

xq2.k/ U.k/
�
kC1
2 x.0/ 0

3

7
7
7
7
7
7
5

�
1

�wf .k/

�

(9.91)

Note that:
2

4df .k/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X.k/

0

3

5 D X.NC2/.k C 1/ (9.92)

which is an order extended version of X.kC1/ and has dimension .kC2/ by .NC2/.
In order to recursively solve (9.91) without dealing with ever-increasing matrices,

a set of Givens rotations are applied in order to eliminate "fq1 .k/, "fq2 .k/,
: : : ; "fqk�N

.k/, such that the information matrix that premultiplies the vector
Œ1 �wf .k/�

T is triangularized. The Givens rotations can recursively be obtained by

Qf .k/ D QQf .k/

�
1 0
0 Qf .k � 1/

�

D QQf .k/

�
1 0
0 QQf .k � 1/

�

� � �
�

Ik�N�1 0
0 QQf .N C 1/

�

(9.93)

where QQf .k/ is defined as

QQf .k/ D

2

6
6
6
6
6
6
4

cos �f .k/ � � � 0 � � � � sin �f .k/
:::

:::

0 Ik 0
:::

:::

sin �f .k/ � � � 0 � � � cos �f .k/

3

7
7
7
7
7
7
5

(9.94)
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If in each iteration, the above rotation is applied to (9.91), we have

"0
fq.k/ D QQf .k/

�
1 0
0 Qf .k � 1/

�6
6
6

2

6
6
6
4

"fq1.k/
::: 0

"fqk�N
.k/

xq2.k/ U.k/
�
kC1
2 x.0/ 0

7
7
7

3

7
7
7
5

�
1

�wf .k/

�

D QQf .k/

6
6
6
6

2

6
6
6
6
4

"fq1 .k/

0 0

::
:

0

xq2 .k/ U.k/
�1=2jj"f .k � 1/jj 0

7
7
7
7

3

7
7
7
7
5

�
1

�wf .k/

�

D
6
6

2

6
6
6
4

0
::: 0
0

xq2 .k/ U.k/
jj"f .k/jj 0

7
7

3

7
7
7
5

�
1

�wf .k/

�

(9.95)

where

cos �f .k/ D �1=2jj"f .k � 1/jj
q
�jj"f .k � 1/jj2 C "2fq1 .k/

(9.96)

sin �f .k/ D "fq1.k/q
�jj"f .k � 1/jj2 C "2fq1 .k/

(9.97)

and jj"f .k/jj is the norm of the forward prediction error vector shown in (9.91).
This result can be shown by evoking the fact that the last element of "0

fq.k/ is equal
to jj"f .k/jj, since jj"0

fq.k/jj D jj"fq.k/jj D jj"f .k/jj, because these error vectors
are related through unitary transformations.

Also, it is worthwhile to recall that in (9.95) the relation ŒU �NC1�i;iC1.k/ D
jj"b;i .k/jj is still valid (see (9.86)). Also, by induction, it can easily be shown from
(9.91) that:

For k D 0; 1; : : : ; N

jj"f .k/jj D �
kC1
2 x.0/
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for k D N C 1

jj"0
fq.k/jj D jj"f .k/jj D

q
�kC1x2.0/C "2fq1 .k/

for k D N C 2

jj"f .k/jj D
q
�kC1x2.0/C �"2fq1 .k � 1/C "2fq1.k/

D
q
�jj"f .k � 1/jj2 C "2fq1.k/

for k > N C 2

jj"f .k/jj2 D �jj"f .k � 1/jj2 C "2fq1 .k/ (9.98)

In the present case, it can be assumed that the partial triangularization can be
performed at each iteration as follows:
2

6
6
6
6
6
6
6
6
4

0

0 0
:::

0

xq2.k/ U.k/
jj"f .k/jj 0

3

7
7
7
7
7
7
7
7
5

D QQf .k/

� QQ.k/ 0
0 1

�

2

6
6
6
6
6
6
6
4

x.k C 1/ xT .k/

0 0

�1=2xq2 .k � 1/ �1=2U.k � 1/
�1=2jj"f .k � 1/jj 0

3

7
7
7
7
7
7
7
5

(9.99)

Now we can eliminate xq2 .k/ through a set of rotations Q0
f .k C 1/ such that

U .NC2/.k C 1/ D Q0
f .k C 1/

�
xq2.k/ U.k/

jj"f .k/jj 0

�

(9.100)

where the superscript .N C 2/ in the above matrices denotes rotation matrices
applied to data with .N C 2/ elements.

From the above equation, we can realize that Q0
f .k C 1/ consists of a series of

rotations in the following order

Q0
f .k C 1/ D

2

6
4

IN 0
0 cos � 0

f1
.k C 1/ � sin � 0

f1
.k C 1/

sin � 0
f1
.k C 1/ cos � 0

f1
.k C 1/

3

7
5

� � �

2

6
6
6
6
6
6
6
4

1 0 � � � � � � � � � � � � � � � 0

0 cos � 0
fN
.k C 1/ 0 � � � 0 � � � 0 � sin � 0

fN
.k C 1/

::: 0 0
::: IN�1

:::
:::

0 sin � 0
fN
.k C 1/ 0 � � � 0 � � � 0 cos � 0

fN
.k C 1/

3

7
7
7
7
7
7
7
5



398 9 QR-Decomposition-Based RLS Filters

�

2

6
6
6
6
6
6
6
4

cos � 0
fNC1

.k C 1/ 0 � � � 0 � � � 0 � sin � 0
fNC1

.k C 1/

0 0
::: IN

:::
:::

:::

sin � 0
fNC1

.k C 1/ 0 � � � 0 � � � 0 cos � 0
fNC1

.k C 1/

3

7
7
7
7
7
7
7
5

(9.101)

where the rotation entries of Q0
f .k C 1/ are calculated as follows:

�i D
q
�2i�1 C x2q2i .k/

cos � 0
fNC2�i

.k C 1/ D �i�1
�i

sin � 0
fNC2�i

.k C 1/ D xq2i .k/

�i
(9.102)

for i D 1; : : : ; N C 1, where �0 D jj"f .k/jj. Note that �NC1 is the norm of the
weighted backward prediction error jj"b;0.k C 1/jj, for a zero-order predictor (see
(9.86)). The quantity xq2i .k/ denotes the i th element of the vector xq2 .k/.

Since the above rotations, at instant k, are actually completing the triangulariza-
tion of X.NC2/.k C 1/, it follows that

QQ.NC2/.k C 1/ D
�

Ik�N 0
0 Q0

f .k C 1/

�
QQf .k/

� QQ.k/ 0
0 1

�

(9.103)

If the pinning vector, Œ1 0 : : : 0�T , is postmultiplied on both sides of the above
equation, we obtain the following relation

QQ.NC2/.k C 1/

2

6
6
6
4

1

0
:::

0

3

7
7
7
5

D
�

Ik�N 0
0 Q0

f .k C 1/

�
QQf .k/

� QQ.k/ 0
0 1

�

2

6
6
6
4

1

0
:::

0

3

7
7
7
5

D

2

6
6
6
4

�.NC2/.k C 1/

0
:::

r.NC2/.k C 1/

3

7
7
7
5	

N C 2

D
�

Ik�N 0
0 Q0

f .k C 1/

�
QQf .k/

2

6
6
6
6
6
4

�.k/

0
:::

r.k/
0

3

7
7
7
7
7
5 �

N C 1

(9.104)
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where r.NC2/.k/ and r.k/ are vectors representing the last nonzero elements in the
first column of QQ.NC2/.k/ and QQ.k/, respectively, as can be seen in (9.73). Now,
we can proceed by taking the product involving the matrix QQf .k/ resulting in the
following relation

1
n

k�N�1
(

N C 1
n

2

6
6
6
6
6
6
4

�.k/ cos �f .k/
0
:::

r.k/
�.k/ sin �f .k/

3

7
7
7
7
7
7
5

D
"

Ik�N�1 0
0 Q0T

f .k C 1/

#

2

6
6
6
6
4

�.NC2/.k C 1/

0
:::

r.NC2/.k C 1/

3

7
7
7
7
5

o
1
)

k�N�1
o
N C 2

(9.105)

Since our interest is to calculate r.k C 1/, the above equation can be reduced to

Q0
f .k C 1/

�
r.k/

�.k/ sin �f .k/

�

D r.NC2/.k C 1/ (9.106)

where the unused k � N rows and columns were deleted and r.k C 1/ is the last
N C1 rows of r.NC2/.kC1/. Now, since we have r.kC1/ available as a function of
known quantities, it is possible to calculate the angles of the reduced rotation matrix
Q� .k C 1/ using the following relation.

�
�.k C 1/

r.k C 1/

�

D Q� .k C 1/

2

6
6
6
4

1

0
:::

0

3

7
7
7
5

(9.107)

By examining the definition of Q� .k C 1/ in (9.75) and (9.76), it is possible to
conclude that it has the following general form (see (9.29) and (9.30) for similar
derivation)

N C 1
‚ …„ ƒ

Q� .k C 1/ D

2

6
6
6
4

� � � � � �
� �
:::

: : :

� � � � � �

3

7
7
7
5

9
=

;
N C 1

(9.108)

where � represents a nonzero element, with the first column given by
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2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

NY

iD0
cos �i .k C 1/

N�1Y

iD0
cos �i .k C 1/ sin �N .k C 1/

:::

j�1Y

iD0
cos �i .k C 1/ sin �j .k C 1/

:::

sin �0.k C 1/

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(9.109)

Although �.k C 1/ is not known, referring back to (9.107) and considering that
each angle �i is individually responsible for an element in the vector r.k C 1/, it is
possible to show that (9.107) can be solved by the following algorithm:

Initialize � 0
0 D 1

For i D 1 to N C 1 calculate

sin �i�1.k C 1/ D rNC2�i .k C 1/

� 0
0

(9.110)

� 02
1 D � 02

0Œ1 � sin2 �i�1.k C 1/�

D � 02
0 � r2NC2�i .k C 1/ (9.111)

cos �i�1.k C 1/ D � 0
1

� 0
0

(9.112)

� 0
0 D � 0

1 (9.113)

After computation is finished make �.k C 1/ D � 0
1.

In the fast QR-RLS algorithm, we first calculate the rotated forward prediction
error as in (9.99), followed by the calculation of the energy of the forward prediction
error using (9.98) and the elements of QQf .k/ given in (9.96) and (9.97), respectively.
The rotation entries of Q0

f .k C 1/ are calculated using the relations of (9.102),
which in turn allow us to calculate r.NC2/.k C 1/ through (9.106). Given r.NC2/
.kC 1/, the rotation angles �i can be calculated via (9.110)–(9.112). The remaining
equations of the algorithm are the joint-processor section and the computation of
the forward prediction error given by (9.51) and (9.54), respectively.

The resulting Algorithm 9.2 is almost the same as the hybrid QR-lattice algorithm
of [8]. The main difference is the order the of computation of the angles �i . In [8]
the computation starts from �N by employing the relation

�.k C 1/ D
p
1 � jjr.k C 1/jj2 (9.114)
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Algorithm 9.2 Fast QR-RLS algorithm based on a posteriori backward prediction
error
Initialization

jj"f .�1/jj D ı ı small
All cosines with 1 (use for k � N C 1/

All other variables with zero.
Do for each k � 0�

"fq1 .k/

xq2 .k/

�

D Q� .k/

�
x.k C 1/

�1=2xq2 .k � 1/

�

(9.99)

jj"f .k/jj2 D �jj"f .k � 1/jj2 C "2fq1 .k/ (9.98)

sin �f .k/ D "fq1 .k/

jj"f .k/jj (9.97)

�0 D jj"f .k/jj
Do for i D 1 to N C 1

�i D
q
�2i�1 C x2q2i .k/ (9.102)

cos � 0

fNC2�i
.k C 1/ D �i�1

�i
(9.102)

sin � 0

fNC2�i
.k C 1/ D xq2i .k/

�i
(9.102)

End

r.NC2/.k C 1/ D Q0

f .k C 1/

�
r.k/

�.k/ sin �f .k/

�

(9.106)

r.k C 1/ D last N C 1 elements of r.NC2/.k C 1/

� 0

0 D 1

Do for i D 1 to N C 1

sin �i�1.k C 1/ D rNC2�i .k C 1/

� 0

0

(9.110)

� 0

2
1 D � 0

2
0 � r2NC2�i .k C 1/ (9.111)

cos �i�1.k C 1/ D � 0

1

� 0

0

(9.112)

� 0

0 D � 0

1

End
�.k C 1/ D � 0

1

Filter evolution�
"q1 .k C 1/

dq2 .k C 1/

�

D Q� .k C 1/

�
d.k C 1/

�1=2dq2 .k/

�

(9.51)

".k C 1/ D "q1 .k C 1/�.k C 1/ (9.54)
End

This algorithm is closely related to the normalized lattice algorithm (see [8]).
Some key results are needed to establish the relation between these algorithms. For
example it can be shown that the parameter �.k;N C 1/ of the lattice algorithms
corresponds to �2.k/ in the fast QR algorithm.

In Problem 17, it is proved that the elements of r.kC1/ in (9.106) correspond to
normalized backward prediction a posteriori errors of distinct orders [8]. This is the
explanation for the classification of Algorithm 9.2 in Table 9.2 as one which updates
the a posteriori backward prediction errors.
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Table 9.3 Results of the
finite-precision
implementation of the fast
QR-RLS algorithm

�.k/Q

No. of bits Experiment

16 1.7 10�3

12 2.0 10�3

10 2.1 10�3

Example 9.3. In this example, the system identification problem described in
Sect. 3.6.2 is solved using the QR-RLS algorithm described in this section. We
implemented the fast QR-RLS algorithm with finite precision.

Solution. The main objective of this example is to test the stability of the fast
QR-RLS algorithm. For that we run the algorithm implemented with fixed-point
arithmetic. The wordlengths used are 16, 12, and 10 bits, respectively. We force the
rotations to be kept passive. In other words, for each rotation the sum of the squares
of the quantized sine and cosine are kept less or equal to one. Also, we test � 0

1 to
prevent it from becoming less than zero. With these measures, we did not notice any
sign of divergence in our experiments. Table 9.3 shows the measured MSE in the
finite-precision implementation, where the expected MSE for the infinite-precision
implementation is 0:0015. The analysis of these results shows that the fast QR-RLS
has low sensitivity to quantization effects and is comparable to the other stable RLS
algorithms presented in this text. �

9.6 Conclusions and Further Reading

Motivated by the numerically well conditioned Givens rotations, two types of
rotation-based algorithms were presented in this chapter. In both cases the QR
decomposition implemented with orthogonal Givens rotations were employed. The
first algorithm is computationally intensive (order N2) and is mainly useful in
applications where the input signal vector does not consist of time delayed elements.
The advantages of this algorithm are its numerical stability and its systolic array
implementation. The second class of algorithms explores the time-shift property of
the input signal vector which is inherent to a number of applications, yielding the
fast QR-RLS algorithms with order N numerical operations per output sample.

It should be noticed that the subject of QR-decomposition-based algorithms is not
fully covered here. A complete approach to generating fast QR-RLS algorithm using
lattice formulation is known [21–24]. In [21], the author applied QR decomposition
to avoid inversion of covariance matrices in the multichannel problem employing
lattice RLS formulation. A full orthogonalization of the resulting algorithm was
later proposed in [23]. By using different formulations, the works of [22, 23], and
[24] propose virtually identical QR-decomposition-based lattice RLS algorithms.
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In terms of computational complexity, the fast QR-RLS algorithm presented in this
chapter is more efficient. Although not discussed here, a solution to compute the
adaptive-filter weights from the internal quantities of the fast QR-RLS algorithm is
currently available [25].

Another family of algorithms employing QR decomposition are those that
replace the Givens rotation by the Householder transformation [1]. The House-
holder transformation can be considered an efficient method to compute the QR
decomposition and is known to yield more accurate results than the Givens rotations
in finite-precision implementations. In [26], the fast Householder RLS adaptive-
filtering algorithm was proposed and shown to require computational complexity
on the order of 7N . However, no stability proof for this algorithm exists so far. In
another work, the Householder transformation is employed to derive a block-type
RLS algorithm that can be mapped on a systolic-block Householder transformation
[27]. In [28], by employing the Householder transformation, a QR-based LMS
algorithm was proposed as a numerically stable and fast converging algorithm with
OŒN � computational complexity.

A major drawback of the conventional QR-RLS algorithm is the backsubstitution
algorithm which is required for computing the weight vector. In a systolic array, it
can be implemented as shown in this chapter, through a bidirectional array that
requires extra clock cycles. Alternatively, a two-dimensional array can be employed
despite being more computationally expensive [13]. An approach called inverse QR
method can be used to derive a QR-based RLS algorithm such that the weight vector
can be calculated without backsubstitution [29, 30]; however, no formal proof of
stability for this algorithm is known.

The QR decomposition has also been shown to be useful for the implementation
of numerically stable nonlinear adaptive-filtering algorithms. In [31], a QR-based
RLS algorithm for adaptive nonlinear filtering has been proposed.

Some performance evaluations of the QR-RLS and fast QR-RLS algorithms are
found in this chapter where these algorithms were employed in some simulation
examples.

9.7 Problems

1. If we consider each anti-diagonal element of �
1
2 U.k/ as a scaling constant di ,

and we divide the input signal vector initially by a constant ı, we can derive a
QR-decomposition algorithm without square roots as described below:

The first two rows to be rotated are

ı Qx.k/ ı Qx.k � 1/ � � � ı Qx.k �N/

d1�
1=2 Qu1;1.k � 1/ d1�

1=2 Qu1;2.k � 1/ � � � d1

where d1 D �1=2u1;NC1.k � 1/. The parameter ı can be initialized with 1.
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Applying the Givens rotation to the rows above results in

ı
0

x
0

1.k/ ı
0

x
0

1.k � 1/ � � � ı
0

x
0

1.k �N C 1/ 0

d
0

1 Qu0

1;1.k/ d
0

1 Qu0

1;2.k/ � � � d
0

1 Qu0

1;N .k/ d
0

1

where

d
02
1 D d21 C ı2 Qx2.k �N/
c D d21

d21Cı2 Qx2.k�N/
ı

02 D d21 ı
2

d21Cı2 Qx2.k�N/
s D ı2 Qx.k�N/

d21Cı2 Qx2.k�N/
x

0

1.k �N C i/ D Qx.k �N C i/� Qx.k �N/�1=2 Qu1;N�iC1.k � 1/
Qu0

1;N�iC1.k/ D c�1=2 Qu1;NC1�i .k � 1/C s Qx.k �N C i/:

The same procedure can be used to triangularize completely the input signal
matrix.

(a) Using the above procedure derive a QR-RLS algorithm without square
roots.

(b) Compare the computational complexity of the QR-RLS algorithms with
and without square roots.

(c) Show that the triangularized matrix QU.k/ is related with U.k/ through

U.k/ D D
0 QU.k/

where D
0

is a diagonal matrix with the diagonal elements given by d
0

i for
i D 1; 2; : : : ; N C 1.

2. Since QT .k/Q.k/ D IkC1, the following identity is valid for any matrix A
and B:

CT D D ATB for Q.k/ ŒA j B� D ŒC j D�

where Q.k/;A;B;C;and D have the appropriate dimensions. By choosing
A;B;C; and D appropriately, derive the following relations.

(a) UT .k/U.k/ D �UT .k � 1/U.k � 1/C x.k/xT .k/
(b) pD.k/ D �pD.k � 1/C x.k/d.k/

where pD.k/ D ˙k
iD0�kx.i/d.i/

(c) UT .k/U�T .k/x.k/ D x.k/
where U�T .k/ D �

U�1.k/
�T

(d) pTD.k/U
�1.k/U�T .k/x.k/C "q1.k/�.k/ D d.k/.

3. Partitioning Q� .k/ as follows:

Q� .k/ D
�
�.k/ qT� .k/
q0
� .k/ Q� r .k/

�
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show from (9.51) and (9.39) that

qT� .k/�
1=2U.k � 1/C �.k/xT .k/ D 0T

qT� .k/�
1=2dq2.k � 1/C �.k/d.k/ D "q1.k/.

4. Using the relations of the previous two problems and the fact that U.k/w.k/ D
dq2.k/, show that

(a) e.k/ D "q1.k/

�.k/

(b) ".k/ D e.k/�2.k/

(c) "q1.k/ D p
".k/e.k/.

5. Show that UT .k/dq2.k/ D pD.k/.
6. Using some of the formulas of the conventional RLS algorithm show that

�2.k/ D 1 � xT .k/R�1
D .k/x.k/.

7. The QR-RLS algorithm is used to predict the signal x.k/ D cos.	k=3/ using a
second-order FIR filter with the first tap fixed at 1. Note that we are interested
in minimizing the MSE of the FIR output error. Given � D 0:985, calculate
y.k/ and the filter coefficients for the first ten iterations.

8. Use the QR-RLS algorithm to identify a system with the transfer function given
below. The input signal is uniformly distributed white noise with variance �2x D
1 and the measurement noise is Gaussian white noise uncorrelated with the
input with variance �2n D 10�3. The adaptive filter has 12 coefficients.

H.z/ D 1 � z�12

1 � z�1

(a) Run the algorithm for � D 1, � D 0:99, and � D 0:97. Comment on the
convergence behavior in each case.

(b) Plot the obtained FIR filter frequency response at any iteration after
convergence is achieved and compare with the unknown system.

9. Perform the equalization of a channel with the following impulse response

h.k/ D
10X

lDk
.l � 10/Œu.k/� u.k � 10/�

where u.k/ is a step sequence.
Use a known training signal that consists of a binary .�1; 1/ random signal.

An additional Gaussian white noise with variance 10�2 is present at the channel
output.

(a) Apply the QR-RLS with an appropriate � and find the impulse response of
an equalizer with 50 coefficients.

(b) Convolve the equalizer impulse response at a given iteration after conver-
gence, with the channel impulse response and comment on the result.
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10. In a system identification problem the input signal is generated by an autore-
gressive process given by

x.k/ D �1:2x.k � 1/� 0:81x.k � 2/C nx.k/

where nx.k/ is zero-mean Gaussian white noise with variance such that �2x D 1.
The unknown system is described by

H.z/ D 1C 0:9z�1 C 0:1z�2 C 0:2z�3

The adaptive filter is also a third-order FIR filter. Using the QR-RLS algorithm:
Choose an appropriate �, run an ensemble of 20 experiments, and plot the

average learning curve.
11. The QR-RLS algorithm is applied to identify a 7th-order time-varying unknown

system whose coefficients are first-order Markov processes with �w D 0:999

and �2w D 0:001. The initial time-varying system multiplier coefficients are

wT
o D Œ0:03490 � 0:01100 � 0:06864 0:22391 0:55686 0:35798

�0:02390 � 0:07594�

The input signal is Gaussian white noise with variance �2x D 0:7, and the
measurement noise is also Gaussian white noise independent of the input signal
and of the elements of nw.k/, with variance �2n D 0:01.

(a) For � D 0:97 measure the excess MSE.
(b) Repeat (a) for � D �opt.

12. Suppose a 15th-order FIR digital filter with multiplier coefficients given below
is identified through an adaptive FIR filter of the same order using the QR-
RLS algorithm. Considering that fixed-point arithmetic is used and for 10
independent runs, calculate an estimate of the expected value of jj�w.k/Qjj2
and �.k/Q for the following case.

Additional noise : white noise with variance �2n D 0:0015

Coefficients wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance �2x D 0:7

� D 0:99

wT
o D Œ0:0219360 0:0015786 � 0:0602449 � 0:0118907 0:1375379

0:0574545 � 0:3216703 � 0:5287203 � 0:2957797 0:0002043 0:290670

�0:0353349 � 0:0068210 0:0026067 0:0010333 � 0:0143593�

Plot the learning curves for the finite- and infinite-precision implementations.
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13. Repeat the above problem for the following cases

(a) �2n D 0:01; bc D 9 bits, bd D 9 bits, �2x D 0:7; � D 0:98:

(b) �2n D 0:1; bc D 10 bits, bd D 10 bits, �2x D 0:8; � D 0:98.
(c) �2n D 0:05; bc D 8 bits, bd D 16 bits, �2x D 0:8; � D 0:98.

14. Repeat Problem 12 for the case where the input signal is a first-order Markov
process with �x D 0:95.

15. Repeat Problem 9 using the fast QR-RLS algorithm.
16. From (9.74) it is straightforward to show that

X.k/ D QT .k/

2

6
6
4

0

U.k/

3

7
7
5

D ŒQu.k/ Qd .k/�

2

6
6
4

0

U.k/

3

7
7
5

where Q.k/ D ŒQu.k/Qd .k/�
T .

(a) Using the above relation show that the elements of xq2 .k/ in (9.95) are
given by

xq2i .k/ D ŒqTdi .k/ 0�df .k/

where qdi .k/ is the i th column of Qd .k/.
(b) Show that the a posteriori error vector for an N th-order forward predictor

can be given by

"f .k;N C 1/ D df .k/ �
NC1X

iD1
xq2i .k/

2

6
6
4

qdi .k/

0

3

7
7
5

(c) Can the above expression be generalized to represent the a posteriori error
vector for an .N � j /th-order forward predictor? See the expression below

"f .k;N C 1 � j / D df .k/�
NC1X

iDj
xq2i .k/

2

6
6
4

qdi .k/

0

3

7
7
5
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17. For the fast QR-RLS algorithm, show that the elements of r.kC 1/ correspond
to a normalized backward prediction a posteriori error defined as

rNC1�i .k/ D "b.k; i/ D "b.k; i/

jj"b;i .k/jj D "bqi .k; i/

jj"b;i .k/jj
i�1Y

jD0
cos �j .k/

where
Q�1
jD0 D 1, and "b.k; i C 1/ is the a posteriori backward prediction error

for a predictor of order i , with i D 0; 1; : : :. Note that jj"b;i .k/jj2 corresponds
to �dbmin

.k; i C 1/ used in the lattice derivations of Chap. 7.
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Chapter 10
Adaptive IIR Filters

10.1 Introduction

Adaptive infinite impulse response (IIR) filters are those in which the zeros and
poles of the filter can be adapted. For that benefit the adaptive IIR filters usually1

have adaptive coefficients on the transfer function numerator and denominator.
Adaptive IIR filters present some advantages as compared with the adaptive FIR
filters, including reduced computational complexity. If both have the same number
of coefficients, the frequency response of the IIR filter can approximate much better
a desired characteristic. Therefore, an IIR filter in most cases requires fewer coef-
ficients, mainly when the desired model has poles and zeros, or sharp resonances
[1, 2]. There are applications requiring hundreds and sometimes thousands of taps
in an FIR filter where the use of an adaptive IIR filter is highly desirable. Among
these applications are satellite-channel and mobile-radio equalizers, acoustic echo
cancellation, etc.

The advantages of the adaptive IIR filters come with a number of difficulties,
some of them not encountered in the adaptive FIR counterparts. The main draw-
backs are: possible instability of the adaptive filter, slow convergence, and error
surface with local minima or biased global minimum depending on the objective
function [3].

In this chapter, several strategies to implement adaptive IIR filters will be
discussed. First, adaptive IIR filters having as objective function the minimization
of the mean-square output error are introduced. Several alternative structures are
presented and some properties of the error surface are addressed. In addition,
some algorithms based on the minimization of alternative objective functions are
discussed. The algorithms are devised to avoid the multimodality inherent to the
methods based on the output error.

1There are adaptive filtering algorithms with fixed poles.

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 10, © Springer Science+Business Media New York 2013
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10.2 Output-Error IIR Filters

In the present section, we examine strategies to reduce a function of the output error
given by

�.k/ D F Œe.k/� (10.1)

using an adaptive filter with IIR structure. The output error is defined by

e.k/ D d.k/ � y.k/ (10.2)

as illustrated in Fig. 10.1a. As usual, an adaptation algorithm determines how the
coefficients of the adaptive IIR filter should change in order to get the objective
function reduced.

Let us consider that the adaptive IIR filter is realized using the direct-form
structure of Fig. 10.1b. The signal information vector in this case is defined by

�.k/ D Œy.k � 1/ y.k � 2/ : : : y.k �N/ x.k/ x.k � 1/ : : : x.k �M/�T (10.3)

where N and M are the adaptive filter denominator and numerator orders,
respectively.

The direct-form adaptive filter can be characterized in time domain by the
following difference equation:

y.k/ D
MX

jD0
bj .k/x.k � j / �

NX

jD1
aj .k/y.k � j / (10.4)

In the system identification field [4], the above difference equation is in general
described through polynomial operator as follows:

y.k/ D B.k; q�1/
A.k; q�1/

x.k/ (10.5)

where

B.k; q�1/ D b0.k/C b1.k/q
�1 C � � � C bM .k/q

�M

A.k; q�1/ D 1C a1.k/q
�1 C � � � C aN .k/q

�N

and q�j denotes a delay operation in a time domain signal of j samples, i.e.,
q�j x.k/ D x.k�j /. The difference equation (10.4) can also be rewritten in a vector
form, which is more convenient for the algorithm description and implementation,
as described below:

y.k/ D �T .k/�.k/ (10.6)
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Fig. 10.1 Adaptive IIR filtering: (a) general configuration, (b) adaptive IIR direct-form realization

where �.k/ is the adaptive-filter coefficient vector given by

�.k/ D Œ�a1.k/ � a2.k/ : : : � aN .k/ b0.k/ b1.k/ : : : bM .k/�T (10.7)

In a given iteration k, the adaptive-filter transfer function can be expressed as
follows:

Hk.z/ D zN�M b0.k/zM C b1.k/zM�1 C � � � C bM�1.k/z C bM .k/

zN C a1.k/zN�1 C � � � C aN�1.k/z C aN .k/

D zN�M Nk.z/
Dk.z/

(10.8)
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Given the objective function F Œe.k/�, the gradient vector required to be employed
in the adaptive algorithm is given by

g.k/ D @F Œe.k/�

@e.k/

@e.k/

@�.k/
(10.9)

where e.k/ is the output error. The first derivative in the above gradient equation is
a scalar dependent on the objective function, while the second derivative is a vector
whose elements are obtained by

@e.k/

@ai .k/
D @Œd.k/ � y.k/�

@ai .k/
D � @y.k/

@ai .k/

for i D 1; 2; : : : ; N , and

@e.k/

@bj .k/
D @Œd.k/ � y.k/�

@bj .k/
D � @y.k/

@bj .k/
(10.10)

for j D 0; 1; : : : ;M , where we used the fact that the desired signal d.k/ is not
dependent on the adaptive-filter coefficients.

The derivatives of y.k/ with respect to the filter coefficients can be calculated
from the difference equation (10.4) as follows:

@y.k/

@ai .k/
D �y.k � i/�

NX

jD1
aj .k/

@y.k � j /
@ai .k/

for i D 1; 2; : : : ; N , and

@y.k/

@bj .k/
D x.k � j / �

NX

iD1
ai .k/

@y.k � i/
@bj .k/

(10.11)

for j D 0; 1; : : : ;M . The partial derivatives of y.k � i/ with respect to the
coefficients, for i D 1; 2; : : : ; N , are different from zero because the adaptive filter
is recursive. As a result, the present coefficients ai .k/ and bj .k/ are dependent on
the past output samples y.k � i/. The precise evaluation of these partial derivatives
is a very difficult task and does not have a simple implementation. However, as first
pointed out in [5] and [6], if small step sizes are used in the coefficient updating, the
following approximations are valid:

ai .k/ � ai .k � j / for i; j D 1; 2; : : : ; N

and

bj .k/ � bj .k � i/ for j D 0; 1; : : : ;M and i D 1; 2; : : : ; N (10.12)
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Fig. 10.2 Derivative implementation

As a consequence, (10.11) can be rewritten as

� @y.k/

@ai .k/
� Cy.k � i/�

NX

jD1
aj .k/

��@y.k � j /

@ai .k � j /

�

for i D 1; 2; : : : ; N , and

@y.k/

@bj .k/
� x.k � j / �

NX

iD1
ai .k/

@y.k � i/
@bj .k � i/

(10.13)

for j D 0; 1; : : : ;M . Note that these equations are standard difference equations.
The above equations can be implemented by all-pole filters having as input

signals �y.k�i/ and x.k�j / for the first and second set of equations, respectively.
The implementation of the derivative signals of (10.13) is depicted in Fig. 10.2. The
all-pole sections realization can be performed through IIR direct-form structure,
with transfer function given by

Sai .z/ D Z
�
@y.k/

@ai .k/

�

D �zN�i

Dk.z/
Y.z/

for i D 1; 2; : : : ; N , and

Sbj .z/ D Z
�
@y.k/

@bi .k/

�

D zN�j

Dk.z/
X.z/ (10.14)

for j D 0; 1; : : : ;M , respectively, where ZŒ�� denotes the Z-transform of Œ��.
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The amount of computation spent to obtain the derivatives is relatively high, as
compared with the adaptive-filter computation itself. A considerable reduction in
the amount of computation can be achieved, if it is considered that the coefficients
of the adaptive-filter denominator polynomial are slowly varying, such that

Dk.z/ � Dk�i .z/ for i D 1; 2; : : : ;max .N;M/ (10.15)

where max.a; b/ denotes maximum between a and b. The interpretation is that the
denominator polynomial is kept almost constant for a number of iterations. With this
approximation, it is possible to eliminate the duplicating all-pole filters of Fig. 10.2,
and replace them by a single all-pole in front of the two sets of delays as depicted
in Fig. 10.3a. In addition, if the recursive part of the adaptive filter is implemented
before the numerator part, one more all-pole section can be saved as illustrated in
Fig. 10.3b [7].

Note that in the time domain, the approximations of (10.15) imply the following
relations:

@y.k/

@ai .k/
� q�iC1 @y.k/

@a1.k/

for i D 1; 2; : : : ; N , and

@y.k/

@bj .k/
� q�j @y.k/

@b0.k/
(10.16)

for j D 0; 1; : : : ;M , where @y.k/

@a1.k/
represents the partial derivative of y.k/ with

respect to the first non-unit coefficient of the denominator polynomial, whereas
@y.k/

@b0.k/
is the partial derivative of y.k/ with respect to the first coefficient of the

numerator polynomial.

10.3 General Derivative Implementation

The derivatives of the output signal as related to the adaptive-filter coefficients
are always required to generate the gradient vector that is used in most adaptive
algorithms. These derivatives can be obtained in a systematic form by employing a
sensitivity property of digital filters with fixed coefficients [1,2] if the adaptive-filter
coefficients are slowly varying as assumed in (10.12).

Refer to Fig. 10.4a, where the multiplier with coefficient c is an internal
multiplier of a digital filter with fixed coefficients. A good measure of how the
digital filter characteristics change when the value of c changes is the sensitivity
function, defined as the partial derivative of the digital filter transfer function H.z/
as related to the coefficient c. It is well known from classical digital filtering theory
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Fig. 10.3 Simplified derivative implementation: (a) Simplification I, (b) Simplification II

[1,2] that the partial derivative of the digital filter transfer function, with respect to a
given multiplier coefficient c, is given by the product of the transfer functionH13.z/
from the filter input to the multiplier input and the transfer functionH42.z/ from the
multiplier output to the filter output, that is

Sc.z/ D H13.z/ �H42.z/ (10.17)

Figure 10.4b illustrates the derivative implementation. It can be noted that the
implementation of the derivatives for the direct-form structure shown in Fig. 10.2
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a

b

Fig. 10.4 General derivative
implementation: (a) General
structure, (b) Derivative
implementation

can be obtained by employing (10.17). In the time domain, the filtering operation
performed in the implementation of Fig. 10.4b is given by

@y.k/

@c
D h13.k/ � h42.k/ � x.k/ (10.18)

where � denotes convolution and hij .k/ is the impulse response related to Hij .z/.
When the digital filter coefficients are slowly varying, the desired derivatives can
be derived as in Fig. 10.4 for each adaptive coefficient. In this case, only an
approximated derivative is obtained.

@y.k/

@c.k/
� h13k.k/ � h42k.k/ � x.k/ (10.19)
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10.4 Adaptive Algorithms

In this section, the adaptation algorithms used in IIR adaptive filtering are described.
In particular, we present the RLS, the Gauss–Newton, and the gradient-based
algorithms.

10.4.1 Recursive Least-Squares Algorithm

A possible objective function for adaptive IIR filtering based on output error is the
least-squares function2

�d .k/ D
kX

iD0
�k�i e2.i/ D

kX

iD0
�k�i Œd.i/ � �T .k/�.i/�2 (10.20)

The forgetting factor � is usually chosen in the range 0 	 � < 1, with the objective
of turning the distant past information increasingly negligible. By differentiating
�d .k/ with respect to �.k/, it follows that

2gD.k/ D @�d .k/

@�.k/

D 2

kX

iD0
�k�i'.i/Œd.i/ � �T .k/�.i/�

D 2'.k/e.k/C �
@�d .k � 1/
@�.k/

(10.21)

where the vector '.k/ is the derivative of e.i/ with respect to �.k/, i.e.,

'.k/ D @e.k/

@�.k/
D � @y.k/

@�.k/
(10.22)

and without loss of generality we considered that �d .k � 1/ is a function of �.k/
and not of �.k � 1/ as in the FIR case. The second-derivative matrix 2RD.k/ of
�d .k/3 with respect to �.k/ is then given by

@2�d .k/

@�2.k/
D 2RD.k/ D 2�RD.k � 1/C 2'.k/'T .k/� 2

@2y.k/

@�2.k/
e.k/ (10.23)

2The reader should note that this definition of the deterministic weighted least squares utilizes the
a priori error with respect to the latest data pair d.k/ and x.k/, unlike the FIR RLS case.
3By differentiating 2gD.k/ in (10.21) with respect to �.k/.
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Now, several assumptions are made to generate a recursive algorithm. The adaptive-
filter parameters are considered to be updated by

�.k C 1/ D �.k/ � R�1
D .k/gD.k/ (10.24)

As can be noted from (10.21) and (10.23), the calculations of the last terms in
both RD.k/ and gD.k/ require a knowledge of the signal information vector since
the beginning of the algorithm operation, namely '.i/ for i < k. However, if
the algorithm step sizes, i.e., the elements of j�.k C 1/ � �.k/j, are considered
small, then

@�d .k � 1/
@�.k/

� 0 (10.25)

assuming that the vector�.k/ is the optimal estimate for the parameters at the instant
k � 1. This conclusion can be drawn by approximating �d .k � 1/ by a Taylor series
around �.k � 1/ and considering only the first-order term [4]. Also, close to the
minimum solution, the output error e.k/ can be considered approximately a white

noise (if the measurement noise is also a white noise) and independent of @2y.k/

@�
2
.k/

.

This assumption allows us to consider the expected value of the last term in (10.23)
negligible as compared to the remaining terms.

Applying the above approximations, an RLS algorithm for adaptive IIR filtering
is derived in which the basic steps are:

e.k/ D d.k/ � �T .k/�.k/ (10.26)

'.k/ D � @y.k/
@�.k/

(10.27)

SD.k/ D 1

�

�

SD.k � 1/� SD.k � 1/'.k/'T .k/SD.k � 1/
�C 'T .k/SD.k � 1/'.k/

�

(10.28)

�.k C 1/ D �.k/ � SD.k/'.k/e.k/ (10.29)

The description of the RLS adaptive IIR filter is given in Algorithm 10.1.
Note that the primary difference between the RLS algorithm for FIR and IIR

adaptive filtering relies on the signal information vector, '.k/, that in the IIR case
is obtained through a filtering operation while in the FIR case it corresponds to the
input signal vector x.k/.

10.4.2 The Gauss–Newton Algorithm

Consider as objective function the mean-square error (MSE) defined as

� D EŒe2.k/� (10.30)
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Algorithm 10.1 Output error algorithm, RLS version
Initialization
ai .k/ D bi .k/ D e.k/ D 0

y.k/ D x.k/ D 0 ; k < 0

SD.0/ D ı�1I
Definition
'T .k/ D Œ�y0.k � 1/ : : :� y0.k �N/ � x0.k/ � x0.k � 1/ : : :� x0.k �M/�

For each x.k/; d.k/; k � 0; do
y.k/ D �T .k/�.k/

y0.k/ D �y.k/�PN
iD1 ai .k/y

0.k � i /

x0.k/ D x.k/�PN
iD1 ai .k/x

0.k � i /

e.k/ D d.k/� y.k/

SD.k/ D 1
�

h
SD.k � 1/� SD.k�1/'.k/'T .k/SD.k�1/

�C'T .k/SD.k�1/'.k/

i

�.k C 1/ D �.k/� SD.k/'.k/e.k/
Stability test

In the Gauss–Newton algorithm, the minimization of the objective function is
obtained by performing searches in the Newton direction, using estimates of the
inverse Hessian matrix and the gradient vector.

The gradient vector is calculated as follows:

@�

@�.k/
D EŒ2e.k/'.k/� (10.31)

where '.k/ D @e.k/

@�.k/
as defined in (10.22).

The Hessian matrix is then given by

@2�

@�2.k/
D 2E

�

'.k/'T .k/C @2e.k/

@�2.k/
e.k/

�

(10.32)

where the expected value of the second term in the above equation is approximately
zero, since close to a solution the output error e.k/ is “almost” a white noise
independent of the following term:

@2e.k/

@�2.k/
D �@

2y.k/

@�2.k/

The determination of the gradient vector and the Hessian matrix requires statis-
tical expectation calculations. In order to derive a recursive algorithm, estimates of
the gradient vector and Hessian matrix have to be used. For the gradient vector, the
most commonly used estimation is the stochastic gradient given by

@ O�
@�.k/

D 2e.k/'.k/ (10.33)

where O� is an estimate of �. Such approximation was also used in the derivation of
the LMS algorithm. The name stochastic gradient originates from the fact that the
estimates point to random directions around the true gradient direction.



422 10 Adaptive IIR Filters

The Hessian estimate can be generated by employing a weighted summation as
follows:

OR.k C 1/ D ˛'.k/'T .k/C ˛

k�1X

iD0
.1 � ˛/k�i'.i/'T .i/

D ˛'.k/'T .k/C .1 � ˛/ OR.k/ (10.34)

where ˛ is a small factor chosen in the range 0 < ˛ < 0:1. By taking the expected
value on both sides of the above equation and assuming that k ! 1, it follows that

EŒ OR.k C 1/� D ˛

kX

iD0
.1 � ˛/k�iEŒ'.i/'T .i/�

� EŒ'.k/'T .k/� (10.35)

Applying the approximation discussed and the matrix inversion lemma to calculate
the inverse of OR.kC1/, i.e., OS.kC1/, the Gauss–Newton algorithm for IIR adaptive
filtering is derived, consisting of the following basic steps:

e.k/ D d.k/ � �T .k/�.k/ (10.36)

'.k/ D @e.k/

@�.k/
(10.37)

OS.k C 1/ D 1

1 � ˛

"

OS.k/ �
OS.k/'.k/'T .k/ OS.k/
1�˛
˛

C 'T .k/ OS.k/'.k/

#

(10.38)

�.k C 1/ D �.k/ � � OS.k C 1/'.k/e.k/ (10.39)

where � is the convergence factor. In most cases, � is chosen approximately equal
to ˛.

In the updating of the OR.k/matrix, the factor .1�˛/ plays the role of a forgetting
factor that determines the effective memory of the algorithm when computing the
present estimate. The closer ˛ is to zero, the more important is the past information,
in other words, the longer is the memory of the algorithm.

10.4.3 Gradient-Based Algorithm

If in the Gauss–Newton algorithm the estimate of the Hessian matrix is replaced by
the identity matrix, the resulting basic algorithm is given by
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e.k/ D d.k/� �T .k/�.k/ (10.40)

'.k/ D @e.k/

@�.k/
(10.41)

�.k C 1/ D �.k/ � �'.k/e.k/ (10.42)

These are the steps of a gradient-based algorithm for IIR filtering. The com-
putational complexity is much lower in gradient-based algorithm than in the
Gauss–Newton algorithm. With the latter, however, faster convergence is in general
achieved.

10.5 Alternative Adaptive Filter Structures

The direct-form structure is historically the most widely used realization for the IIR
adaptive filter. The main advantages of the direct form are the minimum number
of multiplier coefficients required to realize a desired transfer function and the
computationally efficient implementation for the gradient (which is possible under
the assumption that the denominator coefficients are slowly varying, as illustrated in
Fig. 10.3). On the other hand, the stability monitoring of the direct form is difficult
because it requires either the factorization of a high-order denominator polynomial
in each algorithm step or the use of a sophisticated stability test. In addition, the
coefficient sensitivities and output quantization noise are known to be high in the
direct form [2].

Alternate solutions are the cascade and parallel realizations using first- or second-
order sections as building blocks [8, 9]. Also, the lattice structures are popular
in the implementation of adaptive filters [10–16]. All these structures allow easy
stability monitoring while the parallel form appears to be most efficient in the
gradient computation. The standard parallel realization, however, may converge
slowly if two poles approach each other, as will be discussed later and, when a
Newton-based algorithm is employed, the estimated Hessian matrix becomes ill-
conditioned bringing convergence problems. This problem can be alleviated by
applying a preprocessing to the input signal [9, 17].

10.5.1 Cascade Form

Any N th-order transfer function can be realized by connecting several first- or
second-order sections in series, generating the so-called cascade form. Here we
consider that all subfilters are second-order sections without loss of generality, and if
an odd-order adaptive filter is required we add a single first-order section. Also, only
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Fig. 10.5 Cascade form

filters with real multiplier coefficients are discussed. The cascade realization transfer
function is given by

Hk.z/ D
mY

iD1

b0i z2 C b1i .k/z C b2i .k/

z2 C a1i .k/z C a2i .k/
D

mY

iD1
Hki .z/ (10.43)

wherem denotes the number of sections.
The parameter vector in the cascade form is

�.k/ D Œ�a11.k/ � a21.k/ b01.k/ b11.k/ b21.k/ : : : � a1m.k/

�a2m.k/ b0m.k/ b1m.k/ b2m.k/�T

The transfer function derivatives as related to the multiplier coefficients can
be generated by employing the general result of Fig. 10.4. Figure 10.5 depicts the
cascade realization along with the generation of the derivative signals of interest,
where the sections were realized through the direct form of Fig. 10.1.
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Any alternative second-order section can be used in the cascade form and the
appropriate choice depends on a trade-off between quantization effects, hardware
resources, computation time, and other factors. The main drawbacks of the cascade
form are the amount of extra computations required to generate the gradients and
the manifolds (see Sects. 10.6 and 10.7) generated on the error surface which may
result in slow convergence of the gradient-based algorithms.

10.5.2 Lattice Structure

In this subsection we discuss the lattice algorithm starting from its realization.
Although this might appear to be a recipe approach, the development presented here
allows us to access the nice properties of the lattice realization. The book by Regalia
[18] provides a detailed presentation of the various forms of lattice realization.

The two-multiplier lattice structure [10–15] for IIR filters is depicted in Fig. 10.6
with a sample of gradient computation. The coefficients 
i .k/ in the recursive part
of the structure are called reflection coefficients. The internal signals Ofi .k/ and
Obi.k/ are the forward and backward residuals, respectively. These internal signals
are calculated as follows:

OfNC1.k/ D x.k/

OfN�i .k/ D OfN�iC1.k/ � 
N�i .k/ ObN�i .k/
ObN�iC1.k C 1/ D 
N�i .k/ OfN�i .k/C ObN�i .k/

for i D 0; 1; : : : ; N , and

Ob0.k C 1/ D Of0.k/ (10.44)

The zero placement is implemented by a weighted sum of the backward residuals
Obi.k/, generating the filter output according to

y.k/ D
NC1X

iD0
Obi .k C 1/vi .k/ (10.45)

where vi .k/, for i D 0; 1; : : : ; N C 1, are the output coefficients.
The derivatives of the filter output y.k/ with respect to the output tap coefficients

vi .k/ are given by the backward residuals Obi.k C 1/. On the other hand, the deriva-
tives of y.k/ as related to the reflection multiplier coefficients 
i .k/ require one
additional lattice structure for each 
i .k/. In Fig. 10.6, the extra lattice required to
calculate @y.k/

@
N�1.k/
is shown for illustration. The overall structure for the calculation

of the referred partial derivative can be obtained by utilizing the general derivative
implementation of Fig. 10.4b. First note that the transfer functions from the filter
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Fig. 10.6 Lattice structure including a sample of gradient computation

input to the inputs of the multipliers ˙
N�1.k/ were realized by the original
adaptive lattice filter. Next, the overall partial derivative is obtained by taking the
input signals of ˙
N�1.k/ in the first lattice structure to their corresponding output
nodes in a second lattice structure whose external input is zero. For each derivative
@y.k/

@
j .k/
, the following algorithm must be used:

Of 0
NC1.k/ D 0

If i ¤ N � j

Of 0
N�i .k/ D Of 0

N�iC1.k/ � 
N�i .k/ Ob0
N�i .k/

Ob0
N�iC1.k C 1/ D 
N�i .k/ Of 0

N�i .k/C Ob0
N�i .k/
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for i D 0; 1; : : : ; N � j � 1;N � j C 1; : : : ; N

If i D N � j

Of 0
j .k/ D Of 0

jC1.k/ � 
j .k/ Ob0
j .k/� Obj .k/

Ob0
jC1.k C 1/ D 
j .k/ Of 0

j .k/C Ob0
j .k/C Ofj .k/

Ob0
o.k C 1/ D Ofo.k/

Then

@y.k/

@
j .k/
D

NC1X

iD0
Ob0
i .k C 1/vi .k/ (10.46)

The main desirable feature brought about by the lattice IIR realization is the
simple stability test. The stability requires only that reflection coefficients 
i .k/ be
maintained with modulus less than one [14]. However, the gradient computations
are extremely complex, and of order N2 in terms of multiplication count. An
approach for the gradient computations with order N multiplications and divisions
was proposed [13], which is still more complex than for the direct-form realization.
It should be noticed that in the direct form, all the signals at the multiplier’s input are
delayed versions of each other, and the transfer function from the multiplier’s output
to the filter output is the same. These properties make the gradient computational
complexity in the direct form low. The lattice IIR realization does not have these
features.

When the two-multiplier lattice structure is realizing a transfer function with
poles close to the unit circle, the internal signals may present a large dynamic
range, resulting in poor performance due to quantization effects. In this case,
the normalized lattice [16] is a better choice despite its higher computational
complexity. There are alternative lattice structures, such as the two-multiplier with
distinct reflection coefficients and the one-multiplier structures [12] that can also
be employed in adaptive filtering. For all these options the stability test is trivial,
retaining the main feature of the two-multiplier lattice structure.

An application where adaptive IIR filtering is the natural choice is sinusoid
detection using notch filters. A notch transfer function using direct-form structure is
given by

HN.z/ D 1 � 2 cos!0z�1 C z�2

1 � 2r cos!0z�1 C r2z�2 (10.47)

where !0 is the notch frequency and r is the pole radius [19]. The closer the pole
radius is to the unit circle, the narrower is the notch transfer function, leading to
better estimate of the sinusoid frequency in a noisy environment. However, in the
direct form the noise gain, caused by the notch transfer function, varies with the
sinusoid frequency, causing a bias in the frequency estimate [18].
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An alternative is to construct a notch filter by using a lattice structure. A second-
order notch filter can be generated by

HN.z/ D 1

2
Œ1CHAP.z/� (10.48)

where HAP.z/ is an all-pass transfer function which can be realized by a lattice
structure by setting v2 D 1 and v1 D v0 D 0 in Fig. 10.6. In this case,

HAP.z/ D 
1 C 
0.1C 
1/z�1 C z�2

1C 
0.1C 
1/z�1 C 
1z�2 (10.49)

The notch frequency !0 and the relation between �3 dB attenuation bandwidth
�!3 dB and 
1 are given by

!0 D cos�1.�
0/ (10.50)

and


1 D 1 � tan �!3 dB
2

1C tan �!3 dB
2

(10.51)

respectively. The main feature of the notch filter based on the lattice structure is the
independent control of the notch frequency and the �3 dB attenuation bandwidth.

It is worth mentioning that an enhanced version of the sinusoid signal can be
obtained by applying the noisy input signal to the bandpass filter whose transfer
function is given by

HBP.z/ D 1

2
Œ1 �HAP.z/� (10.52)

For identification of multiple sinusoids the most widely used structure is the
cascade of second-order sections, where each section identifies one of the sinusoids
removing the corresponding sinusoid from the input to the following sections.

Sinusoid detection in noise utilizing adaptive notch filter has rather simple
implementation as compared with other methods, and finds application in synchro-
nization, tone detection, and tracking for music signals among others.

Example 10.1. Apply an IIR notch adaptive filter using the second-order lattice
structure to detect a sinusoid buried in noise.

The input signal noise is a Gaussian white noise with variance �2x D 1, whereas
the sampling frequency is 10; 000Hz and the sinusoid to be detected is at 1; 000Hz.
Use a gradient-based algorithm.

(a) Choose the appropriate value of �.
(b) Run the algorithm using for signal to noise ratios of 0 and �5 dB, respectively.
(c) Show the learning curves for the detected frequency, the input, and the bandpass

filtered output signal.
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Fig. 10.7 Sinusoid buried in noise for signal to noise ratio (a) 0 dB, (b) �5 dB

Solution. A rather small convergence factor � D 0:000001 is used in this example.
Higher values can be used for lower ratio between the sampling frequency and the
sinusoid frequency. The starting search frequency is 1; 100Hz. A quality factor
of 10 is used, where this factor measures ratio between the notch frequency and
the frequencies with �3 dB of attenuation with respect to the gain in the pass
band of filter. The stopband width is then 100Hz. Figure 10.7a, b depicts the
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input signals for the cases where the signal to noise ratios are 0 and �5 dB’s,
respectively. Figure 10.8a, b shows the learning curves for the sinusoid frequencies
where in both cases the correct frequencies are detected in less than 1 s which is
equivalent to 1,000 iterations. As can be observed, the noisier input leads to noisier

j
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Fig. 10.9 Band-passed output signals (a) 0 dB, (b) �5 dB

output. Figure 10.9a, b depicts the bandpass output signal where the sinusoidal
components are clearly seen, and again the higher signal to noise ratio results in
cleaner sinusoids. In these plots we froze the value of 
0 at a given iteration after
convergence in order to generate the band-passed signals. ut
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Fig. 10.10 Parallel form

10.5.3 Parallel Form

In the parallel realization, the transfer function is realized by a parallel connection
of sections as shown in Fig. 10.10. The sections are in most of the cases of first- or
second-order, making the stability test trivial. The transfer function when second-
order sections are employed is given by

Hk.z/ D
m�1X

iD0

b0i .k/z2 C b1i .k/z C b2i .k/

z2 C a1i .k/z C a2i .k/
(10.53)

The parameter vector for the parallel form is

�.k/ D Œ�a10.k/ � a20.k/ b00.k/ b10.k/ b20.k/

: : : � a1 m�1.k/ � a2 m�1.k/ b0 m�1.k/ b1 m�1.k/ b2 m�1.k/�T (10.54)

The transfer function derivatives as related to the multiplier coefficients in the
parallel form are simple to calculate, because they depend on the derivative of
the individual section transfer function with respect to the multiplier coefficients
belonging to that section. Basically, the technique of Fig. 10.4 can be applied to
each section individually.

Since the interchange of sections in the parallel form does not alter the transfer
function, there are mŠ global minimum points each located in separate subregions
of the MSE surface. These subregions are separated by boundaries that are reduced-
order manifolds as will be discussed in Sect. 10.7. These boundaries contain saddle
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points and if the filter parameters are initialized on a boundary, the convergence rate
is most probably slow. Consider that the internal signals cross-correlation matrix is
approximately estimated by

OR.k C 1/ D ˛

kX

iD0
.1 � ˛/k�i'.i/'T .i/ (10.55)

when k is large. In this case, if the sections coefficients are identical, the information
vector consists of a set of identical subvectors '.i/, which in turn makes OR.kC 1/

ill-conditioned. The above discussion suggests that the sections in the parallel
realization should be initialized differently, although there is no guarantee that this
will avoid the ill-conditioning problems.

10.5.4 Frequency-Domain Parallel Structure

A possible alternative parallel realization first proposed in [9] incorporates a
preprocessing of the input signal using a discrete-time Fourier transform, generating
m signals that are individually applied as input to first-order complex-coefficients
sections. With this strategy, the matrix OR.k/ is more unlikely to become ill-
conditioned. Also, it is more difficult for a gradient-based algorithm to get stuck on
a reduced-order manifold, resulting in faster convergence. The parallel realization
can also be implemented using a real-coefficient transform for the preprocessing
and second-order sections.

The frequency-domain parallel structure is illustrated in Fig. 10.11, where d.k/
is the reference signal, x.k/ is the input signal, n.k/ is an additive noise source, and
y.k/ is the output. The i th parallel section is represented by the transfer function

Hi.z/ D b0i .k/z2 C b1i .k/z C b2i .k/

z2 C a1i .k/z C a2i .k/
k D 0; 1; : : : ; m � 1 (10.56)

where a1i .k/; a2i .k/; b0i .k/; b1i .k/, and b2i .k/ are adjustable real coefficients. The
inputs of the filter sections are preprocessed as shown in Fig. 10.11.

The purpose of preprocessing in Fig. 10.11 is to generate a set of uncorrelated
signals x1.k/; x2.k/; : : : ; xm.k/ in order to reduce the probability that two or
more sections converge to the same solution, to simplify the adaptation algorithm,
and to improve the rate of convergence.

On employing the discrete-time cosine transform (DCT), the input signals to the
subfilters in Fig. 10.11 are given by

x0.k/ D
p
2

m

m�1X

lD0
x.k � l/
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and

xi .k/ D
r
2

m

m�1X

lD0
x.k � l/ cos Œ	i.2l C 1/=.2m/� (10.57)

The transfer function from the input to the outputs of the DCT preprocessing filter
(or prefilter) can be described through the recursive frequency-domain description
given by

Ti .z/ D k0

m
cos �i

Œzm � .�1/i �.z � 1/
zm�1 Œz2 � .2 cos 2�i /z C 1�

(10.58)

where

k0 D
( p

2 if i D 0
p
2m if i D 1; 2; : : : ; m � 1
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and �i D 	i=.2m/. The DCT can be efficiently implemented through some fast
algorithms or by employing (10.58). In the latter case, special consideration must
be given to the poles on the unit circle.

Alternatively, the transfer functions of the prefilter can be expressed as

Ti.z/ D 1

m

m�1X

jD0
tij z�j D 1

m

m�2Y

rD0

.z � �ir /

z
D 1

zm�1
.z � 1/Œzm � .�1/i �
Œz2 � .2 cos 	i

m
/z C 1�

(10.59)

where the tij are the coefficients of the transform matrix T, and the �ir are the zeros
of Ti.z/. The gain constants k0 and cos � were dropped in (10.59) and will not be
considered from now on, since they can be absorbed by the numerator coefficients
b0i .k/; b1i .k/, and b2i .k/ of Hi.z/.

The overall transfer function of the frequency-domain adaptive filter of Fig. 10.11
is given by

H.z/ D
m�1X

iD0
Ti .z/Hi .z/

D 1

m

�
1

zm�1

�"m�1X

iD0

�
b0i z2 C b1iz C b2i

z2 C a1i z C a2i

�m�2Y

rD0
.z � �ir /

#

D 1

m

1

z3mC1

2

6
6
6
6
6
4

m�1X

iD0
.b0i z

2Cb1i zCb2i /

m�1Y

jD0;¤i
.z2Ca1j zCa2j /

m�2Y

rD0
.z��ir /

m�1Y

lD0
.z2Ca1l zCa2l /

3

7
7
7
7
7
5

(10.60)

Now assume that the realization discussed is used to identify a system of order 2Np
described by

HD.z/ D Kz2Np�P

P�1Y

rD0
.z � �r/

Np�1Y

iD0
.z2 C ˛1i z C ˛2i /

(10.61)

where K is a gain constant, p0i and p1i are the poles of section i , and �r are the
zeros of HD.z/ such that

�r ¤ p0i ; p1i for r D 0; : : : ; P � 1 and for i D 0; : : : ; Np � 1
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It can be shown that if the conditions outlined below are satisfied, the filter of
Fig. 10.11 can identify exactly systems with Np � m and P � 3m C 1. The
sufficient conditions are:

1. The transformation matrix T of the prefilter is square and has linearly indepen-
dent rows.

2. a1i ¤ a1j , and a2i ¤ a2j for i ¤ j ; a1i and a2i are not simultaneously zero for
all i .

3. The zeros of the prefilter do not coincide with the system’s poles, i.e., �ij ¤
p0l ; �ij ¤ p1l , for all i; j , and l .

Adaptation Algorithm

The adaptation algorithm entails the manipulation of a number of vectors, namely,
the coefficient vector

�.k/ D �
�T0 .k/ : : : �

T
m�1.k/

�T

where
� i .k/ D Œ�a1i .k/ � a2i .k/ b0i .k/ b1i .k/ b2i .k/�T

the internal data vector

�.k/ D �
�T0 .k/ : : :�

T
m�1.k/

�T

where
�i .k/ D Œyi .k � 1/ yi .k � 2/ xi .k/ xi .k � 1/ xi .k � 2/�T

the gradient vector
Q'.k/ D Œ'T0 .k/ : : :'

T
m�1.k/�T

where

'i .k/ D Œ�y0
i .k � 1/ � y0

i .k � 2/ � x0
i .k/ � x0

i .k � 1/ � x0
i .k � 2/�T

and the matrix OS.k/ which is an estimate of the inverse Hessian OR�1
.k/.

The elements of the gradient vector can be calculated by using the relations

x0
i .k/ D xi .k/ � a1i .k/x0

i .k � 1/� a2i .k/x
0
i .k � 2/

and
y0
i .k/ D �yi .k/ � a1i .k/y0

i .k � 1/� a2i .k/y
0
i .k � 2/

An adaptation algorithm for updating the filter coefficients based on the Gauss–
Newton algorithm is summarized in Algorithm 10.2. The algorithm includes the
updating of matrix OS.k/, which is obtained through the matrix inversion lemma.
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Algorithm 10.2 Frequency-domain parallel algorithm, RLS version
Initialization

OS.0/ D ıI.ı > 0/

� i .k/, 0 � i � m� 1

For each x.k/ and d.k/ given for k � 0, compute:

XDCT.k/ D DCTŒx.k/ : : : x.k �mC 1/�

Do for i D 0; 1; : : : ; m� 1 W
x0

i .k/ D xi .k/� a1i .k/x
0

i .k � 1/� a2i .k/x
0

i .k � 2/

i .k/�i .k/yi .k/ D �T

y0

i .k/ D �yi .k/� a1i .k/y
0

i .k � 1/� a2i .k/y
0

i .k � 2/

End

iD0 yi .k/e.k/ D d.k/�Pm�1

h.k/ D OS.k/Q'.k/

OS.k C 1/ D
�

OS.k/� h.k/h
T
.k/

. 1˛ �1/Ch
T
.k/ Q'.k/

�

. 1
1�˛

/

�.k C 1/ D �.k/� �OS.k C 1/Q'.k/e.k/
Carry out stability test.
End

The stability monitoring consists of verifying whether each set of coefficients
a1i .k/ and a2i .k/ defines a point outside the stability triangle [2], i.e., by testing
whether

1� a1i .k/C a2i .k/ < 0 or 1C a1i .k/C a2i .k/ < 0 or ja2i .k/j � 1 (10.62)

If instability is detected in a particular section, the poles must be projected back
inside the unit circle. A possible strategy is to project each pole by keeping its angle
and inverting its modulus. In this case, a2i and a1i should be replaced by 1=a2i .k/
and �a1i .k/=a2i .k/, respectively.

If the outputs of the DCT prefilter xi .k/ are sufficiently uncorrelated, the Hessian
matrix is approximately block-diagonal consisting of 5 � 5 submatrices ORi .k/. In
this case, instead of computing a 5m � 5m inverse Hessian estimate OS.k/, several
5 � 5 submatrices are computed and applied in the above algorithm as follows:
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For i D 0; 1; : : : ; m � 1

hi .k/ D OSi .k/'i .k/

OSi .k C 1/ D
"

OSi .k/ � hi .k/h
T
i .k/

. 1
˛

� 1/C hTi .k/'i .k/

#�
1

1 � ˛

�

� i .k C 1/ D � i .k/ � � OSi .k C 1/'i .k/e.k/ �

The choice of the adaptive-filter realization has implications on the computa-
tional complexity as well as on the convergence speed. Some studies exploring
this aspect related to the frequency-domain realization can be found in [20]. The
exploration of realization-related properties of the IIR adaptive MSE surface led
to a fast parallel realization where no transform preprocessing is required [21]. In
this approach, the reduced-order manifolds are avoided by properly configuring the
parallel sections which are implemented with general purpose second-order sections
[22]. An analysis of the asymptotic convergence speed of some adaptive IIR filtering
algorithms from the realization point of view can be found in [23]. Another approach
proposes a cascade/parallel orthogonal realization, with simplified gradient compu-
tation, by utilizing some of the ideas behind the derivation of improved parallel
realizations [24].

Example 10.2. An IIR adaptive filter of sufficient order is used to identify a system
with the transfer function given below.

H.z/ D 0:8.z2 � 1:804z C 1/2

.z2 � 1:512z C 0:827/.z2 � 1:567z C 0:736/

The input signal is a uniformly distributed white noise with variance �2x D 1, and
the measurement noise is Gaussian white noise uncorrelated with the input with
variance �2n D 10�1:5. Use a gradient-based algorithm.

(a) Choose the appropriate values of �.
(b) Run the algorithm using the direct-form structure, the lattice structure, the

parallel realization with preprocessing, and the cascade realization with direct-
form sections. Compare their convergence speed.

(c) Measure the MSE.
(d) Plot the obtained IIR filter frequency response at any iteration after convergence

is achieved and compare with the unknown system. Consider for this item only
the direct-form realization.
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Fig. 10.12 Magnitude response of the IIR adaptive filter with direct form at a given iteration after
convergence

Solution. A convergence factor � D 0:004 is used in all examples, except for the
lattice realization where � D 0:0002 is employed for the internal coefficients and
a larger � D 0:002 is employed for the updating of the feedforward coefficients,
for stability reasons. Although the chosen value of � is not an optimal value in any
sense, it led to the convergence of all algorithms. Figure 10.12 depicts the magnitude
response of the adaptive filter using the direct form at a given iteration after
convergence. For comparison the magnitude response of the system being modeled
is also plotted. As can be seen, the responses are close outside the frequency range
where the unknown system has a notch. Figure 10.13 shows the learning curves of
the algorithms obtained by averaging the results of 200 independent runs. As can
be seen the faster algorithms led to higher MSE. The cascade realization presented
faster convergence, followed by the parallel and lattice realizations. The measured
MSEs are given in Table 10.1.

There are very few results published in the literature addressing the finite-
precision implementation of IIR adaptive filters. For this particular example, all
algorithms are also implemented with fixed point arithmetic, with 12 and 16 bits.
No sign of divergence is detected during the early 2,000 iterations. However, the
reader should not take this result as conclusive. ut



440 10 Adaptive IIR Filters

–20

–15

–10

–5

0

5

0 1000 2000 3000 4000 5000 6000

E
st

im
at

ed
 M

S
E

  (
10

 lo
g(

M
S

E
))

Number of iterations, k

a

–10

–8

–6

–4

–2

0

2

4

0 200 400 600 800 1000 1200 1400

E
st

im
at

ed
 M

S
E

  (
10

 lo
g(

M
S

E
))

Number of iterations, k

b

Fig. 10.13 Learning curves for IIR adaptive filters with (a) Direct form, (b) Parallel form with
preprocessing, (c) Lattice, and (d) Cascade realizations
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Table 10.1 Evaluation of the
IIR algorithms

Realization MSE

Direct form 0.0391
Lattice 0.1514
Transf. Dom. parallel 0.1478
Cascade 0.1592

10.6 Mean-Square Error Surface

The error surface properties in the case of adaptive IIR filtering are key in
understanding the difficulties in applying gradient-based algorithms to search for
the optimal filter coefficient vector. In this section, the main emphasis is given to the
system identification application where the unknown system is modeled by

d.k/ D G.q�1/
C.q�1/

x.k/C n.k/ (10.63)

where

G.q�1/ D g0 C g1q
�1 C � � � C gMd

q�Md

C.q�1/ D 1C c1q
�1 C � � � C cNd q

�Nd

and n.k/ is the measurement noise that is considered uncorrelated with the input
signal x.k/.

The unknown transfer function is

Ho.z/ D zNd�Md
g0zMd C g1zMd�1 C � � � C gMd�1z C gMd

zNd C c1zNd�1 C � � � C cNd�1z C cNd

D zNd�Md
No.z/

Do.z/
(10.64)

The desired feature of the identification problem is that the adaptive-filter transfer
function Hk.z/ approximates Ho.z/ as much as possible in each iteration. If the
performance criterion is the MSE, the objective function is expressed in terms of
the input signal and the desired signals as follows:

� D EŒe2.k/� D EfŒd.k/� y.k/�2g
D EŒd2.k/ � 2d.k/y.k/C y2.k/�

D E

(��
G.q�1/
C.q�1/

x.k/C n.k/

�

� B.k; q�1/
A.k; q�1/

x.k/

�2)

(10.65)
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Since n.k/ is not correlated to x.k/ andEŒn.k/� D 0, (10.65) can be rewritten as

� D E

(��
G.q�1/
C.q�1/

� B.k; q�1/
A.k; q�1/

�

x.k/

�2)

C EŒn2.k/� (10.66)

The interest here is to study the relation between the objective function � and the
model filter coefficients, independently if these coefficients are adaptive or not. The
polynomials operators B.k; q�1/ and A.k; q�1/ will be considered fixed, denoted
respectively by B.q�1/ and A.q�1/.

The power spectra of the signals involved in the identification process are
given by

Rxx.z/ D ZŒrxx.l/�
Rnn.z/ D ZŒrnn.l/�
Rdd .z/ D Ho.z/ Ho.z

�1/ Rxx.z/CRnn.z/

Ryy.z/ D Hk.z/ Hk.z
�1/ Rxx.z/

Rdy.z/ D Ho.z/ Hk.z
�1/ Rxx.z/ (10.67)

By noting that for any processes x1.k/ and x2.k/

EŒx1.k/x2.k/� D 1

2	|

I

Rx1x2.z/
d z

z
(10.68)

where the integration path is the counterclockwise unit circle, the objective function,
as in (10.65), can be rewritten as

� D 1

2	|

I
�jHo.z/ �Hk.z/j2Rxx.z/CRnn.z/

� d z

z

D 1

2	|

�I

Ho.z/Ho.z
�1/Rxx.z/

d z

z
� 2

I

Ho.z/Hk.z
�1/Rxx.z/

d z

z

C
I

Hk.z/Hk.z
�1/Rxx.z/

d z

z
C
I

Rnn.z/
d z

z

�

(10.69)

For the case the input and additional noise signals are white with variances
respectively given by �2x and �2n , the (10.69) can be simplified to

� D �2x
2	|

I
�
Ho.z/Ho.z

�1/� 2Ho.z/Hk.z
�1/CHk.z/Hk.z

�1/
� d z

z
C �2n

(10.70)



444 10 Adaptive IIR Filters

This expression provides the relation between the MSE surface represented by �
and the coefficients of the adaptive filter. The following example illustrates the use
of the above equation.

Example 10.3. An all-pole adaptive filter of second-order is used to identify a
system with transfer function

Ho.z/ D 1

z2 C 0:9z C 0:81

The input signal and the measurement (additional) noise are white with �2x D 1

and �2n D 0:1, respectively. Compute the MSE as a function of the adaptive-filter
multiplier coefficients.

Solution. The adaptive-filter transfer function is given by

Hk.z/ D b2

z2 C a1z C a2

(10.70) can be solved by employing the residue theorem [1] which results in

� D b22.1C a2/

.1 � a2/.1C a2 � a1/.1C a2 C a1/

� 2b2.1 � 0:81a2/

1 � 0:9a1 � 0:81a2 � 0:729a1a2 C 0:81a21 C 0:6561a22

C3:86907339C 0:1 (10.71)

If the adaptive-filter coefficients are set to their optimal values, i.e., b2 D 1; a1 D 0:9

and a2 D 0:81, indicating a perfect identification of the unknown system, the
resulting MSE is

� D 3:86907339� 7:73814678C 3:86907339C 0:1

D 0:1

Note that the minimum MSE is equal to the measurement noise variance. ut
Equations (10.69) and (10.70), and more specifically (10.71), indicate clearly

that the MSE surface is a nonquadratic function of the multiplier coefficients of the
adaptive filter. This is particularly true for the multiplier coefficients pertaining to
the denominator of the adaptive filter. As a consequence, the MSE surface may have
several local minima, some of those corresponding to the desired global minimum.
The multiplicity of minimum points depends upon the order of the adaptive IIR filter
as compared to the unknown system that shapes the desired signal, and also upon
the input signal properties when it is a colored noise.
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Note that when the adaptive filter is FIR there is only a minimum point because
the MSE surface is quadratic, independently of the unknown system and input signal
characteristics. If the input or the desired signal are not stationary, the minimum
point of the MSE surface moves in time but it is still unique.

The main problem brought about by the multimodality of the MSE surface
is that gradient and Newton direction search algorithms will converge to a local
minimum. Therefore, the adaptive filter may converge to a very bad point where
the MSE assumes a large and unacceptable value. For example, in the system
identification application, the generated transfer function may differ significantly
from the unknown system transfer function.

Example 10.4. An unknown system with transfer function

Ho.z/ D z � 0:85

z C 0:99

is supposed to be identified by a first-order adaptive filter described by

Hk.z/ D bz

z � a
Plot the error surface, considering the input signal variance �2x D 1.

Solution. The expression for the MSE is given by

� D 171:13064� .2 � 1:7a/b

1C 0:99a
C b2

1 � a2

The MSE surface is depicted in Fig. 10.14, where the MSE is clipped at 1 for a
better view. ut

Several results regarding the uniqueness of the minimum point in the MSE
surface are available in the literature [25–30]. Here, some of these results are
summarized without proof, in order to give the designer some tools to support the
appropriate choice of the adaptive IIR filter order.

First consider the case of inverse filtering or equalization, where the adaptive
filter is placed in cascade with an unknown system and the desired signal is a delayed
version of the overall cascade input signal. This case had been originally explored
by Ȧström and Söderström [25], and they proved that if the adaptive filter is of
sufficient order to find the inverse filter of the unknown system, all the local minima
will correspond to global minima if the input signal is a white noise. The sufficient
order means that

N � Md

and

M � Nd (10.72)



446 10 Adaptive IIR Filters

0
0.5

1
1.5

2

–1

–0.5

0

0.5

1
0.9925

0.993

0.9935

0.994

0.9945

0.995

0.9955

0.996

ba

M
S

E

a

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

b

a

 0.994

 0.995

 0.995

 0.994

 0.996

b

Fig. 10.14 (a) MSE error surface, (b) MSE contours

where N and M are the numerator and denominator orders of the adaptive filter
as indicated in (10.5), Nd and Md are the corresponding orders for the unknown
system as indicated in (10.64).

When N > Md andM > Nd , there are infinitely many solutions given by

N.z/ D L.z/Do.z/
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and

D.z/ D L.z/No.z/ (10.73)

where L.z/ D z�Nl .zNl C l1zNl�1 C � � � C lNl /, Nl D min.N �Md;M �Nd/, and
li , for i D 1; 2; : : : ; Nl , are arbitrary.

The input signal can be colored noise generated for example by applying an IIR
filter to a white noise. In this case, the adaptive filter must have order sufficient to
generate the inverse of the unknown system and the input signal must be persistently
exciting of order max.N C Md;M C Nd/, see for example [25, 26], in order to
guarantee that all local minima correspond to global minima.

For insufficient-order equalization, several local minima that do not correspond
to a global minimum may occur. In this case, the MSE may not attain its minimum
value after the algorithm convergence.

The situation is not the same in system identification application, as thought in
the early investigations [27]. For this application, the sufficient order means

N � Nd

and

M � Md (10.74)

since the desired feature is to reproduce the unknown system frequency response,
and not its inverse as in the equalization case. For N > Nd and M > Md , the local
minima corresponding to global minima must satisfy the following conditions:

N.z/ D L.z/No.z/

and

D.z/ D L.z/Do.z/ (10.75)

where L.z/ D z�Nl .zNl C lizNl�1

¨ ¨

C � � � C lNl /, Nl D min.N �Md;M �Nd/, and
li , for i D 1; 2; : : : ; Nl , are arbitrary.

The strongest result derived so far regarding the error surface property in system
identification was derived by Soderstrom and Stoica [28]. The result states: For
white noise input, all the stationary points correspond to global minima if

M � Nd � 1

and

min.N �Nd ;M �Md/ � 0 (10.76)
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Suppose that the input signal is an ARMA process generated by filtering a white
noise with an IIR filter of orders Mn by Nn, and that there are no common zeros
between the unknown system denominator and the input coloring IIR filter. In this
case, all stationary points correspond to global minima if

M �Nd C 1 � Nn

and

min.N �Nd;M �Md/ � Mn (10.77)

The conditions summarized by (10.76) and (10.77) are sufficient but not necessary
to guarantee that all stationary solutions correspond to the minimum MSE.

For N D Nd D 1; M � Md � 0 and the input signal persistently exciting of
orderMd , there is a unique solution given by [28]

D.z/ D Do.z/

and

N.z/ D No.z/ (10.78)

Also, when the adaptive filter and unknown system are all-pole second-order
sections, the unique solution is given by (10.78) [29].

Another particular result of some interest presented in [30] states that if

N �Nd D M �Md D 0

and

M � Nd � 2 (10.79)

the MSE surface has a unique stationary point corresponding to a global minimum.
For the case of insufficient-order identification [31], i.e., min.N � Nd;M �

Md/ < 0, or of sufficient order not satisfying the condition related to (10.77)–
(10.79), the MSE surface may have local minima not attaining the minimum MSE,
i.e., that are not global minima.

To satisfy any of the conditions of (10.77)–(10.79), a knowledge of the unknown
system numerator and denominator orders is required. This information is not in
general available or easy to obtain. This is one of the reasons adaptive IIR filters are
not as popular as their FIR counterparts. However, there are situations where either
a local minimum is acceptable or some information about the unknown system is
available.
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It should be noted that a vast literature is available for system identification
[4, 32, 33]. Here, the objective was to summarize some properties of the MSE
surface, when the unknown system is modeled as an IIR filter with additive, white,
and uncorrelated measurement noise. The assumptions regarding the measurement
noise are quite reasonable for most applications of adaptive filtering.

10.7 Influence of the Filter Structure on the MSE Surface

Some characteristics of the MSE surface differ when alternative structures are used
in the realization of the adaptive filter. Each realization has a different relation
between the filter transfer function and the multiplier coefficients, originating
modifications in the MSE surface [34].

The MSE surfaces related to two alternative realizations for the adaptive filter can
be described as functions of the filter multiplier coefficients by F1.�1/ and F2.�2/,
respectively. Note that no index was used to indicate the varying characteristics of
the adaptive-filter parameters, since this simplifies the notation while keeping the
relevant MSE surface properties. It is assumed that the desired signal and the input
signal are the same in the alternative experiments. Also, it is considered that for any
set of parameters �1 leading to a stable filter, there is a continuous mapping given
by f 3.�1/ D �2, where �2 also leads to a stable filter. Both �1 and �2 are N 0 by 1
vectors.

The two alternative structures are equivalent if the objective functions are
equal, i.e.,

F1.�1/ D F2.�2/ D F2Œf 3.�1/� (10.80)

First consider the case where f 3 is differentiable, and then from the above
equation it follows that

@F1.�1/

@�1
D @F2Œf 3.�1/�

@�1
D @F2Œf 3.�1/�

@f 3.�1/

@f 3.�1/

@�1
(10.81)

where the first partial derivative on the rightmost side of the above equation is an
1 by N 0 vector while the second partial derivative is a matrix with dimensions N 0
by N 0, where N 0 is the number of parameters in �1. Suppose that � 0

2 is a stationary
point of F2.�2/, it then follows that

@F2.�2/

@�2
j�2D� 0

2
D 0 D @F1.�1/

@�1
j�1D� 0

1
(10.82)

where � 0
2 D f 3.�

0
1/. Note that the type of the stationary points of F1.�1/ and

F2.�2/ is the same, since their second derivatives have the same properties at these
stationary points (see Problem 1).
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Now consider the case where

@F2Œf 3.�1/�

@f 3.�1/
j�1D� 00

1
D 0 (10.83)

but
@F1.�1/

@�1
j�1D� 00

1
¤ 0 (10.84)

that can happen only when f 3.�1/ is not differentiable at �1 D � 00
1 . In this case, the

chain rule of (10.81) does not apply. The new generated stationary points in F2.�2/
can be shown to be saddle points (see Problem 2).

Example 10.5. An unknown second-order system described by

Ho.z/ D 2z C c1

z2 C c1z C c2

is to be identified by using two different structures for the adaptive filter, namely the
direct form and the parallel form described respectively by

Hd.z/ D 2z C a1

z2 C a1z C a2

and

Hp.z/ D 1

z C p1
C 1

z C p2
D 2z C p1 C p2

z2 C .p1 C p2/z C p1p2

verify the existence of new saddle points in the parallel realization.

Solution. The function relating the parameters of the two realizations can be
given by

�2 D
2

4
a1C

p
a21�4a2
2

a1�
p
a21�4a2
2

3

5 D f 3.�1/

where function f 3.�1/ is not differentiable when a2 D a21
4

.

The inverse of the matrix @f 3.�1/

@�1
is given by

�
@f 3.�1/

@�1

��1
D
�
1 1

p2 p1

�

and, if p1 D p2, the above matrix is singular, which makes it possible that
@F1.�1/

@�1
¤ 0 when @F2.�2/

@�2
D 0, as previously mentioned in (10.81) and (10.82).
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Note that, as expected, p1 D p2 only when a2 D a21
4

. On this parabola, the
objective function F1.�1/ has a minimum that corresponds to a saddle point of
the function F2.�2/. Also, this is the situation where the parallel realization is of
reduced order, i.e., first order. ut
Basically, the manifold generated by the parallel realization is due to the fact that a
given section can identify any pole of the unknown system, leaving the other poles to
the remaining sections in parallel. This means that in a sufficient-order identification
problem, if for the direct-form realization there is a unique global minimum point,
in the case of parallel realization with first-order sections there will be NŠ global
minima, where N is the number of poles in the unknown system. When using a
parallel realization it is assumed that no multiple poles exist in the unknown system.

In the initialization of the algorithm, the adaptive-filter parameters should not be
in a reduced-order manifold, because by employing a gradient-based algorithm the
parameters may be kept in the manifold and eventually reach a saddle point. The
measurement noise, that is in general present in the adaptive-filtering process, will
help the parameters to skip the manifolds, but despite that the convergence will be
slowed. A similar phenomenon occurs with the cascade realization of the adaptive
filter.

10.8 Alternative Error Formulations

The error signal (in some cases the regressor) can be chosen in alternative ways
in order to avoid some of the drawbacks related to the output error formulation, as
for example the multiple local minima. Several formulations have been investigated
in the literature [35–44], where each of them has its own advantages and disadvan-
tages. The choice of the best error formulation depends on the application and on the
information available about the adaptive-filtering environment. In this section, we
present two alternative error formulations, namely the equation error and Steiglitz–
McBride methods, and discuss some of their known properties. Throughout the
section other error formulations are briefly mentioned.

10.8.1 Equation Error Formulation

In the equation error (EE) formulation, the information vector instead of having past
samples of the adaptive-filter output uses delayed samples of the desired signal as
follows:

�e.k/ D Œd.k � 1/ d.k � 2/ : : : d.k �N/ x.k/ x.k � 1/ : : : x.k �M/�T (10.85)
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Fig. 10.15 Equation error configuration

The equation error is defined by

ee.k/ D d.k/� �T .k/�e.k/ (10.86)

as illustrated in Fig. 10.15. The parameter vector �.k/ is given by

�.k/ D Œ�a1.k/ � a2.k/ : : : � aN .k/ b0.k/ : : : bM .k/�
T (10.87)

The equation error can be described in a polynomial form as follows:

ee.k/ D A.k; q�1/d.k/ � B.k; q�1/x.k/ (10.88)

where, once again

B.k; q�1/ D b0.k/C b1.k/q
�1 C � � � C bM .k/q

�M

A.k; q�1/ D 1C a1.k/q
�1 C � � � C aN .k/q

�N
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The output signal related to the EE formulation is obtained through the following
linear difference equation:

ye.k/ D
MX

jD0
bj .k/x.k � j / �

NX

jD1
aj .k/d.k � j /

D �T .k/�e.k/ (10.89)

As can be noted, the adaptive filter does not have feedback and ye.k/ is a linear
function of the parameters.

In the EE formulation, the adaptation algorithm determines how the coefficients
of the adaptive IIR filter should change in order to minimize an objective function
which involves ee.k/ defined as

�e D F Œee.k/� (10.90)

Usually, the objective function to be minimized is the mean-squared value of the EE
(MSEE), i.e.,

�e.k/ D EŒe2e .k/� (10.91)

Since the input and desired signals are not functions of the adaptive-filter parame-
ters, it can be expected that the sole approximation in the gradient computation is
due to the estimate of the expected value required in practical implementations. The
key point is to note that since the MSEE is a quadratic function of the parameters,
only a global minimum exists provided the signals involved are persistently exciting.
When the estimate of the MSEE is the instantaneous squared equation error, the
gradient vector is proportional to minus the information vector. In this case, the
resulting algorithm is called LMSEE algorithm whose coefficient updating equation
is givenby

�.k C 1/ D �.k/C 2��e.k/ee.k/ (10.92)

A number of approaches with different points of view are available to analyze the
convergence properties of this method. A particularly interesting result is that if the
convergence factor is chosen in the range

0 < � <
1

�max
(10.93)

the convergence in the mean of the LMSEE algorithm can be guaranteed [36],
where �max is the maximum eigenvalue ofEŒ�e.k/�

T
e .k/�. This result can be easily

proved by exploring the similarity between the LMSEE algorithm and the standard
FIR LMS algorithm. Some stability results of the LMSEE algorithm can be found
in [45].



454 10 Adaptive IIR Filters

+
+

+

-

A k,q( )-1

e ko ( )

y k( ) e ke ( )

x (k)

n (k)

d (k)G q( )-1

C q( )-1

B k,q( )-1

A k,q( )-1

Fig. 10.16 Basic configuration for system identification using equation error

An alternative objective function for adaptive IIR filtering based on equation
error is the least-squares function

�e.k/ D
kX

iD0
�k�i e2e .i/ D

kX

iD0
�k�i Œd.i/ � �T .k/�e.i/�2 (10.94)

The forgetting factor � as usual is chosen in the range 0 	 �<1, allowing the distant
past information to be increasingly negligible. In this case, the corresponding RLS
algorithm consists of the following basic steps:

e.k/ D d.k/ � �T .k/�e.k/ (10.95)

SDe.k C 1/ D 1

�

"

SDe.k/ � SDe.k/�e.k/�
T
e .k/SDe.k/

�C �Te .k/SDe.k/�e.k/

#

(10.96)

�.k C 1/ D �.k/C SDe.k C 1/�e.k/ee.k/ (10.97)

In a given iteration k, the adaptive IIR filter transfer function related to the EE
formulation can be expressed as follows:

Hk.z/ D zN�M b0.k/zM C b1.k/zM�1 C � � � C bM�1.k/z C bM .k/

zN C a1.k/zN�1 C � � � C aN�1.k/z C aN .k/
(10.98)

In Fig. 10.16 an alternative structure for the EE approach where the IIR adaptive
filter appears explicitly is depicted. Note that the structure shows clearly that
the polynomial A.k; q�1/ is meant to model the denominator polynomial of
the unknown system, in system identification applications. During the adaptation
process, it is necessary to monitor the stability of the poles, as described for the
output error method. The full description of the RLS equation error algorithm is
given in Algorithm 10.3.
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Algorithm 10.3 EE algorithm, RLS version
Initialization
ai .k/ D bi .k/ D e.k/ D 0

y.k/ D x.k/ D 0 ; k < 0

SDe.0/ D ı�1I
For each x.k/; d.k/; k � 0; do
ee.k/ D d.k/� �Te .k/�.k/

SDe.k C 1/ D 1
�

�

SDe.k/� SDe.k/�e .k/�
T

e .k/SDe.k/

�C�
T

e .k/SDe.k/�e .k/

�

�.k C 1/ D �.k/C SDe.k C 1/'e.k/ee.k/

Stability test

The basic problem related to this method is the parameter bias induced by the
measurement noise [36, 45], even for sufficient-order case. The bias is caused by
the fact that the additional noise n.k/ is filtered by the FIR filter represented by
the polynomial A.k; q�1/. Since the coefficients of this polynomial are updated
with the objective of minimizing the EE signal, they also attempt to minimize
the contribution of n.k/ to the EE power. The bias is induced by the fact that the
additional noise does not belong to the unknown system model. An increase in the
power of n.k/ leads to higher bias in the parameter estimate.

The instrumental variable methods [37] were proposed to solve the bias problem.
In these methods the stability cannot be guaranteed under the same general
conditions as for the LMSEE method.

Another approach was proposed in [38], and extended in [39] and [40], where a
family of asymptotically stable algorithms was introduced. The resulting algorithms
are based on a modification of the basic LMSEE updating equations, that within
sufficiently general conditions lead to consistent parameter estimates. These algo-
rithms employ a type of output error feedback to the information vector. There are
also algorithms that combine different algorithms to define the objective function
[46, 47].

10.8.2 The Steiglitz–McBride Method

The Steiglitz–McBride error formulation [41], by employing some extra all-pole
filtering, leads to algorithms whose behavior resembles the EE approach in the initial
iterations and the output error approach after convergence. The main motivation of
the Steiglitz–McBride method is the global convergence behavior for some cases of
insufficient-order system identification. Such interest sparked investigations which
resulted in a number of online algorithms based on the Steiglitz–McBride method
that are suitable for adaptive IIR filtering [44]. The main problem associated with
the Steiglitz–McBride method is the inconsistent behavior when the measurement
noise is colored [48]. Since the online method converges asymptotically to the off-
line solution, the bias error also affects the online algorithms proposed in [44].
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In order to introduce the Steiglitz–McBride method, consider the identification
of a system whose model is described by

d.k/ D G.q�1/
C.q�1/

x.k/C n.k/ D yd .k/C n.k/ (10.99)

where d.k/ is the reference signal, x.k/ is the input signal, n.k/ is the measurement
noise, and yd .k/ is the output signal of the plant, withC.q�1/ D 1�PNd

iD1 ciq�i and
G.q�1/ D PMd

iD0 gi q�i coprime. The polynomial C.q�1/ has zeros inside the unit
circle, and the input signal x.k/ and the measurement noise n.k/ are assumed inde-
pendent. The estimation of the parameters associated with the polynomials C.q�1/
and G.q�1/ through the Steiglitz–McBride method is based on the minimization of
the following criterion [41]

�s.�.k C 1// D E

( �

A.k C 1; q�1/
d.k/

A.k; q�1/
� B.k C 1; q�1/

x.k/

A.k; q�1/

�2
)

(10.100)

where A.k; q�1/ D 1 C PN
iD1 ai .k/q�i and B.k; q�1/ D PM

iD0 bi .k/q�i are the
denominator and numerator estimator polynomials, respectively, and

�.k/ D Œ�a1.k/ � a2.k/ : : : � aN .k/ b0.k/ : : : bM .k/�
T (10.101)

is the adaptive-filter parameter vector.
The estimate �.k C 1/ is obtained by minimizing (10.100) assuming �.k/ is

known. The solution of this MSE minimization problem at iteration .k C 1/ is

�.k C 1/ D �
E
˚
�s.k/�

T
s .k/

���1
E

�

�s.k/
d.k/

A.k; q�1/

�

D �
E
˚
�s.k/�

T
s .k/

���1
E
�
�s.k/df .k/

�
(10.102)

where

�s.k/ D
�
d.k � 1/

A.k; q�1/
: : :

d.k �N/

A.k; q�1/
x.k/

A.k; q�1/
: : :

x.k �M/

A.k; q�1/

�T

D �
df .k � 1/ : : : df .k �N/ xf .k/ : : : xf .k �M/

�T
(10.103)

is the regressor related to the Steiglitz–McBride method.
If the input signal is persistently exciting of sufficient order and the adaptive

filter has strictly sufficient order, some properties of the estimate resulting from
(10.102) are known [48]: (a) the estimate that minimizes (10.100) is unique; (b) if
the measurement noise is not white, the estimate resulting from (10.102) is biased.
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Fig. 10.17 Steiglitz–McBride configuration

In real-time signal processing applications, it is important to consider an online
version of the Steiglitz–McBride method. In this case, some approximations are
necessary. First note that the error criterion whose variance is to be minimized in
(10.102) is

es.k/ D d.k/

A.k; q�1/
� �T .k C 1/�s.k/ (10.104)

The Steiglitz–McBride error is computed as illustrated in Fig. 10.17. Assuming a
sufficiently slow parameter variation, we can consider that �.k C 1/ � �.k/.
Therefore, (10.104) can be rewritten as follows:

es.k/ � d.k/

A.k; q�1/
� �T .k/�s.k/ (10.105)

The exact implementation of the regressor �s.k/ requires an independent
filtering of each component by an all-pole filter with denominator polynomial
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Algorithm 10.4 Steiglitz–McBride-based algorithm, gradient version
Initialization
ai .k/ D bi .k/ D 0

df .k/ D xf .k/ D 0 ; k < 0

For each x.k/; d.k/; k � 0 do
xf .k/ D x.k/�PN

iD1 ai .k/ xf .k � i /

df .k/ D d.k/�PN
iD1 ai .k/ df .k � i /

es.k/ D df .k/� �Ts .k/�.k/

�.k C 1/ D �.k/C 2��s.k/es.k/

Stability test

A.k; q�1/. A useful approximation that reduces considerably the computational
complexity is possible by assuming slow parameter variation [44] in such a way that

�.k � 1/ � �.k � 2/ : : : � �.k �N/ (10.106)

With these simplifications only one all-pole filtering is required. Note that a
hypothesis similar to (10.106) was utilized in the output error method in order
to simplify the implementation. However, in the case of the output error method,
the measurement noise does not affect the regressor, since the regressor vector
is composed of delayed samples of the adaptive-filter input and output. For the
Steiglitz–McBride method, except for white measurement noise, the simplification
in (10.106) is not easily justified. On the other hand, based on the approximation
A.k; q�1/ � A.k C 1; q�1/, the (10.104) can be rewritten as follows:

es.k/ D A.k C 1; q�1/
A.k; q�1/

e.k C 1/ � e.k/ (10.107)

where e.k/ is the output error defined by e.k/ D d.k/ � y.k/. This additional
simplification can be used in some algorithms. Since delayed samples of the mea-
surement noise are not included in (10.107), we can expect that this approximation
in the Steiglitz–McBride method performs better in terms of bias, as compared with
the direct use of (10.105).

The updating equation of the online Steiglitz–McBride algorithm for system
identification employing a stochastic gradient search is given by

�.k C 1/ D �.k/C 2��s.k/

�
d.k/

A.k; q�1/
� �Ts .k/�.k/

�

D �.k/C 2��s.k/es.k/ (10.108)

The description of a gradient Steiglitz–McBride algorithm is given in the
Algorithm 10.4.
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The Steiglitz–McBride method can be implemented using different realizations
such as cascade [49], lattice [50], and the series-parallel realization [51]. These
realizations allow easy stability monitoring, and their choice affects the convergence
speed [51].

It should be mentioned that a family of algorithms based on the Steiglitz–
McBride method that solves the problem of inconsistency of the parameter estimates
was proposed in [42, 43]. These algorithms are very attractive for adaptive IIR
filtering due to their behavior in terms of consistency (i.e., definition of stationary
points) and convergence properties. In [52], simulation results and an alternative
implementation for the consistent Steiglitz–McBride method were presented.

The interested reader can also find some interesting results about the convergence
behavior of the Steiglitz–McBride-based algorithms in [53,54] and in the references
therein. Also, applications of the Steiglitz–McBride algorithm to equalization can
be found in [55].

Example 10.6. An IIR adaptive filter of sufficient order is used to identify a system
with the transfer function given below.

H.z/ D 0:3
0:32z3 � 0:3z2 C 0:5z C 0:21

z2 � 1:512z C 0:827

The input signal is a uniformly distributed white noise with variance �2x D 1, and
the measurement noise is Gaussian white noise uncorrelated with the input with
variance �2n D 0:001.

Utilize Algorithms 10.3 and 10.4, and choose the appropriate parameters for each
algorithm.

Solution. For the equation error algorithm the forgetting factor was chosen � D
0:97, whereas for the Steiglitz–McBride algorithm the value of � was 0:0004.
The learning curves for the equation error and Steiglitz–McBride algorithms can
be observed in Fig. 10.18a, b, respectively. The curves are result of averaging the
outcome of 50 independent runs. The faster convergence of the equation error
algorithm is due to the fact that an RLS-based algorithm was implemented, unlike
the Steiglitz–McBride algorithm that employed a gradient-based search method.

The equation error algorithm generated a biased estimate of the denominator
coefficients around �1:4893 and 0:8134 inherent to this type of algorithms. The
bias originates from the filtering of the additive noise by the estimate polynomial
A.k; q�1/. If the noise variance is reduced to �2n D 10�11, the same parameters
estimates become �1:5120 and 0:8270, respectively, which are exactly the values
of the model denominator parameters. The Steiglitz–McBride algorithm generated
quite close estimates to the same parameters, namely �1:5101 and 0:8240.

The simulation results presented for the Steiglitz–McBride algorithm utilized the
approximation of (10.107), which leads to much improved results. ut
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Fig. 10.18 Learning curves for system identification (a) Equation error: Algorithm 10.3,
(b) Steiglitz–McBride: Algorithm 10.4
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10.9 Conclusion

It is recognized that the adaptive IIR filter can be potentially used in a number of ap-
plications due to its superior system modeling owing to poles [56]. These advantages
come with drawbacks such as possible local minima in the performance surface and
the possible instability during the adaptation process. Also, the nonlinear relation
between the adaptive-filter parameters and the internal signals in some formulations
makes the gradient computation and convergence analysis much more complicated
as compared to the FIR case. In this chapter, the theory of adaptive IIR filters was
presented exposing several solutions to the above-mentioned drawbacks, so that the
designer can decide which is the best configuration for a given application.

In this chapter, an example of application of adaptive IIR filters in system
identification was presented. In this example, some of the realizations presented
here were tested and compared. Another example exploited the use of notch filters
for sinusoid detection in noise.

10.10 Problems

1. Show that the stationary points related to two equivalent adaptive realizations
of the type in (10.82) have the same nature, i.e., are minimum, maximum, or
saddle point.

2. Show that the new stationary points generated by the discontinuity in f 3.�1/

as discussed after (10.84) are saddle points.
3. Describe how the manifolds are formed in the MSE surface when a cascade

realization is used for the adaptive-filter implementation. Give a generic
example.

4. Derive a general expression for the transfer function of the two-multiplier lattice
structure.

5. Derive an adaptive-filtering algorithm which employs the canonic direct-form
structure shown in Fig. 10.19. Consider that the adaptive-filter parameters are
slowly varying in order to derive an efficient implementation for the gradient
vector.

6. A second-order all-pole adaptive filter is used to find the inverse model of the
signal x.k/ D 1:7n.k�1/C0:81n.k�2/Cn.k/, where n.k/ is Gaussian white
noise with variance 0:1. Using the gradient algorithm, calculate the error and
the filter coefficients for the first ten iterations. Start with a1.0/ D 0; a2.0/ D 0.

7. Repeat Problem 6 using the Gauss–Newton algorithm.
8. Use an IIR adaptive filter of sufficient order to identify a system with the

transfer function given below. The input signal is a uniformly distributed white
noise with variance �2x D 1, and the measurement noise is Gaussian white noise
uncorrelated with the input with variance �2n D 10�2. Use a Gauss–Newton-
based algorithm and the direct-form structure.
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Fig. 10.19 Direct form of Problem 5

H.z/ D 0:000058.z2 � 2z C 1/3

.z2 C 1:645z C 0:701/.z2 C 1:575z C 0:781/.z2 C 1:547z C 0:917/

(a) Run the algorithm for three values of �. Comment on the convergence
behavior in each case.

(b) Measure the MSE in each example.
(c) Plot the obtained IIR filter frequency response at any iteration after

convergence is achieved and compare with the unknown system.

9. Repeat the previous problem using a second-order adaptive filter and interpret
the results.

10. A sinusoid of normalized frequency equal to 	
4

with unit amplitude is buried
in noise. The signal to noise ratio is 0 dB. Detect the sinusoid with notch filters
using the lattice and the direct-form structures.

(a) After convergence compute an estimate of the frequency by averaging the
result of ten samples for each structure and comment on the result.

(b) Depict the input signal and the output signal for the bandpass filter based
on the lattice structure.

11. Replace the direct-form structure in Problem 8 by the parallel realization with
preprocessing.
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12. Replace the direct-form structure in Problem 8 by the cascade realization.
13. Repeat Problem 8 in case the input signal is a uniformly distributed white noise

with variance �2nx D 0:1, filtered by all-pole filter given by

H.z/ D z

z � 0:95

14. In Problem 8 consider that the additional noise has the following variances: (a)
�2n D 0, (b) �2n D 1. Comment on the results obtained in each case.

15. Perform the equalization of a channel with the following transfer function

H.z/ D z2 � 1:359z C 0:81

z2 � 1:919z C 0:923

using a known training signal that consists of a binary .�1; 1/ random signal.
An additional Gaussian white noise with variance 10�2 is present at the channel
output.

(a) Apply a Newton-based algorithm with direct-form structure.
(b) Plot the magnitude response of the cascade of the channel and the adaptive-

filter transfer functions. Comment on the result.

16. In a system identification problem, the input signal is generated by an autore-
gressive process given by

x.k/ D �1:2x.k � 1/� 0:81x.k � 2/C nx.k/

where nx.k/ is zero-mean Gaussian white noise with variance such that �2x D 1.
The unknown system is described by

H.z/ D 80z3.z2 C 0:81/.z � 0:9/

.z2 � 0:71z C 0:25/.z2 C 0:75z C 0:56/.z2 � 0:2z C 0:81/

The adaptive filter is also a sixth-order IIR filter.
Choose an appropriate �, run an ensemble of 20 experiments, and plot the

average learning curve. Use the RLS algorithm for IIR filters.
17. A second-order IIR adaptive-filtering algorithm is applied to identify a 3rd-

order time-varying unknown system whose coefficients are first-order Markov
processes with �w D 0:999 and �2w D 0:001. The initial time-varying system
multiplier coefficients are

wT
o D Œ0:03490 � 0:011 � 0:06864 0:22391�

The input signal is Gaussian white noise with variance �2x D 0:7, and the
measurement noise is also Gaussian white noise independent of the input signal
and of the elements of nw.k/, with variance �2n D 0:01.
Simulate the experiment described and plot the learning curve, by using the
direct-form structure with a gradient-type algorithm.
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18. Suppose a second-order IIR digital filter, with multiplier coefficients given
below, is identified by an adaptive IIR filter of the same order using the
gradient algorithm. Considering that fixed-point arithmetic is used, measure
the values of EŒjj��.k/Qjj2� and �.k/Q for the case described below. Plot
the learning curves for the finite- and infinite-precision implementations. Also
plot an estimate of the expected value of jj��.k/jj2 versus k in both cases.
Additional noise: white noise with variance �2n D 0:0015

Coefficient wordlength: bc D 16 bits
Signal wordlength: bd D 16 bits
Input signal: Gaussian white noise with variance �2x D 0:7

H.z/ D z2 � 1:804z C 1

z2 � 1:793z C 0:896

19. Repeat the above problem for the following cases

(a) �2n D 0:01, bc D 9 bits, bd D 9 bits, �2x D 0:7.
(b) �2n D 0:1, bc D 10 bits, bd D 10 bits, �2x D 0:8.
(c) �2n D 0:05, bc D 8 bits, bd D 16 bits, �2x D 0:8.

20. Replace the direct-form structure in Problem 18 by the lattice structure and
comment on the results.

21. Repeat Problem 8 using the LMSEE algorithm.
22. Show the inequality in (10.93).
23. Repeat Problem 15 using the LMSEE algorithm.
24. Repeat Problem 8 using a gradient-type algorithm based on the Steiglitz–

McBride method.
25. Repeat Problem 15 using a gradient-type algorithm based on the Steiglitz–

McBride method.
26. Derive the RLS-type algorithm based on the Steiglitz–McBride method.
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Chapter 11
Nonlinear Adaptive Filtering

11.1 Introduction

The classic adaptive-filtering algorithms, such as those discussed in the remaining
chapters of this book, consist of adapting the coefficients of linear filters in real
time. These algorithms have applications in a number of situations where the signals
measured in the environment can be well modeled as Gaussian noises applied to
linear systems, and their combinations are of additive type. In digital communication
systems, most of the classical approaches model the major impairment affecting the
transmission with a linear model. For example, channel noise is considered additive
Gaussian noise, intersymbol and co-channel interferences are also considered of
additive type, and channel models are assumed to be linear frequency selective
filters. While these models are accurate, there is nothing wrong with the use of
linear adaptive filters1 to remedy these impairments. However, the current demand
for higher-speed communications leads to the exploration of the channel resources
beyond the range their models can be considered linear. For example, when the
channel is the pair of wires of the telephone system, it is widely accepted that linear
models are not valid for data transmission above 4.8 Kb/s. Signal companding, am-
plifier saturation, multiplicative interaction between Gaussian signals, and nonlinear
filtering of Gaussian signals are typical phenomena occurring in communication
systems that cannot be well modeled with linear adaptive systems. In addition, if
the channel transfer function does not have minimum phase and/or the signal to
noise ratio is not high enough, the use of linear adaptive-filtering equalizer yields
poor performance measured in terms of bit error rate. A major drawback of dealing
with nonlinear models is the lack of mathematical tools that, on the other hand, are
widely available for linear models. The lack of analytical tools originates in the high

1The reader should bear in mind that adaptive filters are nonlinear filters, even if we are adapting
the coefficients of a linear filter structure; therefore the term linear adaptive filter means that we
are adapting the coefficients of a linear filter structure.

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 11, © Springer Science+Business Media New York 2013
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filter

degrees and dimensionality of the nonlinearities. The improved performance of the
nonlinear equalizer is mainly justified by extensive simulation results available in
the literature, where the bit error rate is used as a performance measure.

In this chapter, we will describe some of the techniques available to model
nonlinear systems using nonlinear adaptive systems using the general structure
depicted in Fig. 11.1. Alternative approaches can be found in [1–3]. In particular,
the following approaches for nonlinear adaptive filtering will be discussed here:

1. The nonrecursive polynomial model based on the Volterra series expansion.
2. The recursive polynomial model based on nonlinear difference equations.
3. The multilayer perceptron (MLP) neural network.
4. The radial basis function (RBF) neural network.

In the following sections, we will introduce the methods mentioned above for
modeling nonlinear systems, and for each approach adaptive algorithms for updating
the corresponding nonlinear filter coefficients will be described. The chapter
includes examples aimed at comparing the different structures and algorithms.

11.2 The Volterra Series Algorithm

The Volterra series model is the most widely used model for nonlinear systems for
several reasons. In particular, this model is useful for nonlinear adaptive filtering
because the classical formulation of linear adaptive filters can be easily extended
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to fit this model. The Volterra series expansion of a nonlinear system consists of
a nonrecursive series in which the output signal is related to the input signal as
follows2

d 0.k/ D
1X

l1D0
wo1.l1/x.k � l1/

C
1X

l1D0

1X

l2D0
wo2.l1; l2/x.k � l1/x.k � l2/

C
1X

l1D0

1X

l2D0

1X

l3D0
wo3.l1; l2; l3/x.k � l1/x.k � l2/x.k � l3/C

1X

l1D0

1X

l2D0
� � �

1X

liD0
woi .l1; l2; : : : ; li /x.k � l1/x.k � l2/ � � �x.k � li /C � � � (11.1)

where woi .l1; l2; : : : ; li /, for i D 0; 1; : : : ;1, are the coefficients of the nonlinear
filter model based on the Volterra series, and d 0.k/ represents, in the context of
system identification application, the unknown system output when no measurement
noise exists. The term woi .l1; l2; : : : ; li / is also known as the Volterra kernel of the
system. Note that the input signals in this case are assumed to consist of a tapped-
delay line. For the general case, where the signals of the input signal vector come
from different origins, such as in an antenna array, the Volterra series representation
is given by

d 0.k/ D
1X

l1D0
wo1.l1/xl1 .k/

C
1X

l1D0

1X

l2D0
wo2.l1; l2/xl1.k/xl2 .k/

C
1X

l1D0

1X

l2D0

1X

l3D0
wo3.l1; l2; l3/xl1 .k/xl2 .k/xl3.k/

C
1X

l1D0

1X

l2D0
� � �

1X

liD0
woi .l1; l2; : : : ; li /xl1 .k/xl2 .k/ � � �xli .k/C � � � (11.2)

2The reader should note that the Volterra series expansion includes a constant term wo0 which is
irrelevant for our discussions here, and will not be further included in the expansion.
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where woi .l1; l2; : : : ; li /, for i D 0; 1; : : : ;1, are the coefficients of the nonlinear
combiner model based on the Volterra series.

As discussed by Mathews [4], the Volterra series expansion can be interpreted as
a Taylor series expansion with memory. As such, the Volterra series representation is
not suitable to model systems containing discontinuities on their models, as occurs
with the Taylor series representation of functions with discontinuities. Another clear
drawback of the Volterra series representation is the computational complexity,
if the complete series is employed. By truncating the series one can reduce the
computational complexity by sacrificing the accuracy of the series expansion. With
reduced order, the Volterra series representation is quite complex even when the
orders of the series and the filter are moderate. The interested reader can also refer
to [5] for a deeper treatment of fixed and adaptive polynomial signal processing.

11.2.1 LMS Volterra Filter

In this subsection, the Volterra LMS algorithm is presented for a second-order
series and N th-order filter. This choice reduces the computational complexity to
an acceptable level for some applications and also simplifies the derivations. The
extension for higher-order cases is straightforward. The adaptive filter that estimates
the signal d 0.k/ using a truncated Volterra series expansion of second order can be
described by

y.k/ D
NX

l1D0
wl1 .k/x.k � l1/C

NX

l1D0

NX

l2D0
wl1;l2 .k/x.k � l1/x.k � l2/ (11.3)

where wl1 .k/ and wl1;l2 .k/, for l1; l2 D 0; 1; : : : ; N , are the coefficients of the
nonlinear filter model based on the second-order Volterra series expansion, and y.k/
represents the adaptive-filter output signal.

The standard approach to derive the LMS algorithm is to use as estimate of the
mean-square error (MSE) defined as

F Œe.k/� D �.k/ D EŒe2.k/� D EŒd2.k/� 2d.k/y.k/C y2.k/� (11.4)

the instantaneous square error given by

e2.k/ D d2.k/ � 2d.k/y.k/C y2.k/ (11.5)
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Most of the analyses and algorithms presented for the linear LMS apply equally
to the nonlinear LMS filter case, if we interpret the information and coefficient
vectors as follows:
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(11.7)

As illustrated in Fig. 11.2, the adaptive-filter output is given by

y.k/ D wT .k/x.k/ (11.8)

The estimate of the MSE objective function can now be rewritten as

e2.k/ D d2.k/ � 2d.k/wT .k/x.k/C wT .k/x.k/xT .k/w.k/ (11.9)
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Fig. 11.2 Adaptive Volterra filter

An LMS-based algorithm can be used to minimize the objective function as follows:

w.k C 1/ D w.k/ � �Ogw.k/

D w.k/ � 2�e.k/ @e.k/
@w.k/

(11.10)

for k D 0; 1; 2; : : :, where Ogw.k/ represents an estimate of the gradient vector of
the objective function with respect to the filter coefficients. However, it is wise to
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Algorithm 11.1 Volterra LMS algorithm
Initialization

x.0/ D w.0/ D Œ0 0 : : : 0�T

Do for k � 0
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2

6
6
6
6
6
6
6
6
6
4

�1 	 	 	 0 0 	 	 	 0
0

: : : 0 0
: : : 0

0 	 	 	 �1 0 	 	 	 0
0 	 	 	 0 �2 	 	 	 0
0

: : : 0 0
: : : 0

0 	 	 	 0 0 	 	 	 �2

3

7
7
7
7
7
7
7
7
7
5

e.k/x.k/

have different convergence factors for the first- and second-order terms of the LMS
Volterra filter. In this case, the updating equations are given by

wl1 .k C 1/ D wl1 .k/C 2�1e.k/x.k � l1/ (11.11)

wl1;l2 .k C 1/ D wl2 .k/C 2�2e.k/x.k � l1/x.k � l2/ (11.12)

where l1 D 0; 1; : : : ; N and l2 D 0; 1; : : : ; N . As can be observed in Algorithm
11.1, the Volterra LMS algorithm has the same form as the conventional LMS
algorithm except for the form of the input vector x.k/.

In order to guarantee convergence of the coefficients in the mean, the conver-
gence factor of the Volterra LMS algorithm must be chosen in the range

0 < �1 <
1

tr.R/
<

1

�max
(11.13)

0 < �2 <
1

tr.R/
<

1

�max
(11.14)

where �max is the largest eigenvalue of the input signal vector autocorrelation matrix
R D EŒx.k/xT .k/�. It should be noted that this matrix involves high-order statistics
of the input signal, leading to high eigenvalue spread of the matrix R even if the
input signal is a white noise. As a consequence, the Volterra LMS algorithm has
in general slow convergence. As an alternative, we can consider implementing a
Volterra adaptive filter using an RLS algorithm.



474 11 Nonlinear Adaptive Filtering

11.2.2 RLS Volterra Filter

The RLS algorithms are known to achieve fast convergence even when the
eigenvalue spread of the input vector correlation matrix is large. The objective of
the RLS algorithm is to choose the coefficients of the adaptive filter such that the
output signal y.k/, during the period of observation, will match the desired signal
as closely as possible in the least-squares sense. This minimization process can be
easily adapted to the nonlinear adaptive filtering case by reinterpreting the entries
of the input signal vector and the coefficient vector, as done in the LMS case.

In the case of the RLS algorithm, the deterministic objective function is given by

�d .k/ D
kX

iD0
�k�i "2.i/

D
kX

iD0
�k�i �d.i/� xT .i/w.k/

�2
(11.15)

where ".i/ is the output error at instant i and
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w.k/ D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

w0.k/
w1.k/
:::

wN .k/
w0;0.k/
w0;1.k/
:::

w0;N .k/
:::

wN;N�1.k/
wN;N .k/

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(11.17)



11.2 The Volterra Series Algorithm 475

Algorithm 11.2 Volterra RLS algorithm
Initialization

SD.�1/ D ıI
where ı can be the inverse of an estimate of the input signal power

x.�1/ D w.�1/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/ D d.k/� xT .k/w.k � 1/

 .k/ D SD.k � 1/x.k/

SD.k/ D 1
�
ŒSD.k � 1/�  .k/ 

T
.k/

�C 
T
.k/x.k/

�

w.k/ D w.k � 1/C e.k/SD.k/x.k/
If necessary compute
y.k/ D wT .k/x.k/
".k/ D d.k/� y.k/

are the input and the adaptive-filter coefficient vectors, respectively. The parameter
� is an exponential weighting factor that should be chosen in the range 0 	 � � 1.

By differentiating �d .k/ with respect to w.k/ and equating the result to zero,
the optimal vector w.k/ that minimizes the least-squares error can be shown to be
given by

w.k/ D
"

kX

iD0
�k�ix.i/xT .i/

#�1
kX

iD0
�k�ix.i/d.i/

D R�1
D .k/pD.k/ (11.18)

where RD.k/ and pD.k/ are called the deterministic correlation matrix of the input
vector and the deterministic cross-correlation vector between the input vector and
the desired signal, respectively.

The Volterra RLS algorithm has the same form as the conventional RLS
algorithm as shown in Algorithm 11.2, where the only difference is the form of
the input vector x.k/.

A clear disadvantage of the Volterra RLS algorithm is the high computational
complexity which requires an order of N4 multiplications per output sample.
However, by examining closely the form of the input data vector it is possible to
conclude that the nonlinear filtering problem can be recast into a linear multichannel
adaptive-filtering problem for which fast RLS algorithms exist. Using this strategy,
several fast RLS algorithms for Volterra filters have been proposed, namely the
fast transversal [6], the lattice and QR-based lattice algorithms [7], and the QR-
decomposition-based algorithm [8]. Other strategies to reduce computation while
trying to retain fast convergence include the orthogonal lattice-based structures
tailored for Gaussian input signals [9].
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Fig. 11.3 Decision feedback equalizer

Example 11.1. A digital channel model can be represented by the following system
of equations:

v.k/ D x.k/C 0:5x.k � 1/

y.k/ D v.k/C 0:2v2.k/C 0:1v3.k/C n.k/

The channel is corrupted by Gaussian white noise with variance �2n , varying
from �10 to �25 dB. The training signal and the actual input signal consist of
independent binary samples .�1; 1/. The training period depends on the algorithm
but our first attempt is 200 iterations, and after that one can start normal operation.

(a) Design an equalizer for this problem. Use a filter of appropriate order and plot
the learning curves.

(b) Using the same number of adaptive-filter coefficients, implement a DFE
equalizer as shown in Fig. 11.3 and compare the results with those obtained
with the FIR equalizer.

We start with the normalized LMS and after making it work, we compare it
with the:

1. DFE normalized LMS algorithm
2. Volterra normalized LMS algorithm
3. DFE Volterra normalized LMS algorithm
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Solution. In the DFE of Fig. 11.3, we initially utilize a training sequence which
consists of a properly delayed version of the transmitted signal which is known to
the receiver. Obviously, this is an overhead to the communication system since in the
beginning no information is actually being transmitted. After the training period no
actual reference signal is available, and the equalizer replaces the training sequence
by the output of the decision device by moving the switch to its output. The average
of square error to be presented corresponds to average of a hundred experiments,
whereas the number of errors are measured in single run experiments.

For the normalized LMS algorithm the number of coefficients is 10 with
convergence factor � D 0:2. The square errors for the different levels of channel
noise are depicted in Fig. 11.4. As can be observed, the normalized LMS algorithm
converges fast for this example where only few training samples are required to
train the filter, when the signal to noise ratio is high. However, since the channel is
nonlinear the square error after convergence does not reach low levels.

In the next experiment, the decision feedback equalizer is tested using the
normalized LMS algorithm with convergence factors � D 0:2 for the forward
and feedback adaptive filters. The forward filter has eight coefficients whereas
the feedback filter has two coefficients. For comparison, the results presented
are the same as in the previous case for the same levels of channel noise. The
resulting square errors are depicted in Fig. 11.5. In this case, the algorithm requires
a somewhat comparable training period and also leads to similar square error after
convergence. When the signal to noise ratio is poor, the standard and the DFE
algorithms perform poorly.
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Fig. 11.5 Square error for the experiments with the DFE normalized LMS algorithm
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Fig. 11.6 Square error for the experiments with the Volterra normalized LMS algorithm

The normalized LMS Volterra series algorithm is also tested in this experiment
using a tapped delay line as input with ten elements. The convergence factor for the
first-order adaptive coefficients is �1 D 0:51 and for the second-order coefficients
is �2 D 0:08. The results are depicted in Fig. 11.6. A distinct feature of the Volterra
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Fig. 11.7 Square error for the experiments with DFE Volterra series algorithm

algorithm is its lower square error after convergence, which is a consequence of the
fact that it models the channel better. Its training period is usually longer due to the
larger number of coefficients and higher conditioning number of the information
matrix.

We also test the Volterra series algorithm on a decision feedback equalizer. In
the feedforward filter a tapped-delay line with eight coefficients is used, whereas in
the feedback filter two taps are employed. For these experiments the convergence
factors used in the coefficients multiplying the linear terms of the forward filter
are �1 D 0:15 and �2 D 0:08, respectively. For the feedback adaptive filter the
chosen factors are �1 D 0:2 and �2 D 0:08, respectively. For comparison the
results are presented for the same levels of channel noise as the previous examples.
These square errors are seen in Fig. 11.7. The comparison between the DFE and
non-DFE Volterra filter implementation shows that the DFE requires comparable
training period while achieving lower square error and requiring less computational
effort. As expected, in all examples the lower additional noise leads to lower MSE
after convergence.

Table 11.1 illustrates the number of decision errors made in a single run of the
algorithms analyzed in this example. The table also contains the iteration number
after which no decision errors are noticed. As can be observed the DFE algorithms
usually take longer to converge. Also, the Volterra algorithms have longer learning
periods. �
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Table 11.1 Evaluation of the Volterra LMS algorithms

Noise level NLMS DFE NLMS Volterra DFE Volterra

No. of errors �25 dBs 2 8 7 9
No. of errors �10 dBs 9 11 12 17
Last error Iter. �25 dBs 4 30 26 50
Last error Iter. �10 dBs 23 25 102 168

11.3 Adaptive Bilinear Filters

As it is widely known, the reduction in the computational complexity is the main
advantage the adaptive IIR filters present when compared with the adaptive FIR
filters. Motivated by this observation, we can consider implementing nonlinear
adaptive filters via a nonlinear difference equation, in order to reduce the computa-
tional burden related to the Volterra series expansion. The most widely accepted
nonlinear difference equation model used for adaptive filtering is the so-called
bilinear equation given by

y.k/ D
MX

mD0
bm.k/x.k �m/�

NX

jD1
aj .k/y.k � j /C

IX

iD0

LX

lD1
ci;lx.k � i/y.k � l/

(11.19)

where y.k/ is the adaptive-filter output.
A bilinear adaptive filter in most cases requires fewer coefficients than the

Volterra series adaptive filter in order to achieve a given performance. The advan-
tages of the adaptive bilinear filters come with a number of difficulties, some of
them not encountered in the Volterra series adaptive filters (Fig. 11.8).

In the present case, the signal information vector is defined by
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whereN ,M , I , and L are the orders of the adaptive-filter difference equations. The
coefficient vector can then be described as



11.3 Adaptive Bilinear Filters 481

z
-1

z
-1

x k( )

z
-1

z
-1

y k( )
+

+

+

b k0 ( )

b k1 ( ) -a k1 ( )

b k1 ( ) -a k2 ( )

c k0,1 ( )

c k2,1 ( )

c k1,2 ( )

c k1,1 ( )

c k0,2 ( )

c k2,2 ( )

X

X

X

X

X

X

+

Fig. 11.8 Adaptive bilinear filter

�.k/ D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

b0.k/

b1.k/
:::

bM .k/

�a1.k/
�a2.k/
:::

�aN .k/
c0;1.k/
:::

cI;L�1.k/
cI;L.k/

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(11.21)



482 11 Nonlinear Adaptive Filtering

A possible objective function for adaptive bilinear filtering based on output error
is the least-squares function3

�d .k/ D
kX

iD0
�k�i e2.i/

D
kX

iD0
�k�i Œd.i/ � �T .k/�.i/�2 (11.22)

The forgetting factor � as usual is chosen in the range 0 	 � < 1. By differentiating
�d .k/ with respect to �.k/, and by using the same arguments used to deduce the
output error RLS algorithm for linear IIR adaptive filters, we conclude that the RLS
algorithm for adaptive bilinear filtering consists of the following basic steps:

e.k/ D d.k/� �T .k/�.k/ (11.23)

'.k/ D � @y.k/
@�.k/

� ��.k/ (11.24)

SD.k C 1/ D 1

�

�

SD.k/� SD.k/'.k/'T .k/SD.k/
�C 'T .k/SD.k/'.k/

�

(11.25)

�.k C 1/ D �.k/� SD.k C 1/'.k/e.k/ (11.26)

The approximation of (11.24) is not accurate; however, it is computationally simple
and simulation results confirm that it works. The reader should notice that the partial
derivatives used in this algorithm are only approximations, leading to a suboptimal
RLS solution. More accurate approximations can be derived by following the same
reasoning in which the partial derivatives were calculated for the output error
RLS algorithm for linear IIR adaptive filters. The description of the bilinear RLS
algorithm is given in Algorithm 11.3.

If we consider as objective function the MSE defined as

� D EŒe2.k/� (11.27)

we can derive a gradient-based algorithm by using e2.k/ as an estimate for �, leading
to an updating equation given by

3Like in Chap. 10, the reader should note that this definition of the deterministic weighted least
squares utilizes the a priori error with respect to the latest data pair d.k/ and x.k/, unlike the FIR
RLS case.
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Algorithm 11.3 Bilinear RLS algorithm
Initialization
ai .k/ D bi .k/ D ci;l .k/ D e.k/ D 0

y.k/ D x.k/ D 0 ; k < 0

SD.0/ D ı�1I
For each x.k/; d.k/; k � 0; do
y.k/ D �T .k/�.k/

e.k/ D d.k/� y.k/

SD.k C 1/ D 1
�

h
SD.k/� SD.k/'.k/'T .k/SD.k/

�C'T .k/SD.k/'.k/

i

�.k C 1/ D �.k/� SD.k C 1/'.k/e.k/

Stability test

�.k C 1/ D �.k/ � 2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

�1 � � � 0 0 � � � 0 0 � � � 0
0

: : : 0 0
: : : 0 0

: : : 0

0 � � � �1 0 � � � 0 0 � � � 0
0 � � � 0 �2 � � � 0 0 � � � 0
0

: : : 0 0
: : : 0 0

: : : 0

0 � � � 0 0 � � � �2 0 � � � 0
0 � � � 0 0 � � � 0 �3 � � � 0
0

: : : 0 0
: : : 0 0

: : : 0

0 � � � 0 0 � � � 0 0 � � � �3

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

'.k/e.k/ (11.28)

where

e.k/ D d.k/ � �T .k/�.k/ (11.29)

and

'.k/ D @e.k/

@�.k/
(11.30)

Again, the calculation of an accurate gradient vector can be quite cumbersome.
The main drawbacks of the adaptive bilinear filters based on the output error are:

possible instability of the adaptive filter [10,31], slow convergence, and convergence
to local minima of the error surface. It is also possible in the case of adaptive
bilinear filter to apply an equation error formulation. In the presence of additional
noise, the equation error algorithm may also lead to instability or to a biased global
minimum solution.

Example 11.2. Identify an unknown system with the following model

d.k/ D �0:3d.k � 1/C x.k/C 0:04x2.k/C 0:1x3.k/C n.k/
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Fig. 11.9 Square error for the experiment with the bilinear and Volterra normalized LMS
algorithms

using the bilinear algorithm, and compare the results with those obtained with the
Volterra normalized LMS algorithm. The additional noise is Gaussian white noise
with variance �2n D �10 dB. Use Gaussian white noise with unit variance as input.

Solution. Three coefficients are sufficient for the bilinear algorithm to perform
well. The chosen convergence factor is � D 0:005. For the Volterra normalized
LMS algorithm, we use six coefficients and � D 0:1. As can be observed in
Fig. 11.9, the bilinear algorithm converges faster and leads to a lower square error
after convergence than the Volterra normalized LMS algorithm, since the unknown
system has a bilinear model. �

11.4 MLP Algorithm

In this section, the MLP algorithm is briefly presented [11]. This algorithm belongs
to a class of nonlinear adaptive filters where the input signal vector is mapped
into another signal vector through a multiport network containing several local
nonlinearities, as depicted in Fig. 11.10. Usually, the nonlinear multiport network
consists of feedforward neural networks with several layers, where the nonlinearities
(neurons) are placed inside the network in a structurally modular form. The MLP
structure consists of several layers including an input layer, an output layer, and
several internal layers usually called hidden layers. Figure 11.11 illustrates an MLP-
based adaptive filter with three layers. In communication applications the output
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Fig. 11.10 Neural network-based adaptive filter

layer usually has a single neuron, with y.k/ representing the nonlinear adaptive-
filter output signal. The mathematical description for each neuron is

yl;i .k/ D fl;i

8
<

:

Nl�1�1X

jD0
wl;i;j .k/yl�1;j .k/ � bsl;i .k/

9
=

;
(11.31)

where wl;i;j .k/ are the weight coefficients connecting the output signal yl�1;j .k/ of
the j th neuron from layer l�1 to input of neuron i of layer l , for l D 0; 1; : : : ; L�1;
i D 0; : : : ; Nl � 1. Note that Nl is the number of neurons in the l th layer and
the index L is the number of layers. Each constant bsl;i .k/ is the bias term of
the i th neuron at layer l , which is also known as the threshold. It is a well-known
result that the MLP network is able to implement any desired nonlinear mapping by
properly choosing the weights, the thresholds, and the nonlinear activation function
f f�g [12]. Although the activation function and the threshold could be chosen to
be different for each layer, we will not consider this general case here. Also, it is
possible to show that three layers is always enough for practical purposes. However,
the use of more than three layers is desirable in many applications, where in the
three layers case the hidden layer requires a large number of neurons in order to
achieve an acceptable nonlinear mapping.
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The most widely used activation function is the sigmoid function, defined as

sgm.x/ D 2c1

1C e�c2x � c1 (11.32)

where c1 and c2 are suitably chosen constants. The derivative of the sigmoid function
is given by

sgd.x/ D c2

2c1
Œc21 � sgm2.x/� (11.33)

A popular updating algorithm for the MLP is the so-called backpropagation
algorithm. The objective function is to minimize the instantaneous output square
error, that is

e2.k/ D Œd.k/ � y.k/�2 (11.34)

In order to minimize the above objective function, the backpropagation algorithm
uses a steepest-decent updating, with the gradient calculated from the output layer
to the input layer presented as follows. The derivation of the backpropagation
algorithm falls beyond the scope of this book, and the interested reader should
consult [12] or [13]. In the output layer the error signal is given by e.k/ itself, and
as a result the coefficient updating for the coefficients of the output layer is given by

wL�1;i;j .k C 1/ D wL�1;i;j .k/C 2�L�1e.k/yL�1;j .k/ (11.35)

where i D 0; 1; : : : ; NL�2 � 1 and j D 0; 1; : : : ; NL�1 � 1. Notice that in our
case we are considering a single output MLP, therefore NL�1 D 1. The parameter
�L�1 is the convergence factor for the output layer. Also the simplified updating
equation above resulted from not using an activation function at the output node.
If the activation function is included at the output node the updating equation is
given by

wL�1;i;j .k C 1/ D wL�1;i;j .k/

C2�L�1e.k/sgd
˚
sgm�1ŒyL�1;j .k/�

�
sgmŒyL�2;j .k/� (11.36)

Since we know the error in the output layer, we can propagate this error
backwards, and calculate the corresponding errors in the output of the internal
neurons. By examining Fig. 11.11 closely, after applying the chain rule for derivative
and performing a number of manipulations (see [12,13] for details), it is possible to
show that the error signal at the j th neuron from layer l is given by

el;j .k/ D sgd
˚
sgm�1Œyl;j .k/�

� Nl�1X

iD0
wlC1;i;j .k/elC1;i .k/

D sgd

2

4
Nl�1�1X

jD0
wl;i;j .k/yl�1;j .k/

3

5
Nl�1X

iD0
wlC1;i;j .k/elC1;i .k/ (11.37)
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Algorithm 11.4 Multilayer perceptron algorithm
Initialization

Choose each wl;i;j .0/ randomly
Do for k � 0

Choose y
�1;j .k/ D xj .k/

Do for l D 0; : : : ; L� 1

Do for i D 0; : : : ; Nl � 1

Do for j D 0; : : : ; Nl�1 � 1

yl;j .k/ D fl;j fPNl�1�1
iD0 wl;j;i .k/yl�1;i .k/� bsl;j .k/g

End
End

End
e.k/ D d.k/� yL�1;0.k/

Do for l D L� 1; : : : ; 0

Do for i D 0; : : : ; Nl � 1

Do for j D 0; : : : ; Nl�1 � 1

If l D L� 1

wL�1;i;j .k C 1/ D wL�1;i;j .k/C 2�L�1e.k/sgd
˚
sgm�1ŒyL�1;j .k/�

�
sgmŒyL�2;j .k/�

Else
el;j .k/ D sgd

hPNl�1�1
jD0 wl;i;j .k/yl�1;j .k/

iPNl�1
iD0 wlC1;i;j .k/elC1;i .k/

wl;i;j .k C 1/ D wl;i;j .k/C 2�lel;j .k/yl�1;j .k/

bsl;i .k C 1/ D bsl;i .k/� 2�lel;j .k/

End if
End

End
End

The updating equations for the coefficients of the internal layers and the bias
terms are given by

wl;i;j .k C 1/ D wl;i;j .k/C 2�lel;j .k/yl�1;j .k/

bsl;i .k C 1/ D bsl;i .k/� 2�lel;j .k/ (11.38)

for i D 0; 1; : : : ; Nl�1 � 1 and j D 0; 1; : : : ; Nl � 1.
The description of the MLP algorithm for nonlinear adaptive filtering is given

in Algorithm 11.4. This algorithm has an increased computational complexity as
compared with the linear adaptive filters, for a given number of adaptive coefficients.
In addition, the convergence speed is likely to be slow, because we are employing
a gradient-based algorithm to search an objective function with a nonquadratic
surface. Some attempts to improve the convergence speed have been proposed, see
for example [14]. Despite that, nonlinear adaptive filters based on MLP require long
training periods and have no methodology to appropriately define the number of
layers and the number of neurons, rendering these algorithms difficult to apply in
practical problems. However, it is worth to search for improved nonlinear solutions
for the adaptive-filtering problem, because in many communication applications the
linear adaptive filter does not yield good enough performance.
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Fig. 11.12 Square error for the experiment with the multilayer perceptron algorithm

Example 11.3. Identify the same system described in Example 11.2 using the MLP
method, and compare the results with those obtained with the Volterra normalized
LMS algorithm.

Solution. In order to identify the same system of example 11.2 with the MLP
method, we use a network with three inputs and eight neurons in each of the two
hidden layers. The chosen convergence factor is � D 0:1. As can be observed in
Figs. 11.9 and 11.12, the MLP algorithm has worse performance than the bilinear
algorithm, but converges slightly faster and reaches a lower square error after
convergence than the Volterra normalized LMS algorithm. �

11.5 RBF Algorithm

The RBF network is an attractive alternative to the MLP for nonlinear adaptive
filtering for a number of reasons. As mentioned in [13], the learning process of the
RBF neural network is the same as finding a surface in the multidimensional space
which is a best fit to the training data. In particular, in the case of communication
applications this technique is attractive because its learning allows the division of a
multidimensional space in appropriate subregions where each received data fits in.
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For equalization problems [15,16], it is well known that the maximum likelihood
equalizer using the Viterbi algorithm provides the best solution, with high computa-
tional cost. As a compromise, the RBF has been proposed as an attractive alternative
because of its lower computational complexity and due to its close relationship
with Bayesian methods [17]. The Bayesian methods are effective in interference
cancellation and channel equalization [18–23]. In fact, the Bayesian design leads
to the optimal nonlinear adaptive equalizer [24]. In the Bayesian approach, the
decision in favor of a symbol is made only if the probability that the referred
symbol had caused the current input signal vector exceeds the probability that
any other symbol had caused the same input. The optimal decision boundaries are
determined by the values of the input signal vector where these probabilities are
the same. The Bayesian theory shows that in a number of situations the optimal
decision boundaries are not given by hyperplanes (the only ones realizable with
linear equalizers), but by nonplanar boundaries. This is exactly what happens when
the channel model in communication systems cannot be well modeled with linear
adaptive systems, or if the channel transfer function does not have minimum phase.
Also, the linear adaptive equalizer does not explore the fact that the input signal
originates from transmitted signals consisting of a finite set of symbols.

Since the RBF can approximate the Bayesian solution within a reasonable train-
ing time, it is a potential candidate to be employed in a number of communication
applications where nonlinear adaptive filters are required.

The RBF network consists of three layers where the first feeds the second layer
directly without any weighting (weights are equal to one), and the output layer is
just a linear combiner as depicted in Fig. 11.13b. The hidden layer implements a
nonlinear mapping on the input vector, as represented in Fig. 11.13a, and consists
of two steps. In the first step, the input signal vector is compared with a set of
reference vectors ri .k/, for i D 0; 1; : : : ; NN � 1, where NN is the number of
(hidden) neurons. These vectors are called centers. The comparison between the
input signal vector and the centers are usually measured through the Euclidean norm
as follows:

di.k/ D jjx.k/ � ri .k/jj (11.39)

These distances are then applied to a nonlinear activation function, which is scalar
and radially symmetric. Typical choices are the Gaussian and thin-plate-spline
functions, respectively given by

f Œdi .k/� D e
�d2i .k/

�2i .k/

f Œdi .k/� D d2i .k/

�2i .k/
logŒ

di .k/

�i .k/
� (11.40)
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Fig. 11.13 The radial basis function adaptive filter. (a) Internal node. (b) Structure

The parameter �i .k/ controls the spread of the function, related to the radius of
influence of RBF f Œdi .k/�. The output signal is computed by

F Œx.k/� D f2

(
NN�1X

iD0
wi .k/f Œdi .k/�

)

(11.41)
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Algorithm 11.5 Radial basis function algorithm
Initialization

Choose each wi .0/ randomly
Do for k � 0

y.k/ D F.x.k// D PNN �1
iD0 wi .k/f Œdi .k/�

e.k/ D d.k/� y.k/

Do for i D 0; 1; : : : ; NN � 1

wi .k C 1/ D wi .k/C 2�we.k/f Œdi .k/�

�i .k C 1/ D �i .k/C 2��f Œdi .k/�e.k/wi .k/
d2i .k/

�3i .k/

ri .k C 1/ D ri .k/C 2�rf Œdi .k/�e.k/wi .k/
x.k/�ri .k/

�2i .k/

End
End

where f2f�g is the activation function of the output signal. This function is usually
of the following form:

f2.x/ D 1 � e�cx

1C e�cx (11.42)

where c is a suitably chosen constant. In most cases, no activation function is used
at the output in order to simplify the algorithm, that is f2.x/ D x. As a result we
will not consider it further.

Usually the training for the RBF adaptive filter is done in three steps, where
the radius parameters, the centers, and the weights are trained separately and
in sequence. By using a stochastic gradient algorithm and Gaussian activation
function, the RBF updating equations are given by

wi .k C 1/ D wi .k/C 2�we.k/f Œdi .k/�

�i .k C 1/ D �i .k/C 2��e.k/f Œdi .k/�wi .k/
d 2i .k/

�3i .k/

ri .k C 1/ D ri .k/C 2�re.k/f Œdi .k/�wi .k/
x.k/ � ri .k/

�2i .k/
(11.43)

for i D 0; 1; : : : ; NN � 1. In Algorithm 11.5, the adaptive nonlinear filter based on
the RBF is detailed. In many cases the parameters �i .k/, that control the spread of
the function in each neuron, are kept constant, where in this case they are chosen as
the expected channel noise power.

In a number of communication applications the signals involved are originally
complex. In those cases, we need to use a complex RBF algorithm whose configura-
tion is depicted in Fig. 11.14. The complex algorithm is described in Algorithm 11.6,
where the derivations are omitted for the sake of brevity, for details consult [25–28].
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Algorithm 11.6 Complex radial basis function algorithm
Initialization

Choose each wi .0/ randomly
ri .k/, xi .k/ are complex vectors
e.k/, is a complex scalar

Do for k � 0

y.k/ D F.x.k// D PNN �1
iD0 w�

i .k/f .di .k//

e.k/ D d.k/� y.k/

Do for i D 0; 1; : : : ; NN � 1

wi .k C 1/ D wi .k/C 2�we.k/f Œdi .k/�

�i .k C 1/ D �i .k/C 2��f Œdi .k/�freŒe.k/�wRi .k/C imŒe.k/�wIi .k/g d
2
i .k/

�3i .k/

ri .k C 1/ D ri .k/C 2�rf Œdi .k/�
reŒe.k/�wRi .k/reŒx.k/�ri .k/�C| imŒe.k/�wIi .k/imŒx.k/�ri .k/�

�2i .k/

End
End

Example 11.4. Solve the problem described in Example 11.1 using:

1. RBF algorithm.
2. DFE radial basis function algorithm.

Solution. In order to solve the problem, the following two experiments use neural
network equalizers of the RBF type with ten delays in the input tap-delay line
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Fig. 11.15 Square errors for the experiments with the radial basis algorithm

and ten hidden neurons. In the first experiments the standard radial basis approach
is applied using a convergence factor for the linear combiner of �w D 0:1, a
convergence factor for the radius of �r D 0:9, and a spread factor of � D 0:8.
Figure 11.15 shows the learning curves for the square errors. As can be observed, the
radial basis algorithm requires longer training period than the previous algorithms.
This is the price paid by its generality in approximating nonlinear functions.

The final experiment uses a neural network DFE of the RBF type with eight
taps and hidden neurons in the forward filter and two in the feedback filter. The
convergence factor for the forward filter is �w D 0:5, the convergence factor for the
radius is �r D 0:9, and the spread factor is � D 0:8. For the backward filter, these
parameters are �w D 0:04, �r D 0:9, and � D 1:2, respectively. These results are
depicted in Fig. 11.16 for an ensemble of a hundred experiments. The results with
DFE are better than in the case without DFE.

Table 11.2 illustrates the number of decision errors made in a single run of the
RBF algorithms for this example, including the iteration number after which no
decision errors are noticed. As can be observed, the RBF algorithms take longer to
converge than the Volterra algorithms for this example.

Figure 11.17 depicts the results of an experiment with the RBF algorithm with
DFE where the training is done for a long period. The graphs show that after the
learning is complete the algorithm enables perfect bit detection, reaching a lower
square error level than the algorithms not based on neural networks. �



11.6 Conclusion 495

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000

M
SE

 (
L

og
 s

ca
le

)

Number of iterations, k

-25 dBs
-10 dBs

Fig. 11.16 Square errors for the experiments with DFE radial basis function algorithm

Table 11.2 Evaluation of the radial basis function algorithms

Radial basis algorithm DFE radial basis algorithm

Noise level �25 dBs �10 dBs �25 dBs �10 dBs

No. of errors 74 113 79 92
Iter. of last error 318 387 287 370

11.6 Conclusion

In this chapter, we introduced some nonlinear adaptive-filtering methods which can
be applied in communication systems, as well as in many other fields. The methods
discussed here are far from consisting of a complete set, and many other methods
have been investigated using different points of view, see for example [29, 30, 32].
The emphasis was to describe methods allowing a training period and suitable for
channel equalization and co-channel interference. No attempt was made to discuss
blind equalization methods that are nonlinear adaptive filters which usually utilize
high-order statistics, see Chap. 13.

The wide use of these algorithms in modern communication systems, while
required, remains to be seen. However, with a deep knowledge of the type of
nonlinearities affecting the given communication environment, one can come up
with a nonlinear adaptive-filtering algorithm tailored for that particular application,
where a good compromise concerning computational complexity, training period,
and performance in terms of bit error rate can be reached.
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Fig. 11.17 Experiments with DFE radial basis function algorithm, noise level �25 dBs.
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11.7 Problems

1. Perform the equalization of a nonlinear channel described by the following
relation

r.k/ D 0:9x.k/C 0:1x2.k/ � 0:3x3.k/C n.k/

using a known training signal that consists of a binary .�1; 1/ random signal.
An additional Gaussian white noise with variance 10�2 is present at the

channel output.
Apply the LMS and RLS Volterra series algorithms.

2. Repeat Problem 1 using the adaptive bilinear structure.
3. Repeat Problem 1 using the MLP algorithm.
4. Repeat Problem 1 using the adaptive RBF structure.
5. Utilize a DFE equalizer to Problem 1, also using the LMS and RLS Volterra

series algorithms, and comment on the results.
6. Compare the performances of Volterra LMS and RLS algorithms in the

identification of the following system.

d.k/ D �0:76x.k/� 1:0x.k � 1/C 1:0x.k � 2/C 0:5x2.k/

C2:0x.k/x.k � 2/� 1:6x2.k � 1/C 1:2x2.k � 2/
C0:8x.k � 1/x.k � 2/C n.k/

The input signal is a uniformly distributed white noise with variance �2nx D 0:1,
filtered by all-pole filter given by

H.z/ D z

z � 0:95

An additional Gaussian white noise with variance 10�2 is present at unknown
system output.

7. Identify an unknown system with the following model

d.k/ D �0:6d.k � 1/C x.k/C 0:01x.k/d.k � 1/

C0:02x.k � 1/d.k � 1/C n.k/

using the bilinear algorithm. The additional noise is Gaussian white noise with
variance �2n D �20 dB. Use Gaussian white noise with unit variance as input.

8. Repeat Problem 7 using the MLP algorithm.
9. Identify a system with the following nonlinear input to output relation

d.k/ D �0:08x.k/� 0:15x.k � 1/C 0:14x.k � 2/C 0:055x2.k/

C0:30x.k/x.k � 2/� 0:16x2.k � 1/C 0:14x2.k � 2/C n.k/
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The input signal is Gaussian white noise with variance �2x D 0:7, and the
measurement noise is also Gaussian white noise independent of the input signal
with variance �2n D 0:01.

Apply the RBF algorithm.
10. Repeat Problem 9 using the MLP algorithm.
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Chapter 12
Subband Adaptive Filters

12.1 Introduction

There are many applications where the required adaptive-filter order is high, as
for example, in acoustic echo cancellation where the unknown system (echo)
model has a long impulse response, on the order of a few thousand samples
[1–6]. In such applications, the adaptive-filtering algorithm entails a large number
of computations. In addition, the high order of the adaptive filter affects the
convergence speed.

A solution to problems where long-impulse-response filters are needed is to
employ adaptive filtering in subbands. In subband adaptive filtering, both the input
signal and the desired signal are split into frequency subbands via an analysis filter
bank. Assuming that the signal decomposition in subchannels is effective, we can
decimate (subsample) these subband signals and apply adaptive filtering to the
resulting signals. Each subband adaptive filter usually has shorter impulse response
than its fullband counterpart. If a gradient type algorithm is used to update the
adaptive filters, we can adjust the step size in the adaptation algorithm individually
for each subband, which leads to higher convergence speed than in the case of
fullband adaptive filter.

Decimation allows the reduction in computational complexity. Mainly if critical
subsampling (i.e., decimation by a factor equal to the number of subbands) is
employed, aliasing effects may impair the obtained filter estimates. This issue will
be discussed during this chapter. Therefore, by judicious use of adaptive filtering
in subbands we can reduce the computational complexity, as well as increase the
algorithm convergence speed [1–7].

This chapter starts with a brief introduction to multirate systems, where the
concepts of decimation, interpolation, and filter banks are presented. Then, the basic
structures for adaptive filtering in subbands are presented along with a discussion
regarding their main features. The concept of delayless subband adaptive filtering
is also addressed, where the adaptive-filter coefficients are updated in subbands and

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 12, © Springer Science+Business Media New York 2013
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502 12 Subband Adaptive Filters

mapped to an equivalent fullband filter. Finally, we point out the relation between
subband and block adaptive-filtering (also known as frequency-domain adaptive
filters) algorithms.

12.2 Multirate Systems

In this section, we briefly review the fundamentals of multirate systems which are
essential to implement adaptive filters in subbands. For further details related to
multirate systems and filter banks, the reader can refer to the review article [8] or
the comprehensive textbook [9].

12.2.1 Decimation and Interpolation

Decimation (also known as down-sampling or compression) of a digital signal x.k/
by a factor of L means reducing its sampling rate L times. Decimation is achieved
by retaining only every Lth sample of the signal. The decimator symbol is depicted
in Fig. 12.1a.

The decimated signal is then xD.m/ D x.mL/. In the frequency domain, if the
spectrum of x.k/ is X.e|!/, the spectrum of the subsampled signal, XD.e|!/ is
given by [9]

XD.e|!/ D 1

L

L�1X

kD0
X



e|
!�2	k
L

�
(12.1)

The above equation indicates that the spectrum of xD.m/ is composed of copies of
the spectrum of x.k/ expanded by L and repeated with period 2	 . Figure 12.2a,
b depicts the effect of subsampling on the spectrum of x.k/, for L D 2. This
implies that in order to avoid aliasing after subsampling, the bandwidth of the signal
x.k/ must be limited to the interval Œ� 	

L
; 	
L
�. In fact, the subsampling operation is

generally preceded by a lowpass filter that approximates the following frequency
response

HD.e|!/ D
�
1; ! 2 Œ� 	

L
; 	
L
�

0; otherwise
(12.2)

Lx k( ) x mD (  )

L

a

b
x m( ) x kI (  )

Fig. 12.1 (a) Decimation by
a factor L, (b) Interpolation
by a factor L
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a

b

c

Fig. 12.2 Spectra of up- and down-sampled signals. (a) Original spectrum. (b) Spectrum of a
down-sampled signal. (c) Spectrum of an up-sampled signal

It should be noted that the decimation operation is shift varying, i.e., if the input
signal x.k/ is shifted, the output signal will not in general be a shifted version of
the previous output. More precisely, the decimation is a periodically shift-invariant
operation.

The interpolation (or up-sampling) of a digital signal x.m/ by a factor of L
entails including L � 1 zeros in between samples. The interpolator symbol is
depicted in Fig. 12.1b.
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The interpolated signal is then

xI .k/ D
�
x. k

L
/; k D mL;m 2 Z

0; otherwise
(12.3)

If the spectrum of x.m/ is X.e|!/, it is straightforward to show that the spectrum of
the up-sampled signal, XI .e|!/, is given by

XI .e|!/ D X.e|!L/ (12.4)

Since the spectrum of the input signal is periodic with period 2	 , the spectrum of
the interpolated signal will have period 2	

L
. Figure 12.2c illustrates how the signal

spectrum is modified after the up-sampling operation. If we wish to obtain a smooth
interpolated version of x.m/, the spectrum of the interpolated signal must have
the same shape of the spectrum of x.m/. This can be obtained by filtering out
the repetitions of the spectra beyond Œ� 	

L
; 	
L
�. Thus, the up-sampling operation is

generally followed by a lowpass filter which approximates the following frequency
response:

HI .e|!/ D
�
L; ! 2 Œ� 	

L
; 	
L
�

0; otherwise
(12.5)

The decimator and interpolator blocks are fundamental to represent (or implement)
serial-to-parallel and parallel-to-serial converters. That is, given a signal x.k/whose
samples appear serially, we can transform this sequence into blocks of length L by
using delay operators and decimators whose representation is depicted in Fig. 12.3a.
The signal block at the output retains L consecutive samples of the input signal as
follows:

x.m/ D Œx.mL/ x.mL � 1/ : : : x.mL �LC 1/�T (12.6)

This notation is slightly different from the one to be used in the remaining chapters,
sincem here denotes the block number and not the index of the most recent element
of x.m/. In this chapter we will use the block notation because it leads to simpler
description of the algorithms. The implementation of the serial-to-parallel converter
in terms of decimators and delays is further illustrated in Fig. 12.3b.

On the other hand, given a block signal x.m/, we can transform the parallel
data of length L back into a delayed serial data as shown in Fig. 12.4a. The
implementation of the parallel-to-serial converter in terms of interpolators and
delays is illustrated in Fig. 12.4b.
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x k( )

x mL( )

x (mL-1)

x (mL-1)

x (mL-L+1)

x (mL-L+1)

Serial
to

parallel
converter

a

z–1

z–1

z–1

L

L

L

x (k)
x mL( )

b

Fig. 12.3 Serial-to-parallel
converter (a) Symbol,
(b) Implementation

12.3 Filter Banks

In subband adaptive filtering as well as in a number of other applications, it
is advantageous to split a sequence x.k/ into several frequency bands. This is
illustrated on the left-hand side of Fig. 12.5.

The analysis filters, represented by the transfer functions Fi .z/ for i D 0;

1; : : : ;M � 1, comprise of a lowpass filter F0.z/, bandpass filters Fi .z/ for
i D 1; 2; : : : ;M � 2, and a highpass filter FM�1.z/. Ideally these filters have
nonoverlapping passbands, while they together cover the entire spectrum of the
input signal. Since each of the analysis filter outputs xi .k/, i D 0; 1; : : : ;M � 1

has the same number of samples as the original signal x.k/, after the M -band
decomposition, all signals xi .k/ together have M times more samples than the
original one. This expansion on the number of samples is undesirable because of
the resulting computational burden.

In most cases, the input signal is uniformly split into subbands, where each of
the frequency bands has the same bandwidth. Since the bandwidth of each analysis
filter output band is M times smaller than in the original signal, we can decimate
each xi .k/ by a factor of L smaller or equal to M without destroying the original
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Parallel
to

serial
converter

a

z–1

z–1

z–1

L

L

L

x (mL)

x (mL-L+1)

x (mL-1)

x (mL-L+1)

x (k-L+1)

x (mL-1)

x (mL)

1( )

+

+

b

Fig. 12.4 Parallel-to-serial
converter (a) Symbol,
(b) Implementation

information. For L D M , the amount of data after the decimators in Fig. 12.5 is
maintained when compared to the number of samples of the input signal. This case is
called maximally (or critically) decimated analysis filter bank. If L > M , there is a
loss of information due to aliasing which does not allow the recovery of the original
signal. For L � M , it is possible to retain all information contained in the input
signal by properly designing the analysis filters in conjunction with the synthesis
filters Gi.z/, for i D 0; 1; : : : ;M � 1. If no signal processing task is performed
in the subbands (see Fig. 12.5), the filter bank output y.k/ can be made to be a
delayed version of the input signal x.k/, where the delay is due to the causality of
the subband filters. In this case, we have a perfect reconstruction filter bank. In fact,
there are several methods for designing the analysis filters Fi .z/ and the synthesis
filtersGi.z/ such that perfect reconstruction is achieved or arbitrarily approximated.
These filters can be finite-length (FIR) filters with overlapping frequency responses,
which are designed to cancel out the aliasing effects and results in the perfect
reconstruction.

z
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x (k) y (k)

F0 (z) G0 (z)

G1 (z)F1 (z)

FM-1 (z)

+Signal
Processing

Task

L

L

L

L

L

L

u0 (m)

u1 (m)

uM-1 (m)
GM-1 (z)

Fig. 12.5 Signal processing in subbands

In the case where L < M , the filter bank is called oversampled (or noncritically
sampled) since we are retaining more samples in the subbands than the input
signal. Oversampled filter banks appear frequently in subband adaptive-filtering
applications; however, their design is beyond the scope of this book.

We will now discuss the polyphase representation of a transfer function which is
quite useful in describing filter banks. Defining Eij .z/ D PNp�1

lD0 fi .Ll C j /z�l as
the polyphase components of the analysis filter Fi .z/, and Np as the length of the
polyphase components of the analysis filters, we can express the transfer function
of the filter Fi .z/ as follows:

Fi .z/ D
NpL�2LC1X

kD0
fi .k/z

�k

D
Np�1X

lD0
fi .Ll/z

�Ll C z�1
Np�1X

lD0
fi .Ll C 1/z�Ll C � � � C z�LC1

�
Np�1X

lD0
fi .Ll C L � 1/z�Ll

D
L�1X

jD0
z�jEij .zL/ (12.7)
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L

L

L
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x (k)

xi (m)

Fig. 12.6 Polyphase
representation

In the polyphase decomposition we decompose each analysis filter Fi .z/ into L
filters, the first one has an impulse response consisting of every sample of fi .k/
whose indexes are multiples of L, the second one has every sample of fi .k/ whose
indexes are one plus a multiple of L, and so on. The resulting representation for
an analysis subfilter, along with decimation, is depicted in Fig. 12.6. By means of
a noble identity [9], the cascade connection of Eij .zL/ and the decimators can be
replaced by decimators followed by the polynomials Eij .z/.

For the synthesis filter bank we can employ an alternative polyphase decomposi-
tion which matches the interpolation operation. That is, each synthesis filter can be
described in the following polyphase form:

Gi.z/ D
M�1X

jD0
z�.L�1�j /Rj i .zL/ (12.8)

Again by means of a noble identity [9], the polynomials Rji.zL/ preceded by
interpolators can be replaced by interpolators preceded by the polynomialsRji.z/.

By replacing each of the filters Fi .z/ and Gi.z/ by their polyphase components,
the M -band filter bank of Fig. 12.5 can be transformed in the structure of Fig. 12.7.
The matrices E.z/ and R.z/ are formed from the polyphase components of Fi .z/
and Gi.z/. Eij .z/ is the j th polyphase component of Fi .z/ and Rji.z/ is the j th
polyphase component of Gi .z/. From Fig. 12.7 we conclude that if R.z/E.z/ D
z��I, where � is an arbitrary delay and I is the identity matrix, the M -band filter
bank holds the perfect reconstruction property.
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Fig. 12.7 M -band filter bank with polyphase representation

12.3.1 Two-Band Perfect Reconstruction Filter Banks

For a two-band perfect reconstruction filter bank with FIR analysis and synthesis
filters, the following conditions must be satisfied:

F0.�z/F1.z/ � F0.z/F1.�z/ D 2cz�2l�1 (12.9)

G0.z/ D � z2.l��/

c
F1.�z/ (12.10)

G1.z/ D z2.l��/

c
F0.�z/ (12.11)

where (12.9) guarantees that the synthesis filters are FIR, while (12.10) and (12.11)
guarantee perfect reconstruction. The delay � is included in (12.10) and (12.11) in
order to guarantee that the subfilters in the filter bank are causal.

Equations (12.9)–(12.11) lead to the following design procedure for the two-
band perfect reconstruction filter bank [10]: (1) Find a polynomial P.z/ such that
P.�z/ � P.z/ D 2z�2l�1; (2) Factorize P.z/ into two factors, F0.z/ and F1.�z/,
such that F0.z/ and F1.�z/ are lowpass filters; (3) Design G0.z/ and G1.z/ using
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(12.10) and (12.11). In step (1) P.z/ is an approximation to a half-band filter,1

whose amplitude response should be positive everywhere. In case this condition
is not initially satisfied in the design, we should add ız�2l�1 to P.z/ such that ı is
the modulus of the smallest (negative) value of the designed P.z/. We add that the
factorization step (2) becomes ill-conditioned when designing high-order filters. In
this case, alternative design methods can be employed [9].

In some applications, it is desired that the filter bank be made up of linear-phase
filters. In this case, one has to find a linear-phase product filter P.z/ and perform
linear-phase factorizations of it.

12.3.2 Analysis of Two-Band Filter Banks

From Fig. 12.5 we see that the signals after the analysis filters in a two-band filter
bank are described by

Xi.z/ D Fi .z/X.z/ for i D 0; 1 (12.12)

In the frequency domain, the decimated signals are

Ui.z/ D 1

2

h
Xi



z
1
2

�
CXi



�z

1
2

�i
for i D 0; 1 (12.13)

Thus after interpolation of the Ui.z/, we get

Ui.z
2/ D 1

2
ŒXi .z/CXi.�z/�

D 1

2
ŒFi .z/X.z/C Fi .�z/X.�z/� (12.14)

The reconstructed signal is then expressed as

Y.z/ D G0.z/U0.z
2/CG1.z/U1.z

2/

D 1

2
ŒF0.z/G0.z/C F1.z/G1.z/� X.z/

C1

2
ŒF0.�z/G0.z/C F1.�z/G1.z/� X.�z/

D 1

2

�
X.z/ X.�z/

�
�
F0.z/ F1.z/
F0.�z/ F1.�z/

� �
G0.z/
G1.z/

�

(12.15)

1The amplitude response of a half-band filter is symmetric with respect to 	
2

, with !p C !s D 	 ,
where !p is the passband edge and !s is the stopband edge.
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The last equality is called modulation-matrix representation of a two-band filter
bank. In this case, the aliasing effect caused by the decimation operation is
represented by the terms containing X.�z/.

Note that it is possible to avoid aliasing at the output by properly choosing the
synthesis filter, as for example in the perfect reconstruction case.

12.3.3 Analysis ofM -Band Filter Banks

The expression for two-band case can be easily generalized to M bands by noting
that, after decimation by L, the signals will have L� 1 aliased components. That is

Xd.z/ D 1

L

L�1X

kD0
X



z
1
L e� |2	k

L

�
(12.16)

The kth aliased component of X.z/ is X.z
1
L e� |2	k

L /.
Therefore, the modulation matrix for the M -band filter bank is given by

Y.z/ D 1

2

�
X.z/ X .zW / : : : X


zW L�1� �

2

6
6
6
4

F0.z/ F1.z/ : : : FM�1.z/
F0.zW / F1.zW / : : : FM�1.zW /

:::
:::

: : :
:::

F0.zW L�1/ F1.zW L�1/ : : : FM�1.zW L�1/

3

7
7
7
5

2

6
6
6
4

G0.z/
G1.z/
:::

GM�1.z/

3

7
7
7
5

(12.17)

whereW D e� |2	
L .

12.3.4 HierarchicalM -Band Filter Banks

By connecting two-band filter banks in series, we can produce many different kinds
of maximally decimated decompositions. For example, we can design a 2n-band
uniform decomposition filter bank as illustrated in Fig. 12.8 for n D 3. It is also
possible to implement nonuniform filter banks by using two-band filter banks in
series, but using a different type of hierarchical decomposition [9]. A commonly
used one is the octave-band decomposition.
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Fig. 12.8 Hierarchical uniform filter bank

12.3.5 Cosine-Modulated Filter Banks

Cosine-modulated filter banks are a class of filters efficient for the design and
implementation of filter banks with large number of subbands. A cosine-modulated
filter bank is easy to design because it is based on a single lowpass prototype
filter whose impulse response satisfies some constraints required to achieve perfect
reconstruction. It also leads to low computational complexity because the analysis
and synthesis filter banks make use of the so-called discrete-time cosine transform
(DCT), for which there are many fast implementations available for its computation.

The design of the maximally decimated cosine-modulated filter bank starts with
a linear-phase prototype lowpass filter F.z/ whose passband edge is 	

2L
� ı and

the stop-band edge is 	
2L

C ı, where 2ı is the transition band. The length of the
prototype filter is usually chosen to be an even multiple of the number of subbands:
Npr D 2KL, for K , an integer. Then, we generate cosine-modulated versions of
the prototype filter in order to obtain the analysis and synthesis filter banks. The
impulse responses of the subfilters are given by
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fl .n/ D 2f .n/ cos

�

.2l C 1/
	

2L

�

n � Npr � 1
2

�

C .�1/l 	
4

�

(12.18)

gl .n/ D 2f .n/ cos

�

.2l C 1/
	

2L

�

n � Npr � 1
2

�

� .�1/l 	
4

�

(12.19)

for 1 � n � Npr and 0 � l � L � 1, where f .n/, for n D 1; 2; : : : ; Npr , denotes
the elements of the prototype impulse response. The constraints required to achieve
perfect reconstruction are given by

Ej

z�1�Ej .z/C EjCL


z�1�EjCL.z/ D 1

2L
(12.20)

where Ej .z/ for any j D 0; 1; : : : ; L � 1 is the j th polyphase component of the
prototype filter F.z/.

There are computationally efficient implementations for the cosine-modulated
filter bank which make use of the polyphase decomposition of the prototype filter.
For further details refer to [8, 9]. Also, it is possible to design oversampled cosine-
modulated filter banks with perfect reconstruction [11], which can be used in
nonmaximally decimated subband adaptive filtering.

12.3.6 Block Representation

By using the polyphase concept, we can show that any scalar linear time-invariant
transfer function H.z/ can be implemented through a pseudocirculant matrix H.z/,
where the particular case of a 3 � 3 matrix H.z/ is given by

H.z/ D
2

4
H0.z/ H1.z/ H2.z/

z�1H2.z/ H0.z/ H1.z/
z�1H1.z/ z�1H2.z/ H0.z/

3

5 (12.21)

where the Hi.z/, i D 0; 1; 2, are the polyphase components of H.z/.
The overall realization ofH.z/ is equivalent to a cascade connection of the serial-

to-parallel converter of Fig. 12.3b, the transfer matrix H.z/, and the parallel-to-serial
converter of Fig. 12.4b, except for a delay of z�LC1 since the converter of Fig. 12.4b
is causal (i.e., it utilizes negative powers of z). See the implementation of Fig. 12.7
with H.z/ replacing the cascade of E.z/ and R.z/. This realization is known as
blocked implementation of a scalar transfer function [12].

We note that the cascade of the unblock/block mechanisms of Fig. 12.4a, b
(noncausal case) results in an identity matrix (see Sect. 12.5). The reader is
encouraged to verify this result.
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12.4 Subband Adaptive Filters

A number of adaptive-filtering structures based on multirate techniques have been
proposed in the literature [2–7, 13–27]. In most of these structures, the input signal
is decomposed into subbands via an analysis filter bank, and the resulting signals
are downsampled and filtered by adaptive filters. Each of these adaptive filters has
order smaller than the equivalent full-band adaptive filter (by a factor approximately
equal to the decimation rate). The subsampling operations create aliased versions of
the decimated signal which will affect the performance of the adaptive filter. The
aliasing effect is more severe when critically sampled filter banks are employed.
An obvious solution is to allow frequency gaps between adjacent subbands, which
for sure degrades the original signal quality. Some other structures apply subband
decomposition only to the error signal in order to improve tracking ability in
nonstationary environments [28, 29].

Several adaptive subband structures have been suggested. One early approach
uses pseudo-QMF2 banks with overlapping subfilters and critical subsampling [2],
i.e., with L D M . This results in undesirable aliased components at the output,
which causes severe degradation. A second approach uses QMF banks with critical
subsampling [3]. In order to avoid aliasing problems, it is shown that additional
adaptive cross terms among the subbands are necessary. These cross terms, however,
increase the computational complexity and reduce the convergence rate of the
adaptive algorithm.

An alternative solution is to employ oversampling, that is, to use a decimation
factor in the filtered signals smaller than the critical subsampling factor (or number
of bands), i.e., with L<M . In the oversampling case, the computational complexity
is higher than needed because after decimation the number of samples retained
in the subbands is larger than that of the filter bank input. Despite this problem,
oversampled adaptive filters are often used in practice [4–7, 14, 15]. In this chapter,
we focus on the critically decimated case, although some analysis is also carried out
for the general oversampled case.

In all the subband structures described above, the convergence rate can be
improved for colored input signals by using a normalized gradient algorithm in
the update of the coefficients of each subband filter. This improvement is justified
in Fig. 12.9, where considering that the filter bank consists of ideal subfilters, the
spectrum of each signal in the subbands after critical decimation will be closer
to that of white noise than that of the original fullband signal. If the spectral
separation is perfect, the subband structure allows the transformation of the fullband
adaptive-filtering problem into several independent narrowband adaptive-filtering
subproblems. In general, the subband separation will be effective when the order
of each subband adaptive filter is much smaller than the order of the fullband filter.
The justification is that the speed of convergence becomes faster for all subbands,
and the overall computational complexity is further reduced due to decimation.

2Quadrature-mirror filter.
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In the conventional subband adaptive filters, error signals are locally evaluated
in each subband and an objective function taking into account all these local errors
is minimized during adaptation. Figure 12.10 illustrates the open-loop structure,
where we can see that both input and reference signals are first split into subbands
by an analysis filter bank. Then, the subband signals are filtered by an adaptive-
filter matrix in order to generate the output signals to be compared with the desired
signals in the subbands. In the open-loop scheme, we aim to minimize the subband
error energy.
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For the open-loop structure, the objective function can be a linear combination
of the magnitude square of the local errors as follows:

� D
M�1X

iD0
EŒjei .m/j2� (12.22)

If we assume that the adaptive-filter matrix is diagonal, and that the subband
signals are complex, the updating equation for the subband adaptive filters based on
the normalized LMS algorithm is given by

ei .m/ D Qdi .m/� wT
i .m/ui .m/ (12.23)

wi .mC 1/ D wi .m/C �

� CNs�
2
i .m/

ei .m/u�
i .m/ (12.24)

where Ns is the length of the adaptive filter in the i th subband (which we consider
the same for all subbands in order to simplify the notation). In addition, �2i .m/ D
.1 � ˛/�2i .m � 1/ C ˛ jui .m/j2, with ˛ being a small factor chosen in the range
0 < ˛ � 0:1, and � is a small constant to prevent the updating factor from getting
too large. The signal ei .m/ is the subband error signal at the i th subband, and ui .m/
is the input signal vector to the i th adaptive filter.

Based on our knowledge of the normalized LMS algorithms, we can conjecture
that the range of values for the convergence factor is typically3

0 < � � 1 (12.25)

The steps of the open-loop algorithm are described in Algorithm 12.1, where
x.iL � l/ and d.iL � l/ represent a block of the input and desired signals, respec-
tively, El , for l D 0; 1; : : : ; Np , are the matrices containing the coefficients of the
polyphase representation of the analysis filter bank, that is,

E.z/ D
NpX

lD0
Elz�l

The coefficient matrices Wl , for l D 0; 1; : : : ; Ns , are the entries of the adaptive
filter matrices, defined in a similar form as the equation above.

Since the frequency responses of the subfilters that compose the filter bank are
not ideal, the minimization of an objective function based on local errors will not
necessarily reduce the fullband error energy to a minimum MSE. In this case, the
unknown system might not be identified accurately.

3The upper bound can be tighter depending on the input signal statistics.
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Algorithm 12.1 Open-loop subband adaptive-filtering algorithm
Initialization

x.0/ D wl .0/ D Œ0 0 : : : 0�T

choose � in the range 0 < � � 1

� D small constant
0 < ˛ � 0:1

Do for each x.iL/ and d.iL/ given, for i � 0

u.m/ D

2

6
6
4

u0.m/
:
:
:

uM�1.m/

3

7
7
5 D �

E0 	 	 	 ENp
�

2

6
6
4

x.i/
:
:
:

x.i �Np/

3

7
7
5

Qd.m/ D �
E0 	 	 	 ENp

�

2

6
6
4

d.i/
:
:
:

d.i �Np/

3

7
7
5

y.m/ D

2

6
6
4

y0.m/
:
:
:

yM�1.m/

3

7
7
5 D �

W0 	 	 	 WNs

�

2

6
6
4

u.m/
:
:
:

u.m�Ns/

3

7
7
5

e.m/ D Qd.m/� y.m/
Do for each for 0 � l � M � 1

�2l .m/ D .1� ˛/�2l .m� 1/C ˛ jul .m/j2
wl .mC 1/ D wl .m/C �

�CNs�
2
l .m/

el .m/u�

l .m/

12.4.1 Subband Identification

Define the Z-transforms of the blocked versions of input and desired signals x.k/
and d.k/ as

X.z/ D
X

m

x.m/z�m

D.z/ D
X

m

d.m/z�m (12.26)

where x.m/ is given in (12.6), and

d.m/ D Œd.mL/ d.mL� 1/ : : : d.mL� LC 1/�T (12.27)

If we describe the analysis filter transfer functionsFi .z/, for i D 0; 1; : : : ; L � 1,
in terms of their polyphase components, the subband input and desired signals,
described in the Z-domain for the critically decimated case (i.e. L D M ), can
be written in vector form as

YYY.z/ D W.z/E.z/X.z/

DDD.z/ D E.z/D.z/ (12.28)
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whereDDD.z/ is the desired signal split into subbands, andYYY.z/ is the adaptive system
output (refer to Figs. 12.7 and 12.10).

By describing the unknown system model in the block form, as explained in
Sect. 12.3.6, the blocked desired signal is given by

D.z/ D H.z/X.z/ (12.29)

By substituting the above expression into (12.28), we obtain

DDD.z/ D E.z/H.z/X.z/ (12.30)

By defining the channel error vector as EEE .z/ D DDD.z/�YYY.z/ and setting it to zero,
for X.z/ ¤ 0, we generate the optimal solution for the adaptive-filter coefficient
matrix

E.z/H.z/ D Wo.z/E.z/ (12.31)

whose expression is given by

Wo.z/ D E.z/H.z/E�1.z/ (12.32)

Note that since Wo.z/ is nondiagonal, it requires cross filters among channels in
order to model the unknown system perfectly.

12.4.2 Two-Band Identification

The two-band case is easier to analyze in closed form, leading to interesting
insights into the problem of cross filters. Using the relations described in (12.12)
and (12.13), and considering the error signals equal to zero in Fig. 12.10, we can
show that for the identification of an unknown transfer function H.z/, the optimal
coefficients for the two-band adaptive filter are given by
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2
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The right-hand side of (12.33) shows that nonzero off-diagonal elements are
required in order to model the unknown system. Note that the products of
F0.z

1
2 /F0.�z

1
2 / and F1.z

1
2 /F1.�z

1
2 / would be null if the analysis filter bank was

ideal. In the case of a nonideal filter bank, ill-conditioned signals appear in the
adaptive part of the cross filters (which model the term ŒH.z

1
2 /�H.�z

1
2 /�), leading

to slow convergence of the adaptive cross filters.

12.4.3 Closed-Loop Structure

An alternative subband adaptive-filtering realization is the closed-loop structure
depicted in Fig. 12.11. In the closed-loop structure, the fullband output signal of
the adaptive filter is reconstructed through a synthesis filter bank, and the overall
error signal is computed and utilized in the objective function. The overall error is
split into subbands, which are then used in the adaptation algorithm. In the closed-
loop scheme we aim to minimize the fullband error energy. In this case, the NLMS
updating equation is given by
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Algorithm 12.2 Closed-loop subband adaptive-filtering algorithm
Initialization

x.0/ D wl .0/ D Œ0 0 : : : 0�T

choose � in the range 0 < � � 1

� D small constant
0 < ˛ � 0:1

Do for each x.iL/ and d.iL/ given, for i � 0

u.m/ D �
E0 	 	 	 ENp

�
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x.i/
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x.i �Np/
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6
4

y.m/
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y.m�Np/
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7
5

e.k/ D d.k ��L/� y.k/

e0.m/ D �
E0 	 	 	 ENp

�

2

6
6
4

e.i/
:
:
:

e.i �Np/

3

7
7
5

Do for each for 0 � l � M � 1

�2l .m/ D .1� ˛/�2l .m� 1/C ˛ jul .m/j2
wl .mC 1/ D wl .m/C �

�CNs�
2
l .m/

u�

l .m��/e0

l .m/

wi .mC 1/ D wi .m/C �

� CNs�
2
i .m/

u�
i .m��/e0

i .m/ (12.34)

where the fullband error is evaluated as e.k/ D d.k � �L/ � y.k/, and e0
i .m/

corresponds to the i th component of the fullband error signal split into subbands.
The delay � is key to compensate for the extra delay the input signal faces, due to
the analysis and synthesis filter bank, with respect to the desired signal. The delay
value is given by

� D
�
2KM � 1

L

�

(12.35)

where b.�/c denotes the integer part of .�/, 2KM is the length of the subfilters of the
analysis and synthesis filter banks, and K is a positive integer number. The closed-
loop scheme allows for the minimization of a cost function based on the fullband
error signal and guarantees that the algorithm converges to a minimum MSE.

The closed-loop algorithm is described in detail in Algorithm 12.2. Note that
the matrix coefficient Rl , for l D 0; 1; : : : ; Np, represents the element of order l
of the synthesis filter polyphase matrix, and y.m � l/ is the subband adaptive-filter
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output vector at time instant .m� l/. A comparison between the two schemes shows
that the open-loop scheme generates an excess MSE because it actually minimizes
the subband error energy, whereas the closed-loop scheme minimizes the fullband
error. On the other hand, since in the closed-loop scheme a delay is introduced by the
synthesis filter bank, and by the analysis filter bank applied to the error signal e.k/,
the adaptation algorithm uses past information about the error signal, which can be
shown to slow down the convergence. In fact, this delay reduces the upper bound
of � that can be employed in the closed-loop algorithm. The recursive equations
governing the convergence of the adaptive-filter coefficients of the closed-loop
algorithm have the following general characteristics polynomial (see Problem 8):

p.�/ D z�C1 � z� C ��i D 0 (12.36)

where� is the delay introduced by the filter banks and �i is related to the maximum
eigenvalue of the autocorrelation matrix of the input signal in the i th subband.
Considering the critical case of maximum eigenvalue �max, the critical value of �
such that the zeros of (12.36) meet at the real axis is

�crit D .� � 1/��1

�max��
(12.37)

For higher values of � the zeros move away from the real axis and eventually reach
the unit circle at � � 4:5�crit, see [15, 16] for further details. Higher delays lead to
lower values of�. As a consequence, the closed-loop structures are more susceptible
to convergence problems and less used in practice.

For the closed-loop structure, the excess MSE due to gradient noise (which tends
to zero as � ! 0) is not related to the additional error resulting from the use
of nonideal filter banks. By making some simplifying assumptions, we can easily
estimate the excess MSE in the closed-loop structure (the open-loop scheme follows
similar analysis). The final result will closely follow the one for the standard LMS
algorithm. If we consider that the input signal in each subband and the adaptive-
filter coefficients are uncorrelated, and that the subfilters in the filter bank are
frequency selective, we can calculate the excess MSE individually in each subband,
and combine them to derive the overall excess MSE. The result is given by

�exc �
M�1X

iD0

�i�
2
ni

trŒUi �

1 � �i trŒUi �
(12.38)

where Ui D EŒui .k/uHi .k/�, �
2
ni

� �2n=M , and �i D 1
2

�

�CNs�2i . This equation

provides a good estimate to the excess MSE when the assumptions are closely met.
A more accurate estimate is not straightforward to obtain.



522 12 Subband Adaptive Filters

–40

–35

–30

–25

–20

–15

–10

–5

0

0 100 200 300 400 500 600 700 800 900

E
st

im
at

ed
 M

SE
  
(1

0 
lo

g(
M

SE
))

Number of iterations, k

Fig. 12.12 MSE in the fullband normalized LMS algorithm

Example 12.1. Identify an unknown system with the following transfer function:

H.z/ D 0:1z

.z C 0:9/
C 0:08z

.z2 C 0:92/
C 0:1z

.z � 0:9/

The input signal is a uniformly distributed white noise with variance �2x D 1, and
the measurement noise is Gaussian white noise uncorrelated with the input with
variance �2n D 10�3. The filter bank is a cosine-modulated type of length 32.

(a) Start with a fullband filter using the normalized LMS algorithm.
(b) Compare the results obtained with those using an open-loop subband adaptive

filter with three bands. Plot the MSE for an average of five independent runs,
including the local errors and the overall error.

Solution. Figure 12.12 shows the MSE for the fullband normalized LMS algorithm.
The impulse response of the unknown system has infinite length. However, since

the samples after 90 are rather small, we use three subband filters of length 30 each.
No cross filters are employed. The convergence factor in all subbands is � D 0:2,
and the parameters of the normalized updating equation are given by: ˛ D 0:1 and
� D 0:001. The prototype filter coefficients of the cosine-modulated filter bank
are given in Table 12.1. Figures 12.13 and 12.14 depict the MSE measured in the
subbands and the global error computed after reconstruction of the adaptive-filter
output through the synthesis filter bank. As can be observed, the convergence speed
of global and local errors are not reduced due to the aliasing effects caused by the
analysis filter banks. The aliasing errors appear at the global error and cannot be
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Table 12.1 Coefficients of the prototype filter of the cosine-modulated filter bank

n f .n/ n f .n/ n f .n/ n f .n/

0 0.000689 8 �0:023394 16 0.188567 24 �0:015614
1 �0:000316 9 �0:023179 17 0.163319 25 �0:005030
2 0.001608 10 �0:008268 18 0.119646 26 0.001726
3 0.003180 11 0.023394 19 0.069041 27 0.004631
4 0.004631 12 0.069041 20 0.023394 28 0.003180
5 0.001726 13 0.119646 21 �0:008268 29 0.001608
6 �0:005030 14 0.163319 22 �0:023179 30 �0:000316
7 �0:015614 15 0.188567 23 �0:023394 31 0.000689
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Fig. 12.13 Subband errors in the open-loop structure

cancelled by the synthesis filter bank. As we can observe in Fig. 12.12, the fullband
normalized LMS algorithm achieves a larger reduction in the excess of MSE since
in this case there are no aliasing effects. In both examples, some excess MSE is
expected since the unknown system has infinite length. ut

12.5 Cross-Filters Elimination

The design of sophisticated filter banks is beyond the scope of this book. Highly
selective subfilters are key to reduce the importance of the cross filters and eventu-
ally eliminate them. However, for moderately selective subfilters, their elimination
will always lead to an excess MSE at the adaptive-filter output. In this section, we
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discuss the design of a special type of maximally decimated (M D L) analysis
filter bank for cross-filter elimination [22]. It will be verified that the generation of
these filter banks requires the design of fractional delays, which will also be briefly
discussed. The price paid for the elimination of the cross filters is the design of
accurate fractional delays. Unlike the adaptive cross filters, the fractional delays are
fixed filters.

A solution to avoid the cross filters in a maximally decimated structure can be
engineered if we explore the special structure of the blocked matrix representation of
the unknown system. This implementation is given in Fig. 12.7 with H.z/ replacing
the cascade of E.z/ and R.z/. In a subband adaptive-filtering configuration, this
blocked matrix H.z/ is followed by a parallel-to-serial converter, belonging to the
unknown system, which in turn is in cascade with a serial-to-parallel converter,
belonging to the analysis filter bank represented in the polyphase form. The
cascade of these converters is an identity matrix multiplied by a delay as depicted
in Fig. 12.15. Without loss of generality we can disregard the delay.4 Since the
polyphase matrix of the analysis filter bank E.z/ follows the pseudocirculant matrix
H.z/, if we choose an E.z/ as a similarity transformation matrix which transforms
H.z/ into its Jordan form, we can avoid most of (usually all) the off-diagonal
elements of the adaptive-filter matrix W.z/. As mentioned in [17], the Jordan form is
the extreme effort in diagonalizing a matrix. The full diagonalization is impossible
only for defective matrices.

4This delay would not appear if we had employed a noncausal representation for the parallel-to-
serial converter.
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In the following discussions, we assume that H.z/ is not defective and therefore
diagonalizable, that is, there is a T.z/ such that

T.z/H.z/T�1.z/ D

2

6
6
6
4

Wo;0.z/ 0 � � � 0

0 Wo;1.z/ � � � 0
:::

:::
: : :

:::

0 0 � � � Wo;L�1.z/

3

7
7
7
5

(12.39)

The matrix T�1.z/, whose columns are the eigenvectors of any L �L pseudocircu-
lant matrix, is given by5

T�1.z/ D �.z/F (12.40)

5In fact, any pseudocirculant matrix H.z/ can be written as �.z/Hc.z/�
�1.z/ where Hc.z/ is a

circulant matrix. Since any circulant matrix is diagonalized as F�Hc.z/F , with F� being the
inverse of F (in this case just the complex conjugate), the result of (12.40) follows.
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where F is the L�L DFT matrix whose element .i; j /, for i; j D 0; 1; : : : ; L� 1,

is given by W ijp
L

, where W D e
�|2	
L , and

�.z/ D

2

6
6
6
6
4

1 0 � � � 0

0 z� 1
L � � � 0

:::
:::
: : :

:::

0 0 � � � z� L�1
L

3

7
7
7
7
5

(12.41)

Now if we examine (12.32) and (12.39) more closely, we conclude that by
choosing the polyphase matrix as E.z/ D T.z/z� L�1

L , where the delay was included
in order to guarantee causality of the analysis filter bank, the cross filters are
eliminated.

The optimal adaptive subfilters are given by the eigenvalues of H.z/ (refer to
(12.39)), whose expressions are

Wo;i .z/ D 1p
L

L�1X

lD0
Hl .z/z

� l
LW li (12.42)

for i D 0; 1; : : : ;M � 1, where Hl.z/ is the l th polyphase component of H.z/.
In conclusion, the polyphase-component matrix of the analysis filter bank is

given by

E.z/ D F���1.z/z� L�1
L

D F�

2

6
6
6
6
4

z�L�1
L 0 � � � 0
0 z�L�2

L � � � 0
:::

:::
: : :

:::

0 0 � � � 1

3

7
7
7
7
5

(12.43)

The structure of the analysis filter bank based on fractional delays is depicted
in Fig. 12.16. Similarly, we can derive the structure for the synthesis filter bank
utilizing fractional delays illustrated in Fig. 12.17. It is worth mentioning that
selectivity of the subfilters in this type of bank is highly dependent on the quality
of the fractional delays design. The filter banks based on fractional delays are
particularly useful in the delayless subband structures of Sect. 12.6.

12.5.1 Fractional Delays

The review article about fractional delays [30] proposes several techniques for the
approximation of a fractional delay. One of them consists of designing a symmetric
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Lth band filter (also known as a Nyquist filter), and keeping its l th polyphase
component to represent the fractional delay Q� C l=L. The delay Q� is the integer
part of the group delay inherent to the FIR filter approximating a fractional delay.
The Lth band filter has an impulse response that satisfies

h.kL/ D
�
K; k D 0

0; otherwise
(12.44)
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Table 12.2 Coefficients of
the fractional delays of the
analysis filter bank

n E0 E1 E2

0 0.0000 0.0000 0.0000
1 �0:0072 �0:0117 0.0000
2 0.0320 0.0497 0.0000
3 �0:1090 �0:1592 0.0000
4 0.3880 0.8140 1.0000
5 0.8140 0.3880 0.0000
6 �0:1592 �0:1090 0.0000
7 0.0497 0.0320 0.0000
8 �0:0117 �0:0072 0.0000

whereK is a constant value. In the Z-domain, the representation of h.k/ is

H.z/ D K C z�1E1.zL/C � � � C z�.L�1/EL�1.zL/ (12.45)

If H.z/ satisfies the above condition, it can be shown that [9]

L�1X

lD0
H.zW l/ D LK (12.46)

where W D e� |2	
L . The proof for the above relation is straightforward, if we just

replace z by zW l in (12.45) and compute the summation in (12.46).
Therefore, a natural proposition to eliminate adaptive cross filters is to design

a DFT filter bank with a lowpass prototype filter given by an Lth band filter
whose polyphase components approximate the fractional delays. The Lth band
filter can be easily designed by using the so-called eigenfilter approach for FIR
filter approximation [9]. This approach allows the incorporation of the constraints
inherent in the Nyquist filters. The Lth band filter is usually designed as a lowpass
filter whose passband (!p) and stopband (!s) edges are symmetric with respect
to the normalized frequency 	

L
, that is !p C !s D 2	

L
. Although the fractional

delays designed using Lth band filters are not very accurate, they can be considered
acceptable for the delayless structures discussed in Sect. 12.6.

Another simple FIR filter design to approximate the fractional delay is through
the classical Lagrange interpolation formula. The interested reader should refer
to [30].

Example 12.2. Repeat Example 12.1 with a filter bank using fractional delays.

Solution. For this example we design the fractional delays via a three-band filter.
The length of the polyphase components is 9, with values given in Table 12.2. The
length of the adaptive filters in the subbands is N D 30, the convergence factor in
all subbands is � D 0:2, and parameters of the normalized updating equation are
given by ˛ D 0:1 and � D 0:001.
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Fig. 12.18 Subband errors in the open-loop structure

As can be observed in Figs. 12.18 and 12.19, the errors measured in the subbands
and the global error are rather high due to the aliasing effects. Due to these effects,
we can see in Fig. 12.20 that the magnitude response obtained after convergence
resembles the unknown system response although the approximation is not very
close. ut

12.6 Delayless Subband Adaptive Filtering

In the subband adaptive-filtering schemes presented so far, a delay is always
introduced in the signal path due to the filter bank analysis and synthesis. In
applications such as acoustic echo cancellation and active noise control, the delay
is highly undesirable. In acoustic echo cancellation, the echo is not fully cancelled
and can be perceptually unacceptable. In active noise control the delay reduces the
cancellation bandwidth [20].

In order to avoid the effect of signal path delay in these applications, we can
avoid the synthesis filter bank and map the subband adaptive filters into a wideband
filter, leading to the so-called delayless subband adaptive filters. Several techniques
to perform this mapping have been proposed [21–26], where the distinctive feature
among them is the construction of each analysis filter bank and its corresponding
subband to fullband mapping. In this section, we describe the delayless subband
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Fig. 12.20 Magnitude responses of the unknown system and the obtained model at a given
iteration

adaptive filter proposed in [22] which utilizes DFT-based filter banks with fractional
delays discussed in this chapter. Figure 12.21 depicts the general configuration of a
delayless adaptive filter in subbands, employing a maximally decimated filter bank.
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Equation (12.42) gives the coefficients of the optimal subband adaptive filters in
each subband, for the open-loop scheme. The transfer functions of these subfilters
represent the eigenvalues of a pseudocirculant matrix. Therefore, if we apply the
inverse DFT to a vector whose elements are the transfer functions of the adaptive
subfilters, we can recover the polyphase components estimates of the unknown
system multiplied by fractional delays as described in the equation below

1p
L

2

6
6
6
6
4

OH0.z/
OH1.z/z� 1

L

:::

OHL�1.z/z� .L�1/
L

3

7
7
7
7
5

D F�

0

B
B
B
@

2

6
6
6
4

W0.z/
W1.z/
:::

WL�1.z/

3

7
7
7
5

1

C
C
C
A

(12.47)
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It should be noticed that in most cases the length of the adaptive subfilters is
chosen as N

L
, where N is the unknown system length. However, from the above

equation some extra coefficient should be allotted to the subband adaptive filters in
order to account for the fractional delays.

Since in our case any subfilter of the bank Fi .z/ has an inherent fractional delay,
it is reasonable to conjecture that the product Fi .z/z� i

L represents a filter with
one more sample than Fi .z/. Through a number of simulations, we concluded that
a single coefficient is enough to perform this task in closed-loop schemes. As a
consequence, the adaptive subfilters have length Ns D N

L
C 1.

By denoting each element of the time-domain representation of Wi .z/ as wi;l , we
can compute the previous equation in parts as follows:

2

6
6
6
6
4

w0
0;l

w0
1;l
:::

w0
L�1;l

3

7
7
7
7
5

D F�

0

B
B
B
@

2

6
6
6
4

w0;l
w1;l
:::

wL�1;l

3

7
7
7
5

1

C
C
C
A

(12.48)

for l D 0; 1; : : : ; Ns � 1. The polyphase component of the corresponding fullband
adaptive filter is then given by 1p

L
OHi.z/z� i

L D W 0
i .z/, where W 0

i .z/ represents

the Z-transform of w0
i;l , and OHi.z/ represents an estimate of the i th polyphase

component of the unknown system. We can obtain the polyphase components OHi.z/
fromW 0

i .z/, if we note that

OHi.z/z
� i
L z� L�i

L D OHi.z/z
�1 (12.49)

for i D 0; 1; : : : ; L � 1. The above discussion indicates that the cascade of W 0
i .z/

with the fractional delay Ei�1.z/, i D 1; : : : ; L � 1, leads to the polyphase
component OHi.z/ delayed by Q� C 1 samples and scaled by 1p

L
. Recall that Q� is

the integer part of the group delay introduced by the design of the fractional delays.
Note that the impulse response of OH0.z/ is represented by w0

0;l . Similarly, we can
infer that

W 0
0.z/ � 1p

L
OH0.z/

W 0
i .z/Ei�1.z/ � 1p

L
OHi.z/z

�. Q�C1/ (12.50)

for i D 1; : : : ;M � 1. In conclusion, to obtain the first polyphase filter OH0.z/ we
simply discard the last sample of w0

0;l . For OHi.z/, with i D 1; : : : ;M �1, we discard

the first Q�C 1 samples and retain the next Ns � 1 samples (here the reader should
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Algorithm 12.3 Delayless closed-loop subband adaptive-filtering algorithm
Initialization

x.0/ D wl .0/ D Œ0 0 : : : 0�T

choose � in the range 0 < � � 1

� D small constant
0 < ˛ � 0:1

Do for each x.iL/ and d.iL/ given, for i � 0

u.m/ D F�

�
E0 	 	 	 ENp

� �
x.i/ 	 	 	 x.i �Np/

�T

where El , for l D 0; 1; : : : ; Np are diagonal matrices whose
elements are the l th element of the impulse response of the filter
implementing the fractional delays, and Np is the order of
fractional delays implementation.2

6
6
6
6
4

w0

0;l

w0
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:
:
:

w0

L�1;l
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7
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0

B
B
B
@

2

6
6
6
4

w0;l
w1;l
:
:
:
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1
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Get 1
p

L
OH0.z/ by discarding the last sample of w0

0;l .

For 1
p

L
OHi.z/, with i D 1; : : : ; L� 1, we discard the first Q�C 1

samples of the impulse response corresponding to equation (12.50)
and retain the following Ns � 1 samples.

Oh.k/ is the impulse response of OH.z/ D PL�1
iD0

OHi.zL/z�i .

e.k/ D d.k/� OhH.k/x.k/
e0.m/ D F�

�
E0 	 	 	 ENp

� �
e.i/ 	 	 	 e.i �Np/

�T

Do for each for 0 � l � L� 1

�2l .m/ D .1� ˛/�2l .m� 1/C ˛ jul .m/j2
wl .mC 1/ D wl .m/C �

�CNs�
2
l .m/

u�

l .m/e
0

l .m/

recall that we used an extra coefficient for the adaptive subfilters to compensate for
the fractional delay in the subfilter of the analysis bank). The fullband filter is then
formed by

OH.z/ D
L�1X

iD0
OHi.z

L/z�i (12.51)

The delayless closed-loop algorithm is described in detail in Algorithm 12.3,
where e.mL/ represents a length L block of the error signal at instant mL. The
detailed structure is shown in Fig. 12.22. It is worth mentioning that the delayless
closed-loop structure does not suffer as much from the stability problems inherent
in the standard closed-loop subband structure. This is because we do not have to
reconstruct the adaptive-filter output through a synthesis filter bank in order to
generate the global error. In part the reconstruction of the global error originates
the convergence problems of the standard closed-loop structure.
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Fig. 12.22 Detailed delayless closed-loop subband structure

Example 12.3. Repeat Example 12.1 using the closed-loop delayless structure
whose filter banks employ fractional delays.

Solution. For this example, we use the same parameters as Example 12.2. As can
be observed in Figs. 12.23 and 12.24, the errors measured in the subbands and the
global error are reduced despite the fact that the subfilters of the filter bank are not
very selective. In this case, the delayless closed-loop structure is able to compensate
for the limitations of the filter bank. Figure 12.25 shows that the magnitude response
obtained after convergence is very close to the unknown system response. ut
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Fig. 12.23 Subband errors in the closed-loop structure
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Fig. 12.25 Magnitude responses of the unknown system and the obtained model at a given
iteration

12.6.1 Computational Complexity

An interesting issue to illustrate the results of this chapter is to assess the overall
computational complexity of the subband structure. The computational complexity
is counted in multiplications per input sample, and considering that the product of
complex values is implemented through four real multiplications. In the delayless
subband structure, the overall computation consists of the components described
below.

• The subband decomposition: It consists of one convolution of an Npr -length
prototype filters, which is the total number of coefficients required to realize all
the fractional delays, and one L-point FFT for each block of L input samples.
Assuming that the number of complex multiplications required to compute a
L-point FFT is L

2
log2 L, see [31], we obtain

2Npr

L
C 2 log2 L (12.52)

real multiplications per input sample for the two analysis filter banks. The
symmetry of the IDFT for real signals allows us to process only half of the L
channel complex signals. Therefore, we have to update L

2
adaptive filters.

• The subband NLMS algorithm: Considering that we have to update L
2

adaptive
filters of length Ns D N

L
C 1 for every L input samples, the computational

complexity entails
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2
N C L

L
(12.53)

real multiplications per input sample.
For the open-loop scheme an additional of 2NCL

L
is required to evaluate the

adaptive-filters outputs y.m/.
• The wideband filter convolution: There are some approaches to reduce the

computational complexity of the wideband convolution as discussed in [21]. Here
we consider only the direct implementation which entails N multiplications per
output sample.

• The transformation from the subband adaptive filters to the wideband adaptive
filter: It consists of Ns IFFTs and L � 1 convolutions with the polyphase filters
as indicated in (12.50). However, there is no need to perform the transformation
for every L input samples, since in most applications the fullband adaptive-filter
output cannot vary much faster than the length of filter impulse response. The
computational cost is then given by

1

r

��
N

L
C 1

�

log2 LC NNpr.L� 1/

L3

�

(12.54)

real multiplications per input sample, where rL represents how often the
transformation is performed in terms of the number of input samples.

The overall computational complexity for the closed-loop scheme is

Pc D 2Npr

L
C 2 log2 LC 2.N CL/

L
C 1

r

��
N

L
C 1

�

log2 LC NNpr.L � 1/
L3

�

CN

(12.55)

while for the open-loop scheme we have

Po D 2Npr

L
C 2 log2 LC 4.N C L/

L
C 1

r

��
N

L
C 1

�

log2 LC NNpr.L � 1/

L3

�

CN

(12.56)

12.7 Frequency-Domain Adaptive Filtering

Frequency-domain adaptive algorithms, which employ block processing in order
to reduce the computational complexity associated with high-order adaptive filters,
have been suggested in [32]. Such algorithms utilize FFTs to implement con-
volutions (for filtering) and correlations (for coefficient updating). More general
block algorithms, in which the block size can be smaller than the order of the
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adaptive filter, have also been investigated [33]. Such approach, called multidelay
adaptive filter (MDF) [34–37], utilizes adaptive filters in the bins (equivalent to
the subbands), unlike the original frequency-domain adaptive-filtering algorithms
that use a single adaptive coefficient in each bin. Like the subband adaptive filters
discussed so far, frequency-domain adaptive filters can increase the convergence
speed by decreasing the eigenvalue spread of the autocorrelation matrices of the
signals at the inputs of the adaptive filters. In fact, the subband and the frequency-
domain adaptive filters are closely related as will become clear in the sequel.

Let us consider the case where both the input and desired signals are presented
in their corresponding blocked versions as described in Sect. 12.3.6. The adaptive
filter transfer function is represented by a blocked matrix denoted by OH.z/. In this
case, the adaptive-filter output is also represented in block form y.m/, which in turn
is compared with the desired signal block d.m/. These vectors are defined as

y.m/ D Œy.mL/ y.mL � 1/ : : : y.mL �LC 1/�T

x.m/ D Œx.mL/ x.mL � 1/ : : : x.mL �LC 1/�T

d.m/ D Œd.mL/ d.mL� 1/ : : : d.mL� LC 1/�T (12.57)

In the particular case where the matrix OH.z/ is 3 � 3, we have

OH.z/ D
2

4

OH0.z/ OH1.z/ OH2.z/
z�1 OH2.z/ OH0.z/ OH1.z/
z�1 OH1.z/ z�1 OH2.z/ OH0.z/

3

5

D OH0.z/ OH1.z/ (12.58)

where OHi.z/, i D 0; 1; 2, are the polyphase components of W.z/, and

OH0.z/ D
2

4

OH0.z/ OH1.z/ OH2.z/ 0 0 0

0 OH0.z/ OH1.z/ OH2.z/ 0 0

0 0 OH0.z/ OH1.z/ OH2.z/ 0

3

5

OH1.z/ D
6
6
6

2

6
6
6
6
4

1 0 0

0 1 0

0 0 1

z�1 0 0

0 z�1 0

0 0 z�1

7
7
7

3

7
7
7
7
5

(12.59)

The last column of OH0.z/ and the last row of OH1.z/were artificially added to generate
a square circulant matrix in the sequel whose dimension can be designed to be a
power of two, allowing the use of FFTs. The overall factorization of OH.z/ as above
described is crucial to derive the frequency-domain algorithm and the MDF in the
sequel. It is worth noting that our presentation follows the embedding approach
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which was generalized in [38], and was indirectly employed in [39]. The embedding
approach leads to a simpler derivation than those presented in early references
[33–37, 40].

The embedding approach starts by defining a circulant matrix OH2.z/ as follows:

OH2.z/ D

2

6
6
6
6
6
6
6
4

OH0.z/ OH1.z/ OH2.z/ 0 0 0

0 OH0.z/ OH1.z/ OH2.z/ 0 0

0 0 OH0.z/ OH1.z/ OH2.z/ 0

0 0 0 OH0.z/ OH1.z/ OH2.z/
OH2.z/ 0 0 0 OH0.z/ OH1.z/
OH1.z/ OH2.z/ 0 0 0 OH0.z/

3

7
7
7
7
7
7
7
5

(12.60)

The matrix OH0.z/ is embedded into OH2.z/, that is:

OH0.z/ D �
IL 0

� OH2.z/ (12.61)

where in the above equation we treat the general case, i.e., for block length equal to
L instead of 3. Since the matrix OH2.z/ is circulant, it can be diagonalized by a DFT
matrix as follows:

OH2.z/ D F�W.z/F (12.62)

where W.z/ is a diagonal matrix. If these diagonal elements are given by single
complex coefficients, the resulting algorithm is the so-called frequency-domain
algorithm, whereas for higher order filters the resulting algorithm is called MDF.

From (12.58), (12.61) and (12.62), we can relate the blocked matrix of the overall
adaptive filter to the adaptive filter in the bins as follows:

OH.z/ D �
IL 0

�F�W.z/F OH1.z/ (12.63)

In the frequency domain, the block output is given by

ZŒy.m/� D OH.z/ZŒx.m/� (12.64)

whereas the error signal vector is given by

ZŒe.m/� D ZŒd.m/�� ZŒy.m/� (12.65)

We use as an objective function the squared values of the error vector elements,
that is

� D
L�1X

iD0
jei .m/j2 (12.66)
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In Problem 16, the resulting gradient estimate for the set of coefficients placed at
each bin is shown to be given by

Ogw�;i .m/ D �ui .m/
�

F
�

IL
0

�

e.m/
�

i

D �ui .m/ .Qe.m//i
D �ui .m/ Qei .m/ (12.67)

where ui .m/ represents the data vector stored in i th bin, at instant m, and .Qe.m//i
denotes the i th element of vector Qe.m/ with

Qe.m/ D F
�

IL
0

�

e.m/

It is worth mentioning that the data vectors are calculated as follows:

Z

2

6
4

uT0 .m/
:::

uT2L�1.m/

3

7
5 D F OH1.z/Z Œx.m/ � � � x.m �Ns C 1/� (12.68)

In this case, the NLMS updating equation is given by

wi .mC 1/ D wi .m/C �

� C �2i .m/
ui .m/ Qei .m/ (12.69)

for i D 0; 1; : : : ; Ns , whereNs is the length of the adaptive filter at the output of bin
i , and �2i .m/ D .1� ˛/�2i .m� 1/C ˛ jui .m/j2, with 0 < ˛ � 0:1 and � is a small
constant as established before.

If we examine the first row of the matrices in (12.62) and use the fact that F is a
symmetric matrix, it is straightforward to infer that

2

6
6
6
6
6
6
6
6
6
6
6
4

OH0.z/
OH1.z/
:::

OHL�1.z/
0
:::

0

3

7
7
7
7
7
7
7
7
7
7
7
5

D 1p
2L

F

2

6
6
6
4

W0.z/
W1.z/
:::

W2L�1.z/

3

7
7
7
5

(12.70)

where Wi.z/, for i D 0; 1; : : : ; 2L � 1, are the transfer functions of the subfilters
of W.z/. The above equation shows that the adaptive filters in the bins must be
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constrained such that OH2.z/ contains the estimates of the polyphase components of
the unknown system. Note that in the update (12.69), it is not guaranteed that this
constraint is satisfied.

As a solution, we can enforce the constraint in the adaptive-filter updating
with the help of (12.70), as follows. First define the matrices that include all the
coefficients and data of all subfilters:

WWW.m/ D

2

6
6
6
4

wT
0 .m/

wT
1 .m/
:::

wT
2L�1.m/

3

7
7
7
5

UUU.m/ D

2

6
6
6
4

uT0 .m/
uT1 .m/
:::

uT2L�1.m/

3

7
7
7
5

(12.71)

and a diagonal matrix EEE.m/ whose nonzero elements are the entries of vector Qe.m/.
In matrix form the updating (12.69) can be rewritten as

WWW.mC 1/ D WWW.m/C �†�2.m/EEE.m/UUU.m/ (12.72)

where †�2.m/ is a diagonal matrix whose elements are 1

�C�2i .m/ , with �2i .m/ D
.1 � ˛/�2i .m � 1/C ˛ jui .m/j2.

A constrained version of the above equation can be derived by observing (12.70).
The resulting algorithm consists of enforcing the constraint in the update equation
as follows (see Problem 17):

WWWc.mC 1/ D F�
�

IL
0

�
�

IL 0
�FWWW.mC 1/ (12.73)

The above algorithm is widely known as the constrained frequency-domain algo-
rithm. The original constrained algorithm was derived for a single coefficient per
bin, not for the more general MDF. Also, the particular version of the algorithm
presented here corresponds to the overlap-save version, in which the constraints are
included in order to guarantee that the internal DFTs perform linear convolutions on
the signals involved. By examining (12.63), the reader should note that the transform
applied to the input signal after it is filtered by OH1.z/ has length 2L, whereas in the
calculation of the adaptive-filter output block, L signals are discarded due to the
product by ŒIL 0�. This reflects the overlap-save characteristic of the algorithm. The
block diagram related to this algorithm is depicted in Fig. 12.26. The description
of the constrained frequency-domain algorithm is detailed in Algorithm 12.4.
Likewise, an overlap-add version of the constrained frequency domain algorithm
also exists, and interested readers should refer to [38, 40] (see Problem 18).
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Fig. 12.26 Frequency-domain adaptive-filtering structure

Algorithm 12.4 Constrained frequency-domain algorithm
Initialization

choose � in the range 0 < � � 1

� D small constant

0 < ˛ � 0:1

Do for each x.iL/ and d.iL/ given, for i � 02

6
6
4

uT0 .m/
:
:
:

uT2L�1.m/

3

7
7
5 D F OH1.z/ Œx.m/ 	 	 	 x.m�Ns C 1/�

the dimension of F is 2L.

e.m/ D d.m/� �
IL 0

�
F�

2

6
6
6
6
4

wT
c;0.m/u

�

0 .m/

wT
c;1.m/u

�

1 .m/

:
:
:

wT
c;2L�1.m/u

�

2L�1.m/

3

7
7
7
7
5

where wc;l are the constrained adaptive-filter coefficients of the
.l � 1/th subband, that is the .l � 1/th row of WWWc.m/:

Qe.m/ D F
�

IL
0

�

e.m/

�2i .m/ D .1� ˛/�2i .m� 1/C ˛ jui .m/j2

WWW.mC 1/ D WWW.m/C �†�2.m/EEE.m/UUU.m/

WWWc.mC 1/ D F�

�
IL
0

�
�

IL 0
�
FWWW.mC 1/



12.7 Frequency-Domain Adaptive Filtering 543

–40

–35

–30

–25

–20

–15

–10

–5

0

0 500 1000 1500 2000 2500 3000 3500

E
st

im
at

ed
 M

SE
  
(1

0 
lo

g(
M

SE
))

Number of iterations, k

Fig. 12.27 Global error of the frequency-domain structure

It is worth mentioning that a delayless version of the constrained frequency-
domain algorithm follows directly from (12.70) which implements the mapping
from the subband filter to the polyphase components of the fullband estimate. It
is also important to note that although the embedding approach presented here was
based on the DFT, it can also be employed using other class of transforms such
as DCT, DST, and Hartley transform. Though these alternative transforms require
more cumbersome embedding formulations, they do not require complex arithmetic
when environment signals are not represented by complex numbers [38].

Example 12.4. Repeat Example 12.1 using the multidelay structure with L D 64

and the frequency-domain structure. Choose the appropriate order for the subfilters
in the multidelay case.

Solution. For the frequency-domain algorithm we use a block size of 90 and the
following parameters: ˛ D 0:5, � D 0:001, and � D 0:4. The average MSE
obtained from five runs is �29:2 dB.

Figure 12.27 depicts the global MSE where the algorithm converges rather fast to
the minimum MSE. Figure 12.28 shows that the magnitude response obtained after
convergence approaches the unknown system response.

For the multidelay filter, we use a block size of 18 with five coefficients in each
bin and the following parameters: ˛ D 0:1, � D 0:001, and � D 0:8. The average
MSE obtained from five runs is �29:0 dB. Figure 12.29 depicts the global MSE
where we observe that the MDF algorithm also converges fast to the minimum MSE.
Figure 12.30 shows that the magnitude response obtained after convergence does not
approach so closely the unknown system response. ut
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Fig. 12.28 Magnitude responses of the unknown system and the obtained model at a given
iteration
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Fig. 12.30 Magnitude responses of the unknown system and the obtained model at a given
iteration, MDF case

12.8 Conclusion

Subband adaptive filters are viable solutions to reduce the high-computational com-
plexity inherent in applications where long-impulse-response models are required.
In addition, the effective split of the internal signals into subbands leads to fast
convergence.

This chapter presented several subband structures. After a brief introduction
to multirate systems, we discussed the design of two-band and M -band perfect
reconstruction filter banks. The subband adaptive filters using local subband errors,
leading to the open-loop structure, were described. The closed-loop subband filters,
which make use of the global error, were also introduced. We presented a special
type of filter bank which aims to eliminate cross adaptive filters and utilizes
fractional delays.

Another type of subband adaptive filter is based on a delayless structure. In this
structure, the adaptive-filter coefficient updating is performed in subbands and a
subband to fullband mapping allows the input signal to be filtered in fullband.
This strategy avoids the signal path delay introduced by the filter bank. Also, we
presented expressions to estimate the computational complexity of the subband
adaptive filters.

Finally, we presented the frequency-domain and multidelay structures, which
employ block processing and are closely related to subband adaptive filters. These
structures further lead to reduced computational complexity.
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12.9 Problems

1. Show the validity of (12.1).
2. Design a linear-phase two-band filter bank of order 42 using the approach

described in Sect. 12.3.1.
3. Design a uniform linear-phase 8-band filter bank having at least 40 dB of

stopband attenuation, using a hierarchical filter bank.
4. Design a uniform 8-band filter bank having at least 40 dB of stopband attenua-

tion, using the cosine-modulated method.
5. Design a fractional delay via a Nyquist filter having at least 60 dB of stopband

attenuation.
6. Use an open-loop subband adaptive filter with four bands to identify a system

with the transfer function given below. The input signal is a uniformly
distributed white noise with variance �2x D 1, and the measurement noise is
Gaussian white noise uncorrelated with the input with variance �2n D 10�3.
The filter bank is a cosine-modulated type of length 64.

H.z/ D 0:1z

.z C 0:9/
C 0:1z

.z � 0:9/
Choose the order of the equivalent FIR filter as the one for which the envelop
of the unknown system impulse response falls below 1

1000
of its leading term.

Plot the MSE for an average of five independent runs, including the local errors
and the overall error.

7. Repeat the previous problem using a closed-loop algorithm and interpret the
results. Does the algorithm converge?

8. Show that the recursive equation governing the convergence of the adaptive
coefficients in the closed-loop structure has the characteristic polynomial of
(12.36).

9. For a prototype filter of length 256, and 32 subbands, calculate and plot the ratio
between the computational complexities of the subband and fullband imple-
mentations, for N D 256; 512; 1024; 2048, and 4096. Consider the maximally
decimated case as well as the cases where L D M � 1, L D 3M

4
, and L D M

2
.

Assume we are using a simple DFT filter bank (which is similar to the filter
bank using fractional delays where these delays are replaced by a transfer
function equal to one) and consider the cases of open-loop and closed-loop
structures.

10. Replace the structure in Problem 6 by the closed-loop and open-loop delayless
structures with the fractional delays designed via a Nyquist filter of order 64.

11. In a system identification problem, the input signal is a uniformly distributed
white noise with variance �2nx D 0:1, filtered by an all-pole filter given by

Hnx .z/ D z

z � 0:95
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The unknown system is a 300th-order FIR filter whose impulse response is
identical to the first 301 impulse response samples of the transfer function
described by

H.z/ D 0:00756z2

.z2 � 1:960636z C 0:9849357/

Choose the appropriate parameters, run an ensemble of five experiments, and
plot the average learning curve. Use the delayless subband filter using fractional
delays in the open-loop scheme, with 8-bands.

12. Repeat Problem 11 using the closed-loop structure.
13. Prove that the expressions for the computational complexity of the subband

adaptive filters in (12.52)–(12.56) are valid.
14. Solve Problem 6 using the frequency-domain structure with L D 64.
15. Solve Problem 6 using the multidelay structure with L D 16. Choose the

appropriate order for the subfilters.
16. Prove the validity of (12.67), (12.68), and (12.70). Hint: Create a block-

diagonal matrix of subband input signals consisting of

diagfuT0 .m/ uT1 .m/ � � � uT2L�1.m/g

and a vector containing all the elements of the subband adaptive filters
2

6
6
6
4

w0.m/

w1.m/
:::

w2L�1.m/

3

7
7
7
5

17. Demonstrate how the relation below enforces the constraint of (12.70).

F�
�

IL
0

�
�

IL 0
�F

18. Derive an overlap-add version of the frequency-domain algorithm using the
embedding strategy in which a 3 � 3 matrix OH.z/ can be written as

OH.z/ D OH3.z/ OH4.z/

where

OH3.z/ D
2

4
0 0 1 0 0

z�1 0 0 1 0

0 z�1 0 0 1

3

5

OH4.z/ D

2

6
6
6
6
6
4

OH2.z/ 0 0
OH1.z/ OH2.z/ 0
OH0.z/ OH1.z/ OH2.z/
0 OH0.z/ OH1.z/
0 0 OH0.z/

3

7
7
7
7
7
5
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Chapter 13
Blind Adaptive Filtering

13.1 Introduction

There are a number of applications where the reference signal is either not available
or consists of a training signal that in communication systems implies in reduction of
useful data transmission. In those cases, we should utilize some alternative objective
functions applied to the available data as well as some knowledge related to the
nature (properties) of the signals involved.

In this chapter, some adaptive-filtering algorithms are presented which do not
utilize reference signal that are collectively known as blind adaptive-filtering
algorithms. The algorithms are also called training-less or unsupervised algorithms
since their learning do not include any reference or training signal. This chapter
makes no attempt to cover this subject in breadth and in depth, but the interested
reader can consult some books [1–5] for further details. Our approach is to present
some key results related to blind adaptive filtering employing the concepts presented
in the book.

There are two main types of blind signal processing procedures widely discussed
in the literature, namely blind source separation and blind deconvolution. In the
former case several signal sources are mixed by an unknown environment, and the
objective of the blind signal processor is to separate these signal sources [2, 3]. On
the other hand, the blind deconvolution aims at removing the effect of a linear time-
invariant system on a signal source where the only assumptions are the observation
of the signal before the deconvolution process and the probability density of the
input signal source.

Blind deconvolution is obviously closely related to blind equalization, and the
distinction lies on the fact that in the equalization case it is usually assumed that
the input signal belongs to a prescribed finite set (constellation) and the channel
is a continuous-time channel. These features of the equalization setup are assets
that can be exploited by allowing nonlinear channel equalization solutions, whereas
blind deconvolution employs linear solutions because its input signal cannot be

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 13, © Springer Science+Business Media New York 2013
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552 13 Blind Adaptive Filtering

considered to belong to a finite set constellation. However, it is a fact that several
solutions for both problems are closely related and here we emphasize the blind
equalization case.

In blind equalization the channel model is identified either explicitly or implic-
itly. The algorithms utilizing as objective function the minimization of the MSE
or generating a zero-forcing (ZF) solution1 in general do not estimate the channel
model explicitly. On the other hand, nonlinear solutions for channel equalization
such as maximum likelihood sequence detector (MLSD) [6] and the DFE require
explicit estimation of the channel model.

As a rule, the blind signal processing algorithms utilize second and higher order
statistics indirectly or explicitly. The high-order statistics are directly employed in
algorithms based on cummulants, see [7] for details, and they usually have slow
convergence and high complexity. There is yet another class of algorithms based on
the models originated from information theory [4].

This chapter deals with blind algorithms utilizing high-order statistics implicitly
for the single-input single-output (SISO) equalization case, e.g., constant modu-
lus algorithm (CMA), and algorithms employing second-order statistics for the
single-input multi-output (SIMO) equalization case. Unfortunately the SISO blind
solutions have some drawbacks related to the multiple minima solutions, slow
convergence, and difficulties in equalizing channels with nonminimum phase.2 In
the SIMO case we are usually dealing with oversampled received signal, that is,
the received signal is sampled at rate multiple of the symbol rate (at least twice).
Another SIMO situation is whenever we use multiple receive antennas that can
be proved to be equivalent to oversampling. Such sampling higher than baud rate
results in received signals which are cyclostationary allowing the extraction of phase
information of the channel. In the case of baud rate sampling and WSS inputs, the
received signal is also WSS and only minimum-phase channels can be identified
from second-order statistics since the channel phase information is lost. Under
certain assumptions the SIMO configuration allows the identification of the channel
model as well as blind channel equalization utilizing only second-order statistics. In
particular, this chapter presents the Godard, CM, and Sato algorithms for the SISO
case. We also discuss some properties related to the error surface of the CMA. Then
we derive the blind CM affine projection algorithm which is then applied to the
SISO and SIMO setups.

1In the ZF solution the equalized signal is forced to be equal to the transmitted signal, a solution not
recommended whenever the environment noise is not negligible, due to noise enhancement. The
ZF equalizer aims at estimating a channel inverse in order to eliminate intersymbol interference.
2Channels whose discrete-time models have poles and zeros outside the unit circle.
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13.2 Constant-Modulus Related Algorithms

In this section we present a family of blind adaptive-filtering algorithms that
minimizes the distance between the modulus of the equalizer output and some
prescribed constant values, without utilizing a reference signal. These constant
values are related to the modulus of constellation symbols, denoted by C, of typical
modulations utilized in many digital communication systems. The earlier blind
equalization proposals addressed the case of Pulse Amplitude Modulation (PAM)
for the situation where the channel model is considered a linear time-invariant
SISO system [8, 9], operating at symbol rate. This approach was latter generalized
in [10] by modifying the objective function to consider higher order statistics of the
adaptive-filter output signal that accommodates the case of Quadrature Amplitude
Modulation (QAM).

Let’s assume here that symbols denoted by s.k/ are transmitted through a com-
munication channel. The channel impulse response described by h.k/ convolves
with the sequence s.k/ generating the received signal given by

x.k C J / D s.k/h.J /C
0

@
kCJX

lD�1; l¤k
s.l/h.k C J � l/

1

AC n.k C J / (13.1)

where J denotes the channel time delay which will be considered zero without
loss of generality. The transmitted signals s.k/ belong to a set of possible symbols,
that is s.k/ 2 C, with C representing the constellation set, defined by the chosen
constellation such as PAM3 and the complex QAM. The symbol occurrence is
uniformly distributed over the defined elements of the constellation. In the following
we present the Godard algorithm which relies on a high-order statistics property of
the chosen constellation to define its updating mechanism.

13.2.1 Godard Algorithm

The general objective of the Godard algorithm utilizing the criterion proposed
in [10] is to minimize

�Godard D E
�
.jwH.k/x.k/jq � rq/p

�

D E
�
.jy.k/jq � rq/p

�

D E
�
e
p
Godard.k/

�
(13.2)

3The M -ary PAM constellation points are represented by si D Qai , with Qai D
˙ Qd;˙3 Qd; : : : ;˙.pM�1/ Qd . The parameter Qd represents half of the distance between two points
in the constellation.
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Algorithm 13.1 Godard algorithm
Initialization
Choose p and q

x.0/ D w.0/ D random vectors

rq D EŒjs.k/j2q �

EŒjs.k/jq �

Do for k > 0
y.k/ D wH.k/x.k/
eGodard.k/ D jy.k/jq � rq

w.k C 1/ D w.k/� 1
2
� p q e

p�1

Godard.k/ jy.k/jq�2 y�.k/ x.k/

with

rq D EŒjs.k/j2q�
EŒjs.k/jq� (13.3)

where q and p are positive integers. The value of rq defines the level which jy.k/jq
should approach, with a penalization error powered by p.

The simple stochastic gradient version of this algorithm can be obtained by
differentiating the objective function of (13.2) with respect to w�.k/. The resulting
updating equation is given by

w.k C 1/ D w.k/ � 1

2
� p q .jy.k/jq � rq/

p�1 jy.k/jq�2 y�.k/ x.k/

D w.k/ � 1

2
� p q e

p�1
Godard.k/ jy.k/jq�2 y�.k/ x.k/ (13.4)

The detailed description of the Godard algorithm is provided by Algorithm 13.1.

13.2.2 Constant-Modulus Algorithm

For q D p D 2 in the Godard framework, the objective function of (13.2)
corresponds to the constant-modulus algorithm (CMA) whose objective function
is described by

E
�
e2CMA.k/

� D E
�
.jwH.k/x.k/j2 � r2/

2
�

D E
�
.jy.k/j2 � r2/

2
�

(13.5)

In this case,

r2 D EŒjs.k/j4�
EŒjs.k/j2� (13.6)
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Algorithm 13.2 Constant-modulus algorithm
Initialization

x.0/ D w.0/ D random vectors

r2 D EŒjs.k/j4 �

EŒjs.k/j2 �

Do for k � 0
y.k/ D wH.k/x.k/
eCMA.k/ D jy.k/j2 � r2
w.k C 1/ D w.k/� 2� eCMA.k/ y

�.k/ x.k/

meaning that whenever the input symbols have constant modulus, the CM error
minimization aims at keeping the modulus jy.k/j2 as close as possible to the
constant value of r2. For the CMA, the stochastic gradient update equation is
given by

w.k C 1/ D w.k/ � 2� .jy.k/j2 � r2/ y�.k/ x.k/

D w.k/ � 2� eCMA.k/ y
�.k/ x.k/ (13.7)

Algorithm 13.2 describes in detail the CM algorithm.

13.2.3 Sato Algorithm

A historically important objective function somewhat related to the case of the
Godard algorithm above is the so-called Sato algorithm whose objective function
is defined as

eSato.k/ D y.k/ � sgnŒy.k/�r1 (13.8)

where sgnŒy� D y

jyj such that for y D 0, sgnŒy� D 1. Its update equation is
described by

w.k C 1/ D w.k/� � .y.k/ � sgnŒy.k/�r1/
� x.k/

D w.k/� � e�
Sato.k/ x.k/ (13.9)

In this case, the target is that the equalized signal y.k/ follows the sign of the
transmitted symbol, that is, this algorithm follows the decision direction whenever
the input signal is a binary PAM signal. The Sato algorithm was the first blind adap-
tive equalizer taking into consideration PAM transmission signals with multilevel.
Algorithm 13.3 describes step by step the Sato algorithm.
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Algorithm 13.3 Sato algorithm
Initialization

x.0/ D w.0/ D random vectors

r1 D EŒjs.k/j2 �

EŒjs.k/j�

Do for k � 0
y.k/ D wH.k/x.k/
eSato.k/ D y.k/� sgnŒy.k/�r1
w.k C 1/ D w.k/� � e�

Sato.k/ x.k/

13.2.4 Error Surface of CMA

In this subsection we derive an expression for the CMA error surface for a simple
and yet illustrative case, where both the symbol constellation and the adaptive-filter
coefficients are real valued. Let’s assume the simplest equalization problem where
the unknown channel is modeled as

H.z/ D 
z

z C a
(13.10)

In a noiseless environment this channel has an ideal equalizer (zero forcing) given by

W.z/ D ˙z�i w0 C w1z
�1�

D ˙z�i



Œ1C az�1� (13.11)

where i is a nonnegative integer. For i D 0 it leads to an equalized signal with zero
delay. For the CMA case, the objective function in this particular example can be
written as

�CMA D E
˚
Œjy.k/j2 � r2�

2
�

D EŒjy.k/j4� � 2EŒjy.k/j2�r2 C r22 (13.12)

The required expected values for the above equation are given by

EŒjy.k/j2� D .w20 C w21/

2EŒjs.k/j2�
1 � a2

� 2w0w1
a
2EŒjs.k/j2�

1 � a2 (13.13)

EŒjy.k/j4� D .w40 C w41/

�

4EŒjs.k/j4�
1 � a4

C 6a2
4fEŒjs.k/j2�g2
.1 � a4/.1 � a2/

�

C6w20w
2
1

�

a2
�

4EŒjs.k/j4�
1� a4

C 6a2
4fEŒjs.k/j2�g2
.1 � a4/.1 � a2/

�

C 
2fEŒjs.k/j2�g2
1 � a2
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�4w0w
3
1a

��

4EŒjs.k/j4�
1 � a4

�

C 6a2
4fEŒjs.k/j2�g2
.1 � a4/.1 � a2/

	

�4w30w1

�

a3
�

4EŒjs.k/j4�
1 � a4

C 6a2
4fEŒjs.k/j2�g2
.1 � a4/.1 � a2/

�

C 3a
4fEŒjs.k/j2�g2
1 � a2

	

(13.14)

where the detailed derivations pertaining to the above equations can be found in
Problem 2.

Example 13.1. Assume a QAM signal with four symbols is transmitted through an
AR channel whose transfer function is

H.z/ D 0:36z

z C a

for the cases where a D 0:4 and a D 0:8, respectively. The equalizer is a first-order
FIR adaptive filter as described in (13.11). For a signal to noise ratio of 10 dB, plot
the CMA error surface and its corresponding contours.

Solution. Figure 13.1 depicts the error surface and its contours for the CM objective
function, with a D 0:4, where the surface is flattened for certain ranges of w0 and w1
in order to allow a better view of valleys and local minima and maxima. As can be
verified the surface presents multiple minima, the ones at w0 D 0 do not correspond
to global minima. The surface shape indicates that if a good initial point is not
given to a CM-based algorithm, the parameters will converge to an undesirable local
minima where the equalization performance might be very poor. In addition, if the
algorithm traverses a region in the neighborhood of a saddle point, the convergence
of stochastic gradient algorithms can be particularly slow. Figure 13.2 shows the
error surface and its contours for a D 0:8, where in this case the local minima are
not so visible but they do exist. �

Example 13.2. In this example we consider an equalization problem. Perform the
equalization of a channel with the following impulse response

h D Œ1:1C |0:5 0:1 � |0:3 � 0:2 � |0:1�T

The transmitted signals are uniformly distributed four QAM samples with unitary
power. An additional Gaussian white noise with variance 10�2:5 is present at the
channel output. Utilize the CMA.

(a) Find the Wiener solution for an equalizer with five coefficients and convolve
with the channel impulse response.

(b) Perform a blind equalization also with five coefficients and depict the detected
symbols before and after the equalization.
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Fig. 13.1 (a) CMA error surface, (b) CMA contours; a D 0.4
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Fig. 13.2 (a) CMA error surface, (b) CMA contours; a D 0.8
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Fig. 13.3 Receiver signals before equalization

Solution. (a) In the first step, we compute the Wiener solution and perform
the convolution with the channel impulse response in order to verify the
effectiveness of the equalizer order in the present example. For a delay of 1,
the convolution samples are given by

y D

2

6
6
6
6
6
6
6
6
6
4

0:0052C |0:0104

0:9675C |0:0000

0:0074C |0:0028

�0:0548� |0:0014
0:0129C |0:0222

�0:0939� |0:0075
0:0328� |0:0098

3

7
7
7
7
7
7
7
7
7
5

T

As can be observed in the vector above the real part of the second sample
is much higher than the remaining samples, showing that the equalization is
successful.

(b) In Fig. 13.3 it is shown how the received signals are distributed in the input
signal constellation space, and as can be observed and expected the received
signal requires an equalizer for proper detection.

By applying the CMA to solve the equalization problem with � D 0:001, we
run the algorithm for 10; 000 iterations with the results measured by averaging the
outcomes of 200 independent runs. By initializing the adaptive-filter coefficients at
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Fig. 13.4 Equalized signals for the CM algorithm using the first coefficient initialization

w.0/ D

2

6
6
6
6
6
4

�1:627563� |0:443856
�0:121194C |0:338364

0:189390C |0:063311

0:575142� |0:062878
0:364852� |0:6053977

3

7
7
7
7
7
5

the last 1; 000 equalized signals fall in the regions depicted in Fig. 13.4 representing
the input signal constellation space. As can be verified, the equalized symbols
present four clusters which are not centered at the actual transmitted symbols
positions. On the other hand, these clusters are around the same constant modulus
position as the transmitted symbols but at different angles, that is, the transmitted
constellation is received after equalization rotated by an arbitrary angle. For dif-
ferentially encoded symbols the mentioned phase shift can be eliminated, allowing
proper decoding of the received symbols.

If the CMA filter coefficients are initialized at

w.0/ D

2

6
6
6
6
6
4

2:011934C |0:157299

0:281061C |0:324327

�0:017917C |0:836021

�0:391982C |1:144051

�0:185579� |0:898060

3

7
7
7
7
7
5
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Fig. 13.5 Equalized signals for the CM algorithm using the second coefficient initialization

the resulting clusters are shown in Fig. 13.5, where it is possible to verify that in this
case the clusters occur at the right positions with respect to the transmitted symbols.

For illustration, Fig. 13.6 shows the equalization results when using the Wiener
solution, where it can be observed by comparing it with Fig. 13.5 that the CMA can
lead to Wiener like solutions when properly initialized.

The typical learning curve for the CM algorithm in the present example is
illustrated in Fig. 13.7 where in this case we utilized random initial coefficients
for the adaptive filter. �

13.3 Affine Projection CM Algorithm

In general the CMA like algorithms present slow convergence when the update
equation has a stochastic gradient form. A possible alternative solution when the
convergence speed is not acceptable is to utilize the affine projection form. Let’s
consider the cases where the desired vector is either a CMA like function at each
entry of a vector rap.k/ or represents a nonlinear function G1Œ�� applied to the
adaptive-filter output, that is,

rap.k/ D G1
�
yap.k/

� D G1

h
XT

ap.k/w
�.k/

i
(13.15)
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Fig. 13.6 Equalized signals for the Wiener filter
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Fig. 13.7 Learning curve of the CM algorithm
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where the definitions of the data matrix and vectors of the affine projection algorithm
are defined in (4.74) and (4.77).

The objective function that the affine projection algorithm minimizes in this
case is

kw.k C 1/� w.k/k2
subject to W
G2

n
rap.k/ � XT

ap.k/w
�.k C 1/

o
D 0 (13.16)

where rap.k/ is a vector replacing dap.k/ in the blind formulation whose elements
are determined by the type of blind objective function at hand. G2Œ�� represents
another nonlinear operation applied elementwise on Œ��, usually given by .�/2 as
in the CM algorithm. In any situation, G2.0/ D 0. Also in this case the affine
projection algorithm keeps the next coefficient vector w.k C 1/ as close as possible
to the current one and aims at making the a posteriori error to be zero. It is worth
mentioning that if the minimization of kw.k C 1/ � w.k/k2 is not included in the
objective function, the problem of keeping rap.k/ D XT

ap.k/w
�.k C 1/ makes the

coefficient vector underdetermined4 whenever this vector has more than one entry.
As described in Chap. 4 by utilizing the method of Lagrange multipliers the

constrained minimization problem of (13.16) becomes

F Œw.k C 1/� D kw.k C 1/� w.k/k2

C�Hap.k/G2

n
rap.k/� XT

ap.k/w
�.k C 1/

o
(13.17)

where�ap.k/ is the .LC 1/ � 1 vector of Lagrange multipliers. In order to facilitate
the gradient computation, let’s rewrite the above expression as

F Œw.k C 1/� D Œw.k C 1/� w.k/�H Œw.k C 1/� w.k/�

CG2
n
rTap.k/ � wH.k C 1/Xap.k/

o
��

ap.k/ (13.18)

The gradient of F Œw.k C 1/� with respect to w�.k C 1/ is given by

gw�fF Œw.k C 1/�g D Œw.k C 1/� w.k/�

CXap.k/g Nyap

n
G2

h
rTap.k/ � NyTap.k/

io
��

ap.k/ (13.19)

where Nyap.k/ represents the a posteriori adaptive-filter output signal. After setting
the gradient of F Œw.k C 1/� with respect to w�.k C 1/ equal to zero, we get

w.k C 1/ D w.k/� Xap.k/g Nyap

n
G2

h
rTap.k/ � NyTap.k/

io
��

ap.k/ (13.20)

4A solution exists but it is not unique.
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By premultiplying (13.20) by XH
ap.k/, using the constraint relation of (13.16), and

considering the fact that G2.0/ D 0 so that XH
ap.k/w.k C 1/ D r�

ap.k/, we obtain

� XH
ap.k/Xap.k/g Nyap

n
G2

h
rTap.k/ � NyTap.k/

io
��

ap.k/C XH
ap.k/w.k/ D r�

ap.k/

(13.21)

This expression leads to

g Nyap

n
G2

h
rTap.k/ � NyTap.k/

io
��

ap.k/

D
h
XH

ap.k/Xap.k/
i�1 n�r�

ap.k/C XH
ap.k/w.k/

o
(13.22)

By substituting (13.22) in (13.20), the update equation can be rewritten as

w.k C 1/ D w.k/C Xap.k/



XH
ap.k/Xap.k/

��1 n
r�

ap.k/ � XH
ap.k/w.k/

o

D w.k/C Xap.k/



XH
ap.k/Xap.k/

��1
e�

ap.k/ (13.23)

From the above equation it follows that

kw.k C 1/� w.k/k2 D eTap.k/



XH
ap.k/Xap.k/

��1
e�

ap.k/ (13.24)

such that the minimization of the terms on the left- and right-hand sides are
equivalent. However, the minimization of the right-hand side term does not mean

minimizing ke�
ap.k/k unless the matrix



XH

ap.k/Xap.k/
��1

is a diagonal matrix with

equal nonzero values in the main diagonal. Despite that, in order to generate a
tractable solution we minimize ke�

ap.k/k and interpret the objective function that
is actually minimized.

If we assume r�
ap.k/ has constant modulus elementwise, the minimization of

ke�
ap.k/k2 D kr�

ap.k/� XH
ap.k/w.k/k2

occurs when r�
ap.k/ is in the same direction as (is colinear with) XH

ap.k/w.k/. In this
case the following choice should be made

r�
ap.k/ D sgnŒXH

ap.k/w.k/� (13.25)

where for a complex number y, sgnŒy� D y

jyj , and whenever y D 0, sgnŒy� D 1.
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In the update (13.24) the convergence factor is unity, and as previously discussed
a trade-off between final misadjustment and convergence speed is achieved by
including convergence factor as follows:

w.k C 1/ D w.k/C �Xap.k/



XH
ap.k/Xap.k/

��1 n
r�

ap.k/� XH
ap.k/w.k/

o
(13.26)

As before, with a convergence factor different from one (smaller than one) a
posteriori error is no longer zero. The reader might question why G2Œ�� did not
appear in the final update expression of (13.22); the reason is the assumption that
the constraint in (13.16) is satisfied exactly leading to a zero a posteriori error.

The objective function that (13.26) actually minimizes is given by

�
1

�
� 1

�

kw.k C 1/� w.k/k2 C krap.k/ � XT
ap.k/w

�.k C 1/k2P

D
�
1

�
� 1

�

kw.k C 1/� w.k/k2 C ksgnŒXH
ap.k/w.k/� � XT

ap.k/w
�.k C 1/k2P

(13.27)

where P D



XH
ap.k/Xap.k/

��1
and kak2P D aHPa.

Proof. In order to simplify the derivations, let’s define

˛ D
�
1

�
� 1

�

The objective function to be minimized with respect to the coefficients w�.k C 1/

is given by

�.k/ D ˛kw.k C 1/� w.k/k2 C krap.k/ � XT
ap.k/w

�.k C 1/k2P
The derivative of the objective function is then given by

@�.k/

@w�.k C 1/
D ˛Œw.k C 1/� w.k/� � Xap.k/P

h
r�

ap.k/ � XH
ap.k/w.k C 1/

i

By setting this result to zero it follows that

h
˛I C Xap.k/PXH

ap.k/
i

w.k C 1/ D ˛w.k/C Xap.k/Pr�
ap.k/ (13.28)
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Algorithm 13.4 The affine projection CM algorithm
Initialization

x.0/ D w.0/ D random vectors
choose � in the range 0 < � � 1

� D small constant
Do for k > 0

y�

ap.k/ D XH
ap.k/w.k/

r�

ap.k/ D sgnŒXH
ap.k/w.k/�

e�

ap.k/ D r�

ap.k/� y�

ap.k/

w.k C 1/ D w.k/C �Xap.k/



XH
ap.k/Xap.k/C �I

�
�1

e�

ap.k/

By applying the matrix inversion lemma we obtain
h
˛I C Xap.k/PXH

ap.k/
i�1

D 1

˛
I � 1

˛
IXap.k/

�

XH
ap.k/

1

˛
IXap.k/C P�1

��1
XH

ap.k/
1

˛
I

D 1

˛
I � 1

˛
IXap.k/

�
P�1

˛
C P�1

��1
XH

ap.k/
1

˛
I

D 1

˛

�

I � Xap.k/
˛

1C ˛
PXH

ap.k/
1

˛
I
�

D 1

˛

"

I � Xap.k/PXH
ap.k/

1C ˛

#

By replacing the last expression in the updating (13.28), we obtain

w.k C 1/ D
"

I � Xap.k/PXH
ap.k/

1C ˛

#

w.k/

C 1

˛

"

I � Xap.k/PXH
ap.k/

1C ˛

#

Xap.k/Pr�
ap.k/

D w.k/ � Xap.k/Py�
ap.k/

1C ˛
C 1

˛
Xap.k/Pr�

ap.k/� 1

˛

Xap.k/Pr�
ap.k/

1C ˛

D w.k/ � �Xap.k/Py�
ap.k/C �Xap.k/Pr�

ap.k/

D w.k/C �Xap.k/



XH
ap.k/Xap.k/

��1
e�

ap.k/ �

The description of the affine projection CM algorithm is provided in Algorithm
13.4, where as standard an identity matrix multiplied by a small constant was added
to the matrix XH

ap.k/Xap.k/ in order to avoid numerical problems in the matrix
inversion.
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It is worth mentioning that the update (13.22) represents other important
application such as the case where r�

ap.k/ D decŒXH
ap.k/w.k/�, which corresponds

to a decision directed blind algorithm, where decŒ�� represents a hard limiter where
each entry of its argument is mapped into the closest symbol of the constellation
used in the transmission [11].

Now let’s consider the special scalar case where the nonlinear operations to
be applied to the output error of the normalized LMS algorithm are described as
follows. The objective function to be minimized is

kw.k C 1/� w.k/k2
subject to W
j1 � jxH.k/w.k C 1/jqjp D 0 (13.29)

The resulting update equation is

w.k C 1/ D w.k/C �x.k/

xH.k/x.k/

��1 ˚
sgn

�
xH.k/w.k/

� � xH.k/w.k/
�

(13.30)

corresponding to a scalar normalized LMS CM algorithm.

Example 13.3. Repeat Example 13.2 for the case of the affine projection CM
algorithm, for L D 1 and L D 3 and compare the result with the CM algorithm
with q D 2.

Solution. Using � D 0:001 and the CM algorithm, the equalizer took well over
1; 000 iterations to converge as depicted in Fig. 13.8. The same figure shows that the
affine projection CM algorithm with L D 3 has the fastest convergence, around 100
iterations, while leading to higher MSE after convergence when compared with the
cases of L D 1 and the CMA. For the affine projection cases the convergence factor
is � D 0:1. Figure 13.9 depicts the equalized signals after convergence for the case
where L D 3. All these figures were generated by averaging the outcomes of 50
independent runs. �

13.4 Blind SIMO Equalizers

The symbol spaced blind CMA equalizer methods described in previous section
may converge to unacceptable local minima induced by the finite length of the FIR
equalizers, despite these minima being correct whenever the equalizer is a double-
sided filter with infinite order [1]. This situation changes favorably in the case a
fractionally spaced equalizer is employed which is discussed as follows. Many
of the early blind equalizer methods utilized SISO channel model and relied on
high-order (greater than second-order) statistics which lead to multiple minima and
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Fig. 13.9 Equalized signals for the affine projection CM algorithm, with L D 3
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slow convergence. These equalizers are more sensitive to noise than those using
second-order statistics. On the other hand, the availability of multiple measures
of the received signal gives rise to SIMO configuration that in turn allows for
blind channel equalization using second-order statistics. For example, oversampling
the channel output signal by an integer factor l leads to a cyclostationary process
with period l , such that the received discrete signal has cyclic correlation function
allowing, under certain conditions, the identification of the channel modulus and
phase [1] blindly. The SIMO configuration can be obtained by exploring diversity
of antennas or by oversampling (also known as fractionally sampling) the received
signal.

It is worth mentioning that the SIMO methods are not only useful to estimate a
SIMO channel inverse filter but can be also used to perform channel identification.
Many identification and equalization approaches can be constructed from the ob-
served data such as subspace methods [12] and prediction methods [13–15] among
others. The subspace methods are in general computationally complex. Furthermore
they are sensitive to the channel order uncertainty causing dimension errors in the
constructed signal and noise subspaces. Prediction error methods (PEM) are robust
to overmodeling [16] and lend themselves to adaptive implementations.

These SIMO approaches can be extended in a rather straightforward way to
device CDMA receivers [17] where blind multiuser detections are required [18–
24], and in the cases semi-blind solutions are possible [25]. In addition, in multiple
transmitter and receiver antennas systems several types of blind MIMO receivers
can be derived [26–29]. In this section we briefly introduce the formulation for
SIMO blind equalization [1, 30], and point out how this formulation brings useful
solutions to blind equalization problems.

Let’s consider the single-input I -output linear system model depicted in
Fig. 13.10, representing an oversampling and/or the presence of multiple antenna at
the receiver. In this case, the received signal can be described by

r.k/ D
MX

iD0
x.k � i/h.i/C n.k/ (13.31)

where

r.k/ D Œr1.k/ r2.k/ � � � rI .k/�T
n.k/ D Œn1.k/ n2.k/ � � �nI .k/�T
h.m/ D Œh1.m/ h2.m/ � � �hI .m/�T

The elements of vector r.k/ represent the I received signals at instant k; n.k/
collects the noise samples from each subchannel at the same instant. The elements
of vector h.m/, they are hi .m/, represent the mth sample of the i th subchannel
model, form D 0; 1; : : : ;M and i D 1; 2; : : : ; I .
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Fig. 13.10 Single-input
multiple-output model

Now let’s collect N samples of information vectors and pile them up in long
vectors such that the received signal vector is function of the input signal block as
follows:

Nr.k/ D Hx.k/C Nn.k/ (13.32)

where

Nr.k/ D �
rT .k/ rT .k � 1/ � � � rT .k �N C 1/

�T

Nn.k/ D �
nT .k/ nT .k � 1/ � � � nT .k �N C 1/

�T

Nx.k/ D Œx.k/ x.k � 1/ � � �x.k �M �N C 1/�T

H D

2

6
6
6
4

h.0/ � � � h.M/ 0 � � � 0
0 h.0/ � � � h.M/ 0 0
:::

: : :
: : :

: : :
: : :

:::

0 � � � 0 h.0/ � � � h.M/

3

7
7
7
5

Vectors Nr.k/ and Nn.k/ have dimension NI , the input signal vector Nx.k/ has
dimensionNCM , whereas the channel model matrix H has dimensionNI�MCN
and is a block Toeplitz matrix.
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Applying a linear combiner equalizer to the system of (13.32) results in the
following relation:

y.k/ D NwH.k/Nr.k/ D NwH.k/HNx.k/C NwH.k/ Nn.k/ (13.33)

The coefficient vector Nw.k/ is the equalizer vector of length NI described as

Nw.k/ D � QwT
0 .k/ QwT

1 .k/ � � � QwT
N�1.k/

�T
(13.34)

where the vector Qwn.k/ represents the weights applied to r.k � n/, for n D 0;

1; : : : ; N � 1. The i th element of Qwn.k/, for i D 1; 2; : : : ; I , represents the i th
weight applied to the corresponding element of r.k � n/.

In a noiseless environment the zero-forcing equalizer is the desired solution
such that

NwH.k/H D Œ0 : : : 0 1 0 : : : 0�T (13.35)

However, the possible noise enhancement originated by NwT .k/ Nn.k/makes the zero-
forcing solution not practical in many situations.

13.4.1 Identification Conditions

An FIR channel is identifiable utilizing second-order statistics whenever the block
Toeplitz matrix H in (13.32) has full column rank, such that there is a left inverse.
Alternatively, we can say that the system of (13.32) can be equalized according
to some objective function, if for a set of subchannels, each with order M , the
following conditions are met:

1. rankŒH� D M CN .
This means that matrix H has full column rank.

2. NI � N CM , i.e., H is a tall matrix in the case NI > N CM .
In the latter case, this means that matrix H has more rows than columns.

For the case N � M , condition 1 is equivalent to say that the transfer functions

Hi.z/ D
MX

mD0
hi .m/z

�m (13.36)

for i D 1; 2; : : : ; I , have no common zeros [1], that is, the polynomials Hi.z/ are
coprime. In the case M

I�1 � N < M , we cannot infer that whenever Hi.z/, for
i D 1; 2; : : : ; I , have no common zeros, the matrix H will have full column rank. In
case the Hi.z/ have common zeros there is no left inverse matrix for H. In addition,
it can be shown that even if the subchannels are coprime, the matrix H has its rank
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reduced if N < M . Condition 2 is equivalent to say that the channel matrix H has
full column rank, making possible the channel equalization as well as identification
using second-order statistics. Several alternative proofs related to the identifiability
of a SIMO system are available in the literature such as in [31–33], and no proof is
included here.

Once satisfied the conditions for identifiability in the SIMO system, the finite-
length input signal included in Nx.k/ should contain a large number of modes
meaning it should have rich spectral content. This way, in a noiseless environment
the SIMO channel can be perfectly identified, except for a gain ambiguity,5 through
several methods available in the literature [1, 12–15]. The requirements on the
channel input signal statistics vary from method to method, with some requiring
that it is uncorrelated while others not.

The same type of results applies for the SIMO blind equalizers, that is, whenever
a single-input I -output channel can be equalized:

• At least one of the subchannels has lengthMC1, i.e., hi .0/ ¤ 0 and hi .M/ ¤ 0,
for any i D 1; 2; : : : ; I .

• Hi.z/ for i D 1; 2; : : : ; I , have no common zeros.
• N � M .

These conditions are necessary and sufficient for the SIMO channel identifiability
or equalization utilizing second-order statistics of the I outputs.

Many of the available solutions for blind channel identification and equalization
based on second-order statistics are very sensitive to channel order or rank estima-
tion. Some of them rely on singular value decomposition(s) (SVD) which are very
computationally complex and are usually meant for batch form of implementation.
The emphasis here is to present a recursive solution which is more robust to order
estimation errors and is computationally attractive such that it can be applied to
track time-varying channels. An online blind SIMO equalizer is introduced in the
following section.

13.5 SIMO-CMA Equalizer

This section addresses an important result which suggests that by combining the
techniques implicitly utilizing high-order statistics such as the CMA, with SIMO
systems using second-order statistics can be very beneficial. Let’s start by stating
the following result whose proof can be found in [1, 34]:

In a noiseless channel, if the Multiple-Input Single-Output (MISO) FIR equalizer
has length N � M , then the SIMO CMA equalizer is globally convergent if the
subchannelsHi.z/ for i D 1; 2; : : : ; I , have no common zeros.

5A constant value multiplying the channel model.
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ALGORITHM
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Fig. 13.11 SIMO equalizer

The reader should notice that a SIMO setup utilizing a CM objective function
can be interpreted as fractionally spaced constant-modulus equalizer.

The expression for the SIMO equalizer output signal as described in (13.33) can
be rewritten as

y.k/ D
IX

iD1
wH
i .k/ri .k/ (13.37)

where the nth element of vector wi .k/ corresponds to the .i C n � 1/th element
of Nw.k/, and the nth element of vector ri .k/ corresponds to ri .k � n/, for i D
1; 2; : : : ; I , and n D 0; 1; : : : ; N � 1. The equivalent SIMO system is depicted in
Fig. 13.11, where it can be observed that the overall equalization consists of using a
separate sub-equalizer for each sub-channel with a global output signal used in the
blind adaptation algorithm.

For a SIMO equalizer if a CMA objective function is adopted along with the
affine projection algorithm, the Xap.k/ matrix, assuming we keep the last L C 1

input signal vectors, has the following form:

Xap.k/ D ŒNr.k/ Nr.k � 1/ : : : Nr.k � L/� (13.38)
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Algorithm 13.5 SIMO affine projection CM algorithm
Initialization

Nr.0/ D Nw.0/ D random vectors
choose � in the range 0 < � � 1

� D small constant
Do for k > 0

y�

ap.k/ D XH
ap.k/ Nw.k/

r�

ap.k/ D sgnŒXH
ap.k/ Nw.k/�

e�

ap.k/ D r�

ap.k/� y�

ap.k/

Nw.k C 1/ D Nw.k/C �Xap.k/



XH
ap.k/Xap.k/C �I

�
�1

e�

ap.k/

The adaptive-filter output vector is described by

y�
ap.k/ D XH

ap.k/ Nw.k/

D

2

6
6
6
4

NrH.k/
NrH.k � 1/

:::

NrH.k � L/

3

7
7
7
5

Nw.k/

D

2

6
6
6
4

NrH.k/
NrH.k � 1/

:::

NrH.k � L/

3

7
7
7
5

2

6
6
6
4

Qw0.k/

Qw1.k/
:::

QwN�1.k/

3

7
7
7
5

(13.39)

where in the last equality we adopted the description of Nw.k/ as given by (13.34).
By following the same derivations of Sect. 13.3, it is possible to generate the SIMO
affine projection CM algorithm as described in Algorithm 13.5. The affine projec-
tion algorithm is expected to converge to the global optimum using normalized steps
originated by the minimal distance principle utilized in its derivations, as discussed
in Chap. 4.

Example 13.4. Given the one-input two-output channel whose model is described
below. Assume a QAM signal with four symbols is transmitted through these
channels and simulate a blind equalization using the SIMO affine projection CM
algorithm of order 12, for a signal to noise ratio of 20 dB measured at the receiver
input.

�
hT1
hT2

�

D
�
0:1823 �0:7494 �0:4479 0:2423 0:0047 �0:41
0:3761 �0:1612 �0:1466 0:6437 0:5952 �0:2060

�

Solution. We utilize the affine projection CM algorithm to solve the SIMO
equalization problem with � D 0:1, L D 2 and � D 10�6. The symbol error
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Fig. 13.12 Symbol errors; affine projection CM algorithm

rate is measured by averaging the outcoming results of 50 independent runs, and the
initial conditions utilized correspond to the Wiener solution randomly disturbed.
Figure 13.12 shows the evolution of the errors in the symbols, and as can be
observed minimum symbol error rate occurs after 500 iterations. This result is
expected since the conditions for the correct channel equalization is met in this case,
see Sect. 13.4.1, and there is some channel noise. Figure 13.13 depicts the MSE
between the equalized signal and the transmitted symbols where the convergence
of the affine projection CM algorithm takes places in around 1; 000 iterations.
Figure 13.14 illustrates the effectiveness of the equalizer through the appropriate
combination of signals measured in each antenna. �

Example 13.5. Repeat the Example 6.4 by measuring through simulations the
MSE performance of an equalizer implemented with the SIMO affine projection
CM algorithm, when two received signals obtained through different antennas are
available. Choose the appropriate parameters and comment on the results.

Solution. The channels available for the detection of the transmitted symbols
correspond to the transfer function from the transmitter to each antenna. The blind
affine projection CM algorithm is employed to update the sub-equalizers of the
SIMO system. The parameters chosen after some simulation trials are � D 0:3,
L D 1, and � D 10�6. The measures of MSE reflect an average taken from the
outcomes of 50 independent runs, where in the initialization one of the receiver
filters is set to the Wiener solution during the first 350 iterations. Each sub-equalizer
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Fig. 13.15 Learning curve of the SIMO affine projection CM algorithm, L D 1

has order 30. Figure 13.15 illustrates the MSE evolution and as can be observed
only after a few thousand iterations the curve shows a nondecreasing behavior.
In comparison with the results from Example 6.4, the learning process takes a lot
more iterations when compared to the algorithms employing some sort of training.
However, in spite of slower convergence the equalization is feasible since the
conditions for the correct channel equalization are met. �

The SIMO formulation presented in this chapter can be extended to the multi-
input multi-output (MIMO) case in rather straightforward way, under some assump-
tions such as independence of the sources. There are several communication system
setups that can be modeled as MIMO systems by properly stacking the transmitted
and received information. In some applications the setup is originally MIMO such
as in multiuser communication systems [17–24], and in case we use antenna array
at transmitter and receiver in order to increase the communication capacity [26–29].
In many MIMO applications, adaptive-filtering algorithms are often utilized with
training or in a blind form.

The affine projection CM algorithm presented in this chapter can be extended to
include selective updating using the set-membership approach presented in Chap. 6.
In addition, for multiuser environments such as CDMA systems, it is possible to
incorporate some blind measurements related to the multiaccess and additional noise
interferences in order to improve the overall performance of blind receivers based
on the set-membership affine projection CM algorithm, as discussed in [35]. The
set-membership affine projection algorithm can be very efficient in SIMO as well as
in MIMO setups.
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13.6 Concluding Remarks

This chapter presented some blind adaptive-filtering algorithms mostly aimed at
direct blind channel equalization. The subject of blind signal processing is quite
extensive; as a result our emphasis was to present the related issues and to
introduce some useful algorithms. In particular some algorithms utilizing high-order
statistics were introduced in an implicit way, since the resulting algorithms have
low computational complexity6 while presenting slow convergence and possible
convergence to local minima. The cases introduced in this class were the constant-
modulus, Godard, and Sato algorithms, respectively. Some issues related to the error
surface of the CM algorithm were also illustrated through a simple example.

In order to improve the convergence speed of the CMA family of algorithms, its
affine projection version was presented. This algorithm certainly alleviates the speed
limitations of the CM algorithms at the expense of increased computational com-
plexity. In addition, this chapter discussed the single-input multi-output methods
which allow under certain conditions the correct identification and equalization of
unknown channels using only second-order statistics and do not have local minima.
In fact, the combination of the algorithms with implicit high-order statistics, with
the affine projection update equation and the single-input multi-output setup, leads
to very interesting solutions for blind channel equalization. The resulting algorithm
has rather fast convergence and has only global solutions under certain conditions.

In specific cases, we can conclude that fractionally spaced equalizers using
indirect high-order statistics such as the CM algorithms are not suitable to equalize
channels with zeros in common. If this happens, an additional equalizer after the
SIMO equalizer might help in combating the remaining intersymbol interference.
On the other hand, the SIMO equalizers are suitable to equalize channels with zeros
on the unit circle, a rough situation for symbol spaced equalizers. In this case, the
SIMO equalizer can be used with an implicit high-order statistics objective function
or with training signal, as long as the subchannels do not have common zeros. For
situations with common zeros on the unit circle, or close to it, the standard way out
is to employ DFE.

13.7 Problems

1. Derive the Godard algorithm for real input signal constellations.
2. Derive (13.13) and (13.14).

Hint: Utilize the difference equation that describes x.k/.
3. Perform the equalization of a channel with the following impulse response:

h.k/ D ku.k/ � .2k � 9/u.k � 5/C .k � 9/u.k � 10/

6In comparison with the algorithms using high-order statistics explicitly.
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using as transmitted signal a binary .�1; 1/ random signal. An additional
Gaussian white noise with variance 10�2 is present at the channel output.

(a) Apply the Godard algorithm for p D q D 4 with an appropriate� and find
the impulse response of an equalizer with 15 coefficients.

(b) Plot the detected equalized signal before the decision after the algorithm
has converged for a number of iterations (over 50 samples) and comment
on the result.

4. Repeat Problem 3 for the Sato algorithm.
5. Repeat Problem 3 for the CMA.
6. Assume a PAM signal with four symbols is transmitted through an AR channel

whose transfer function is

H.z/ D 0:25z

z C 0:5

The equalizer is a first-order FIR adaptive filter. For a signal to noise ratio of
5 dB, plot the error surface and contours for Godard with p D q D 4.

7. Assume a QAM signal with four symbols is transmitted through an AR channel
whose transfer function is

H.z/ D 0:25z

z C 0:5

Simulate a blind equalization using a first-order FIR adaptive filter, for a signal
to noise ratio of 10 dB, using the CMA.

8. Given the channel model below whose input is a binary PAM signal.

H.z/ D 0:2816C 0:5622z�1 C 0:2677z�2 � 0:3260z�3 � 0:4451z�4

C0:3102z�5 � 0:2992z�6 � 0:2004z�7

Our objective is to equalize this channel with a blind affine projection CM
algorithm. The equalizer has order 10 and its objective is to shorten the effective
impulse response of the equalized signal. That means the channel-equalizer
impulse response has most of its energy concentrated in a few samples.
Simulate this experiment for a signal to noise ratio of 15 dB, and comment
on the channel shortening process.

9. Derive the set-membership affine projection CM algorithm.
10. (a) Show that recursion of (13.30) minimizes the objective function of (13.29).

(b) Show that recursion of (13.30) also minimizes the objective function

kw.k C 1/� w.k/k2
subject to W
jsgn

�
xH.k/w.k C 1/

� � jxH.k/w.k C 1/jqjp D 0
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11. Derive a constrained minimum variance (CMV) affine projection algorithm for
equalization, whose objective function is to minimize

1

2
kw.k C 1/� w.k/k2

and
1

2
wT .k C 1/r.k/rT .k/w.k C 1/

subject to W
wT .k C 1/c D c

where r.k/ is a vector that in the present case represents the received signal
vector, c is an arbitrary constant, and c is a constraint vector.

12. Assume a PAM signal with two symbols is transmitted through a noiseless AR
channel whose transfer function is

H.z/ D 0:25z

z C 0:5

Simulate a blind equalization using a first-order FIR adaptive filter, using affine
projection CM algorithm as well as the stochastic gradient version CMA. Plot
the convergence trajectories of w0.k/ and w1.k/ for 20 distinct initialization
points (on the same figure) for w0.0/ and w1.0/ corresponding to zeros in the
interior of unit circle. Interpret the results.

13. Equalize the one-input two-output channel described below using the SIMO
affine projection CM algorithm. The input signal is a two PAM signal represent-

ing a randomly generated bit stream with the signal to noise ratios
�2ri
�2n

D 20, for

i D 1; 2, at the receiver end, that is, ri .k/ is the received signal without taking
into consideration the additional channel noise. Choose the appropriate equal-
izer order and the number of reuses such that the bit error rate falls below 0.01.

�
h1 h2

� D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0:345 �0:715
�0:016 0:690

�0:324 0:625

0:209 0:120

0:253 0:388

�0:213 0:132

0:254 �0:120
0:118 �0:388
0:483 0:451

�0:034 �0:204
0:462 0:560

�0:111 �0:675
�0:285 0:147

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
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14. Using the complex version of the SIMO affine projection CM algorithm to
equalize the one-input two-output channel with the transfer function given be-
low. The input signal is a four QAM signal representing a randomly generated

bit stream with the signal to noise ratios
�2ri
�2n

D 10, for i D 1; 2, at the receiver
end, that is, ri .k/ is the received signal without taking into consideration the
additional channel noise. The adaptive filter has five coefficients.

H1.z/ D .0:27 � 0:34|/C .0:43C 0:87|/z�1 C .0:21� 0:34|/z�2

H2.z/ D .0:34 � 0:27|/C .0:87C 0:43|/z�1 C .0:34� 0:21|/z�2

(a) Run the algorithm for � D 0:1, � D 0:4, and � D 0:8. Comment on the
convergence behavior in each case.

(b) Plot the real versus imaginary parts of the received signals before
equalization and the single output signal after equalization.

15. Repeat Problem 14 for the case the adaptive-filter order is one and comment on
the results.

16. Show that the Sato algorithm minimizes the objective function given by
jeSato.k/j2 D eSato.k/e

�
Sato.k/.
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Chapter 14
Complex Differentiation

14.1 Introduction

This chapter briefly describes how to deal with complex signals in adaptive-filtering
context in a simple manner; for further details the reader is encouraged to refer
to [1–4].

14.2 The Complex Wiener Solution

Environments with complex signals are typical of some communication applica-
tions. In order to address these cases, this section describes the complex Wiener
solution. In the complex case, the error signal and its complex conjugate are
defined as

e.k/ D d.k/� wH.k/x.k/

e�.k/ D d�.k/� wT .k/x�.k/ (14.1)

Their product is then described by

je.k/j2 D e.k/e�.k/ D Œd.k/� wH.k/x.k/�Œd�.k/ � wT .k/x�.k/�

D jd.k/j2�wT .k/x�.k/d.k/�wH.k/x.k/d�.k/CwH.k/x.k/xH.k/w.k/

D jd.k/j2 � 2reŒwH.k/x.k/d�.k/�C wH.k/x.k/xH.k/w.k/ (14.2)

The expression of the error squared of (14.2) can be written as a function of the real
and imaginary parts of the filter coefficients as

je.k/j2 D jd.k/j2 � 
reŒwT .k/�C | imŒwT .k/�

�
x�.k/d.k/

� reŒwT .k/� � | imŒwT .k/�
�

x.k/d�.k/
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C 
reŒwT .k/� � | imŒwT .k/�

�
x.k/xH.k/ .reŒw.k/�C | imŒw.k/�/

D jd.k/j2 � reŒwT .k/�

x�.k/d.k/C x.k/d�.k/

�

�| imŒwT .k/�

x�.k/d.k/ � x.k/d�.k/

�

CreŒwT .k/�x.k/xH.k/reŒw.k/� � | imŒwT .k/�x.k/xH.k/reŒw.k/�

C| reŒwT .k/�x.k/xH.k/imŒw.k/�C imŒwT .k/�x.k/xH.k/imŒw.k/�

(14.3)

where reŒ�� and imŒ�� indicate real and imaginary parts of Œ��, respectively.
For a filter with fixed coefficients, see (14.2); the MSE function is given by

� D EŒje.k/j2�
D EŒjd.k/j2� � 2refwHEŒd�.k/x.k/�g C wHEŒx.k/xH.k/�w

D EŒjd.k/j2� � 2reŒwHp�C wHRw (14.4)

where p D EŒd�.k/x.k/� is the cross-correlation vector between the desired
and input signals, and R D EŒx.k/xH.k/� is the input signal correlation matrix.
As before, the objective function � is a quadratic function of the tap-weight
coefficients which would allow a straightforward solution for w, if vector p and
matrix R are known.

The derivative with respect to a complex parameter is defined as

gwfEŒje.k/j2�g D 1

2

�
@EŒje.k/j2�
@reŒw.k/�

� |
@EŒje.k/j2�
@imŒw.k/�

	

(14.5)

However, the direction of maximum rate of change of a real-valued scalar function
of a complex vector variable, in this case denoted by w, is given by

gw�fEŒje.k/j2�g D 1

2

�
@EŒje.k/j2�
@reŒw.k/�

C |
@EŒje.k/j2�
@imŒw.k/�

	

(14.6)

Consult the references [1, 2] for details.1

1 Any real-valued function of a complex vector variable w can be represented by a Taylor series.
The first-order term is given by

�� D
�

@�

@w.k/

�T
�w C

�
@�

@w�.k/

�T
�w�.k/

D 2re

( �
@�

@w.k/

�T
�w.k/

)

D 2re

(�
@�

@w�.k/

�T
�w�.k/

)

D 2re

(�
@�

@w�.k/

�H
�w.k/

)
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Note that the partial derivatives are calculated for each element of w.k/. With
this definition, the following relations are valid for the complex scalar parameter
case

@wi
@wi

D 1

@w�
i

@wi
D 0

@EŒje.k/j2�
@wi

D 0 if and only if
@EŒje.k/j2�
@reŒwi �

D @EŒje.k/j2�
@imŒwi �

D 0

The derivative of the MSE with respect to the vector w� is given by

gw�Efe.k/e�.k/g D Ef�e�.k/x.k/g (14.7)

Proof. In order to compute the derivative of the MSE with respect to the
coefficients, we need the expressions for the partial derivatives of the error modulus
squared with respect to the real and imaginary parts of the coefficients. These
equations are

@EŒje.k/j2�
@reŒw.k/�

D �E �x�.k/d.k/C x.k/d�.k/
�

CE �x.k/xH.k/C x�.k/xT .k/
�

reŒw.k/�

�Ef|x�.k/xT .k/imŒw.k/�g C Ef|x.k/xH.k/imŒw.k/�g
(14.8)

and

@EŒje.k/j2�
@imŒw.k/�

D�E ˚| �x�.k/d.k/ � x.k/d�.k/
�� � Ef|x.k/xH.k/reŒw.k/�g

CE ˚|x�.k/xT .k/reŒw.k/�
�

CE ˚�x.k/xH.k/C x�.k/xT .k/
�

imŒw.k/�
�

(14.9)

respectively.

The term within the real part operator is an inner product, as such the maximum change in

the objective function occurs when the change in �w.k/ is in the same direction as
h

@�

@w�.k/

i
.

Therefore, the maximum change of the objective function � occurs in the direction @�

@w�.k/
. The

definitions in (14.5) and (14.6) are suitable for our purposes; however, the actual gradient of
� with respect to the parameters w.k/ and w�.k/ should be gŒw.k/ w�.k/� D @�

@Œw.k/ w�.k/�
D

h
@�

@w.k/

@�

w�.k/

i
, see [4] for further details.
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The derivative of the error modulus squared with respect to the complex
coefficients can then be computed as

gw�EŒe.k/e�.k/� D @EŒje.k/j2�
@w�.k/

D 1

2
E
˚� �x�.k/d.k/C x.k/d�.k/

�

C �
x.k/xH.k/C x�.k/xT .k/

�
reŒw.k/�

�|x�.k/xT .k/imŒw.k/�C |x.k/xH.k/imŒw.k/�

C �
x�.k/d.k/ � x.k/d�.k/

�C x.k/xH.k/reŒw.k/�

�x�.k/xT .k/reŒw.k/�

C| �x.k/xH.k/C x�.k/xT .k/
�

imŒw.k/�
�

D 1

2
E
˚�2x.k/d�.k/C 2x.k/xH.k/reŒw.k/�

C2|x.k/xH.k/imŒw.k/�
�

D E
˚�x.k/d�.k/C x.k/xH.k/w.k/

�

D E
˚
x.k/

��d�.k/C xH.k/w.k/
��

D �E ˚�d�.k/ � wT .k/x�.k/
�

x.k/
�

D �E fe�.k/x.k/g ut

The derivative vector of the MSE function related to the filter tap-weight coefficients
is then given by

Efgw� Œe.k/e�.k/�g D gw�

D @�

@w�

D EŒ�e�.k/x.k/�

D �p C Rw (14.10)

By equating the derivative vector to zero and assuming R is nonsingular, the optimal
values for the tap-weight coefficients that minimize the objective function leads to
the Wiener solution for the complex case given by

wo D R�1p (14.11)

where R D EŒx.k/xH.k/� and p D EŒd�.k/x.k/�, assuming that d�.k/ and x.k/
are jointly wide-sense stationary.
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14.3 Derivation of the Complex LMS Algorithm

The LMS algorithm employs instantaneous estimates of matrix R, denoted by OR.k/,
and of vector p, denoted by Op.k/, given by

OR.k/ D x.k/xH.k/

Op.k/ D d�.k/x.k/ (14.12)

Using these estimates the objective function actually minimized is the instantaneous
square error je.k/j2 instead of the MSE. As a result, the expression of the derivative
estimate is

Ogw�fe.k/e�.k/g D @je.k/j2
@w�

D 1

2

�
@je.k/j2
@reŒw.k/�

C |
@je.k/j2
@imŒw.k/�

	

D 1

2

�
@je.k/j2
@reŒw0.k/�

@je.k/j2
@reŒw1.k/�

: : :
@je.k/j2
@reŒwN .k/�

�T

C| 1
2

�
@je.k/j2
@imŒw0.k/�

@je.k/j2
@imŒw1.k/�

: : :
@je.k/j2

@imŒwN .k/�

�T

D �e�.k/x.k/ (14.13)

As a rule the derivative of a function with respect to a complex parameter w can be
computed by considering w� as a constant and vice versa.

14.4 Useful Results

Table 14.1 shows some useful complex differentiation of scalar and vector functions
f .w/ and f.w/, respectively, with respect to variable vectors w and w�.

Table 14.1 Complex
differentiation Type of function Function Variable w Variable w�

f .w/ reŒwH x� 1
2
x�

1
2
x

f .w/ wH x 0 x
f .w/ xHw x� 0
f .w/ wHRw RT w� Rw
f.w/ H1w C H2w� HT

1 HT
2
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Chapter 15
Quantization Effects in the LMS Algorithm

15.1 Introduction

In this chapter, several aspects of the finite-wordlength effects in the LMS algo-
rithm are discussed for the cases of implementations in fixed- and floating-point
arithmetics [1, 2, 4].

15.2 Error Description

All scalars and vector elements in the LMS algorithm will deviate from their correct
values due to quantization effects. The error generated in any individual quantization
is considered to be a zero-mean random variable that is independent of any other
errors and quantities related to the adaptive-filter algorithm. The variances of these
errors depend on the type of quantization and arithmetic that will be employed in
the algorithm implementation.

The errors in the quantities related to the LMS algorithm are defined by

ne.k/ D e.k/� e.k/Q (15.1)

nw.k/ D w.k/� w.k/Q (15.2)

ny.k/ D y.k/ � y.k/Q (15.3)

where the subscriptQ denotes the quantized form of the given value or vector.
It is assumed that the input signal and desired signal suffer no quantization, so

that only internal computation quantizations are taken into account. The effects of
quantization in the input and desired signals can be easily taken into consideration
separately from other quantization error sources. In the case of the desired signal,
the quantization error can be added to the measurement noise, while for the input
signal the basic effect at the output of the filter is an additional noise as will be
discussed later.

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
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592 15 Quantization Effects in the LMS Algorithm

Algorithm 15.1 LMS algorithm including quantization
Initialization

x.0/ D w.0/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/Q D 
d.k/� xT .k/w.k/Q

�
Q

w.k C 1/Q D 
w.k/Q C 2�e.k/Qx.k/

�
Q

The following relations describe the computational errors introduced in the LMS
algorithm implemented with finite wordlength:

e.k/Q D d.k/� xT .k/w.k/Q � ne.k/ (15.4)

w.k C 1/Q D w.k/Q C 2�e.k/Qx.k/ � nw.k/ (15.5)

where ne.k/ is the noise sequence due to quantization in the inner product
xT .k/w.k/Q, the additional measurement noise n.k/ is included in d.k/, and
nw.k/ is a noise vector generated by quantization in the product 2�e.k/Qx.k/.
The generation of quantization noise as described applies for fixed-point arithmetic,
whereas for floating-point arithmetic the addition also introduces quantization error
that should be included in ne.k/ and nw.k/.

The objective now is to study the LMS algorithm behavior when internal
computations are performed in finite precision. Algorithm 15.1 describes the LMS
algorithm including quantization and with presence of additional noise.

Define
�w.k/Q D w.k/Q � wo (15.6)

where wo is the optimal coefficient vector, and considering that

d.k/ D xT .k/wo C n.k/ (15.7)

it then follows that

e.k/Q D 
d.k/� xT .k/w.k/Q

�
Q

D �xT .k/�w.k/Q � ne.k/C n.k/ (15.8)

and from (15.5)

�w.k C 1/Q D �w.k/Q C 2�x.k/
��xT .k/�w.k/Q � ne.k/C n.k/

� � nw.k/

(15.9)
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This equation can be rewritten as

�w.k C 1/Q D �
I � 2�x.k/xT .k/

�
�w.k/Q C n0

w.k/ (15.10)

where

n0
w.k/ D 2�x.k/.n.k/ � ne.k//� nw.k/ (15.11)

For the sake of illustration and completeness, the solution of (15.10) is

�w.k C 1/Q D
kY

iD0

�
I � 2�x.i/xT .i/

�
�w.0/Q

C
kX

iD0

8
<

:

kY

jDiC1

�
I � 2�x.j /xT .j /

�
n0

w.i/

9
=

;
(15.12)

where we define that for j D k C 1 in the second product,
Qk
jDkC1Œ�� D 1.

15.3 Error Models for Fixed-Point Arithmetic

In the case of fixed-point arithmetic, with rounding assumed for quantization, the
error after each product can be modeled as a zero-mean stochastic process, with
variance given by [3, 5, 6]

�2 D 2�2b

12
(15.13)

where b is the number of bits after the sign bit. Here it is assumed that the number
of bits after the sign bit for quantities representing signals and filter coefficients are
different and given by bd and bc , respectively. It is also assumed that the internal
signals are properly scaled, so that no overflow occurs during the computations and
that the signal values lie between �1 and +1 all the time. The error signals consisting
of the elements of ne.k/ and nw.k/ are all uncorrelated and independent of each
other. The variance of ne.k/ and the covariance of nw.k/ are given by

EŒn2e.k/� D �2e (15.14)

EŒnw.k/nTw.k/� D �2wI (15.15)

respectively. If distinction is made between data and coefficient wordlengths, the
above-mentioned variances are given by

�2e D �2y D �
2�2bd
12

(15.16)

�2w D � 0 2�2bc
12

(15.17)
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where � 0 D � D 1 if the quantization is performed after addition, i.e., products are
performed in full precision and only after all the additions in the inner product are
finished, the quantization is applied. For quantization after each product, � D NC1
whereN C 1 is the number of partial products, and � 0 D 1. Those not familiar with
the results of the above equations should consult a basic digital signal processing
textbook such as [3, 6], or [5].

Note that �2w depends on how the product 2�e.k/x.k/ is performed. In the
above equation, it was assumed that the product was available in full precision, and
then a quantization to bc bits in the fractional part was performed, or equivalently,
the product 2�e.k/ in full precision was multiplied by x.k/, and only in the last
operation quantization was introduced. In case of quantization of partial results, the
variance �2w is increased due to the products of partial errors with the remaining
product components.

15.4 Coefficient-Error-Vector Covariance Matrix

Obviously, internal quantization noise generated during the operation of the LMS
algorithm affects its convergence behavior. In this section, we discuss the effects of
the finite-wordlength computations on the second-order statistics of the errors in the
adaptive-filter coefficients. First, we assume that the quantization noise ne.k/ and
the vector nw.k/ are all independent of the data, of the filter coefficients, and of
each other. Also, these quantization errors are all considered zero-mean stochastic
processes. With these assumptions, the covariance of the error in the coefficient
vector, defined by EŒ�w.k/Q�wT .k/Q�, can be easily derived from (15.10) and
(15.11):

covŒ�w.k C 1/Q� D EŒ�w.k C 1/Q�wT .k C 1/Q�

D E
˚�

I�2�x.k/xT .k/
�
�w.k/Q�wT .k/Q

�
I�2�x.k/xT .k/

��

C 4�2EŒx.k/xT .k/�EŒn2.k/�C 4�2EŒx.k/xT .k/�EŒn2e.k/�

C EŒnw.k/nTw.k/� (15.18)

Each term on the right-hand side of the above equation can be approximated in
order to derive the solution for the overall equation. The only assumption made is
the independence between x.k/ and�w.k/Q that is reasonably accurate in practice.

The first term in (15.18) can be expressed as

T1 D covŒ�w.k/Q� � 2�covŒ�w.k/Q�EŒx.k/xT .k/�

�2�EŒx.k/xT .k/�covŒ�w.k/Q�

C4�2E ˚x.k/xT .k/covŒ�w.k/Q�x.k/xT .k/
�

(15.19)
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The element .i; j / of the last term in the above equation is given by

4�2E
˚
x.k/xT .k/covŒ�w.k/Q�x.k/xT .k/

�
i;j

D 4�2
NX

mD0

NX

lD0
covŒ�w.k/Q�m;lEŒxi .k/xm.k/xl .k/xj .k/� (15.20)

where xi .k/ represents the i th element of x.k/. If it is assumed that the elements of
the input signal vector are jointly Gaussian, the following relation is valid

EŒxi .k/xm.k/xl .k/xj .k/� D Ri;mRl;j C Rm;lRi;j C Rm;jRi;l (15.21)

where Ri;j is the element .i; j / of R. Replacing this expression in (15.20), it can be
shown that

NX

mD0

NX

lD0
covŒ�w.k/Q�m;lEŒxi .k/xm.k/xl .k/xj .k/�

D 2
˚
RcovŒ�w.k/Q�R

�
i;j

C Ri;j tr
˚
RcovŒ�w.k/Q�

�
(15.22)

Using this result in the last term of T1, it follows that

T1 D covŒ�w.k/Q� � 2�
˚
RcovŒ�w.k/Q�C covŒ�w.k/Q�R

�

C4�2 2RcovŒ�w.k/Q�R C Rtr
˚
RcovŒ�w.k/Q�

��
(15.23)

Since the remaining terms in (15.18) are straightforward to calculate, replacing
(15.23) in (15.18) yields

covŒ�w.k C 1/Q� D .I � 2�R/covŒ�w.k/Q� � 2�covŒ�w.k/Q�R

C4�2Rtr
˚
RcovŒ�w.k/Q�

�C 8�2RcovŒ�w.k/Q�R

C4�2.�2n C �2e /R C �2wI (15.24)

Before reaching the steady state, the covariance of�w.kC 1/Q presents a transient
behavior that can be analyzed in the same form as (3.23). It is worth mentioning
that the condition for convergence of the coefficients given in (3.30) also guarantees
the convergence of the above equation. In fact, (15.24) is almost the same as (3.23)
except for the extra excitation terms �2e and �2w that account for the quantization
effects, and, therefore, the behavior of the coefficients in the LMS algorithm in finite
precision must resemble its behavior in infinite precision, with the convergence
curve shifted up in the finite-precision case.

In most cases, the norm of RcovŒ�w.k/Q�R is much smaller than the norm
of Rtr

˚
RcovŒ�w.k/Q�

�
so that the former term can be eliminated from (15.24).
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Now, by considering in (15.24) that in the steady state covŒ�w.k/Q� � covŒ�w
.k C 1/Q� and applying the trace operation in both sides, it is possible to conclude
that

tr
˚
RcovŒ�w.k/Q�

� D 4�2.�2n C �2e /trŒR�C .N C 1/�2w
4� � 4�2trŒR� (15.25)

This expression will be useful to calculate the excess MSE in the finite-precision
implementation of the LMS algorithm.

If x.k/ is considered a Gaussian white noise with variance �2x , it is possible to
calculate the expected value of jj�w.k/Qjj2, defined as the trace of covŒ�w.k/Q�,
from (15.24) and (15.25). The result is

EŒjj�w.k/Qjj2� D �.�2n C �2e /.N C 1/

1 � �.N C 1/�2x
C .N C 1/�2w
4��2x Œ1 � �.N C 1/�2x �

(15.26)

As can be noted, when � is small, the noise in the calculation of the coefficients
plays a major role in the overall error in the adaptive-filter coefficients.

15.5 Algorithm Stop

The adaptive-filter coefficients may stop updating due to limited wordlength
employed in the internal computation. In particular, for the LMS algorithm, it will
occur when

j2�e.k/Qx.k/ji < 2�bc�1 (15.27)

where j.�/ji denotes the modulus of the i th component of .�/. The above condition
can be stated in an equivalent form given by

4�2.�2e C �2n/�
2
x < 4�

2EŒe2.k/Q�EŒx
2
i .k/� <

2�2bc
4

(15.28)

where in the first inequality it was considered that the variances of all elements
of x.k/ are the same, and that �2e C �2n is a lower bound for EŒe2.k/Q� since the
effect of misadjustment due to noise in the gradient is not considered. If � is chosen
such that

� >
2�bc

4�x
p
�2e C �2n

(15.29)

the algorithm will not stop before convergence is reached. If � is small such that
the convergence is not reached, the MSE at the output of the adaptive system will
be totally determined by the quantization error. In this case, the quantization error
is usually larger than the expected MSE in the infinite-precision implementation.
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15.6 Mean-Square Error

The mean-square error of the conventional LMS algorithm in the presence of
quantization noise is given by

�.k/Q D EŒe2.k/Q� (15.30)

By recalling from (15.8) that e.k/Q can be expressed as

e.k/Q D �xT .k/�w.k/Q � ne.k/C n.k/

it then follows that

�.k/Q D EŒxT .k/�w.k/QxT .k/�w.k/Q�C �2e C �2n

D E
˚
trŒx.k/xT .k/�w.k/Q�wT .k/Q�

�C �2e C �2n

D tr
˚
RcovŒ�w.k/Q�

�C �2e C �2n (15.31)

If we replace (15.25) in (15.31), the MSE of the adaptive system is given by

�.k/Q D �.�2n C �2e /trŒR�
1 � �trŒR�

C .N C 1/�2w
4�.1 � �trŒR�/

C �2e C �2n

D �2e C �2n
1 � �trŒR�

C .N C 1/�2w
4�.1 � �trŒR�/

(15.32)

This formula is valid as long as the algorithm does not stop updating the coefficients.
However, the MSE tends to increase in a form similar to that determined in (15.32)
when � does not satisfy (15.29).

In case the input signal is also quantized, a noise with variance �2i is generated
at the input, causing an increase in the MSE. The model for the input signal is then,

x.k/Q D x.k/� ni .k/ (15.33)

In this case the quantized error can be expressed as

e.k/Q D d.k/� wT .k/Qx.k/Q � ne.k/

D wT
o x.k/C n.k/ � wT .k/QŒx.k/ � ni .k/� � ne.k/

D wT
o x.k/C n.k/ � wT .k/QŒx.k/ � ni .k/� � ne.k/

D ��wT .k/Qx.k/� ŒwT
o C�wT .k/Q�ni .k/� ne.k/C n.k/ (15.34)



598 15 Quantization Effects in the LMS Algorithm

The basic difference between the above expression and (15.8) is the inclusion of the
term �ŒwT

o C�wT .k/Q�ni .k/. By assuming this term is uncorrelated to other terms
of the error expression, the MSE in (15.32) includes an extra term given by

EŒ.wT
o C�wT .k/Q/ni .k/.wT

o C�wT .k/Q/ni .k/�

that can be simplified as

EŒ.wT
o C�wT .k/Q/ni .k/nTi .k/.wo C�w.k/Q/�

D wT
o EŒni .k/n

T
i .k/�wo C EŒ�wT

Q.k/EŒni .k/n
T
i .k/��wQ.k/�

D �2i
˚
wT
o wo C trŒcov.�wQ.k//�

�

D �2i .jjwojj2 C tr
˚
covŒ�w.k/Q�

�
/

� �2i jjwojj2 (15.35)

This additional term due to the input signal quantization leads to an increment in
the MSE. As a result of this term being fed back in the algorithm through the error
signal generates an extra term in the MSE with the same gain as the measurement
noise that is approximately given by

��2i trŒR�
1 � �trŒR�

jjwojj2

Therefore, the total contribution of the input signal quantization is

�i � jjwojj2�2i
1 � �trŒR�

(15.36)

where in the above analysis it was considered that the terms with �2i � �2w, �2i � �2e ,
and �2i � �2n are small enough to be neglected.

15.7 Floating-Point Arithmetic Implementation

A succinct analysis of the quantization effects in the LMS algorithm when
implemented in floating-point arithmetic is presented in this section. Most of
the derivations are given in the Sect. 15.8 and follow closely the procedure of the
fixed-point analysis.

In floating-point arithmetic, quantization errors occur after addition and
multiplication operations. These errors are respectively modeled as follows: [7]:

flŒa C b� D a C b � .a C b/na (15.37)

flŒa � b� D a � b � .a � b/np (15.38)
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where na and np are zero-mean random variables that are independent of any other
errors. Their variances are respectively given by

�2np � 0:18 � 2�2b (15.39)

and

�2na < �
2
np

(15.40)

where b is the number of bits in the mantissa representation.
The quantized error and the quantized filter coefficients vector are given by

e.k/Q D d.k/ � xT .k/w.k/Q � ne.k/ (15.41)

w.k C 1/Q D w.k/Q C 2�x.k/e.k/Q � nw.k/ (15.42)

where ne.k/ and nw.k/ represent computational errors, and their expressions are
given in the Sect. 15.8. Since nw.k/ is a zero-mean vector, it is shown in the
Sect. 15.8 that on the average w.k/Q tends to wo. Also, it can be shown that

�w.k C 1/Q D ŒI � 2�x.k/xT .k/C N�w.k/��w.k/

CN0
a.k/wo C 2�x.k/Œn.k/ � ne.k/� (15.43)

where N�w.k/ combines several quantization-noise effects as discussed in the
Sect. 15.8, and N0

a.k/ is a diagonal noise matrix that models the noise generated in
the vector addition required to update w.k C 1/Q. The error matrix N�w.k/ can be
considered negligible as compared to ŒI �2�x.k/xT .k/� and therefore is eliminated
in the analysis below.

By following a similar analysis used to derive (15.24) in the case of fixed-point
arithmetic, we obtain

tr
˚
RcovŒ�w.k/Q�

� D 4�2.�2n C �2e /trŒR�C jjwojj2�2na C trfcovŒ�w.k/�g�2na
4�� 4�2trŒR�

(15.44)

where it was considered that all noise sources in matrix N0
a.k/ have the same

variance given by �2na .
If x.k/ is considered a Gaussian white noise with variance �2x , it is straightfor-

ward to calculate EŒjjw.k/Qjj2�. The expression is given by

EŒjjw.k/Qjj2� D �.�2n C �2e /.N C 1/

1 � �.N C 1/�2x
C jjwojj2�2na
4��2x Œ1 � �.N C 1/�2x �

C �2na�
2
n.N C 1/

4�2x Œ1 � �.N C 1/�2x �
2

(15.45)
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where the expression for trfcovŒ�w.k/�g used in the above equation is given in
the Sect. 15.8, (15.52). For small values of �, the quantization of addition in
the updating of w.k/Q may be the dominant source of error in the adaptive-filter
coefficients.

The MSE in the LMS algorithm implemented with floating-point arithmetic is
then given by

e�.k/Q D trfRcovŒ�w.k/Q�g C �2 nC �2

D .�2n C �2e /

1 � �trŒR�
C jjwojj2�2na C trfcovŒ�w.k/�g�2na

4�.1� �trŒR�/
(15.46)

For � 	 1

trŒR�
, using (15.52), and again considering x.k/ a Gaussian white noise

with variance �2x , the above equation can be simplified as follows:

n�.k/Q D �2 eC �2 C jjwojj2�2na
4�

C .N C 1/�2n�
2
na

4
(15.47)

The i th coefficient of the adaptive filter will not be updated in floating-point
implementation if

j2�e.k/Qx.k/ji < 2�ba�1jw.k/ji (15.48)

where j.�/ji denotes the modulus of the i th component of .�/, and ba is the number
of bits in the fractional part of the addition in the coefficient updating. In the steady
state we can assume that �2n C �2e is a lower bound for EŒe2.k/Q� and (15.48) can
be equivalently rewritten as

4�2.�2n C �2e /�
2
x < 4�

2EŒe2.k/Q�EŒx
2
i .k/� <

2�2ba
4

w2oi (15.49)

The algorithm will not stop updating before the convergence is achieved, if � is
chosen such that

� >
2�ba
4

s
w2oi

.�2n C �2e /�
2
x

(15.50)

In case � does not satisfy the above condition, the MSE is determined by the
quantization error.

15.8 Floating-Point Quantization Errors in LMS Algorithm

In this section, we derive the expressions for the quantization errors generated in the
implementation of the LMS algorithm using floating-point arithmetic.
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The error in the output error computation is given by

ne.k/ � �na.k/Œd.k/ � xT .k/w.k/Q�

CxT .k/

2

6
6
6
4

np0.k/ 0 0 � � � 0
0 np1.k/ � � � � � � 0
:::

: : :
:::

:::

0 0 npN .k/

3

7
7
7
5

w.k/Q

�Œna1 .k/ na2 .k/ � � � naN .k/�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1X

iD0
x.k � i/wi .k/Q

2X

iD0
x.k � i/wi .k/Q

:::

NX

iD0
x.k � i/wi .k/Q

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

D �na.k/e.k/Q � xT .k/Np.k/w.k/Q � na.k/si .k/

where npi .k/ accounts for the noise generated in the products x.k � i/wi .k/Q and
nai .k/ accounts for the noise generated in the additions of the product xT .k/w.k/.
Note that the error terms of second- and higher-order have been neglected.

Using similar assumptions one can show that

nw.k/ D �2�n0
p.k/e.k/Qx.k/ � 2�N00

p.k/e.k/Qx.k/

�N0
a.k/Œw.k/Q C 2�e.k/Qx.k/� (15.51)

where

N 00
p .k/ D

2

6
6
6
6
4

n00
p0
.k/ 0 � � � 0

0 n00
p1
.k/ � � � 0

:::
:::

: : :
:::

0 � � � � � � n00
pN
.k/

3

7
7
7
7
5

N 0
a.k/ D

2

6
6
6
4

n0
a0
.k/ 0 � � � 0

0 n0
a1
.k/ � � � 0

:::
:::

: : :
:::

0 � � � � � � n0
aN
.k/

3

7
7
7
5
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and n0
p.k/ accounts for the quantization of the product 2� by e.k/Q, considering

that 2� is already available. Matrix N00
p.k/ models the quantization in the product

of 2�e.k/Q by x.k/, while N0
a.k/ models the error in the vector addition used to

generate w.k C 1/Q.
If we substitute the expression for e.k/Q of (15.8) in nw.k/ given in (15.51), and

use the result in (15.11), it can be shown that

�w.k C 1/Q D ŒI � 2�x.k/xT .k/��w.k/Q C 2�x.k/Œn.k/ � ne.k/� � nw.k/

� ŒI � 2�x.k/xT .k/C 2�n0
p.k/x.k/x

T .k/

C2�N00
p.k/x.k/x

T .k/C 2�N0
a.k/x.k/x

T .k/

CN0
a.k/��w.k/Q C N0

a.k/wo C 2�x.k/Œn.k/ � ne.k/�

where the terms corresponding to products of quantization errors were considered
small enough to be neglected.

Finally, the variance of the error noise can be derived as follows:

�2e D �2na�.k/Q C �2np

NX

iD0
Ri;icovŒw.k C 1/Q�i;i

C�2na

8
<

:
E

2

4

 
1X

iD0
x.k � i/wi .k/Q

!23

5C E

2

4

 
2X

iD0
x.k � i/wi .k/Q

!23

5

C � � � C E

2

4

 
NX

iD0
x.k � i/wi .k/Q

!23

5

9
=

;

where �
02
nai

was considered equal to �2na , and Œ��i;i means diagonal elements of Œ��.
The second term can be further simplified as follows:

trfRcovŒw.k C 1/Q�g �
NX

iD0
Ri;iw

2
oi C Ri;icovŒ�w.k C 1/�i;i

Cfirst- and higher-order terms � � �

Since this term is multiplied by �2np , any first- and higher-order terms can be

neglected. The first term of �2e is also small in the steady state. The last term can be
rewritten as

�2na

8
<

:
E

2

4

 
1X

iD0

x.k � i/woi

!23

5CE

2

4

 
2X

iD0

x.k � i/woi

!23

5C 	 	 	 CE

2

4

 
NX

iD0

x.k � i/woi

!23

5

9
=

;

D �2na

8
<

:

NX

jD1

jX

iD0

Ri;i covŒ�w.k C 1/�i;i

9
=

;
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where terms of order higher than one were neglected, x.k/ was considered
uncorrelated to �w.kC 1/, and covŒ�w.kC 1/� was considered a diagonal matrix.
Actually, if x.k/ is considered a zero-mean Gaussian white noise, from (3.23) it can
be shown that

covŒ�w.k/� � ��2nI C �2.N C 1/�2x�
2
nI

1 � �.N C 1/�2x
D ��2nI
1 � �.N C 1/�2x

(15.52)

Since this term will be multiplied by �2na and �2np , it can also be disregarded.
In conclusion,

�2e � �2na

8
<

:
E

2

4
NX

jD1

 
jX

iD0
x.k � i/woi

!23

5

9
=

;
C �2np

NX

iD0
Ri;iw

2
oi

This equation can be further simplified when x.k/ is as above described and �2na D
�2np D �2d , leading to

�2e � �2d

"
NX

iD1
.N � i C 2/Ri;iw

2
oi�R1;1w

2
o1

#

D �2d �
2
x

"
NX

iD1
.N�i C 2/w2oi�w2o1

#
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Chapter 16
Quantization Effects in the RLS Algorithm

16.1 Introduction

In this chapter, several aspects of the finite-wordlength effects in the RLS algorithm
are discussed for the cases of implementation with fixed- and floating-point
arithmetic [1, 3–6, 8, 9].

16.2 Error Description

All the elements of matrices and vectors in the RLS algorithm will deviate from
their correct values due to quantization effects. The error generated in any individual
quantization is considered to be a zero-mean random variable that is independent of
any other error and quantities related to the adaptive-filter algorithm. The variances
of these errors depend on the type of quantization and arithmetic that will be applied
in the algorithm implementation.

The errors in the quantities related to the conventional RLS algorithm are
defined by

ne.k/ D e.k/ � e.k/Q (16.1)

n .k/ D SD.k � 1/Qx.k/ � ŒSD.k � 1/Qx.k/�Q (16.2)

NSD .k/ D SD.k/ � SD.k/Q (16.3)

nw.k/ D w.k/ � w.k/Q (16.4)

ny.k/ D y.k/ � y.k/Q (16.5)

n".k/ D ".k/� ".k/Q (16.6)

where the subscript Q denotes the quantized form of the given matrix, vector, or
scalar.

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
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It is assumed that the input signal and desired signal suffer no quantization;
so only quantizations of internal computations are taken into account. With the
above definitions, the following relations describe the computational error in some
quantities of interest related to the RLS algorithm:

e.k/Q D d.k/ � xT .k/w.k � 1/Q � ne.k/ (16.7)

w.k/Q D w.k � 1/Q C SD.k/Qx.k/e.k/Q � nw.k/ (16.8)

where ne.k/ is the noise sequence due to quantization in the inner product
xT .k/w.k � 1/Q and nw.k/ is a noise vector due to quantization in the product
SD.k/Qx.k/e.k/Q.

The development here is intended to study the algorithm behavior when the
internal signals, vectors, and matrices are available in quantized form as happens in
a practical implementation. This means that, for example in Algorithm 5.2, all the
information needed from the previous time interval .k � 1/ to update the adaptive
filter at instant k are available in quantized form.

Now we can proceed with the analysis of the deviation in the coefficient vector
generated by the quantization error. By defining

�w.k/Q D w.k/Q � wo (16.9)

and considering that

d.k/ D xT .k/wo C n.k/

then it follows that

e.k/Q D �xT .k/�w.k � 1/Q � ne.k/C n.k/ (16.10)

and

�w.k/Q D �w.k � 1/Q C SD.k/Qx.k/Œ�xT .k/�w.k � 1/Q � ne.k/C n.k/�

�nw.k/ (16.11)

(16.11) can be rewritten as follows:

�w.k/Q D ŒI � SD.k/Qx.k/xT .k/��w.k � 1/Q C n0w.k/ (16.12)

where

n0w.k/ D SD.k/Qx.k/Œn.k/ � ne.k/� � nw.k/ (16.13)
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Algorithm 16.1 RLS algorithm including quantization
Initialization
SD.�1/ D ıI
where ı can be the inverse of an estimate of the input signal power.
x.�1/ D w.�1/ D Œ0 0 : : : 0�T

Do for k � 0

e.k/Q D d 0.k/� xT .k/w.k � 1/Q � ne.k/C n.k/

 .k/Q D SD.k � 1/Qx.k/� n .k/

SD.k/Q D 1
�

�

SD.k � 1/Q �  .k/Q 
T
.k/Q

�C 
T
.k/Qx.k/

�

� NSD .k/

w.k/Q D w.k � 1/Q C e.k/QSD.k/Qx.k/� nw.k/
If necessary compute
y.k/Q D wT .k/Qx.k/� ny.k/

".k/Q D d.k/� yQ.k/

The solution of (16.12) can be calculated as

�w.k/Q D
kY

iD0

�
I � SD.i/Qx.i/xT .i/

�
�w.�1/Q

C
kX

iD0

8
<

:

kY

jDiC1
ŒI � SD.j /Qx.j /xT .j /�

9
=

;
n0w.i/ (16.14)

where in the last term of the above equation for i D k, we consider that

kY

jDkC1
Œ�� D 1

Now, if we rewrite Algorithm 5.2 taking into account that any calculation in
the present updating generates quantization noise, we obtain Algorithm 16.1 that
describes the RLS algorithm with quantization and additional noise taken into
account. Notice that Algorithm 16.1 is not a new algorithm.

16.3 Error Models for Fixed-Point Arithmetic

In the case of fixed-point arithmetic, with rounding assumed for quantization, the
error after each product can be modeled as a zero-mean stochastic process, with
variance given by [2, 7]

�2 D 2�2b

12
(16.15)
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where b is the number of bits after the sign bit. Here it is assumed that the number
of bits after the sign bit for quantities representing signals and filter coefficients are
different, and given by bd and bc , respectively. It is also assumed that the internal
signals are properly scaled, so that no overflow occurs during the computations, and
that the signal values are between �1 and C1. If in addition independence between
errors is assumed, each element in (16.1)–(16.6) is on average zero. The respective
covariance matrices are given by

EŒn2e.k/� D EŒn2".k/� D �2e (16.16)

EŒNSD .k/N
T

SD.k/� D �2SD I (16.17)

EŒnw.k/nTw.k/� D �2wI (16.18)

EŒn .k/n
T

 
.k/� D �2

 
I (16.19)

EŒn2y.k/� D �2y (16.20)

If distinction is made between data and coefficient wordlengths, the noise
variances of data and coefficients are respectively given by

�2e D �2y D �
2�2bd
12

(16.21)

�2w D � 0 2�2bc
12

(16.22)

where � 0 D � D 1 if the quantization is performed after addition, i.e., the products
are performed in full precision and the quantization is applied only after all the
additions in the inner product are finished. For quantization after each product, then
� D N C1 and � 0 D N C2, since each quantization in the partial product generates
an independent noise, and the number of products in the error computation is N C1

whereas in the coefficient computation it is N C 2.
As an illustration, it is shown how to calculate the value of the variance �2SD

when making some simplifying assumptions. The value of �2SD depends on how
the computations to generate SD.k/ are performed. Assume the multiplications and
divisions are performed with the same wordlength and that the needed divisions
are performed once, followed by the corresponding scalar matrix product. Also,
assuming the inner product quantizations are performed after the addition, each
element of the matrix SD.k/Q requires five multiplications1 considering that 1=� is
prestored. The diagonal elements of (16.17) consist ofN C1 noise autocorrelations,
each with variance 5�2 . The desired result is then given by

1One is due to the inner product at the denominator; one is due to the division; one is due to the
product of the division result by 1=�; one is to calculate the elements of the outer product of the
numerator; the other is the result of quantization of the product of the last two terms.
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�2SD D 5.N C 1/�2 (16.23)

where �2 is the variance of each multiplication error.

16.4 Coefficient-Error-Vector Covariance Matrix

Assume that the quantization signals ne.k/; n.k/, and the vector nw.k/ are all
independent of the data, filter coefficients, and each other. Also, assuming that
these errors are all zero-mean stochastic processes, the covariance matrix of the
coefficient-error vector given byEŒ�w.k/Q�wT .k/Q� can be derived from (16.12)
and (16.13)

cov Œ�w.k/Q� D EŒ�w.k/Q�wT .k/Q�

D E
˚
ŒI � SD.k/Qx.k/xT .k/��w.k � 1/Q�wT .k � 1/Q

ŒI � x.k/xT .k/SD.k/Q�
�

CEŒSD.k/Qx.k/xT .k/SD.k/Q�EŒn2.k/�

CEŒSD.k/Qx.k/xT .k/SD.k/Q�EŒn2e.k/�

CEŒnw.k/nTw.k/� (16.24)

The above equation can be approximated in the steady state, where each term on
the right-hand side will be considered separately. It should be noted that during the
derivations it is implicitly assumed that the algorithm follows closely the behavior
of its infinite-precision counterpart. This assumption can always be considered as
true if the wordlengths used are sufficiently long. However, under short-wordlength
implementation this assumption might not be true as will be discussed later on.

Term 1: The elements of �w.k � 1/Q can be considered independent of SD.k/Q
and x.k/. In this case, the first term in (16.24) can be expressed as

T1 D cov Œ�w.k � 1/Q� � cov Œ�w.k � 1/Q�EŒx.k/xT .k/SD.k/Q�
�EŒSD.k/Qx.k/xT .k/�cov Œ�w.k � 1/Q�

CE ˚SD.k/Qx.k/xT .k/cov Œ�w.k � 1/Q�x.k/xT .k/SD.k/Q
�

(16.25)

If it is recalled that SD.k/Q is the unquantized SD.k/ matrix disturbed by a noise
matrix that is uncorrelated to the input signal vector, then in order to compute the
second and third terms of T1 it suffices to calculate

EŒSD.k/x.k/xT .k/� � E ŒSD.k/� E
�
x.k/xT .k/

�
(16.26)
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where the approximation is justified by the fact that SD.k/ is slowly varying as
compared to x.k/ when � ! 1. Using (5.55) it follows that

E
�
SD.k/x.k/xT .k/

� � 1 � �

1 � �kC1 I (16.27)

Now we need to use stronger assumptions for SD.k/ than those considered in
the above equation. If the matrix EŒSD.k/Q� is assumed to be approximately
constant for large k (see the discussions around (5.54)), the last term in T1 can
be approximated by

E
˚
SD.k/Qx.k/xT .k/covŒ�w.k � 1/Q�x.k/xT .k/SD.k/Q

�

� EŒSD.k/Q�E
˚
x.k/xT .k/cov Œ�w.k � 1/Q�x.k/xT .k/

�
EŒSD.k/Q�

(16.28)

If it is further assumed that the elements of the input signal vector are jointly
Gaussian, then each element of the middle term in the last equation can be given by

E
˚
x.k/xT .k/cov Œ�w.k � 1/Q�x.k/xT .k/

�
i;j

D
NX

mD0

NX

lD0
cov Œ�w.k � 1/Q�mlEŒxi .k/xm.k/xl .k/xj .k/�

D 2fRcov Œ�w.k � 1/Q�Rgi;j C ŒR�i;j tr fRcov Œ�w.k � 1/Q�g (16.29)

where Œ��i;j denotes the i th, j th element of the matrix Œ��. It then follows that

E
˚
x.k/xT .k/cov Œ�w.k � 1/Q�x.k/xT .k/

�

D 2R cov Œ�w.k � 1/Q�R C Rtr
˚
Rcov Œ�w.k � 1/Q�

�
(16.30)

The last term of T1 in (16.25), after simplified, yields

2

�
1 � �

1 � �kC1

�2
cov Œ�w.k � 1/Q�C

�
1 � �

1 � �kC1

�2
tr
˚
Rcov Œ�w.k � 1/Q�

�
R�1

CE ˚NSD.k/x.k/x
T .k/cov Œ�w.k � 1/Q�x.k/xT .k/NSD.k/

�
(16.31)

After a few manipulations, it can be shown that the third term in the above equa-
tion is nondiagonal with NSD.k/ being symmetric for the RLS algorithm described
in Algorithm 16.1. On the other hand, if the matrix R is diagonal dominant, that is
in general the case, the third term of (16.31) becomes approximately diagonal and
given by2

2The proof is not relevant but following the lines of (16.30) and considering that its last term is the
most relevant, the result follows.
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TS.k/ � �2SD�
4
x trfcov Œ�w.k � 1/Q�gI (16.32)

where �2x is the variance of the input signal. This term, which is proportional to a
quantization noise variance, can actually be neglected in the analysis, since it has in
general much smaller norm than the remaining terms in T1.

Terms 2 and 3: Using the same arguments applied before, such as SD.k/ is almost
fixed as � ! 1, then the main result required to calculate the terms 2 and 3 of
(16.24) is approximately given by

EŒSD.k/Qx.k/xT .k/SD.k/Q� � EŒSD.k/�REŒSD.k/�CEŒNSD .k/RNSD.k/�

�
�

1 � �

1 � �kC1

�2
R�1 (16.33)

where the term EŒNSD.k/RNSD .k/� can be neglected because it is in general much
smaller than the remaining term. In addition, it will be multiplied by a small variance
when (16.33) is replaced back in (16.24). From (16.24), (16.28), (16.33), (16.16),
(16.18), and (16.22), it follows that

cov Œ�w.k/Q� D
"

1 � 2
�

1 � �

1 � �kC1

�

C 2

�
1 � �

1 � �kC1

�2
#

cov Œ�w.k � 1/Q�

C
�

1 � �

1 � �kC1

�2
tr fRcov Œ�w.k � 1/Q�gR�1

C
�

1 � �

1 � �kC1

�2
.�2n C �2e /R

�1 C �2wI (16.34)

Now, by considering in (16.34) that in the steady state cov Œ�w.k/Q� �
cov Œ�w.k � 1/Q�, multiplying the resulting expression by R, and calculating
the trace of the final equation, it can be shown that

tr fR cov Œ�w.k � 1/Q�g � .1 � �/2.N C 1/.�2n C �2e /C �2wtr .R/
.1 � �/Œ2� � .1� �/.N C 1/�

(16.35)

where it was considered that �kC1 ! 0. Replacing the (16.35) in (16.34), and
computing the steady-state solution the following equation results

cov Œ�w.k/Q� � .1 � �/.�2n C �2e /

2� � .1 � �/.N C 1/
R�1

C .1 � �/tr .R/R�1 C Œ2� � .1 � �/.N C 1/�I
2.1� �/�Œ2�� .1 � �/.N C 1/�

�2w (16.36)
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Finally, if the trace of the above equation is calculated considering that x.k/ is a
Gaussian white noise with variance �2x , and that 2� 
 .1 � �/.N C 1/ for � ! 1,
the resulting expected value of jj�w.k/Qjj2 is

EŒjj�w.k/Qjj2� � .1 � �/.N C 1/

2�

�2n C �2e
�2x

C .N C 1/�2w
2�.1� �/

(16.37)

As can be noted if the value of � is very close to one, the square errors in the tap
coefficients tend to increase and to become more dependent of the tap coefficient
wordlengths. On the other hand, if � is not close to one, in general for fast
tracking purposes, the effects of the additive noise and data wordlength become
more disturbing to the coefficient square errors. The optimum value for � close to
1, as far as quantization effects are concerned, can be derived by calculating the
derivative of Ejj�w.k/Qjj2� with respect to � and setting the result to zero

�opt � 1 � �w�x
p
�2n C �2e

(16.38)

where it was assumed that .2� � 1/ � 1.
By noting that 1��

1��kC1 should be replaced by 1
kC1 when � D 1, it can be shown

from (16.34) that the algorithm tends to diverge when � D 1, since in this case
jjcov Œ�w.k/Q�jj is growing with k.

16.5 Algorithm Stop

In some cases the adaptive-filter tap coefficients may stop adapting due to quanti-
zation effects. In particular, the conventional RLS algorithm will freeze when the
coefficient updating term is not representable with the available wordlength. This
occurs when its modulus is smaller than half the value of the least significant bit, i.e.,

je.k/QSD.k/Qx.k/ji < 2�bc�1 (16.39)

where j ji denotes the modulus of the i th component. Equivalently it can be
concluded that updating will be stopped if

EŒe.k/2Q�EŒjSD.k/Qx.k/xT .k/SD.k/Qji i �

�
�

1 � �

1 � �kC1

�2
�2e C �2n
�2x

< 2�2bc�2 (16.40)

where x.k/ was considered a Gaussian white noise with variance �2x , and the
following approximation was made: EŒe.k/2Q� � �2e C �2n .
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For a given coefficient wordlength bc , the algorithm can always be kept
updating if

� < 1 � 2�bc�1 �x
p
�2e C �2n

(16.41)

On the other hand, if the above condition is not satisfied, it can be expected that the
algorithm will stop updating in

k �
p
�2e C �2n
�x

2bcC1 � 1 (16.42)

iterations for � D 1, and

k � lnŒ.� � 1/

p
�2e C�2n
�x

2bcC1 C 1�

ln�
� 1 (16.43)

iterations for � < 1.
In the case � D 1 the algorithm always stops updating. If �2n and bc are not

large, any steady-state analysis for the RLS algorithm when � D 1 does not apply,
since the algorithm stops prematurely. Because of that, the norm of the covariance
of �w.k/Q does not become unbounded.

16.6 Mean-Square Error

The MSE in the conventional RLS algorithm in the presence of quantization noise
is given by

�.k/Q D EŒ"2.k/Q� (16.44)

By recalling that ".k/Q can be expressed as

".k/Q D �xT .k/�w.k/Q � ne.k/C n.k/ (16.45)

it then follows that

�.k/Q D EŒxT .k/�w.k/QxT .k/�w.k/Q�C �2e C �min

D E
˚
tr Œx.k/xT .k/�w.k/Q�wT .k/Q�

�C �2e C �min

D tr
˚
R cov Œ�w.k/Q�

�C �2e C �min (16.46)

By replacing (16.35) in (16.46), it can be concluded that

�.k/Q D .1 � �/2.N C 1/.�2n C �2e /C �2wtr R
.1 � �/Œ2� � .1 � �/.N C 1/�

C �min C �2e (16.47)
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If it is again assumed that x.k/ is a Gaussian white noise with variance �2x and that
2� 
 .1 � �/.N C 1/ for � ! 1, the MSE expression can be simplified to

�.k/Q � �min C �2e C .N C 1/�2w�
2
x

2�.1� �/ (16.48)

16.7 Fixed-Point Implementation Issues

The implementation of the conventional RLS algorithm in fixed-point arithmetic
must consider the possibility of occurrence of overflow and underflow during the
computations. In general, some scaling must be performed in certain quantities of
the RLS algorithm to avoid undesired behavior due to overflow and underflow.
The scaling procedure must be applied in almost all computations required in the
conventional RLS algorithm [5], increasing the computational complexity and/or the
implementation control by a large amount. A possible solution is to leave enough
room in the integer and fractional parts of the number representation, in order to
avoid frequent overflows and underflows and also avoid the use of cumbersome
scaling strategies. In other words, a fixed-point implementation does require a
reasonable number of bits to represent each quantity.

The error propagation analysis can be performed by studying the behavior of the
difference between each quantity of the algorithm calculated in infinite precision and
finite precision. This analysis allows the detection of divergence of the algorithm
due to quantization error accumulation. The error propagation analysis for the
conventional RLS algorithm reveals divergence behavior linked to the fact that
SD.k/ loses the positive definiteness property [5]. The main factors contributing
to divergence are:

– Large maximum eigenvalue in the matrix R that amplifies some terms in
propagation error of the SD.k/ matrix. In this case, SD.k/ might have a small
minimum eigenvalue, being as consequence “almost” singular.

– A small number of bits used in the calculations increases the roundoff noise
contributing to divergence.

– The forgetting factor when small turns the memory of the algorithm short,
making the matrix SD.k/ deviate from its expected steady-state value and more
likely to lose the positive definiteness property.

Despite these facts, the conventional RLS algorithm can be implemented without
possibility of divergence if some special quantization strategies for the internal
computations are used [5]. These quantization strategies, along with adaptive scaling
strategies, must be used when implementing the conventional RLS algorithm in
fixed-point arithmetic with short wordlength.
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16.8 Floating-Point Arithmetic Implementation

In this section, a succinct analysis of the quantization effects in the conventional
RLS algorithm when implemented in floating-point arithmetic is presented. Most
of the derivations are given in Sect. 16.9 and follow closely the procedure of the
fixed-point analysis.

In floating-point arithmetic, quantization errors are injected after multiplication
and addition operations and are modeled as follows: [10]:

flŒa C b� D a C b � .a C b/na (16.49)

flŒa � b� D a � b � a � b � np (16.50)

where na and np are zero-mean random variables that are independent of any other
errors. Their variances are given by

�2np � 0:18 2�2b (16.51)

and

�2na < �
2
np

(16.52)

where b is the number of bits in the mantissa representation.
The quantized error and the quantized coefficient vector are given by

e.k/Q D d 0.k/ � xT .k/w.k � 1/Q � ne.k/C n.k/ (16.53)

w.k/Q D w.k � 1/Q C SD.k/Qx.k/e.k/Q � nw.k/ (16.54)

where ne.k/ and nw.k/ represent computational errors and their expressions are
given in Sect. 16.9. Since nw.k/ is a zero-mean vector, it is shown in Sect. 16.9 that
on average w.k/Q tends to wo. Also, it can be shown that

�w.k/Q D ŒI � SD.k/Qx.k/xT .k/C N�w.k/��w.k � 1/
CN0

a.k/wo C SD.k/Qx.k/Œn.k/ � ne.k/� (16.55)

where N�w.k/ combines several quantization noise effects as discussed in
Sect. 16.9 and N0

a.k/ is a diagonal noise matrix that models the noise generated
in the vector addition required to update w.k/Q.

The covariance matrix of�w.k/Q can be calculated through the same procedure
previously used in the fixed-point case, resulting in

cov Œ�w.k/Q� � .1 � �/.�2n C �2e /R
�1

2� � .1 � �/.N C 1/

C .1 � �/R�1tr
˚
RdiagŒw2oi �

�C Œ2� � .1 � �/.N C 1/�diagŒw2oi �

2.1� �/�Œ2�� .1 � �/.N C 1/�
�2n0

a
(16.56)
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where NSD .k/ of (16.3) and N�w.k/ were considered negligible as compared to
the remaining matrices multiplying�w.k � 1/ in (16.55). The expression of �2

n0

a
is

given by (16.52). The term diagŒw2oi � represents a diagonal matrix formed with the
squared elements of wo.

The expected value of jj�w.k/Qjj2 in the floating-point case is approximately
given by

EŒjj�w.k/Qjj2� � .1� �/.N C 1/

2�

�2n C �2e
�2x

C 1

2�.1� �/
jjwojj2�2n0

a
(16.57)

where it was considered that x.k/ is a Gaussian white noise with variance �2x
and that 2� 
 .1 � �/.N C 1/ for � ! 1. If the value of � is very close
to one, the squared errors in the tap coefficients tend to increase. Notice that the
second term on the right-hand side of the above equation turns these errors more
dependent on the precision of the vector addition of the taps updating. For � not
very close to one, the effects of the additive noise and data wordlength become
more pronounced. In floating-point implementation, the optimal value of � as far as
quantization effects are concerned is given by

�opt D 1 � �n0

a
�x

p
�2n C �2e

jjwojj (16.58)

where this relation was obtained by calculating the derivative of (16.57) with respect
to �, and equalizing the result to zero in order to reach the value of � that minimizes
theEŒjj�w.k/Qjj2�. For � D 1, like in the fixed-point case, jjcov Œ�w.k/Q�jj is also
a growing function that can make the conventional RLS algorithm diverge.

The algorithm may stop updating if

je.k/QSD.k/x.k/ji < 2�bc�1wi .k/ (16.59)

where j ji is the modulus of the i th component and bc is the number of bits in the
mantissa of the coefficients representation. Following the same procedure to derive
(16.40), we can infer that the updating will be stopped if

�
1 � �

1 � �kC1

�2
�2e C �2n
�2x

< 2�2bc�2jwoi j2 (16.60)

where woi is the i th element of wo.
The updating can be continued indefinitely if

� < 1 � 2�bc�1 �x jwoi j
p
�2e C �2n

(16.61)

In the case � does not satisfy the above condition, the algorithm will stop updating
the i th tap in approximately

k D
p
�2e C �2n
�x jwoi j � 1 (16.62)



16.9 Floating-Point Quantization Errors in RLS Algorithm 617

iterations for � D 1, and

k � lnŒ.� � 1/

p
�2eC�2n
�x jwoi j 2

�bc�1 C 1�

ln�
� 1 (16.63)

iterations for � < 1.
Following the same procedure as in the fixed-point implementation, it can be

shown that the MSE in the floating-point case is given by

�.k/Q D tr fRcov Œ�w.k/Q�g C �2e C �min

�
.1 � �/2.N C 1/.�2n C �2e /C �2n0

a
tr
˚
RdiagŒw2oi �

�

.1� �/Œ2� � .1 � �/.N C 1/�
C �2e C �min

(16.64)

where �2" was considered equal to �2e . If x.k/ is a Gaussian white noise with
variance �2x and 2� 
 .1��/.N C1/ for � ! 1, the MSE can be approximated by

�.k/Q � �min C �2e C
jjwojj2�2n0

a
�2x

2�.1� �/ (16.65)

Note that �2e has a somewhat complicated expression that is given in Sect. 16.9.
Finally, it should be mentioned that in floating-point implementations the matrix

SD.k/ can also lose its positive definite property [11]. In [5], it was mentioned that
if no interactions between errors is considered, preserving the symmetry of SD.k/ is
enough to keep it positive definite. However, interactions between errors do exist in
practice, so the conventional RLS algorithm can become unstable in floating-point
implementations unless some special quantization procedures are employed in the
actual implementation. An alternative is to use numerically stable RLS algorithms
discussed in Chaps. 7–9.

16.9 Floating-Point Quantization Errors in RLS Algorithm

The error in the a priori output error computation is given by

ne.k/ � �na.k/Œd.k/ � xT .k/w.k � 1/Q�

�xT .k/

2

6
6
6
4

npo .k/ 0 0 � � � 0

0 np1.k/ � � � � � � 0
:::

: : :

0 0 � � � � � � npN .k/

3

7
7
7
5

w.k � 1/Q
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�Œna1 .k/ na2 .k/ : : : naN .k/�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

1X

iD0
x.k � i/wi .k � 1/Q

2X

iD0
x.k � i/wi .k � 1/Q

:::
NX

iD0
x.k � i/wi .k � 1/Q

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

D �na.k/e.k/Q � xT .k/Np.k/w.k � 1/Q � na.k/si .k/

where npi .k/ accounts for the noise generated in the products x.k � i/wi .k� 1/Q
and nai .k/ accounts for the noise generated in the additions of the product
xT .k/w.k� 1/. Please note that the error terms of second- and higher-order have
been neglected.

Using similar assumptions one can show that

nw.k/ D � ˚nSx.k/e.k/Q C SD.k/QN0
p.k/x.k/e.k/Q

CN00
p.k/SD.k/Qx.k/e.k/Q

C N0
a.k/Œw.k � 1/C SD.k/Qx.k/e.k/Q�

�

where

nSx.k/ D

2

6
6
6
6
6
6
6
6
4

NX

jD1
n0
a1;j
.k/

jX

iD0
SD1;i .k/Qx.k � i/

:::
NX

jD1
n0
aNC1;j

.k/

jX

iD0
SDNC1;i

.k/Qx.k � i/

3

7
7
7
7
7
7
7
7
5

N0
a.k/ D

2

6
6
6
6
4

n0
ao
.k/ 0 � � � 0

0 n0
a1
.k/

:::
:::

: : :
:::

0 � � � � � � n0
aN
.k/

3

7
7
7
7
5

N0
p.k/ D

2

6
6
6
6
4

n0
po
.k/ 0 � � � 0

0 n0
p1
.k/

:::
:::

: : :
:::

0 � � � � � � n0
pN
.k/

3

7
7
7
7
5
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N00
p.k/ D

2

6
6
6
6
6
4

n00
p1;1
.k/ n00

p1;2
.k/ � � � n00

p1;NC1
.k/

n00
p2;1
.k/ n00

p2;2
.k/

:::
:::

: : :
:::

n00
pNC1;1

.k/ � � � � � � n00
pNC1;NC1

.k/

3

7
7
7
7
7
5

The vector nSx.k/ is due to the quantization of additions in the matrix product
SD.k/x.k/, while the matrix N00

p.k/ accounts for product quantizations in the
same operation. The matrix N0

a.k/ models the error in the vector addition to
generate w.k/Q, while N0

p.k/ models the quantization in the product of e.k/ by
SD.k/Qx.k/.

By replacing d 0.k/ by xT .k/wo in the expression of e.k/Q given in (16.7),
it follows that

e.k/Q D �xT .k/�w.k � 1/Q � n0
e.k/C n.k/

By using in the above equation the expression of w.k/Q of (16.8) (after subtracting
wo in each side of the equation), and neglecting the second- and higher-order errors,
after some manipulations the following equality results:

�w.k/Q D ŒI � SD.k/Qx.k/xT .k/C nSxxT .k/C SD.k/QN0
p.k/x.k/xT .k/

CN00
p.k/SD.k/Qx.k/xT .k/C N0

a.k/SD.k/Qx.k/xT .k/

CN0
a.k/��w.k � 1/Q C N0

a.k/wo C SD.k/Qx.k/Œn.k/ � n0
e.k/�

Since all the noise components in the above equation have zero mean, on average
the tap coefficients will converge to their optimal values because the same dynamic
equation describes the evolution of �w.k/ and�w.k/Q.

Finally, the variance of the a priori error noise can be derived as follows:

�2e D �2" D �2na�.k/Q C �2np

NX

iD0
Ri;icov Œw.k/Q�i;i

C�2na

8
<

:
E

2

4

 
1X

iD0
x.k � i/wi .k � 1/Q

!23

5

CE
2

4

 
2X

iD0
x.k � i/wi .k � 1/Q

!23

5

C � � � C E

2

4

 
NX

iD0
x.k � i/wi .k � 1/Q

!23

5

9
=

;
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where �2
n0

ai
D �2na was used and [ ]i;i means diagonal elements of [ ]. The second

term in the above equation can be further simplified as follows:

tr fRcov Œw.k/Q�g �
NX

iD0
Ri;iw

2
oi C

NX

iD0
Ri;icov Œ�w.k/�i;i

Cfirst � and higher � order terms � � �
Since this term is multiplied by �2np , any first- and higher-order terms can be

neglected. The first term of �2e is also small in the steady state. The last term can be
rewritten as

�2na

8
<

:
E

2

4

 
1X

iD0
x.k � i/woi

!23

5CE

2

4

 
2X

iD0
x.k � i/woi

!23

5C � � �

CE
2

4

 
NX

iD0
x.k � i/woi

!23

5

9
=

;
D �2na

8
<

:

NX

jD1

jX

iD0
Ri;i Œcov .�w.k//�i;i

9
=

;

where terms of order higher than one were neglected, x.k/ was considered un-
correlated to �w.k/, and covŒ�w.k/� was considered a diagonal matrix. Actually,
if x.k/ is considered a zero-mean Gaussian white noise from the proof of (5.36) and
(5.55), it can be shown that

cov Œ�w.k/� � �2n
�2x

I

Since this term will be multiplied by �2na and �2np , it can also be disregarded.
In conclusion

�2e � �2na

8
<

:
EŒ

NX

jD1
.

jX

iD0
x.k � i/woi /

2�

9
=

;
C �2np

NX

iD0
Ri;iw

2
oi

This equation can be simplified further when x.k/ is as described above and
�2na D �2np D �2d

�2e � �2d

"
NX

iD1
.N � i C 2/Ri;iw

2
oi � R1;1w

2
o1

#

D �2d �
2
x

"
NX

iD1
.N � i C 2/w2oi � w2o1

#
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Chapter 17
Kalman Filters

17.1 Introduction

This section provides a brief description of Kalman filter that can be considered
an extension of the Wiener filtering concept [4]. The Kalman filter has as objective
the minimization of the estimation square error of a nonstationary signal buried in
noise. The estimated signal itself is modeled utilizing the state–space formulation
[1] describing its dynamical behavior. In summary, Kalman filtering deals with
random processes described using state–space modeling which generate signals that
can be measured and processed utilizing time recursive estimation formulas. The
presentation here is brief and addresses the case of signals and noises represented in
vector form; for more details in this subject the reader can consult many books
available presenting Kalman filtering, including [3, 5]. There are many different
ways to describe the Kalman filtering problem, and to derive its corresponding
relations, here we follow the presentations of [2, 6].

17.2 State–Space Model

A convenient form of representing some dynamic systems is through what is called
the state–space representation [1]. In such description, the outputs of the memory
elements are considered as the system states. The state signals are collected in a
vector denoted as x.k/ which are in turn generated from its previous state x.k � 1/

and from an external signal vector denoted as n.k/. The observed or measured
signals are collected in another vector denoted as y.k/ whose elements originate
from linear combinations of the previous state variables and of external signals
represented in n1.k/. If we know the values of the external signals n.k/ and n1.k/,
we can determine the current values of the system states, which will be the delay
inputs, and the system observation vector as follows:

�
x.k/ D A.k � 1/x.k � 1/C B.k/n.k/
y.k/ D CT .k/x.k � 1/C D.k/n1.k/

(17.1)

P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
DOI 10.1007/978-1-4614-4106-9 17, © Springer Science+Business Media New York 2013
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z–1I CT k( )

A k( –1)

n1 k( )

n (k)

x (k)
y (k)B (k)

x k( -1)

+ +

Fig. 17.1 State-space model for Kalman filtering formulation

where x.k/ is the .N C 1/ � 1 vector of the state variables. If M is the number of
system inputs and L is the number of system outputs, we then have that A.k � 1/

is .N C 1/ � .N C 1/, B.k/ is .N C 1/ � M , C.k/ is .N C 1/ � L, and D.k/ is
L �L.1

Figure 17.1 shows the state–space system which generates the observation vector
y.k/ having as inputs the noise vectors n.k/ and n1.k/, where the state variables
x.k/ are processes generated with excitation noise n.k/.

The recursive solution of (17.1) can be described as

x.k/ D
k�1Y

lD0
A.l/x.0/C

kX

iD1

"
k�1Y

lDi
A.l/

#

B.i/n.i/ (17.2)

where
Qk�1
lDk A.l/ D 1.

17.2.1 Simple Example

Let’s describe a particular example where we assume the signal x.k/ is a sample
of an autoregressive process generated from the output of a system described by a
linear difference equation given by

x.k/ D
NC1X

iD1
�ai .k � 1/x.k � i/C n.k/ (17.3)

where n.k/ is a white noise. The coefficients ai .k � 1/, for i D 1; 2 : : : ; N C 1,
are the time-varying parameters of the AR process. As part of the Kalman filtering
procedure is the estimation of x.k/ from noisy measurements denoted as yl .k/ for
l D 1; 2; : : : ; L.

1In standard state–space formulation the matrix D.k/ represents a feedforward connection between
the input and the output of the dynamic system, in this discussion this matrix in not a feedforward
matrix and is considered to be identity.
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We can collect a sequence of signals to be estimated and noise measurements in
vector forms as

x.k/ D

2

6
6
6
4

x.k/

x.k � 1/
:::

x.k �N/

3

7
7
7
5

y.k/ D

2

6
6
6
4

y1.k/

y2.k/
:::

yL.k/

3

7
7
7
5

(17.4)

where L represents the number of observations collected in y.k/.
Each entry of the observation vector is considered to be generated through the

following model:

yl .k/ D cTl .k/x.k � 1/C n1;l .k/ (17.5)

where n1;l .k/ for l D 1; 2; : : : ; L are also white noises uncorrelated with each other
and with n.k/.

Applying the state–space formulation to the particular set of (17.3) and (17.5)
leads to a block of state variables originating from an autoregressive process
described by

x.k/ D

2

6
6
6
4

x.k/

x.k � 1/
:::

x.k �N/

3

7
7
7
5

D

2

6
6
6
6
6
6
4

�a1.k � 1/ �a2.k � 1/ � � � �aN .k � 1/ �aNC1.k � 1/
1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

3

7
7
7
7
7
7
5

2

6
6
6
4

x.k � 1/
x.k � 2/

:::

x.k �N � 1/

3

7
7
7
5

C

2

6
6
6
4

1

0
:::

0

3

7
7
7
5
n.k/

y.k/ D

2

6
6
6
4

cT1 .k/
cT2 .k/
:::

cTL.k/

3

7
7
7
5

2

6
6
6
4

x.k � 1/
x.k � 2/

:::

x.k �N � 1/

3

7
7
7
5

C n1.k/ (17.6)



626 17 Kalman filters

where for this case of single-input and multiple-output system B.k/ is .N C1/�M
whose only nonzero element is the entry .1; 1/ that equals one, C.k/ is .N C1/�L,
and D.k/ is just an identity matrix since the measurement noise contributes to the
elements of the observation vector in an uncoupled form.

17.3 Kalman Filtering

In the following discussion we derive the Kalman filter for the general state–space
description of (17.1). For that it is assumed we know

Rn1.k/ D EŒn1.k/nT1 .k/� (17.7)

Rn.k/ D EŒn.k/nT .k/� (17.8)

A.k � 1/ and C.k/, and that n.k/ and n1.k/ are zero-mean white processes and
uncorrelated with each other.

By assuming that we have the measurements y.k/ available and that we employ
all the data available up to a given iteration, we seek the optimal estimate of the state
vector x.k/, denoted by Ox.kjk/. As justified along the Kalman filtering derivation,
the optimal solution has the following general form:

Ox.kjk/ D A.k�1/Ox.k�1jk�1/C K.k/
�
y.k/�CT .k/A.k � 1/Ox.k � 1jk � 1/

�

(17.9)

where K.k/ is the .N C 1/ � L matrix called Kalman gain. The reader can notice
that:

• The term A.k � 1/Ox.k � 1jk � 1/ tries to bring the contribution of the previous
estimation of the state variable to the current one, as suggests the state–space
equation (17.1).

• The term
�
y.k/ � CT .k/A.k � 1/Ox.k � 1jk � 1/� is a correction term consisting

of the difference between the observation vector and its estimate given by
CT .k/A.k � 1/Ox.k � 1jk � 1/, which in turn is a function the previous state-
variable estimate.

• The Kalman gain aims at filtering out estimation errors and noise so that the state
variable gets the best possible correction term, which minimizes the MSE.

In order to derive the optimal solution for the Kalman gain, let’s first consider
two cases where the estimate of x.k/ is computed using observation data available
until iteration k and another until iteration k� 1, denoted by Ox.kjk/ and Ox.kjk� 1/,
respectively. The estimation error vectors in these cases are defined by

e.kjk/ D x.k/ � Ox.kjk/ (17.10)

e.kjk � 1/ D x.k/ � Ox.kjk � 1/ (17.11)
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These errors have covariance matrices defined as

Re.kjk/ D EŒe.kjk/eT .kjk/� (17.12)

Re.kjk � 1/ D EŒe.kjk � 1/eT .kjk � 1/� (17.13)

Given an instant k � 1 when the information Ox.k � 1jk � 1/ and Re.k � 1jk � 1/

are available, we first try to estimate Ox.kjk � 1/ which does not require the current
observation. Whenever a new observation y.k/ is available, Ox.kjk/ is estimated.

According to (17.1), at a given iteration the actual state–space vector evolves as

x.k/ D A.k � 1/x.k � 1/C B.k/n.k/ (17.14)

Since the elements of n.k/ are zero mean, a possible unbiased MSE estimate for
x.k/ is provided by

Ox.kjk � 1/ D A.k � 1/Ox.k � 1jk � 1/ (17.15)

since the previous estimate Ox.k � 1jk � 1/ is available and A.k � 1/ is assumed
known.

As a result, the state-variable estimation error when the last available observation
is related to iteration k � 1 is given by

e.kjk � 1/ D x.k/� Ox.kjk � 1/

D A.k � 1/x.k � 1/C B.k/n.k/ � A.k � 1/Ox.k � 1jk � 1/

D A.k � 1/e.k � 1jk � 1/C B.k/n.k/ (17.16)

Assuming that EŒe.k � 1jk � 1/� D 0, meaning that Ox.k � 1jk � 1/ is an unbiased
estimate of x.k � 1/, and recalling that the elements of n.k/ are white noise with
zero mean, then it is possible to conclude that

EŒe.kjk � 1/� D 0 (17.17)

so that Ox.kjk � 1/ is also an unbiased estimate of x.k/.
The covariance matrix of e.kjk � 1/ can be expressed as follows:

Re.kjk � 1/ D EŒe.kjk � 1/eT .kjk � 1/�
D A.k � 1/EŒe.k � 1jk � 1/eT .k � 1jk � 1/�AT .k � 1/

CB.k/EŒn.k/nT .k/�BT .k/

D A.k � 1/Re.k � 1jk � 1/AT .k � 1/C B.k/Rn.k/BT .k/

(17.18)
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The next step is to estimate Ox.kjk/ from Ox.kjk � 1/. In this case we use a linear
filtering of the most recent estimate of the state variable Ox.kjk � 1/ properly
combined with another linear filtered contribution of the most recent measurement
vector y.k/. The resulting estimation expression for Ox.kjk/ has the following form

Ox.kjk/ D QK.k/Ox.kjk � 1/C K.k/y.k/ (17.19)

The challenge now is to compute the optimal expressions for the linear filtering
matrices QK.k/ and K.k/.

The state-variable estimation error e.kjk/ that includes the last available obser-
vation can then be described as

e.kjk/ D x.k/� QK.k/Ox.kjk � 1/� K.k/y.k/ (17.20)

This expression can be rewritten in a more convenient form by replacing Ox.kjk� 1/
using the first relation of (17.16) and replacing y.k/ by its state–space formulation
of (17.6). The resulting relation is

e.kjk/ D x.k/C QK.k/ Œe.kjk � 1/� x.k/� � K.k/
�
CT .k/x.k/C n1.k/

�

D �
I � QK.k/� K.k/CT .k/

�
x.k/C QK.k/e.kjk � 1/� K.k/n1.k/

(17.21)

We know that EŒn1.k/� D 0 and that EŒe.kjk � 1/� D 0 since Ox.kjk � 1/ is an
unbiased estimate of x.k/. However, Ox.kjk/ should also be an unbiased estimate of
x.k/, that is, EŒe.kjk/� D 0. The latter relation is true if we choose

QK.k/ D I � K.k/CT .k/ (17.22)

so that the first term in the last expression of (17.21) becomes zero.
By replacing (17.22) in (17.19), the estimate of the state variable using the current

measurements becomes

Ox.kjk/ D �
I � K.k/CT .k/

� Ox.kjk � 1/C K.k/y.k/

D Ox.kjk � 1/C K.k/
�
y.k/� CT .k/Ox.kjk � 1/� (17.23)

where according to (17.21) and (17.22) the corresponding estimation error vector is
described by

e.kjk/ D �
I � K.k/CT .k/

�
e.kjk � 1/� K.k/n1.k/

D QK.k/e.kjk � 1/� K.k/n1.k/ (17.24)

where the last equality highlights the connection with (17.19).



17.3 Kalman Filtering 629

The covariance matrix of e.kjk/ can then be expressed as

Re.kjk/ D EŒe.kjk/eT .kjk/�
D �

I � K.k/CT .k/
�

Re.kjk � 1/
�
I � K.k/CT .k/

�T C K.k/Rn1.k/K
T .k/

D �
I � K.k/CT .k/

�
Re.kjk � 1/

� ˚�I � K.k/CT .k/
�

Re.kjk � 1/C.k/ � K.k/Rn1.k/
�

KT .k/ (17.25)

The trace of this covariance matrix determines how good is the estimate of the state
variables at a given iteration. As a result, the Kalman gain should be designed in
order to minimize the trace of Re.kjk/ shown as follows, since it corresponds to the
estimation error variance. Defining

�K D trŒRe.kjk/� (17.26)

it then follows that2

@�K

@K.k/
D �2 �I � K.k/CT .k/

�
Re.kjk � 1/C.k/C 2K.k/Rn1.k/ (17.27)

By equating this derivative with zero it is possible to simplify (17.25) since its last
term becomes zero, allowing the update to the covariance matrix to have a rather
simple form given by

Re.kjk/ D �
I � K.k/CT .k/

�
Re.kjk � 1/ (17.28)

The main purpose of (17.27) is of course to calculate the Kalman gain whose
expression is given by

K.k/ D Re.kjk � 1/C.k/
�
CT .k/Re.kjk � 1/C.k/C Rn1.k/

��1
(17.29)

Now we have all the expressions required to describe the Kalman filtering algorithm.
First we should initialize Ox.0j0/ with x.0/ if available, otherwise generate a zero-
mean white Gaussian noise vector. Then initialize the error covariance matrix as
Re.0j0/ D x.0/xT .0/. After initialization the algorithm computes Ox.kjk � 1/ as per
(17.15) then the error covariance Re.kjk � 1/ using (17.18). Next we calculate the
Kalman gain as in (17.29) and update the estimate Ox.kjk/ using (17.23) which now
takes the form

Ox.kjk/ D Ox.kjk � 1/C K.k/
�
y.k/� CT .k/Ox.kjk � 1/�

D Ox.kjk � 1/C K.k/ Œy.k/ � Oy.kjk � 1/� (17.30)

2It was used the facts that @trŒAB�
@A D BT and @trŒABAT �

@A D 2AB, and that Re.kjk � 1/ and Rn1 .k/

are symmetric matrices.
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Algorithm 17.1 Kalman filter
Initialization

Ox.0j0/ D x.0/ Re.0j0/ D x.0/xT .0/
Do for k � 1

Ox.kjk � 1/ D A.k � 1/Ox.k � 1jk � 1/

Re.kjk � 1/ D A.k � 1/Re.k � 1jk � 1/AT .k � 1/C B.k/Rn.k/BT .k/
K.k/ D Re.kjk � 1/C.k/

�
CT .k/Re.kjk � 1/C.k/C Rn1 .k/

�
�1

Ox.kjk/ D Ox.kjk � 1/C K.k/

y.k/� CT .k/Ox.kjk � 1/

�

Re.kjk/ D �
I � K.k/CT .k/

�
Re.kjk � 1/

K k( ) z–1I

CT k( )

y k( )
x k|k( )

x k|k( –1)

x k |k( –1 –1)+ +
^

^

^

A k( -1)

–

Fig. 17.2 Kalman filtering structure

where in the first expression we used (17.15), and in the second expression we
observe that the term CT .k/Ox.kjk � 1/ represents an unbiased estimate of y.k/
denoted as Oy.kjk � 1/. Finally (17.28) updates the error covariance Re.kjk/
to include the current measurement contribution. Algorithm 17.1 describes the
Kalman filtering procedure. Figure 17.2 illustrates how the building blocks of the
Kalman filtering algorithm interact among themselves. As can be observed, from the
measurement signal y.k/ we perform the best possible estimate of the state variable
Ox.kjk/. The Kalman filter solution corresponds to the optimal minimum MSE
estimator whenever the noise and the state signal are jointly Gaussian, otherwise
it is the optimal linear minimum MSE solution, see [5] for details.

The complex version of the Kalman filter algorithm is almost identical to
Algorithm 17.1 and can be derived by replacing xT .0/ by xH.0/, CT .k/ by CH.k/,
and AT .k � 1/ by AH.k � 1/.
Example 17.1. In a nonstationary environment the optimal coefficient vector is
described by

wo.k/ D 0:9wo.k � 1/� 0:81wo.k � 2/C nw.k/

for k � 1, where nw.k/ is a zero-mean Gaussian white processes with variance
0:64. Assume wo.0/ D wo.�1/ D 0.

Assume this time-varying coefficient is observed through a noisy measurement
described by

y.k/ D 0:9wo.k/C n1.k/



17.3 Kalman Filtering 631

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

900 920 940 960 980 1000

w
o(

k)

Number of iterations, k

Original wo
Estimated wo

Fig. 17.3 Tracking performance of the Kalman filter
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Fig. 17.4 Noisy measurement signal

where n1.k/ is another zero-mean Gaussian white processes with variance 0:16.
Run the Kalman filter algorithm to estimate wo.k/ from y.k/. Plot wo.k/, its

estimate Owo.k/ and y.k/.

Solution. The results presented correspond to the average of 200 independent runs
of the Kalman filter algorithm. Figure 17.3 shows the signal wo.k/ being tracked
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wo.k/ from iteration 900 to 1;000, whereas Fig. 17.4 illustrates theby its estimate O
wo.k/ was computed. As can be observed, themeasurement signal y.k/ from where O

Kalman filter algorithm is able to track quite closely the signal wo.k/ from noisy
measurements given by y.k/. ut

17.4 Kalman Filter and RLS

As observed in the previous section, the Kalman filtering formulation requires
the knowledge of the state–space model generating the observation vector. Such
information is not available in a number of adaptive-filtering setups but is quite
common in problems related to tracking targets, positioning of dynamic systems,
and prediction and estimation of time-varying phenomena, just to mention a few.
However, a proper analysis of the Kalman filtering setup allows us to disclose some
links with the RLS algorithms. These links are the subject of this section.

Let’s start by observing that in the RLS context one tries to estimate the unknown
system parameters denoted as wo.k/ through the adaptive-filtering coefficients
w.k/. The equivalent operation in Kalman filtering is the estimation of x.k/ given
by Ox.kjk/. The reference signal in the RLS case is d.k/ corresponding to the scalar
version of y.k/ denoted as y.k/ in the Kalman case. The estimate of y.k/ is given
by Oy.kjk � 1/ D cT .k/Ox.kjk � 1/ since matrix CT .k/ is a row vector in the single
output case. As such, it is easy to infer that Oy.kjk � 1/ corresponds to the adaptive-
filter output denoted as y.k/ in the RLS case.

Equation (5.9) repeated here for convenience

w.k/ D w.k � 1/C e.k/SD.k/x.k/ (17.31)

is meant for coefficient update in the RLS algorithms. This equation is equivalent to

Ox.kjk/ D Ox.kjk � 1/C k.k/

y.k/ � cT .k/Ox.kjk � 1/�

D Ox.kjk � 1/C k.k/ .y.k/ � Oy.kjk � 1//
D Ox.kjk � 1/C k.k/ey.k/ (17.32)

where ey.k/ is an a priori error in the estimate of y.k/. It can be observed that the
Kalman gain matrix K.k/ becomes a vector denoted as k.k/. By comparing (17.32)
with (17.31), we can infer that k.k/ is equivalent to SD.k/x.k/.

The updating of the Kalman gain in the scalar output case is given by

k.k/ D Re.kjk � 1/c.k/ �cT .k/Re.kjk � 1/c.k/C rn1.k/
��1

(17.33)
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where rn1.k/ is the additional noise variance. Again by comparing (17.32) with
(5.5), we can infer that k.k/ is equivalent to

SD.k/x.k/ D 1

�

�

SD.k � 1/� SD.k � 1/x.k/xT .k/SD.k � 1/
�C xT .k/SD.k � 1/x.k/

�

x.k/

D SD.k � 1/x.k/
�C xT .k/SD.k � 1/x.k/

D
1
�

SD.k � 1/x.k/

1C 1
�

xT .k/SD.k � 1/x.k/
(17.34)

Now if we assume that the measurement noise in (17.33) has unit variance, it is
straightforward to observe by comparing (17.33) and (17.34) that Re.kjk�1/ plays
the role of 1

�
SD.k � 1/ in the RLS algorithm.

The related quantities in the specialized Kalman filter and the RLS algorithm
disclosed so far are

x.k/ ” wo.k/

y.k/ ” d.k/

Oy.kjk � 1/ ” y.k/

Ox.kjk/ ” w.k/

ey.k/ ” e.k/

k.k/ ” SD.k/x.k/

Re.kjk � 1/ ” 1

�
SD.k � 1/ (17.35)

These relations show that given that x.k/ in the Kalman filter algorithm follows the
pattern of wo.k/ and rn1.k/ has unit variance (compare (17.33) and (17.34)), the
Kalman filter and the RLS algorithms should lead to similar solutions.

As happens with the conventional RLS algorithm, the Kalman filter algorithm
faces stability problems when implemented in finite precision mainly related to
the ill-conditioning of the estimation error covariance matrix Re.kjk/. In prac-
tical implementations this matrix could be updated in a factorized form such as
Ue.kjk/De.kjk/UT

e .kjk/, where Ue.kjk/ is upper triangular with ones on the
diagonal and De.kjk/ is a diagonal matrix.
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Chapter 18
Analysis of Set-Membership Affine Projection
Algorithm

18.1 Introduction

In this chapter we briefly describe some analytical results pertaining to the SM-AP
algorithms that were recently described in the literature. The focus will be on
the simplified SM-AP algorithms aiming at deriving closed-form expressions for
the excess MSE in stationary environments. The convergence behavior of the
simplified SM-AP algorithm is also discussed. The analysis follows closely the
energy conservation concepts applied to the affine projection algorithm in Sect. 4.6.
The results will help us understand the experimental behavior and provide us with
tools to properly set up the algorithm parameters.

18.2 Probability of Update

The SM-AP algorithm incorporates a conditional update based on the level of
the squared error. In principle, this feature brings some difficulties to the analysis
that can be circumvented by modeling how often the algorithm updates through a
parameter defined as probability of update pup.k/. Let us start by considering that
the a priori error e.k/ is modeled as a zero-mean Gaussian process whose variance
is given by

�.k/ D �min C �exc D �2n C �exc (18.1)

for k ! 1. The adaptation of the SM-AP algorithm occurs according to the
following rule:

pup.k/ D P Œe.k/ > N��C P Œe.k/ < � N�� (18.2)
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where P Œ�� means probability of Œ��. For the time being we are assuming that in the
ensemble the probability pup.k/ will be time-varying since the value of the variance
of the output error, e.k/, depends on the mean of the squared coefficient-error-vector
norm. From (3.41), it is known that

�2e D �2n C E
�
�wT .k/R�w.k/

�
(18.3)

In steady state we can consider that the adaptive filter coefficients converge and the
probability of update for white Gaussian input signals can be modeled as

pup D 2Q

 
N�

p
�2n C �2xE Œk�w1k2�

!

(18.4)

where Q.�/ is the complementary Gaussian cumulative distribution function
given by

Q.x/ D 1p
2	

Z 1

x

e�v2=2dv (18.5)

and E
�k�w1k2� represents the average of the coefficient-error squared norm after

convergence. The parameter �2x represents the input signal variance.
If we consider that the variance of the output error is lower bounded by the

noise variance, i.e., �2e .k/ D �2n C �2xE
�k�w1k2� � �2n , a lower bound for the

probability of update can be deduced as

pup � 2Q

� N�
�n

�

(18.6)

By using the definition of the noiseless a priori error as in (4.93), we can rewrite the
variance of the output error as �2e .k/ D �2n C E

� Qe2.k/�. If we assume there is no
update whenever je.k/j � N� , it is possible to obtain an upper bound for the output
error variance given by1 �2e � 2�2n C N�2. As a result, the range of values for the
probability of update is

2Q

� N�
�n

�

� pup � 2Q

 
N�

p
2�2n C N�2

!

(18.7)

As an illustration consider that N� D p
2:7�n, then

0:10 � pup � 0:45 (18.8)

1Assume Qe2.k/ D e.k/� eo where eo represents the direct contribution of the additional noise to
the output error, so that �2eo

D �2n . As a result an upper bound for �2
Qe

is �2n C N�2.
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As discussed in [1] the lower bound seems too low and extensive simulation results
have shown that the following estimate follows closely the experimental results.

pup � min

"

2Q

 
N�

p
.�2n C N�2/

!

C 2Q

� N�p
5

�

; 1

#

(18.9)

18.3 Misadjustment in the Simplified SM-AP Algorithm

An alternative way to describe the simplified SM-AP algorithm, equivalent to
(4.94) for the affine projection algorithm and including the probability of update,
is given by

�w.k C 1/ D �w.k/C pup.k/Xap.k/
h
XT

ap.k/Xap.k/C ıI
i�1

�.k/e.k/u1
(18.10)

where �w.k/ D w.k/ � wo. From the above equation, by following similar
procedure to deduce (4.96), it is possible to show that

E
�k�w.k C 1/k2�C E

�

QeT .k/



XT
ap.k/Xap.k/

��1 Qe.k/
�

DE �k�w.k/k2�C E

�

Q"T .k/



XT
ap.k/Xap.k/

��1 Q".k/
�

(18.11)

By assuming that E
�k�w.k C 1/k2� D E

�k�w.k/k2� after convergence,2 at
the steady state the following equality holds

E

�

QeT .k/



XT
ap.k/Xap.k/

��1 Qe.k/
�

DE
�

Q"T .k/



XT
ap.k/Xap.k/

��1 Q".k/
�

(18.12)

As described in [1], if we follow similar steps employed to derive (4.109) in the
case the regularization parameter � is considered very small, the above equation can
be simplified to

.2�pup.k//tr
n
EŒQe.k/QeT .k/�EŒ OS.k/�

o
C2.1�pup.k//tr

n
EŒn.k/QeT .k/�EŒ OS.k/�

o

Dpup.k/tr
n
EŒn.k/nT .k/�EŒ OS.k/�

o
(18.13)

2The SM-AP algorithm converges as long as the eigenvalues of EŒ�.k/Xap.k/OS.k/u1xT .k/� are
non negative, a condition met in actual implementations.
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According to the derivations in [1], which resembles a bit those leading to
(4.123), the value of the estimate of the excess MSE is given by

EŒ Qe20.k/� � .LC 1/pup

2 � pup

�2n C N�2

1C L

�

.1 � pup/2 C 2pup.1 � pup/
q

2

	EŒe20 .k/�
N�
�

(18.14)

with the aid of the Price theorem [4]. Therefore, the corresponding misadjustment
for the simplified SM-AP algorithm is given by

MD .LC1/pup

2�pup

N�2
�2n

C1

1CL
�

.1�pup/2C2pup.1�pup/
q

2

	EŒe20 .k/�
N�
� (18.15)

The misadjustment performance is such that for large values of N� , the number of
updates and the misadjustment decrease as long as its value is not too large, let us
say it is less than

p
5�n. For small values of N� there are frequent updates and the

misadjustment tends to grow.
In the case the simplified SM-AP algorithm is frequently updating, (18.15) can

be compared with the corresponding equation (4.124) by considering 1� pup small
such that

M D .LC 1/pup

.2 � pup/

� N�2
�2n

C 1

�

(18.16)

As can be observed, pup plays similar role as � in the misadjustment expression of
the affine projection algorithm.

18.4 Transient Behavior

Again by following a similar procedure to deduce (4.151), the work in [1] has shown
that in the transient the simplified SM-AP algorithm follows a geometric decaying
curve whose ratio is

rcovŒ�w.k/� D


1 � 2pup.k/ O�i C p2up.k/

O�2i
�

(18.17)

where O�i represents the i th eigenvalue of EŒ�.k/Xap.k/ OS.k/u1xT .k/�. The decay-
ing ratio is similar to the one leading to (4.151) for the affine projection algorithm,
where in the latter case the convergence factor � replaces pup.k/. The transient
behavior of the simplified SM-AP algorithm follows closely the affine projection
algorithm.
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Fig. 18.1 Probability of update for L D 0, L D 1, and L D 4, eigenvalue spread equal 80

Example 18.1. An adaptive-filtering algorithm is used to identify the system de-
scribed in the example of Sect. 3.6.2 with the simplified SM-AP algorithm using
L D 0, L D 1, and L D 4. The input signals in all the experiments are first-order
AR processes with eigenvalue spread 80, and the measured results are obtained from
200 distinct experiments. The additional noise variance was 10�3.

The measured and estimated probability of update of the simplified SM-AP
algorithm is shown in Fig. 18.1. The estimated pup.k/ obtained from (18.9) matches
quite well with the measured ones for L D 0 and L D 1, whereas for L D 4 the
results are not as accurate.

Figure 18.2 illustrates the misadjustment behavior for values of N� in the range
0 < N� < p3�2n , in the cases of measured and estimated values computed according
to (18.15). Again the theoretical misadjustments match quite well the measured
ones.

The transient behavior as predicated by (18.17) is depicted in Fig. 18.3, where it
can be observed that experimental and theoretical behaviors are close.

18.5 Concluding Remarks

This chapter briefly presented some expressions in closed form for the excess MSE
and the transient behavior of the simplified SM-AP algorithm. Similar results for
other versions of the SM-AP algorithms are available in [2, 3], where in both cases
similar derivations are required.
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506, 511, 512, 522, 524, 530, 546
Maximum eigenvalue, 30, 31
Maximum likelihood sequence

detector,MLSD, 552
MDF,multidelay adaptive filter, 538
Mean value, 16
Mean-ergodic process, 23
Mean-ergodic,in the mean-square sense, 23
Mean-square ergodicity,of the autocorrelation,

23
Mean-square error (MSE), 7, 47
Mean-square error surface, 47
Mean-square error surface,CMA objective

function, 556
Mean-square error surface,for IIR filters, 439
Mean-square error surface,Godard objective

function, 556
Measurement noise, 58
Minimum eigenvalue, 30
Minimum mean-square error (MSE) solution,

13
MISO equalizer,multiple-input single-output

equalizer, 573
MLSD,maximum likelihood sequence detector,

552
Modulation-matrix representation,M-band

case, 511
Modulation-matrix representation,two-band

case, 511
Momentum LMS Algorithm, 129
Moving average process (MA), 19

MSE surface,influence of the filter structure,
449

MSE surface,mean-square error surface, 13
MSE,for IIR filters, 442
MSE,mean-square error, 7
Multidelay adaptive filter (MDF), 538
Multidelay Frequency-domain adaptive

filtering, 539, 541, 545, 547
Multidelay frequency-domain adaptive

filtering, 538
Multilayer perceptron algorithm, 484, 488, 497
Multimodality of the MSE surface, 445
Multipath components, 290
Multirate systems, 501, 502, 510

N
Narrowband beamformer, 42
Narrowband signal, 60
Neural networks, 484, 488, 489, 492
Newton algorithm, 51
Newton’s method, 5
Newton-based algorithms, 13
Newton-like search algorithm, 51
Noble identity, 508
Noise cancelling, 3
Noncritically decimated filter banks, 507
Nondiagonalizable matrix, 28
Nonlinear adaptive filtering, 467
Nonquadratic function, 38
Normal density function, 16
Normalized lattice RLS algorithm,based on a

posteriori errors, 330, 334
Normalized lattice RLS algorithm,quantization

effects, 340
Normalized lattice RLS algorithm,realization,

334
Normalized LMS algorithm, 137, 152, 153,

167
Notch filters,direct-form structure, 427
Notch filters,IIR filters, 427
Notch filters,lattice structure, 427
Notch filters,multiple sinusoid identification,

428, 431
Nth-order stationary, 18
Nth-order statistics, 18

O
Objective function, 3–5, 38, 586
Objective function,definition, 6
Objective function,deterministic, 210, 234
Objective function,for IIR filters, 442
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Open-loop structure,for subband adaptive
filters, 515, 516, 522, 523

Optimal coefficient vector, 51
Optimization theory, 5
Orthogonal triangularization,based on Givens

rotations, 370
Orthogonality principle, 214
Orthonormal eigenvectors, 29
Output signal, 3
Output-error IIR filters, 411
Oversampled filter banks, 507, 513, 514

P
Parallel form,for IIR filters, 431
Parallel-to-serial converter, 504, 524
Parallel-to-serial converter,implementation,

504
Partial-update adaptive filtering, 272
Perfect-reconstruction filter banks, 509, 545
Perfect-reconstruction filter banks, 508,

511–513
Periodically shift-invariant operation, 503
Persistence of excitation, 26
Persistently exciting, 26
Polyphase representation,of a transfer function,

507, 508, 513, 526, 528, 531–533,
537, 538, 541, 543

Positive definite, 25
Positive semidefinite, 25
Power spectral density, 20
Power-of-two algorithm, 147
Prediction, 8
Prediction,based on upper triangularization,

390
Price theorem, 141
Probability density function (pdf), 16
Probability of update, 635
Proportionate adaptive algorithms, 301
Pseudo-QMF, quadrature-mirror filter banks,

514
Pseudocirculant matrix, 513, 525, 530

Q
QMF,quadrature-mirror filter banks, 514
QR decomposition recursive least-squares

(QR-RLS) algorithms, 367
QR-RLS algorithm,conventional algorithm,

377, 381
QR-RLS algorithm,conventional

algorithm,system identification
simulations, 380

QR-RLS algorithm,implementation issues, 388

QR-RLS algorithm,systolic array
implementation, 380, 383

QR-RLS algorithms,QR decomposition
recursive least-squares algorithms,
367

Quadrature-mirror filter banks,QMF, 514
Quantized-error algorithms, 137, 138
Quasi-Newton algorithm, 203
Quasi-Newton methods, 6

R
Radial basis function algorithm, 489, 492, 497
Random signals, 15
Random variable, 15
Rayleigh’s quotient, 30
Receiver,near-end, 69
Recursive least-squares (RLS)

algorithm,conventional form,
209

RLS algorithm, 209
RLS algorithm,alternative conventional form,

213
RLS algorithm,behavior in nonstationary

environments, 230
RLS algorithm,behavior of the error signal,

221
RLS algorithm,coefficient-error-vector

covariance matrix, 220
RLS algorithm,conventional form, 212
RLS algorithm,deterministic correlation

matrix, 211
RLS algorithm,deterministic correlation

matrix,inverse of, 211
RLS algorithm,deterministic cross-correlation

vector, 211
RLS algorithm,excess MSE due to lag, 232
RLS algorithm,excess MSE,due to error in the

coefficient estimation, 225, 226, 229
RLS algorithm,finite-wordlength effects, 605
RLS algorithm,finite-wordlength

effects,algorithm stop, 612
RLS algorithm,finite-wordlength

effects,coefficient-error-vector
covariance matrix, 609, 611

RLS algorithm,finite-wordlength effects,error
descriptions, 605, 606

RLS algorithm,finite-wordlength effects,error
models for fixed-point arithmetic,
607

RLS algorithm,finite-wordlength
effects,floating-point arithmetic, 615

RLS algorithm,finite-wordlength effects,MSE
in the floating-point case, 617
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RLS algorithm,finite-wordlength
effects,optimum value of the
forgetting factor, 612

RLS algorithm,finite-wordlength
effects,overall MSE, 613

RLS algorithm,for IIR filters, 419, 420
RLS algorithm,including quantization, 607
RLS algorithm,lag-error vector, 231, 232
RLS algorithm,minimum excess MSE, 233
RLS algorithm,minimum MSE, 222
RLS algorithm,misadjustment, 230
RLS algorithm,optimal coefficient vector, 211,

235
RLS algorithm,optimum value of the forgetting

factor, 233
RLS algorithm,order-update equations, 311
RLS algorithm,overall excess MSE, 233
RLS algorithm,signal enhancement

simulations, 240
RLS algorithm,steady-state behavior,of the

coefficient vector, 218
RLS algorithm,system identification

simulations, 238
RLS algorithm,time-update equations, 317,

318
RLS algorithm,transient behavior, 232
RLS algorithm,Volterra filter, 474
RLS algorithms,based on QR decomposition,

367
RLS predictor, 306
Rotated parameters, 49

S
Sato algorithm, 555, 580
Second-order statistics, 15
Serial-to-parallel converter, 504, 524
Serial-to-parallel converter,implementation,

504, 524
Set-membership partial-update affine

projection algorithm,SM-PUAP
algorithm, 272

Set-membership affine projection algorithm,
SM-AP algorithm, 259

Set-membership affine projection
algorithm,complex, 300

Set-membership affine projection
algorithm,echo cancellation,
286

Set-membership affine projection
algorithm,equalization , 293

Set-membership affine projection
algorithm,learning curves,
279, 286, 293

Set-membership affine projection
algorithm,simplified SM-AP
algorithm, 262

Set-membership affine projection
algorithm,SM-AP algorithm,
249, 255

Set-membership affine projection
algorithm,system identification
simulations, 279

Set-membership affine projection CM
algorithm, 580

Set-membership binormalized LMS algorithm
1, 265, 267

Set-membership binormalized LMS algorithm
2, 268, 269

Set-membership binormalized LMS
algorithms,SM-BNLMS algorithms,
263, 264

Set-membership filtering, 250
Set-membership normalized LMS

algorithm,SM-NLMS algorithm,
249, 253, 255

Set-membership partial-update NLMS
algorithm,SM-PUNLMS algorithm,
275

SFTRLS algorithm,stabilized fast transversal
RLS algorithm (SFTRLS), 359

Sign-data algorithm, 149
Sign-error adaptive FIR filter, 139
Sign-error algorithm, 139
Sign-error algorithm,coefficient-error vector,

140
Sign-error algorithm,coefficient-error-vector

covariance matrix, 142
Sign-error algorithm,excess MSE, 145
Sign-error algorithm,excess MSE, 143
Sign-error algorithm,misadjustment, 144
Sign-error algorithm,steady-state behavior,of

the coefficient vector, 140
Sign-error algorithm,transient behavior, 145
Signal enhancement, 3, 8, 58
Signal prediction, 59
Similarity transformation, 84
SIMO affine projection CM algorithm,

single-input multiple-output affine
projection constant-modulus
algorithm, 575, 576

SIMO equalizer,single-input multiple-output
equalizer, 568

SIMO-CMA equalizer,single-input multiple-
output constant-modulus algorithm
equalizer, 573

Simplified set-membership affine projection
algorithm, 262
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Simplified set-membership affine projection
algorithm,reduced complexity, 262

Simplified set-membership partial-update
affine projection algorithm, 275

Singular value decomposition, 573
Sinusoid identification,notch filters, 427
SM-AP algorithm,set-membership affine

projection algorithm, 250
SM-AP algorithm,set-membership affine

projection algorithm, SM-AP
algorithm, 259

SM-AP algorithm,set-membership affine
projection algorithm,SM-AP
algorithm, 255

SM-BNLMS algorithm 1, 265, 267
SM-BNLMS algorithm 2, 268, 269
SM-BNLMS algorithms, 264
SM-BNLMS algorithms,set-membership

binormalized LMS algorithms, 250,
263

SM-NLMS algorithm,set-membership
normalized LMS algorithm, 249,
253, 255

SM-PUAP algorithms,partial-update adaptive
filtering, 272

SM-PUAP algorithms,simplified SM-PUAP
algorithm, 275

SM-PUNLMS algorithm,set-membership
partial-update NLMS algorithm,
275

Smart antenna, 41
Spectral decomposition, 29
Speed of convergence, 5
Stabilized fast transversal RLS algorithm, 355
Stabilized fast transversal RLS algorithm

(SFTRLS), 358
State variables, 624
State-space example, 624
State-space formulation, 624
State-space model, 623
Stationary in strict sense, 18
Steady-state behavior,of the steepest-descent

algorithm, 54
Steepest-descent algorithm, 13, 51, 52
Steepest-descent method, 6, 51
Steiglitz–McBride method, 455
Steiglitz–McBride algorithm,LMS version,

458
Steiglitz–McBride algorithm,RLS version, 464
Steiglitz–McBride configuration, 457
Steiglitz–McBride error formulation, 455
Steiglitz–McBride method,objective function,

456

Steiglitz–McBride, gradient algorithm, 458
Steiglitz–McBride, system identification

simulation, 459
Stochastic process, 15
Structures,for IIR filters, 423
Sub-sampled signal,spectrum, 502, 503
Subband adaptive filters, 501, 502, 513–516,

519, 521–523, 526, 528–530,
532–534, 545–547

Subband adaptive filters using fractional
delays, 528

Subband adaptive filters,computational
complexity, 536, 537

Subband decomposition, 501, 505, 506, 510,
514, 516, 518, 521, 528

Subband filtering,spectrum split, 514
Subband Identification, 517, 518
Subband signals, 501, 505, 506, 510, 514, 516,

518, 521
Subsampling, 501
Subscriber line, 69
SVD,singular value decomposition, 573
Synthesis filters,filter banks, 506, 508, 509,

511–513, 526
System identification, 360
System identification application, 3, 7, 57

T
Tap-weight coefficients, 38, 586
Tap-weight vector, 36
Telephone line, 69
Time-dispersive channel, 62
Time-invariant linear filters, 1
Time-varying channel model, 290
Time-varying matrices, 230
Time-varying system, 94
Time-varying threshold, N� , 270
Toeplitz matrix, 25
Trace of a matrix, 30
Transform domain algorithm,complex, 203
Transform-domain LMS algorithm, 137, 154,

161
Transform-domain LMS algorithm,system

identification simulations, 189
Transient period,of the steepest-descent

algorithm, 54
Translated coefficient vector, 47
Triangular waveform, 9
Two-band analysis filter banks, 510
Two-band filter banks,analysis, 510, 518
Two-band perfect reconstruction filter banks,

509, 511
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U
UMTS, universal mobile telecommunications

system, 292
Uncoupled form, 49
Undermodeling, 88
Universal mobile telecommunications system,

292
Up-sampled signal,spectrum, 503
Up-sampling, 503

V
Variable convergence factor, 153
Variance, 16
Very large scale integration (VLSI),

2
Volterra LMS algorithm, 473, 497
Volterra normalized LMS algorithm,

477
Volterra RLS algorithm, 475, 477,

497
Volterra series algorithm,nonlinear adaptive

filtering, 468

W
Weighted least squares (WLS), 7, 210, 234
Wide-sense stationary (WSS), 18
Wideband signal, 57, 60
Wiener filter, 35, 39
Wiener filter,linearly constrained, 13, 41, 42
Wiener solution, 13, 38, 39, 73
Wiener solution,complex case, 585
Wireless channel environment, 290
WLS,weighted least squares, 7
Wold decomposition, 20
WSS process, 20

X
XDSL, 71

Z
Z-transform, 14
Z-transform,of the autocorrelation function, 22
Z-transform,of the cross-correlation function,

22
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