

Integrated Circuit Design for High-Speed
Frequency Synthesis

For a complete listing of recent titles in the Artech House
Microwave Library, turn to the back of this book.

Integrated Circuit Design for High-Speed
Frequency Synthesis

John Rogers
Calvin Plett
Foster Dai

Library of Congress Cataloging-in-Publication Data
Rogers, John (John W. M.)

Integrated circuit design for high-speed frequency synthesis / John Rogers, Calvin
Plett, Foster Dai.

p. cm.—(Artech House microwave library)
Includes bibliographical references and index.
ISBN 1-58053-982-3 (alk. paper)
1. Very high speed integrated circuits—Design and construction. I. Plett,
Calvin. II. Dai, Foster. III. Title. IV. Series.

TK7874.7.R65 2006
621.3815—dc22 2005044873

British Library Cataloguing in Publication Data
Rogers, John (John W. M.)

Integrated circuit design for high-speed frequency synthesis.—(Artech House
microwave library)
1. Integrated circuits—Design and construction 2. Frequency synthesizers
I. Title II. Plett, Calvin III. Dai, Foster
621.3’815

ISBN-10: 1-58053-982-3

Cover design by Yekaterina Ratner

 2006 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this
book may be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage and retrieval system,
without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Artech House cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

International Standard Book Number: 1-58053-982-3
Library of Congress Catalog Card Number: 2005044873

10 9 8 7 6 5 4 3 2 1

Contents

Preface xi

CHAPTER 1
Introduction 1
1.1 Introduction to Frequency Synthesis 1
1.2 Frequency Synthesis for Telecommunications Systems 1
1.3 Frequency Synthesis for Digital Circuit Applications 5
1.4 Frequency Synthesis for Clock and Data Recovery 8
1.5 Frequency Synthesis for Modulation and Waveform Generation 11
1.6 Overview 13

References 14

CHAPTER 2
Synthesizer Architectures 17
2.1 Introduction 17
2.2 Integer-N PLL Synthesizers 17
2.3 Fractional-N PLL Frequency Synthesizers 18

2.3.1 Fractional-N Synthesizer with Dual-Modulus Prescaler 19
2.3.2 An Accumulator with Programmable Size 21
2.3.3 Fractional-N Synthesizer with Multimodulus Divider 23
2.3.4 Fractional-N Spurious Components 24

2.4 Delay-Locked Loops 27
2.5 Clock and Data Recovery (CDR) PLLs 29
2.6 Direct Digital Synthesizers 31

2.6.1 DirectDigital SynthesizerwithRead-OnlyMemoryLookupTable 32
2.6.2 ROM-Less Direct Digital Synthesizer 33

2.7 Direct Analog Frequency Synthesizers 33
2.8 Hybrid Frequency Synthesizers 34

References 36

CHAPTER 3
System-Level Overview of PLL-Based Frequency Synthesis 43
3.1 Introduction 43
3.2 PLLs (Example of a Feedback System) 43
3.3 PLL Components 44

3.3.1 VCOs and Dividers 44
3.3.2 Phase Detectors 46
3.3.3 The Loop Filter 51

v

vi Contents

3.4 Continuous-Time Analysis for PLL Synthesizers 52
3.4.1 Simplified Loop Equations 53
3.4.2 PLL System Frequency Response and Bandwidth 55
3.4.3 Complete Loop Transfer Function, Including C2 56

3.5 Discrete-Time Analysis for PLL Synthesizers 58
3.6 Transient Behavior of PLLs 61

3.6.1 Linear Transient Behavior 62
3.6.2 Nonlinear Transient Behavior 66

3.7 Phase Noise and Timing Jitter in PLL Synthesis 71
3.7.1 Various Noise Sources in PLL Synthesizers 75
3.7.2 In-Band and Out-of-Band Phase Noise in PLL Synthesis 78
References 83

CHAPTER 4
Introduction to Digital IC Design 85

4.1 Digital Design Methodology and Flow 85
4.2 Verilog HDL 88

4.2.1 Verilog Program Structure 89
4.2.2 Verilog Data Formats 94
4.2.3 Verilog Operators 95
4.2.4 Verilog Control Constructs 95
4.2.5 Blocking and Nonblocking Assignments 97
4.2.6 Tasks and Functions 99

4.3 Behavioral and Structural Modeling 101
4.4 Combinational Digital Circuit Design 102
4.5 Sequential Digital Circuit Design 103
4.6 Digital Design Example I: A Multimodulus Divider 106
4.7 Digital Design Example II: A Programmable MASH DS Modulator 109

4.7.1 MASH SD Modulator Top-Level Structure 110
4.7.2 Fractional Accumulator with Programmable Size and Seed-

Loading Capability 114
4.7.3 Reset Synchronization 116
4.7.4 Simulated Results 117
References 118

CHAPTER 5
CMOS Logic and Current Mode Logic 119

5.1 Introduction 119
5.2 CMOS Logic Circuits 120
5.3 Large-Signal Behavior of Bipolar and CMOS Differential Pairs 121
5.4 Effect of Capacitance on Slew Rate 125
5.5 Trade-Off Between Power Consumption and Speed 129
5.6 CML Combinational Circuits 132
5.7 CML Sequential Circuits 134
5.8 Master-Slave D-Flip-Flop 139
5.9 CML Circuit-Delay Analysis 142

Contents vii

5.10 Low-Power CML Circuits 144
5.11 CML Biasing Circuits 146
5.12 Driver Circuits 150

References 152

CHAPTER 6
Dividers and Phase-Frequency Detectors 153
6.1 Introduction 153
6.2 Dividers 153

6.2.1 A Static Divide-by-Two Circuit 155
6.2.2 Programmable Divide-by-Two or Divide-by-Three Circuit 158
6.2.3 A 50% Duty Cycle, High-Speed, Divide-by-Three Circuit 163
6.2.4 A Multimodulus Divider 165
6.2.5 A Generic MMD Architecture 170
6.2.6 Pulse-Swallow Dividers 175

6.3 Multipliers 180
6.4 Phase Detectors 181

6.4.1 Basic Types of Phase Detectors 181
6.4.2 Circuit Implementations of PFDs 183
6.4.3 Dead Zone in PFDs 186
6.4.4 Lock-Detection Circuits 189
6.4.5 A Modified PFD with Aligned UP and DN Pulses 190
6.4.6 PFDs for CDR Applications 191
References 196

CHAPTER 7
Charge Pumps and Loop Filters 199
7.1 Introduction 199
7.2 Charge Pumps 199

7.2.1 A Basic Charge Pump 199
7.2.2 Saturation Voltage 200
7.2.3 Current Source Output Impedance 201
7.2.4 Reference Feedthrough 203
7.2.5 Transistor Gain Considerations 206
7.2.6 Charge Pump Noise 207
7.2.7 Charge Sharing 209
7.2.8 Improving Matching Between Ip and In 209
7.2.9 Charge Pumps Compatible with CML/ECL 211
7.2.10 A Differential Charge Pump 215
7.2.11 Common-Mode Feedback for a Differential Charge Pump 217
7.2.12 Another Differential Charge Pump 217
7.2.13 Programmable Bias Schemes 218

7.3 Loop Filters 218
7.3.1 Passive Loop Filters 219
7.3.2 Active Loop Filters 222
7.3.3 LC Loop Filters 224
References 230

viii Contents

CHAPTER 8
Voltage-Controlled Oscillators 233

8.1 Introduction 233
8.2 Specification of Oscillator Properties 233
8.3 LC-Based VCOs 233

8.3.1 Inductors 234
8.3.2 Varactors for Oscillator Frequency Control 238

8.4 Oscillator Analysis 241
8.4.1 Colpitts Oscillator Analysis 242
8.4.2 Negative Resistance of −Gm Oscillator 244

8.5 Amplitude of a Negative Gm Oscillator 244
8.6 Several Refinements to the −Gm Topology 245
8.7 Injection-Locked Oscillators 246

8.7.1 Phase Shift of Injection-Locked Oscillator 254
8.8 Quadrature LC Oscillators Using Injection Locking 257

8.8.1 Parallel Coupled Quadrature LC Oscillators 258
8.8.2 Series Coupled Quadrature Oscillators 263
8.8.3 Other Quadrature-Generation Techniques 263

8.9 Other Techniques to Generate Quadrature Signals 264
8.10 Phase Noise in LC Oscillators 264

8.10.1 Linear or Additive Phase Noise and Leeson’s Formula 265
8.10.2 Switching Phase Noise in Cross-Coupled Pairs 269

8.11 Low-Frequency Phase Noise Upconversion Reduction Techniques 270
8.11.1 Bank Switching 270
8.11.2 gm Matching and Waveform Symmetry 272
8.11.3 Differential Varactors and Differential Tuning 273

8.12 Ring Oscillators 276
8.13 Common Inverter Circuits 281
8.14 Method for Designing a Two-Stage Ring Oscillator 284
8.15 Phase Noise and Jitter in Ring Oscillators 287
8.16 Crystal Oscillators 294
8.17 Summary: Comparison of Oscillator Performance 298

References 299

CHAPTER 9
SD Modulation for Fractional-N Synthesis 301

9.1 Introduction 301
9.2 Basic Concepts 301

9.2.1 Quantization Noise and Oversampling Effects 301
9.2.2 Noise-Shaping Effect 306
9.2.3 An Overview of SD Modulators 308
9.2.4 First-Order SD Modulators 309
9.2.5 Second-Order SD Modulators 311
9.2.6 High-Order SD Modulators 312

Contents ix

9.3 SD Modulation in Fractional-N Frequency Synthesis 315
9.3.1 A First-Order SD Modulator for Fractional-N Frequency

Synthesis 317
9.3.2 MASH SD Modulator 319
9.3.3 Single-Stage SD Modulators with Multiple Feedback Paths 326
9.3.4 Single-Stage SD Modulators with a Single Feedback Path 327
9.3.5 A Generic High-Order SD Modulator Topology 330
9.3.6 Modified SD Modulator with Improved High-Frequency

Response 338
9.3.7 Phase Noise Due to SD Converters 342
9.3.8 Randomization by Noise-Shaped Dithering 347
9.3.9 Spur Reduction Using Precalculated Seeds 349
9.3.10 Dynamic Range 349
9.3.11 Maximal Loop Bandwidth 352
9.3.12 Optimal Parameters 354
9.3.13 Performance Comparison 355
References 356

CHAPTER 10
Direct Digital Synthesis 359

10.1 Introduction 359
10.2 DDS Theory of Operation 360
10.3 DDS Spectral Purity 363

10.3.1 Phase Noise Due to Clock Jitter 364
10.3.2 Spurs Due to Discrete Phase Accumulation 365
10.3.3 Spurs and Quantization Noise Due to Phase Truncation 367
10.3.4 Quantization Noise Due to Finite Number of Amplitude Bits 373
10.3.5 DAC Nonlinearities and Aliased Images 374
10.3.6 Oversampling Effect 376

10.4 SD Noise Shaping in DDS 376
10.4.1 DDS Using Phase Domain SD Noise Shaping 377
10.4.2 DDS Using Frequency Domain SD Noise Shaping 379
10.4.3 ROM Size Reduction Using SD Noise Shaping 379

10.5 High-Speed ROM-Less DDS 381
10.5.1 Pipelined Accumulator 383
10.5.2 Accumulator with CLA Adders 384
10.5.3 Sine-Weighted Nonlinear DACs 388
10.5.4 Nonlinear DAC Segmentations 389
10.5.5 Nonlinear Coarse DAC 391
10.5.6 Comparison of ROM-Less DDS Performance 394
References 395

CHAPTER 11
Direct Modulation in Frequency Synthesizers 397

11.1 Introduction 397
11.2 Direct Modulation in PLL Frequency Synthesizers 398

x Contents

11.3 Direct Digital Modulation and Waveform Generation in a DDS 401
11.3.1 Phase Modulation 403
11.3.2 Phase Shift Keying 403
11.3.3 Frequency Modulation 407
11.3.4 Minimum Shift Keying 411
11.3.5 Step Frequency 412
11.3.6 Chirp Waveforms 412
11.3.7 Amplitude Modulation 413
11.3.8 Quadrature Amplitude Modulation 413
11.3.9 Waveform Generation 414
References 415

APPENDIX A
A Review of Basic Control Theory 417

A.1 Introduction 417
A.2 The Continuous-Time Laplace Transform 418
A.3 The Laplace Transform and Sampling 418
A.4 System Modeling with Frequency Response 423

A.4.1 Frequency Response of Continuous Systems 423
A.4.2 Frequency Response of Sampled Systems 428

A.5 Response in the Time Domain 431
A.6 Feedback Systems 436
A.7 Steady-State Error and the System Type 440
A.8 Stability 441
A.9 Root Locus 442

References 445

APPENDIX B
A Review of Transistor Models 447

B.1 Introduction 447
B.2 The Basics of CMOS Transistors 447

B.2.1 Basic DC Biasing Characteristics 447
B.2.2 Basic CMOS Square Law Equations 449
B.2.3 The Body Effect 450
B.2.4 High-Frequency Effects 450
B.2.5 Thermal Noise 451
B.2.6 Shot Noise 452
B.2.7 1/f Noise 452
B.2.8 Gate Noise 452
B.2.9 CMOS Small-Signal Model, Including Noise 453

B.3 Bipolar Transistors 453
References 457

About the Authors 459

Index 461

Preface

This book started as notes for a graduate course on integrated synthesizers. After
starting to develop this course, we found that while there were excellent books on
synthesizer design and excellent books on integrated circuit (IC) design, there were
none dealing exclusively with fully integrated synthesizer design. As a result, we
decided that there was a need for a book that dealt with frequency synthesizers
and the circuits that are used to implement them in modern IC processes. Thus,
the course notes were further developed into this book, which is based on the
combined experience of the authors’ teaching, research, and consulting activities
in this area.

In spite of our best intentions, there will certainly be errors in this book (we
are human). We will be keeping a list of errors on a Web page, and we encourage
you to make use of it and to inform us of any additional errors not yet listed
on this page, making this reference of greater value. The Web page is at http://
www.doe.carleton.ca/~cp/synth_errata.html.

We need to thank a lot of people who have helped us in the creation of this
book. We thank the students who put a huge effort into proofreading the book,
struggling through the examples and doing assignments based on the information
in this book. Specifically, we would like to thank Mark Houlgate, James Chiu,
Harpreet Panesar, Charles Berndt, Ziad El-Khatib, Siva Kumar, Daniel Olszewski,
Steve Penney, Ghyslain Gagnon, Tony Forzley, Peter Chyurlia, Jorge Aguirre, Faisal
Saleh, Samer Abielmona, Fiona Shearer, Celine Fletcher, Steve Knox, Justin Abbott,
Paul Laferriere, Peter Popplewell, Victor Karam, Vincent Karam, Hao Shang, and
Travis Lovitt. Many other people have also edited part or all of this work, including
Ardeshir Namdar, Matt Wilbur, Ken Townsend, and Mike Toner. Garry Tarr and
John Knight also provided technical assistance on a number of chapters that went
beyond simply pointing out errors. Sandi Plett has contributed a great deal in
helping to format this manuscript and to get it ready for publication.

John and Foster would like to acknowledge their former colleagues at Cognio
Inc.: Dave Rahn, Ted Hokey, Mark Cavin, Neric Fong, Richard Griffith, Sifen
Luo, Bob Macuccie, David Moore, Jose Macedo, Bill Seed, Gary Sugar, Mike
Toner, Fan Qing, and Jam Zhou. Under Dave’s leadership, this group successfully
designed a fully integrated multiple input, multiple output (MIMO) wireless local
area network (WLAN) transceiver RFIC while this book was under development.
As a result, much of the fundamental understanding of synthesizers gained from
this project ended up in this manuscript.

xi

xii Preface

Acknowledgments for John Rogers

This book would not have been possible if it were not for the support of a number
of people in my life. First, I would like to thank Calvin and Foster, my coauthors
and two of my best friends, for allowing me to infect them with my enthusiasm
for this project. It goes without saying that, without them, it would have never
have come together. I owe a great deal of my professional success to the confidence
that Dave Rahn showed in me over the four years I worked for him. If it weren’t
for Dave, I would never have met Foster, and this project would not have happened.
Dave, if only there were more people like you in the world, it would be a much
nicer place to live in. I am very proud to count you among my best friends.

While this work was written, I was fortunate to have the support of a number
of people. Thanks go especially to my parents, Ann Gibson and John C. Rogers,
as well as my close friends and colleagues Neric Fong, Huyen Le, Pascal deWitt,
and Mike Bonito for support in a lot of ways. Professionally, I had the opportunity
to learn something about synthesizer design from Mark Cavin.

Finally, I would like to dedicate the part of this work that I penned to Jing
Chen. Writing these pages kept me sane while I was waiting for her to come into
my life.

Acknowledgments for Calvin Plett

I would like to thank my two coauthors, John and Foster. Their seemingly boundless
energy and superhuman drive made this book happen. I am also grateful for support
and encouragement from students, staff, and faculty at Carleton University, some
of whom have been mentioned specifically above. I would like to thank all of
my industrial colleagues, especially Mark Cloutier for the interesting, thought-
provoking discussions.

I would like to acknowledge and thank my colleagues and former students at
Carleton University who did some of the pioneering work in the development of
frequency synthesizers. In particular, some of the first work on the use of sigma-
delta modulators applied to frequency synthesizers and on the modulation of
synthesizers was done by Tom Riley, Tad Kwasniewski, Miles Copeland, Walt
Bax, and Norm Filiol.

Finally, to Sandi for always being there, thanks.

Acknowledgments for Foster Dai

I would like to thank the two coauthors of this book. John and Calvin, without
your expertise, enthusiasm, and hard work, this book would never have come to
life on time.

Much of my knowledge in frequency synthesis comes from my work at Hughes
Network Systems, where I fortunately met a few real experts in this area. I would
particularly like to thank Lawrence Blue. Larry, without your encouragement and
support, I would never have had the opportunity to work in the area of IC design.

Preface xiii

I would especially like to thank Chris Clark, Steve Rosenbaum, Steven Johns, Olu
George, Thomas Jackson, George Eapen, and many others for their enlightening
discussions and valuable help. I am very grateful to my colleagues at Auburn
University, Richard Jaeger, Dave Irwin, Guofu Niu, John Wu, Wayne Johnson,
Charles Stroud, and many others for valuable discussions and support in various
ways. A special debt is owned to my graduate students at Auburn University,
Xuefeng Yu, Vasanth Kakani, Dayu Yang, Lakshmi Chimakurthy, Malinky Ghosh,
and Raja Sandireddy, for their contributions to this book through their research
with me. I am very appreciative of the collaborations with many respected experts
in VLSI engineering. In particular, I would like to thank John Cressler at the
Georgia Institute of Technology, Lawrence Larson at the University of California,
San Diego, Ben Blalock at the University of Tennessee, Mohammad Mojarradi at
the NASA Jet Propulsion Laboratory, and Yin Shi at the Chinese Academy of
Science.

I would like to thank my parents, Yonggang Dai and Jiazhen Li, my wife,
Wendy, my son, Darren, and my daughter, Daisy, for their love and patient
support throughout my education and career development. Finally, I would like
to acknowledge Dr. Ruying Yin, my mentor since middle school, for his guidance
and encouragement.

C H A P T E R 1

Introduction

1.1 Introduction to Frequency Synthesis

Over the past few decades, there has been an incredible growth in the electronics
industry. Electronic equipment from cell phones to personal computers now affects
a great many aspects of our everyday lives. In order to make these devices ubiqui-
tous, they must be low cost and compact. This increasingly makes integrated circuit
(IC) technology the obvious choice for many of these products. As these products
become more complex and more integrated, there is a greater need than ever to
develop methods for designing frequency synthesizers in IC technologies, and that
will be the focus of this book.

Frequency synthesis is, in general, concerned with the generation of periodic
waveforms. This seems like a simple task, but it in fact takes up significant area
and effort in many ICs. Generating good-quality periodic waveforms that meet
many system requirements is not a trivial task. So, even though in system block
diagrams the frequency synthesizer is typically only shown by one tiny box in the
corner, the effort expended in designing this block should not be overlooked!

Many of the techniques used in frequency synthesis in this book actually predate
the IC. Thus, in the past, there have been two classes of books: those that deal
with IC-based circuit design and those that deal with frequency synthesis. In this
book, the aim will be to combine these two topics and to discuss mainly the
elements of frequency synthesis that are important for IC design. Likewise, the aim
will be to present circuit implementations for the building blocks that are best suited
to IC technology. The technology of choice in this book for the implementation of
frequency synthesizers will be primarily complementary metal oxide silicon (CMOS)
and, to some degree, silicon germanium (SiGe) bipolar CMOS (BiCMOS). It should
be noted that while the world is progressively moving more to CMOS-only imple-
mentations, there is still a very active group of designers working in SiGe, which
in many respects is a superior technology.

The rest of this chapter is intended to give the reader an overview of frequency
synthesizer applications, to show some common systems where frequency synthe-
sizers are needed, and to highlight some of the issues that the designer must consider
when designing a frequency synthesizer to work in these systems.

1.2 Frequency Synthesis for Telecommunications Systems

A major group of applications that require frequency synthesizer circuits are tele-
communications systems. Frequency synthesis provides the means by which a com-

1

2 Introduction

munication or broadcast channel can be selected. Examples of such applications
are cell phones, wireless local area networks (WLANs), pagers, and many more.
All these devices require radios. A radio is a system that enables the flow of
information from one place to another, usually through the air or a cable. A basic
block diagram of a typical superheterodyne radio transceiver using air as a medium
is shown in Figure 1.1. Modulated signals are transmitted and received at some
frequency by an antenna. If the radio is receiving information, then the signals are
passed from the antenna to the receiver (Rx) part of the radio. The signals are then
passed through a filter to remove interference in frequency bands other than the
one of interest. The signal is then amplified by a low noise amplifier to increase
the power in weak signals, while adding as little noise (unwanted random signals)
as possible. The spectrum is further filtered by an image filter and then down-
converted by a mixer to an intermediate frequency (IF).

The mixer (also sometimes called a multiplier) mixes the incoming spectrum
of radio-frequency (RF) signals with the output from the first frequency synthesizer.
The desired output of the mixer is the difference between the RF and local oscillator
(LO) frequencies. The LO can be either low-side injected (the LO is at a frequency
less than the RF frequency) or high-side injected (the LO is at a frequency greater
than the RF frequency). For low-side injection, the IF frequency is given by

f IF = fRF − fLO (1.1)

For high-side injection, it is given by

f IF = fLO − fRF (1.2)

In a traditional radio, the IF stage is at a fixed frequency; therefore, the synthe-
sizer must be made programmable so that it can be tuned to whatever input
frequency is desired at a given time. Note that an input signal at an equal distance

Figure 1.1 A typical superheterodyne radio transceiver.

1.2 Frequency Synthesis for Telecommunications Systems 3

from the LO on the other side from the desired RF signal is called the image signal
because a signal at this frequency, after mixing, will be at the same IF as the desired
signal. Therefore, the image signal cannot be removed by filtering after mixing has
taken place. Thus, an important job of the RF filters is to remove any image signals
before such mixing action takes place. This is illustrated in Figure 1.2.

After mixing to an IF, additional filtering is usually performed. At the IF,
unwanted channels can be filtered out, leaving only the channel of interest, since
its frequency is now centered at the IF. Usually, automatic gain control (AGC)
amplifiers are also included at the IF. They adjust the gain of the radio so that its
output amplitude is always constant. Once through the AGC, the signals are down-
converted a second time to baseband (the signals are now centered around dc or
zero frequency). This requires a second frequency synthesizer that produces both
0° and 90° output signals at the IF frequency. Two paths downconvert the signals
into in-phase (I) and quadrature-phase (Q) paths (I and Q paths are separated by
a phase shift of 90°). By using this technique, the incoming phase of the RF signal
does not need to be synchronized to the phase of the LO tone. The I and Q signals
are then passed through baseband filters and into the back end of the radio, which
removes the rest of the unwanted channels. The back end, or digital signal processing
(DSP) circuitry, then converts the signals back into digital information.

The transmitter works in much the same way, except in reverse. The DSP
circuitry produces signals in quadrature. These signals are then filtered and up-
converted to an IF frequency and again passed through an AGC and filtered. They
are then upconverted to the RF frequency by the mixer. Note that in this case, the
multiplying or mixing action of the mixer is used to generate sum, rather than
difference, products if the LO is low-side injected. Thus, for low-side injection, the
RF frequency is given by

fRF = fLO + f IF (1.3)

If the LO is high-side injected, the frequency of the RF signal is given by

Figure 1.2 Radio receiver frequency plan and some LO issues.

4 Introduction

fRF = fLO − f IF (1.4)

Once upconverted to RF, the signal is then passed through a power amplifier
to increase the power of the signals and is then radiated by the antenna into the
air. The power level must be high enough so that the signal can be detected at the
maximum distance dictated by the system specifications.

The synthesizers are a very important part of the radio. They must meet very
demanding specifications for their performance. These could include

• Tuning range: The RF synthesizer must be able to cover all frequencies
necessary to downconvert every channel of interest.

• Purity of the output tone: Generally, in addition to the desired tone, there
will be additional unwanted frequencies around the desired frequency. The
spreading of the tone power in the frequency domain around the desired
frequency is often called phase noise. In the time domain, this can be thought
of as phase jitter (variations in the phase of the waveform at any given
instant).

• Freedom from spurs: The waveform must be free of spurs, or spurious
frequency components, which are frequency components other than the one
desired. Specifications for spurs in a frequency synthesizer usually require
that the amplitude of the spurs be at least a specified number of decibels
lower than the amplitude of the desired carrier. The effect of a spur is
illustrated in Figure 1.2, where the LO mixes channel 4 (the desired channel)
down to the IF. LO spurs separated from the LO by D f could mix channel
7 and channel 1 (both unwanted channels and both at a frequency offset of
D f from the desired channel) on top of channel 4 at IF, corrupting it.

• Amplitude: The amplitude of the waveform that appears at the mixer must
be sufficient to drive the mixer successfully. This can be difficult at multigiga-
hertz speeds, especially since the synthesizer and mixer are often separated
by many millimeters of on-chip transmission line.

• Step size: Adjacent programmable frequencies of the synthesizer must be
separated by no more than the channel spacing of the radio.

• Settling time: The synthesizer must be able to change its frequency from one
channel to another in a given time, or else data may be lost.

• Acquisition time: After turning on the frequency synthesizer, its frequency
must move to a programmed frequency in a given amount of time.

• I and Q matching: The phase difference between the I and Q channels ideally
will be 90°. If it deviates from this, it may not be possible to decode the
data in the I and Q channels properly.

• Power consumption: Generally, all the circuits in a synthesizer must consume
less than a specified amount of current and power.

• Synthesizer pulling (chirp): If other circuitry is turned on or off, sometimes
this will cause an instantaneous change in the frequency of the synthesizer.
This undesired property is sometimes called chirp and must be below a
certain maximum frequency change and must settle back to the correct
frequency within a specified amount of time.

1.3 Frequency Synthesis for Digital Circuit Applications 5

The requirements for synthesizers clearly depend on the communication system.
For example, the Global System for Mobile Communications (GSM) has very
stringent noise specifications, so synthesizers must have very low phase noise. On
the other hand, the Bluetooth standard has more relaxed noise specifications on
account of its being a short-range, low-power, low-cost system. Time division
multiple access systems, which may change frequencies upon changing between
transmit and receive, have requirements for the synthesizer switching speed and
settling time.

The superheterodyne radio just presented is not the only possible architecture.
A common variation is the direct downconversion architecture shown in Figure
1.3(a). In this architecture, the IF stage is omitted and the signals are converted
directly to dc. For this reason the architecture is sometimes called a zero-IF or
direct-conversion radio. The direct-conversion transceiver saves the area and power
associated with a second synthesizer, as well as some other components. However,
it is inferior in a number of ways, not the least of which is that generating I and
Q signals from a synthesizer at higher frequencies is much more difficult than doing
so at the IF. Another architecture that is a compromise between the superheterodyne
and the direct-conversion transceiver is called a walking IF architecture, shown in
Figure 1.3(b). This architecture derives the IF LO by dividing the RF LO by some
fixed number. As a result, the IF frequency is not fixed but ‘‘walks’’ in step with
a fraction of the frequency of the RF LO. This transceiver with walking IF still
has many of the advantages of the superheterodyne radio (although it is not possible
to filter as well at IF), but it also removes the need for the extra synthesizer,
potentially reducing layout area and power dissipation.

Obviously, in only a few pages, it would be impossible to give a complete
account of radio architectures. The interested reader is referred to [1–14] for more
information on this topic.

1.3 Frequency Synthesis for Digital Circuit Applications

The realization of digital circuits is probably the most common use of IC technology
in the world. A well-known example of a digital IC circuit is the central processing
unit of a computer. Digital circuits work exclusively on performing mathematical,
logical, and control operations. A clock that is often generated by a frequency
synthesizer triggers each mathematical operation and corresponding change in state
of the circuit. A generic block diagram for a digital circuit is shown in Figure 1.4.
The state of the circuit is stored in a device called a flip-flop, shown as FF in
Figure 1.4. The output of all the flip-flops in the system (whether they currently
put out a logical zero or a one) determines the state of the system. In this discussion,
it will be assumed that the flip-flop is clocked by the rising edge, although imple-
menting it to be triggered on the falling edge is also possible. On each rising clock
edge, the flip-flop passes the signal present at its input to the output and, thereby,
changes state. The current outputs of flip-flops, as well as external inputs, passed
through logical functions, determine what the next state of the system will be.

6 Introduction

Figure 1.3 Common variations on radio architectures: (a) a direct downconversion radio, and
(b) a walking IF radio.

The clock determines the speed at which the circuit operates. If this clock is
set too fast then the circuit will not work properly. Considerations in determining
the speed that a digital circuit can be clocked will be described next.

After a flip-flop experiences a rising edge of the clock, its output (Q) will
change state, but this will happen in a finite amount of time Tclk-to-q .

It will take a finite amount of time after the flip-flop output has changed state
for that change to propagate through the system’s logic to arrive at the inputs of
the flip-flops in the following stage. This time is the propagation delay Tpd .

1.3 Frequency Synthesis for Digital Circuit Applications 7

Figure 1.4 A generic digital circuit.

The data input (D) to the flip-flop must be stable for a time of at least Tsetup
prior to the clock (C) transition, as shown in Figure 1.5. This is known as the
setup time, or Tsetup , constraint. Setup time violation should be checked under the
maximum Tpd . The data input (D) to the flip-flop must be held for a period at
least equal to Thold after the clock (C) transition, as shown in Figure 1.5. This is
known as the hold time, or Thold , constraint. Hold time violation should be checked
under the minimum Tpd . Thus, if a digital circuit is driven by an ideal clock, then
the speed of the clock is limited by

T ≥ Tclk-to-q + Tpd + Tsetup (1.5)

One of the main challenges with modern digital circuits in regard to generating
the clock is synchronizing the phase of the clock as it is distributed across the chip.

Figure 1.5 D-flip-flop setup and hold-time constraints.

8 Introduction

Unlike telecommunications applications, where a synthesizer may drive only one
or two mixers, in digital circuits, the clock may drive tens of thousands of flip-
flops. All of these flip-flops need to change state simultaneously; thus, the clock
must be distributed very carefully all over the chip. This may involve driving
many tens of millimeters of interconnect at multigigahertz speed. Of course, some
difference in delay across the chip is unavoidable. This is called clock skew. The
time between the first flip-flop and the last flip-flop getting a clock edge is defined
as Tskew. Clock skew must be added to (1.5) for setting the maximum speed of
the circuit. Note that if the skew is too large, additional clock tree buffers are
needed to retime the clock as it is distributed across the chip.

While spurs and jitter in phase are not directly as much of an issue in digital
clocks as they are in other applications, it can still be an issue if the phase jitter is
too high, as this will affect the maximum speed at which the circuit can operate.
After a clock edge has triggered a change in state of the digital circuit, then all the
circuits have until the next clock edge to settle out. If the clock edge arrives early,
then all the operations must already have settled out by that point. This is illustrated
in Figure 1.6. Thus, the peak jitter time Tjitter must also be added to the time for
the minimum clock period of the digital circuit. Thus, with a nonideal clock, the
worst-case minimum clock period T is

T ≥ Tclk-to-q + Tpd + Tsetup + Tskew + Tjitter (1.6)

Note that digital design in general is a huge topic. For more information, see
[15–19].

1.4 Frequency Synthesis for Clock and Data Recovery

There is another major class of communication circuits that transmit binary on-
off key bit streams through optical fiber [20, 21]. The available information capacity

Figure 1.6 Ideal versus real digital clocks with timing jitter and the resulting problems.

1.4 Frequency Synthesis for Clock and Data Recovery 9

is proportional to the carrier frequency in any communication system. Due to the
extremely high carrier frequency at infrared, wireline fiber optic communication
has attracted tremendous attention over the past decade. Because of the Internet
revolution, fiber networks, the major carrier of Internet backbone traffic, have
boosted the information capacity to a level beyond our imagination not long ago.
A typical broadband transceiver is shown in Figure 1.7. Here the binary on-off
key modulated data (a stream of ones and zeros represented by light pulses) is
transmitted through a fiber optic cable.

On the receiver side of the circuit, a polarization mode dispersion (PMD)
compensation unit is used. This is used to compensate for PMD, which results in
pulse broadening due to different light speed along different polarization directions
in the optical fiber. Chromatic dispersion (CD) results in a spreading of frequency
components due to nonuniform group delay in the fiber. To compensate for this,
typically, a CD compensation unit is used. However, use of these blocks results in
some attenuation. To counteract this attenuation, an erbium doped fiber amplifier
(EDFA) can be used. The receiver EDFA also provides an overall gain control so
that the receiver front end can operate in its proper dynamic range. The optically
compensated signal is then detected by a photodetector (labeled PD in Figure 1.7)
that produces a small amount of current proportional to the received optical signal.
This current is then amplified and converted into a voltage by a transimpedance
amplifier. Next, the signal is fed through an AGC amplifier or, alternatively, a
limiting amplifier to further increase the signal strength. Since there is no amplitude

Figure 1.7 Block diagram of a fiber transceiver used in high-speed fiber networks.

10 Introduction

modulation in fiber communications in some cases, the received data can be fed
through a limiting or saturation amplifier without causing a bit error. In addition
to optical dispersion compensation, a transversal equalizer can be inserted into the
receiver path. A transversal equalizer can be a finite-impulse response (FIR) filter,
which can provide additional compensation for both chromatic dispersion and
PMD in the electronic domain. A decision feedback equalizer (DFE) can also be
used to further equalize the distorted data. The DFE can be an infinite-impulse
response filter, in which case stability issues need to be considered. At this stage,
the signal is compared to a threshold level, and a decision is made as to whether
a zero or a one has been received.

After the decision circuit, the digital data stream is fed into the clock and data
recovery (CDR) circuit. Using the received data as a reference, the CDR circuit
consists of a frequency synthesizer that generates a clock synchronized with the
received data at the data rate. The received data is clocked by the recovered
clock signal. This helps to square up the waveform and to remove intersymbol
interference. The data and the recovered clock are then passed to the demultiplexer,
which takes the serial data and converts it into N bits of parallel data at a frequency
that is N times lower and sends the information to the digital framer. The digital
framer then descrambles the bits to determine the information that was sent.

The transmission of data works much the same way, except in reverse. The
digital framer in this case prepares the parallel data for transmission and passes it
to a multiplexer (MUX) circuit, which generates a relatively high-transmission-rate
data stream. A clock at the parallel data rate is also supplied. This clock is multiplied
up N times by the clock synthesizer and used to time the data to be transmitted from
the MUX to the laser driver or modulator driver circuit. The external modulator, in
combination with a laser diode light source, can provide a high-speed, modulated,
optical signal with reduced chirp. A polarization scrambler can be inserted after
the optical modulator to randomize the polarization direction of the transmitted
light. When light intensities along the principal polarization directions are the same,
the system suffers the maximum power penalty due to PMD. By scrambling the
polarization of the transmitted light, the PMD-related power penalty is reduced,
on average, because there is a lower probability that the system will be locked in
states with large power penalties. The optical signal is then amplified, typically
with an EDFA, which is inserted after the scrambler to provide sufficient power
for transmission of the optical signal along, for example, a standard single mode
fiber (SSMF).

To increase the bandwidth over existing fiber optic backbones, multiple optical
beams at different wavelengths can be launched simultaneously into the same
optical fiber to form so-called dense wavelength division multiplexing (DWDM).
The challenge of a DWDM system is mainly in the design of optical components.
A fiber transponder with the above discussed fiber transceiver is needed for each
wavelength in a DWDM system. Higher bandwidth can also be achieved by increas-
ing the transmission data rate in the time domain, which challenges the fiber
transceiver electronic design since the modulator driver, receiver front end, and
CDR are required to operate at very high speed, such as 40 Gbps for OC-768 fiber
communication systems.

1.5 Frequency Synthesis for Modulation and Waveform Generation 11

In summary, synthesizer design for optical systems includes generation of the
transmitting clock signal and the design of the CDR circuit. Requirements in the
clock generation typically consist of the accuracy of frequency and the allowed
amounts of frequency drift and jitter. In the CDR circuit, the main difference
between this synthesizer and that for local oscillator generation in a radio system
is that the input is not a crystal oscillator but the incoming data stream running
at full frequency. Thus, the phase detector must also operate at full frequency and
be able to cope with potentially long strings of zeros or ones. Thus, special phase-
detector designs are required, and these will be discussed further in Chapter 6.

1.5 Frequency Synthesis for Modulation and Waveform Generation

As discussed in Section 1.2, frequency synthesizers are used to generate carrier
frequencies in communication systems. The information to be transmitted or
received is modulated onto the carrier frequency by various modulation schemes.
Modulation of the baseband signal onto the RF carrier can be implemented in the
following ways:

1. Modulation in the analog domain: The baseband signal is mixed with the
RF carrier through an RF mixer, as illustrated in Figure 1.1, where both
RF and IF mixers are implemented in the analog domain and the data
converters need only operate at the baseband rate. The quadrature modula-
tion is implemented at IF rather than RF, because the quadrature LO fre-
quency can be generated relatively easily at a lower frequency with lower
power consumption.

2. Modulation in the digital domain: If the IF is sufficiently low such that the
digital-to-analog converter (DAC) and analog-to-digital converter (ADC)
can convert the IF-modulated signal within their maximum sampling rate,
the baseband modulation can also be done in the digital domain, as illus-
trated in Figure 1.8. In the digital domain, the channel filtering is imple-
mented using digital FIR filters, and the quadrature IF carrier frequency is
generated by a direct digital synthesizer (DDS). The baseband signal is
modulated onto a low-speed carrier using multipliers in the digital domain,
and the modulated signal is upconverted to the RF band using RF mixers
in the analog domain. Implementing part of the transceiver functions in the
digital domain reduces the complexity and the cost of the analog transceiver
chip. However, the blocks that can be moved to the digital domain are
limited by the converter-sampling rate. Converters with high resolution and
a high sampling rate also have high power consumption and occupy a large
amount of silicon area. Converters beyond the gigahertz sampling rate are
usually implemented in advanced semiconductor technologies such as SiGe,
which is not compatible with baseband CMOS chips.

3. Direct modulation using a synthesizer: In addition to the above-mentioned
conventional modulation schemes, modulation can also be implemented
directly through the frequency synthesizer. Frequency synthesizers are
programmable. That is, they have an input that is used to control the

12 Introduction

Figure 1.8 IQ modulation in a baseband digital chip.

frequency. Thus, if a modulation scheme is chosen that only has phase or
frequency encoded data, this data can be added to the control signal, thereby
directly modulating the synthesizer with data. In the receive path, the synthe-
sizer is used to generate the carrier frequency, and a mixer is used to
demodulate the received signal to baseband data. Figure 1.9 shows this
direct-modulation scheme through a frequency synthesizer. In the transmit
direction, the baseband signal representing the desired frequency variation
of the output carrier directly modulates the carrier frequency. The direct-
modulation scheme operates in the digital domain and, hence, simplifies
the transmitter architecture as it avoids the need for analog mixers. However,
its drawback is that the modulation bandwidth is limited by the synthesizer
bandwidth. Recent researchers proposed to use predistortion schemes that
apply an inverse transfer function of the phase-locked loop (PLL) to the
baseband signal before it modulates the carrier frequency word. Thus, direct
modulation would be less limited by the small synthesizer bandwidth. In
order to achieve sufficient resolution for the baseband data, direct modula-
tion normally requires more complexity in the frequency-controlling cir-
cuitry (as will be discussed in Chapter 9).

Figure 1.9 Direct modulation through a frequency synthesizer.

1.6 Overview 13

4. Additional applications of waveform generation: In addition to direct modu-
lation, various waveforms can also be generated using synthesizers. An
application for which this is highly suitable is radar. Radar operational
requirements include ever-increasing demands for affordable, low noise
signal and waveform generation. Low phase noise frequency generation is
important in radar and transceiver designs since it increases the system
signal-to-noise ratio, thus increasing the transmission range with the same
transmission power, and it decreases the system bit-error rate, effectively
increasing the data-transmission rate. The following will show some exam-
ples of waveform generation.
• Multicarrier generation: Radar sensitivity can be greatly increased if the

signals are transmitted simultaneously through multiple carriers. In order
to distinguish the received signals, the carriers must differ from each other
by frequency, phase, or the shape of the waveforms. A multifrequency
transmission scheme is not favored since it increases transmission band-
width and transceiver complexity. In contrast, multiphase or multiwave-
form transmission is highly desirable since there is no bandwidth penalty.

• Complex waveform generation: Another application of waveform genera-
tion is to produce various modulation schemes that are desired for novel
transmitter architectures. Digitally generating highly complex, wide band-
width waveforms at the highest possible frequency instead of near base-
band would considerably reduce the transmitter architecture in terms of
size, weight, power requirements, and cost. These waveforms are used
for high-range resolution radars in sorting targets from clutter and low-
probability-of-intercept communication applications. For example, a dig-
ital synthesis approach operating at carrier frequencies of greater than
10 GHz and bandwidths of greater than 1 GHz would greatly reduce
transmitter complexity while improving the opportunity to pursue more
multipurpose RF sensors.

• Modulated signal generation: In addition to frequency synthesis, DDSs
can also implement various modulation waveforms such as chirp, ramp,
step frequency, minimum shift keying (MSK), phase modulation (PM),
amplitude modulation (AM), quadrature amplitude modulation (QAM),
and other hybrid modulations. Thus, they provide a low-cost digital
approach to frequency, phase, and amplitude modulation, eliminating
costly analog modulators associated with communication transceivers.
The ability to generate a complex modulated waveform is a unique feature
of the DDS approach.

1.6 Overview

The rest of this book will be devoted to discussing the details of frequency synthe-
sizer design using IC technology. First, the system-level overview and ‘‘big picture’’
will be given, followed by the circuit details.

In Chapter 2, some synthesizer architectures will be discussed. In Chapter 3,
details of system-level design of PLL-based frequency synthesizers will be described.

14 Introduction

Since synthesizer design involves not only RF and analog design but also a significant
amount of digital design, Chapter 4 will contain a summary of digital design
techniques and issues. Subsequent chapters will contain the design details of the
individual, fully integrated circuits that make up the PLL. In Chapter 5, continuing
with the digital theme of Chapter 4, CMOS logic and current mode logic will be
presented. In Chapter 6, specific applications of these digital circuits, such as
dividers and phase detectors, will be discussed. Some of the dividers operate at the
output frequency, requiring very high speed circuit techniques. Other dividers
operate at lower frequencies where, typically, the main challenge is achieving low
power dissipation. This will be followed in Chapter 7 by a discussion of the charge
pump, a circuit with a digital input and an analog output. The output of the charge
pump is connected to the loop filter, which will also be described in this chapter.
In Chapter 8, the RF design of oscillators, the final loop component, will be
presented. Topics will include inductor-capacitor (LC) oscillators and ring oscilla-
tors, and there will be some discussion of crystal oscillators, which are typically
used as references for the PLL-based synthesizer. In Chapter 9, sigma-delta (SD)
modulators, which control the divider ratio in a PLL-based, fractional-N frequency
synthesizer, will be discussed. Such design is largely digital in nature.

In addition to all these topics, the book will include a detailed discussion of
the design of direct digital synthesizers in Chapter 10. These circuits have tradition-
ally been used only in lower-frequency applications, but they are of growing impor-
tance as their speed and performance increases. Finally, Chapter 11 will contain
a discussion of common digital modulations and direct modulation of frequency
synthesizers.

There are also two appendices included at the end of the book. Appendix A
is a review of control theory, and Appendix B is an overview of IC technology
from a circuit designer’s point of view. These have been included as review material
separate from the main flow of the text as this material will be too rudimentary
for advanced readers. Still, for readers less familiar with some of these topics, the
authors’ advice would be to read these two chapters first before proceeding with
the rest of the text. As well, relevant control theory can be found in a number of
general references [22–28].

References

[1] Rogers, J. W. M., and C. Plett, Radio Frequency Integrated Circuit Design, Norwood,
MA: Artech House, 2003.

[2] Lee, T. H., The Design of CMOS Radio Frequency Integrated Circuits, 2nd ed., Cambridge,
U.K.: Cambridge University Press, 2004.

[3] Razavi, B., RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[4] Crols, J., and M. Steyaert, CMOS Wireless Transceiver Design, Dordrecht, the Nether-

lands: Kluwer Academic Publishers, 1997.
[5] Smith, J. R., Modern Communication Circuits, 2nd ed., New York: McGraw-Hill, 1998.
[6] Rappaport, T. S., Wireless Communications: Principles and Practice, 2nd ed., Upper

Saddle River, NJ: Prentice Hall, 2001.
[7] Sklar, B., Digital Communications: Fundamentals and Applications, 2nd ed., Upper Saddle

River, NJ: Prentice Hall, 2001.

1.6 Overview 15

[8] Couch, L. W., II, Digital and Analog Communication Systems, 6th ed., Upper Saddle
River, NJ: Prentice Hall, 2001.

[9] Haykin, S., and M. Moher, Modern Wireless Communications, Upper Saddle River, NJ:
Prentice Hall, 2004.

[10] Proakis, J. G., Digital Communications, 4th ed., New York: McGraw-Hill, 2000.
[11] Carson, R. S., Radio Communications Concepts: Analog, New York: John Wiley & Sons,

1990.
[12] Rohde, U. L., J. Whitaker, and A. Bateman, Communications Receivers: DSP, Software

Radios, and Design, 3rd ed., New York: McGraw-Hill, 2000.
[13] Larson, L. E., (ed.), RF and Microwave Circuit Design for Wireless Communications,

Norwood, MA: Artech House, 1997.
[14] Krauss, H. L., C. W. Bostian, and F. H. Raab, Solid State Radio Engineering, New York:

John Wiley & Sons, 1980.
[15] Oklobdzija, V. G., et al., Digital System Clocking: High Performance and Low Power

Aspects, New York: John Wiley & Sons, 2003.
[16] Wakerly, J. F., Digital Design: Principles & Practices, 3rd ed., Upper Saddle River, NJ:

Prentice Hall, 2001.
[17] Bather, R. J., H. W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation,

New York: IEEE Press, 1998.
[18] Martin, K., Digital Integrated Circuit Design, New York: Oxford University Press, 2000.
[19] Zhu, Q. K., High-Speed Clock Network Design, Norwell, MA: Kluwer Academic Publish-

ers, 2003.
[20] Säckinger, E., An Introduction to Broadband Circuits for Optical Communication, Allen-

town, PA: Agere Systems Publication, 2001.
[21] Razavi, B., Design of Integrated Circuits for Optical Communications, New York:

McGraw-Hill, 2002.
[22] Razavi, B., Monolithic Phase-Locked Loops and Clock Recovery Circuits, New York:

Wiley-IEEE Press, 1996.
[23] Best, R. E., Phase-Locked Loops: Theory, Design, and Applications, 5th ed., New York:

McGraw-Hill, 2003.
[24] Blanchard, A., Phase-Locked Loops: Applications to Coherent Receiver Design, New

York: John Wiley & Sons, 1976.
[25] Gardner, F. M., Phaselock Techniques, New York: John Wiley & Sons, 1979.
[26] Egan, W. F., Frequency Synthesis by Phase Lock, New York: John Wiley & Sons, 2000.
[27] Wolaver, D. H., Phase-Locked Loop Circuit Design, Upper Saddle River, NJ: Prentice

Hall, 1991.
[28] Crawford, J. A., Frequency Synthesizer Design Handbook, Norwood, MA: Artech House,

1994.

C H A P T E R 2

Synthesizer Architectures

2.1 Introduction

In Chapter 1, applications that require synthesizers were introduced. This was done
to provide background and motivation for the rest of this text, which is devoted
to the details of making these circuits work. In this chapter, overviews of system-
level configurations incorporating these circuits will be given. This will set the stage
for the rest of the book, in which these systems will be examined in progressively
more detail. Additional general information on synthesizers can be found in [1–21].

2.2 Integer-N PLL Synthesizers

An integer-N PLL is the simplest type of phase-locked loop synthesizer and is
shown in Figure 2.1. Note that N refers to the divide-by-N block in the feedback
of the PLL. The two choices are to divide by an integer (integer-N) or to divide
by a fraction (fractional-N), essentially by switching between two or more integer
values such that the effective divider ratio is a fraction. PLL-based synthesizers are
among the most common ways to implement synthesizers, and this area is the subject
of a great deal of research and development [22–54]. The PLL-based synthesizer is
a feedback system that compares the phase of a reference fr to the phase of a
divided-down output of a controllable signal source ffb , also known as a voltage-
controlled oscillator (VCO). The summing block in the feedback is commonly
called a phase detector. Through feedback, the loop forces the phase of the signal
source to track the phase of the feedback signal; therefore, their frequencies must
be equal. Thus, the output frequency, which is a multiple of the feedback signal,
is given by

fo = N ? fref (2.1)

Due to divider implementation details, it is not easy to make a divider that
divides by noninteger values. Thus, a PLL synthesizer of this type is called an
integer-N frequency synthesizer. Circuits inside the feedback loop can be described
by their transfer functions. These transfer functions can be designed to engineer
the system dynamics to meet design specifications for the synthesizer. Typically, a
lowpass filter (LPF) or lowpass network is the desired transfer function used in
the loop. The details of the loop and the circuit components in the loop will be
discussed in Chapters 3 through 8.

17

18 Synthesizer Architectures

Figure 2.1 A simple integer-N frequency synthesizer.

Since N is an integer, the minimum step size of this synthesizer is equal to the
reference frequency fr . Therefore, in order to get a smaller step size, the reference
frequency must be made smaller. This is often undesirable, so, instead, a
fractional-N design is often used. This will be discussed next.

2.3 Fractional-N PLL Frequency Synthesizers

In contrast to an integer-N synthesizer, a fractional-N synthesizer allows the PLL to
operate with high reference frequency while achieving a fine step size by constantly
swapping the loop division ratio between integer numbers. As a result, the average
division ratio is a fractional number. As will be shown in Chapter 3, a higher
reference frequency leads to lower in-band phase noise and faster PLL transient
response. In addition, for multiband applications, often the channel spacing of
the different bands is skewed, requiring an even lower reference frequency if the
synthesizer is to cover both bands.

Example 2.1: The Problem with Using an Integer-N Synthesizer for Multiband
Applications
Determine the maximum reference frequency of an integer-N frequency synthesizer
required to cover channels from 2,400 MHz to 2,499 MHz spaced 3 MHz apart,
and channels from 5,100 MHz to 5,200 MHz spaced 4 MHz apart.

Solution: If an integer-N synthesizer were designed to service only one of these
bands, then it would have a maximum reference frequency of 3 MHz in the first
case and 4 MHz in the second case. However, if a synthesizer must be designed
to cover both of these bands, then its step size must be 1 MHz to allow it to tune
exactly to every frequency required.

2.3 Fractional-N PLL Frequency Synthesizers 19

In the simplest case, the fractional-N synthesizer generates a dynamic control
signal that controls the divider, changing it between two integer numbers. By
toggling between the two integer division ratios, a fractional division ratio can be
achieved by time-averaging the divider output. As an example, if the control changes
the division ratio between 8 and 9, and the divider divides by 8 for 9 cycles and
by 9 for 1 cycle, and then the process repeats itself, then the average division ratio
will be

N =
8 × 9 + 9 × 1

10
= 8.1 (2.2)

If the divider were set only to divide by 8, then it would produce 10 output
pulses for 80 input pulses. However, now it will take 81 input pulses to produce
10 output pulses. In other words, the device swallows 1 extra input pulse to produce
every 10 output pulses. In the PLL synthesizer, this time average is dealt with by
the transfer function in the loop. This transfer function will always have a lowpass
characteristic. Thus, it will deliver the average error signal to the VCO. As a result,
the output frequency will be the reference frequency multiplied by the average
division ratio. However, toggling the divider ratio between two values in a repeating
manner generates a repeating time sequence. In the frequency domain, this periodic
sequence will generate spurious components (or spurs) at integer multiples of the
repetition rate of the time sequence. Such spurious components can be reduced by
using SD modulators in which the division ratio is randomized. SD modulators
will be discussed in Chapter 9.

2.3.1 Fractional-N Synthesizer with Dual-Modulus Prescaler

Figure 2.2 illustrates one way to implement a simple fractional-N frequency synthe-
sizer with a dual-modulus prescaler P/P + 1. Note that it is called a dual-modulus
prescaler because it can be programmed to two division ratios. As discussed in the
previous section, the fractionality can be achieved by toggling the divisor value
between two values, P and P + 1. The modulus control signal (Cout) is generated
using an accumulator (also called an integrator or adder with feedback, or a
counter) with size of F (or log2 F bits). That is, an overflow occurs whenever the
adder output becomes equal to or larger than F. At the ith clock rising edge, the
accumulator’s output yi can be mathematically expressed as

yi = (yi − 1 + Ki) mod F (2.3)

where yi − 1 is the output on the previous rising clock edge, and Ki is a user-defined
input, and the value of Ki will determine the fractional-divider value. Its use will
be illustrated shortly in Example 2.2. Note that the modular operation (A mod B)
returns the remainder of (A ÷ B) and is needed for modeling the accumulator
overflow.

Example 2.2: A Simple Accumulator Simulation
Describe the operation of a 3-bit accumulator with input K = 1 and K = 3, assuming
the accumulator seed value (i.e., the initial accumulator output value) is equal to
zero.

20 Synthesizer Architectures

Figure 2.2 A fractional-N frequency synthesizer with a dual-modulus prescaler.

Solution: Note that Verilog notation for binary numbers will be used here. For
instance, a zero in 3-bit binary format = 3’b000, where ‘‘3’’ represents the number
of bits and ‘‘b’’ denotes the binary format. The detailed Verilog coding for digital
designs will be introduced in Chapter 4. If the accumulator has 3 bits, the size of
the accumulator is 23 = 8, or F = 8, even though the largest value that can be
stored is 3’b111, corresponding to 7. If input word K = 1, namely, 3’b001, the
accumulator value y increases by 1 every cycle until it reaches the maximum value
that can be represented using 3 bits, namely, ymax = 7 = 3’b111. After this point,
the accumulator will overflow, leaving its value y = 0 and Cout = 1. It will take
eight clock cycles for the accumulator to overflow if K = 1. In other words, the
accumulator size F = 8. For K = 3 = 3’b011, the accumulator adds an increment
value of 3 every cycle and, thus, overflows more often. The accumulator value
and its carry out Cout are summarized cycle by cycle in Table 2.1 for K = 1 and
Table 2.2 for K = 3.

As shown in the above example, for the K = 1 case, Cout is high for one cycle
and low for seven cycles within every eight clock cycles, so the frequency of Cout
is fclk /8. For the K = 3 case, Cout is high for three cycles and low for five cycles

Table 2.1 Accumulator Operations with F = 8, K = 1

Clock Cycle i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

yi 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2
yi − 1 N/A 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1
Cout 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

2.3 Fractional-N PLL Frequency Synthesizers 21

Table 2.2 Accumulator Operations with F = 8, K = 3

Clock Cycle i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

yi 0 3 6 1 4 7 2 5 0 3 6 1 4 7 2 5 0 3 6
yi − 1 N/A 0 3 6 1 4 7 2 5 0 3 6 1 4 7 2 5 0 3
Cout 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0

within every eight clock cycles, so the frequency of Cout is 3fclk /8. In general, for
a constant input word K, the accumulator carry-out will be high for K cycles and
will be low for F − K cycles. Also note that the frequency of Cout will be equal to

fCout =
Kfclk

F
(2.4)

If the dual-modulus prescaler divides by P when Cout is low and divides by
P + 1 when Cout is high, the average VCO output frequency is

fo =
fr
R F(P + 1)K + P(F − K)

F G =
fr
R SP +

K
F D (2.5)

Because fractionality is achieved by using this accumulator, it is often called a
fractional accumulator. It has a fixed size F due to the fixed number of accumulator
bits built into the hardware. The dual-modulus prescaler ratio P is normally fixed
as well. The only programmable parameter for the architecture shown in Figure
2.2 is the accumulator input K, which can be programmed from one to a maximum
number of F. Thus, since K is an integer, from (2.5) it can be seen that the step
size of this architecture is given by

Step size =
fr

RF
(2.6)

where R is normally fixed to avoid changing the comparison frequency at the
input. Note that R is normally as small as possible to minimize the in-band phase
noise contribution from the crystal. Thus, step size is inversely proportional to the
number of bits (log2 F); as a result, the accumulator is normally used to reduce
synthesizer step size without increasing R and degrading the in-band phase noise.
Of course, we need to solve the problem with spurs associated with the fractional-N
scheme, and this will be a major focus of Chapter 9.

2.3.2 An Accumulator with Programmable Size

For some applications, a programmable synthesizer step size may be needed. There-
fore, it is often desirable to program the accumulator size F as well. Next, it will
be explained how to program the size of an accumulator from one to a maximum
value of F, with a maximum fixed number of bits available in the hardware.

Figure 2.3 illustrates the architecture for a fractional accumulator with size G,
programmable from one to a maximum size of F. Note that the number of accumula-

22 Synthesizer Architectures

Figure 2.3 Fractional accumulator with size G programmable from 1 to a maximum size of F.

tor bits is n = log2(F). In Verilog binary format, the maximum accumulator value
is F = {n{1’b0}}, which is n concatenated zeros. In general, in modular F arithmetic,
0 and F are equivalent. For instance, a 3-bit accumulator has a maximum value
F = 8, which is represented by three zeros (3’b000) in binary. Note that the
maximum number that can be stored in the accumulator is F − 1, which is 3’b111
for the 3-bit accumulator. When the accumulator value reaches F or greater, a
carry-out bit is generated. Compared to a simple accumulator without size program-
mability, the above accumulator has a carry-in Cin that adds F − G to the accumula-
tor whenever the carry-out Cout is high. Thus, the accumulator will always start
at value F − G. If the input is K = 1, it will take G clock cycles for the accumulator
to reach the overflow point F (F − G + G = F), which is equivalent to having an
accumulator with size G.

Since F in modulo F arithmetic is equivalent to zero, F − G = −G. Note that
−G can be obtained by taking the two’s complement of G, that is, by inverting all
the bits of G and then adding 1 to the result. To avoid the addition for the two’s
complement operation, the input to the synthesizer can be G ′ = G − 1 instead of
G. Thus, F − G = −G can be obtained simply by inverting all the bits of the input
G ′. This operation will result in the one’s complement of G ′.

Example 2.3: Programmable Accumulator
Modify the 3-bit fractional accumulator designed in the previous example to have
a size of 6.

Solution: Let the input be G ′ = G − 1 instead of G. For example, if G ′ =
G − 1 = 0 = 3’b000 is the input, the accumulator size is G = 1; if G ′ = G − 1 = 7
= 3’b111, then this corresponds to a size of G = 8, which is the maximum accumula-
tor size using 3 bits. To program the accumulator size as 6, we input G ′ = G − 1

2.3 Fractional-N PLL Frequency Synthesizers 23

= 5 = 3’b101. The accumulator start value is the maximum size F (3’b000) minus
the programmed size G, resulting in −G, which is the one’s complement of G ′
(i.e., 3’b010), and is obtained by inverting every bit of G ′. When the accumulator
is initialized, the adder is loaded with 3’b010 = 2. With an input of K = 1 = 3’b001
(unit step), it will take six cycles from 3 = 3’b011 to 8 = 3’b000 to reach the
overflow point. Thus, this implements an accumulator with size of 6. Table 2.3
summarizes the accumulator value cycle by cycle; clearly, the carry-out rate is now
one-sixth of the clock cycle with K = 1.

Now programmability for both the numerator and denominator of the frac-
tional part of the divider ratio K/F has been implemented. However, the integer
part of the division ratio in (2.5) is a fixed number P, which limits the synthesizer
output to a frequency range from frP/R to fr (P + 1)/R. It is often desirable to
program the synthesizer over a wider frequency range with programmability for
the integer part of the division ratio as well. For instance, a multiband WLAN
synthesizer needs to synthesize channel frequencies at the 2.4 GHz and 5.3 GHz
bands with the same reference frequency. To build a fully programmable synthe-
sizer, a multimodulus divider (MMD) can be used, as is discussed in the following
section.

2.3.3 Fractional-N Synthesizer with Multimodulus Divider

Replacing the dual-modulus divider with an MMD, the synthesizer architectures
shown in Figure 2.2 can be modified to a more generic form, as illustrated in Figure
2.4. Using an MMD has the advantage that the range of frequencies over which
the synthesizer can be tuned is expanded, compared to the previous architecture.
The synthesizer output frequency is given by

fo =
fr
R SI +

K
F D (2.7)

where I is the integer portion of the loop divisor, and, depending on the complexity
of the design, I could have many possible integer values. For instance, if a loop
division ratio of 100.25 is needed, we can program I = 100, K = 1, and F = 4. The
MMD division ratio is toggled between 100 and 101.

A popular MMD topology using cascaded 2/3 cells will be discussed in
Chapter 6. With an n-bit modulus control signal, the MMD division ratio is given
by

NMMD = P1 + 21P2 + . . . + 2n − 2Pn − 1 + 2n − 1Pn + 2n (2.8)

Table 2.3 Accumulator Operations with F = 8, G = 6, and K = 1

Clock Cycle i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

yi 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2
yi − 1 N/A 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7
Cout 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

24 Synthesizer Architectures

Figure 2.4 A fractional-N frequency synthesizer with an MMD.

where the MMD programming range is 2n to 2n + 1 − 1. For instance, a 6-bit MMD
can be programmed from 64 to 127. The MMD program range can be further
extended through the use of additional logic [55]. Wide programming range is
critical for multiband frequency synthesis, especially when SD noise shaping is
employed, as discussed in Chapter 9.

2.3.4 Fractional-N Spurious Components

The above-discussed fractional-N architectures suffer from a common side effect
of generating spurious components associated with periodically toggling the loop
division ratio. Recall that any repeated pattern in the time domain causes spurious
tones in the frequency domain. The fractional accumulator periodically generates
the carry-out that toggles the loop division ratio. It is expected that there should
be spurious tones at multiples of the carry-out frequency (fr /R) ? (K/F). In the
following example, fractional-N spurs are analyzed with simulation and measure-
ment.

Example 2.4: The Use of Accumulators in Fractional-N Synthesizers
Design a fractional-N synthesizer architecture for synthesizing 11 channels from
819.2 MHz to 820.96 MHz with a step size of 160 kHz and reference comparison

2.3 Fractional-N PLL Frequency Synthesizers 25

frequency of fr /R = 5.12 MHz. Determine the frequencies of fractional-N spurious
components.

Solution: The synthesizer step size is given by
fr
R

?
1
F

= 160 kHz. Since the

comparison frequency is fr /R = 5.12 MHz, the fractional accumulator size can be
chosen as

F =
fr
R

?
1

160 kHz
=

5,120 kHz
160 kHz

= 32

which can be implemented using a 5-bit accumulator. The accumulator input (i.e.,
the fine-tune frequency word K) can be programmed from 0 to 10 to cover the 11
channels from 819.2 MHz to 820.96 MHz with a step size of 160 kHz (the first
channel does not require any fractionality). The integer divisor ratio (i.e., the coarse-
tune frequency word I) can be determined by the channel frequency. For instance,
the first channel frequency is synthesized as

fr
R SI +

0
FD =

fr
R

? I = 819.2 MHz

which leads to I = 160. Hence, the loop total divisor is given by N = 160 + K/32,
where K = 0, 1, . . . 10. If a dual-modulus divider is used to construct a fractional-N
synthesizer, as illustrated in Figure 2.2, the dual-modulus divider ratio should be
P/P + 1 = 160/161, which is not the best solution as far as power consumption
and circuit speed are concerned. There are better circuit implementations, such as
using an MMD or a pulse-swallow divider, which allows much of the implemented
circuitry to operate at much lower speeds. Details of such dividers will be discussed
in Chapter 6. If a fractional-N architecture with MMD is used, as illustrated in
Figure 2.4, a 7-bit MMD with a programmable range from 128 to 255 is needed
based on (2.8). In any of the above solutions, the loop divisor of the fractional-N
architecture is toggled between 160 and 161. The modulus control is generated by
the accumulator carry-out, which has a frequency of (fr /R) ? (K/F). Thus, the loop
is divided by 160 for K reference cycles and divided by 161 for F − K cycles, which
results in an average division ratio of 160 + K/F. As an example, for the second
channel with K = 1 and F = 32, the simulated fractional accumulator output is
given in Figure 2.5. As shown, the fractional accumulator outputs a carry-out in
every 32 comparison cycles, which forces the loop divider to divide by 160 for 31
cycles and to divide by 161 for 1 cycle, as shown in Figure 2.5(a). The periodic
phase correction pulse due to dividing by 161 generates fractional spurs with
uniform spacing of fr /R /32 = 160 kHz, as shown in Figure 2.5(b).

The spurious tones generated by the accumulator will appear in the output
spectrum of the synthesizer. Figure 2.6 presents a measured spectrum at a
fractional-N synthesizer output with loop divisor N = 160 + 1/32 and the compari-
son frequency fr /R = 5.12 MHz. Fractional spurs at integer multiples of
fr
R

?
K
F

= 160 kHz are observed. The roll-off of the spur magnitude as frequency

increases is due to the loop lowpass roll-off characteristics.

26 Synthesizer Architectures

Figure 2.5 Simulated fractional accumulator output with loop divisor N = 160 + 1/32 and the
comparison frequency fr/R = 5.12 MHz: (a) time domain, and (b) frequency domain.

A fractional-N synthesizer achieves fine step size and low in-band phase noise
with the penalty of fractional spurious tones, which comes from the periodic
division ratio variation. Fractional spurs may be removable by using a high-order
loop transfer function if the closest spur is outside of the PLL bandwidth. Note
that the spacing of the closest spur to the carrier is determined by the synthesizer
step size. For a synthesizer with a fine step size smaller than the transfer function
bandwidth, it is thus practically impossible to remove fractional spurs by using a
loop LPF. Reducing the loop bandwidth to combat the fractional spurs means that
you have to pay the penalty of longer lock time and increased out-of-band phase
noise due to the VCO, as will be discussed in Chapter 3. Even if the closest spur
is outside of the loop filter bandwidth, removing those spurs normally requires a
high-order loop filter with sharp roll-off, which increases the complexity and cost
of the synthesizer. To remove the fractional spurious components for a synthesizer
with fine step size, the best solution is to employ a SD noise shaper in the fractional
accumulator; these circuits will be a topic of Chapter 9. Their function is to break
up the repeated patterns of the loop divisor time sequence without affecting its
average division ratio. This will result in the reduction or elimination of the spurs
in the spectrum.

2.4 Delay-Locked Loops 27

Figure 2.6 Measured output spectrum of a fractional-N frequency synthesizer with loop divisor
N = 160 + 1/32 and the comparison frequency fr/R = 5.12 MHz.

2.4 Delay-Locked Loops

Recently, the delay-locked loop (DLL) has become more popular due to its simplicity
and inherent performance advantages [56–61]. A DLL is similar to a PLL except
that the VCO is replaced with a voltage-controlled delay line (VCDL), as shown
in Figure 2.7. The idea is that the input and output of the delay line are sent to
the phase detector. The output of the phase detector, representing the phase error,
is amplified and used to control the delay in the delay line. Thus, by feedback, the
delay in the delay line is adjusted to equal the period of the reference or the data
input. The DLL may also lock to a multiple of the reference period, which is not

Figure 2.7 A DLL.

28 Synthesizer Architectures

desirable if precise delay between clock edges is required. As an application example,
if there are four equal delay components in the delay line and if the input and the
final output are both aligned with the incoming clock, then each consecutive
intermediate output has a 90° phase shift. In other words, this is a multiphase
(four phases in this case) clock generator. The delay line of a DLL can comprise
delay elements potentially equivalent to delay elements that could be used as part
of a voltage-controlled ring oscillator in a PLL. In both the VCDL and the ring
oscillator, jitter in one stage is passed on to the following stages. Thus, the jitter
accumulates. In the VCO, this jitter is fed back to the first stage, while in the
VCDL, the first stage always gets a fresh start. For this reason, the DLL will be
inherently less noisy than the PLL.

In terms of mathematics, in a PLL, the VCO output phase is proportional to
the integral of the input control voltage. However, a delay line has an output delay
(or phase shift) proportional to the control voltage of an integrator. Thus, a DLL
has a transfer function inherently one order lower than that of the PLL. This means
it may be easier to stabilize than the PLL. However, it also means that unless there
is another component in the loop with high or infinite gain, there will be a finite
phase error; that is, the output edges from the delay line will not be exactly lined
up with the inputs. The solution to this is to use a loop filter with infinite
gain. Such a filter, which can be realized with a charge pump, will be further
discussed in Chapter 7.

A common use of the DLL is for clock recovery. A typical circuit is shown in
Figure 2.8. In this case, the data input is compared to the clock, using a special
phase detector. This phase detector, which is commonly used in data-recovery
applications, produces an output only when there are input edges. Examples of
such phase detectors will be discussed further in Chapter 6. In this circuit, the data
at the output of the delay line is compared with the clock. Any phase error is fed
back to adjust the delay in the delay line to bring the data into alignment with the
clock. We note that without a VCO, the clock must inherently be at the same
frequency as the data.

Figure 2.8 Use of a DLL for CDR applications.

2.5 Clock and Data Recovery (CDR) PLLs 29

2.5 Clock and Data Recovery (CDR) PLLs

Optical receivers, discussed in Chapter 1, require synthesizers as well. In this
application, the synthesizer is required to recover a clock signal from the incoming
data. After the decision stage in the optical receiver (see Chapter 1), the data stream
can be used to recover the clock, which is synchronized with the data. An example
CDR circuit, as shown in Figure 2.9, is essentially a PLL similar to the PLL-based
synthesizer that has just been considered. The main difference is that a PLL for a
conventional frequency synthesizer has a clean reference signal typically at a much
lower frequency compared to the carrier frequency as an input. The PLL for a
CDR has a potentially noisy and attenuated random-bit stream at high frequency
as an input. Thus, the phase detector is specifically designed for the expected input
bit stream.

As shown in Figure 2.9, a typical phase detector could consist of four D-type
flip-flops that are clocked by quadrature phase clock signals with 90° of phase
separation. The quadrature phase clocks can operate at half of the input data rate.
The data stream can be sampled at equally spaced time points. At the locked state
(i.e., when the recovered clock is synchronized to the input data), the D-flip-flops
with 0° and 180° of phase shift sample the data stream in the middle of the eye
patterns (in the middle of a bit transmission), and the D-flip-flops with 90° and
270° of phase shift sample the data stream at the edge of the eye pattern (at the
end and beginning of a bit transmission). Phase-detect logic circuitry compares the
binary phase detector outputs and generates a control signal, filtered by the loop’s
transfer function or lowpass filter, which is used to drive the VCO. If, for any
reason, the clock edges produced by the VCO start to drift out of phase with the

Figure 2.9 A CDR PLL with a quadrature phase detector operating at half of the data rate.

30 Synthesizer Architectures

data, this circuitry will apply feedback to correct the VCO’s phase. Such circuitry
will be discussed in more detail in Chapter 6. It will be shown that the lowpass-
loop filter determines the PLL performance and, thus, affects the CDR jitter perfor-
mance. The VCO can be a ring oscillator because such oscillators can intrinsically
generate quadrature phase clocks, as will be discussed in Chapter 8. In addition,
as mentioned above, the four-phase VCO can operate at half of the data rate,
which is of benefit to high-speed circuit design for low phase noise. The recovered
data can then be retimed and demultiplexed into a lower data rate by a 1:N
demultiplexer. In addition, the recovered clock signal is divided into a relatively
low frequency, which can be used to drive the baseband digital IC. To ensure error-
free data capture at the input of the baseband digital IC, the received data itself
needs to be retimed in the CDR using the recovered clock. Normally, data retiming
is implemented in the phase detector used to form the CDR PLL. In the CDR
design, the output clock jitter performance is also rather important. Ideally, it
should sample in the middle of the bit period when the voltage is changing the
least, thereby minimizing the chance that there will be an error in determining the
value of the bit. However, if the clock experiences jitter, then sampling will not
occur at this optimal point, and if the jitter becomes too large, then an error is
likely. Thus, a low jitter clock is required.

The main challenge with the optical transmitters in regard to frequency synthesis
is in the CDR circuit. This circuit must recover the clock from the data. There are
two typical ways to transmit the data. Either return-to-zero (RZ) or nonreturn-to-
zero (NRZ) is used, as illustrated in Figure 2.10. In NRZ format, each bit is exactly
one bit period wide. Thus, long strings of ones or zeros could result in the absence
of voltage transitions, which could affect phase-detector design. Also note that,
even if a stream of alternating ones and zeros were transmitted, this would be a
square wave with a frequency equal to one-half of the bit rate. Thus, there is
actually no power in the data stream at the frequency at which a clock needs to
be generated. This makes clock recovery very difficult, and, usually, a circuit that
takes the derivative of the incoming bit stream must be used. This new waveform
will have power at the bit frequency and can be used to help synthesize the clock.
The second way of transmitting data, RZ, uses shorter duty-cycle pulses so that,
in this case, there is actually energy in the waveform at the clock frequency. This
is much more convenient for the CDR circuit but uses more fiber bandwidth than
the NRZ format. In summary, from the electronic design point of view, RZ data
format benefits CDR design due to the presence of a distinct clock frequency tone
in the received data, while NRZ data format benefits the design of the input high-

Figure 2.10 Data stream in NRZ and RZ format.

2.6 Direct Digital Synthesizers 31

frequency circuitry due to its lower bandwidth. RZ has 2-dB better sensitivity due
to its higher peak optical intensity for the same average power compared to NRZ
format. Since NRZ-based CDR has been well developed, the NRZ data format is
often adopted for high-speed applications such as OC-768 fiber networks due to
its lower bandwidth requirement.

2.6 Direct Digital Synthesizers

The PLL synthesizer is by far the most popular frequency-synthesis technique and
has been widely used in communication systems and radar applications. The PLL
synthesizer is capable of generating high frequencies with low phase noise. However,
it is expensive due to the use of analog components, and it has a long settling time
due to the narrow bandwidth of the loop filter. It has small tuning range due to
the limited tuning range of the VCO and difficulty achieving fine step size while
minimizing fractional spurious components. The PLL synthesizer is also not very
suitable to perform various modulations, although direct modulation through a
PLL is possible with predistortion circuitry.

In comparison to PLL synthesis, direct digital synthesizer (DDS) uses digital
circuits to create, manipulate, and modulate a signal digitally and eventually to
convert the digital signal to its analog form using a DAC. DDS provides many
advantages, including fast frequency switching, fine frequency-tuning resolution,
and continuous-phase switching, and it allows direct phase and frequency modula-
tions in the digital domain. Moreover, DDS is built on inexpensive and reliable
digital CMOS technology and is very suitable for embedding in baseband CMOS
chips. Due to the enormous revolution of digital technology, DDS has become
a frequency-synthesis technique of growing importance in applications such as
test instruments, radars, medical imaging, satellite, and wireless communications
[62–106].

The DDS concept was described by Manessewitz as early as 1980 [17], but its
implementation did not become feasible until the 1990s when IC technology became
sufficiently advanced. DDS employs the waveform digital-synthesis method. A sine
wave, triangular wave, or square wave is computed as a series of samples. These
samples are converted to an analog output waveform through a DAC that has to
be clocked with a very precise, low-jitter clock waveform. Low jitter is equivalent
to having low phase noise. Since there are no feedback loops in the DDS, the
output frequency can be programmed to change instantaneously whenever a new
frequency word is loaded. With suitable design of the digital component that
generates the sample values, phase coherence suitable for low spurious, fast fre-
quency hopping can also be obtained. There are, however, two major deficiencies
in current DDS synthesizers because IC technology is still not sufficiently advanced.
First, the DDS suffers from a high level of spurious output signals due to limitations
of the DAC. The spurious level can be reduced by clocking the DDS at a much higher
frequency than the output frequency and by using SD noise-shaping techniques. A
second deficiency is that, as the sampling frequency increases, the power required
both for the digital waveform computing circuitry and the output DAC increases
approximately in proportion.

32 Synthesizer Architectures

2.6.1 Direct Digital Synthesizer with Read-Only Memory Lookup Table

A conventional DDS architecture with read-only memory (ROM) lookup table is
shown in Figure 2.11. It utilizes a phase accumulator to generate the phase word
based upon the desired input frequency control word (FCW), which is stored in
the frequency register. The frequency word is continuously accumulated in the
phase accumulator using an N bit adder. This means that the FCW is continuously
added to the previous content of the phase register. The output of the adder is
sampled at the reference sample clock rate (DDS fclk in Figure 2.11) by an N bit
register. When the accumulator reaches the N bit maximum value, the accumulator
rolls over and continues. The DDS output frequency is thus given by

fout =
FCW

2N fclk (2.9)

The sampled output of the phase accumulator is then used to address a ROM
lookup table that stores the sinusoidal magnitude values. The ROM lookup table
hence converts the phase word into sine/cosine amplitude words. The binary digital
amplitude word is further used to drive a binary weighted DAC. The DAC output
is a sample-and-hold circuit that takes the digital amplitude words, converts the
value into an analog voltage, and holds the value for one sample clock period.
Since the DAC output is sampled at the reference clock frequency, a waveform
smoothing LPF is typically used to eliminate alias components.

Figure 2.11 Direct digital synthesis with ROM lookup table.

2.7 Direct Analog Frequency Synthesizers 33

It is also easy to see that this synthesizer can produce a modulated signal by
changing the FCW. If this input is not static but rather changes with time, this
circuit can directly produce a frequency modulated (FM) signal.

2.6.2 ROM-Less Direct Digital Synthesizer

Direct digital synthesis provides precise frequency resolution and direct-modulation
capability. However, the majority of the DDS circuits designed so far are limited
to low-frequency applications with clock frequencies less than a few hundred
megahertz, and the output frequencies must be even less than this. Digitally generat-
ing highly complex, wide-bandwidth waveforms at the highest possible frequency
instead of down near baseband would considerably reduce the weight, power
consumption, size, and cost of a transmitter architecture. As shown in Figure 2.11,
the conventional DDS architecture utilizes a ROM lookup table to convert the
accumulated phase word into sine/cosine words that are further used to drive a
linear, binary-weighted DAC. The ROM size is exponentially proportional to the
desired phase resolution. The huge lookup table not only restricts its maximum
operation frequency due to its delays through multiple layers of combinational
logic in the decoder, but it also occupies a large area and consumes a large amount
of power. The simplest method to reduce the ROM size is to make use of the fact
that a sine wave has quarter-wave symmetry. This can be used to cut the ROM
size by a factor of four. Although many other ROM-compression methods have
been proposed, such as trigonometric approximation and parabolic approximation,
the ROM remains the speed bottleneck of the conventional DDS architecture. To
reduce the power dissipation and die size, a nonlinear DAC with sine-weighted
current cells can be employed, and a ROM-less DDS can be constructed, as shown
in Figure 2.12. The nonlinear DAC weights its current cells with sinusoidal data
and, hence, converts the digital phase information directly into an analog amplitude
waveform, as will be explained more fully in Chapter 10. Thus, the ROM is
completely removed, and the performance of the DDS is significantly improved
[107–115].

2.7 Direct Analog Frequency Synthesizers

PLL synthesis can achieve high output frequency with low spurious components,
yet it suffers from slow switching times [116–121]. An alternate technique is known
as direct analog frequency synthesis (DAS), in which a number of different output
frequencies are derived from the main reference by mixing, division, and frequency
multiplication. Direct analog frequency synthesis can offer excellent spectral purity
and high switching speed, but they are usually bulky and expensive and have high
power consumption. As a result, this technique is not economical or suitable for
portable equipment. Such synthesizers are used only when absolutely necessary in
applications such as medical imaging and military radar systems.

Figure 2.13 illustrates a direct analog frequency synthesizer, where a bank of
crystal oscillators generates various reference frequencies that are further multiplied
to their harmonic frequencies and divided to their subharmonic frequencies.

34 Synthesizer Architectures

Figure 2.12 ROM-less DDS with a nonlinear, sinusoidal-weighted DAC.

Mixers are employed to mix the different frequencies to achieve the desired output
frequency.

The mixer is a device that combines two signals at different frequencies to give
an output signal that can be at the sum or difference frequency, as selected by a
suitable output filter, which suppresses the other sideband. The process can be
extended further, multiplying the number of frequencies by increasing the number
of crystals in each oscillator crystal bank. The crystals can be switched rapidly by
diodes or by switching the power supply to separate oscillators, one for each crystal.
The main problem with the mixer synthesizer is the difficulty of avoiding or filtering
out the strong, higher-order mixing products that are produced by the nonlinearities
inherent in any RF mixer circuit. Mixer synthesizers were developed in the late
1950s and early 1960s but never achieved widespread use.

2.8 Hybrid Frequency Synthesizers

Various frequency synthesis schemes mentioned above, such as PLL, DDS, and
DAS, can be combined to form a hybrid frequency synthesizer to utilize their
advantages fully. For instance, a DDS can be embedded into a multiloop hybrid
PLL arrangement where, with careful design, the best of both worlds can be
achieved. The DDS can give the combination synthesizer small step size, good
phase noise, and faster switching, while the PLL can synthesize the carrier frequency
at an ultrahigh frequency and can be also used to generate the DDS clock frequency.

2.8 Hybrid Frequency Synthesizers 35

Figure 2.13 A direct analog frequency synthesizer using mixers, multipliers, dividers, and a bank
of crystal references.

Figure 2.14 illustrates an example of a hybrid frequency synthesizer with a
DDS for fine tune and a PLL for coarse tune. The architecture includes a DDS to
generate the fine-tune carrier frequency and to modulate the baseband signal onto
this intermediate (IF) carrier frequency. If a ROM-less DDS architecture is
employed, the DDS clock frequency can reach 10 GHz and beyond. That allows
the system to synthesize and modulate the IF up to 5 GHz. The hybrid synthesizer
utilizes a low-noise PLL synthesizer to generate both the DDS clock and the carrier
frequency at X-band, K-band, and even Ka-band. The PLL synthesizer includes
a quadrature VCO to generate the quadrature carriers without using lossy and
narrowband polyphase networks. The DDS modulation waveform configurations
can include chirp, step frequency, MSK, PM, AM, QAM, and other hybrid modula-
tions. The modulated IF frequency is mixed with the carrier frequency using quadra-
ture mixers with image rejection.

36 Synthesizer Architectures

Figure 2.14 A hybrid frequency synthesizer with a DDS for fine tune and a PLL for coarse tune.

References

[1] Larson, L. E., (ed.), RF and Microwave Circuit Design for Wireless Communications,
Norwood, MA: Artech House, 1997.

[2] Craninckx, J., and M. Steyaert, Wireless CMOS Frequency Synthesizer Design,
Dordrecht, the Netherlands: Kluwer Academic Publishers, 1998.

[3] Gorsky-Popiel, J., (ed.), Frequency Synthesis and Applications, New York: IEEE Press,
1975.

[4] Kroupa, V. F., Frequency Synthesis, New York: John Wiley & Sons, 1973.
[5] Kroupa, V. F., ‘‘Low-Noise Microwave Synthesizer Design Principles,’’ in Direct Digital

Frequency Synthesizers, New York: IEEE Press, 1999, pp. 175–180.
[6] Manassewitch, V., Frequency Synthesizers Theory and Design, New York: John Wiley &

Sons, 1987.
[7] Noordanus, J., ‘‘Frequency Synthesizers—A Survey of Techniques,’’ IEEE Trans. Comm.

Tech., Vol. 17, No. 2, April 1969, pp. 257–271.
[8] Reinhardt, V. S., et al., ‘‘A Short Survey of Frequency Synthesizer Techniques,’’ Frequency

Control Symposium, Philadelphia, PA, May 1986, pp. 355–365.
[9] Rohde, U. L., Digital Frequency Synthesizers: Theory and Design, Upper Saddle River,

NJ: Prentice Hall, 1983.
[10] Rohde, U. L., Microwave and Wireless Synthesizers: Theory and Design, New York:

John Wiley & Sons, 1997.
[11] Slinn, K. R., et al., ‘‘Low-Noise Synthesizers for Radar and Communications,’’ IEE

Proceedings, Vol. 130, H, No.7, December 1983 (Great Britain).
[12] Lindsay, W. C., Phase-Locked Loops, New York: IEEE Press, 1986.
[13] Razavi, B., Design of Integrated Circuits for Optical Communications, New York:

McGraw-Hill, 2002.
[14] Razavi, B., Monolithic Phase-Locked Loops and Clock Recovery Circuits, New York:

Wiley-IEEE Press, 1996.

2.8 Hybrid Frequency Synthesizers 37

[15] Best, R. E., Phase-Locked Loops: Theory, Design, and Applications, New York:
McGraw-Hill, 1984.

[16] Blanchard, A., Phase-Locked Loops: Applications to Coherent Receiver Design, New
York: John Wiley & Sons, 1976.

[17] Manassewitz, V., Frequency Synthesizers: Theory and Design, 2nd ed., New York: John
Wiley & Sons, 1980.

[18] Gardner, F. M., Phaselock Techniques, New York: John Wiley & Sons, 1979.
[19] Egan, W. F., Frequency Synthesis by Phase Lock, New York: John Wiley & Sons, 2000.
[20] Wolaver, D. H., Phase-Locked Loop Circuit Design, Upper Saddle River, NJ: Prentice

Hall, 1991.
[21] Crawford, J. A., Frequency Synthesizer Design Handbook, Norwood, MA: Artech House,

1994.
[22] Lee, H., et al., ‘‘A S-D Fractional-N Frequency Synthesizer Using a Wide-Band Integrated

VCO and a Fast AFC Technique for GSM/GPRS/WCDMA Applications,’’ IEEE J. Solid-
State Circuits, Vol. 39, July 2004, pp. 1164–1169.

[23] Leung, G., and H. Luong, ‘‘A 1-V 5.2 GHz CMOS Synthesizer for WLAN Applications,’’
IEEE J. Solid-State Circuits, Vol. 39, November 2004, pp. 1873–1882.

[24] Rhee, W., B. Song, and A. Ali, ‘‘A 1.1-GHz CMOS Fractional-N Frequency Synthesizer
with a 3-b Third-Order SD Modulator,’’ IEEE J. Solid-State Circuits, Vol. 35, October
2000, pp. 1453–1460.

[25] Lo, C., and H. Luong, ‘‘A 1.5-V 900-MHz Monolithic CMOS Fast-Switching Frequency
Synthesizer for Wireless Applications,’’ IEEE J. Solid-State Circuits, Vol. 37, April 2002,
pp. 459–470.

[26] Ahola, R., and K. Halonen, ‘‘A 1.76-GHz 22.6 mW DS Fractional-N Frequency Synthe-
sizer,’’ IEEE J. Solid-State Circuits, Vol. 38, January 2003, pp. 138–140.

[27] Heng, C., and B. Song, ‘‘A 1.8-GHz CMOS Fractional-N Frequency Synthesizer with
Randomizer Multiphase VCO,’’ IEEE J. Solid-State Circuits, Vol. 38, June 2003,
pp. 848–854.

[28] Park, C., O. Kim, and B. Kim, ‘‘A 1.8-GHz Self-Calibrated Phase-Locked Loop with
Precise I/Q Matching,’’ IEEE J. Solid-State Circuits, Vol. 36, May 2001, pp. 777–783.

[29] Klepser, B., M. Scholz, and E. Götz, ‘‘A 10-GHz SiGe BiCMOS Phase-Locked-Loop
Frequency Synthesizer,’’ IEEE J. Solid-State Circuits, Vol. 37, March 2002, pp. 328–335.

[30] Pellerano, S., et al., ‘‘A 13.5-mW 5-GHz Frequency Synthesizer with Dynamic-Logic
Frequency Divider,’’ IEEE J. Solid-State Circuits, Vol. 39, February 2004, pp. 378–383.

[31] Leenaerts, D., et al., ‘‘A 15-mW Fully Integrated I/Q Synthesizer for Bluetooth in
0.18-mm CMOS,’’ IEEE J. Solid-State Circuits, Vol. 38, July 2003, pp. 1155–1162.

[32] Kan, T., G. Leung, and H. Luong, ‘‘A 2-V 1.8-GHz Fully Integrated CMOS Dual-Loop
Frequency Synthesizer,’’ IEEE J. Solid-State Circuits, Vol. 37, August 2002,
pp. 1012–1020.

[33] Aytur, T., and B. Razavi, ‘‘A 2-GHz, 6-mW BiCMOS Frequency Synthesizer,’’ IEEE
J. Solid-State Circuits, Vol. 30, December 1995, pp. 1457–1462.

[34] Chen, W., et al., ‘‘A 2-V 2.3/4.6-GHz Dual-Band Frequency Synthesizer in 0.35-mm
Digital CMOS Process,’’ IEEE J. Solid-State Circuits, Vol. 39, January 2004,
pp. 234–237.

[35] Yan, W., and H. Luong, ‘‘A 2-V 900-MHz CMOS Dual-Loop Frequency Synthesizer
for GSM Receivers,’’ IEEE J. Solid-State Circuits, Vol. 36, February 2001, pp. 204–216.

[36] Shu, K., et al., ‘‘A 2.4-GHz Monolithic Fractional-N Frequency Synthesizer with Robust
Phase-Switching Prescaler and Loop Capacitance Multiplier,’’ IEEE J. Solid-State Cir-
cuits, Vol. 38, June 2003, pp. 866–874.

[37] Shu, Z., K. Lee, and B. Leung, ‘‘A 2.4-GHz Ring-Oscillator-Based CMOS Frequency
Synthesizer with a Fractional Divider Dual-PLL Architecture,’’ IEEE J. Solid-State Cir-
cuits, Vol. 39, March 2004, pp. 452–462.

38 Synthesizer Architectures

[38] McMahill, D., and C. Sodini, ‘‘A 2.5-Mb/s GFSK 5.0-Mb/s 4-FSK Automatically Cali-
brated S–D Frequency Synthesizer,’’ IEEE J. Solid-State Circuits, Vol. 37, January 2002,
pp. 18–26.

[39] Lam, C., and B. Razavi, ‘‘A 2.6-GHz/5.2-GHz Frequency Synthesizer in 0.4-mm CMOS
Technology,’’ IEEE J. Solid-State Circuits, Vol. 35, May 2000, pp. 788–794.

[40] Perrott, M., T. Tewksbury, and C. Sodini, ‘‘A 27-mW CMOS Fractional-N Synthesizer
Using Digital Compensation for 2.5-Mb/s GFSK Modulation,’’ IEEE J. Solid-State Cir-
cuits, Vol. 32, December 1997, pp. 2048–2060.

[41] Temporiti, E., et al., ‘‘A 700-kHz Bandwidth SD Fractional Synthesizer with Spurs
Compensation and Linearization Techniques for WCDMA Applications,’’ IEEE J. Solid-
State Circuits, Vol. 39, September 2004, pp. 1446–1454.

[42] Dehng, G., et al., ‘‘A 900-MHz 1-V CMOS Frequency Synthesizer,’’ IEEE J. Solid-State
Circuits, Vol. 35, August 2000, pp. 1211–1214.

[43] Lin, T., and W. Kaiser, ‘‘A 900-MHz 2.5-mA CMOS Frequency Synthesizer with an
Automatic SC Tuning Loop,’’ IEEE J. Solid-State Circuits, Vol. 36, March 2001,
pp. 424–431.

[44] Rategh, H., H. Samavati, and T. H. Lee, ‘‘A CMOS Frequency Synthesizer with an
Injection-Locked Frequency Divider for a 5-GHz Wireless LAN Receiver,’’ IEEE J. Solid-
State Circuits, Vol. 35, May 2000, pp. 780–787.

[45] Hwang, I., S. Song, and S. Kim, ‘‘A Digitally Controlled Phase-Locked Loop with a
Digital Phase-Frequency Detector for Fast Acquisition,’’ IEEE J. Solid-State Circuits,
Vol. 36, October 2001, pp. 1574–1581.

[46] Zhang, B., P. Allen, and J. Huard, ‘‘A Fast Switching PLL Frequency Synthesizer with
an On-Chip Passive Discrete-Time Loop Filter in 0.25-mm CMOS,’’ IEEE J. Solid-State
Circuits, Vol. 38, October 2003, pp. 855–865.

[47] Da Dalt, N., et al., ‘‘A Fully Integrated 2.4-GHz LC-VCO Frequency Synthesizer with
3-ps Jitter in 0.18-mm Standard Digital CMOS Copper Technology,’’ IEEE J. Solid-
State Circuits, Vol. 37, July 2002, pp. 959–962.

[48] Craninckx, J., and M. S. J. Steyaert, ‘‘A Fully Integrated CMOS DCS-1800 Frequency
Synthesizer,’’ IEEE J. Solid-State Circuits, Vol. 33, December 1998, pp. 2054–2065.

[49] Koo, Y., et al., ‘‘A Fully Integrated CMOS Frequency Synthesizer with Charge-Averaging
Charge Pump and Dual-Path Loop Filter for PCS- and Cellular-CDMA Wireless Systems,’’
IEEE J. Solid-State Circuits, Vol. 37, May 2002, pp. 536–542.

[50] Bax, W. T., and M. A. Copeland, ‘‘A GMSK Modulator Using a DS Frequency Discrimi-
nator-Based Synthesizer,’’ IEEE J. Solid-State Circuits, Vol. 36, August 2001,
pp. 1218–1227.

[51] Bietti, I., et al., ‘‘A UMTS SD Fractional Synthesizer with 200 kHz Bandwidth and
−128 dBc/Hz @ 1 MHz Using Spurs Compensation and Linearization Techniques,’’ Proc.
IEEE Custom Integrated Circuits Conference, San Jose, CA, September 2003,
pp. 463–466.

[52] De Muer, B., and M. Steyaert, ‘‘A CMOS Monolithic DS-Controlled Fractional-N Fre-
quency Synthesizer for DCS-1800,’’ IEEE J. Solid-State Circuits, Vol. 37, July 2002,
pp. 835–844.

[53] Riley, T. A., M. Copeland, and T. Kwasniewski, ‘‘Delta–Sigma Modulation in
Fractional-N Frequency Synthesis,’’ IEEE J. Solid-State Circuits, Vol. 28, May 1993,
pp. 553–559.

[54] Rogers, J. W. M., et al., ‘‘A DS Fractional-N Frequency Synthesizer with Multi-Band
PMOS VCOs for 2.4 and 5 GHz WLAN Applications,’’ European Solid-State Circuits
Conference (ESSCIRC), September 2003, pp. 651–654.

[55] Vaucher, C. S., et al., ‘‘A Family of Low-Power Truly Modular Programmable Dividers
in Standard 0.35 mm CMOS Technology,’’ IEEE J. Solid-State Circuits, Vol. 35,
July 2000, pp. 1039–1045.

2.8 Hybrid Frequency Synthesizers 39

[56] Kim, B., T. C. Weigandt, and P. R. Gray, ‘‘PLL/DLL System Noise Analysis for Low
Jitter Clock Synthesizer Design,’’ Proc. Int. Symp. Circuits and Systems, London, U.K.,
1994, pp. 31–34.

[57] Lee, T. H., et al., ‘‘A 2.5V CMOS Delay-Locked Loop for 18 Mbit, 500 Megabyte/s
DRAM,’’ IEEE J. Solid-State Circuits, Vol. 29, December 1994, pp. 1491–1496.

[58] Jeon, Y., et al., ‘‘A 66–333-MHz 12-mW Register-Controlled DLL with a Single Delay
Line and Adaptive-Duty-Cycle Clock Dividers for Production DDR SDRAMs,’’ IEEE
J. Solid-State Circuits, Vol. 39, November 2004, pp. 2087–2092.

[59] Hamamoto, T., et al. ‘‘A 667-Mb/s Operating Digital DLL Architecture for 512-Mb
DDR SDRAM,’’ IEEE J. Solid-State Circuits, Vol. 39, January 2004, pp. 194–206.

[60] Chien, G., and P. R. Gray, ‘‘A 900-MHz Local Oscillator Using a DLL-Based Frequency
Multiplier Technique for PCS Applications,’’ IEEE J. Solid-State Circuits, Vol. 35,
December 2000, pp. 1996–1999.

[61] Maillard, X., F. Devisch, and M. Kuijk, ‘‘A 900-Mb/s CMOS Data Recovery DLL Using
Half-Frequency Clock,’’ IEEE J. Solid-State Circuits, Vol. 37, June 2002, pp. 711–715.

[62] Tierney, J., C. M. Rader, and B. Gold, ‘‘A Digital Frequency Synthesizer,’’ IEEE Trans.
Audio Electroacoust., Vol. AU-19, 1971, pp. 48–57.

[63] Bjerede, B., and G. Fisher, ‘‘A New Phase Accumulator Approach to Frequency Synthe-
sis,’’ Proceedings of the National Aerospace and Electronics Conference, May 1976,
pp. 928–932.

[64] Cole, C., ‘‘Design of a Direct Digital Synthesizer,’’ master’s thesis, Massachusetts Institute
of Technology, Boston, 1982.

[65] Essenwanger, K. A., ‘‘Spurious Suppression in Direct Digital Frequency Synthesis by
Combined Dithered Accumulator and Sine Approximation Techniques,’’ master’s thesis,
California State Polytechnic University, Pomona, May 1987.

[66] Essenwanger, K. A., and V. S. Reinhardt, ‘‘Sine Output DDSs: A Survey of the State of
the Art,’’ 52nd Frequency Control Symposium, Pasadena, CA, May 1998, pp. 370–378.

[67] Flanagan, M. J., and G. A. Zimmerman, ‘‘Spur-Reduced Digital Sinusoid Synthesis,’’
IEEE Trans. on Comm., Vol. 43, No. 7, July 1995, pp. 2254–2262.

[68] Garvey, J. F., and D. Babitch, ‘‘An Exact Spectral Analysis of a Number Controlled
Oscillator Based Synthesizer,’’ 44th Frequency Control Symposium, Baltimore, MD,
May 1990, pp. 511–521.

[69] Gillette, G. C., ‘‘The Digiphase Synthesizer,’’ Proc. 23rd Frequency Control Symposium,
Atlantic City, NJ, May 1969, pp. 201–210.

[70] Goldberg, B. G., Digital Frequency Synthesis Demystified: DDS and Fractional-N PLLs,
Eagle Rock, VA: Llh Technology Publishing, 1999.

[71] Grayver, E., and B. Daneshrad, ‘‘Direct Digital Frequency Synthesis Using a Modified
Cordic,’’ Proc. of the International Circuits and Systems Conference, Vol. 5, 1998,
pp. 241–245.

[72] Hassun, R., ‘‘The Common Denominators in Fractional N,’’ Microwaves & RF,
Vol. 23, June 1984, pp. 107–110.

[73] Hutchinson, B. H., Jr., ‘‘Contemporary Frequency Synthesis Techniques,’’ Chapter 1 in
J. Gorsky-Popiel, (ed.), Frequency Synthesis and Applications, New York: IEEE Press,
1975.

[74] Kroupa, V. F., ‘‘Spectral Purity of Direct Digital Frequency Synthesizers,’’ 44th Frequency
Control Symposium, Baltimore, MD, May 1990, pp. 498–510.

[75] Kroupa, V. F., (ed.), Digital Frequency Synthesis, New York: IEEE Press, 1999.

[76] Lundgren, R. E., V. S. Reinhardt, and K. W. Martin, ‘‘Designs and Architectures for
EW/Communications Direct Digital Synthesizers,’’ Research and Development Technical
Report, SLCET-TR-0424-F, U.S. Army Laboratory Command, 1st Interim Report,
November 1986; Final Report, August 1987.

40 Synthesizer Architectures

[77] Nicholas, H. T., III, H. Samueli, and B. Kim, ‘‘The Optimization of Direct Digital
Frequency Synthesizer Performance in the Presence of Finite Word Length Effects,’’ 42nd
Frequency Control Symposium, Baltimore, MD, June 1988, pp. 357–363.

[78] Nicholas, H. T., III, and H. Samueli, ‘‘An Analysis of the Output of Direct Digital
Frequency Synthesizers in the Presence of Phase-Accumulator Truncation,’’ 41st Fre-
quency Control Symposium, Philadelphia, PA, May 1987, pp. 495–502.

[79] Nossen, E. J., ‘‘Digital Frequency Synthesis,’’ U.S. Patent 4,206,425, June 3, 1980.

[80] O’Leary, P., and F. Maloberti, ‘‘A Direct-Digital Synthesizer with Improved Spectral
Performance,’’ IEEE Trans. on Comm., Vol. 39, July 1991, pp. 1045–1048.

[81] Reinhardt, V. S., ‘‘Direct Digital Synthesizers,’’ Proceedings of the 17th PTTI Planning
Meeting, Washington, DC, December 1985.

[82] Reinhardt, V. S., and I. Shahriary, ‘‘Spurless Fractional Divider Direct Digital Frequency
Synthesizer and Method,’’ U.S. Patent 4,815,018, March 21, 1989.

[83] Reinhardt, V. S., ‘‘Method and Apparatus for Reduced Aliasing in Signal Processing,’’
U.S. Patent 4,890,249, December 26, 1989.

[84] Reinhardt, V. S., K. V. Gould, and K. M. McNab, ‘‘Randomized Digital/Analog Converter
Direct Digital Synthesizer,’’ U.S. Patent 5,014,231, May 7, 1991.

[85] Reinhardt, V. S., ‘‘Spur Reduction Techniques in Direct Digital Synthesizers,’’ Proc.
Frequency Control Symposium, June 1993, pp. 230–241.

[86] Rohde, U., Digital PLL Frequency Synthesizers—Theory and Design, New York: Prentice
Hall, 1983.

[87] Sunderland, D., et al., ‘‘CMOS/SOS Frequency Synthesizer LSI Circuit for Spread Spec-
trum Communications,’’ IEEE J. Solid-State Circuits, Vol. 19, No. 4, August 1984,
pp. 497–506.

[88] Tierney, J., et al., ‘‘A Digital Frequency Synthesizer,’’ IEEE Trans. Audio Electroacoust.,
Vol. AU-19, March 1971, p. 48.

[89] Vankka, J., ‘‘Spur Reduction Techniques in Sine Output Direct Digital Synthesis,’’ IEEE
International Frequency Control Symposium, 1996, pp. 951–959.

[90] Vankka, J., et al., ‘‘A Direct Digital Synthesizer with an On-Chip D/A-Converter,’’ IEEE
J. Solid-State Circuits, Vol. 33, February 1998, pp. 218–227.

[91] Volder, J. E., ‘‘The CORDIC Trigonometric Computing Techniques,’’ IRE Trans. on
Electronic Computers, Vol. EC-8, 1959.

[92] Wheatley, C. E., III, and D. E. Phillips, ‘‘Spurious Suppression in Direct Digital Synthe-
sizers,’’ in Direct Digital Frequency Synthesizer, pp. 119–126, New York: IEEE Press,
1999.

[93] Wheatley, C. E., III, ‘‘Digital Frequency Synthesizer with Random Jittering for Reducing
Discrete Spectral Spurs,’’ U.S. Patent 4,410,954, October 18, 1983.

[94] Nicholas, H. T., and H. Samueli, ‘‘An Analysis of the Output Spectrum of Direct Digital
Frequency Synthesizers in the Presence of Phase-Accumulator Truncation,’’ Proc. 41st
Annual Frequency Control Symp., Philadelphia, PA, May 1987, pp. 495–502.

[95] O’Leary, P., and F. Maloberti, ‘‘A Direct-Digital Synthesizer with Improved Spectral
Performance,’’ IEEE Trans. Comm., Vol. 39, No. 7, July 1991, pp. 1046–1048.

[96] Kim, B., H. T. Nicholas, and H. Samueli, ‘‘The Optimization of Direct Digital Frequency
Synthesizer in the Presence of Finite Word Length Effects,’’ Proc. 42nd Annual Frequency
Control Symp., Baltimore, MD, 1988, pp. 357–363.

[97] Madisetti, A., A. Kwentus, and A. Willson, ‘‘A 100-MHz, 16-b, Direct Digital Frequency
Synthesizer with a 100-dBc Spurious-Free Dynamic Range,’’ IEEE J. Solid-State Circuits,
Vol. 34, August 1999, pp. 1034–1043.

[98] Song, Y., and B. Kim, ‘‘A 14-b Direct Digital Frequency Synthesizer with Sigma-Delta
Noise Shaping,’’ IEEE J. Solid-State Circuits, Vol. 39, May 2004, pp. 847–851.

2.8 Hybrid Frequency Synthesizers 41

[99] Nicholas, H., and H. Samueli, ‘‘A 150-MHz Direct Digital Frequency Synthesizer in
1.25-mm CMOS with −90-dBc Spurious Performance,’’ IEEE J. Solid-State Circuits,
Vol. 26, December 1991, pp. 1959–1969.

[100] Yamagishi, A., et al., ‘‘A 2-V, 2-GHz Low-Power Direct Digital Frequency Synthesizer
Chip-Set for Wireless Communication,’’ IEEE J. Solid-State Circuits, Vol. 33, February
1998, pp. 210–217.

[101] Torosyan, A., D. Fu, and A. Willson, ‘‘A 300-MHz Quadrature Direct Digital Synthesizer/
Mixer in 0.25-mm CMOS,’’ IEEE J. Solid-State Circuits, Vol. 38, June 2003,
pp. 875–887.

[102] Saul, P., and M. Mudd, ‘‘A Direct Digital Synthesizer with 100-MHz Output Capability,’’
IEEE J. Solid-State Circuits, Vol. 23, June 1988, pp. 819–821.

[103] Vankka, J., et al., ‘‘A Direct Digital Synthesizer with an On-Chip D/A-Converter,’’ IEEE
J. Solid-State Circuits, Vol. 33, February 1998, pp. 218–227.

[104] Nakagawa, T., and H. Nosaka, ‘‘A Direct Digital Synthesizer with Interpolation Cir-
cuits,’’ IEEE J. Solid-State Circuits, Vol. 32, February 1997, pp. 766–770.

[105] Nosaka, H., et al., ‘‘A Low-Power Direct Digital Synthesizer Using a Self-Adjusting
Phase-Interpolation Technique,’’ IEEE J. Solid-State Circuits, Vol. 32, August 2001,
pp. 1281–1285.

[106] Jiang, J., and E. Lee, ‘‘A Low-Power Segmented Nonlinear DAC-Based Direct Digital
Frequency Synthesizer,’’ IEEE J. Solid-State Circuits, Vol. 37, October 2002,
pp. 1326–1330.

[107] Sodagar, A. M., and G. R. Lahiji, ‘‘Mapping ROM Phase to Sine-Amplitude in Direct
Digital Frequency Synthesizers Using Parabolic Approximation,’’ IEEE Trans. Circuits
Syst. II, Vol. 47, December 2000, pp. 1452–1457.

[108] Mortezapour, S., and E. K. F. Lee, ‘‘Design of Low-Power Frequency Synthesizer Using
Nonlinear Digital-to-Analog Converter,’’ IEEE J. Solid-State Circuits, Vol. 34, October
1999, pp. 1350–1359.

[109] Nakamura, Y., et al., ‘‘A 10-b 70-MS/s CMOS D/A Converter,’’ IEEE J. Solid-State
Circuits, Vol. 26, April 1991, pp. 637–642.

[110] Vorenkamp, P., et al., ‘‘A 1 Gs/s, 10 bit Digital-to-Analog Converter,’’ ISSCC Dig. Tech
Papers, San Francisco, CA, February 1994, pp. 52–53.

[111] Yamashina, M., and H. Yamada, ‘‘MOS Current Mode Logic MCML Circuit for Low-
Power GHz Processors,’’ NEC Res. Develop., Vol. 36, No. 1, January 1995, pp. 54–63.

[112] Vandenbussche, J., et al., ‘‘A 14 Bit 100 MSamples Update Rate 42 Random Walk
CMOS D/A Converter,’’ ISSCC Dig. Tech Papers, San Francisco, CA, February 1999,
pp. 146–147.

[113] Van den Bosch, A., M. Steyaert, and W. Sansen, ‘‘SFDR-Bandwidth Limitations for High
Speed High Resolution Current Steering CMOS D/A Converters,’’ IEEE International
Conference on Electronics, Circuits and Systems, Pafos, Cyprus, September 1999,
pp. 1193–1196.

[114] Gutierrez-Aitken, A., et al., ‘‘Ultrahigh-Speed Direct Digital Synthesizer Using InP DHBT
Technology,’’ IEEE J. Solid State Circuits, September 2002, pp. 1115–1121.

[115] Dai, F. F., et al., ‘‘A Low Power 5 GHz Direct Digital Synthesizer Implemented in SiGe
Technology,’’ IEEE 5th Topical Meeting on Silicon Monolithic Integrated Circuits in
RF Systems, Atlanta, GA, September 2004, pp. 21–24.

[116] Driscoll, M. M., ‘‘Phase Noise Performance of Analog Frequency Dividers,’’ Proc. Fre-
quency Control Symposium, Denver, CO, June 1989, pp. 342–348.

[117] Egan, W. E., ‘‘Modeling Phase Noise in Frequency Dividers,’’ IEEE Trans. on Ultrasonics,
Ferroelectrics, and Frequency Control, Vol. 37, July 1990, pp. 307–315.

[118] Harrison, R. G., ‘‘Theory of Regenerative Frequency Dividers Using Double-Balanced
Mixers,’’ IEEE MTT-S Digest, Vol. 1, June 1989, pp. 267–270.

42 Synthesizer Architectures

[119] Llopis, O., et al., ‘‘Phase Noise Performance of Microwave Analog Frequency Dividers-
Applications to the Characterization of Oscillators up to the MM-Wave Range,’’ Fre-
quency Control Symposium, Pasadena, CA, May 1998, pp. 550–554.

[120] Wachnick, R. A., T. J. Bucelot, and G. P. Li, ‘‘Degradation of Bipolar Transistors under
High Current Stress at 300K,’’ J. Appl. Phys., Vol. 63, No. 9, 1988, pp. 4734–4740.

[121] Rubiola, E., M. Olivier, and J. Groslambert, ‘‘Phase Noise in the Regenerative Frequency
Dividers,’’ IEEE Trans. I&M, Vol. 41, June 1992, pp. 353–360.

C H A P T E R 3

System-Level Overview of PLL-Based
Frequency Synthesis

3.1 Introduction

There are many ways to realize synthesizers; possibly the most common is based
on a PLL [1–7]. PLL-based synthesizers can be further subdivided by which type
of a division is used in the feedback path. The division ratio N can be either an
integer or a fractional number. If the number is fractional, then the synthesizer is
called a fractional-N synthesizer. This type of synthesizer can be further distin-
guished by the method used to control the divide ratio, for example by a SD

controller or by some other technique. In this chapter, analysis is done with a
general N without giving the details of how N is implemented; thus, the analysis
is applicable both to integer-N and fractional-N synthesizers. An example of a
synthesizer not based on a PLL is the direct-digital synthesizer.

3.2 PLLs (Example of a Feedback System)

Figure 3.1 shows a block diagram for a PLL. In brief, the PLL is a feedback system
that forces the divided-down VCO output phase to follow the reference signal
phase. That is, it is a negative feedback loop with phases as the input and output
signals. The loop is composed of a phase detector, a lowpass filter, a VCO, and a
divider. The phase detector, which is the summing block of the feedback system,
is used to compare output phase uo to reference phase uR . The LPF controls the
loop’s dynamic behavior, which is usually a linear transfer function that is placed
in the system to control the settling time, transient response, and so forth. The
VCO generates the output signal, and the divider divides the VCO output signal
back down to the same frequency as the input. Since fo is divided down from the
VCO output, it follows that fVCO is N ? fref . We use a feedback system based on
phase rather than frequency because, in any feedback loop without infinite dc gain,
there is always an error (finite error signal) between the input (reference) and the
output. Thus, if we used a frequency-locked loop, then, in most cases, there would
be an error in the output frequency, and it would not track the input as precisely
as does a loop based on phase. The input reference in wireless communications is
a quartz crystal. These crystals are low in cost and can be made to resonate with
extreme accuracy at a particular frequency determined by the physical properties

43

44 System-Level Overview of PLL-Based Frequency Synthesis

Figure 3.1 A basic block diagram of a frequency synthesizer.

of the crystal. Unfortunately, they can only resonate at frequencies as high as about
100 MHz, and, therefore, cannot be used directly as an LO in RF applications.
The other disadvantage to using a crystal directly is that there is no convenient
way to tune its frequency. This is one of the main reasons that frequency synthesizers
have become so popular. If the divider block is implemented using circuitry such
that the divide ratio is programmable, then a range of frequencies can be obtained
without the need to change the reference frequency.

3.3 PLL Components

We will now briefly look at the basic components needed to make a PLL-based
synthesizer and their governing equations. This chapter will provide only a very
basic introduction to these components and consider only the most common forms
of these circuits. Later chapters will deal with each of these circuits and variations
on them in much more detail. For now, enough information will be given to allow
the system-level analysis of a PLL.

3.3.1 VCOs and Dividers

At the most basic level, all VCOs will have an output frequency with some depen-
dence on the control voltage (or sometimes control current) as shown in Figure
3.2. Note that the curve is not always linear (actually, it is hardly ever linear), but,
for the moment, we will assume that it is. Also, note that the control voltage can
usually be adjusted between ground and the power-supply voltage and that, over
that range, the VCO frequency will move between some minimum and some
maximum value.

Here, Vc is the nominal control voltage coming from the loop filter, and vnom
is the nominal frequency at this nominal voltage. Usually, when considering loop
dynamics, we only consider frequency deviations away from the nominal frequency
v VCO and voltage deviations away from the nominal voltage vc . Thus, we can
write the oscillating frequency as

vo = vnom + v VCO = vnom + KVCOvc (3.1)

where

3.3 PLL Components 45

Figure 3.2 A typical VCO characteristic.

vc = vC − VC_nom (3.2)

In addition, if we remove the ‘‘dc’’ part of the equation and only consider the
part that is changing, we are left with

v VCO = KVCOvc (3.3)

However, we would like to have an expression relating input voltage to output
phase since the output of the VCO ultimately goes to the phase detector. To relate
frequency v to phase u , we note that

v =
du
dt

(3.4)

Therefore, the output phase of the VCO can be given as

u VCO = Ev VCO dt = KVCO E
t

0

vc (t) dt (3.5)

In the Laplace domain, this becomes

u VCO(s)
vc (s)

=
KVCO

s
(3.6)

Thus, we have the desired equation for the transfer function of the VCO block.
Note that, for the purposes of system behavior, the divider can be thought of as
an extension of the VCO. The output phase after the divider is simply

uo
vc

=
1
N

?
KVCO

s
(3.7)

46 System-Level Overview of PLL-Based Frequency Synthesis

Example 3.1: Example of VCO Excess Phase
Assume two VCOs are identical. One has a constant VC_nom = 1.5V bias applied
to its control line, and the other has a 1.5-V bias applied to its control line, but
this voltage experiences a transient step of 300 mV for a period of 100 ps, 200 ps
after the VCOs have been started. Each VCO has a KVCO of 100 MHz/V and an
fnom of 2 GHz. Determine the total accumulated phase of each VCO after a period
of 1 ns. What is the excess phase of the VCO that experiences the transient?

Solution: Each VCO will operate nominally at a frequency of 2 GHz, which
corresponds to a period of 500 ps. Thus, in 1 ns, the first VCO will accumulate
a total phase of 4p rad. The second VCO will run 300 mV ? 100 MHz/V = 30
MHz faster for a time of 100 ps. Thus, during this time, fVCO = 30 MHz. As a
result, it accumulates an excess phase of

Excess phase = (2p ? 30 MHz) ? 100 ps = 1.88 ? 10−2 rad

or 1.1°, in addition to the 4p of phase that it accumulated due to the dc voltage.
Thus, it has been disturbed from its nominal operating point by 1.1°. This excess
phase is the only phase that we generally consider when doing small-signal analysis
for PLLs.

3.3.2 Phase Detectors

A phase detector produces an output signal proportional to the phase difference
of the signals applied to its inputs. The inputs and outputs can be sine waves,
square waves, or other periodic signals, not necessarily having a 50% duty cycle.
The output signal could be a current or voltage, and it could have multiple frequency
components. Since the dc value is the component of interest, the phase detector is
typically followed by some sort of filter. Thus, the equation that describes a phase
detector is

ve (s) = Kphase [uR (s) − uo (s)] (3.8)

provided that the phase detector is a continuous-time circuit (which is often not
the case in IC implementations). The output of the phase detector, ve (s), is often
also called the error voltage and is seen to be proportional to the difference of the
input phases with proportionality constant Kphase . This is a linearized equation,
often valid only over limited range. Another comment that can be made about
phase detectors is that, often, they respond in some way to a frequency difference
as well. In such a case, the circuit is often referred to as a phase-frequency detector
(PFD).

The phase detector can be as simple as an ‘‘exclusive or’’ (XOR) gate or an
‘‘exclusive nor’’ (XNOR) gate. Typical phase detectors are usually more compli-
cated; for example, flip-flops form the basis of tristate phase detectors. Phase
detectors are also often combined with charge pumps.

3.3.2.1 The Exclusive NOR Gate as a Phase Detector

Figure 3.3 shows the XNOR gate used as a phase detector and the dc output
voltage versus phase difference. It can be seen that the output is maximum when

3.3 PLL Components 47

Figure 3.3 The XNOR phase detector and its average output voltage versus phase input.

the inputs are in phase and minimum when the inputs are out of phase. The
midpoint output occurs for inputs at 90°; thus, this is the nominal input phase.
That is, for minimum and maximum output voltages equally below and above
ground, respectively, the output will be 0V when the inputs are 90° apart.

Figure 3.4 shows the time domain waveforms of the XNOR gate at phase
angles of 90°, 45°, and 135°, which help to explain how the graph in Figure 3.3
was obtained. As expected, at 90° the output has a 50% duty-cycle waveform with
an average voltage halfway between the two voltage extremes. An average value
for any other phase difference can be determined in a similar manner.

Once the graph in Figure 3.3 has been constructed, it is easy to see that, for
this phase detector, Kphase is given by

Kphase = ±
VDD

p
(3.9)

Figure 3.4 Waveforms of the XNOR phase detector.

48 System-Level Overview of PLL-Based Frequency Synthesis

Note that, depending on the value of the phase difference, the slope can be
positive or negative. This very useful property can ensure that accidents with
feedback polarity in PLLs do not cause instability.

3.3.2.2 PFD and Charge Pump

A much more common type of phase detector is the tristate phase detector, often
called a phase frequency detector (PFD), which has two outputs, as shown in Figure
3.5. If the reference phase (vR) is ahead of the output phase (vo), then the circuit
produces an UP signal that tells the VCO to speed up and, therefore, advance its
phase to catch up with the reference phase. Conversely, if the reference phase is
lagging behind the output phase, it produces a DN signal that tells the VCO to
slow down and, therefore, retard its phase to match the reference phase. If the
reference and output are in phase, then the phase detector does not produce an
output. The UP and DN signals are also sometimes called vU and vD , respectively.

The two digital signals produced by a PFD have to be converted back into an
analog control signal at the input of the VCO, and the circuit most commonly
used to do this is called a charge pump. A charge pump is made of two controllable
current sources connected to a common output, also shown in Figure 3.5. The
outputs from the phase detector turn on one of the two currents, which either
charge or discharge capacitors attached to the VCO input.

The PFD circuitry will be discussed in Chapter 6, but here is a quick description
of its operation based on the state diagram shown in Figure 3.6. Transitions happen

Figure 3.5 Tristate phase detector and charge pump.

Figure 3.6 PFD state diagram.

3.3 PLL Components 49

only on the rising edge of vo or vR . Let us assume that we start in the middle state,
the tristate where both outputs are zero. Then, depending on which edge arrives
first, the PFD moves either to the up or down state. If the reference edge arrives
first, the output needs to catch up, so the up switch turns on to charge up the
output. It stays up until the other edge comes along; thus, the average output
current from the charge pump depends on how far apart the two signals are. On
the other hand, if the reference is lagging behind the output, then the output is
too fast and needs to be slowed down. This causes a down pulse to be generated,
and, as a result, current flows out of the charge pump, discharging the output.
Current flows for the length of time t between the output edge and the reference
edge. If the period is T, the average output current is

id = I
t
T

= S I
2p D (uR − uo) (3.10)

Thus, Kphase for this phase detector is

Kphase =
I

2p
(3.11)

where I is the current that flows through the controllable current sources in the
charge pump when they are on.

The operation of the PFD and current sources is shown in Figure 3.7. The
movement from state to state is controlled by the rising edge only, so the pulse
width of the input signals is not important. We have shown the pulses as being
narrow, but it would work equally well using wider pulses. In the diagram, it is
shown that for the same phase difference between vo and vR , the output current
depends on where the operation starts. In Figure 3.7(a), the vo edge comes first,
resulting in down pulses and a negative average-output current. In Figure 3.7(b),
the vR edge comes first, resulting in up pulses and a positive average-output current.
We note also that if the vo pulse were delayed (moved towards the right) in Figure
3.7(a), the down pulses would become narrower, resulting in average current closer
to zero. In Figure 3.7(b), for the same delay of the vo pulses, the up pulses become
wider, and the average current moves closer to I. Note that the short pulses

Figure 3.7 Operation of PFD and current sources, with starting points (a) before vo and
(b) before vR .

50 System-Level Overview of PLL-Based Frequency Synthesis

associated with UP in Figure 3.7(a) and DN in Figure 3.7(b) are realistic. They are
the result of details of the PFD design and will be discussed in Chapter 6.

If this average output current is now plotted as a function of the phase difference,
with vR taken as the reference, the result can be interpreted as the transfer function
of the phase detector and charge pump and is shown in Figure 3.8. We note that
any positive phase (for example, 60°, for which the output current would be
I × 60/360) could be interpreted as the equivalent negative phase (for example,
+60° is equivalent to −300°, for which the current is equal to −I × 300/360). Thus,
for every phase difference, there are two possible interpretations, and this is shown
by the solid and dashed lines in Figure 3.8. We note that this is equivalent to
starting the phase detector in a different state or at a different time, as was shown
in Figure 3.7.

To illustrate how this phase detector can also be used as a frequency detector,
Figure 3.9 shows waveforms for two different input frequencies. We have assumed
that we start in tristate. Since the output pulse vo occurs first, down pulses DN
occur, which would result in negative output current pulses id and an average
negative output current, shown by the dotted line. However, since the frequencies
are different, the pulse width is changing, in this case becoming narrower and the
average current is moving towards zero. Eventually, the phase detector experiences
a second reference pulse vR before the output pulse vo and moves into the up state,
and up current pulses id result. From then on, the phase detector output states will
be either tristate or in the up state, so only positive current is ever provided. In
this way, it can be seen that, for a reference frequency higher than the output
frequency, average current is positive. Similarly, for a reference frequency lower

Figure 3.8 Average output current versus phase for PFD and charge pump.

Figure 3.9 Output pulses for inputs at different frequencies.

3.3 PLL Components 51

than the output frequency, the average output current is always negative (except,
of course, possibly for a short time at startup). Thus, with the correct feedback
polarity, this current can be used to correct the VCO frequency until it is the same
as the reference frequency, and the loop is locked.

3.3.3 The Loop Filter

Normally, VCOs are controlled by voltage and not current. Thus, generally, we
need a method to turn the current produced by the charge pump back into a
voltage. In addition, lowpass filtering is needed since it is not desirable to feed
pulses into the VCO. This is usually done by dumping the charge produced by the
charge pump onto the terminals of a capacitor. As we will show later, a simple
capacitor all by itself does not yield a stable loop, so a combination of capacitors
and resistors is used. This part of the PLL is typically called the loop filter. One
of the most common loop filters used is shown in Figure 3.10. Note that PLLs
that do not use charge pumps have loop filters as well. In addition to turning the
current back into the voltage, loop filters are also the components most commonly
used to control system-level loop dynamics.

The frequency response of the PFD, charge pump, and loop filter is mainly
determined by the loop filter. The frequency response of the network (seen in
Figure 3.10) will now be analyzed, starting with the admittance of the capacitor
and resistor circuit.

Y = sC2 +
1

R +
1

sC1

= sC2 +
sC1

sC1R + 1
=

sC2(sC1R + 1) + sC1
sC1R + 1

(3.12)

This admittance can be used to determine vc the control voltage of the VCO
as follows:

vc =
id
Y

=
Kphase (uR − uo) (sC1R + 1)

sC2(sC1R + 1) + sC1
=

Kphase (uR − uo) (1 + sC1R)
s(C1 + C2)(1 + sCsR)

(3.13)

where

Figure 3.10 A typical loop filter.

52 System-Level Overview of PLL-Based Frequency Synthesis

Cs =
C1C2

C1 + C2
and Kphase =

I
2p

Figure 3.11 shows the frequency response of the charge pump and filter as
given in (3.13) We note that at low frequencies, the response is dominated by the
zero in the transfer function; thus, the circuit acts like an integrator. Also note that
this has been derived in continuous time and, as long as the pulses are much faster
than any changes of interest at the output, this is a reasonable assumption.

3.4 Continuous-Time Analysis for PLL Synthesizers

The s domain model for a synthesizer is shown in its most general form in Figure
3.12. Here, any loop filter (in combination with a charge pump) is simply shown

Figure 3.11 PFD, charge pump, and loop filter frequency response.

Figure 3.12 Complete loop in the frequency domain.

3.4 Continuous-Time Analysis for PLL Synthesizers 53

as F(s), and the dc gain is brought out explicitly as term Ao . We can therefore
derive the basic loop transfer function for the loop.

3.4.1 Simplified Loop Equations

The overall transfer function is

uo
uR

=

AoKphaseF(s)
N

?
KVCO

s

1 +
AoKphaseF(s)

N
?

KVCO
s

=
KF(s)

s + KF(s)
(3.14)

where K is given by

K =
AoKphaseKVCO

N
(3.15)

Now (3.14) is the most general PLL loop equation, and, for specific loops, it
differs only in the form that F(s) takes. For instance, in a first-order loop, F(s) is
simply equal to one. In this case, the loop equation becomes

uo
uR

=
K

s + K
(3.16)

Note that for this first-order loop, for a phase ramp (change in frequency), the
phase error is not zero because there are not enough integrators in the loop. Since
zero phase error is often highly desired, and due to its lack of flexibility, this loop
is not often used in practice.

A much more common PLL is the second-order PLL, an example of which is
the PFD/CP-based PLL. A typical second-order PLL has a loop filter with a transfer
function of

F(s) =
ts + 1

s
(3.17)

A PFD/CP-based PLL with the loop filter, as previously discussed, is an example
of a second-order PLL, as will now be shown. Figure 3.13 shows the most common
system-level configuration. In this case (assuming for the moment that we ignore
C2), the impedance of the loop filter is

F(s) = R +
1

sC1
=

sC1R + 1
sC1

(3.18)

Note that this transfer function is an impedance since this stage converts current
to voltage, which is not a typical transfer function but works here. Thus, we can
substitute this back into (3.14) and, therefore, find

54 System-Level Overview of PLL-Based Frequency Synthesis

Figure 3.13 A frequency synthesizer implemented with a charge pump and PFD.

uo
uR

=

IKVCO
2p ? N SR +

1
sC1

D
s +

IKVCO
2p ? N SR +

1
sC1

D =

IKVCO
2p ? NC1

(RC1s + 1)

s2 +
IKVCO
2p ? N

Rs +
IKVCO

2p ? NC1

(3.19)

Thus, for this PLL, we get a second-order transfer function with a zero. Note
that the purpose of R can be seen directly from this equation. If R is set equal to
zero, it can be seen by inspection of (3.19) that the poles of this equation will sit
on the jv axis, and the loop will oscillate or be on the verge of oscillating. From
(3.19), expressions for the loop dynamics can be determined. The natural frequency
of the loop is given by

vn = √ IKVCO
2p ? NC1

(3.20)

The damping constant is given by

z =
R
2 √IKVCOC1

2p ? N
(3.21)

Often the resistor and capacitor values are to be determined for a known
damping constant and natural frequency. It is straightforward to solve these two
equations for these variables:

C1 =
IKVCO

2p ? Nv2
n

(3.22)

and

3.4 Continuous-Time Analysis for PLL Synthesizers 55

R = 2z √ 2p ? N
IKVCOC1

= z
4p ? Nvn

IKVCO
(3.23)

From the above, it can be shown that (3.19) can be rewritten in a general form
as

uo
uR

=
v2

n S2z
vn

s + 1D
s2 + 2zvns + v2

n
(3.24)

This demonstrates that there is a relationship between the pole and zero
locations.

Note that it is easy to determine the transfer function, even if the output is
taken from other places in the loop. For instance, it is often interesting to look at
the control voltage going into the VCO. In this case, the system transfer function
becomes

vC
uR

=

I ? s
2p ? C1

(RC1s + 1)

s2 +
IKVCO
2p ? N

Rs +
IKVCO

2p ? NC1

=

Nv2
n

KVCO
s S2z

vn
s + 1D

s2 + 2zvns + v2
n

(3.25)

This expression contains an extra s in the numerator. This makes sense because
the control voltage is proportional to the frequency of the VCO, which is the
derivative of the phase of the output. We can also write an expression for the
output frequency (as given by the control voltage) as a function of the input
frequency, noting that frequency is the derivative of phase and starting from (3.25):

vC
uRs

= 3
I ? s

2p ? C1
(RC1s + 1)

s2 +
IKVCO
2p ? N

Rs +
IKVCO

2p ? NC1
4 1

s
= 3

Nv2
n

KVCO
s S2z

vn
s + 1D

s2 + 2zvns + v2
n
4 1

s
(3.26)

vC
vR

=

Nv2
n

KVCO
S2z

vn
s + 1D

s2 + 2zvns + v2
n

which is nearly identical to the expression for phase transfer function uo /uR given
by (3.24).

3.4.2 PLL System Frequency Response and Bandwidth

Figure 3.14 is a plot of the closed-loop transfer function for the PFD/CP-based
PLL, which is described by (3.19) and (3.24) for different values of the damping
constant. This diagram shows that the loop’s 3-dB bandwidth is highly dependent

56 System-Level Overview of PLL-Based Frequency Synthesis

Figure 3.14 PLL frequency response of the closed-loop transfer function of a high-gain,
second-order loop. Note, the graph is for either of the two functions shown.

on the damping constant. Using a method similar to that presented in Section
A.4.1, it can be shown that the 3-dB bandwidth of this system is given by

v3 dB = vn√1 + 2z 2 + √4z 4 + 4z 2 + 2 (3.27)

Since this equation can be tedious without a calculator, two equations some-
times used to approximate this are

v3 dB ≈ 2zvn z > 1.5 (Approximation #1) (3.28)

v3 dB ≈ X1 + z√2 Cvn z < 1.5 (Approximation #2)

The validity of these two approximations can also be illustrated with a simple
plot, and they are compared in Figure 3.15.

3.4.3 Complete Loop Transfer Function, Including C2

Note that if C2 is included, this adds a high-frequency pole to the system. Normally,
this capacitor is chosen to be about one-tenth of the value of C1 and is included
to clean up high-frequency ripple on the control line. If this capacitor is included,
then the following expression for open-loop gain can be derived:

Suo
uR

D
open loop

=
KVCOKphase (1 + sC1R)

s2N(C1 + C2)(1 + sCsR)
(3.29)

3.4 Continuous-Time Analysis for PLL Synthesizers 57

Figure 3.15 Comparison of bandwidth formulas for PLLs.

Here, Cs is the series combination of C1 and C2 . This is plotted in Figure 3.16,
which shows a low-frequency slope of −40 dB/dec and 180° of phase shift. After
the zero, the slope is −20 dB/dec, and the phase heads back towards 90° of phase
shift. After the high-frequency pole, the slope is again −40 dB/dec, and the phase
approaches 180°. Note that the dashed lines in the graph show the response of
the system if the capacitor C2 is not included. For optimal stability (maximum
phase margin in the system), the unity gain point should be at the geometric mean
of the zero and the high-frequency pole since this is the location where the phase

Figure 3.16 Open-loop magnitude and phase response. Note that the dotted line shows response
if the high-frequency pole is not included.

58 System-Level Overview of PLL-Based Frequency Synthesis

shift is furthest from 180°. Some may wonder, after seeing this plot, if the system
is actually unstable at dc because, at this point, the phase shift is 180°, and the
gain is greater than one. In fact, the system is stable. A full stability analysis, like
plotting the closed-loop poles, would show this.

The closed-loop gain with C2 is given by

uo
uR

=
KVCOKphase (1 + sC1R)

s2N(C1 + C2)(1 + sCsR) + KVCOKphase (1 + sC1R)
(3.30)

Thus, one can now estimate all of the parameters of the loop. Figure 3.16
shows that if the zero and the high-frequency pole are relatively far apart, then,
up to the unity gain point, the loop parameters are nearly the same whether or
not the high-frequency pole is included. There is, however, a slight decrease of
phase margin (in the diagram, from about 75° to about 65°).

A cautionary note about the choice of C2 should also be sounded. It may not
always be appropriate to use a value of one-tenth C1 for the value of C2 . It has
been assumed in this section that, most of the time, C2 does not significantly change
the loop dynamics; however, R increases at high z , and, in this case, the impedance
of the series combination of C1 and R may become comparable to the impendence
of C2 at the loop natural frequency. If this happens, then the equations derived in
this section will become increasingly inaccurate, in which case, there will be no
choice but to reduce the value of C2 to less than C1 /10.

3.5 Discrete-Time Analysis for PLL Synthesizers

The preceding linear, continuous-time analysis of the synthesizer is not valid under
all conditions. If the loop bandwidth is increased so that it becomes a significant
fraction of the reference frequency, the previous analyses become increasingly
inaccurate. For this reason, it is sometimes necessary to treat the synthesizer system
as the discrete-time control system that it truly is [5]. To do this, we must consider
the PFD, which in this case is the sampling element. We assume that, in lock, the
PFD produces only narrow impulses at the reference frequency. Note that because
the charge pump behaves like an integrator, it has infinite gain at dc. Thus, as long
as the frequency deviation is small, this high gain drives the phase error towards
zero, and the output pulses will be narrow. Therefore, it acts like an ideal sampler.
The loop filter holds the charge dumped onto it in each cycle, so, in this system,
it acts as a hold function. Hence, this is a sampled system, and the s domain
combination of the VCO, divider, PFD, and loop filter must be converted into
their z domain equivalents (be careful to remember to multiply the functions
together before converting them into the z domain, as discussed in Appendix A).
Thus, the open-loop transfer function, including the sampling action of these four
blocks, is (ignoring C2) (see Figure 3.17)

3.5 Discrete-Time Analysis for PLL Synthesizers 59

Figure 3.17 Discrete-time, system-level diagram for a synthesizer.

GOL(s) = F(s) ? Kphase ?
KVCO
N ? s

? S1 − e −sT

s D
= SR +

1
sC1

D ?
KVCOKphase

N ? s
? S1 − e −sT

s D (3.31)

= v2
n1

2z
vn

s + 1

s2 2 ? S1 − e −sT

s D
where T is the period of the reference.

Now GOL(s) is converted to GOL(z) using Table A.1 in Appendix A:

GOL(z) =
v2

nT2

2 S1 +
4z

vnT D ? 3z −
4z − vnT
4z + vnT

(z − 1)2 4 = KF z − a

(z − 1)2G (3.32)

where the open-loop zero a , which has a value between −1 and +1, depending on
the reference period, is given by

a =
4z − vnT
4z + vnT

(3.33)

and the open-loop gain, which depends on the reference period, is given by

K =
v2

nT2

2 S1 +
4z

vnT D (3.34)

Now the closed-loop gain of the system can also be determined as

G(z) =
K(z − a)

z2 + (K − 2)z + (1 − aK)
(3.35)

60 System-Level Overview of PLL-Based Frequency Synthesis

Starting from either the open-loop gain and using root locus, or else directly
using the closed-loop transfer function, the pole locations as a function of the
reference period T can be sketched and are shown in Figure 3.18. Note that
depending on the specific parameters, this plot will change slightly, but the basic
shape of the root locus will remain the same. The point of greatest interest here
is that point at which the reference period is increased to some critical value and
the system becomes unstable, as one of the poles moves outside the unit circle. At,
or even close to, this period, the s domain analysis discussed in the previous section
will be increasingly inaccurate. Note that the reference frequency will not normally
be this low in the design of a PLL, but the designer must be aware of this so that
the assumptions of the previous section are not violated.

Now the poles of (3.35) are given by

Poles = 1 −
K
2

±
1
2√(K − 2)2 − 4(1 − aK) (3.36)

The pole that has the larger positive value is not of concern because it will
never leave the unit circle. However, it is of interest to find out when

1 −
K
2

−
1
2√(K − 2)2 − 4(1 − aK) = −1 (3.37)

Skipping a number of steps (primarily because they are boring), this will happen
when

K(1 + a) = 4 (3.38)

Taking this expression and substituting back in for K and a , the critical period
for which the loop will go unstable, TUS, is

Figure 3.18 Sketch of closed-loop pole location as a function of increasing reference period.

3.6 Transient Behavior of PLLs 61

TUS =
1

vnz
(3.39)

Noting that

TUS =
2p

v ref_crt
(3.40)

where v ref_crt , the reference frequency at which the loop goes unstable, can be
determined to be

v ref_crt = 2pzvn (3.41)

Therefore,

v ref
vn

≥ 2pz (3.42)

So, for instance, in the case of z = 0.707, this ratio must be greater than 4.4.
Therefore, for a reference frequency of 40 MHz, if the loop natural frequency is
set any higher than 9.1 MHz, the loop will go unstable. A ratio often quoted as
being ‘‘safe’’ is 10:1 [6].

3.6 Transient Behavior of PLLs

The two previous sections derived linear s domain equations that describe the PLL
as a classic feedback system and more complicated z domain equations. However,
the behavior of a real PLL is much more complex than either of these two analyses
can explain. This is because, until the loop starts tracking the phase of the input,
or, alternatively, if there is a very large step or ramp in the phase of the input, the
loop’s output phase may not be able to follow the input phase. This is primarily
due to the limitations of the phase detector, which has a narrow linear range. For
example, the tristate PFD has a linear range of ±2p . If an event at the input occurs
that causes the phase error to exceed 2p , then the loop will experience a nonlinear
event: cycle slipping. Remember that in the previous analysis, it was assumed that
the phase detector was linear. This nonlinear event will cause a transient response
that cannot be predicted by the theory of the previous section. The loop will, of
course, work to correct the phase and force the VCO to track the input once more.
When the loop goes into this process, it is said to be in acquisition mode as it is
trying to acquire phase lock but has not done so yet. Note that acquisition also
happens when the PLL is first powered since the VCO and reference will be at a
random phase and will probably have a frequency difference. In extreme cases,
the VCO may even be forced beyond its linear range of operation, which may
result in the loop losing lock indefinitely. These situations will now be explored.
First, the case in which the loop is in lock and experiences no cycle slipping will
be considered.

62 System-Level Overview of PLL-Based Frequency Synthesis

3.6.1 Linear Transient Behavior

Here, the linear transient response of the most common PLL presented in this
chapter will be considered further. This section discusses only the s domain response,
which, under most normal operating conditions, is sufficient. However, the z
domain equivalent of this analysis could be undertaken with the aid of the discussion
in Appendix A. For linear transient behavior, the phase error, rather than the
output phase, is needed, so a different transfer function has to be derived for the
system shown in Figure 3.13. The result is

u e
uR

=
s2

s2 + 2zvns + v2
n

(3.43)

In this section, we will see the response to an input frequency step Dv . Since
the input is described by phase, we take the phase equivalent of a frequency step,
which is equivalent to a ramp of phase (we note that phase is the integral of
frequency, and the integral of a step is a ramp). Thus, the input is described by

uR =
Dv

s2 (3.44)

This input in (3.44), when multiplied by the transfer function (3.43), results
in

u e =
Dv

s2 + 2zvns + v2
n

(3.45)

Then, the inverse Laplace transform is taken, with the following results:

u e (t) =
Dv
vn Fsinh vn√z 2 − 1 t

√z 2 − 1
Ge −zv n t z > 1 (3.46)

u e (t) =
Dv
vn

vnt ? e −v n t z = 1 (3.47)

u e (t) =
Dv
vn Fsin vn√1 − z 2 t

√1 − z 2 Ge −zv n t z < 1 (3.48)

These results are plotted in Figure 3.19 for various values of the damping
constant.

It can be seen that a damping constant of 0.707 to 1 results in the fastest
settling (reduction of phase error to zero). Depending on the required level of
settling, one can determine the settling time. To the accuracy of the above dia-
gram, settling is better than 99% complete when vnt = 7 for z = 0.707. Thus,

3.6 Transient Behavior of PLLs 63

Figure 3.19 Error for frequency-step, high-gain, second-order loop. Note, u e = uR − u o .

given a required settling time, one can calculate the required natural frequency.
To prevent the reference frequency from feeding through to the VCO, the loop
bandwidth, as shown in Figure 3.14 and estimated in (3.28), must be significantly
less than the reference frequency. In fact, the extra capacitor in the loop filter has
been added in order to provide attenuation at the reference frequency.

It is also interesting to look at the control voltage:

VC
vR

=

Nv2
n

KVCO
S2z

vn
s + 1D

s2 + 2zvns + v2
n

(3.49)

In this case, again, we apply a step in frequency so that

vR =
Dv
s

(3.50)

Note that this equation is given in the frequency, rather than the phase domain,
so s is raised to unity power in the denominator. Therefore, the control voltage is
given by

VC =

Nv2
n

KVCO
S2z

vn
s + 1D

s2 + 2zvns + v2
n

?
Dv
s

=

2z ? Nvn
KVCO

? Dv

s2 + 2zvns + v2
n

+

Nv2
n

KVCO
?

Dv
s

s2 + 2zvns + v2
n

(3.51)

64 System-Level Overview of PLL-Based Frequency Synthesis

Now the first term is simply a scaled version of the previous expression, and
the second term is the integral of the first term. Therefore, the transient expression
for the control voltage is given by

VC(t) =
z ? NDv

KVCO Fsinh vn√z 2 − 1 t

√z 2 − 1
Ge −zv n t −

NDv
KVCO

Fcosh vn√z 2 − 1 tGe −zv n t

+
NDv
KVCO

z > 1 (3.52)

VC(t) =
NDv
KVCO

vnt ? e −v n t −
NDv
KVCO

? e −v n t +
NDv
KVCO

z = 1 (3.53)

VC(t) =
z ? NDv

KVCO Fsin vn√1 − z 2 t

√1 − z 2 Ge −zv n t −
NDv
KVCO

Fcos vn√1 − z 2 tGe −zv n t

+
NDv
KVCO

z < 1 (3.54)

These expressions are plotted in Figure 3.20. Interestingly, from this expression,
it looks like high z is best for fast settling; however, it should be noted that, even
though the frequency appears to lock quickly, there is still a long period before
the system is phase locked. Therefore, although these plots may be useful for
comparison with the control voltage (which is more readily available from simula-
tion), they can also be misleading.

Figure 3.20 Control voltages for frequency-step, high-gain, second-order loop.

3.6 Transient Behavior of PLLs 65

Example 3.2: Limits of the Theory So Far
Assume that a synthesizer is designed with a charge pump, PFD, and loop filter
like the ones considered thus far in this chapter. Assume that the loop filter is
designed so that the system has a damping constant of 0.707, and a 3-dB bandwidth
of 150 kHz. What is the maximum frequency step at the input such that the theory
so far is still able to predict the behavior of the system? Provided this condition is
met, how long will it take the system to settle from a frequency step?

Solution: This is a classic question that the authors have been using to torment
undergraduate students for years now. Besides being good exam fodder, it also
illustrates a very important point (and all you students just thought we were sadistic,
right?).

First, we compute the natural frequency of the loop using approximation #2
from (3.28):

vn ≈
v3 dB

X1 + z√2 C =
2p ? 150 kHz

2
= 2p ? 75 kHz (Approximation #2)

Now, referring to Figure 3.19, the maximum normalized phase error to a
frequency step is about 0.46 for z = 0.707. Therefore, the maximum phase error
is

u e_max = 0.46
Dv
vn

The maximum phase error that the PFD can withstand is 2p . Therefore, the
largest frequency step that the system can handle is

Dvmax =
u e_maxvn

0.46
=

2p (2p ? 75 kHz)
0.46

= 6.43
Mrad

s
= 1.02 MHz

If the frequency step is any larger than this, then the PLL will lose lock and
cycle slip, and the transient response will no longer look like Figure 3.19. If it is
smaller than this, Figure 3.19 should do a fair job of predicting the result. In this
case, it will take a normalized time of vnt = 7 before the transient settles, or about
14.9 ms.

Example 3.3: Integer-N Synthesizer Designed for Settling Time
Design an integer-N synthesizer to operate at 2.4 GHz to 2.4835 GHz and which
must be able to settle from a frequency step in 225 ms (ignoring cycle slipping,
which will be discussed in the next section). The channel spacing for the radio is
1 MHz. These are similar specifications to those of a Bluetooth radio. After the
system is designed, determine how much the loop filter attenuates the reference
signal.

Solution: For 1-MHz channels, the reference frequency is 1 MHz. Using a
damping constant of 0.707, then the settling time is vnt = 7 from Figure 3.19.
Then, substituting t = 225 ms results in vn = 7/225 ms = 31.11 krad/s, or 4.95
kHz. This results in a bandwidth of about 10 kHz from Figure 3.14. Now, loop

66 System-Level Overview of PLL-Based Frequency Synthesis

gain K, divider values (N), and component limitations are required to determine
the time constants. If the reference frequency is 1 MHz, then N is 2,400 to 2,483.
The VCO is required to cover a tuning range of 83.5 MHz, but there must be
additional tuning range to allow for process variations. A tuning range of 10%,
or about 250 MHz, seems necessary, as ±5% seems quite possible. Thus, a VCO
constant of 250 MHz/V, or about 1.6 Grad/s/V, can be expected, assuming a 2-V
supply and some room on either side of the rails. Now the remaining loop compo-
nents that need to be determined are the charge pump current I, the integrating
capacitor value C1 , and the phase-lead correction resistor R. From (3.22), the ratio
of C1 and I can be determined:

C1
I

=
KVCO

2p ? Nv2
n

= 1.08 ? 10−4

If C1 is chosen to be 5 nF, then the charge pump current is I = 46.3 mA. Note
that this capacitor could not be integrated, but loop filters are often realized off
chip. Now, making use of (3.23), the loop filter resistor R can be determined as
well:

R = 2z√ 2p ? N
IKVCOC1

= 2(0.707)√ 2p ? 2,400

46.3 mA ? 1.6
Grad

s
? 5 nF

= 9.02 kV

The reference at 1 MHz is two decades higher than the loop corner frequency
of 10 kHz. If we assume a first-order roll off for the loop of 20 dB/dec, then the
reference signal will be attenuated 40 dB by the loop. Additional filtering may also
be achieved by adding C2 = 500 pF.

3.6.2 Nonlinear Transient Behavior

When a PLL is first turned on, or if it experiences a large frequency step at the
input, then it may lose lock. In this case, the linear control theory that has been
used so far will not apply as nonlinearities are involved in lock acquisition. The
main reason for nonlinearity is the finite linear range of the phase detector. Addition-
ally, there is a finite range over which the loop can acquire lock because VCOs
have a finite tuning range. If the loop attempts to lock the VCO to a frequency
outside its range, then the loop will never acquire lock. In addition, if the loop has
a finite dc gain, then the range of lock acquisition may also be limited by the finite
range of the phase detector.

In general, a frequency step will result in a nonzero phase error. The general
transfer function for phase error is

u e
uR

=
s

s + KF(s)
(3.55)

Now, if a frequency step is applied to this system, the steady-state phase error
will be

3.6 Transient Behavior of PLLs 67

u e_ss = lim
s → 0FSDv

s2 D ? S s
s + KF(s)D ? sG =

Dv
KF(0)

(3.56)

In the second-order PFD/CP system, the steady-state phase error will always
be zero because there is an integrator in F(s), and F(0) will go to ∞ in (3.56). In
other loops without an integrator in F(s), the phase error will be finite. When the
steady-state error exceeds the linear range of the phase detector, the loop will lose
lock. So, for instance, assume that a loop without an integrator uses an XOR phase
detector, and the nominal phase error at vnom is p /4. Then the maximum phase
error that can be tolerated is an additional p /4. Thus,

Dvmax = ±KF(0)
p
4

(3.57)

However, in the case of the PDF/CP loop, this is not an issue as, in lock, the
steady-state phase error is always zero. In this case, the locking range is determined
exclusively by the VCO.

So, if the loop is going to experience a transient frequency step, then how long
does it take the loop to reacquire lock? In this situation, the loop goes into a
frequency-acquisition mode, and the output of the PFD (in frequency-detection
mode) will look something like that shown in Figure 3.9. In this case, the charge
pump will put out pulses of current of value I, which vary in width between
almost a complete reference period and almost zero. Therefore, the average current
produced by the charge pump until the loop acquires lock will be approximately
I/2. If it is assumed that all of this current flows onto the capacitor C1 , then the
change in voltage across the capacitor as a function of time will be

DvC
Dt

=
I

2C1
(3.58)

Therefore, the settling time will be

Ts =
2DvCC1

I
(3.59)

From this equation, and making use of the relationship in (3.3) and (3.20),
the settling time can be determined for an input frequency change Dv as

Ts =
2C1DvN

IKVCO
=

Dv

pv2
n

(3.60)

It should be noted that DvC and KVCO relate to the change in VCO frequency,
not to the change in input frequency. This leads to a factor of N in the equation.
Thus, one can see directly that, as the loop bandwidth expands, the settling time
will decrease as expected. Even though this is the main result that we are interested
in, a few more details about the transient behavior of the control voltage are of

68 System-Level Overview of PLL-Based Frequency Synthesis

interest. To start this discussion, we will assume that the loop filter does not have
a capacitor C2 and is currently charging up towards lock as shown in Figure 3.21.

In this case, the charge pump current will alternately turn on and off. When
the charge pump current is off, then vR will be zero, and the control voltage vc
will be equal to the voltage across the capacitor vC1 . However, when the charge
pump current is on, then vc will be equal to vc = vC1 + IR, where IR is the voltage
drop across the resistor. This is illustrated in Figure 3.22.

When the capacitor C2 is included, as a result of its filtering effect, the behavior
is a little more complicated. In this case, when the charge pump is on, most of the
current still flows into C1 , which still happily charges towards lock, but when it
turns off, there is no longer an instantaneous change in vc . In this case, C2 keeps
vc high, and current flows from C2 back into C1 through R. This is shown in
Figure 3.23.

Thus, the presence of C2 tends to smooth out the ripple on the control voltage.
For context, the same plot as the one in Figure 3.22 is shown in Figure 3.24(b),
where voltage waveforms are also plotted over a larger percentage of acquisition
shown in Figure 3.24(a).

Example 3.4: Simulation and Estimation of Loop Settling Times
A 3.7–4.3-GHz synthesizer with a step size of 1 MHz is required. A 40-MHz
crystal oscillator, a charge pump with 2p ? 100 mA output current, and a VCO

Figure 3.21 Simplified loop filter to illustrate settling behavior.

Figure 3.22 Example showing the voltages on the loop filter during acquisition (no C2 present).

3.6 Transient Behavior of PLLs 69

Figure 3.23 Illustration of loop filter behavior (C2 present): (a) charge pump is on and charging
both C1 and C2, and (b) charge pump is off, and C2 is discharging into C1.

Figure 3.24 Example showing the voltages on the loop filter during acquisition (C2 present):
(a) complete settling, and (b) zoom in on region A.

70 System-Level Overview of PLL-Based Frequency Synthesis

(operating from a 3V supply) are available. Design a fractional-N synthesizer with
a loop bandwidth of 150 kHz using these components. Estimate the settling time
of the loop for a 30-MHz and 300-MHz frequency step. Simulate and compare.

Solution: First, if the VCO is operating with a 3V supply and must have a
600-MHz tuning range, we can estimate that its KVCO will be 200 MHz/V. In
addition, since we know the charge pump current, we know that the Kphase will
be 100 mA/rad. For a VCO with a nominal frequency of 4 GHz and a reference
frequency of 40 MHz, the division ratio will be 100. The next step is to size the
loop filter. A 3-dB frequency of 150 kHz requires a natural frequency of 75 kHz
(see Example 3.2). Thus, components can be determined as

C1 =
IKVCO

2p ? Nv2
n

=
2p ? 100 mA ? S2p ? 200

MHz
V D

2p ? 100(2p ? 75 kHz)2 = 5.66 nF

In order to set R, we need to pick a damping constant. Let us pick 1/√2, or
0.707, which is a popular choice. Now,

R = 2z√ 2p ? N
IKVCOC1

= 2S 1

√2D√ 2p ? 100

2p ? 100 mAS2p ? 200
MHz

V D ? 5.66 nF

= 530V

and we will set C2 = 566 pF at one-tenth the value of C1 .
Now, a step in output frequency of 30 MHz and 300 MHz corresponds to a

step in the reference frequency of 0.3 MHz and 3 MHz, respectively. We learned
in Example 3.2 that the maximum input frequency step that can be tolerated for
a system with these parameters is 1 MHz. Therefore, the first frequency step will
be a linear one, and the output will follow the theory of the previous section.
Therefore, we expect that it will take approximately 15 ms to settle, as we discovered
previously.

In contrast, the second frequency step will involve cycle slipping. For this
nonlinear case, we use the formula given in (3.60) to estimate the acquisition time
as

Ts =
Dv

pv2
n

=
2p ? 3 MHz

p (2p ? 75 kHz)2 = 27 ms

Therefore, complete settling in this case should take 27 ms, plus an additional
15 ms for phase lock.

This behavior can be simulated using ideal components in a simulator such as
Cadence’s Spectre. The blocks for the divider, VCO, PFD, and charge pump can

3.7 Phase Noise and Timing Jitter in PLL Synthesis 71

be programmed using ideal behavioral models. These can be connected to the loop
filter that has just been designed. From these simulations, we can look at the control
voltage on the VCO to verify the performance of the loop. A plot of the response
of the system to a 0.3-MHz step at its input, compared to simple theory, is shown
in Figure 3.25. From this graph, it is easy to see that the simple theory does an
excellent job of predicting the settling behavior of the loop with only a slight
deviation. This small discrepancy is most likely due to the presence of C2 and to
the sampling nature of the loop components.

The second frequency step can be simulated as well. The results of this simula-
tion are plotted in Figure 3.26 and compared to the linear voltage ramp suggested
by simple theory previously. In this case, this plot shows that the nonlinear response
is predicted fairly well by the simple formula; however, the actual response
is slightly faster. The tail of this graph is cut off, but the loop settled in about
39 ms, which is very close to the 42 ms predicted. The main difference between
the simple estimate and reality is the fact that phase acquisition begins before the
PLL actually reaches its final frequency value. We predicted it would begin in this
simulation at 30 ms (when the simple theory predicts that the voltage ramp will
reach its final value), but the linear portion of the graph actually starts earlier than
this at about 25 or 26 ms. This accounts for our slightly pessimistic estimate. Still,
such a simple estimate is remarkably good at predicting quite complicated behavior.

3.7 Phase Noise and Timing Jitter in PLL Synthesis

Noise in synthesizers comes from all the different circuits and components that
make up the control loop. Synthesizer noise performance is usually classified in
terms of phase noise, which is a measure of how much the output diverges from

Figure 3.25 Response of the PLL design’s control voltage during a 30-MHz frequency step.

72 System-Level Overview of PLL-Based Frequency Synthesis

Figure 3.26 Response of the PLL design’s control voltage during a 300-MHz frequency step.

an ideal impulse function in the frequency domain. We are primarily concerned
with noise that causes fluctuations in the phase of the output, rather than noise
that causes amplitude fluctuations in the tone, since the output typically has a
fixed, limited amplitude. The output signal of a synthesizer can be described as

vout (t) = V0 cos[v LO t + wn (t)] (3.61)

Here, v LO t is the desired phase of the output and wn (t) are random fluctuations
in the phase of the output due to any one of a number of sources. Phase noise is
often quoted in units of dBc/Hz, while timing jitter is often quoted in units of
picoseconds.

The phase-fluctuation term wn (t) may be random phase noise or discrete spuri-
ous tones, as shown in Figure 3.27. The discrete spurs at a synthesizer output are
most likely due to the fractional-N mechanism (discussed in detail in Chapter 9)
and the phase noise in an oscillator, which is mainly due to thermal, flicker, or 1/f
noise and the finite Q of the oscillator tank.

The phase fluctuation is assumed to have a sinusoidal form as

wn (t) = wp sin(vmt) (3.62)

where wp is the peak phase fluctuation, and vm is the offset frequency from the
carrier. Substituting (3.62) into (3.61) gives

vout (t) = V0 cos[v LO t + wp sin(vmt)] (3.63)

= V0{cos(v LO t) cos[wp sin(vmt)] − sin(v LO t) sin[wp sin(vmt)]}

For a small phase fluctuation, the above equation can be simplified as

3.7 Phase Noise and Timing Jitter in PLL Synthesis 73

Figure 3.27 Example of phase noise and spurs observed using a spectrum analyzer.

v0(t) = V0[cos(v LO t) − wp sin(vmt) sin(v LO t)] (3.64)

= V0Hcos(v LO t) −
wp
2

[cos(v LO − vm) t − cos(v LO + vm) t]J
It is now evident that the phase-modulated signal includes the carrier signal

tone and two symmetric sidebands at any offset frequency, as shown in Figure
3.27. A spectrum analyzer measures the phase noise power in dBm/Hz, but often
phase noise is reported relative to the carrier power as

w2
n (Dv) =

Noise(v LO + Dv)
Pcarrier (v LO)

(3.65)

where Noise is the noise power in a 1-Hz bandwidth, and Pcarrier is the power of
the carrier or LO tone at the frequency at which the synthesizer is operating. In
this form, phase noise has units of rad2/Hz. Often this is quoted as so many decibels
down from the carrier, or in dBc/Hz. To further complicate this, both single-
sideband (SSB) and double-sideband phase noise can be defined. SSB phase noise
is defined as the ratio of power in one sideband per hertz of bandwidth, at an
offset Dv away from the carrier, to the total signal power. The SSB phase noise
power spectral density (PSD) to carrier ratio, in units of [dBc/Hz], is defined as

PNSSB(Dv) = 10 logFNoise(v LO + Dv)
Pcarrier (v LO) G (3.66)

74 System-Level Overview of PLL-Based Frequency Synthesis

Combining (3.64) and (3.66), this equation can be rewritten as

PNSSB(Dv) = 10 log3
1
2 SV0wp

2 D2
1
2

V 2
0 4 = 10 logSw2

p

4 D = 10 logSw2
rms
2 D

(3.67)

where w2
rms is the root mean squared phase noise PSD in units of [rad2/Hz]. Note

that SSB phase noise is by far the most common type reported, and, often, it is
not specified as SSB but simply reported as phase noise. However, alternatively,
double-sideband phase noise is given by

PNDSB(Dv) = 10 logFNoise(v LO + Dv) + Noise(v LO − Dv)
Pcarrier (v LO) G = 10 log(w2

rms)

(3.68)

From either the SSB or double-sideband phase noise, the rms jitter can be
obtained as

w rms(D f) =
180
p √10

PNDSB(D f)
10 =

180√2

p √10
PNSSB (D f)

10 Xdeg/√Hz C (3.69)

It is also quite common to quote integrated phase jitter. The rms integrated
phase noise of a synthesizer is given by

IntPNrms = √ E
D f2

D f1

w2
rms(f) df (3.70)

The limits of integration are usually the offsets corresponding to the lower and
upper frequencies of the bandwidth of the information being transmitted.

In addition, it should be noted that dividing or multiplying a signal in the time
domain also multiplies or divides the phase noise. Thus, if a signal is translated in
frequency by a factor of N, then the phase noise is related by

w2
rms(Nv LO + Dv) = N2 ? w2

rms(v LO + Dv) (3.71)

w2
rmsSv LO

N
+ DvD =

w2
rms(v LO + Dv)

N2

Note that this assumes that the circuit that did the frequency translation is
noiseless. Also note that the phase noise is scaled by N2 rather than N because we
are dealing with noise in units of voltage squared rather than noise voltage.

3.7 Phase Noise and Timing Jitter in PLL Synthesis 75

One should also be careful when measuring noise on a spectrum analyzer. In
a spectrum analyzer, the noise power is normally not integrated over a 1-Hz
bandwidth. As shown in Figure 3.28, the spectrum analyzer downconverts the
input signal to baseband through two filters, an analog IF filter and a digital video
filter. Phase noise reading is thus dependent on the resolution bandwidth (RBW),
which is the IF filter bandwidth, in a spectrum analyzer. For example, a phase
noise reading of −100 dBc with an RBW of 10 Hz in a spectrum analyzer would
be −90 dBc with another RBW setting of 100 Hz. Video bandwidth (VBW), which
is the video filter bandwidth, smoothes noise for easier identification and measure-
ment of low-level signals. The best sensitivity in a spectrum analyzer is achieved by
using the narrowest RBW, minimum RF attenuation, and sufficient video filtering to
smooth the noise (normally, VBW is less than 1% of the RBW). Since a spectrum
analyzer measures the baseband signal power, the PSD reading is normally SSB.
A proper sweeping setting is required to obtain symmetric sideband measurement.
The penalty for sweeping too fast is an uncalibrated display of sidebands.

3.7.1 Various Noise Sources in PLL Synthesizers

3.7.1.1 Origin of Noise

There are many sources of noise. Noise in resistors is generated by thermal energy
causing random electron motion. Noise in active devices can be thermal channel
noise, 1/f noise, or shot noise, and is further discussed in Appendix B. Noise can
also be coupled into the circuit under test through electromagnetic coupling from
other circuits or external noise sources, such as microwave ovens, cell phones, or
pagers. Noise can also be injected through the substrate due to a combination of
capacitive and conductive coupling from other circuits on the same die, for example,
other oscillators, power amplifiers, or digital circuits [8].

3.7.1.2 VCO Noise

All the circuits in the synthesizer contribute to the overall noise in different ways,
and the noise they produce has different characteristics. For instance, the phase
noise from a VCO can be described as [9]

Figure 3.28 Spectrum analyzer basic block diagram.

76 System-Level Overview of PLL-Based Frequency Synthesis

w 2
VCO(Dv) =

C

Dv2 + D (3.72)

where C is a constant of proportionality, and v is the frequency offset from the
carrier. Thus, at most frequencies of interest, the phase noise produced by the VCO
will go down at 20 dB/dec as we move away from the carrier. This will not continue
indefinitely, as thermal noise will put a lower limit on this phase noise D, which,
for most integrated VCOs, is somewhere between −120 and −150 dBc/Hz. VCO
phase noise is usually dominant outside the loop bandwidth and of less importance
at low offset frequencies.

3.7.1.3 Crystal Reference Noise

Crystal resonators are widely used in frequency-control applications because of
their unequaled combination of high Q, stability, and small size. The resonators
are classified according to ‘‘cut,’’ which is the orientation of the crystal wafer
(usually made from quartz) with respect to the crystallographic axes of the material.
More will be said about crystal oscillators in Chapter 8. The total noise PSD of a
crystal oscillator can be found by Leeson’s formula [10]:

w2
XTAL (Dv) = 10−16 ± 1 ? F1 + S v0

2Dv ? QL
D2GS1 +

v c
DvD (3.73)

where v0 is the oscillator output frequency; v c is the corner frequency between
1/f and thermal noise regions, which is normally in the range 1~10 kHz; and QL
is the loaded quality factor of the resonator. Since QL for crystal resonator is very
large (normally in the order of 104 to 106), the reference noise contributes only
to the very close-in noise, and it quickly reaches the thermal noise floor at an offset
frequency of around v c .

3.7.1.4 Frequency-Divider Noise

Frequency dividers consist of switching logic circuits, which are sensitive to clock
timing jitter. The jitter in the time domain can be converted to phase noise in the
frequency domain. Time jitter or phase noise occurs when rising and falling edges
of digital dividers are superimposed with spurious signals, such as thermal noise
and flicker noise in semiconductor materials. Ambient effects result in variation of
the triggering level due to temperature and humidity. Frequency dividers generate
spurious noise especially for high-frequency operation. Dividers do not generate
signals; rather, they simply change their frequency. Kroupa provided an empirical
formula that describes the amount of phase noise that frequency dividers add to
a signal [7, 11]:

w2
Div_Added(Dv) ≈

10−14 ± 1 + 10−27 ± 1v2
do

2p ? Dv
+ 10−16 ± 1 +

10−22 ± 1vdo
2p

(3.74)

3.7 Phase Noise and Timing Jitter in PLL Synthesis 77

where vdo is the divider output frequency, and Dv is the offset frequency. Notice
that the first term in (3.74) represents the flicker noise and the second term gives
the white thermal-noise floor. The third term is caused by timing jitter due to
coupling and ambient and supply variations.

3.7.1.5 Phase Detector Noise

Phase detectors experience both flicker and thermal noise. At large offsets, phase
detectors generate a white phase noise floor of about −160 dBc/Hz, which is thermal
noise dominant. The noise PSD of phase detectors is given by [12]

w2
PD(Dv) ≈

2p ? 10−14 ± 1

Dv
+ 10−16 ± 1 (3.75)

3.7.1.6 Charge Pump Noise

The noise of the charge pump can be characterized as an output noise current and
is usually given in pA/√Hz. Note that, at this point in the loop, the phase is
represented by the current. The charge pump output current noise can be a strong
function of the frequency and of the width of the current pulses; therefore, for low
noise operation, it is desirable to keep the charge pump currents matched as well
as possible. This is because current sources only produce noise when they are on.
In an ideal loop, when locked, the charge pump is always off. However, nonidealities
result in finite pulses, but the closer reality comes to matching the ideal case, the
less noise will be produced. Also note that, as the frequency is decreased, 1/f noise
will become more important, causing the noise to increase. This noise can often
be the dominant noise source at low-frequency offsets. Charge pump noise can
be simulated with proper tools and the results depend on the design in ques-
tion, so no simple formula will be given here. More will be said on this topic in
Chapter 7.

3.7.1.7 Loop Filter Noise

Loop filters are simple resistor-capacitor circuits and can be analyzed for noise in
the frequency domain in a linear manner. The most common loop filter that has
been examined in this chapter will now be analyzed. It contains only one noise
source, the thermal noise associated with R. Thus, the loop filter with associated
noise can be drawn as shown in Figure 3.29. Now, the noise voltage develops a
current flowing through the series combination of C1 , C2 , and R (assuming that
the charge pump and VCO are both open circuits), which is given by

in_LPF =
1
R

?
vns

s +
C1 + C2
C1C2R

≈
1
R

?
vns

s +
1

C2R

(3.76)

Thus, this noise current will have a highpass characteristic; therefore, the loop
will not produce any noise at dc, and this noise will increase with frequency until

78 System-Level Overview of PLL-Based Frequency Synthesis

Figure 3.29 Loop filter with thermal noise added.

the highpass corner is reached, after which point it will be flat. Other filters can
be analyzed as well and will be looked at in more detail in Chapter 7.

3.7.2 In-Band and Out-of-Band Phase Noise in PLL Synthesis

The noise transfer functions for the various noise sources in the loop can be
derived quite easily using the theory already presented. There are two noise transfer
functions: one for the VCO and one for all other sources of noise in the loop. All
noise generated by the PFD, charge pump, divider, and loop filter is referred back
to the input, and the noise from the VCO is referred to the output, as shown in
Figure 3.30. The transfer function for wnoise I (s) has already been derived (as it is
the same as the loop transfer function in the continuous domain) and is given by

wnoise out (s)
wnoise I (s)

=
F(s)KVCOKphase

s +
F(s)KVCOKphase

N

(3.77)

Figure 3.30 A synthesizer showing places where noise is injected.

3.7 Phase Noise and Timing Jitter in PLL Synthesis 79

where for the PFD/CP loop, the transfer function for the filter, divider, and crystal
reference noise becomes

wnoise out (s)
wnoise I (s)

=

IKVCO
2p ? C1

(1 + RC1s)

s2 +
IKVCO
2p ? N

Rs +
IKVCO

2p ? NC1

(3.78)

This is a lowpass function, which means that, for low frequencies (inside the
loop bandwidth), the loop will track the input phase (which includes the phase
noise); thus, this noise will be transferred to the output. At higher offset frequencies
(outside the loop bandwidth), this noise is suppressed as the loop prevents the
VCO from following these changes in phase. Also note that the division ratio plays
a very important part in this transfer function. It can be seen that, at low reference
frequencies, where the s and s2 terms in (3.78) can be ignored relative to the
constant terms, a higher division ratio N directly results in higher phase noise.
This is one of the strongest arguments for using fractional-N architectures in
synthesizers, as, with large division ratios, it is hard to get low phase noise
performance.

The transfer function for the noise due to the VCO is slightly different. In this
case, input noise is set to zero; then, the transfer function is derived in the usual
way. It is given in general by

wnoise out (s)
wnoise II (s)

=
s

s +
F(s)KVCOKphase

N

(3.79)

Using our loop will give

wnoise out (s)
wnoise II (s)

=
s2

s2 +
IKVCO
2p ? N

Rs +
IKVCO

2p ? NC1

(3.80)

This is a highpass filter. Thus, at low offsets inside the loop bandwidth, the
VCO noise is suppressed by the feedback action of the loop. Outside the loop
bandwidth, however, the VCO is essentially free running; thus, the loop noise
approaches the VCO noise.

Example 3.5: System Phase Noise Calculation
Estimate the phase noise for the synthesizer designed in Example 3.4. The VCO
has a phase noise of −120 dBc/Hz at a 1-MHz offset (it bottoms out at −130
dBc/Hz), and the charge pump puts out a noise current of 10 pA/√Hz. Ignoring
PFD, divider, and reference noise sources, plot the phase noise. In addition, what
would the phase noise of an equivalent integer-N design be?

Solution: From Example 3.4, we know the charge pump current, and we know
that the Kphase will be 100 mA/rad. Now, in the case of the integer-N synthesizer,

80 System-Level Overview of PLL-Based Frequency Synthesis

the reference must be 1 MHz in order to get a step size of 1 MHz. Therefore, the
division ratio will be 4,000. Knowing that we want a loop bandwidth of 150 kHz
means that we need a natural frequency of 75 kHz (assuming a damping constant
of 0.707), and this means that, for the integer-N design, C1 and R are 141.5 pF
and 21.2 kV respectively. Now, we will assume that the VCO follows the 20
dB/dec rule just outlined. Therefore, we can come up with a linear expression for
the phase noise of the VCO based on (3.72):

C = log−1SPNVCO
10 D ? Dv2 = log−1S−120

10 D ? (2p ? 1 MHz)2 = 39.5
rad4

Hz2

Since the VCO bottoms out at −130 dBc/Hz, we can determine the D term of
the VCO phase noise equation (3.72):

D = log−1SPNVCO
10 D = log−1S−130

10 D = 10−13 rad2

Hz

This can be turned into an equation that has units of voltage instead of units
of voltage squared:

wVCO(Dv) = √39.5

Dv2 + 10−13 rad

√Hz

The output noise current from the charge pump can be input-referred by
dividing by Kphase :

NoiseCP =
in

Kphase
=

10
pA

√Hz

100
mA
rad

= 100n ?
rad

√Hz

The noise from the loop filter must also be moved back to the input:

NoiseLPF(v) =
1

Kphase | √4kT
R

jv

jv +
1

C2R
|

Clearly, noise from the LPF is dependent on filter-component values as well
as the phase detector gain. Now, input-referred noise from the loop filter and the
charge pump can both be substituted into (3.78), while noise from the VCO can
be substituted into (3.80) to determine the contribution to the phase noise at the
output. Once each component value at the output is calculated, the overall noise

3.7 Phase Noise and Timing Jitter in PLL Synthesis 81

can be computed (noting that noise adds as power). So, for instance, in the case
of the noise due to the charge pump, the output phase noise for the fractional-N
case is [from (3.78)]

wnoise out_CP(s) =
2.22 ? 1013(1 + 3 ? 10−6 s)

s2 + 6.66 ? 105s + 2.22 ? 1011 100nS rad

√HzD
Therefore, to plot phase noise in dBc/Hz, we take

PNCP(Dv) = 20 logF | 2.22 ? 1013(1 + 3 ? 10−6 jDv)

(jDv)2 + 6.66 ? 105 jDv + 2.22 ? 1011 |100nGS rad

√HzD
The results of this calculation and similar ones for the other noise sources are

shown in Figure 3.31. The total phase noise is computed by

w total = √w2
noise out_CP + w2

noise out_VCO + w2
noise out_LPF

and is shown in the figure.
If we assume that the numbers given so far have been for SSB phase noise,

then we can also compute the integrated phase noise of this design as

Figure 3.31 Phase noise of various components and overall phase noise for the system with
fractional-N divider.

82 System-Level Overview of PLL-Based Frequency Synthesis

IntPNrms =
180√2

p √ E
f = 10 MHz

f = 10 kHz

w2
total df = 0.41°

Note that, in this example, the loop filter noise is quite low and could have
been ignored safely. Also note that, due to the frequency response of the filter even
in-band, noise from the loop filter is attenuated at lower frequencies. Inside of the
loop bandwidth, the total noise is dominated by the charge pump. Note that, out
of band, the noise is slightly higher than the VCO noise. This is because the charge
pump is still contributing. This can be corrected by making the loop bandwidth
slightly smaller and, thus, attenuating the out-of-band contribution of the charge
pump by a few more decibels.

With the integer-N numbers, the phase noise is shown in Figure 3.32. Note
that with integer N, the noise is completely dominated by the charge pump, both
inside and outside of the loop bandwidth. In order to reduce the effect of charge
pump noise, the loop bandwidth in this case should be reduced by at least two
orders of magnitude. Note also the dramatic change in the in-band phase noise
performance between the two designs. While the fractional design has −100 dBc/Hz
of in-band noise, this design has a performance of only −67 dBc/Hz. Note that the
two numbers are different by 20 log(40), which is the ratio of the two divider
values, as would be expected.

Figure 3.32 Phase noise of various components and overall phase noise for the system with
integer-N divider.

3.7 Phase Noise and Timing Jitter in PLL Synthesis 83

References

[1] Best, R. E., Phase-Locked Loops: Theory, Design, and Applications, New York: McGraw-
Hill, 1984.

[2] Blanchard, A., Phase-Locked Loops: Applications to Coherent Receiver Design, New
York: John Wiley & Sons, 1976.

[3] Wolaver, D. H., Phase-Locked Loop Circuit Design, Upper Saddle River, NJ: Prentice
Hall, 1991.

[4] Razavi, B., Monolithic Phase-Locked Loops and Clock Recovery Circuits, New York:
Wiley-IEEE Press, 1996.

[5] Crawford, J. A., Frequency Synthesizer Design Handbook, Norwood, MA: Artech House,
1994.

[6] Gardner, F. M., Phaselock Techniques, New York: John Wiley & Sons, 1979.
[7] Egan, W. F., Frequency Synthesis by Phase Lock, New York: John Wiley & Sons, 2000.
[8] Amaya, R. E., et al., ‘‘EM and Substrate Coupling in Silicon RFICs,’’ IEEE J. Solid-State

Circuits, Vol. 40, No. 9, September 2005, pp. 1968–1971.
[9] Leeson, D. B., ‘‘A Simple Model of Feedback Oscillator Noise Spectrum,’’ Proc. IEEE,

February 1966, pp. 329–330.
[10] Watanabe, Y., et al., ‘‘Phase Noise Measurements in Dual-Mode SC-Cut Crystal Oscilla-

tors,’’ IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 47,
No. 2, March 2000, pp. 374–378.

[11] Kroupa, V. F., ‘‘Noise Properties of PLL Systems,’’ IEEE Trans. on Communications,
Vol. 30, October 1982, pp. 2244–2252.

[12] Kroupa, V. F., ‘‘Jitter and Phase Noise in Frequency Dividers,’’ IEEE Trans. on Instrumen-
tation and Measurement, Vol. 50, No. 5, October 2001, p. 1241.

C H A P T E R 4

Introduction to Digital IC Design

4.1 Digital Design Methodology and Flow

Electronic signals can be categorized as analog and digital. An analog signal is a
waveform with continuous values, while a digital signal is a waveform with discrete
values represented only by 1s and 0s. The performance of analog circuits can be
evaluated by SPICE-like simulations, where SPICE is a simulation program with
integrated circuit emphasis. The performance of digital circuits can be assessed
using static timing analysis. Unlike the analog IC designs described in other chapters
in this book, digital IC designs follow a different methodology and design flow.
Digital design normally involves complicated logic functions with relatively low
operating frequencies as compared to its analog counterpart. The most distinctive
difference between digital and analog IC designs is that a complicated digital system
can be designed using a hardware description language (HDL) such as Verilog or
VHDL (VHSIC HDL, or very high-speed integrated circuit HDL), and a synthesis
tool can automatically convert the HDL code into the gate-level representation of
the system based on the timing requirements. Here, gates are taken to be simple
combinatorial logic gates, such as inverters, AND, OR, NAND, NOR, XOR,
XNOR, as shown in Figure 4.1, and simple storage gates, such as latches and flip-
flops, which will be discussed in much further detail in Chapter 5. In contrast,
analog circuits cannot be synthesized using HDL codes, although recent research
has explored the feasibility of synthesizable analog circuits. For this reason, we
still treat a high-speed frequency-divider circuit as an analog IC design, although
it handles only binary logic signals, since this kind of high-speed circuit cannot be
simply generated by logic synthesis. This chapter provides an overview of digital
IC design methodology and an introduction to the Verilog HDL that has been
widely used in digital IC designs. Note that VHDL is an alternative to Verilog and
will not be discussed in detail in this book.

Analog IC design starts with system partitions and block specifications. Based
on the system requirements, designers implement the analog blocks at the transistor
level and perform SPICE-like simulations to verify the block performance. If the
circuits meet the system requirements, the designers will layout the blocks based
on the design rules specified by the vendor. Then, the parasitic capacitance and
resistance will be extracted, and the circuits will be resimulated with the layout
parasitic information. Adjustments to the circuits and layouts can be done iteratively
until the final circuits and layouts meet all system specifications. In the analog
design flow, almost every process is handcrafted, and no automated computer-

85

86 Introduction to Digital IC Design

Figure 4.1 Combinatorial logic gates showing symbols, equations, and truth tables.

assisted design tools are typically used in RF circuit synthesis and layout. Thus, a
successful high-speed analog IC requires designers with extensive experience.

In comparison, the major steps in a digital IC design can be automated [1]. As
illustrated in Figure 4.2, a digital design flow starts with the system function
definition and technology selection. In addition to system functional specifications,
designers have to understand all the circuit constraints, such as clock rate, delays,
drive capability, and block size. Next, the designers will model the system at the
register transfer level (RTL) using an HDL such as Verilog or VHDL. In RTL
notation, all operations are modeled as the data transfer from one register to
another with the desired combinational functions inserted between registers. The
RTL codes can be verified by simulation. In the RTL simulation, the designers
need to develop test benches that apply stimuli to the system inputs and capture
the system outputs for evaluation.

Digital synthesis refers to the automated generation of logic-gate-level circuits
based on high-level descriptions. This process revolutionized IC designs and allowed
complicated digital systems to be designed using HDL. The synthesis output is
normally a gate-level netlist that connects the basic logic gates based on the system
functions specified in the HDL code. The gate-level netlist is technology-dependent.
It can be further used to generate the layout for IC fabrication or to program a
prefabricated IC, such as a field-programmable gate array (FPGA) [2]. In addition
to HDL codes, some synthesis tools can also take logic schematic diagrams or
finite-state machine diagrams as the synthesis inputs. Based on the given states and
the state transitions, the synthesis tool can define state variables, assign states,
choose flip-flops to represent the states, and then generate a netlist to represent
the desired state transitions. Logic minimization can also be performed during
synthesis. The synthesis tool will choose proper logic cells and insert proper buffers

4.1 Digital Design Methodology and Flow 87

Figure 4.2 Digital IC design flow.

to guarantee the drive strength. Depending on the timing constraints, the synthesis
tool will work to minimize the size or maximize the speed of the digital circuits.

The verified high-level RTL codes can be transferred into a gate-level netlist
by an automated synthesis process. The gate-level netlist models the system using
basic digital logic gates, such as NAND, NOR, and XOR gates and flip-flops.
Those basic logic gates are designed at the transistor level by vendors. During the
synthesis, an internal scan chain can be inserted to allow automated digital testing
and fault detection. The gate-level code has to be resimulated to make sure that
the synthesis has not altered the system’s function. Next, a place-and-route tool
can place the layout of basic logic gates and route them according to the gate-level
code. In this automated layout process, the designer can also specify the desired
floor plan and insert isolation rings to protect the sensitive blocks.

88 Introduction to Digital IC Design

After layout, the wire delay information will be extracted and saved in a
standard delay format (.sdf) file. This delay information will be back-annotated
into the postlayout simulation, and the designers will then perform static timing
analysis to make sure that the design meets the functional and timing specifications.
Should the back-annotated simulation or static timing analysis fail, the design
should be refined until all the specifications are met. Finally, the verified layout
file in Graphic Data System II (GDSII) format is submitted to the semiconductor
foundry for fabrication. Meanwhile, the designers need to design the test board
and prepare for prototype testing and chip characterization. In the digital design
flow, the two major design steps, synthesis and place/route, have been automated;
thus, complicated functions can be implemented in digital designs. Nowadays, a
complicated digital chip with multimillion gates can be implemented using the
above-described digital design flow and achieve clock frequencies of a few hundred
megahertz.

4.2 Verilog HDL

Verilog and VHDL are the two major HDLs widely used in digital IC designs in
industry and academia. Both languages are now the Institute of Electrical and
Electronics Engineers (IEEE) standard languages for digital hardware modeling
and simulation. Verilog was developed by Philip Moorby [3] in 1983–1984 for
Gateway Design System Corporation, a company later acquired by Cadence Design
Systems. Verilog HDL was a proprietary language of Cadence until May 1990
with the formation of Open Verilog International. Cadence opened the language
to the public domain with the hope that the market for Verilog-related software
products would grow more rapidly with broader acceptance of the language. The
IEEE standardized Verilog in 1995 as the IEEE 1364 standard. Verilog is very similar
to the well-known C language and is thus easy to learn. VHDL was developed by
the U.S. Department of Defense in 1983 and was made an IEEE standard in 1987
(IEEE 1067-1987). The standard was updated in 1993 and in 2001 as the IEEE
1076 standard. VHDL is very similar to Ada (a computer language developed by
the military). Since few engineers have experience with Ada, VHDL may seem
more challenging to learn than Verilog.

HDLs are used to describe digital systems at various levels. For example, an
HDL might describe the layout of the wires, resistors, and transistors on an IC
chip (i.e., at the switch level). Alternatively, it may describe the logical gates and
flip-flops in a digital system (i.e., at the gate level). An even higher level describes
the registers and the data transfers between the registers (i.e., at the RTL). Verilog
supports all of these levels, allowing a hardware designer to describe designs at a
high level of abstraction, such as at the architectural or behavioral level, as well
as at the lower implementation levels, such as gate and switch levels. In the following
sections, we will briefly introduce Verilog HDL, followed by examples of an MMD
and a sigma-delta (SD) modulator for fractional-N frequency synthesis. A detailed
discussion of the Verilog language is beyond the scope of this book. Readers who
are interested in advanced Verilog programming can refer to numerous references,
such as [3–6].

4.2 Verilog HDL 89

4.2.1 Verilog Program Structure

Verilog’s program structure resembles that of the C programming language. The
Verilog HDL describes a digital block as a module. Verilog programs contain a
set of modules in which the main module models the top level of a digital system.
The main module instantiates the next lower-level modules, which further instanti-
ate lower-level modules, forming a hierarchical program structure. A module in
Verilog HDL takes inputs as parameters and returns output values, resembling a
digital block with inputs and outputs. The interconnects among the modules are
modeled in a higher-level module that instantiates those lower-level modules.

The structure of a module in Verilog HDL is specified as follows:

module <module name> (<port list>);
Parameters (optional);
Declarations <input>, <output>, <inout>, <wire>, <reg>;
Instantiations <lower level modules>;
Combinational or structural statements <assign>;
Sequential or behavioral statements <always>, <initial>;

endmodule

A module always starts with a key word <module>. The <module name> is
an identifier that uniquely names the module. The <port list> lists the input, input/
output (inout), and output ports, which interconnect with other modules. The
declarations of ports and optional <parameters> must come first, after the module
definition. The <wire> declares the output signal of a combinational circuit. The
<reg> specifies the output signal of a register (i.e., the sequential circuit), which
holds its current value since a register is a memory device. Unlike a memory circuit,
a combinational circuit does not hold its current value. The port declarations
<input>, <output>, and <inout> can be specified as either <wire>, if it does not
hold its current value, or <reg>, if it does hold its value. The <assign> statement
can be used to model the output of a combinational circuit, while the <always>
statement can be used to model the output of either a combinational or a sequential
circuit. The <always> statement can be used for both behavioral and structural
programming, while the <initial> statement can only be used for behavioral pro-
gramming and is normally used in test benches. The procedural assignments have
the form <reg variable> = <expression>, where the <reg variable> must be a register
or memory. Procedural assignment may only appear in <initial> and <always>
constructs. The use of those constructs can be understood through the following
examples of a simple combinational circuit (a NAND gate).

Example 4.1: Behavioral Model of a Two-Input NAND Gate

module nand (a, b, c);
input a, b;
output c;
wire c;

assign c = ~ (a & b);

endmodule

90 Introduction to Digital IC Design

In the example, the operator ‘‘~’’ means negation, and ‘‘&’’ denotes the logical
AND operation. Verilog operators will be defined in the following section. The
continuous assignment ‘‘assign’’ continuously monitors the changes to the right-
hand-side variables and updates the left-hand-side variable whenever a right-hand-
side variable is updated. The ‘‘assign’’ statement models combinational circuits
where the outputs follow the input changes. The following example models a simple
sequential circuit (a flip-flop).

Example 4.2: D-Flip-Flop Design with an Active-Low Reset (rst_n) and Clock-to-q
Delay of 10 Time Units Using Behavioral Modeling

module d_ff(data, clock, rst_n, q, q_);
input data, clock, rst_n;
output q, q_;
reg q;
always @ (posedge clock or negedge rst_n)

begin
if (!rst_n) q <= 0; // If reset is low make output zero
else q <= #10 data; // 10 is the clock to output q delay

end

assign q_ = ~q;

endmodule

When the synthesis tool synthesizes the above behavioral code, it will generate
a gate-level structure for the positive-edge-triggered D-flip-flop with active-low
reset, as illustrated in Figure 4.3. Note that the delay (#10) will be ignored by the
synthesis tool. The delay used in RTL code is for simulation purposes only. The
real delay for the flip-flop will be specified in the foundry’s technology library. It
is a useful practice to put all Verilog variables in lower case but figure labels in a
combination of upper case, lower case, and subscripts to improve readability and

Figure 4.3 Synthesized gate-level structure for the positive-edge-triggered D-flip-flop with active-
low reset.

4.2 Verilog HDL 91

appearance. However, to avoid confusion, we have here attempted to match the
figure labels to the Verilog labels. As seen in Figure 4.3, the flip-flop uses six gates,
and this information can be used to estimate the total number of gates in a digital
design. More detail on gates at the transistor level will be given in Chapter 5.

In the example, ‘‘reg’’ declares a 1-bit register. Each instantiation of this module
will model a separate register. The ‘‘@’’ causes a wait-for-a-trigger event, in this
case a positive (rising) clock edge or a negative reset. When one of these events
occurs (i.e., at the clock rising edge), ‘‘always’’ continuously executes the statements
between ‘‘begin’’ and ‘‘end,’’ which evaluates ‘‘data,’’ waits 10 time units, and
then assigns q with the data value obtained 10 time units ago. These actions model
a D-flip-flop with a clock-to-q delay of 10 time units. The time unit is normally
specified in the test bench.

The module construct in Verilog is different from subroutines and functions
in other procedural languages. Instead of being called, a module is instantiated at
the start of the program and stays alive in the entire simulation, just as if we have
soldered a circuit block and assume it is wired for the entire test. Verilog HDL is
an event-driven program. Whenever the specified event occurs, it triggers the action
to update the outputs. In the above NAND gate example, the output is updated
whenever one of the inputs is updated. In the above flip-flop example, the output
is updated whenever the clock rising edge occurs. Verilog is a concurrent language.
It models concurrent activities and makes them look like they happened at the
same time, which is very important for synchronous digital designs.

In Verilog, the general form to invoke an instance of a module is given by

<module name> <parameter list> <instance name> (<port list>);

where <parameter list> contains the values of parameters passed to the instance
(see Example 4.3). Generally, each module is a separate file, although this is not
required by the language syntax. A test bench can be written in a separate file, which
instantiates the top-level module, applies the stimuli to its inputs, and evaluates its
outputs. In the test bench, the stimuli generated in the test bench should be defined
as ‘‘reg’’ since they are generated in the test bench and their values need to be
stored, while all the signals under test should be defined as wire. This resembles
the IC testing process as shown in Figure 4.4, where the signal generator generates
the input signals for testing the application-specific integrated circuit (ASIC), and
the outputs of the ASIC are captured by a digital scope for analysis. Only the top

Figure 4.4 Verilog modules and the test bench.

92 Introduction to Digital IC Design

level of the ASIC core is interconnected with the test bench. Inside the ASIC core,
a hierarchical design is used with lower-level modules being instantiated in higher-
level modules.

Example 4.3 gives a complete Verilog model for a 4-bit ripple adder and a test
bench that generates the adder inputs to test its performance. The 4-bit ripple adder
instantiates a 1-bit full adder, which is built structurally based on

FAHsum = x ⊕ y ⊕ c_in

c_out = x ? y ? c_in
(4.1)

where c_in is the carry-in bit, and c_out is the carry-out bit; x and y are two
addends.

Example 4.3: A Verilog Model for a 4-Bit Ripple Adder

//Structural model for a 1-bit full adder:
module fulladder(sum, c_out, x, y, c_in);
output sum, c_out;
input x, y, c_in;

assign sum = x ^ y ^ c_in; // ^ denotes XOR
assign c_out = x & y & c_in; // & denotes AND, | for OR

endmodule

//Structural model for a 4-bit ripple adder:
module FourBitAdder(sum, c_out, x, y, c_in);
output [3:0] sum; //[3:0] specifies the no. of bits for sum.
output c_out;
input [3:0] x, y;
input c_in;
wire c1, c2, c3; //represent the interconnections between adders.

//Instantiation of 4 1-bit full adders:
fulladder fa0(sum[0], c1, x[0], y[0], c_in);
fulladder fa1(sum[1], c2, x[1], y[1], c1);
fulladder fa2(sum[2], c3, x[2], y[2], c2);
fulladder fa3(sum[3], c_out, x[3], y[3], c3);

endmodule

A test bench for the 4-bit ripple adder:

‘timescale 1ps / 1ps // timescale: ref_time_unit/precision
module test(); //no inputs and outputs
reg c_in; //define stimulus generated in testbench as reg
reg [3:0] x, y;
wire c_out; //define signals under test as wire
wire [3:0] sum;

FourBitAdder A1(sum, c_out, x, y, c_in);

initial
$monitor ($time,,,"x=%d y=%d ci=%d s=%d co=%d", x,y,c_in,sum,c_out);

4.2 Verilog HDL 93

initial
begin //generates x

x = 4’b0001;
#25000 x = 4’b0001;
#25000 x = 4’b0010;
#25000 x = 4’b0001;
#25000 x = 4’b0001;
#25000 x = 4’b1000;
#25000;

end

initial
begin //generates y

y = 4’b0001;
#25000 y = 4’b0010;
#25000 y = 4’b0011;
#25000 y = 4’b1111;
#25000 y = 4’b1111;
#25000 y = 4’b1111;
#25000;

end

initial
begin //generates c_in

c_in = 1’b0;
#100000 c_in = 1’b1;
#25000 c_in = 1’b0;
#25000;

end

initial
#150000 $finish;

endmodule

Figure 4.5 shows the input and output waveforms when the adder module and
the test bench are simulated in a Verilog simulator.

The monitor statement in the example prints the following outputs:

0 x = 1 y = 1 ci = 0 s = 2 co = 0
25000 x = 1 y = 2 ci = 0 s = 3 co = 0
50000 x = 2 y = 3 ci = 0 s = 5 co = 0
75000 x = 1 y = 15 ci = 0 s = 0 co = 1
100000 x = 1 y = 15 ci = 1 s = 1 co = 1
125000 x = 8 y = 15 ci = 0 s = 7 co = 1

Figure 4.5 Simulated input and output waveforms for the 4-bit ripple adder.

94 Introduction to Digital IC Design

Note that anything after ‘‘//’’ is a comment and will be ignored by the compiler.
The ‘timescale 1ps/1ps denotes that the reference time unit is 1 ps, and the simulation
precision is 1 ps. In the test bench, the statements in the block of the ‘‘initial’’
constructs will be executed sequentially, generating data inputs for the adder. The
‘‘$monitor’’ prints its string when one of the listed variables changes. The extra
commas after $time,,, print extra spaces. The #150000 $finish stops the program
after 150000 ps = 150 ms.

For display, the commonly used formats are

%b Display in binary format;
%c Display in ASCII character format;
%d Display in decimal format;
%h Display in hex format;
%o Display in octal format;
%s Display in string format.

Escape sequences may be included in a string. The commonly used escape
sequences are the following:

\n The newline character;
\t The tab character;
\\ The ‘‘\’’ character;
\" The ‘‘"’’ character.

4.2.2 Verilog Data Formats

In Verilog HDL, the reg and wire data objects may have the following four logic
values:

0 Logical zero or false;
1 Logical one or true;
x Unknown logical value;
z High impedance of tristate gate.

The reg and wire variables are initialized to x at the start of the simulation.
Any unconnected wire variable has the x value. x is used as a debugging aid since
it shows that the simulator cannot determine the answer. A tristate gate drives its
output to be either a zero, a one, or a high impedance (z). The size of a register
or wire can be specified in the declaration as

reg [15:0] a;
wire [0:7] b;

where the bit notation is [<start-bit>:<end-bit>]. Thus, a is a 16-bit register with
the fifteenth bit as the most significant bit (MSB), and b is an 8-bit wire with the
zeroth bit as the MSB. The above declarations can also be parameterized using the
parameter constructs:

4.2 Verilog HDL 95

parameter size = 16;
reg [size-1:0] a;

or the define constructs:

‘define size 8;
reg [0:size-1] b;

In Verilog, the data can be represented in binary format with notation b,
decimal format with d, octal format with o, and hex format with h. A 3-bit binary
word 000 can be represented as 3’b000. Concatenation is a very useful format for
writing data. The {a, b} construct means the bits of a and b are concatenated
together. For example, if size = 8, C = {1’b1, {(size-2){1’b0}}, 1’b1}) = 8’b10000001,
where {(size-2){1’b0}} represents (size-2) zeros and {1’b0} and {1’b1} represent 1-bit
words with values of zero and one, respectively.

For convenience in behavioral modeling, Verilog HDL has several data types,
such as integer, real, and time, that do not represent hardware implementations.
Data types integer and real have a similar definition as those in C languages, while
time variables hold 64-bit quantities and are used in conjunction with the $time
system function.

4.2.3 Verilog Operators

Table 4.1 summarizes some common Verilog operators. Their applications will be
become clear through Table 4.2. The table illustrates the usage of some Verilog
operators that may be confusing to beginners.

4.2.4 Verilog Control Constructs

Verilog HDL has a rich collection of control constructs that is very similar to a
procedural language such as the C language. Instead of C’s { } parentheses, Verilog
uses begin and end. The meanings of the if and else statements are the same as
those defined in the C language. For instance,

if (a = = 2’b00) b = 2’b11; //one line can be combined with if statement.
else
begin //more lines can be inserted between begin and end.
b = 2’b10;
c = 2’b01;

end

The for statement is very close to what is defined in C except that the ‘‘++’’
and ‘‘--’’ operators do not exist in Verilog. Therefore, we need to use i = i + 1.

for(i = 0; i < 10; i = i + 1) begin
<statements>

end

Verilog is a discrete, event-driven simulator, and the events are scheduled for
discrete times. During the processing, more events may be created and placed in

96 Introduction to Digital IC Design

Table 4.1 Common Verilog Operators

Binary Arithmetic Operators Logical Operators
+ Addition ! Logical negation
− Subtraction && Logical AND
* Multiplication || Logical OR
/ Division = = Logical equality
% Modulus != Logical inequality

Bitwise Operators Unary Operators
~ Bitwise negation − Unary minus
& Bitwise AND & Unary reduction AND
| Bitwise OR | Unary reduction OR
^ Bitwise XOR ^ Unary reduction XOR
~& Bitwise NAND ~& Unary reduction NAND
~| Bitwise NOR ~| Unary reduction NOR
~^ or ^~ Bitwise XNOR ~^ or ^~ Unary reduction XNOR

Relational Operators Other Operators
> Greater than {,} Concatenation
>= Greater than or equal to << Shift left
< Less than >> Shift right
<= Less than or equal to ?: Conditional assignment
= = = Equality (bitwise comparison)
!= = Inequality (bitwise comparison)

Operator Precedence
Operators on the same line have the same precedence and associate left to right in an expression.
Parentheses can be used to change the precedence.

Unary operators: ! & ~& | ~| ^ ~^ + − (highest precedence)
* / %
+ −
<< >>
< <= > >=
= = != = = = != =
& ~& ^ ~^
| ~|
&&
||
?: (lowest precedence)

Table 4.2 Use of Verilog Operators

Operators Definitions Examples

! Logic negation. !(2’b01 = = 2’b10) returns 1
= = Logic equality. If any of the bits is (2’b01 = = 2’b10) returns 0

unknown, the result is unknown.
= = = Case equality with bitwise comparison (4’b0xz1 = = = 4’b0xz1) returns 1

including comparison of x and z values. (4’b0xz1 = = = 4’b0x01) returns 0
All bits must match for equality.

~ Bitwise negation. ~4’b0110 = 4’b1001;
& Bitwise AND. 4’b0110 & 4’b1110 = 4’b0110;
&, |, ^ Unary AND/OR/XOR, producing a &(4’b0110) = 0; |(4’b0110) = 1;

single bit AND/OR/XOR of all the bits. ^(4’b0110) = 0; ^(4’b1110) = 1;
<< Shift left and fill the vacated bit 8’b01100011<<2 = 8’b10001100 shifts

positions with zeros. 2 bits to the left with zero filled at
the right-most bits. Equivalent to
multiplying by 4.

?: Conditional assignment. A = B > C ? c = 4’d5 > 4’d6 ? 1 : 0; c will be assigned
D : E; if B > C is true, A will be 0 since 5 > 6 is false.
assigned D, otherwise A will be assigned
E.

4.2 Verilog HDL 97

the queue. When all the events of the current time have been processed, the simulator
advances time and processes the next events in the queue. If there is no timing
control, the simulation time does not advance. Simulated time can progress only
by one of the timing controls.

Verilog HDL provides three types of timing control for event-driven simula-
tions. The first type is the delay control (‘‘#’’), which specifies the time duration
between the initial appearance of the statement and its actual execution. For exam-
ple, #10 a = b & c; provides a delay of 10 time units before executing the procedural
assignment statement.

The second type is the event expression always @, which allows statement
execution when the event happens. The execution of a procedural statement can
be triggered by edges of variable transitions or value changes on a wire or register.
For example, @ sel triggers an event when sel changes value, and @(posedge clock)
is controlled by the positive edge of the clock. For posedge and negedge, the
following variable must be a 1-bit expression, typically a clock.

The third type involves the wait statement, which waits for a specific variable
to change. The construct wait is used to wait for an expression to become TRUE
because a variable in the expression is changed by another process. For example,
wait (a = = 1) will wait for variable a to become 1. Construct wait is level sensitive
compared to the edge-triggered statement @(posedge clock).

If the expression for a while statement is TRUE, the simulator will continuously
execute the loop. Another process cannot stop the while loop once it is running.
Thus, while cannot be used to wait for a change in an input to the process, and
there must be a delay operator such as ‘‘#’’ or ‘‘@’’ inside the while loop to stop
the process. The following example creates an endless loop.

Example 4.4: An Endless While Loop

module EndlessWhileLoop (a);
input a;
always
while(a) $display ("This is an endless loop");

endmodule

The repeat statement repeats the statements between begin and end for n times:

repeat (n) begin
<statements>

end

4.2.5 Blocking and Nonblocking Assignments

Verilog HDL has two types of procedural assignment statements: blocking and
nonblocking assignments. The blocking assignment statement (‘‘=’’ operator) acts
the same as the C language statement. The whole assignment statement is executed
before control passes on to the next statement. For blocking assignment a = b, b
is calculated and used immediately to update a. The next statement that uses a as
a source will use the updated value of a. The blocking assignment is normally used
to assign combinational outputs.

98 Introduction to Digital IC Design

In contrast, the nonblocking assignment statement (‘‘<=’’ operator) evaluates
all of the right-hand sides in a program for the current time and assigns the left-
hand sides at the end of the time unit simultaneously. For nonblocking assignment
a <= b, b is calculated, and a nonblocking update event is scheduled for a at the
current time. Execution of the following statements continues. The new value of
a will not be seen by other elements until the nonblocking update events are
executed. The nonblocking assignment was specially developed for Verilog HDL
to model synchronous digital designs. It synchronizes the assignments so that
multiple nonblocking assignments can be executed concurrently. The nonblocking
assignment is normally used to assign register outputs in synchronous sequential
circuit designs.

The subtle difference between the blocking and nonblocking assignments can
be understood through Example 4.5 and the discussion following the example.
The simulation results for this example are shown in Figure 4.6.

Example 4.5: Blocking and Nonblocking Assignments

module test();
reg[4:0] a, e1, e2, e3, e4, e5;
reg[4:0] g1, g2, g3;

initial begin
a=0; e1=0; e2=0; e3=0; e4=0; e5=0; g1=0; g2=0; g3=0;
#100 $finish;

end
initial forever
#10 a <= a+1;

//Nonblocking Assignments, Shift Register
always @(a) begin
e1 <= a;
e2 <= e1; //e2 is updated with old value of e1
e3 <= e2;

end

Figure 4.6 Simulation diagram for comparison between the blocking and nonblocking
assignments.

4.2 Verilog HDL 99

//Blocking Assignments, Wire
always @(a) begin
e4 = a;
e5 = e4; //e5 is updated with new value of e4

end

always @(a) begin
g1 = a; //line 28
g2 = 2; //line 29
g3 = 3; //line 30
g1 <= g3; //line 31
g2 <= g1; //line 32
g3 = g1+g2; //line 33
end

endmodule

In the example, e1, e2, and e3 are assigned with nonblocking assignments.
Therefore, they all get the old values of the right-side variables at the beginning
of the current time, and they are updated with the new values at the end of the
current time (beginning of the next event). This reflects how register transfers occur
in real hardware. Registers e1, e2, and e3 actually form a 3-bit shift register with
the input data a. Registers e4 and e5 are assigned with blocking assignments.
Therefore, they all get the new values of the right-side variables at the beginning
of the current time. As a result, e4 and e5 all follow variable a without delay.
Registers g1, g2, and g3 are assigned with a mixture of blocking and nonblocking
assignments. From line 28 to line 30, they are assigned with the blocking assign-
ments. Therefore, the statements after line 30 should get the assigned new values.
Since g1 gets g3’s new value of 3 at line 31 and g2 gets g1’s new value a at line
32, g1 is a constant 3, and g2 follows variable a as shown in Figure 4.6. Note that
lines 31 and 32 are nonblocking assignments. Hence, g1 and g2 in line 33 should
take the old values assigned before line 31 and line 32. Thus, g3 is assigned with
a + 2 on line 33.

4.2.6 Tasks and Functions

Verilog HDL provides task and function constructs to allow the behavioral descrip-
tion to be partitioned into manageable parts. The subtle differences between task
and function can be summarized as follows:

1. Inputs and outputs: Tasks may have zero or more arguments and do not
return a value to an expression. However, values written by task can be
copied back through its input and output ports. A function has at least one
input and returns a single value to the expression that called it.

2. Timing controls: Functions must execute during one simulation time unit.
That is, no time-controlling statements, such as delay control (‘‘#’’), event
control, (‘‘@’’) or wait statements, are allowed in a function. In contrast, a
task may contain time-controlled statements.

3. Invocation: A task call is a separate procedural statement. A function call
is an operand in an expression. A Verilog function can invoke (call, enable)
another function but not a task, whereas a task may call other tasks and
functions.

100 Introduction to Digital IC Design

The definition of a task is given as follows:

task <task name>; //no parameter list or ()
<argument ports>
<declarations>
<statements>

endtask

An invocation of a task takes the following form: <name of task>
(<port list>), where <port list> is a list of expressions that correspond by position
to the <argument ports> of the definition. Example 4.6 demonstrates how to use
the task construct.

Example 4.6: Using the Task Construct

module tasks;
reg c;

task and_gate; // task definition
input a, b; // input argument ports
output c; // output argument port
assign c = a & b;

endtask

initial begin
and_gate(0, 1, c); // invocation of task and_gate
$display ("c= %b", c);

end

endmodule

The purpose of a function is to return a value that is to be used in an expression.
The definition of a function is given as follows:

function <range or type> <function name>; // no parameter list or ()
<argument ports>
<declarations>
<statements>

endfunction

where <range or type> is the type of the results passed back to the expression.
Example 4.7 is a function that calculates the carry-out and sum bits of a 1-bit
adder.

Example 4.7: Using the Function Construct

module functions;
reg [1:0] d;

function [1:0] adder; // function definition
input a, b; // two input argument ports
assign adder = { a|b, a^b }; //concatenate carry-out and sum bits

endfunction

initial begin
d = adder(1,1); // invocation of function adder
$display ("d = %b", d);

end

endmodule

4.3 Behavioral and Structural Modeling 101

4.3 Behavioral and Structural Modeling

Digital logic modules can be specified behaviorally or structurally or with a combi-
nation of the two. A behavioral module defines the behavior of a digital system
using abstracted programming language constructs (e.g., if and for statements). A
structural specification expresses the behavior of a digital system as a hierarchical
interconnection of submodules. In structural modeling, the system is modeled based
on its structural schematics. The gate-level models are structural models, where
the system is represented using primitive gates and their interconnections. At the
bottom of the hierarchy, the components must be primitives or specified behavior-
ally. Verilog HDL has built-in gate-level primitives such as NAND, NOR, AND,
OR, XOR, XNOR, BUF, NOT, and so forth. Using gate-level primitives, Example
4.8 gives the structural model for a 2:1 multiplexer. The structural code is nothing
but a description of the multiplexer hardware schematics shown in Figure 4.7. For
the same circuit, we write a behavioral model using if and else as shown in Example
4.9. The behavioral model directly specifies the truth table of the 2:1 multiplexer;
that is, if sel=1, c=a, and if sel=0, c=b. However, there are subtle things that
should be considered when a combinational circuit is modeled using a procedural
behavioral model, as is explained in the next section.

Example 4.8: Structural Module of a 2:1 Multiplexer

module mux (c, sel, a, b);
output c;
input sel, a, b;
wire d, e, sel_;
and g1(e, a, sel),

g2(d, b, sel_);
or g3(c, d, e);
not g4(sel_, sel);

endmodule

Example 4.9: Behavioral Module of a 2:1 Multiplexer

module mux (c, sel, a, b);
output c;
input sel, a, b; //input set
reg c; //combinational output
always @ (sel or a or b) //sensitivity list
if (sel = = 1) c=a; //control path
else c=b; //control path

endmodule

Figure 4.7 Structure of a 2:1 multiplexer.

102 Introduction to Digital IC Design

4.4 Combinational Digital Circuit Design

Combinational circuits can be modeled structurally using continuous assignments
with the keyword assign. Continuous assignments drive wire variables and are
evaluated and updated whenever an input operand changes value. The left-hand
variable of an assign statement should be defined as wire. For instance, <assign c
= a & b;> ANDs the values on wire a and b and passes the value to wire c
continuously. Combinational circuits can also be modeled using a procedural
assignment such as the always construct. However, caution needs to be taken to
prevent mistakenly converting a combinational circuit into a sequential circuit. Let
us evaluate a behavioral model for a combinational circuit in Example 4.9, where
we intend to model a 2:1 multiplexer. Note that the output of the multiplexer c
has to be defined as a reg in order to be able to assign it inside the always block.
In Example 4.9, the sensitivity list of the always construct (the variables in the
brackets following the @) observes any changes to a, b, or sel, then executes the
block containing the if and else statements. However, the multiplexer does not
need a register. The register here is just an ‘‘artifact’’ of the descriptions. Inside
the always block, registers are found on the left-hand side of the assignment
statements. How can the synthesis tool figure out that this is a combinational
circuit? Recall the prerequisites of a combinational circuit: (1) the output is only
a function of the current inputs, and (2) anytime an input changes, the output will
be updated. Hence, if the following rules are satisfied, combinational logic can be
modeled using the procedural statements:

1. Every element of the input set must be in the sensitivity list.
2. The combinational output must be assigned in every possible control path.

In other words, any input changes (they are all listed in the sensitivity list) will
trigger an update of the output (it has been assigned in every possible control path).
Now, the synthesis tool can interpret the code in Example 4.9 as combinational
logic.

In Verilog HDL, a case statement is widely used in modeling multiplexers and
conditional branches. The following example models a 4:1 multiplexer, where a
and b are control bits. For the branches of ({a, b}) that have not been covered (e.g.,
if {a, b} = 2’b11 in the example), the output will take the value specified in the
default statement. For synthesis purposes, it is good practice to have a default
statement in each case statement, even if all possible branches have been listed.
This will prevent mistakenly modeling a combinational circuit as a sequential
circuit.

Example 4.10: A 4:1 Multiplexer Using a Case Statement

module multiplexer (f, a, b);
output f;
input a, b;
reg f;

always @ (a or b)
case ({a, b})
2’b00: f=1’b1;

4.5 Sequential Digital Circuit Design 103

2’b01: f=1’b0;
2’b10: f=1’b0;
default: f=1’b0; // used if {a, b}=2’b11.

endcase

endmodule

The case statement can also be used to model any combinational circuit if its
truth table is given. For the truth table shown in Figure 4.8, we can simply represent
its entries using case statements as shown in Example 4.11, where the default
output is don’t care x. If a default statement is included, the synthesis tool will
correctly synthesize the code as a combinational circuit since all the possible control
paths have been covered.

Example 4.11: Combinational Circuit Design Using a Case Statement with the Truth
Table Given

module combinational(f, x, y, z);
output f;
input x, y, z;
reg f;

always @ (x or y or z) begin
case ({x,y,z})
3’b010 : f=1’b0;
3’b011 : f=1’b1;
3’b100 : f=1’b1;
3’b110 : f=1’b0;
3’b111 : f=1’b1;
default: f=1’bx;

endcase
end

endmodule

4.5 Sequential Digital Circuit Design

In order to synthesize the RTL code successfully, designers should follow the rules
for sequential logic design carefully:

1. Use the always block. The sensitivity list of the always block should only
list the inputs that may cause state changes, such as the clock edge and
reset.

Figure 4.8 Truth table for a combinational circuit.

104 Introduction to Digital IC Design

2. Do not specify the clock condition inside the always block.
3. Specify the reset condition first. For instance, if(~reset) will start an active-

low reset statement.
4. Use nonblocking assignments (‘‘<=’’) to specify the sequential logic outputs.

The nonblocking assignments inside the always block assume all data trans-
fers occur at the clock edge concurrently, which forms the basis of synchro-
nous digital designs.

Example 4.2 illustrates a simple flip-flop model that follows the above rule for
sequential logic designs. In traditional sequential circuit design, designers start by
building state tables or state diagrams for their system. Then, they need to go
through state minimization, state assignment, and the excitation maps of the chosen
flip-flops to find the logic implementation of their systems. Owing to logic optimiza-
tion in digital synthesis, the designers now do not need to optimize their sequential
logic circuits manually. Almost everything can be modeled behaviorally, and the
synthesis tool will take care of the logic implementation automatically. As an
example of sequential circuit design, a programmable frequency divider is modeled
next, which can be used in PLL frequency synthesizer designs.

Example 4.12: Frequency-Divider Design
Design a frequency divider with division ratio programmable from 1 to 8. The
output pulse should have close to a 50% duty cycle.

Solution: A frequency divider is basically a counter, which counts the input
pulses and generates an output pulse every div input pulses, where div is the divider
ratio. Output pulses with a 50% duty cycle can be generated if we allow the output
pulse transition to occur in the middle of div input pulses or, in other words, a
transition occurs at div/2 input pulses. If div is an even number, the output duty
cycle will be exactly 50%. If div is an odd number, the output duty cycle will be
close to 50%. The following program uses a parameter declaration to define the
bit length. In this way, the program is parameterized for modeling frequency
dividers with any division ratio. In this example, we choose size = 3 to program
the ratio from 1 to 8. Note, the parameterized style of concatenating bits (e.g.,
{{(size-1){1’b0}},1’b1}) actually gives a 3-bit word of 3’b001.

module prodiv (fi, div, rst_, fo); // Programmable frequency divider

parameter size = 3; //divider counter bit length, division ratio from 1 to 8
input fi; //input signal with frequency fi to be divided
input[size-1:0] div; //division ratio from 1 to 7, div=0 corresponds to divide by 8
input rst_; //active-low reset
output fo; //output signal with frequency fo = fi/div
reg[size-1:0] p; //p=1+integer(div/2) determines the falling edge of fo
reg[size-1:0] counter; //counter value;
reg p0, fout; //output buffer
wire ctr;

// Down counter: counter = counter - 1:
always @(posedge fi or negedge rst_)
if (!rst_) //reset to div = 1
begin
counter[size-1:0] <= {{(size-1){1’b0}},1’b1};
//The above line can be simplified as counter <= {{(size-1){1’b0}},1’b1}.
//But, it’s a good practice to specify clearly the every word range.

4.5 Sequential Digital Circuit Design 105

p[size-1:0] <= {{(size-1){1’b0}},1’b1};
p0 <= 1’b1;

end
else if (counter[size-1:0] = = {{(size-1){1’b0}},1’b1})
begin //load new division ratio when counter=1
counter[size-1:0] <= div[size-1:0]; //load new division ratio
p0 <= (div[size-1:0] = = {{(size-1){1’b0}},1’b1}); //p0=1, if div=1
if(div[size-1:0] = = {size{1’b0}})
p <= {1’b1,{(size-2){1’b0}},{1’b1}}; //div=0 is used to divide by 8

else
p <= {1’b0,div[size-1:1]} + {{(size-1){1’b0}},1’b1}; //p=1+integer(div/2)

end
else //otherwise counter-1
counter[size-1:0] <= counter[size-1:0] - {{(size-1){1’b0}},1’b1};

// Output pulse generator:
always @(posedge fi or negedge rst_)
if (!rst_) fout <= 1’b0;
else if(counter[size-1:0] = = {{(size-1){1’b0}},1’b1}) fout <= 1’b1;
else if(counter[size-1:0] = = p) fout <= 1’b0;

assign fo = p0 ? fi : fout; //if div=1, pass fi to fo

endmodule //close prodiv

We can write a simple test bench to test the above code. We used another
construct, ‘define, for parameterized programming, where the accent sign ‘‘ ‘ ’’ is
required to stay with the parameter. Another way to instantiate a module in Verilog
is also given in the following test bench, where variable names in the original
module port list and the name used in the current module can be clearly seen. Also
note that we use the ‘‘initial forever’’ construct to generate a clock signal that can
run forever until the time defined by finish. The simulated divider input and output
waveforms are shown in Figure 4.9, which clearly demonstrates the divide-by-two
and divide-by-five waveforms.

‘timescale 1ns / 1ns
‘define Tclk 5 //clock period = ‘Tclk*2 = 10ns;
‘define size 3 //divider bit length;

module test(); // Test bench for programmable frequency divider
reg fi, rst_; //define signal generated in test bench as reg
reg[‘size-1:0] R; //division ratio programmable from 1 to 7
wire fo; //define signal captured by test bench as wire

//Instantiate prodiv module:
prodiv divider(.fi(fi),
//.<name in original port list>(<name in current module>)

.div(R),

.rst_(rst_),

.fo(fo));

Figure 4.9 Simulated waveform for programmable frequency divider.

106 Introduction to Digital IC Design

//Input signal generation:
initial begin
fi <= 1’b0;
rst_<= 1’b0;
R <= {{(‘size-1){1’b0}},1’b1};

//Run test:
#5 rst_ < = 1’b1; //release reset
#(‘Tclk*2*2) R <= 2; //After 2 clock cycles, load division ratio R = 2
#(‘Tclk*2*4) R <= 5; //After 4 clock cycles, load division ratio R = 5
#(‘Tclk*2*11) $finish; //Finish after 11 clock cycles

end
//clock generation:
initial forever #‘Tclk fi <= !fi; //clock period = ‘Tclk*2

endmodule //close test

4.6 Digital Design Example I: A Multimodulus Divider

Although the frequency divider just discussed is programmable, its division ratio
can be programmed only statically; therefore, the division ratio cannot be toggled at
the input frequency. For frequency synthesis, we often need multimodulus dividers
(MMDs) with modulus control that can be toggled faster. In this section, we will
present such an MMD design as one of the examples for digital design using Verilog
HDL. The architecture of the MMD is based on [7], which will be studied in
Chapter 6 in detail. The MMD consists of three cascaded, 2/3, dual-modulus
prescalers as shown in Figure 4.10.

The divide-by-2/3 cells can be implemented in various topologies, such as the
one shown in Figure 4.11. The last cell in the MMD generates one mod pulse once
in a division period. This signal then propagates ‘‘up’’ the chain and is reclocked
by each cell along the way. An active-high mod signal enables a 2/3 cell to divide
by three once in a division cycle if its division-programming input R is set high.
If either R or mod is set to zero, the cell is set to divide-by-two mode. For a 3-bit
MMD using three cascaded 2/3 cells, the programmable division ratio can be found
by

NMMD = 8 + 4R2 + 2R1 + R0 (4.2)

Thus, a 3-bit MMD provides a programmable division ratio from 8 to 15 with
step size of 1.

Figure 4.10 MMD using cascaded divide-by-2/3 cells.

4.6 Digital Design Example I: A Multimodulus Divider 107

Figure 4.11 A dual-modulus divide-by-2/3 cell used in MMD design.

To model the MMD using Verilog HDL, we start with the latch module. Notice
that the latch is a level-triggered device. Compared to an edge-triggered flip-flop,
we use <always @(clk or rst_ or D)> without edge specifier posedge or negedge to
model the latch behaviorally as follows:

module latch(Q, QBar, D, clk, rst_); // level-triggered latch behavioral model
input D, clk, rst_;
output Q, QBar;
reg Q;
wire QBar;

always @(clk or rst_ or D)
begin
if(!rst_) Q<=1’b0;
else if(clk)Q<=D;

end
assign QBar = ~Q;

endmodule

Next, we model the divide-by-2/3 cell, which can be done structurally by wiring
the latches and AND gates as sketched in Figure 4.11.

//structural model of 2/3 cell based on Figure 4.11:
module DivBy2_3cell(modout, fo, modin, fin, R, rst_);
output modout, fo;
input fin, modin, R, rst_;
wire a, b, c, c1, d, e, f, f1, g, h, h1, i, i1;

and (b, i, modin);
and (e, modout, R);
and (g, f1, fo);
latch Q1 (modout, c1, b, fin, rst_),
P1 (f, f1, e, ~fin, rst_),
Q2 (h, h1, g, fin, rst_),
P2 (i, fo, h, ~fin, rst_);

endmodule

108 Introduction to Digital IC Design

Note that the reset signal may not be needed in hardware implementation if
the initial output of the latch is not a concern. However, a reset signal is needed
in the Verilog code for simulation purposes. Otherwise, the divider output will
always be the unknown value x since feedback is involved in the divide by 2/3 cell.
With the 2/3 cell module, we can model the 3-bit MMD using the cascaded topology
shown in Figure 4.10:

//structural model of a 3-bit MMD based on in Figure 4.10:
module MMD(fout, fo3, fin, R0 ,R1, R2, rst_, mod3);

output fout, fo3;
input R0, R1, R2, mod3, fin, rst_;
wire mod0, mod2, fo1, fo2;

DivBy2_3cell cell1(mod0, fo1, fout, fin, R0, rst_),
cell2(fout, fo2, mod2, fo1, R1, rst_),
cell3(mod2, fo3, mod3, fo2, R2, rst_);

endmodule

Finally, let us design a test bench to test the MMD performance. Although
divider performance can be evaluated by observing its input and output waveforms,
it is highly desirable to design a test bench with a self-checking capability, especially
when the design is highly complex. For the MMD, we design a test bench that can
automatically count the input and output pulses and, thus, tells the designer what
the simulated division ratio is.

‘timescale 1ns / 1ns
‘define Tclk 5

module test();
reg fin, rst_;
reg[2:0] R;
wire fout, fo3;
integer count_r, count_r1, count_r2, N;

MMD mmd(.fout(fout),
.fo3(fo3),
.fin(fin),
.R0(R[0]),
.R1(R[1]),
.R2(R[2]),
.rst_(rst_),
.mod3(1’b1)); // mod3 in the last cell is connected to logic 1.

initial begin
fin <= 1’b0;
rst_ <= 1’b0;
#5 rst_=1’b1;
R = 3’b000;
$display("Performing self checking for R=000, MMD_ratio=8");
#85 R = 3’b100;
#80 $display("Performing self checking for R=100, MMD_ratio=12");
#160 $finish;

end

initial forever
#‘Tclk fin <= ~fin;

// Self checking:
always @(negedge fin) //count_r counts input pulses

4.7 Digital Design Example II: A Programmable MASH SD Modulator 109

begin
if(~rst_) count_r=0;
else count_r=count_r+1;

end
always @(negedge fout) //count_r counts output pulses
begin
count_r2=count_r1;
count_r1=count_r;
N = count_r1-count_r2; //N counts no. of input pulses within 1 output cycle
$display("count_r1=%0d, count_r2=%0d, N=%0d", count_r1, count_r2, N);

end

endmodule

The simulated MMD waveforms are shown in Figure 4.12. The waveforms
demonstrate that the MMD divides the input frequency by eight when the modulus
inputs R = 3’b000 and by 12 when the modulus inputs R = 3’b100. Note that
the fout and fo3 signals have the same frequency, but with different duty cycles.
The self-checking test bench also prints the following messages, indicating that the
MMD is dividing by 8 and 10 after loading the two modulus inputs:

count_r1=0, count_r2=0, N=0
Performing self checking for R=000, MMD_ratio=8
count_r1=8, count_r2=0, N=8
count_r1=16, count_r2=8, N=8
Performing self checking for R=100, MMD_ratio=12
count_r1=28, count_r2=16, N=12

4.7 Digital Design Example II: A Programmable MASH SD Modulator

To demonstrate digital logic design for frequency synthesis, we discuss the Verilog
model for a third-order multiloop SD modulator discussed in [8]. The SD modulator
as illustrated in Figure 4.13 will be discussed in Chapter 9. The SD modulator
consists of three cascaded accumulators with a single-bit carry from each accumula-
tor. The carries from three accumulators are passed on to z −1 delay blocks and
are then used to select coefficient banks.

Figure 4.12 The simulated 3-bit MMD waveforms with modulus input set to R = 0 and R = 4.

110 Introduction to Digital IC Design

Figure 4.13 A third-order multiloop MASH SD modulator.

In this section, we provide a portion of the Verilog code for the above SD

modulator design. To verify the design, the SD modulator outputs obtained in
Verilog simulations are compared with the results from Matlab behavioral simula-
tions. Bitwise agreements between Verilog and Matlab simulation results were
achieved. The following Verilog code is fully synthesizable and can be easily pro-
grammed for any number of accumulator bits by using a parameterized program-
ming style. The comments given in the code should be self-explanatory regarding
the parameters and the code functions.

4.7.1 MASH SD Modulator Top-Level Structure

The programmable SD modulator can generate fractional-divider ratios by generat-
ing outputs, which vary randomly around the desired average value. Because the
output is random, noise will be moved to higher frequencies (also called noise
shaping) as will be discussed in Chapter 9. Thus, the first and the second accumula-
tors form an accumulator with second-order noise shaping. The third accumulator
further dithers the instantaneous division ratio in a wider range around its correct
average value. The three accumulators can be selected and powered down separately
to allow programmable SD architectures in the following format:

1. Only the coarse tune is selected, and all three accumulators are powered
down.

4.7 Digital Design Example II: A Programmable MASH SD Modulator 111

2. Coarse tune and the first accumulator are selected, and the second and third
accumulators are powered down.

3. Coarse tune and the first and second accumulators are selected, and the
third accumulator is powered down.

4. Coarse tune and all three accumulators are selected.

/*
DESCRIPTION: This module models the fractional-N accumulator with
programmable MASH delta-sigma accumulators as shown in Figure 4.13.
*/
module fracds(clk,

rst_n,
f_in,
k_in,
sel_sd_in,
sel_seed_in,
sd_seed_in,
seed_en1_in,
seed_en2_in,
seed_en3_in,
sd_out);

parameter size = 6; //max accumulator size, parameterized coding style.

input clk; //SD clock, namely, the reference signal.
input rst_n; //active-low reset, _n represents active low.
input[size-1:0] f_in; //accumulator size, fractionality = F+1 = 1~64.
input[size-1:0] k_in; // numerator K of channel fine tune word K/F,

//K = 0~63.
input[1:0] sel_sd_in; //select the order of the SD modulator based

//on the following rules:
//00 --> stop clocking all accumulators, when N is an integer or

//synthesizer is in sleep mode,
//01 --> Use only the 1st accumulator output for fractional-N without

//SD operation,
//10 --> Use only the 1st and the 2nd accumulator outputs for FN with

//2nd-order SD effect,
//11 --> Use the 1st , 2nd and 3rd accumulator outputs for FN with

//3rd-order SD effect.
input[1:0] sel_seed_in; //accumulator seed value selection base on

//the following rules:
//00 --> all the SD accumulator is reset to zero,
//01 --> accumulator 1 is reset to a loaded value SD_SEED, accumulator

//2 & 3 are reset to 0,
//10 --> accumulator 1 & 2 are reset to a loaded value SD_SEED,

//accumulator 3 is reset to 0,
//11 --> all 3 accumulators are reset to a loaded value SD_SEED.

input[size-1:0] sd_seed_in; //Pre-calculated start value for the SD
//accumulator.

input seed_en1_in, seed_en2_in, seed_en3_in;
output[3:0] sd_out; //carry out of the three SD accumulators.

// Internal wires and buffers:
reg seed_en1, seed_en2, seed_en3;
reg[size-1:0] f, k, sd_seed, seed1, seed2, seed3, f2s, accum_out1,

accum_out2, accum_out3;
reg[1:0] sel_sd, sel_seed;
wire carry1,carry2,carry3;
reg c1_d0, c1_d1, c1_d2, c1_d3, c1_d4, c2_d0, c2_d1, c2_d2, c2_d3, c3_d0,

c3_d1, c3_d2;
reg[3:0] sd12, sd3, sd_out;

//buffer input parameter k and f, etc.:
always @(posedge clk or negedge rst_n)
if (!rst_n) //reset action:

112 Introduction to Digital IC Design

begin
f[size-1:0] <= {size{1’b0}}; //reset to f+1 = 1
k[size-1:0] <= {size{1’b0}};
sel_sd[1:0] <= 2’b00;
sel_seed[1:0] <= 2’b00;
sd_seed[size-1:0] <= {size{1’b0}};
seed_en1 <= 1’b0;
seed_en2 <= 1’b0;
seed_en3 <= 1’b0;

end
else
begin
f[size-1:0] <= f_in[size-1:0];
k[size-1:0] <= k_in[size-1:0];
sel_sd[1:0] <= sel_sd_in[1:0];
sd_seed[size-1:0] <= sd_seed_in[size-1:0] + {~f_in[size-1:0]};
sel_seed[1:0] <= sel_seed_in[1:0];
seed_en1 <= seed_en1_in;
seed_en2 <= seed_en2_in;
seed_en3 <= seed_en3_in;

end

assign f2s[size-1:0] = ~f[size-1:0]; //f2s = 2’s comp of (f+1) = ~f

//generate seeds for accumulator reset:
always @ (sel_seed or sd_seed)
begin
case (sel_seed[1:0])
2’b00 : begin
seed1[size-1:0] = {size{1’b0}};
seed2[size-1:0] = {size{1’b0}};
seed3[size-1:0] = {size{1’b0}};
end

2’b01 : begin
seed1[size-1:0] = sd_seed[size-1:0];
seed2[size-1:0] = {size{1’b0}};
seed3[size-1:0] = {size{1’b0}};
end

2’b10 : begin
seed1[size-1:0] = sd_seed[size-1:0];
seed2[size-1:0] = sd_seed[size-1:0];
seed3[size-1:0] = {size{1’b0}};
end

2’b11 : begin
seed1[size-1:0] = sd_seed[size-1:0];
seed2[size-1:0] = sd_seed[size-1:0];
seed3[size-1:0] = sd_seed[size-1:0];
end

default:begin
seed1[size-1:0] = {size{1’b0}};
seed2[size-1:0] = {size{1’b0}};
seed3[size-1:0] = {size{1’b0}};
end

endcase
end

//Instantiate accumulators 1, 2, and 3:
accum accum1(.clk(clk),

.rst_n(rst_n),

.f(f),

.f2s(f2s),

.accum_in(k),

.seed(seed1),

.seed_en(seed_en1),

.carry(carry1),

.accum_out(accum_out1));

4.7 Digital Design Example II: A Programmable MASH SD Modulator 113

accum accum2(.clk(clk),
.rst_n(rst_n),
.f(f),
.f2s(f2s),
.accum_in(accum_out1),
.seed(seed2),
.seed_en(seed_en2),
.carry(carry2),
.accum_out(accum_out2));

accum accum3(.clk(clk),
.rst_n(rst_n),
.f(f),
.f2s(f2s),
.accum_in(accum_out2),
.seed(seed3),
.seed_en(seed_en3),
.carry(carry3),
.accum_out(accum_out3));

//select sd and carry:
always @ (sel_sd or carry1 or carry2 or carry3)
begin
case (sel_sd[1:0])
2’b00 : begin
c1_d0=1’b0;
c2_d0=1’b0;
c3_d0=1’b0;
end

2’b01 : begin
c1_d0=carry1;
c2_d0=1’b0;
c3_d0=1’b0;
end

2’b10 : begin
c1_d0=carry1;
c2_d0=carry2;
c3_d0=1’b0;
end

2’b11 : begin
c1_d0=carry1;
c2_d0=carry2;
c3_d0=carry3;
end

default:begin
c1_d0=carry1;
c2_d0=carry2;
c3_d0=carry3;
end

endcase
end

//MASH sigma-delta delays as shown in Figure 4.13:
always @(posedge clk or negedge rst_n)
if (!rst_n)
begin
c1_d1 <= 1’b0;
c1_d2 <= 1’b0;
c1_d3 <= 1’b0;
c1_d4 <= 1’b0;
c2_d1 <= 1’b0;
c2_d2 <= 1’b0;
c2_d3 <= 1’b0;
c3_d1 <= 1’b0;
c3_d2 <= 1’b0;

end
else

114 Introduction to Digital IC Design

begin
c1_d4 <= c1_d3;
c1_d3 <= c1_d2;
c1_d2 <= c1_d1;
c1_d1 <= c1_d0;

c2_d3 <= c2_d2;
c2_d2 <= c2_d1;
c2_d1 <= c2_d0;

c3_d2 <= c3_d1;
c3_d1 <= c3_d0;

end

//1st- and 2nd-order MASH sigma-delta coefficients as shown in Figure 4.13:
always @ (c1_d4 or c2_d2 or c2_d3)
begin
case ({c1_d4,c2_d2,c2_d3})
3’b000 : sd12=4’b0000;
3’b001 : sd12=4’b1111;
3’b010 : sd12=4’b0001;
3’b011 : sd12=4’b0000;
3’b100 : sd12=4’b0001;
3’b101 : sd12=4’b0000;
3’b110 : sd12=4’b0010;
3’b111 : sd12=4’b0001;
default: sd12=4’b0000;

endcase
end

//3rd-order MASH sigma-delta coefficients as shown in Figure 4.13:
always @ (c3_d0 or c3_d1 or c3_d2)
begin
case ({c3_d0, c3_d1, c3_d2})
3’b000 : sd3=4’b0000;
3’b001 : sd3=4’b0001;
3’b010 : sd3=4’b1110;
3’b011 : sd3=4’b1111;
3’b100 : sd3=4’b0001;
3’b101 : sd3=4’b0010;
3’b110 : sd3=4’b1111;
3’b111 : sd3=4’b0000;
default: sd3=4’b0000;

endcase
end

//MASH sigma-delta output:
always @(posedge clk or negedge rst_n)
if (!rst_n)
begin
sd_out[3:0] <= 4’b0000;

end
else
begin
sd_out[3:0] <= sd12[3:0] + sd3[3:0];

end

endmodule //close fracds

4.7.2 Fractional Accumulator with Programmable Size and Seed-Loading
Capability

The presented SD accumulator has a special feature of loading precalculated start
values to three accumulators to avoid artificial spur generation. It is known that
any repetition of a time sequence will cause artificial spurs in the spectrum with

4.7 Digital Design Example II: A Programmable MASH SD Modulator 115

a frequency inversely proportional to the repetition’s period. Loading different
start values (seeds) to different accumulators will break the repetition in the time
domain. Two control bits (SEL_SEED) were designed to load the seeds flexibly as
follows:

1. If SEL_SEED = 00, all the SD accumulators are reset to zero.
2. If SEL_SEED = 01, the first accumulator is reset to a precalculated seed,

and the second and the third accumulators are reset to zero.
3. If SEL_SEED = 10, the first and the second accumulators are reset to a

precalculated seed, and the third accumulator is reset to zero.
4. If SEL_SEED = 11, all the three accumulators are reset to a loaded seed

value.

/*
DESCRIPTION: This module models the fractional-N accumulator with
programmable size as shown in Figure 4.13.
*/

module accum(clk,
rst_n,
f,
f2s,
accum_in,
seed,
seed_en,
carry,
accum_out);

parameter size = 6; //max accumulator size

input clk;
input rst_n; //active-low reset
input[size-1:0] f; //fractionality = f+1 = 1~64
input[size-1:0] f2s; //2’s comp of fractional accumulator size (f+1)
input[size-1:0] accum_in; //accumulator input.
input[size-1:0] seed; //precalculated start value for the accumulator.
input seed_en;
output carry; //buffered carry out.
output[size-1:0] accum_out; //buffered accumulator output.

reg[size-1:0] accum_out; //buffered accumulator output.
reg[size:0] accum; //sign extended to size+1 bits

//programmable accumulator:
always @(posedge clk or negedge rst_n)
if (!rst_n)
begin
accum[size:0] <= {(size+1){1’b0}}; //reset to 0.

end
else if(seed_en)
begin
accum[size:0] <= {1’b0,seed[size-1:0]}; //load seed.

end
else
begin
if(accum[size]) //normal operation with carry out
begin
accum[size:0] <= {1’b0,accum_in[size-1:0]} + {1’b0,accum[size-1:0]}

{1’b0,f2s[size-1:0]};
end
else //normal operation without carry out

116 Introduction to Digital IC Design

begin
accum[size:0] <= {1’b0,accum_in[size-1:0]} + {1’b0,accum[size-1:0]};

end
end

//buffer accumulator output:
always @(posedge clk or negedge rst_n)
if (!rst_n)
begin
accum_out[size-1:0] <= {size{1’b0}}; //reset to 0.

end
else if(accum[size]) //normal operation with carry out
begin
accum_out[size-1:0] <= accum[size-1:0];

end
else //normal operation without carry out
begin
accum_out[size-1:0] <= accum[size-1:0] + f[size-1:0] + {{(size-1)

{1’b0}},1’b1};
end

assign carry = accum[size];

endmodule //close accum

4.7.3 Reset Synchronization

The presented SD modulator also features an active-high soft reset. The soft reset
differs from the global reset in the sense that the global reset signal resets every
flip-flop to zero, while the soft reset signal only resets the accumulators with desired
frequency words and seed values. The release of asynchronous reset is synchronized
to the clock as illustrated in Figure 4.14, where tm is the test mode signal to enable
the internal scan for digital block testing. During scan testing, the internal generated
reset signals and their synchronizations will be disabled.

/*
DESCRIPTION: This module models asynchronous reset with synchronous
release as shown in Figure 4.14.
*/

module rst_syn (clk,
rst_in_n,
rst_out_n,
tm);

input clk;
input rst_in_n; //input global asynchronous rst
output rst_out_n; //output synchronized rst
input tm; //active-high test mode

Figure 4.14 The reset synchronization for SD accumulators.

4.7 Digital Design Example II: A Programmable MASH SD Modulator 117

reg rst1, rst2;

always @(posedge clk or negedge rst_in_n)
if(!rst_in_n)
begin
rst1 <= 1’b0;
rst2 <= 1’b0;

end
else
begin
rst2 <= rst1;
rst1 <= rst_in_n;

end

assign rst_out_n = tm ? rst_in_n : rst2;

endmodule //end rst_syn

4.7.4 Simulated Results

Figure 4.15 gives Verilog simulation results of the SD output and its spectrum for
the case where coarse tune C = 17, fractionality F = 30, and fine tune K = 27. All
three accumulator outputs are selected, and the fractional spurs are thus shaped
by a third-order MASH SD fractional accumulator. Figure 4.15(a) shows how the
third-order SD dithers the division ratio around its average value (C = 17) in the
time domain. Figure 4.15(b) clearly demonstrates the noise-shaping effect in the
frequency domain. Because this is a third-order loop (three accumulators), the noise
shaping is third order, which means the spectrum of noise rises at 60 dB/dec as
expected.

Figure 4.15 (a) Simulated division ratio, and (b) its spectrum.

118 Introduction to Digital IC Design

References

[1] Ciletti, M. D., Advanced Digital Design with the Verilog HDL, Upper Saddle River, NJ:
Pearson Education, 2003.

[2] Lee, S., Advanced Digital Logic Design Using Verilog, State Machines, and Synthesis for
FPGAs, Washington, DC: Thomson Publishing Group, 2003.

[3] Moorby, P. R., and D. E. Thomas, The Verilog Hardware Description Language, 4th ed.,
Dordrecht, the Netherlands: Kluwer Academic Publishers, 1998.

[4] Palnitkar, S., Verilog HDL, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 2003.
[5] Bhasker, J. A., Verilog HDL Primer, Allentown, PA: Star Galaxy Press, 1997.
[6] Sternheim, E., et al., Digital Design and Synthesis with Verilog HDL, San Jose, CA:

Automata Publishing Co., 1993.
[7] Vaucher, C. S., et al., ‘‘A Family of Low-Power Truly Modular Programmable Dividers in

Standard 0.35 mm CMOS Technology,’’ IEEE J. Solid-State Circuits, Vol. 35, July 2000,
pp. 1039–1045.

[8] Rogers, J. W. M., et al., ‘‘A Fully Integrated Multi-Band SD Fractional-N Frequency
Synthesizer for a MIMO WLAN Transceiver RFIC,’’ IEEE J. Solid-State Circuits, Vol. 40,
No. 3, March, 2005, pp. 678–689.

C H A P T E R 5

CMOS Logic and Current Mode Logic

5.1 Introduction

This chapter describes basic logic circuits. This can be seen as largely background
material for applications in later chapters in the design of dividers and phase
detectors in frequency synthesizers. The types of logic discussed will be CMOS
rail-to-rail logic, CMOS current mode logic (CML), bipolar CML, and bipolar
emitter coupled logic (ECL). Note that CML is a general term and applies to both
bipolar and CMOS; however, with metal oxide semiconductor (MOS) transistors,
it is often called MOS current mode logic (MCML). ECL is the name often given
to bipolar CML that has emitter followers as the output stage transistors. At low
frequencies, CMOS rail-to-rail is preferred for its simplicity and low static power
dissipation, while, at higher frequencies, CML or ECL is used, as they can operate
faster with lower power because of the reduced output swing. As shown in Figure
5.1, when it is not switching, CMOS rail-to-rail logic does not consume any current,
while CML does. CMOS rail-to-rail logic consumes current only during transitions,
and its power consumption is proportional to the operation frequency. CML bias
current must rise as the speed of switching increases, just as CMOS rail-to-rail
logic does, but it does so at a slower rate. Thus, above some frequency, CML
becomes a lower-power solution. CMOS rail-to-rail logic is differential and, there-
fore, has good power-supply rejection, which is preferred in many synthesizer
applications. Various types of logic and some important design trade-offs are
summarized in Table 5.1.

Figure 5.1 Comparison of current for CMOS rail-to-rail and CML logic versus frequency.

119

120 CMOS Logic and Current Mode Logic

Table 5.1 Comparison of Different Logic Styles

Noise Power-Supply Maximum Power Dissipation
Logic Type Performance Rejection Speed

CMOS Bad Bad Moderate Low at low frequency,
rail-to-rail high at high frequency
CMOS CML Good Good High High at low frequency,

low at high frequency
Bipolar Excellent Good Very High High at low frequency,
CML, ECL low at high frequency

5.2 CMOS Logic Circuits

CMOS rail-to-rail logic is by far the most commonly used type of logic circuit;
however, in synthesizer design, often CML is preferred. The bulk of this chapter
will focus on CML; however, for lower-speed applications, CMOS rail-to-rail logic
is often used. CMOS rail-to-rail logic has outputs that are either at or very close
to one of the power supplies. Since the voltage in this case must change by a large
amount and, hence, requires larger charge and discharge time, rail-to-rail logic is
often slower than the other types of logic we will use. Also, even though the dc
power consumption of CMOS rail-to-rail logic is zero, when such circuits are
switched at high speed, they can consume a lot of power (just check the heat sink
on your Pentium!).

Basic CMOS rail-to-rail logic functions are shown in Figure 5.2 [1, 2]. They
are always made from a pull-up and pull-down network to pull the output to one
rail or the other, depending on the inputs. If the transistors in the figure are thought
of as switches, it is not hard to see how these circuits implement their various logic
functions. Their speed is largely determined by how much capacitance they have
to drive and how much current they can source or sink. The transistors in these
circuits are usually sized by choosing width W and length L so that the pull-down
and pull-up currents are equal. For example, transistors M5 and M6 will be able
to sink about four times as much current as transistors M3 and M4 if all transistors
are the same size and p-channel MOS (PMOS) and n-channel MOS (NMOS) are
matched. This can be seen by assuming that all transistors have an on resistance
given by

ron = RS L
W D (5.1)

where R is a constant. Also note that the pull-down and pull-up currents will vary
if there is more than one transistor in parallel. Thus, for instance, in Figure 5.2(b)
the pull-down current will be twice as much if both A and B are high versus what
it would be if only A or B were high by itself.

The power dissipation of CMOS rail-to-rail logic can also be determined quite
easily. If the CMOS gate is driving a load capacitance CL , then, each cycle, the
capacitor must be charged up to VDD and then discharged to VSS . Each time this
happens, the energy dissipated is

5.3 Large-Signal Behavior of Bipolar and CMOS Differential Pairs 121

Figure 5.2 CMOS digital logic gates: (a) inverter, (b) NOR gate, (c) NAND gate, and (d) XOR
gate.

E =
CL (VDD − VSS)2

2
(5.2)

Since both charging and discharging results in this dissipation, coming if the
clock frequency is f, then the power dissipated in the gate is

P = CL (VDD − VSS)2 f (5.3)

5.3 Large-Signal Behavior of Bipolar and CMOS Differential Pairs

In CML, the dc current is constant, which leads to less switching noise. CML
circuits are intrinsically differential, making interfaces with the analog parts of the

122 CMOS Logic and Current Mode Logic

synthesizer easier as these blocks are often also differential for a variety of reasons.
The basis for all CML is the differential pair [3]. It is important to switch the pair
in digital applications, which means that a large enough differential voltage must
be applied to the input. For the bipolar and CMOS cases, respectively, shown in
Figure 5.3, the tail current as a function of either drain or collector currents can
be written as

IEE = iC1 + iC2 or IEE = iD1 + iD2 (5.4)

Also note that the input voltages can be written as the sum of base-emitter or
gate-source voltages:

v1 = vBE1 − vBE2 or v1 = vGS1 − vGS2 (5.5)

We will need an expression for the collector or drain current as a function of
the input voltage. We start, first, with the bipolar case, as it is simpler. The voltage
current relationship for a bipolar transistor is

iC = ISe
vBE
vT (5.6)

Figure 5.3 Differential pairs in CMOS and bipolar technology.

5.3 Large-Signal Behavior of Bipolar and CMOS Differential Pairs 123

where IS is the transistor reverse saturation current, and vT is thermal voltage,
kT /q, which is about 25 mV at room temperature. This can be written as

vBE = vT lnSiC
IS
D (5.7)

Therefore, (5.5) can be rewritten as

v1 = vT lnSiC1
IS
D − vT lnSiC2

IS
D (5.8)

Now, making use of (5.4),

v1 = vT lnSiC1
IS
D − vT lnSIEE − iC1

IS
D (5.9)

After some manipulation,

e
v1
vT =

iC1
IEE − iC1

(5.10)

iC1 = IEE1 e
v1
vT

1 + e
v1
vT
2

iC2 can be solved in a similar way:

iC2 = IEE1 e
−v1
vT

1 + e
−v1
vT
2 (5.11)

Thus, the bipolar differential pair is completely switched when v1 is approxi-
mately 4vT or larger, regardless of the size of the transistor used or the current.
Therefore, for maximum speed and minimum capacitance, minimum geometry
devices are preferred, provided noise is not an issue, and the current is not beyond
the peak fT current density.

Equations for the CMOS differential pair can be solved in a similar manner,
although a few more steps are required. The simple square law voltage-current
relationship for a CMOS transistor is

iD =
mCox

2 SW
L D (vGS − VT)2 (5.12)

which can be rewritten as

124 CMOS Logic and Current Mode Logic

vGS = √ 2
mCox

S L
W D√iD + VT (5.13)

Therefore, (5.5) can be rewritten as

v1 = √ 2
mCox

S L
W D X√iD1 − √iD2 C (5.14)

Now, making use of (5.4),

v1 = √ 2
mCox

S L
W D X√iD1 − √IEE − iD1 C (5.15)

Now, squaring both sides of (5.15) gives

v 2
1 =

2
mCox

S L
W D XiD1 − 2√iD1√IEE − iD1 + IEE − iD1 C (5.16)

v 2
1 =

2
mCox

S L
W D XIEE − 2√iD1√IEE − iD1 C

Moving all terms with iD1 in them to one side yields

4
mCox

S L
W D√iD1√IEE − iD1 =

2
mCox

S L
W D IEE − v 2

1 (5.17)

Squaring, to remove the roots, results in

16

(mCox)2 S L
W D2 XIEE iD1 − i 2

D1C =
4

(mCox)2 S L
W D2I 2

EE −
4

mCox
S L

W D IEE v 2
1 + v 4

1

(5.18)

Collecting terms gives

16

(mCox)2 S L
W D2 i 2

D1

−
16

(mCox)2 S L
W D2IEE iD1 +

4

(mCox)2 S L
W D2I 2

EE −
4

mCox
S L

W D IEE v 2
1 + v 4

1 = 0

i 2
D1 − IEE iD1 +

1
4

I 2
EE −

mCox
4 SW

L D IEE v 2
1 +

(mCox)2

16 SW
L D2v 4

1 = 0

(5.19)

5.4 Effect of Capacitance on Slew Rate 125

This can be solved for iD1 :

iD1 =
IEE
2 F1 ± √v 2

1
mCox
IEE

SW
L D −

(mCox)2

4I 2
EE

SW
L D2v 4

1 G (5.20)

The term inside the brackets will have a peak value of two at some input
voltage of v1max. This voltage can be determined by setting the derivative of (5.20)
to zero, and the result is given by

v1 max = √
2IEE

mCox SW
L D (5.21)

The current becomes

iD1 =
IEE
2

X1 ± √2 − 1 C =
IEE
2

(1 ± 1) = 0, IEE (5.22)

Clearly, (5.20) is no longer valid for values greater than v1max, as the equation
then incorrectly predicts that the current starts to decrease again. For larger values
of voltage, one side continues to take all the current, and the other side just becomes
more firmly off. In real circuits, for large v1 , the source voltage then starts to
follow input voltage, limiting the total voltage to v1max.

Note that in (5.20) the ‘‘+’’ sign is correct for v1 greater than zero, and the
‘‘−’’ sign is correct for v1 less than zero. Thus, the current moves around the
quiescent point of IEE/2. In this case, complete switching is dependent on current
and device size. The current is completely switched when the term under the square
root in (5.20) is one.

From (5.21), it can be seen that for larger current, the required switching
voltage increases, while for larger W /L ratios, the switching voltage decreases.
Since the switching voltage is inversely related to the square root of W /L, large
increases of W /L are often required for a particular decrease in switching voltage.
This can make it difficult to reduce switching voltage by this method. As an example,
suppose we have a 0.1-mm technology. Then, for a width of 1 mm, the switching
voltage (normalized to √2IEE /mCox) is 0.316; for a width of 10 mm, it is 0.1; and
for a width of 100 mm, it is 0.0316. Thus, beyond 10 mm, transistor size has to
become large by IC standards to have much effect on switching voltage. For CML,
a 10-mm transistor would already be quite large and require a large current to
switch quickly. Since speed is often an issue, using huge transistors is not a very
practical solution.

5.4 Effect of Capacitance on Slew Rate

The bias current through a differential pair required for proper operation at a
given speed is dependent on the load capacitance as well as the required output

126 CMOS Logic and Current Mode Logic

swing. If there were no capacitance, then arbitrarily large output swings could be
achieved with arbitrarily small currents. Of course, this is unrealistic. When the
differential pair is fully switched, one side has no current such that the output
voltage on this side is at the rail (VCC), while the other side has all the current
flowing through it. Thus, the peak differential swing is

vo1 = VCC − IEERL (5.23)

Generally, the swing must be large enough to fully switch the following stage
that is being driven. Any additional swing is a waste of power. However, as output
waveforms are not perfectly square, to switch faster, additional swing will be
required to ensure that the fully switched condition is satisfied over a longer period
of time. In the case of bipolar, 100–200-mV peak is typically considered to be
sufficient. In CMOS, usually more is required, depending on the current and
transistor sizes involved, but generally 200–400-mV peak is a good ballpark
number.

The load capacitance will determine the slew rate of the stage. The slew rate
is the rate of change of the output voltage. For a capacitance C, the rate of change
of voltage is given by

dV
dt

=
1
C

?
dq
dt

(5.24)

where q is the charge on the capacitor. Assuming that each side of the differential
pair has a load capacitance CL connected to it, the slew rate is given by

Slew rate =
dvo1
dt

=
1

CL
? Icap (5.25)

where Icap is the current flowing through the capacitor. The time required for the
output to fully switch should be a small percentage of the period of the square
wave. Otherwise, the wave will have a triangular shape, as shown in Figure 5.4.

Figure 5.4 Illustration of the effect of slew rate on a square wave.

5.4 Effect of Capacitance on Slew Rate 127

Now the total transistor current ID is divided between the capacitor current
Icap and the load resistor current IR such that

ID = Icap + IR (5.26)

From (5.25) and making use of Ohm’s law, this can be rewritten as

ID = CL
dvo1
dt

+
vo1
RL

(5.27)

An important consideration is that the transistor current does not switch instan-
taneously. This can lead to a lower slew rate than would otherwise be expected
from the equations above. Assume that the stage is being switched by another stage
that is also loaded by RLCL . With such loading, the bias current does not switch
on or off instantaneously; rather, it has an exponential component to it. In order
to determine output voltages and currents, (5.27) must be modified to include a
changing bias current:

ID (t) = IEE S1 − e
−t

RLCLD = CL
dvo1
dt

+
vo1
RL

(5.28)

Solving this differential equation yields (for the case of current turning on)

vo1(t) = IEERL S1 − e
−

t
RLCL −

t
RLCL

e
−

t
RLCLD (5.29)

In the case of current turning off, it yields

vo1(t) = IEERL Se
−

t
RLCL +

t
RLCL

e
−

t
RLCLD (5.30)

The instantaneous current through the capacitor is the difference between the
total current and the current in the resistor:

Icap(t) = ID(t) −
vo1(t)

RL
= ±IEE ?

t
RLCL

? e
−

t
RLCL (5.31)

for either turning on or turning off the transistor current. Equations (5.31), (5.30),
and (5.29) are plotted in Figure 5.5. One can see that, with the finite turn-on time
of transistor current, the maximum capacitor current is about 38% of IEE. If the
transistor had switched current instantaneously to IEE, the peak capacitor current
would also have been IEE at the start of the transient.

Thus, a rough estimate for the time to switch logic levels through a circuit
made of CML inverters would be

Time to switch = 5 ? RLCL (5.32)

128 CMOS Logic and Current Mode Logic

Figure 5.5 Illustration of the effect of slew rate on a square wave.

However, since the following circuit will start to switch when its input voltage
is halfway to its final value, the time required (often simply called delay) is approxi-
mately

Delay = 1.5 ? RLCL (5.33)

Thus, for n stages, the time between the first stage’s starting to switch and the
nth stage’s starting to switch is

Delayn = 1.5 ? RLCL ? n (5.34)

For the circuit to reach maximum swing, the time to switch cannot be more
than one-half of a period. Therefore, from (5.32), the maximum frequency at which
a circuit could operate would be

fmax =
1

10 ? RLCL
(5.35)

The instantaneous slew rate as a function of time is

Slew rate = IEE ?
t

RLC 2
L

? e
−

t
RLCL (5.36)

Since slew rate is often useful for doing quick hand calculations, a quick estimate
of the maximum slew rate is based on an estimate of IEE/3 as the maximum
capacitor current shown in Figure 5.5. The resulting slew rate is

5.5 Trade-Off Between Power Consumption and Speed 129

Slew rate =
IEE

3CL
(5.37)

5.5 Trade-Off Between Power Consumption and Speed

In general, with CML circuits, more current results in faster operation. This is a
basic trade-off between current, load resistance, and capacitance. In bipolar CML,
this relationship is simple because the transistors do not have to scale with changing
bias current. If the current in a bipolar CML inverter is doubled, the load resistance
will be cut in half for the same output swing. Since current is doubled, but the
capacitance remains the same, the slew rate of the circuit is also doubled. With
CMOS, the effect of changing bias current is somewhat more complicated since
the size of the transistors also needs to be adjusted to switch with a particular
voltage swing. For a given desired output swing vo , the required transistor size for
a given current has previously been given as

vo = √
2IEE

mCox SW
L D (5.38)

If the current were doubled, then to keep the switching voltage constant, the
transistor W /L ratio would also have to be doubled. Therefore, the transistor size
would double and so would its capacitance, keeping the slew rate roughly constant.
Thus, it might seem that speed is independent of current. If this were the case, one
would always use minimum current; however, not all capacitance in the circuit
will double when the current is doubled. For example, one would expect the
interconnect capacitance to remain relatively constant, even when the transistor
size is doubled. Therefore, even with CMOS, higher currents do, in general, make
for faster circuits.

Example 5.1: Speed Versus Current Trade-Off in CML Inverters
Determine the delay through a set of four series-connected CML inverters (differen-
tial amplifiers as shown in Figure 5.3) in 0.18-mm CMOS technology. Design the
inverters to operate with a 1.8-V supply with a 500-mV peak-to-peak voltage
swing, and set all the tail currents to the same value, first 100 mA, then 1 mA,
and, finally, 10 mA. Assume that each circuit node has 20 fF of parasitic inter-
connect capacitance loading it and, for this process, that mCox = 215 mA/V2 and
Cox = 6.5 fF/mm2.

Solution: The first step is to determine the required transistor size to switch
with a 500-mV peak signal. Since the waveforms should look approximately square,
some margin should be allowed, so 300 mV for full switching will be used. Assuming
a length of 0.18 mm for the transistors for maximum speed, the widths of the
devices can be determined from (5.38) as

W =
2IEEL

mCoxv2
o

= 1.9 mm, 19 mm, 190 mm

130 CMOS Logic and Current Mode Logic

for the three currents. The load resistance for each current must give a voltage
drop of 500 mV when all of the tail current is being drawn through it. Therefore,

RL =
vo
IEE

= 5 kV, 500V, 50V

for the three currents.
Now, for each of these currents, the Cgs for the transistors can also be worked

out as

Cgs = WLCox = 2.2 fF, 22 fF, 222 fF

Thus, the total load capacitance for the three currents will be 22.2 fF, 42 fF,
and 242 fF. Consequently, the time to switch through a stage for each of the three
currents will be

Time to switch = 5 ? RCtotal

= 5 ? 5 kV (22.2 fF), 5 ? 500V (42 fF), 5 ? 50V (242.2 fF)

= 555 ps, 105 ps, 60.5 ps (5.39)

From this simple analysis, it can be seen that, if the parasitic capacitance is
larger than the transistor capacitance, then more current is advantageous. However,
if Cgs is dominant, then adding more current buys less advantage. The delay for
four stages can also be calculated as

Delayn = 1.5 ? RCtotal ? n

= 1.5 ? 5 kV (22.2 fF) ? 4, 1.5 ? 500V (42 fF) ? 4, 1.5 ? 50V (242.2 fF) ? 4

= 666 ps, 126 ps, 72.7 ps (5.40)

Thus, theoretically, the 100-mA design could function at a maximum speed of
approximately 1 GHz. So, for the purposes of exploring this circuit, it will be
driven with a 1-GHz, 500-mV, ideal square wave, and the outputs will be observed.
The output versus input voltage for the three designs is shown in Figure 5.6. Note
that the 100-mA design never fully reaches its output level. This is expected since
the time to switch is estimated as 555 ps, but the input switches every 500 ps.
Thus, it never fully reaches its maximum output level and slews for the entire
500 ps allowed. The 1-mA design takes 120 ps to rise from about 10% to 90%
of its final value, which is in line with prediction. The 10-mA waveform changes
from about 10% to 90% of its final value in about 80 ps. This is also reasonably
close to the prediction.

Figure 5.7 shows the delay through each of the four stages for the inverters
with tail current set to 1 mA. From this diagram, it can be seen that each stage
has a delay of about 30 ps (calculated by measuring the time between zero crossings
of consecutive stages) for a total of about 120 ps. Again, this is close to the predicted
value. The other two delay times can be calculated from Figure 5.6 as 80 ps for

5.5 Trade-Off Between Power Consumption and Speed 131

Figure 5.6 Input and output voltages for a set of four CML inverter stages.

Figure 5.7 Input and output voltages for a set of four CML inverter stages showing the voltage
switching in each stage for a 1-mA current setting.

the inverters with 10 mA of current and as 350 ps in the inverters with 100 mA
of current. Note that in this last instance, the prediction does not line up well with
the simulation results because the waveform shapes are no longer close to the
shapes assumed in the derivation.

132 CMOS Logic and Current Mode Logic

Drain current in one transistor in the last stage can be compared for the three
current levels and is shown in Figure 5.8. Note that the drain current appears more
like a square wave than does the output voltage, even for the 100-mA current level.
Note that each curve has been normalized for easy comparison.

5.6 CML Combinational Circuits

For high-speed applications and for low switching noise, synthesizers do not always
use standard CMOS logic, but use CML instead. By choosing the polarity of the
outputs appropriately, the differential pair already discussed can be used to make
an inverter. Other common logic functions, such as AND, OR, and XOR gates,
can be implemented as shown in Figure 5.9. If the inputs A and B are assumed to
be square waves of sufficient amplitude to switch the current flowing through the
transistors, then it is easy to prove correct functionality by tracing out the current
flow. For instance, in the OR gate, if A is high, then the current must flow through
M2 and M5 (note that M5 is included for level matching), pulling the negative
output low and, thus, producing logic one. If A is low, then B determines the
output. With the differential CML topology, the CML AND gate is exactly the
same as the CML OR gate in structure, but the input and output polarities are
changed. This is not surprising, as DeMorgan’s law points out that

A ? B = A + B (5.41)

The XOR gate looks like a mixer, not surprisingly, since it is the same circuit
except that, in a mixer, A would be small enough so that M1 and M2 would not
switch but would perform as a linear amplifier. As an XOR gate, it can be shown
that if either A or B, but not both, is high, a logic one is the result.

Figure 5.8 Drain current of one transistor in the last stage of a set of four CML inverter stages.

5.6 CML Combinational Circuits 133

Figure 5.9 Simple CML logic gates: (a) an OR gate, (b) an AND gate, and (c) an XOR gate.

An adder is another commonly used combinational logic block. Figure 5.10
illustrates the CML logic circuits for the sum and carry-out of a 1-bit full adder,
which implements the following logic expressions:

Sum = A ⊕ B ⊕ Cin (5.42)

Cout = A ? B + A ? Cin + B ? Cin

where Cin is the carry-in of the full adder. When a ripple adder is formed using a
half adder for the least significant bit (LSB) and cascaded, 1-bit full adders for all
other bits, the carry-in of the full adder is connected to the carry-out of the previous

134 CMOS Logic and Current Mode Logic

Figure 5.10 A CML full adder logic circuit: (a) sum circuit, sum = A ⊕ B ⊕ C, and (b) carry-out
circuit, Cout = A ? B + A ? C in + B ? C in .

bit, as illustrated in Figure 5.11. Since the carry-in bit arrives later than the input
bits A and B, Cin is connected to the upper level of the CML circuits, where the
delay to the output is minimum.

5.7 CML Sequential Circuits

Unlike combinational logic circuits, sequential logic circuits have memory functions
due to built-in feedback. Latches and flip-flops are building blocks of sequential

5.7 CML Sequential Circuits 135

Figure 5.11 A ripple adder formed by a half adder and cascaded full adders.

logic circuits. Although both latches and flip-flops are memory devices, a latch
differs from a flip-flop in that a latch is not edge-triggered, with the result that its
output follows the input variations during the clock active phase, while a flip-flop
is edge-triggered such that its output updates only at the clock transition. As will
be shown, two latches can be used to make a master-slave flip-flop, which is
ultimately used for the design of CML sequential circuits, such as dividers and
phase detectors. A gated delay latch (D-latch) has two inputs, a clock CLK used
as the enable signal and an input signal D. When the clock goes high, the latch
holds the previous value of the input until the clock goes low again. As shown in
Figure 5.12, a D-latch operates as follows: when the clock is high, the latch is
enabled and operates in ‘‘update’’ mode; that is, its output Q follows the input
signal D. When the clock is low, the latch is in ‘‘hold’’ mode; that is, its output
Q holds the previous value. The D-latch state diagram is shown in Figure 5.12(b),
where the two-digit number CD denotes the clock input and the data input, respec-
tively, and d represents the ‘‘don’t care’’ input. A symbol for an active-high clocked
D-latch is shown in Figure 5.12(c). Note that the circle in the output line indicates
inverted signal polarity.

The above-discussed D-latch characteristics can be expressed using the follow-
ing logic equation:

Figure 5.12 Clocked D-latch (a) excitation table, (b) state diagram, and (c) symbol.

136 CMOS Logic and Current Mode Logic

Q+ = D ? CLK + CLK ? Q (5.43)

where Q+ indicates the next state value of the latch output. Figure 5.13 illustrates
a typical timing diagram for a positive-level sensitive D-latch. As shown, the output
of the latch follows the input change during the clock positive phase. Hence, the
latch is not an edge-triggered device. Instead, the clock signal is an enable signal; for
this reason, the latch is also called a level-triggered memory device to differentiate it
from the edge-triggered flip-flops to be discussed in Section 5.8.

A MOS CML latch is usually implemented as shown in Figure 5.14. A bipolar
latch has the same topology. When CLK is low, all current is passed through M1 ,
and M2 is off. Thus, M5 and M6 are also off and do nothing. In this state, the
latch behaves as if it were a differential pair, and the output follows the input.
When CLK goes high, M1 turns off, turning off M3 and M4 . In this state, M5 and
M6 turn on. These two transistors are connected in positive feedback, which latches
the output value.

To understand this, consider the case when CLK goes high, and Q is also high.
In this case, the gate of M6 is at VDD, while the gate of M5 is low. Thus, current
through M2 will be drawn mostly by M6 because it will have a much higher VGS
than does M5 . Since little current is drawn through M5 , the high value of Q will
be reinforced, and since M6 is drawing current, the low value of Q will be reinforced.
If Q had been low, M5 would instead have turned on, reinforcing the low value
of Q. Thus, with M2 drawing current, the latch has been shown to be ‘‘holding’’
its state.

Many variants of this basic circuit are possible. One variant useful for imple-
menting a divide-by-three with 50% duty cycle is a latch with an invertible clock
[4], shown in Figure 5.15(a). Here, when the u input is high, the clock signal passes
through transistors M7 and M10 , but when u is low, the clock signal is inverted,
passing through M8 and M9 .

Figure 5.13 Timing diagram showing a typical D-latch operation.

5.7 CML Sequential Circuits 137

Figure 5.14 CML D-latch circuit.

Figure 5.15 CML latch with invertible clock: (a) circuit implementation, and (b) logic diagram.

138 CMOS Logic and Current Mode Logic

In comparison to the simple latch circuit shown in Figure 5.14, the extra
transistors M7 through M10 act like an XOR, gating the clock. Thus, the logic
diagram for this latch needs to be modified to include this, as shown in Figure
5.15(b).

The major advantage to adding the XOR gate, as shown in Figure 5.15, is that
stacking the circuits reduces the total current. This can only happen if the supply
voltage in the process is high enough to allow such stacking. If such stacking is
not possible, the functions can still be implemented, but more tail-current sources
will be needed to achieve the same logic function. Stacking can also be done with
the input as well as the clock. For example, Figure 5.16 shows an input that
incorporates an AND gate and a latch into one tail current.

Often it is desirable to be able to reset the latch to a known state, then to
release the reset asynchronously so that all the latches clocked by the same signal
can start their operations simultaneously. This is particularly important in order
to synchronize the flip-flops built using latches. If the supply voltage is high enough
to allow four-level transistor stacking, a resetable latch can be implemented by
inserting a pair of reset transistors (Q7 and Q8) below the clock and input transis-
tors, as shown in Figure 5.17. Note that RST_ is a convention for active-low
signals. When the reset signal RST_ is low, transistor Q8 is turned on, which forces
the current flow through the positive output path and causes the output Q to be

Figure 5.16 CML latch stacked with an AND gate: (a) circuit implementation, and (b) logic diagram.

5.8 Master-Slave D-Flip-Flop 139

Figure 5.17 CML latch with active-low reset using four-level transistors.

low. Meanwhile, transistor Q7 is turned off, which causes the output Q to be high.
Overall, the latch is reset to zero when RST_ is low. However, with supply voltages
lower than about 2.4V, it is very hard to keep all the bipolar transistors from
saturation in four-level CML logic. A three-level, resetable latch can be implemented
by placing the reset transistors in parallel with the latch transistors, as shown in
Figure 5.18 [5]. The structure is a latch followed by an AND gate that provides
the reset function, with the final outputs fed back to clear the latch’s internal
state during the reset mode. This topology is very suitable for low supply voltage
applications.

5.8 Master-Slave D-Flip-Flop

As shown, the output of a latch is not stable. During the update phase, any input
change will be passed to its output. Moreover, the transition of the latch output
is not synchronized to the clock edge. The problem can be solved by cascading
two latches in a master-slave (MS) configuration, as shown in Figure 5.19. The
two latches are driven by complementary clocks such that only one latch is active
at a time. During the negative phase of the clock, the master latch is active, and

140 CMOS Logic and Current Mode Logic

Figure 5.18 CML latch with active-low reset using three-level transistors for low-supply voltage
applications.

Figure 5.19 MS D-flip-flop using two D-latches.

its output QM is updated according to current input, while the slave latch is
disabled, preventing the flip-flop output Q from changing. At the rising edge of
the clock, the master latch changes from update to hold mode, while the slave
latch becomes enabled, passing the last captured QM value to the flip-flop output
Q. During the positive phase of the clock, the master latch is disabled, preventing
the flip-flop output Q from changing, even if the slave latch is in update mode.
Thus, the transition of the MS flip-flop output is only allowed at the rising edge
of the clock signal. From this point of view, the MS flip-flop is an edge-triggered
device. However, data captured in an MS flip-flop is not quite edge-triggered. Any

5.8 Master-Slave D-Flip-Flop 141

input change during the negative phase of the clock will be captured at the master
latch output QM , although only the last update captured right before the clock
rising edge will be passed to the flip-flop output.

The behavior of the MS D-flip-flop can be summarized as

Q+ = D (5.44)

and is also shown in Figure 5.20.
Therefore, the new output (Q+) of the D-flip-flop always assumes the value

of its input (D) at the clock rising edge. Note that there is a delay through the flip-
flop. Thus, if a signal arrives at the input of the flip-flop, it must wait one clock
cycle to be passed to the output. Thus, a flip-flop is one way to implement a unit
delay; in other words, it has a transfer function of z−1. The MS D-flip-flop can be
implemented in a CML topology as shown in Figure 5.21. Note that emitter
followers (labeled EF in Figure 5.21) are used in series with the latch cross-coupling
transistors to prevent the latch transistors from saturating and to provide drive

Figure 5.20 MS D-flip-flop: (a) excitation table, and (b) state diagram.

Figure 5.21 CML MS D-flip-flop.

142 CMOS Logic and Current Mode Logic

capability between the stages. If power consumption is a concern or the supply
voltage does not provide enough headroom for a four-level transistor topology,
the emitter followers can be omitted. In such a case, the latch transistors are soft-
saturated with an ac swing larger than 200 mV since their base and collector are
biased at the same dc voltage.

5.9 CML Circuit-Delay Analysis

To understand the CML circuit operation speed, the delay-time constants need to
be modeled for a series-gated bipolar CML D-latch, which is the common basic
building block of many high-speed switching circuits. Figure 5.22 illustrates the
D-latch, half-circuit, small-signal model, where Rc_pre denotes the load resistance
of the previous CML stage. For worst-case propagation delay, the upper-level data
inputs are set as constant, and a step is provided at the input of the lower-level clock
transistors [6, 7]. We assume that transistors Q3 and Q5 are on, and transistors Q4
and Q6 are off. The load parasitic capacitance CL2 is ignored since only dc current
flow occurs in the half-circuit analysis. The analysis of the half circuit is sufficient
for differential operations. The delay model can apply not only to CML sequential
circuits, such as the D-latch, but also to any combinational circuits, such as AND,
OR, and XOR gates.

Figure 5.22 D-latch, half-circuit, small-signal model.

5.9 CML Circuit-Delay Analysis 143

The delay through the CML D-latch can be expressed as the sum of RC time
constants, assuming dominant pole behavior [8]. The time constants associated
with various capacitors for lower transistors in the equivalent circuit model are
given by

tp1 =
re1 + rb1

1 + gm1 re1 +
re1 + rb1

rp1

Cp1

t bcx1 = Src1 + re3 +
rp3 + rb3 + Rc_pre

b + 1 DCbcx1

t bci1 = 5Src3 + re3 +
rp3 + rb3 + Rc_pre

b + 1 D (5.45)

+ rb131 +
gm1Src1 + re3 +

rp3 + rb3 + Rc_pre

b + 1
+ re1D

1 + gm1 re1 46 ? Cbci1

t cs1 = Src1 + re3 +
rp3 + rb3 + Rc_pre

b + 1 DCcs1

The time constants for upper transistors are listed as follows:

tp3 =
1

Sgm3 +
1

rp3
D ? Cp3

t bci3 = (2Rc_pre + rc3 + rb3) ? Cbci3

t bcx3 = (2Rc_pre + rc3) ? Cbcx3

t bci5 = (2Rc_pre + rc5 + rb5) ? Cbci5 (5.46)

t bcx5 = (2Rc_pre + rc5) ? Cbcx5 , t cs3 = (Rc_pre + rc3) ? Ccs3

t cs5 = (Rc_pre + rc5) ? Ccs5

t je4 = (Rc_pre + rb4 + 2re4) ? Cje4

t cload = RC1 ? CL1

where subscripts c, b, e, and s mean collector, base, emitter, and substrate of the
corresponding transistors; p denotes base-emitter junction; subscripts i and x denote
the intrinsic and extrinsic parts of the base-collector capacitances; and subscript
je denotes the junction capacitance. The delays associated with upper and lower
transistors can be found by summing all the delays in (5.45) and (5.46):

144 CMOS Logic and Current Mode Logic

tlower = tp1 + t bci1 + t bc1 + t cs1

tupper = tp3 + t bci3 + t bcx3 + t bci5 + t bcx5 + t cs3 + t cs5 + t je4 + t cload (5.47)

ttotal = 0.69 × (tlower + tupper)

At any junction where voltages change rapidly by a large amount, those junction
capacitances are modified from zero bias value Cjo as K ? Cjo by using coefficient
K, given by [6]

K = S fm

V2 − V1
DF(f − V1)1 − m

1 − m
−

(f − V2)1 − m

1 − m G (5.48)

where the ac swing is from voltage V1 to V2, and an ac voltage swing of ±150
mVpp is considered to be large, f is the built-in potential across the junction under
zero bias, and m is the grading coefficient and equals 1/2 for an abrupt junction.
The transistor capacitances are assumed to be constant when bias current varies,
which is a good approximation at low bias current.

5.10 Low-Power CML Circuits

CML circuit design always involves trade-offs between power consumption and
speed. The delay model developed in the previous sections can be used to optimize
CML circuits to improve circuit performance in terms of power consumption and
speed. Using the delay models developed in previous sections, Figure 5.23 shows
the CML D-latch propagation delay with respect to the bias current [9].

It comes as no surprise that the optimum biasing current for minimum delay
is the transistor peak fT current. According to Figure 5.23, it is obvious that there
is not much speed improvement by increasing the biasing current beyond 60% of
the peak fT current. Biasing the circuit close to the peak fT current may cause the
actual bias current to go beyond the peak fT current under temperature, supply,
and process variations, which leads to a dramatic speed penalty as a result of
current crowding and conductivity-modulation effects in the base region. Unless
the absolute maximum speed of operation is required, it is good practice to bias
the CML circuit with less than 60% of the peak fT current to save unnecessary
power consumption. Figure 5.23 shows that biasing the CML circuits at about
60% of the peak fT current (0.9 mA) can achieve about 80% of the maximum
speed that would have been achieved at the peak fT current.

Moreover, it is evident that the CML latch delay is dominated by the delay
associated with the upper transistors. Hence, reducing the delay due to upper-level
transistors is critical to improving CML switching speed. The optimum bias current
for minimum delay is not the same for upper- and lower-level transistors. The
lower transistors have minimum delay at lower bias current. It is thus intuitive
that there will be a speed improvement if the CML circuit is biased with slightly
higher bias current for the upper-level transistors than for the lower-level transistors.
For instance, with the same total bias current, the bias currents can be reduced by
about 20% for the lower-level transistors and increased by 20% for the upper-

5.10 Low-Power CML Circuits 145

Figure 5.23 CML D-latch delay versus bias current for a transistor size of 0.5 mm by 2.5 mm.

level transistors. Figure 5.24 illustrates a modified CML D-latch biased in such a
manner. The technique is called ‘‘keep alive’’ since there will always be a small
amount of bias current flowing through the upper-level transistors, keeping them
alive in slightly on states, regardless of the clock and data. As a result, the capacitors
associated with the upper-level transistors, which are the dominant contributors

Figure 5.24 CML D-latch with keep-alive topology.

146 CMOS Logic and Current Mode Logic

to the CML propagation delay, will be precharged to a certain level before the
clock is enabled. When the clock is enabled, the upper-level capacitors will need
relatively less time to reach their steady-state values. Moreover, optimization can
also be performed in terms of transistor sizing for upper and lower transistors. A
speed improvement of about 11% can be achieved by using the keep-alive CML
topology [9]. The keep-alive technique does not increase the power consumption,
but the output noise margin (voltage swing) is slightly reduced; that is, noise margin
is traded for circuit speed and power consumption.

5.11 CML Biasing Circuits

So far, all the current sources in the CML circuits have been shown as ideal, but
these are an important part of the design as well. Their design depends on the
technology being used, but, fundamentally, a current source consists of a current
mirror of some kind, with the reference current typically generated by a bandgap
circuit.

In bipolar technology, a current-mirror biasing circuit could look like that
shown in Figure 5.25(a). In this mirror, the current is scaled up N times from the
reference produced by the bandgap circuit. Resistors RE and NRE are included to
increase the output impedance of the current mirror and to improve matching
between the diode connected transistor Q1 and the current source transistor NQ1 .
This is because the current-voltage relationship in a bipolar transistor is exponential;
thus, the sensitivity of the output current to changes in VBE is greater than the
sensitivity of the output current to changes in RE . An additional feature of this
current source is the addition of transistor Q2 to provide base current to the main
mirror transistors, thus improving current matching. The capacitor C is included
to reduce the circuit noise, and RBL is included to ensure that transistor Q2 is
always biased in the active region.

The output impedance of the current mirror can be computed with the aid of
Figure 5.25(b). Here, it is assumed that transistor Q1 , being essentially diode

Figure 5.25 (a) A bipolar current source, and (b) a simplified model for calculating the output
impedance.

5.11 CML Biasing Circuits 147

connected, provides a short circuit (low impedance path) to ground. Then, the
output impedance of this circuit is given by

Zout =
RE //re + ro

1 − gmRE //re
(5.49)

Note that, as expected, the value of Zout reduces to be simply ro if no degenera-
tion is added to the circuit; however, it is clear that even a small amount of
degeneration will add significantly to the output impedance of the circuit. This
impedance, when combined with parasitic capacitance connected to the output of
the current mirror, can be used to determine at which frequency the output imped-
ance will start to decrease and, thus, help to determine the frequencies at which
this structure will provide a useful current source.

In CMOS technologies, it is not as common to use degeneration resistors as it
is in bipolar technology. However, since CMOS typically has much lower output
impedance, often cascode transistors are included, as shown in Figure 5.26(a).
Also, if current matching is a concern, then the voltage at the drain of both M3
and M2 should be matched as closely as possible. These cascode transistors also
provide an additional degree of freedom in the design of the mirror. As an example,
the switching speed of a CML stage can be affected by the output capacitance of
its current source (switching the stage means that second harmonic voltage will
appear on the tail-current source). For a single-transistor current source, there is
a trade-off between output impedance and capacitance. However, with a cascode
current source, the cascode transistor can be chosen to be of a minimum length
to minimize capacitance, and longer channel devices can be used for transistors
M1 and NM1 for high output impedance.

The output impedance of the current mirror can be computed with the aid of
Figure 5.26(b). Here, it is assumed that transistor M1 , being essentially diode
connected, provides a short circuit (low impedance path) to ground. This means
that the current source of M2 is not active as the gate and source are ac grounded.
Thus, the output impedance of this circuit is given by

Figure 5.26 (a) A CMOS current source and (b) a simplified model for calculating the output
impedance.

148 CMOS Logic and Current Mode Logic

Zout =
(ro3 + ro2 − gmro2ro3)

1 − 2gmro2
(5.50)

Note that the value of Zout reduces to be simply ro2 if no cascode is used. This
impedance, when combined with parasitic capacitance connected to the output of
the current mirror, can be used to determine at which frequency the output imped-
ance will start to decrease and, thus, help to determine the frequencies at which
this structure will provide a useful current source.

Now it is also necessary to provide reference currents that are supply and
temperature independent [10–13]. Since circuit performance in a silicon process is
affected by temperature, supply voltage, and process variations, it is possible to
find dependencies that cancel one another. To start, consider the bipolar base
emitter voltage characteristic described in Appendix B:

VBE =
kT
q

ln
IC
IS

(5.51)

This expression seems to show that base-emitter voltage is directly proportional
to temperature; however, IS has a large temperature dependence as well. An expres-
sion for VBE as a function of temperature is [14, 15]

VBE = VBG S1 −
T
T0
D + VBE0

T
T0

+
2.3 ? kT

q
ln

T0
T

+
kT
q

ln S IC
IC0

D (5.52)

where T0 is the reference temperature, VBE0 is the base-emitter voltage at the
reference temperature, and VBG is the bandgap voltage of silicon (approximately
1.206V). Even though it may not be immediately obvious from this expression,
VBE will actually decrease for a constant collector current with increasing tempera-
ture. Thus, if the collector current is assumed to be constant, then the derivative
of VBE with respect to temperature is

dVBE
dT

=
VBE0 − VBG

T0
+

2.3 ? k
q

ln
T0
T

+
−2.3 ? k

q
(5.53)

Note that this expression shows that not a lot can be done to adjust the slope
of the temperature dependence.

Next, to cancel this negative temperature/voltage relationship, a voltage that
increases with temperature must be found. To do this, assume that two BJTs are
biased at different currents. Then, the difference between their base-emitter voltages
will be given by

DV = VBE1 − VBE2 =
kT
q

ln
IC1
IS

−
kT
q

ln
IC2
IS

=
kT
q

ln
IC1
IC2

(5.54)

Since (5.54) does not contain IS , this relationship is much simpler than (5.52),
and this voltage is directly proportional to temperature. In this case, the slope of
the temperature dependence is given by

5.11 CML Biasing Circuits 149

dDV
dT

=
k
q

ln
IC1
IC2

=
k
q

ln m (5.55)

Therefore, the slope can be adjusted by changing m, the ratio of IC1 to IC2 ,
and, by proper choice, can be made equal in magnitude and opposite in sign to
(5.53).

A simple circuit that could be used to generate a bandgap reference is shown
in Figure 5.27. In this circuit, the op-amp is used to keep the voltage at the collector
of Q1 and the voltage at the top of the resistor R the same by adjusting the value
of the VGS of the identical PMOS transistors. Thus, the voltage Vref is given by

Vref = VBE1 = VBE2 + VR (5.56)

where VR is the voltage drop across the resistor R.
Therefore, the voltage across the resistor R can also be given by

VR = VBE1 − VBE2 (5.57)

VR is therefore equal to the difference in the two base-emitter voltage drops.
Thus, Vref is given by

Vref = VR + VBE2 (5.58)

and therefore is made up of two voltages that have opposite temperature depen-
dences and consequently this voltage can be made to be independent of temperature.
The current through the circuit is given by

Iref =
VBE1 − VBE2

R
(5.59)

Figure 5.27 A simple bandgap reference generator with an output current proportional to absolute
temperature.

150 CMOS Logic and Current Mode Logic

Thus, current is proportional to absolute temperature. This current can be
scaled or mirrored to other PMOS transistors to create as many copies as is needed.

Note that, in practice, this circuit requires a startup circuit because, in addition
to the solution just assumed, the condition where all currents in the circuit are
zero will also provide a stable operating point for the op-amp. Startup could be
accomplished by injecting some current into the circuit at power up.

5.12 Driver Circuits

In modern ICs, often the synthesizer clock will have to be routed all over the chip.
In most ICs, this will mean the need to drive millimeters of interconnect. There is
much debate over how best to do this. Regardless of which approach is adopted,
the driver circuit will require a large current. As a result, efficient design of these
circuits is important. In addition, driving this amount of interconnect will mean
that a lot of inductance and capacitance will act to degrade the signal. The two
most obvious choices for driver circuits are the inverter and the emitter/source
follower circuits. Figure 5.28 shows an emitter follower (using a bipolar transistor).
The equivalent circuit with bipolar transistors replaced with MOS transistors would
be called a source follower. Emitter and source followers work well at low frequen-
cies, where inductance is not as much of a problem as capacitance, but they tend
to work less well at higher frequencies. This is because their low output impedance
reduces the effective RC time constant on the line. However, since they drive voltage
rather than current, the inductance of the line forms a voltage divider with the
load at higher frequencies.

Inverter circuits can also work quite well but often require very large currents
to keep their RC time constants low. They can also be connected in a cascode
configuration to allow them to drive a fairly low load impedance (although, through
switching action, this will not be as low as might be expected), as shown in Figure
5.29.

A superior approach is to combine these two circuits in a push-pull arrangement,
as shown in Figure 5.30. Here, a follower circuit is combined with an inverter
stage to drive a transmission line. The idea is that for half of the cycle, the follower
M3 supplies current to the transmission line while current is sunk out of the

Figure 5.28 Followers as interconnect driver circuits.

5.12 Driver Circuits 151

Figure 5.29 Inverter circuits as interconnect driver circuits.

Figure 5.30 Efficient push-pull output buffer.

152 CMOS Logic and Current Mode Logic

transmission line by the inverter transistor M2 . Meanwhile, transistors M4 and
M1 are off. In the other half of the cycle, the follower M4 turns on, and current
is sunk out of the transmission line by the inverter transistor M1 . Since in this
circuit almost all the current ends up flowing through the transmission line and
very little is wasted just biasing the transistors, this circuit can provide very square-
looking waves using minimal current. The only other wrinkle to the proper design
of this stage is that, for best operation, the clock edges in the four transistors have
to be lined up properly. Since the delay through the two amplifiers is usually
different, another stage may have to be used ahead of the actual driver to provide
a delay to line up the clock edges.

References

[1] Sedra, A. S., and K. C. Smith, Microelectronic Circuits, 5th ed., New York: Oxford Press,
2004.

[2] Jaeger, R. C., and T. N. Blalock, Microelectronic Circuit Design, 2nd ed., New York:
McGraw-Hill, 2004.

[3] Baker, R. J., H. W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation,
New York: IEEE Press, 1998.

[4] Magoon, R., and A. Molnar, ‘‘RF local Oscillator Path for GSM Direct Conversion
Transceiver with True 50% Duty Cycle Divide by Three and Active Third Harmonic
Cancellation,’’ IEEE Radio Frequency Integrated Circuit Symposium, Seattle, WA, 2002,
pp. 23–26.

[5] Dai, F. F., et al., ‘‘A Low Power 5 GHz Direct Digital Synthesizer Implemented in SiGe
Technology,’’ IEEE 5th Topical Meeting on Silicon Monolithic Integrated Circuits in RF
Systems, Atlanta, GA, September 2004.

[6] Rabaey, J. M., A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits: A Design
Perspective, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 2003.

[7] Alioto, M., and G. Palumbo, ‘‘Modeling and Optimized Design of Current Mode MUX/
XOR and D-Flip-Flop,’’ IEEE Transactions on Circuits and Systems-II, Vol. 47, No. 5,
May 2000, pp. 452–461.

[8] Sharaf, K. M., and M. Elmasry, ‘‘An Accurate Analytical Propagation Delay Model for
High-Speed CML Bipolar Circuits,’’ IEEE J. Solid-State Circuits, Vol. 29, January 1994,
pp. 31–45.

[9] Kakani, V., F. F. Dai, and R. C. Jaeger, ‘‘Delay Analysis and Optimal Biasing for High
Speed Low Power CML Circuits,’’ IEEE International Symposium on Circuits and Systems
(ISCAS), Vancouver, Canada, May 2004, pp. 869–872.

[10] Johns, D. A., and K. Martin, Analog Integrated Circuit Design, New York: John Wiley &
Sons, 1997.

[11] Razavi, B., Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, 2001.
[12] Lee, T. H., The Design of CMOS Radio Frequency Integrated Circuits, Cambridge, United

Kingdom: Cambridge University Press, 1998.
[13] Grey, P. R., et al., Analysis and Design of Analog Integrated Circuits, 4th ed., Cambridge,

United Kingdom: Cambridge University Press, 1998.
[14] Brugler, J., ‘‘Silicon Transistor Biasing for Linear Collector Current Temperature Depen-

dence,’’ IEEE J. Solid-State Circuits, Vol. SC-2, June 1967, pp. 57–58.
[15] Tsividis, Y., ‘‘Accurate Analysis of Temperature Effects in IC–VBE Characteristics with

Application to Bandgap Reference Sources,’’ IEEE J. Solid-State Circuits, Vol. 15,
December 1980, pp. 1076–1084.

C H A P T E R 6

Dividers and Phase-Frequency Detectors

6.1 Introduction

This chapter examines the design of dividers and PFDs. The main application for
dividers is in the feedback path of PLL-based frequency synthesizers, dividing the
oscillator output down to the reference frequency. There are several challenges in
divider design, which this chapter will discuss. The oscillator drives the divider
input and, since this is the highest frequency in the circuit, speed is a big challenge
in divider design. At each subsequent stage, the speed is lower, and the challenge
becomes to operate at the required speed at the lowest power dissipation. Another
challenge is that dividers need to be programmable and, in many cases, adjustable
in real time. They may be dynamically switched between two or more different
divider ratios to generate the equivalent of a fractional-divider ratio. Such dividers
are called dual-modulus or multimodulus dividers. As a related topic to frequency
division, the design of frequency multipliers is also discussed briefly.

The phase detector or PFD directly follows the divider. The PFD compares the
divided-down signal with the reference signal and provides an error voltage, which
is ultimately fed back to control the oscillator. In this chapter, a variety of design
issues and challenges will be discussed. This will include techniques to avoid the
dead zone, a situation in which the PFD is not able to respond to the phase
difference between the divider output and the reference signal. Another topic for
discussion is circuitry to detect the lock condition. Finally, some of the differences
in design considerations for phase detectors as used in clock-and-data-recovery
(CDR) circuits are also discussed.

6.2 Dividers

Most of the circuits studied in this section will be made with logic gates and latches
(not flip-flops). Generally, there will be two sets of latches in each circuit, as shown
in Figure 6.1. A clock will drive one set (the P set in Figure 6.1), and the other set
(the Q set in Figure 6.1) will be driven by the opposite phase of the clock. For the
purposes of this chapter, the clock will usually be the signal to be divided. Each
set of latches will be separated from the other set of latches by logic. It is important
to remember that latches have three possible states rather than just two. These
states are one, zero, and transparent. In digital circuits made with latches rather
than flip-flops, the state of the system is determined by the state of the latches that

153

154 Dividers and Phase-Frequency Detectors

Figure 6.1 A generic latch logic circuit.

are not transparent (i.e., they are holding and are thus in one of the other two
states: one or zero). Because the phase of the clock causes the latches to move
between the transparent and holding states, the clock also contributes another bit
to define the state of the system. Applying this to Figure 6.1, when the clock is
high, the P latches will determine the state of the system; when the clock is low,
the Q latches will determine the state of the system. Outputs of the system can be
determined by the current state and the inputs to the system. In general, the output
has to be connected through a multiplexer, also called a MUX in Figure 6.1. (A
multiplexer is a switch that can be controlled to connect one of several inputs to
the output, leaving the rest disconnected.) When the clock is high, the output is a
function of only the system inputs and outputs from the P latches. When the clock
is low, the output is a function of system inputs as well as the outputs from the

6.2 Dividers 155

Q latches. When building these circuits, Q latches usually only feed back to P
latches (through logic) but never to other Q latches, and vice versa. Throughout
this chapter, latch logic is used to design examples of common divider circuits.
Once these techniques are mastered, they can be used to make any divider required.
In this chapter, these basic building blocks are then used as the basis for more
complicated block-level dividers.

6.2.1 A Static Divide-by-Two Circuit

The first step in designing a divider circuit is to envision what output waveforms
the circuit should produce. Once this is completed, the rest is mechanical. One of
the most basic dividers is a static divide-by-two circuit. In such a divider, the output
should be a repeated pattern alternating between being zero for two clock phases
and one for two clock phases. An additional desirable feature would be to have
two outputs separated by a phase shift of 90°. Such phase-shifted outputs can be
very useful, for example, if the divider is needed to drive in-phase (I) and quadrature-
phase (Q) mixers in a telecommunications application. Figure 6.2 shows a drawing
of the desired outputs from this circuit. Note that this circuit has four states (two
P states when the clock is high and two Q states when the clock is low). The states
are assigned and labeled above the clock signals as P = 0, Q = 0, P = 1, and
Q = 1. Note that uppercase labels P and Q are used for latches or for states, while
lower case labels, p1, q1, are used for outputs from latches. In principle, state
assignment is arbitrary. However, a good assignment will ensure that a simpler
logic circuit is required to generate the outputs, which, in this case, must alternate
between zero and one.

The state graph for such a divider, which can be made by studying Figure 6.2,
is shown in Figure 6.3. Here, the circles represent states when the clock is high,

Figure 6.2 The outputs from a static divide-by-two circuit.

156 Dividers and Phase-Frequency Detectors

Figure 6.3 The state graph for a divide-by-two circuit. Circle states represent states when the clock
is high (also marked with w); square states represents states when the clock is low
(marked with w).

while the boxes represent states when the clock is low. The outputs are shown
next to their associated square or circle. Tracing out the state graph begins from
a circle state, as shown in Figure 6.3. From there, the state changes to a square
state, and the second output changes. Next, the circuit changes state back to a
circle state, and the first output goes high. Then, a square state is the last state
with the second output going low before it returns to the first state and the cycle
repeats. Now each circle state must be assigned a unique binary number, or one
at least unique from any other circle state but possibly the same as a square state.
It is not necessary to have uniqueness between square and circle states, as the clock
provides a way to tell them apart. The binary number for a state will correspond
to the states of the P latches if the clock is high and the Q latches if the clock is
low. Note that since this circuit has four states (two circle states and two square
states), it will need one P latch and one Q latch, as illustrated in Figure 6.4. State
assignment can be arbitrary, but making an effort to have as few state bits change
as possible in as many cases as possible may simplify the logic. In the state assign-
ment chosen here, there are two transitions where the binary number does not
change at all from a circle state to the next square state.

From the completed state diagram, the state tables can be constructed. For this
divider, there will be one state table for each clock phase, as shown in Tables 6.1

Figure 6.4 A logic circuit with four states (each latch gives a maximum of two states).

6.2 Dividers 157

and 6.2. Note that we use the convention of the ‘‘+’’ sign to indicate that the
variable value is for its next state.

Since there are no inputs to this circuit, the logic is rather trivial. If the clock
is high, the next state is the inverse of the current state, and if the clock is low,
then the next state is simply equal to the current state. The outputs can also be
determined:

q1+ = p1 (6.1)

p1+ = q1 (6.2)

Out1(w) = p1 (6.3)

Out1(w) = q1 (6.4)

Out2(w) = p1 (6.5)

Out2(w) = q1 (6.6)

The resulting final circuit with the logic in place (only one inverter) is shown
in Figure 6.5(a). This could also be thought of as a single flip-flop with its output
inverted and fed back to its input. In this example, the input is the clock, and the
output is a square wave at one-half the frequency of the input. The outputs on
each phase of the clock are also shown in Figure 6.5(a).

It is desirable to get the outputs without any additional circuitry if possible.
First, consider Out1. When the clock is high, Out1 is present at the output of P1.
When the clock is low, Out1 is present on the output of Q1. However, also note
that when the clock is high, Q1 is transparent, so the output of P1 also appears
at the output of Q1. Thus, Out1 can be seen on either phase of the clock at the
output of Q1, even when Q1 is transparent. Similarly, for Out2, when the clock
is high, Out2 is present at the output of P1, but when the clock is low, Out2 is
present at the output of the inverter. In this state, Out2(w) passes straight through
P1 because P1 is transparent. Thus, Out2 can be seen at the output of P1 regardless
of the phase of the clock. This simplification can be seen in Figure 6.5(b).

Table 6.1 State Table for a Divide-by-Two Circuit (Clock High)

State p1 (w) Next State q1+ (w) Outputs (w)

0 0 0,0
1 1 1,1

Table 6.2 State Table for a Divide-by-Two Circuit (Clock Low)

State q1 (w) Next p1+ State (w) Outputs (w)

0 1 0,1
1 0 1,0

158 Dividers and Phase-Frequency Detectors

Figure 6.5 A divide-by-two circuit made from a D-flip-flop: (a) outputs on different clock phases,
and (b) outputs without the need for a MUX.

6.2.2 Programmable Divide-by-Two or Divide-by-Three Circuit

Dividers that are more complicated can be designed using the methods outlined in
the previous section. For instance, suppose a circuit is needed that sometimes divides
by two and at other times divides by three, depending on the value of an input
(Div). The output of such a circuit might look like that shown in Figure 6.6. This
circuit does not have a 50% duty cycle when it is in divide-by-three mode
(Div = 1); rather, it is high for two clock phases and low for four clock phases
before the cycle repeats. From Figure 6.6, the output state diagram shown in Figure
6.7 can be derived as discussed previously. Note that the path through the state
diagram depends on the value of the input. If the input is low, then the state table
follows the pattern of the divide-by-two circuit just discussed, but if the input is
high, then an extra half-cycle of delay is added to the circuit, forcing it to divide
by three rather than two. Also note that since the output is not a 50% duty cycle
square wave when dividing by three, the need for extra logic attached at the output
is eliminated, as will be shown later in this section. It is important that the state

6.2 Dividers 159

Figure 6.6 Desired outputs of the divide-by-2/3 circuit.

Figure 6.7 A divide-by-2/3 state graph.

assignments be done very carefully in this circuit to minimize the number of state
variable changes for each transition between a w state and an adjacent w state.
This will lead to a minimum amount of logic between the latches. In this circuit,
a maximum of one state variable was changed in each transition, except when
moving from the w state 0,1 to the w state 1,0 when Div = 1 in Figure 6.7. For
this transition, two state-variable changes were unavoidable.

In Figure 6.7, 2 bits are required to define three states completely, as there are
three circle and three square states. Therefore, two Q latches are needed to define
three unique Q states, and two P latches will be required to define three unique
P states. The four latches are labeled Q1, Q2, P1, and P2, as shown in Figure
6.8. The outputs from these latches will be called p1, p2, q1, and q2.

State tables for this circuit can now be constructed and are shown in Tables
6.3 and 6.4.

From these two tables, six Karnaugh maps must be constructed and will be
shown in Tables 6.5 through 6.11. Note that Karnaugh maps show outputs for
all combinations of inputs, with inputs ordered in such a way that only one bit ever
changes in adjacent positions. The Karnaugh map allows for easy determination of
the simplest logic to realize the function. Table 6.5 shows the Karnaugh map for
p1+.

160 Dividers and Phase-Frequency Detectors

Figure 6.8 A divide-by-2/3 circuit under construction.

Table 6.3 State Table for a Divide-by-2/3 Circuit (Clock Low)

State (w) Next State (w) Output (w)
p1+p2+ p1+p2+

q1q2 Div = 0 Div = 1 Div = 0 Div = 1

00 00 00 0 0
01 01 01 1 1
11 d/c d/c d/c d/c
10 10 10 d/c 0

Table 6.4 State Table for a Divide-by-2/3 Circuit (Clock High)

State (w) Next State (w) Output (w)
q1+q2+ q1+q2+

p1p2 Div = 0 Div = 1 Div = 0 Div = 1

00 01 01 0 0
01 00 10 1 1
11 d/c d/c d/c d/c
10 00 00 d/c 0
Note that d/c = don’t care, which means that the next state or output is
set arbitrarily.

Therefore, the equation for p1+ is given by

p1+ = q1 (6.7)

The Karnaugh maps for p2+, Out, q1+, and q2+ can similarly be constructed.

6.2 Dividers 161

Table 6.5 Karnaugh Map for p1+

q1q2 Div = 0 Div = 1

00 0 0
01 0 0
11 d/c d/c
10 1 1

Table 6.6 Karnaugh Map for p2+

q1q2 Div = 0 Div = 1

00 0 0
01 1 1
11 d/c d/c
10 0 0

Table 6.7 Karnaugh Map for Out
(Clock Low)

q1q2 Div = 0 Div = 1

00 0 0
01 1 1
11 d/c d/c
10 d/c 0

Table 6.8 Karnaugh Map for q1+

p1p2 Div = 0 Div = 1

00 0 0
01 0 1
11 d/c d/c
10 0 0

Table 6.9 Karnaugh Map for q2+

p1p2 Div = 0 Div = 1

00 1 1
01 0 0
11 d/c d/c
10 0 0

Table 6.10 Karnaugh Map for Out
(Clock High)

p1p2 Div = 0 Div = 1

00 0 0
01 1 1
11 d/c d/c
10 d/c 0

Table 6.11 Karnaugh Map for Out (w)

q1q2 Div = 0 Div = 1

00 0 0
01 1 1
11 d/c d/c
10 d/c 1

162 Dividers and Phase-Frequency Detectors

From the Karnaugh maps, the following additional equations can be derived:

p2+ = q2 (6.8)

Out (w) = q2 (6.9)

q1+ = Div ? p2 (6.10)

q2+ = p1 ? p2 = p1 + p2 (6.11)

Out (w) = p2 (6.12)

From (6.9) and (6.12), the equivalent circuit logic can be added to Figure 6.8
and is shown in Figure 6.9(a). It can be seen that the output has a value of q2
when the clock is low and a value of p2 when the clock is high. When the clock

Figure 6.9 A completed divide-by-2/3 circuit drawn in (a) and redrawn in (b).

6.2 Dividers 163

is low, P2 is transparent; therefore, the output present at the output of Q2 also
appears at the output of P2 during this clock phase. Thus, the output can always
be taken at the output of P2 on either clock phase. An equivalent version of the
circuit is shown in Figure 6.9(b) without the need to specify the clock phase for
the output.

It is also possible, with a trivial modification, to make this circuit have a 50%
duty cycle when in divide-by-three mode. This requires one modification to the
state diagram in Figure 6.7. Since the output is high for two clock phases and low
for four clock phases, one of the low outputs must be converted to a high output.
Selecting the w state 1,0 as the output that should remain high changes Table 6.7
into Table 6.11.

In this case, the output equations are given by

Out (w) = q1 + q2 (6.13)

Out (w) = p2 (6.14)

Thus, in this modified divider, the output can no longer be taken directly from
the output of the P2 latch. The circuit must therefore have an OR gate added to
it for the output to have a 50% duty cycle in all cases. Note that in the case of
the w states, an OR gate connected between the outputs of Q1 and Q2 will give
the correct output, but one connected to Q1 and P2 will also work as P2 is
transparent in the w state and, therefore, has the same value as Q2. Now, in the
w states, P2 is the desired output, but the value of P2 is also present at the output
of Q1 when Div is high, and the output of Q1 is low if Div is low in these states.
Therefore, having an OR gate connected to Q1 and P2 will not affect the output
value for the w states. Thus, the addition of a single OR gate can be used to generate
a 50% duty cycle square wave output for all cases. The resulting circuit is shown
in Figure 6.10.

6.2.3 A 50% Duty Cycle, High-Speed, Divide-by-Three Circuit

An alternative divide-by-three circuit can be constructed using the latch with the
invertible clock discussed in Chapter 5. This circuit uses only three latches rather
than four [1]. The three cascaded, modified latch circuits are set up to generate a
Johnson counter as shown in Figure 6.11.

In this circuit, on each phase of the clock, one latch holds, and the other two
are transparent. Thus, zeros and ones rotate through, as will now be illustrated.
Suppose that, initially, the output of each latch is zero. Since latch A has one as
an input (from the inverter) and an output of zero, latch A cannot be transparent.
However, the other two latches have both inputs and outputs of zero and, therefore,
can be, and are, transparent. Thus, the inputs u need to be set so that, regardless
of the phase of the clock, the appropriate latches are always either holding or
transparent, as needed. With this information, a state table can be constructed (see
Table 6.12).

From here, we can construct a Karnaugh map for each u. These are shown in
Tables 6.13 through 6.15.

164 Dividers and Phase-Frequency Detectors

Figure 6.10 A completed divide-by-2/3 circuit with 50% duty-cycle output.

Figure 6.11 A Johnson counter divide-by-three circuit using modified latches.

Table 6.12 State Table for a Divide-by-Three Circuit

Latch Value Holding Input
State Clock A B C uA uB uC

1 0 0 0 0 0(L) 1(T) 1(T)
2 1 1 0 0 0(T) 1(L) 0(T)
3 0 1 1 0 1(T) 1(T) 0(L)
4 1 1 1 1 1(L) 0(T) 0(T)
5 0 0 1 1 1(T) 0(L) 1(T)
6 1 0 0 1 0(T) 0(T) 1(L)
Note: L = latched; T = transparent.

6.2 Dividers 165

Table 6.13 Karnaugh Map for uA

A B C = 0 C = 1

00 0 0
01 d/c 1
11 1 1
10 0 d/c

Table 6.14 Karnaugh Map for uB

A B C = 0 C = 1

00 1 0
01 d/c 0
11 1 0
10 1 d/c

Table 6.15 Karnaugh Map for uC

A B C = 0 C = 1

00 1 1
01 d/c 1
11 0 0
10 0 d/c

Thus, the u inputs are given by

uA = B (6.15)

uB = C (6.16)

uC = A (6.17)

Therefore, the u inputs can be wired using the outputs from the latches and
almost no additional logic. The final divider is shown in Figure 6.12.

6.2.4 A Multimodulus Divider

The state graph for a modified divide-by-2/3 cell that can be used to make an
MMD is shown in Figure 6.13. The idea is that these cells will be cascaded, which
means that additional signals will be required to interface between consecutive
stages [2, 3]. Note that this divider is very similar to one discussed previously,
except that there are now two inputs, Modin and R, that have to be high for divide-
by-three. In addition, there is one more output called Modout .

The new divide-by-2/3 circuit can be designed using the methods already out-
lined. Skipping a few steps, the final circuit is shown in Figure 6.14. This circuit
is the same as that shown in Figure 6.9 except for the additional AND gate for
loading the division ratio R.

The divide-by-2/3 cell divides the input frequency by two or three, depending
on both Modin and R. When Modin is low, regardless of the value of R, the output

166 Dividers and Phase-Frequency Detectors

Figure 6.12 A Johnson counter divide-by-three circuit using modified latches completed with logic
added.

Figure 6.13 State graph for a modified divide-by-2/3 with two controlling inputs, Mod in and R,
both of which must be high for divide-by-three. Outputs are Modout and F.

of P1 will be low, which means that the bottom half of the circuit in Figure 6.14
does not affect the state of the system, and the remaining top half of the circuit is
simply a divide-by-two circuit that was derived earlier. Figure 6.15 shows the
waveforms generated by the circuit in Figure 6.14 when Modin is high. The first
half of the figure shows the case when R is low. In this case, the output of P1 is
always low, and the divider will be in divide-by-two mode. When both Modin and
R are high, the circuit divides by three, just as the circuit described in the last
section. In this case, the two latches on the bottom row cause the circuit to swallow
an additional input pulse. The Modout signal has the same frequency as that of the
output signal F, yet is high for only one input cycle.

The divider just discussed can be cascaded to make higher-order dividers. For
instance, consider two of the previous circuits connected as shown in Figures 6.16
and 6.17, where Modout of the second divider is used to drive Modin of the first
divider. The last cell in such a chain of dividers always has its Modin input connected

6.2 Dividers 167

Figure 6.14 A divide-by-2/3 circuit with a Mod in control and a Modout signal added.

Figure 6.15 Waveforms of the divide-by-2/3 circuit, assuming that Mod in is high.

Figure 6.16 A divide-by-four-to-seven made from two 2/3 stages.

high. If R1 is low, then the first stage always divides by two; therefore, the second
stage gets a 50% duty cycle square wave at half the input frequency, regardless of
the value of Mod1 . Since Mod2 is always high, the second divider then divides this
signal either by two, if R2 is low, or by three, if R2 is high. Thus, if R1 is low, the
system divides by four when R2 is low and by six when R2 is high.

168 Dividers and Phase-Frequency Detectors

Figure 6.17 A divide-by-four-to-seven made from two 2/3 stages shown at latch level.

When R1 is high, the circuit behavior is more complicated because Mod1 will
come into play. The case of R1 = 1 and R2 = 0 is shown in Figure 6.18. In this
case, the second divider will always divide by two, but the Mod2 signal will be
high every second cycle of Fo . Thus, for one complete cycle of the output, the first
divider will swallow one extra pulse (divide by three once), causing the whole
circuit to divide by five. Likewise, it can be shown that with both inputs set to
one, divide-by-seven is achieved as illustrated in Figure 6.19. In this case, the second

Figure 6.18 Waveforms for two cascaded divide-by-2/3 cells in divide-by-five mode (R1 = high;
R2 = low).

6.2 Dividers 169

Figure 6.19 Waveforms for two cascaded divide-by-2/3 cells in divide-by-seven mode (R1 = high,
and R2 = high).

divider always divides by three, and, once again, the Mod1 signal causes the first
divider to swallow one extra pulse every output cycle of the second divider. This
adds one input period to the period of the output signal. Thus, in this circuit, to
produce one output clock cycle, a minimum of four input clock cycles is required.
If R2 is high, the second block causes the circuit to swallow two additional input
pulses, and if R1 is high, the first block will swallow one additional input pulse.
Thus, the total output period is given by

Tout = TinR1 + 2TinR2 + 4Tin (6.18)

In general, as many divide-by-2/3 cells as necessary can be cascaded to make
higher-order dividers, as shown in Figure 6.20. Note that when implementing each
cell 1 through n, the nth cell runs at a speed of 1/n or less of the first cell. Therefore,
if each cell is implemented as a custom block, the current can be scaled accordingly
to achieve low-power operation. When connected in a ripple chain as shown in
Figure 6.20, the last cell always has its Modin input as logic high, and for all other
cells, the Modin input is high for only one of its output cycles during one output
cycle of the following stage. In general, the output period is given by

Figure 6.20 An MMD made of programmable divide-by-2/3 stages.

170 Dividers and Phase-Frequency Detectors

Tout = TinR1 + Tin21R2 + . . . + Tin2n − 2Rn − 1 + Tin2n − 1Rn + Tin2n

(6.19)

Therefore, the division ratio is given by

N = R1 + 21R2 + . . . + 2n − 2Rn − 1 + 2n − 1Rn + 2n (6.20)

Thus, for this type of divider, a division ratio that increases in unity integer
steps from 2n to 2n + 1 − 1 is achieved. With additional OR gates, wider-range
division ratios can be obtained, as illustrated in [2].

6.2.5 A Generic MMD Architecture

The MMD architecture with all 2/3 cells may not necessarily end up with minimum
gate count and power consumption. This section discusses a generic MMD design
algorithm, along with the implementation of each cell, which takes the minimum
hardware and current [4]. The MMD architecture discussed in the previous section,
based on [2], is a special case of the generic algorithm. When the MMD division
range is not large compared to its minimum division ratio, the generic algorithm
will result in an optimal MMD architecture that is different from the one given in
[2]. For the case of a large MMD division range, the generic algorithm leads to
the architecture with all divide-by-2/3 cells, as discussed above.

The generic MMD architecture includes a number of divide-by-2/3, dual-modu-
lus cells cascaded with a divide-by-(P/P + 1) dual-modulus cell (P being an integer
and P ≥ 2) in a ripple fashion as shown in Figure 6.21. Here only the last cell is
selected to be a divide-by-(P/P + 1) cell so that all of the division ratios in the
required range can be programmed with a unit step increment. If any one of the
preceding cells is not a 2/3 cell, then the unit step increment is not guaranteed. If
a step increment other than one is desired, the optimal architecture is to place a
fixed-ratio, divide-by-S stage in front of the MMD cells, as shown, so that the
MMD has a programmable step size of S. The architecture shown in Figure 6.21
provides the division ratio as

N = X2n − 1P + 2n − 1Rn − 1 + 2n − 2Rn − 2 + . . . + 21R1 + R0 C ? S (6.21)

where R0 , R1 , . . . Rn − 2 , Rn − 1 are the programmable MMD control bits.

Figure 6.21 A generic MMD architecture.

6.2 Dividers 171

It can be observed from (6.21) that the last cell, being P/P + 1, increases the
minimum division ratio while maintaining the unit step increment for the MMD.
To determine the number of cells needed and to select a proper division ratio of
P, the following generic algorithm should be followed:

1. Assume that the required division ratios are from Dmin to Dmax; then, the
number of divisor steps is given by

Number of divisor steps = Dmax − Dmin + 1 (6.22)

2. If the required range is greater than the minimum division ratio, Dmin , the
MMD should be constructed using an architecture with all divide-by-2/3
cells.

3. The implemented MMD range, defined from M to N, may be larger than the
required range Dmin to Dmax. Initially, however, the minimum implemented
division ratio M is set to Dmin .

4. Now the number of cells required becomes

n =  log2(Dmax − M + 1) (6.23)

where the function a denotes rounding the number a to the nearest integer
larger than a.

5. The division ratio for the last cell can be found from

P =  M /2n − 1 (6.24)

where the function a denotes rounding the number a to the nearest integer
less than a.

6. If M/2n − 1 is not an integer, then reset M = P ? 2n − 1, and go to step 4.
7. If M/2n − 1 is an integer, it is necessary to evaluate whether using a single

P/P + 1 cell or using any combination of cascaded cells, such as 2/3 →
P/2 / (P/2 + 1), or 2/3 → 2/3 → P/4 / (P/4 + 1), . . . , or using all
2/3 cells will achieve lower current consumption and smaller die size.

8. The final MMD architecture is thus a combination of stages, as shown in
Figure 6.21. If only 2/3 cells are used, then the total number of cells required
is

n2/3 =  log2(Dmax + 1) − 1 (6.25)

Example 6.1: Use of the Algorithm to Determine the Optimum Divider Design
The division ratios from Dmin = 102 to Dmax = 108 are required. Determine how
to implement an MMD to perform this function.

Solution: Step 1 indicates that there will be a total of seven divisor ratios.
Step 2 indicates that the divider should not be designed with all 2/3 cells. In step
3, the implemented MMD design range initially starts from M = 102, and the

172 Dividers and Phase-Frequency Detectors

number of cells required is n = 3 as outlined in step 4. Then, the division ratio of
the last cell becomes P = 25 (step 5), and M is reset to 100 (step 6). Next, the
number of cells required is recalculated as n = 4 (returning to step 4), the division
ratio of the last cell is 12 (step 5), and M is set to 96 (step 6). On the next iteration
of steps 4 to 6, the values of n, P, and M remain the same, so we continue to step
7. Since the implementation of a 12/13 cell requires less hardware and consumes
less current than the combination of a 2/3 cell cascaded with a 6/7 cell, the last
cell-division ratio is maintained at P = 12. Thus, the final MMD architecture for
this example is given by (2/3) → (2/3) → (2/3) → (12/13).

For a required division ratio from 68 to 108, the algorithm results in an MMD
architecture with six 2/3 cells cascaded (i.e. P = 2), which is the case presented in
[2].

The divide-by-2/3 cell can be implemented as shown in Figure 6.14, and a
similar implementation can be extended to any P/P + 1 cell. However, the logical
implementation of the cell differs for even- and odd-numbered P. For instance, the
logical implementation for divide-by-4/5, -5/6, -6/7, and -8/9 cells are shown in
Figures 6.22 through 6.25. These dual-modulus cells are formed by two rows of
circuits, a basic divide-by-P circuit shown in the top row and two latches at the
bottom for additional pulse swallowing to implement the divide-by-(P + 1) function
and for modulus control output. Since a divide-by-P circuit is always needed, it is
more economical for P to be an even number. For instance, divide-by-5/6 and
divide-by-6/7 cells require the same number of gates, yet divide-by-6/7 achieves a
higher division ratio. The gate that has Modin as its input can be avoided because
the Modin of the last cell is always logic high. Therefore, the output of the last
latch on the top row of latches can be directly connected to the D input of the
right latch on the bottom row. For 2/3 cells, the Modout signal has the same
frequency as that of the Fo signal and is high for only one input cycle, as shown
in Figure 6.15. For 4/5 cells, the output of the bottom right latch has twice the Fo

Figure 6.22 Latch-level schematic of a divide-by-4/5 cell for a cascaded MMD application.

6.2 Dividers 173

Figure 6.23 Latch-level schematic of a divide-by-5/6 cell for a cascaded MMD application.

Figure 6.24 Latch-level schematic of a divide-by-6/7 cell for a cascaded MMD application.

frequency, since Fo is clocked by the input signal that has four times the Fo frequency.
To obtain a Modout signal that is at the same frequency as Fo and remains high
only for one input cycle, another AND gate is used in Figure 6.22 to remove one
pulse for the Modout signal.

Example 6.2: Design of a Divider for a WLAN Synthesizer
Apply the generic MMD algorithm to design a divider for a direct downconversion
radio for the WLAN 802.11a band.

Solution: We note that WLAN IEEE 802.11a occupies part of the Unlicensed
National Information Infrastructure band, with the first channel center frequency

174 Dividers and Phase-Frequency Detectors

Figure 6.25 Latch-level schematic of a divide-by-8/9 cell for a cascaded MMD application.

at 5.18 GHz and the last channel center frequency at 5.32 GHz, and each channel
occupies 20 MHz of bandwidth. Thus, the channel frequency (which is also the
VCO frequency in a direct downconversion radio) is FCH = FVCO = 5,180 + 20k
(k = 0, 1, 2 . . . 7) in megahertz. If a 40-MHz reference source is used, the MMD
division ratio needs to be

N =
FVCO

40
= 129 +

(k + 1)
2

= 129.5 to 133

Assuming that a second-order SD noise shaper with 2-bit output is used to
remove the fractional spurs (the details of SD modulation will be given in Chapter
9), the instantaneous MMD division ratio could vary from −1 to 2 around its
average division ratios. Thus, we need to have divider ratios at least one less than
the minimum number and two greater than the maximum number, resulting in an
MMD division range for IEEE 802.11a bands of N = 128 to 135. Applying the
generic MMD algorithm discussed previously, the MMD can be realized using the
cells 2/3 → 2/3 → 2/3 → 2/3 → 8/9, which requires 36 latches and 15 gates. Had
an MMD architecture with all divide-by-2/3 cells been used, 42 latches and 21
gates would have been required, which leads to larger die size and more power
consumption. The example for the IEEE 802.11a application points out that the
division range of an MMD for a fractional-N synthesizer is often small with respect
to its minimum division ratio. Hence, the generic MMD design algorithm provides
a better architecture with less logic and lower power consumption than an MMD
design using straight divide-by-2/3 cells. Output waveforms are shown for the
division ratio of 135 of the IEEE 802.11a band in Figure 6.26. The Modout wave-
forms of all the cells have the same frequency with different duty cycles. Note that
the Mod4 signal coming from the 8/9 cell has the same frequency as the output
frequency of the 8/9 cell due to the additional AND gate shown in Figure 6.25.
Other Mod signals coming from 2/3 cells in the chain already have the same

6.2 Dividers 175

Figure 6.26 Waveforms of a 2/3 → 2/3 → 2/3 → 2/3 → 8/9 MMD architecture with division ratio
135.

frequency as the final output frequency. Hence, no additional AND gate is needed
in the 2/3 cells for Modout signal generation. The period of the input signal is 10
ns, and, correspondingly, the outputs have periods of 1,350 ns. For clarity, only
one cycle of the outputs has been shown.

6.2.6 Pulse-Swallow Dividers

The MMD outlined in the previous section is by no means the only one. There
are many other modulus dividers, some of which are more common. Another
widely used modulus divider architecture is called a pulse-swallow divider, an
example of which is shown in Figure 6.27. The pulse-swallow divider includes a
programmable frequency divider M, a dual-modulus prescaler P/P + 1, and a down
counter A. The dual-modulus prescaler divides by either P or P + 1, depending on
the value of the input Modulus Control. The Programmable Counter is a frequency
divider with programmable division ratio M. The programmable divider differs
from the modulus divider in the sense that, once it is programmed, the division
ratio remains constant. In contrast, the division ratio of a modulus divider varies

Figure 6.27 A pulse-swallow-modulus divider made of a divide-by-(P/P + 1) dual-modulus prescaler.

176 Dividers and Phase-Frequency Detectors

dynamically based on the Modulus Control signal. Since this divider is usually
toggled at the VCO frequency, it requires much faster circuits than the other
dividers shown in Figure 6.27. This divider is often called a prescaler because it
directly follows the VCO, slowing down the VCO output frequency; thus, the
programmable dividers do not need to operate at high speed. The M divider and
A counter can normally be built using standard digital CMOS logic techniques,
while the VCO and the dual-modulus prescaler are normally custom designed,
taking into account analog design issues. A dual-modulus prescaler can achieve
the same speed as an asynchronous divider by limiting the high-speed section to
only one divide-by-two flip-flop, as discussed in [5].

The pulse-swallow divider operates in the following manner:

1. The M divider divides the output frequency of the dual-modulus prescaler
by M.

2. The A down counter is loaded with an initial value of A at the rising edge
of the M divider output and is clocked by the input signal of the M divider.

3. The A down counter value is reduced by one at every rising edge of its
clock signal, except when the hold signal is high. When the down counter
value reaches zero, it will remain zero unless the next load signal loads a
start value to the counter.

4. The A down counter output is high when the counter value is nonzero,
which toggles the dual-modulus divider to divide by P + 1, and its output
is low when the counter value is zero, which toggles the dual-modulus
divider to divide by P.

5. The hold input to the down counter can be connected to a fractional accumu-
lator’s carry out to achieve a fractional division ratio.

Note that the A counter can also be implemented as a modulo-A up counter.
In this case, the reset pulse resets the counter to zero. The counter counts up at
every clock edge and stops counting once the counter value reaches A. When the
counter value is less than A, the modulus control output is high; when the counter
value equals A, the modulus control output is low. Hence, the up counter can
generate the same modulus control as the down counter described above. Ignoring
the fractional accumulator for the moment, the hold signal of the down counter
is always zero. When a division cycle begins, it is assumed that the prescaler starts
dividing by P + 1 since the down counter value was reset to a nonzero value of
A. The prescaler continues to divide by P + 1 for (P + 1)A input cycles, after which
the down counter’s output changes state, and the prescaler starts to divide by P.
Now, if M ≥ A, there will be A clock cycles during which the down counter will
count down from the initial value of A, to A − 1, A − 2, . . . , 1, providing a high
output, during which time the dual-modulus divider divides by P + 1. For the
remaining M − A clock cycles (since M ≥ A), the down counter value will remain
at zero. This provides a low-level output during which time the dual-modulus
divider divides by P. Counting the pulses at the input of the dual-modulus divider,
there will be (P + 1)A cycles. During this time, the dual-modulus divider is dividing
by (P + 1), and there will be P(M − A) cycles during which the dual-modulus
divider is dividing by P. This process ends when a rising edge is generated at the

6.2 Dividers 177

output of the M divider, and the down counter is reset to the initial value A. Thus,
the average division ratio of the pulse-swallow divider is

Div = (P + 1)A + (M − A)P = PM + A (6.26)

where the hold signal of the down counter was disabled, and M ≥ A was assumed.
If M < A, it is evident that the dual-modulus divider will continue to divide by
P + 1 (i.e., working only as a fixed-ratio divider) since the down counter never
reaches zero between the load signals. Thus, the normal operation condition for
the pulse-swallow divider with a dual-modulus prescaler is that M ≥ A or A can
only be an integer number between 0 and M.

Often it is desirable to program the synthesizer continuously without skipping
any possible channels. However, it is not always possible to satisfy this requirement
for a pulse-swallow divider. To help understand this limitation in the use of a
pulse-swallow divider, consider a 7/8 dual-modulus prescaler. Starting with M = 1
and A = 0 or 1 (since M ≥ A), the pulse-swallow divider average division ratio is
PM + A = 7 or 8. Similar analysis leads to a list of possible programming channels
(divider ratios) as summarized in Table 6.16. As can be seen in the table, there are
some channels that the synthesizer cannot program by programming divider ratios,
when M < P − 1 = 6. No channels are skipped if M > P − 2 = 5, in which
case some channels can be programmed in multiple ways (e.g., ratio 71 can be
programmed by setting either M = 9, A = 8 or M = 10, A = 1). The only way to
avoid overlap in channel programming is when A < P = 7. Thus, it is a waste of
hardware to build a down counter that has a maximum size A > P. The programming
restrictions for a pulse-swallow divider using a dual-modulus prescaler are summa-
rized in Table 6.17. It is important to understand those restrictions in order to
build a SD modulator to control this type of fractional-N architecture, since SD

tends to modulate the divider ratio and dither it over a wide range. For this reason,
one must be very careful with the required ratios that a pulse-swallow divider can
program when a SD accumulator is used.

The lower frequency counters used in pulse-swallow dividers can be imple-
mented using sequential digital logic circuits. A common implementation of a

Table 6.16 Possible Division Ratios of a Pulse-Swallow Divider Using a 7/8 Dual-Modulus
Prescaler

M A Div = MP + A

Divider ratios are skipped when M < P − 1 = 6.
1 0, 1 7, 8
2 0, 1, 2 14, 15, 16
3 0, 1, 2, 3 21, 22, 23, 24
4 0, 1, 2, 3, 4 28, 29, 30, 31, 32
5 0, 1, 2, 3, 4, 5 35, 36, 37, 38, 39, 40
No divider ratios are skipped when M > P − 2 = 5.
No divider ratios overlap when A < P = 7.
6 0, 1, 2, 3, 4, 5, 6 42, 43, 44, 45, 46, 47, 48
7 0, 1, 2, 3, 4, 5, 6, 7 49, 50, 51, 52, 53, 54, 55, 56
8 0, 1, 2, 3, 4, 5, 6, 7, 8 56, 57, 58, 59, 60, 61, 62, 63, 64
9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80

178 Dividers and Phase-Frequency Detectors

Table 6.17 Pulse-Swallow Divider Programming Restrictions with a P/P + 1 Dual-Modulus
Prescaler

Average division ratio PM + A
Normal operation condition M ≥ A, A = 0 ~ min{P − 1, M}
Condition without skipping channels M > P − 2
Condition without overlapping channels A < P
Minimum ratio for continuous programming P(P − 1)

modulo-A up counter is illustrated in Figure 6.28. The modulo-A up counter counts
up at every input clock edge until it reaches a preloaded modulo value A represented
by

A = 20A0 + 21A1 + 22A2 + . . . + 2n − 1An − 1 (6.27)

where A0 through An − 1 are the modulo control bits. Note that this circuit uses
toggle flip-flops (T-FF). Toggle flip-flops toggle their output when the input T is
high and hold their output when T is low, that is, the next state
q+ = q ? T + T ? q. The clock signal of the toggle flip-flops is gated with the hold
signal and modulus output signal. Thus, when the modulus signal is low or hold
is high, the counter clock will be disabled, and the counter will stop counting.
When the counter value reaches the modulo value A, the modulus control output
will be set to low, and the feedback will stop the counting process until the next
reset pulse comes.

Figure 6.28 A modulo A up counter circuit.

6.2 Dividers 179

The discussion so far has not shown how a fractional division ratio can be
generated. The pulse-swallow divider technique discussed above is used to generate
a programmable integer-divider ratio using a dual-modulus prescaler. With addi-
tional hardware, the pulse-swallow divider can be used to generate fractional-
divider ratios as well. Figure 6.29 illustrates a fractional-N frequency synthesizer
with a pulse-swallow divider. The presence of the hold signal for the down counter
has thus far been ignored. The hold input of the modulo-A counter enables the
circuit to take the fractional accumulator output and swallow additional input
pulses at a fractional rate. If an accumulator is built whose carry-out is used as
the hold signal for the swallow counter as shown in Figure 6.29, the counting
process will be put on hold (the swallow counter value will not be reduced by one)
for one cycle every time the accumulator carry-out is high. If the size of the
accumulator is F with log2 F as the number of bits, and the accumulator input
word is K, then every F accumulator cycles, the carry-out will be high for K cycles.
Thus, the average down counter value will be A + K/F. The architecture shown in
Figure 6.29 has thus become a fractional-N synthesizer with dual-modulus pre-
scaler. The synthesized frequency is given by

fo =
fr
R SPM + A +

K
F D (6.28)

where fr is the reference frequency provided by the crystal oscillator. K represents
the frequency fine-tune word that controls the fractional part of the divider ratio,

Figure 6.29 A fractional-N frequency synthesizer with a pulse-swallow divider.

180 Dividers and Phase-Frequency Detectors

while PM + A provides a programmable coarse-tune word that controls the integer
part of the divider ratio. This controllability makes it possible to keep the reference
frequency high for low phase noise and to use the proper size of accumulator to
get any desired step size.

6.3 Multipliers

Multiplier circuits are not as common as divider circuits, but sometimes it is
necessary to multiply the frequency of the VCO. Often these circuits are not part
of the loop but are used to drive mixers at different frequencies than the VCO is
providing.

One way to build a multiply-by-two is to use an XOR gate. If an XOR gate
is fed with two signals out of phase by 90°, then the output frequency will be at
twice the input frequency v in . Such a circuit is shown in Figure 6.30. In this circuit,
the input signal from the VCO is phase-shifted by highpass/lowpass RC filters that
shift the phase by ±45°. The filter will work best if it is centered at the operating
frequency of the multiplier. This means simply that

v in =
1

RC
(6.29)

In addition, it should be noted that because the RC phase shifter has a finite
bandwidth, the circuit should be driven with sine waves. However, the sine waves
should be of sufficient amplitude to switch the circuit completely to produce a
square wave output.

Figure 6.30 An XOR multiply-by-two circuit.

6.4 Phase Detectors 181

Another method of multiplying the frequency of a signal is to use a class C
amplifier circuit with a tuned load centered at a multiple of the input frequency.
Thus, a pulse of current from the transistors will excite the circuit once every N
cycles of the output. Such a circuit, using bipolar transistors Q1 and Q2 , is shown
in Figure 6.31.

6.4 Phase Detectors

The following sections will deal with the implementation details of some common
types of phase detectors. Although some of these circuits have already been men-
tioned in previous chapters, they will be considered more thoroughly here, including
implementation details.

6.4.1 Basic Types of Phase Detectors

The XOR gate as a phase detector and the tristate phase detector have already
been considered at the system level. The basic state diagram for the tristate phase
detector as it is implemented is shown in Figure 6.32. Note that it actually has
four states, but the fourth state is simply a reset state. Figure 6.32 shows that, in this
state, which typically occurs once per cycle, both outputs are high simultaneously,
although very briefly.

Figure 6.31 A class C–style multiplier.

Figure 6.32 State diagram of a tristate PFD circuit.

182 Dividers and Phase-Frequency Detectors

The gain for this phase detector was given by

Kphase =
I

2p
(6.30)

where I is the dc value of the current produced by the charge pump. The linearized
curve of charge pump output current is shown in Figure 6.33. This circuit will
experience cycle slipping each time the phase difference in the input and the VCO
divider output exceeds 2p .

If cycle slipping is taking place, it is often assumed that the inputs are at
different frequencies, so the PFD is operating as a frequency detector. In the transfer
characteristics shown in Figure 6.34, the current remains positive for phase errors
greater than 2p and negative for phase errors less than −2p to show operation as
a frequency detector.

Even though the tristate phase detector is the most common phase detector in
use today, there are many variations possible. Often cycle slip can be undesirable
as it causes nonlinear behavior. By adding extra states to the tristate PFD, its linear
range can be extended beyond 2p [6]. For instance, the PFD can be extended to
have a range of 4p if two additional states are added, as shown in Figure 6.35.

In this circuit, there are four outputs from the PFD. They control four rather
than two current sources. There are the two regular current sources that are usually
present, plus two additional current sources used only during lock acquisition that
provide additional current to the loop filter in order to accelerate the frequency-
detection process. In principle, these two additional current sources can be even
higher current than the regular ones for faster acquisition. Such a circuit is shown

Figure 6.33 Linear transfer characteristic of the tristate PFD with charge pump.

Figure 6.34 Tristate PFD with charge pump showing cycle-slipping and frequency-detector charac-
teristics.

6.4 Phase Detectors 183

Figure 6.35 A five-state PFD circuit with additional linear range.

in Figure 6.36. Note that under normal (i.e., locked) conditions, the outer two
states are not used, so the original two current sources are designed exactly as
before. This circuit now has a range shown in Figure 6.37.

6.4.2 Circuit Implementations of PFDs

PFDs are usually constructed using basic digital cells. For instance, the tristate
phase detector can be implemented as shown in Figure 6.38. Here the circuit is
implemented as two resetable flip-flops and an AND gate. Both flip-flop inputs
are tied high. The reference and the output of the divider are each fed into a clock
input of one of the flip-flops. A rising edge of either the reference vR or the output
vo immediately causes the corresponding flip-flop’s output to go high. Once the
other output is also high, the AND gate produces a one, which resets both flip-
flops to the zero state until the next rising edge of either input arrives. In this way,

Figure 6.36 A five-state PFD circuit with additional linear range connected to a charge pump.

184 Dividers and Phase-Frequency Detectors

Figure 6.37 Linear transfer function of a five-state PFD circuit with additional linear range.

Figure 6.38 A tristate PFD circuit.

it should be easy to see that this simple circuit does implement the state diagram
of Figure 6.32. The flip-flops themselves can be built with NOR gates, as shown
in Figure 6.39.

In order to implement a five-state PFD, an additional nonstandard building
block is required, as shown in Figure 6.40. This circuit consists of two delay blocks
and a flip-flop. This circuit will produce a narrow pulse at its output one delay
wide when the input goes high. This circuit is necessary to make sure that flip-
flops in the five-state PFD are reset properly.

The five-state PFD itself could be implemented as shown in Figure 6.41. This
circuit is built using a tristate PFD at its core with some added circuitry to extend
it into a five-state machine. When either a reference vR or an output vo pulse
arrives, an UP1 or DN1 pulse is triggered, if the PFD is not in either the UpT or
DownT state. If the PFD is in the UpT or DownT state (also referred to as turbo
states, where turbo is indicated by the ‘‘T’’ at the end of the state name), then the
pulse will move the circuit out of the UpT or DownT state by resetting one of the
two flip-flops on the right of Figure 6.41. If the circuit is not in either the DownT
or the UpT state, then the arrival of a reference pulse clocks either FF1 and FF3,

6.4 Phase Detectors 185

Figure 6.39 Positive edge-triggered D-flip-flop with active-low reset and hidden D = 1.

Figure 6.40 A narrow pulse generator.

Figure 6.41 An implementation of a five-state PFD.

or FF2 and FF4. If the PFD was in the reset state, then FF1 or FF2 has its output
go from a zero to a one, but since FF3 or FF4 would have had a zero at their
input, then their output stays in the zero state, unless another pulse from the same
input is the next event. In this case, FF3 or FF4 will have a one at the input, and

186 Dividers and Phase-Frequency Detectors

the PFD will enter one of the two turbo modes. If a pulse arrives from the other
input instead, then a reset action takes place, just as in the tristate circuit.

Example 6.3: Comparison of Five-State and Tristate PFD Settling Times
Using the loop parameters in Example 3.4, compare the settling times of the PLL
design previously considered with the same design if the tristate PFD is replaced
with a five-state PFD.

Solution: In this case, there is no redesign necessary. The tristate PFD is simply
replaced with a five-state PFD, along with an additional charge pump. For the
purposes of this example, the second charge pump is chosen to have the same
current as the primary one. For a small step in frequency, there is, of course, no
difference between the two loops since, if there is no cycle slipping, the second
charge pump never becomes active. However, for a large step in frequency, the
second charge pump does become active in the five-state design. The two loops
are compared in Figure 6.42 for a 300-MHz frequency step at the output. The
advantage of faster settling is evident in the five-state design.

6.4.3 Dead Zone in PFDs

For a small phase difference between the phase detector controlling signals, narrow
pulses are required at the output. Due to finite rise and fall times, such narrow
pulses cannot activate the charge pump, so the average output current will not
follow the input phase. This region is called the dead zone and occurs primarily
due to a difference in rise time between the latch outputs in Figure 6.38 and the
reset path delay. To illustrate this point, suppose that the flip-flops in a PFD have
a rise time of t , as shown in Figure 6.43. Further, suppose that in order to turn
on the charge pump, the output must reach a full logic level. Now, also suppose
that the AND gate’s threshold voltage is one-half of a logic level, and it resets the
flip-flops much faster. The result is that the AND gate will reset the flip-flops at
time t /2 after the second pulse starts to rise. If the pulses are nearly in phase, this
means that the charge pump will never be turned on, as illustrated in Figure 6.44.

Figure 6.42 Comparison of a tristate and five-state PFD settling times.

6.4 Phase Detectors 187

Figure 6.43 A PFD with finite rise time but a large difference in phase between inputs.

Figure 6.44 A PFD with finite rise time and a small difference in phase between inputs.

Thus, unless the time difference in the arrival of the pulses from the reference and
the output is greater than t /2, the charge pump and PFD will remain inactive. This
is called the dead zone, and for these small differences in phase, the loop is open,
and no feedback will take place. Thus, the loop will only respond to differences
in phase greater than

Dead zone edge = ±
tp
T

(6.31)

188 Dividers and Phase-Frequency Detectors

where T is the reference period. Thus, the dead zone will increase with a higher
reference frequency or with an increased delay in the output.

A modified plot of the average output current as a function of the input phase
difference is shown in Figure 6.45. One way to combat the dead zone is to add
delay into the feedback path. If such delay is added to ensure that the time for
reset is comparable to the delay in the forward path, then the dead-zone problem
can be made less severe. For example, assume that delay is added in the feedback
path so that the time for the AND gate to reset the flip-flops is also t . Now assume
that the phase difference between input and output is D, and that D is less than
t /2. Then, with an equal delay in the reset path, the output will reach a one level,
even for very small differences in phase, as shown in Figure 6.46. Adding further
delay into the feedback path will cause both current sources to be on simultaneously,
which is undesirable from a noise, spur, and power-consumption point of view,
but does remove the dead-zone problem. Other examples of PFDs designed to
remove the dead zone are given in [7, 8].

The presence of the dead zone means that, unless the phase difference between
input and output reaches a certain finite value, the loop is essentially open. This
means that phase noise that does not pass this threshold will not be suppressed by

Figure 6.45 Plot of average output current of a PFD with a dead zone.

Figure 6.46 Plot of the output with delay inserted into the reset path.

6.4 Phase Detectors 189

the loop. Thus, for noise components very close to the carrier frequency, the loop
is essentially open, and the phase noise of the output will be the raw phase noise
of the VCO. For instance, assume that the VCO experiences an instantaneous
impulse in its output frequency vo of value v imp such that the waveform coming
out of the divider has the form

vo (t) = A sin{[vo + v impd (t)] t } (6.32)

This is compared with the reference that will be assumed to be ideal:

vr (t) = A sin(vot) (6.33)

Now phase is the integral of frequency, so

uo (t) = Evo + v stepd (t) dt = vot + v imp t > 0 (6.34)

uo (t) = Evo + v stepd (t) dt = vot t < 0

for the signal that experiences the impulse of frequency change. Thus, the phase
error (compared to the ideal reference, which has a phase of vot) is zero before
the delta function event, and after it, the phase difference is v imp . As expected, a
large jump in frequency will generate a large phase difference, but a very small
jump in frequency will generate a very small change in the phase. Therefore, small
jumps in frequency (which can be thought of as close in phase noise if noise is the
source of the frequency jump) cannot get over the dead-zone threshold to activate
the loop. In fact, the frequency jump must be

v imp ≥
tp
T

(6.35)

or the effective Kphase of the system will be zero, there will be no feedback, and
the highpass transfer function that suppresses the VCO phase noise will fail, causing
the close in phase noise (below the dead zone) to be equal to the raw VCO noise,
as illustrated in Figure 6.47.

6.4.4 Lock-Detection Circuits

It is often very useful to have a digital signal that detects when lock has been
achieved. This can be done for most of the PFDs considered. Note that, before
lock is achieved, the signals coming from the PFD are changing state, but when
lock is achieved, the PFD spends most of its time in the tristate. Thus, if a sensor,
attached to the up and down outputs, puts out a lock-acquired signal when both
these signals are in the same state, it is possible to tell when the circuit is in lock.
Such a circuit can be as simple as an XNOR gate attached to UP and DN, as
shown in Figure 6.48. In this circuit, when the PFD is not in a locked state, the

190 Dividers and Phase-Frequency Detectors

Figure 6.47 Illustration of the effect of dead zone on phase noise.

Figure 6.48 Tristate PFD with lock detection added.

dc output from the XNOR gate will be roughly half way between the power-supply
rails, but when in lock, the XNOR gate will have a dc voltage that is almost VCC .
Thus, the dc output can be used to determine when the circuit is in lock. If a full
rail output is desired, the output from the XNOR gate could be passed through a
lowpass filter to clean up any high-frequency glitches and then through a compara-
tor to make the signal compatible with rail-to-rail logic.

6.4.5 A Modified PFD with Aligned UP and DN Pulses

A modified version of the tristate PFD that is often used in practice is shown in
Figure 6.49 [9]. This circuit behaves much like the regular tristate PFD, but when

6.4 Phase Detectors 191

Figure 6.49 Modified tristate PFD.

an UP or DN pulse must also generate a reset pulse, the reset signal is generated
directly without having to pass through a flip-flop. The reset pulse itself turns off
both the UP and DN gates, bringing them low at exactly the same time. Otherwise,
without such synchronization, timing error in the feedback could cause the flip-
flops to turn off at slightly different times, causing reference feedthrough. In other
words, a net charge would be dumped onto the capacitor, which would then have
to be compensated for in the next period. This means that pulses of current would
appear each cycle at the reference frequency. This would cause spurs and would
cause the charge pump to produce more noise. Thus, this circuit helps to prevent
this problem.

A detailed plot of the waveforms produced by the circuit in Figure 6.49 is
shown in Figure 6.50. Note here that this PFD is falling-edge, rather than rising-
edge, sensitive; other than that, it behaves much like a standard PFD. In the figure,
the reference is leading the VCO, so the PFD produces an UP pulse. Note that on
the rising edge of either clock input (connected to vR and vo), the flip-flop is set
a full half-cycle before the PFD is required to produce an output. Once set, the
flip-flop is ready for the falling edge of the clock. At the falling edge, the input
signal passes through the second gate and changes the value of e. This creates an
UP pulse. The UP pulse lasts until the falling edge of the VCO pulse, which causes
f to go low. Once e and f are both low, a reset pulse is generated, which immediately
pulls the two outputs (UP and DN) low again and simultaneously resets the flip-
flops, making them ready for the next rising edge. Thus, the feedback path does
not affect the timing of pulling both outputs low, as that is accomplished directly
by the reset signal itself.

6.4.6 PFDs for CDR Applications

CDR circuits are used to generate a local clock from an incoming bit stream
[10–12]. This local clock will then be used as timing for the incoming bits. Most
of the components, such as charge pumps, loop filters, and VCOs, are similar to
those used in the PLLs we have already been considering, except for two major

192 Dividers and Phase-Frequency Detectors

Figure 6.50 PFD voltage waveforms.

differences (and many small differences designed to fine-tune or tweak the perfor-
mance). The first difference is that the input is at full rate; hence, there are no
dividers in the loop. This means that the phase detector must be able to operate
at full rate. The other important difference is that incoming bits can have a large
number of zeros in a row or a large number of ones in a row. In either case, there
are no transitions. In a conventional frequency synthesizer, the input is a reference
signal, which does not miss any transitions. With the conventional PFD, with no
incoming transitions, the output of the PFD would continue to see the VCO pulses,
but no reference pulses and would therefore produce a DN signal. The DN signal
would cause the output of the charge pump to head to the rails. In a CDR system,
phase detectors need to be designed to include a transition detector such that, when
there are no input pulses, the circuit still functions correctly.

6.4.6.1 The Hogge Phase Detector

The Hogge phase detector, illustrated in Figure 6.51, is a simple circuit comprising
two flip-flops and two XOR gates. The UP and DN signals in this circuit control

6.4 Phase Detectors 193

Figure 6.51 The Hogge phase detector.

a charge pump just as they would in the case of a regular PFD [13]. Without a
transition in the bit stream, the inputs of the XOR gates will be the same and the
output will not change. When there is a transition in the data, Data In and the
output of D1 will be different until the next clock edge, as shown in Figure 6.52.
Thus, assuming the delay in the dashed box is not present, the UP signal will be
active for

Figure 6.52 Timing diagram for the Hogge phase detector with the input data ahead of the clock.

194 Dividers and Phase-Frequency Detectors

TUP =
T
2

+ Tw + Tclk-to-q (6.36)

where TUP is the time the UP pulse is active, T is the clock period, Tw is the time
equivalent to the phase difference between the data and VCO; and Tclk-to-q is the
delay through the flip-flop (not shown in Figure 6.53). Now the change in Data
In will be passed onto the second flip-flop D2. Thus, its input and output will be
different for half a clock cycle:

TDOWN =
T
2

(6.37)

where TDOWN is the time the DN output is active. Note that the input has already
been synchronized with the clock so that this output is high for exactly half a clock
period. Also note that, assuming the delays in both flip-flops are equal, the output
will be high for exactly half a clock period, as the delay in the input will be the
same as the delay in the output. Using this phase detector, the charge pump will
experience an UP and DN signal for each bit transition that will be different in
length by Tw (ignoring flip-flop delay). The charge pump will inject a net charge
into the loop filter until the phase difference is corrected. Thus, the average current
dumped onto the loop filter over the cycle is

IAVE =
Tw

T
I =

w
2p

I (6.38)

Therefore, for the Hogge phase detector the gain is again given by

Figure 6.53 Timing diagram for the Hogge phase detector with the clock and data optimally
aligned.

6.4 Phase Detectors 195

Kphase =
I

2p
(6.39)

Note that, even in the locked condition, as shown in Figure 6.53, the charge
pump will have its current sources on a lot of the time. One way to get around
this problem is to delay the UP pulse by half a clock period, thus reducing ripple
on the control line. Also note that in order to get rid of the problem with flip-flop
delay causing a mismatch in pulse width, a delay equal to one flip-flop delay can
be added to the circuit, as shown in Figure 6.51.

6.4.6.2 The Bang-Bang Phase Detector

There are other types of phase detectors and CDR loops in existence, notably, the
so-called Bang-Bang PLL. The phase detector often used with this architecture is
the Alexander phase detector [14], as shown in Figure 6.54. Like the Hogge phase
detector, this circuit only generates outputs when there is a data transition.

In this circuit, when there are no data transitions, then all flip-flops have the
same value, and there is no output. The case for which a data transition does occur
is illustrated in Figure 6.55. In this figure, the first data pulse arrives before the
clock. As a result, the next rising and falling clock edges change the value of both
D1 and D2. Then, on the next clock edge, these 2 bits are passed onto D3 and
D4 simultaneously because the clock is late; thus, the DN signal remains low.
Now, because the clock is late, on the second rising edge after the data has arrived,
a zero is clocked into D1. D1 and D4 having different values indicates that the
clock is late; therefore, they activate the UP signal. Similarly, when the clock is
early, D2 will go high first. This will cause D4 to go high a clock cycle before
D3. Thus, a DN pulse will be generated as expected. In the case when the clock
is on time, flip-flop D1 will be in a meta-stable state. Its input will change at the
same time that it gets a rising clock edge. Thus, it will be a toss-up as to whether

Figure 6.54 The Alexander phase detector.

196 Dividers and Phase-Frequency Detectors

Figure 6.55 Waveforms in the Alexander phase detector.

a zero or a one is passed to the output. One of these two events will happen and
then, during the next clock cycle, the loop will act to correct the phase imbalance.
Thus, the phase detector will have infinite gain in the locked condition (Kphase =
∞) and will tend to ‘‘bang’’ around the correct phase.

References

[1] Magoon, R., and A. Molnar, ‘‘RF Local Oscillator Path for GSM Direct Conversion
Transceiver with True 50% Duty Cycle Divide by Three and Active Third Harmonic
Cancellation,’’ IEEE Radio Frequency Integrated Circuit Symposium, Seattle, WA, 2002,
pp. 23–26.

[2] Vaucher, C. S., et al., ‘‘A Family of Low-Power Truly Modular Programmable Dividers
in Standard 0.35 mm CMOS Technology,’’ IEEE J. Solid-State Circuits, Vol. 35,
July 2000, pp. 1039–1045.

[3] Vaucher, C. S., and D. Kasperkovitz, ‘‘A Wide-Band Tuning System for Fully Integrated
Satellite Receivers,’’ IEEE J. Solid-State Circuits, Vol. 33, July 1998, pp. 987–997.

[4] Sandireddy, R. K. K. R., F. F. Dai, and R. C. Jaeger, ‘‘A Generic Architecture for Multi-
Modulus Dividers in Low-Power and High-Speed Frequency Synthesis,’’ IEEE 5th
Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Atlanta, GA,
September 2004. pp. 243–246.

[5] Craninckx, J., and M. S. J. Steyaert, ‘‘A 1.75-GHz/3-V Dual-Modulus Divide-by-128/129
Prescaler in 0.7-mm CMOS,’’ IEEE J. Solid-State Circuits, Vol. 31, July 1996, pp. 890–897.

[6] Wolaver, D. H., Phase-Locked Loop Circuit Design, Upper Saddle River, NJ: Prentice
Hall, 1991.

6.4 Phase Detectors 197

[7] Craninckx, J., and M. S. J. Steyaert, ‘‘A Fully Integrated CMOS DCS-1800 Frequency
Synthesizer,’’ IEEE J. Solid-State Circuits, Vol. 33, December 1998, pp. 2054–2065.

[8] Ultra High Speed Phase/Frequency Discriminator, AD9901 1999, Analog Devices product
data sheet, 1999, http://www.analog.com/en/prod/0,2877,AD9901,00.html.

[9] 3.3V/5V ECL Differential Phase-Frequency Detector, MC100EP40/D June 2002, on semi-
conductor product data sheet, January 2004, http://www.onsemi.com/pub/Collateral/
MC100EP40-D.PDF.

[10] Razavi, B., Monolithic Phase-Locked Loops and Clock Recovery Circuits, New York:
Wiley-IEEE Press, 1996.

[11] Razavi, B., Design of Integrated Circuits for Optical Communications, New York:
McGraw-Hill, 2002.

[12] Greshishchev, Y. M., and P. Schvan, ‘‘SiGe Clock and Data Recovery IC with Linear-
Type PLL for 10-Gb/s SONET Application,’’ IEEE J. Solid-State Circuits, Vol. 35,
September 2000, pp. 1353–1359.

[13] Hogge, C. R., ‘‘A Self-Correcting Clock Recovery Circuit,’’ IEEE J. Lightwave Tech.,
Vol. 3, December 1985, pp. 1312–1314.

[14] Alexander, J. D. H., ‘‘Clock Recovery from Random Binary Data,’’ Electronic Letters,
Vol. 11, October 1975, pp. 541–542.

C H A P T E R 7

Charge Pumps and Loop Filters

7.1 Introduction

A charge pump is the first analog component of a synthesizer that will be considered.
It is responsible for placing charge into or taking charge out of the loop filter, and,
therefore, moving the control voltage on the VCO up or down, as shown in
Figure 7.1. Charge pumps must be very carefully designed to minimize reference
feedthrough or phase noise. In spite of numerous variations, a charge pump will
usually be composed of two current sources and two switches. This chapter also
deals with loop filters. Although Chapter 3 has already considered basic loop filters,
a large number of modifications to improve performance can be added to the basic
design.

7.2 Charge Pumps

The following sections will deal with various charge pump design issues, and circuit-
level designs will be presented.

7.2.1 A Basic Charge Pump

Probably one of the most basic and common charge pumps is shown in Figure
7.2. This charge pump consists of four transistors M1 through M4 . Transistors

Figure 7.1 A system-level diagram of a basic synthesizer.

199

200 Charge Pumps and Loop Filters

Figure 7.2 A basic, single-ended charge pump circuit.

M1 and M4 act as current sources, while transistors M2 and M3 act like switches
that are controlled by the PFD. When the PFD is in the tristate, then UP must be
high (at VDD), while DN must be connected low (to VSS). Note that an inverter
between the PFD output and the DN or UP input of the charge pump may be
required. In order to ensure that the switches turn on and off when the charge
pump output voltage is close to the power-supply rails, the signal from the PFD
must be a full rail-to-rail signal. As a result, interfacing this particular charge pump
with a CML-based PFD is difficult as a rail-to-rail output buffer would be needed.

Later sections will suggest improvements for this charge pump design; however,
most of them will still contain the basic current sources M1 and M4 . In the following
sections, a number of issues regarding transistor-sizing of M1 and M4 will be
considered.

7.2.2 Saturation Voltage

The saturation voltage of M1 and M4 in Figure 7.2 is very important. The lower
the saturation voltage on the current source transistors, the closer to the rail the
charge pump is able to operate properly without changing the loop gain and,
therefore, the loop dynamics. The drain source saturation voltage of a MOS transis-
tor is given by

vDS Sat = vGS − VT (7.1)

where vGS is the gate-source voltage, and VT is the threshold voltage of the transis-
tor. For a review of transistors and their parameters, see Appendix B. (Note that
equations are given for NMOS devices. For PMOS, voltages are reversed, as
described in Appendix B, or the absolute values of voltages are used; for example,
the saturation voltage for a PMOS transistor is |vDS Sat | = |vGS | − |VT |). The drain
current in the saturation region is

7.2 Charge Pumps 201

iD =
1
2

(mCox)SW
L D (vGS − VT)2 (7.2)

where W is the transistor total width, L is the transistor length, m is the electron
mobility in silicon (or hole mobility in the case of PMOS), and Cox is the gate
capacitance per unit area. Therefore, (7.1) can be rewritten as

vDS Sat = vGS − VT = √ 2iD
mnCox

S L
W D (7.3)

Therefore, to allow the VCO control voltage to get as close to the rails as
possible, a large W /L ratio and a low drain current are preferred. In general, charge
pump current transistors tend to be large. This is important because, if operation
close to the supply rails is possible, the full VCO tuning range can be used.

7.2.3 Current Source Output Impedance

The second major problem with current source transistors in a charge pump is
that they have finite output resistance. Even in the saturation region, their drain
voltage will vary with the output voltage so that, even if the currents are matched
at mid-rail, they will not be perfectly matched at all output voltages. Further current
mismatch can occur due to mismatch of NMOS and PMOS transistors, for example
in their output resistance, as shown in Figure 7.3, or due to temperature drift. To
keep this difference as small as possible, it is desirable to keep the output resistance
of the transistors as high as possible. The output resistance is given by

rDS =
1

lIDS
~

L
IDS

(7.4)

where l is the output impedance constant and is inversely proportional to channel
length (see Appendix B). As the voltage moves away from mid-rail, if the output

Figure 7.3 Current source output currents for a charge pump made with transistors that have a
finite output impedance.

202 Charge Pumps and Loop Filters

impedances are equal, then there will be a difference in the up and down currents
given by

DI = 2 ?
(VoCP − VMR)

rDS
~

(VoCP − VMR)IDS
L

(7.5)

where VoCP is the voltage at the output of the charge pump and VMR is the mid-
rail voltage. Therefore,

DI
IDS

~
(VoCP − VMR)

L
(7.6)

Thus, we see that, for the purposes of current matching, having a long device
is good. Note that bipolar transistors have much higher output resistance, but the
matching between npn and pnp transistors could potentially be much worse. Note,
as described in Appendix B, that npn and pnp are bipolar transistors where n and
p refer to n-doped and p-doped semiconductors.

There are many ways to increase the output resistance of current sources, but
most are at the expense of headroom. One way to increase the output resistance
is by adding resistive degeneration to the circuit, as shown in Figure 7.4(a). In this
case, using Figure 7.4(b), the output resistance can be found to be

Rout =
VX
IX

≈ rDS(1 + RS gm4) (7.7)

where gm is the transconductance of a transistor.
Another way to increase the output resistance of a current source is by adding

a cascode transistor. The modified current source is shown in Figure 7.4(c). This
circuit can be analyzed with the aid of Figure 7.4(d). In this case, there is no voltage
feedback to the gate of M4 ; therefore, the current source gm4 does not come into
the equation. Thus, the total output resistance can be found as

Rout =
VX
IX

≈ rDS7(1 + rDS4 gm7) (7.8)

Bipolar versions of these current sources end up having slightly different formu-
las due to the finite base current. A bipolar current source with degeneration
resistance RE , shown in Figure 7.5, has an output impedance of [1]:

Rout ≈
RE gmro

1 +
RE gm

b

(7.9)

where b is the ratio of the collector to base current. If RE is increased or represents
the output impedance of another transistor (cascaded bipolar), then, in the limit,
if RE gm @ b ,

7.2 Charge Pumps 203

Figure 7.4 Current source with increased output resistance due to (a) degeneration, and (c) a
cascode transistor. The associated small signal models are given in (b) and (d), respec-
tively.

Rout ≈ bro (7.10)

This is the maximum value of the output impedance for a bipolar current
source. CMOS, on the other hand, has no such limit. Since CMOS saturation
voltages are also quite low, it can often be possible to stack more than two devices
for even higher output impedance, as shown in Figure 7.6.

7.2.4 Reference Feedthrough

Reference feedthrough can affect how much time the charge pump must remain
on in the locked state. If the phase difference between the reference and the feedback
from the VCO is zero, then both the current sources are on for an instant while
the PFD resets itself. If the two currents are mismatched in that instant, then a net
charge will be deposited onto the loop filter, forcing a correction during the next
cycle of the reference. This will create an ac signal on the control line of the VCO

204 Charge Pumps and Loop Filters

Figure 7.5 (a) Bipolar current source with increased output resistance due to degeneration resistors,
and (b) approximate small-signal model for computing the output impedance.

Figure 7.6 Current source with increased output resistance due to multiple cascode transistors.

at the reference frequency, as shown in Figure 7.7. If the current sources are
mismatched by an amount DI, and the reset path has a delay of time d , then a
charge q is placed on the loop filter, where q is of value

q = d ? DI (7.11)

This will require the other current source to be on for a time t to remove the
charge:

t =
d ? DI

ICP
(7.12)

Thus, the total time that the charge pump will be on over one cycle will be

7.2 Charge Pumps 205

Figure 7.7 Graph showing the effect of mismatched current in a charge pump.

tCP = d S1 +
DI
ICP

D (7.13)

Now, since these current pulses happen at the reference frequency and well
beyond the corner frequency of the loop, and if a typical loop filter is assumed,
such as the one discussed in Chapter 3, then all this current will flow into C2 of
Figure 7.1. Thus, the voltage will have a triangular shape and a peak amplitude
of

Vmm =
d ? DI

C2
(7.14)

From basic Fourier series analysis, this triangle wave will have a fundamental
component with an amplitude of

Vref =
d 2 ? DI
C2T0

S1 +
DI
ICP

D (7.15)

provided that the current flows for a small fraction of a period T0. This signal on
the control line of the VCO will modulate the output of the VCO according to
the formula

vout (t) ≈ A cos(vot) +
AVref KVCO

2v ref
[cos(vo + v ref) t − cos(vo − v ref) t]

(7.16)

Thus, the magnitude of the reference spurs relative to the carrier will be

Spurs = 20 logFd 2 ? DI ? KVCO
4p ? C2

S1 +
DI
ICP

DG dBc (7.17)

206 Charge Pumps and Loop Filters

Example 7.1: Reference Feedthrough Due to Charge Pump Mismatch
Starting with the loop in Example 3.4, if the UP current source is 10% high, what
reference feedthrough will result if the reset delay in the PFD/CP is assumed to be
5 ns?

Solution: In Example 3.4, values of note were C2 = 566 pF, ICP = 628 mA,
and KVCO = 200 MHz/V. In this case, the UP current is assumed to be 691 mA;
therefore, DI = 63 mA. The spurs can be predicted from (7.17):

Spurs = 20 logFd 2 ? DI ? KVCO
4p ? C2

S1 +
DI
ICP

DG

= 20 log 3(5 ns)2 ? 63 mA ? S2p ? 200
MHz

V D
4p ? 566 pF S1 +

63 mA
628 mAD4

= −71 dBc

This can also be simulated. A result of a fast Fourier transform (FFT) of the
output of the synthesizer with a 10% mismatch in charge pump currents is
shown in Figure 7.8. In this plot, simulations show that the spurs are at a level of
−69.5 dBc, which is very close to what the theory above predicted.

7.2.5 Transistor Gain Considerations

While charge pumps in many applications operate at low frequencies relative to
the speed available with most modern integrated technologies, it would be easy to
think that speed is not a concern when designing a charge pump. This, however,
is not true. The problem is that, when the charge pump current sources turn on
and off, they do so in a finite amount of time; therefore, current mismatch will be
worsened if the up and down current sources do not turn on and off at the same
rate. Thus, it is best to match the transconductance of both the NMOS and PMOS
current sources. The transconductance is given by

Figure 7.8 Simulated synthesizer output spectrum with charge pump current mismatch of 10%.

7.2 Charge Pumps 207

gm = √2mCoxSW
L DIDS (7.18)

where m is the mobility of the transistor in question. Since m is typically two to
three times larger in an NMOS transistor than in a PMOS transistor, the W /L
ratio of the PMOS must be two to three times higher than the W /L ratio for an
NMOS transistor. This is accomplished by increasing either the number of fingers
in the PMOS by two to three times or the multiplicity of the PMOS by two to
three times. If the W /L ratio is to be adjusted, then the length of all devices should
be the same for both the NMOS and PMOS devices, and only the width should
be scaled. Adding fingers can also be done, and if it is, then it is best to keep the
number of fingers odd for matching reasons. To improve matching further, it is
best to scale the number of transistors, and, if possible, to use a common centroid
layout [2].

The speed of the circuit will affect the dead zone of the PFD/CP system. Even
if the PFD is designed to be dead-zone free, if the charge pump itself cannot respond
quickly enough, then this can also result in reduced gain at low phase differences.
The charge pump can also create nonlinearities in Kphase , thus changing the loop
gain to unexpected values.

7.2.6 Charge Pump Noise

Noise is another major issue with charge pumps. Since, in band, charge pump
noise can often dominate the noise of the system, it is very important to keep
charge pump noise as low as possible. We need to be aware of two major sources
of noise in a MOSFET. They are the drain noise (channel noise) and flicker noise,
as shown in Figure 7.9. The first is the major source of white noise in the device,
and it is usually assigned a value of

i 2
nd = 4kTS2

3Dgm (7.19)

We can rewrite this expression as

i 2
nd = 4kTS2

3D√2mCoxSW
L DIDS (7.20)

Figure 7.9 Noise sources in a MOSFET.

208 Charge Pumps and Loop Filters

Therefore, to have low output thermal noise, we would like the device to have
a low gm , which generally means not wide and as long as possible. Low width is
at odds, though, with many of the other requirements previously discussed.

The other major source of noise in a MOSFET is flicker noise. The flicker
noise is inversely proportional to frequency; therefore, it dominates at lower fre-
quencies. The gate-referred flicker noise is given by

v 2
ng(f) =

K
WLCox fa

(7.21)

where a is approximately 1 and K is a constant of proportionality that is process
dependent. Note that in most processes, it is common for PMOS transistors of
equivalent size to have lower 1/f noise than NMOS transistors.

Now, if we assume that the source is grounded, we can refer the flicker noise
to the output:

i 2
ng(f) =

K
WLCox f

g 2
m =

K
WLCox f

2mCoxSW
L DIDS =

2Km

L2f
IDS (7.22)

Thus, for low output flicker noise, we would like to operate the device at low
current and make sure that the channel is very long.

Phase noise is of interest mainly in the locked state and is of less importance
when acquiring lock. If the charge pump is well designed and has well-matched
up and down currents, the charge pump will spend the majority of its time in the
off state when the loop is locked. This means that the noise actually transferred
to the output will be relatively small.

The total noise produced by one current mirror while it is on is

i 2
no total (f) =

2Km

L2f
IDS + 4kTS2

3D√2mCoxSW
L DIDS (7.23)

Since we have two current sources that are on for some length of time tCP for
each period, the total noise produced by the charge pump on average is

i 2
no total_average (f) = 2i 2

no total (f)
tCP
T0

(7.24)

Thus, the noise performance of a charge pump is related not only to the
transistor noise sources but also to a number of other parameters that determine
tCP.

Note that what is of the most concern is the charge pump’s effect on the phase
noise of the PLL into which it is placed. Thus, it is the phase noise contribution
of the charge pump that should be minimized, not its output noise current. The
phase noise of the charge pump is referred to the PLL input by dividing (7.24) by
the gain of the PFD/CP. Therefore, the input-referred total phase noise will be

7.2 Charge Pumps 209

un (f) = √2i 2
no total (f)

tCP
T0

Kphase
(7.25)

for a tristate phase detector. Given the above, the simple model for noise in a
charge pump becomes

un (f) = 2p√F 2Km

L2fIDS
+ 4kTS2

3D√2mCoxW

I3
DSL

GStCP
T0
D (7.26)

Thus, for better phase noise performance from a charge pump, higher current
is better. Of course, if increased current comes at the price of higher on time, this
may limit the obtainable phase noise improvement.

7.2.7 Charge Sharing

Another problem with the charge pump, as we have shown in Figure 7.2, is charge
sharing [3]. Suppose that there is capacitance connected to the drains of M1 and
M4 . When the switching transistors are open, the voltages on these two nodes
move towards VDD and VSS , respectively. When the switches close, instantaneously,
some of the charge stored on these parasitic capacitors will be transferred to the
loop filter. This is known as charge sharing. This can cause voltage spikes on the
VCO control line, which can cause spurs in the output spectrum of the synthesizer.
This is not desirable, so, in order to remove these spurs, it is necessary to keep the
voltage on these nodes equal to the output voltage of the circuit. Charge sharing,
along with the presence of current mismatch, can lead to reference feedthrough
due to transients on the control line of the VCO. Improved circuits to reduce
reference feedthrough will be considered in the next sections.

7.2.8 Improving Matching Between Ip and In

This section discusses the detailed design of the current mirrors. An important
consideration is the matching of the current sources Ip and In . The simpleminded
approach would be to connect the two currents to a single bandgap current, as
shown in Figure 7.10. Provided that the transistors are all properly matched in
size, and provided that the output impedance is infinite, the up and down currents
will be perfectly matched. However, in practice, perfect matching between Ip and
Ibias will only be achieved when the drain voltage of M1 is equal to the drain
voltage of M5 . Similarly, perfect matching between In and Ibias will be achieved
when the drain voltage of M4 equals the drain voltage of M7 . If it is assumed that
the on resistance of the switches M2 and M3 is zero, then these two conditions
will be met for the same output voltage Vo = vG5 ; therefore, at this voltage,
Ip = In . If the output voltage is higher than this value, then the current Ip will be
lower (due to reduced current from rDS1), and the current through rDS4 will be
higher, causing the total current In to be higher than Ip . If the voltage goes lower
than vG5 , Ip will be higher than In .

210 Charge Pumps and Loop Filters

Figure 7.10 Charge pump with biasing shown in more detail.

Ideally, the currents Ip and In should be exactly equal, not only when the
output happens to be at vG5 but for any output voltage. This can be accomplished
by introducing feedback into the biasing scheme with a single op-amp, as shown
in Figure 7.11 [4]. The op-amp senses the output voltage and compares it with the
voltage at the drains of the mirror transistors. If the voltage on the mirrors is higher
than the voltage at the output, then it increases the voltage on the gate of M5 and
M1 . This causes the current through M5 to decrease slightly, forcing the currents
through both the NMOS and PMOS transistors to be almost exactly equal, regard-
less of the output voltage. Note that, for stability, the polarity of the op-amp is
important. This circuit, as shown, has both a negative and a positive feedback

Figure 7.11 Charge pump with biasing shown with feedback to equalize UP and DN currents.

7.2 Charge Pumps 211

loop; however, in steady-state operation, the switch is open most of the time, also
opening the positive feedback loop. Also note that there will still be a finite error
in this circuit’s currents due to the finite gain of any real op-amp and finite switch
resistance. However, this circuit is now much improved over previous implementa-
tions.

Another improvement can be made to this basic charge pump. The required
headroom of this circuit can be decreased by moving the switches out of the signal
path and onto the control lines as shown in Figure 7.12.

7.2.9 Charge Pumps Compatible with CML/ECL

The charge pump circuits discussed so far are compatible with rail-to-rail CMOS
logic but are less appropriate when used with CML. A much better topology to
use with a CML PFD is shown in Figure 7.13 [5, 6]. In this circuit, the input
differential pairs (Q1 and Q2 or Q11 and Q12) steer current either to a dummy
load (RB10 and RB5), when both input signals (UP and DN) are low, or into the
two current source transistors (Q6 and Q7), when the input signals are high. Note
that, with the DN signal, there is an extra current direction reversal because the
current must be pulled downwards. Bipolar transistors are often a superior choice
to CMOS transistors as charge pump current sources because of their very low
flicker noise. However, in an integrated environment, the gain of the pnp transistor
is usually quite low. In addition, since pnp transistors have a very low beta, current
matching in this circuit may be much more of an issue than it would be with a
CMOS charge pump.

A CMOS version of this charge pump is shown in Figure 7.14. This is identical
to the bipolar version except that, as is common with CMOS circuits, there are

Figure 7.12 Charge pump with bias feedback and switches moved out of the signal path.

212 Charge Pumps and Loop Filters

Figure 7.13 A bipolar charge pump that works well with a CML-based PFD.

Figure 7.14 A CMOS charge pump that works well with a CML-based PFD.

no degeneration resistors used with this circuit. In a Bi-CMOS technology, the
input differential pairs may still be made with bipolar transistors for ease of switch-
ing, even if the charge pump itself is CMOS.

Charge pumps that are compatible with CML are not quite as power efficient
as the previous charge pumps shown because there is always some dc current
flowing through some of the branches of the circuit. These circuits in Figures 7.13

7.2 Charge Pumps 213

and 7.14 will have good current matching because the UP and DN input stages
are very symmetric.

Example 7.2: Charge Pump Design
Design a charge pump based on the circuit topology shown in Figure 7.14. Using
a typical 0.18-mm process, size all transistors and determine the current for best
phase noise performance. Assume a 3-V supply, and make sure that the loop control
voltage is able to come within 350 mV of either rail. The charge pump is to be
used in a PLL with a 40-MHz reference. Assume the PFD has a feedback delay of
1 ns for the purposes of this example.

Solution: Charge pump design can require careful simulation due to the nonlin-
ear switching of the circuit. The design of CML circuits is covered in Chapter 5,
including the proper sizing of transistors M1 , M2 , M3 , M11 , M12 , and M14 , and
will not be discussed in detail here. Now the main challenge will be to determine
the optimal current for this design. Whatever current is chosen, a saturation voltage
of about 300 mV or less will need to be maintained. Thus, the W /L ratio will have
to follow the relationship of

W
L

=
2iD

v2
DS Sat mCox

Since vDS Sat must remain constant, the W /L ratio will be directly proportional
to the current in the charge pump. Now, as the current increases, from (7.26), it
can be expected that the input-referred noise performance will improve, but, at
the same time, the capacitance in the circuit will rise, so the on time of the circuit
will also increase. The matching in the circuit will also start to suffer if the current
is made too large, causing more noise, but this will not be considered here. For
low 1/f noise contribution, a length of 2 mm will be chosen for all transistors. Now
the width W of the main charge pump transistors M6 and M7 will be determined by
the above equation, but the scaling of the mirrors needs to be determined. At first,
it might seem advantageous to scale M5 and M8 to save current; however, this can
result in increased noise. For example, if M8 is scaled to be N times smaller than
M7 , the equivalent circuit model is shown in Figure 7.15. In this case, the equivalent
output current noise generated by the mirror transistor is

Figure 7.15 Illustration of noise in mirrors inside a charge pump.

214 Charge Pumps and Loop Filters

i 2
no = 4kTS2

3D gm7N

Thus, the noise current will increase as the mirror ratio gets larger. Therefore,
a unity current ratio is preferred for noise.

Output noise is then simulated for currents ranging from 0.5 to 4 mA. To
accommodate these currents, the width of the NMOS current source ranges from
100 to 700 mm. For gm matching, the PMOS transistor in this process must be
4.8 times larger than the NMOS transistor. In order to test the charge pump for
noise, a dc voltage source is attached to the output with a 1V resistor to measure
the noise voltage and current. The two inputs (UP and DN) are driven with a
low-duty-cycle square wave, and the output noise is measured with a nonlinear
simulation, such as Spectre’s PSS/pnoise analysis from Cadence Inc. The output
noise currents are shown in Figure 7.16.

It is no surprise that the output noise is proportional to the charge pump
current. However, the most important result is the input-referred phase noise,
which is obtained by dividing the output noise current by I /2p , the phase detector
gain. This normalized plot is shown in Figure 7.17. It can be seen that, for all these
simulations, 2.5 mA is optimal for best noise performance. So why is there an
optimum current in this design? As the current is increased, the size of the transistors
must also increase, resulting in increased on time due to increased capacitance in
the circuit. At some point, the on time grows faster than the linear-current-to-noise
ratio. Thus, there is an optimum current for a charge pump in a given technology.
Note that the current found here is a little on the high side due to the exaggerated
PFD feedback delay. In a real design with a 40-MHz reference clock, the current
would most likely be between 1 and 2 mA for best performance. However, in all
cases, careful simulation must be performed to find the exact number.

Figure 7.16 Output noise for various currents in the charge pump.

7.2 Charge Pumps 215

Figure 7.17 Input-referred phase noise for the charge pump example.

7.2.10 A Differential Charge Pump

From many perspectives, it is desirable to use differential circuits (especially on
chip). In the past, it was difficult to build an LC VCO that had a differential
control line, so the output of most charge pumps was required to be single ended.
However, with modern processes, it is becoming possible to have LC VCOs that
are controlled by differential signals. Techniques to do this will be discussed in
Chapter 8. In applications that use ring oscillators, differential control lines are
more common. For differential signals, common-mode and power-supply noise are
rejected. However, to drive a differential VCO, a differential charge pump is needed.
A basic circuit that can serve as a differential charge pump is shown in Figure 7.18
[7]. In this circuit, it is assumed that the current sources M5 , M6 , and M8 , M9
are matched. When UP and DN are both low, the switches M1 and M4 are closed,
and the current sourced from M9 is all sunk by M5 ; likewise, all current sourced
by M8 is sunk by M6 , and no current passes into or out of the loop filter (not
shown, but connected between the output nodes). Now suppose that UP becomes
active. In this case, M1 is open, and M2 is closed. Now the current from both M9
and M8 passes down the right-hand side of the circuit. Since M6 can only sink half
this current, the other half must pass through the loop filter and be sunk by M5 .
In this case, a current is passed differentially through the loop filter, and a differential
voltage is developed across it.

A similar, but opposite, situation occurs when a down pulse is present. Note
that, even though this circuit resembles a CML circuit, it actually requires rail-to-
rail signals in order to operate properly. Thus, if the PFD is made from CML, a
rail-to-rail converter must be used to ensure that the switches operate for all output

216 Charge Pumps and Loop Filters

Figure 7.18 A basic differential charge pump circuit.

common-mode levels. Another disadvantage to this circuit is that it requires a static
current flowing at all times to define the common-mode voltage on the output
nodes. Thus, it is questionable as to whether this design can be as quiet as its
single-ended counterparts. These circuits require a differential loop filter as well.
A PLL with a basic differential loop filter is shown in Figure 7.19. It should be
noted that by making C2 differential, the loop filter nodes have high common-
mode impedance, and since the loop only responds to differential feedback, there
can be a lot of common-mode noise. Thus, it is better to break up the loop filter
secondary capacitor and tie it explicitly to ground as shown.

Figure 7.19 A synthesizer with a differential charge pump and loop filter.

7.2 Charge Pumps 217

7.2.11 Common-Mode Feedback for a Differential Charge Pump

During the previous discussion of differential charge pumps, one important issue
has not been discussed. If the loop is to respond to a differential control signal,
then what sets the common-mode voltage at the output of the charge pump?
Obviously, the synthesizer cannot do this, so some additional circuitry is required.
One such loop that could be used with a differential charge pump is shown in
Figure 7.20. This circuit has two very large resistors labeled RCM that sense the
average voltage between the two outputs. These resistors must be very large so
that they minimize the discharging of the loop filter. The voltage at the center of
these two resistors is then compared to a reference voltage Vref , the desired common-
mode voltage. If the common-mode voltage is higher than Vref , current is steered
away from M14 by the differential pair M11 and M12 . If it is lower, more current
is steered towards M14 . This current is then mirrored back to the current sources
M8 and M9 to supply the current sources for the charge pump. This also automati-
cally makes the up and down currents equal. Care must be taken to assure that
this loop is stable. In Figure 7.20, stability is ensured by adjusting the value of
capacitor C2 to provide a dominant pole in the loop.

7.2.12 Another Differential Charge Pump

The one major drawback to the previous circuit is that it always draws current;
therefore, its current sources are always on and, thus, producing noise. Another
design that does not have common-mode current is shown in Figure 7.21. This
differential charge pump is also CML-compatible. Now that there is no dc current
flow, the need for a common-mode feedback loop (CMFB) loop is removed, but

Figure 7.20 Differential charge pump with common-mode feedback circuitry added.

218 Charge Pumps and Loop Filters

Figure 7.21 Differential charge pump with no dc current flow.

the common-mode voltage in this circuit still needs to be set. A common-mode
voltage can be applied to the output through resistors RCM. Again, these resistors
must be large to minimize leakage current from the loop filter, thereby reducing
reference spurs.

7.2.13 Programmable Bias Schemes

Often it is desirable to be able to adjust the current flowing in the charge pump
either because the designer would like the flexibility of being able to adjust the
loop bandwidth or because the exact charge pump current for best phase noise
performance is not known with certainty before fabrication. The charge pump
current can easily be made scalable with a simple circuit such as that shown in
Figure 7.22. This circuit takes the reference current produced by the bandgap and
then scales it up. Placing switches in series with the current mirrors allows the
current to be programmed in binary steps, such that the output current Iref is given
by

Iref = (8b3 + 4b2 + 2b1 + b0)Ibias (7.27)

7.3 Loop Filters

The simplest second-order passive loop filter used with a charge pump has already
been discussed in Chapter 3; however, there are also other loop filter implementa-
tions. In particular, higher-order loop filters are desirable if sharp roll-off of the loop
transfer function is needed to reduce noise and spurs. This is especially important in
fractional-N frequency synthesizers to suppress out-of-band fractional spurs.
Higher-order loop filters can be implemented using pure passive components, such

7.3 Loop Filters 219

Figure 7.22 Charge pump bias circuitry with eight current settings programmable from Ibias to
15 Ibias .

as capacitors, resistors, and inductors. Passive components can also be used in
combination with an operational amplifier to form an active loop filter. However,
for stability, it is important that extra poles are well outside the loop bandwidth.
As well, it should be noted that active components introduce additional noise that
contributes to the in-band phase noise. Therefore, passive loop filters are normally
employed to achieve low in-band noise. However, if the VCO requires a higher
tuning voltage than the charge pump can provide, an active loop filter is necessary
with the op-amp as a voltage buffer.

7.3.1 Passive Loop Filters

The simplest passive loop filter has already been discussed in Chapter 3 and is
shown in Figure 7.1. The transfer function of the second-order passive loop filter
is given by

F(s) =
(1 + sC1R)

s(C1 + C2)(1 + sCsR)
(7.28)

where

Cs =
C1C2

C1 + C2
(7.29)

Note that the filter transfer function is a transimpedance function, which
transforms the charge pump output current into the VCO tuning voltage.

To achieve a higher-order transfer function, additional poles can be added
using additional passive components. For instance, by adding a series resistor R3 ,
followed by a shunt capacitor C3 , the simple second-order filter can be modified

220 Charge Pumps and Loop Filters

to create a third-order passive filter, as shown in Figure 7.23. Note that the second-
order filter is the highest-order passive RC filter that can be built without series
resistors between the charge pump and the VCO tune line. For third- or higher-
order passive RC filters, series resistors have to be added to introduce additional
poles. The filter impedance of the third-order passive loop filter can be expressed
as

F(s) =
(1 + sT1)

sCt (1 + sT2)(1 + sT3)
(7.30)

where the total capacitance Ct = C1 + C2 + C3 , and the time constants are given
by

5
T1 = R1 ? C1

T2 = R1 ? C1 ? C2 /Ct

T3 ≈ R3 ? C3

(7.31)

It should be pointed out that the above approximation for calculating time
constants is valid as long as

5
Ci ! C1, i = 2, 3

C2
C3

+
T3
T1

@ 1
(7.32)

Detailed analysis shows that T2 + T3 < T1 is required for stability; thus, the
above approximation holds provided C3 < C2 /5 [8].

Generalizing the third-order passive filter, Figure 7.24 illustrates a generic kth-
order passive LPF for charge pump PLLs. For instance, the filter impedance for a
fourth-order passive loop filter can be expressed as

F(s) =
(1 + sT1)

sCt (1 + sT2)(1 + sT3)(1 + sT4)
(7.33)

where the total capacitance Ct = C1 + C2 + C3 + C4 , and the time constants are
given by

Figure 7.23 A third-order passive loop filter compatible with charge pump PLLs.

7.3 Loop Filters 221

Figure 7.24 A generic kth-order passive LPF for charge pump PLLs.

5
T1 = R1 ? C1

T2 = R1 ? C1 ? C2 /Ct

T3 ≈ R3 ? C3

T4 ≈ R4 ? C4

(7.34)

In general, the filter impedance for a kth order passive loop filter shown in
Figure 7.24 can be expressed as [8]

F(s) =
(1 + sT1)

sCt (1 + sT2) ? Pk
i = 3

(1 + sTi)

(7.35)

where the total capacitance

Ct = ∑
k

i = 1
Ci

and the time constants are given by

5
T1 = R1 ? C1

T2 = R1 ? C1 ? C2 /Ct

Ti ≈ Ri ? Ci i = 3, 4, . . . , k
(7.36)

It should be pointed out that the above approximation for calculating time
constants is valid as long as

5
Ci ! C1

Ci
Ci + 1

+
Ri + 1

Ri
@ 1 i = 3, 4, . . . , k

(7.37)

The condition Ti ≥ 2Ti + 1 will satisfy the above constraints. A comparison of
the open-loop gain and phase for second-, third-, and fourth-order filters is shown
in Figure 7.25.

222 Charge Pumps and Loop Filters

Figure 7.25 Comparison of open-loop gain and phase in a second-, third-, and fourth-order PLL.

7.3.2 Active Loop Filters

As shown in Figure 7.24, series resistors are required for third-order or higher
passive RC loop filters. If series resistors are used in the loop filter, the VCO tuning
voltage is lower than the charge pump output voltage, which is not desired. In
applications like cable TV tuners, broadband tuning sometimes requires the VCO
tuning voltage to be higher than that which the charge pump can provide. Under
those circumstances, an op-amp can be added in the loop filter topology to trans-
form the charge pump output voltage range to the desired VCO tuning range. In
order to attenuate the added op-amp noise, it is recommended to use an active
filter of third or higher order, even if it is not required for spur suppression. A
simple third-order active loop filter is shown in Figure 7.26 [9, 10]. The presence
of the op-amp has the added advantage that the output voltage on the charge pump
is centered at VDD/2. Thus, the charge pump no longer has to operate near the

Figure 7.26 A third-order active loop filter compatible with charge pump PLLs.

7.3 Loop Filters 223

rails, where the source or sink transistors are forced to operate in saturation for
a BJT charge pump or in the triode region for a MOS charge pump.

The feedback path of the op-amp provides second-order lowpass characteristics,
and an additional pole is added at the op-amp output. The filter transfer function
is given by

F(s) =
(1 + sC1R1)

s(C1 + C2)(1 + sCsR1)(1 + sC3R3)
(7.38)

where Cs is defined in (7.29). Generally, the third pole of the system is added to
further reduce the out-of-band spurs; thus, it is placed at a higher frequency than
the corner frequency of the loop. A good starting point for the relationship between
the poles and zeros for this filter can be arranged as

C1R1 = 10CsR1 = 10C3R3 (7.39)

Thus, C2 is again chosen to be one-tenth the value of C1 . C3 and R3 are chosen
so that this pole is at the same frequency as the higher-frequency pole in the simpler
filter. In this manner, the loop will settle almost as quickly as a second-order loop
(which will have the fastest settling) but still gain the advantage of additional
filtering.

Adding an additional pole to the above third-order active filter, we can create
a fourth-order active filter as illustrated in Figure 7.27. The impedance for the
fourth-order active filter is given by

F(s) =
(1 + sC1R1)

s(C1 + C2)(1 + sCsR1)(1 + sT3)(1 + sT4)
(7.40)

where the two high-frequency poles are located at

5T3 =
1
2

XC3R3 + C4R3 + C4R4 + √(C3R3 + C4R3 + C4R4)2 − 4C3C4R3R4 C

T4 =
1
2

XC3R3 + C4R3 + C4R4 − √(C3R3 + C4R3 + C4R4)2 − 4C3C4R3R4 C
(7.41)

Figure 7.27 A fourth-order active loop filter compatible with charge pump PLLs.

224 Charge Pumps and Loop Filters

An active loop filter can also be directly connected to the outputs of a different
PFD as illustrated in Figure 7.28, where the charge pump is omitted. The differential
voltage signals at the phase detector outputs are directly sensed by the op-amp. In
this case, the op-amp replaces the charge pump function and provides a single-end
voltage output that is proportional to its input voltage difference. This topology
is very useful if the nonlinearity and noise of the charge pump are the dominant
factors of the in-band phase noise. The impedance of the second-order active filter
is given by

F(s) =
(1 + sC2R2)

sC2R1(1 + sC3R3)
(7.42)

7.3.3 LC Loop Filters

In the previous sections, we were focused on RC loop filter designs. These types
of filters are limited to transfer characteristics with real poles whose roll-off slope
is 20 dB/dec per order. Since the typical cutoff frequency of the PLL loop filter is
in the range of a few kilohertz to a few megahertz, the filter component values are
normally large such that on-chip filters normally occupy a large amount of silicon
area. Therefore, the loop filters are often off chip, which not only saves die area
but also provides flexibility of filter design. If the loop filter is off chip and area
is no longer a concern, LC filters can be employed to achieve various roll-off
characteristics. Also, LC filters have lower noise compared to RC filters. A typical
LPF configuration using an LC ladder is shown in Figure 7.29, where the order
of the filter is determined by the number of elements placed in the ladder. The
order increases by two when a pair of LC elements is added to the ladder. For
charge pump-based PLLs, a transimpedance stage is still required to convert the
charge pump current to a voltage. For this purpose, an op-amp can be added in
front of the filter to form an active LC filter, as shown in Figure 7.29. The op-
amp provides a low impedance source for the LC ladder filter. Since the load of
the LC ladder is the VCO tuning input, which is a high impedance, a resistor is
added at the output to define the response of the circuit. Note that the input op-
amp provides a dominant second-order pole to the system. The poles of the LC

Figure 7.28 A second-order active loop filter compatible with a differential PFD.

7.3 Loop Filters 225

Figure 7.29 High-order loop filters implemented with passive LC ladders: (a) filter order n is an
even number, and (b) n is an odd number.

ladder filter are then added at higher frequencies to provide out-of-band spur
reduction. As always, a second-order transient response is desired to ensure fast
settling and to avoid stability problems.

In order to size the filter components, the desired filter response has to be
determined. The most commonly used filter transfer functions are Butterworth and
Chebyshev. The filter transfer functions differ in their passband ripple and their
roll-off slope. Butterworth filters of order n have maximally flat responses in the
passband, with roll-off slope of 20n dB/dec. The attenuation of a Butterworth filter
is given by

AButterworth (dB) = 10 logF1 + S v
v c
D2nG (7.43)

where n is the filter order, and v c is the cutoff frequency. On the other hand,
Chebyshev filters allow ripple in the passband; in return, Chebyshev filters achieve
sharper roll-off in the stopband. A Chebyshev filter’s attenuation is given by

AChebyshev (dB) = 10 logH1 + r2 ? C 2
n Fcosh B ? S v

v c
DGJ (7.44)

where Cn is the nth order Chebyshev polynomial given by

226 Charge Pumps and Loop Filters

C3 = 4S v
v c
D3 − 3

v
v c

C4 = 8S v
v c
D4 − 8S v

v c
D2 + 1

C5 = 16S v
v c
D5 − 20S v

v c
D3 + 5

v
v c

(7.45)

C6 = 32S v
v c
D6 − 48S v

v c
D4 + 18S v

v c
D2 − 1

C7 = 64S v
v c
D7 − 112S v

v c
D5 + 56S v

v c
D3 − 7

v
v c

for third- to seventh-order filters. The passband ripple r is given by

r = √10r (dB)/10 − 1 (7.46)

and B is given by

B = n −1 cosh−1(r −1) (7.47)

It can be shown that a Chebyshev filter with more ripple in the passband will
have a steeper roll-off in the stopband. Figure 7.30 shows a comparison of the
amplitude response of these filters.

Table 7.1 gives the filter component values to implement Butterworth and
Chebyshev LPFs using the LC ladder shown in Figure 7.29. Note that the component
values listed in the table are normalized to a 1-rad/s cutoff frequency. The values
can be scaled to any desired cutoff frequency by using the following formulas:

Cfinal =
Cnorm

2p fcRL
(7.48)

and

Lfinal =
RL Lnorm

2p fc
(7.49)

where fc is the desired filter cutoff frequency, and Cnorm and Lnorm are the respective
capacitor or inductor values given in Table 7.1. This table has been prepared with
the assumption that the load impedance RL is much larger than the source imped-
ance (i.e., the output impedance of the op-amp for the active filter shown in Figure
7.29). For filter component values with other load-to-source impedance ratios, the
reader can refer to [11].

7.3 Loop Filters 227

Figure 7.30 Amplitude response for seventh-order Butterworth and Chebyshev filters normalized
to 1 rad/s in (a) the stopband, and (b) the passband.

Example 7.3: Loop Filter Design
Modify the loop filter in Example 7.1 to achieve greater reference spur rejection.
Characterize the spur rejection assuming that a charge pump mismatch of 30%
exists in the design. You may use inductors, but attempt to keep the size under
1 mH.

228 Charge Pumps and Loop Filters

Table 7.1 Normalized Component Values for Butterworth and Chebyshev LC Lowpass Filters

Filter
Filter Type Order L1 C2 L3 C4 L5 C6 L7

Butterworth 3 1.500 1.333 0.500
4 1.531 1.577 1.082 0.383
5 1.545 1.694 1.382 0.894 0.309
6 1.553 1.759 1.553 1.202 0.758 0.259
7 1.558 1.799 1.659 1.397 1.055 0.656 0.223

Chebyshev
with 0.01-dB ripple 3 1.501 1.433 0.591

4 1.529 1.694 1.312 0.523
5 1.547 1.795 1.645 1.237 0.488
6 1.551 1.847 1.790 1.598 1.190 0.469
7 1.559 1.867 1.866 1.765 1.563 1.161 0.456

Chebyshev
with 0.1-dB ripple 3 1.513 1.510 0.716

4 1.511 1.768 1.455 0.673
5 1.561 1.807 1.766 1.417 0.651
6 1.534 1.884 1.831 1.749 1.394 0.638
7 1.575 1.858 1.921 1.827 1.734 1.379 0.631

Chebyshev
with 1-dB ripple 3 1.652 1.460 1.108

4 1.35 2.01 1.488 1.106
5 1.721 1.645 2.061 1.493 1.103
6 1.378 2.097 1.69 2.074 1.494 1.102
7 1.741 1.677 2.155 1.703 2.079 1.494 1.102

Solution: In order to get higher spur rejection, we need to use a higher-order
loop filter. In order to maximize spur rejection, a seventh-order passive LC ladder
filter, as illustrated in Figure 7.29, will be chosen for implementation. Now we
must choose a value for the load resistor in this design. Looking at (7.49), we
notice that, as the load resistance is increased, the inductors in the design get larger.
Thus, to keep the component values small, we need to reduce the load resistance.
Since there must be a dc path from the output of the op-amp to the input of the
VCO, the op-amp must be able to provide dc current to the load resistor. If we
choose RL as 1 kV and bias the other end of this resistor at VDD/2, then the op-
amp may have to provide as much as 1.5 mA of current. Note that a decoupling
capacitor could fix this at the expense of one extra component.

Note that, in real life, the filter output will drive the varactors in the VCO.
Typical values for such varactors will be in the 1- to 5-pF range. Past the corner
frequency of the load resistor and the varactor capacitance, the ladder is no longer
loaded properly with RL and will no longer perform as expected. Since the ladder
filter must filter reference spurs, in this case at 40 MHz, such corner should be
above 40 MHz. At 5 pF, this means that the resistance should be less than about
800V, or, with a load resistance of 1,000V, the capacitor should be less than about
4 pF.

Now we want the LC ladder to replace the function of the capacitor C2 , so
this part of the filter is chosen to have a cutoff frequency fc = 1.5 MHz (about 10
times higher than the loop bandwidth). Thus, we choose in this design C1 = 5.66
nF and R = 530V just as in Example 7.1. Using (7.48) and (7.49) and making use
of Table 7.1, we can find L1 = 185 mH, C2 = 178 pF, L3 = 229 mH, C4 = 181 pF,

7.3 Loop Filters 229

L5 = 221 mH, C6 = 159 pF, and L7 = 117 mH, assuming that we choose a
Chebyshev filter with 1-dB in-band ripple.

Now the filter response of the two designs can be compared. The relative
response is shown in Figure 7.31. From this graph, it can be seen that, in band,
the response of the two filters is almost identical, but out of band (beyond about
1.6 MHz), the LC ladder filter has dramatically more attenuation than the simple
filter. The fact that the in-band response is similar means that both filters should
have the same transient response to a frequency step at the output. Figure 7.32
shows that the PLL using both types of loop filter leads to a very similar settling
behavior for a step in frequency of 20 MHz at the output. Note that, with the LC

Figure 7.31 Comparison of a standard loop filter with a high-order filter using an LC ladder and
op-amp design.

Figure 7.32 Comparison of transient response of a PLL using standard and high-order loop filters.

230 Charge Pumps and Loop Filters

ladder filter, there is slightly more ringing, and settling takes slightly longer than
expected. This difference in transient behavior can be reduced by increasing the
corner frequency of the LC filter but at the expense of reduced suppression of
reference feedthrough. Finally, the reference spur rejection can be compared for
both designs with a 30% charge pump current mismatch. This means that the UP
current source is now set to 816.4 mA, and the PFD delay remains at 5 ns.
Comparison of the designs is shown in Figure 7.33. From this graph, it can be
seen that the RC filter design has reference spurs that are 59.6 dB below the carrier,
while the LC ladder spurs are below the noise floor of the simulation. Thus, they
are lower than 103 dB below the carrier, and the LC ladder design provides at
least an additional 43 dB of reference spur rejection.

Figure 7.33 Comparison of reference spur rejection of a PLL using standard and high-order loop
filter.

References

[1] Gray, P. R., et al., Analysis and Design of Analog Integrated Circuits, 4th ed., New York:
John Wiley & Sons, 2001.

[2] Johns, D. A., and K. Martin, Analog Integrated Circuit Design, New York: John Wiley &
Sons, 1997.

[3] Hung, C., and K. K. O, ‘‘A Fully Integrated 1.5V 5.5 GHz CMOS Phase-Locked Loop,’’
IEEE J. Solid-State Circuits, Vol. 37, No. 4, April 2002, pp. 521–525.

[4] Terrovitis, M., et al., ‘‘A 3.2 to 4 GHz 0.25 mm CMOS Frequency Synthesizer for IEEE
802.11a/b/g WLAN,’’ ISSCC Dig. Tech Papers, San Francisco, CA, February 2004,
pp. 98–99.

[5] Rogers, J. W. M., et al., ‘‘A Fully Integrated Multi-Band SD Fractional-N Frequency
Synthesizer for a MIMO WLAN Transceiver RFIC,’’ IEEE J. Solid-State Circuits,
Vol. 40, No. 3, March 2005, pp. 678–689.

[6] Lee, J., and B. Kim, ‘‘A Low-Noise Fast-Lock Phase-Locked Loop with Adaptive Band-
width Control,’’ IEEE J. Solid-State Circuits, Vol. 35, No. 8, August 2005, pp. 1137–1145.

[7] Razavi, B., Monolithic Phase-Locked Loops and Clock Recovery Circuits, New York:
Wiley-IEEE Press, 1996.

7.3 Loop Filters 231

[8] Banerjee, D., PLL Performance, Simulation and Design, 3rd ed., San Jose, CA: Dean
Banerjee Publications, 2003.

[9] Mijuskovic, D., et al., ‘‘Cell-Based Fully Integrated CMOS Synthesizers,’’ IEEE J. Solid-
State Circuits, Vol. 29, March 1994, pp. 271–279.

[10] Craninckx, J., and M. S. J. Steyaert, ‘‘A Fully Integrated CMOS DCS-1800 Frequency
Synthesizer,’’ IEEE J. Solid-State Circuits, Vol. 33, December 1998, pp. 2054–2065.

[11] Bowick, C., RF Circuit Design, Burlington, MA: Newnes, 1982.

C H A P T E R 8

Voltage-Controlled Oscillators

8.1 Introduction

An oscillator is a circuit that generates a periodic waveform. While oscillators have
numerous applications, from serving as reference tone generators for receivers to
clocks for digital circuits, the application of most importance for this text is their
use as the central component in a frequency synthesizer. In this application,
important design considerations include tunability, spectral purity (low phase
noise), and, in the fully integrated context, low power. Where the lowest possible
phase noise with low power dissipation is the driving consideration, designers may
decide to use LC-based oscillators. However, in many situations, ring oscillators
are used; since they can potentially provide wider tuning range, they are simpler
to design in a standard digital process as, typically, no inductors or varactors are
needed. Without inductors, their layout area is also significantly lower. In addition,
it is possible to design ring oscillators in such a way that they automatically have
quadrature outputs. This chapter considers crystal oscillators, in addition to LC
and ring oscillators. Crystal oscillators are important since they are commonly
used as reference signals for frequency synthesizers.

8.2 Specification of Oscillator Properties

Possibly the most important characteristic of an oscillator is its phase noise. An
ideal oscillator has accurate periodicity with all signal power concentrated in one
discrete oscillator frequency (possibly at multiples of the oscillator frequency).
However, all real oscillators have less-than-perfect spectral purity, having phase
noise, which is seen as undesired frequency components around the desired fre-
quency, as shown in Figure 8.1. It is desirable to minimize these extra frequency
components as much as possible. Chapter 3 discusses the effect of oscillator phase
noise on synthesizer performance. Other considerations are long-term stability and
sufficient output voltage amplitude for the intended application.

8.3 LC-Based VCOs

The LC resonator at the core of LC oscillators determines the frequency of oscilla-
tion and often forms part of the feedback mechanism used to obtain sustained
oscillations. The frequency of oscillation will be given approximately by

233

234 Voltage-Controlled Oscillators

Figure 8.1 Spectrum of a typical oscillator.

vosc = √ 1
LC

(8.1)

Any oscillation, once started, will tend to decay due to the losses in the resona-
tor. In order to maintain sustained oscillations, it is necessary to provide feedback
to restore energy. Two popular ways to achieve this are by the Colpitts oscillator
or the negative Gm oscillator. These can be shown with bipolar or MOS transistors;
here we show the MOS versions. Note that with MOS, one can choose NMOS or
PMOS. NMOS will have higher gm for the same transistor size and current; how-
ever, PMOS will have lower 1/f noise. Differential versions of these two oscillators
are shown in Figure 8.2. Note that the trend is for CMOS oscillators to be nearly
exclusively of the negative Gm variety because of their simplicity. However, Colpitts
oscillators are not completely extinct, especially with bipolar transistors, so some
knowledge of them can be valuable.

8.3.1 Inductors

Of all the passive structures used in RF circuits, high-quality inductors are tradition-
ally among the most difficult to realize monolithically. In silicon, they suffer from
the presence of lossy substrates and high-resistivity metal. However, over the past
few years, much research has been done into efforts to improve fabrication methods
for building inductors, as well as modeling, so that better geometries can be used
in their fabrication [1–4].

Traditionally, due to limitations in modeling and simulation tools, inductors
were made as square spirals. The wrapping of the metal lines allows the flux from
each turn to add, thus increasing the inductance per unit length of the structure
and providing a compact way of achieving useful values of inductance. Square
inductors, however, have less-than-optimum performance due to the 90° bends
present in the layout, which add to the resistance of the structures. A better structure
is shown in Figure 8.3. Since this inductor is circular, it has less series resistance.
This geometry is more symmetric than traditional inductors (its S-parameters look
the same from either side). Thus, it can be used in differential circuits (like most
VCOs) without needing two inductors to get good symmetry. Bias can be applied
through the axis of symmetry of this structure if needed in a differential application

8.3 LC-Based VCOs 235

Figure 8.2 Basic differential oscillators: (a) Colpitts common gate, (b) Colpitts common drain,
(c) −Gm oscillator (NMOS only), (d) −Gm oscillator (PMOS only), and (e) −Gm oscillator
(complementary).

(i.e., it is a virtual ground point). Note that most technologies do not offer truly
circular structures but get almost the same performance with octagonal structures.

When describing on-chip inductors, it is useful to build an equivalent model
for the structure. Figure 8.4 shows capacitance between lines, capacitance through
the oxide, inductance of the traces, series resistance, and substrate effects. These
effects are translated into the circuit model shown in Figure 8.5, which shows a
number of nonideal components. Rs models the series resistance of the metal lines
used to form the inductor. Note that the value of Rs will increase at higher frequen-
cies due to the skin effect, which is an electromagnetic (EM) effect that causes
current to crowd near the edges of the conductor. Coxide models the capacitance
from the lines to the substrate. This is essentially a parallel-plate capacitor formed

236 Voltage-Controlled Oscillators

Figure 8.3 A circular differential inductor layout.

Figure 8.4 Illustration of elements used to build an inductor model.

Figure 8.5 Basic model for a differential inductor.

8.3 LC-Based VCOs 237

between the inductor metal and the substrate. Csub and Rsub model the losses due
to magnetic effects, capacitance, and the conductance of the substrate. They are
proportional to the area of the metal in the inductor, and their exact value depends
on the properties of the substrate in question. CIW models the interwinding capaci-
tance between the traces. This is another parallel-plate capacitor formed by adjacent
metal lines. The model is broken into two parts with a pin at the axis of symmetry,
where a bias can be applied if desired. Note also that since the two halves of the
spiral are interleaved, there is magnetic coupling between both halves of the device.
This is modeled by the coupling coefficient k.

At low frequencies, the inductance of an integrated inductor is relatively con-
stant. However, as the frequency increases, the impedance of the parasitic capaci-
tance elements starts to become significant. In fact, at some frequency, the
admittance of the parasitic elements will cancel that of the inductor, and the
inductor will self-resonate. At this point, the reactive part of the admittance will
be zero. The inductance is nearly constant at frequencies much lower than the self-
resonance frequency; however, as the self-resonance frequency is approached, the
inductance rises and then abruptly falls to zero. Beyond the self-resonant frequency,
the parasitic capacitance will dominate, and the inductor will look capacitive. Thus,
the inductor has a finite bandwidth over which it can be used. For reliable operation,
it is necessary to stay well below the self-resonance frequency. Since parasitic
capacitance increases in proportion to the size of the inductor, the self-resonant
frequency decreases as the size of the inductor increases. Thus, the size of on-chip
inductors that can be built is limited.

The quality factor Q of a passive circuit element can be defined as

Q = | Im(Zind) |
|Re(Zind) | =

vL
rs

= | Im(Yind) |
|Re(Yind) | =

rp

vL
(8.2)

where Zind is the impedance of the inductor, Yind is the admittance of the inductor,
L is the equivalent inductance at frequency v , and rs and rp are the equivalent
series and parallel resistance of the inductor at frequency v . This is not necessarily
the most fundamental definition of Q , but it is a good way to characterize the
structure. A good way to think about this is that Q is a measure of the ratio of
the desired quantity (inductive reactance) to the undesired quantity (resistance).
Obviously, the higher the Q , the more ideal the device becomes.

The Q of an on-chip inductor is affected by many things. At low frequencies,
the Q tends to increase with frequency because the losses are relatively constant
(mostly due to metal resistance Rs), while the imaginary part of the impedance is
increasing linearly with frequency. However, as the frequency increases, currents
start to flow in the substrate through capacitive and, to a lesser degree, magnetic
coupling. This loss of energy into the substrate causes an effective increase in the
resistance. In addition, the skin effect starts to raise the resistance of the metal
traces at higher frequencies. Thus, most integrated inductors have Qs that rise at
low frequencies; they then have some peak beyond which the losses make the
resistance rise faster than the imaginary part of the impedance, and the Q starts
to fall off again. Thus, it is easy to see the need for proper optimization to ensure
that the inductor has peak performance at the frequency of interest.

238 Voltage-Controlled Oscillators

8.3.2 Varactors for Oscillator Frequency Control

Typically, one has the choice of a few different kinds of varactors [5]. The first
kind, the pn varactor, is formed from a pn junction (often inside of a well), as
shown in Figure 8.6(a). Typically, such varactors have a parasitic varactor to the
substrate. Unlike the desired pn junction, which has a high Q , this parasitic junction
has a low Q due to the lower doping of the substrate. This makes it desirable to
remove it from the circuit. This can be done by placing the varactors in the circuit
such that the side with the parasitic diodes is tied together at the axis of symmetry,
as shown in Figure 8.6(b).

A varactor can also be formed from a regular MOS transistor where the gate
is one terminal and the source and drain tied together form the other terminal.
Such a structure is shown in Figure 8.7. As a positive voltage is put on the gate,
holes in the p substrate are driven away from the surface, forming a depletion
region whose depth depends on applied voltage. At a large-enough positive voltage,
an inversion layer of electrons forms along the surface, and the capacitance is at
its maximum value, that of the gate oxide.

If a negative voltage is applied, a layer of holes is accumulated next to the gate
oxide. This might be expected to increase the capacitance. However, if the substrate
is not connected to the source, there is no direct electrical connection between the

Figure 8.6 (a) Desired pn varactor and parasitic pn varactor and (b) connecting two pn varactors
in such a way that parasitic varactors are at the common-mode point.

Figure 8.7 Cross section of a MOS varactor in the depletion region.

8.3 LC-Based VCOs 239

accumulation region and the source and drain regions. With a negative gate voltage,
there is now a relative positive voltage on the source and drain; as a result, there
is a substantial depletion region along the source and drain, as shown in Figure
8.8. This depletion capacitance is in series with gate capacitance; as a result, the
capacitance does not increase back up to gate capacitance as might have been
expected. In this region, the low doping in the substrate provides a lossy signal
path; hence, the Q of such varactors can be quite low.

Another technique is to use the gate as one terminal and the substrate connection
as the other. In such a case, source and drain are not required. Such a varactor is
often called the accumulation MOS (AMOS) varactor since the capacitance is
highest when the surface under the gate is in accumulation. Capacitance is lowest
in the inversion region. As with all types of MOS varactors, the AMOS varactor
takes advantage of the variation of depletion capacitance with applied voltage.
Operation of the AMOS varactor, shown in Figure 8.9, will now be described.

Figure 8.8 Cross section of a MOS varactor shown in the accumulation region.

Figure 8.9 Cross section of typical AMOS varactor in the depletion region.

240 Voltage-Controlled Oscillators

A typical varactor characteristic is shown in Figure 8.10 [6]. The different
regions of operation are illustrated in Figure 8.11. When sufficient positive voltage
is applied to the gate, a layer of negative charges (electrons) forms along the oxide
surface, providing a second electrode to the capacitor and a maximum capacitance
equal to the gate capacitance. As the voltage is decreased, this layer of charge
disappears and a depletion region forms under the gate oxide. In this region, the
depletion width, hence, the capacitance, is dependent on the gate voltage. For
sufficiently large negative voltage on the gate, holes are attracted to the oxide
surface, and the capacitor is said to be in inversion. In this region, the layer of holes
prevents the depletion region from growing any further, and the total capacitance is
the series capacitance between the gate oxide and the depletion capacitance. Note

Figure 8.10 Example of a capacitance versus voltage curve of an AMOS varactor.

Figure 8.11 Regions of operation in an AMOS varactor: (a) accumulation; (b) depletion; and
(c) inversion.

8.4 Oscillator Analysis 241

that while the holes are conductive, they do not connect to the n -type anode, and,
hence, do not short out the depletion capacitance.

According to [7], using minimum channel length results in the highest-Q varac-
tors since this minimizes the series resistance. However, with minimum length, the
fixed capacitors, such as overlap capacitance, are more important relative to the
variable capacitors, so this reduces the ratio of maximum to minimum capacitance.
As for Q as a function of region of operation, the series resistance is lowest in the
accumulation region, where there is a conductive layer close to the gate oxide. As
the depletion region is entered, the resistance R will increase; however, in this
region, the capacitance is decreasing, and capacitive reactance XC is increasing.
Since Q is the ratio of XC to R , the increase in R is offset by the increase in XC ;
hence, Q does not suffer as badly as one might expect.

8.4 Oscillator Analysis

Mathematically, if a system has poles on the jv axis of the s plane, it forms an
oscillator. That is, in the transfer function, with s replaced by jv , if there is some
v for which the denominator of the transfer function goes to zero, the system will
oscillate at this frequency. In filtering terms, if the poles approach the jv axis from
the left-hand side of the s plane, the Q of the system is very high and approaches
infinity. Thus, in a resonator, one can think of a negative resistance canceling the
positive resistive losses to cause the Q to go to infinity, forming an oscillator.
Alternatively, one can think of a feedback system, where the feedback causes the
characteristic equation (the denominator of the transfer function) to go to zero for
some value of s = jv . All of these ways of looking at oscillators are equivalent.
Let us now look in more detail at the feedback method to analyze oscillators.
Consider the feedback system shown in Figure 8.12.

The transfer function can be written as

vout
v in

=
H1(s)

1 − H1(s)H2(s)
(8.3)

Here, the product of H1(s) and H2(s) can be seen to be the open-loop gain,
often simply called the loop gain. If the open-loop gain goes to one, the transfer
function goes to infinity. In the neighborhood of this singularity, the gain is very
high, and a finite output voltage can be obtained for a very small input. Typically,

Figure 8.12 Feedback model of an oscillator.

242 Voltage-Controlled Oscillators

the input to an oscillator is thermal noise. This condition is often referred to as
the Barkhausen criteria, which states that the condition for oscillation is that

H1(s)H2(s) = 1 (8.4)

This is equivalent to the following two conditions:

|H1(s)H2(s) | (s) = 1 (8.5)

∠H1(s)H2(s) = 0 or 2np

In practice, we start with a loop gain somewhat larger than one, which results
in a system whose output signal grows with time. After some startup transient,
the amplitude will increase to the point where nonlinearity will reduce the effective
gain such that the steady-state behavior can be fairly accurately described by (8.5),
with the provision that the effective large-signal gm be used in the equations.

8.4.1 Colpitts Oscillator Analysis

To apply the above technique to the common-gate Colpitts oscillator, the small-
signal model, as shown in Figure 8.13, needs to be considered. To find the loop
gain, we break the loop at the source, apply a signal at vs , and determine the gain
all the way around the loop to the other side of the break at vs′.

It can be shown that the resistor rs across C2 can be replaced by an equivalent
resistor rs , tank across both capacitors according to

rs , tank = S1 +
C2
C1
D2rs (8.6)

for the Colpitts common gate oscillator and

rs , tank = S1 +
C1
C2
D2rs (8.7)

for the common drain oscillator. The resulting approximate transformed oscillator
is seen in Figure 8.14. This model is accurate provided that the frequency of

Figure 8.13 Feedback analysis of a Colpitts common-gate oscillator.

8.4 Oscillator Analysis 243

Figure 8.14 Simplified oscillator using transformation of capacitive feedback divider.

operation is well past the corner frequency of the feedback highpass filter (shown
in Figure 8.13 but now missing in Figure 8.14).

The loop gain can be expressed as follows:

H1H2 =
gm

Ytank

C1
C1 + C2

= S C1
C1 + C2

D ?
gm

1
Rp

+
1

rs , tank
+ jvCT −

j
vL

(8.8)

This can be set equal to one and solved for oscillating conditions. The imaginary
terms cancel, resulting in the expected expression for the resonant frequency:

vo = √ 1
CT L

(8.9)

where CT is the series combination of C1 and C2 as follows:

CT = C1 ||C2 =
C1C2

C1 + C2
(8.10)

The remaining real terms can be used to obtain an expression for the required
gm by setting the loop gain equal to unity at the resonance frequency with the
resulting expression shown in (8.11). Note that, in practice, small-signal loop gain
is set to be larger than unity to guarantee startup:

gm = S 1
Rp

+
1

rs , tank
D ? SC1 + C2

C1
D (8.11)

The transconductance gm makes up for losses in the resistors Rp and rs , tank.
Thus, for minimum required gm , it would seem that both Rp and rs , tank should
be made as large as possible. Large Rp is the result of high inductor Q , and large
rs , tank is obtained by using a large value of capacitive transformer (by making C2
bigger than C1 in the Colpitts common-gate oscillator). However, rs , tank is depend-
ent on gm , as can be seen by noting that rs , tank is related to rs by (8.7) and that
rs is the inverse of gm . Thus, it can be shown that the required gm is equal to

gm =
v2L(C1 + C2)

Rp
=

C1 + C2
RpCT

(8.12)

244 Voltage-Controlled Oscillators

This shows that to minimize gm , Rp should be large, but choosing a large
transformer ratio (C2 /C1) is not optimum. A large ratio of C2 to C1 does increase
rs , tank but also causes the loop gain to be reduced; thus, larger gm is required to
achieve a loop gain of unity. Note that, for minimum noise, it is often advantageous
to increase rs , tank by increasing the ratio of C2 to C1 , but this will then require a
larger gm and, typically, a larger power dissipation. Thus, there may be a trade-
off between noise and power dissipation.

8.4.2 Negative Resistance of −Gm Oscillator

It is straightforward to show that a cross-coupled pair of transistors, such as those
shown in Figure 8.2(c), has an input impedance of

Zi =
−2
gm

(8.13)

Thus, in this circuit, a necessary condition for oscillation is that

gm >
2
rp

(8.14)

where rp is the equivalent parallel resistance of the resonator.

8.5 Amplitude of a Negative Gm Oscillator

The determination of amplitude is dependent on whether the oscillator is voltage
or current limited. If the oscillator is voltage limited, typically, it is limited by the
on-voltage of a switch, either to ground (for an NMOS-only oscillator) or to
VDD (for a PMOS-only oscillator). For an NMOS-only oscillator, the outputs are
nominally at VDD, with the maximum negative swing approaching ground; thus,
by symmetry, the positive swing is expected to go to 2VDD for a peak swing of
VDD per side or a peak swing of 2VDD for a differential output. Similarly, for a
PMOS-only oscillator, the outputs are nominally at ground potential and pulled
up by the PMOS switches towards VDD. This peak positive swing of VDD per side
is matched by a peak negative swing approaching −VDD, again for a peak differential
swing of 2VDD. For a complementary circuit with both PMOS and NMOS switches,
both sides of the inductor are connected either to ground or to VDD; hence, the
maximum possible peak differential swing is VDD. Note that bipolar transistors
have a diode from base to collector; thus, bipolar negative Gm oscillators will
voltage limit to 2VBE. For this reason, capacitors are often inserted between the
collector and base of bipolar negative Gm oscillators to decouple the dc components.
In such a case, biasing resistors need to be used to bias the gate. Since CMOS
transistors do not have an equivalent diode (from gate to drain), such coupling
capacitors are not used in CMOS negative Gm oscillators.

For current-limited oscillators, as long as the voltage is high enough, then the
transistors can be treated as switches. Thus, each side will have current that switches

8.6 Several Refinements to the −Gm Topology 245

between 0 and Ibias . A simple Fourier analysis can be used to show that the
average value is Ibias /2, and the peak fundamental value is 2Ibias /p . Thus, since
the impedance per side is Rp /2 (current is flowing into the center tap of the
inductor), the output voltage per side is

vout |SE
=

RpIbias
p

(8.15)

and the differential voltage is

vout |DE
=

2RpIbias
p

(8.16)

With complementary transistors, the current is flowing through the full Rp in
each direction; thus, the output voltage is twice as large:

vout |Comp_DE
=

4RpIbias
p

(8.17)

Note that an analysis can be performed for the Colpitts oscillator as well to
determine the amplitude of these circuits. Such an analysis is given in detail in [8].

In summary, typically, a specification for amplitude is given, or is indirectly
given, in order to achieve a particular phase noise (since phase noise is defined as
being relative to the oscillator output power). Knowing the quality of the resonator
(from the Q or the parallel resistance Rp), one can determine the required bias
current. Then, knowing the power-supply voltage, one can determine the total
power dissipation of the oscillator.

8.6 Several Refinements to the −Gm Topology

Several refinements can be made to the −Gm oscillator to improve its performance.
As mentioned in the previous section, for bipolar negative Gm oscillators, to increase
signal swing beyond VBE, the collector and base of the switching transistors can
be decoupled at dc with capacitors or transformers. In either case, proper dc bias
must be supplied to the base, either with resistors in the capacitively decoupled
case or by providing dc to a center tap in the inductively decoupled case. Obviously,
care must be taken to prevent large increases in dc power dissipation or increases
in noise due to these extra components.

A modification that can be made to the −Gm oscillator is to replace the high-
impedance current source connected to the sources of M1 and M2 in Figure 8.2(c)
with a resistor. Since the resistor is not a high impedance source, the bias current
will vary dynamically over the cycle of the oscillation. In fact, the current will be
highest when the oscillator voltage is at its peak and lowest during the zero crossings
of the waveform. Since the oscillator is most sensitive to phase noise during the
zero crossings, this version of the oscillator can often give very good phase noise
performance. This oscillator is shown in Figure 8.15(a).

246 Voltage-Controlled Oscillators

Figure 8.15 −Gm oscillator with (a) resistive tail-current source, or (b) current source filter.

Since the current varies dynamically over a cycle and since the resistor Rtail
does not require as much headroom as a current source, this allows a larger
oscillation amplitude for a given power supply.

An alternative to the resistor Rtail is to use a noise filter in the tail, as shown
in Figure 8.15(b) [9]. It is shown here with the NMOS cross-coupled negative Gm
oscillator, but it could also apply to other styles as well. While the use of the
inductor does require more chip area (unless it is off chip [10]), its use can lead
to a very low-noise bias, leading to low phase noise designs. Noise injected by the
current source around the fundamental frequency and around harmonics is filtered
out. The noise implications are discussed further in Section 8.10.

Besides noise filtering, another advantage to using this filter circuit is that,
before startup, the drain of transistor M3 can be biased at a lower voltage because,
during startup, the second harmonic will cause a dc bias shift at the drain of Q3 ,
pulling it upwards and safely away from the triode region of operation. In addition,
since the second harmonic cannot pass through the inductor Ltail , there is no
‘‘ringing’’ at the drain of M3 ; thus, there is a reduction of its headroom requirement.
Since the inductor and capacitor are usually chosen to be large, the series resonant
frequency will typically be low. Some researchers have attempted to achieve high
impedance at the second harmonic of the fundamental frequency by adjusting
the parallel resonance frequency between the series inductor and the parasitic
capacitance on the sources of the differential pair to occur at the second harmonic.
Others simply aim for a large Ltail and large Ctail to result in a better lowpass filter.

8.7 Injection-Locked Oscillators

If, rather than noise, a signal is injected into an oscillator, and if that signal is large
enough, then it will pull the oscillator to that frequency. This phenomenon is

8.7 Injection-Locked Oscillators 247

known as injection locking. To study the effect of an injected signal, consider the
model shown in Figure 8.16(a), where the oscillator feedback is shown on the left,
and the injected noise and injected signal are shown on the right. The feedback
transconductance gm can be seen as providing a negative resistance −Rn equal to
−1/Gm , as shown in Figure 8.16(b). The injected noise current has an expected
value of √F ? 4kT/Rp , where F, the equivalent noise factor of the oscillator, indi-
cates how much additional noise is added by active circuitry. In addition, it is
noted that any input resistance of the transconductance stage has been absorbed
in Rp .

Under large-signal conditions, the negative and positive resistances in parallel
nearly cancel out, resulting in a nearly ideal resonant circuit such that the noise
input is amplified to produce the large-signal oscillator output voltage vout . Since
there is a finite input power, the gain cannot be infinite. However, since the gain
is very large, Rn will be approximately equal to Rp . The output voltage is given
by

vout =
in

1
Rp

−
1

Rn
+ sC +

1
sL

=
s

in
C

s2 + s
1

RC
+

1
LC

(8.18)

where 1/R = 1/Rp − 1/Rn , or, equivalently, R is the parallel combination of the
positive resistor Rp and the negative resistor Rn . If s is replaced by jv , the following
expression results:

Figure 8.16 Feedback model of oscillator with noise input (this will be used to demonstrate injection
locking): (a) with feedback through gm , and (b) with −Rn .

248 Voltage-Controlled Oscillators

vout =
in

1
R

+ jSvC −
1

vL D
(8.19)

The output voltage versus frequency can be seen to be a bandpass filter, as
shown in Figure 8.17. Resonance occurs at vo according to

vo =
1

√LC
(8.20)

and, the −3-dB bandwidth is given by

B =
1

RC
(8.21)

The output voltage at resonance is given by

vout = inR (8.22)

When another signal iinj is coupled into an oscillator, whether deliberately or
by accident, the output will be the gain times the input signal. If the resulting

Figure 8.17 The effective gain of oscillator, assuming input is thermal noise, and the phase associ-
ated with the gain of a bandpass filter.

8.7 Injection-Locked Oscillators 249

output signal is larger than the free-running oscillating signal, the oscillator will
follow the new signal. Furthermore, in such a case, the oscillator gain will readjust
itself (gain will be reduced), so the output amplitude remains approximately con-
stant; hence, the free-running amplitude is the same as the injection-locked ampli-
tude. This happens because of the nonlinear limiting mechanism. Note that, in
general, when injection locked, since the gain is reduced, noise will be amplified
by a smaller gain; hence, noise is suppressed compared to the free-running case.

To determine the condition to lock, the gain and the free-running amplitude
must be determined. Figure 8.17 shows that the gain Aosc is simply the net imped-
ance of the equivalent bandpass response as given by

Aosc =
R

1 + j
v

v c

=
R

1 + j
f
fc

(8.23)

The free-running amplitude is determined by the integral under the curve of
output voltage and is equal to

√v 2
o = √E

∞

∞

|vout |2 dv

= √#
∞

∞

i 2
n R2

1 + S v
v c
D2

dv

= v c inR√Ftan−1S v
v c
DG∞

−∞
(8.24)

= inR√ B
2p

?
p
2

=
inR√B

2

=
in
2 √R

C

It can be seen that B ? p /2 is the noise bandwidth of the bandpass response.
Note that the equation is written for the case where noise current density is given
in amperes per √Hz, and B is given in radians per second; hence, an extra factor
of 2p has been included. If both terms are expressed in the same units, whether
hertz or radians per second, the factor of 2p should be removed from (8.24).

The amplitude of oscillation is typically determined by the nonlinear limiting
of transconductor gm . For small signals, the value of gm should result in a net
negative resistance and an unstable circuit. With increasing amplitude, limiting
causes the value of gm to decrease until |Rn | ≈ |Rp | for steady-state operation.
Transconductance gm is defined by the current voltage relationship as follows:

250 Voltage-Controlled Oscillators

i = k1v + k2v2 + k3v3 + . . . (8.25)

For small signals, k1 can be seen as gm . However, for larger signals, the third-
order term will produce components at the fundamental frequency and, if k3 is
negative, will result in a decrease in the effective value of gm . Specifically, if
v = V cos(v t),

i = Sk1V +
3k3V3

4 D cos(v t) +
1
2

k2V2 cos(2v t) +
1
4

k3V3 cos(3v t) + . . .

(8.26)

Thus, the effective gm is given by the fundamental component of | i /v | :

gm = k1 +
3k3V2

4
(8.27)

This can be solved for amplitude V as

V = √ 4
3k3

S 1
Rp

− k1D (8.28)

We note that k1 is typically larger than 1/Rp to insure that the oscillator starts
up. However, this means that the term in the brackets of (8.28) is negative, but,
since k3 is typically also negative, the square root can be taken. Equations (8.23)
and (8.24) can be combined to determine the minimum signal amplitude for which
the output due to the injected signal is equal to or larger than the output amplitude
due to the noise:

| iinjR

1 + j
f − fo
fc − fo

| >
inR√B

2
= vo (8.29)

Here frequencies are expressed as offsets with respect to the free-running fre-
quency (see Figure 8.17). Note once again that the original noise input signal is a
current density in amperes per √Hz, while B is in units of radians per second. For
an injected signal inside of the oscillator bandwidth, the condition for lock is

iinj >
in√B

2
=

vo
R

(8.30)

For injected signals sufficiently outside the corner of the oscillator bandwidth,
the condition for locking is

iinj >
in (f − f0)√B

2(fc − f0)
=

in (f − f0)√B

2
B
2

1
2p

=
in ? 2p (f − f0)

√B
=

vo
R

(f − fo)
(fc − fo)

(8.31)

8.7 Injection-Locked Oscillators 251

where (f − f0) is the frequency offset from the oscillator free-running frequency.
Thus, for larger offsets, the injected signal needs to be stronger. Note that an
oscillator can also injection-lock to a harmonic of a signal, and the above analysis
can be used to determine the required amplitude of the harmonic signal. For an
example, a free-running oscillator at 1.1 GHz can be made to lock on to the
eleventh harmonic of a 100-MHz input signal, provided the input signal is nonsinus-
oidal enough such that it has sufficient amplitude at the eleventh harmonic. In this
example, since the eleventh harmonic is close to the free-running frequency, lock
will be achieved with a small input signal. Any other harmonic, being far away
from the free-running frequency, will require much larger signal amplitudes to
lock.

A loop analysis can be used to find an alternative expression for oscillation
amplitude due to injected current iinj . Input current iinj can be expressed as an
equivalent voltage vinj applied at the input of the transconductor by dividing current
iinj by gm . Then, the output voltage is found from the forward gain FG in terms
of the transconductance gm and the open-loop conductance YOL as follows:

vout = vinj
FG

1 − FG
=

iinj
gm

gm
YOL

1 −
gm

YOL

= iinj
1

YOL − gm
(8.32)

=
iinj

H 1
Rp

+ jvCF1 − Svo
v D2GJ −

1
Rn

Not surprisingly, the result can be shown to be the same as previously shown
in (8.18). We can manipulate the expression for YOL by noting that the unloaded
quality factor QU is equal to vo /B, and bandwidth B is equal to 1/RpC. As a
result, the following expression for open-loop admittance YOL can be obtained:

YOL =
1

Rp
+ jvCF1 − Svo

v D2G =
1

Rp
H1 + jQU

v
vo

F1 − Svo
v D2GJ (8.33)

If v is replaced by vo + Dv , and the approximation is made that Dv is much
less than vo , the following approximation is obtained:

YOL =
1

Rp
H1 + jQU

v
vo

F1 − S vo
vo + Dv D

2GJ ≈
1

Rp
S1 + j2QU

Dv
vo

D
(8.34)

Substituting back into the original expression,

vout = iinj
1

YOL − gm
≈

iinj
1

Rp
S1 + j2QU

Dv
vo

D − gm

=
iinjRp

1 − gmRp + j2QU
Dv
vo

(8.35)

252 Voltage-Controlled Oscillators

It is interesting to note that this has been interpreted to mean that the output
voltage depends on the original parallel resistance and, hence, the Q of the tank
circuit. However, Rp and QU can both be eliminated from this expression by noting
that since |Rp | is approximately equal to |Rn | , 1 − gm Rp is very small. Thus, the
expression for output voltage (which could have been derived simply enough
directly from the original expression) is given by

vout ≈
iinj

j2CDv
(8.36)

This very simple result, which can be used as an alternative to (8.31), seems
to show that the original QU and parallel resistance Rp are irrelevant. This can be
explained by noting that feedback produces negative resistance, which exactly
cancels the original positive resistance. However, one should not be too hasty in
stating that original Rp and Qp are irrelevant since the noise current in has a
component directly related to Rp or, equivalently, QU , and, depending on the
original formulation of the equivalent circuit, the factor of gm can appear in the
expression for vout .

Example 8.1: Injection Locking
Demonstrate injection locking with a simple model of a transconductor.

Solution: The injection-locking circuit is as shown in Figure 8.16. We start by
choosing an inductance and capacitance of 5 nH and 5.06 pF to result in an
oscillating frequency close to 1 GHz. The calculated frequency using (8.20) is
predicted to be 1.0006 GHz. Note that there is a 600-kHz offset from 1 GHz.
With a Q of 10, the inductor has a parallel resistance of about 314V. Noise
injection due to the resistor is

in = √4kT
R

= √4 × 1.38 × 10−23 J/K × 300K
314V

= 7.26 pA/√Hz

To represent noise inputs, 40 current sources are placed in parallel, separated
by 100 kHz from 0.98 GHz to 1.02 GHz, and each has a current amplitude of
2 nA, representing the noise from a 314V resistor in a 100-kHz bandwidth. The
transconductor is modeled with a voltage-controlled current source with transfer
function:

io = 0.005vi − 0.0005v 3
i

The third-order term is sufficient to produce gm compression and amplitude
limitation. The simulated free-running frequency is 1.0003 GHz, as shown in Figure
8.18. Note that the time step is 5 ps, and total simulation time is 40 ms for a
resolution of 25 kHz. From (8.28), the amplitude is predicted to be

V= √ 4
3k3

S 1
Rp

− k1D = √ 4
3 ? (−0.0005) S 1

314
− 0.005D = 2.20V

8.7 Injection-Locked Oscillators 253

Figure 8.18 Free-running frequency of the oscillator model.

Time domain plots show an amplitude of 2.1V, in agreement with the prediction
and with the spectrum shown in Figure 8.18. Note that the frequency is not all in
one frequency bin; thus, the total power must be taken to derive the amplitude
from the spectrum. In this case, two bins are dominant, with about 1.4V each, for
a total of just over 2V, in agreement with the time domain simulation.

Thus, the effective gm can be determined from (8.27):

gm = k1 +
3k3V2

4

= 0.005 +
3 ? (−0.0005) ? 2.12

4

= 0.005 − 0.001654

= 0.003346

The effective value of gm is 3.346 mA/V, which is down from the small-signal
value of 5 mA/V. With these values, for an input signal injected at 1 GHz, assuming
this is outside of the oscillator bandwidth, (8.36) predicts that the required injection
current iinj for locking is

iinj > vout ? 2CDv = 2.2 × 2 × 5.06p × 2p × 300k = 41.95 mA

This can also be determined from (8.31), but to use this equation, R and B
must be known. Equivalent closed-loop parallel resistance R can be determined
from (8.24) as

R =
4v 2

o C

i 2
n

=
4 × 2.12 × 5.06p

S 2n

√100kD
2 = 2.2315 × 1012V

254 Voltage-Controlled Oscillators

Bandwidth is determined to be

B =
1

RC
=

1

2.2315 × 1012V × 5.06p
= 0.88565 rad/s or 0.014096 Hz

Then, the required current for injection can be found from (8.31):

iinj >
vout
R

(f − fo)
(fc − fo)

=
2.2 × 300k

2.2315 × 1012 × 0.014096/2
= 41.96 mA

This is in agreement with the previous calculation. These calculations also
demonstrate the extremely high resistance and narrow bandwidth of oscillator
circuits. A series of injected tones is applied, with the results shown in Figure 8.19.
The simulated current required for locking is 44 mA, just slightly higher than the
predicted current.

8.7.1 Phase Shift of Injection-Locked Oscillator

From the model of the oscillator in Figure 8.16, itotal , the total current injected
into the resonant circuit, is the vector sum of i and iinj . If the oscillating frequency

Figure 8.19 Oscillator model with increasing injected current at 1 GHz: (a) 2 mA (nearly identical
to free running), (b) 15 mA, (c) 40 mA, and (d) 44 mA (injection locked).

8.7 Injection-Locked Oscillators 255

is not at the center frequency of the bandpass filter, there will be phase shift between
the total current injected into the tank and the voltage it produces as given by

fosc = −tan−1FSvC −
1

vL DRG (8.37)

As noted before, the value of R is ultimately set by the nonlinear limiting
mechanism, typically the transconductor. With an injected signal, the output voltage
is still determined from the integral as in (8.24), however, with the additional term
of iinjR added to it. Since the output voltage remains roughly constant, it is clear
that for larger injected signals, the value of R must decrease; hence, the gain to
the noise also decreases. Also, as seen from (8.37), with a decrease in R , there is
less phase shift for a given frequency offset.

The phase in (8.37) is the total phase and is the combination of two components.
The first is the phase between i and v. Since i is directly created from the voltage,
it must be in phase with the voltage. Hence, there must be additional phase shift
between iinj and the voltage such that the total current has the correct phase shift
with respect to the voltage, as shown in Figure 8.20. In the general case, the phase
shift can be calculated from

f inj = sin−1S itotal
iinj

sin foscD (8.38)

Note that if the amplitudes of current are the same (as will be the case in the
quadrature oscillator discussed in Section 8.8), then the phase shift f inj will be
twice that required by the bandpass filter fosc .

f inj = 2fosc = −2 tan−1FSvC −
1

vL DRG (8.39)

In the special case where phase is 90°, the filter has phase shift of 45° and
occurs at

v90° = √v2
0 +

B2

4
±

B
2

≈ v0 ±
B
2

(8.40)

Figure 8.20 Phase shift of an external signal i inj with respect to the output voltage: (a) for a small
injected signal, and (b) for a larger injected signal.

256 Voltage-Controlled Oscillators

where the approximation is valid if the center frequency is much larger than the
bandwidth.

Note that, in practice, deciding what value of R to use in the above equations
to predict phase shift is not obvious, since R changes with the amount of injected
current. From experience, and somewhat surprisingly, it has been observed that
using the parallel tank resistor Rp for R gives good results. This is demonstrated
in Example 8.2.

Example 8.2: Phase Shift with Injection Locking
As a continuation of Example 8.1, predict and simulate the phase shift for an
injection current of 100 mA. Also compare this to the phase shift when iinj and i
are equal.

Solution: With an oscillating voltage of 2.1V, as determined in Example 8.1,
total current is found by multiplying by gm the feedback transconductance, found
in Example 8.1 to be 3.346 mA/V. Thus, total current is 7.03 mA and phase shift
can be predicted to be

f inj = sin−1S itotal
iinj

sin foscD = sin−1S7.03 mA
0.1 mA

sinH−tan−1FSvC −
1

vL DRGJD
This is compared to simulations with results in Figure 8.21. As discussed above,

R is set equal to Rp (314V) with the result that there is near perfect agreement
between simulations and theory. As can be seen, at 1.0003 GHz, theoretical and
simulated phase is 0°. Note that 1.0003 GHz is the free-running frequency and is
also equal to the resonant frequency of the parallel tank circuit. As seen in the
figure, when phase shift reaches approximately 90°, the oscillator is no longer
locked. For comparison, the curves for 50 mA and 200 mA are also shown, verifying
that, with more current, the phase shift is lower.

Figure 8.21 Theoretical and simulated phase shift between an injected signal and a locked output
tone at 100 mA of injected current. The theoretical phase shift is also shown for an
injected signal at 50 mA and 200 mA.

8.8 Quadrature LC Oscillators Using Injection Locking 257

The phase shift can also be explored as a function of the magnitude of the
injected signal with the input frequency at a constant 1.002 GHz. The results are
shown in Figure 8.22. This figure shows that with larger injected amplitude, phase
shift is decreased. It was observed from both theory and simulation that the mini-
mum current for injection locking at this offset frequency is about 240 mA.

To verify that the system is not locked for injected currents less than 240 mA,
235 mA is injected, and the resulting phase plotted as a function of time is shown
in Figure 8.23. This shows the obvious cycle slipping, verifying that the oscillator
is not locked.

8.8 Quadrature LC Oscillators Using Injection Locking

Two oscillators can be connected in such a way that a signal from one oscillator
is injected into the second oscillator and a signal from the second oscillator is
injected into the first. The result is that the two oscillators become locked in

Figure 8.22 Theoretical and simulated phase shift between an injected signal and a locked output
tone for current injected at 1.002 GHz, or about 1.7 MHz offset from the free-running
frequency. Lock is achieved only for currents larger than about 240 mA. Predicted
locking current is 227 mA.

Figure 8.23 The phase shift between an injected signal and a locked output tone for current
injected at 1.002 GHz at 235 mA.

258 Voltage-Controlled Oscillators

frequency, typically oscillating in quadrature. Very often, quadrature signals are
required; for example, mixers in an image reject configuration require quadrature
oscillator signals. Other techniques to generate quadrature signals, including poly-
phase filters and ring oscillators, are discussed in Section 8.9.

8.8.1 Parallel Coupled Quadrature LC Oscillators

The most common technique is the parallel connection shown in Figure 8.24, where
each oscillator is made up of a tank circuit and cross-coupled feedback circuit. In
addition, each oscillator output is connected to the other oscillator with transistors
in parallel to the cross-coupled transistors. Thus, oscillator 1 has feedback transis-
tors M1 and M2 and coupling from oscillator 2 via transistors M5 and M6 . Typically,
feedback and coupling transistors are made the same size. Furthermore, because
of symmetry, the oscillation amplitudes of the two oscillators should be the same.

To understand why the two oscillators oscillate in quadrature, first note that
the two oscillators can be modeled as gain stages, as shown in Figure 8.25. Each

Figure 8.24 Quadrature negative Gm oscillator with parallel cross connections.

Figure 8.25 A quadrature oscillator modeled as two amplifier stages in feedback.

8.8 Quadrature LC Oscillators Using Injection Locking 259

stage has a gain and a phase, as shown in Figure 8.17. We note that, as for any
oscillator structure, the loop phase must be 0° or 360°. Thus, since the crossed
wires at the output represent a phase shift of 180°, the two oscillators together
must have an additional phase shift of 180°. Hence, if all components are matched,
the phase shift across each oscillator will be 90°. We note that Figure 8.17 shows
the transfer function to the total current injected into the tank and that, for such
current, the phase only asymptotically approaches 90°. The total current is made
up of a combination of two equal currents, as shown in Figure 8.26.

The first current, i, is locally fed back in direct proportion to the voltage;
hence, it is in phase with the voltage. The second component, i inj , comes from the
other oscillator. Since the two currents have the same amplitude, for the two
oscillators to be 90° out of phase, the total current is 45° out of phase with respect
to the voltage. By this argument, it can be seen that the frequency of operation
will be shifted from the resonant frequency by an amount of BL /2, as shown in
Figure 8.17, since this is where there is 45° of phase shift.

Phase shift in the injection-locked oscillator was previously given by (8.39),
which is repeated here, and is derived with equal currents for feedback and cross
coupling.

f inj = 2fosc = −2 tan−1FSvC −
1

vL DRG
In the special case where phase is 90°, the filter has phase shift of 45° and

occurs at

v90° = √v2
0 +

B2

4
±

B
2

≈ v0 ±
B
2

(8.41)

where the approximation is valid if the center frequency is much larger than the
bandwidth. In practice, these equations work well if Rp is used for R.

An analysis of the loop gain of the quadrature oscillator model in Figure 8.27
results in

Figure 8.26 The current injected into each resonator for a quadrature oscillator.

260 Voltage-Controlled Oscillators

Figure 8.27 A model for a quadrature oscillator.

v1
v ′1

=
−g 2

m

FSgm −
1
R D + jSvC −

1
vL DG

2 (8.42)

If it is assumed that each oscillator in steady state has adjusted its gm such that
it is equal (or close) to the value of 1/R, and if the loop gain is set equal to 1, then,

v2LC ± vLgm − 1 = 0 (8.43)

The ‘‘±’’ of the middle term is used because one can find two solutions. One
solution is below the resonant frequency, and one is above the resonant frequency.
The solution for v is

v = √ 1
LC

+
g 2

m

4C2 ±
gm
2C

≈ v0 ±
B
2

(8.44)

where B is the equivalent bandwidth and is given by gm /C.
Thus, although some approximations have been made, the result is that the

circuit behaves like two coupled, parallel, resonant circuits with equivalent band-
width of gm /C. If it is noted that gm is nominally equal to 1/Rp , then the frequency
of oscillation is in exact agreement with the previous determination. However, the
phase shift does not agree exactly at frequencies other than the resonant frequency,
but if such phase information is desired, (8.39) can be used.

Example 8.3: Quadrature Oscillator Design
Design a 1-GHz quadrature oscillator using simplified models to demonstrate phase
shift and amplitude theory. Change the capacitance by 1%, and observe and explain
the resulting amplitude and phase mismatch.

8.8 Quadrature LC Oscillators Using Injection Locking 261

Solution: A 1-GHz quadrature oscillator is built with a resonant tank made
up of 5 nH and 5.06 pF. Feedback and cross-coupling transconductors have transfer
functions i = 0.005v − 0.0005v3. Initially, the circuit is run open loop with a voltage
representing VCO2, with that voltage adjusted to equal the oscillating amplitude
of VCO1, and magnitude and phase results are obtained as in Figure 8.28.

Thus, where amplitude is rolled off by 3 dB (down to about 2.1V), phase is
at 90°, as is expected from the explanation around Figure 8.26. When connected
as an injection-locked oscillator, the oscillating frequency is 1.05144 GHz, at the
frequency where the phase shift is 90° with an amplitude of about 2.2V, also as
expected. The phase shift between the two oscillators is exactly 90° within the
simulation limits (better than a thousandth of a degree). When capacitance of one
oscillator is increased by 1%, the frequency decreases to 1.0487 GHz, and the
phase shift is now 93.93°. This can be explained by examining a zoom in of the
phase versus frequency plot derived from (8.39) and shown in Figure 8.29. When
both capacitors are at 5.06 pF, each phase shift is 90° at a predicted frequency of
1.0519 GHz, close to the simulated frequency of 1.05144 GHz. When one capacitor
is high by a fraction d (in this case, 1%) at 5.1106 pF, its resonant frequency

Figure 8.28 Quadrature oscillation (a) phase and (b) amplitude for an injected signal (open-loop
simulation).

262 Voltage-Controlled Oscillators

Figure 8.29 Phase to an injected signal for a quadrature oscillator with nominal capacitor of
5.06 pF and 1% increased capacitor of 5.1106 pF (open-loop simulation).

decreases by about d /2 (in this case, by 0.5%); consequently, there is more phase
shift at the frequency of interest. The total phase still has to be 90°; hence, frequen-
cies adjusts themselves until the sum of the two phase shifts is 180°. This new
frequency can be found by noting where the average of the two phase shifts goes
through approximately 90° at a frequency shift of d /4 (or 0.25%). From the starting
frequency of 1.0519 GHz, a 0.25% shift will move it to 1.0493 GHz, while the
equation and Figure 8.29 predict a new frequency of 1.0492 GHz. Both are close
to the simulated frequency of 1.0487 GHz. Also of importance, the phase shift
across the two oscillators is now seen to be about 87° and 93° for a total phase
of 180°, again in agreement with the simulations. Phase shift can be shown to be
related to bandwidth by

| df
dv | =

2Q
vo

=
2
B

(8.45)

Hence, the phase shift is estimated at

Df =
Dv
B/2

=
vmatched ? d /4

B/2
(8.46)

where d is the capacitor mismatch (0.01), vmatched is the quadrature oscillator
frequency with components matched (2p × 1.0519 GHz), and B/2 is the difference
between the LC resonant frequency and the free-running frequency (2p × 51.6
MHz). This equation predicts a phase offset of 2.92°, which is quite close to the
value predicted from Figure 8.29. The simulated phase change is slightly larger at
3.93° but still illustrates the usefulness of this estimate.

Similarly, the change of phase shift is also related to a change of amplitude,
as seen in Figure 8.28. Simulated results show the amplitudes are now 2.08V and
2.35V, in agreement with the above explanation.

8.8 Quadrature LC Oscillators Using Injection Locking 263

8.8.2 Series Coupled Quadrature Oscillators

Quadrature oscillators can also have series coupling, as shown in Figure 8.30.
These two topologies have been studied and compared by [11]. A conclusion drawn
was that optimal coupling for the parallel circuit results when the coupling and
main transistor are approximately the same size. For the series circuit, the coupling
transistors should be about five times bigger than the main transistors. For optimal
coupling, the parallel circuit appears to have better quadrature phase matching;
however, if its coupling transistor size is adjusted so that the quadrature phase
matching is equal, then the series coupled circuit is stated to have 10 dB to 20 dB
better phase noise.

8.8.3 Other Quadrature-Generation Techniques

All of the quadrature schemes shown so far have some drawbacks. For example,
the series coupled oscillator requires a coupling transistor about five times bigger
than the other transistors. These coupling transistors will have significant parasitic
capacitance, which will limit tuning range. The parallel coupled circuit has addi-
tional power dissipation due to the coupling transistors and has less than ideal
phase noise. In both of the above coupling techniques, since the injected signal is
being applied at 90° to the oscillating signal, the peak injected current occurs at
the zero crossing of the oscillator signal, and, at this point, the oscillator is most
sensitive to injected noise. It has been shown in [12] and elsewhere that, by applying
90° of phase shift in the coupling path, the injected signal can be in phase with
the oscillating signal, and phase noise is substantially improved. However, this
improvement comes at the cost of needing further resonator circuits and does not

Figure 8.30 A quadrature negative Gm oscillator with series cross connections.

264 Voltage-Controlled Oscillators

solve the other problems noted above (increased power dissipation for parallel
coupling and reduced tuning range for series coupling). An alternative way to
improve phase noise is to couple the two oscillators by use of the voltage on the
current source node. Since this voltage is typically at a harmonic of the oscillating
frequency, this technique is referred to as superharmonic coupling [13] and is
shown in Figure 8.31. This technique is lower power than the parallel technique
as no extra current paths are required.

8.9 Other Techniques to Generate Quadrature Signals

There are other ways to generate quadrature signals. One common technique is
for an oscillator to be followed by a polyphase filter [8]. More than one filtering
stage can be used if one desires more phase accuracy and operation over a wider
bandwidth. Polyphase filters consume some additional power due to the buffers
required. Except for the buffers, they are passive RC circuits, and, as a result, there
is typically a 3-dB loss of signal amplitude per filtering stage. Another way to
generate quadrature signals is to design an oscillator to run at twice the desired
frequency, then to use a divider to generate the quadrature outputs at the desired
frequency. The disadvantage is the additional complexity and power dissipation
inherent in oscillators operating at twice the frequency. Another technique to
generate quadrature signals, which will be discussed in Section 8.12, is the use of
differential ring oscillators with two or four stages.

8.10 Phase Noise in LC Oscillators

A major challenge in most oscillator designs is to meet the phase noise requirements
of the system. An ideal oscillator has a frequency response that is a simple impulse

Figure 8.31 A quadrature negative Gm oscillator using superharmonic coupling.

8.10 Phase Noise in LC Oscillators 265

at the frequency of oscillation. However, real oscillators exhibit ‘‘skirts’’ caused
by instantaneous jitter in the phase of the waveform. Noise that causes variations
in the phase of the signal (distinct from noise that causes fluctuations in the
amplitude of the signal) is referred to as phase noise. The waveform of a real
oscillator can be written as

VOSC = A cos[vot + fn (t)] (8.47)

where fn (t) is the phase noise of the oscillator. Here, amplitude noise is ignored
because it is usually of little importance in most system specifications. Because of
amplitude limiting in integrated oscillators, typically AM noise is lower than FM
noise. There are several major sources of phase noise in an oscillator, and they
will be discussed next.

8.10.1 Linear or Additive Phase Noise and Leeson’s Formula

In order to derive a formula for phase noise in an oscillator, we will start with the
feedback model of an oscillator as shown in Figure 8.32. For the purpose of this
analysis, we will assume that H1 is equal to one; hence, we can use the circuit
shown in Figure 8.32(b).

From control theory, it is known that

NOUT(s)
NIN(s)

=
1

1 − H(s)
(8.48)

where H(s) = H1(s)H2(s). H(s) can be written as a truncated Taylor series:

H(jv) ≈ H(jvo) + Dv
dH
dv

(8.49)

Since the conditions of stable oscillation must be satisfied, H(jvo) = 1. Now
(8.48) can be rewritten, using (8.49), as

NOUT(s)
NIN(s)

=
1

−Dv
dH
dv

(8.50)

Figure 8.32 Feedback model of oscillator: (a) with a feedforward gain of H1, and (b) with a
feedforward gain of unity.

266 Voltage-Controlled Oscillators

Noise power is of interest here, so

| NOUT(s)
NIN(s) |2 =

1

(Dv)2 | dH
dv |2

(8.51)

This equation can now be rewritten using H(v) = |H | e jf and the product rule:

dH
dv

=
d |H |
dv

e jf + |H | je jf df
dv

(8.52)

Noting that the two terms on the right of (8.52) are orthogonal,

| dH
dv |2 = | d |H |

dv |2 + |H |2 | df
dv |2 (8.53)

At resonance, phase changes much more quickly than magnitude, and |H | ≈ 1
near resonance. Thus, the second term on the right is dominant, and this equation
reduces to

| dH
dv |2 = | df

dv |2 (8.54)

Now, substituting (8.54) back into (8.51),

| NOUT(s)
NIN(s) |2 =

1

(Dv)2 | df
dv |2

(8.55)

By noting that the rate of change of phase can be related to the Q by

Q =
vo
2 | df

dv | (8.56)

Equation (8.55) can be rewritten as

| NOUT(s)
NIN(s) |2 =

v 2
o

4Q2(Dv)2 (8.57)

Equation (8.57) forms the noise-shaping function for the oscillator. In other
words, for a given noise power generated by the transistor amplifier part of the
oscillator, this equation describes the output noise around the tone.

Phase noise is usually quoted as an absolute noise referenced to the carrier
power, so (8.57) should be rewritten to give phase noise as

8.10 Phase Noise in LC Oscillators 267

PN = |NOUT(s) |2
2PS

= F vo
2QDvG

2F|NIN(s) |2
2PS

G (8.58)

where PS is the signal power of the carrier, noting that phase noise is only half of
the noise present. The other half is amplitude noise, which is of less interest. Also,
in this approximation, conversion of amplitude modulation to phase modulation
(AM to PM conversion) is ignored. This formula is known as Leeson’s equation
[14].

The one question that remains here is: What exactly is NIN? If the transistor
and bias are assumed to be noiseless, then the only noise present will be due to
the resonator losses. Since the total resonator losses are due to its finite resistance,
which has an available noise power of kT, then,

|NIN(s) |2 = kT (8.59)

The transistors and the bias will add noise to this minimum. Note that since
this is not a simple amplifier with a clearly defined input and output, it is not
appropriate to define the transistor in terms of a simple noise figure. Considering
the bias noise in the case of the −Gm oscillator, as shown in Figure 8.2(c), noise
will come largely from the drain current noise of the transistor in the current source
when the transistors M1 and M2 are switched, with each being on about half the
time. If r is the fraction of a cycle for which the transistors are completely switched,
int is the noise current injected into the oscillator from the biasing network during
this time. During transitions, the transistors act like amplifiers; thus, drain current
noise idn from the cross-coupled transistors usually dominates the noise during this
time. The total input noise becomes

|NIN(s) |2 ≈ kT +
i 2
nt RT

2
r + i 2

dn RT (1 − r) (8.60)

where RT is the equivalent parallel resistance of the tank. Thus, we can define an
excess noise factor for the oscillator as excess noise injected by noise sources other
than the losses in the tank:

F = 1 +
i 2
nt RT
2kT

r +
i 2
dn RT (1 − r)

kT
(8.61)

Note that, as the Q of the tank increases, RT increases, and noise has more
gain to the output; therefore, F is increased. Thus, while (8.58) shows a decrease
in phase noise with an increase in Q , this is somewhat offset by the increase in F.
If noise from the bias source icn , is filtered, and if fast switching is employed, it is
possible to achieve a noise factor close to unity. Now (8.58) can be rewritten as

PN = F vo
2QDvG

2SFkT
2PS

D (8.62)

268 Voltage-Controlled Oscillators

Note that in this derivation, it has been assumed that flicker noise is insignificant
at the frequencies of interest. Flicker noise is generally very important, especially
in CMOS designs. If v c represents the flicker noise corner where flicker noise and
thermal noise are equal in importance, then (8.62) can be rewritten as

PN = F vo
2QDvG

2SFkT
2PS

DS1 +
v c
Dv D (8.63)

It can be noted that (8.63) predicts that noise will roll off at slopes of
−30 dB/dec or −20 dB/dec, depending on whether flicker noise is important. How-
ever, in real life, at high frequency, there will be a thermal noise floor. A typical
plot of phase noise versus offset frequency is shown in Figure 8.33.

So far, the phase noise discussion has been of oscillators that have no tuning
scheme. However, most practical designs incorporate some method to change the
frequency of the oscillator. In these oscillators, the output frequency is proportional
to the voltage on a control terminal:

vosc = vo + KVCOVcont (8.64)

where KVCO is the gain of the VCO, and Vcont is the voltage on the control line.
If it is assumed that Vcont is a low-frequency sine wave of amplitude Vm , using the
narrowband FM approximation, the resulting output voltage is

vout (t) ≈ A cos(vot) +
AVm KVCO

2Dv
[cos(vo + Dv) t − cos(vo − Dv) t]

(8.65)

where A is the carrier power, and Dv is the frequency of the controlling signal.
Thus, if it is assumed that the sine wave is a noise source, then the noise power
present at ±Dv is given by

Figure 8.33 Phase noise versus frequency.

8.10 Phase Noise in LC Oscillators 269

Noise = SAVm KVCO
2Dv D2 (8.66)

This can be converted into phase noise by dividing by the signal power:

PN = SVm KVCO
2Dv D2 (8.67)

We note that any low-frequency noise appearing on either of the output termi-
nals will also appear on the other side since, at low frequency, the inductor behaves
as a short circuit. Thus, it is not only noise appearing directly on the control node
but also any low-frequency noise in the oscillator that can lead to low-frequency
noise upconversion.

From the preceding analysis, it is easy to see how one might estimate the effect
of low-frequency noise on the phase noise of the oscillator. Using a simple, small-
signal noise analysis, one can find out how much noise is present at the varactor
terminals. Then, knowing the KVCO, the amount of phase noise can be estimated.

However, this is not necessarily the whole story. Noise on any terminal that
controls the amplitude of the oscillation can lead to fluctuations in the amplitude.
The varactor capacitance will depend to some extent on the envelope of the signal.
Thus, these fluctuations, if they occur at low frequencies, will be converted into
phase noise and can actually dominate the noise content in some cases. However,
a small-signal analysis will not reveal this.

8.10.2 Switching Phase Noise in Cross-Coupled Pairs

If the cross-coupled pair is switching completely, then any low-frequency signal
from the bias supply is switched back and forth between the two sides at the carrier
rate. This directly converts low-frequency noise to the carrier frequency. However,
since it is AM modulation, it is not directly a problem unless some further nonlinear-
ity converts it into phase noise. Similarly, noise around the fundamental frequency
is mixed by the fundamental frequency so that the resultant noise is safely far away
from the fundamental. The big problem is that noise components at twice the
fundamental frequency are mixed to the fundamental, producing a phase noise
component. Such components, however, can be blocked largely by an LC filter in
the bias path, as shown in Figure 8.15(b). There is a perception that the cross-
coupled pair acts like a mixer with the result that low-frequency noise only produces
AM noise (some of which can be converted into phase noise through nonlinear
components), and noise injected at the fundamental gets mixed away from the
fundamental frequency. Thus, some consider that there is no need to be concerned
with low-frequency noise in the bias current source. However, the mixer argument
is overly simplified as the mixing action is far from ideal, and there will be significant
feedthrough, especially of low-frequency noise. At low frequency, the impedance
of the resonator inductor is low, and any noise voltage appearing at the oscillator
output appears across the varactors and, hence, causes phase noise. We note that
on-chip filters have been used successfully in the bias circuit [9]. However, to

270 Voltage-Controlled Oscillators

extend the filter so that it removes low-frequency noise would require inductor or
capacitor sizes too large to be integrated. Some attempts have been made with
series off-chip degeneration inductance or parallel off-chip capacitance for this
purpose [10].

8.11 Low-Frequency Phase Noise Upconversion Reduction
Techniques

The following three sections discuss three techniques to reduce phase noise upconv-
ersion: bank switching, differential tuning, and simultaneous matching of transcon-
ductance and impedance.

8.11.1 Bank Switching

To cover the required frequency band and the effects of process variations, a
particular KVCO is required. However, if the band is broken into many subbands,
then KVCO is reduced, and phase noise up conversion is reduced. For example, by
breaking a band into three subbands, potentially KVCO is reduced by a factor of
three, and phase noise up conversion can be reduced by a factor of about 10 dB.
A better way to implement bank switching with n banks of varactors as shown in
Figure 8.34 is to use (n − 1) AMOS varactors as switches and one bank as a
continuously variable capacitor. Because of the shape of the AMOS varactor curve
(as shown in Figure 8.10) when operated as a switch, AMOS varactors have a
low gain when fully switched. This will result in minimal low-frequency noise

Figure 8.34 Oscillator with banks of varactors. To minimize low-frequency noise upconversion,
recommended operation is to use n − 1 as switches and one for continuous tuning:
(a) schematic and (b) response curves.

8.11 Low-Frequency Phase Noise Upconversion Reduction Techniques 271

upconversion. Note that, to get full switching, both positive and negative control
voltages must be supplied. This is conveniently obtained when the oscillator has
both NMOS and PMOS cross coupling, since the output nodes are nominally
biased between the power-supply voltages. However, for the case where there is
only a single polarity of cross-coupling, the output voltage will be nominally at
the rail voltage [e.g., with NMOS cross coupling, as in Figure 8.2(c), the outputs
are nominally at VDD]. In such a case, the varactors will need to be decoupled in
order to obtain both positive and negative bias voltages. Such additional capacitance
in series will reduce the KVCO, which can be accounted for in the design and is
not a problem, as lower gain was desired; however, it will limit the total tuning
range.

It is possible to use weighted varactor sizes to get more curves with a smaller
number of capacitors and control voltages. An example is shown in Figure 8.35
with two switchable varactors (with capacitance values of 50/150 fF and 150/450
fF). Also, there is one adjustable varactor, adjustable between 100 and 300 fF. As
shown, there are four possible output curves, each varying by 100 fF, with a total
range of capacitance values between 300 and 900 fF, the same range as before;
however, there is now some overlap between the ranges, allowing for a more
flexible oscillator design.

An automated method can be devised to tune such a circuit within a PLL-
based synthesizer. A comparator-based circuit is used to observe the VCO control
voltage. If the control voltage approaches one of its limits, a comparator output
triggers the next curve in the appropriate direction to be selected, for example, by
either counting up or counting down in a binary counter. The counter output can
then select the appropriate switchable varactors. It should be noted that binary

Figure 8.35 Oscillator with weighted switched varactors and adjustable varactor.

272 Voltage-Controlled Oscillators

weighting is appropriate only if varactors have capacitance ratio of 2:1. In such a
case, it is straightforward to get uniform curves. The example above using a 3:1
capacitance ratio illustrates the point that binary weighting is not best, as well as
the difficulty in getting uniform curves.

8.11.2 gm Matching and Waveform Symmetry

It is often stated that phase noise up conversion can be reduced by matching the
transconductance of PMOS and NMOS negative gm cells in a complementary style
VCO, such as the one shown in Figure 8.2(e). This reduction occurs since any
disturbance at the output will produce equal currents in the PMOS and NMOS
transistor, thus minimizing the effect on the output. However, this is not really
the full story as it is possibly more realistic to consider a noise current being injected
into the output, for example, because of 1/f noise in one of the transistors. This
current injected into the output node is completely canceled out if both the gm and
the impedance are matched. Typically, to match gm requires larger PMOS transis-
tors than NMOS transistors; hence, the gate capacitance is larger, and the imped-
ance will be lower. However, if the process is fast enough that one can use
nonminimum gate length in the NMOS transistors, then simultaneous matching is
possible. For example, [15] demonstrated that simultaneous gm and impedance
matching resulted in up to 8 dB of phase noise improvement compared to matching
for gm only. Mathematically, in order to match the capacitance of both NMOS
and PMOS transistors in the design requires that

gWnLnCox = gWpLpCox (8.68)

WnLn = WpLp

where g is a transistor parameter defined in Appendix B and Wn and Ln are the
width and length of the NMOS transistors, and Wp and Lp are the width and
length of the PMOS transistors. If the gm of both NMOS and PMOS are to be the
same, this requires that

√2mnCox
Wn
Ln

IDS = √2mpCox
Wp

Lp
IDS (8.69)

mn
Wn
Ln

= mp
Wp

Lp

These two conditions mean that, for best phase noise, the ratio of the lengths
of the transistors should be

Ln = Lp√mn
mp

(8.70)

where Lp is usually set to the minimum allowed by the technology, and the ratio
of the width of the PMOS and NMOS transistors should be

8.11 Low-Frequency Phase Noise Upconversion Reduction Techniques 273

Wp

Wn
= √mn

mp
(8.71)

8.11.3 Differential Varactors and Differential Tuning

Differential varactors controlled by a differential tuning voltage, as shown in Figure
8.36(a), can be used to reduce or eliminate low-frequency noise upconversion. This
is shown in Figure 8.36(b), which shows varactor capacitance versus tuning voltage.
The varactors labeled Cvar+ have capacitance that increases with applied voltage,
while the varactors labeled Cvar− decrease with applied voltage. Thus, if a differential
voltage is applied, Cvar+ diodes see a positive voltage, while Cvar− varactors see a
negative voltage. Hence, both varactors are increased in capacitance for an increase
in differential input voltage. However, for a common-mode voltage, both varactors
see a voltage in the same direction; hence, the increase in capacitance from the
Cvar+ varactor is matched by an equal decrease in the capacitance from the Cvar−
varactors. Low-frequency noise (e.g., 1/f noise injected from the cross-coupled
transistors or the bias circuit) is equivalent to a common-mode input due to the
low impedance of the inductor at low frequencies. With positive varactor slope
given by KVCO+ and negative varactor slope given by KVCO− , low-frequency noise
upconversion is given by

PN = FVm (KVCO+ − KVCO−)
2Dv G2

(8.72)

Thus, common-mode or low-frequency noise rejection is only effective if the
differential varactors are exactly symmetrical. With perfect symmetry, there is

Figure 8.36 Oscillator with differential varactor tuning: (a) schematic, and (b) capacitance versus
tuning voltage.

274 Voltage-Controlled Oscillators

complete rejection; however, for any residual error in symmetry, rejection is
reduced. To optimize symmetry, a nonzero bias voltage may be required on the
varactor. For example, directly using the varactor characteristics, as shown in
Figures 8.34 and 8.35, will not produce a symmetrical result since, at 0V, the
capacitance is not halfway between the minimum and maximum capacitance. How-
ever, using a dc bias of −0.15V results in operation at the point of average capaci-
tance and maximum symmetry, and this is how the curves in Figure 8.36(b) are
generated. Nonsymmetry can be the result of the difference between the parasitic
capacitance on the two ends of the varactor. As an example, in [7], 5-GHz oscillators
using differential AMOS varactors showed a phase noise reduction of about 10 dB
compared to oscillators using single-ended AMOS varactors. The varactors were
in a silicon on insulator (SOI) process, which was shown to have better symmetry
than bulk CMOS; hence, differential tuning in bulk CMOS would be expected to
show a somewhat lower phase noise improvement.

Example 8.4: PMOS Versus Complementary VCO Design
Compare the design of PMOS only to a complementary VCO topology. Design
each for best swing to achieve the lowest phase noise. The VCOs should oscillate
at 5 GHz in a 0.18-mm CMOS technology. A 1-nH inductor with a Q of 10 is
available for the design. Assume for this design that the mobility of the PMOS
transistors is one-third that of the NMOS transistors and design the VCOs to be
powered from a 1.5-V supply.

Solution: A 1-nH inductor with a Q of 10 will have 314V of parallel resistance.
To get the VCO to oscillate at 5 GHz with a 1-nH inductor will mean that the
total capacitance due to the transistors, plus additional capacitance, should be
about 1 pF. Now the VCO current must be set appropriately. With the complemen-
tary design, the voltage at the resonator will swing about mid-rail to the supply
and down to ground, leaving some room for the current source to operate correctly.
If the current source can be operated with 300 mV of headroom, this will mean
that the maximum peak-to-peak swing for this design will be 1.2V. The current
should be set to give this amplitude for lowest phase noise, but more current will
be wasted and lead to excess noise. Therefore, for the complementary design, the
current should be set so that the peak voltage swing is 0.6V. Therefore,

Icomp =
2RPI

p ? vout |Comp

= 3 mA

In the case of the PMOS design, leaving 300 mV for the current source, the
peak swing should be 1.2V. Therefore, the current should be set to

IPMOS vout |SE
=

RPI
p ? vout |PMOS

= 12 mA

Now with twice the swing but exactly the same resistance and Q, theoretically
the phase noise of the PMOS design should be 6 dB better than the phase noise
of the complementary design, but at the cost of four times the power. If the PMOS

8.11 Low-Frequency Phase Noise Upconversion Reduction Techniques 275

design were chosen to have the same swing as the complementary design, then it
would draw 6 mA of current, thus delivering the same phase noise as the comple-
mentary design but at twice the power.

In order for these designs to be built, the transistors must be sized. For the
complementary design, the PMOS transistors are chosen to have a length of
0.18 mm and the NMOS transistors to have a length of

Ln = Lp√mn
mp

= 0.31 mm

The widths of the transistors must be set large enough that 1/f noise is not too
large and the on resistance of the devices does not act to limit the swing excessively,
but not so large that the parasitic capacitance of the devices dominates the frequency
of oscillation. In this design, the width of the NMOS was chosen to be 55 mm,
while the PMOS width was set to be 110 mm (note that this is a ratio of 2:1,
which is different from theory, in order to get both the Cgs and the gm to match
closely in simulation). In the case of the PMOS-only design, the transistors were
made wider (175 mm) in order to accommodate the larger currents. The single-
ended output voltage for each of the designs is shown in Figure 8.37. This shows
that the designs have close to the predicted output swings. The PMOS design with
12 mA is a little lower due to the finite source-drain resistance of the PMOS at
higher currents.

The phase noise for the three designs is shown in Figure 8.38. As predicted,
the phase noises of the PMOS VCO and the complementary VCO are identical
when they have the same output swing, although the PMOS VCO burns twice as
much current. When the PMOS design is run at full swing, it delivers 4 to 5 dB
better phase noise then the complementary design is capable of delivering. Note
that this is slightly less than the 6 dB that simple theory would predict because
more current means that more noise is produced in this design.

Figure 8.37 Comparison of VCO output voltage.

276 Voltage-Controlled Oscillators

Figure 8.38 Comparison of VCO phase noise.

8.12 Ring Oscillators

Ring oscillators, like all oscillators, must satisfy the Barkhausen criteria for oscilla-
tion. However, with ring oscillators, it is usually the phase shift that we need to
test for, as the gain requirement is usually quite easily satisfied. With a digital-
style inverter, the gain can be very high at low frequencies. However, the voltage
quickly reaches a limit, and the effective gain is then zero. Therefore, since the
system does not spend its time in the linear region, the concept of gain is a bit
more ambiguous than it is for LC oscillators. However, a common test for startup
in ring oscillators is that, if you bias all the circuits at their switching points, the
loop gain must be bigger than one at the frequency of interest.

A ring oscillator is usually made up of an odd number of inverters or delay
cells with the output fed back to the input, as shown in Figure 8.39. When
power is applied to this circuit, assume the input to 1 is low and the output
capacitance C1 is charged up. When the next stage input sees a high, it will discharge
C2 . When the third stage sees a low, it charges C3 . This will in turn discharge
stage 1.

Thus, f is related to I /C where I is the charging or discharging current, and C
is the capacitance size. Thus, frequency can be controlled by changing I. This
circuit can operate to high frequency if simple inverters are used. It can be made
with CMOS or bipolar transistors. However, ring oscillators, not having inductors,
are usually thought to be noisier than LC oscillators, but this depends on the design
and the technology.

Now, an interesting question at this stage is: How many inverters will be needed
to make the circuit oscillate? At first glance, many students may feel that the circuit

Figure 8.39 A simple ring oscillator.

8.12 Ring Oscillators 277

shown in Figure 8.40(a) should, in fact, oscillate. If the input is zero, then the
output will become one until the output then produces a zero, and so forth. So,
should this be a perfectly good oscillator? Well, let’s hope not, because one way
to build such a circuit is shown in Figure 8.40(b), and if that circuit is unstable,
then a lot of engineers need to fix a bunch of current mirrors!

So, why, in fact, does it not oscillate? The answer is quite simple: it does not
have the required phase shift. The phase shift around that loop is only 180°, which
is 180° short of the required 360°.

So the next question is: Can two inverters oscillate? As for any even number
of inverters in a ring, this will have 360° of phase shift at low frequency, so the
circuit will latch and remain in that latched position. In particular, for two stages,
the two-inverter ring shown in Figure 8.41(a) can be redrawn as in Figure 8.41(b),
clearly showing that it is equivalent to a latch. For this reason, even numbers of
inverters in a ring are avoided.

However, two stages can be made to oscillate if one of the stages is noninverting;
for example, with differential circuits, one can simply flip the polarity of the
connection between two stages and still have 180° of phase shift for an even number
of stages. Then, the delays of the circuit make up the additional 180° of phase
shift. However, for two stages, assuming each is equivalent to the simple first-
order pole shown in Figure 8.42, they each need 90° of phase shift, and this will
happen only at infinite frequency. Thus, without additional phase shift, oscillation
will be very unreliable with two stages. Since ring oscillators with only two stages
can operate to higher frequencies (than ring oscillators with more stages), some

Figure 8.40 An oscillator that is not: (a) block diagram, and (b) schematic.

Figure 8.41 Two inverters in a ring (a) as normally drawn, and (b) circuit shown as an equivalent
latch.

278 Voltage-Controlled Oscillators

Figure 8.42 Two-stage ring oscillator with delay added at the outputs. Note that this is usually
implemented in differential circuits, where one stage has the wires crossed, here
represented by a noninverting stage.

effort has been put into finding techniques to add additional phase delay for reliable
oscillations. Such techniques will be discussed in Section 8.14.

Therefore, in general, the minimum number of stages used to build a ring
oscillator is usually three or more. Thus, a three-stage ring oscillator will be the
first that we treat here in more detail. We start by modeling the ring oscillator as
three negative transconductors driving RC loads, as shown in Figure 8.43. Each
stage is assumed to have a current gain of −Gm from input to output. Therefore,
the voltage gain from input to output of one stage is

G(s) =
vout
vin

=
−GmR

1 + sCR
(8.73)

As a result, for three stages, the overall open-loop gain of the oscillator is

H(s) = S −GmR
1 + sCR D3 (8.74)

Now each stage contributes a low-frequency phase shift of 180° because of
the negative transconductance. At the frequency of interest, there is an additional
phase shift per stage of

f = −tan−1(RCv) (8.75)

To obtain a total phase shift that is a multiple of 360°, an additional 180° of
phase shift is required from the RC networks, so the phase shift in each stage must
be equal to 60°. Thus, the frequency of oscillation can be found from (8.75) to be

Figure 8.43 Oscillator model also used for noise analysis.

8.12 Ring Oscillators 279

vosc =
√3

RC
(8.76)

Using this relationship, the above loop gain expression (8.74) can be rewritten
as

H(jv) = 1 −GmR

1 + j√3
v

vosc
2

3

(8.77)

For oscillations in steady state, the loop gain must equal one. Therefore,

1 −GmR

1 + j√3
v

vosc
2

3

v = v osc

= 1 (8.78)

With some manipulation,

(−GmR)3 = −8 (8.79)

Therefore,

GmR = 2 (8.80)

Similarly, for a four-stage ring oscillator, the required phase shift is only 45°.
Thus, in this case, the frequency is

vosc =
1

RC
(8.81)

and the condition for oscillation is

GmR = √2 (8.82)

Using a similar analysis, any order of ring oscillator frequency and gain require-
ments can be found.

Alternatively, rather then using phase shift, we can characterize an inverter
stage by the amount of time delay it has. Thus, for a three-stage oscillator, each
stage needs a phase shift of 60°, or, equivalently, the delay in each inverter is T/6.
Consequently, given a delay of t , the frequency of oscillation will be 1/6t . In
general, with an N-stage ring oscillator, the frequency of oscillation is given by

fosc =
1

2Nt
(8.83)

280 Voltage-Controlled Oscillators

Single-ended ring oscillators must be designed with an odd number of stages.
However, it is possible to design with an even number of stages if the unit blocks
are differential. In this case, one stage is designed to be noninverting by using the
opposite outputs from one of the stages. Such an oscillator is shown in Figure
8.44. Now, because there are four stages, it is a simple matter to come up with
quadrature outputs, as also shown in the diagram.

Each output waveform can be assumed to be the result of a constant current
I charging up a capacitor C. An estimate of frequency can be made by noting
that the output voltage will swing by about half the power-supply voltage before
triggering the next delay cell. With N stages and power-supply voltage VDD, the
frequency can be predicted as follows:

T = 2N
C
I

VDD
2

=
NCVDD

I
(8.84)

or

fosc =
1
T

=
I

NCVDD
(8.85)

As a quick example, if a capacitance as low as 20 fF can be used, to achieve
2 GHz requires a current of about I = fosc ? N ? C ? VDD = 2 GHz ? 4 ? 20 fF ?

1.2V ≈ 200 mA.

Figure 8.44 A differential ring oscillator with quadrature outputs, and waveforms at each node.

8.13 Common Inverter Circuits 281

8.13 Common Inverter Circuits

Each of the amplifiers or inverters can be made very simply or in a more complex
way. Some examples of simple inverters are shown in Figure 8.45. However, these
have no means of tuning. Simple tuning circuits are shown in Figure 8.46.

Since oscillating frequency depends on how quickly the interstage capacitance
is being charged, bias current can be used to control the oscillating frequency. For
the differential inverter, it may be tempting simply to combine two of the single-
ended inverters, for example, as shown in Figure 8.47. However, this circuit as
shown has no connection between the two sides, so there is no reason to believe
that the two output signals would be a differential signal. A simple simulation will
demonstrate that a four-stage ring oscillator built with this circuit will not work,
since the four-stage oscillator depends on the cross coupling of one stage to provide
the correct number of inverting elements in the loop. With the cross coupling, since
this delay cell does not behave in a differential fashion, this is equivalent to eight
single-ended inverters in a ring; since eight is an even number, this circuit will latch
up. A second simulation with three inverters in a ring demonstrates that this circuit
does work; however, it turns out that, generally, the ‘‘+’’ and ‘‘−’’ rings, being

Figure 8.45 Simple, single-ended, delay cell implementations.

Figure 8.46 Simple, tunable, single-ended, delay cell implementation.

282 Voltage-Controlled Oscillators

Figure 8.47 A poor differential delay cell implementation.

effectively separate rings, will oscillate in phase. Thus, the differential output signal
is zero, as can be demonstrated by connecting the outputs to a differential amplifier.

Instead, one needs a way to ensure that the two output signals are truly
differential, for example, with a differential pair. An example of this is shown in
Figure 8.48.

The PMOS transistors and bias voltage can be arranged in several different
ways. In the first way, transistors behave like a triode region resistor where the
resistance is kept large enough to allow a reasonable output swing. Such a circuit
is shown in Figure 8.49(a) in which the PMOS gate is connected to ground. The
second way is for the bias voltage and transistor to be designed to form a high
impedance current source, an example of which is shown in Figure 8.49(b). In
such a circuit, the current source ISS must be designed to be larger so that it can
pull down the output voltage when appropriate. For example, ISS can be made to
be twice the current I3 or I4 in the PMOS transistors. In Figure 8.49(b), if Ictrl1 is
equal to Ictrl2 , this implies that the NMOS mirror ratio is twice that of the PMOS
mirror ratio.

Other variations include using additional diode-connected transistors in parallel
with the PMOS load transistors, which in [16] is called a symmetrical load. This

Figure 8.48 Delay cell based on a differential pair.

8.13 Common Inverter Circuits 283

Figure 8.49 Delay cell based on a differential pair, including biasing details: (a) PMOS gate tied
to the ground; and (b) current source load.

load arrangement, shown in Figure 8.50, results in a nearly linear transfer function
of current versus control voltage. This circuit arrangement was also used by [17]
in comparison with other circuits.

Two circuits with cross-coupled positive feedback are shown in Figure 8.51.
The circuit shown in Figure 8.51(a) [18, 19] is a saturated-gain stage with regenera-
tive cross-coupled PMOS transistors that can be controlled to tune the delay (and,
hence, the frequency). This circuit provides for rail-to-rail output signals and full
switching of the transistors in the stage. The feedback properties of the latching
transistors M1 and M2 speed up the signal transitions at the output. The stage also
avoids the use of cascode connections and a tail-current-source transistor that
would limit the signal swing and add more noise to the output. Larger signal swing
and faster transitions help to improve signal-to-noise ratio (SNR). The circuit in
Figure 8.51(b) represents another style of delay cells with cross-coupled transistors
providing positive feedback. Variations of this circuit include combining the two

Figure 8.50 Delay cell based on a differential pair with a symmetrical load.

284 Voltage-Controlled Oscillators

Figure 8.51 Delay cell based on differential pair with cross-coupling (positive feedback) to adjust
delay: (a) with control voltage and (b) with bias current.

bias circuits, adding coarse and fine control of bias currents [20, 21], realization
with bipolar delay cells, and adding active inductive loads [22].

Recently, there have been many designs in which the PMOS current sources
are controlled not from the previous stage but by an earlier stage (being careful
to get the polarity right) in order to compensate for the slower speed of PMOS
compared to NMOS. While such circuits can be single ended [23], a differential
version is shown in Figure 8.52 [19] using a delay cell similar to that of Figure
8.51(a).

We note that an oscillator using the circuit in Figure 8.51(a) was compared to
an LC oscillator in [24]. The results demonstrated that the LC design was superior
in nearly every way: power dissipation was less than one-tenth (3.6 mW compared
to 50 mW), phase noise was better by 6 dB when scaled to the same frequency,
and tuning range was surprisingly much better at 46% versus 13.3%. The main
advantage for this ring oscillator is that it may have lower layout area since it does
not require an inductor. Note that, typically, ring oscillators have a wider tuning
range than LC oscillators since LC oscillators are inherently limited by the tuning
range of varactors, and ring oscillators have no equivalent fundamental limitation.

8.14 Method for Designing a Two-Stage Ring Oscillator

In [25], a two-stage ring oscillator design was used to try to get high speed in a
0.4-mm process. It was determined that anything more than two stages would not
be fast enough for the desired 2.5 Gbps. However, a two-stage ring oscillator as
seen in Figure 8.53 typically does not have enough phase shift to oscillate reliably.
So, the authors added an RC circuit in such a way that it behaved like an inductor,
which added the appropriate phase shift to guarantee oscillation. Their modified
circuit is shown in Figure 8.54.

It can be shown that the CL , R1 , C1 network at the output produces a phase-
shifted signal. This signal is fed back by the transistor, and the resulting equivalent

8.14 Method for Designing a Two-Stage Ring Oscillator 285

Figure 8.52 (a) Five-stage, multiple-pass ring oscillator and (b) saturated gain stage with cross-
coupled PMOS transistors.

Figure 8.53 Two-stage oscillator that will have trouble oscillating: (a) schematic and (b) equivalent
circuit.

286 Voltage-Controlled Oscillators

Figure 8.54 Two-stage oscillator with loading that is effectively inductive: (a) schematic and
(b) equivalent circuit.

impedance, under the right conditions, can have an inductive component. If the
output resistance of the extra transistor, for example ro3 of M3 , is much larger
than R1 and is also much larger than 1/gm3 , the single-ended equivalent of each
gain stage has gain equal to

A1 =
−gm1(sC1R1 + 1)

s2C1CLR1 + s (C1 + CL) + gm3
(8.86)

This has two poles and a zero. If the poles are complex conjugates and at a
lower frequency than the zeros, then this stage can produce more than 90° of phase
shift, as is required to form an oscillator. It can be shown that these conditions
are met if

C1 < CL (8.87)

and

gm3R1 >
C1

4CL
+

1
2

+
CL
4C1

(8.88)

As a quick example, if CL = 2C1 , then gm3R1 > 9/8. Assuming that
gm3R1 = 2, then the poles and zeros can be determined to be at

8.15 Phase Noise and Jitter in Ring Oscillators 287

Z = −
1

C1R1
P1,2 = −

3
4C1R1

(1 ± j0.778) (8.89)

Thus, as expected, the complex conjugate pair of poles happens before the
zero and will add extra phase lag to the system, ensuring that there is more than
90° of phase shift at some finite frequency.

8.15 Phase Noise and Jitter in Ring Oscillators

The topic of phase noise in ring oscillators has been addressed in a number of
ways. In the following paragraphs, it will be analyzed using the same technique
as used for LC oscillators, that is, to find the effective loop gain and then to
calculate the effect of noise introduced into such a loop [26]. The assumption of
steady-state gain parameters works quite well for ring oscillators with few stages
as the output tends to be quasisinusoidal. For rings with a large number of delay
cells, if there is more complete switching, such analyses may be less accurate. More
detailed discussion of phase noise and alternative techniques can be found in
[27–31]. Starting with the loop gain of a three-stage ring oscillator (as in Figure
8.43) in steady state, in (8.76), the frequency of oscillation is shown to be

vosc = √3
RC

(8.90)

and in (8.77) the loop gain is determined to be

H(jv) = 1 −GmR

1 + j√3
v

vosc
2

3

(8.91)

A further condition in (8.80) is that GmR is equal to two. Now, if we differenti-
ate H(jv) in (8.91) with respect to v , we get

dH
dv

= −3(−GmR)31 1

1 + j√3
v

vosc
2

4

Sj√3
1

vosc
D (8.92)

Now we take the magnitude of this expression at vosc :

| dH
dv |2 |

v = v osc

=
27(GmR)6

256v 2
osc

=
27

4v 2
osc

(8.93)

By combining (8.51) and (8.93), we get

288 Voltage-Controlled Oscillators

| Nout
Nin |2 =

1

(Dv)2 | dH
dv |2

=
4v 2

osc

27(Dv)2 (8.94)

Now, this is input noise in terms of voltage. Since we have a current,

Nin = inS R
1 + jvRC D (8.95)

At the frequency of oscillation,

|Nin |2 =
i 2
n R2

4
(8.96)

Therefore,

| Nout
in |2 =

R2

27 Svosc
Dv D2 (8.97)

With three stages each contributing equal noise,

| Nout
in |2 =

R2

9 Svosc
Dv D2 (8.98)

Now we approximate the noise coming out of the active circuitry as the drain
noise from two CMOS transistors, each with output drain current noise given by

(iDn)2 = 4gkTgm (8.99)

For long channel devices, the factor g is approximately two-thirds, but for
short channel devices, it can be higher, closer to unity. If the two transistors have
approximately equal gm and, by noting that GmR = 2 and assuming that small-
signal transconductance and effective transconductance are the same (gm = Gm),
we come up with the following approximation:

i 2
n ≈ 8kT /R (8.100)

Thus, the total output noise is

|Nout |2 = 8kT
R
9 Svosc

Dv D2 (8.101)

Therefore, the phase noise will be equal to

8.15 Phase Noise and Jitter in Ring Oscillators 289

PN(Dv) =
8kT

v 2
osc

R
9 Svosc

Dv D2 (8.102)

where v 2
osc is the amplitude of oscillation squared. This is an approximate expression

for a three-stage ring oscillator. For a four-stage ring oscillator,

| dH
dv |2 |

v = v osc

=
8

v 2
osc

(8.103)

and

| Nout
in |2 =

R2

4 Svosc
Dv D2 (8.104)

for all four stages. Then, with the same assumptions about the noise current per
stage as given by (8.100), the phase noise is given by

PN(Dv) =
2kTR

v 2
osc

Svosc
Dv D2 (8.105)

Comparing (8.105) to (8.102), the phase noise for four stages compared to
three stages is 2.25 times, or 3.5 dB, higher if resistance R is the same. It should
be noted that with more stages, the small-signal approximation is less valid, and
the waveform has a transition portion that could be seen as small-signal or linear;
however, each output also spends some time at a nearly constant voltage close to
the power-supply rails. During the linear portion, the gain is higher than that
predicted by GmR = 2, while during the limited portion, the gain is approximately
zero. Thus, the linear model, which uses a constant effective gain, is not totally
valid. Similarly, the input noise is also cyclostationary. Thus, to get an accurate
picture of phase noise, a more complex model must be used; however, the above
guidelines give us an idea of the major terms affecting phase noise. To use this
equation to predict phase noise, we find R by using (8.90), where capacitance and
frequency of operation are known. For the three-stage ring oscillator, (8.102) can
be rewritten as follows:

PN(Dv) =
8kT

v 2
osc

√3

9voscC Svosc
Dv D2 (8.106)

Thus, the only variable is the capacitance, and given the capacitance, the phase
noise can be predicted. So, why are transistor size and bias current not in this
equation? We note that they are, indirectly, as they need to be adjusted to give
the desired operating frequency. However, once that is done, and if the linear
approximations are valid, only the capacitance should be important. A similar

290 Voltage-Controlled Oscillators

equation for the four-stage ring oscillator can be obtained by combining (8.105)
with the knowledge that vosc = 1/RC , resulting in:

PN(Dv) =
2kT

v 2
oscvoscC Svosc

Dv D2 (8.107)

Thus, comparing (8.106) with (8.107), we see that with resistance R removed
from the equations, phase noise is about 1.3 times, or about 1.1 dB, higher for a
four-stage ring oscillator compared to a three-stage ring oscillator.

In summary, it would appear that any desired phase noise can be achieved
simply by choosing an appropriate capacitor size. However, for a larger capacitor,
(8.85) shows that more bias current is required to achieve the desired frequency.
Thus, there is a direct trade-off between bias current (and power dissipation) and
phase noise. In comparison with LC oscillators, as mentioned at the end of
Section 8.13, at the same power dissipation, phase noise is typically worse by 10
to 20 dB. Similarly, to achieve similar phase noise as an LC oscillator, reported
ring oscillators have required up to 10 times more power dissipation [24].

Example 8.5: Ring Oscillator Design
Design a single-ended ring oscillator operating at 1 GHz with phase noise of
−100 dBc/Hz at a 1-MHz offset.

Solution: In a 0.13-mm process, the power supply is typically 1.2V. We assume
that the output voltage is 1V peak to peak, or 0.35 Vrms . Then, for three stages,
phase noise can be predicted using (8.106):

PN(Dv) =
8 × 4 × 10−21 × √3 × 2 ? p ? 1 × 109

0.352 × 9 ? C ? (2 ? p ? 1 × 106)2

= 1.27 × 10−33 vosc
C

=
8.00 × 10−24

C

A phase noise of −100 dBc is 1 × 10−10W. Solving for capacitance we find,

C =
8.00 × 10−24

1 × 10−10 = 8.00 × 10−14 = 80 fF

Thus, for a little bit of safety, we select a 100-fF capacitor, which results in a
predicted phase noise of −101 dBc/Hz at a 1-MHz offset. This result will not be
achieved unless special attention is paid to other details, like the minimization of
1/f noise. Otherwise, errors can be 10 dB or more, as this example will illustrate.
Using 100 fF, we can estimate the current it will take to achieve 1 GHz using
(8.85):

8.15 Phase Noise and Jitter in Ring Oscillators 291

I = fNVDDC = 1 × 109 × 3 × 1.2 × 100 × 10−15 360 mA

Transistor sizing is done by considering current for maximum fT . In this
process, it is not practical to operate at maximum fT since this requires a gate-to-
source voltage of more than 1.2V. Instead, if the transistor size is increased by
about five times, current density is down to about one-fifth of the current density
for optimal fT . More importantly, this results in the reduction of VGS to about
half of VDD, but fT is only reduced by about 20% of its maximum value, so this
seems like a reasonable starting point. During the simulation iterations, using the
circuit of Figure 8.46(a), the above current is adjusted to 330 mA with a total
transistor width of 3 mm and minimum channel length. Simulation results show
a phase noise of −88.7 dBc/Hz at a 1-MHz offset. Further exploration of phase
noise versus capacitance, as shown in Figure 8.55, demonstrates that, as expected
from (8.106), phase noise is inversely proportional to capacitance and proportional
to frequency of oscillation.

However, phase noise is considerably higher than predicted by the simple theory
by about 11 dB. A printout of dominant noise sources shows that 1/f noise is the
main cause of the added phase noise. In an attempt to improve this, transistor sizes
(both width and length) are doubled, resulting in a reduction in phase noise to
−94.7 dBc/Hz at a 1-MHz offset, an improvement of about 6 dB. A further doubling
of both W and L results in phase noise of −100.8 dBc/Hz at a 1-MHz offset, a
further improvement of about 6 dB. Because of the increased parasitic capacitance,
it is also necessary to increase the current, in this final case to 470 mA to keep the

Figure 8.55 Phase noise versus load capacitance for various frequencies. Transistor lengths are
minimum, so 1/f noise is significant at a 1-MHz offset. Phase noise is further improved
by about 12 dB by increasing both W and L.

292 Voltage-Controlled Oscillators

frequency at about 1 GHz. A simulation of noise versus offset is shown in Figure
8.56. It is of importance to note that the 1/f noise corner is at about 700 kHz. This
indicates that, at a 1-MHz offset, there is still a little bit of room for improvement.

Example 8.6: Quadrature Oscillator Design
Design a quadrature oscillator oscillating at 2 GHz. Phase noise should be better
than −100 dBc/Hz at a 1-MHz offset. Explore the quality of the quadrature phase
matching with an output load of 2 kV and a capacitor mismatch on one of the
stages.

Solution: The technique is similar to the previous example, except that a four-
stage differential ring oscillator as in Figure 8.44 is used. The circuit of Figure
8.49(b) is used as a delay cell. As in the previous example, to meet phase noise
requirements, (8.107) is used, resulting in a load capacitance of 100 fF. Since
the frequency is twice that of the previous example, current is expected to be
approximately double as well. This will require large transistors, which will add
to the parasitic capacitance, requiring a further increase of current. As a first
simulation, use transistor W /L of 12 mm/0.24 mm, double the size used in the
previous example, to handle larger current. Biasing at 1 mA of current results in
a phase noise of −98.8 dBc/Hz at a 1-MHz offset; however, the frequency is only
1.58 GHz. Thus, current is increased to 1.5 mA, transistor size is increased to a
W /L of 16 mm/0.24 mm, the resulting phase noise is −98.6 dBc/Hz, and frequency
is at 2.07 GHz. A phase noise summary indicates that the 1/f noise
of the PMOS transistors is dominant, so these are increased in size to a W /L of
24 mm/0.36 mm. The resulting increase in parasitic capacitance is offset by an
increase of current to 1.6 mA. The resulting performance is a frequency of
2.02 GHz and a phase noise of −99.99 dBc/Hz at a 1-MHz offset. The 1/f corner

Figure 8.56 Phase noise versus offset frequency showing high 1/f corner frequency.

8.15 Phase Noise and Jitter in Ring Oscillators 293

is at about 2.5 to 3 MHz, so further improvements are still possible. The output
waveforms are shown in Figure 8.57.

With mismatched loads, phase errors will result. During layout, mismatch can
be the result of mismatched connecting lines and lack of symmetry. After fabrication,
further mismatch can occur due to process variation across the design. During
simulation, the effect of mismatch can be explored by loading a stage differentially
and to ground with capacitors or resistors. With a capacitive load on one stage,
for example, representing a connection to additional transistors in dividers or
mixers, the voltage on this stage will tend to change more slowly, following the
capacitor equation i = CDv /Dt. So, if 2t is the rise time and 2d t is the change of
rise time due to a change of capacitance dC, as shown in Figure 8.58 with i and
Dv kept the same, the period changes from 8t to 8t + 2d t, and the time between

Figure 8.57 Time domain waveforms of four-stage differential ring oscillator.

Figure 8.58 Waveforms with larger capacitor on one stage [stage (a)].

294 Voltage-Controlled Oscillators

the desired outputs remains at 2t. Thus, the new phase is 2t /(8t + 2d t) multiplied
by 360°, or approximately 90° (1 − d t /4t). Thus, a 10% increase of rise and fall
time in one stage will result in a 2.5% change of phase, or about 2°. Simulations
were done with differential and single-ended capacitive and resistive loads with
results as shown in Table 8.1. These numbers are close to the predicted numbers
but all a bit lower.

8.16 Crystal Oscillators

Quartz crystal resonators are widely used in frequency-control applications because
of their unequaled combination of high Q, stability, and small size. When a potential
difference is applied across opposite faces of a quartz crystal, mechanical deforma-
tion takes place. If the frequency of the potential is appropriate, the crystal will
vibrate and, indeed, resonate. The resonant frequency, Q, and temperature coeffi-
cient depend on the physical size and orientation of faces relative to the crystal
axis.

The resonators are classified according to ‘‘cut,’’ which is the orientation of
the quartz wafer with respect to the crystallographic axes of the material. Examples
are AT-, BT-, CT-, DT-, and SC-cut, but they can also be specified by orientation,
for example a +5° X-cut. Although a large number of different cuts have been
developed, some are used only at low frequencies, others are used in applications
other than frequency control and selection, and still others have been made obsolete
by later developments. At frequencies above approximately 1 MHz, primarily AT-
and SC-cuts are used.

For most applications, the two-terminal equivalent circuit consisting of the
static capacitance C0 , in parallel with the dynamic or motional branch, L1-C1-R1 ,
is used as shown in Figure 8.59, in which fs is called motional resonance frequency
given by

Table 8.1 Effect of Device Mismatch on the Phase Error of a Quadrature Oscillator (Single-
Ended Is Labeled ‘‘s-e;’’ Differential Is Labeled ‘‘diff’’)

Capacitive Load Resistive Load

Value 10 fF 50 fF 10 fF 50 fF 10 kV 2 kV 10 kV 7 kV
s-e or diff s-e s-e diff diff diff diff s-e s-e
Phase error 1.1°–1.5° 5°–7° 1.7° 7° 0° 4.4° 0.7° 1°–1.2°

Figure 8.59 Two-terminal equivalent circuit of a crystal.

8.16 Crystal Oscillators 295

fs =
1

2p√L1C1
(8.108)

For some applications, harmonics, or overtones, are used, in which case the
model has more branches in parallel, one for each harmonic.

For oscillator applications, the figure of merit, M, is a useful indicator that is
defined as

M =
1

2p fsC0R1
(8.109)

For M < 2, the crystal reactance is never inductive at any frequency, and an
additional inductor would be required to form an oscillator. In general, a larger
M results in a more useful resonator.

In a crystal resonator, the quality factor of a reactive component is the reactance
X1 of the motional inductance or capacitance, divided by the motional resistance
R1 :

Q = |X1 |
R1

=
2p fsL1

R1
=

1
2p fsC1R1

(8.110)

where the time constant t = C1R1 depends on the mode of vibration and on the
angles of cut. For AT-cut c-mode, t = 10 fs, for SC-cut c-mode, t = 9.9 fs, and for
BT-cut b-mode, t = 4.9 fs [32]. Practically, quartz crystal resonators can have an
unloaded Q up to a few hundred thousand and a temperature drift of less than
0.001% over the expected temperature range. The maximum Q that can be obtained
is determined by several additive loss factors, the first of which is the intrinsic Q
of quartz, which is approximately 16 ? 106, divided by the frequency in megahertz
for the AT-cut, and slightly higher for the SC-cut. Other factors that further limit
Q are mounting loss, atmospheric loading (for nonevacuated crystal units), and
the surface finish of the blank. Mounting loss depends upon the degree of trapping
produced by the electrode and the plate diameter. The highest Q is obtained by
using mechanically or chemically polished blanks with an adequately large diameter
and an evacuated enclosure.

In the vicinity of an isolated mode of vibration, the impedance of a crystal
resonator is a pure resistance at two frequencies. The lower of these is the resonance
frequency fr (close to, but not exactly equal to, the series self-resonance frequency
fs due to the presence of C0); the greater is the antiresonance frequency fa . In the
lossless case, the frequency of antiresonance is equal to the parallel resonance
frequency fp , approximately equal to

fp = fsS1 +
C1
2C0

D = fsS1 +
1

2M D (8.111)

For resonators with a large figure of merit (M > 5), fr can be approximated
by

296 Voltage-Controlled Oscillators

fr = fsS1 +
1

2QM D (8.112)

Table 8.2 presents some typical parameters as found on product data sheets,
for example in [33].

The impedance of the crystal can be plotted as in Figure 8.60. It can be seen
that the crystal is inductive in the region between v r (very close to v s) and vp ,
and this will be a very narrow frequency range. If the crystal is used to replace an
inductor in an oscillator circuit, for example, as shown in Figure 8.61(a), then
oscillations will only occur in the frequency range where the crystal is actually
inductive. While the crystal behaves like an inductor at the oscillating frequency,
unlike a real inductor, no dc current flows through the crystal because, at dc, it is
like a capacitor. Figure 8.61(b) can be derived by assuming that the positive input
in Figure 8.61(a) is grounded. This is the familiar Pearce amplifier, a subset of the
Colpitts oscillator and is a very common way to construct a crystal oscillator.
Figure 8.62 shows two ways to realize this Colpitts-based crystal oscillator, one
with a bipolar transistor, the second with MOS transistors.

As to the phase noise, besides the thermal noise with its floor around
−160 dBc/Hz, 1/f noise exists in crystal oscillators. The total noise PSD of a crystal
oscillator can be determined with Leeson’s formula [14, 34]:

PN = |NOUT(s) |2
2PS

= F|H1 |vo
2QDv G

2F|NIN(s) |2
2PS

G (8.113)

Table 8.2 Typical Specifications and Parameters for Precision SC-Cut Crystal Resonators

Parameter Specs Comments

Frequency 5–160 MHz Harmonic mode for higher frequencies
Recommended load About 20 pF Typically, series capacitor for higher
capacitance frequencies
Frequency adjustment 1.5–8 ppm Generally, higher for higher frequency
tolerance
Q 80k to 2.5M Higher Q for lower frequency
R1 35V–120V
C1 (fF) 0.13–0.5 fF
C0 (pF) 3.2–4.7 pF

Figure 8.60 Impedance of crystal circuit model.

8.16 Crystal Oscillators 297

Figure 8.61 Crystal oscillator diagrams (a) with a general amplifier and (b) with an inverter.

Figure 8.62 Two implementations of crystal oscillators: (a) with bipolar transistor and (b) with
CMOS converter.

An empirical formula to describe crystal oscillator phase noise is given by

PN(D f) = 10−16 ± 1 ? F1 + S f0
2D f ? QL

D2GS1 +
fc

|D f |D (8.114)

where f0 is the oscillator output frequency, D f is the offset frequency, and fc is the
corner frequency between 1/f and thermal noise regions, which is normally in the
range 1 to 10 kHz. QL is the loaded Q of the resonator. Since the Q for crystal
resonators is very large, as shown in Table 8.2, the reference noise contributes
only to the very close-in noise, and it quickly reaches the thermal noise floor at
offset frequency around fc . Figure 8.63 demonstrates an example of a phase noise
spectral density of a crystal reference source. This includes a plot of (8.114) using
a first term of 10−16, an fo of 10 MHz, QL of 120k, and fc of 1 kHz, showing

298 Voltage-Controlled Oscillators

Figure 8.63 Phase noise of a crystal reference source. Theory with fo = 10 MHz, QL = 120k,
fc = 1 kHz.

good agreement. Note that QL , the loaded Q, can be significantly lower than the
unloaded Q, due to loading of the active circuitry.

In summary, because of their effective high Q (up to hundreds of thousands)
and relatively low frequency (less than a few hundred megahertz), crystal oscillators
will have significantly lower phase noise and lower power dissipation than LC or
ring oscillators. However, typically, the purpose of a crystal oscillator is to achieve
ultrahigh stability, of the order of parts per million. To accomplish this, a complete
commercial crystal oscillator will also have means to do temperature compensation
and amplitude control, and this is where a lot of the design effort will be directed.

8.17 Summary: Comparison of Oscillator Performance

Table 8.3 provides a quick summary comparison of the LC oscillator, the ring
oscillator, and the crystal oscillator. So which oscillator is best? From the table, it
can be seen that there are significant differences between the oscillators, and each

Table 8.3 Comparison Summary for Crystal, LC, and Ring Oscillators

Parameter Crystal LC Ring

Output frequency Low High Medium
Q High Medium Low
Phase noise Best Good Poor
Power consumption Low High Highest
Multiphase output No No* Yes
Frequency stability Best Good Poor
Tuning range Narrow Medium Wide
Integratability No Large size Small size
Applications Reference source GHz VCO Multiphase VCO, digital clock

generation
*A quadrature LC oscillator is, in a way, a combination of an LC and a ring oscillator.

8.17 Summary: Comparison of Oscillator Performance 299

can be said to be the best in certain applications. Thus, it is important to choose
the most appropriate oscillator for the job at hand.

References

[1] Long, J. R., and M. A. Copeland, ‘‘The Modeling, Characterization, and Design of Mono-
lithic Inductors for Silicon RF IC’s,’’ IEEE J. Solid-State Circuits, Vol. 32, March 1997,
pp. 357–369.

[2] Danesh, M., et al., ‘‘A Q-Factor Enhancement Technique for MMIC Inductors,’’ Proc.
RFIC Symposium, Baltimore, MD, June 1998, pp. 183–186.

[3] Yue, C. P., and S. S. Wong, ‘‘On-Chip Spiral Inductors with Patterned Ground Shields
for Si-Based RF IC’s,’’ IEEE J. Solid-State Circuits, Vol. 33, May 1998, pp. 743–752.

[4] Niknejad, A. M., and R. G. Meyer, ‘‘Analysis, Design, and Optimization of Spiral Inductors
and Transformers for Si RF IC’s,’’ IEEE J. Solid-State Circuits, Vol. 33, October 1998,
pp. 1470–1481.

[5] Andreani, P., and S. Mattison, ‘‘On the Use of MOS Varactors in RF VCOs,’’ IEEE J.
Solid-State Circuits, Vol. 35, No. 6, June 2002, pp. 905–910.

[6] Fong, N., et al., ‘‘Accumulation MOS Varactors for 4 to 40 GHz VCOs in SOI CMOS,’’
Proc. 2002 International SOI Conference, Williamsburg, VA, October 2002, pp. 158–160.

[7] Fong, N., et al., ‘‘A 1V 3.8–5.7 GHz Differentially Tuned VCO in SOI CMOS,’’ Proc.
2002 RFIC Symp., Seattle, WA, June 2002, pp. 75–78.

[8] Rogers, J. W. M., and C. Plett, Radio Frequency Integrated Circuit Design, Norwood,
MA: Artech House, 2003.

[9] Hegazi, E., H. Sjoland, and A. A. Abidi, ‘‘A Filtering Technique to Lower LC Oscillator
Phase Noise,’’ IEEE J. Solid-State Circuits, Vol. 36, No. 12, December 2001,
pp. 1921–1930.

[10] Andreani, P., and H. Sjoland, ‘‘Tail Current Noise Suppression in RF CMOS VCOs,’’
IEEE J. Solid-State Circuits, Vol. 376, No. 3, March 2002, pp. 342–348.

[11] Andreani, P., et al., ‘‘Analysis and Design of a 1.8 GHz CMOS LC Quadrature VCO,’’
IEEE J. Solid-State Circuits, Vol. 37, No. 12, December 2002, pp. 1737–1747.

[12] Tang, J., et al., ‘‘Analysis and Design of an Optimally Coupled 5-GHz Quadrature LC
Oscillator,’’ IEEE J. Solid-State Circuits, Vol. 37, No. 5, May 2002, pp. 657–661.

[13] Gierkink, S. L., et al., ‘‘A Low-Phase-Noise 5-GHz CMOS Quadrature VCO Using
Superharmonic Coupling,’’ IEEE J. Solid-State Circuits, Vol. 37, No. 5, May 2002,
pp. 1148–1154.

[14] Leeson, D. B., ‘‘A Simple Model of Feedback Oscillator Noise Spectrum,’’ Proc. IEEE,
February 1966, pp. 329–330.

[15] Fong, N., et al., ‘‘Phase Noise Improvement of Deep Submicron Low-Voltage VCO,’’
Proc. ESSCIRC 2002, Florence, Italy, September 2002, pp. 811–814.

[16] Maneatis, J. G., ‘‘Low-Jitter Process-Independent DLL and PLL Based on Self-Biased
Techniques,’’ IEEE J. Solid-State Circuits, Vol. 31, No. 11, November 1996,
pp. 1723–1732.

[17] Dai, L., and R. Harjani, ‘‘Design of Low-Phase-Noise CMOS Ring Oscillators,’’ IEEE
Tran. Circuits and Systems II, Vol. 49, No. 5, May 2002, pp. 328–338.

[18] Park, C. H., and B. Kim, ‘‘A Low-Noise, 900-MHz VCO in 0.6-m CMOS,’’ IEEE J.
Solid-State Circuits, Vol. 34, No. 5, May 1999, pp. 586–591.

[19] Eken, Y. A., and J. P. Uyemura, ‘‘A 5.9-GHz Voltage-Controlled Ring Oscillator in 0.18-
mm CMOS,’’ IEEE J. Solid-State Circuits, Vol. 39, No. 1, January 2004, pp. 230–233.

[20] Song, S. J., S. M. Park, and H. J. Yoo, ‘‘A 4-Gb/s CMOS Clock and Data Recovery Circuit
Using 1/8-Rate Clock Technique,’’ IEEE J. Solid-State Circuits, Vol. 38, No. 7, July 2003,
pp. 1213–1219.

300 Voltage-Controlled Oscillators

[21] Shu, Z., K. L. Lee, and B. H. Leung, ‘‘A 2.4-GHz Ring-Oscillator-Based CMOS Frequency
Synthesizer with a Fractional Divider Dual-PLL Architecture,’’ IEEE J. Solid-State Circuits,
Vol. 39, No. 3, March 2004, pp. 452–462.

[22] Tang, J., D. Kasperkovitz, and A. Roermund, ‘‘A 9.8–11.5-GHz Quadrature Ring Oscilla-
tor for Optical Receivers, IEEE J. Solid-State Circuits, Vol. 37, No. 3, March 2002,
pp. 438–442.

[23] Lee, S. J., B. Kim, and K. Lee, ‘‘A Novel High-Speed Ring Oscillator for Multiphase Clock
Generation Using Negative Skewed Delay Scheme,’’ IEEE J. Solid-State Circuits, Vol. 32,
No. 2, February 1997, pp. 289–291.

[24] Eken, Y. A., and J. P. Uyenmura, ‘‘Multiple-GHz Ring and LC VCOs in 0.18 mm CMOS,’’
Proc. RFIC, Fort Worth, TX, June 2004, pp. 475–478.

[25] Anand, S. B., and B. Razavi, ‘‘A CMOS Clock Recovery Circuit for 2.5-Gb/s NRZ Data,’’
IEEE J. Solid-State Circuits, Vol. 36, No. 3, March 2001, pp. 432–439.

[26] Razavi, B., ‘‘A Study of Phase Noise in CMOS Oscillators,’’ IEEE J. Solid-State Circuits,
Vol. 31, No. 3, March 1996, pp. 331–342.

[27] Lee, T. H., and A. Hajimiri, ‘‘Oscillator Phase Noise: A Tutorial,’’ IEEE J. Solid-State
Circuits, Vol. 35, No. 3, March 2000, pp. 326–336.

[28] Hajimiri, A., S. Limotyrakis, and T. H. Lee, ‘‘Jitter and Phase Noise in Ring Oscillators,’’
IEEE J. Solid-State Circuits, Vol. 34, No. 3, June 1999, pp. 790–804.

[29] McNeill, J. A., ‘‘Jitter in Ring Oscillators,’’ IEEE J. Solid-State Circuits, Vol. 32, No. 6,
June 1997, pp. 870–879.

[30] Gierkink, S. L. J., et al., ‘‘Intrinsic 1 Device Noise Reduction and Its Effect on Phase
Noise in CMOS Ring Oscillators,’’ IEEE J. Solid-State Circuits, Vol. 34, No. 7,
July 1999, pp. 1022–1025.

[31] Thamsirianunt, M., and T. A. Kwasniewski, ‘‘CMOS VCO’s for PLL Frequency Synthesis
in GHz Digital Mobile Radio Communications,’’ IEEE J. Solid-State Circuits, Vol. 32,
No. 10, October 1997, pp. 1511–1524.

[32] Vig, J. R., ‘‘Quartz Crystal Resonators and Oscillators,’’ U.S. Army Electronics Technology
and Devices Report, SLCET-TR-88-1, 1988.

[33] ‘‘Resonator Products,’’ Piezo Technology Orlando, Florida, available at http://www.piezo-
tech.com/Resonators/resonatorsindex.htm (accessed October 2004).

[34] Watanabe, Y., et al., ‘‘Phase Noise Measurements in Dual-Mode SC-Cut Crystal Oscilla-
tors,’’ IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 47,
No. 2, March 2000, pp. 374–378.

C H A P T E R 9

SD Modulation for Fractional-N
Synthesis

9.1 Introduction

The concept of SD modulation was first employed in oversampling analog-to digital
(A/D) and digital-to-analog (D/A) converters [1, 2]. Oversampling data converters
operate at a much higher sampling rate than the Nyquist rate, which is twice the
signal bandwidth. In a SD A/D converter, the SD modulator modulates the analog
input into a digital code, either a single-bit or multibit word. Advanced semiconduc-
tor technology is better suited for providing fast digital circuits than for providing
precise analog circuits. Taking advantage of ever-increasing IC speed, SD techniques
trade resolution in time for resolution in amplitude and, thus, allow imprecise
analog circuits to be used. SD techniques have also found applications in frequency
synthesis, which is the main topic of this chapter. In a fractional-N frequency
synthesizer, a SD modulator can be used to control the loop divider such that the
fractional spurs can be randomized and shifted to a higher frequency band where
they can be easily removed by the loop LPF. In this chapter, the basic concept
of SD modulation is first introduced. Then, various SD modulator topologies
for frequency-synthesis applications are presented, and their performances are
compared.

9.2 Basic Concepts

This section provides an overview of the basic concepts necessary to understand
SD modulators. First, oversampling techniques are described, followed by a descrip-
tion, in general terms, of how a feedback loop can result in noise shaping in a
sampled system. In further sections, the concepts of oversampling and noise shaping
will be applied to SD modulators.

9.2.1 Quantization Noise and Oversampling Effects

Suppose that a quantizer converts a continuous analog signal to a discrete digital
signal with a characteristic shown in Figure 9.1, where x is the analog input, and
y is the quantized digital output. The output is a function of the input, but it has
discrete levels at equally spaced intervals D. Thus, unless the input happens to be
an integer multiple of the quantizer resolution (step size) D, there will be an error

301

302 SD Modulation for Fractional-N Synthesis

Figure 9.1 Transfer characteristic of a multibit quantizer.

in representing the input. This error e will be bounded over one quantizer level by
a value of

−
D

2
≤ e ≤

D

2
(9.1)

Thus, the quantized signal y can be represented by a linear function with an
error e as

y = D ? x + e (9.2)

where the step size D corresponds to the slope of the straight line shown in Figure
9.1. The quantization error as a function of the input is given in Figure 9.2. Note
that the error is a sawtooth waveform with a slope of −D. If the input is ‘‘random’’
in nature, then the instantaneous error will also be random. The error is thus
uncorrelated from sample to sample and can hence be treated as ‘‘noise.’’ Quantiza-
tion and the resultant quantization noise can be modeled as a linear circuit including
an additive quantization error source, as shown in Figure 9.3.

Thus, the quantization noise for a random signal can be treated as additive
white noise having a value anywhere in the range from −D/2 to D/2. The quantization
noise has equal probability with a probability density of

Figure 9.2 The quantization error as a function of the input.

9.2 Basic Concepts 303

Figure 9.3 Modeling of the quantization as a linear circuit with an additive noise.

p(e) = 5
1
D

if −
D

2
≤ e ≤

D

2

0 otherwise
(9.3)

where the normalization factor 1/D is needed to guarantee that

E
D/2

−D/2

p(e) de = 1 (9.4)

The mean square rms error voltage erms can be found by integrating the square
of the error voltage and dividing by the quantization step size:

e 2
rms = E

+∞

−∞

p(e)e2 de =
1
D E

D/2

−D/2

e2 de =
D2

12
(9.5)

From control theory (see Appendix A), it is known that the frequency spectrum
of a sampled system repeats once every sampling frequency. Thus, the spectrum
of the quantization noise in a sampled system will be centered around dc and
spread out to half of the sampling frequency fs /2, and there will be a copy of the
noise spectrum from fs /2 to 3fs /2, and so on. Considering that all the noise power
lies in the range of the positive frequency band (i.e., 0 ≤ f ≤ ∞), the quantization
noise power thus folds into the band from dc to fs /2. Assuming white noise, the
PSD E2(f) of the quantization noise is given by

E2(f) =
e 2

rms
fs /2

= 2Te 2
rms (9.6)

where the sample period T = 1/fs . For a band limited signal 0 ≤ f < f0 with bandwidth
of f0 , the quantization noise power that falls into the signal band can thus be found
as

304 SD Modulation for Fractional-N Synthesis

n 2
0 = E

f0

0

E2(f) df = 2f0Te 2
rms =

D2f0
6 ? fs

=
D2

12 ? OSR
(9.7)

where the oversampling ratio (OSR) is defined as the ratio of the sampling frequency
fs to the Nyquist frequency 2f0 ; that is

OSR =
fs

2f0
(9.8)

In an N-bit sampled system, if the quantizer has 2N quantization levels equally
spaced by D, then the maximum peak-to-peak amplitude is given by

vmax = (2N − 1) ? D (9.9)

If the signal is sinusoidal, the associated signal power is

P =
1
8

(2N − 1)2 ? D2 (9.10)

Thus, the SNR due to quantization noise power that falls into the signal band
becomes

SNR = 10 log1
1
8

(2N − 1)2D2

n 2
0

2 ≈ 10 logS3 ? 22N OSR
2 D (9.11)

Noting that log10(x) = log10(2) ? log2(x), the above expression becomes

SNR ≈ 6.02 ? N + 3 ? log2(OSR) + 1.76 (9.12)

Therefore, the SNR improves by 6 dB for every bit added to the quantizer.
For the same amount of total quantization noise power, every doubling of the
sampling frequency reduces the in-band quantization noise by 3 dB. As illustrated
in Figure 9.4, oversampling reduces the in-band rms quantization noise since the
total noise is spread across the entire sampling bandwidth. Hence, doubling the
oversampling ratio is equivalent to increasing the quantizer levels by a half-bit as
far as the quantization noise is concerned.

Oversampling allows the use of a lower-resolution converter without sacrificing
noise performance. Another way of looking at this effect is that by doubling the
sampling rate, we now have two correlated signal samples; thus, the signal power
is increased by 6 dB. However, having two noise samples only doubles the noise
power, so the noise power is increased by only 3 dB. In other words, the signal
samples are correlated; the noise samples are not. Thus, there is an SNR improve-
ment of 3 dB that corresponds to a half-bit resolution improvement. Oversampling

9.2 Basic Concepts 305

Figure 9.4 Quantization noise reduction by increasing OSR: (a) low sampling frequency, and
(b) higher sampling frequency.

has the advantage that it eases requirements on analog antialiasing filters for A/D
converters or deglitch filters for D/A converters because oversampling results in
wide transition bands; hence, only low-order filters are needed. However, the higher
sampling rate means the digital circuits have to run faster, and that consumes more
power. It also means that the signal bandwidth has to be much lower than the
sampling rate, which limits the conversion rate.

Example 9.1: Oversampling Voice with a Video A/D Converter
Let us assume that we are sampling a 4-kHz voice signal with an 8-bit video A/D
at 8 MHz. Determine the oversampling ratio and the improvement in SNR.

Solution: The Nyquist rate is 8 kHz; thus, the oversampling ratio is 1,000.
This will result in 0.5 log2(1,000) = 5 bits extra resolution. Since we started with
8 bits, the OSR of 1,000 provides a total of 13-bit accuracy.

Is quantization really like noise? Consecutive 8-MHz samples of a voice signal
would be highly correlated; as a result, there could also be correlation in the
quantization error. Consequently, quantization power would not be reduced by
averaging. For samples where noise is correlated from sample to sample, one can
use dithering (adding a small random signal) in SD modulation to randomize the
correlated quantization noise power. Integral (large-scale) nonlinearity is also not
improved by oversampling. In frequency synthesis, any correlation between noise
samples in the time domain generates spurious tones (spurs) in the frequency
domain. In contrast to white noise, the spurs are located at particular frequencies
that cannot be reduced by averaging when the oversampling ratio increases. Thus,
the oversampling technique has no impact on fractional spurious tones, although
it can reduce random white noise. In frequency synthesis, randomization techniques
are needed to break the correlation and repeated patterns and, thus, to spread the
spur energy over the frequency band. The randomization process results in a
quasiwhite noise characteristic that can then be reduced by oversampling tech-
niques. In conclusion, oversampling trades speed for resolution and allows the use

306 SD Modulation for Fractional-N Synthesis

of high-speed digital circuits instead of precise analog circuits, resulting in design
simplicity and a certain amount of design freedom.

9.2.2 Noise-Shaping Effect

While oversampling can reduce the random quantization noise by averaging it
over a wider sampling bandwidth, another useful scheme for quantization noise
reduction is noise shaping using feedback. Consider a feedback model shown in
Figure 9.5. In this figure, an additive noise model of the quantizer follows a filter
with transfer function of H(s). Then, negative feedback is added to stabilize the
system.

From control theory, the output is given by

Y(s) =
H(s)

1 + H(s)
X(s) +

1
1 + H(s)

E(s) (9.13)

If |H(s) | @ 1, such as when the system contains an integrator and only low-
frequency components are considered, the output Y(s) due to the input X(s), the
so-called signal transfer function, can be approximated as

Y(s) =
H(s)

1 + H(s)
X(s) ≈ X(s) (9.14)

Thus, the signal transfer function is unity at low frequencies. Similarly, the
output due to the noise E(s), the noise transfer function (NTF), can be approximated
by

NTF(s) =
1

1 + H(s)
E(s) ≈ 0 (9.15)

It is apparent that the output quantization noise can be reduced in certain
frequency bands if H(s) is designed to have high gain in those frequency bands.
The most troublesome noise is the close-in quantization noise since it is hard to
remove using a LPF. In an open-loop oversampling system without noise-shaping
feedback, as shown in Figure 9.6, the quantization noise is a white noise uniformly
distributed from 0 ≤ f ≤ fs /2 with noise power density of D2/6fs . In a feedback
oversampling system with a lowpass transfer function for H(s), the in-band quanti-
zation noise can be shaped as illustrated in Figure 9.7. The resultant noise transfer
function of 1/[1 + H(s)] has a highpass effect. Hence, the quantization noise is

Figure 9.5 Feedback model of an oversampling noise-shaping system.

9.2 Basic Concepts 307

Figure 9.6 Output of an oversampling system without feedback.

Figure 9.7 Output of an oversampling system with noise-shaping feedback.

highpass-shaped by the feedback loop, leading to lower in-band noise. Note that
the total quantization noise energy for both systems with and without feedback is
the same. In other words, the total shaded area in each of Figures 9.6 and 9.7 is
D2/12. The only difference is that the quantization noise with feedback is shifted
to the higher frequency band, where it can be easily filtered. The following sections
provide detailed analysis of various noise-shaping schemes.

Oversampling and noise shaping are two related techniques. Oversampling
refers to sampling beyond the Nyquist rate. Noise shaping refers to shaping the
noise spectrum such that the noise is lowered in the signal band and increased
outside of the signal band, where the noise can be easily removed. In particular,
the noise shaping in frequency synthesis employs a SD modulator to form a highpass
filter such that the spurs and noise can be shifted to a higher frequency band,
where they can be removed easily by a lowpass loop filter. Noise shaping is most
useful when it is done in combination with oversampling. As will be seen in the
following sections, SD modulation greatly enhances the oversampling effect by
using feedback systems. The oversampling system with SD modulation is often
called a high-order oversampling system since the conventional oversampling system
without SD modulation is, in fact, a zero-order feedback system.

308 SD Modulation for Fractional-N Synthesis

9.2.3 An Overview of SD Modulators

To introduce the concept of a SD converter, let us start with a delta modulator,
as illustrated in Figure 9.8, where the error signal ve to be sampled by the quantizer
is the difference, or delta, between the input signal and the feedback signal. The
feedback signal is the integral of the output. Thus, if the feedback signal, vx , is less
than the input signal, x, the output signal y goes high, which brings vx towards x.

Because a delta modulator will not shape quantization noise, a more useful
implementation is to move the integrator into the forward path after the difference
block. This configuration is called a SD modulator, as shown in Figure 9.9. In this
circuit, the error signal is first integrated and then passed through a quantizer
before it is fed back to the input. Since the integrator has a high gain at low
frequency, the error voltage at low frequency is small. A small error at low frequency
means that the low-frequency component of the output bit stream is equal to the
input signal. Thus, the low-frequency component can be recovered using a lowpass
filter or an integrator. In general, the output pulse density represents the input
voltage (i.e., the low-frequency part of this waveform follows the input signal).

A SD modulator is sometimes called a DS modulator, and people have debated
the name in accordance with their perception of the order in which the operations
take place. Sigma refers to integration, while delta refers to the comparison. In this

Figure 9.8 A delta modulator.

Figure 9.9 A SD modulator.

9.2 Basic Concepts 309

book, the convention SD will be used arbitrarily. Since the clock is running at a
rate much higher than the input signal rate, this system is an oversampling system.

9.2.4 First-Order SD Modulators

One of the most basic forms of the SD modulator is a first-order SD modulator,
introduced in Figure 9.9. It is a more efficient oversampling A/D converter compared
to a simple quantizer without feedback. The analysis will be started by assuming
that the modulator contains a multilevel uniform quantizer with unity gain. The
integrator averages the signal fed to the quantizer input. The quantized output y
is fed back and subtracted from the input x. Thus, feedback forces the average
value of the quantized output signal to track the average input.

The first-order SD modulator will be analyzed using the equivalent circuit
shown in Figure 9.10, where the quantizer is represented as an additive quantization
error ei at the time step i with the gain D set to unity. Because this is a sampled-
data circuit, we represent the integration using an accumulator. It can be easily
derived that the output of the accumulator is

wi =
z−1

1 − z −1 vi (9.16)

With some manipulation, and remembering that z −1 is a unit delay,

wi = vi − 1 + wi − 1 (9.17)

Now the output from the SD modulator is

yi = wi + ei = vi − 1 + wi − 1 + ei (9.18)

We note that

vi − 1 = xi − 1 − yi − 1 (9.19)

and that

Figure 9.10 The equivalent circuit of the first-order SD modulator.

310 SD Modulation for Fractional-N Synthesis

yi − 1 = wi − 1 + ei − 1 (9.20)

wi − 1 = yi − 1 − ei − 1

Therefore, substituting (9.20) and (9.19) into (9.18), the quantized signal with
the first-order SD modulator is given by

yi = xi − 1 − yi − 1 + yi − 1 − ei − 1 + ei (9.21)

yi = xi − 1 + ei − ei − 1

Note that the error now becomes the difference between the errors obtained
in the consecutive sampling steps. Thus, the first-order SD modulator differentiates
the quantization error. In other words, it modulates the quantization noise as
the first-order difference of the quantization error. The signal, however, is left
unchanged, except for a propagation delay that is acceptable in most systems.

The same system can also be analyzed in the frequency domain. The accumula-
tor output can be represented as

Y(z) = W(z) + E(z) = V(z)
z −1

1 − z −1 + E(z) (9.22)

Y(z) = [X(z) − Y(z)]
z −1

1 − z −1 + E(z)

After some manipulation, the quantizer output can be found as

Y(z) = z −1X(z) + (1 − z −1)E(z) (9.23)

Referring to the basic control theory given in Appendix A, we recall that
(1 − z −1) represents a highpass filter with a zero at z = 1 and a pole at z = 0. Thus,
the first-order SD modulator highpass filters the quantization noise while leaving
the signal unchanged, except for a propagation delay of one sampling cycle. The
name ‘‘SD noise shaping’’ originated from its property of shifting the noise to a
higher frequency due to its highpass filter characteristic. In this way, using a SD

modulator in a fractional-N frequency synthesizer, spurious components can be
shifted to higher frequencies, where a lowpass loop filter can remove them.

Assuming that the input signal is sufficiently busy, the quantization error can
be treated as white noise, which is uncorrelated with the signal. The noise spectral
density of the first-order SD modulator ni = ei − ei − 1 can be shown as

N1(f) = E(z) (1 − z −1) = E(f) |1 − e −j2p fT | = 2erms√2T sin(p fT) (9.24)

where E(f) is defined in (9.6), and e 2
rms is defined in (9.5). Therefore, the noise

power in the signal band is calculated as

9.2 Basic Concepts 311

n 2
0 = E

f0

0

|N1(f) |2 df ≈ e 2
rms

p2

3
(2f0T)3 (9.25)

where we have assumed a sufficiently high OSR such that f 2
s @ f 2

0 and
sin(p fT) ≈ p fT. The rms noise magnitude is given by

n0 = erms
p

√3
(2f0T)3/2 = erms

p

√3
(OSR)−3/2 (9.26)

Thus, in a sampled system with the first-order SD modulator, each doubling
of the oversampling ratio reduces the quantization noise by 9 dB and increases the
effective bits by 1.5. Recall that in a sampled system without any feedback (a zero-
order system), each doubling of the oversampling ratio reduces the quantization
noise by only 3 dB and increases the effective bits by 0.5. Although the SD effect
strengthens the oversampling effect, the two effects originate from different phe-
nomena. The feedback with SD modulation reduces the in-band noise by shaping
the noise away from the signal band, while the oversampling effect reduces the in-
band noise by averaging the noise power over a wider bandwidth.

9.2.5 Second-Order SD Modulators

As shown, a SD feedback via integration shapes the spectrum of the modulation
noise by placing most of its energy outside the signal band. The SD noise-shaping
effect is determined by its highpass characteristic. This section will show that the
shape of the noise spectrum is determined by the order of the SD modulator.
Higher-order SD modulators can be configured in various ways. By adding another
accumulator and feedback loop to the first-order SD modulator, a second-order
SD modulator can be constructed, as shown in Figure 9.11.

With some mathematical manipulations, the output of this modulator can be
expressed as

yi = xi − 1 + (ei − 2ei − 1 + ei − 2) (9.27)

Figure 9.11 The equivalent circuit of a second-order SD modulator.

312 SD Modulation for Fractional-N Synthesis

and its z domain representation is

Y(z) = z −1X(z) + (1 − z −1)2E(z) (9.28)

Note that the modulator output noise is now the second-order difference of
the quantization error. The noise spectral density of the second order SD modulator
is given by

N2(f) = E(f) (1 − e −jvT)2 = 4erms√2T sin2(p fT) (9.29)

Assuming again that fs @ f0 , the rms noise magnitude in the signal band can
be found by integrating the noise spectral density as

n0 = 1E
f0

0

|N(f) |2 df2
1/2

= erms
p2

√5
(2f0T)5/2 = erms

p2

√5
(OSR)−5/2 (9.30)

Notice that the noise is now lowered by 15 dB for every doubling of the
oversampling ratio and, thus, achieves 2.5 extra bits of resolution.

9.2.6 High-Order SD Modulators

The previous analysis can be extended to a SD modulator of any order. In general,
an nth-order SD modulator can be configured by adding more feedback loops to
the circuit, as shown in Figure 9.12. When there are n loops, and the system is
stable, its output can be expressed in the z domain as

Y(z) = z −1X(z) + (1 − z −1)nE(z) (9.31)

and its noise spectral density can be found as

|Nn (f) | = erms√2T [2 sin(p fT)]n (9.32)

Figure 9.12 An equivalent circuit of an nth-order SD modulator.

9.2 Basic Concepts 313

Figure 9.13 plots N(f) for different orders of SD modulators with OSR = 32.
As shown, in a pure oversampling system without a SD modulator (zero-order
SD), noise spectral density N(f) is a random white noise uniformly spread out
from 0 to fs /2. For an oversampling system with a SD modulator, N(f) is shaped
such that the in-band noise at lower frequencies is reduced compared to the original
white noise floor, while the out-of-band noise at higher frequencies is increased.
However, the SD modulator does not affect the total noise power over the band
from 0 to fs /2. Readers can verify that the integral of |Nn (f) |2 over the range
from 0 to fs /2 (i.e., the areas under different curves in Figure 9.13) should be a
constant. The difference for various orders of SD modulators is the slope of the
noise-shaping curve. According to the highpass transfer function given in (9.31),
the noise-shaping slope of an nth-order SD modulator is n × 20 dB/dec, that is,
20 dB/dec for the first-order SD modulator and 60 dB/dec for a third-order SD

modulator, as demonstrated in Figure 9.13. This rule is also valid for an oversam-
pling system without SD feedback if we treat it as the case where n = 0.

For large oversampling ratios (OSR > 2), the in-band rms noise magnitude is
given by

n0 = erms
pn

√2n + 1
(2f0T)n + (1/2) = erms

pn

√2n + 1 S 1
OSRD

n + (1/2)

(9.33)

where it is once more assumed that fs @ f0 , just as in (9.26) and (9.30). Thus, for
an nth-order SD modulator, it can be concluded that the in-band rms noise falls
by 3(2n + 1) dB for every doubling of the oversampling ratio, resulting in n + 0.5

Figure 9.13 Noise spectral density N(f) for different order SD modulators with OSR = 32. The
noise-shaping slope of an nth-order SD modulator is n × 20 dB/dec.

314 SD Modulation for Fractional-N Synthesis

extra bits of resolution. This generic conclusion is valid for both ordinary sampled
systems without feedback (zero-order feedback with n = 0) and a sampled system
with SD feedback. In the expression, the 3 dB (0.5 effective bits) is due to the
oversampling effect in an ordinary sampled system without feedback, while the
6n dB (n effective bits) is due to the SD noise-shaping effect. Figure 9.14 plots
the in-band rms noise versus OSR for different orders of SD modulators and clearly
demonstrates the noise-reduction effect discussed above. It is evident that adding
SD feedback strengthens the oversampling effect. On the other hand, the SD

modulator will not greatly benefit the noise reduction if the OSR is not sufficiently
high. The SD noise shaping will increase the noise, rather than reduce it, when
OSR is less than two.

The performance improvement due to oversampling and noise shaping can be
characterized by the number of effective bits, which leads to the same SNR over
a fixed bandwidth. The SNR with oversampling and noise shaping can be found,
considering signal power given in (9.10) and noise power given in (9.33) as

SNR = 10 log3
1
8

(2N − 1)2D2

D2

12
p2n

2n + 1 S 1
OSRD

2n + 14 (9.34)

≈ 10 logF3
2

? 22N ? OSR2n + 1 ? S p2n

2n + 1D
−1G

Figure 9.14 The in-band rms noise versus OSR for different order SD modulators. The in-band
noise falls 3(2n + 1) dB for every doubling of OSR for an nth-order SD modulator.

9.3 SD Modulation in Fractional-N Frequency Synthesis 315

Further manipulation of the above expression yields

SNR = 6.02N + 1.76 + 3(2n + 1) log2 OSR − 10 log10S p2n

2n + 1D (9.35)

where N is the number of quantizer bits, and n is the order of the SD modulator.
The lowered quantization noise due to oversampling and noise shaping leads to
an effectively increased number of quantizer bits:

Neffective ≈ N +
2n + 1

2
log2 OSR − 1.66 ? log10S p2n

2n + 1D (9.36)

Note that the number of effective bits cannot be improved greatly without
significant oversampling. At the Nyquist rate (OSR = 1), there is even a reduction
in the number of effective bits due to the last term in (9.36) introduced by the SD

modulator. With the above analysis, the concepts of oversampling and noise shaping
are further compared and illustrated in Figure 9.15. As shown, when the signal
bandwidth approaches fs /2 (the Nyquist rate), there is no benefit from noise
shaping.

9.3 SD Modulation in Fractional-N Frequency Synthesis

The output of a fractional-N synthesizer is related to a reference frequency by a
rational divisor, which is obtained by periodically toggling the dual-modulus or
multimodulus dividers. However, switching between different divisor values results
in undesirable phase jitter or spurs near the desired carrier frequency. A SD modula-
tor can move the in-band noise to higher frequencies utilizing its highpass noise
characteristic. The SD modulator forms a highpass filter at the fractional accumula-
tor output, where the fractional spurs are created, moving the close-in fractional
spurs to higher frequencies where they can be removed by the loop filter. A SD

fractional-N synthesizer is conceptually sketched in Figure 9.16, leaving the SD

fractional accumulator as a black box, which the following sections investigate in
detail.

High-order SD noise shaping is important when a large accumulator size is
used. As discussed in Chapter 2, the fractional accumulator shown in Figure 9.16
with size F and an input word of K will generate K carry-out pulses for every F
clock cycles. The accumulator is clocked at fr /R when the loop is in lock. Thus,
the accumulator carry-out has a repeated pulse pattern at a rate of (fr /R ? K /F).
The fractional accumulator periodically generates the carry-out that toggles the
loop division ratio. Recall that any repeated pattern in the time domain causes
spurious tones in the frequency domain. The fractional spurious components associ-
ated with periodically toggling the loop division ratio are hence expected at a
multiple of the carry-out frequency with the spur closest to the carrier located at
(fr /R ? K /F). When K = 1, the closest fractional spur occurs at (fr /R ? 1/F).
Therefore, the larger the accumulator size, the closer the fractional spur is to the

316 SD Modulation for Fractional-N Synthesis

Figure 9.15 Comparison of oversampling and noise-shaping effects.

carrier, and a higher-order SD modulator is needed for spur reduction. The order
of the SD can be selected based upon the system noise requirement.

Two types of SD modulators have been used in fractional-N frequency synthesis
[3–6]. One is a single-loop modulator, and another includes cascaded accumulators
called multistage noise shaping (MASH), also sometimes called multiloop SD

modulators [5]. The single-loop modulator can have a single-bit or multibit output,
depending on the desired quantization noise floor, while the multiloop MASH
architecture normally has a single carry-out bit per accumulator and, thus, always
has a multibit output. This discussion will begin with a popular architecture using
a multiloop SD modulator, originally proposed by Wells [3] and Miller [4]. In
fractional-N frequency synthesis, the instantaneous divisor value, which is achieved
using integer frequency dividers, is always off the desired fractional value; yet, the
time-averaged integer divisor value is equal to the desired fractional value and,
therefore, never changes when the loop is in lock. A simple fractional-N scheme
achieves the fractional divisor value by toggling the loop divisor in a repeated
pattern (e.g., toggling the divisor between two integer numbers). A SD modulator

9.3 SD Modulation in Fractional-N Frequency Synthesis 317

Figure 9.16 Fractional-N frequency synthesizer with a SD modulator.

is applied to break the repeated temporal (time domain) pattern of the fractional-N
scheme and, thus, reduces the spectral spurs. Like the simple fractional-N scheme,
any SD architecture should provide a zero net change in divisor value, meaning
that the time-averaged divisor value should not be altered. A SD based fractional-N
synthesizer dithers the divisor value following a specific temporal pattern, which
corresponds to modulating the fractional-N accumulator output with a highpass
characteristic in the frequency domain. Thereby, the fractional spurs resulting from
the altering of the integer divisor value are moved to higher frequencies, where
they can be attenuated much more effectively by the loop lowpass filter.

9.3.1 A First-Order SD Modulator for Fractional-N Frequency Synthesis

The noise-shaping concept introduced for oversampling data converters can also
be applied to fractional-N synthesis. In this section, the SD modulator discussed
in Section 9.2.4 is applied to this problem. In frequency synthesis, the desired
fractional frequency is equivalent to the analog input of an A/D converter. The
digital modulus control of the dual-modulus prescaler or the multimodulus divider
is analogous to the 1-bit or multibit quantizer output. Let us investigate a SD

modulator like those previously considered, where the input is an analog signal,
and the output is a 1-bit sampled digital data stream, as shown in Figure 9.17(a).

318 SD Modulation for Fractional-N Synthesis

Figure 9.17 Conversion of a first-order SD modulator in an ADC to a first-order SD modulator in
a fractional-N accumulator: (a) modulator for an ADC; (b) modulator in a fractional-N
accumulator; and (c) fractional-N equivalent circuit.

In fractional-N synthesis, the fractional spurs come from the fractional accumulator,
as discussed in Chapter 2, where the input is a constant frequency word K in digital
format, and the output is the 1-bit carry-out used to control the modulus of the
divider. Adding SD blocks to a fractional-N accumulator, we obtain a SD modu-
lated accumulator, as shown in Figure 9.17(b). The integrator carries out the
accumulator function and has a transfer function of 1/(1 − z −1) when the delay
unit is placed in the feedback path. A delay unit can also be combined with the
integrator to form a transfer function of z −1/(1 − z −1), as was done previously.

The 1-bit comparator and the 1-bit quantizer are equivalent to the carry-out
of the accumulator; that is, the 1-bit quantizer truncates the MSB of the integrator
output and discards the rest of the bits. Since the input is a digital frequency word,
the 1-bit DAC is not necessary in fractional-N synthesis. Converting to the sampled
time domain and replacing the quantizer with its quantization noise model, an
equivalent circuit is obtained, as shown in Figure 9.17(c), where .F(z) denotes the
fractional part of the divisor value, which is equivalent to K /F in the frequency
domain. Note that the ‘‘.’’ preceding the ‘‘F(z)’’ is part of the function name.
Although the input to the fractional accumulator is a constant (K /F), defining the
input to the SD modulator as a function in the z domain is generally necessary
when multiple accumulators are cascaded to form a higher-order modulator, where
the inputs to all the accumulators, except for the first one, are time-varying.

If the integrator has a z transfer function of 1/(1 − z −1) with the delay unit in
the feedback path, the SD fractional-N outputs can be found as

9.3 SD Modulation in Fractional-N Frequency Synthesis 319

Cout (z) =

1

1 − z −1

1 +
z −1

1 − z −1

.F(z) +
1

1 +
z −1

1 − z −1

Eq (z) = .F(z) + (1 − z −1)Eq (z)

(9.37)

where Eq is the quantization error introduced when truncating the accumulator
value to a 1-bit carry-out. Note that this equation is almost the same as (9.23), as
expected. It is evident that the quantization error Eq is highpass filtered by means
of adding the first-order SD modulator, while the fractional frequency word .F(z)
is not affected. Thus, the spurs due to the periodic truncation are moved to higher
frequencies, and the average divisor value is left unchanged, as desired. Just as it
is possible to build high-order SD modulators for data converters, it is also possible
to build high-order SD modulators for fractional-N synthesis. The techniques for
adding feedback loops are very similar for both styles of modulators.

9.3.2 MASH SD Modulator

Figure 9.18 shows a MASH SD modulator, comprising three loops. The three-
loop SD topology shown in Figure 9.18 is also called a MASH 1-1-1 structure
because it is a cascaded SD structure with three first-order loops. Each of the three

Figure 9.18 A triple-loop MASH 1-1-1 SD modulator for fractional-N synthesis.

320 SD Modulation for Fractional-N Synthesis

loops is identical to the single-loop architecture discussed previously. The input of
the second loop is taken from the quantized error Eq1 of the first loop, while the
input of the third loop is taken from the quantized error Eq2 of the second loop.
Thus, only the first loop has a constant input, which is the fractional portion of
the desired rational divide number .F(z) (i.e., the fine-tune frequency word). The
integer part of the frequency word I(z), the coarse-tune frequency word, is added
at the output of the triple-loop SD modulator. Thus, Ndiv (z) = I(z) + .F(z) is the
time sequence used to control the divider ratios. Differentiator blocks with transfer
functions of (1 − z −1) and (1 − z −1)2 are added at the output of the second and
third loops, respectively. Their function will become evident from the following
mathematical derivations. The modulator is clocked at the reference frequency,
reflecting the sampled nature of the circuit. The z domain transfer functions for
the triple-loop SD modulator can be derived as

N1(z) = C1(z)

=

1

1 − z −1

1 +
z −1

1 − z −1

.F(z) +
1

1 +
z −1

1 − z −1

Eq1(z) (9.38)

= .F(z) + (1 − z −1)Eq1(z)

N2(z) = (1 − z −1)C2(z)

= (1 − z −1)[−Eq1(z) + (1 − z −1)Eq2(z)] (9.39)

= −(1 − z −1)Eq1(z) + (1 − z −1)2Eq2(z)

N3(z) = (1 − z −1)2C3(z)

= (1 − z −1)2[−Eq2(z) + (1 − z −1)Eq3(z)] (9.40)

= −(1 − z −1)2Eq2(z) + (1 − z −1)3Eq3(z)

As shown, the first loop generates the fractional divisor value .F(z) with the
byproduct of quantization error Eq1 , which is fed to the input of the second loop
for further processing. The second loop cancels the previous loop’s quantization
error Eq1 by the differential block (1 − z −1) in its output path. The only quanti-
zation noise term left after summing the first- and second-loop outputs is the
quantization error Eq2 , which is second-order noise shaped. When this noise term
is further fed to the input of the third loop, the loop generates a negative noise
term to cancel the previous loop’s quantization error Eq2 by the second-order
differential block (1 − z −1)2 in its output path. Summing the outputs of the three
loops, we obtain the modulated divisor value as

N(z) = I(z) + N1(z) + N2(z) + N3(z) = I(z) + .F(z) + (1 − z −1)3Eq3(z)
(9.41)

9.3 SD Modulation in Fractional-N Frequency Synthesis 321

where I(z) and .F(z) are the integer portion and the fractional portion of the
division ratio, respectively. As desired, the fractional divisor value .F(z) is not
affected by the modulator, while the quantization error generated in the last loop
Eq3 is noise shaped by a third-order highpass function of (1 − z −1)3. The quantiza-
tion error generated in the first and second loops are totally canceled. As a result,
the total quantization noise is equal to that of a single loop, although three loops are
used. Therefore, the multiloop SD architecture provides high-order noise shaping
without additional quantization noise.

In general, the output frequency of a fractional-N synthesizer with a cascaded
m-loop SD modulator can be expressed as

f0(z) = [I(z) + .F(z)] fr + (1 − z −1)mEqm (z) fr (9.42)

where N(z) = I(z) +. F(z) is the desired division ratio, and the second term is the
frequency noise due to the fractional spurs.

It is interesting to note that the coefficients of the MASH highpass noise transfer
function (1 − z −1)m follow the successive rows in Pascal’s triangle:

1

1 −1

1 −2 1

1 −3 3 −1 (9.43)

1 −4 6 −4 1

1 −5 10 −10 5 −1

For example, the third-order noise transfer function of (1 − z −1)3 can be
expanded as 1 − 3z −1 + 3z −2 − z −3, where the coefficients follow the fourth row
of Pascal’s triangle.

Example 9.2: Comparison of a MASH 1-1-1 SD Modulator with a Simple Fractional-N
Accumulator
Compare the fractional accumulator output (m = 1) to the third-order SD modulator
output (m = 3) for the case of N(z) = I(z) +. F(z) = 100 + 1/32, with a reference
frequency of fr = 10 MHz.

Solution: The simulated accumulator outputs are given in Figures 9.19 and
9.20 for m = 1 and m = 3. As shown, the fractional accumulator without SD

modulator (m = 1) has a carry-out in every 32 fr cycles, which forces the loop
divider to divide by 100 for 31 cycles and then to divide by 101 for 1 cycle. The
periodic phase-correction pulse due to dividing by 101 generates fractional spurs
with a uniform spacing of fr /32 = 312.5 kHz, as shown in Figure 9.20(a). If three
cascaded loops are used, the SD accumulator outputs are dithered around the
correct value, as shown in Figure 9.19(b). Note that the SD noise shaper breaks
the periodicity of the fractional divisor sequences. In the frequency domain, the
discrete spurs become more random with their energy pushed towards the higher

322 SD Modulation for Fractional-N Synthesis

Figure 9.19 Instantaneous divisor ratio for (a) a fractional accumulator, and (b) a triple-loop SD
accumulator with loop divisor N = 100 + 1/32.

frequencies, as shown in Figure 9.20(b). Obviously, the fractional spurs look more
like frequency noise than discrete tones in the frequency spectrum after the SD

noise shaping.

For a single-loop fractional-N accumulator (m = 1), the binary carry-out dithers
the loop divider in the range of I(z) to I(z) + 1 since C1 is a 1-bit number that
can have a value of either 0 or 1. For a dual-loop MASH SD accumulator (m = 2),
the carry-out C1 can have a value of either 0 or 1, and C2 − z −1C2 can have values
of −1, 0, or 1; thus, the sum will dither the loop divider in the range of I(z) − 1
to I(z) + 2. Similarly, for a triple-loop MASH SD accumulator (m = 3), the carry-
out C1 , C2 − z −1C2 , and C3 − 2z −1C3 + z −2C3 will dither the loop divider in the
range of I(z) − 3 to I(z) + 4. Thus, the higher the SD modulator order, the wider
the range over which the loop divider ratio is dithered. In general, an m-loop
MASH SD modulator causes the loop divisor to be dithered in the range of
I(z) − 2m − 1 + 1 to I(z) + 2m − 1.

Having studied the noise-shaping characteristic of a multiloop SD modulator,
the implementation for the architecture presented in Figure 9.18 will now be

9.3 SD Modulation in Fractional-N Frequency Synthesis 323

Figure 9.20 The output spectrum for (a) a fractional accumulator, and (b) a triple-loop SD accumu-
lator for N(z) = 100 + 1/32 and the comparison frequency fr = 10 MHz.

examined in more detail. First, the function 1/(1 − z −1) is an integration function
and can be implemented with a single, readily available accumulator circuit. Second,
the function of the quantizer will now be examined. Suppose the accumulator has
an n-bit input word. If the carry-out bit needs to be preserved, the output of the
accumulator is an n + 1 bit word Ai , where Ai is the output of the ith accumulator
shown in Figure 9.18. The quantizer truncates the (n + 1)-bit word Ai by choosing
its MSB as the accumulator output. The MSB is simply the carry-out bit Ci of the
accumulator. This process introduces a quantization error of Eqi = Ci − Ai , which
is fed into the next accumulator for noise shaping. When the accumulator does
not overflow (Ci = 0), the 1-bit loop feedback does not have any impact on the
accumulator performance. When the accumulator overflows (Ci = 1), the 1-bit
loop feedback subtracts Ci from the accumulator input .F(z). Note that, for the
purpose of the subtraction, Ci takes on a value of {1’b1, n{1’b0}}, where the Verilog
concatenation notation represents an (n + 1)-bit binary word with the
MSB = 1 and the rest of the bits as zeros. In other words, the 1-bit Ci is multiplied
by the module number of the accumulator before being input to the adder because
it has the weight of the (n + 1)th bit. This process is simply the overflow of an
n-bit accumulator. The accumulator starts from the residue value Ai − Ci after an
overflow occurs. The operation of other loops is equivalent to that of the first
loop, except their inputs are the truncated quantization errors of the previous loop.
Consequently, the mathematical model of a multiloop SD modulator shown
in Figure 9.18 can be simply implemented by using the topology illustrated in

324 SD Modulation for Fractional-N Synthesis

Figure 9.21. Following a trivial derivation, the transfer function of individual loops
shown in Figure 9.21 can be obtained as

C1(z) = A1(z) + Eq1(z) = [.F(z) − z −1Eq1(z)] + Eq1(z) (9.44)

= .F(z) + (1 − z −1)Eq1(z)

Figure 9.21 An alternative topology of the MASH 1-1-1 SD modulator using three accumulators.

9.3 SD Modulation in Fractional-N Frequency Synthesis 325

C2(z) = −Eq1(z) + (1 − z −1)Eq2(z) (9.45)

C3(z) = −Eq2(z) + (1 − z −1)Eq3(z) (9.46)

Therefore, the overall output of the MASH 1-1-1 structure becomes

N(z) = I(z) + C1(z) + (1 − z −1)C2(z) + (1 − z −1)2C3(z) (9.47)

= I(z) + .F(z) + (1 − z −1)3Eq3(z)

which is equivalent to (9.37). Note that the function 1 − z −1 is implemented as a
differentiator circuit in Figure 9.21. Thus, the entire SD modulator includes only
adders and delay units z −1, which can be implemented with clocked flip-flops. The
speed bottleneck of the multiloop SD modulator is the n-bit adder with carry-out
bit. The postprocessing of the carry-out bits can be implemented using pipelined
feedforward architectures. The MASH structure is absolutely stable and is very
suitable for high-speed applications.

To understand the number of bits assigned to each adder, a review of the
arithmetic operation starting from the 2-bit adder at the bottom of Figure 9.21 is
needed. The carry-out bits C1 , C2 , and C3 from the three accumulators can only
be either 0 or 1. The 2-bit adder output C3(1 − z −1) can thus be −1, 0, or 1.
Adding C2 results in a 3-bit term C2 + C3(1 − z −1), ranging from −1, 0, 1, or 2,
which can be represented by a 3-bit two’s complement word. Letting A = C2 +
C3(1 − z −1) and B = [C2 + C3(1 − z −1)]z −1, the 3-bit subtraction of (A − B) leads
to a 3-bit two’s complement word ranging from −3 to +3. As an example, if A =
−1 = 3’b111 and B = +2 = 3’b010, −B = −2 = 3’b110, A − B = 3’b111 + 3’b110
= 3’b101 = −3. Adding C1 with A − B, we have a 4-bit word ranging from −3 to
+4. Analyzing the modulator output in Figure 9.21, it is evident that the third-
order MASH SD modulator has a 4-bit output with a maximum value of 4 and a
minimum value of −3. Hence, the modulator dithers the loop divisor in the range
from I(z) − 3 to I(z) + 4.

In addition to the MASH 1-1-1 topology shown in Figure 9.18, the highpass
noise transfer function of (1 − z −1)m can also be implemented using a combination
of loops with different orders. For a third-order SD modulator, a MASH 1-2
topology shown in Figure 9.22 consists of a first-order loop and a second-order
loop. The advantage of a MASH 1-2 SD modulator is its simplified topology with
reduced hardware and power consumption.

The MASH 1-1-1 structure is a widely used topology due to its stability, high-
order in-band noise-shaping characteristic, and easy implementation. As shown, a
SD modulator dithers the loop division ratio around its average value. Instantane-
ously, there are always small phase errors for a SD modulated PLL. However, the
average phase error ought to be zero in order for the loop to lock to the desired
frequency. Unfortunately, for a multiloop MASH SD modulator, the higher the
order of the modulator, the larger the phase error it causes. To improve the phase
error distribution without degrading the noise-shaping slope, alternative topologies
need to be investigated.

326 SD Modulation for Fractional-N Synthesis

Figure 9.22 A third-order MASH 1-2 SD modulator.

9.3.3 Single-Stage SD Modulators with Multiple Feedback Paths

The noise transfer function of (1 − z −1)m can also be implemented using single-
stage and multiple feedback paths, as illustrated in Figure 9.23. While a MASH
1-1-1 is absolutely stable, a single-stage feedback SD modulator is conditionally
stable with reduced input ranges due to the feedback loops. A single-stage feedback
SD modulator can output either a single bit or multibits, while a MASH 1-1-1 or
a MASH 1-2 SD modulator can only output multibits. Using a single-stage SD

modulator, its number of output bits can be chosen based on the desired output
quantization noise level and the range of the loop divisor variations.

For the single-stage feedback SD modulator shown in Figure 9.23, the m
accumulators have the following transfer functions:

Hi =
1

1 − z −1 i = 1, 2, . . . , m − 1 and Hm =
z −1

1 − z −1 (9.48)

The single-stage feedback SD modulator output can be found to be

Y(z) = Hx (z)X(z) + He (z)E(z) (9.49)

Figure 9.23 An mth-order, single-stage, feedback SD modulator.

9.3 SD Modulation in Fractional-N Frequency Synthesis 327

where the signal transfer function is given by

Hx (z) =
S 1

1 − z −1D
m − 1S z −1

1 − z −1D
1 + S z −1

1 − z −1D ∑
m − 1

i = 0
S 1

1 − z −1Di
= z −1 (9.50)

and the noise transfer function is given by

He (z) =
1

1 + S z −1

1 − z −1D ∑
m − 1

i = 0
S 1

1 − z −1Di
= (1 − z −1)m (9.51)

It is evident that the signal X(z) experiences only a transport delay z −1, while
the quantization noise is suppressed by a highpass noise transfer function of
(1 − z −1)m.

9.3.4 Single-Stage SD Modulators with a Single Feedback Path

In addition to the single-stage SD modulator using multiple feedback paths given
in Figure 9.23, an alternative single-stage SD modulator is proposed in [7]. Concep-
tually, by inserting a block with a transfer function of H(z) = 1 − He (z) in an
accumulator as shown in Figure 9.24, the accumulator output becomes

Y(z) = X(z) + A(z)H(z) − A(z) = X(z) − E(z)He (z) (9.52)

where Y(z) is the most significant p bits of the adder output B(z), and A(z) is the
remaining (n + 1 − p) bits of the adder output B(z). It is evident that the input
signal X(z) is not affected by the modulator, while the quantization noise E(z),
which is a truncated word A(z), is filtered by the noise transfer function of He (z).
If the noise transfer function He (z) is the highpass transfer function (1 − z −1)m,

Figure 9.24 A conceptual drawing of the single-stage SD modulator.

328 SD Modulation for Fractional-N Synthesis

and the feedback transfer function is therefore H(z) = 1 − (1 − z −1)m, the single-
stage modulator is equivalent to a MASH modulator with Y(z) = X(z) −
E(z) (1 − z −1)m. Notice that the SD modulator degenerates to a standard fractional
accumulator when m = 1 and p = 1 (1-bit carry-out). Thus, for m = 1, this structure
is equivalent to a standard fractional accumulator, which does not have noise
shaping. If an input frequency word X(z) has n bits, B(z) should have (n + 1) bits
to include the carry-out, and A(z)H(z) cannot exceed n bits. The modulator output
Y(z) can be of any number of bits, offering flexibility in choosing the number of
output bits. However, the maximum number of bits for A(z)H(z) should be care-
fully calculated to prevent overflow of the adder.

The conceptual single-stage SD modulator shown in Figure 9.24 with H(z) =
1 − (1 − z −1)m can be implemented in a pipelined topology, where data flow is
optimized for speed. For m = 2, H(z) = 1 − (1 − z −1)2 = 2z −1 − z −2. The implementa-
tion of the second-order modulator is presented in Figure 9.25, where the subtrac-
tion is implemented using two’s complement format for the z −2 term, and
multiplication by two is implemented using a left shift operation. If n + 2 − p < n,
sign extension is performed by extending the MSB of the (n + 2 − p)-bit word to
obtain an n-bit word. As can be seen, a condition of n + 2 − p ≤ n needs to hold
to prevent the first adder with an (n + 1)-bit output from losing the overflow bits.
Hence, the minimum number of output bits of the second-order modulator is two.
In general, the number of output bits for the given single-stage SD accumulator
should be equal to or larger than the order of the modulator m.

For m = 3, H(z) = 1 − (1 − z −1)3 = z −1(3 − 3z −1 + z −2). The implementation
of the third-order, single-stage SD modulator is given in Figure 9.26. Again, the
subtraction is implemented using two’s complement format. Multiplication by
three is implemented using a left shift operation (×2), followed by addition, given
mathematically by 3z −1 = 2z −1 + z −1. Figures 9.27 and 9.28 show the implementa-
tion of the fourth-order and fifth-order single-stage SD modulators, respectively.
They are somewhat more complicated compared to the second- and third-order
modulators. The fourth-order, single-stage SD modulator uses a transfer function
of H(z) = 1 − (1 − z −1)4 = 4z −1 − 6z −2 + 4z −3 − z −4, while the fifth-order single-
stage SD modulator has a transfer function of H(z) = 1 − (1 − z −1)5 = 5z −1 −

Figure 9.25 A second-order, single-stage SD modulator.

9.3 SD Modulation in Fractional-N Frequency Synthesis 329

Figure 9.26 A third-order, single-stage SD modulator.

Figure 9.27 A fourth-order, single-stage SD modulator.

10z −2 + 10z −3 − 5z −4 + z −5. To speed up the circuits, those transfer functions are
implemented in a pipelined manner. To avoid using multipliers, which can be area
and speed bottlenecks, the transfer function H(z) is manipulated such that only
shifting operations are involved. The speed of the single-stage SD modulator topol-
ogy is limited by the delay times associated with the additions to calculate the
transfer function H(z). The higher the order of the SD modulator, the longer the
delay.

330 SD Modulation for Fractional-N Synthesis

Figure 9.28 A fifth-order, single-stage SD modulator.

9.3.5 A Generic High-Order SD Modulator Topology

The above sections have studied multistage and single-stage SD modulators for
fractional-N synthesis. All of the topologies studied so far have a common noise
transfer function of

He (z) = (1 − z −1)m = Sz − 1
z Dm (9.53)

This highpass noise transfer function has m zeros at z = 1 and m poles at the
origin of the z plane. It provides noise shaping to reject the in-band noise and
spurs, yet the noise-shaping slope extends out of band to higher frequencies, which
requires a high-order loop filter for attenuation. In the time domain, the MASH
SD modulator tends to generate high-frequency bit patterns with widely spread
output values, which makes the design of the phase detector and charge pump
challenging. The widely spread output values lead to a wide spread in loop-division
ratio around the desired value. This tends to increase the charge pump turn-on
time, which increases the reference noise feedthrough and the crosstalk through
the substrate. As a result, the PLL in-band phase noise is degraded. Therefore, a
more efficient noise transfer function than the traditional MASH transfer function
of (1 − z −1)m is often desirable. A possible step to modify the MASH transfer
function would be adding poles at a higher frequency to reduce the high-frequency

9.3 SD Modulation in Fractional-N Frequency Synthesis 331

noise caused by the MASH topology. However, for every modification of the noise
transfer function, an implementation with minimum hardware overhead should be
considered. This section introduces a generic SD modulator architecture, which
can be implemented with feedforward and feedback paths. First, it is necessary to
review the high-order SD modulator presented in Figure 9.12, in which cascade
multiloops are used to generate the mth-order MASH noise transfer function, with
m zeros at z = 1 and m poles at z = 0. To design a noise transfer function with
arbitrary zeros, feedforward paths with different gains can be added. To add
arbitrary poles to the noise transfer function, either feedforward or feedback paths
with different gains can be added.

An integrator or an accumulator can be implemented in two different ways,
as shown in Figure 9.29. The integrator transfer function differs slightly, depending
on the location of the delay elements. When multiple integrators with a transfer
function of 1/(1 − z −1) are cascaded, there are no delay elements in the signal path.
However, there will still be a propagation delay through each element. Therefore,
their output signals will change asynchronously. This may limit the maximum
clock speed, making this unsuitable for high-speed applications. On the other hand,
when multiple integrators with the transfer function of z −1/(1 − z −1) are cascaded,
there are clocked delays in the signal path. Hence, all adder inputs change synchro-
nously, which benefits the circuit speed. However, it is often necessary to use
different integrator topologies intelligently to achieve the desired transfer functions,
as will be seen in a later example. Generic SD modulators using both integrator
topologies will be discussed.

One variant of the SD topology is to place a delay element in the loop feedback
path, as shown in Figure 9.17. This type of modulator originated in data-conversion
applications. Adding a delay element z −1 in the loop feedback is not necessary in
frequency synthesis. However, for a SD ADC, there will be a DAC in the loop
feedback to convert the digital quantized data into an analog signal since the input
to the ADC is an analog signal. Note that there is a delay element in the conceptual
SD modulator drawn in Figure 9.17 to model the delay through a DAC. The four
topologies of the generic SD modulators discussed below provide variants to allow
the design of a wide range of noise transfer functions. The combination of those
variants to form a desired transfer function is possible, as the next section shows.

9.3.5.1 Generic SD Modulator Topology with Integrators 1/(1 − z −1) and
Without Delay in the Loop Feedback Path

First, consider the integrator without a delay element in the feedback path. A simple
modification can be made to the first-order SD modulator given in Figure 9.10 by

Figure 9.29 Integrator topologies with delay elements at different locations.

332 SD Modulation for Fractional-N Synthesis

adding two feedforward coefficients, A0 and A1 , and one feedback coefficient, B1 .
Figure 9.30 shows the resulting architecture. The signals in the modulator are easily
shown to be given by

Y(z) = D(z) + Eq (z)

Y(z) = C0(z)A0 + C1(z)A1 + Eq (z) = C0(z) [A0 + A1(1 − z −1)−1] + Eq (z)

C0(z) = X(z) − Y(z) + C1(z)B1 (9.54)

Consequently, the following transfer function for the modified first-order SD

modulator can be derived as

Y(z) =
A0(1 − z −1) + A1

(1 − z −1) − B1 + [A0(1 − z −1) + A1]
X(z) (9.55)

+
(1 − z −1) − B1

(1 − z −1) − B1 + [A0(1 − z −1) + A1]
Eq (z)

Adding feedforward and feedback coefficients provides the flexibility to place
poles and zeros at a desired frequency for in-band noise shaping and for damping
the high-frequency noise. This simple modification can be generalized to any order
of the SD modulator with both feedforward and feedback paths, as shown in
Figure 9.31 [8].

The resultant transfer function of the generic SD modulator can be found to
be

Y(z) = HX (z)X (z) + HE (z)Eq (z) (9.56)

where the signal transfer function is given by

Figure 9.30 A first-order SD modulator with feedforward and feedback paths and an integrator
1/(1 − z −1).

9.3 SD Modulation in Fractional-N Frequency Synthesis 333

Figure 9.31 An mth-order SD modulator with feedforward and feedback paths.

HX (z) =

∑
m

i = 0
Ai (1 − z −1)m − i

(1 − z −1)m − ∑
m

i = 1
Bi (1 − z −1)m − i + ∑

m

i = 0
Ai (1 − z −1)m − i

(9.57)

and the noise transfer function is given by

HE (z) =

(1 − z −1)m − ∑
m

i = 1
Bi (1 − z −1)m − i

(1 − z −1)m − ∑
m

i = 1
Bi (1 − z −1)m − i + ∑

m

i = 0
Ai (1 − z −1)m − i

(9.58)

As discussed, the MASH SD modulator has good in-band noise-shaping charac-
teristics, yet its noise needs to be further attenuated at high frequency. In the z
domain, this translates into adding proper poles at high frequency and leaving the
zeros, as discussed in earlier sections. Therefore, the feedforward technique is often
more useful than using feedback. For an mth-order feedforward SD modulator
with Bi = 0, the noise transfer function given in (9.58) becomes

334 SD Modulation for Fractional-N Synthesis

HE (z) =
(1 − z −1)m

(1 − z −1)m + ∑
m

i = 0
Ai (1 − z −1)m − i

(9.59)

For frequencies much smaller than sampling frequency, 1 − z −1 = 1 − e jV = 1
− cos V + j sin V ≈ jV, where V = 2p f /fs . Ignoring the higher-order terms, the
simplified expression for the output is

Y(z) ≈ X(z) + Eq (z)
(jV)m

Am
(9.60)

When the order of the modulator and the oversampling ratio are sufficiently
large, we have | jV |m ! 1. Thus, the quantization noise Eq (z) is greatly attenuated,
which demonstrates the accurate tracking of the modulator at low frequencies.
Recall that the VCO output signal tracks the PLL input only at low frequencies.
In the time domain, this means that the average loop division ratio is accurately
tracking the desired value, even though the instantaneous division ratio (seen as
higher-frequency spectral components) is never the correct value for SD fractional-N
synthesis.

9.3.5.2 Generic SD Modulator Topology with Integrators z −1/(1 − z −1) and
Without Delay in the Loop Feedback Path

Second, consider the integrator with a delay element in the signal path. The modified
first-order SD modulator with feedback and feedforward paths is illustrated in
Figure 9.32.

The signals in the above structure can be found as follows:

Figure 9.32 A first-order SD modulator with feedforward and feedback paths and an integrator
z −1/(1 − z −1).

9.3 SD Modulation in Fractional-N Frequency Synthesis 335

Y(z) = D(z) + Eq (z) (9.61)

Y(z) = C0(z)A0 + C1(z)A1 + Eq (z) = C0(z)SA0 + A1
z −1

1 − z −1D + Eq (z)

Considering

C0(z) = X(z) − Y(z) + C1(z)B1 (9.62)

C0(z) = [X(z) − Y(z)]S 1 − z −1

1 − z −1 − B1z −1D
the transfer function for the modified first-order SD modulator can be derived as

Y(z) =
A0(z − 1) + A1

z − 1 − B1 + A0(z − 1) + A1
X(z) +

z − 1 − B1
z − 1 − B1 + A0(z − 1) + A1

Eq (z)

(9.63)

The above equation degenerates to Y(z) = X(z)z −1 + (1 − z −1)Eq (z) when
A0 = 0, A1 = 1, and B1 = 0. In other words, the architecture without feedforward
and feedback paths has the same transfer function as that of the MASH structure.
If all the integrators shown in Figure 9.31 with the transfer function of 1/(1 − z −1)
are replaced with integrators with a transfer function of z −1/(1 − z −1), the generic
SD modulator topology ends up with a signal transfer function of

HX (z) =

∑
m

i = 0
Ai (z − 1)m − i

(z − 1)m − ∑
m

i = 1
Bi (z − 1)m − i + ∑

m

i = 0
Ai (z − 1)m − i

(9.64)

and a noise transfer function of

HE (z) =

(z − 1)m − ∑
m

i = 1
Bi (z − 1)m − i

(z − 1)m − ∑
m

i = 1
Bi (z − 1)m − i + ∑

m

i = 0
Ai (z − 1)m − i

(9.65)

It is easy to prove that (9.63) is a special case of the transfer functions given
in (9.64) and (9.65) for the first-order loop.

9.3.5.3 Generic SD Modulator Topology with Integrators z −1/(1 − z −1) and
with a Delay in the Loop Feedback Path

Next, consider a slightly different SD topology, in which a delay element is added
in the loop feedback path. Starting with the conceptual SD modulator drawn in

336 SD Modulation for Fractional-N Synthesis

Figure 9.17 and adding feedback and feedforward paths results in the modified
SD modulator shown Figure 9.33. The transfer function for the modified first-
order SD modulator is given by

Y(z) =
A0(z − 1) + A1

z [(z − 1) − B1] + [A0(z − 1) + A1]
X(z) (9.66)

+
(z − 1) − B1

z [(z − 1) − B1] + [A0(z − 1) + A1]
Eq (z)

Comparing the above transfer function to (9.63), it can be seen that the first
part of the denominator (z − 1 − B1) is multiplied by variable z due to the delay
in the loop feedback.

In general, for the topology of the mth-order SD modulator shown in Figure
9.34 with integrators of z −1/(1 − z −1), a delay element in the loop feedback path
introduces a z term in the denominator, and the generic SD modulator transfer
functions become

HX (z) =

∑
m

i = 0
Ai (z − 1)m − i

z3(z − 1)m − ∑
m

i = 1
Bi (z − 1)m − i4 + ∑

m

i = 0
Ai (z − 1)m − i

(9.67)

and

HE (z) =

(z − 1)m − ∑
m

i = 1
Bi (z − 1)m − i

z3(z − 1)m − ∑
m

i = 1
Bi (z − 1)m − i4 + ∑

m

i = 0
Ai (z − 1)m − i

(9.68)

Figure 9.33 A first-order SD modulator with feedforward (A0, A1) and feedback (B1) paths, an
integrator z −1/(1 − z −1), and a delay z −1 in the loop feedback.

9.3 SD Modulation in Fractional-N Frequency Synthesis 337

Figure 9.34 An alternative mth-order SD modulator with feedforward and feedback paths.

9.3.5.4 Generic SD Modulator Topology with Integrators 1/(1 − z −1) and with
a Delay in the Loop Feedback Path

Finally, for the topology of the mth-order SD modulator with integrators of
1/(1 − z −1), a delay element in the loop feedback path introduces a z −1 term in
the denominator, and the generic SD modulator transfer functions given in (9.57)
and (9.58) become

HX (z) =

∑
m

i = 0
Ai (1 − z −1)m − i

(1 − z −1)m − ∑
m

i = 1
Bi (1 − z −1)m − i + z −1 ∑

m

i = 0
Ai (1 − z −1)m − i

(9.69)

with the noise transfer function as

HE (z) =

(1 − z −1)m − ∑
m

i = 1
Bi (1 − z −1)m − i

(1 − z −1)m − ∑
m

i = 1
Bi (1 − z −1)m − i + z −1 ∑

m

i = 0
Ai (1 − z −1)m − i

(9.70)

338 SD Modulation for Fractional-N Synthesis

9.3.6 Modified SD Modulator with Improved High-Frequency Response

The above developed generic SD modulator architectures can be used to modify
the MASH SD structure for improved high-frequency response for fractional-N
synthesis. This section gives examples of the generic SD modulator architectures.
The selection of different coefficients and their impact on noise shaping for a
single-stage multiple feedforward SD modulator will be investigated. As discussed
previously, the MASH SD modulator has substantial high-frequency noise, which
results in intensive modulus switching over a wide range. The goal of modifying
the MASH noise transfer function is to attenuate its high-frequency noise by adding
poles at high frequency.

Previously, a 1-bit quantizer was discussed as a building block of a SD modula-
tor. However, the generic topology shown in Figure 9.31 can make use of a single-bit
or multibit quantizer. For a multibit quantizer, the quantization power is given by
D2/12, where D = DN /(2B − 1), where DN denotes the modulus range, and B is
the number of significant SD output bits. More output bits reduce the quantization
noise of a SD modulator, yet they cause larger variation of the loop division ratio
and sometimes even require a larger MMD. In the MASH SD modulator, each
cascaded loop provides a carry-out bit, which is further processed following the
coefficients of a Pascal’s triangle. Thus, the MASH SD modulator has to have a
multibit output with the number of bits determined by the order of the modulator.
This lack of flexibility for the MASH SD modulator is one of its disadvantages.

A MASH SD modulator is absolutely stable. However, for a SD modulator
with feedforward or feedback paths, stability requires that all the discrete poles
be placed inside the unit circle in the z domain. Thus, the feedforward or feedback
coefficients should be accurately controlled. Although a coefficient can be modu-
lated to a digital word by using a digital multiplier, such an approach requires too
much hardware and also limits the modulator speed. The coefficients in a SD

modulator are normally implemented using shifting and simple addition operations,
which limits the choice of coefficients, as will be seen in later sections.

SD modulators are nonlinear systems, and their stability analysis is different
from linear system analysis. Instability occurs when the input amplitude or the
frequency of the SD modulator exceeds a certain value, which depends on the
modulator structure. Under unstable conditions, low-frequency signal swing
between the minimum and maximum amplitude occurs at the quantizer input. As
a result, the quantizer output is saturated (overloaded), and the SD modulator can
no longer track the input signal. For a single-bit quantizer, the saturated quantizer
output corresponds to long sequences of ones followed by long sequences of zeros,
also called limit cycles. It is very difficult for the modulator to get out of the
saturated state; hence, the SD modulator becomes unstable.

9.3.6.1 Single-Stage Multiple Feedforward SD Modulator (SSMF-I)

A single-stage, multiple-feedforward SD modulator, the SSMF-I, with single-bit
output was proposed in [6] and is illustrated in Figure 9.35. The single-bit quantizer
can be implemented using the carry-out of the adder; however, this results in high
quantization noise. Another disadvantage of the architecture is that the range over
which the modulator is stable is reduced; hence, the tuning range of the modulator

9.3 SD Modulation in Fractional-N Frequency Synthesis 339

Figure 9.35 A third-order, single-stage, multiple-feedforward SD modulator (SSMF-I).

is reduced. Although the feedforward coefficients are all powers of two that can
be implemented with shifting operations, the hardware complexity of the modulator
is higher than that of the MASH modulator. The modulator does not have a
feedback path; that is, all the coefficients Bi in (9.58) vanish. The coefficients for
feedforward paths are C0 = 0, C1 = 2, C2 = 1, and C3 = 1/4. Based on (9.59), it
is straightforward to find the noise transfer function of the SSMF-I SD modulator
as follows:

HE1(z) =
(1 − z −1)3

(1 − z −1)3 + [2(1 − z −1)2 + (1 − z −1) + 1/4]
=

(1 − z −1)3

4.25 − 8z −1 + 5z −2 − z −3

(9.71)

Due to the single-bit quantizer in the above third-order SSMF-I SD modulator,
the instantaneous division ratio can only dither in a narrow range, which improves
the PLL in-band noise since the charge pump turn-on time is reduced. In comparison,
a MASH 1-1-1 SD modulator dithers the loop divisor over a wider range from
I(z) − 3 to I(z) + 4. Unlike the MASH 1-1-1 SD modulator, the SSMF-I SD

modulator presents attenuated high-frequency noise due to the additional poles.
However, the single-bit quantizer causes slightly higher in-band phase noise. It is
thus desirable to increase the number of quantizer bits, as the next example shows,
which will reduce the in-band noise.

9.6.3.2 Single-Stage Multiple Feedforward SD Modulator (SSMF-II)

Another example of the modified SD modulator of this kind, SSMF-II, was pre-
sented in [9] and is illustrated in Figure 9.36. The modified SD modulator utilizes
two additional feedforward paths for the first and second accumulator outputs.
All the coefficients in the feedforward and feedback paths are powers of two, which
can be implemented with shifting operations. A 5-bit quantizer is employed to
achieve low quantization noise. Furthermore, dithering is used to introduce suffi-
cient randomization in the modulator. Integrators with transfer functions of both
z −1/(1 − z −1) and 1/(1 − z −1) are employed in order to obtain the following desired
noise transfer function as

340 SD Modulation for Fractional-N Synthesis

Figure 9.36 A third-order, single-stage, multiple-feedforward SD modulator (SSMF-II).

HE2(z) =
(1 − z −1)3

1 − z −1 + z −2/2
(9.72)

The above noise transfer function of the SSMF-II SD modulator can also be
implemented in another configuration, as proposed in [10] and illustrated in Figure
9.37, where three output bits are used. The peak of the quantization noise is
flattened by introducing an extra pole into the digital modulator. This approach
helps to meet phase noise specifications at high-frequency offsets while still using
a high-order modulator. Again, dithering is used to introduce sufficient randomiza-
tion into the modulator. The disadvantages to this architecture are reduced tuning
range and increased complexity compared to a MASH SD modulator.

The noise transfer function of the modulator topology presented in Figure 9.37
can be found from (9.65) and is given by

HE3(z) =
(z − 1)3

(z − 1)3 + [2(z − 1)2 + 1.5(z − 1) + 0.5]
=

(1 − z −1)3

1 − z −1 + 0.5z −2

(9.73)

Figure 9.37 Alternate topology of the third-order, single-stage, multiple-feedforward SD modulator
(SSMF-II).

9.3 SD Modulation in Fractional-N Frequency Synthesis 341

which is the same noise transfer function as that given in (9.72). It can be shown
that the modified SD modulator adds two low-Q Butterworth poles, in addition
to the three zeros at z = 1 found in the standard MASH 1-1-1 structure. Figure
9.38 shows the pole-zero plot for the SSMF-I and SSMF-II SD modulators with
noise transfer functions given in (9.71) and (9.72). All the poles for both the SSMF-I
and SSMF-II SD modulators are located inside the unit circle. For the single-stage
SD modulators described in Section 9.3.6, the condition for absolute stability
requires that all the poles and zeros be placed inside the unit circle. In addition,
the stable input range depends on the modulator topology, the type of input, and
the number of input and quantizer bits. It sometimes takes certain long input
sequences for instability in the form of limit cycles to be excited. Hence, extensive
simulations need to be done using different types and lengths of input sequences
to determine the input bounds for stability. In contrast to the high-order, single-
stage loop modulators, the multiloop SD modulator described in Section 9.3.2 is
absolutely stable.

The magnitudes of the noise transfer functions for SSMF-I and SSMF-II SD

modulators are plotted with comparison to the MASH noise transfer function in
Figure 9.39. The plot is also zoomed in to compare the in-band noise-shaping
effect of the three modulators. It can be seen that the MASH noise transfer function
has the best in-band noise filtering. For the frequency band f < 0.06fs = 0.06fref ,
the SSMF-II modulator demonstrates better noise shaping than the SSMF-I modula-
tor. As a rule of thumb, the loop bandwidth for an integer-N synthesizer PLL is
chosen near 0.1fref . The choice of loop bandwidth to minimize quantization noise
due to the use of SD modulators is discussed in Section 9.3.11. At high frequencies
(beyond the loop bandwidth), the MASH noise transfer function is not attenuated,

Figure 9.38 Noise transfer function pole-zero plot of SSMF-I and SSMF-II SD modulators. Each
modulator has three zeros at z = 1, and SSMF-II has one pole at z = 0.

342 SD Modulation for Fractional-N Synthesis

Figure 9.39 Noise transfer function magnitudes for MASH, SSMF-I, and SSMF-II SD modulators.

while the SSMF-II noise transfer function has a passband gain of 3.2, and the
SSMF-I noise transfer function has a passband gain of 0.5. The highpass 3-dB
corner frequency is 0.18fs for the SSMF-II modulator and 0.14fs for the SSMF-I
modulator.

9.3.7 Phase Noise Due to SD Converters

Discrete fractional spurs become more like random noise after SD noise shaping.
The SSB phase noise of the noise-shaped fractional spurs can be analyzed as follows.

According to (9.5), the 1-bit quantization error power is D2/12. For a quantiza-
tion step size D = 1, which is the case for a truncated binary word, the quantization
error power is 1/12. This error power is spread over the sampling bandwidth or,
equivalently, the reference bandwidth of fr = 1/Ts . Thus, the error PSD becomes
1/12fr . Considering the noise shaping with an mth-order MASH SD modulator as
expressed in (9.42), the frequency noise PSD is obtained as

SV (z) = | (1 − z −1)m fr |2
12 fr

=
1
12

(1 − z −1)2mfr (9.74)

where the subscript V denotes the frequency fluctuations referred to the input of
the divider. In order to obtain the phase fluctuations, consider the relationship
between frequency v and phase f ,

9.3 SD Modulation in Fractional-N Frequency Synthesis 343

v (t) =
df (t)

dt
≈

f (t) − f (t − Ts)
Ts

(9.75)

and its z domain representation,

2p ? V(z) =
F(z) (1 − z −1)

Ts
(9.76)

where Ts = 1/fr is the sample period. Rearranging this expression yields

F(z) =
2p ? V(z)

fr (1 − z −1)
(9.77)

Noting that SV (z) is given in terms of power, the double-sideband phase noise
PSD is obtained as

SF (z) = SV (z)
(2p)2

|1 − z −1 |2 f 2
r

=
(2p)2

|1 − z −1 |2 f 2
r

?
1
12

(1 − z −1)2mfr (9.78)

=
(2p)2

12 fr
? (1 − z −1)2m − 2

where the subscript F denotes phase fluctuations. Noting that

(1 − z −1) = |1 − e −jvT | = 2 sinSvT
2 D = 2 sinSp f

fr
D (9.79)

and that the relationship between phase noise w 2 in rad2/Hz and phase noise PN
in dBc/Hz is

PNSSB(f) [dBc/Hz] = 10 log
w 2

SD (f)
2

[rad2/Hz]

the SSB phase noise PSD in the frequency domain is given by

w 2
SD (f) [rad2/Hz]

2
=

(2p)2

24 fr
? F2 sinSp f

fr
DG2(m − 1)

(9.80)

PN(f) [dBc/Hz] = 10 logH(2p)2

24 fr
? F2 sinSp f

fr
DG2(m − 1)J

where f is the offset frequency, and fr is the reference sampling frequency. Now,
to find the effect of this phase noise on the PLL output, an analysis similar to that
performed in Section 3.7 must be performed. This noise from the SD is injected

344 SD Modulation for Fractional-N Synthesis

into the system as shown in Figure 9.40. Therefore, its noise transfer function to
the output is given by

wnoise_out (s)
w SD (s)

=

F(s)KVCOKphase
N

s +
F(s)KVCOKphase

N

(9.81)

This equation is very similar to the in-band noise transfer function derived in
Chapter 3.

Note that, due to the highpass nature of the SD noise transfer function, the
order of the loop roll-off is very important. Recall that the noise-shaping slope of
an mth-order MASH SD modulation is 20(m − 1) dB/dec according to (9.80),
while an nth-order lowpass loop filter has a roll-off slope of 20n dB/dec. Therefore,
the order of the loop filter must be higher than or equal to the order of the SD

modulator in order to attenuate the out-of-band noise due to SD modulation. Thus,
for instance, when calculating the effect of the SD modulator on out-of-band noise
on the typical loop considered in Chapter 3, it is necessary to include the effect of
C2 in the loop filter, as this will provide extra attenuation out of band. In this
case, the SD noise transfer function to the output will be

wnoise_out (s)
w SD (s)

=
KVCOKphase (1 + sC1R)

s2N (C1 + C2)(1 + sCsR) + KVCOKphase (1 + sC1R)
(9.82)

where

Cs =
C1C2

C1 + C2

Figure 9.40 A typical fractional-N frequency synthesizer with a SD phase noise source added.

9.3 SD Modulation in Fractional-N Frequency Synthesis 345

Example 9.3: Determining the SD Order Required for Fractional-N Synthesizer
Designs
Consider the synthesizer originally designed in Examples 3.4 and 3.5. If the
fractional-N design is to be controlled by a MASH SD modulator, find the minimum
order of the MASH SD modulator such that the phase noise performance of the
design will not be compromised.

Solution: First, recall that the reference frequency of the design considered in
Chapter 3 was 40 MHz. Thus, the raw SD phase noise as predicted by (9.80) is
given in Figure 9.41.

Note that this example considers only up to the third order at the beginning
because, if a higher-order SD modulator is needed, then a more complicated, higher-
order loop filter will also be required to attenuate the out-of-band phase noise
effectively. Next, the raw phase noise is applied to the transfer function in (9.82).
Note that all values for this formula are taken from the previous examples in
Chapter 3. The phase noise from the SD is compared to the previous total phase
noise predicted by this loop in order to determine the effect on overall noise
performance. The results of these calculations are shown in Figure 9.42. From this
plot, it is easy to see that a first-order modulator (a fractional-N accumulator
without noise shaping) produces far too much noise and will in fact completely
dominate the noise performance of this synthesizer. On the other hand, a second-
order MASH SD modulator will not degrade the in-band noise. However, in the
range of 1 to 3 MHz, it will increase the phase noise of the design by 3 dB as the
SD noise is about equal to the total noise. It is also interesting to study the shape
of the filtered SD noise curve. In-band, the SD phase noise rises at 20 dB/dec due
to the second-order noise-shaping effect. At the loop corner frequency, it becomes

Figure 9.41 Phase noise PSD for MASH SD modulator with a 40-MHz reference frequency.

346 SD Modulation for Fractional-N Synthesis

Figure 9.42 Calculated effect of SD phase noise on overall loop phase noise for various orders of
SD modulators.

flat due to the attenuation of the first loop filter pole. Once the second pole from
the loop filter begins to take effect, the filtered SD phase noise response falls at
20 dB/dec. The third-order SD modulator, on the other hand, has its noise well
below that of the other components in the loop and, therefore, has a negligible
effect on the total PLL noise. However, note that even after the second pole in the
loop filter, this noise is only flat out of band. If this noise performance is not
acceptable and a fourth-order SD modulator is required, then a higher-order loop
filter will be needed to keep the out-of-band SD noise from growing.

It should be pointed out that the above noise PSD only models the random
noise produced by the quantizer; therefore, discrete spurs can be expected to be
larger than predicted by this formula. Since there is no SD noise shaping in the
first-order modulator, the output of the accumulator contains discrete spurs rather
than randomized noise. The phase noise curve for the first-order modulator given
in Figure 9.42 will be valid if dithering is used in the fractional accumulator. As
shown in Figure 9.41, the slope of the phase noise PSD is 20(m − 1) dB/dec. Thus,
there will be no noise-shaping if only one accumulator is used. On the other hand,
the phase noise PSD is shaped with slopes of 20 and 40 dB/dec for two and three
loops, respectively. Also notice that for every doubling of the reference frequency,
which is equivalent to doubling the sampling frequency of the SD accumulators,
the in-band phase noise PSD due to fractional spurs is reduced by 6(m − 1) dB.
Note that the noise-shaping slope for fractional frequency errors in (9.42) and the
noise-shaping slope for fractional phase noise PSD in (9.80) are different. During

9.3 SD Modulation in Fractional-N Frequency Synthesis 347

the frequency-to-phase conversion, an integration term (1 − z −1)−1 is included. In
other words, the phase is obtained by integrating the frequency. Phase integration
averages the frequency variation; thus, the phase noise PSD has a lower noise-
shaping slope than the frequency-error-shaping curve.

9.3.8 Randomization by Noise-Shaped Dithering

The phase error PSD given in (9.80) is derived based on a uniform quantization
model. For the first-order SD modulator, the accumulator output spectrum is highly
dependent upon its dc input. When only input bits near the MSB are nonzero (e.g.,
K /F = 1/4, 1/2, 3/4), the accumulator output cycle repeats often, resulting in
insufficient randomness to decorrelate the quantization error. In this case, the
uniform quantization model is not quite appropriate. To randomize the tonal
fractional accumulator output, a pseudo random bit sequence (PRBS) generator,
with equal probability of ones and zeros, can be employed to dither the accumulator
input value, as demonstrated in Figure 9.43. The PRBS output selectively adds an
equal number of 1’s and −1’s to the carry-in of the adder. While it does not affect
the average accumulator input value, it does decorrelate the accumulator output.
Without dithering, the quantizer produces highly correlated errors that create
harmonic-distortion components without additional energy in between.

For multiloop SD modulators, the inputs of all accumulators except the first
accumulator are quasirandom. The input of the first accumulator is normally a
constant dc value for fractional-N synthesis. Taking the output of the first accumula-
tor as its input, the second loop has a nonconstant input. This is also true for any
higher-order loops. Thus, the quantization error for a higher-order multiloop SD

modulator is approximately random and decorrelated and fits the uniform quantiza-
tion model well. Thus, for higher-order SD modulators, dithering is less important,
although dithering is still useful to remove tones.

Figure 9.43 A fractional accumulator with dithering scheme.

348 SD Modulation for Fractional-N Synthesis

In the above dithering configuration, a dither sequence is added at the input
of the modulator, which decorrelates the SD modulator output and spreads the
fractional tone energy over the entire band without filtering. Input dithering without
noise shaping can potentially degrade the in-band rms noise. A better solution is
to noise-shape the dithering output spectrum such that the dither energy is pushed
out of the signal band. The highpass filtered dithering can be implemented by
adding the dither sequence to the quantizer input, not to the modulator input. For
a single-bit SD modulator, the dither magnitude is as large as the maximum input,
which may seriously overload the quantizer. On the other hand, dithering the SD

modulator input in the signal band can normally be treated as a perturbation to
the input frequency word. For a multistage SD modulator, each modulator can
have a dedicated dithering circuit to provide the optimal decorrelation of the
quantization noise. Since the quantization errors in higher-order loops are more
random, dithering the first modulator is more important than dithering the higher-
order modulators. In order to make the dither transfer function of the entire SD

modulator have the same shape as that of the noise transfer function, dither
sequences need to be prefiltered in all modulators except the last one. Figure 9.44
illustrates a third-order MASH SD modulator with noise-shaped dithering schemes.
Thus, in this case, the output is given by

Figure 9.44 A third-order MASH SD modulator with noise-shaped dithering schemes.

9.3 SD Modulation in Fractional-N Frequency Synthesis 349

N1(z) = .F(z) + (1 − z −1)Eq1(z) + (1 − z −1)3D1(z)

N2(z) = (1 − z −1)[−Eq1(z) + (1 − z −1)Eq2(z) + (1 − z −1)2D2(z)]

N3(z) = (1 − z −1)2[−Eq2(z) + (1 − z −1)Eq3(z) + (1 − z −1)D3(z)] (9.83)

N(z) = I(z) + N1(z) + N2(z) + N3(z)

= I(z) + .F(z) + (1 − z −1)3[Eq3(z) + D1(z) + D2(z) + D3(z)]

As shown, the above dithering process not only decorrelates the quantization
energy but also moves the decorrelated noise energy to higher frequencies, where
it can easily be filtered.

9.3.9 Spur Reduction Using Precalculated Seeds

To avoid artificial spurs at the synthesizer output, SD accumulators can be loaded
with precalculated start values. It is known that any repetition of time sequence
will cause artificial spurs in the spectrum with a frequency inversely proportional
to the repetition’s period. Loading different seed values to different accumulators
can break the repetition in the time domain. Thus, artificial spurs can be reduced
using a proper start value for each accumulator. In addition, a different order of
SD noise shaper can be selected simultaneously. Referring to the MASH 1-1-1 SD

modulator shown in Figures 9.21 and 4.13, resetting the first accumulator with a
loaded seed is more important than for the second and the third accumulators,
since only the first accumulator has a constant input, which may result in a repeated
accumulator value (i.e., artificial spurs). The second and third accumulators take
the outputs from previous accumulators as their inputs, which are more like random
numbers. Thus, the values in the second and the third accumulators are not likely
to be repeated. The proposed spur-reduction scheme with precalculated accumula-
tor seed values can be simply implemented using the existing accumulator reset, and,
hence, does not require additional hardware. In contrast, other spur-randomization
schemes, such as dithering the LSB of the SD input, not only require additional
hardware but also cause large frequency variation for small input words.

Spur reduction with precalculated seeds in SD accumulators has been demon-
strated in measurement in [5], which presents a multiband WLAN fractional-N
frequency synthesizer with a programmable MASH SD modulator. Figure 9.45
shows the measured worst spur levels for WLAN 802.11b channels, which corre-
spond to the worst fractional spurs in the design with a fractionality of 1/30. The
measured spurs clearly demonstrate the effect of spur reduction using precalculated
seeds.

9.3.10 Dynamic Range

A SD modulator design involves optimization and trade-offs of multiple architec-
tural parameters, such as the number of output bits, the number of feedback bits,
the order of the modulator, the oversampling ratio, and the input range. The output

350 SD Modulation for Fractional-N Synthesis

Figure 9.45 Measured worst spur levels for 802.11b channels with precalculated seeds (bottom
curve) and conventional zero seeds (top curve).

SNR of a SD modulator is dependent upon not only the number of output bits
but also the input level. When the input level is low, the modulator output SNR
is linearly proportional to the input level, as shown in Figure 9.46. However, as
with any nonlinear system, the input level cannot be increased infinitely. The
dynamic range of a SD modulator is defined as the maximum SNR achievable for
a certain topology [11]. The overload level of a SD modulator is defined as the
maximum input magnitude for which the SD modulator still operates properly. A
SD modulator will continue to operate properly provided the SNR is not degraded
more than 6 dB from the dynamic range value, as illustrated in Figure 9.46. When
the input level increases beyond the overload level, the modulator output SNR

Figure 9.46 Dynamic range and overload of a SD modulator.

9.3 SD Modulation in Fractional-N Frequency Synthesis 351

decreases quickly. As discussed before, the quantization noise can be considered
as random white noise with a uniform amplitude distribution in the time domain
between −D/2 and D/2, and the quantization noise power is given by D2/12.
According to (9.56), the quantization noise due to a fractional-N mechanism is
noise shaped by the noise transfer function of the SD modulator. Assuming the
noise transfer function is of the form of a MASH SD modulator, that is, He (z) =
(1 − z −1)n, the shaped in-band quantization noise power can be derived from (9.33)
and (9.5) as

n 2
0 =

2
fs
E
f0

0

D2

12 |1 − z −1 |2n df ≈
D2p2n

12(2n + 1) S 1
OSRD

2n + 1

(9.84)

where z = exp(j2p f /fs). Considering a sinusoidal signal with an amplitude of Ax
normalized to D/2, the signal power is given by

S =
1
2

A2
x SD

2D
2

(9.85)

Hence, the SNR at the quantizer output can be obtained as

SNR =
S

n 2
0

=
3p
2

A2
x (2n + 1) SOSR

p D2n + 1

(9.86)

Assuming the quantizer has B output bits, the maximum full-scale amplitude
it can represent is

Ax = 2B − 1 (9.87)

Therefore, the dynamic range of the SD modulator, which is the maximum
achievable SNR at the modulator output, can be obtained as

DR = SNRmax =
3p
2

(2B − 1)2(2n + 1) SOSR
p D2n + 1

(9.88)

It is evident that the dynamic range of a SD modulator is dependent upon the
number of quantizer output bits, the order of the modulator, and the oversampling
ratio. The multibit topology directly improves the dynamic range by 20 log(2B − 1)
dB compared to that achieved using a single-bit topology. Therefore, the multibit
SD modulator is critical for applications with a low oversampling ratio, while a
single-bit SD modulator is often used with high OSR, where the quantization noise
is fairly low due to a high oversampling ratio.

352 SD Modulation for Fractional-N Synthesis

9.3.11 Maximal Loop Bandwidth

The loop bandwidth fc is limited when a SD modulator is employed. Increasing
the loop bandwidth will degrade the phase noise due to SD-shaped fractional
spurious components, although it is often desirable to reduce other noise sources,
such as the VCO phase noise, by widening the loop bandwidth. If the synthesizer
phase noise cannot exceed some specified amount wmax(f), the maximum loop
bandwidth fc can be determined. First, note that (9.80) can be approximated as

w 2
SD (f)
2

=
(2p)2

24 fr
? Sp f

fr
D2(m − 1)

(9.89)

by noting that sin x ≈ x. Next, assume for simplicity, that the loop noise transfer
function given in (9.81) can be approximated as

wnoise_out (s)
w SD (s)

= S fc
f D

n

(9.90)

where fc is the loop bandwidth for an nth-order loop. This approximation is only
valid beyond the corner frequency of the loop fc . Thus, the output phase noise
from the SD modulator can be approximated as

w2
noise_out (f)

2
= S fc

f D
2n

(2p)2

24 fr
? Sp f

fr
D2(m − 1)

(9.91)

If this cannot exceed wmax(f)/2, then fc must be less than

fc < Fw2
max(f)

2
24 fr

(2p)2 ? S fr
p f D

2(m − 1)G(1/2n)
? f (9.92)

If the required PLL phase noise is assumed to be flat with value An [rads2/Hz]
inside the loop bandwidth and zero outside the loop bandwidth, as shown in Figure
9.47, and the loop transfer function inside the loop bandwidth can be assumed to
be unity, then the maximum loop bandwidth can be estimated.

The integrated rms phase noise in [rms rad] or [rms deg] is often quoted for
synthesizer phase noise evaluation. The SSB phase noise PSD (An) is related to the
integrated rms phase noise by

IntPNrms = √E
fc

−fc

An df = √2 fc An (9.93)

9.3 SD Modulation in Fractional-N Frequency Synthesis 353

Figure 9.47 Simplified synthesizer output phase noise PSD.

as discussed in Chapter 3. Similarly, the integrated rms frequency noise D fn can
be found. Recall that frequency is the derivative of phase, and the frequency noise
PSD can be found from the phase noise PSD as An ? f 2. Note that √An ? f converts
the phase noise amplitude to frequency noise amplitude, where multiplying by f is
equivalent to taking a derivative in the frequency domain. Therefore, the integrated
rms frequency noise D fn in [rms Hz] within noise bandwidth fc can be approximated
by [10]:

D fn ≈ √E
fc

−fc

An f 2 df = √2
3

An fc
3 (9.94)

The fractional-N scheme with SD noise shaping dithers the loop division ratio,
varying the frequency or phase of the MMD output constantly. In the frequency
domain, the dynamic range of a synthesizer is the ratio of the largest possible
frequency variation to the integrated rms frequency noise D fn [12]. The largest
frequency variation is given by DN ? fr , where DN = 2B − 1 is the largest modulus
variation, and B is the number of modulator output bits. Hence, the dynamic range
of the PLL corresponding to the phase noise PSD illustrated in Figure 9.47 is given
by

DRPLL = SDN ? fr
D fn

D2 (9.95)

To prevent the synthesizer spectrum purity from being corrupted by the phase
noise due to fractional spurs, the dynamic range of the SD modulator has to be
larger than the synthesizer PLL dynamic range, given by

DRSD =
3p
2

(2B − 1)2(2n + 1)SOSR
p D2n + 1

> SDN ? fr
D fn

D2 (9.96)

where the SD modulator dynamic range expressed in (9.88) is used.

354 SD Modulation for Fractional-N Synthesis

Considering (9.94) and for OSR = fr /2fc , the in-band phase-noise-limited maxi-
mal loop bandwidth associated with an nth-order MASH SD modulator with B
output bits is obtained as

fc <
fr

2p
? F fr

8p2 ? An (2n + 1)G
1

2n − 2
(9.97)

It should be pointed out that the above result provides only an approximate
upper bound of the loop bandwidth limited by the integrated phase noise and the
use of a MASH SD modulator. In practice, the required loop bandwidth is narrower
than the above-predicted value since the quantization noise of the SD modulator
is reduced after the high-frequency pole of the PLL. If Butterworth poles are added
to damp the high-frequency noise, the in-band quantization noise power is also
increased. For a single-stage, third-order, SD modulator (SSMF-II), as shown in
the MASH SD modulator of Figure 9.36, the in-band phase noise power is about
four times higher than that of a third-order MASH SD modulator. Therefore,
maximal loop bandwidth for a single-loop, multibit SD modulator should be smaller
than 25% of the value calculated based on (9.97). For instance, if the in-band
phase noise An is −100 dBc/Hz, the above equation estimates the maximal loop
bandwidth as 1 MHz for a third-order SD modulator with fr = 40 MHz. In practice
maximal loop bandwidth of fc < 250 kHz should be chosen.

9.3.12 Optimal Parameters

As shown in previous sections, different SD modulator topologies offer not only
different noise transfer functions but also have different dynamic range and stability
constraints. The design goal is to find an optimal set of parameters that can lead
to the maximal dynamic range without causing stability and overload problems.
For a single-stage SD modulator topology as shown in Figure 9.48, the noise
transfer function at low frequency can be approximated by [11]:

|He (z) | =
1

1 + ∑
n

i = 1
Pn
j = i

ajkS z −1

1 − z −1D
n − i + 1

≈ |1 − z −1 |n

Pn
i = 1

aik

(9.98)

where ai is the coefficient of the ith integrator, and k is the quantizer gain. ank is thus
the effective coefficient of the last integrator. The equation shows that increasing the
loop parameters reduces the in-band noise power, which benefits the output SNR
and dynamic range. However, increasing the loop parameters worsens the loop

Figure 9.48 Optimal coefficients for single-stage SD modulator.

9.3 SD Modulation in Fractional-N Frequency Synthesis 355

stability and the overload level. Therefore, it is desirable to find the optimal combi-
nation of loop coefficients that correspond to the maximal dynamic range without
going into the overload range. However, it is a rather difficult task to find the
optimal loop parameters analytically. Extensive SNR and dynamic range simula-
tions have been performed for second- to fourth-order, single-loop SD modulators
in [11]. It is concluded that the dynamic range of a single-loop SD modulator with
a single-bit quantizer is maximized when the product of all effective integrator
coefficients is approximately given by

Pn
i = 1

aik = 1,
1
5

,
1
25

n = 2, 3, 4 (9.99)

where the nth term ank = 2. To reduce the internal error accumulation, the loop
coefficients should increase from the first to the last integrator. Moreover, for
stability reasons, ai < 3/4, where i = 1, 2,. . . , n − 1, should be chosen. For multibit
topologies, due to intrinsically better stability, the integrator coefficients can be
increased, which leads to lowered in-band noise and increased SNR and dynamic
range. If a 4-bit quantizer is used in the single-stage SD modulator shown in Figure
9.48, the dynamic range is maximized when the product of all effective integrator
coefficients is approximately given by

Pn
i = 1

ai =
27
16

,
27
32

,
27

128
n = 2, 3, 4 (9.100)

If a different number of quantizer bits or a different topology is used, the
above optimized parameters need to be redetermined by simulation. For instance,
simulation has demonstrated that a multiloop SD modulator of order higher than
two always offers better dynamic range than a single-loop SD modulator of the
same order.

9.3.13 Performance Comparison

Finally, Table 9.1 summarizes the performance comparison for a few third-order
SD modulators discussed in this chapter. As shown, the MASH 1-1-1 SD modulator
provides the simplest implementation with the fastest speed. With proper buffering
(as illustrated in Figure 4.13), the maximum delay of a MASH 1-1-1 modulator
can be just one K-bit adder delay, where K is the number of input bits to the
modulator. However, a MASH 1-1-1 SD modulator does not provide high-
frequency attenuation and is very tonal at low frequency [13]. The single-stage
with a single feedback modulator shown in Figure 9.26 is capable of outputting
any number of bits greater than three. The SSMF-I modulator shown in Figure
9.35 provides the best high-frequency attenuation with the trade-off of the worst
in-band noise shaping. The SSMF-II modulator shown in Figure 9.37 provides
sufficient high-frequency attenuation with acceptable in-band noise shaping and is
faster than the structure shown in Figure 9.36 due to the buffers in the accumulator
signal paths. Choosing a proper SD modulator topology is important and dependent
upon system requirements.

356 SD Modulation for Fractional-N Synthesis

Table 9.1 Comparison of the Third-Order SD Modulators

Close-In High- Modulator
Noise Frequency Artificial Hardware

SD Topology Shaping Attenuation Tones Output Bits Speed Area

MASH 1-1-1 Best Worst Many 4 bits (−3~4) Fastest Smallest
(Figure 9.21)

MASH 1-2 Same as Same as Some 3 bits (−1~2) Fast Small
(Figure 9.22) MASH 1-1-1 MASH 1-1-1

Single-stage with Same as Same as Some Any number Fast Small
single feedback MASH 1-1-1 MASH 1-1-1 of bits
(Figure 9.26) greater than 3

SSMF-I Worst Best Few Any number Slow Large
(Figure 9.35) of bits

SSMF-II Good Good Few Any number Slow Large
(Figure 9.36) of bits

SSMF-II Good Good Few Any number Fast Large
(Figure 9.37) of bits

References

[1] Norsworthy, S. R., R. Schreier, and G. C. Temes, (eds.), Oversampling Delta-Sigma Data
Converters, New York: IEEE Press, 1992.

[2] Boser, B. E., and B. A. Wooley, ‘‘The Design of Sigma-Delta Modulation Analog-to-
Digital Converters,’’ IEEE J. Solid-State Circuits, Vol. 23, No. 6, December 1988,
pp. 1298–1308.

[3] Wells, J. N., ‘‘Frequency Synthesizers,’’ United States Patent No. 4609881, September
1986.

[4] Miller, B., and R. Conley, ‘‘A Multiple Modulator Fractional Divider,’’ Proc. 44th Annual
Frequency Control Symposium, Baltimore, MD, May 1990, pp. 559–568.

[5] Rogers, J. W. M., et al., ‘‘A Fully Integrated Multi-Band SD Fractional-N Frequency
Synthesizer for a MIMO WLAN Transceiver RFIC,’’ IEEE Journal on Solid State Circuits,
Vol. 40, No. 3, March 2005, pp. 678–689.

[6] Riley, T. A., M. Copeland, and T. Kwasniewski, ‘‘Delta-Sigma Modulation in Fractional-N
Frequency Synthesis,’’ IEEE J. Solid-State Circuits, Vol. 28, May 1993, pp. 553–559.

[7] Jackson, T., G. Eapen, and F. Dai, ‘‘Feed Forward Sigma Delta Interpolator for Use in a
Fractional-N Synthesizer,’’ U.S. Patent Application Publication, No. 2002/0067773 A1,
June 6, 2002.

[8] Chao, K., et al., ‘‘A Higher-Order Topology for Interpolative Modulation for Oversam-
pling A/D Converters,’’ IEEE Trans. on Circuits and Systems, Vol. 37, March 1990,
pp. 309–318.

[9] Muer, B., and M. Steyaert, ‘‘A CMOS Monolithic SD-Controlled Fractional-N Frequency
Synthesizer for DCS-1800,’’ IEEE J. Solid-State Circuits, Vol. 37, July 2002, pp. 835–844.

[10] Rhee, W., B. Song, and A. Ali, ‘‘A 1.1-GHz CMOS Fractional-N Frequency Synthesizer
with a 3-b Third-Order DS Modulator,’’ IEEE J. Solid-State Circuits, Vol. 35,
October 2000, pp. 1453–1460.

[11] Marques, A., et al., ‘‘Optimal Parameters for DS Modulator Topologies,’’ IEEE Trans.
on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 45, No. 9,
September 1998, pp. 1232–1241.

[12] De Muer, B., and M. S. J., Steyaert, ‘‘On the Analysis of DS Fractional-N Frequency
Synthesizers for High-Spectral Purity’’ IEEE Trans. on Circuits and Systems-II: Analog
and Digital Signal Processing, Vol. 50, No. 11, November 2003, pp. 784–793.

9.3 SD Modulation in Fractional-N Frequency Synthesis 357

[13] Shu, B. K., et al., ‘‘A Comparative Study of Digital Modulators for Fractional-N Synthesis,’’
8th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Malta,
Vol. 3, September 2001, pp. 1391–1394.

C H A P T E R 1 0

Direct Digital Synthesis

10.1 Introduction

Modern communication systems are placing increasing demands on the frequency
resolution, channel switching speed, and bandwidth requirements of frequency
synthesis. For instance, spread-spectrum applications require a frequency synthe-
sizer that is capable of tuning to different output frequencies with extremely fine
frequency resolution and switching speed of the order of nanoseconds. The resolu-
tion and switching-speed requirements of many systems are surpassing the perfor-
mance capabilities of a conventional analog phase-locked loop (PLL). The
conventional PLL-based frequency synthesizer has difficulty meeting these require-
ments due to internal loop delay, low resolution, and the limited tuning range of
the VCO. In contrast, a direct digital synthesizer (DDS) generates a digitized wave-
form of a given frequency by accumulating phase changes at a higher clock fre-
quency. DDS is a digital technique for frequency synthesis, waveform generation,
sensor excitation, and digital modulation and demodulation. Since there is no
feedback in a DDS structure, it is capable of extremely fast frequency switching or
hopping at the speed of the clock frequency. DDS provides many other advantages,
including fine frequency-tuning resolution and continuous-phase switching. In addi-
tion, as will be discussed in Chapter 11, DDS can provide quadrature signals with
accurate I/Q matching. DDS can directly provide various modulations. DDS can
also generate arbitrary waveforms in the digital domain. The increasing availability
of ultra-high-speed digital-to-analog converters (DACs) allows a DDS to operate
at clock frequencies of more than 10 GHz.

The DDS has many advantages; however, it has two major deficiencies that
are related to the inadequacy of the semiconductor technology. The first deficiency
is that the output spectrum of the DDS is normally not as clean as the PLL output.
The noise floor of the DDS output spectrum is limited by a finite number of bits
in the DAC. A 12-bit DAC provides a theoretical noise floor of −72 dBc, which
is much less than that of a PLL synthesizer. Normally, a −100 dBc/Hz noise floor
can be achieved by a PLL synthesizer at a 100-kHz offset. The DDS also suffers
from a high level of spurious output derived from the discrete phase-accumulation
and phase-truncation processes, as well as the DAC nonlinearity. The second
deficiency is that the DDS output frequency is limited by the maximum operation
frequency of the DAC and the digital logic. Although DACs with gigahertz sampling
frequencies have been reported, they normally consume a large amount of power
with poor resolution. As the sampling frequency increases, the power required both
for the DAC and for digital waveform computing circuitry increases approximately

359

360 Direct Digital Synthesis

in proportion. Nevertheless, the DDS can be combined into a multiloop hybrid
PLL arrangement where, with careful design, the best of both worlds can be
achieved. The DDS gives the hybrid synthesizer small step size and faster switching,
while the PLL synthesizer keeps the power consumption low, even when the desired
output frequency is in the gigahertz range.

10.2 DDS Theory of Operation

A basic DDS system, as shown in Figure 10.1, consists of a numerically controlled
oscillator (NCO) to generate the sampled signal, followed by a DAC used to convert
the digital waveform to an analog signal. Since the DAC output is sampled at the
reference clock frequency, a deglitch lowpass filter is typically used to smooth the
waveform. The NCO uses an N-bit accumulator to generate a phase ramp based
on the N-bit input frequency control word (FCW). A read-only memory (ROM)
stores the amplitude information of the desired waveform. With the phase word
as the address, the ROM’s output is the amplitude word of the synthesized wave-
form. The FCW is continuously added to (accumulated with) the last sampled
phase value by an N-bit adder. When the accumulator reaches the N-bit maximum

Figure 10.1 A ROM-lookup-table-based DDS Architecture.

10.2 DDS Theory of Operation 361

value, the accumulator rolls over (overflows) and continues. The rollover rate of
the accumulator is hence the DDS output frequency:

fo = fclk
FCW

2N (10.1)

where fclk is the DDS sample clock frequency. Since the FCW can be stepped by
unity, the resolution of the DDS is given by

Resolution =
fclk

2N (10.2)

It is now evident that a DDS can achieve a very fine resolution if the accumulator
size N is large. For example, if a 32-bit accumulator is used, and the DDS operates
at a clock frequency of 100 MHz, its resolution is 0.0233 Hz. However, fine
resolution relies on a large number of accumulator bits, which corresponds to a
long phase word. Note that the ROM size is proportional to the addressing range
2N. As a result, a large ROM lookup table is required. In order to reduce the ROM
size while keeping a fine step size, only the most significant P bits of the phase
word are used to address the ROM. This truncation at the accumulator output
causes a quantization error that will be discussed in Section 10.3.4. The ROM size
is equal to

ROM size = 2P ? D (10.3)

where D, the number of amplitude bits, is determined by the number of DAC
input bits.

While increasing the number of phase bits is always feasible, increasing the
number of DAC input bits is limited by the semiconductor technology. Even if the
desired number of DAC bits can be implemented using an available technology,
adding bits is costly due to large increases in die size and power consumption.
Therefore, the goal of DDS design is to minimize the phase-truncation error such
that the DDS output noise is dominated by the DAC quantization noise. A good
design practice is that the number of truncated phase bits P should be slightly
larger than the number of output amplitude bits D, which corresponds to the
number of DAC input bits.

If a sinusoidal waveform is to be generated by the DDS, the frequency domain
representation of the sinusoid is an impulse function at the specified frequency.
The NCO, however, puts out discrete sampled data of this sinusoid at the NCO
sampling clock rate. In the time domain, the NCO output is the product of the
sampling clock edge strobes (impulses at the clock edges, hereafter simply called
the sampling clock) multiplied by the sinusoidal waveform, which produces a
stream of impulses with the sinusoid’s magnitude. In the frequency domain, the
sampling strobes of the reference clock produce a stream of impulses at multiples
of the NCO clock frequency. Since the sampling clock is multiplied by the sinusoid
in the time domain, the frequency domain components of the sinusoid and the

362 Direct Digital Synthesis

sampling clock are convolved to produce the spectral representation of the NCO
output as shown in Figure 10.2.

In a DDS system, the DAC translates the NCO digital output into an analog
signal. The DAC is a sample-and-hold system that takes the NCO digital amplitude
words and converts them into an analog voltage or current. For zero-order hold,
the DAC holds the output value for one sample period. Figure 10.3 illustrates the
temporal and spectral representations of the DDS output after the DAC and the
deglitch lowpass filter. The sample-and-hold transfer function can be expressed as
u(t) − u(t − Ts) in the time domain, where u(t) is the unit step function. In the
frequency domain, the sample-and-hold function is a sinc function [sin(x)/x] with
the first null at the sampling clock frequency fs , as shown in Figure 10.3(a). In
the time domain, the DAC output is the convolution of the sample-and-hold func-
tion and the NCO output shown in Figure 10.3(b). Since the time domain represen-
tation is convolved, the spectral representation of the DAC output is the
multiplication of the sample-and-hold function and the NCO output. As a result, the
DDS output has a sinc envelope. The DAC’s zero-order sample-and-hold imposes a
sinc attenuation envelope to the fundamental, images, and harmonics in the DDS
output spectrum as

Attenuation = 20 log3sinSp f
fs
D

p f
fs

4 [dB] (10.4)

Figure 10.2 Temporal and spectral representations of (a) the sinusoidal waveform, (b) the sample
clock strobes, and (c) the NCO output.

10.3 DDS Spectral Purity 363

Figure 10.3 Temporal and spectral representations of (a) the sample-and-hold function, (b) the
DAC output, and (c) the DDS output.

The deglitch lowpass filter removes the spurs located outside the filter passband.
The DDS output is thus a pure sinusoidal wave with low spurious components,
as shown in Figure 10.3(c).

10.3 DDS Spectral Purity

The DDS spectral purity is dependent upon a number of factors, including the
clock phase noise, the number of phase bits applied to the sine-lookup function,
the number of bits in the lookup table, the DAC errors, including nonlinearities
and quantization noise, and the deglitch filter noise, as shown in Figure 10.4. If
there are no phase and amplitude truncations and if the DAC is an ideal linear
device with an infinite number of input bits, the DDS output will be an ideal
sinusoidal waveform expressed as

s(t) = A sinS2p ? FCW

2N ?
t

Tclk
D = A sinS2p ? FCW

2N ? nD (10.5)

where A is the full-scale output magnitude of the DAC, and t = nTclk , where Tclk
is equal to Ts , the sampling period. However, a DDS is not an ideal device. It
has four principal noise and spurious sources: the reference clock (ECLK), phase
truncation (EP), amplitude truncation (EA), and DAC nonlinearities (EDAC). For
an NCO without the DAC, the quantization noise and spurs are mainly caused by

364 Direct Digital Synthesis

Figure 10.4 DDS noise and spurious sources.

two nonlinear operations: (1) the truncation of the phase accumulator output bits
in order to reduce the ROM size, and (2) the finite precision of the sinusoidal
magnitudes stored in the ROM using a finite number of bits. In order to reduce
the ROM size, various ROM compression algorithms have been developed. ROM
compression also causes amplitude error, ECOM, that adds to EA the error produced
by amplitude truncation, as shown in Figure 10.4. For DDS, the nonlinearity and
additional noise due to the DAC (EDAC) and the deglitch filter (ELPF) further
degrade the output spectrum. This section analyzes various noise sources in DDS.
Various spur-reduction techniques have been proposed [1–4], of which SD noise
shaping has attracted attention recently. We will introduce modified DDS architec-
tures with SD noise shaping in Section 10.4.

10.3.1 Phase Noise Due to Clock Jitter

A DDS functions like a frequency divider with a reference sampling clock as its
input and a divided frequency as its output provided by the DAC. The spectral
purity of the reference clock is the major contributor to the DDS output phase
noise floor, even though its effect is reduced during the frequency division process.
As in the phase noise analysis of a frequency divider given in Chapter 3, the
clock will be assumed to have a sinusoidal FM signal described by A cos[v s t +
b sin(v j t)], where v s is the DDS sample clock frequency, v j is the FM jitter signal
frequency, and b is the modulation index. The DDS output SNR due to the jittered
clock is derived as [5]:

SNR ≈ 3.01 − 20 log b + 20 logS fs
fo
D dB (10.6)

where 3.01 − 20 log b is equivalent to the SNR for an FM signal. Therefore, the
phase noise of the DDS output is improved over its clock phase noise by an amount
of 20 log(fs /fo) = 20 log(2 ? OSR) dB, where the OSR is defined as fs /2fo . For
example, the phase noise difference between two output frequencies of 10 MHz
and 100 MHz should be 20 log(10) = 20 dB if the same clock frequency is used
to generate the two frequencies. DDS with a high oversampling ratio can hence
achieve lower phase noise. Additional spur attenuation is possible if clock buffers

10.3 DDS Spectral Purity 365

with fast transitions are employed since a high-slew-rate reference clock spends
less time in the transition region where noise can cause jitter. Such clock buffers
work as limiters or squaring circuits. The limiting process converts a clock with a
sinusoidal waveform to a square waveform and, thus, reduces the AM spurs. Note
that AM noise is converted to PM noise that directly affects the DDS output
spectrum. By limiting the AM noise, the clock buffers provide additional attenuation
of the clock jitter and, thus, improve the DDS output spectral purity. Although a
sharp transition clock buffer is difficult to implement at high clock frequencies, it
is good practice to maintain balanced clock tree networks with sufficient strength
to drive the flip-flops and current switches in the DDS. In addition, it is important
to minimize coupling from digital switching noise and power-supply noise to the
high-frequency clock and analog signals.

10.3.2 Spurs Due to Discrete Phase Accumulation

For an N-bit phase accumulator, the desired output period is given by

To =
2N

FCW
? Tclk (10.7)

In addition, there is another periodicity in the discrete phase-accumulation
process that generates spurious tones in the frequency domain. The spur period
can be determined by

Tspur =
2N

GCD(FCW, 2N)
? Tclk (10.8)

where the greatest common divisor (GCD) of a and b is denoted by GCD(a, b).
Note that the spur period is an integer multiple of the desired output period since
the FCW must be an integer multiple of GCD(FCW, 2N). In general, the spurs of
an N-bit phase accumulation are equally spaced and located at frequencies of

fspur = Fn ?
GCD(FCW, 2N)

2N ? fclk (10.9)

where Fn is an integer number used to number the spurs sequentially. Obviously,
the desired output frequency of fo has been included in the above expression. The
number of spurs between the harmonics of the output fundamental tones is hence
given by

ko =
Tspur
To

− 1 =
FCW

GCD(FCW, 2N)
− 1 (10.10)

Within the entire sampling bandwidth (i.e., from −fclk /2 to fclk /2), the total
number of spurs due to discrete phase accumulation is given by

366 Direct Digital Synthesis

ktotal =
Tspur
Tclk

− 1 =
2N

GCD(FCW, 2N)
− 1 (10.11)

where the harmonics of the fundamental tone have been included, and the funda-
mental tone itself has been excluded. Considering only the positive frequency band,
the number of spurs in the Nyqusit band from 0 to fclk /2 is given by

kNyquist =
2N − 1

GCD(FCW, 2N)
(10.12)

When the input frequency word is a power of two, that is, FCW = 2i, there
will be no spurs due to phase accumulation. In this case, the accumulator repeats
at the same value after every overflow. As a result, the spurs overlap with the
harmonics of the fundamental tone; that is

fspur1 =
GCD(FCW, 2N) ? fclk

2N =
FCW ? fclk

2N = fo (10.13)

Example 10.1 Phase Accumulator Spurs
Analyze the spurious tone locations for an accumulator with length N equal to 8,
and FCW equal to (a) 96 and (b) 64.

Solution: (a) When FCW = 96, the spur period is given by

Tspur =
2N

GCD(FCW, 2N)
=

256
GCD(96, 256)

=
256
32

= 8

Assume that the accumulator starts with a value of zero. With input of 96, the
accumulator values at each time step are given as follows: 0, 96, 192, 32, 128,
224, 64, 160, 0, 96, . . . , which shows that the accumulator value indeed repeats
every eight clock cycles. The desired output frequency is given by

fo =
FCW ? fclk

2N =
96

256
? fclk = 0.375 ? fclk

This corresponds to the overflow of the accumulator every 256/96 clock cycles.
In addition, a secondary periodicity repeats every eight clock cycles, that is, at
multiples of

fspur =
GCD(FCW, 2N) ? fclk

2N =
fclk
8

= 0.125 ? fclk

The spurious tones are hence at the multiple of ±1/3 of the fundamental
frequency fo . In the example, there are 96/32 − 1 = 2 spurs between the harmonics
of the output fundamental, and there are a total of 128/32 = 4 spurs in the Nyquist
band from 0 to fclk /2. The four spurs are located at fclk /8, fclk /4, 3fclk /8, and fclk /2.

10.3 DDS Spectral Purity 367

(b) When FCW = 64, without losing generality, assume the accumulator initial
value is zero. The accumulator values at each time step are given as follows: 0,
64, 128, 192, 0, 64, . . . , which means that the accumulator repeats the same value
after every overflow. Thus, there is no secondary periodicity except the desired
output period of 4Tclk . Therefore; no spurs will be seen in the output spectrum.

10.3.3 Spurs and Quantization Noise Due to Phase Truncation

While a pure sinusoidal waveform is desired at the DDS output, spurious tones
can occur mainly due to a number of nonlinear processes. In order to reduce the
lookup table’s ROM size, the phase word is normally truncated before being used
as the ROM address. This truncation process introduces quantization noise, which
can be modeled as a linear additive noise to the phase of the sinusoidal wave. The
ROM word length is normally limited by the finite number of bits of the available
DAC.

First, the phase truncation will be analyzed in the time domain. At time step
n, the N-bit phase word at the output of the N-bit phase accumulator is updated
as [6]

F [n + 1] = (F [n] + FCW)mod 2N (10.14)

where F [n] represents the phase at time step n, and A mod B represents taking
the integer residue of A modulo B. For example, 26 mod 16 = 10. To reduce the
ROM size, only the P most significant bits of the accumulator output are used to
address the lookup table. Truncating the N-bit phase word into P-bits causes a
truncation error Ep , expressed as

Ep [n + 1] = (Ep [n] + R)mod 2N − P (10.15)

where R is the least significant (N − P) bits of the FCW value given by

R = FCW − FCW

2N − P × 2N − P (10.16)

where   denotes the truncation to keep the integer part. Hence, the output ampli-
tude of the NCO can be expressed as

S[n] = sinS2p (F [n] − Ep [n])

2N D (10.17)

= sinS2pF [n]

2N D cosS2pEp [n]

2N D − cosS2pF [n]

2N D sinS2pEp [n]

2N D
where S[n] is the amplitude at time step n. This can be compared to the ideal
sinusoidal waveform s(t) given by (10.5). For small truncation error, the above
equation becomes

368 Direct Digital Synthesis

S[n] ≈ sinS2pF [n]

2N D −
2pEp [n]

2N ? cosS2pF [n]

2N D (10.18)

The first term gives the desired sinusoidal output, and the second term is the
error introduced by phase truncation. As shown, the phase-truncation error gives
an AM term on the quadrature output. The phase-error sequence represented by
the truncated N − P bits satisfies the condition that |Ep [n] | < 2N − P. The phase
truncation causes errors only when GCD(FCW, 2N) < 2N − P. Otherwise, the
N − P LSBs of the phase word vanish, and the phase truncation does not cause
any error. For example, if N = 8, P = 6, and FCW = 22 = 3’b100, where 3’b100
denotes the decimal number 4 in 3-bit Verilog binary format, GCD(4, 28) = 22 =
28 − 6, and the two LSBs of the phase word are always equal to zero. Thus, phase
truncation of the two LSBs does not cause any error.

Phase-truncation error is periodic, and its periodicity can be understood
intuitively by analyzing (10.15). It is evident that Ep [n] can be modeled by an
(N − P)-bit small accumulator with R as its input. The accumulator is called small
compared to the N-bit accumulator without truncation. Hence, the period of the
error sequence Ep [n] is given by 2N − P/R. Thereby, the periodic truncation error
creates major spurs at the harmonic frequencies of fclk R /2N − P. Figure 10.5 shows
the periodic sawtooth waveform of the phase-truncation error. Note that the slope
of the sawtooth is given by

Slope =
R

Tclk
= R ? fclk (10.19)

and the frequency of the sawtooth waveform is

fsaw =
slope

2N − P =
R ? fclk

2N − P (10.20)

which is the output frequency of an (N − P)-bit accumulator with R as the input.
From (10.9), the (N − P)-bit accumulator with R as the input also causes spurs

at the frequencies of

fspur = Fn ?
GCD(R, 2N − P)

2N − P ? fclk (10.21)

Figure 10.5 Quantization error sequence of phase truncation.

10.3 DDS Spectral Purity 369

This expression covers the major spur frequencies Fn ? fclk R /2N − P as well.
Note that the least significant (N − P)-bit frequency word R can be replaced with
the original N-bit FCW since the P most significant bits of the FCW do not affect
the operation of the small accumulator with a length of N − P bits. Therefore, the
phase-truncation spurs are mixed with the DDS output frequency, generating spurs
at offset frequencies of

fspur = Fn ?
GCD(FCW, 2N − P)

2N − P ? fclk (10.22)

where Fn is an integer to number the spurs sequentially. Note that the spurs due
to the N − P bit accumulator form a subset of the spurs due to the N-bit accumulator
given in (10.9). According to (10.12), the number of spectral lines in the Nyquist
band due to the truncated small accumulator with length of N − P bits is given by

L =
2N − P − 1

GCD(FCW, 2N − P)
(10.23)

It should be pointed out that the above expression considers all the potential
spur locations due to phase truncation. Those spurs have different magnitudes and
some of them may even vanish. A more complete analysis of spur locations and
magnitude involves a Fourier transformation. If the sawtooth waveform shown in
Figure 10.5 can be expressed as a Fourier series, the spurs associated with phase-
truncation errors can be analyzed. However, the sawtooth waveform is defined to
have a value of zero at the discontinuity, which violates the Dirichlet condition
required for a Fourier transform. The Dirichlet condition requires that the function
take its average value, which is 2N − P in this case, at a point of discontinuity.
B. Kim, H. T. Nicholas, and H. Samueli [7–9] represent the phase error as the
superposition of an ideal Dirichlet sawtooth and a correcting waveform such that
both waveforms satisfy the Dirichlet conditions, and the sampled, superposed
waveform equals the actual error sequence. Without going into detail, we express
the error sequence as [7]

Ep [n] =
−2N − P

2L ∑
L

K = 1
FcotSKp

2L D sinS2pK
FCW

2N − P ? nD − cosS2pK
FCW

2N − P ? nDG
(10.24)

Note that the error sequence is expressed as a sum of L distinct spurious tones,
where L is defined in (10.23). Combining the sine and cosine terms into a complex
Fourier series yields

Ep [n] = ∑
L

K = 1
HjK expSj2pK

FCW

2N − P ? nD ? exp[jC (K, L)]J (10.25)

where the complex phasor has the following magnitude and angle:

370 Direct Digital Synthesis

Magnitude: jK =
2N − P

2L
cosecSKp

2L D (10.26)

Angle: C (K, L) = −cotSKp
2L D

Now, applying the obtained error sequence Ep into (10.18), the NCO output
with the phase-truncation error can be expressed as

S[n] ≈ sinS2p
FCW

2N ? nD −
2p

2N ? ∑
L

K = 1
jK

? HexpFj2pSFCW

2N + K
FCW

2N − PD ? nG + expF−j2pSFCW

2N − K
FCW

2N − PD ? nGJe jC (K ,L)

(10.27)

Note that the first term represents the desired output sinusoidal waveform,
and the second term is the summation of the L uniformly spaced phase-truncation
spurs with magnitude of

jK± =
2p

2N jK =
p

2P + 1L
cosecSKp

2L D (10.28)

and located at frequencies given in (10.9). Next, we define a variable

G =
FCW

GCD(FCW, 2N − P)
(10.29)

so that the frequency FCW/2N − P can be expressed as a rational fraction of two
prime integers. As shown in (10.12), an accumulator with length N may cause
2N − 1/GCD(FCW, 2N) potential spurs uniformly distributed in the Nyquist band
from 0 to fclk /2. The spurs can be sequentially numbered with the frequency number
Fn defined in (10.9). The kth spur index can be found using the following rules:

• If neither Fn − L nor −Fn − L is divisible by two, then the magnitude of the
spur at Fn is zero.

• If Fn − L is divisible by two, then the kth spur index is given by

K = SFn − L

2P ? GL − 1D mod(2L) (10.30)

• If −Fn − L is divisible by two, then the kth spur index is given by

K = S−Fn − L

2P ? GL − 1D mod(2L) (10.31)

10.3 DDS Spectral Purity 371

According to the above Fourier analysis on the sawtooth error sequence shown
in Figure 10.5, the kth spur magnitude due to phase-truncation error can be
summarized as [7]

jK± = 5
p

2P + 1L
cosecSKp

2L D if ±Fn − L is divisible by 2

0 otherwise

(10.32)

The above spur magnitude is a monotonically decaying function when K
increases. The worst-case spur magnitude normalized to a signal magnitude of
unity can thus be obtained by setting K = 1:

j±1 Worst spur =

pGCD(FCW, 2N − P)

2N − P

2P sinFpGCD(FCW, 2N − P)

2N − P G
(10.33)

= 2−P sinc−1FpGCD(FCW, 2N − P)

2N − P G
It is important to note that the spurs due to phase truncation are nonexistent

when the least significant (N − P) bits of the FCW value are zeros, that is,
GCD(FCW, 2N − P) = 2N − P. However, for GCD(FCW, 2N − P) < 2N − P, the magni-
tude of the worst spurs is a decaying function of 2N − P/GCD(FCW, 2N − P) with
the maximum value of (p /2) ? 2− P = −6.02 ? P + 3.922 dB when GCD(FCW, 2N − P)
= 2N − P − 1, which means there is only one spur (L = 1). If the number of spurs
is large, meaning that GCD(FCW, 2N − P) ! 2N − P, the worst spur magnitude
asymptotically approaches the lower bound of 2− P, or −6.02 ? P, in decibels. An
example of where spur magnitude approaches the lower bound occurs when FCW
and 2N − P do not have common divisors greater than one. In this case, GCD(FCW,
2N − P) = 1 and the number of discarded bits (N − P) is large. In summary, the
worst-case spur magnitude due to phase truncation can be estimated by

5
jmax =

p
2

? 2−P = −6.02 ? P + 3.92 [dBc] if L = 1 [i.e., GCD(FCW, 2N − P) = 2N − P − 1]

jmin = 2−P = −6.02 ? P [dBc] if L = ∞ [i.e., GCD(FCW, 2N − P) ! 2N − P]

j = 0 if GCD(FCW, 2N − P) = 2N − P

(10.34)

Therefore, the worst spur magnitude can be reduced by 3.922 dB if we force
GCD(FCW, 2N − P) = 1, by adjusting the FCW to be relatively prime to 2N − P. A
modification of the phase accumulator was proposed in [7]. The modification
causes the output of the phase accumulator to behave as if the accumulator word

372 Direct Digital Synthesis

length is N + 1, with the LSB to be 1. Thus, a relatively coprime FCW and 2N − P

can result in GCD(2 ? FCW + 1, 2N − P + 1) = 1.
The periodic phase-truncation error is equivalent to a nonuniform sampling

process [10], in which the sinusoidal waveform is sampled nonuniformly with
sampling advancement offsets, which means sampling takes place earlier than the
DDS clock edge. Summing all the spur energy gives the total noise power. The
noise-to-signal ratio (NSR) due to phase truncation can be found as [11, 12]

NSR = 5sincF p

2N GCD(FCW, 2N − P)G
sincSp

2PD 6
2

− 1 (10.35)

It is interesting to mention the following properties of the phase-truncation
noise:

1. If

2L =
2N − P

GCD(FCW, 2N − P)
= 1

the least significant (N − P) bits of the FCW are zeros, and there are no
spurs due to phase truncation. The only spectral line in the range of −fclk /2
≤ f ≤ fclk /2 is the desired signal.

2. For a fixed number of phase bits P, the NSR is an increasing function of
the number of spectral lines L, which results in a higher noise level.

3. For a fixed number of spectral lines L, the NSR is a decreasing function of
the number of phase bits, P. Therefore, more phase bits lead to a lower
noise level.

Therefore, the upper and lower bounds of the phase-truncation noise can be
found by assuming an infinite number of spurs [L = ∞, i.e., GCD(FCW, 2N − P) !

2N − P according to (10.23)] and one spur [L = 1, i.e., GCD(FCW, 2N − P) = 2N − P − 1]
as follows:

5
NSRmax = sinc−2Sp

2PD − 1 if L = ∞

NSRmin = tan2S p

2P + 1D if L = 1

NSR = 0 if GCD(FCW, 2N − P) = 2N − P

(10.36)

For a large number of phase bits, P, and considering trigonometric approxima-
tions, the above equations can be approximated as

10.3 DDS Spectral Purity 373

5
NSRmax ≈

1
3 Sp

2PD
2

= −6.02 ? P + 5.17 [dB] if GCD(FCW, 2N − P) ! 2N − P

NSRmin =
p
2 S 1

2PD
2

= −6.02 ? P + 3.92 [dB] if GCD(FCW, 2N − P) = 2N − P − 1

NSR = 0 if GCD(FCW, 2N − P) = 2N − P

(10.37)

Comparing to the spur magnitude given in (10.34), we can see the following
trends: (1) if there is only one spur, the spur power reaches the maximum, and
the resultant NSR is minimum; (2) however, with an infinite number of spurs, the
spur power reaches the minimum, and the resultant NSR is maximum.

10.3.4 Quantization Noise Due to Finite Number of Amplitude Bits

Amplitude quantization errors occur when storing the sinusoidal values in the
lookup table. The lookup takes in a fixed number of phase bits and converts them
to the equivalent sine amplitude word with a finite number of bits, which is normally
chosen based on the available number of DAC input bits. Additional noise will be
introduced when compression algorithms are used for ROM size reduction. ROM
compression is achieved by storing only part of the sinusoidal values and recon-
structing other data points by interpolation. Adding the amplitude error due to
finite amplitude resolution EA and the amplitude error due to ROM compression
ECOM, the NCO output given in (10.18) can be rewritten as

S[n] ≈ sinS2pF [n]

2N D −
2pEp [n]

2N ? cosS2pF [n]

2N D + EA + ECOM (10.38)

A quick look at the sinusoidal function sin(x) ≈ x − x3/6 reveals that fewer
bits are required to represent the amplitude of a sine wave than the number of its
phase bits since the amplitude word of sin(x) is less than the phase word x in the
first quadrant. Hence, more phase bits than amplitude bits should be used for
reducing the spurs.

As shown, the discrete phase-accumulation process with finite phase bits gener-
ates spurious tones that are worsened by the phase truncation. Unlike phase trunca-
tion, the effect of finite amplitude word length generates random quantization noise.
As discussed in Chapter 9, at the Nyquist rate, the SNR due to the quantization noise
power that falls into the signal band is given by 3/2 × 22D = 6.02D + 1.76 dB,
where D is the finite amplitude word length. Considering the quantization noise
due to both the finite phase bits (10.34) and the finite amplitude bits, the worst-
case spur magnitude at the DDS output is given by

jmax [dBc] = 10 logSp2

4
? 2−2P +

2
3

? 2−2DD (10.39)

374 Direct Digital Synthesis

The above spur estimation is plotted in Figure 10.6. Note that the phase-
truncation error causes peak output spurs that are generally 3.92 dB + 1.76 dB =
5.68 dB above the quantization noise floor due to the finite amplitude bit effect.
Therefore, we need to choose P = D + 1 for DDS designs such that both the phase
spurs and the amplitude noise floor are reached at about the same quantization
noise level. Practically, P ≥ D + 2 should be chosen to ensure that the DDS output
spur magnitude is dominated by the finite number of amplitude bits and not by
the finite number of phase bits since it is much more costly to increase the number
of DAC bits than it is to increase the number of phase bits.

10.3.5 DAC Nonlinearities and Aliased Images

Since it is easier to minimize the quantization noise generated in an NCO than it
is to optimize the DAC analog circuits, the normal design practice is to use more
phase bits than amplitude bits in the lookup table. Therefore, the DAC nonlinearity,
distortion, and quantization noise become the dominant factors in determining the
DDS output spectrum purity. For a first-order approximation, the number of DAC
input bits determines the DDS broadband signal-to-spurious ratio, which is roughly
6 dB per bit. For example, a 12-bit, digitized, sinusoidal output will theoretically
provide a SNR of 72 dB. This SNR calculation models an ideal DAC with only
quantization noise due to the finite input bits. The actual SNR depends on the
quality of the DAC and the filter design, as well as the phase noise of the DDS clock
frequency. Real DACs have nonlinearities due to process mismatches, imperfect bit-
weight scaling circuits, nonideal switching characteristics, and so forth. The most

Figure 10.6 DDS worst-case spur magnitude due to finite phase bits and finite amplitude bits.

10.3 DDS Spectral Purity 375

prominent DAC spurs are usually due to nonideal switching, manifested as lower-
order harmonics of the fundamental, along with any nonlinearity in the DAC
transfer function. Both quantization noise and the DAC nonlinearity produce a
response that consists of spurs, which are harmonically related to the fundamental.
Since the DAC is a sampled system, the DAC’s sample-and-hold function imposes
a sinc envelope to the DDS output spectrum. Theoretically, the DDS is able to
generate frequencies from dc to the Nyquist frequency, which is half of the clock
frequency. However, the implementation of the deglitch filter limits the practical
upper bound of the DDS output frequency to about 40% of the clock frequency.
(Note that generating outputs at the Nyquist rate requires an infinitely fast roll
off in the deglitch filter to reject the aliased images.) In addition, the clock frequency,
the DDS output frequency, and their harmonics tend to mix with each other and
alias back to the Nyquist band. It is possible to predict the spur locations using a
well-defined mathematical model. The frequencies of the discrete spurs and their
amplitude are dependent on the ratio of the generated frequency fo to the sampling
clock frequency fs . As a nonlinear device, the DAC creates discrete aliased images
at the following frequencies:

fimage = m ? fs ± n ? fo (10.40)

where m and n are integers. Those images will be attenuated by the deglitch
filter transfer function and the DAC’s sample-and-hold function, sinc[p ? fo /fs].
Assuming that there are no spurs caused by finite phase and amplitude bits, the
DDS output spectrum with aliased images tones is shown in Figure 10.7.

Significant benefits arise in DDS applications from setting the DDS output
frequency at a subharmonic of the sampling clock frequency, which corresponds
to setting the input FCW to be a power of two. Hence, the DDS operates as a
frequency divider, and all the images are phase coherent with the clock, and no
additional jitter is produced. Careful selection of the clock frequency can eliminate
nth-order aliased images. It is necessary to consider only signal images beating

Figure 10.7 DDS output spectrum with aliased image tones.

376 Direct Digital Synthesis

with the fundamental of the clock, and it is possible to ignore higher-order clock
harmonics and higher-order cross products since they are weaker in magnitude.
The condition to eliminate the nth-order images along with all lower-order aliased
images can be shown to be fclk > (n + 1) fmax, where n is the order of aliased images
and fmax is the upper edge of the band of interest. For example, if the DDS maximum
output frequency fmax is 25 MHz, a clock frequency of fclk > 125 MHz will eliminate
all aliased images up to the fourth order.

10.3.6 Oversampling Effect

As discussed in Chapter 9, operating a sampled system at a frequency higher
than the Nyquist rate reduces the quantization noise density due to the increased
bandwidth. Oversampling effects can also be applied to DDS, since it is intrinsically
a sampled system, before data conversion. Although the random quantization noise
floor can be lowered, oversampling does not affect the spur level since the spurs
occur at deterministic frequencies and are therefore not randomized noise. Assum-
ing the DAC’s effective number of bits D dominates the DDS quantization noise,
the DDS signal-to-noise spectral density can be represented by

SNR = 6.02 ? D + 1.76 + 3 log2 OSR [dB] (10.41)

where the oversampling ratio is defined as

OSR =
fclk

2 fout
=

2N

2 ? FCW
=

2N − 1

FCW
(10.42)

Hence, every doubling of the OSR results in a 3-dB improvement of the quanti-
zation noise SNR, which is equivalent to an increase of half of an input bit. Although
the deterministic spurs are not affected by the oversampling effect, the DDS output
spectral purity is limited by the available circuit speed. When the DDS clock is
close to its maximum operating frequency, the spurious free dynamic range (SFDR)
of the DDS output will get worse as the clock frequency increases. Thus, at high
clock frequencies, the quantization noise cannot be effectively reduced by as much
as would be predicted by oversampling theory.

10.4 SD Noise Shaping in DDS

It was shown that the phase-truncation process associated with the conventional
DDS architecture introduces quantization error and spurs. The DDS output due
to the quantization errors of phase truncation Ep and finite amplitude resolution
EA is given in (10.38). It has been shown that the phase error is amplitude modulated
on the quadrature signal with respect to the desired signal output. To avoid aliasing
during data conversion, the synthesized frequency must be smaller than the DDS
clock frequency. Thus, oversampling is always encountered in DDS, allowing noise-
shaping techniques to be used to shift the phase quantization error to a higher

10.4 SD Noise Shaping in DDS 377

frequency band, where the noise can eventually be removed by the deglitch filter
after the DAC. SD noise shaping has been employed in DDS designs [6, 13, 14].
SD modulation can be implemented in both the frequency and phase domains in
a DDS. The frequency domain SD modulation has the advantages of increased
dynamic range due to constant input and reduced accumulator size due to FCW
truncation in the frequency domain. Noise-shaping techniques can be used either
to increase the DDS resolution for high-performance applications or to reduce the
ROM size for low-cost applications. Using the SD interpolator to remove the phase-
truncation error, we can build a larger accumulator (e.g., n > 32 bits) to achieve
finer resolution with low quantization noise. Alternatively, without degrading the
output spectral purity, we can truncate even more phase bits to address a much
smaller ROM size [14].

10.4.1 DDS Using Phase Domain SD Noise Shaping

Recall that SD modulators discussed in Chapter 9 can noise-shape the quantization
error towards higher frequency bands. In a DDS, various SD topologies can also
be used to reduce the phase-truncation errors. Figure 10.8 illustrates the implemen-
tation of phase domain noise shaping using a feedback SD modulator, as shown
in Figure 10.8(a), or using a feedforward SD modulator, as shown in Figure 10.8(b).
As shown in Figure 10.8(b), a kth-order SD noise shaper with a unique transfer
function can be added after the phase truncation. For noise shaping, the discarded

Figure 10.8 DDS architecture with a kth-order, phase domain SD noise shaper to reduce phase-
truncation error: (a) DDS with phase domain feedback SD noise shaper, and (b) DDS
with phase domain feedforward SD noise shaper.

378 Direct Digital Synthesis

(N + 1 − P) LSB of the phase word, Ep , is fed into a kth-order SD noise shaper
with transfer function of 1 − (1 − z −1)k. For both phase domain feedback and
feedforward SD noise shapers with a noise transfer function of 1 − (1 − z −1)k, the
resulting DDS output can be expressed as

S[n] = sinH2p [F [n] − Ep [n] ? (1 − z −1)k]

2N J (10.43)

≈ sinS2pF [n]

2N D −
2pEp [n]

2N ? (1 − z −1)k ? cosS2pF [n]

2N D
It can be seen that the phase error Ep is highpass filtered by the SD interpolator

before the phase-to-amplitude conversion via the lookup table. This highpass noise
shaping greatly reduces the close-in phase noise and decorrelates the phase-trunca-
tion errors. Thus, the spurious components at the DDS output are greatly reduced
or eliminated. Note that the feedback SD noise shaper requires an (N + 1)-bit
adder, while the feedforward SD noise shaper requires only a P-bit adder.

To demonstrate the SD shaping effect on the phase-truncation error, the modi-
fied DDS architecture with a fourth-order, phase domain, feedback SD noise shap-
ing is simulated in MATLAB. The conventional DDS is also simulated as a
comparison. We compare the output spectra after the phase truncation with a dc
input to the accumulator in a conventional DDS (Figure 10.9) and a DDS with a
fourth-order SD noise shaper (Figure 10.10). Figure 10.10 clearly demonstrates
the highpass noise-shaping effect of the fourth-order SD interpolator with 80 dB/dec
slope at the input of the ROM after the phase truncation. Note that the plot is
not the DDS phase noise PSD but, instead, is the spectra of the digital phase words
after the phase truncation. As discussed in Chapter 9, the noise-shaping slope of
the phase noise PSD for a kth-order SD modulator is 20(k − 1) dB/dec. The fourth-
order SD interpolator should provide a 60 dB/dec highpass noise-shaping slope
for the phase noise PSD. The SD noise shaper moves close-in phase-truncation
spurious components to a higher frequency band, where they can easily be removed
by the deglitch lowpass filter.

Figure 10.9 Output spectrum after the phase truncation for a conventional DDS.

10.4 SD Noise Shaping in DDS 379

Figure 10.10 Output spectrum after the phase truncation for a DDS with a fourth-order, phase
domain SD noise shaper.

10.4.2 DDS Using Frequency Domain SD Noise Shaping

Similar to the phase domain SD noise shaping shown in Figure 10.8, Figure 10.11
illustrates frequency domain noise shaping using a SD modulator. Since the FCW
in a DDS is normally a constant, the inputs to the first adder are constant as
well, which benefits high-speed implementation using pipelined adders. Thus, the
feedforward SD modulator gains an advantage of less hardware over the feedback
SD modulator in the frequency domain since the first adder has only P bits in the
feedforward SD topology. For frequency domain feedback and feedforward SD
noise shapers with a noise transfer function of 1 − (1 − z −1)k, the resulting DDS
output can be expressed as

S[n] = sinH2pn SFCW

2N −
Ef [n] ? (1 − z −1)k

2P DJ (10.44)

It can be seen that the frequency error Ef is highpass filtered by the SD interpola-
tor before the phase accumulation. Note that the truncated frequency error will
be accumulated in the phase domain, which is the drawback of the frequency
domain SD noise shaping. Truncating the FCW also reduces the size of the accumu-
lator, which is often the speed bottleneck in a high-speed DDS. If the FCW is
truncated to P bits, there is no need to perform the phase truncation after the
accumulator. Note that frequency word truncation will simply result in a loss of
synthesis resolution should there be no SD interpolator that adds back the discarded
FCW bits. The frequency domain SD noise shaping reduces the close-in phase noise
as well. The noise-shaped spectrum will eventually be cleaned up by the deglitch
filter. Ideal sinusoidal waveforms with greatly reduced close-in phase noise and
spurious components can thus be achieved at the DDS output. It is of great commer-
cial value to achieve very low-phase noise frequency synthesis through DDS due
to its low cost and capability with digital CMOS integration.

10.4.3 ROM Size Reduction Using SD Noise Shaping

Without degrading the output SNR, SD noise shaping can also be used to reduce
the ROM size, which often takes up the majority of the DDS area. In an N-bit

380 Direct Digital Synthesis

Figure 10.11 DDS architecture with a kth-order, frequency domain, SD noise shaper to reduce
the frequency-truncation error: (a) DDS with frequency domain feedback SD noise
shaper, and (b) DDS with frequency domain feedforward SD shaper.

sampled system, if the quantizer has 2N quantization levels equally spaced by D,
then the maximum peak-to-peak amplitude is given by vmax = (2N − 1)D. If the
signal is sinusoidal, its power can be calculated as Ps = 1/8 ? (2N − 1)2D2. Chapter
9 shows that for an oversampled system with a kth-order SD modulator, the in-
band rms quantization noise power is given by

PN =
D2

12
p2k

2k + 1 S 1
OSRD

2k + 1

(10.45)

The SNR with oversampling and noise shaping can be found from the ratio
of the signal power to the noise power given above. The performance improvement
due to oversampling and SD noise shaping can be characterized by the number of
effective bits, which leads to the same SNR over a fixed bandwidth:

SNR = 6.02N + 1.76 + 3(2k + 1) log2 OSR − 10 log10S p2k

2k + 1D
(10.46)

10.5 High-Speed ROM-Less DDS 381

Therefore, the lowered quantization noise due to oversampling and noise shap-
ing leads to an effectively increased number of quantizer bits by

Neffective ≈ N +
2k + 1

2
log2 OSR − 1.66 ? log10S p2k

2k + 1D (10.47)

Note that the number of effective bits cannot be improved greatly without
significant oversampling. At the Nyquist rate (OSR = 1), there is even a reduction
in the number of effective bits due to the effect of the SD modulator. For
OSR ≥ 4, we conclude that a kth-order SD noise shaping reduces the required
number of phase bits at least by

P ≈ Prequired − 2k − 1 + 1.66 ? log10S p2k

2k + 1D (10.48)

For instance, a fourth-order SD noise shaper will at least effectively reduce the
required number of phase bits by four. To illustrate this point, we now describe
a fully integrated DDS using a fourth-order phase domain SD modulator imple-
mented in 0.35 mm CMOS technology with two poly and four metal layers [14].
A 16-bit accumulator is designed, and its 8 MSBs are used for addressing the
lookup ROM. The 12-bit current-steering DAC is integrated to convert the NCO
output to an analog signal. For 12-bit amplitude resolution in a conventional DDS
without a SD modulator, at least 12 phase bits should be used, which requires a
lookup ROM with 212 × 12 bits. As the previous paragraph shows, the use of a
fourth-order SD noise shaper effectively reduces the required number of phase bits
by four. Thus, only 8 phase bits are used to address the ROM, which reduces the
ROM size by a factor of 24, or 16 times, compared to that of a conventional DDS
without a SD modulator. Notice that this reduction in ROM size is due only to
the SD noise-shaping effect. A further ROM size reduction can be achieved using
ROM compression algorithms. The total DDS core area is 1.11 mm2. The 16-bit
phase accumulator and the fourth-order SD modulator occupy a die area of 0.3
× 0.2 mm2. The 28 × 12-bit ROM occupies only 0.3 × 0.3 mm2, whereas the area
would be 16 times larger without the SD noise shaper. In a conventional DDS,
the ROM normally takes the majority of the die area, whereas the ROM takes
only a small portion of the total area in this DDS implementation, which clearly
demonstrates the advantage of using high-order SD noise shaping in DDS designs.

10.5 High-Speed ROM-Less DDS

DDS provides precise frequency resolution and direct-modulation capability. How-
ever, the majority of the DDSs designed so far have been limited to low-frequency
applications with clock frequencies less than a few hundred megahertz. Digitally
generating highly complex, wide-bandwidth waveforms at the highest possible
frequency, instead of down near baseband, would considerably reduce the size,
weight, and power requirements, as well as the cost, of a transmitter architecture.

382 Direct Digital Synthesis

The DDSs considered so far with linear DACs contain three major parts: an accumu-
lator, a ROM for the sine lookup table, and a linear amplitude-to-amplitude DAC.
In a ROM-less DDS, the ROM is removed, and a nonlinear DAC serves as both
the digital sine wave generator and the phase-to-amplitude converter [15]. The
sine-weighted DAC eliminates the sine lookup table, which is the speed and area
bottleneck for high-speed DDS implementations.

This section discusses high-speed DDS designs suitable for multigigahertz clock
frequencies and capable of synthesizing and modulating output frequencies as high
as 5 GHz. A high-speed DDS includes a high-speed accumulator, column/row
decoders, and a sine-weighted DAC. Sine-weighted, 8-bit DACs operating with
clock frequencies from 2 to approximately 10 GHz have been implemented in
indium phosphide (InP) [16], silicon germanium (SiGe) [17], and CMOS [18]
technologies with spectral purities better than −45 dBc. In traditional DDSs, the
ROM size is exponentially proportional to the desired phase resolution. The ROM
occupies the majority of the DDS area and also limits its maximum operating
frequency due to the delay through the multilayer decoders. Though many ROM
compression methods have been proposed, such as trigonometric approximation
and parabolic approximation [19], the problems indicated above still exist. An
alternate approach is to replace the conventional linear DAC that converts digital
amplitude words to an analog amplitude waveform with a nonlinear DAC that
converts the digital phase word into an analog sine waveform directly [20].

Figure 10.12 shows the conceptual block diagram of the nonlinear DAC-based
ROM-less DDS. The N-bit FCW feeds into a phase accumulator that controls
the output frequency of a synthesized sine waveform. The output of the phase
accumulator is truncated into W bits according to the SNR requirement of the sine
output. The DDS architecture exploits the quadrant symmetry property of the
sine function around p /2 and p . The two MSBs are used to determine in which
sine wave quadrant the phase accumulator output resides, according to the quadrant
symmetry of the sine wave. The remaining W − 2 bits are applied to the comple-
mentor and are used to generate the waveform of the sinusoid in the first quadrant.

The speed of the DDS is often limited by the speed of the phase accumulator,
and, in turn, the speed of the accumulator depends upon the N-bit adder and
the flip-flop design. The following sections discuss two architectures for phase

Figure 10.12 High-speed DDS with a nonlinear, sine-weighted DAC.

10.5 High-Speed ROM-Less DDS 383

accumulators with different clock speeds. The pipelined accumulator is used for a
constant input word and can achieve the highest operating frequency, while the
accumulator with carry look ahead (CLA) adders can be employed for variable
inputs with medium operating frequencies. Finally, nonlinear DAC designs are
discussed.

10.5.1 Pipelined Accumulator

The accumulator delay is dominated by the adder delay. The simplest way to
construct an N-bit adder is to place N 1-bit adders in a chain, starting with a 1-bit
half adder, followed by N − 1 1-bit full adders, with the carry in of the full adder
connected to the carry-out of the previous bit. This ripple adder topology uses the
least hardware but operates at the slowest speed. The delay of a ripple adder is
due to the propagation of the carry bit from the LSB to the MSB. The sum and
carry-out of a full adder can be expressed as

HSum = A ⊕ B ⊕ Cin

Cout = A ? B + B ? Cin + Cin ? A
(10.49)

where A and B are the input bits and Cin is the carry-in of the adder. The delay
of an N-bit ripple adder is hence simply

Delay = (N − 1)Tcarry + Tsum (10.50)

where Tcarry is the time for carry generation and is equal to twice the delay of an
AND gate. Similarly, Tsum is the time for sum generation in a 1-bit adder and is
equal to twice the delay of an XOR gate.

If the accumulator input is time invariant, each bit of the input word and the
adder output bits can be delayed properly such that an N-bit accumulator can
operate at the speed of a 1-bit adder. This type of accumulator, called a pipelined
accumulator, uses the most hardware but achieves the highest speed. Figure 10.13
illustrates a generic architecture of an N × M pipelined accumulator with an
(N × M)-bit input FCW and a total of M pipelined rows. In the figure, Verilog
notation is used to represent the location of the bits. For instance, FCW[N :2N −
1] denotes bits of FCW from the Nth bit to the (2N − 1)th bit. Each row has a
total of M delay stages placed at the input and output of an N-bit adder. Obviously,
an N × M pipelined accumulator has a latency period equal to the propagation
delay of M − 1 clock cycles. Note that an accumulator needs at least one delay
stage, even without any pipelined stages. The illustrated pipelining accumulator
allows the N × M bit accumulator to operate at the speed of an N-bit accumulator,
a speedup of M times. When the number of adder bits is set to one (N = 1), the
1 × M bit accumulator can operate at the same speed as a 1-bit adder. As an
example, to realize an 8-bit accumulator, we can set N = 1 and M = 8. Thereby,
an 8-bit accumulator runs at the speed of a 1-bit accumulator consisting of a full
adder and a flip-flop. Chapter 5 discusses the CML circuit implementations for a
1-bit adder and resetable flip-flops. For example, Figure 5.10 shows a CML adder

384 Direct Digital Synthesis

Figure 10.13 Generic architecture of an N × M pipelined accumulator.

circuit, and Figure 5.17 shows a CML latch with active-low reset using four-level
transistors.

10.5.2 Accumulator with CLA Adders

As is discussed in Chapter 11, the DDS architecture can incorporate various types
of modulation and waveform generation. To allow the DDS to operate with modula-
tion, the pipelined accumulator needs to be modified to allow variable input FCWs.
In some types of modulation, the FCW input of the DDS changes continuously.
To incorporate frequency-modulation techniques in DDSs, the latency period (the
propagation delay) has to be reduced.

The 8-bit, fully pipelined accumulator architecture has a large latency period
of N − 1 = 7 clock cycles. This latency can be reduced to one clock cycle using an
N × M = 4 × 2 configuration, as shown in Figure 10.13. The two adders in the
accumulator are constructed using a 4-bit CLA architecture whose principles are
discussed in the following paragraphs. The latency can be reduced to zero by using
an 8-bit CLA adder to configure N × M = 8 × 1 accumulators. However, reducing
the pipelined stages M causes a considerable reduction in speed. The maximum

10.5 High-Speed ROM-Less DDS 385

speed attained by the N × M = 4 × 2 pipelined accumulator with CLA adders is
the same as the maximum speed attained by a 4-bit CLA accumulator, which can
operate at a maximum speed of about fT /12 using CML logic circuits.

For the adders shown in Figure 5.10, the speed bottleneck of a ripple adder is
the carry propagation from the LSB up to the MSB. If the carry propagation delay
can be reduced using additional logic, the adder delay can also be reduced. CLA
adders divide the full adders into subgroups and employ the CLA logic to speed
up the carry propagation process. According to (10.49), the carry out of the ith
full adder in an N-bit ripple adder chain can be expressed as

ci = Ai ? Bi + Ai ? ci − 1 + Bi ? ci − 1 = Ai ? Bi + (Ai ⊕ Bi) ? ci − 1 (10.51)

where Ai and Bi are the inputs, and ci − 1 is the carry-in of the ith full adder,
respectively. Since the inputs of the adder are available at the beginning of the
addition operation, we can extract the following two terms, which can be calculated
prior to the arrival of the carry-in bit:

HCarry generate: gi = Ai ? Bi

Carry propagate: pi = Ai ⊕ Bi
(10.52)

Analyzing (10.51), we conclude that if gi = 1, a carry is generated regardless
of the carry-in bit. Similarly, if pi = 1, the carry-in bit is propagated to the carry-
out bit. Thus, the two terms gi and pi are referred to as the carry generate and
carry propagate, respectively. With the gi and pi terms, the sum and carry out of
each bit can be found as

HCarry-out: ci = gi + pi ? ci − 1

Sum: si = pi ⊕ ci − 1
(10.53)

Note that the gi and pi terms can be calculated in parallel for all bit positions
in one gate delay right after the adder inputs are available. The niche of a CLA
adder is to use the following additional logic to set the carry bits with only the gi
and pi information of each bit as

5
c0 = g0 + p0 ? cin = g0

c1 = g1 + p1 ? g0

c2 = g2 + p2 ? g1 + p2 ? p1 ? g0

(10.54)

The resulting CLA adder is shown in Figure 10.14, which differs from the
simple ripple adder in the sense that the carry bits are generated in the CLA logic
unit based on (10.54). Thereby, the full adders (FAs) do not need to wait for their
previous bits to generate the carry bits; as a result, the speed is increased. In the
design of a high-speed CLA adder using CML logic with a 3.3V power supply, it
is typically assumed that the CML logic gates allow a maximum of three inputs,
meaning the fan-in of the gate is three. It is also assumed that the XOR gate has

386 Direct Digital Synthesis

Figure 10.14 A 4-bit, level I, CLA adder configuration.

twice the delay of the AND gate, and the 4-bit CLA adder has a total of six gate
delays, allowing all logic expressions in (10.52) to (10.54).

Obviously, CLA logic quickly becomes complicated when the number of input
bits increases. When the number of input bits increases to five, the CLA logic
requires logic gates with a fan-in of four, which is difficult to implement using
high-speed CML circuits. This problem can be solved if we subdivide the input
bits into groups and apply additional CLA logic for carry-bit calculation. If we
limit the maximum fan-in of the logic gates to four, a 16-bit CLA adder can be
constructed as shown in Figure 10.15, where every 4 bits have been grouped as a
level I CLA adder, and the four level I CLA adders are further connected to form
a 16-bit, level II CLA adder. For the two-level CLA adder, the level I CLA logic
can be obtained by

Level I CLA Logic:

5
c0 = g0 + p0 ? cin

c1 = g1 + p1 ? g0 + p1 ? p0 ? cin

c2 = g2 + p2 ? g1 + p2 ? p1 ? g0 + p2 ? p1 ? p0 ? cin

(10.55)

Figure 10.15 A 16-bit, level II, CLA adder configuration.

10.5 High-Speed ROM-Less DDS 387

and the level II CLA logic can be obtained by

Level II CLA Logic:

5
C0 = G0 + P0 ? Cin

C1 = G1 + P1 ? G0 + P1 ? P0 ? Cin

C2 = G2 + P2 ? G1 + P2 ? P1 ? G0 + P2 ? P1 ? P0 ? Cin

(10.56)

The level II carry propagate Pi are obtained by ANDing all of the level I carry
propagates pi inside the group as

5
P0 = p3 ? p2 ? p1 ? p0

P1 = p7 ? p6 ? p5 ? p4

P2 = p11 ? p10 ? p9 ? p8

(10.57)

All of the level II carry generates Gi are obtained similarly to the level I carry-
out logic:

5
G0 = g3 + p3 ? g2 + p3 ? p2 ? g1 + p3 ? p2 ? p1 ? g0

G1 = g7 + p7 ? g6 + p7 ? p6 ? g5 + p7 ? p6 ? p5 ? g4

G2 = g11 + p11 ? g10 + p11 ? p10 ? g9 + p11 ? p10 ? p9 ? g8

(10.58)

Note that the level II P3 and G3 for the last group are not needed in the 16-bit
CLA logic given in (10.56).

Assuming the XOR delay is twice the delay of an AND gate, the above-
developed, 16-bit, level II CLA adder with a maximum fan-in of four experiences
the following delays: (1) two gate delays to calculate level I carry generate gi and
propagate pi in (10.52); (2) two gate delays to calculate level II carry generate Gi
and propagate Pi in (10.57) and (10.58); (3) two gate delays to calculate level II
carry in (10.56); (4) two gate delays to calculate level I carry in (10.55); and (5)
two gate delays to calculate the sum and carry-out of the MSB based on (10.53).
Hence, the total delay for the 16-bit CLA adder is 10 AND gate delays. In compari-
son, an N-bit ripple adder experiences (2N − 1) gate delays as follows: (1) one
gate delay for the LSB to generate the carry-out; (2) (N − 2) × 2 gate delays for
all of the bits except the LSB and MSB to generate the carry-outs; and (3) two gate
delays for the MSB to generate the sum and carry-out. Therefore, a 16-bit ripple
adder has a total of 31 gate delays, which is 21 more gate delays than the 16-bit
CLA adder. When the number of bits is further increased, the CLA adder will have
an even larger speed advantage over the simple ripple adder. Recall that a 4-bit,
level I CLA has six gate delays. Extending the 4-bit, level I CLA adder to a 16-bit,
level II CLA adder requires only four more gate delays to calculate the level II
carry generate Gi and propagate Pi in (10.57) and (10.58) and the level II carry-
outs in (10.56). Further extending the 16-bit, level II CLA adder to a 32-bit, level
III CLA adder requires an additional four gate delays to calculate the level III carry
generate Gi and propagate Pi and the level III carry-outs. Thus, a 32-bit, level III

388 Direct Digital Synthesis

CLA adder has 14 AND gate delays. In comparison, a 32-bit ripple adder has a
total of 63 gate delays, which is 49 more gate delays than the 32-bit CLA adder.
Note that a 32-bit accumulator is widely used in low- and medium-speed DDS
designs.

10.5.3 Sine-Weighted Nonlinear DACs

The typical high-speed DDS utilizes a sine-weighted DAC operating in current
mode, which does not require an op-amp buffer at the output; thus, the DDS speed
is not limited by the bandwidth of the op-amp. For constructing a high-speed,
nonlinear DAC, a current-steering DAC architecture is the ideal candidate since it
can generate a Nyquist output signal with high accuracy at a high update rate.
The nonlinear DAC contains a current-cell matrix. Each DAC current cell outputs
a current proportional to the sine or cosine value of the corresponding phase
indicated by the input phase word. The sinusoidal output is obtained by summing
the output currents from all the cells through an external pull-up resistor. Dynamic
performance of the DDS rapidly degrades with frequency due to transient glitches
in the DAC. These glitches can be minimized by using a thermometer decoder,
which will ensure that the minimum number of cells switch simultaneously. In
addition to the conventional static performance measures, such as offset error, gain
error, integral nonlinearity (INL), and differential nonlinearity (DNL), high-speed
nonlinear DAC designers are also concerned with maximum operating frequency,
power consumption, and dynamic performances, such as spurious-free dynamic
range (SFDR) and the signal-to-noise and distortion (SINAD) ratio. SFDR is the
difference between the rms power of the fundamental tone and the largest spur
within the frequency band of interest. SINAD is the difference between the rms
power of the fundamental tone and the noise power and distortion components
that fall within the Nyquist frequency band.

Based on the SFDR requirement, the number of input phase bits W and the
number of amplitude bits of the nonlinear DAC can be determined. Figure 10.6
gives the difference between the largest spur and the fundamental signal in dBc
versus the number of phase bits and the number of DAC amplitude bits. Note that
the total output current doubles when the number of DAC bits increases by one
bit, and the number of DAC cells also doubles when the number of phase bits is
increased by one. Moreover, if the DAC output uses an open-collector resistor,
limited voltage headroom may be problematic if the total output current is too
large. For low-power applications, it is necessary to choose a reasonable number
of DAC output bits based on the required SFDR. Then, the number of phase bits
is chosen to be slightly larger than that of the DAC output bits such that the
number of DAC bits dominates the overall quantization noise. For example, if the
spur magnitude is required to be below −45 dBc, then, according to Figure 10.6,
the number of DAC bits needs to be larger than eight. This result is obtained under
the assumption that the number of phase bits W is greater than the number of
DAC bits. If the number of output DAC bits is known, the number of phase bits
W can be obtained by the SINAD requirement. By adding a SD modulator to the
DDS, the quantization noise can be pushed away from the band of interest; thus,
the SINAD can be increased.

10.5 High-Speed ROM-Less DDS 389

10.5.4 Nonlinear DAC Segmentations

Although the ROM-less DDS does not have a ROM to store the sinusoidal values,
the sine ROM compression algorithm used in the conventional DDS can also be
employed to compress the number of current cells in a nonlinear DAC. The ROM-
less DDS uses the sinusoidal data to weight the DAC current sources. Hence, the
conventional sine compression algorithm can be used to simplify the DAC current
units. First, the ROM-less DDS architecture exploits the quadrant symmetry prop-
erty of the sine function about p /2 and p . Thus, the two MSBs of the accumulator
output denote the different quadrants of the sinusoid as shown in Figure 10.12.
The remaining W − 2 bits from the complementor represent the first quadrant
phase word f . These bits are used to generate the sinusoidal waveform in the first
quadrant. The complete sinusoid can be reconstructed by combining the two MSBs
and f . To segment the sinusoids further, f can be divided into three parts a (the
most significant part), b (the middle part), and g (the least significant part), where
f = a + b + g . The number of bits in segments a , b , and g are assumed to be a,
b, and c, respectively.

Based on trigonometric identities, the first quadrant of the sinusoid can be
expressed as [20]

sin
p (a + b + g)

2(2a + b + c − 1)
= sin

p (a + b)

2(2a + b + c − 1)
cos

pg

2(2a + b + c − 1)

+ cos
p (a + b)

2(2a + b + c − 1)
sin

pg

2(2a + b + c − 1)
(10.59)

≈ sin
p (a + b)

2(2a + b + c − 1)
+ cos

p (a + bavg)

2(2a + b + c − 1)
sin

pg

2(2a + b + c − 1)

Equation (10.59) indicates that the sine function can be implemented using a
coarse DAC representing the first term in (10.59), which contains only a and b ,
and a fine DAC representing the second term in (10.59), which is dependent not
only on a and b , but also on g . The first term is monotonic and can be realized
as a coarse, nonlinear DAC using the full thermometer code, and the second term
can be realized using a fine nonlinear DAC. If the nonlinear DAC has i + 1 bits
of amplitude resolution, each coarse DAC current cell output (Ok) can be expressed
as [21]

Ok =5
intF(2i − 1) sin

p

2(2a + b − 1)G for k = 0

int3(2i − 1) sin
p (2k + 1)

2(2a + b − 1)
− ∑

k − 1

n = 0
On4 for 1 ≤ k ≤ 2a + b − 1

(10.60)

where int[] denotes rounding to the nearest integer, and the index k is given by

390 Direct Digital Synthesis

k =
a + b

2c (10.61)

As the number of phase bits increases, the number of DAC current cells
increases; therefore, the power consumption and die area increase as well. Since
the number of bits in segments a and b is less than the total number of input phase
bits without segmentation, the number of coarse DAC cells is much less than that
required without segmentation. The second term in (10.59) forms the fine nonlinear
DAC to interpolate the amplitudes between adjacent coarse DAC outputs. The
value of b in (10.59) has been approximated in (10.61) using the average value,
bavg , such that the fine DAC current depends only on a and g , which reduces the
number of fine DAC cells. The fine DAC output is not monotonic in a and g .
Thus, a fine DAC is constructed using 2a − 1 nonlinear sub-DACs. The mth DAC
cell output, Oa ,m in the a th sub-DAC can be approximated as

Oa ,m ≈5
intF(2i − 1) cos

p (a + bavg)

2(2a + b + c − 1)
sin

p

4(2a + b + c − 1)G for m = 0

int3(2i − 1) cos
p (a + bavg)

2(2a + b + c − 1)
sin

(2m + 1)p

4(2a + b + c − 1)
− ∑

m − 1

n = 0
Oa ,n4 for 1 ≤ m ≤ 2c − 1

(10.62)

The total DAC output is the sum of the current outputs of the coarse DAC
and the fine sub-DACs. Figure 10.16 illustrates the resultant DDS with segmented
nonlinear DACs. Different segmentation gives different performance due to the
amplitude errors in the approximation. For a nonlinear DAC with 12-bit phase

Figure 10.16 A DDS architecture with segmented nonlinear DACs.

10.5 High-Speed ROM-Less DDS 391

input and 11-bit amplitude resolution, a segmentation of a − b − c = 3 − 4 − 3
gives the optimal results with minimum error, small die size, and minimum power
consumption [20].

10.5.5 Nonlinear Coarse DAC

If the number of phase bits is not large (for example, smaller than 8 bits), the
segmentation of the sine-weighted DAC is not necessary. The nonlinear DAC can
be constructed using just a coarse DAC. It is assumed that the nonlinear DAC
output has i + 1 bit resolution and that its input phase word has W bits. The W-bit
phase word from the phase accumulator is split into the 2 MSB bits and the rest
of (W − 2) LSB bits. The (W − 2) LSBs are fed into a complementor, which is a
one’s complementor; that is, it flips each bit of the (W − 2)-bit phase word. The
complementor output is separated into a MSBs and b LSBs, which are used to
control the row and column thermometer decoder. These decoders map the binary
inputs into thermometer code outputs that are used to switch the DAC current
cells. Each DAC cell output current (Ok) can be obtained from (10.60). In the
partition, the first quadrant of the sinusoid is divided into 2a + b phase steps with
k representing the phase step index between 0 and p /2. The DAC output at phase
step k is the sum of the outputs of the DAC current cell from 0 to k according to
(10.60). The architecture to realize the coarse nonlinear DAC with 2a + b − 1 current
cells is illustrated in Figure 10.17.

Figure 10.17 A DDS architecture with a nonlinear, coarse DAC.

392 Direct Digital Synthesis

Figure 10.18 shows the DAC cell with different current sources Ok , where n
represents the number of duplicated unit current sources that form the desired
current value Ok given in (10.60). A CML topology is used to implement the high-
speed current switches. Each current source is biased close to the peak-fT current
in order to achieve high-speed operation, and minimum size transistors are used
for low power consumption. The bias current should be carefully chosen, consider-
ing the speed, power consumption, and DAC output full-scale voltage swings. High
bias current is not preferable because the total power consumption increases, and
the output pull-up resistor value decreases in order to keep the same full-scale
output voltage. The accuracy of the bias current is ensured using optimized band-
gap references driving cascode current sources. Within a sampling period, the
current is held constant. The two pairs of current switches, A and B, are used for
producing the positive and negative regions of the sine outputs, respectively. For
the positive region, the signal MSB is low, and the current switch pair B in all the
DAC cells is turned on. The thermometer code decoders will turn on the pair A
according to cell control logic. For the negative region, the signal MSB is high,
and the current switch pair A in all the DAC cells is turned off. The thermometer
code decoder will turn on the cell’s switch pair B according to the logic control
circuit shown in Figure 10.18. In addition, all switching control signals are buffered
to ensure differential synchronous switching for all cells. Notice that the current
switches are built using bipolar transistors to achieve the high-speed switching.

Figure 10.18 DAC current cell circuitry: (a) control logic, and (b) current switch.

10.5 High-Speed ROM-Less DDS 393

In a thermometer-coded DAC architecture, every current source has a weight
of one LSB. The current source switches are controlled by the thermometer decoder
output. Table 10.1 gives the thermometer decoder logic truth table. As shown, the
thermometer code leads to only one additional current source transition when the
LSB of the input binary phase word changes. Thus, the DAC has a guaranteed
monotonic behavior, which results in good DNL error and small dynamic switching
errors. The major disadvantage of the thermometer decoded DAC is its complicated
thermometer decoder with large size and power consumption, especially when the
number of bits is higher than 10. In general, a P-bit binary input phase word
will be mapped to 2P-bit thermometer decoder output. In the nonlinear DAC
architecture, the sinusoidal output is obtained by summing the output currents
from all the selected current cells. The thermometer decoding reduces dynamic
errors by ensuring that the minimum number of cells switch simultaneously. The
number of current sources that are turned on should be equal to the value of the
thermometer input code.

Example 10.2: The Design of Current Sources for a Sine-Weighted Nonlinear DAC
Design the current sources for a sine-weighted nonlinear DAC with 8-bit phase
and 8-bit amplitude resolution.

Solution: For 8-bit phase resolution, W = 8. The two MSBs are used to select
the quadrants of the sinusoid, and the remaining W − 2 = 6 bits are used to control
the DAC current cells, as shown in Figure 10.17. Thus, a = b = 3, and there is a
total of 23 × 23 = 8 × 8 = 64 current cells. According to (10.60), the sine-weighted
current Ok in each current cell is given by

Ok =1
2 4 6 6 6 5 3 0

0 3 5 6 6 6 4 2

2 4 6 6 6 5 2 1

1 3 5 6 6 6 3 2

3 4 6 3 6 5 3 2

1 3 5 6 7 5 4 1

2 4 5 6 6 5 3 1

0 4 4 6 7 5 5 1

2 (10.63)

Table 10.1 Thermometer Code Representation for 3-Bit Binary Phase Word

Decimal Binary Phase Thermometer Decoder Output
Phase (k) A3 A2 A0 R6 R5 R4 R3 R2 R1 R0

0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1
2 0 1 0 0 0 0 0 0 1 1
3 0 1 1 0 0 0 0 1 1 1
4 1 0 0 0 0 0 1 1 1 1
5 1 0 1 0 0 1 1 1 1 1
6 1 1 0 0 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1

394 Direct Digital Synthesis

Note that the above weighted current represents the number of unit current
sources in each current cell. In the layout, all of the current cells should have the
same height. The sum of each row represents the total number of unit current cells
in the row. Thus, the sum of each row in (10.63) is designed to be the same in
order to achieve the same layout height and length for each row.

The layout compactness of the current sources is important since it reduces
the integral nonlinearity of the nonlinear DAC due to symmetry and minimizes
gradient errors. To compensate for symmetry and gradient errors caused by varia-
tions in the temperature and process mismatch, a special switching scheme based
on double centroid and random walking [22, 23] can be implemented. There are
64 × 2 sine-weighted current sources to be placed as close as possible in layout to
achieve the best possible matching. The current matrix includes 256 × 2 unit current
sources, and each provides the minimum current required to achieve the specified
speed.

10.5.6 Comparison of ROM-Less DDS Performance

Ultra-high-speed, ROM-less DDS can be implemented in InP, SiGe, and CMOS
technologies. To choose a proper technology for high-speed DDS implementation,
let us briefly review the pros and cons of the three technologies. Lateral and vertical
device scaling are common ways to increase a heterojunction bipolar transistor’s
(HBT) high-frequency performance. These techniques are often limited by molecular
beam epitaxy and processing technology. An InP HBT achieves high cutoff fre-
quency fT by scaling the device vertically with a trade-off in base-collector capaci-
tance (CBC) and ultimately the device fmax. State-of-the-art lithography technology
can be used laterally to scale the device, but, eventually, the high-frequency perfor-
mance will be limited by extrinsic parasitic parameters. State-of-the-art InP technol-
ogy can achieve an fT of 137 GHz and an fmax of 267 GHz [16]. However, InP
devices consume much more power, as Table 10.2 indicates. A SiGe HBT is similar
to a silicon bipolar transistor except for the base. Doping Ge into the base of a
silicon bipolar transistor increases the electron mobility and, thus, increases the

Table 10.2 Comparison of DDS Designs Using InP, SiGe, and CMOS Technologies

Technology InP 0.5-mm SiGe 0.18-mm SiGe 0.35-mm CMOS
fT /fmax (GHz) 137/120 [16] 47/65 [17] 120/100 27/35 [18]

Emitter area of minimal size transistor
(mm2) 1.5 × 4 0.5 × 1 0.2 × 0.64 0.35 × 0.4
Emitter current density at peak fT
(mA/mm2) 1 ~ 1.2 1.2 6 1.8
Peak fT current of minimum-size
transistor (mA) 7.2 0.6 0.77 0.28
Bvceo 8V 3.3V/5.5V 1.8V/4.25V
Accumulator size 8 bit 8 bit 8 bit 8 bit
Nonlinear DAC bits 8 bit 8 bit 8 bit 8 bit
Maximum clock frequency 9.2 GHz 5 GHz 10 GHz 2 GHz
Power consumption 15W 3W 2.4W 0.82W
Die size (mm2) 8 × 5 2 × 3 1.4 × 3 1.9 × 2.1
Power efficiency (GHz/W) 0.61 1.67 4.2 2.4
Area efficiency (GHz/mm2) 0.23 0.83 2.38 0.5

10.5 High-Speed ROM-Less DDS 395

device fT . Meanwhile, the base resistance is also reduced, leading to lower thermal
noise. In addition, the Ge composition is typically graded across the base to create
an electric field for accelerating minority carriers moving across the base. The
transistor gain of a SiGe HBT is also increased compared to a silicon BJT, which
can then be traded for better linearity and lower power consumption. Compared
to an identically constructed Si BJT under the same bias current, a SiGe HBT has
higher fT , higher gain, higher output impedance, lower RF noise, and lower 1/f
noise. CMOS devices have advantages such as superior linearity and low-voltage
operation due to lower threshold voltages, while SiGe HBT devices offer the advan-
tages of excellent speed, good noise performance, and improved transconductance.
The 1/f noise due to random trapping of charges at the oxide-silicon interfaces and
thermal noise due to gate and channel resistances are both significantly higher in
CMOS than in SiGe HBTs. To reduce noise, large CMOS devices and large
operating currents are often required, which leads to reduced speed and increased
power consumption.

A ROM-less DDS was implemented in a 0.35-mm CMOS technology [18],
which consumes a total of 820 mW at 2 GHz with 3.3V power supply. A DDS
implemented in a 137-GHz InP technology operating at a world-record clock
frequency of 9.2 GHz was reported in [16]. However, the InP DDS consumes 15W
of power and requires a die size of 40 mm2. As Table 10.2 shows, the minimum
transistor size in the InP technology is much larger than standard CMOS or SiGe
technologies. Although the current density to achieve the peak fT frequency in InP,
SiGe, and CMOS are similar, the current needed to operate the minimum transistor
close to peak fT frequency is a lot lower in SiGe and CMOS technologies. Compared
to the SiGe technologies, the InP technology requires 10 times more current to
operate the minimum-size transistor at the peak fT. A 0.18-mm SiGe DDS mono-
lithic microwave integrated circuit (MMIC) with equivalent performance has a
power consumption of 2.4W, which is less than one-sixth the power consumption
of the InP DDS MMIC. Table 10.2 summarizes the performance comparison
between the DDS implementations using InP, SiGe, and CMOS technologies.

References

[1] Vankka, J., ‘‘Spur Reduction Techniques in Sine Output Direct Digital Synthesis,’’ Proc.
50th Annual Frequency Control Symp., Orlando, FL, September 1996, pp. 951–959.

[2] Flanagan, M. J., and G. A. Zimmerman, ‘‘Spur-Reduced Digital Sinusoid Synthesis,’’ IEEE
Trans. Comm., Vol. 43, No. 7, July 1995, pp. 2254–2262.

[3] Flanagan, M. J., and G. A. Zimmerman, ‘‘Spur-Reduced Digital Sinusoid Generation
Using Higher-Order Phase Dithering,’’ 27th Annual Asilomar Conf. on Signals, Systems,
and Computers, November 1993, pp. 826–830.

[4] Reinhardt, V. R., ‘‘Spur Reduction Techniques in Direct Digital Synthesizers,’’ Proc. 47th
Annual Frequency Control Symp., Salt Lake City, UT, June 1993, pp. 230–241.

[5] Jenq, Y. C., ‘‘Direct Digital Synthesizer with Jittered Clock,’’ IEEE Transaction on Instru-
ment and Measurement, Vol. 40, No. 3, June 1997, pp. 653–655.

[6] Song, Y., and B. Kim, ‘‘A 14-b Direct Digital Frequency Synthesizer with Sigma-Delta
Noise Shaping,’’ IEEE J. Solid-State Circuits, Vol. 39, May 2004, pp. 847–851.

396 Direct Digital Synthesis

[7] Nicholas, H. T., and H. Samueli, ‘‘An Analysis of the Output Spectrum of Direct Digital
Frequency Synthesizers in the Presence of Phase-Accumulator Truncation,’’ Proc. 41st
Annual Frequency Control Symp., Philadelphia, PA, May 1987, pp. 495–502.

[8] Kim, B., H. T. Nicholas, and H. Samueli, ‘‘The Optimization of Direct Digital Frequency
Synthesizer in the Presence of Finite Word Length Effects,’’ Proc. 42nd Annual Frequency
Control Symp., Baltimore, MD, June 1988, pp. 357–363.

[9] Nicholas, H. T., ‘‘The Determination of the Output Spectrum of Direct Digital Frequency
Synthesizers in the Presence of Phase Accumulator Truncation,’’ Master’s Thesis, Univer-
sity of California, Los Angeles, 1985.

[10] Jenq, Y. C., ‘‘Digital Spectra of Nonuniformly Sampled Signals: Fundamentals and High-
Speed Waveform Digitizers,’’ IEEE Transaction on Instrument and Measurement,
Vol. 37, No. 6, June 1988, pp. 245–251.

[11] Vankka, J., and K. Halonen, Direct Digital Synthesizers, Dordrecht, Netherlands: Kluwer
Academic Publishers, 2002.

[12] Jenq, Y. C., ‘‘Digital Spectra of Nonuniformly Sampled Signals: Digital Look-Up Tunable
Sinusoidal Oscillators,’’ IEEE Trans. on Instrument and Measurement, Vol. 37, No. 6,
September 1988, pp. 358–362.

[13] O’Leary, P., and F. Maloberti, ‘‘A Direct-Digital Synthesizer with Improved Spectral
Performance,’’ IEEE Trans. Comm., Vol. 39, No. 7, July 1991, pp. 1046–1048.

[14] Ni, W., et al., ‘‘A Direct Digital Frequency Synthesizer with Single-Stage DS Interpolator
and Current-Steering DAC,’’ IEEE Symposium on VLSI Circuits, Kyoto, Japan,
June 2005, pp. 56–59.

[15] Mortezapour, S., and E. K. F. Lee, ‘‘Design of Low-Power Frequency Synthesizer Using
Nonlinear Digital-to-Analog Converter,’’ IEEE J. Solid-State Circuits, Vol. 34,
October 1999, pp. 1350–1359.

[16] Gutierrez-Aitken, A., et al., ‘‘Ultrahigh-Speed Direct Digital Synthesizer Using InP DHBT
Technology,’’ IEEE J. of Solid State Circuits, Vol. 37, September 2002, pp. 1115–1121.

[17] Dai, F. F., et al., ‘‘A Low Power 5 GHz Direct Digital Synthesizer Implemented in SiGe
Technology,’’ IEEE 5th Topical Meeting on Silicon Monolithic Integrated Circuits in RF
Systems, Atlanta, GA, September 2004, pp. 21–24.

[18] Yu, X., et al., ‘‘2 GHz 8-Bit CMOS ROM-Less Direct Digital Frequency Synthesizer,’’
IEEE International Symposium on Circuits and Systems (ISCAS), Kobe, Japan, May 2005,
pp. 4397–4400.

[19] Tierney, J., C. M. Rader, and B. Gold, ‘‘A Digital Frequency Synthesizer,’’ IEEE Trans.
on Audio Electroacoust., Vol. AU-19, 1971, pp. 48–57.

[20] Jiang, J., and E. Lee, ‘‘A Low-Power Segmented Nonlinear DAC-Based Direct Digital
Frequency Synthesizer,’’ IEEE J. of Solid-State Circuits, Vol. 37, October 2002,
pp. 1326–1330.

[21] Mortezapour, S., and E. K. F. Lee, ‘‘Design of Low-Power ROM-Less Direct Digital
Frequency Synthesizer Using Nonlinear Digital-to-Analog Converter,’’ IEEE J. Solid-State
Circuits, Vol. 34, October 1999, pp. 1350–1359.

[22] Geert, A., et al., ‘‘A 14-Bit Intrinsic Accuracy Q2 Random Walk CMOS DAC,’’ IEEE J.
Solid-State Circuits, Vol. 34, December 1999, pp. 1708–1718.

[23] Van den Bosch, A., et al., ‘‘A 10-Bit 1-GSample/s Nyquist Current-Steering CMOS D/A
Converter,’’ IEEE J. Solid-State Circuits, Vol. 36, March 2001, pp. 315–324.

C H A P T E R 1 1

Direct Modulation in Frequency
Synthesizers

11.1 Introduction

This chapter introduces techniques to produce digital modulation using synthe-
sizers. There are many types of modulation (ways of encoding data onto a carrier
for transmission) in use today. In some applications, the data rate is low; therefore,
a simple modulation scheme is adequate and preferred as it reduces the requirements
on the radio. Modulation is required in transmission because it is not feasible to
build an antenna that will transmit baseband. Instead, the information is first
modulated around a carrier. Usually the bandwidth that the data occupies is a
small fraction of the frequency at which it is transmitted.

In digital communications, a transmitted sequence of bits represents the infor-
mation. In the simplest case, at low data rates, one bit at a time may be transmitted.
In general, the data stream is random; therefore, it has power over a range of
frequencies. By comparison, a pure square wave has power at one frequency and
at odd harmonics of that frequency. The PSD of an NRZ data stream of bit rate
TB at baseband can be approximated as

PSDBB(f) = A ? T 2
B

sin2(p fTB)

(p fTB)2 (11.1)

where A is a constant of proportionality. Equation (11.1) is plotted in Figure 11.1.
Note that most of the power in the signal is concentrated in frequencies below the
bit frequency fB = 1/TB . Thus, it is often acceptable to limit the spectrum of the
transmitted information to 1.4 times fB and still have the system function properly.
If we assume that the signal is limited to a frequency of fB , then the transmission
efficiency is 1 bit/sec/Hz. In order to transmit more data in a given bandwidth,
instead of transmitting bits, we can transmit symbols that represent 2 bits or more.
In such a case, (11.1) and Figure 11.1 should be thought of as showing the symbol
bandwidth and symbol frequency rather than the bit bandwidth and bit frequency.
Thus, if symbols are used that represent 2 bits, the transmission efficiency will be
roughly 2 bits/sec/Hz, and if a symbol represents 4 bits, then the transmission
efficiency will be 4 bits/sec/Hz.

Now, let us suppose that a radio has a bandwidth of BW and a total rms noise
power of N. The PSD of the noise is given by

397

398 Direct Modulation in Frequency Synthesizers

Figure 11.1 Power spectral density of a data stream at base band.

N0 =
N

BW
(11.2)

Now the energy per bit is the average signal power S multiplied by the time
period TB over which the bit is transmitted:

Eb = S ? TB (11.3)

Thus, the ratio of Eb to the PSD of the noise No is given by

Eb
N0

=
S ? TB

N
BW

=
S
N

?
BW
fB

(11.4)

Thus, the ratio of the energy per bit to the noise density is equal to the signal-
to-noise ratio (SNR) of the radio if the radio bandwidth is equal to the bit frequency.
This result is important because it will allow us to relate concepts in digital modula-
tion to the SNR requirement of the radio.

As we have discussed data and the concept of symbols, the next sections describe
how various types of synthesizers can be used to produce these waveforms directly.

11.2 Direct Modulation in PLL Frequency Synthesizers

Frequency synthesizers are used to generate carrier frequencies in communication
systems. The information to be transmitted or received is modulated onto the car-
rier frequency by various modulation schemes. As briefly discussed in Chapter 1,

11.2 Direct Modulation in PLL Frequency Synthesizers 399

modulation of the baseband signal onto the RF carrier can be implemented either
in the analog domain using analog mixers or in the digital domain using digital
multipliers. As shown in Figures 1.1, 1.3, and 1.8, quadrature modulators or
demodulators require quadrature LO signals. While a DDS can directly generate
quadrature outputs [1, 2], a PLL synthesizer can generate quadrature LOs by means
of the following techniques: (1) a divide-by-two frequency divider following a VCO
running at double the frequency, (2) a VCO followed by a passive polyphase RC
filter, and (3) a quadrature VCO as discussed in Chapter 8.

In addition to the conventional modulation schemes, the baseband data can
also be directly modulated onto the carrier inside frequency synthesizers. Direct
modulation can be implemented in PLL synthesizers [3, 4] or, more conveniently,
in DDSs [1, 5, 6]. Figure 11.2 shows a direct-modulation scheme through a PLL
frequency synthesizer. The binary data stream is first filtered using a digital finite
impulse response (FIR) filter. The FIR filter can be programmed for various modula-
tions by programming the filter coefficients. For quadrature phase shift keying
(QPSK) modulation, a Nyquist FIR filter can be used for data shaping. For Gaussian
frequency shift keying (GFSK) or Gaussian minimum shift keying (GMSK), a
Gaussian filter can be implemented for pulse shaping. Note that Section 11.3
describes various types of modulations in more detail. The filtered baseband signal
in frequency format directly modulates the carrier fine-tune frequency word in a
PLL fractional-N synthesizer. The coarse-tune and fine-tune frequency words con-
trol the loop divisor through a multimodulus divider (MMD), which forces the
loop to lock to the desired output frequency. The synthesizer controls the VCO

Figure 11.2 Direct modulation through a PLL frequency synthesizer.

400 Direct Modulation in Frequency Synthesizers

continuously during the modulation and, thus, eliminates the frequency drift due
to the modulation.

The direct-modulation scheme in a PLL simplifies the transmitter architecture
by eliminating the need for digital-to-analog converters (DACs), image rejection
mixers, RF filters, and other expensive analog components. However, its drawback
is its limited modulation bandwidth. As shown in Chapter 3, the PLL bandwidth
is of the order of 10 kHz to 1 MHz for a typical PLL synthesizer. Since the baseband
data can be modulated only within the lowpass characteristics of a PLL, the maxi-
mum modulation bandwidth (i.e., the baseband data rate) is limited by the PLL
bandwidth. Recent research has proposed the use of predistortion schemes, which
apply an inverse transfer function of the PLL to the baseband signal before it
modulates the carrier frequency word [4], as illustrated in Figure 11.2. The direct
modulation would be less limited by the narrow PLL bandwidth; however, the
predistortion filter and the PLL loop would have to be well matched to avoid
distortion in the modulated signal. The matching normally requires automatic
calibration so that the PLL can compensate for process and temperature variations
[7, 8]. In order to achieve sufficient resolution for the modulation, more bits for
the baseband frequency data are required. Direct modulation normally requires a
large fractional-N accumulator in order to handle a large number of bits for the
modulated frequency word. A large accumulator causes the fractional spurs to be
very close to the carrier; hence, high-order SD noise shaping is required for spurious
component reduction. As shown in Chapter 9, the order of the PLL loop filter
should be larger than the order of the SD noise shaping for the loop to filter out
the spurious components at higher-frequency offsets. Therefore, a PLL frequency
synthesizer used for direct modulation may end up with a high-order loop and a
high-order SD noise shaper, which complicates the design. The spurs, phase noise,
and loop dynamics associated with direct modulation in a SD fractional-N synthe-
sizer can be analytically modeled [9].

Figure 11.3 further illustrates an implementation of a linearized direct modula-
tion through a SD fractional-N frequency synthesizer [10]. The architecture com-
prises a baseband modulator, a direct frequency modulator, and a SD fractional-N
PLL synthesizer. The baseband modulator starts with the data to be transmitted
(TX data). The demultiplexer (Demux) splits the TX data into in-phase (I) data
and quadrature phase (Q) data. The I and Q data are coupled to the respective
FIR filters for pulse shaping. The filtered I and Q data are then fed into a lookup
table, which stores the arctan(Q /I) function. Hence, the lookup table generates
the modulated phase data, which is further converted to a modulated frequency
word by using a digital differentiator d /dt. The output of the differentiator is then
coupled into a FIR filter/scaler that functions to predistort the frequency word,
compensating for the narrow lowpass dynamics of the PLL and scaling the frequency
word such that it is compatible with the frequency scale of the fine-tune frequency
word of the synthesizer. Next, the fine-tune frequency word and the modulated
and pulse-shaped baseband data stream are mixed together by an adder to provide
the frequency-control input for the fractional-N synthesizer.

The modulated frequency word goes through a SD fractional-N accumulator,
and its output further modulates the carrier frequency specified by the coarse-tune
word. As discussed in previous chapters, the fine-tune frequency word K controls

11.3 Direct Digital Modulation and Waveform Generation in a DDS 401

Figure 11.3 A linearized direct modulator utilizing a SD fractional-N frequency synthesizer.

the fractional part of the loop divisor, while the coarse-tune word N controls the
integer part of the loop divisor. Now the data is finally modulated onto the desired
carrier frequency word, which further controls the loop divisor through an MMD.
Thus, ultimately, the PLL forces the VCO output to be continuously adjusted such
that the synthesizer output signal is frequency-modulated in accordance with the
output signal of the baseband modulator.

In the above configuration, the modulated amplitude information can also be
extracted using a second ROM that stores the function of√I2 + Q2. This amplitude
information can be utilized to modulate the output amplitude of the synthesizer
through a variable gain amplifier (VGA). The amplitude information can also be
included at the last stage prior to the transmission [e.g., a power amplifier (PA) in
a transmitter]. Linearized modulation, even with all the modulated components,
can be provided by a PA in the saturated mode, which saves power and hardware.

11.3 Direct Digital Modulation and Waveform Generation in a DDS

In addition to frequency synthesis, a DDS can implement various types of modu-
lation and waveform generation since its circuitry can be used to program the

402 Direct Modulation in Frequency Synthesizers

frequency, phase, and amplitude of a waveform, as shown in Figure 11.4. With
the availability of single-chip high-speed DDSs, such modulation can be done with
high accuracy and at high speed, potentially eliminating costly analog modulators
associated with communications receivers. For example, radar operational require-
ments include ever-increasing demands for the generation of affordable, low-noise
signals and highly complex, wide-bandwidth waveform generation. These wave-
forms are used for high-range resolution radars in sorting targets from clutter and
low-probability-of-intercept communication applications. A DDS can allow for
novel transmitter architectures, for example, generating such waveforms at the
highest possible frequency instead of down near baseband. This has the potential
advantage of considerably reducing the transmitter size, weight, power require-
ments, and cost. Note that waveform generation is a unique feature of the DDS
approach.

While a PLL synthesizer can synthesize an RF frequency with low phase noise,
a DDS can easily generate modulated waveforms with fine resolution. A DDS can
be combined into a multiloop hybrid PLL arrangement where both high-resolution
and high-frequency RF waveforms can be generated. To overcome the drawback
of low output frequency, a PLL can be used to generate a carrier with coarse
tuning, and a DDS can be used to fine-tune the carrier frequency, as well as to
perform various types of modulation. To accomplish this, the modulated DDS
output is mixed with the PLL carrier frequency using quadrature mixers with image
rejection. The DDS gives the combination synthesizer small step size, good phase

Figure 11.4 Direct modulation through a DDS.

11.3 Direct Digital Modulation and Waveform Generation in a DDS 403

noise, and faster switching, while the PLL can synthesize the carrier frequency at
multigigahertz frequencies. It should be pointed out that all of the digital modulation
implemented in DDS is accurate up to the limit set by the quantization levels due
to the finite number of frequency, phase, and amplitude bits, while the accuracy
of analog modulation is subject to the variation, noise, and nonlinearity of the
analog circuits. The DDS synthesizer can implement types of modulation and
waveforms, such as chirp, step frequency, frequency shift keying (FSK), FM, MSK,
PM, AM, QAM, and other hybrid modulations, as shown in Figure 11.4. Next,
we discuss the direct-modulation capability in a DDS.

11.3.1 Phase Modulation

Transmitting information requires more than just a carrier tone. The tone has to
change in some way over time to indicate what information is being sent. In general,
a carrier has two properties that can be changed or modulated in order to convey
information to the receiver: amplitude and phase. We note that FM is not treated
separately as it can be understood to be a subset of phase modulation. Some
modulation schemes only change the amplitude of the signal, and some only change
the phase (or frequency) of the signal, but some more complicated modulation
schemes change both. We begin by considering modulation that changes only the
phase of the carrier.

11.3.2 Phase Shift Keying

This section describes some of the basics of phase modulation. Then, towards the
end of the section, the topic will return to the implementation of direct phase
modulation of DDSs.

A phase shift keyed (PSK) modulated signal encodes data by changing the phase
of the carrier signal according to which bits are to be transmitted. A PSK signal
is given by

SPSK(t) = A ? cos(vRF t + fbits) (11.5)

where A is the amplitude of the carrier signal (a constant), vRF is the frequency
of the carrier, and fbits is the phase, which is given by

fbits =
2p

2N ? (i − 1) i = 1, 2, 3, . . . , N (11.6)

where log2 N is the number of bits transmitted per phase change. For instance, if
only one bit is transmitted per phase change, called binary phase shift keying
(BPSK), then the phase is either 0° or 180° (i = 1 or 2), depending on whether a
zero or a one is transmitted. If 2 bits are transmitted per phase change, called
quadrature PSK (QPSK), then four phases are required. Similarly, 3 bits can be
transmitted if eight phases are employed, and so on. So, why not use an infinite
number of phases to get an infinite bit rate with this modulation scheme? The

404 Direct Modulation in Frequency Synthesizers

answer is that, in the presence of noise, the more phases that are used (therefore,
the closer adjacent phases are to one another), the harder it is to determine one
from another, and this increases the probability that an error will occur.

In general, the phase angle in PSK modulation can be represented as a vector
consisting of I and Q components, as shown in Figure 11.5. A very important
feature in this figure is that adjacent symbols differ by only one bit. This means
that, if a phase is misinterpreted, a minimum number of bit errors will occur.

One additional refinement that is sometimes implemented with QPSK is to
delay one of the baseband date streams (usually the Q path) by half the data rate.
This means that the I and Q data never change at the same time. Thus, instead of
getting a maximum possible instantaneous phase shift of 180°, the maximum
instantaneous phase shift is only 90°. This makes the modulation more spectrally
efficient. When this is done, the modulation is often referred to as offset quadrature
phase shift keying (OQPSK).

In the configuration of an analog quadrature modulator, the baseband data is
modulated onto a carrier with the aid of two mixers and an RF LO that generates
two tones that are 90° apart, as shown in Figure 11.6 [11]. The data is first
converted into I and Q phase components in the baseband. Then, that data is
mixed to RF using two references that are phase shifted by 90°. When these two
signals are added together, an RF carrier with the appropriate phase is generated.

Figure 11.5 Phase plot of an 8-PSK modulated signal.

Figure 11.6 Basic quadrature modulator.

11.3 Direct Digital Modulation and Waveform Generation in a DDS 405

After the data has been transmitted, a receiver performs the inverse function
to recover the transmitted information, as shown in Figure 11.7. The signal is
mixed down from RF to baseband using two LOs that are separated by 90°.
Assuming lowpass filtering and that the phase of the transmitted signal can be
recovered, this gives back the I and Q data that was transmitted. This data is then
fed into an analog-to-digital converter (ADC), and, from there, the DSP determines
what phase was transmitted. Note that in the special case of BPSK, no Q path is
needed, as there is only an I component at 0° or 180°. However, if the carrier
frequency and phase are not recovered and exactly synchronized, there can be
a relative phase shift, in which case both I and Q paths are required. Note that
a receiver that recovers the phase of the transmitted signal is known as a coherent
receiver. Receivers that do not recover the transmitted phase are noncoherent
receivers.

Beyond determining the basic functional parts of different PSK transceivers, it
is necessary to determine the required SNR for a given probability of a symbol
error. This allows the completion of the system specifications. As a starting point,
a given phase is transmitted, and, in the course of that transmission, noise is added
that will tend to change the phase of the transmitted signal. If the phase is changed
enough, it will pass a threshold, and the symbol will be wrongly interpreted,
resulting in a symbol error, as Figure 11.8 illustrates [12]. Here, the nominal
transmitted phase is at 0° and is at the center of a normal probability density
function. The threshold for misinterpreting a symbol is ±p /N (the shaded area
indicates when an error has been made). If the noise changes the phase by more
than this amount, the symbol will be wrongly interpreted. Note that as long as
only one bit changes when an adjacent phase is wrongly interpreted, the bit error
rate as a function of the symbol error rate is given by

Pb ≈
Ps

log2 N
(11.7)

A plot of the probability of symbol error versus Eb /N0 can be derived based
on statistics and the above discussion. An approximate formula for the probability
of symbol error as a function of Eb /N0 is given by [13]

Figure 11.7 Basic quadrature demodulator.

406 Direct Modulation in Frequency Synthesizers

Figure 11.8 Probability density function of a PSK signal showing the probability of making a signal
error.

PsSEb
N0

D ≈ 2QF√2
Eb
N0

log2(N) ? sinSp
N DG (11.8)

where Q(x) is the area underneath the tail of a Gaussian probability density
function. Q(x) is given by

Q(x) = E
∞

x

1

√2p
e

−
z2

2 dz (11.9)

The probability of symbol error is plotted in Figure 11.9. Obviously, as the
number of symbols increases at a given Eb /N0 , the probability of error is larger.

Phase modulation can be implemented in a DDS, such as in Figure 11.4, by
altering the phase word at the accumulator output prior to the ROM sin/cos lookup
table. Note that the first MSB of the phase word represents 180° of phase weight,
the second MSB represents 90° of phase weight, the third MSB represents 45° of
phase weight, and so on. Therefore, various phase shifts can be implemented by
toggling the corresponding phase bit. In general, for a P-bit phase word, its Lth
bit counting from the right (LSB) has 180°/2P − L of phase modulation weight, and
the PM resolution is given by 360°/2P. For instance, a 10-bit phase word can be
modulated with 0.3516° of phase resolution.

M-ary PSK (MPSK) can similarly be implemented by altering the log2(M)
MSBs of the phase word at the accumulator output. For instance, a BPSK can be
implemented by toggling the MSB of the phase word using 1-bit baseband data,
which causes 180° of phase transition. Data shaping using a Nyquist filter can be
applied to the baseband data stream before the modulation. Differential BPSK
(DBPSK) can also be implemented by XORing the baseband data with its delayed

11.3 Direct Digital Modulation and Waveform Generation in a DDS 407

Figure 11.9 Probability of symbol error versus Eb/N0 for PSK.

version, as shown in Figure 11.4. Similarly, QPSK can be implemented using 2-bit
baseband QPSK data to modulate the two MSBs of the phase word, which generate
four phases with 90° of resolution.

11.3.3 Frequency Modulation

In a PSK transceiver, the phase of the carrier is changed as a means to transmit
information. On the other hand, a frequency shift keyed (FSK) modulated signal
encodes data by changing the frequency of the carrier signal according to the
particular bits that have been transmitted. An FSK signal is given by

SFSK(t) = A ? cos[(vRF + v i) t + f] (11.10)

where A is the amplitude of the carrier signal (a constant), vRF is the nominal
frequency of the carrier, f is an arbitrary phase, and v i is the change in carrier
frequency that determines what bits have been transmitted. Thus, in this modulation
scheme, the RF waveform can be thought of as a set of different frequencies being
turned on and off at the bit rate.

So what is to stop us from spacing the different frequencies corresponding to
different bits infinitely close together and, thus, getting an infinite number of
bits/sec/Hz? Remember that the signals (centered at their carrier frequencies) will
have a power spectral density (PSD) similar to that shown in Figure 11.1. Thus,
adjacent frequencies must be spaced so that there is minimal interference between
different bits. A way to do this is to align the peak in the frequency response of
1 bit with the null in the frequency response of an adjacent bit, by spacing the

408 Direct Modulation in Frequency Synthesizers

frequencies either at the bit rate or at a multiple of the bit (or symbol) rate, as
shown in Figure 11.10. Therefore,

v i = fB ? i i = 1, 2, 3, . . . , N (11.11)

where log2 N is the number of bits transmitted per frequency. Therefore, the
maximum frequency deviation of the RF signal is

D fmax = fB ? N (11.12)

Thus, the required bandwidth is proportional to the number of bits that are
transmitted simultaneously. This means that 2 bits transmitted simultaneously will
take twice the bandwidth that 1 bit will take. As a result, the spectral efficiency
of FSK drops off from around 0.5 bit/sec/Hz for binary frequency shift keying
(BFSK) and 4-FSK to lower values as the number of bits increases. Note that even
for BFSK, the spectral efficiency is half of that for BPSK. Therefore, FSK does not
offer the same advantage in spectral efficiency as PSK. However, since all the
frequencies are orthogonal, the presence of more frequencies does not affect the
receiver’s ability to detect any of them. As a result, higher data rates can be achieved
without a reduction in the symbol error rate.

Figure 11.11 shows the probability of a symbol error versus Eb /N0 for different
numbers of bits per symbol for FSK. Note that the probability of error actually
drops for a higher number of bits per symbol, but also note that this is because a
higher bandwidth per bit is being used. Thus, for higher order FSK, the SNR will
need to be higher to get the same Eb /N0 ratio, as the bandwidth of the radio must
be larger. This is different from PSK, where the ratio of bandwidth to the number
of bits per symbol is relatively constant, regardless of the number of bits per symbol
being transmitted. The probability of symbol error for FSK is given by [13]

PsSEb
N0

D ≤ (N − 1) ? QF√Eb
N0

log2(N)G (11.13)

In FSK, the signal occupies much more bandwidth than it does in the PSK case
and is proportional to the number of bits per symbol being transmitted. As a result,

Figure 11.10 RF PSD for binary FSK.

11.3 Direct Digital Modulation and Waveform Generation in a DDS 409

Figure 11.11 Probability of symbol error versus Eb/N0 for FSK.

Eb
N0

=
S
N

?
BW

fB ? log2 N
≈

S
N

?
1

log2 N
(11.14)

An advantage of FSK over PSK is the simplicity of the transmitters and receivers.
Figure 11.12 shows a basic FSK modulator. Note here that the DAC can directly
drive the input to a VCO, resulting in an FM output. Note that FSK has constant
amplitude and, therefore, does not require a linear power amplifier, making it
possible to use a highly efficient, nonlinear power amplifier in the transmitter.
Figure 11.13 shows a demodulator for FSK. Here, the signal is first passed through
a limiter to make the output’s amplitude constant. Then, a frequency discriminator
is used to produce a voltage that is proportional to the frequency of the received

Figure 11.12 Basic FSK modulator.

410 Direct Modulation in Frequency Synthesizers

Figure 11.13 Basic FSK demodulator.

signal. This signal is then passed through an ADC. The output from the ADC is
then used to determine what bits were sent at the transmitter.

Having discussed the basics of FM, we now turn back to modulation of the
DDS. FM can be implemented by adding the baseband FM data to the carrier
frequency word, as shown in Figure 11.4. In a DDS, FM generation is accomplished
discretely. The frequency control word (FCW) is analogous to the dc, or slowly
varying, tuning voltage of an analog VCO. The DDS has an adder that allows a
digital offset adjustment of the center frequency. This offset is analogous to the
analog-modulation input, an ac component, to the VCO tune line and could be
from any baseband digital source, such as a digital voice, video, or data generator.
If the center frequency word is Fc and the baseband FM data is represented by
Fb (j), then the instantaneous phase of the FM signal at the nth time step can be
written as

P(nT) = T ∑
n

j = 1
[Fc + Fb (j)] + P0 = FcT + T ∑

n

j = 1
Fb (j) + P0 (11.15)

where P is the phase accumulator output, and P0 is defined as the initial seed of
the accumulator. T is the sample interval of the DDS clock, T = 1/FCLK. This is
analogous to the analog phase angle given by

u (t) = v c t + Kf E
1

0

f (t) dt + u0 (11.16)

The discrete counterparts of phase u and time t are P and T, respectively. An
accumulator overflow indicates that the phase has completed one revolution of 2p
radians. The smallest increment of the discrete phase P is 1/2N, where N is the
number of the phase accumulator bits. The DDS output frequency is the derivative
of the phase with respect to the time:

Fout =
DP
DT

=

FCW

2N

1
FCLK

=
FCLK(Fc + Fb)

2N (11.17)

The maximum output frequency due to the Nyquist limit is half the clock
frequency, which is when FCW reaches 1/2N − 1. The minimum output frequency

11.3 Direct Digital Modulation and Waveform Generation in a DDS 411

can be 0 Hz, making DDS a dc-coupled modulator, which is not possible through
PLL synthesizers. The maximum FM deviation can be calculated as

DFmax = FCLK/2N − L (11.18)

where L is the number of FM data bits. For example, if an FM signal is applied
to a 1-GHz DDS system, and the MSB of the FM data is located 3 bits below the
full scale of the FCW, then the maximum FM deviation = 10 GHz/23 = 125 MHz.
Similarly, the frequency resolution of the FM signal is given by

DFmin = FCLK/2N (11.19)

In a practical application, the phase noise of the clock overwhelms the round-
off noise of the DDS phase accumulator. Note that a DDS involves a frequency
downconversion process. The FM output signal will exhibit improved phase noise
performance over the DDS clock by

Fn = 20 log(FCLK/FOUT) [dB] (11.20)

Assuming a 1-GHz DDS clock, the FM output at 100 MHz will see a 20-dB
SNR improvement over the clock. Temperature drift and jitter will also be reduced
accordingly.

M-ary FSK (M-FSK) can be generated by toggling the FCW among a group
of M carrier frequency words. Those frequency words can be programmed exter-
nally to allow any FSK modulation.

11.3.4 Minimum Shift Keying

A related modulation that can be thought of as either phase or frequency modulation
is minimum shift keying (MSK). It is a very simple form of modulation that, during
each bit period, either advances the phase of the carrier by 90° to indicate a one
or retards the phase by 90° to indicate a zero. Thus, an MSK signal can be
represented by

SMSK(t) = A ? cosFvRF t +
p
2

? d(t) ? t + fG (11.21)

where d(t) has a value of ±1 to indicate the value of a bit that has been transmitted.
In order to generate this phase change, the frequency must be instantaneously
higher or lower than the carrier frequency over the bit period. Since the phase
must change by p /2 in a time of TB (the bit period), the frequency must be

D f =
p /2
TB

?
1

2p
=

fB
4

(11.22)

higher or lower than the nominal carrier frequency for that bit period. Note that
MSK is very similar to BFSK except that the two frequencies in MSK are spaced

412 Direct Modulation in Frequency Synthesizers

at half the separation of the tones in FSK modulation. This means that MSK is
more spectrally efficient than BFSK. Also note that MSK is a form of continuous
phase modulation. That means that there are no discontinuities in the phase of the
transmitted waveform (FSK has no such restriction). Thus, either of the modulators
shown in Figures 11.6 and 11.12 can be used with MSK; however, MSK will
require the more complex demodulator shown in Figure 11.7 in order to be properly
detected. This modulation has many properties similar to BPSK and QPSK and
will have a bit error probability that is the same as QPSK as shown in Figure 11.8.

MSK can be easily implemented in a DDS, as shown in Figure 11.4. A unique
technique to generate MSK in DDS is to use baseband MSK data to toggle two
frequency words corresponding to Fc ± Fb /4, where Fc is the carrier frequency,
and Fb is the baseband MSK symbol data rate. When baseband MSK data is zero,
the DDS FCW is given by Fc − Fb /4, which causes a continuous phase retardation
of 90° within one bit period 1/Fb . As a result, the DDS output can be written as

Sout = sinF2pSFc ±
Fb
4 DtG (11.23)

= cosS±
p
2

? FbtD ? sin(2p ? Fc t) ± sinS±
p
2

? FbtD ? cos(2p ? Fc t)

This equation is equivalent to (11.21). As shown, the DDS output is an MSK
signal, which can also be thought of as OQPSK with sinusoidal pulse shaping on
the baseband signal. When baseband MSK data is one, the DDS FCW is given by
Fc + Fb /4, which causes a continuous phase advance of 90° within one bit period
1/Fb .

11.3.5 Step Frequency

A step frequency can be generated by toggling the FCW between two carrier
frequency words. Unlike analog frequency modulation through a VCO in a PLL
synthesizer, which requires a long settling time, frequency switching in a DDS can
be settled within one clock cycle.

11.3.6 Chirp Waveforms

A chirp waveform can be generated by accumulating a fixed frequency chirp slope
(chirp data in Figure 11.4). The frequency word at the accumulator output is thus
a ramp signal. A DDS with such a linearly ramped frequency word as its input
will perform linear frequency modulation, which generates a chirp waveform at
the DDS output. The chirp waveform is used widely in test equipment, where swept
frequency response of the device under test (DUT) is measured, and in radars and
spread-spectrum communications, where the signal energy is spread across a wide
bandwidth to reduce spectral density in multipath and fading environments. If
nonlinear chirp is desired, a ROM that holds the desired frequency ramp informa-
tion can be used before the phase accumulator. Hence, the frequency word of the
DDS can vary based on any programmed chirp data.

11.3 Direct Digital Modulation and Waveform Generation in a DDS 413

11.3.7 Amplitude Modulation

Amplitude modulation can be done either in the digital domain or in the analog
domain. In the digital domain, the amplitude word after the sin/cos lookup table
in Figure 11.4 can be modulated using a digital multiplier, which is accurate up to
the quantization level, limited by the finite number of amplitude bits. Alternatively,
amplitude modulation can be implemented by adjusting the DAC full-scale current
using the baseband amplitude modulation data, whose accuracy is limited by the
nonlinearity and dynamic range of the DAC. The amplitude modulation in the
digital domain is discrete, while the amplitude modulation in the analog domain
is continuous.

11.3.8 Quadrature Amplitude Modulation

QAM can be thought of as an extension of QPSK. In QAM, the symbols are
distinguished by having both different phases and different amplitudes. Thus,
instead of four possible phases as in QPSK, a larger number of both phases and
amplitudes are used to define which bit has been transmitted. Thus, rather than a
constellation of four symbols, in QAM the constellation has 16, 64, 256, or more
phase and amplitude locations corresponding to different bits being transmitted.
Figure 11.14 shows the constellation for 16-QAM. In 16-QAM, 4 bits are trans-
mitted simultaneously for a spectral efficiency of 4 bits/sec/Hz. Similarly, 64-QAM
and 256-QAM achieve a spectral efficiency of 6 and 8 bits/sec/Hz, respectively.

QAM has an advantage over MPSK in that, for a given spectral efficiency, it
will often achieve an equivalent bit error rate at a lower Eb /N0. The probability
of symbol error for QAM is given by [13]

PsSEb
N0

D ≈
2(1 − L−1)

log2 L
? QF√S3 log2 (L)

L2 − 1 D 2Eb
N0 G (11.24)

where L = √N which is also the number of amplitude levels in one dimension. So,
for instance, in the case of 64-QAM, L = 16. The symbol error probability is shown

Figure 11.14 Phase plot of a 16-QAM modulated signal.

414 Direct Modulation in Frequency Synthesizers

in Figure 11.15. This type of modulation can also use modulators and demodulators,
such as those shown in Figures 11.6 and 11.7.

A DDS such as shown in Figure 11.4 can easily implement a QAM signal by
simultaneously modulating its phase and amplitude words. Proper delay for the
baseband amplitude data should be considered in order to synchronize the phase
and amplitude modulation for the QAM signal.

11.3.9 Waveform Generation

In addition to direct modulation, various waveforms can also be generated through
a DDS. In a DDS, arbitrary waveform data can be stored in a lookup ROM. The
waveform data can also be programmable if the ROM is designed to be rewritable
through external programming. For example, radar operational requirements
include ever-increasing demands for affordable low-noise-signal and waveform
generation. Radar sensitivity can be greatly increased if the signals are transmitted
simultaneously through multiple carriers. In order to distinguish the received sig-
nals, carriers should differ from one another by frequency, phase, or the shape of the
waveforms. A multifrequency transmission scheme is not favored since it increases
transmission bandwidth and transceiver complexity. In contrast, multiphase or
multiwaveform transmission is highly desirable since there is no bandwidth penalty.
Ultimately, radar applications can benefit from the capabilities of DDS to provide
arbitrary waveform generation.

Figure 11.15 Probability of symbol error versus Eb/N0 for QAM.

11.3 Direct Digital Modulation and Waveform Generation in a DDS 415

References

[1] Van Rooyen, G. J., and J. G. Lourens, ‘‘A Quadrature Baseband Approach to Direct
Digital FM Synthesis,’’ IEEE Trans. on Broadcasting, Vol. 46, No. 3, September 2000,
pp. 227–230.

[2] Tan, L. K., and H. Samueli, ‘‘A 200 MHz Quadrature Digital Synthesizer/Mixer in
0.8 mm CMOS,’’ IEEE J. of Solid-State Circuits, Vol. 30, No. 3, March 1995,
pp. 193–200.

[3] Filiol, N. M., et al., ‘‘An Agile ISM Band Frequency Synthesizer with Built-In GMSK Data
Modulation,’’ IEEE J. of Solid-State Circuits, Vol. 33, July 1998, pp. 998–1008.

[4] Perrott, M. H., T. L. Tewksbury, and C. G. Sodini, ‘‘A 27-mW CMOS Fractional-N
Synthesizer Using Digital Compensation for 2.5-Mbis GFSK Modulation,’’ IEEE J. of
Solid-State Circuits, Vol. 32, No. 12, December 1997, pp. 2048–2060.

[5] Twitchell, E. R., ‘‘A Digital Approach to an FM Exciter,’’ IEEE Trans. on Broadcasting,
Vol. 8, No. 2, June 1992, pp. 106–110.

[6] Goldberg, B. G., Digital Frequency Synthesis Demystified: DDS and Fractional-N PLLs,
Eagle Rock, VA: LlH Technology Publishing, 1999.

[7] McMahill, D. R., and C. G. Sodmi, ‘‘A 2.5 Mbis GFSK 5.0 Mbis 4-FSK Automatically
Calibrated DS Frequency Synthesizer,’’ IEEE J. of Solid-State Circuits, Vol. 49, No. 5,
January 2002, pp. 18–26.

[8] McMahill, D. R., and C. G. Sodini, ‘‘Automatic Calibration of Modulated Frequency
Synthesizers,’’ IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Pro-
cessing, Vol. 49, No. 5, May 2002, pp. 301–311.

[9] Perrott, M. H., M. D. Trott, and C. G. Sodini, ‘‘A Modeling Approach for Sigma-Delta
Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis,’’ IEEE J.
of Solid-State Circuits, Vol. 37, No. 8, August 2002, pp. 1028–1038.

[10] Jackson, T., G. Eapen, and F. Dai, ‘‘Linearized Offset QPSK Modulation Utilizing a
Sigma-Delta Based Frequency Modulator,’’ U.S. Patent Application Publication, No. 2002/
0067773 A1, June 6, 2002.

[11] Larson, L. E., (ed.), RF and Microwave Circuit Design for Wireless Communications,
Norwood, MA: Artech House, 1997.

[12] Proakis, J. G., Digital Communications, 3rd ed., New York: McGraw-Hill, 1995.
[13] Sklar, B., Digital Communications: Fundamentals and Applications, 2nd ed., Upper Saddle

River, NJ: Prentice Hall, 2001.

A P P E N D I X A

A Review of Basic Control Theory

A.1 Introduction

Control systems are ubiquitous in modern society. They are everywhere and part
of just about everyone’s life, even if only engineers bother to describe them using
equations. The heating system in your house is an example of a feedback system.
You request a temperature in your house, and if the temperature falls below this
value, the thermostat triggers the furnace to come on and increase the temperature.
This is an example of negative feedback (the system takes action to keep the system
output at constant level). This system is usually stable and is a well-understood
example of a feedback-control system. The stock market is another example of a
feedback system. If a stock price falls, triggering more selling and causing the stock
price’s decline to accelerate, this is an example of positive feedback. If however, a
falling stock price encourages people to buy (perhaps they feel the stock is now at
a bargain price), this is an example of negative feedback as this will probably cause
the stock price to stabilize or rise again. Sadly, there is no equation in this appendix
that will predict the stock market, and if the authors knew of one, they would be
keeping it to themselves. This system is too complex and has too many inputs to
be modeled with the techniques shown here. However, many engineering systems
can be modeled using some math, and system behavior can be predicted quite well
with control theory.

This appendix is intended to be a quick review of the control theory that most
engineers study in undergraduate courses. However, such material is typically
scattered over a few courses, and the intent here is to put all the concepts together
in one location. Also, although continuous-time control theory is widely known,
some people may be less familiar with methods of dealing with discrete-time sys-
tems.

Control theory is a facet of engineering that transcends specialties. For example,
it is used nearly equally by radio frequency integrated circuit designers and civil
and chemical engineers. The only real difference is in the specifics of the control
system with which they are dealing. In electrical engineering, it is usually possible
to ‘‘engineer’’ a system to have a desired behavior, and we need not be at the mercy
of a system for which performance parameters are fixed by nature rather than the
designer. Whatever the case, it is important to understand how feedback systems
work, how to determine if they are stable, and how to determine more subtle
aspects of their behavior.

A synthesizer has both digital and analog circuits. The phase detector and the
dividers/counters are digital blocks. The loop filter and oscillator are analog blocks.

417

418 A Review of Basic Control Theory

The charge pump has a digital input and an analog output, so it can be seen as
the interface between the digital and the analog worlds. In order to determine the
overall frequency response, delay, switching speed, stability, noise transfer func-
tions, and so forth, we need to be able to combine the analysis of both the digital
and the analog circuits. For this reason, we spend some time here describing the
function of the digital circuit and developing analysis techniques.

A.2 The Continuous-Time Laplace Transform

Often, engineering systems need to be described by systems of differential equations.
For example, the relationship between the voltage and current in a capacitor is

v(t) =
1
C E

t

0

i(t) dt + initial condition (A.1)

The hard way to do circuit design under deadline pressure is to perform all
these integrations and differentiations directly. It would be far more convenient,
therefore, smarter and faster, to apply a mathematical transformation that would
permit very easy integration and differentiation of various components in a large
system of differential equations, and, in fact, the Laplace transformation does just
that.

For our purposes, the Laplace transform is used to transform a time domain
waveform f (t) into the s domain (complex frequency domain) F(s). Once trans-
formed, the new function is in a convenient domain in which to perform operations
that involve integration or differentiation as these operations become algebraic in
nature.

The s domain will be where we analyze a system’s frequency response, and it
will provide a convenient way for us to get the output of a system for a given
input. The Laplace transform gives information about the frequency content of the
waveform in terms of both amplitude and phase. The Laplace transform can be
defined as [1]

F(s) = E
∞

0

e −stf (t) dt (A.2)

The definition is given here for completeness. Most common functions that we
will need are well known, and it is far easier to look them up in a table like Table
A.1 than it is to solve the integral [1–3].

A.3 The Laplace Transform and Sampling

If the system of interest is a mixed-signal system (it uses both digital and analog
parts), then at some point, the system’s analog signals must be sampled. Sampling

A.3 The Laplace Transform and Sampling 419

Table A.1 Common Laplace Transforms and z Transforms

Time Domain Function Comments and
y(t)/Discrete Time F(s) (Continuous F(z) (Discrete Laplace Additional
Domain y(kT) Laplace Equivalent) Equivalent) Explanations

d (t) 1 1 Unit impulse
d (kT) function

u(t) Unit step function;1
s

z
z − 1u(kT) also an integrator

t Ramp1

s2

Tz

(z − 1)2kT

t2 Parabolic2

s3
T2z(z + 1)

(z − 1)3(kT)2

tn Exponentialn!

sn + 1 lim
a → 0

(−1)n dn

dan S z

z − e −aTD(kT)n

Natural exponentiale −aT 1
s + a

z

z − e −aT decay
e −akT

Natural exponential1 − e −aT 1
s(s + a)

z(1 − e −aT)

(z − e −aT) (z − 1)
growth

1 − e −akT

sin(at) Sine wave, no decaya

s2 + a2

z sin(vT)

z2 − 2z cos(vT) + 1sin(akT)

cos(at) Cosine wave, nos

s2 + a2

z [z − cos(vT)]

z2 − 2z cos(vT) + 1cos(akT) decay

Sine wave witheat sin(bt) b

(s − a)2 + b2
ze −aT sin(vT)

z2 − 2ze −aT cos(vT) + e −aT exponential decay/
eakT sin(bkT) growth

Cosine wave witheat cos(bt) s − a

(s − a)2 + b2
z2 − ze −aT cos(vT)

z2 − 2ze −aT cos(vT) + e −aT exponential decay/
eakT cos(bkT) growth

Ramp witht ? eat 1

(s − a)2
Te −aTz

(e −aTz − 1)2 exponential decay,
kt ? eakT

growth

F(s − a) Frequency-Shifteat f (t) F(e −aTz)
Theorem

eakTf (kT)

f (t − nT) Time-Shift Theoreme −snTF(s) z −nF(z)
f (kT − nT) (a delay)

sF(s) Differentiation(1 − z −1)F(z)df (t)
dt Theorem/Difference

Theoremf (kT) − f (kT − T)

IntegrationF(s)
s S z

z − 1DF(z)E
t

0

f (t) dt Theorem/
Accumulation
Theorem

f (kT) + y(kT − T)

f (∞) lim
s → 0

sF(s) Final Valuelim
z → 1

(1 − z −1)F(z)
Theorem

f (0) lim
s → ∞

sF(s) lim
z → ∞

F(z) Initial Value
Theorem

420 A Review of Basic Control Theory

Table A.1 (Continued)

Time Domain Function Comments and
y(t)/Discrete Time F(s) (Continuous F(z) (Discrete Laplace Additional
Domain y(kT) Laplace Equivalent) Equivalent) Explanations

f (t)g(t) F(s) ⊗ G(s) F(z) ⊗ G(z) Convolution
f (kT)g(kT) Theorem*

F(s)G(s) F(z)G(z) ConvolutionE
t

0

f (t − t)g(t) dt =
f (t) ⊗ g(t)

Theorem*

f (kT) ⊗ g(kT)

*Note that the symbol ⊗ denotes convolution.

is the act of measuring a system’s output periodically. Thus, only the system’s
outputs at the instances when sampling occurs are of interest, and anything the
system does in between sampling instances is lost. Sampling is done once per clock
cycle, then, the sampled value is held until the next sampling instance. In order to
have a good digital representation of the waveform, it must be sampled fast enough.
In fact, the waveform must be sampled at a rate that is at least twice as fast as the
highest frequency of interest. This is known as the Nyquist sampling rate [4]. A
sampler also causes delay; therefore, it can also be thought of as a delay block.
An example of a delay block is a D-flip-flop where the input signal is read on the
edge of the clock while, at the same time, the signal stored on the flip-flop (the
previous input) is passed on to the next circuit. A similar effect can be seen in a
sample-and-hold, such as the one in Figure A.1, where an input analog voltage is
sampled, and the voltage is stored on a capacitor. During the hold phase, an
additional circuit can take a sample of this voltage. Thus, this second sample still
represents the input voltage except that it is delayed by some period. This is shown
in Figure A.2. Note also that it is highly desirable to make sure that the two
switches are never closed at the same time because this can result in sampling
errors.

Thus, samples are taken at the points indicated by the circles. In this example,
two sample-and-holds have been used to convert the continuous analog waveform
into a sampled analog waveform. After the second sample-and-hold, the sample
is ready to be passed on at the points indicated by the squares. The output clearly
has the same voltage level as the input at the sampling instants. The output now
has a staircaselike waveform, with output samples delayed by a full clock period

Figure A.1 Sample-and-hold circuit.

A.3 The Laplace Transform and Sampling 421

Figure A.2 Waveforms in a sample-and-hold circuit.

from the time the samples were taken. The mathematics of such a delay leads to
the z transform.

We will now describe the process of sampling in more mathematical terms.
Consider the continuous-time waveform in Figure A.3. Sampling can be described
mathematically as multiplying the waveform by a series of delta functions, some-
times called an impulse train, as shown in Figure A.3. The waveform f (t) sampled
every T time units can be written as

fs (t) = f (t) ∑
∞

k = 0
d (t − kT) = ∑

∞

k = 0
f (kT)d (t − kT) (A.3)

We can find the Laplace transform of (A.3) by making use of Table A.1.

Figure A.3 Illustration of sampling a waveform.

422 A Review of Basic Control Theory

Fs (s) = F(s) ⊗ ∑
∞

k = 0
e −skT = ∑

∞

k = 0
f (kT)e −skT (A.4)

Thus, we can see that delay in the time domain is equivalent to phase shift in
the frequency domain. This exponential term, which is the transform of the time
delay, is used so frequently that it is now commonly replaced with z as follows:

z −1 = e −sT (A.5)

When this substitution is made, we then typically talk about z transforms:

Fs (z) = ∑
∞

k = 0
f (kT)z −k (A.6)

Thus, z −k can also be thought of as a delay of k clock periods. For example,
if a system has an output that is not only dependent on the input but on past
values of the input at times like k − 1, k − 2, k − 3, and so forth, in the time
domain, then, in the frequency domain, this results in multiplication by z −1, z −2,
z −3, and so forth. In other words, a circuit block that provides a unit clock delay
can be represented by a frequency domain block with a transfer function of z −1.

Recall that in the earlier discussion of the sample-and-hold circuit, the discrete-
time output signal was delayed by one sample clock period from the input signal.
Thus, at low frequencies compared to the sampling frequency, the sample-and-
hold behaves as a unit time delay element that can be described as z −1. Furthermore,
as will be shown in other parts of this book, we can easily use this math to describe
fully the behavior of circuits that are built up of delay elements with summers and
connected by feedback paths. This math is ideal for use in analysis of discrete-time
circuits and systems, be they analog, sample-and-hold, or fully digital using register
banks as delay elements.

Example A.1: Computing z Transforms
Illustrate the use of the preceding equations to take a time domain waveform and
transform it to the z domain.

Solution: For example, the unit step function u(t) can be transformed. In this
case, f (kT) = 1 for all k > 0. Therefore,

Fs (z) = ∑
∞

k = 0
z −k = (1 + z −1 + z −2 + z −3 . . .) (A.7)

We make use of the following mathematical identity:

x
x − 1

= 1 + x −1 + x −2 + x −3 . . . (A.8)

Therefore,

A.4 System Modeling with Frequency Response 423

Fs (z) =
z

z − 1
(A.9)

Other functions can be transformed in a similar way. For example, the natural
exponential f (kT) = e −akT:

Fs (z) = ∑
∞

k = 0
e −akTz −k = 1 + e −aTz −1 + e −a2Tz −2 + e −a3Tz −3 . . . (A.10)

This can be rewritten as

Fs (z) = 1 + (eaTz)−1 + (eaTz)−2 + (eaTz)−3 . . . (A.11)

Again using the math identity (A.8),

Fs (z) =
eaTz

eaTz − 1
=

z

z − e −aT (A.12)

In this way, the third column in Table A.1 can be constructed.

So far, we have talked about ideal sampling (multiplying by impulse functions).
In reality, we also ‘‘hold’’ the value for an entire clock period. Thus, each element
in the infinite series in (A.6) is multiplied by a square wave of length of one period:

ghold(t) = u(t) − u(t − T) (A.13)

Ghold(s) =
1 − e −sT

s

Some care should be taken in general when manipulating and converting sys-
tems from the s to the z domains. Note especially that, in general,

Z[G(s)H(s)] ≠ G(z)H(z) (A.14)

A.4 System Modeling with Frequency Response

A great majority of the systems we are interested in can be described by an amplitude
(or magnitude) response and a phase response, both of which change with fre-
quency. That is, if an input is applied to a system (e.g., voltage, current, power,
phase, grenade), the output will be at some magnitude relative to the input, as well
as some phase shift relative to the input. Either the s or the z domain can be used
to describe these systems very conveniently.

A.4.1 Frequency Response of Continuous Systems

The simplest possible system is a first-order one, which requires that s be raised
only to the first power to describe it. More complicated systems need a higher-

424 A Review of Basic Control Theory

order equation to describe them. A general first-order transfer function (the ratio
of the system output to input) for a system without a zero (the function does not
equal zero for any finite value of s) is given by

F(s) =
K

s + vo
(A.15)

It can be seen that F(s) will blow up to infinity for s = −vo . Any value of s
that causes the expression to go to infinity is called a pole of the system. A first-
order system has one pole given by

P = − vo (A.16)

A second-order transfer function (again without zeros) is given by

G(s) =
K

s2 + 2zvns + v 2
n

(A.17)

where vn is called the natural frequency, and z is the damping constant. For z less
than or equal to zero, this function can be shown to blow up to infinity for some
positive complex value of s. These values for z will be left until the next section.
In general, the poles of this transfer function are given by

P1,2 = −zvn ± vn√z 2 − 1 (A.18)

In the case for which z is greater than one, the poles are both real and have
no imaginary component. If z is less than one, then the poles have an imaginary
component. Thus, we often classify a system by its value of z . Systems with z
greater than one are called overdamped; systems with a z of one are called critically
damped, and systems with z less than one are called underdamped.

Poles are often plotted in the complex plain with s = s + jv , as shown in Figure
A.4. This plot shows the locations of the poles and equations for calculating the
positions of the poles, knowing the natural frequency of the system and the damping
constant.

These functions can be plotted to give the amplitude and phase response of
the system letting s = jv . For a first-order system, this is quite straightforward

|F(jv) | =
K

√v 2 + v 2
o

(A.19)

∠F(jv) = −tan−1S v
vo

D (A.20)

For the second-order case, the situation is more complex. The magnitudes and
phase shifts are given by

A.4 System Modeling with Frequency Response 425

Figure A.4 Movement of second-order system poles plotted in the complex s plain for a sweep
of z from z > 1 to z = 0.

|G(jv) | =
K

√Xv 2
n − v 2 C2 + 4z 2v 2v 2

n

=
K

√v 4 + v 4
n + v 2

n v 2(4z 2 − 2)

(A.21)

∠G(jv) = 5−tan−1S 2zvnv

v 2
n − v 2D for v ≤ vn

p − tan−1S 2zvnv

v 2
n − v 2D for v > vn

(A.22)

These expressions are plotted in Figures A.5 and A.6.
It is often of interest to know the 3-dB bandwidth of the system. This is the

frequency at which the gain is 3 dB below the gain at dc. This can be found for
the first-order system by setting (A.19) equal to

K

√v 2
3 dB + v 2

o

=
1

√2
?

K
vo

(A.23)

426 A Review of Basic Control Theory

Figure A.5 (a) The amplitude, and (b) the phase of a first-order system.

where K /v 2
o is the dc value of this function. Solving this equation for v3 dB gives

v3 dB = vo (A.24)

Similarly, for the second-order system [see (A.21)], which has a dc gain of

K /v 2
n ,we can find this point as well:

K

√v 4
3 dB + v 4

n + v 2
n v 2

3 dB(4z 2 − 2)
=

1

√2
?

K

v 2
n

(A.25)

Solving this formula for v3 dB gives

v3 dB = vn√1 − 2z 2 + √4z 4 − 4z 2 + 2 (A.26)

It should be noted that, although it is sometimes assumed that the 3-dB band-
width of the system is approximately equal to the natural frequency, this is not

A.4 System Modeling with Frequency Response 427

Figure A.6 (a) The amplitude, and (b) the phase of a second-order system for different values of z .

the case since, as can be seen by (A.26) and Figure A.6, the 3-dB bandwidth is
actually dependent on the value of the damping constant.

In any system, there may also be one or two zeros present. Zeros can dramati-
cally change the frequency response of the system in question. In general, a second-
order system can be of the form

H(s) =
K(s + v z1) ? (s + v z2)

s2 + 2zvns + v 2
n

(A.27)

If there is only one zero, and if its frequency is much higher than the pole
frequency, then the amplitude plot will be nearly the same as that shown in Figure
A.6. The difference will be that, after the zero frequency is reached, the roll-off
rate will be −20 dB/dec rather than −40 dB/dec. Also, if the zero is in the left half

428 A Review of Basic Control Theory

of the s plane, then it will add phase lead of 90° at high frequencies; if it is in the
right half of the s plane, then it will add 90° of phase lag at higher frequencies. If
a zero is placed at the origin, then the gain at dc will drop to zero. For such a
system, as frequency increases, gain will increase up to the first pole, in other
words, resulting in a highpass frequency response. In general, any system for which
the zero frequency is less than the pole frequencies will have a highpass response.
If a pole and zero are at the same frequency, resulting in pole-zero cancellation,
then the second-order system will behave like a first-order system.

A.4.2 Frequency Response of Sampled Systems

Even though we will primarily use the Laplace transform, in control theory there
is a related transform known as the Fourier transform, which will give us direct
information about the spectral content of the waveform. The Fourier transform is
defined as [5]

F(2p f) = E
∞

−∞

e −j2p ft f (t) dt (A.28)

We note that the convolution theorem also applies to the Fourier transform,
just as it does to the Laplace transform. The Fourier transform of the sampled
waveform described by (A.3) is

Fs (f) = F(f) ⊗
1
T ∑

∞

k = −∞
dSf −

k
T D (A.29)

We note here, without proof, that the Fourier transform of a series of equally
spaced delta functions in the time domain (to represent sampling, as in Figure A.3)
is a set of delta functions in the frequency domain, as shown in Figure A.7. These
are now convolved with the spectrum of the input waveform.

The effect of convolving the input waveform with a delta function is to recenter
the waveform at the frequency of the delta function. These impulses can be seen
to occur at dc, at the sampling frequency fs , and at 2fs , 3fs , and so forth. Thus,
the frequency spectrum of the continuous waveform repeats around fs and around
all multiples of the sampling frequency, as shown in Figure A.8. These multiple
identical spectral components are the result of mixing the input with the sampling
frequency. This mixing property of sampled systems is called replication. A conse-
quence of replication is that signals fed into the system at frequencies close to the
sampling frequency, or a multiple of the sampling frequency, will produce an

Figure A.7 Impulses in the time domain become frequency domain pulses.

A.4 System Modeling with Frequency Response 429

Figure A.8 The effect of replication on an input signal fi : (a) continuous, (b) pure sampled data,
and (c) sampled-and-held data.

output signal in the baseband (somewhere between dc and fs /2). Such signals are
indistinguishable from signals fed in close to dc. This typically unwanted output
signal is called an aliased component.

If the frequency response of a continuous transfer function is known, the
equivalent response in the sampled z domain can be determined. For instance, a
sampled first-order system equivalent to the one described by (A.15) is given by

F(z) =
Kz

z − e −voT (A.30)

In general, the frequency response could be determined by replacing z with e sT

and using a math program to solve this numerically. However, since this is equiva-
lent to the continuous first-order system just considered, this will have a frequency
response that repeats every 1/T Hz. This response will be shown later in Figure
A.9.

When sampling is accompanied by a hold function, the frequency response is
first convolved with the delta function to represent the sampling function. Then,
the result is multiplied by the hold function. We use (A.13), replace s with jv , and
multiply top and bottom by e jvT /2 to result in

Ghold(jv) =
1 − e −jvT

jv
e jvT /2

e jvT /2

= Te −jvT /2 e jvT /2 − e −jvT /2

2jvT /2
(A.31)

= Te −jvT /2 sin(vT /2)
(vT /2)

430 A Review of Basic Control Theory

Figure A.9 Illustration of the difference between pure sampled data and sampled-and-held data.

Thus, there is a linear phase shift, and the amplitude is attenuated at higher
frequencies. The result of the hold function is that successive replications become
smaller and smaller, so the hold function is serving a very useful filtering function.
This is illustrated in Figure A.8 for a signal, and the effects of impulse sampling
and sample-and-hold on a transfer function are shown in Figure A.9.

It is worthwhile to note at this stage that when plotting the amplitude of
impulse-sampled waveforms, the amplitude will not match that of the continuous-
time waveform. This is because the average amplitude in an impulse sample is

Aave =
1
T E f (kT)d (t) dt =

f (kT)
T

(A.32)

However, after the hold function, the average amplitude in a sample is

Aave =
1
T E f (kT) [u(kT) − u(kT + T)] dt = f (kT) (A.33)

Note that the continuous-time waveform will also have an average amplitude
of f (kT) (provided its amplitude changes relatively little in the integration time T
or, equivalently, its frequency is much lower than the sampling frequency). Thus,
the amplitude of the impulse sampled waveform or transfer function is scaled by
a factor of T relative to either the continuous-time or sampled-and-held waveform.

A.5 Response in the Time Domain 431

There are also some simple ways to do quick sketches of transfer functions.
From (A.5), we can determine the effect of z on the phase shift of a system. For
instance, the phase of F(z) = z −1 as a function of frequency is

F(z) = z −1 = e
−j2p

f
fs = 1∠ − 2p

f
fs

= cosS2p
f
fs
D − j sinS2p

f
fs
D (A.34)

This is a vector with a magnitude of one and a phase of f /fs as a fraction of
360°. Table A.2 summarizes this result.

Example A.2: Discrete and Continuous Integrators
Compare the phase of a simple integrator in the continuous-time domain to one
in the discrete-time domain.

Solution: We first assume that the sampling frequency is normalized to one.
We can look up the equations for continuous and discrete integrators in Table
A.1. Then, using the formula z = e sT and knowing that s = jv , we can find the
magnitude and angle of the two functions. These are shown for a few frequencies
in Table A.3.

A comparison of the amplitude and phase responses of these two systems is
shown in Figure A.10.

Here we can see the performance of the discrete integrator compared to the
ideal continuous-time integrator. The figure shows that the expected continuous
gain is halved for every doubling of frequency. This relationship is accurate for
the discrete integrator up to about fs /8 or even fs /4. As for phase, the expected
ideal response is a constant phase shift of 90°, while for the discrete integrator,
the phase is close to 90° only for low frequencies.

A.5 Response in the Time Domain

There are three classic inputs to a system, which we usually consider when discussing
transient response. Here, the transient response refers to the system’s response to

Table A.2 Frequency Response of z −1

Frequency f /fs f = 0 f = fs /8 f = fs /4 f = fs /2 f = fs

Vector Direction → → ↓ ← →

z −1, Cartesian form 1 −j −1 11

√2
− j

1

√2

z −1, Polar form 1∠0° 1∠−45° 1∠−90° 1∠180° 1∠0°

Table A.3 Frequency Response of a Continuous and Discrete Integrator

Frequency 0 fs /32 fs /16 fs /8 fs /4 fs /2 fs

∞∠−90° 5.1∠−84.4° 2.56∠−78.8° 1.31∠−67.6° 0.707∠−45° 0.5∠0° ∞∠−90°z
z − 1

∞∠−90° 5.09∠−90° 2.55∠−90° 1.27∠−90° 0.637∠−90° 0.318∠−90° 0.159∠−90°1
s

432 A Review of Basic Control Theory

Figure A.10 (a) Magnitude, and (b) phase response of discrete integrator compared to a continuous
integrator.

an impulse, a step, or a ramp. The response to an impulse is also sometimes called
the natural response of the system. Since the impulse is instantaneous, there are
no lasting effects on the system; so, what it does after the impulse has been applied
is due to its own characteristics and properties only and not the properties of the
input. Thus, to find the outputs of these systems, the system transfer function must
be multiplied by an input of 1 for an impulse, an input of 1/s for a step, and an
input of 1/s2 for a ramp, as given in Table A.1. To find the transient response, we
simply take the inverse Laplace transform of the output. For a first-order system,
the output equations are

fimpulse (t) = Ke −vot (A.35)

A.5 Response in the Time Domain 433

fstep (t) =
K

vo
−

K
vo

e −vot (A.36)

framp(t) =
K

vo
t −

K

v 2
o

+
K

v 2
o

e −vot (A.37)

Note that the above expressions assume a unit impulse, step, and ramp. In
general, there could be a constant of proportionality associated with the expression
as well.

The step is the most interesting. The response is an exponential rise having an
initial value of zero and a final value of K /vo . The system has a time constant of
value 1/vo , and if we say that the system has settled to its new value when it is
98% of the way there, then it settles in a time of

Tsettling =
ln(0.02)

vo
(A.38)

The second-order system is again slightly more complicated. In the case where
z is greater than one, the poles are real, and the response is exponential in nature,

gimpulse (t) =
K

vn√z 2 − 1
e −zvnt sinhXvnt√z 2 − 1 C (A.39)

gstep (t) =
K

v 2
n
H1 − e −zvntFcoshXvnt√z 2 − 1 C + S z

√z 2 − 1D sinhXvnt√z 2 − 1 CGJ
(A.40)

In the case where z is equal to one,

gimpulse (t) =
Kt
2

e −vnt (A.41)

gstep (t) =
K

v 2
n
S1 − e −vnt −

vnt
2

e −vntD (A.42)

Next, we will take the case where z is less than one. In this case the response
is

gimpulse (t) =
K

vn√1 − z 2
e −zvnt sinXvn√1 − z 2 tC (A.43)

gstep (t) =
K

v 2
n
H1 − e −zvntFcosXvn√1 − z 2 tC +

z

√1 − z 2
sinXvn√1 − z 2 tCGJ

(A.44)

434 A Review of Basic Control Theory

Figure A.11 shows the step response for a second-order system.
The system has a few properties that can be evaluated mathematically. For

instance, if we take the derivative of the step response in (A.44) with respect to
time and set it equal to zero, we can find the maximums and minimums of the
system. The first one is at a time of

Tpeak =
p

vn√1 − z 2
(A.45)

Another property that can be defined is the percentage overshoot. This is a
measure of how much bigger the peak value is than the final value.

Overshoot =
gstep (Tpeak) − gstep (∞)

gstep (∞)
= e

−zp

√1 − z2
(A.46)

We can also define the settling time as the time it takes the waveform to reach
and stay within 2% of its final value. This means that the sinusoidal part of (A.44)
must have an amplitude of 0.02. This can be approximated as

TS ≈
4

zvn
(A.47)

Figure A.11 The step response of a second-order system for different values of z .

A.5 Response in the Time Domain 435

Now we also need to determine what happens when we add zeros to the system.
A general second-order transfer function that includes finite zeros would take the
form

H(s) =
K(s + v z1) ? (s + v z2)

s2 + 2zvns + v 2
n

= G(s) (s + v z1) ? (s + v z2) (A.48)

H(s) = s2G(s) + sG(s) (v z1 + v z2) + G(s)v z1v z2

Here, G(s) is the original transfer function given by (A.21). If there is only one
zero, and it is at dc, then we have a pure differentiator, and the time domain
equation will simply be the derivative of the original transfer function. The transient
response of this system is simply the derivative of the transfer function without
the zero. Otherwise, the transient response is a combination of both the derivative
and the response of the system without the zero present, as well as a second
derivative if two zeros are present. Note that zeros are not restricted to the left
half-plane but can be in the right half-plane as well.

Thus, in the time domain, we have,

h(t) =
d2g(t)

dt2 +
dg(t)

dt
(v z1 + v z2) + g(t)v z1v z2 (A.49)

In general, as more poles are added to a system, the system takes longer to
settle. Zeros or differentiators can often be added to a system to speed up its
response. This is especially useful in higher-order systems with multiple poles.
Often, zeros can be added systems to them to make them more ‘‘second-order like’’
and, thus, have faster settling times or to improve the system stability.

Example A.3: Effect of a Zero
A first-order system with a zero is given by

Fzero(s) =
K(s + v z)
(s + vo)

This system will have a step-transient response that is given by

fstep_zero(t) = fstep (t)v z +
dfstep (t)

dt
=

Kv z
vo

−
Kv z
vo

e −vot + Ke −vot (A.50)

Discrete systems can be handled as well. For example, a first-order discrete-
time system that is described by (A.30) will have a response to a unit step given
by

fstep (kT) =
K

1 − e −voT u(kT) +
K

1 − e voT e −vokTu(kT) (A.51)

436 A Review of Basic Control Theory

This equation is obtained by taking the transfer function and multiplying by
the z domain equation for a step function and then taking the inverse z transform
to get the time domain output. Note that a transfer function in the frequency
domain can also be transformed back into the time domain very simply by cross-
multiplying, then replacing multiplications by z0 with the subscript k and multiplica-
tions by z −1 by the subscript k − 1 (remember that z −1 is a unit delay). This is best
illustrated with an example.

Example A.4: Transient Response of a Discrete-Time System
A continuous-time signal (a square wave) is given by

fstep (t) = u(t − T) − u(t − 3T) − [u(t − 5T) − u(t − 7T)]

This signal is applied to a system with a transfer function given by

vout
v in

=
1

1 − z −1

Determine the time domain output of the system.
Solution: First, we take the transfer function and cross-multiply so that

vout − voutz
−1 = v in

Noting that z −1 is a unit delay means that, in the time domain, the previous
equation can be rewritten as

vout_k = vin_k + vout_k − 1

where k denotes the kth sampling instant. Figure A.12 shows a plot of the outputs
noting that, at every sampling instant, the output is the sum of the last output plus
the current input.

A.6 Feedback Systems

So far, we have discussed first- and second-order systems. Now we consider func-
tional blocks connected in a feedback configuration instead of simply being con-
nected in series. Feedback can be either positive or negative, although negative
feedback is the more common and stable form of feedback. Figure A.13 shows a
generic system that employs negative feedback. Here, a system with transfer function
A(s) (known as the forward gain) has its output fed back through another system
with transfer function B(s) (known as the feedback gain) whose output v feedback(s)
is subtracted from the input signal (note that subtraction implies negative feedback).
The signal fed into A(s) is also known as the error signal verror (s). It is called an
error signal because a negative feedback system operates in such a way that v in (s)
and v feedback(s) are driven towards being equal, therefore minimizing the ‘‘error’’

A.6 Feedback Systems 437

Figure A.12 Example of the transient response of a discrete system to a step input.

Figure A.13 Generic system with feedback.

signal. In the case of positive feedback, an error signal causes v in (s) and v feedback(s)
to be driven further apart, towards the power-supply rails. Thus, one can see that
getting the right number of inversions into the feedback path is very important as
a simple change in sign can drastically change the outcome!

This system can be shown to have a transfer function from input to output
given by

vout (s) = A(s)verror (s) = A(s) [v in (s) − v feedback(s)] = A(s) [v in (s) − vout (s)B(s)]
(A.52)

438 A Review of Basic Control Theory

Solving for vout /v in gives

H(s) =
vout (s)
v in (s)

=
A(s)

1 + A(s)B(s)
(A.53)

Thus, if the system is itself placed into a box, this is just another transfer
function, and from the outside, it is impossible to know if there is feedback in it
at all.

Note that, in general, we usually know the properties of A(s) and B(s) and
are required to do math to solve for the overall closed-loop transfer function. This
can become cumbersome for systems with high-order components, so a math
program may need to be employed. Alternatively, the pole locations can be found,
for example with a root-locus analysis. This is discussed in Section A.8.

Systems are also often a mixture of continuous and discrete parts, and a charge
pump–based PLL is an example of such a system. Often, the inputs are the digital
parts that control a continuous ‘‘real-world’’ system. For instance, the system
shown in Figure A.14(a) can be represented by the model shown in Figure A.14(b).
Note that if we assume that the sampling clocks are synchronized, the systems are
equivalent. In this case, we can find the open-loop z transfer function of this system
as

G(z) = (1 − z −1) ? ZHF(s)
s J (A.54)

where

ZHF(s)
s J

Figure A.14 (a) Mixed-signal feedback-control system, and (b) equivalent model.

A.6 Feedback Systems 439

is the z transform of the s domain function. Note that the term in front can be
separated because, even though, in general, all multiplication must be done before
the z transform is performed, multiplying by e −sT (z −1) is a special case where
separation can be done before transformation to the z domain. This is, in fact, the
Time-Shift Theorem (see Table A.1).

Therefore, the closed-loop transfer function for this system is

H(z) =
G(z)

1 + G(z)
(A.55)

Figure A.15 shows examples of purely sampled systems in feedback, which, in
this case, form discrete-time integrators. All circuits in Figure A.15 are equivalent,
except for a different amount of delay added to the output. Thus, Figure A.15(a)
has the minimal amount of delay, Figure A.15(b) is exactly equivalent to Figure
A.15(c) and has an extra clock delay added to the output, and Figure A.15(d) has
a half-delay added to the output. In the basic integrator, as in Figure A.15(a), the
input is added to the previous output to form the new output. Thus, this is the
sum of all inputs, which is exactly the function of an integrator. Let us see what
this looks like from the z transform point of view. In this case,

vo = vx = vi + vo z −1 (A.56)

This can be solved for vo with the following result:

vo
v i

=
1

1 − z −1 (A.57)

Similar results can be obtained for circuits with the extra full or half-delay as
follows:

Full delay:
vo
v i

=
z −1

1 − z −1 , Half-delay:
vo
v i

=
z −1/2

1 − z −1 (A.58)

Figure A.15 Discrete feedback systems that implement an integrator: (a) no forward path delay,
(b) one period of forward delay, (c) one period of forward delay outside feedback,
and (d) half a period of delay.

440 A Review of Basic Control Theory

A.7 Steady-State Error and the System Type

If there are any integrators in the feedback path [pure 1/s terms in either A(s) or
B(s)], this has an effect on the steady-state error of the system when a given input
is applied. This is also a way to classify systems. If a system has no integrators [no
poles in A(s) or B(s) at the origin], then the system is type zero. If it has one pole
at the origin, it is type I; if it has two, then it is Type II; and so on.

The error signal of the feedback system is given by

verror (s) =
v in (s)

1 + A(s)B(s)
(A.59)

For a type-zero system with a step input applied (v in = 1/s), the steady-state
error from the Final Value Theorem (see Table A.1) is given by

estep = lim
s → 0

sF1
s

?
1

1 + A(s)B(s)G =
1

1 + A(0)B(0)
=

1
1 + K

(A.60)

where K is the dc loop gain of the system. For a ramp input, as well as any parabolic
input, the error is infinity.

If the system has an integrator in it, then the steady-state error is given by

estep = lim
s → 0

s31
s

?
1

1 +
A(s)B(s)

s
4 = 0 (A.61)

Another way to think about this is that an integrator can have a nonzero output
with a zero input. Thus, if there is an input step, the output can adjust with a zero
error signal. In general, to have a zero error signal, the system is required to have
one more integrator than the order of the input transient. That is, a step is not a
function of time, so it is order zero; a ramp is proportional to time, so it is order
one; and a parabolic is proportional to the square of time, so it is order two. Thus,
for a parabolic input, to have a zero error signal, a minimum of three integrators
is required, as shown in Figure A.16. Note that, aside from the three integrators

Figure A.16 How integrators influence error voltage.

A.8 Stability 441

in this figure, the rest of the loop transfer function is simply shown as a constant
K. This is because, unless the transfer function has poles at the origin, only its dc
gain will have any effect on the steady state of the system. You can see that in this
figure, if one integrator is removed, v1 will become the error signal, and if two
are removed, v2 will become the error signal, and so on. It should also be noted
that Figure A.16 is primarily for illustration purposes and that, in practice, such
a system could experience stability problems.

Note that the steady-state error for a sampled system can be found in exactly
the same way using the z version of the final value theorem in the table.

A.8 Stability

So far, we have restricted our s domain discussion to systems with poles in the left
half-plane. This is because these poles all have exponentials associated with them,
where the exponentials decrease with time. If a pole were in the right half-plane,
then it would have a growing exponential associated with it, and the system would
be considered unstable. This is good for building oscillators, but most control
systems should be designed to be stable. For the case where the system is sampled
and poles are described in terms of z rather than s, the stability of these systems
can be determined by pole location as well. Since

z = eTs (A.62)

if we make the substitution that s = s + jv , then

z = eT(s + jv) = eTse jvT = eTs [cos(vT) + j sin(vT)] = eTs ∠ vT (A.63)

We know that on the s plane, any pole with a real part (s > 0) is unstable.
From (A.63), s = 0 on the s plane corresponds to a magnitude of one on the z
plane. Therefore, for a sampled system to be stable, the poles must be within the
unit circle on the z plane. Thus, the sampling rate can affect the stability of a
system. For example, consider a feedback system that consists of a system with a
first-order response. That is to say, assume that the system shown in Figure A.14
contains a system F(s) given by (A.15). Now G(z) is given by

G(z) = (1 − z −1) ? ZF K
s(s + vo)G = (1 − z −1) ?

K
vo

ZS1
s

−
1

s + vo
D (A.64)

G(z) = (1 − z −1) ?
K

vo
S z

z − 1
−

z

z − e −voTD =
K

vo
S1 − e −voT

z − e −voT D
Therefore, the closed-loop transfer function for this system is given by

H(z) =
K

vo
?

1 − e −voT

z − FS1 +
K

vo
De −voT −

K
vo
G (A.65)

442 A Review of Basic Control Theory

For this system to be stable, the system must have its pole inside the unit circle.
Therefore,

Pole = S1 +
K

vo
De −voT −

K
vo

(A.66)

For stability,

−1 < S1 +
K

vo
De −voT −

K
vo

< 1 (A.67)

K
vo

− 1

K
vo

+ 1
< e −voT < 1

For e −x to be equal to one, x must equal zero. This can only happen if the
sampling time goes to zero, or the cutoff frequency on the LPF is zero. So, for
practical values vo and T, the right-hand condition is easily met. The other condition
can be met if

−
1

vo
? ln1

K
vo

− 1

K
vo

+ 12 > T (A.68)

Thus, the system will be stable, provided the sampling period T is not too
large. If it is too large (if the sampling frequency is too low), the system will become
unstable.

For feedback systems, it is often easier to use the open-loop characteristics to
determine stability. The classic definition of an oscillator (the Barkhausen criteria)
states that (with reference to Figure A.13) for the system to be unstable, the loop
gain must be equal to one at an angle of 0° or at a multiple of 360°. With an
inversion in the feedback (negative feedback), the phase of A (s)B(s) must be 180°.
Thus, the system will be unstable, and oscillations will occur if the combination
of A(s) and B(s) has a gain greater than unity when the phase shift is 180°. Thus,
two typical stability criteria are either phase margin or gain margin.

Phase margin is defined as the amount of additional phase change needed at
the unity-gain point of A(s)B(s) to give a phase shift of 180°.

Gain margin is defined as the amount of additional gain at the frequency where
A(s)B(s) has a phase shift of 180° to start an oscillation.

A.9 Root Locus

Often with a feedback system, we know the transfer functions for A(s) and B(s),
but algebra must be performed to find the closed-loop transfer function of the

A.9 Root Locus 443

whole system. If A(s) and B(s) are of high order, finding the poles of the closed-
loop transfer function can be tedious. Thus, if a computer is not handy, it is often
useful to have a technique for finding the poles quickly with pen and paper. Often,
we would like to know where the poles of the system are as a function of the dc
loop gain K. If K is assumed to be in the feedforward path, then the closed-loop
transfer function is

T(s) =
KA(s)

1 + KA(s)B(s)
(A.69)

The poles of this system can be found from

KA(s)B(s) = −1 (A.70)

or, more explicitly, when

∠A(s)∠B(s) = (2k + 1) ? 180° (A.71)

where k is a positive integer and when

K =
1

|A(s) | |B(s) | (A.72)

Therefore, by substituting values for s into A(s) and B(s) and making use of
(A.70) and (A.71), we can test to see if any point happens to be a pole of the
closed-loop system for some value of K. This is still quite tedious, so we need some
more information to help us determine how many points we need to test to get a
good idea of the pole locations.

We can rewrite (A.69) with A(s) and B(s) replaced explicitly with their denomi-
nator (D) and numerator (N) components:

T(s) =
KNADB

DADB + KNANB
(A.73)

Now, if we take the limit as K approaches zero, then

T(s) |K → 0
=

KNADB
DADB

(A.74)

Therefore, for very small values of K, the closed-loop poles are equal to the
open-loop poles.

Next, we will see if poles lie on the real axis. First, note that the poles and
zeros for any A(s) or B(s) of interest to us will either lie on the real axis or else
they will be conjugate pairs. Thus, we can expect that the plot of the open-loop
(as well as the closed-loop) poles and zeros will be symmetric about the real axis.

Now, we test whether any point on the real axis at s = a is a closed-loop pole.
If it is, the first condition is that, for that value of s, the phase shift must add up

444 A Review of Basic Control Theory

to some multiple of 180°. Since the point is on the real axis, any conjugate pair
of poles or zeros will add no net phase shift (the two phases will be equal but
opposite in sign). Now if any pole or zero is sitting on the axis to the left when
s = a is substituted in, it will have a positive real value and will not contribute any
phase shift. Any pole or zero located to the right of the point, however, will have
a negative real value and will contribute a phase shift of 180°. Therefore, any point
of the real axis that is to the right of an odd number of poles and zeros will be a
pole of the system for some value of K.

Thus, from the preceding, we know where the closed-loop poles can be found
when the gain is low, but where do they end up for high gain? To determine this,
we take the limit as K approaches infinity:

T(s) |K → ∞
=

NADB
NANB

(A.75)

Thus, for very high values of loop gain, the closed-loop poles of the system
end up being equal to the open-loop zeros of the system. However, what about
the case where the open-loop system has no zeros? Actually, the system always
has zeros, but if they are not explicitly present, then they end up at infinity. So,
where exactly do the poles go if they head towards infinity? The answer is that
they head to infinity at an angle of [3]

u =
(2k + 1)p

finite poles − # finite zeros
(A.76)

and these asymptotes intercept the real axis at a point

s =
S finite poles − S finite zeros
finite poles − # finite zeros

(A.77)

Example A.5: Plotting the Root Locus
Plot the root locus for the variable K in the following open-loop-gain transfer
function:

F(s) =
K ? s ? (s + 4) ? (s + 5)

(s + 1)(s + 6)(s + 7)(s + 1 + j) (s + 1 − j)

Solution: The root locus for this system begins with the open-loop poles and
zeros. These can be found by inspection from this conveniently factored expression.
The poles are located at −1, −6, −7, and −1 ± j. These are plotted in Figure A.17
using Xs. Also, there are three finite open-loop zeros at 0, −4, and −5. These are
plotted in the figure using Os. This also means that the system has two zeros at
infinity, which in turn means that there will be two root-locus lines that head
towards infinity. The next thing to determine is where the root locus exists on the
real axis. Remembering that it exists to the right of an odd number of real axis
poles and zeros, we can determine that it will exists on the real axis between 0
and −1, between −4 and −5, and between −7 and −6. This makes the plot of the

A.9 Root Locus 445

Figure A.17 Example of a root-locus plot.

root-locus line that begins at −1 fairly obvious. It will run from the pole at −1 to
the zero at 0. Next, we need to find the real axis intercept of the asymptotes of
the two lines that will go to infinity. From (A.77) it will be at

s =
[(−7) + (−6) + (−1) + (−1 + j) + (−1 − j)] − [(−5) + (−4) + 0]

5 − 3
= −3.5

From (A.76), it is easy to see that these will go in the direction of 90° and
270°. These will be the root-locus lines for the poles starting at −1 ± j. Now there
are only two poles left for which to draw root-locus lines. Those are the ones at
−6 and −7. These lines will both exist on the real axis between −6 and −7 until
they meet somewhere in the middle. Once they meet, they will break away from
the real axis and travel in the complex plane until they rejoin between −4 and −5.
Note that the root locus has to be symmetric about the real axis, the two poles
have to end up at −4 and −5, and they have to be on the real axis between −4 and
−5, so this is the only choice. Once they break into the real axis again, they both
split, and one heads to −4 and one heads to −5. The complete root-locus plot is
shown in Figure A.17.

References

[1] Boyce, W. E., and R. C. DiPrima, Elementary Differential Equations and Boundary Value
Problems, 5th ed., New York: John Wiley & Sons, 1992.

446 A Review of Basic Control Theory

[2] Ogata, K., System Dynamics, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 1992.
[3] Nise, N. S., Control Systems Engineering, 2nd ed., Redwood City, CA: The Benjamin/

Cummings Publishing Co., 1995.
[4] Sklar, B., Digital Communications: Fundamentals and Applications, 2nd ed., Upper Saddle

River, NJ: Prentice Hall, 2001.
[5] Gregorian, R., and G. C. Temes, Analog MOS Integrated Circuits for Signal Processing,

New York: John Wiley & Sons, 1986.

A P P E N D I X B

A Review of Transistor Models

B.1 Introduction

This appendix reviews very briefly some basic transistor theory. The authors assume
that anyone reading it will have a basic working knowledge of circuit theory
from an undergraduate electrical engineering program or the equivalent. A short
appendix cannot hope to replace the many detailed texts available on this subject,
but it is included here as a reference for a few very common equations and basic
results.

B.2 The Basics of CMOS Transistors

Traditionally, bipolar transistors are preferred for high-speed circuits due to the
higher values of transconductance achievable for a given amount of bias current.
However, it is often necessary to use a process that can also be used to implement
back-end digital or DSP functions. In such cases, a BiCMOS or straight CMOS
process is preferred. If a BiCMOS process is used, bipolar transistors can be used
for RF, possibly adding PMOS transistors for power-control functions. However,
for economic reasons, or due to the need to use a particular CMOS-only process
to satisfy the back-end requirements, it may be necessary to implement all circuits
in pure CMOS. Figure B.1 shows basic PMOS and NMOS transistors. An NMOS
transistor is made by growing an oxide layer on top of a p type substrate [1]. The
oxide layer is patterned from the gate (G) of the transistor. n+ regions are then
implanted on either side of the gate to form the source (S) and drain (D) of the
transistor. The gate also has a conductive layer (typically polysilicon) placed on
top of the oxide to form an electrical connection. When electrical connections are
made to each of these three regions (as well as to the substrate), this structure
forms a transistor. In operation, as discussed in more detail in the next section,
the voltage on the gate is used to form a channel under the gate and to control
the current (or, equivalently, the resistance) between the source and drain regions.
The PMOS transistors are similar except they must be made in an n type substrate
(which will likely be an n well), and they have p+ implants rather than n+ implants.

B.2.1 Basic DC Biasing Characteristics

The drain characteristic curves for a CMOS transistor are shown in Figure B.2.
When a positive voltage is applied to the gate of the NMOS device, electrons are

447

448 A Review of Transistor Models

Figure B.1 Basic NMOS and PMOS transistor structures.

Figure B.2 Basic transistor voltage and current characteristics.

attracted towards the gate. With sufficient voltage, an n channel is formed under
the oxide, allowing electrons to flow between the drain and the source under the
control of the gate-source voltage vGS. Thus, as gate voltage is increased relative
to the source voltage, current increases. For small applied vDS, with constant vGS,
the current between drain and source is related to the applied vDS. For very low
vDS, the relationship is nearly linear; thus, the transistor behaves much like a

B.2 The Basics of CMOS Transistors 449

resistor. For sufficiently large vDS, the channel becomes restricted at the drain end
(pinched off), as shown in Figure B.1. For larger vDS, current is saturated and
remains nearly independent of vDS. This means the output resistance is very high,
and the transistor acts like a constant current source.

The operation of PMOS is similar to that of NMOS except that negative vGS
is applied. This attracts holes to form a conducting p channel. The characteristic
curves for PMOS and NMOS are similar if the absolute value is taken for current
and voltage.

B.2.2 Basic CMOS Square Law Equations

We now show some simplistic equations for calculating model parameters and
doing simple hand calculations. In the saturation region of operation, the drain-
source current can be described by the simple square law equation:

iDS =
mCox

2 SW
L D (vGS − VT)2(1 + lvDS) (B.1)

where VT is the threshold voltage, m is the electron mobility in silicon (or hole
mobility in the case of PMOS), Cox is the gate capacitance per unit area, and l is
the output slope factor given by

l =
K

2L√VDS − (VGS − VT) + Fo
(B.2)

where Fo is the built-in open-circuit voltage of silicon [2] and K is a constant
dependent on the doping levels. l can be related to the drain-source conductance
of the device, which is given by

gDS =
diDS
dvDS

= Il (B.3)

and, therefore, is proportional to the length of the device.
Various attempts have been made to include other effects, such as mobility

degradation and velocity saturation; for example [3],

iDS =
mCox

2 SW
L D (vGS − VT)2

1 + a (vGS − VT)2 (1 + lvDS) (B.4)

where a approximately models the combined mobility degradation and velocity
saturation effects given by [4]

a = u +
m0

2nvsatL
(B.5)

450 A Review of Transistor Models

where u is the mobility-reduction coefficient, and vsat is the saturation velocity.
We note that for small values of a or small overdrive voltage (vGS − VT), (B.4)
becomes the familiar square law equation as given by (B.1).

The transconductance is given by the derivative of the current with respect to
the gate-source voltage. For the simple square law equation, this becomes

gm =
diDS
dvGS

mCoxSW
L D (vGS − VT) (1 + lvDS) (B.6)

This can also be shown to be equal to (note that the l term has been left out)

gm = √2mCox
W
L

IDS (B.7)

In the triode region of operation, current is given by

iDS = mCoxSW
L DSvGS − VT −

vDS
2 DvDS(1 + lvDS) (B.8)

In practice, for high-speed design, short-channel devices are used. The equations
for these devices are poor; thus, it is necessary to use simulators to find the curves,
transconductances, impedances, and so forth, or to use more complicated models,
such as those presented in [5].

B.2.3 The Body Effect

If the source-substrate voltage of the transistor is not zero, then the VT of the
device or, equivalently, the effective transconductance of the device, is changed.
This is called the body effect. It is often modeled as an additional transconductance
gs in parallel with gm . Provided the transistors can be placed in their own wells,
the body effect can be avoided by shorting the substrate and source together.
However, for transistors in separate wells, this can reduce matching between transis-
tors.

B.2.4 High-Frequency Effects

Any transistor will have capacitance associated with it. The capacitance of most
concern in a MOSFET is the gate-source capacitance. It has a value that can be
approximated by

Cgs = gWLCox (B.9)

where g is a parameter that corresponds to the fraction of the gate not in pinch
off. In a long-channel device, g will have a value of one at VDS = 0 and decrease
to approximately 2/3 in saturation. There are many other capacitors in the transistor
as well, including gate-drain capacitance, drain-substrate capacitance, and source-

B.2 The Basics of CMOS Transistors 451

substrate capacitance, but these are less easily calculated from simple formulas and
are better handled with simulators.

There is a typical figure of merit called the transit frequency, or fT , used to
describe the speed of a transistor. fT is the frequency at which the short circuit
current gain (ratio of drain to gate current) is equal to one and is given by

fT ≈
gm

2pCgs
=

mCoxSW
L D (vGS − vT)

2pgWLCox
=

m (vGS − vT)

2pgL2 (B.10)

Note that in many processes, fT is nearly independent of width for the same
current density in the drain (but fT is always a strong function of current).

B.2.5 Thermal Noise

A resistor is one of the most common noise sources in a circuit. Noise in resistors
is generated by thermal energy causing random electron motion [6–8]. The thermal
noise in a resistor is given by

v 2
n = 4kTR (B.11)

where T is the temperature in kelvins of the resistor, k is Boltzmann’s constant
(1.38 × 10−23 j/K), and R is the value of the resistor. Thermal noise is white noise,
meaning it has a constant power spectral density with respect to frequency. The
model for noise in a resistor is shown in Figure B.3.

Figure B.3 Resistor noise model: (a) with a voltage source, and (b) with a current source.

452 A Review of Transistor Models

In a MOSFET, the channel under the gate acts like a resistor, so, just like a
resistor, it generates thermal noise. The drain noise current produced by a MOSFET
is given by

i 2
dn = 4kTggm (B.12)

B.2.6 Shot Noise

Shot noise is due to the discrete nature of charge carriers as they pass a potential
barrier, for example a pn junction. Shot noise is described by

in_shot = √2qI (B.13)

where I is the current flow through the pn junction. The frequency spectrum of
shot noise is also white.

B.2.7 1/f Noise

This type of noise is also called flicker noise, or excess noise. 1/f noise is due to
variation in conduction mechanisms, for example, fluctuations of surface effects,
such as the filling and emptying of traps and of recombination and generation
mechanisms. Typically, in a MOSFET, 1/f noise can be modeled as a noise voltage
on the gate; the PSD of 1/f noise is inversely proportional to frequency and is given
by the following equation:

v 2
nf =

Kf

WLCox f a (B.14)

where Kf is a process constant and a is approximately 1. As demonstrated by
(B.14), 1/f noise in a MOSFET is inversely proportional to its area. It should
also be noted that PMOS transistors typically have lower 1/f noise than NMOS
transistors.

B.2.8 Gate Noise

The channel noise will also couple in the gate, appearing as current fluctuations
in the gate. If both channel noise and gate noise are modeled in a transistor, then
they will, to some degree, be correlated. This gate noise current is given by [9]

i 2
ng =

4kTdv2C 2
gs

5gm
(B.15)

where d is dependent on device geometry but, in long channel devices, will have
a value of about twice g, or 4/3.

Another source of noise in the gate is thermal noise due to gate resistance. This
gate resistance can be calculated from the dimensions of the gate and the gate
resistivity r by

B.3 Bipolar Transistors 453

rg =
1
3

r
W
L

(B.16)

for a gate with a contact on one side. Here, r is the effective resistivity of the gate
poly with typical values between 10 and 20 mVcm. We note that the gate poly by
itself would have a resistance of rW /Lt, where t is the effective thickness of the
silicided poly gate, with a typical value of 0.1 mm. The factor of 1/3 in (B.16)
comes from the fact that the transistor current is flowing under all regions of the
gate. The series resistance varies from 0V near the contact to rW /Lt for the far
end of the gate, with an effective value given by (B.16). If the gate is contacted on
both sides, the effective resistance drops by a further factor of four such that

rg =
1
12

r
W
L

(B.17)

B.2.9 CMOS Small-Signal Model, Including Noise

The equations and discussion so far can be used to construct a model for the small-
signal behavior of a CMOS transistor. Figure B.4 shows a model that includes all
the characteristics discussed so far. Note that substrate capacitance is included in
this model and that the body effect is modeled with transconductance gs .

B.3 Bipolar Transistors

Figure B.5 shows a cross section of a basic npn bipolar transistor. The collector
is formed by epitaxial growth in a p− substrate (the n− region). A p region inside
the collector region forms the base region, then an n+ emitter region is formed
inside the base region. The basic transistor action all takes place directly under the
emitter. This can be called the intrinsic transistor. The intrinsic transistor is con-
nected through the diffusion regions to the external contacts. More details on
advanced bipolar structures, for example, using SiGe HBTs and double-poly self-
aligned processes, can be found in the literature [1, 10].

When the transistor is being used as an amplifying device, the base-emitter
junction is forward biased while the collector-base junction is reverse biased,

Figure B.4 A small-signal model for a CMOS transistor including noise.

454 A Review of Transistor Models

Figure B.5 Structure of a bipolar transistor.

meaning the collector is at a higher voltage than the base. This bias regime is
known as the forward active region. Electrons are injected from the emitter into
the base region. Because the base region is narrow, most electrons are swept into
the collector rather than going to the base contact. This is equivalent to conventional
(positive) current from collector to emitter. Some holes are back-injected into the
emitter, and some electrons recombine in the base, resulting in a small base current
that is directly proportional to collector current ic = b ib . Thus, the overall concept
is that collector current is controlled by a small base current. The collector current
can also be related to the base-emitter voltage in this region of operation by

IC = IS e
VBE
vT (B.18)

where IS is a constant known as the saturation current, VBE is the dc bias between
the base and emitter, and vT is the thermal voltage given by

vT =
kT
q

(B.19)

where q is the electron charge, T is the temperature in kelvins, and k is Boltzmann’s
constant. The thermal voltage is approximately equal to 25 mV at a temperature
of 290K, close to room temperature.

Figure B.6 shows the collector characteristics for a typical bipolar transistor.
The transistor has two other regions of operation. When the base-emitter junction
is not forward biased, the transistor is cut off. The transistor is in the saturated
region if both the base-emitter and collector-emitter junction are forward biased.
In saturation, the base is flooded with minority carriers. This generally leads to a
delayed response when the bias conditions change to another region of operation.
In saturation, VCE is typically less than a few tenths of a volt. Note that in the
active region, the collector current is not constant. There is a slope to the current-
versus-voltage curve, indicating that the collector current will increase with collec-
tor-emitter voltage. The slopes of all the lines are such that they will meet at a
negative voltage VA called the Early voltage. This voltage can be used to characterize
the transistor output impedance given by

B.3 Bipolar Transistors 455

Figure B.6 Bipolar transistor curves.

ro =
VA
IC

(B.20)

The short circuit current gain b is given by

b =
ic
ib

=
DIC
DIB

(B.21)
123 123

small-signal Dlarge-signal

noting that currents can be related by

ic + ib = ie (B.22)

Transconductance gm is given by

gm =
ic
vp

=
IC
vT

=
Ic q
kT

(B.23)

where IC is the dc collector current and vp is the base-emitter voltage.
At low frequency, where the transistor input impedance is resistive, vp and ib

can be related by

vp

ib
= rp =

b
gm

(B.24)

(neglecting current due to finite output resistance).
In a bipolar transistor, there are two major capacitors of concern. The first

(larger capacitor) is the base-emitter capacitance called Cp , and the second is the
base-collector capacitance called Cm . Both of these are junction capacitances, and
their values depend on device geometries and the technology in question. The fT
of a bipolar transistor is given by

456 A Review of Transistor Models

fT =
gm

2p (Cp + Cm)
≈

gm
2pCp

=
IC

2pCpVT
(B.25)

There are four major sources of noise in a bipolar transistor: base shot noise
and collector shot noise (due to the two pn junctions), base resistance, and 1/f
noise. In a bipolar transistor, 1/f noise is best modeled as a current injected at the
base and is given by the following equation:

i 2
bf = KI m

C
1

f a (B.26)

where m is between 0.5 and 2, a is about equal to 1, and K is a process constant.
Typically 1/f noise is several orders of magnitude less important for bipolar transis-
tors compared to MOS transistors.

With the addition of these noise sources, a small-signal model for a bipolar
transistor can be constructed and is shown in Figure B.7. Some of the major results
of this appendix are summarized for convenience in Table B.1.

Figure B.7 Bipolar transistor model.

B.3 Bipolar Transistors 457

Table B.1 Summary of Important Transistor Characteristics

Description CMOS Formula Bipolar Formula

Collector/drain current
(in the active/saturation IC = IS e

VBE
vT

iDS =
mCox

2 SW
L D (vGS − VT)2

1 + a (vGS − VT)2
× (1 + lvDS)

region)

gm = √2mCox
W
L

IDS
Transconductance gm =

IC
vT

=
Ic q
kT= mCoxSW

L D (vGS − vT) (1 + lvDS)

fT fT ≈
gm

2pCgs
=

m (vGS − vT)

2pgL2
fT ≈

gm
2pCp

Collector shot noise/
i 2
dn = 4kTggm i 2

nc = 2qIcdrain noise

Base shot noise/
i 2
nb = 2qIbi 2

ng =
4kTdv2C 2

gs

5gm
gate noise current

Base resistance N/A rp =
b

gm
Base resistance noise/

v 2
ng = 4kTrg v 2

nb = 4kTrbgate resistance noise

Collector emitter/
gDS = Idsl =

KIds

2L√VDS − (VGS − VT) + Fo
ro =

VA
IC

drain-source resistance

Base emitter/ Cp (no easy
Cgs = gWLCoxgate-source capacitance formula)

1/f noise sources v 2
nf =

K

WLCox f a
i 2
bf = KI m

C
1

f a

References

[1] Taur, Y., and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge, U.K.:
Cambridge University Press, 1998.

[2] Sze, S. M., High Speed Semiconductor Devices, New York: John Wiley & Sons, 1990.
[3] Sedra, A. S., and K. C. Smith, Microelectronic Circuits, 4th ed., New York: Oxford

University Press, 1998.
[4] Terrovitis, M. T., and R. G. Meyer, ‘‘Intermodulation Distortion in Current-Commutating

CMOS Mixers,’’ IEEE J. of Solid-State Circuits, Vol. 35, No. 10, October 2000,
pp. 1461–1473.

[5] Sakurai, T., and R. Newton, ‘‘Alpha-Power Law MOSFET Model and Its Applications
to CMOS Inverter Delay and Other Formulas,’’ IEEE J. of Solid-State Circuits, Vol. 25,
No. 2, April 1990, pp. 584–594.

[6] Papoulis, A., Probability, Random Variables, and Stochastic Processes, New York:
McGraw-Hill, 1984.

[7] Sze, S. M., Physics of Semiconductor Devices, 2nd ed., New York: John Wiley & Sons,
1981.

[8] Gray, P. R., et al., Analysis and Design of Analog Integrated Circuits, 4th ed., New York:
John Wiley & Sons, 2001.

[9] van der Ziel, A., Noise in Solid-State Devices and Circuits, New York: John Wiley &
Sons, 1986.

[10] Plummer, J. D., P. B. Griffin, and M. D. Deal, Silicon VLSI Technology: Fundamentals,
Practice, and Modeling, Upper Saddle River, NJ: Prentice Hall, 2000.

About the Authors

John Rogers received a B.Eng. in 1997, an M.Eng. in 1999, and a Ph.D. in 2002,
all in electrical engineering from Carleton University, Ottawa, Canada. During his
master’s degree research, he was a resident researcher at Nortel Networks’
Advanced Technology Access and Applications Group, where he did exploratory
work on voltage-controlled oscillators (VCOs). From 2000 to 2002, he collaborated
with SiGe Semiconductor Ltd. while pursuing his Ph.D. on low voltage Radio
Frequency Integrated Circuits (RFICs). Concurrent with his Ph.D. research, he
worked as part of a design team that developed a cable modem integrated circuit
(IC) for the DOCSIS standard. From 2002 to 2004, he collaborated with Cognio
Canada Ltd. doing research on MIMO RFICs for wireless local area network
(WLAN) applications. He is currently an assistant professor at Carleton University.
He is the coauthor of Radio Frequency Integrated Circuit Design (Artech House,
2003), and his research interests are in the areas of RFIC and mixed-signal design
for wireless and broadband applications. Dr. Rogers received an IBM faculty
partnership award in 2004, an Institute of Electrical and Electronics Engineers
(IEEE) Solid-State Circuits Predoctoral Fellowship in 2002, and the BCTM best
student paper award in 1999. He holds five U.S. patents and is a member of the
Professional Engineers of Ontario and the IEEE.

Calvin Plett received a B.A.Sc. in electrical engineering from the University of
Waterloo, Canada, in 1982, and an M.Eng., and a Ph.D. from Carleton University,
Ottawa, Canada, in 1986 and 1991, respectively. Prior to 1982, he worked for a
number of companies, including spending nearly four years with Atomic Energy
of Canada and shorter periods with Xerox, Valcom, Central Dynamics, and Philips.
From 1982 to 1984, he worked with Bell-Northern Research doing analog circuit
design. In 1989, he joined the Department of Electronics, Carleton University,
Ottawa, Canada, where he is now an associate professor. For some years, he did
consulting work for Nortel Networks in RFIC design. For the last number of years,
he has been involved in collaborative research, which has involved numerous
graduate and undergraduate students and various companies, including Nortel
Networks, SiGe Semiconductor, Philsar, Conexant, Skyworks, IBM, and Gennum.
He has authored or coauthored more than 60 technical papers, which have appeared
in international journals and conferences. He is a coauthor of Radio Frequency
Integrated Circuit Design (Artech House, 2003). His research interests include the
design of analog and RFICs, including filter design, and communications applica-
tions. Dr. Plett is a member of AES and the PEO and a senior member of the IEEE.
He has been the faculty advisor to the student branch of the IEEE at Carleton

459

460 About the Authors

University for about 14 years. He coauthored papers that won the best student
paper awards at BCTM 1999 and at RFIC 2002.

Foster Dai received a B.S. in physics from the University of Electronic Science and
Technology of China (UESTC) in 1983. He received a Ph.D. in electrical and
computer engineering from Auburn University in 1997 and another Ph.D. in electri-
cal engineering from Pennsylvania State University in 1998. From 1986 to 1989,
he was a lecturer at the UESTC. From 1989 to 1993, he worked for the Technical
University of Hamburg, Germany, working on microwave theory and RF designs.
From 1997 to 2000, he worked for Hughes Network Systems of Hughes Electronics,
Germantown, Maryland, where he was a member of technical staff in VLSI engi-
neering, designing analog and digital ASICs for wireless and satellite communica-
tions. From 2000 to 2001, he worked for YAFO Networks, Hanover, Maryland,
where he was a technical manager and a principal engineer in VLSI designs, leading
high-speed SiGe IC designs for fiber communications. From 2001 to 2002, he
worked for Cognio Inc., Gaithersburg, Maryland, designing RFICs for integrated
multiband wireless transceivers. From 2002 to 2004, he was a RFIC consultant
for Cognio Inc. In August 2002, he joined the faculty of Auburn University, where
he is currently an associate professor in electrical and computer engineering. His
research interests include VLSI circuits for digital, analog, and mixed-signal applica-
tions, RFIC designs for wireless and broadband communications, ultrahigh fre-
quency synthesis, and analog/mixed-signal built-in self-test (BIST). Dr. Dai is a
senior member of the IEEE and has served as a guest editor for the IEEE Transac-
tions on Industrial Electronics. He currently serves on the technical program com-
mittee of the symposium on VLSI circuits.

Index

SD converters fourth-order, 381
A/D, 301 frequency domain, 379
phase noise, 342–47 phase domain, 377–79

SD fractional-N synthesizer, 317 ROM size reduction using, 379–81
SD modulation See also Noise shaping

feedback, 311 1/f noise, 452
for fractional-N synthesis, 301–56

SD modulators, 109–17 A
basic concepts, 301–15

Accumulatorscascaded accumulators, 109
in SD modulator, 109defined, 308–9
cascaded, 316dynamic range, 349–54
with CLA adders, 384–88first-order, 309–11, 334, 336
delay, 383fractional accumulator, 114–16
fractional, 322, 323high-order, 312–15
in fractional-N synthesizers, 24–25illustrated, 308
multiloop MASH SD fractional, 110MASH, 319–26
N-bit, 360mth-order, with feedforward/feedback
operations, 20, 21paths, 333
pipelined, 383–84optimal parameters, 354–55
programmable, 21–23overload level, 350
programmable size and seed-loadingoversampling effects, 301–6

capability, 114–16oversampling system with, 313
simulated fractional, output, 26overview, 308–9
simulation, 19–21quantization noise, 301–6

Acquisition time, 4reset synchronization, 116–17
Active loop filters, 222–24second-order, 311–12

fourth-order, 223simulated results, 117
PFD output connections, 224single-stage, 326–30
second-order, 224single-stage multiple feedforward
third-order, 222(SSMF-I), 338–39
See also Loop filterssingle-stage multiple feedforward

Adders(SSMF-II), 339–42
CLA, 384–88third-order, 356
delay, 383top-level structure, 110–14
full (FAs), 385SD noise shaping, 376–81

in DDS, 376–81 ripple, 385

461

462 Index

Alexander phase detector, 195–96 Bank switching, 270–72
Barkhausen criteria, 276illustrated, 195

waveforms, 196 Behavioral modeling, 101
Binary FSK (BFSK), 408See also Phase detectors

Aliased components, 429 Binary PSK (BPSK), 403
Bipolar CMOS (BiCMOS), 1, 119AMOS varactor, 239–40

capacitance vs. voltage curve, 240 Bipolar ECL, 119
Bipolar transistors, 202, 453–56cross section, 239

defined, 239 base-emitter junction, 453
capacitors, 455regions of operation, 240

single-ended, 274 characteristics comparison, 457
collector-base junction, 453See also Varactors

Amplitude collector characteristics, 454, 455
curves, 455average, 430

Butterworth filter response, 227 model, 456
noise sources, 456Chebyshev filter response, 227

error, 373 structure, 454
transconductance, 455free-running, 249

impulse sampled waveform, 430 Blocking assignment, 97–99
defined, 97modulation (AM), 13, 413

of negative Gm oscillator, 244–45 example, 98–99
See also Verilog HDLnoise, 267

oscillation, 251 Butterworth filters
amplitude response, 227as synthesizer specification, 4

Analog IC design, 85–86 LPF, 226
normalized component values, 228Analog-to-digital converter (ADC), 11,

331, 405
CAND gates, 183

CML latch stacked with, 138 Cadence’s Spectre, 70
Capacitanceillustrated, 133

reset function, 139 AMOS varactor, 240
effect on slew rate, 125–29resetting flip-flops, 186, 188

Antiresonance frequency, 295 inductors, 235
interstage, 281Application-specific IC (ASIC), 91, 92

Automatic gain control (AGC), 3 load, 126
total load, 130

B Capacitive feedback divider, 243–44
CapacitorsBandwidth

determination, 254 bipolar transistor, 455
charge on, 126loop, 352–54

narrow, of oscillator circuits, 254 current, 127
Carry generate, 385oscillator, 250

Bang-Bang phase detector, 195–96 Carry propagate, 385
Cascaded accumulators, 316defined, 195

gain, 196 Cascaded divide-by-2/3 cell waveforms,
168, 169transitions, 195

See also Phase detectors Case statement, 102, 103

Index 463

Charge pumps, 48–51, 199–218 Clock and data recovery (CDR)
circuits, 10, 11, 453basic, 199–200
DLL for, 28with bias feedback and switches, 211
frequency synthesis for, 8–11with biasing, 210
NRZ-based, 30–31bipolar, 212
PDFs for, 191–96charge sharing, 209
PLLs, 29–31CMOS, 212

Clocked D-latch, 135compatible with CML/ECL, 211–15
Clockscurrent source output impedance,

ideal vs. real, 8201–3
jitter, 364–65design, 199, 213–15
skew, 8differential, 215–18
tree buffers, 8DN/UP input, 200

Closed-loop gain, 59elements, 48
Closed-loop parallel resistance, 253five-state PFD with, 183
Closed-loop pole location, 60frequency response, 51
Closed-loop transfer function, 56, 439,frequency synthesizer implementation

441, 443with, 54
CML inverters, 127illustrated, 200

drain current, 132Ip and In matching improvement,
input/output voltages, 131209–11
speed vs. current trade-off, 129–32mismatched current in, 205
See also Current mode logic (CML)MOS, 223

CMOS, 1
noise, 77, 207–9

1/f noise, 452
noise in mirrors inside, 213

bipolar (BiCMOS), 1, 119
noise performance, 208, 209 bipolar CML, 119
programmable bias schemes, 218 body effect, 450
reference feedthrough, 203–6 characteristics comparison, 457
saturation voltage, 200–201 charge pump, 212
single-ended, 200 charge pump current sources, 211
transistor gain considerations, 206–7 current mode logic (CML), 119
transistors, 199–200 current source, 147
tristate PFD with, 182 dc biasing characteristics, 447–49

Charge sharing, 209 differential pairs, large-signal behavior,
Chebyshev filters, 225–26 121–25

amplitude response, 227 digital logic gates, 121
attenuation, 225 gate noise, 452–53
LPF, 226 high-frequency effects, 450–51
normalized component values, 228 logic circuits, 120–21
ripple, 226 logic styles comparison, 120

Chirp waveforms, 412 negative Gm oscillators, 244
CLA adders shot noise, 452

4-bit, 386, 387 small-signal model, 453
16-bit, 386, 387 square law equations, 449–50
accumulator with, 384–88 thermal noise, 451–52

transistor, 123, 447–53configuration, 386

464 Index

CMOS rail-to-rail logic, 119 PLL design response, 72
comparison, 120 transient expression, 64
functions, 120 Cross-coupled transistors, 267
use, 120 Crystal oscillators, 294–98

Coarse nonlinear DAC, 391–94 antiresonance frequency, 295
Colpitts common drain, 235 with general amplifiers, 297
Colpitts common gate, 235 impedance, 296
Colpitts oscillator, 242 implementations, 297

analysis, 242–44 parallel resonance frequency, 295
feedback analysis, 242 performance comparison, 298–99

Combinational circuit design, 102–3 phase noise, 297, 298
with case statement, 103 reactive component quality factor, 295
structural modeling, 102 resonance frequency, 295
truth table, 103 use, 294
See also Digital IC design See also Voltage-controlled oscillators

Combinational digital IC design, 102–3 (VCOs)
Common-mode feedback (CMFB) loop, Crystal reference noise, 76

217 Current mode logic (CML), 119
Comparators, 318 AND gate, 133
Complex-waveform generation, 13 biasing circuits, 146–50
Continuous integrator, 431 bipolar, 119
Continuous systems charge pump compatibility, 211–15

first-order, 426 circuit-delay analysis, 142–44
frequency response, 423–28 circuit design, 144
overdamped, 424 circuits, combinational, 132–35
phase shift magnitudes, 424–25

circuits, low-power, 144–46
second-order, 425, 426, 427

dc current, 121underdamped, 424
four-level logic, 139Continuous-time analysis, 52–58
full adder logic circuit, 134Continuous-time Laplace transform, 418
logic gates, 133Continuous transfer function, 429
MOS (MCML), 119Control theory, 417–45
MS D-flip-flop, 141continuous-time Laplace transform,
OR gate, 133418
sequential circuits, 134–39defined, 417
switching speeds, 144feedback systems, 436–39
XOR gate, 133introduction, 417–18
See also CML invertersLaplace transform and sampling,

Current source418–23
bipolar, 204response in time domain, 431–36
with increased output resistance, 203root locus, 442–45
output currents, 201stability, 441–42
output impedance, 201–3steady-state error, 440–41

Cycle slipping, 70system modeling with frequency
Cycle splitting, 182response, 423–31

Control voltages, 63
Dfrequency step, high-gain, second-

order loop, 64 Damping constant, 54

Index 465

Dead zone ideal clock, 7
illustrated, 7average output current and, 188

defined, 186 Digital IC design, 85–117
automation, 86effect, 190

in PFDs, 186–89 behavioral modeling, 101
combinational, 102–3presence of, 188

Decision feedback equalizer (DFE), 10 flow illustration, 87
methodology, 85–88Delay cells, 276

based on differential pair, 282 MMD example, 106–9
programmable MASH SD modulatorbased on differential pair (biasing

details), 283 example, 109–17
sequential, 103–6based on differential pair (cross-

coupling), 284 structural modeling, 101
Digital signal processing (DSP), 3based on differential pair (symmetrical

load), 283 Digital synthesis, 86
Digital-to-analog converters (DACs), 11,differential, implementation, 282

implementation, 281 359
analog circuits, 374Delay-locked loops (DLLs), 27–28

for CDR applications, 28 coarse cells, 390
current cell circuitry, 392defined, 27

illustrated, 27 input bits, 361
nonlinearities and aliased images,Delta modulators, 308

Dense wavelength division multiplexing 374–76
output, 362, 363(DWDM), 10

Device under test (DUT), 412 sample-and-hold function, 375
sine-weighted nonlinear, 388D-flip-flop, 90

divide-by-two circuit from, 158 spurs, 375
thermometer-coded architecture, 393edge-triggered, 185

master-slave, 139–42 total output, 390
zero-order sample-and-hold, 362See also Flip-flops

Differential charge pumps, 215–18 Direct analog frequency synthesizers
(DAS), 33–34, 35with common-mode feedback

circuitry, 217 Direct-conversion radio, 5
Direct digital synthesis, 359–95drawbacks, 217

illustrated, 216 Direct digital synthesizers (DDSs), 11,
14, 31–33with no dc current flow, 218

synthesizer with, 216 advantages, 359
arbitrary waveforms, 359See also Charge pumps

Differential inductor, 236 architecture with nonlinear coarse
DAC, 391–94Differential loop filters, 216

Differential oscillators, 235 architecture with segmented nonlinear
DACs, 390Differential ring oscillator, 280, 293

Differential tuning, 273–76 clock frequency, 34, 35, 376
concept, 31Differential varactors, 273–76

Differentiators, 435 direct digital modulation, 401–14
direct-modulation capability, 381Digital circuits

frequency synthesis for, 5–8 frequency resolution, 381

466 Index

Direct digital synthesizers (DDSs) Divide-by-4/5 cell schematic, 172
Divide-by-5/6 cell schematic, 173(continued)
Divide-by-6/7 cell schematic, 173high-speed ROM-less, 381–95
Divide-by-8/9 cell schematic, 174in multiloop hybrid PLL, 360
Divide-by-five mode, 168noise and spurious sources, 364
Divide-by-four-to-seven, 167, 168output, 363
Divide-by-seven mode, 169output frequency, 359, 361
Divide-by-three circuit, 163–65output noise, 361

Johnson, 164, 166output SNR, 364
Karnaugh map, 165output spectrum, 359
latches, 163resolution, 377
with Modin, /Modout, 167ROM-less, 33, 34
state graph, 166ROM lookup table, 32–33, 360
state table, 164sample clock frequency, 361, 364
See also Dividersspectral purity, 363–76

Divide-by-two circuit, 155–58speed, 382
completed, with 50% duty-cycletheory of operation, 360–63

output, 164waveform generation in, 401–14
from D-flip-flop, 158worst-case spur magnitude, 374
logic circuit, 156Direct downconversion radio, 6
outputs, 155, 157, 158Direct modulation, 397–414
state graph, 156in DDS, 401–14
state table, 157introduction, 397–98
See also Dividerslinearized, 401

Dividers, 153–80in PLL frequency synthesizers,
defined, 104

398–401
design, 104–6, 155

Dirichlet condition, 369 divide-by-three circuit, 163–64
Discrete integrator, 431 divide-by-two circuit, 155–58

frequency response, 431 features, 155
magnitude, 432 modulus, 175
phase response, 432 multimodulus, 165–75
See also Integrators noise, 76–77

Discrete-time analysis, 58–61 optimum design algorithm, 171–72
Discrete-time system, 436 output phase, 45
Dithering programmable, 105, 175

fractional accumulator with, 347 pulse-swallow, 175–80
highpass filter, 348 simulated waveform, 105
noise-shaped, 347–49 for WLAN synthesizer, 173–74
SSMF-II, 339 Division ratio, 170

Divide-by-2/3 circuit, 158–63 D-latch, 135–36
completed, 162 clocked, 135
desired outputs, 159 delay through, 143
output, 163 illustrated, 137, 142
state graph, 159 with invertible clock, 137
state table, 160 with keep-alive technology, 145
under construction, 160 MS D-flip-flop with, 140

timing diagram, 136See also Dividers

Index 467

Double-sideband (DSB) phase noise, 73, Five-state PFD circuit
with additional linear range, 18374
connected to charge pump, 183Drain current, 200–201
implementation, 184, 185Drain source saturation voltage, 200
linear transfer function, 184Driver circuits, 150–52
settling time, 186interconnect, followers as, 150

Flicker noise, 208interconnect, inverter circuits as, 151
Flip-flopsDynamic range, 349–54

D, 90, 139–42of SD modulator, 350
data input, 7improving, 351
latches vs., 135synthesizer PLL, 353
output, 5

E resettable, 183
for sequential logic designs, 104Emitter coupled logic (ECL)
setup, 7bipolar, 119

Forward gain, 436charge pump compatibility, 211–15
Fourier series, 205, 369Endless while loop, 97
Fourier transforms, 369, 428Erbium doped fiber amplifier (EDFA), 9
Fractional accumulatorsError signal, 436

with dithering scheme, 347Exponential rise response, 433
instantaneous divisor ratio, 322
output spectrum, 323F
See also AccumulatorsFeedback gain, 436

Fractional-N frequency synthesizers, 14,Feedback systems, 436–39
18–27closed-loop transfer function, 439

SD modulation for, 301–56
discrete, 439

with dual-modulus prescaler, 19–21
error signal, 440 dynamic control signal, 19
illustrated, 437 measured output spectrum, 27
mixed-signal, 438 with multimodulus divider, 23–24
negative, 436 output, 315
open-loop characteristics, 442 PLL operation, 18
positive, 437 programmable accumulator, 21–23

Field-programmable gate arrays (FPGAs), with pulse-swallow divider, 179
86 spurious components, 24–27

First-order SD modulators, 309–11 Free-running amplitude, 249
accumulator output, 310 Free-running frequency, 253
conversion, in ADC, 318 Frequency control word (FCW), 366,
equivalent circuit, 309 367, 410
with feedforward/feedback paths, 334, N-bit input, 360

336 variable input, 384
for fractional-N frequency synthesis, Frequency dividers. See Dividers

317–19 Frequency domain
noise spectral density, 310 SD noise shaping, 379
output, 309 feedback/feedforward SD noise
quantized signal, 310 shapers, 379
rms noise magnitude, 311 kth-order noise shaper, 380

pulses, 428See also SD modulators

468 Index

Frequency modulation, 407–11 feedback, 436
forward, 436Frequency response

of continuous and discrete integrator, Hogge phase detector, 194
margin, 442431

of continuous systems, 423–28 open-loop, 221, 222, 278
phase detector, 182of continuous transfer function, 429

of sampled systems, 428–31 transistor, 206–7
Gate capacitance, 201system modeling with, 423–31

Frequency shift keying (FSK), 407 Gate noise, 452–53
Gate-source voltage, 218advantage, 409

binary (BFSK), 408 Gaussian frequency shift keying (GFSK),
399bits per symbol, 408

demodulator, 410 Generic SD modulator topology,
330–37higher order, 408

M-ary, 411 with integrators 1/(1 − z −1) and with
delay, 337modulator, 409

signal, 407 with integrators 1/(1 − z −1) and
without delay, 331–34symbol error probability, 408

Frequency synthesis with integrators z −1 /(1 − z −1) and
with delay, 335–36for clock and data recovery, 8–11

defined, 1 with integrators z −1 /(1 − z −1) and
without delay, 334–35for digital circuit applications, 5–8

direct analog, 33–34, 35 Global System for Mobile
Communications (GSM), 5introduction, 1

for modulation and waveform Gm matching, 272–73
Graphic Data System II (GDSII), 88generation, 11–13

PLL-based, 43–82 Greatest common divisor (GCD), 365,
371, 372for telecommunication systems, 1–5

Frequency synthesizers
Hblock diagram, 44

with differential charge pump, 216 Hardware description languages (HDLs),
85direct modulation, 12, 397–414

fractional-N, 14, 18–27 use, 88
Verilog, 85, 88–100hybrid, 34–36

implemented with charge pump and VHDL, 85, 88
Heterojunction bipolar transistorsPFD, 54

integer-N PLL, 17–18 (HBTs), 394
high-frequency performance, 394PLL, 52–61, 398–401

specifications, 4 SiGe, 395
High-order SD modulators, 312–15Full adders (FAs), 385

configuration, 312
G equivalent circuit, 312

generic topology, 330–37Gain
Bang-Bang phase detector, 196 noise shaping, 315

noise spectral density, 312, 313closed-loop, 59
constant effective, 289 See also SD modulators

High-order oversampling systems, 307effective, of oscillator, 248

Index 469

High-speed ROM-less DDS, 381–95 See also Voltage-controlled oscillators
(VCOs)accumulator with CLA adders, 384–88

with nonlinear, sine-weighted DAC, Injection locking
defined, 246–47382

nonlinear coarse DAC, 391–94 example, 252–54
phase shift with, 256–57nonlinear DAC segmentations, 389–91

performance comparison, 394–95 quadrature LC oscillators with,
257–64pipelined accumulator, 383–84

sine-weighted nonlinear DACs, 388 Input-referred phase noise, 215
Integer-N PLL synthesizers, 17–18,See also Direct digital synthesizers

(DDSs) 65–66
IntegratorsHogge phase detector, 192–95

with clock/data optimally aligned, 194 continuous, 431
discrete, 431defined, 192

gain, 194 error voltage influence, 440
topologies, 331illustrated, 193

timing diagram, 193 Inverters
CML, 127, 129–32UP/DN signals, 192–93

XOR gates inputs, 193 common, 281–84
ring oscillator, 276, 277See also Phase detectors

Hybrid frequency synthesizers, 34–36 single-ended, 281
Ip and In matching, 209–11architecture, 35

illustrated, 36
J

I Jitter
clock, 364–65I and Q matching, as synthesizer
ring oscillators, 287–94specification, 4
timing, 8, 71–82Image signals, 3

Impedance
Kcrystal oscillators, 296
Karnaugh maps, 159, 160, 161, 162current source output, 201–3

inductors, 237
Lof resonator inductor, 269

second-order active filter, 224 Laplace transform
common, 419–20Inductors, 234–37

capacitance, 235 continuous-time, 418
inverse, 62circular, 234

differential, 236 Latches
with active-low reset, 139, 140impedance, 237

inductance, 237 CML, delay, 144
D, 135, 136, 137model elements, 236

on-chip, 235, 237 defined, 135
generic logic circuit, 154resonator, 269

Injection-locked oscillators, 246–57 MOS, 136
Q, 155effective gain, 248

feedback model, 247 resettable, 139
stacked with AND gate, 138phase shift, 254–57

470 Index

LC-based oscillators, 233–41 M
inductors, 234–37 M-ary FSK (MFSK), 411
linear/additive phase noise, 265–69 M-ary PSK (MPSK), 406
oscillation frequency, 233–34 MASH
performance comparison, 298–99

1-1-1 structure, 319
phase noise, 264–70

defined, 316quadrature, 257–64
multiloop, 316switching phase noise, 269–70
noise transfer function, 341varactors, 238–41
transfer function, 330See also Voltage-controlled oscillators

MASH SD modulator, 319–26(VCOs)
alternative topology, 324LC loop filters, 224–30
comparison, 321–26cutoff frequency, 226
in-band noise-shaping characteristics,ladder, 224

333noise, 224
multiloop, 325passive, 225
output, 325roll-off characteristics, 224
phase noise PSD, 345Leeson’s formula, 267
second-order, 345Linear phase shift, 430
stability, 338Linear transient behavior, 62–66
third-order, 326, 348Local oscillator (LO) frequencies, 2

Lock-detection circuits, 189–90 triple-loop, 319
Loop bandwidth, 352 Master-slave D-flip-flop, 139–42

maximal, 352–54 behavior, 141
for nth-order loop, 352 CML, 141

Loop equations, 53–55 with D-latches, 140
Loop filters, 51–52, 218–30 as edge-triggered device, 140

active, 219, 222–24 implementation, 141
behavior illustration, 69 See also D-flip-flop
defined, 51 Minimum shift keying (MSK), 13,
design, 227–30 411–12
differential, 216 baseband, 412
frequency response, 51 frequency spacing, 411–12
higher-order, 218

implementation, 412
illustrated, 51

signal, 411LC, 224–30
Mixers, 2lowpass, 307
MMD architecture, 106noise, 77–78

8/9, 175passive, 219–22
generic, 170–75PFD/CP-based, 53
illustration, 170settling behavior and, 68
See also Multimodulus divider (MMD)voltages during acquisition, 68, 69

Modulated signal generation, 13Low-frequency phase noise, 270–76
ModulationLowpass filters (LPFs), 17

amplitude (AM), 13, 413Butterworth, 226
in analog domain, 11Chebyshev, 226
in digital domain, 11noise, 80

Low-power CML circuits, 144–46 direct, 397–414

Index 471

direct with synthesizer, 11–12 Narrow pulse generator, 185
frequency, 407–11 Natural response, 432
frequency synthesis for, 11–13 Negative Gm oscillator
phase (PM), 13, 403 amplitude, 244–45
quadrature amplitude (QAM), 13, CMOS, 244

413–14 current source filter, 246
Monolithic microwave integrated circuits negative resistance, 244

(MMIC), 395 phase noise performance, 245
MOS current mode logic (MCML), 119 quadrature, 258, 263
MOSFET refinements, 245–46

channel under gate, 452 resistive tail-current source, 246
noise sources, 207 NMOS transistors

Most significant bit (MSB), 94 length, 275
MOS varactor, 238–39 nonminimum gate length, 272
Multicarrier generation, 13 operation, 449
Multiloop MASH, 316, 347 PMOS capacitance matching, 272
Multimodulus divider (MMD), 23, PMOS transistor mismatch, 201

106–9, 165–70 structure, 448
3-bit, 108 width ratio, 272–73
cascaded, 166 W /L ratio, 207
cascaded divide-by-2/3 cells, 106 See also PMOS transistors
design algorithm, 174 Noise
divide-by-4/5 cell, 172 1/f , 290, 452
divide-by-5/6 cell, 173 amplitude, 267
divide-by-6/7 cell, 173 charge pump, 77, 207–9
divide-by-8/9 cell, 174 crystal reference, 76
division range, 170 flicker, 208
dual-modulus divide-by-2/3 cell in, frequency-divider, 76–77

107 gate, 452–53
fractional-N synthesizer with, 23–24 LC filter, 224
optimum divider design algorithm, loop filter, 77–78

171–72 low-frequency, 269
performance, testing, 108 from LPF, 80
programmable divide-by-2/3 stages, in mirrors, 213

169 in MOSFET, 207
programmable range, 25

origin of, 75
simulated 3-bit waveforms, 109

output, for various currents, 214
simulated waveforms, 109

phase, 78–82, 208, 215, 233
using, 23

phase detector, 77See also Dividers; MMD architecture
PLL synthesizer sources, 75–78Multiplexer (MUX) circuit, 10
quantization, 301–6Multipliers, 180–81
rms, 311, 314Multistage noise shaping. See MASH
shot, 452

N thermal, 208, 451–52
total, 208NAND gates, 87
transfer function, 78, 79illustrated, 121

two-input, 89–90 VCO, 75–76

472 Index

Noise shaping O
in DDS, 376–81 Offset quadrature PSK (OQPSK), 404
defined, 307 Open-loop gain, 221, 222, 278
effects, 306–7 OR gates, 133
effects comparison, 316 Oscillation frequency, 44–45, 288
function, 266 Oscillator analysis, 241–44
high-order SD modulators, 315 Colpitts, 242–44
oversampling and, 307 feedback model, 241
reduction with feedback, 306 transfer function, 241

Noise-to-signal ratio (NSR), 372, 372–73 Output resistance
Noise transfer function (NTF), 306, 333, bipolar transistors, 202

current source with, 203, 204335, 337, 344
increasing, 202highpass, 330

Overdamped systems, 424magnitudes, 342
Overload level, 350MASH, 341
Oversamplingsingle-stage SD modulators, 327

converter resolution and, 304SSMF-I, 341, 342
defined, 307SSMF-II, 340, 341, 342
effects, 301–6, 307, 376Nonblocking assignment, 97–99
effects comparison, 316defined, 98
high-order system, 307example, 98–99
noise-shaping feedback, 307See also Verilog HDL
noise-shaping system, 306Nonlinear DACs
SNR with, 314coarse, 391–94
voice, with video A/D converter,fine, 389

305–6segmentations, 389–91
without feedback, 307segmented, DDS architecture with,

Oversampling ratio (OSR), 304390
defined, 376sine-weighted, 388
doubling, 376See also Digital-to-analog converters
in-band rms noise vs., 314(DACs)
large, 313

Nonlinear transient behavior, 66–71
Non-return-to-zero (NRZ), 30 P
NOR gates, 87, 121 Parallel coupled Quadrature LC
Normalization factor, 303 oscillators, 258–62
Numerically controlled oscillator (NCO), Parallel resonance frequency, 295

360 Passive loop filters, 219–22
clock frequency, 361 third-order, 220
digital output translation, 362 transfer function, 219
N-bit accumulator, 360 See also Loop filters
output, 361, 362 Percentage overshoot, 434

Nyquist FIR filter, 399 Phase detectors, 46–51, 181–96
Nyquist frequency, 304 Alexander, 195–96
Nyquist limit, 410 Bang-Bang, 195–96
Nyquist rate, 301, 373 basic types, 181–83

defined, 46Nyquist sampling rate, 420

Index 473

exclusive NOR date as, 46–48 third-order, 222
transient behavior, 61–71gain, 182

Hogge, 192–95 transient response, 229
Phase margin, 442noise, 77

Phase domain SD noise shaping, 377–79 Phase modulation (PM), 13, 403
Phase noisePhase error, 189

Phase-frequency detectors (PFDs), 46, SD converters, 342–47
as absolute noise, 266153

with aligned UP/DN pulses, 190–91 additive, 265–69
calculation, 79–82for CDR applications, 191–96

charge pump and, 48–51 charge pump, 208
clock jitter, 364–65circuit implementations, 183–86

circuitry, 48 components, 81, 82
crystal oscillators, 297, 298dead zone, 186–89

dead zone, average output current, DSB, 73, 74
frequency vs., 268188

feedback delay, 214 Gm oscillator, 245
importance, 233with finite rise times, 187

five-state circuit, 183 in-band, 78–82
input-referred, 215frequency response, 51

function, 453 integrated, 354
in LC oscillators, 264–70large phase difference, 187

operation of, 49 linear, 265–69
load capacitance vs., 291outputs, 182

small phase difference, 187 low-frequency, 270–76
offset frequency vs., 292state diagram, 48

tristate, 182 out-of-band, 78–82
in PLL synthesis, 71–82voltage waveforms, 192

Phase-locked loops (PLLs), 12 prediction, 289
PSD for MASH SD modulator, 345bandwidth formulas comparison, 57

CDR, 29–31 ring oscillators, 287–94
spectrum analyzer observation, 73charge pump, 221

components, 44–52 SSB, 73, 74, 342
switching, 269–70example of feedback system, 43–44

fourth-order, 222 system, 81, 82
VCO, comparison, 276fractional-N frequency synthesizer, 14,

18–27 See also Noise
Phase shiftinteger-N frequency synthesizers,

17–18 of external signal, 255
between injected signal and lockedloop equations, 53–55

reference spur injection, 230 output tone, 257
injection-locked oscillator, 254–57second-order, 53, 222

synthesis, phase noise/timing jitter, with injection locking, 256–57
linear, 43071–82

system frequency response/bandwidth, quadrature LC oscillator, 262
theoretical/simulated, 25655–56

474 Index

Phase shift keying (PSK), 403–7 Programmable accumulator, 21–23
defined, 21binary (BPSK), 403
example, 22–23M-ary (MPSK), 406
illustrated, 22offset quadrature (OQPSK), 404
See also Accumulatorsquadrature (QPSK), 403

Programmable divide-by-2/3 circuit,Phase truncation, 367–73
158–63error, 367, 368

Propagation delay, 6output spectrum, 378, 379
Pseudo random bit sequence (PRBS)process, 367

generators, 347quantization error sequence, 368
Pulse-swallow dividers, 175–80uniformly-spaced spurs, 370

average division ratio, 177Pipelined accumulators, 383–84
division ratios, 177generic architecture, 384
dual-modulus prescaler, 175input, 383
fractional-N frequency synthesizerlatency period, 384

with, 179See also Accumulators
frequency counters, 177PLL synthesizers, 52–61
Modulus Control, 175continuous-time analysis, 52–58
operation, 176direct modulation, 398–401
Programmable Counter, 175discrete-time analysis, 58–61
programmable frequency divider, 175noise sources, 75–78
programming restrictions, 178RF frequency synthesis, 402
toggled at VCO frequency, 176PMOS transistors, 149, 150
See also Dividers

arrangement, 282
Push-pull output buffer, 151

complementary VCO design vs.,
274–76 Q

length, 275 Q latches, 155
load, 282 Quadrature amplitude modulation
NMOS capacitance matching, 272 (QAM), 13, 413–14
NMOS mismatch, 201 advantage, 413
operation, 449 defined, 413
structure, 448 implementation, 414
voltages, 200 signal phase plot, 413
width ratio, 272–73 symbols, 413
See also NMOS transistors Quadrature demodulator, 405

Pn varactor, 238 Quadrature LC oscillators, 257–64
Polarization mode dispersion (PMD), 9 amplitude, 261, 262
Poles current injected into resonator, 259

on axis, 443, 444 design, 260–62, 292–94
closed-loop, 444 generation techniques, 263–64
open-loop, 444 with injection locking, 257–64

Power consumption modeled as two amplifier stages in
as synthesizer specification, 4 feedback, 258
trade-off, 129–32 model illustration, 260

Power spectral density (PSD), 398, 407 negative Gm , 258, 263
parallel coupled, 258–62Predistortion filter, 400

Index 475

with parallel cross connections, 258 Resistor noise model, 451
Resistors, 451phase, 261
Resolution bandwidth (RBW), 75phase shift, 262
Resonance frequency, 295series coupled, 263
Return-to-zero (RZ), 30with superharmonic cooling, 264
Ring oscillators, 276–80Quadrature modulator, 404

Barkhausen criteria satisfaction, 276Quadrature PSK (QPSK), 403
delay cells, 276Quantization error, 319
design, 290–92as function of input, 302
differential, 280in higher-order loops, 348
five-stage, multiple-pass, 285Quantization noise, 301–6
four-stage, 290delta modulator and, 308
illustrated, 276due to finite number of amplitude bits,
input noise, 288373–74
inverters, 276, 277due to phase truncation, 367–73
jitter, 287–94power, 303
performance comparison, 298–99probability density, 302–3
phase noise, 287–94for random signal, 302
single-ended, 280, 290reduction, 305
three-stage, 287, 289SNR due to, 373
two-stage, 278, 284–87Quantizers
See also Voltage-controlled oscillators1-bit, 318

(VCOs)bit additions to, 304
Ripple adders, 135multibit, transfer characteristic, 302
Ripple chain, 169resolution, 301
ROM-less DDS, 33, 34

high-speed, 381–95R
implementation, 395Radio

Root locus, 442–45architectures, 6
plot illustration, 445direct conversion, 5
plotting, 444–45direct downconversion, 6

receivers, 2, 3 S
walking IF, 6 Sample-and-hold circuit, 363, 420, 421

Radio-frequency (RF) signals, 2 Sampled systems
Read-only memory (ROM), 360 average amplitude, 430

size for low-cost applications, 377 frequency response, 428–31
size reduction with SD noise shaping, replication, 428, 429

379–81 Sampling
Reference feedthrough, 203–6 defined, 418–20
Reference spurs, 205, 230 frequency, 428–29
Register transfer level (RTL) codes, 86, with hold function, 429

87 Nyquist, 420
Replication, 428, 429 process, 421
Reset waveform illustration, 421

active-low, 139, 140 Saturation voltage, 200–201
function, 139 drain source, 200

importance, 200synchronization, 116–17

476 Index

Sawtooth error sequence, 371 Single-stage multiple feedforward
Sawtooth waveform, 368 (SSMF-I), 338–39
Second-order SD modulators, 311–12 defined, 338

equivalent circuit, 311 noise transfer function, 341, 342
noise spectral density, 312 third-order, 339
output noise, 312 Single-stage multiple feedforward
See also SD modulators (SSMF-II), 339–42

Sequential digital IC design, 103–6 alternate topology, 340
Sequential logic circuits defined, 339

building blocks, 134–35 dithering, 339
CML, 134–39 in-band phase noise power, 354

Series coupled quadrature oscillators, 263 noise transfer function, 340, 341, 342
Settling time third-order, 340

computation, 67 Slew rate
five-state circuit, 186 capacitance effect on, 125–29
integer-N synthesizer for, 65–66 defined, 126
simulation and estimation of, 68–71 effect on square wave, 126, 128
as synthesizer specification, 4 for hand calculations, 128
tristate circuit, 186 instantaneous, 128

Shot noise, 452 Source-substrate voltage, 450
Signal-to-noise ratio (SNR), 283 Spectrum analyzers, block diagram, 75

with oversampling, 314 Speed trade-off, 129–32
with oversampling and noise shaping, Spurious free dynamic range (SFDR), 376

380
Spurs

quantization noise power and, 304
DAC, 375

Silicon germanium (SiGe), 1
due to discrete phase accumulation,Silicon on insulator (SOI) process, 274

365–67Sine-weighted nonlinear DACs, 388,
due to phase truncation, 367–73393–94
freedom from, 4Single sideband (SSB) phase noise, 73, 74
index, 370noise-shaped fractional spurs, 342
magnitude, 371PSD in frequency domain, 343
noise-shaped fractional, 342See also Phase noise
reduction with precalculated seeds,Single-stage SD modulators, 326–30

349conceptual, 328
reference, 205, 230conceptual drawing, 327
spectrum analyzer observation, 73fifth-order, 330

Stability, 441–42fourth-order, 329
Standard single mode fiber (SSMF), 10mth-order, 326
Static divide-by-two circuit, 155–58with multiple feedback paths, 326–27
Steady-state error, 440–41noise transfer function, 327
Step frequency, 412optimal coefficients, 354
Step size, as synthesizer specification, 4output, 326
Structural modeling, 101second-order, 328
Superharmonic cooling, 264with single feedback path, 327–30
Superheterdyne radio receivers, 2third-order, 329

transfer function, 327 Symbol error probability, 407

Index 477

Symmetrical load modified, 191
settling time, 186defined, 282

Tuning range, as synthesizerdifferential pair with, 283
specification, 4Synthesizers. See Frequency synthesizers

Two-stage ring oscillators, 278
design method, 284–87T
with loading effectively inductive, 286

Taylor series, 265 oscillation trouble, 285
Temperature/voltage relationship, 148 use, 284
Thermal noise, 208, 451–52 See also Ring oscillators
Thermometer code decoders, 392
Third-order passive loop filter, 220 U
Time domain Underdamped systems, 424

impulses in, 428
response in, 431–36 V

Timing jitter, 8, 71–82 Varactors, 238–41
Total transistor current, 127 AMOS, 239–40
Transconductance, 243 banks of, 270
Transfer function differential, 273–76

closed-loop, 56, 439, 441, 443 MOS, 238–39
complete loop, 56–58 pn, 238
continuous, 429 SOI process, 274
filter, 219 weighted, sizes, 271
higher-order, 219 weighted switched, 271
MASH, 330 Variable gain amplifier (VGA), 401
noise (NTF), 78, 79, 306 Verilog HDL, 85, 88–100
passive loop filter, 219 blocking assignment, 97–99
second-order, 435 case statement, 102
single-stage SD modulators, 327 control constructs, 95–97

Transient behavior data formats, 94–95
linear, 62–66 in data modeling, 95
nonlinear, 66–71 delay control, 97
PLLs, 61–71 development, 88

Transient response as discrete, event-driven simulator, 95
defined, 431–32 functions, 99–100
of discrete system to step input, 437 model for 4-bit ripple adder, 92
of discrete-time system, 436 modules, 91, 105
finding, 432 nonblocking assignment, 97–99
inputs, 431 operators, 95, 96

Transistor gain, 206–7 program structure, 89–94
Transistor models, 447–57 tasks, 99–100

bipolar, 453–56 timing control, 97
CMOS, 447–53 wait statement, 97
summary, 457 See also Hardware description

Tristate PFD, 182 languages (HDLs)
illustrated, 184 VHDL, 85, 88

Video bandwidth (VBW), 75with lock detection added, 190

478 Index

Voltage ring, 276–80
spectrum, 234across resistor, 149
tuning range, 201, 222control, 63–64, 72
typical characteristic, 45gate-source, 218

mean square rms error, 303
Woscillating, 256
Walking IF radio, 5, 6saturation, 200–201
Waveform generation, 414source-substrate, 450

complex, 13temperature relationship, 148
frequency synthesis for, 11–13Voltage-controlled delay line (VCDL),

27, 28 X
Voltage-controlled oscillators (VCOs),

XNOR gate, 46–48
17, 19, 233–99 dc voltage, 190

analysis, 241–44 phase detector, 47
control-line signal, 205 phase detector waveforms, 47
control voltage, 201 XOR gates, 87
crystal, 294–98 CML, 133
excess phase, 46 illustrated, 121
finite tuning range, 66 XOR multiply-by-two circuit, 180
injection-locked, 246–57

ZLC-based, 233–41
noise, 75–76 Zero-IF, 5
output frequency, 44 Zeros
output phase, 28, 45 on axis, 444
output voltage comparison, 275 effect of, 435–36
performance comparison, 298–99 first-order system with, 435
phase noise, 264–70 open-loop, 444
phase noise comparison, 276 to right of point, 444

type system, 440quadrature, 257–64

Recent Titles in the Artech House Microwave Library

Active Filters for Integrated-Circuit Applications, Fred H. Irons

Advanced Techniques in RF Power Amplifier Design, Steve C. Cripps

Automated Smith Chart, Version 4.0: Software and User's Manual,
Leonard M. Schwab

Behavioral Modeling of Nonlinear RF and Microwave Devices,
Thomas R. Turlington

Broadband Microwave Amplifiers, Bal S. Virdee, Avtar S. Virdee, and
Ben Y. Banyamin

Classic Works in RF Engineering: Combiners, Couplers, Transformers, and Magnetic
Materials, John L. B. Walker, Daniel P. Myer, Frederick H. Raab, and Chris Trask,
editors

Computer-Aided Analysis of Nonlinear Microwave Circuits, Paulo J. C. Rodrigues

Design of FET Frequency Multipliers and Harmonic Oscillators, Edmar Camargo

Design of Linear RF Outphasing Power Amplifiers, Xuejun Zhang,
Lawrence E. Larson, and Peter M. Asbeck

Design of RF and Microwave Amplifiers and Oscillators, Pieter L. D. Abrie

Distortion in RF Power Amplifiers, Joel Vuolevi and Timo Rahkonen

EMPLAN: Electromagnetic Analysis of Printed Structures in Planarly Layered
Media, Software and User’s Manual, Noyan Kinayman and M. I. Aksun

FAST: Fast Amplifier Synthesis Tool—Software and User’s Guide, Dale D. Henkes

Feedforward Linear Power Amplifiers, Nick Pothecary

Generalized Filter Design by Computer Optimization, Djuradj Budimir

High-Linearity RF Amplifier Design, Peter B. Kenington

High-Speed Circuit Board Signal Integrity, Stephen C. Thierauf

Integrated Circuit Design for High-Speed Frequency Synthesis, John Rogers, Calvin
Plett, and Foster Dai

Intermodulation Distortion in Microwave and Wireless Circuits, José Carlos Pedro
and Nuno Borges Carvalho

Lumped Elements for RF and Microwave Circuits, Inder Bahl

Microwave Circuit Modeling Using Electromagnetic Field Simulation,
Daniel G. Swanson, Jr. and Wolfgang J. R. Hoefer

Microwave Component Mechanics, Harri Eskelinen and Pekka Eskelinen

Microwave Engineers’ Handbook, Two Volumes, Theodore Saad, editor

Microwave Filters, Impedance-Matching Networks, and Coupling Structures,
George L. Matthaei, Leo Young, and E.M.T. Jones

Microwave Materials and Fabrication Techniques, Second Edition,
Thomas S. Laverghetta

Microwave Mixers, Second Edition, Stephen A. Maas

Microwave Radio Transmission Design Guide, Trevor Manning

Microwaves and Wireless Simplified, Thomas S. Laverghetta

Modern Microwave Circuits, Noyan Kinayman and M. I. Aksun

Neural Networks for RF and Microwave Design, Q. J. Zhang and K. C. Gupta

Nonlinear Microwave and RF Circuits, Second Edition, Stephen A. Maas

QMATCH: Lumped-Element Impedance Matching, Software and User’s Guide,
Pieter L. D. Abrie

Practical Analog and Digital Filter Design, Les Thede

Practical RF Circuit Design for Modern Wireless Systems, Volume I: Passive Circuits
and Systems, Les Besser and Rowan Gilmore

Practical RF Circuit Design for Modern Wireless Systems, Volume II: Active Circuits
and Systems, Rowan Gilmore and Les Besser

Production Testing of RF and System-on-a-Chip Devices for Wireless
Communications, Keith B. Schaub and Joe Kelly

Radio Frequency Integrated Circuit Design, John Rogers and Calvin Plett

RF Design Guide: Systems, Circuits, and Equations, Peter Vizmuller

RF Measurements of Die and Packages, Scott A. Wartenberg

The RF and Microwave Circuit Design Handbook, Stephen A. Maas

RF and Microwave Coupled-Line Circuits, Rajesh Mongia, Inder Bahl, and
Prakash Bhartia

RF and Microwave Oscillator Design, Michal Odyniec, editor

RF Power Amplifiers for Wireless Communications, Steve C. Cripps

RF Systems, Components, and Circuits Handbook, Second Edition, Ferril A. Losee

Stability Analysis of Nonlinear Microwave Circuits, Almudena Suárez and
Raymond Quéré

TRAVIS 2.0: Transmission Line Visualization Software and User's Guide, Version 2.0,
Robert G. Kaires and Barton T. Hickman

Understanding Microwave Heating Cavities, Tse V. Chow Ting Chan and
Howard C. Reader

For further information on these and other Artech House titles, including previously

considered out-of-print books now available through our In-Print-Forever® (IPF®)

program, contact:

Artech House Artech House

685 Canton Street 46 Gillingham Street

Norwood, MA 02062 London SW1V 1AH UK

Phone: 781-769-9750 Phone: +44 (0)20 7596-8750

Fax: 781-769-6334 Fax: +44 (0)20 7630 0166

e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at: www.artechhouse.com

	Front-cover
	Front-matter
	Copyright
	Contents
	Preface

	Chapter 1 Introduction
	1.1 Introduction to Frequency Synthesis
	1.2 Frequency Synthesis for Telecommunications Systems
	1.3 Frequency Synthesis for Digital Circuit Applications
	1.4 Frequency Synthesis for Clock and Data Recovery
	1.5 Frequency Synthesis for Modulation and Waveform Generation
	1.6 Overview
	References

	Chapter 2 Synthesizer Architectures
	2.1 Introduction
	2.2 Integer-N PLL Synthesizers
	2.3 Fractional-N PLL Frequency Synthesizers
	2.3.1 Fractional-N Synthesizer with Dual-Modulus Prescaler
	2.3.2 An Accumulator with Programmable Size
	2.3.3 Fractional-N Synthesizer with Multimodulus Divider
	2.3.4 Fractional-N Spurious Components

	2.4 Delay-Locked Loops
	2.5 Clock and Data Recovery (CDR) PLLs
	2.6 Direct Digital Synthesizers
	2.6.1 Direct Digital Synthesizer with Read-Only Memory Lookup Table
	2.6.2 ROM-Less Direct Digital Synthesizer

	2.7 Direct Analog Frequency Synthesizers
	2.8 Hybrid Frequency Synthesizers
	References

	Chapter 3 System-Level Overview of PLL-Based Frequency Synthesis
	3.1 Introduction
	3.2 PLLs (Example of a Feedback System)
	3.3 PLL Components
	3.3.1 VCOs and Dividers
	3.3.2 Phase Detectors
	3.3.2.1 The Exclusive NOR Gate as a Phase Detector
	3.3.2.2 PFD and Charge Pump

	3.3.3 The Loop Filter

	3.4 Continuous-Time Analysis for PLL Synthesizers
	3.4.1 Simplified Loop Equations
	3.4.2 PLL System Frequency Response and Bandwidth
	3.4.3 Complete Loop Transfer Function, Including C2

	3.5 Discrete-Time Analysis for PLL Synthesizers
	3.6 Transient Behavior of PLLs
	3.6.1 Linear Transient Behavior
	3.6.2 Nonlinear Transient Behavior

	3.7 Phase Noise and Timing Jitter in PLL Synthesis
	3.7.1 Various Noise Sources in PLL Synthesizers
	3.7.1.1 Origin of Noise
	3.7.1.2 VCO Noise
	3.7.1.3 Crystal Reference Noise
	3.7.1.4 Frequency-Divider Noise
	3.7.1.5 Phase Detector Noise
	3.7.1.6 Charge Pump Noise
	3.7.1.7 Loop Filter Noise

	3.7.2 In-Band and Out-of-Band Phase Noise in PLL Synthesis

	References

	Chapter 4 Introduction to Digital IC Design
	4.1 Digital Design Methodology and Flow
	4.2 Verilog HDL
	4.2.1 Verilog Program Structure
	4.2.2 Verilog Data Formats
	4.2.3 Verilog Operators
	4.2.4 Verilog Control Constructs
	4.2.5 Blocking and Nonblocking Assignments
	4.2.6 Tasks and Functions

	4.3 Behavioral and Structural Modeling
	4.4 Combinational Digital Circuit Design
	4.5 Sequential Digital Circuit Design
	4.6 Digital Design Example I: A Multimodulus Divider
	4.7 Digital Design Example II: A Programmable MASH ΣΔ Modulator
	4.7.1 MASH ΣΔ Modulator Top-Level Structure
	4.7.2 Fractional Accumulator with Programmable Size and Seed-Loading Capability
	4.7.3 Reset Synchronization
	4.7.4 Simulated Results

	References

	Chapter 5 CMOS Logic and Current Mode Logic
	5.1 Introduction
	5.2 CMOS Logic Circuits
	5.3 Large-Signal Behavior of Bipolar and CMOS Differential Pairs
	5.4 Effect of Capacitance on Slew Rate
	5.5 Trade-Off Between Power Consumption and Speed
	5.6 CML Combinational Circuits
	5.7 CML Sequential Circuits
	5.8 Master-Slave D-Flip-Flop
	5.9 CML Circuit-Delay Analysis
	5.10 Low-Power CML Circuits
	5.11 CML Biasing Circuits
	5.12 Driver Circuits
	References

	Chapter 6 Dividers and Phase-Frequency Detectors
	6.1 Introduction
	6.2 Dividers
	6.2.1 A Static Divide-by-Two Circuit
	6.2.2 Programmable Divide-by-Two or Divide-by-Three Circuit
	6.2.3 A 50% Duty Cycle, High-Speed, Divide-by-Three Circuit
	6.2.4 A Multimodulus Divider
	6.2.5 A Generic MMD Architecture
	6.2.6 Pulse-Swallow Dividers

	6.3 Multipliers
	6.4 Phase Detectors
	6.4.1 Basic Types of Phase Detectors
	6.4.2 Circuit Implementations of PFDs
	6.4.3 Dead Zone in PFDs
	6.4.4 Lock-Detection Circuits
	6.4.5 A Modified PFD with Aligned UP and DN Pulses
	6.4.6 PFDs for CDR Applications
	6.4.6.1 The Hogge Phase Detector
	6.4.6.2 The Bang-Bang Phase Detector

	References

	Chapter 7 Charge Pumps and Loop Filters
	7.1 Introduction
	7.2 Charge Pumps
	7.2.1 A Basic Charge Pump
	7.2.2 Saturation Voltage
	7.2.3 Current Source Output Impedance
	7.2.4 Reference Feedthrough
	7.2.5 Transistor Gain Considerations
	7.2.6 Charge Pump Noise
	7.2.7 Charge Sharing
	7.2.8 Improving Matching Between Ip and In
	7.2.9 Charge Pumps Compatible with CML/ECL
	7.2.10 A Differential Charge Pump
	7.2.11 Common-Mode Feedback for a Differential Charge Pump
	7.2.12 Another Differential Charge Pump
	7.2.13 Programmable Bias Schemes

	7.3 Loop Filters
	7.3.1 Passive Loop Filters
	7.3.2 Active Loop Filters
	7.3.3 LC Loop Filters

	References

	Chapter 8 Voltage-Controlled Oscillators
	8.1 Introduction
	8.2 Specification of Oscillator Properties
	8.3 LC-Based VCOs
	8.3.1 Inductors
	8.3.2 Varactors for Oscillator Frequency Control

	8.4 Oscillator Analysis
	8.4.1 Colpitts Oscillator Analysis
	8.4.2 Negative Resistance of -Gm Oscillator

	8.5 Amplitude of a Negative Gm Oscillator
	8.6 Several Refinements to the -Gm Topology
	8.7 Injection-Locked Oscillators
	8.7.1 Phase Shift of Injection-Locked Oscillator

	8.8 Quadrature LC Oscillators Using Injection Locking
	8.8.1 Parallel Coupled Quadrature LC Oscillators
	8.8.2 Series Coupled Quadrature Oscillators
	8.8.3 Other Quadrature-Generation Techniques

	8.9 Other Techniques to Generate Quadrature Signals
	8.10 Phase Noise in LC Oscillators
	8.10.1 Linear or Additive Phase Noise and Leeson’s Formula
	8.10.2 Switching Phase Noise in Cross-Coupled Pairs

	8.11 Low-Frequency Phase Noise Upconversion Reduction Techniques
	8.11.1 Bank Switching
	8.11.2 gm Matching and Waveform Symmetry
	8.11.3 Differential Varactors and Differential Tuning
	8.12 Ring Oscillators
	8.13 Common Inverter Circuits
	8.14 Method for Designing a Two-Stage Ring Oscillator
	8.15 Phase Noise and Jitter in Ring Oscillators
	8.16 Crystal Oscillators
	8.17 Summary: Comparison of Oscillator Performance
	References

	Chapter 9 ΣΔ Modulation for Fractional-N Synthesis
	9.1 Introduction
	9.2 Basic Concepts
	9.2.1 Quantization Noise and Oversampling Effects
	9.2.2 Noise-Shaping Effect
	9.2.3 An Overview of SD Modulators
	9.2.4 First-Order SD Modulators
	9.2.5 Second-Order SD Modulators
	9.2.6 High-Order SD Modulators

	9.3 SD Modulation in Fractional-N Frequency Synthesis
	9.3.1 A First-Order SD Modulator for Fractional-N Frequency Synthesis
	9.3.2 MASH SD Modulator
	9.3.3 Single-Stage SD Modulators with Multiple Feedback Paths
	9.3.4 Single-Stage SD Modulators with a Single Feedback Path
	9.3.5 A Generic High-Order SD Modulator Topology
	9.3.5.1 Generic SD Modulator Topology with Integrators 1/(1 - z -1) and Without Delay in the Loop Feedback Path
	9.3.5.2 Generic SD Modulator Topology with Integrators z -1/(1 - z -1) and Without Delay in the Loop Feedback Path
	9.3.5.3 Generic SD Modulator Topology with Integrators z -1/(1 - z -1) and with a Delay in the Loop Feedback Path
	9.3.5.4 Generic SD Modulator Topology with Integrators 1/(1 - z -1) and with a Delay in the Loop Feedback Path

	9.3.6 Modified SD Modulator with Improved High-Frequency Response
	9.3.6.1 Single-Stage Multiple Feedforward SD Modulator (SSMF-I)
	9.3.6.2 Single-Stage Multiple Feedforward SD Modulator (SSMF-II)

	9.3.7 Phase Noise Due to SD Converters
	9.3.8 Randomization by Noise-Shaped Dithering
	9.3.9 Spur Reduction Using Precalculated Seeds
	9.3.10 Dynamic Range
	9.3.11 Maximal Loop Bandwidth
	9.3.12 Optimal Parameters
	9.3.13 Performance Comparison

	References

	Chapter 10 Direct Digital Synthesis
	10.1 Introduction
	10.2 DDS Theory of Operation
	10.3 DDS Spectral Purity
	10.3.1 Phase Noise Due to Clock Jitter
	10.3.2 Spurs Due to Discrete Phase Accumulation
	10.3.3 Spurs and Quantization Noise Due to Phase Truncation
	10.3.4 Quantization Noise Due to Finite Number of Amplitude Bits
	10.3.5 DAC Nonlinearities and Aliased Images
	10.3.6 Oversampling Effect

	10.4 SD Noise Shaping in DDS
	10.4.1 DDS Using Phase Domain SD Noise Shaping
	10.4.2 DDS Using Frequency Domain SD Noise Shaping

	10.5 High-Speed ROM-Less DDS
	10.5.1 Pipelined Accumulator
	10.5.2 Accumulator with CLA Adders
	10.5.3 Sine-Weighted Nonlinear DACs
	10.5.4 Nonlinear DAC Segmentations
	10.5.5 Nonlinear Coarse DAC
	10.5.6 Comparison of ROM-Less DDS Performance

	References

	Chapter 11 Direct Modulation in Frequency Synthesizers
	11.1 Introduction
	11.2 Direct Modulation in PLL Frequency Synthesizers
	11.3 Direct Digital Modulation and Waveform Generation in a DDS
	11.3.1 Phase Modulation
	11.3.2 Phase Shift Keying
	11.3.3 Frequency Modulation
	11.3.4 Minimum Shift Keying
	11.3.5 Step Frequency
	11.3.6 Chirp Waveforms
	11.3.7 Amplitude Modulation
	11.3.8 Quadrature Amplitude Modulation
	11.3.9 Waveform Generation

	References

	Appendix A A Review of Basic Control Theory
	A.1 Introduction
	A.2 The Continuous-Time Laplace Transform
	A.3 The Laplace Transform and Sampling
	A.4 System Modeling with Frequency Response
	A.4.1 Frequency Response of Continuous Systems
	A.4.2 Frequency Response of Sampled Systems

	A.5 Response in the Time Domain
	A.6 Feedback Systems
	A.7 Steady-State Error and the System Type
	A.8 Stability
	A.9 Root Locus
	References

	Appendix B A Review of Transistor Models
	B.1 Introduction
	B.2 The Basics of CMOS Transistors
	B.2.1 Basic DC Biasing Characteristics
	B.2.2 Basic CMOS Square Law Equations
	B.2.3 The Body Effect
	B.2.4 High-Frequency Effects
	B.2.5 Thermal Noise
	B.2.6 Shot Noise
	B.2.7 1/f Noise
	B.2.8 Gate Noise
	B.2.9 CMOS Small-Signal Model, Including Noise

	B.3 Bipolar Transistors
	References

	About the Authors
	Index
	Recent Titles in the Artech House Microwave Library

