
Advanced FPGA
Design
Architecture, Implementation,
and Optimization

Steve Kilts
Spectrum Design Solutions

Minneapolis, Minnesota

扫码可进资料分享群

Innodata
9780470127889.jpg

Advanced FPGA

Design

扫码可进资料分享群

扫码可进资料分享群

Advanced FPGA
Design
Architecture, Implementation,
and Optimization

Steve Kilts
Spectrum Design Solutions

Minneapolis, Minnesota

扫码可进资料分享群

Copyright # 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,

except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without

either the prior written permission of the Publisher, or authorization through payment of the

appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,

MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com.

Requests to the Publisher for permission should be addressed to the Permissions Department,

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best

efforts in preparing this book, they make no representations or warranties with respect to

the accuracy or completeness of the contents of this book and specifically disclaim any implied

warranties of merchantability or fitness for a particular purpose. No warranty may be created

or extended by sales representatives or written sales materials. The advice and strategies contained

herein may not be suitable for your situation. You should consult with a professional where

appropriate. Neither the publisher nor author shall be liable for any loss of profit or any

other commercial damages, including but not limited to special, incidental, consequential,

or other damages.

For general information on our other products and services please contact our Customer Care

Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or

fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,

however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data

Kilts, Steve, 1978-

Advanced FPGA design: Architecture, Implementation, and Optimization/
by Steve Kilts.

p. cm.

Includes index.

ISBN 978-0-470-05437-6 (cloth)

1. Field programmable gate arrays- -Design and construction.

I. Title.

TK7895.G36K55 2007

621.3905- -dc22

2006033573

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

扫码可进资料分享群

http://www.copyright.com

To my wife, Teri, who felt that the

subject matter was rather dry

扫码可进资料分享群

Flowchart of Contents

扫码可进资料分享群

Contents

Preface xiii

Acknowledgments xv

1. Architecting Speed 1

1.1 High Throughput 2

1.2 Low Latency 4

1.3 Timing 6

1.3.1 Add Register Layers 6

1.3.2 Parallel Structures 8

1.3.3 Flatten Logic Structures 10

1.3.4 Register Balancing 12

1.3.5 Reorder Paths 14

1.4 Summary of Key Points 16

2. Architecting Area 17

2.1 Rolling Up the Pipeline 18

2.2 Control-Based Logic Reuse 20

2.3 Resource Sharing 23

2.4 Impact of Reset on Area 25

2.4.1 Resources Without Reset 25

2.4.2 Resources Without Set 26

2.4.3 Resources Without Asynchronous Reset 27

2.4.4 Resetting RAM 29

2.4.5 Utilizing Set/Reset Flip-Flop Pins 31

2.5 Summary of Key Points 34

3. Architecting Power 37

3.1 Clock Control 38

3.1.1 Clock Skew 39

3.1.2 Managing Skew 40

vii

扫码可进资料分享群

3.2 Input Control 42

3.3 Reducing the Voltage Supply 44

3.4 Dual-Edge Triggered Flip-Flops 44

3.5 Modifying Terminations 45

3.6 Summary of Key Points 46

4. Example Design: The Advanced Encryption Standard 47

4.1 AES Architectures 47

4.1.1 One Stage for Sub-bytes 51

4.1.2 Zero Stages for Shift Rows 51

4.1.3 Two Pipeline Stages for Mix-Column 52

4.1.4 One Stage for Add Round Key 52

4.1.5 Compact Architecture 53

4.1.6 Partially Pipelined Architecture 57

4.1.7 Fully Pipelined Architecture 60

4.2 Performance Versus Area 66

4.3 Other Optimizations 67

5. High-Level Design 69

5.1 Abstract Design Techniques 69

5.2 Graphical State Machines 70

5.3 DSP Design 75

5.4 Software/Hardware Codesign 80

5.5 Summary of Key Points 81

6. Clock Domains 83

6.1 Crossing Clock Domains 84

6.1.1 Metastability 86

6.1.2 Solution 1: Phase Control 88

6.1.3 Solution 2: Double Flopping 89

6.1.4 Solution 3: FIFO Structure 92

6.1.5 Partitioning Synchronizer Blocks 97

6.2 Gated Clocks in ASIC Prototypes 97

6.2.1 Clocks Module 98

6.2.2 Gating Removal 99

6.3 Summary of Key Points 100

7. Example Design: I2S Versus SPDIF 101

7.1 I2S 101

7.1.1 Protocol 102

7.1.2 Hardware Architecture 102

viii Contents

扫码可进资料分享群

7.1.3 Analysis 105

7.2 SPDIF 107

7.2.1 Protocol 107

7.2.2 Hardware Architecture 108

7.2.3 Analysis 114

8. Implementing Math Functions 117

8.1 Hardware Division 117

8.1.1 Multiply and Shift 118

8.1.2 Iterative Division 119

8.1.3 The Goldschmidt Method 120

8.2 Taylor and Maclaurin Series Expansion 122

8.3 The CORDIC Algorithm 124

8.4 Summary of Key Points 126

9. Example Design: Floating-Point Unit 127

9.1 Floating-Point Formats 127

9.2 Pipelined Architecture 128

9.2.1 Verilog Implementation 131

9.2.2 Resources and Performance 137

10. Reset Circuits 139

10.1 Asynchronous Versus Synchronous 140

10.1.1 Problems with Fully Asynchronous Resets 140

10.1.2 Fully Synchronized Resets 142

10.1.3 Asynchronous Assertion, Synchronous Deassertion 144

10.2 Mixing Reset Types 145

10.2.1 Nonresetable Flip-Flops 145

10.2.2 Internally Generated Resets 146

10.3 Multiple Clock Domains 148

10.4 Summary of Key Points 149

11. Advanced Simulation 151

11.1 Testbench Architecture 152

11.1.1 Testbench Components 152

11.1.2 Testbench Flow 153

11.1.2.1 Main Thread 153

11.1.2.2 Clocks and Resets 154

11.1.2.3 Test Cases 155

Contents ix

扫码可进资料分享群

11.2 System Stimulus 157

11.2.1 MATLAB 157

11.2.2 Bus-Functional Models 158

11.3 Code Coverage 159

11.4 Gate-Level Simulations 159

11.5 Toggle Coverage 162

11.6 Run-Time Traps 165

11.6.1 Timescale 165

11.6.2 Glitch Rejection 165

11.6.3 Combinatorial Delay Modeling 166

11.7 Summary of Key Points 169

12. Coding for Synthesis 171

12.1 Decision Trees 172

12.1.1 Priority Versus Parallel 172

12.1.2 Full Conditions 176

12.1.3 Multiple Control Branches 179

12.2 Traps 180

12.2.1 Blocking Versus Nonblocking 180

12.2.2 For-Loops 183

12.2.3 Combinatorial Loops 185

12.2.4 Inferred Latches 187

12.3 Design Organization 188

12.3.1 Partitioning 188

12.3.1.1 Data Path Versus Control 188

12.3.1.2 Clock and Reset Structures 189

12.3.1.3 Multiple Instantiations 190

12.3.2 Parameterization 191

12.3.2.1 Definitions 191

12.3.2.2 Parameters 192

12.3.2.3 Parameters in Verilog-2001 194

12.4 Summary of Key Points 195

13. Example Design: The Secure Hash Algorithm 197

13.1 SHA-1 Architecture 197

13.2 Implementation Results 204

14. Synthesis Optimization 205

14.1 Speed Versus Area 206

14.2 Resource Sharing 208

x Contents

扫码可进资料分享群

14.3 Pipelining, Retiming, and Register Balancing 211

14.3.1 The Effect of Reset on Register Balancing 213

14.3.2 Resynchronization Registers 215

14.4 FSM Compilation 216

14.4.1 Removal of Unreachable States 219

14.5 Black Boxes 220

14.6 Physical Synthesis 223

14.6.1 Forward Annotation Versus Back-Annotation 224

14.6.2 Graph-Based Physical Synthesis 225

14.7 Summary of Key Points 226

15. Floorplanning 229

15.1 Design Partitioning 229

15.2 Critical-Path Floorplanning 232

15.3 Floorplanning Dangers 233

15.4 Optimal Floorplanning 234

15.4.1 Data Path 234

15.4.2 High Fan-Out 234

15.4.3 Device Structure 235

15.4.4 Reusability 238

15.5 Reducing Power Dissipation 238

15.6 Summary of Key Points 240

16. Place and Route Optimization 241

16.1 Optimal Constraints 241

16.2 Relationship between Placement
and Routing 244

16.3 Logic Replication 246

16.4 Optimization across Hierarchy 247

16.5 I/O Registers 248

16.6 Pack Factor 250

16.7 Mapping Logic into RAM 251

16.8 Register Ordering 251

16.9 Placement Seed 252

16.10 Guided Place and Route 254

16.11 Summary of Key Points 254

17. Example Design: Microprocessor 257

17.1 SRC Architecture 257

17.2 Synthesis Optimizations 259

17.2.1 Speed Versus Area 260

Contents xi

扫码可进资料分享群

17.2.2 Pipelining 261

17.2.3 Physical Synthesis 262

17.3 Floorplan Optimizations 262

17.3.1 Partitioned Floorplan 263

17.3.2 Critical-Path Floorplan: Abstraction 1 264

17.3.3 Critical-Path Floorplan: Abstraction 2 265

18. Static Timing Analysis 269

18.1 Standard Analysis 269

18.2 Latches 273

18.3 Asynchronous Circuits 276

18.3.1 Combinatorial Feedback 277

18.4 Summary of Key Points 278

19. PCB Issues 279

19.1 Power Supply 279

19.1.1 Supply Requirements 279

19.1.2 Regulation 283

19.2 Decoupling Capacitors 283

19.2.1 Concept 283

19.2.2 Calculating Values 285

19.2.3 Capacitor Placement 286

19.3 Summary of Key Points 288

Appendix A 289

Appendix B 303

Bibliography 319

Index 321

xii Contents

扫码可进资料分享群

Preface

In the design-consulting business, I have been exposed to countless FPGA
(Field Programmable Gate Array) designs, methodologies, and design tech-
niques. Whether my client is on the Fortune 100 list or is just a start-up
company, they will inevitably do some things right and many things wrong.
After having been exposed to a wide variety of designs in a wide range of
industries, I began developing my own arsenal of techniques and heuristics
from the combined knowledge of these experiences. When mentoring new
FPGA design engineers, I draw my suggestions and recommendations from
this experience. Up until now, many of these recommendations have refer-
enced specific white papers and application notes (appnotes) that discuss
specific practical aspects of FPGA design. The purpose of this book is to con-
dense years of experience spread across numerous companies and teams of
engineers, as well as much of the wisdom gathered from technology-specific
white papers and appnotes, into a single book that can be used to refine a
designer’s knowledge and aid in becoming an advanced FPGA designer.

There are a number of books on FPGA design, but few of these truly address

advanced real-world topics in detail. This book attempts to cut out the fat of

unnecessary theory, speculation on future technologies, and the details of outdated

technologies. It is written in a terse, concise format that addresses the various

topics without wasting the reader’s time. Many sections in this book assume that

certain fundamentals are understood, and for the sake of brevity, background

information and/or theoretical frameworks are not always covered in detail.

Instead, this book covers in-depth topics that have been encountered in real-world

designs. In some ways, this book replaces a limited amount of industry experience

and access to an experienced mentor and will hopefully prevent the reader from

learning a few things the hard way. It is the advanced, practical approach that

makes this book unique.

One thing to note about this book is that it will not flow from cover to cover

like a novel. For a set of advanced topics that are not intrinsically tied to one

another, this type of flow is impossible without blatantly filling it with fluff.

Instead, to organize this book, I have ordered the chapters in such a way that they

follow a typical design flow. The first chapters discuss architecture, then simu-

lation, then synthesis, then floorplanning, and so on. This is illustrated in the

Flowchart of Contents provided at the beginning of the book. To provide

xiii

扫码可进资料分享群

accessibility for future reference, the chapters are listed side-by-side with the

relevant block in the flow diagram.

The remaining chapters in this book are heavy with examples. For brevity, I

have selected Verilog as the default HDL (Hardware Description Language).

Xilinx as the default FPGA vendor, and Synplicity as the default synthesis and

floorplanning tool. Most of the topics covered in this book can easily be mapped

to VHDL, Altera, Mentor Graphics, and so forth, but to include all of these

for completeness would only serve to cloud the important points. Even if the

reader of this book uses these other technologies, this book will still deliver its

value. If you have any feedback, good or bad, feel free to email me at

steve.kilts@spectrumdsi.com

STEVE KILTS

Minneapolis, Minnesota

March 2007

xiv Preface

扫码可进资料分享群

Acknowledgments

During the course of my career, I have had the privilege to work with many

excellent digital design engineers. My exposure to these talented engineers began

at Medtronic and continued over the years through my work as a consultant for

companies such as Honeywell, Guidant, Teradyne, Telex, Unisys, AMD, ADC,

and a number of smaller/start-up companies involved with a wide variety of

FPGA applications. I also owe much of my knowledge to the appnotes and white

papers published by the major FPGA vendors. These resources contain invaluable

real-world heuristics that are not included in a standard engineering curriculum.

Specific to this book, I owe a great deal to Xilinx and Synplicity, both of

which provided the FPGA design tools used throughout the book, as well as a

number of key reviewers. Reviewers of note also include Peter Calabrese of

Synplicity, Cliff Cummins of Sunburst Design, Pete Danile of Synplicity, Anders

Enggaard of Axcon, Mike Fette of Spectrum Design Solutions, Philip Freidin of

Fliptronics, Paul Fuchs of NuHorizons, Don Hodapp of Xilinx, Ashok Kulkarni of

Synplicity, Rod Landers of Spectrum Design Solutions, Ryan Link of Logic,

Dave Matthews of Verein, Lance Roman of Roman-Jones, B. Joshua Rosen of

Polybus, Gary Stevens of iSine, Jim Torgerson, and Larry Weegman of Xilinx.

S.K.

xv

扫码可进资料分享群

Chapter 1

Architecting Speed

Sophisticated tool optimizations are often not good enough to meet most design

constraints if an arbitrary coding style is used. This chapter discusses the first of

three primary physical characteristics of a digital design: speed. This chapter also

discusses methods for architectural optimization in an FPGA.

There are three primary definitions of speed depending on the context of the

problem: throughput, latency, and timing. In the context of processing data in an

FPGA, throughput refers to the amount of data that is processed per clock cycle.

A common metric for throughput is bits per second. Latency refers to the time

between data input and processed data output. The typical metric for latency will

be time or clock cycles. Timing refers to the logic delays between sequential

elements. When we say a design does not “meet timing,” we mean that the delay

of the critical path, that is, the largest delay between flip-flops (composed of

combinatorial delay, clk-to-out delay, routing delay, setup timing, clock skew,

and so on) is greater than the target clock period. The standard metrics for timing

are clock period and frequency.

During the course of this chapter, we will discuss the following topics in detail:

. High-throughput architectures for maximizing the number of bits per

second that can be processed by the design.

. Low-latency architectures for minimizing the delay from the input of a

module to the output.

. Timing optimizations to reduce the combinatorial delay of the critical path.

Adding register layers to divide combinatorial logic structures.

Parallel structures for separating sequentially executed operations into

parallel operations.

Flattening logic structures specific to priority encoded signals.

Register balancing to redistribute combinatorial logic around pipelined

registers.

Reordering paths to divert operations in a critical path to a noncritical path.

1

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

1.1 HIGH THROUGHPUT

A high-throughput design is one that is concerned with the steady-state data rate

but less concerned about the time any specific piece of data requires to propagate

through the design (latency). The idea with a high-throughput design is the same

idea Ford came up with to manufacture automobiles in great quantities: an assem-

bly line. In the world of digital design where data is processed, we refer to this

under a more abstract term: pipeline.

A pipelined design conceptually works very similar to an assembly line in

that the raw material or data input enters the front end, is passed through various

stages of manipulation and processing, and then exits as a finished product or data

output. The beauty of a pipelined design is that new data can begin processing

before the prior data has finished, much like cars are processed on an assembly

line. Pipelines are used in nearly all very-high-performance devices, and the

variety of specific architectures is unlimited. Examples include CPU instruction

sets, network protocol stacks, encryption engines, and so on.

From an algorithmic perspective, an important concept in a pipelined design

is that of “unrolling the loop.” As an example, consider the following piece of

code that would most likely be used in a software implementation for finding the

third power of X. Note that the term “software” here refers to code that is targeted

at a set of procedural instructions that will be executed on a microprocessor.

XPower = 1;
for (i=0;i < 3; i++)

XPower = X * XPower;

Note that the above code is an iterative algorithm. The same variables and

addresses are accessed until the computation is complete. There is no use for par-

allelism because a microprocessor only executes one instruction at a time (for the

purpose of argument, just consider a single core processor). A similar implemen-

tation can be created in hardware. Consider the following Verilog implementation

of the same algorithm (output scaling not considered):

module power3(
output [7:0] XPower,
output finished,
input [7:0] X,
input clk, start); // the duration of start is a

single clock
reg [7:0] ncount;
reg [7:0] XPower;

assign finished = (ncount == 0);

always@(posedge clk)
if(start) begin

XPower <= X;
ncount <= 2;

end

2 Chapter 1 Architecting Speed

扫码可进资料分享群

else if(!finished) begin
ncount <= ncount - 1;
XPower <= XPower * X;

end
endmodule

In the above example, the same register and computational resources are reused

until the computation is finished as shown in Figure 1.1.

With this type of iterative implementation, no new computations can begin

until the previous computation has completed. This iterative scheme is very

similar to a software implementation. Also note that certain handshaking signals

are required to indicate the beginning and completion of a computation. An

external module must also use the handshaking to pass new data to the module

and receive a completed calculation. The performance of this implementation is

Throughput ¼ 8/3, or 2.7 bits/clock

Latency ¼ 3 clocks

Timing ¼ One multiplier delay in the critical path

Contrast this with a pipelined version of the same algorithm:

module power3(
output reg [7:0] XPower,
input clk,
input [7:0] X
);
reg [7:0] XPower1, XPower2;
reg [7:0] X1, X2;
always @(posedge clk) begin

// Pipeline stage 1
X1 <= X;
XPower1 <= X;

// Pipeline stage 2
X2 <= X1;
XPower2 <= XPower1 * X1;

// Pipeline stage 3
XPower <= XPower2 * X2;

end
endmodule

Figure 1.1 Iterative implementation.

1.1 High Throughput 3

扫码可进资料分享群

In the above implementation, the value of X is passed to both pipeline stages

where independent resources compute the corresponding multiply operation. Note

that while X is being used to calculate the final power of 3 in the second pipeline

stage, the next value of X can be sent to the first pipeline stage as shown in

Figure 1.2.

Both the final calculation of X3 (XPower3 resources) and the first calculation

of the next value of X (XPower2 resources) occur simultaneously. The perform-

ance of this design is

Throughput ¼ 8/1, or 8 bits/clock

Latency ¼ 3 clocks

Timing ¼ One multiplier delay in the critical path

The throughput performance increased by a factor of 3 over the iterative

implementation. In general, if an algorithm requiring n iterative loops is

“unrolled,” the pipelined implementation will exhibit a throughput performance

increase of a factor of n. There was no penalty in terms of latency as the pipelined

implementation still required 3 clocks to propagate the final computation. Like-

wise, there was no timing penalty as the critical path still contained only one

multiplier.

Unrolling an iterative loop increases throughput.

The penalty to pay for unrolling loops such as this is an increase in area. The

iterative implementation required a single register and multiplier (along with some

control logic not shown in the diagram), whereas the pipelined implementation

required a separate register for both X and XPower and a separate multiplier for

every pipeline stage. Optimizations for area are discussed in the Chapter 2.

The penalty for unrolling an iterative loop is a proportional increase in area.

1.2 LOW LATENCY

A low-latency design is one that passes the data from the input to the output as

quickly as possible by minimizing the intermediate processing delays. Oftentimes,

a low-latency design will require parallelisms, removal of pipelining, and logical

short cuts that may reduce the throughput or the max clock speed in a design.

Figure 1.2 Pipelined implementation.

4 Chapter 1 Architecting Speed

扫码可进资料分享群

Referring back to our power-of-3 example, there is no obvious latency optim-

ization to be made to the iterative implementation as each successive multiply

operation must be registered for the next operation. The pipelined implemen-

tation, however, has a clear path to reducing latency. Note that at each pipeline

stage, the product of each multiply must wait until the next clock edge before it is

propagated to the next stage. By removing the pipeline registers, we can minimize

the input to output timing:

module power3(
output [7:0] XPower,
input [7:0] X
);
reg [7:0] XPower1, XPower2;
reg [7:0] X1, X2;

assign XPower = XPower2 * X2;

always @* begin
X1 = X;
XPower1 = X;

end

always @* begin
X2 = X1;
XPower2 = XPower1*X1;

end
endmodule

In the above example, the registers were stripped out of the pipeline. Each stage

is a combinatorial expression of the previous as shown in Figure 1.3.

The performance of this design is

Throughput ¼ 8 bits/clock (assuming one new input per clock)

Latency ¼ Between one and two multiplier delays, 0 clocks

Timing ¼ Two multiplier delays in the critical path

By removing the pipeline registers, we have reduced the latency of this design

below a single clock cycle.

Latency can be reduced by removing pipeline registers.

The penalty is clearly in the timing. Previous implementations could theoreti-

cally run the system clock period close to the delay of a single multiplier, but in the

Figure 1.3 Low-latency implementation.

1.2 Low Latency 5

扫码可进资料分享群

low-latency implementation, the clock period must be at least two multiplier delays

(depending on the implementation) plus any external logic in the critical path.

The penalty for removing pipeline registers is an increase in combinatorial delay

between registers.

1.3 TIMING

Timing refers to the clock speed of a design. The maximum delay between any

two sequential elements in a design will determine the max clock speed. The idea

of clock speed exists on a lower level of abstraction than the speed/area trade-offs
discussed elsewhere in this chapter as clock speed in general is not directly

related to these topologies, although trade-offs within these architectures will cer-

tainly have an impact on timing. For example, one cannot know whether a pipe-

lined topology will run faster than an iterative without knowing the details of the

implementation. The maximum speed, or maximum frequency, can be defined

according to the straightforward and well-known maximum-frequency equation

(ignoring clock-to-clock jitter):

Equation 1.1 Maximum Frequency

Fmax ¼
1

Tclk�q þ Tlog ic þ Trouting þ Tsetup � Tskew

(1:1)

where Fmax is maximum allowable frequency for clock; Tclk-q is time from clock

arrival until data arrives at Q; Tlogic is propagation delay through logic between

flip-flops; Trouting is routing delay between flip-flops; Tsetup is minimum time data

must arrive at D before the next rising edge of clock (setup time); and Tskew is

propagation delay of clock between the launch flip-flop and the capture flip-flop.

The next sections describes various methods and trade-offs required to

improve timing performance.

1.3.1 Add Register Layers

The first strategy for architectural timing improvements is to add intermediate

layers of registers to the critical path. This technique should be used in highly

pipelined designs where an additional clock cycle latency does not violate the

design specifications, and the overall functionality will not be affected by the

further addition of registers.

For instance, assume the architecture for the following FIR (Finite Impulse

Response) implementation does not meet timing:

module fir(
output [7:0] Y,
input [7:0] A, B, C, X,
input clk,

6 Chapter 1 Architecting Speed

扫码可进资料分享群

input validsample);
reg [7:0] X1, X2, Y;

always @(posedge clk)
if(validsample) begin

X1 <= X;
X2 <= X1;
Y <= A* X+B* X1+C* X2;

end
endmodule

Architecturally, all multiply/add operations occur in one clock cycle as

shown in Figure 1.4.

In other words, the critical path of one multiplier and one adder is greater

than the minimum clock period requirement. Assuming the latency requirement is

not fixed at 1 clock, we can further pipeline this design by adding extra registers

intermediate to the multipliers. The first layer is easy: just add a pipeline layer

between the multipliers and the adder:

module fir(
output [7:0] Y,
input [7:0] A, B, C, X,
input clk,
input validsample);
reg [7:0] X1, X2, Y;
reg [7:0] prod1, prod2, prod3;

always @ (posedge clk) begin
if(validsample) begin

X1 <= X;
X2 <= X1;
prod1 <= A * X;
prod2 <= B * X1;
prod3 <= C * X2;

end

Y <= prod1 + prod2 + prod3;
end

endmodule

Figure 1.4 MAC with long path.

1.3 Timing 7

扫码可进资料分享群

In the above example, the adder was separated from the multipliers with a pipe-

line stage as shown in Figure 1.5.

Multipliers are good candidates for pipelining because the calculations can

easily be broken up into stages. Additional pipelining is possible by breaking the

multipliers and adders up into stages that can be individually registered.

Adding register layers improves timing by dividing the critical path into two paths

of smaller delay.

Various implementations of these functions are covered in other chapters, but

once the architecture has been broken up into stages, additional pipelining is as

straightforward as the above example.

1.3.2 Parallel Structures

The second strategy for architectural timing improvements is to reorganize the

critical path such that logic structures are implemented in parallel. This technique

should be used whenever a function that currently evaluates through a serial

string of logic can be broken up and evaluated in parallel. For instance, assume

that the standard pipelined power-of-3 design discussed in previous sections does

not meet timing. To create parallel structures, we can break the multipliers into

independent operations and then recombine them. For instance, an 8-bit binary

multiplier can be represented by nibbles A and B:

X ¼ {A, B};

where A is the most significant nibble and B is the least significant:
Because the multiplicand is equal to the multiplier in our power-of-3

example, the multiply operation can be reorganized as follows:

X � X ¼ {A, B} � {A, B} ¼ {(A � A), (2 � A � B), (B � B)};

This reduces our problem to a series of 4-bit multiplications and then recombining

the products. This can be implemented with the following module:

module power3(
output [7:0] XPower,

Figure 1.5 Pipeline registers added.

8 Chapter 1 Architecting Speed

扫码可进资料分享群

input [7:0] X,
input clk);
reg [7:0] XPower1;
// partial product registers
reg [3:0] XPower2_ppAA, XPower2_ppAB, XPower2_ppBB;
reg [3:0] XPower3_ppAA, XPower3_ppAB, XPower3_ppBB;
reg [7:0] X1, X2;
wire [7:0] XPower2;

// nibbles for partial products (A is MS nibble, B is LS
nibble)

wire [3:0] XPower1_A = XPower1[7:4];
wire [3:0] XPower1_B = XPower1[3:0];
wire [3:0] X1_A = X1[7:4];
wire [3:0] X1_B = X1[3:0];
wire [3:0] XPower2_A = XPower2[7:4];
wire [3:0] XPower2_B = XPower2[3:0];
wire [3:0] X2_A = X2[7:4];
wire [3:0] X2_B = X2[3:0];

// assemble partial products
assign XPower2 = (XPower2_ppAA << 8)+

(2*XPower2_ppAB << 4)+
XPower2_ppBB;

assign XPower = (XPower3_ppAA << 8)+
(2*XPower3_ppAB << 4)+
XPower3_ppBB;

always @(posedge clk) begin

// Pipeline stage 1
X1 <= X;
XPower1 <= X;

// Pipeline stage 2
X2 <= X1;
// create partial products
XPower2_ppAA <= XPower1_A * X1_A;
XPower2_ppAB <= XPower1_A * X1_B;
XPower2_ppBB <= XPower1_B * X1_B;

// Pipeline stage 3
// create partial products
XPower3_ppAA <= XPower2_A * X2_A;
XPower3_ppAB <= XPower2_A * X2_B;
XPower3_ppBB <= XPower2_B * X2_B;

end
endmodule

This design does not take into consideration any overflow issues, but it serves to

illustrate the point. The multiplier was broken down into smaller functions that

could be operated on independently as shown in Figure 1.6.

1.3 Timing 9

扫码可进资料分享群

By breaking the multiply operation down into smaller operations that can

execute in parallel, the maximum delay is reduced to the longest delay through

any of the substructures.

Separating a logic function into a number of smaller functions that can be

evaluated in parallel reduces the path delay to the longest of the substuctures.

1.3.3 Flatten Logic Structures

The third strategy for architectural timing improvements is to flatten logic structures.

This is closely related to the idea of parallel structures defined in the previous section

but applies specifically to logic that is chained due to priority encoding. Typically,

synthesis and layout tools are smart enough to duplicate logic to reduce fanout, but

they are not smart enough to break up logic structures that are coded in a serial

fashion, nor do they have enough information relating to the priority requirements of

the design. For instance, consider the following control signals coming from an

address decode that are used to write four registers:

module regwrite(
output reg [3:0] rout,
input clk, in,
input [3:0] ctrl);

always @(posedge clk)
if(ctrl[0]) rout[0] <= in;
else if(ctrl[1]) rout[1] <= in;
else if(ctrl[2]) rout[2] <= in;
else if(ctrl[3]) rout[3] <= in;

endmodule

In the above example, each of the control signals are coded with a priority rela-

tive to the other control signals. This type of priority encoding is implemented as

shown in Figure 1.7.

Figure 1.6 Multiplier with separated stages.

10 Chapter 1 Architecting Speed

扫码可进资料分享群

If the control lines are strobes from an address decoder in another module,

then each strobe is mutually exclusive to the others as they all represent a unique

address. However, here we have coded this as if it were a priority decision. Due

to the nature of the control signals, the above code will operate exactly as if it

were coded in a parallel fashion, but it is unlikely the synthesis tool will be smart

enough to recognize that, particularly if the address decode takes place behind

another layer of registers.

To remove the priority and thereby flatten the logic, we can code this module

as shown below:

module regwrite(
output reg [3:0] rout,
input clk, in,
input [3:0] ctrl);

always @(posedge clk) begin
if(ctrl[0]) rout[0] <= in;
if(ctrl[1]) rout[1] <= in;
if(ctrl[2]) rout[2] <= in;
if(ctrl[3]) rout[3] <= in;

end
endmodule

As can be seen in the gate-level implementation, no priority logic is used as

shown in Figure 1.8. Each of the control signals acts independently and controls

its corresponding rout bits independently.

By removing priority encodings where they are not needed, the logic structure is

flattened and the path delay is reduced.

Figure 1.7 Priority encoding.

1.3 Timing 11

扫码可进资料分享群

1.3.4 Register Balancing

The fourth strategy is called register balancing. Conceptually, the idea is to redis-

tribute logic evenly between registers to minimize the worst-case delay between

any two registers. This technique should be used whenever logic is highly imbal-

anced between the critical path and an adjacent path. Because the clock speed is

limited by only the worst-case path, it may only take one small change to success-

fully rebalance the critical logic.

Many synthesis tools also have an optimization called register balancing. This

feature will essentially recognize specific structures and reposition registers around

logic in a predetermined fashion. This can be useful for common structures such

as large multipliers but is limited and will not change your logic nor recognize

custom functionality. Depending on the technology, it may require more expensive

synthesis tools to implement. Thus, it is very important to understand this concept

and have the ability to redistribute logic in custom logic structures.

Figure 1.8 No priority encoding.

12 Chapter 1 Architecting Speed

扫码可进资料分享群

Note the following code for an adder that adds three 8-bit inputs:

module adder(
output reg [7:0] Sum,
input [7:0] A, B, C,
input clk);
reg [7:0] rA, rB, rC;

always @(posedge clk) begin
rA <= A;
rB <= B;
rC <= C;
Sum <= rA + rB + rC;

end
endmodule

The first register stage consists of rA, rB, and rC, and the second stage consists of

Sum. The logic between stages 1 and 2 is the adder for all inputs, whereas

the logic between the input and the first register stage contains no logic (assume

the outputs feeding this module are registered) as shown in Figure 1.9.

If the critical path is defined through the adder, some of the logic in the criti-

cal path can be moved back a stage, thereby balancing the logic load between the

two register stages. Consider the following modification where one of the add

operations is moved back a stage:

module adder(
output reg [7:0] Sum,
input [7:0] A, B, C,
input clk);
reg [7:0] rABSum, rC;

Figure 1.9 Registered adder.

1.3 Timing 13

扫码可进资料分享群

always @(posedge clk) begin
rABSum <= A + B;
rC <= C;
Sum <= rABSum + rC;

end
endmodule

We have now moved one of the add operations back one stage between the input

and the first register stage. This balances the logic between the pipeline stages

and reduces the critical path as shown in Figure 1.10.

Register balancing improves timing by moving combinatorial logic from the

critical path to an adjacent path.

1.3.5 Reorder Paths

The fifth strategy is to reorder the paths in the data flow to minimize the critical

path. This technique should be used whenever multiple paths combine with the

critical path, and the combined path can be reordered such that the critical path

can be moved closer to the destination register. With this strategy, we will only

be concerned with the logic paths between any given set of registers. Consider the

following module:

module randomlogic(
output reg [7:0] Out,
input [7:0] A, B, C,
input clk,
input Cond1, Cond2);

always @(posedge clk)
if(Cond1)
Out <= A;

else if(Cond2 && (C < 8))
Out <= B;

else
Out <= C;

endmodule

Figure 1.10 Registers balanced.

14 Chapter 1 Architecting Speed

扫码可进资料分享群

In this case, let us assume the critical path is between C and Out and consists of a

comparator in series with two gates before reaching the decision mux. This is

shown in Figure 1.11. Assuming the conditions are not mutually exclusive, we

can modify the code to reorder the long delay of the comparitor:

module randomlogic(
output reg [7:0] Out,
input [7:0] A, B, C,
input clk,
input Cond1, Cond2);
wire CondB = (Cond2 & !Cond1);

always @(posedge clk)
if(CondB && (C < 8))

Out <= B;
else if(Cond1)

Out <= A;
else

Out <= C;

endmodule

By reorganizing the code, we have moved one of the gates out of the critical path

in series with the comparator as shown in Figure 1.12. Thus, by paying careful

Figure 1.11 Long critical path.

Figure 1.12 Logic reordered to reduce critical path.

1.3 Timing 15

扫码可进资料分享群

attention to exactly how a particular function is coded, we can have a direct

impact on timing performance.

Timing can be improved by reordering paths that are combined with the critical

path in such a way that some of the critical path logic is placed closer to the des-

tination register.

1.4 SUMMARY OF KEY POINTS

. A high-throughput architecture is one that maximizes the number of bits

per second that can be processed by a design.

. Unrolling an iterative loop increases throughput.

. The penalty for unrolling an iterative loop is a proportional increase in

area.

. A low-latency architecture is one that minimizes the delay from the input

of a module to the output.

. Latency can be reduced by removing pipeline registers.

. The penalty for removing pipeline registers is an increase in combinatorial

delay between registers.

. Timing refers to the clock speed of a design. A design meets timing when

the maximum delay between any two sequential elements is smaller than

the minimum clock period.

. Adding register layers improves timing by dividing the critical path into

two paths of smaller delay.

. Separating a logic function into a number of smaller functions that can be

evaluated in parallel reduces the path delay to the longest of the

substructures.

. By removing priority encodings where they are not needed, the logic struc-

ture is flattened, and the path delay is reduced.

. Register balancing improves timing by moving combinatorial logic from

the critical path to an adjacent path.

. Timing can be improved by reordering paths that are combined with the

critical path in such a way that some of the critical path logic is placed

closer to the destination register.

16 Chapter 1 Architecting Speed

扫码可进资料分享群

Chapter 2

Architecting Area

This chapter discusses the second of three primary physical characteristics of

a digital design: area. Here we also discuss methods for architectural area

optimization in an FPGA.

We will discuss area reduction based on choosing the correct topology.

Topology refers to the higher-level organization of the design and is not device

specific. Circuit-level reduction as performed by the synthesis and layout tools

refers to the minimization of the number of gates in a subset of the design and

may be device specific.

A topology that targets area is one that reuses the logic resources to the

greatest extent possible, often at the expense of throughput (speed). Very often

this requires a recursive data flow, where the output of one stage is fed back to

the input for similar processing. This can be a simple loop that flows naturally

with the algorithm or it may be that the logic reuse is complex and requires

special controls. This section describes both techniques and describes the necess-

ary consequences in terms of performance penalties.

During the course of this chapter, we will discuss the following topics in

detail:

. Rolling up the pipeline to reuse logic resources in different stages of a

computation.

. Controls to manage the reuse of logic when a natural flow does not exist.

. Sharing logic resources between different functional operations.

. The impact of reset on area optimization.
Impact of FPGA resources that lack reset capability.

Impact of FPGA resources that lack set capability.

Impact of FPGA resources that lack asynchronous reset capability.

Impact of RAM reset.

Optimization using set/reset pins for logic implementation.

17

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

2.1 ROLLING UP THE PIPELINE

The method of “rolling up the pipeline” is the opposite operation to that described

in the previous chapter to improve throughput by “unrolling the loop” to achieve

maximum performance. When we unrolled the loop to create a pipeline, we also

increased the area by requiring more resources to hold intermediate values and

replicating computational structures that needed to run in parallel. Conversely,

when we want to minimize the area of a design, we must perform these operations

in reverse; that is, roll up the pipeline so that logic resources can be reused.

Thus, this method should be used when optimizing highly pipelined designs with

duplicate logic in the pipeline stages.

Rolling up the pipeline can optimize the area of pipelined designs with duplicated

logic in the pipeline stages.

Consider the example of a fixed-point fractional multiplier. In this example,

A is represented in normal integer format with the fixed point just to the right

of the LSB, whereas the input B has a fixed point just to the left of the MSB.

In other words, B scales A from 0 to 1.

module mult8(
output [7:0] product,
input [7:0] A,
input [7:0] B,
input clk);
reg [15:0] prod16;

assign product = prod16[15:8];

always @(posedge clk)
prod16 <= A * B;

endmodule

With this implementation, a new product is generated on every clock. There isn’t an

obvious pipeline in this design as far as distinct sets of registers, but note that the mul-

tiplier itself is a fairly long chain of logic that is easily pipelined by adding intermedi-

ate register layers. It is this multiplier that we wish to “roll up.” We will roll this up

by performing the multiply with a series of shift and add operations as follows:

module mult8(
output done,
output reg [7:0] product,
input [7:0] A,
input [7:0] B,
input clk,
input start);
reg [4:0] multcounter; // counter for number of

shift/adds

18 Chapter 2 Architecting Area

扫码可进资料分享群

reg [7:0] shiftB; // shift register for B
reg [7:0] shiftA; // shift register for A

wire adden; // enable addition

assign adden = shiftB[7] & !done;
assign done = multcounter[3];

always @(posedge clk) begin
// increment multiply counter for shift/add ops
if(start) multcounter <= 0;
else if(!done) multcounter <= multcounter + 1;

// shift register for B
if(start) shiftB <= B;
else shiftB[7:0] <= {shiftB[6:0], 1’b0};

// shift register for A
if(start) shiftA <= A;
else shiftA[7:0] <= {shiftA[7], shiftA[7:1]};

// calculate multiplication
if(start) product <= 0;
else if(adden) product <= product + shiftA;

end
endmodule

The multiplier is thus architected with an accumulator that adds a shifted

version of A depending on the bits of B as shown in Figure 2.1. Thus, we comple-

tely eliminate the logic tree necessary to generate a multiply within a single clock

and replace it with a few shift registers and an adder. This is a very compact form

of a multiplier but will now require 8 clocks to complete a multiplication. Also

note that no special controls were necessary to sequence through this multiply

operation. We simply relied on a counter to tell us when to stop the shift and add

operations. The next section describes situations where this control is not so

trivial.

Figure 2.1 Shift/add multiplier.

2.1 Rolling Up the Pipeline 19

扫码可进资料分享群

2.2 CONTROL-BASED LOGIC REUSE

Sharing logic resources oftentimes requires special control circuitry to determine

which elements are input to the particular structure. In the previous section, we

described a multiplier that simply shifted the bits of each register, where each reg-

ister was always dedicated to a particular input of the running adder. This had a

natural data flow that lent itself well to logic reuse. In other applications, there

are often more complex variations to the input of a resource, and certain controls

may be necessary to reuse the logic.

Controls can be used to direct the reuse of logic when the shared logic is larger

than the control logic.

To determine this variation, a state machine may be required as an additional

input to the logic.

Consider the following example of a low-pass FIR filter represented by the

equation:

Y ¼ coeffA �X½0� þ coeffB �X½1� þ coeffC �X½2�

module lowpassfir(
output reg [7:0] filtout,
output reg done,
input clk,
input [7:0] datain, // X[0]
input datavalid, // X[0] is valid
input [7:0] coeffA, coeffB; coeffC); // coeffs for

low pass
filter

// define input/output samples
reg [7:0] X0, X1, X2;
reg multdonedelay;
reg multstart; // signal to multiplier to

begin computation
reg [7:0] multdat;
reg [7:0] multcoeff; // the registers that are

multiplied together
reg [2:0] state; // holds state for sequencing

through mults
reg [7:0] accum; // accumulates multiplier products
reg clearaccum; // sets accum to zero
reg [7:0] accumsum;
wire multdone; // multiplier has completed
wire [7:0] multout; // multiplier product

// shift-add multiplier for sample-coeff mults
mult8 � 8 mult8 � 8(.clk(clk), .dat1(multdat),

.dat2(multcoeff), .start(multstart),

.done(multdone), .multout(multout));

20 Chapter 2 Architecting Area

扫码可进资料分享群

always @(posedge clk) begin
multdonedelay <= multdone;

// accumulates sample-coeff products
accumsum <= accum + multout[7:0];

// clearing and loading accumulator
if(clearaccum) accum <= 0;
else if(multdonedelay) accum <= accumsum;

// do not process state machine if multiply is not done
case(state)

0: begin
// idle state
if(datavalid) begin
// if a new sample has arrived
// shift samples
X0 <= datain;
X1 <= X0;
X2 <= X1;
multdat <= datain; // load mult
multcoeff <= coeffA;
multstart <= 1;
clearaccum <= 1; // clear accum
state <= 1;

end
else begin
multstart <= 0;
clearaccum <= 0;
done <= 0;

end
end
1: begin
if(multdonedelay) begin
// A*X[0] is done, load B*X[1]
multdat <= X1;
multcoeff <= coeffB;
multstart <= 1;
state <= 2;

end
else begin
multstart <= 0;
clearaccum <= 0;
done <= 0;

end
end
2: begin
if(multdonedelay) begin
// B*X[1] is done, load C*X[2]
multdat <= X2;

2.2 Control-Based Logic Reuse 21

扫码可进资料分享群

multcoeff <= coeffC;
multstart <= 1;
state <= 3;

end
else begin
multstart <= 0;
clearaccum <= 0;
done <= 0;

end
end
3: begin
if(multdonedelay) begin
// C*X[2] is done, load output
filtout <= accumsum;
done <= 1;
state <= 0;

end
else begin
multstart <= 0;
clearaccum <= 0;
done <= 0;

end
end
default
state <= 0;

endcase
end

endmodule

In this implementation, only a single multiplier and accumulator are used as can

be seen in Figure 2.2. Additionally, a state machine is used to load coefficients

and registered samples into the multiplier. The state machine operates on every

combination of coefficients and samples: coeffA*X[0], coeffB*X[1],
and coeffC*X[2].

The reason this implementation required a state machine is because there was

no natural flow to the recursive data as there was with the shift and add multiplier

Figure 2.2 FIR with one MAC.

22 Chapter 2 Architecting Area

扫码可进资料分享群

example. In this case, we had arbitrary registers that represented the inputs

required to create a set of products. The most efficient way to sequence through

the set of multiplier inputs was with a state machine.

2.3 RESOURCE SHARING

When we use the term resource sharing, we are not referring to the low-level

optimizations performed by FPGA place and route tools (this is discussed in later

chapters). Instead, we are referring to higher-level architectural resource sharing

where different resources are shared across different functional boundaries. This

type of resource sharing should be used whenever there are functional blocks that

can be used in other areas of the design or even in different modules.

A simple example of resource sharing is with system counters. Many designs

use multiple counters for timers, sequencers, state machines, and so forth. Often-

times, these counters can be pulled to a higher level in the hierarchy and distribu-

ted to multiple functional units. For instance, consider modules A and B. Each of

these modules uses counters for a different reason. Module A uses the counter to

Figure 2.3 Separated counters.

2.3 Resource Sharing 23

扫码可进资料分享群

flag an operation every 256 clocks (at 100 MHz, this would correspond with a

trigger every 2.56 ms). Module B uses a counter to generate a PWM (Pulse Width

Modulated) pulse of varying duty cycle with a fixed frequency of 5.5 kHz (with a

100-MHz system clock, this would correspond with a period of hex 700 clocks).

Each module in Figure 2.3 performs a completely independent operation. The

counters in each module also have completely different characteristics. In module

A, the counter is 8 bits, free running, and rolls over automatically. In module B,

the counter is 11 bits and resets at a predefined value (1666). Nonetheless, these

counters can easily be merged into a global timer and used independently by

modules A and B as shown in Figure 2.4.

Here we were able to create a global 11-bit counter that satisfied the require-

ment of both module A and module B.

For compact designs where area is the primary requirement, search for resources

that have similar counterparts in other modules that can be brought to a global

point in the hierarchy and shared between multiple functional areas.

Figure 2.4 Shared counter.

24 Chapter 2 Architecting Area

扫码可进资料分享群

2.4 IMPACT OF RESET ON AREA

A common misconception is that the reset structures are always implemented in a

purely global sense and have little effect on design size. The fact is that there are a

number of considerations to take into account relative to area when designing a reset

structure and a corresponding number of penalties to pay for a suboptimal design.

The first effect on area has to do with the insistence on defining a global

set/reset condition for every flip-flop. Although this may seem like good design

practice, it can often lead to a larger and slower design. The reason for this is

because certain functions can be optimized according to the fine-grain architecture

of the FPGA, but bringing a reset into every synchronous element can cause the

synthesis and mapping tools to push the logic into a coarser implementation.

An improper reset strategy can create an unnecessarily large design and inhibit

certain area optimizations.

The next sections describe a number of different scenarios where the reset

can play a significant role in the speed/area characteristics and how to optimize

accordingly.

2.4.1 Resources Without Reset

This section describes the impact that a global reset will have on FPGA resources that

do not have reset available. Consider the following example of a simple shift register:

IMPLEMENTATION 1 : Synchronous Reset

always @(posedge iClk)
if(!iReset) sr <= 0;
else sr <= {sr[14:0], iDat};

IMPLEMENTATION 2 : No Reset

always @(posedge iClk)
sr <= {sr[14:0], iDat};

The differences between the above two implementations may seem trivial. In one

case, the flip-flops have resets defined to be logic-0, whereas in the other

implementation, the flip-flops do not have a defined reset state. The key here is

that if we wish to take advantage of built-in shift-register resources available in

the FPGA, we will need to code it such that there is a direct mapping. If we were

targeting a Xilinx device, the synthesis tool would recognize that the shift-register

SRL16 could be used to implement the shift register as shown in Figure 2.5.

Note that no resets are defined for the SRL16 device. If resets are defined in

our design, then the SRL16 unit could not be used as there are no reset control

2.4 Impact of Reset on Area 25

扫码可进资料分享群

signals to the resource. The shift register would be implemented as discrete flip-

flops as shown in Figure 2.6. The difference is drastic as summarized in

Table 2.1.

An optimized FPGA resource will not be used if an incompatible reset is

assigned to it. The function will be implemented with generic elements and will

occupy more area.

By removing the reset signals, we were able to reduce 9 slices and 16 slice

flip-flops to a single slice and single slice flip-flop. This corresponds with an opti-

mally compact and high-speed shift-register implementation.

2.4.2 Resources Without Set

Similar to the problem raised in the previous section, some internal resources lack

any type of set capability. An example is that of an 8�8 multiplier:

module mult8(
output reg [15:0] oDat,
input iReset, iClk,
input [7:0] iDat1, iDat2,
);

Figure 2.5 Shift register implemented with SRL16 element.

Figure 2.6 Shift register implemented with flip-flops.

Table 2.1 Resource Utilization for Shift Register

Implementations

Implementation Slices slice Flip-flops

Resets defined 9 16

No resets defined 1 1

26 Chapter 2 Architecting Area

扫码可进资料分享群

always @(posedge iClk)
if(!iReset) oDat <= 16’hffff;
else oDat <= iDat1 * iDat2;

endmodule

Again, the only variation to the above code will be the reset condition. Unlike the

shift-register example, the multiplier resources in most FPGAs have built-in reset

resources. They do not, however, typically have set resources. If the set function-

ality as described above (16’hffff instead of simply 0) is required, the circuit illus-

trated in Figure 2.7 will be implemented.

Here an additional gate for each output is required to set the output when the

reset is active. The reset on the multiplier, in this case, will go unused. The

resource usage between the set and reset implementations is shown in Table 2.2.

By changing the multiplier set to a reset operation, we are able to reduce 9

slices and 16 slice flip-flops to a single slice and single slice flip-flop. This corre-

sponds with an optimally compact and high-speed multiplier implementation.

2.4.3 Resources Without Asynchronous Reset

Many new high-performance FPGAs provide built-in multifunction modules that

have general applicability to a wide range of applications. Typically, these

resources have some sort of reset functionality but are constrained relative to the

type of reset topology. Here we will look at Xilinx-specific multiply–accumulate

modules for DSP (Digital Signal Processing) applications. The internal structure

of a built-in DSP is typically not flexible to varying reset strategies.

DSPs and other multifunction resources are typically not flexible to varying reset

strategies.

Figure 2.7 Set implemented with external logic.

Table 2.2 Resource Utilization for Set and Reset

Implementations

Implementation Slices slice Flip-flops LUTs Mult16

Reset 9 16 1 1

Set 1 1 1 1

2.4 Impact of Reset on Area 27

扫码可进资料分享群

Consider the following code for a multiply and accumulate operation:

module dspckt(
output reg [15:0] oDat,
input iReset, iClk,
input [7:0] iDat1, iDat2);
reg [15:0] multfactor;

always @(posedge iClk or negedge iReset)
if(!iReset) begin
multfactor <= 0;
oDat <= 0;

end
else begin
multfactor <= (iDat1 * iDat2);
oDat <= multfactor + oDat;

end

endmodule

The above code defines a multiply–accumulate function with asynchronous

resets. The DSP structures inside a Xilinx Virtex-4 device, for example, have

only synchronous reset capabilities as shown in Figure 2.8.

The reset signal here is fed directly into the reset pin of the MAC core. To

implement an asynchronous reset as shown in the above code example, on the

other hand, the synthesis tool must create additional logic outside of the DSP core.

Figure 2.8 Xilinx DSP block with synchronous reset.

28 Chapter 2 Architecting Area

扫码可进资料分享群

Comparing this to a similar structure using synchronous resets, we are able to

obtain the results shown in Table 2.3.

When the synchronous reset was used, the synthesis tool was able to use the

DSP core available in the FPGA device. By using a different reset than what was

available on this device, however, a significant amount of logic was created

around it to implement the asynchronous reset.

2.4.4 Resetting RAM

There are reset resources in many built-in RAM (Random Access Memory)

resources for FPGAs, but similar to the DSP resource described in the previous

sections, often only synchronous resets are available. Attempting to implement an

asynchronous reset on a RAM module can be catastrophic to area optimization

because there are not smaller elements that can be optimally used to construct a

RAM (like a multiplier and an adder can be stitched together to form a MAC

module) other than smaller RAM resources, nor can the synthesis tool easily add

a few gates to the output to emulate this functionality.

Resetting RAM is usually poor design practice, particularly if the reset is

asynchronous.

Consider the following code:

module resetckt(
output reg [15:0] oDat,
input iReset, iClk, iWrEn,
input [7:0] iAddr, oAddr,
input [15:0] iDat);
reg [15:0] memdat [0:255];

always @(posedge iClk or negedge iReset)
if(!iReset)
oDat <= 0;

else begin
if(iWrEn)

memdat[iAddr] <= iDat;

oDat <= memdat[oAddr];
end

endmodule

Table 2.3 Resource Utilization for Synchronous and

Asynchronous Resets

Architecture Slices Flip-flops LUTs DSPs

Async Reset 17 32 16 1

Sync Reset 0 0 0 1

2.4 Impact of Reset on Area 29

扫码可进资料分享群

Again, the only variation we will consider in the above code is the type of reset:

synchronous versus asynchronous. In Xilinx Virtex-4 devices, for example,

BRAM (Block RAM) elements have synchronous resets only. Therefore, with a

synchronous reset, the synthesis tool will be able to implement this code with a

single BRAM element as shown in Figure 2.9.

However, if we attempt to implement the same RAM with an asynchronous

reset as shown in the code example above, the synthesis tool will be forced to

create a RAM module with smaller distributed RAM blocks, additional decode

logic to create the appropriate-size RAM, and additional logic to implement the

asynchronous reset as partially shown in Figure 2.10. The final implementation

differences are staggering as shown in Table 2.4.

Improperly resetting a RAM can have a catastrophic impact on the area.

Figure 2.9 Xilinx BRAM with synchronous reset.

Figure 2.10 Xilinx BRAM with asynchronous reset logic.

Table 2.4 Resource Utilization for BRAM with Synchronous and

Asynchronous Resets

Implementation Slices slice Flip-flops 4 Input LUTs BRAMs

Asynchronous reset 3415 4112 2388 0

Synchronous reset 0 0 0 1

30 Chapter 2 Architecting Area

扫码可进资料分享群

2.4.5 Utilizing Set/Reset Flip-Flop Pins

Most FPGA vendors have a variety of flip-flop elements available in any given device,

and given a particular logic function, the synthesis tool can often use the set and reset

pins to implement aspects of the logic and reduce the burden on the look-up tables.

For instance, consider Figure 2.11. In this case, the synthesis tool may choose to

implement the logic using the set pin on a flip-flop as shown in Figure 2.12. This

eliminates gates and increases the speed of the data path. Likewise, consider a logic

function of the form illustrated in Figure 2.13. The AND gate can be eliminated by

running the input signal to the reset pin of the flip-flop as shown in Figure 2.14.

The primary reason synthesis tools are prevented from performing this class

of optimizations is related to the reset strategy. Any constraints on the reset will

not only use available set/reset pins but will also limit the number of library

elements to choose from.

Using set and reset can prevent certain combinatorial logic optimizations.

For instance, consider the following implementation in a Xilinx Spartan-3

device:

module setreset(
output reg oDat,
input iReset, iClk,
input iDat1, iDat2);

always @(posedge iClk or negedge iReset)
if(!iReset)
oDat <= 0;

else
oDat <= iDat1 | iDat2;

endmodule

Figure 2.11 Simple synchronous logic with OR gate.

Figure 2.12 OR gate implemented with set pin.

2.4 Impact of Reset on Area 31

扫码可进资料分享群

In the code example above, an external reset signal is used to reset the state of

the flip-flop. This is represented in Figure 2.15.

As can be seen in Figure 2.15, a resetable flip-flop was used for the asynchro-

nous reset capability, and the logic function (OR gate) was implemented in dis-

crete logic. As an alternative, if we remove the reset but implement the same

logic function, our design will be optimized as shown in Figure 2.16.

In this implementation, the synthesis tool was able to use the FDS element

(flip-flop with a synchronous set and reset) and use the set pin for the OR oper-

ation. Thus, by allowing the synthesis tool to choose a flip-flop with a synchro-

nous set, we are able to implement this function with zero logic elements.

Figure 2.14 AND gate implemented with CLR pin.

Figure 2.13 Simple synchronous logic with AND gate.

Figure 2.15 Simple asynchronous reset.

32 Chapter 2 Architecting Area

扫码可进资料分享群

We can take this one step further by using both synchronous set and reset

signals. If we have a logic equation to evaluate in the form of

oDat ,¼ !iDat3 & (iDat1 j iDat2)

we can code this in such a way that both the synchronous set and reset resources

are used:

module setreset (
output reg oDat,
input iClk,
input iDat1, iDat2, iDat3);

always @(posedge iClk)
if(iDat3)
oDat <= 0;
else if(iDat1)
oDat <= 1;

else
oDat <= iDat2;

endmodule

Here, the iDat3 input takes priority similar to the reset pin on the associated

flip-flops. Thus, this logic function can be implemented as shown in

Figure 2.17.

In this circuit, we have three logical operations (invert, AND, and OR) all

implemented with a single flip-flop and zero LUTs. Because these optimizations

Figure 2.16 Optimization without reset.

2.4 Impact of Reset on Area 33

扫码可进资料分享群

are not always known at the time the design is architected, avoid using set or

reset whenever possible when area is the key consideration.

Avoid using set or reset whenever possible when area is the key consideration.

2.5 SUMMARY OF KEY POINTS

. Rolling up the pipeline can optimize the area of pipelined designs with

duplicated logic in the pipeline stages.

. Controls can be used to direct the reuse of logic when the shared logic is

larger than the control logic.

. For compact designs where area is the primary requirement, search for

resources that have similar counterparts in other modules that can be

brought to a global point in the hierarchy and shared between multiple

functional areas.

. An improper reset strategy can create an unnecessarily large design and

inhibit certain area optimizations.

. An optimized FPGA resource will not be used if an incompatible reset is

assigned to it. The function will be implemented with generic elements and

will occupy more area.

Figure 2.17 Optimization using both set and reset pins.

34 Chapter 2 Architecting Area

扫码可进资料分享群

. DSPs and other multifunction resources are typically not flexible to varying

reset strategies.

. Improperly resetting a RAM can have a catastrophic impact on the area.

. Using set and reset can prevent certain combinatorial logic optimizations.

. Avoid using set or reset whenever possible when area is the key

consideration.

2.5 Summary of Key Points 35

扫码可进资料分享群

扫码可进资料分享群

Chapter 3

Architecting Power

This chapter discusses the third of three primary physical characteristics of a

digital design: power. Here we also discuss methods for architectural power

optimization in an FPGA.

Relative to ASICs (application specific integrated circuits) with comparable func-

tionality, FPGAs are power-hungry beasts and are typically not well suited for

ultralow-power design techniques. A number of FPGA vendors do offer low-

power CPLDs (complex programmable logic devices), but these are very limited

in size and capability and thus will not always fit an application that requires any

respectable amount of computing power. This section will discuss techniques to

maximize the power efficiency of both low-power CPLDs as well as general

FPGA design.

In CMOS technology, dynamic power consumption is related to charging and

discharging parasitic capacitances on gates and metal traces. The general equation

for current dissipation in a capacitor is

I ¼ V �C � f

where I is total current, V is voltage, C is capacitance, and f is frequency.

Thus, to reduce the current drawn, we must reduce one of the three key par-

ameters. In FPGA design, the voltage is usually fixed. This leaves the parameters

C and f to manipulate the current. The capacitance C is directly related to the

number of gates that are toggling at any given time and the lengths of the routes

connecting the gates. The frequency f is directly related to the clock frequency.

All of the power-reduction techniques ultimately aim at reducing one of these two

components.

During the course of this chapter, we will discuss the following topics:

. The impact of clock control on dynamic power consumption

. Problems with clock gating

Managing clock skew on gated clocks

. Input control for power minimization

37

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

. Impact of the core voltage supply

. Guidelines for dual-edge triggered flip-flops

. Reducing static power dissipation in terminations

Reducing dynamic power dissipation by minimizing the route lengths of high

toggle rate nets requires a background discussion of placement and routing, and is

therefore discussed in Chapter 15 Floorplanning.

3.1 CLOCK CONTROL

The most effective and widely used technique for lowering the dynamic power

dissipation in synchronous digital circuits is to dynamically disable the clock in

specific regions that do not need to be active at particular stages in the data flow.

Since most of the dynamic power consumption in an FPGA is directly related to

the toggling of the system clock, temporarily stopping the clock in inactive

regions of the design is the most straightforward method of minimizing this type

of power consumption. The recommended way to accomplish this is to use either

the clock enable pin on the flip-flop or to use a global clock mux (in Xilinx

devices this is the BUFGMUX element). If these clock control elements are not

available in a particular technology, designers will sometimes resort to direct

gating of the system clock. Note that this is not recommended for FPGA

designs, and this section describes the issues involved with direct gating of the

system clock.

Clock control resources such as the clock enable flip-flop input or a global clock

mux should be used in place of direct clock gating.

Note that this section assumes the reader is already familiar with general

FPGA clocking guidelines. In general, FPGAs are synchronous devices, and a

number of difficulties arise when multiple domains are introduced through gating

or asynchronous interfaces. For a more in-depth discussion regarding clock

domains, see Chapter 6.

Figure 3.1 illustrates the poor design practice of simple clock gating. With this

clock topology, all flip-flops and corresponding combinatorial logic is active

(toggling) whenever the Main Clock is active. The logic within the dotted box,

however, is only active when Clock Enable ¼ 1. Here, we refer to the Clock

Enable signal as the gating or enable signal. By gating portions of circuitry as

shown above, the designer is attempting to reduce the dynamic power dissipation

proportional to the amount of logic (capacitance C) and the average toggle

frequency of the corresponding gates (frequency f).

Clock gating is a direct means for reducing dynamic power dissipation but

creates difficulties in implementation and timing analysis.

Before we proceed to the implementation details, it is important to note how

important careful clock planning is in FPGA design. The system clock is central

38 Chapter 3 Architecting Power

扫码可进资料分享群

to all synchronous digital circuits. EDA (electronic design automation) tools are

driven by the system clock to optimize and validate synthesis, layout, static

timing analysis, and so forth. Thus, the system clock or clocks are sacred and

must be characterized up front to drive the implementation process. Clocks are

even more sacred in FPGAs than they are in ASICs, and thus there is less flexi-

bility relative to creative clock structures.

When a clock is gated even in the most trivial sense, the new net that drives

the clock pins is considered a new clock domain. This new clock net will require

a low-skew path to all flip-flops in its domain, similar to the system clock from

which it was derived. For the ASIC designer, these low-skew lines can be built in

the custom clock tree, but for the FPGA designer this presents a problem due to

the limited number and fixed layout of the low-skew lines.

A gated clock introduces a new clock domain and will create difficulties for the

FPGA designer.

The following sections address the issues introduced by gated clocks.

3.1.1 Clock Skew

Before directly addressing the issues related to gated clocks, we must first briefly

review the topic of clock skew. The concept of clock skew is a very important

one in sequential logic design.

In Figure 3.2, the propagation delay of the clock signal between the first flip-

flop and the second flip-flop is assumed to be zero. If there is positive delay

through the cloud of combinatorial logic, then timing compliance will be deter-

mined by the clock period relative to the combinatorial delayþ logic routing

Figure 3.1 Simple clock gating: poor design practice.

3.1 Clock Control 39

扫码可进资料分享群

delayþ flip-flop setup time. A signal can only propagate between a single set of

flip-flops for every clock edge. The situation between the second and third flip-

flop stages, however, is different. Because of the delay on the clock line between

the second and third flip-flops, the active clock edge will not occur simultaneously

at both elements. Instead, the active clock edge on the third flip-flop will be

delayed by an amount dC.

If the delay through the logic (defined as dL) is less than the delay on the

clock line (dC), then a situation may occur where a signal that is propagated

through the second flip-flop will arrive at the third stage before the active edge of

the clock. When the active edge of the clock arrives, the same signal could be

propagated through stage 3. Thus, a signal could propagate through both stage 2

and stage 3 on the same clock edge! This scenario will cause a catastrophic

failure of the circuit, and thus clock skew must be taken into account when per-

forming timing analysis. It is also important to note that clock skew is indepen-

dent of clock speed. The “fly-through” issue described above will occur exactly

the same way regardless of the clock frequency.

Mishandling clock skew can cause catastrophic failures in the FPGA.

3.1.2 Managing Skew

Low-skew resources provided on FPGAs ensure that the clock signal will be

matched on all clock inputs as tightly as possible (within picoseconds). Take, for

instance, the scenario where a gate is introduced to the clock network as shown in

Figure 3.3.

The clock line must be removed from the low-skew global resource and

routed to the gating logic, in this case an AND gate. The fundamental problem of

adding skew to the clock line is now the same as it was in the problem described

previously. It is conceivable that the delay through the gate (dG) plus the routing

delays will be greater than the delay through the logic (dL). To handle this poten-

tial problem, the implementation and analysis tools must be given a set of con-

straints such that any timing problems associated with skew through the gating

item are eliminated and then analyzed properly in post-implementation analysis.

Figure 3.2 Clock skew.

40 Chapter 3 Architecting Power

扫码可进资料分享群

As an example, consider the following module that uses clock gating:

// Poor design practice
module clockgating(

output dataout,
input clk, datain,
input clockgate1);
reg ff0, ff1, ff2;
wire clk1;

// clocks are disabled when gate is low
assign clk1 = clk & clockgate1;
assign dataout = ff2;

always @(posedge clk)
ff0 <= datain;

always @(posedge clk)
ff1 <= ff0;

always @(posedge clk1)
ff2 <= ff1;

endmodule

In the above example, there is no logic between the flip-flops on the data path,

but there is logic in the clock path as shown in Figure 3.4.

Figure 3.4 Clock skew as the dominant delay.

Figure 3.3 Clock skew introduced with clock gating: Poor design practice.

3.1 Clock Control 41

扫码可进资料分享群

Different tools handle this situation differently. Some tools such as Synplify

will remove the clock gating by default to create a purely synchronous design.

Other tools ignore skew problems if the clocks remain unconstrained but will add

artificial delays once the clocks have been constrained properly.

Unlike ASIC designs, hold violations in FPGA designs are rare due to the

built-in delays of the logic blocks and routing resources. One thing that can cause a

hold delay, however, is excessive delay on the clock line as shown above. Due to the

fact that the data propagates in less than 1 ns and the clock in almost 2 ns, the data

will arrive almost 1 ns before the clock and lead to a serious timing violation.

Depending on the synthesis tool, this can sometimes be fixed by adding a clock con-

straint. A subsequent analysis may or may not show (depending on the technology)

that artificial routing delay was added to the data path to eliminate the hold violation.

Clock gating can cause hold violations that may or may not be corrected by the

implementation tools.

It is again worth reiterating that most vendors have advanced clock buffer tech-

nology that provide enable capability to certain branches of the clock tree. This

type of control is always recommended above clock gating with logic elements.

3.2 INPUT CONTROL

An often overlooked power-reduction technique is that of input slew rates. CMOS

input buffers can create excessive current draw under conditions where both the

high-side and low-side transistors are conducting at the same time. To conceptual-

ize this, consider a basic first-order model of a CMOS transistor that describes Ids
in terms of Vds as illustrated in Figure 3.5, where the regions are defined by:

Cutoff: Vgs , Vth

Linear (resistive): 0 , Vds , Vgs – Vth

Saturation: 0 , Vgs – Vth , Vds

where Vgs is the gate-to-source voltage, Vth is the device threshold voltage, and

Vds is the drain-to-source voltage.

An ideal switching scheme would be one where the input to a gate switched

from cutoff to the linear region instantaneously, and the complementary logic

switched the opposite direction at the same instant. If one of the two complements

is always in cutoff, there is no current flowing through both sides of the logic gate

at the same time (and thus providing a resistive path between power and ground).

For an inverter, this would mean that the NMOS (N-channel MOSFET) device

would transition from 0 to VDD (positive power rail) taking the NMOS from

cutoff to the linear region instantly, and the PMOS (P-channel MOSFET) would

transition from the linear region to cutoff at the same instant. In the opposite tran-

sition when Vgs transitions from VDD to 0, the NMOS would move from the

linear region to cutoff instantly, and the PMOS would move from the cutoff

region to the linear region at the same instant.

42 Chapter 3 Architecting Power

扫码可进资料分享群

In a real system, however, we must take into consideration the transition

times and the behavior of the transistors during those transitions. For instance,

consider a CMOS inverter that has an input of 0 V and an output of VDD. As

the input transitions from 0 to VDD (a 0 to 1 transition), the NMOS transistor

leaves the cutoff region as soon as the input passes the threshold Vth and enters

into the saturation region. The PMOS device is still in the linear region during

the early part of this transition, and so current begins to flow between VDD

and ground. As the input rises, the output falls. When the drain of the NMOS

falls below a threshold of the gate voltage, the NMOS transitions into the linear

region, and the PMOS transitions to saturation and then to cutoff. To minimize

the power dissipation, it is desirable to minimize the time in the saturation region;

that is, minimize the time during which the gate inputs are transitioning.

To minimize the power dissipation of input devices, minimize the rise and fall

times of the signals that drive the input.

Another important conclusion can be drawn from the above equations. If the

driving signal is not within a threshold voltage of 0 or Vdd in steady state (i.e.,

when the gate is not switching), the transistor previously in cutoff will enter into

the saturation region and begin to dissipate a small amount of current. This can

be a problem in systems where smaller signal swings are used to drive inputs that

are powered by a higher voltage.

In harmony with the principle described above, a floating input may be an

even worse problem than an underdriven input. A floating input is by definition

an underdriven input, but because it is floating there is no way to know how

underdriven it is. It may be that the input has settled at a metastable point where

both transistors are in the saturation region. This would have disastrous impli-

cations relative to power dissipation. Worse yet, this would not be a repeatable

problem. Because most FPGA devices have resistive terminations available for

unused inputs, it is good design practice to define a logic state for these and avoid

the unpredictable effects of floating inputs.

Always terminate unused input buffers. Never let an FPGA input buffer float.

Figure 3.5 Simple I/V curve for a CMOS transistor.

3.2 Input Control 43

扫码可进资料分享群

3.3 REDUCING THE VOLTAGE SUPPLY

Although reducing the supply voltage is usually not a desirable option, it is worth

mentioning due to the dramatic effect it can have on power consumption. Power

dissipation in a simple resistor will drop off with the square of the voltage. Thus,

significant power savings can be achieved by lowering the power supply voltage

of the FPGA near the minimum required voltage. It is important to note, however,

that lowering the voltage will also decrease the performance of the system. If this

method is used, ensure that the timing analysis takes into consideration the lowest

possible voltage on the supply rail for worst-case maximum timing.

Dynamic power dissipation drops off with the square of the core voltage, but

reducing voltage will have a negative impact on performance.

Because the core voltage on an FPGA will be rated from 5% to 10% of

the specified value, great care must be given to this from a system perspective.

Typically, power issues can be addressed with other techniques while keeping the

core voltage well within the specified range.

3.4 DUAL-EDGE TRIGGERED FLIP-FLOPS

Due to the fact that power dissipation is proportional to the frequency that a

signal toggles, it is desirable to maximize the amount of functionality for each

toggle of a high fan-out net. Most likely, the highest fan-out net is the system

clock, and thus any techniques to reduce the frequency of this clock would have a

dramatic impact on dynamic power consumption. Dual-edge triggered flip-flops

provide a mechanism to propagate data on both edges of the clock instead

of just one. This allows the designer to run a clock at half the frequency that

would otherwise be required to achieve a certain level of functionality and

performance.

Coding a dual-edge triggered flip-flop is very straightforward. The following

example illustrates this with a simple shift register. Note that the input signal is

captured on the rising edge of the clock and is then passed to dual-edge flip-flops.

module dualedge(
output reg dataout,
input clk, datain);
reg ff0, ff1;

always @(posedge clk)
ff0 <= datain;

always @(posedge clk or negedge clk) begin
ff1 <= ff0;
dataout <= ff1;
end

endmodule

44 Chapter 3 Architecting Power

扫码可进资料分享群

Note that if dual-edge flip-flops are not available, redundant flip-flops and

gating will be added to emulate the appropriate functionality. This could comple-

tely defeat the purpose of using the dual-edge strategy and should be analyzed

appropriately after implementation. A good synthesis tool will at least flag a

warning if no dual-edge devices are available.

Dual-edge triggered flip-flops should only be used if they are provided as primi-

tive elements.

The Xilinx Coolrunner-II family includes a feature named CoolClock, which

divides the incoming clock by 2 and then switches the flip-flops to dual-edge

devices as described above. From an external perspective, the device behaves the

same as a single-edge triggered system but with half of the dynamic power dissi-

pation on the global clock lines.

3.5 MODIFYING TERMINATIONS

Resistive loads connected to output pins are common in systems with bus

signals, open-drain outputs, or transmission lines requiring termination. In all of

these cases, one of the CMOS transistors on the output driver of the FPGA

will need to source or sink current through one of these resistive loads. For

outputs requiring pull-up resistors, calculate the minimum acceptable rise-time

to size the resistor as large as possible. If there are high side drivers as well as

low side drivers, ensure there is never a condition where bus contention occurs

as this will draw excessive currents even if for only a few nanoseconds at

a time. For transmission lines with shunt termination at the load, a series termin-

ation may be used as an alternate depending on the requirements of the system.

As can be seen in Figure 3.6, there is not steady-state current dissipation with a

series termination.

There is no steady-state current dissipation with a series termination.

The disadvantages are

. An initial reflection from the load to the terminating resistor

. A small amount of attenuation through the series resistor during a transition

Figure 3.6 Termination types.

3.5 Modifying Terminations 45

扫码可进资料分享群

If these performance characteristics are acceptable for a given system, the

series termination approach will eliminate static power dissipation through the

termination resistor.

3.6 SUMMARY OF KEY POINTS

. Clock control resources such as the clock enable flip-flop input or a global

clock mux should be used in place direct clock gating when they are

available.

. Clock gating is a direct means for reducing dynamic power dissipation but

creates difficulties in implementation and timing analysis.

. Mishandling clock skew can cause catastrophic failures in the FPGA.

. Clock gating can cause hold violations that may or may not be corrected by

the implementation tools.

. To minimize the power dissipation of input devices, minimize the rise and

fall times of the signals that drive the input.

. Always terminate unused input buffers. Never let an FPGA input buffer float.

. Dynamic power dissipation drops off with the square of the core voltage,

but reducing voltage will have a negative impact on performance.

. Dual-edge triggered flip-flops should only be used if they are provided as

primitive elements.

. There is no steady-state current dissipation with a series termination.

46 Chapter 3 Architecting Power

扫码可进资料分享群

Chapter 4

Example Design: The

Advanced Encryption

Standard

The Advanced Encryption Standard (AES; also referred to by its original name,

Rijndael) specifies the latest standard in encryption for the protection of electronic

information. The standard has been approved by the U.S. National Institute of

Standards and Technology (NIST), which has made the specification publicly

available in a Federal Information Processing Standards Publication (FIPS PUB

197). The motivation behind the new standard was the weakness of the existing

Data Encryption Standard (DES). In addition to providing more security, AES is

designed to lend itself to an easy implementation in hardware. In this context,

easier means less prone to design error (more reliable) and faster (simple combi-

natorial logic).

The objective of this chapter is to describe a number of AES architectures and to

analyze the various trade-offs relative to performance versus area.

4.1 AES ARCHITECTURES

AES is a symmetric, secret-key cipher that maps a 128-bit block of plaintext data

to a 128-bit block of ciphertext. The length of the key is variable between 128,

192, and 256 bits and will determine level of security (longer key ¼ larger key

space ¼ more security). The transformations in the AES algorithm consist of four

components organized as distinct modules: Sub Bytes (bit mapping), shift rows

(swapping), mult-column [transformation over GF(28)], and Add Round Key

[addition of round key with bitwise operations in the field GF(2)]. These trans-

formations make up a “round,” and the number of rounds is determined by the

key size (128 bits, 10 rounds; 192 bits, 12 rounds; 256 bits, 14 rounds). Note that

47

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

the round key for each round is unique. These round keys are derived from the

original key through the key expansion. The key expansion is one of the architec-

tural focal points of this chapter and will be discussed in more detail. For a more

detailed explanation of the complete AES cipher, see the Federal Information Pro-

cessing Standard 197 (FIPS 197), as provided by NIST.

The key expansion, which runs parallel to the data path, takes the cipher key

and creates a unique key for each transformation round. Let a word ¼ 32 bits and

Nk ¼ Keysize/Wordsize (¼128, 192, or 256/32). The first Nk words of the

expanded key are filled with the cipher key. Every subsequent 32-bit word in

the expanded key is the XOR (Exclusive-OR) of the previous 32-bit word and the

32-bit-word Nk words previous to the current word. For words that occur on a

multiple of Nk, the current word undergoes a transformation prior to the XOR

operation, followed by an XOR with a round constant. The transformation con-

sists of a cyclic permutation, followed by an 8-byte mapping for all four bytes in

the 32-bit word. The round constant is defined by FIPS 197 as the values given

by [x(i21), f00g, f00g, f00g], with x(i21) being powers of x, where x is denoted as

f02g in the field GF(28).

A single key expansion operation is autonomous relative to the high-level

architecture and is shown in the following implementation.

module KeyExp1Enc(
// updated values to be passed to next iteration
output [3:0] oKeyIter, oKeyIterModNk,

oKeyIterDivNk,
output [32*‘Nk-1:0] oNkKeys,
input iClk, iReset,
// represents total # of iterations and value mod Nk
input [3:0] iKeyIter, iKeyIterModNk,

iKeyIterDivNk,
// The last Nk keys generated in key expansion
input [32*‘Nk-1:0] iNkKeys);
// updated values to be passed to next iteration
reg [3:0] oKeyIter, oKeyIterModNk,

oKeyIterDivNk;
reg [32*‘Nk-1:0] OldKeys;
reg [31:0] InterKey; // intermediate key value
wire [32*‘Nk-1:0] oNkKeys;
wire [31:0] PrevKey, RotWord, SubWord,

NewKeyWord;
wire [31:0] KeyWordNk;
wire [31:0] Rcon;

assign PrevKey = iNkKeys[31:0]; // last word in key
array

assign KeyWordNk = OldKeys[32*‘Nk-1:32*‘Nk-32];

// 1 byte cyclic permutation
assign RotWord = {PrevKey[23:0], PrevKey[31:24]};

48 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

// new key calculated in this round
assign NewKeyWord = KeyWordNk ^ InterKey;

// calculate new key set
assign oNkKeys = {OldKeys[32*‘Nk-33:0], NewKeyWord};

// calculate Rcon over GF(2^8)
assign Rcon = iKeyIterDivNk == 8’h1 ? 32’h01000000:

iKeyIterDivNk == 8’h2 ? 32’h02000000:
iKeyIterDivNk == 8’h3 ? 32’h04000000:
iKeyIterDivNk == 8’h4 ? 32’h08000000:
iKeyIterDivNk == 8’h5 ? 32’h10000000:
iKeyIterDivNk == 8’h6 ? 32’h20000000:
iKeyIterDivNk == 8’h7 ? 32’h40000000:
iKeyIterDivNk == 8’h8 ? 32’h80000000:
iKeyIterDivNk == 8’h9 ? 32’h1b000000:
32’h36000000;

SboxEnc SboxEnc0(.iPreMap(RotWord[31:24]),
.oPostMap(SubWord[31:24]));
SboxEnc SboxEnc1(.iPreMap(RotWord[23:16]),
.oPostMap(SubWord[23:16]));
SboxEnc SboxEnc2(.iPreMap(RotWord[15:8]),
.oPostMap(SubWord[15:8]));
SboxEnc SboxEnc3(.iPreMap(RotWord[7:0]),
.oPostMap(SubWord[7:0]));

‘ifdef Nk8

wire [31:0] SubWordNk8;

// Substitution only when Nk = 8
SboxEnc SboxEncNk8_0(.iPreMap(PrevKey[31:24]),
.oPostMap(SubWordNk8[31:24]));
SboxEnc SboxEncNk8_1(.iPreMap(PrevKey[23:16]),
.oPostMap(SubWordNk8[23:16]));
SboxEnc SboxEncNk8_2(.iPreMap(PrevKey[15:8]),
.oPostMap(SubWordNk8[15:8]));
SboxEnc SboxEncNk8_3(.iPreMap(PrevKey[7:0]),
.oPostMap(SubWordNk8[7:0]));

‘endif

always @(posedge iClk)
if(!iReset) begin

oKeyIter <= 0;
oKeyIterModNk <= 0;
InterKey <= 0;
oKeyIterDivNk <= 0;
OldKeys <= 0;

end
else begin

4.1 AES Architectures 49

扫码可进资料分享群

oKeyIter <= iKeyIter + 1;
OldKeys <= iNkKeys;

// update "Key iteration mod Nk" for next iteration
if(iKeyIterModNk + 1 == ‘Nk) begin

oKeyIterModNk <= 0;
oKeyIterDivNk <= iKeyIterDivNk+1;

end
else begin

oKeyIterModNk <= iKeyIterModNk + 1;
oKeyIterDivNk <= iKeyIterDivNk;

end

if(iKeyIterModNk == 0)
InterKey <= SubWord ^ Rcon;

‘ifdef Nk8
// an option only for Nk = 8
else if(iKeyIterModNk == 4)

InterKey <= SubWordNk8;
‘endif
else

InterKey <= PrevKey;
end

endmodule

Likewise, the autonomous operation for the data path is the combination of

all functions required for a round encryption as shown in the following

implementation.

module RoundEnc(
output [32*‘Nb-1:0] oBlockOut,
output oValid,
input iClk, iReset,
input [32*‘Nb-1:0] iBlockIn, iRoundKey,
input iReady,
input [3:0] iRound);
wire [32*‘Nb-1:0] wSubOut, wShiftOut, wMixOut;
wire wValidSub, wValidShift,

wValidMix;

SubBytesEnc sub(.iClk(iClk), .iReset(iReset),
.iBlockIn(iBlockIn),
.oBlockOut(wSubOut),
.iReady(iReady),
.oValid(wValidSub));

ShiftRowsEnc shift(.iBlockIn(wSubOut), .oBlock
Out(wShiftOut),

.iReady(wValidSub), .oValid
(wValidShift));

MixColumnsEnc mixcolumn(.iClk(iClk), .iReset(iReset),
.iBlockIn(wShiftOut),

50 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

.oBlockOut(wMixOut),
.iReady(wValidShift),

.oValid(wValidMix),
.iRound(iRound));

AddRoundKeyEnc addroundkey(.iClk(iClk), .iReset(iReset),
.iBlockIn(wMixOut),
.iRoundKey(iRoundKey),
.oBlockOut(oBlockOut),
.iReady(wValidMix),

.oValid(oValid));
endmodule

The implementation of the Round subblocks is straightforward. For reasons

described later, assume that each Round has a latency of 4 clocks. It would be

reasonable (based on logic balancing) to distribute the pipeline stages as follows.

4.1.1 One Stage for Sub-bytes

Sub-bytes is implemented as a look-up table due to the iterative nature of the

algorithms implemented by it as well as the relatively small map space. Thus, an

8-bit to 8-bit mapping would be efficiently implemented as a synchronous

8 � 256 (28) ROM with a single pipeline stage. This is shown in Figure 4.1.

4.1.2 Zero Stages for Shift Rows

This stage simply mixes the rows in the data block, so no logic is used here.

Thus, another pipeline stage at this point would create an imbalance of logic

Figure 4.1 An 8-bit mapping in the sub-bytes module.

4.1 AES Architectures 51

扫码可进资料分享群

around the pipeline stages and thus decrease maximum frequency and total

throughput. The shifted rows are illustrated in Figure 4.2.

4.1.3 Two Pipeline Stages for Mix-Column

This stage has the most logic out of all four Round stages and is thus the best place to

add the additional pipeline stage. The mix-column hierarchy is shown in Figure 4.3.

As can be seen from Figure 4.3, Mix-Column uses a module called Map-

Column as a building block. This can be seen in Figure 4.4.

As can be seen from Figure 4.4, Map-Column uses a block called Poly-Mult

X2 (polynomial �2 multiplier) as a building block. This is shown in Figure 4.5.

4.1.4 One Stage for Add Round Key

This stage simply XORs the round key from the key expansion pipeline with the

data block. This is shown in Figure 4.6.

Figure 4.2 Shift-row implementation.

Figure 4.3 The mix-column hierarchy.

52 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

4.1.5 Compact Architecture

The first implementation under consideration is a compact implementation

designed to iteratively reuse logic resources. Initially, the incoming data and key

are added together in the Initial Round module, and the result is registered before

entering the encryption loop. The data is then applied to the Sub Bytes, Shift

Rows, Mult-Column, and Add Round Key in the specified order. At the end of

each round, the new data is registered. These operations are repeated according to

the number of rounds. A block diagram of the iterative architecture is shown in

Figure 4.7.

The top-level implementation is shown in the following code.

module AES_Enc_core(
output [32*‘Nb-1:0] oCiphertext, // output cipthertext
output oValid, // data at output is valid
output oKeysValid,

Figure 4.4 The Map-column hierarchy.

Figure 4.5 Polynomial multiplication x2.

Figure 4.6 The add-round-key block.

4.1 AES Architectures 53

扫码可进资料分享群

input iClk, iReset,
input [32*‘Nb-1:0] iPlaintext, // input data to be

encrypted
input [32*‘Nk-1:0] iKey, // input cipther key
input iReady, // valid data to encrypt
input iNewKey); // signals new key is
input

// registered inputs
wire [32*‘Nk-1:0] wKeyReg;
wire wNewKeyReg, wReadyReg;
wire [127:0] wPlaintextReg, wBlockOutInit;
wire [127:0] wRoundKeyInit, wRoundKey;

// register inputs
InputRegsEnc InputRegs(.iClk(iClk), .iReset(iReset),

.iKey(iKey),
.iNewKey(iNewKey), .iPlaintext

(iPlaintext),
.oKeysValid(oKeysValid),

.iReady(iReady),
.oKey(wKeyReg), .oPlaintext
(wPlaintextReg),

.oReady(wReadyReg));

// initial addition of round key
AddRoundKeyEnc InitialKey(.iClk(iClk), .iReset(iReset),

.iBlockIn(wPlaintextReg),

.iRoundKey(wRoundKeyInit),

.oBlockOut(wBlockOutInit),

.iReady(wReadyReg),

.oValid(wValidInit));

// Number of rounds is a function of key size (10, 12, or
14)

// Key expansion block

Figure 4.7 A compact implementation.

54 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

KeyExpansionEnc KeyExpansion(.iClk(iClk), .iReset
(iReset),

.iNkKeys(wKeyReg),
.iReady(wReadyReg),

.oRoundKey(wRoundKey));

RoundsIterEnc RoundsIter(.iClk(iClk), .iReset(iReset),
.iBlockIn(wBlockOutInit),
.oBlockOut(oCiphertext),
.iReady(wValidInit),

.oValid(oValid),
.iRoundKey(wRoundKey));

‘ifdef Nk4
assign wRoundKeyInit = wKeyReg[128-1:0];
‘endif

‘ifdef Nk6
assign wRoundKeyInit = wKeyReg[192-1:192-128];
‘endif

‘ifdef Nk8
assign wRoundKeyInit = wKeyReg[256-1:256-128];
‘endif

endmodule

In the above code, the modules KeyExpansionEnc and RoundsIterEnc perform

the iterative operations required of the compact architecture. The KeyExpansio-

nEnc handles the iterations for the key expansion, and RoundsIterEnc handles the

data path. A unique round key is passed from the key expansion module to

RoundsIterEnc for every iteration of the round. The following code loops the key

information through the same expansion module to reuse the logic for every

round:

module KeyExpansionEnc(
output [128-1:0] oRoundKey,
input iClk, iReset,
// The last Nk keys generated in initial key expansion
input [32*‘Nk-1:0] iNkKeys,
input iReady); // signals a

new key is input
wire [3:0] KeyIterIn, KeyIterOut;
wire [3:0] KeyIterDivNkIn, KeyIterDivNkOut;
wire [3:0] KeyIterModNkIn, KeyIterModNkOut;
wire [32*‘Nk-1:0] NkKeysOut, NkKeysIn;
wire wReady;

assign wReady = iReady;
assign KeyIterIn = wReady ? ‘Nk : KeyIterOut;
assign oRoundKey = NkKeysOut[32*‘Nk-1:32*‘Nk-128];

4.1 AES Architectures 55

扫码可进资料分享群

assign KeyIterModNkIn = wReady ? 4’h0 : KeyIter
ModNkOut;

assign KeyIterDivNkIn = wReady ? 4’h1 : KeyIter
DivNkOut;

assign NkKeysIn = wReady ? iNkKeys : NkKeysOut;

KeyExp1Enc KeyExp1(.iClk(iClk), .iReset(iReset),
.iKeyIter(KeyIterIn),

.iKeyIterModNk(KeyIterModNkIn),

.iNkKeys(NkKeysIn), .iKeyIterDivNk
(KeyIterDivNkIn),

.oKeyIter(KeyIterOut),

.oKeyIterModNk(KeyIterModNkOut),

.oNkKeys(NkKeysOut),

.oKeyIterDivNk(KeyIterDivNkOut));
endmodule

In the above module, the output of the single key expansion module

KeyExp1Enc is routed back to the input for further expansion on subsequent

rounds as shown in Figure 4.8.

Thus, the logic in the KeyExp1Enc is reused for every round.

Figure 4.8 Iterative key expansion.

56 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

4.1.6 Partially Pipelined Architecture

The second implementation under consideration is a partially pipelined architec-

ture. An AES round is completed in 11 to 14 clock cycles depending on the

key size.

As can be seen from Figure 4.9, multiple instantiations of the data path core

can be used to create a pipelined design, where the key expansion is performed in

a static fashion. This implementation is shown in the following code for Nk ¼ 4.

module AES_core(
output [32*‘Nb-1:0] oCiphertext, // output cipthertext
output oValid, // data at output is valid
// signals that new key has been completely processed
output oKeysValid,
input iClk, iReset,
input [32*‘Nb-1:0] iPlaintext, // input data to

be encrypted
input [32*‘Nk-1:0] iKey, // input cipther key
input iReady, // valid data to encrypt
input iNewKey); // signals new key

is input
wire [32*‘Nb-1:0] wRoundKey1, wRoundKey2,

wRoundKey3, wRoundKey4,
wRoundKey5, wRoundKey6,

wRoundKey7, wRoundKey8,
wRoundKey9, wRoundKeyFinal,

wRoundKeyInit;
wire [32*‘Nb-1:0] wBlockOut1, wBlockOut2,

wBlockOut3, wBlockOut4,
wBlockOut5, wBlockOut6,

Figure 4.9 A partially pipelined implementation.

4.1 AES Architectures 57

扫码可进资料分享群

wBlockOut7, wBlockOut8,
wBlockOut9, wBlockOutInit;

wire [32*‘Nk-1:0] wNkKeysInit;
wire [3:0] wKeyIterInit;
wire [3:0] wKeyIterModNkInit;
wire [3:0] wKeyIterDivNkInit;
wire wValid1, wValid2, wValid3,

wValid4,
wValid5, wValid6, wValid7,

wValid8,
wValid9, wValidFinal,

wValidInit;
wire wNewKeyInit;
wire [128*(‘Nr+1)-1:0] wKeys; // complete set

of round keys

// registered inputs
wire [32*‘Nk-1:0] wKeyReg;
wire wNewKeyReg, wReadyReg;
wire [127:0] wPlaintextReg;

// register inputs
InputRegs InputRegs(.iClk(iClk), .iReset(iReset),

.iKey(iKey),
.iNewKey(iNewKey),
.iPlaintext(iPlaintext),
.iReady(iReady), .oKey(wKeyReg),
.oNewKey(wNewKeyReg),
.oPlaintext(wPlaintextReg),
.oReady(wReadyReg));

// initial key expansion
KeyExpInit KeyExpInit(.iClk(iClk), .iReset(iReset),

.iNkKeys(wKeyReg), .iNewKey
(wNewKeyReg),

.oKeyIter(wKeyIterInit),

.oNewKey(wNewKeyInit),

.oKeyIterModNk
(wKeyIterModNkInit),

.oNkKeys(wNkKeysInit),

.oKeyIterDivNk
(wKeyIterDivNkInit));

// initial addition of round key
AddRoundKey InitialKey(.iClk(iClk), .iReset(iReset),

.iBlockIn(wPlaintextReg),

.iRoundKey(wRoundKeyInit),

.oBlockOut(wBlockOutInit),
.iReady(wReadyReg),
.oValid(wValidInit));

58 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

// Number of rounds is a function of key size (10, 12, or
14)

// Key expansion block
KeyExpansion KeyExpansion(.iClk(iClk),

.iReset(iReset),
.iKeyIter(wKeyIterInit),
.iKeyIterModNk(wKeyIterMod

NkInit),
.iNkKeys(wNkKeysInit),
.iKeyIterDivNk(wKeyIterDiv

NkInit),
.iNewKey(wNewKeyInit),
.oKeys(wKeys), .oKeysValid

(oKeysValid));

// round transformation blocks
Round R1(.iClk(iClk), .iReset

(iReset),
.iBlockIn(wBlockOutInit),
.iRoundKey(wRoundKey1),
.oBlockOut(wBlockOut1),
.iReady(wValidInit),
.oValid(wValid1));

Round R9(.iClk(iClk), .iReset
(iReset),

.iBlockIn(wBlockOut8),

.iRoundKey(wRoundKey9),

.oBlockOut(wBlockOut9),

.iReady(wValid8),
.oValid(wValid9));

// 10 rounds total
// Initial key addition
assign wRoundKeyFinal = wKeys[128*(‘Nr-7)-1:

128*(‘Nr-8)];

// round key assignments
assign wRoundKey9 = wKeys[128*(‘Nr-6)-1: 128*(‘Nr-7)];
assign wRoundKey8 = wKeys[128*(‘Nr-5)-1: 128*(‘Nr-6)];
assign wRoundKey7 = wKeys[128*(‘Nr-4)-1: 128*(‘Nr-5)];
assign wRoundKey6 = wKeys[128*(‘Nr-3)-1: 128*(‘Nr-4)];
assign wRoundKey5 = wKeys[128*(‘Nr-2)-1: 128*(‘Nr-3)];
assign wRoundKey4 = wKeys[128*(‘Nr-1)-1: 128*(‘Nr-2)];
assign wRoundKey3 = wKeys[128*‘Nr-1: 128*(‘Nr-1)];
assign wRoundKey2 = wKeys[128*(‘Nr+1)-1: 128*‘Nr];

assign wRoundKey1 = wNkKeysInit[128-1:0];
assign wRoundKeyInit = iKey[128-1:0];

4.1 AES Architectures 59

扫码可进资料分享群

FinalRound FinalRound(.iClk(iClk), .iReset(iReset),
.iBlockIn(wBlockOut9),
.iRoundKey(wRoundKeyFinal),
.oBlockOut(oCiphertext),
.iReady(wValid9), .oValid

(oValid));
endmodule

Although pipelined designs such as the one above can potentially encrypt

data at fast data rates, a problem arises in these architectures if one were to intro-

duce new keys at a rate faster than the encryption speed. The surrounding system

would have to be smart enough to wait for the pipe to empty before introducing

the new data block along with the new key.

This information has to be fed back to the outside system that is providing

the information and the corresponding keys so that they can be buffered and held

appropriately. In the worst case where a new key is required for every block of

data, the pipelined architecture would have a throughput equivalent to that of the

iterative architecture and would be a massive waste of space (not to mention the

disappointment of not achieving the advertised throughput). The next section pre-

sents an architecture that eliminates this problem.

4.1.7 Fully Pipelined Architecture

The term fully pipelined refers to an architecture for the key expansion that runs

in parallel to the round transformation pipeline, where corresponding stages in the

pipeline provide each other with the exact information at just the right time. In

other words, the round key for any particular stage and any particular data block

is valid for only one clock cycle and is used by the corresponding round at that

time. This occurs in parallel for every pipeline stage. Thus, a unique key may be

used for potentially every block of data, with no penalization in terms of latency

or wait states. The maximum throughput of the round transformation pipeline is

always achieved independent of the topology of the key set. A block diagram for

the fully pipelined implementation is shown in Figure 4.10.

This means that a single iteration through the Key Expansion function (four

32-bit word expansion of the key) would happen fully synchronous with the

round previous to the round that the key being generated would be used. Also, the

latency for the Key Expansion block would have to maintain a clock latency

equal to that of the Round block, typically equal to 1–4 clocks.

For the round key at any arbitrary key expansion block to arrive at its corre-

sponding Round block appropriately, and on potentially every clock pulse, the

timing must be very precise. Specifically, each key expansion block must generate

a round key in exactly the same number of clock cycles that the Round block can

generate its corresponding data. Also, the latency must be such that each key is

valid when presented to the add-round-key sub-block. To handle these require-

ments, each key expansion block is divided into four incremental expansion

60 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

blocks. Each incremental expansion block generates a single word (128/4 ¼ 32

bits) for the key as described in the NIST specification. Each of these blocks is

given a pipeline stage. This is shown in Figure 4.11.

As mentioned above, each Key-Exp1 block generates a single word (32 bits)

of the expanded key. The stages to add pipelining is shown in Figure 4.12.

As can be seen in Figure 4.12, the S-box can be implemented as a synchronous

8 � 256 ROM, and to preserve latency timing accuracy, a pipeline stage must also

be added to the R-CON calculation as described in the NIST specification.

Also, to ensure that the latency timing between the key pipeline and the data

propagation pipeline is accurate, the keys must be generated one clock cycle earlier

than the round data is completed. This is because the round key is necessary for the

add-round-key block that clocks the XOR operation into its final register. In other

words, clock 4 of the key expansion block must be synchronous with clock 3 of the

corresponding Round block. This is handled by the initial key addition at the begin-

ning of the key expansion process. This is shown in Figure 4.13.

The key data beyond the first 128 bits begins to expand on the first clock

cycle, while the data pipeline begins on the second clock (a one-clock latency

Figure 4.10 Fully pipelined key expansion.

Figure 4.11 Propagation through 32-bit key expansion stages.

4.1 AES Architectures 61

扫码可进资料分享群

from the initial add-round-key operation). The top-level implementation is shown

in the code below for Nk ¼ 4.

module AES_core(
output [32*‘Nb-1:0] oCiphertext, // output cipthertext
output oValid, // data at output is valid
input iClk, iReset,
input [32*‘Nb-1:0] iPlaintext, // input data to be

encrypted
input [32*‘Nk-1:0] iKey, // input cipther key
input iReady); // valid data to encrypt

Figure 4.12 Single word expansion inside Key-Exp1.

Figure 4.13 Skewing of the key pipeline.

62 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

wire [32*‘Nb-1:0] wRoundKey1, wRoundKey2, wRoundKey3,
wRoundKey4,

wRoundKey5, wRoundKey6, wRoundKey7,
wRoundKey8,

wRoundKey9, wRoundKeyFinal,
wRoundKeyInit;

wire [32*‘Nb-1:0] wBlockOut1, wBlockOut2, wBlockOut3,
wBlockOut4,

wBlockOut5, wBlockOut6, wBlockOut7,
wBlockOut8,

wBlockOut9, wBlockOutInit;

wire [32*‘Nk-1:0] wNkKeys1, wNkKeys2, wNkKeys3,
wNkKeys4,

wNkKeys5, wNkKeys6, wNkKeys7,
wNkKeys8,

wNkKeys9, wNkKeysFinal,
wNkKeysInit;

wire [3:0] wKeyIter1, wKeyIter2, wKeyIter3,
wKeyIter4,

wKeyIter5, wKeyIter6, wKeyIter7,
wKeyIter8,

wKeyIter9, wKeyIterFinal,
wKeyIterInit;

wire [3:0] wKeyIterModNk1, wKeyIterModNk2,
wKeyIterModNk3,

wKeyIterModNk4, wKeyIterModNk5,
wKeyIterModNk6,

wKeyIterModNk7, wKeyIterModNk8,
wKeyIterModNk9,

wKeyIterModNkFinal,
wKeyIterModNkInit;

wire [3:0] wKeyIterDivNk1, wKeyIterDivNk2,
wKeyIterDivNk3,

wKeyIterDivNk4, wKeyIterDivNk5,
wKeyIterDivNk6,

wKeyIterDivNk7, wKeyIterDivNk8,
wKeyIterDivNk9,

wKeyIterDivNkFinal,
wKeyIterDivNkInit;

wire wValid1, wValid2, wValid3, wValid4,
wValid5, wValid6, wValid7, wValid8,
wValid9, wValidFinal, wValidInit;

// registered inputs
wire [32*‘Nk-1:0] wKeyReg;
wire wReadyReg;
wire [127:0] wPlaintextReg;

4.1 AES Architectures 63

扫码可进资料分享群

// Initial key addition
assign wRoundKeyInit = wKeyReg[32*‘Nk-1:32*‘Nk-128];

// round key assignments
assign wRoundKey1 = wNkKeysInit[32*‘Nb-1:0];
assign wRoundKey2 = wNkKeys1[32*‘Nb-1:0];
assign wRoundKey3 = wNkKeys2[32*‘Nb-1:0];
assign wRoundKey4 = wNkKeys3[32*‘Nb-1:0];
assign wRoundKey5 = wNkKeys4[32*‘Nb-1:0];
assign wRoundKey6 = wNkKeys5[32*‘Nb-1:0];
assign wRoundKey7 = wNkKeys6[32*‘Nb-1:0];
assign wRoundKey8 = wNkKeys7[32*‘Nb-1:0];
assign wRoundKey9 = wNkKeys8[32*‘Nb-1:0];

// register inputs
InputRegs InputRegs(.iClk(iClk), .iReset(iReset),

.iKey(iKey),
.iPlaintext(iPlaintext),
.iReady(iReady), .oKey(wKeyReg),
.oPlaintext(wPlaintextReg),
.oReady(wReadyReg));

// initial key expansion
KeyExpInit KeyExpInit(.iClk(iClk), .iReset(iReset),

.iNkKeys(wKeyReg),

.oKeyIter(wKeyIterInit),

.oKeyIterModNk(wKeyIterMod
NkInit),

.oNkKeys(wNkKeysInit),

.oKeyIterDivNk
(wKeyIterDivNkInit));

// initial addition of round key
AddRoundKey InitialKey(.iClk(iClk), .iReset(iReset),

.iBlockIn(wPlaintextReg),

.iRoundKey(wRoundKeyInit),

.oBlockOut(wBlockOutInit),

.iReady(wReadyReg),
.oValid(wValidInit));

// Number of rounds is a function of key size (10, 12, or
14)

// Key expansion blocks
KeyExpBlock KeyExpBlock1(.iClk(iClk), .iReset(iReset),

.iKeyIter(wKeyIterInit),

.iKeyIterModNk(wKeyIterMod
NkInit),

.iNkKeys(wNkKeysInit),

.iKeyIterDivNk(wKeyIterDiv
NkInit),

.oKeyIter(wKeyIter1),

64 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

.oKeyIterModNk(wKeyIter
ModNk1),

.oNkKeys(wNkKeys1),

.oKeyIterDivNk(wKeyIter
DivNk1));

KeyExpBlock KeyExpBlock8(.iClk(iClk), .iReset(iReset),
.iKeyIter(wKeyIter7),
.iKeyIterModNk(wKeyIter

ModNk7),
.iNkKeys(wNkKeys7),
.iKeyIterDivNk(wKeyIter

DivNk7),
.oKeyIter(wKeyIter8),
.oKeyIterModNk(wKeyIter

ModNk8),
.oNkKeys(wNkKeys8),
.oKeyIterDivNk(wKeyIter

DivNk8));

// round transformation blocks

Round R1(.iClk(iClk), .iReset(iReset),
.iBlockIn(wBlockOutInit),
.iRoundKey(wRoundKey1),
.oBlockOut(wBlockOut1),
.iReady(wValidInit),

.oValid(wValid1));
...

Round R9(.iClk(iClk), .iReset(iReset),
.iBlockIn(wBlockOut8),
.iRoundKey(wRoundKey9),
.oBlockOut(wBlockOut9),
.iReady(wValid8),
.oValid(wValid9));

// 10 rounds total

assign wRoundKeyFinal = wNkKeys9[32*‘Nb-1:0];

KeyExpBlock KeyExpBlock9(.iClk(iClk), .iReset(iReset),
.iKeyIter(wKeyIter8),
.iKeyIterModNk

(wKeyIterModNk8),
.iNkKeys(wNkKeys8),
.iKeyIterDivNk

(wKeyIterDivNk8),
.oKeyIter(wKeyIter9),
.oKeyIterModNk

(wKeyIterModNk9),
.oNkKeys(wNkKeys9),

4.1 AES Architectures 65

扫码可进资料分享群

.oKeyIterDivNk(wKeyIter
DivNk9));

FinalRound FinalRound(.iClk(iClk), .iReset(iReset),
.iBlockIn(wBlockOut9),
.iRoundKey(wRoundKeyFinal),
.oBlockOut(oCiphertext),
.iReady(wValid9), .oValid

(oValid));
endmodule

4.2 PERFORMANCE VERSUS AREA

In this section, we discuss speed/area trade-offs for pipelined versus compact

architectures and provide actual measurements from typical target technologies.

All three architectures were designed with the same hardware description

language (Verilog), and all used the same coding conventions.

The first target technology was a Xilinx Virtex II FPGA. The statistics are

shown in Table 4.1.

For comparison against the FPGA implementation, the design was also tar-

geted to an 0.35 mm ASIC process as shown in Table 4.2.

The performance metrics shown in the tables are defined as follows:

1. LUTs: This represents the logic utilization that the AES core consumes

inside the FPGA.

Table 4.1 Speed/Area Statistics Targeting a Xilinx Virtex II

Architecture

Area

(Xilinx LUTs)

Best Possible

Throughput (MBPS)

Worst-Case

Throughput

Iterative 886 340 340

Partially Pipelined 4432 15,400 314

Fully Pipelined 5894 15,400 15,400

Worst-case throughput assumes that a new key is introduced for every data block.

Table 4.2 Speed/Area Statistics for an 0.35-mm AMI ASIC

Architecture

Area

(ASIC Gates)

Best Possible

Throughput (MBPS)

Worst-Case

Throughput

Iterative 3321 788 788

Partially Pipelined 15,191 40,064 817

Fully Pipelined 25,758 40,064 40,064

Worst-case throughput assumes that a new key is introduced for every data block.

66 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

2. ASIC gates: This is the number of logic gates that is consumed by the

AES core in an ASIC.

3. Best possible throughput: This is the maximum number of data bits that

can be processed per second in the best-case scenario. “Best case” refers

to the situation where there is the least amount of penalty delay due to

expanding new keys.

4. Worst-case throughput: “Worst case” here refers to the situation where

there is the greatest amount of penalty delay due to expanding new keys.

This situation arises when every data block has a unique key.

As can be seen from the data in Tables 4.1 and 4.2, the fully pipelined archi-

tecture is two orders of magnitude faster (in terms of throughput) under the worst-

case scenario of a new key introduced for every data block. Note that the

pipelined architecture is “penalized” for frequent key changes if it cannot fill the

pipeline until previous encryptions are complete. This is what accounts for

the drastic drop from best-case to worst-case throughput in the standard pipelined

architecture.

4.3 OTHER OPTIMIZATIONS

As can be seen from the comparisons section, one of the primary issues with a

fully pipelined design is area utilization. Also an issue with this pipelined archi-

tecture is the number of block RAMs needed to hold the S-box transformation

look-up table. Many modern implementations use the block RAM LUT approach

as it is easy to implement and can generate the necessary transformation in a

single clock cycle. An arbitrary mapping over GF(28) will require one 8 � 256

RAM module. A single mapping would not cause an issue, but considering that

approximately 320 look-ups need to be performed on every clock, this presents a

major issue for FPGA implementations because this memory requirement pushes

the limits of even the larger modern FPGAs.

Another solution would be to implement the multiplicative inverse using the

Extended Euclidean Algorithm as outlined in various technical references.

However, the algorithm to compute the inverse of an arbitrary polynomial in

GF(2m) has complexity of O(m) and requires 2 m calculations. These steps cannot

be placed in parallel for efficient hardware because each calculation depends on the

previous. This type of iterative algorithm may be acceptable for software

implementations, but the latency in a hardware implementation (2 � m �

Rounds ¼ 160 to 224 clocks) may be unacceptable for applications frequently

encrypting small amounts of data.

A third approach to implementing the S-box in hardware was proposed by

Vincent Rijmen (one of the inventors of Rijndael). The idea is to represent every

element of GF(256) as a polynomial of the first degree with coefficients from

GF(16). Denoting the irreducible polynomial as x2þAxþ B, the multiplicative

4.3 Other Optimizations 67

扫码可进资料分享群

inverse for an arbitrary polynomial bx þ c is given by:

(bxþ c)�1 ¼ b(b2Bþ bcAþ c2)�1xþ (cþ bA)(b2Bþ bcAþ c2)�1

The problem of calculating the inverse in GF(256) is now translated to calcu-

lating the inverse in GF(16) and performing some arithmetic operations in

GF(16). The inverse in GF(16) can be stored in a much smaller table relative to

the mapping in GF(256) and will correspond with an even more compact S-box

implementation.

68 Chapter 4 Example Design: The Advanced Encryption Standard

扫码可进资料分享群

Chapter 5

High-Level Design

Due to the increasing complexity of FPGA designs as well as the increasing

sophistication and capability of the corresponding design tools, there will always

be an increasing in demand for the ability to model a design with higher levels

of abstraction. The move from schematic-based design to HDL (Hardware

Description Language) design was revolutionary. It allowed a designer to describe

modules in a behavioral fashion that was theoretically technology independent.

There are many aspects of digital design with HDL that have become monotonous

and time consuming and where higher levels of abstraction are obvious fits and

have natural paths of progression. Other technologies that have been introduced

over the past decade have had a difficult time migrating to mainstream because

(and this point can be argued) the fit has been less obvious. This chapter discusses

a number of high-level design techniques that have been found to provide utility

to FPGA design engineers.

During the course of this chapter, we will discuss the following topics in

detail:

. Abstract state-machine design using graphical tools

. DSP design using MATLAB and Synplify DSP

. Software/hardware codesign

5.1 ABSTRACT DESIGN TECHNIQUES

In the 17th century, the mathematician Leibniz postulated that a mathematical

theory must be simpler than the system it describes, otherwise it has no use as a

theory. This is a very profound statement and one that has a direct corollary to

modern engineering. If a new form of abstract design is not simpler to compre-

hend or easier to design with than a previous form, then it is of little or no use to

us in the real world. Some high-level design techniques that have been developed

69

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

over the past 10–15 years certainly fall under the category of “lateral abstrac-

tion,” or new design techniques that are no more abstract than existing technol-

ogies. These technologies are slow to catch on; that is, if there is any benefit at

all. This chapter discusses techniques that do provide the true benefits of abstrac-

tion and that can increase the effectiveness of a designer.

5.2 GRAPHICAL STATE MACHINES

One obvious fit for high-level design techniques is that of state-machine creation.

Remembering back to our first course in logic design, we learned to design state

machines by first drawing a state-transition diagram and then translating this to

HDL (or gates as the course may be) manually. The state-diagram representation

is a natural abstraction that fits well with our existing design process.

One feature of describing state machines in HDL is the vast number of valid

state-machine encodings that are available to the designer. There are state-

machine encodings that are optimal for compact designs and those that are well

suited for high-speed designs. Many of the variations have to do with designer

preference, but this also introduces the possibility of human error, not to mention

software translation error when recognizing a state-machine description. Often-

times a designer does not have the knowledge whether one state-machine encod-

ing will be optimal for his or her implementation until after synthesis has been

performed. Modifying the state-machine encoding is time consuming and is gen-

erally not related to the functionality of the state machine. It is true that most syn-

thesis tools will recognize a state machine and recode it based on the physical

design constraints, but a higher-level description that gives the synthesis tool the

most flexibility regarding the implementation details is, in general, an optimal

approach.

Take for example the following state machine that loads a multiplier and

accumulator for a low-pass DSP function:

module shelflow(
output reg multstart,
output reg [23:0] multdat,
output reg [23:0] multcoeff,
output reg clearaccum,
output reg [23:0] U0,
input CLK, RESET,
input [23:0] iData, // X[0]
input iWriteStrobe, // X[0] is valid
input [23:0] iALow, iCLow, // coeffs for low pass filter
input multdone,
input [23:0] accum);

// define input/output samples
reg [23:0] X0, X1, U1;

70 Chapter 5 High-Level Design

扫码可进资料分享群

// the registers that are multiplied together in mult24
reg [2:0] state; // holds state for sequencing

through mults

parameter State0 = 0,
State1 = 1,
State2 = 2,
State3 = 3;

always @(posedge CLK)
if(!RESET) begin

X0 <= 0;
X1 <= 0;
U0 <= 0;
U1 <= 0;
multstart <= 0;
multdat <= 0;
multcoeff <= 0;
state <= State0;
clearaccum <= 0;

end
else begin
// do not process state machine if multiply is not done
case(state)

State0: begin
// idle state
if(iWriteStrobe) begin

// if a new sample has arrived
// shift samples
X0 <= iData;
X1 <= X0;
U1 <= U0;
multdat <= iData; // load mult
multcoeff <= iALow;
multstart <= 1;
clearaccum <= 1; // clear accum
state <= State1;

end
else begin

multstart <= 0;
clearaccum <= 0;

end
end
State1: begin

// A*X[0] is done, load A*X[1]
if(multdone) begin

multdat <= X1;
multcoeff <= iALow;

5.2 Graphical State Machines 71

扫码可进资料分享群

multstart <= 1;
state <= State2;

end
else begin

multstart <= 0;
clearaccum <= 0;

end
end
State2: begin

// A*X[1] is done, load C*U[1]
if(multdone) begin

multdat <= U1;
multcoeff <= iCLow;
multstart <= 1;
state <= State3;

end
else begin

multstart <= 0;
clearaccum <= 0;

end
end
State3: begin

// C*U[1] is done, load G*accum
// [RL-1] U0 <= accumsum;
if(multdone) begin

U0 <= accum;
state <= State0;

end
else begin

multstart <= 0;
clearaccum <= 0;

end
end
default

state <= State0;
endcase

end

endmodule

The above module sequences through the operations for executing multiply

and accumulate operations. For the purposes of this example, the multiplier and

accumulator are located outside of this module. Let us take a look at the effect of

describing this state machine in a more abstract format.

There are a number of tools that can be used for graphical state-machine

entry. To begin with, let us use the free Xilinx state-machine editor called State-

CAD. The graphical state machine is represented in Figure 5.1.

72 Chapter 5 High-Level Design

扫码可进资料分享群

Clearly, the above representation is much easier to read than the Verilog

representation because it represents the state machine as we would visualize it.

Graphical state machines are much easier to read and allow for automatic speed/
area optimizations.

Despite the clarity of the graphical representation, however, the RTL that is

generated is hardly more readable than a netlist. For brevity, we show only a few

snippets (exported in the older Verilog-1995 format).

State Decoding:

if (~iWriteStrobe & STATE0 | multdone & STATE3 | RESET)
next_STATE0=1;
else next_STATE0=0;

if (~RESET & iWriteStrobe & STATE0 | ~RESET & ~multdone
& STATE1)

next_STATE1=1;
else next_STATE1=0;

if (~RESET & multdone & STATE1 | ~RESET & ~multdone & STATE2)
next_STATE2=1;
else next_STATE2=0;

Figure 5.1 Graphical state machine design.

5.2 Graphical State Machines 73

扫码可进资料分享群

if (~RESET & multdone & STATE2 | ~RESET & ~multdone & STATE3)
next_STATE3=1;
else next_STATE3=0;

Output Decoding for one of the inputs to the multiplier:

multcoeff=({24{STATE0}}&({24{~RESET}}&({24{~RESET}}&{24
{iWRITESTROBE}})&({iALow23, iALow22, iALow21, iALow20,
iALow19, iALow18, iALow17, iALow16, iALow15, iALow14,
iALow13, iALow12, iALow11, iALow10, iALow9, iALow8,
iALow7, iALow6, iALow5, iALow4, iALow3, iALow2, iALow1,
iALow0}))|({24{STATE0}}&{24{~RESET}}&{24
{~iWriteStrobe}})&(’h0))|({24{STATE1}}&{24{~RESET}}&
{24{~multdone}})&(‘h0))|({24{STATE1}}&({24{~RESET}}&
{24{multdone}})&({iALow23, iALow22, iALow21, iALow20,
iALow19, iALow18, iALow17, iALow16, iALow15, iALow14,
iALow13, iALow12, iALow11, iALow10, iALow9, iALow8,
iALow7, iALow6, iALow5, iALow4, iALow3, iALow2, iALow1,
iALow0}))|({24{STATE2}}&{24{~RESET}}{24{~multdone}})&
({iCLow23, iCLow22, iCLow21, iCLow20, iCLow19, iCLow18,
iCLow17, iCLow16, iCLow15, iCLow14, iCLow13, iCLow12,
iCLow11, iCLow10, iCLow9, iCLow8, iCLow7, iCLow6, iCLow5,
iCLow4, iCLow3, iCLow2, iCLow1, iCLow0}))|({24{STATE2}}&
{24{~RESET}}&{24{~multdone}})&(’h0))|({24{STATE3}}&
{24{~RESET}}&{24{~multdone}})&(’h0))|({24{STATE3}}&
{24{~RESET}}&{24{~multdone}})&(’h0))|(({24{RESET}})
&(’h0));

When implemented, the two state machines show comparable results in terms

of area utilization and performance. The state machine implemented in StateCad,

however, can be optimized further for either performance or area based on the

implementation options.

The downside to the StateCad implementation is that the autogenerated RTL

is almost as unreadable as a netlist. Even if this is optimized, is it acceptable to

have such unreadable code? The answer in most cases is, yes. When we made the

transition from schematic design to RTL, we had to let go of the low-level rep-

resentation and put more trust in our tools. This allowed us to design more

complex circuits quicker, design at a more abstract level, produce source code

that was portable between technologies, and so on. It is true that we analyze por-

tions of the gate-level design to ensure proper logic implementation, but as tools

become more and more refined and as we RTL designers become more experi-

enced, this is required less frequently. Regardless, as a whole we can never

expect to look at a synthesized netlist or sea of gates and derive any high-level

meaning about a design. We must refer to the level of abstraction that the

designer created directly to understand the design. In a similar fashion, when

designing at levels of abstraction above RTL, we will not always have readable

74 Chapter 5 High-Level Design

扫码可进资料分享群

RTL to reference. Instead, we will always have to rely on the following regardless

of where abstract design takes us in the future:

1. We can analyze and understand the top level of abstraction. This is the

level that the designer originally described the design.

2. We have tools to verify that lower levels of abstraction are implemented

as we intended.

Of key importance is the readability of the top level of abstraction where the

design takes place. Of less importance is the readability of the autogenerated

RTL.

There are still FPGA designers out there that design with schematics and

have not been able to make the move to RTL-based design. It is easy to become

comfortable with a methodology and feel that it is unnecessary to learn the latest

design methods. This is a dangerous attitude, as it will cause a designer to lose

effectiveness as an engineer or even become obsolete.

5.3 DSP DESIGN

DSP design is another great fit for abstract design techniques because design of a

DSP with any reasonable complexity already takes place at a higher level of

abstraction. DSP design is very mathematical by nature, and thus design tools

such as MATLAB are commonly used for the development and analysis of these

algorithms. Tools like MATLAB make it very easy to construct DSPs out of pre-

existing building blocks and provide sophisticated tools to analyze frequency

response, phase response, distortion characteristics, and many of the other metrics

associated with digital filters.

Traditionally, the DSP algorithms are designed and analyzed with these high-

level mathematical tools, and once the design is verified, the designer must

convert these algorithms to synthesizable constructs manually for the FPGA

target. The bridge that is being gapped by abstract FPGA design techniques is to

take these preexisting highlevel descriptions and convert them directly to FPGA

implementations. This is truly an abstract approach that simplifies the design

process and allows the designer to focus on the top level of abstraction.

One tool that does a particularly good job of this is Synplify DSP from Syn-

plicity. The Synplify DSP tool runs as an application within MATLAB, allowing

a close coupling between MATLAB constructs and modeling capabilities with

Synplicity’s DSP to RTL synthesis. The system represented in Figure 5.2 is a

Simulink model of a basic FIR filter.

The “Port In” and “Port Out” blocks indicate the I/O of the FPGA, and the

FIR block is the DSP function to be synthesized to the FPGA. The Sinewave and

Scope blocks are used only for MATLAB/Simulink simulation. Finally, the FDA

Tool block is used to parameterize the FIR filter as shown in Figure 5.3.

5.3 DSP Design 75

扫码可进资料分享群

In Figure 5.3, a low-pass FIR filter is parameterized with a pass frequency of

0.1 (normalized to the sampling frequency). Any one of the filter characteristics can

be modified with the corresponding response shown in the adjacent window. Once

the parameters are set, a MATLAB/Simulink simulation can be run to verify the

filter. Finally, Synplify DSP will generate the following Verilog code for the filter

(exported with mixed Verilog-1995 and Verilog-2001 formats):

// AUTO-GENERATED CODE FROM SYNPLIFY DSP
module FIR(clk, gReset, gEnable, rst, en, inp, outp);
parameter inpBitWidth = 16;
parameter inpFrac = 8;
parameter coefBitWidth = 10;
parameter coefFrac = 8;
parameter dpBitWidth = 17;
parameter dpFrac = 8;
parameter outBitWidth = 17;
parameter tapLen = 46;
parameter extraLatency = 0;
input clk;
input gReset;
input gEnable;
input rst;
input en;

Figure 5.2 Simulink model of an FIR filter.

76 Chapter 5 High-Level Design

扫码可进资料分享群

input [inpBitWidth-1:0] inp;
output [outBitWidth-1:0] outp;

wire signed [coefBitWidth-1:0] CoefArr [0:tapLen + 0 - 1];
generate
begin: CoefArrGen

assign CoefArr[0] = 10’b0000000000;
...
assign CoefArr[45] = 10’b0000000000;

end
endgenerate
wire signed [inpBitWidth-1:0] multInp;
wire signed [coefBitWidth + inpBitWidth-1:0] multOuts

[0:tapLen-1];
wire signed [coefBitWidth + inpBitWidth-1:0] multBufs1

[0:tapLen-1];
wire signed [coefBitWidth + inpBitWidth-1:0] multBufs1pre

[0:tapLen-1];
wire rstBuf;
wire enBuf;
reg signed [dpBitWidth-1:0] mem [0:tapLen-2];

Figure 5.3 FIR parameterization.

5.3 DSP Design 77

扫码可进资料分享群

assign multInp = inp;
generate
genvar i1;
for(i1=0; i1<=tapLen-1; i1=i1+1)
begin: multOuts_gen

assign multOuts[i1] = multBufs1[i1];
end

endgenerate
assign rstBuf = rst;
assign enBuf = en;
assign outp = multOuts[0] + mem[0];
generate
genvar i2;
for(i2=0; i2<=tapLen-1; i2=i2+1) begin: floop

assign multBufs1pre[i2] = multInp * CoefArr[i2];
assign multBufs1[i2] = multBufs1pre[i2] >>>

(coefFrac+inpFrac-dpFrac);
end

endgenerate

generate
integer i3;
begin: inner_floop

always @(posedge clk) begin
if((rstBuf==1) || (gReset==1)) begin

for(i3 = 0; i3 <= tapLen-2; i3=i3+1) begin
mem[i3] <= 0;

end
end // reset

else if((enBuf==1) && (gEnable==1)) begin
for(i3 = 0; i3 <= tapLen-3; i3=i3+1) begin

mem[i3] <= mem[i3+1] + multOuts[i3+1];
end

mem[tapLen-2] <= multOuts[tapLen-1];
end // enable

end // always
end // inner_floop

endgenerate
endmodule

Figure 5.4 Auto-Generated Pipelined FIR.

78 Chapter 5 High-Level Design

扫码可进资料分享群

The code generated above assumes a pipelined architecture where a new sample

can be applied on every clock edge. The pipelined architecture is shown in

Figure 5.4.

As can be seen in Figure 5.4, the input sample is multiplied by the coeffi-

cients and added to the appropriate stage in the pipeline. The above topology is

consistent for all taps of the FIR. The final implementation results are listed in

Table 5.1.

Thus, with a 16-bit data path, the FIR is capable of handling data at a rate of

2.24 Gbps (2.24 � 109 bits/second). The primary drawback to the above architec-

ture is that the amount of space required in an FPGA implementation is relatively

large. In many DSP applications, there are a certain number of clocks per sample

(i.e., the system clock frequency is greater than the sampling frequency), which

means that a more compact architecture may be used to reuse the same DSP hard-

ware for the required MAC operations. With an abstract design tool such as

Synplify DSP, this architectural modification can be made as an implementation

option during MATLAB to RTL synthesis. For example, Synplify DSP provides

an option for “folding,” which essentially folds up the pipeline to reuse hardware

resources. The amount of folding is dependent on the number of clocks available

per sample period. In general, the worst-case ratio between the slowest clock

period and the fastest sample rate will provide a guide to the maximum amount

of folding possible. For example, if we take the above FIR implementation and

define 200 clocks per sample period, there is enough time to calculate 45 taps

with a single set of MAC hardware. This is shown in Figure 5.5.

In the architecture of Figure 5.5, all filtered samples for a 45th order filter are

queued in the output shift register. When a new sample arrives, the ROM begins

sequencing to multiply the input sample by every coefficient. The shift register

holding all filtered samples begins shifting and adding the input sample multiplied

by the appropriate coefficient. At the end of the sequence, all output samples have

been shifted to the appropriate location with the addition of the scaled version of

Table 5.1 Implementation Results for Pipelined FIR

Register 806

LUT 828

Speed 140 MHz

Figure 5.5 FIR logic folded for area efficiency.

5.3 DSP Design 79

扫码可进资料分享群

the input sample. This is a folded version of the pipelined architecture and is

much more compact as shown in the resource report listed in Table 5.2.

The total area has been reduced dramatically with the compact architecture,

with a trade-off in the reduction of maximum throughput that has now been

reduced to one sample every 45 clocks, or 42 Mbps (42 � 106 bits/second).

Some abstract design tools such as Synplify DSP allow for automatic architec-

tural trade-offs such as pipelined versus folded implementations.

5.4 SOFTWARE/HARDWARE CODESIGN

Looking back at our definition of higher (and better) levels of abstraction,

C-based FPGA design is one that has traditionally sat very close to the border. In

the 1990s, a number of companies aggressively pursued C-level synthesis as a

replacement for HDL design. Some companies were advertising that their tool

could convert ANSI-compliant C code to synthesizable HDL. The problem with

this claim is that C code (and software design for microprocessors in general) is a

sequential, instruction-based language. One instruction is executed after another

in a sequence. To convert this to synthesizable HDL, this sequence of commands

had to be converted to a state-machine format, and for any design of any reason-

able size, this produced code that was unusable.

To remedy this problem, these companies developed various flavors of cycle-

based C syntax that would convert easily to HDL. The fundamental problem with

this approach was that a new HDL language had been invented that was no more

easy to use than the standard languages for HDL. Additionally, they required an

extra synthesis step (sometimes automated, sometimes not) that could have been

easily bypassed in the first place. The argument in favor of the cycle-based C

language was that it could be compiled and run against other C models, but for

the majority of HDL designers, this was unnecessary for most of their appli-

cations. Although there are applications where this is a fit, C-based design still

has not caught on in the mainstream FPGA world because the EDA companies

have not convinced the design community that there is a benefit or simplification

of the design process with C-level design.

One of the primary benefits of C-level design today is the ability to simulate

hardware and software in the same environment. Despite this, it is still important

to understand where to divide the line between software and hardware implemen-

tation. A few of the issues to consider are listed here.

Complexity: There are certain algorithms that simply lend themselves well to

a software implementation over hardware. Sophisticated algorithms that require

recursion or a number of iterations that is not well defined prior to executing the

Table 5.2 Implementation Results for Folded FIR

Registers 938

LUT 249

Speed 120 MHz

80 Chapter 5 High-Level Design

扫码可进资料分享群

code will usually be better suited for software. An example may include a succes-

sive approximation algorithm where certain error functions are monitored to

determine an acceptable stopping point (discussed in Chapter 8). Another

example would be floating-point operations. A simple floating-point calculation

can easily be performed in hardware if the boundary conditions are understood up

front, but to be truly IEEE compliant, a floating-point coprocessor is much more

efficient than a dedicated hardware implementation.

Speed: Any operations that need to run extremely fast are usually targeted

toward the hardware implementation. There will always be a certain amount of

overhead when running an algorithm in software and associated delays due to

other unrelated events. Hardware designs, on the other hand, can be highly opti-

mized for high-throughput or low-latency timing requirements (see Chapter 1).

Repetition: A task that is repeated continuously, even if it is not complex,

could have the effect of slowing down the normal operation of the microproces-

sor. Thus, a microprocessor can often benefit from off-loading very repetitive

tasks to dedicated hardware. Examples may include a function that scans for

events or any type of continuously modulated output.

Real-Time Precision: A microprocessor executes instructions in a specific

order, and any tasks will have to wait to be serviced. The amount of wait time

depends on the priority of the triggering event, but often too many high-priority

events begin to step on each other and the microprocessor cannot service these

events fast enough. Additionally, if a function must be timing accurate down to a

single clock cycle, only a hardware implementation will be able to guarantee this

level of precision.

Operating System or User Interface: If any type of operating system is

required, then a microprocessor (most likely 32 bits) will be required to support

it. Also, if even a simple user interface is required over a common bus format, it

is often easier to use an embedded 8-bit microprocessor with a predefined periph-

eral rather than design something from scratch (this includes bit-banging around

the peripheral itself).

Many of these decisions cannot be made by a machine and depend on the

judgment of the designer. Understanding the criteria for partitioning a design

between hardware and software will be a requirement of system engineers into

the foreseeable future.

5.5 SUMMARY OF KEY POINTS

. Graphical state machines are much easier to read and allow for automatic

speed/area optimizations.

. Of key importance is the readability of the top level of abstraction where

the design takes place. Of less importance is the readability of the autogen-

erated RTL.

. Some abstract design tools such as Synplify DSP allow for automatic archi-

tectural trade-offs such as pipelined versus folded implementations.

5.5 Summary of Key Points 81

扫码可进资料分享群

扫码可进资料分享群

Chapter 6

Clock Domains

Interestingly, a number of traditional textbooks on the topic of digital design,

particularly when referring to FPGAs, take a hard-line stance on using only one

clock domain for an entire design. In other words, only a single net may drive the

clock inputs of all flip-flops in a design. Although this would greatly simplify

timing analysis and eliminate many of the problems associated with multiple

clock domains, the use of only one clock is often not possible due to various

system constraints outside the domain of the FPGA. Oftentimes, FPGAs are used

to pass data between two systems with predefined clock frequencies, receive and

transmit data over multiple I/O interfaces, process asynchronous signals, and to

prototype low-power ASICs with gated clocks. The attempt of this chapter is to

provide practical guidance relative to the problems and solutions associated with

multiple clock domains and asynchronous signals in FPGA designs.

A clock domain, as it is referred to here and in following chapters, is a section of

logic where all synchronous elements (flip-flops, synchronous RAM blocks,

pipelined multipliers, etc) are clocked by the same net. If all flip-flops are clocked

by a global net, say the main clock input to the FPGA, then there is one clock

domain. If there are two clock inputs to the design, say one for “interface 1” and

one for “interface 2” as shown in Figure 6.1, then there are two clock domains.

Gated clocks, derived clocks, and event-driven flip-flops all fall into the category

of clock domains. Figure 6.2 illustrates the creation of a new clock domain through

a simple gated clock. Note that this type of clock control is not recommended

for FPGA designs (one would typically use a clock-enable input on the second bank

of flip-flops), but it serves to illustrate the concept.

During the course of this chapter, we will discuss the following topics in detail:

. Passing signals between two different clock domains.

Cause of metastability and the effect it can have on design reliability

Avoiding metastability through phase control

Double flopping to pass individual signals between clock domains

83

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

FIFOs for passing multibit words between clock domains

Partitioning synchronizer blocks to improve design organization

. Handling gated clocks in ASIC prototypes.

Establishing a single clocks module

Automatic gating removal

6.1 CROSSING CLOCK DOMAINS

The first problem that needs to be addressed when dealing with multiple clock

domains is the issue of passing signals between the domains. There are a number

of reasons clock domain crossing can be a major problem:

1. The failures are not always repeatable. If you have two clock domains that

are asynchronous, then failures are often related to the relative timing

Figure 6.2 Clock domain creation via gated clock.

Figure 6.1 Dual clock domains.

84 Chapter 6 Clock Domains

扫码可进资料分享群

between the clock edges. The clock often comes from an external source

not in any way related to the actual functionality of your device.

2. Problems will vary from technology to technology. Often one will find

that higher speed technologies with smaller setup and hold constraints will

have statistically fewer problems than slower technologies (although due

to other effects this is not always the case). Also, factors such as the

implementation of the synchronous device, such as the manner in which

the output is buffered, will also have a significant impact on the prob-

ability of a failure.

3. EDA tools typically do not detect and flag these problems. Static timing

analysis tools analyze timing based on individual clock zones and will only

perform interclock analysis if they are specified to do so in a specific manner.

4. In general, cross-clock domain failures are difficult to detect and debug if

they are not understood. It is very important that all interclock interfaces

are well defined and handled before any implementation takes place.

Let us first discuss what can go wrong when passing signals between clock

domains. Consider the situation in Figure 6.3 where a signal is passed between

two clock domains.

As shown in Figure 6.4, the slow clock domain has exactly twice the period

of the fast clock domain. The time from the rising edge of the slow clock to the

rising edge of the fast clock is always constant and equal to dC. Due to the

matched phases of these clocks, dC will always remain constant (assuming no

frequency drift) and in this case is always greater than the logic delay plus the

setup time of the flip-flop clocked by “fast clock.”

When these clocks started up, they had a phase relationship that avoided any

setup or hold timing violations. As long as neither clock drifts, no timing viola-

tions will occur, and the device will work as expected. Now consider the scenario

where the same clocks power up with the phase relationship as shown in

Figure 6.5.

In this scenario, the clock edges line up to create a timing violation. This

scenario can occur between any two clock domains of any relative frequencies.

However, if the frequencies are not well matched, the violations will not occur in

such a regular pattern.

Figure 6.3 Simple propagation between clock domains.

6.1 Crossing Clock Domains 85

扫码可进资料分享群

Clock synchronization issues are generally not repeatable and will affect the

reliability of the FPGA design.

Solutions to these problems are discussed later in this chapter, but first we

need to discuss what really happens when setup and hold violations occur. This

topic is covered in the next section.

6.1.1 Metastability

A timing violation occurs when the data input to a flip-flop transitions within a

window around the active clock edge as defined by the setup and hold times. This

timing violation exists because if the setup and hold times are violated, a node

within the flip-flop (an internal node or one that is exposed to the outside world)

can become suspended at a voltage that is not valid for either a logic-0 or logic-1.

In other words, if the data is captured within the window described above, the tran-

sistors in the flip-flop cannot be reliably set to a voltage representing logic-0 or

logic-1. Rather than saturating at a high or low voltage, the transistors may dwell at

an intermediate voltage before settling on a valid level (which may or may not be

the correct level). This is called metastability and is illustrated in Figure 6.6.

Figure 6.4 Timing between clock domains.

Figure 6.5 Phase relationship creates timing violation.

86 Chapter 6 Clock Domains

扫码可进资料分享群

As can be seen in the waveforms, a transition within the boundaries of

the setup and hold conditions means that the output could rise to a voltage level

that is not valid for either logic value. If a flip-flop contains an output buffer,

the metastability may manifest itself as a spurious transition at the output as the

internal signal settles. The amount of time the output can stay metastable is prob-

abilistic, and it is possible for the output to remain metastable for the entire clock

period. Thus, if this metastable value is fed into combinatorial logic, incorrect

operations may occur depending on the thresholds of the logic gates. From a

timing closure standpoint, the delay through the logic from one flip-flop to

another is assumed to be less than the minimum clock period, but with a meta-

stable signal the duration of metastability will consume available path delay.

Clearly, a metastable signal can cause catastrophic functional failures in a design

and will be very inconsistent depending on the relationship of the clock edges.

Metastability can cause catastrophic failures in the FPGA.

One important thing to note about the FPGA design flow is that simulating

the effects of metastability can be very difficult. Digital-only simulators will not

check for setup and hold violations, and then propagate a logic-X (unknown) if

the violation occurs. In an RTL simulation, no setup and hold violations occur,

and thus no signal will ever go metastable. Even with gate-level simulations, that

check for setup and hold violations, it may be a difficult matter to simulate a con-

dition where two asynchronous signals line up to cause a synchronization failure.

This is especially difficult when the design or verification engineer is not looking

for the problem in the first place. Thus, it is extremely important to understand

how to design for reliability and avoid the need to uncover synchronization issues

in simulation. There are a number of solutions to this problem, and these are

discussed in the remainder of this chapter.

Figure 6.6 Metastability caused by timing violation.

6.1 Crossing Clock Domains 87

扫码可进资料分享群

6.1.2 Solution 1: Phase Control

Consider two clock domains of different periods and with an arbitrary phase

relationship. If at least one of the clocks is controllable inside the FPGA via an

internal PLL (Phase locked loop) or DLL (Delay locked loop) and one of the

clocks has a period that is a multiple of the other within the resolution of the PLL

or DLL, then phase matching can be used to eliminate timing violations as shown

below.

Consider the example where a signal is passed from a slow clock domain to a

domain with half the period. Without any guarantee of the phase relationship

between the clocks, timing violations may occur as described above. However, by

using a DLL to derive the faster clock from the first, phase matching can be

achieved.

In Figure 6.7, the DLL adjusts the phase of the faster (capture) clock domain

to match that of the slower (transmitting) clock domain. The total amount of time

available for data to pass between the two domains dC is always at its maximum

possible value. In this case, as long as the propagation delay between the flip-flop

from the slow register to the flip-flop of the fast register is less than the period of

the fast clock, no setup violations will occur. If the skew cannot be tightly

matched in a way to ensure hold time compliance, the fast could also be config-

ured to capture the signal on the falling edge assuming there is enough slack to

maintain setup time compliance.

Figure 6.7 DLL for phase matching.

88 Chapter 6 Clock Domains

扫码可进资料分享群

The phase-control technique can be used when the period of one clock is a mul-

tiple of the other and when one of the clocks can be controlled by an internal

PLL or DLL.

In many cases, the designer does not have the luxury of controlling the phase

relationships between clock domains. In particular, this occurs when specific

timing requirements are imposed on the FPGA from outside the chip or if the

periods of the two clock domains have no relationship to each other. For instance,

if the FPGA is providing an interface between two systems that have very tight

timing requirements imposed on the input and output delays of the chip, adjusting

the phase of either clock may not be possible. Cases such as these arise very fre-

quently, and new methods must be derived for dealing with them. The most

common techniques are discussed in the following sections.

6.1.3 Solution 2: Double Flopping

Double flopping is a technique that can be used when passing single-bit signals

between two asynchronous clock domains. As discussed in previous sections, a

setup or hold violation may cause a node within a flip-flop to become metastable,

and there will be an undefined amount of dwell time before the signal settles at a

valid level. This dwell time adds to the clock-to-out time (and subsequently to the

propagation delay of the path) and may cause a timing violation on the next

stage. This is particularly dangerous if the signal feeds into a control branch or a

decision tree. Unfortunately, there is no good way of predicting how long the

metastability will last, nor is there a good way of back-annotating this information

into the timing analysis and optimization tools. Assuming the two clock domains

are completely asynchronous (phase control is not possible), a very simple way to

minimize the probability of metastability is to use double-flopping. Note that

other texts may refer to these as synchronization bits, dual rank flip-flops, or dual

rank synchronizers.

In the configuration shown in Figure 6.8, the first flop in the synchronizer

circuit (with the input labeled Din) may experience metastability but will have a

chance to settle before it is relatched by the second stage and before it is seen by

other logic structures. This is illustrated in Figure 6.9.

Figure 6.8 Double flopping.

6.1 Crossing Clock Domains 89

扫码可进资料分享群

Here, Dsync is the first flip-flop, and Dout is the output of the second flip-

flop. Dout essentially protects any other circuitry from seeing the metastable

signal and passes it on once the synchronized signal has had a chance to settle.

By adding no logic between the two flip-flops, we maximize the amount of time

provided to the signal to settle.

Double flopping can be used to resynchronize single-bit signals between two

asynchronous clock domains.

In theory, an output could remain metastable indefinitely, but in reality it will

settle due to higher order effects of a real system. As an illustration, think of a

ball parked perfectly at the top of a hill. A small nudge in either direction will

send the ball down one side or the other. Likewise with a metastable logic gate,

the random fluctuations in heat, radiation, and so forth, will push the metastable

output to one state or another.

When sampling an asynchronous signal using the double-flopping technique,

it is not possible to fully predict whether the desired transition will occur on the

clock you expected or the following clock. This is usually not helpful when the

bits are part of a bus containing data (some of the bits may transition a clock later

than its companions) or when the arrival of the data is critical down to the pre-

cision of a single clock. It is useful, however, when used for control signals that

can withstand a variance of +1 clock or more.

For instance, an external event that toggles a bit to trigger an action inside

the FPGA may happen slowly and can handle a delayed reaction time of micro-

seconds or even milliseconds. In this case, a few additional nanoseconds will not

affect the behavior. If the bit driven by the external event feeds into the control

structure of a state machine, the desired transition may be delayed by one clock

cycle using double flopping. However if double flopping is not used, different por-

tions of the decision logic may interpret the metastable state differently and acti-

vate multiple branches in the state machine simultaneously!

Figure 6.9 Double-flop resynchronization.

90 Chapter 6 Clock Domains

扫码可进资料分享群

In addition to digital-only systems, a common scenario is that of a mixed-

signal system that generates asynchronous feedback signals to the FPGA. This is

illustrated in Figure 6.10.

The Verilog code to implement double flopping on an asynchronous signal is

trivial:

module analog_interface(
...
output reg fbr2,
input feedback);
reg fbr1;

always @(posedge clk) begin
fbr1 <= feedback;
fbr2 <= fbr1; //; double flop

end
...

The signal feedback may cause timing violations, and fbr1 may be metastable

for an undetermined time after the clock edge. Therefore, fbr2 is the only

usable signal for other logic.

When using the double-flopping method, it is important to specify timing

constraints such that the signal path between the first and second clock domain

is ignored during timing analysis. Because the double-flop structure resynchro-

nizes the signal, there is no valid synchronous path between the two domains.

In addition, the timing between the flip-flops should be minimized to reduce

the probability that the metastable state is propagated through the second

flip-flop.

Figure 6.10 Resynchronization of analog feedback.

6.1 Crossing Clock Domains 91

扫码可进资料分享群

Timing analysis should ignore the first resynchronization flip-flop and ensure that

the timing between the synchronization flip-flops themselves is minimized.

6.1.4 Solution 3: FIFO Structure

A more sophisticated way of passing data between clock domains is through the

use of a first-in, first-out (FIFO) structure. FIFOs can be used when passing multi-

bit signals between asynchronous clock domains. Very common applications for

FIFOs include passing data between standardized bus interfaces and reading/
writing burstable memory. For example, Figure 6.11 illustrates the interface

between burstable memory and a PCI bus.

Figure 6.11 FIFO in a PCI Application.

92 Chapter 6 Clock Domains

扫码可进资料分享群

FIFOs can be used when passing multibit signals between asynchronous clock

domains.

FIFOs are very useful data structures for a variety of applications, but in the

context of this discussion we will be concerned with its ability to handle bursts of

data that need to be passed between clock domains.

The simplest analogy for a FIFO is a line at the supermarket. Customers

arrive at the checkout at more or less random times and at a particular average

frequency. Sometimes there will be little traffic, and at other times there will

be bursts of customers. The cashiers at the checkout cannot immediately service

every customer as they arrive, and thus a line forms. In an abstract sense, a line

of data is called a queue. Subsequently, the cashiers proceed to service the

customers at a more or less constant frequency regardless of the length of the

line. If the average rate of customers exceeds the rate at which they can be

serviced, the structure will be unsustainable. At that point, either another mechan-

ism must be put in place to service the customers at a faster rate or the rate of

new customers must decrease.

The same principles hold for many types of data transfers. Data may arrive

on one clock domain at essentially random time intervals, some of which may

contain large bursts of traffic. The receiving device, in this case sitting on a differ-

ent clock domain, can only process the data at a particular rate. The queue that is

formed takes place inside a device called a FIFO as shown in Figure 6.12.

With an asynchronous FIFO, data can arrive at arbitrary time intervals on the

transmission side, and the receiving side pulls data out of the queue as it has the

bandwidth to process it. Due to the finite size of any queue implemented with a

FIFO, certain controls need to be in place to prevent an overflow. Two options

are available for this scenario:

. Prior knowledge of the transmission rate (burstable or nonburstable), the

minimum receiving rate, and the corresponding maximum queue size.

. Handshaking controls.

Note that it is not necessary for the clock domain of the transmission device

to run at a faster frequency than the clock domain of the receiving device for an

overflow to occur. A slower clock domain may require fewer clock cycles to pass

Figure 6.12 Asynchronous FIFO.

6.1 Crossing Clock Domains 93

扫码可进资料分享群

data to the FIFO than the number of clock cycles for the receiving side to process

the data. Thus, if handshaking controls are not in place, it is critically important

to understand the worst-case scenario as described above.

Note that if the transmitting side passes data to the FIFO at a rate faster than

the receiving side can handle it for an arbitrary amount of time, the system

simply will become unsustainable as the queue increases indefinitely. Because no

memory device can store an unlimited amount of data, this issue would need to

be addressed at the system architecture level. In general, the transmissions will

arrive in bursts separated by periods of little or no activity. The maximum FIFO

size would then need to be equal to or greater than (depending on the properties

of the receiver) the size of the burst.

In many cases, neither the size of the bursts nor the distribution of the arriv-

ing data can be well defined. In this case, handshaking controls are necessary to

control the data flow into the FIFO. This is often implemented with flags as

shown in Figure 6.13. These include a full flag to inform the transmitting side

that there is no more room in the FIFO and an empty flag to inform the receiving

side that there is no more data to fetch. A state machine may be needed to

manage the handshaking controls as illustrated in Figure 6.13.

FIFOs in FPGAs are typically implemented with a wrapper around a dual-

port RAM. The seemingly trivial flags such as full and empty are in reality the

difficult features to implement. The reason is because the flags for the input con-

trols are often generated by the output stage, and similarly the flags for the output

controls are often generated by the input stage. For instance, the logic that drives

the input data must know whether or not the FIFO is full. This can only be deter-

mined by the amount of data that has been read by the output stage. Likewise, the

logic that reads the data at the output stage must know if there is any new data

available (whether the FIFO is empty). This can only be determined based on the

write pointer from the input stage.

The purpose of the FIFO in this context is to handle the data transfer between

asynchronous clock domains, but in the implementation of the FIFO itself we run

into the same problems with respect to the handshaking flags. To pass the necess-

ary signals from one domain to the other, we must revert to a technique such as

double flopping as discussed in the previous section. Consider the diagram of a

simplified asynchronous FIFO as shown in Figure 6.14.

In Figure 6.14, both the write address and read address must be resynchro-

nized when passed to the other domain for empty and full generation. The problem

that arises is that during the resynchronization of a multibit address, some of the

bits may lag others by a clock cycle, depending on the individual propagation

times of the individual traces. In other words, due to the asynchronous nature of

the two clock domains, some bits may be captured on one edge of the capture

clock, and the others may be captured on the next depending on whether the data

arrives at the first flip-flop with sufficient time prior to the clock edge. This could

be disastrous if some of the bits of a binary address change and others do not, as

the receiving logic will see a completely invalid address not equal to either the

previous or current address.

94 Chapter 6 Clock Domains

扫码可进资料分享群

Figure 6.13 FIFO handshaking.

6.1 Crossing Clock Domains 95

扫码可进资料分享群

This problem is solved by converting the binary address to gray code. A gray

code is a special counter where adjacent addresses differ by only one bit. If every

change to the address toggles only one bit, this eliminates the problem discussed

above. If the one bit that changes is not captured by the next clock edge, the old

address will remain as the synchronized value. Thus, any possibility for an incor-

rect address (something other than the old address and the current address) is

eliminated.

Gray codes can be used to pass multibit counter data between asynchronous

clock domains and are often used inside FIFOs.

An additional point is that just because the addresses that are passed through

the asynchronous boundaries may arrive one clock cycle late does not necessarily

mean that empty or full flags will be asserted incorrectly causing an overflow con-

dition. The worst-case scenario is that the address is delayed. If this occurs when

transferring the address to the read domain, the read logic will simply not realize

that data has been written and will assume an empty condition when there is none.

This will have a small impact on the overall throughput but will not cause an

underflow (read when empty) condition. Similarly with the data that is passed into

the write domain, if the read address is delayed, the write logic will assume that

there is no space to write even though the space exists. This will also have a small

impact on overall throughput but will not cause an overflow (write when full).

FIFOs are common enough that most FPGA vendors provide tools that auto-

matically generate soft cores based on specifications from the user. These custom

FIFOs can then be manually instantiated in the design similar to other blocks of

IP (Intellectual Property). Thus, it is very likely these issues will not have to be

Figure 6.14 Simplified asynchronous FIFO.

96 Chapter 6 Clock Domains

扫码可进资料分享群

addressed by the designer for a specific FIFO implementation in an FPGA.

Similar issues, however, arise very frequently when passing data between

domains, and a good understanding of these design practices are important for the

advanced FPGA designer.

6.1.5 Partitioning Synchronizer Blocks

As a matter of good design practice, the top-level design should be partitioned

such that the synchronizer blocks are contained in individual modules outside of

any functional blocks. This will help to achieve the ideal clock domain scenario

(one clock for the entire design) on a block by block basis. This is illustrated in

Figure 6.15.

This is good partitioning for a number of reasons. First, the timing analysis

on each functional block becomes trivial because it is fully synchronous. Second,

the timing exceptions are easily definable when they apply to the entire sync

block. Third, the synchronizers along with the corresponding timing exceptions

are brought out to the top level lowering the probability that one will be over-

looked due to human error.

Synchronization registers should be partitioned as independent blocks outside of

the functional modules.

There are a number of good design practices similar to this that apply when

designing ASICs to be targeted at an FPGA prototype. This is discussed in the

next section.

6.2 GATED CLOCKS IN ASIC PROTOTYPES

ASIC designs often have very tight requirements for power dissipation, and

because of the flexibility in the design of an ASIC clock tree, it is very common

for gated clocks to be scattered throughout the chip to disable any activity when

it is not required. Although the FPGA prototype for this ASIC will be able to

Figure 6.15 Partitioned synchronizer blocks.

6.2 Gated Clocks in ASIC Prototypes 97

扫码可进资料分享群

emulate the logical functionality, it will not have the same physical characteristics

such as power dissipation. Thus, it is not necessarily a requirement that the FPGA

emulate all low-power optimizations of the ASIC. In fact, due to the coarse

nature of an FPGA’s clock resources, it is not always possible (or desirable) to

emulate this functionality. This section discusses methods to handle these situ-

ations and discusses techniques that can be applied to the ASIC design to make

the FPGA prototyping much easier. For a more in-depth discussion regarding the

use of gated clocks for power optimizations, see Chapter 3.

6.2.1 Clocks Module

If a number of clocks are to be gated in an ASIC, it is recommended that all of

these gating operations are consolidated into a single module dedicated to clock

generation. This is illustrated in Figure 6.16.

Keep all gated clocks inside a dedicated clocks module and separate from the

functional modules.

By keeping all the clock gating inside a single module, it makes the con-

straints easier to deal with as well as any modifications that must be made on the

FPGA prototype. For instance, if the designer chooses to add a compile time

macro to remove all gating elements for the FPGA, this can be easily organized

within a single module. This is described in the following section.

Figure 6.16 Consolidated clocks module.

98 Chapter 6 Clock Domains

扫码可进资料分享群

6.2.2 Gating Removal

There are a number of slick ways to remove the clock gating for an FPGA proto-

type. The following example shows the most obvious, but cumbersome, method.

This code removes all gating functions for the FPGA prototype.

‘define FPGA
// ‘define ASIC

module clocks_block(...)

‘ifdef ASIC
assign clock_domain_1 = system_clock_1 & clock_enable_1;
‘else
assign clock_domain_1 = system_clock_1;
‘endif

If the above format were used for the clocks module, only the define macro

would need to be changed for the FPGA prototype. The downside is that a modifi-

cation is required whenever targeting the FPGA prototype versus the ASIC. Many

designers feel uncomfortable with this because they are not emulating the same

RTL. A superior method would be to use an automatic gating removal tool to

eliminate the probability of human error. Many modern synthesis tools will do

this now with the proper constraints. For example, Synplify has an option called

“fix gated clocks” which automatically moves the gating operation off of the

clock line and into the data path. Consider the following example.

module clockstest(
output reg oDat,
input iClk, iEnable,
input iDat);

wire gated_clock = iClk & iEnable;

always @(posedge gated_clock)
oDat <= iDat;

endmodule

In the above example, the system clock is gated with an enable signal to generate

a gated clock. This gated clock is used to drive the flip-flop oDat, which registers

the input iDat. Without fixing the clock gating, the synthesis tool will implement

this directly.

In the implementation shown in Figure 6.17, the gating operation is placed on

the clock line. Two clock domains now exist, must be constrained independently,

and must be located on independent clocking resources. By enabling the clock

gating removal, however, this gate is easily moved to the data path as shown in

Figure 6.18.

6.2 Gated Clocks in ASIC Prototypes 99

扫码可进资料分享群

Most modern devices now provide a clock enable input which will eliminate

the need for this type of solution. If a particular technology does not provide a

flip-flop clock enable, however, this technique will add delay to the data path.

6.3 SUMMARY OF KEY POINTS

. Clock synchronization issues are generally not repeatable and will affect

the reliability of the FPGA design.

. Metastability can cause catastrophic failures in the FPGA.

. The phase control technique can be used whenever the period of one clock

is a multiple of the other and when one of the clocks can be controlled by

an internal PLL or DLL.

. Double flopping can be used to resynchronize single-bit signals between

two asynchronous clock domains.

. Timing analysis should ignore the first resynchronization flip-flop and

ensure that the timing between the synchronization flip-flops themselves is

minimized.

. FIFOs can be used when passing multibit signals between asynchronous

clock domains.

. Gray codes can be used to pass multibit counter data between asynchronous

clock domains and are often used inside FIFOs.

. Synchronization registers should be partitioned as independent blocks

outside of the functional modules.

. If at all possible, avoid clock gating. If gating is necessary, keep all gated

clocks inside a dedicated clocks module and separate from the functional

modules.

Figure 6.17 Direct clock gating.

Figure 6.18 Clock-gating removal.

100 Chapter 6 Clock Domains

扫码可进资料分享群

Chapter 7

Example Design: I2S Versus

SPDIF

The SPDIF (Sony/Philips Digital Interface Format) and I2S (Inter-IC Sound)

standards have been developed and used by many consumer electronics

manufacturers to provide a means for transmitting digital audio information

between ICs and to eliminate the need to transmit analog signals between devices.

By keeping the signal digital until the conversion to analog can be localized, it

will be less susceptible to noise and signal degradation.

The objective of this chapter is to describe architectures for both I2S and SPDIF

receivers and to analyze the method for recovery of the asynchronous signals and

resynchronization of the audio data.

7.1 I2S

The I2S format is designed to transmit audio data up to sampling rates of

192 kHz in a source-synchronous fashion. By “source-synchronous” we are refer-

ring to the scenario where a clock is transmitted along with the data. With a

source-synchronous signal, it is not necessary to share a system clock between the

transmitting and receiving device. The sample size of the data can be 16 bits to

24 bits and is normalized to full-scale amplitude regardless of sample size. Unlike

the SPDIF format, words of different lengths cannot be interchanged without

defining the new size in the receiver.

The main design issue related to I2S is passing the samples between the

source clock domain to the local clock domain. Because the signal is transmitted

along with the source clock, the data can be easily reconstructed using the source

clock and subsequently resynchronized.

101

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

7.1.1 Protocol

I2S has a very simple three-wire synchronous protocol. The three signals are

defined as follows:

. LRCK (left/right channel select): When LRCK is low, the data belongs to

the left channel, and when LRCK is high, the data belongs to the right

channel.

. BCK (bit clock): This is the source-synchronous clock.

. DATA (serial audio data): This provides raw sample bits from the audio

codes. The bits are synchronous with BCK.

The timing is illustrated with the waveforms shown in Figure 7.1.

As can be seen from these waveforms, LRCK defines the channel

(low ¼ left, high ¼ right), and BCK clocks in the logic value on the DATA line.

All transitions of the LRCK and DATA take place on the falling edge of the

clock, which allows for a small amount of skew in either direction without

violating setup and hold times. The length from the MSB to the LSB is defined

by the word size, which is predefined in some manner depending on the

application. Note that many I2S receivers have multiple modes outside of the

“true” I2S format that are also considered a part of the protocol. These other

formats include right and left justification mode, but here we will only consider

the I2S format described above. Additionally, we will fix the data word size to

16 bits.

7.1.2 Hardware Architecture

The hardware architecture for an I2S module is very simple as shown in

Figure 7.2.

On every rising edge of BCK, the logic value on DATA is clocked into the

shift register. When a transition on LRCK is detected, the data word in the shift

register is loaded into an output register determined by the polarity of LRCK. The

entire I2S circuit uses BCK as the system clock to create a fully synchronous

receiver. The data, once latched in the output register, must be passed to the local

Figure 7.1 I2S timing.

102 Chapter 7 Example Design: I2S Versus SPDIF

扫码可进资料分享群

system clock domain. Thus, the domain transition occurs at the very end of the

I2S data recovery. The implementation is shown below.

module I2S(
output reg oStrobeL, oStrobeR,
output reg [23:0] oDataL, oDataR,
input iBCK, // bit clock
input iSysClk, // local system clock
input iDataIn,
input iLRCK);
reg DataCapture;
reg rdatain;
// registers to capture input data on rising and falling
// edges of clock
reg [23:0] Capture;
// strobes for valid data
reg StrobeL, StrobeR;
reg [2:0] StrobeDelayL, StrobeDelayR;
reg [23:0] DataL, DataR;
reg LRCKPrev;
reg [4:0] bitcounter;
reg triggerleft, triggerright;

wire LRCKRise, LRCKFall;
wire [23:0] DataMux;

// detect edges of LRCK
assign LRCKRise = iLRCK & !LRCKPrev;
assign LRCKFall = !iLRCK & LRCKPrev;

// assuming 16 bit data
assign DataMux = {Capture[15:0], 8’b0};

always @(posedge iBCK) begin
DataCapture <= (bitcounter != 0);
triggerleft <= LRCKRise;
triggerright <= LRCKFall;
rdatain <= iDataIn;
// for detecting edges of LRCK
LRCKPrev <= iLRCK;

Figure 7.2 I2S architecture.

7.1 I2S 103

扫码可进资料分享群

// capture data on rising edge, MSB first
if(DataCapture)

Capture[23:0] <= {Capture[22:0], rdatain};

// counter for left justified formats
if(LRCKRise || LRCKFall)

bitcounter <= 16;
else if(bitcounter != 0)

bitcounter <= bitcounter - 1;

// Load data into register for resynchronization
if(triggerleft) begin

DataL[23:0] <= DataMux;
StrobeL <= 1;

end
else if(triggerright) begin

DataR[23:0] <= DataMux;
StrobeR <= 1;

end
else begin

StrobeL <= 0;
StrobeR <= 0;

end
end

// resynchronize to new clock domain
always @(posedge iSysClk) begin

// delay strobes relative to data
StrobeDelayL <= {StrobeDelayL[1:0], StrobeL};
StrobeDelayR <= {StrobeDelayR[1:0], StrobeR};

// upon the rising edge of the delayed strobe
// the data has settled
if(StrobeDelayL[1] & !StrobeDelayL[2]) begin

oDataL <= DataL; // load output
oStrobeL <= 1; // single cycle strobe in

new domain
end
else

oStrobeL <= 0;

if(StrobeDelayR[1] & !StrobeDelayR[2]) begin
oDataR <= DataR; // load output
oStrobeR <= 1; // single cycle strobe in new

domain
end
else

oStrobeR <= 0;
end

endmodule

104 Chapter 7 Example Design: I2S Versus SPDIF

扫码可进资料分享群

The first step in the above implementation is to detect a transition on LRCK so

we can clear the bit counter. This is implemented in a synchronous fashion as

shown in Figure 7.3.

Next, we need to begin capturing bits into our shift register as shown in Figure 7.4.

Finally, we use the LRCK trigger to load the shift register into the output

register and resynchronize the data with the local clock domain.

7.1.3 Analysis

When capturing and resynchronizing data from a source-synchronous data stream,

there are a number of options available to the designer. The three options

available with the I2S implementation are

1. Using a delayed validity bit to resynchronize the outputs

2. Double flopping the input stream

3. FIFO outputs

In the above implementation, we chose to use a delayed validity bit. Note

that there are a number of design considerations when choosing a method for a

particular implementation. The first consideration is speed. The advantage of the

Figure 7.4 Bit capture.

Figure 7.3 LRCK detection.

7.1 I2S 105

扫码可进资料分享群

above implementation is that it runs at the audio bit clock speed, which in the

worst case (192 kHz) is about 12 MHz. If we were running this module at the

system clock speed, we may have to meet timing at perhaps hundreds of

megahertz. Clearly, timing compliance will be much easier at the slower clock

speed, which will allow the designer flexibility to implement low-area design

techniques and allow the synthesis tool to target a compact implementation. The

disadvantage is the increased complexity of the clock distribution and timing

analysis. The implementation results are shown for each topology at the end of

this section.

The scenario where a FIFO would be required at the outputs would arise

when the receiving system (located behind the I2S interface) cannot handle peri-

odic bursts of data. If the hardware were a pure pipeline or was at least dedicated

to the processing of the incoming audio data, this would not be a problem.

However, if the device that is capturing the data accesses the module through a

shared bus, the data cannot simply present itself as soon as it is available. In this

case, a FIFO provides a clean transition to the new domain as long as the average

data rate on the bus end is greater than the audio data rate as shown in Figure 7.5.

The implementation of Figure 7.5 will require dual-port RAM resources as

well as some control logic to implement the FIFOs. The final implementation

results for all topologies are shown in Table 7.1.

Clearly, there is a significant amount of overhead associated with the FIFO

implementation and it would not be a desirable solution unless required by the

system.

Figure 7.5 FIFO synchronization.

Table 7.1 Implementation Results for I2S Synchronization

Double-flop outputs Double-flop inputs FIFO outputs

Frequency 197 MHz 220 MHz 164 MHz

Flip-flops 62 72 130

LUTs 15 35 62

Clock buffers 2 1 2

Block RAMs 0 0 2

106 Chapter 7 Example Design: I2S Versus SPDIF

扫码可进资料分享群

7.2 SPDIF

The SPDIF format is designed to transmit audio data up to sampling rates of

192 kHz (until recently, the maximum sampling frequency has been locked at

96 kHz, so many devices will not upsample beyond this prior to transmission).

The sample size of the data can be 16 bits to 24 bits and is normalized to full-

scale amplitude regardless of sample size. In other words, additional bits are

automatically detected as additional bits of precision and not an increase in

absolute amplitude. From an implementation perspective, a 16-bit word can be

viewed as a 24-bit word with 8 bits of zeros appended to the least significant bits

of precision. Thus, capturing the data word is the same regardless of word size

(contrast this with I2S, which must have word size and format defined prior to

capture).

The main design issue related to SPDIF is its asynchronous nature. Because

the signal is transmitted via only one wire, there is no way to directly synchronize

to the transmitting device and ultimately the audio signal. All of the information

necessary to recover the clock is encoded into the serial stream and must be

reconstructed before audio information can be extracted.

7.2.1 Protocol

Each sample of audio data is packetized into a 32-bit frame that includes

additional information such as parity, validity, and user-definable bits (the user

bits and even the validity bits are often ignored in many general-purpose devices).

For stereo applications, two frames must be transmitted for each sample period.

Thus, the bit rate must be 32*2*Fs (2.8224 MHz for 44.1 kHz, 6.144 MHz for

96 kHz, etc). The 32-bit packet format is defined in Table 7.2.

In the implementation described in this chapter, we will only decode the

audio data and preamble.

To enable the SPDIF receiver to identify distinct bits as well as to resynchro-

nize the packets, a special one-wire encoding is used called Biphase Mark Code

(BMC). With this form of encoding, the data signal transitions on every bit

regardless of whether it is encoded as a 1 or a 0. The difference between these

Table 7.2 SPDIF Frame Definition

Bits Field

31 Parity (not including the preamble)

30 Channel status information

29 Subcode data

28 Validity (0 ¼ valid)

27 : 4 Audio sample (MSB at bit 27)

3 : 0 Preamble

7.2 SPDIF 107

扫码可进资料分享群

bits is that the SPDIF signal will transition once per bit for a logic-0 and twice

per bit for a logic-1. An example encoding is shown in Figure 7.6.

The first two waveforms shown in Figure 7.6 are the clock and data seen

by the transmitter. In a synchronous transmission medium such as I2S, this

clock as well as the synchronized data are passed to the receiver making the

data recovery trivial. When only one wire is available, the data is encoded in

BMC format as shown in the third waveform. As can be seen from this wave-

form, the clock is encoded into the data stream with the requirement of at least

one transition for every bit. Note that the clock that sources the SPDIF stream

must be twice the frequency of the audio clock to provide two transitions for

every logic-1.

Due to the fact that the encoding of a data bit must transition once per bit,

SPDIF provides a means to synchronize each frame by violating this condition

once per frame. This is performed in the preamble as shown in Table 7.3.

As can be seen from these bit sequences, each preamble violates the tran-

sition rule by allowing a sequence of three consecutive clock periods of the same

level. Detecting these preambles allows the receiver to synchronize the audio data

to the appropriate channel. For a hardware implementation, a clock with a suffi-

cient frequency must be used to be able to not only distinguish the difference

between a logic-0 and a logic-1 (a 2� difference in pulse widths) but also a

difference between a logic-0 and a preamble (a 1.5� difference in pulse widths).

7.2.2 Hardware Architecture

The basic architecture for the SPDIF receiver is shown in Figure 7.7.

Figure 7.6 Example BMC encoding.

Table 7.3 SPDIF preambles

Preamble

SPDIF signal if

last level ¼ 0

SPDIF signal if

last level ¼ 1

Left channel at the start of a data block 11101000 00010111

Left channel not at the start of a data block 11100010 00011101

Right channel 11100100 00011011

108 Chapter 7 Example Design: I2S Versus SPDIF

扫码可进资料分享群

The pulse width detection logic contains a free-running counter that resets

whenever the input from the BMC code toggles. In addition to the counter reset,

the current width is decoded against the running minimum pulse width. If the

current width is greater than 2.5� the minimum pulse width, the pulse is decoded

as a BMC violation and part of the preamble. If the width is greater than 1.5�

the min pulse width, the pulse is decoded as a logic-0. If the width is less than

the running minimum pulse width, it overrides the minimum pulse width, and the

audio data is assumed to be invalid due to the absence of a lock. Otherwise, the

pulse is decoded as half of a logic-1.

If a logic-1 or logic-0 is detected, this bit is shifted into a 24-bit shift register

in preparation for synchronization with the preamble. When a preamble is

detected, the previous frame has completed and can now be decoded based on the

mapping of the various fields. The implementation is shown in the following code.

module spdif(
output reg oDatavalidL, oDatavalidR,
output reg [23:0] oDataL, oDataR,
input iClk, // main system clock used to

sample spdif data
input iSPDIFin);
reg [2:0] inputsr; // input shift register
reg datatoggle; // register pulses high

when data toggles
// counts the width between data transitions
reg [9:0] pulsewidthcnt;
// register to hold width between transitions
reg [9:0] pulsewidth;
reg [9:0] onebitwidth; // 1-bit width reference
// signals that pulsewidth has just become valid
reg pulsewidthvalid;
reg bitonedet; // detect logic-1 capture
reg newbitreg; // new data registered
reg [27:0] framecapture; // captured frame
reg preambledetect;
reg preamblesyncen;
reg channelsel; // select channel based

on preamble

Figure 7.7 SPDIF architecture.

7.2 SPDIF 109

扫码可进资料分享群

reg [5:0] bitnum;
reg [10:0] onebitwidth1p5;

reg onebitload; // load 1-bit reference
width

reg onebitupdown; // 1: reference width
should increment

// width used for comparison against reference
reg [9:0] pulsewidthcomp;
reg onebitgood; // reference is equal to

input width
reg preamblesync; // flags preamble in

spdif stream
reg shiftnewdat; // ok to capture
// load data into output buffer
reg outputload, outputloadprev;
reg pulsewidthsmall, pulsewidthlarge;
reg [11:0] onebitwidth2p5;
wire trigviolation;
wire newbit; // raw data decoded from stream

// flag a violation in BMC code
assign trigviolation = {1’b0, pulsewidth[9:0], 1’b0} >

onebitwidth2p5;

// if width is small, data is 1. Otherwise data is 0
assign newbit = ({pulsewidth[9:0],1’b0} <

onebitwidth1p5[10:0]);

always @(posedge iClk) begin
inputsr <= {inputsr[1:0], iSPDIFin};

// shift data in
// trigger on change in data

datatoggle <= inputsr[2] ^ inputsr[1];

// counter for pulse width
if(datatoggle) begin

// counter resets when input toggles
pulsewidth[9:0] <= pulsewidthcnt[9:0];
pulsewidthcnt <= 2;

end
else

pulsewidthcnt <= pulsewidthcnt + 2;

// width register will be valid 1 clock after the data
toggles

pulsewidthvalid <= datatoggle;

// onebitload checks to see if input period is out of
bounds

// current width is 1/2 1-bit width
pulsewidthsmall <= ({1’b0, onebitwidth[9:1]} >

pulsewidth[9:0]);

110 Chapter 7 Example Design: I2S Versus SPDIF

扫码可进资料分享群

// current width is 4x 1-bit width
pulsewidthlarge <= ({2’b0, pulsewidth[9:2]} >

onebitwidth);
// load new reference if out of bounds
onebitload <= pulsewidthlarge || pulse

widthsmall;

// register width comparison value
if(!newbit)

pulsewidthcomp <= {1’b0, pulsewidth[9:1]};
else

pulsewidthcomp <= pulsewidth[9:0];

// checks to see if reference is equal to input width
onebitgood <= (pulsewidthcomp == onebit

width);
// increment reference if input width is greater than

reference
onebitupdown <= (pulsewidthcomp > onebitwidth);

// keep track of 1-bit width
// load reference if input width is out of bounds
if(onebitload)

onebitwidth <= pulsewidth[9:0];
else if(!onebitgood && pulsewidthvalid) begin

// adjust reference
if(onebitupdown)

onebitwidth <= onebitwidth+1;
else

onebitwidth <= onebitwidth-1;
end

// set onebitwidth*1.5 and onebitwidth*2.5
onebitwidth1p5 <= ({onebitwidth[9:0], 1’b0} +
{1’b0, onebitwidth[9:0]});

onebitwidth2p5 <= ({onebitwidth[9:0], 2’b0} +
{2’b0, onebitwidth[9:0]});

// preamblesync is valid only when last frame has
completed

preamblesyncen <= (bitnum == 0) && datatoggle;
// trigger on preamble in spdif header if input width

> 2.5*reference
preamblesync <= preamblesyncen && trigviolation;

// capture preamble
if(preamblesync)

preambledetect <= 1;
else if(preambledetect && pulsewidthvalid)

preambledetect <= 0;

// set channel
if(preambledetect && pulsewidthvalid)

7.2 SPDIF 111

扫码可进资料分享群

channelsel <= !trigviolation;
else if(trigviolation && pulsewidthvalid)

channelsel <= 0;

newbitreg <= newbit;
// only trigger on a bit-1 capture every other transition
if(!newbitreg)

bitonedet <= 0;
else if(newbit && datatoggle)

bitonedet <= !bitonedet;

// set flag to capture data when bit-0 or bit-1 is valid
shiftnewdat <= pulsewidthvalid && (!newbit ||

bitonedet);

// shift register for capture data
if(shiftnewdat)

framecapture[27:0] <= {newbit, framecapture[27:1]};

// increment bit counter when new bit is valid
// reset bit counter when previous frame has finished
if(outputload)

bitnum <= 0;
else if(preamblesync)

bitnum <= 1;
else if(shiftnewdat && (bitnum != 0))

bitnum <= bitnum + 1;

// data for current frame is ready
outputload <= (bitnum == 31);
outputloadprev <= outputload;

// load captured data into output register
if(outputload & !outputloadprev) begin

if(channelsel) begin
oDataR <= framecapture[23:0];
oDatavalidR <= 1;

end
else begin

oDataL <= framecapture[23:0];
oDatavalidL <= 1;

end
end
else begin

oDatavalidR <= 0;
oDatavalidL <= 0;

end
end

endmodule

The first step in the above architecture is to resynchronize the incoming data stream

to the local system clock. A double-flop technique is used as described in previous

chapters for passing a single bit across domains. This is shown in Figure 7.8.

112 Chapter 7 Example Design: I2S Versus SPDIF

扫码可进资料分享群

Note that the bits that are used for edge detection are bits 2 and 1. Bits 0 and

1 in the shift register are used for clock synchronization only, and bit 2 is used

for the detection of a transition. The synchronized toggle flag in datatoggle is

used to reset the counter for the pulse width as shown in Figure 7.9. Notice how

the synthesis tool was able to utilize the reset and clock enable pins of the flip-

flop elements and eliminate any muxing. This was described in Chapter 2.

The next step is to determine if the pulse width is out of acceptable bounds

and whether we need to reset the running value for a 1-bit width. The logic

shown in Figure 7.10 performs the boundary condition checks and sets a bit to

reload the reference width.

Figure 7.9 SPDIF pulse width counter.

Figure 7.8 Resynchronizing the SPDIF input.

Figure 7.10 Pulse width reference.

7.2 SPDIF 113

扫码可进资料分享群

The next block of logic is to detect a preamble. Figure 7.11 shows the scaling

of the reference width by 2.5 and performing of the frame synchronization.

Note in the implementation of Figure 7.11 that the factor of 2.5 was opti-

mally implemented by a simple shift and add of the original signal. Similarly, we

need to determine if the pulse width is indicating a bit-0 or a bit-1 (assuming the

pulse width is not indicating a preamble).

In the circuit shown in Figure 7.12, the data that is shifted into the frame-

capture shift register is dependent on the width of the current pulse. In other

words, if the current pulse width is less than 1.5� the pulse width of the value of

a single bit width, the data shifted in is a logic-1. Otherwise, the data is a logic-0.

Finally, a transition on the output load is detected (dependent on the bit

counter), the channel is selected, and the frame data is loaded into the appropriate

output register as shown in Figure 7.13.

7.2.3 Analysis

When resynchronizing a signal with an encoding such as BMC, there is no choice

but to sample this signal at the front end and map it into the local clock domain.

No processing can take place until this initial resynchronization occurs. Addition-

ally, the system clock that is used to sample the SPDIF stream must be suffi-

ciently faster than the minimum pulse width of the SPDIF stream itself to provide

Figure 7.11 Preamble detection.

Figure 7.12 Bit detection.

114 Chapter 7 Example Design: I2S Versus SPDIF

扫码可进资料分享群

enough resolution when detecting thresholds in the pulse width. Specifically,

under all relative phases of the sampling clock to the SPDIF stream, we require

the following:

. The pulse width of a logic-0 is between 1.5� and 3� of the minimum

pulse width (logic-1).

. The pulse width of a preamble violation is between 2.5� and 4� of the

minimum pulse width.

. There are at least two clock periods of margin in the thresholds to account

for jitter of either the input stream or the system clock.

Figure 7.14 illustrates the various sampling rates.

As can be seen from this diagram, the criteria for reliable signal recovery is

when we have a sampling rate of at least 8� the maximum clock frequency (full

Figure 7.13 SPDIF output Synchronization

Figure 7.14 SPDIF sampling rates.

Table 7.4 Implementation Results in a Xilinx Spartan-3

XC3S50

Frequency 130 MHz

FFs 161

LUTs 153

7.2 SPDIF 115

扫码可进资料分享群

period for a logic-1). For a 192-kHz sampling rate, this corresponds with a worst-

case timing of: 192 kHz-64*8 ¼ 98.304 MHz. If we target this at a Xilinx

Spartan-3 device with a 10 ns period (allowing for about 100 ps of jitter), we

obtain the results shown in Table 7.4.

Although we can easily achieve the desired frequency, the logic required to

implement the signal recovery is large relative to a source-synchronous system

such as I2S.

116 Chapter 7 Example Design: I2S Versus SPDIF

扫码可进资料分享群

Chapter 8

Implementing Math Functions

This chapter covers a variety of problems encountered when an FPGA designer

attempts to implement a complex math function in an FPGA. Interestingly, most

real-world math problems can be solved by combinations of shift and add oper-

ations. This chapter describes a few of these methods as they relate to division

and trigonometric operations and then also explains how to expand this to a

broader class of functions. In many cases, there are a number of alternative

solutions that require optimizations for a given application.

During the course of this chapter, we will discuss the following topics:

. Methods for performing efficient division for both fixed and floating point

operations.

Basic multiply and shift algorithm for fixed divisors

Iterative division for fixed point operations

The Goldschmidt method for high-throughput, pipelined division operations

. Successive approximation using Taylor and Maclaurin series.

. CORDIC algorithm for trigonometric functions.

8.1 HARDWARE DIVISION

Division operations have always caused headaches for digital logic designers.

Unlike addition, subtraction, or multiplication, there is no simple logic operation

that will generate a quotient. Among other subtle difficulties, division differs from

the other arithmetic operations in that fixed-point operations do not produce a

finite and predictable fixed-point result. There are, however, a number of ways to

deal with this issue. The simplicity of the solution will be entirely application

dependent, but for the sake of discussion we will begin with the simple solutions

requiring specific constraints and then move on to general solutions.

117

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

8.1.1 Multiply and Shift

The multiply and shift method is the simplest solution to the division problem

and is essentially equivalent to multiplying by the inverse of the divisor.

This solution leverages the basic property of binary numbers that a shift to

the least-significant position (a right shift in most HDL representations) will result

in a divide-by-two. If an 8-bit register has a fixed point at bit 4 and contains the

integer value of 3, the register will have the representation shown in Figure 8.1.

With the fixed-point representation defined earlier, the number represented in

Figure 8.1 is equivalent to: 21þ 20 ¼ 3. If we divide by 2, we can perform a right

shift by 1 as shown in Figure 8.2.

The register of Figure 8.2 now holds the value 20þ 221 ¼ 1.5. A simple mul-

tiply and shift technique assumes the divisor is fixed to some constant and defines

the divide operation as a multiply followed by a divide by some power of 2. For

instance, a divide by 7 could be approximated by a multiplication by 73 followed

by a divide by 512 (implemented with a 9-bit right shift). The result is a divide

by 7.013 Greater precision can be achieved by increasing the power of 2 and

increasing the multiplication factor appropriately.

As mentioned previously, this is essentially equivalent to inverting the divisor

and multiplying. Specifically, the divisor is inverted and converted to a unique

fixed-point number (fixed point at the ninth bit in the above example) and then con-

verted back to the original fixed-point format. This technique works well for high-

speed divisions by constant factors or for applications where only a few bits of

precision are required (many bits of precision require large multiply operations).

The multiply and shift method is an easy way to perform division but can only be

used when the divisor is represented in a specific form.

It should be noted that to represent the fractional number properly, some

other device such as an external microprocessor will need to provide an initial

Figure 8.1 Fixed-point representation of 3.

Figure 8.2 Fixed-point representation of 1.5.

118 Chapter 8 Implementing Math Functions

扫码可进资料分享群

inversion. If an external device is defining the divisor, this method can work well.

If the divisor is determined by some other logic and the design does not have the

luxury of this representation, then other methods will be required as described in

the following sections.

8.1.2 Iterative Division

The division algorithm discussed in this section is an example of an algorithm

that falls into a class of digit recurrence methods. Iterative methods typically refer

to successive approximation methods (discussed in the next section), but for con-

sistency with other chapters, we will refer to this as an iterative method as it maps

to similar iterative methods used for compact implementations of other functions.

Iterative division works much like long division with decimal numbers did in

elementary school. One of the advantages in using binary numbers, however,

comes from the fact that certain optimizations can be made in the division

process. Take the following long division example with the binary representations

of 2 divided by 3 as shown in Figure 8.3.

The divider for a fixed-point number can be architected as shown in

Figure 8.4 with a comparator and a subtraction unit. With this architecture, the

dividend is “normalized” to a fixed-point value that is necessarily smaller than

twice the divisor. By doing this, every subsequent shift operation will produce a

new partial quotient that must be less than twice the divisor. This means that the

divisor will “go into” the partial quotient 1 or 0 times. If the divisor is less than

or equal to the partial dividend for the current iteration, a logic-1 is shifted into

the quotient register, otherwise, a logic-0 is shifted in and the partial dividend is

shifted left by 1. After the necessary number of iterations to achieve the desired

precision, the output is postnormalized to shift the data to the proper fixed-point

location (undo the prenormalization).

Figure 8.3 Long division in binary.

Figure 8.4 Simple-fixed point division architecture.

8.1 Hardware Division 119

扫码可进资料分享群

Because of the frequency with which this arises, advanced synthesis tools

such as Synplify Pro will automatically implement this type of structure for fixed-

point operations. If an integer is declared, Synplify Pro will use a 32-bit word and

automatically optimize unused bits.

This compact architecture is useful for fixed-point divisions that can afford the

relatively large latency of an iterative division process.

If more space can be afforded and faster divide operations are required

between arbitrary numbers, more sophisticated techniques are required as

described in the following section.

8.1.3 The Goldschmidt Method

The Goldschmidt method can be used when high-speed division operations need

to be pipelined to maximize throughput. This method falls into a class of successive

approximation algorithms (sometimes called iterative, but not to be confused with

the implementation from the previous section) that approach the true quotient

with each recursion of the algorithm. The nice feature about algorithms such as

Goldschmidt is that they can be pipelined in an efficient manner. In other words, the

hardware can be constructed such that one division operation can be completed on

each edge of the clock and can be implemented with less area than would be required

for a brute-force unrolling of the iterative method discussed in the previous section.

The Goldschmidt method provides a way to pipeline the division process in a

manner that is much more efficient than unrolling the loop of the iterative

method.

The idea behind the Goldschmidt algorithm is to calculate Q ¼ N/D by

approximating the value 1/D for multiplication with N, and then approach the

true quotient through successive approximations. This is useful for large numbers

such as those represented by the IEEE 754 floating-point standard, which has

64-bit operators. Clearly, a look-up table of the order 250 bits (potential size of a

floating-point mantissa) is infeasible, but drastically reduced look-up tables of the

order 210 (a typical value for a Goldschmidt implementation) can be practical.

There are a number of papers that provide a fine theoretical foundation for

the Goldschmidt algorithm. Of particular interest to the design engineer is the

number of iterations required to produce an error within acceptable bounds. The

steps to approximate Q ¼ N/D using the Goldschmidt algorithm are as follows:

1. Move the fixed point for N and D to locations such that N � 1 and D , 2.

In the context of floating-point operations, this is referred to as normaliz-

ing the numerator and denominator.

2. Start with an initial approximation to 1/D by use of a look-up table and

call it L1. Eight to 16 bits of precision is often enough depending on the

application.

3. Calculate the first approximation to q1 ¼ L1N and the error term e1 ¼ L1D

(which will approach 1 as the iterations approach infinity).

120 Chapter 8 Implementing Math Functions

扫码可进资料分享群

4. Iteration begins by assigning L2 ¼ 2e1 (two’s complement).

5. e2 ¼ e1L2 and q2 ¼ q1L2.

6. L3 ¼ 2e2 similar to step 4 and continue with successive iterations.

After each iteration of this algorithm, ei approaches 1 (the denominator D multi-

plied by 1/D), and qi approaches the true quotient Q. To calculate the bounded

error value based on the number of iterations and number of bits in your system,

refer to one of the many papers that discusses this algorithm from a more rigorous

sense. In practice, 4–5 iterations often provides sufficient accuracy for 64-bit

floating-point (53-bit fixed-point) calculations.

The following example illustrates the use of the Goldschmidt algorithm.

module div53(
output [105:0] o, // quotient
input clk,
input [52:0] a, b); // dividend and divisor
reg [261:0] mq5;
reg [65:0] k2;
reg [130:0] k3;
reg [130:0] k4;
reg [130:0] k5;
reg [52:0] areg, breg;
reg [65:0] r1, q1;
reg [130:0] r2, q2;
reg [130:0] r3, q3;
reg [130:0] q4;
wire [13:0] LutOut;
wire [13:0] k1;
wire [66:0] mr1, mq1;
wire [131:0] mr2, mq2;
wire [261:0] mr3, mq3;
wire [261:0] mr4, mq4;

gslut gslut(.addr(b[51:39]),
.clk(clk),
.dout(LutOut));

assign k1 = LutOut;

assign o = mq5[261-1:261-1-105];

assign mr1 = breg * k1;
assign mq1 = areg * k1;

assign mr2 = r1 * k2;
assign mq2 = q1 * k2;

assign mr3 = k3 * r2;
assign mq3 = k3 * q2;

assign mr4 = k4 * r3;
assign mq4 = k4 * q3;

8.1 Hardware Division 121

扫码可进资料分享群

always @(posedge clk) begin
areg <= a;
breg <= b;

r1 <= mr1[65:0];
k2 <= ~mr1[65:0] + 1;
q1 <= mq1[65:0];

r2 <= mr2[130:0];
k3 <= ~mr2[130:0] + 1;
q2 <= mq2[130:0];

r3 <= mr3[260:130];
k4 <= ~mr3[260:130] + 1;
q3 <= mq3[260:130];

k5 <= ~mr4[260:130] + 1;
q4 <= mq4[260:130];

mq5 <= k5 * q4;
end

endmodule

In the above example, a 53-bit division is performed (as may be required by the

IEEE 754 standard for 64-bit floating-point numbers) using a fully pipelined archi-

tecture. The inputs are assumed to be normalized (and thus instantiated somewhere

in the hierarchy), and no overflow checks are performed. It is noted that this is

fully expanded for maximum speed (one operation per clock) but will also be rela-

tively large when synthesized. Possible area optimizations include the use of a

single multiplier using a state machine to iterate through the product coefficients

and/or the use of a compact multiplier that uses repetitive shift-add operations.

8.2 TAYLOR AND MACLAURIN SERIES
EXPANSION

Taylor and Maclaurin series expansions can be used to break down operations

such as exponentials, trigonometric functions, and logarithms into simple multiply

and add operations that are better suited for hardware. The general form of the

Taylor expansion is shown in Equation (8.1),

T(x) ¼
X1

0

f(n)(a)(x � a)n

n!
(8:1)

where f(n) is the n-th derivative of f. Commonly in practice, a ¼ 0, and the above

expansion simplifies to the Maclaurin series as shown in Equation (8.2):

M(x) ¼
X1

0

f(n)(0)(x)n

n!
(8:2)

122 Chapter 8 Implementing Math Functions

扫码可进资料分享群

Methods for creating the expansion functions are covered in many other

texts, and in practice the most common functions are already well defined. Some

useful expansions are listed in Figure 8.5.

Figure 8.6 illustrates the sine wave approximation as the order of the series

expansion is increased. Clearly, the accuracy as well as the desired range will

determine the order of the approximation.

From the expansions of Figure 8.5, the usefulness of Taylor and Maclaurin

series expansions should be readily evident. All denominators are fixed numbers

Figure 8.5 Useful expansions.

Figure 8.6 Sine wave approximations.

8.2 Taylor and Maclaurin Series Expansion 123

扫码可进资料分享群

that can be inverted ahead of time and applied as a fixed-point multiplication as

described in previous sections.

Taylor and Maclaurin series expansions can be used to break down complex

functions into multiply and add operations that are easily implemented in

hardware.

The primary drawbacks to a series expansion algorithm are both the number

of multiplies required and the time required to properly iterate. These two are

often related as a very compact architecture would require shift-and-add multi-

pliers that set the algorithm into potentially hundreds of clock cycles. The next

section describes an algorithm that uses binary approximation via vector rotation

that can dramatically increase the speed of the approximation.

8.3 THE CORDIC ALGORITHM

The CORDIC (coordinate rotation digital computer) method is a successive

approximation algorithm that is useful for calculating the trigonometric functions

sine and cosine very efficiently. CORDIC uses a sequence of vector rotations to

calculate trigonometric functions with successive approximation. To conceptual-

ize, consider the following graph-based technique for calculating sine and cosine:

1. Draw a vector on the x–y plane with a magnitude of 1 and a phase of 0

as shown in Figure 8.7.

2. Begin rotating the vector counterclockwise until the desired angle is

reached. Maintain a magnitude of 1 as shown in Figure 8.8.

3. Note the (x, y) coordinates at the desired angle. The sine is simply the y

value, and the cosine is the x value (the hypotenuse is 1, so sin ¼ y/1 and

cos ¼ x/1). This is illustrated in Figure 8.9.

In a hardware implementation, the vector rotation is performed by making

adjustments in increments of 90 degrees divided by successively larger powers of

2 (successively smaller angle increments) and updating the x–y coordinates for

each jump. The decision to add or subtract the current incremental value depends

on where the algorithm is relative to the target angle. Thus, we successively

Figure 8.7 CORDIC initialization.

124 Chapter 8 Implementing Math Functions

扫码可进资料分享群

approach the desired angle in progressively smaller increments. The iterative

equations are defined as follows:

xiþ1 ¼ Ki½Xi � yidi2
�i�

yiþ1 ¼ Ki½yi þ xidi2
�i�

Ki ¼ (1þ 2�2i)�1=2

Note that Ki is a fixed value determined by the iteration stage and approaches

0.60725. . . as i approaches infinity. The decision term di is 1 if the target angle is

greater than the cumulative angle (increase the angle by increasing y and decreas-

ing x). Similarly, di is 21 if the target angle is less than the cumulative angle

(decrease the angle by decreasing y and increasing x). In a practical application,

the designer would calculate Ki ahead of time based on the number of iterations

and apply this at the end of the calculation as a constant factor. For a theoretical

proof of these equations, the reader may refer to one of the many papers pub-

lished on the topic of CORDIC theory.

For most implementations, the recursion operates on add/subtract and com-

parison operations, all of which can easily be performed in a single clock cycle.

Thus, the algorithm will run much faster or for a given speed can be implemented

with fewer gates than required by a Taylor approximation. The only multiply

operations are those that occur once at the very end of the calculation and are

constant factor multiplications that can be further optimized.

Figure 8.8 CORDIC rotation.

Figure 8.9 Final CORDIC angle with sine and cosine.

8.3 The CORDIC Algorithm 125

扫码可进资料分享群

The CORDIC algorithm should be preferred over a Taylor expansion for the cal-

culation of sine and cosine operations.

8.4 SUMMARY OF KEY POINTS

. The multiply and shift method is an easy way to perform division but can

only be used when the divisor is represented in a specific form.

. This compact architecture is useful for fixed-point divisions that can afford

the relatively large latency of an iterative division process.

. The Goldschmidt method provides a way to pipeline the division process in

a manner that is much more efficient than unrolling the loop of the iterative

method.

. Taylor and Maclaurin series expansions can be used to break down

complex functions into multiply and add operations that are easily

implemented in hardware.

. The CORDIC algorithm should be preferred over a Taylor expansion for

the calculation of sine and cosine operations.

126 Chapter 8 Implementing Math Functions

扫码可进资料分享群

Chapter 9

Example Design:

Floating-Point Unit

Most of the implementations in the previous chapter described manipulations of

fixed-point numbers. If calculations are taking place over a very wide range of

numbers, however, a floating-point representation may be required. The floating-

point unit (FPU) described in this section is a hardware model for the IEEE

754-1985 floating-point standard. The objective of this chapter is to describe a

pipelined architecture for implementing add and subtract operations and to

analyze the implementation.

9.1 FLOATING-POINT FORMATS

According to the IEEE standard, a floating-point number contains a sign bit, an

exponent, and a mantissa. For the 32-bit standard, the format is illustrated in

Figure 9.1.

When not considering the boundary conditions or the maximization of the

full numerical range of a given floating-point representation, floating-point add

and subtract operations are very simple to implement via manipulation of the

mantissa and exponents. However, for compliance with the IEEE standard, the

aforementioned considerations must be taken into account. In particular, a region

called the “subnormal region” is a provision in the standard to provide additional

precision for numbers near the low end of the numerical representation. The

normal and subnormal regions are defined in Table 9.1.

Note that there are a number of other of conditions including infinity, NaN

(not-a-number), and so forth. We will not discuss these additional formats in this

chapter.

127

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

9.2 PIPELINED ARCHITECTURE

The FPU is implemented with a fully pipelined architecture. This architecture

maximizes performance for high-speed applications, allowing the user to apply

new inputs on every clock edge. Figure 9.2 illustrates the various functional

blocks and the flow of the pipeline.

The first step is to detect whether we are operating in the subnormal region

(with exponent ¼ 0). The circuit shown in Figure 9.3 appends a logic-1 to the

MSB of the mantissa if we are in the normal region and a logic-0 if we are in the

subnormal region.

Next, the smaller of the two numbers must be normalized such that the expo-

nents of the mantissas are equal.

In Figure 9.4, the mantissa of the smaller number is shifted by the difference

between the two exponents. The addition/subtraction operation can now operate

on the two mantissas. If the sign of the two floating-point numbers are the same,

the mantissas can add, but otherwise they will subtract. The logic is shown in

Figure 9.5.

Finally, the resulting mantissa must be shifted into the proper floating-point

format (1.xxx for normal representation, 0.xxx for subnormal). The mantissa is

postnormalized, and the resulting shift is subtracted from the exponent. This is

shown in Figure 9.6.

Table 9.1 Normal and Subnormal Regions

Region Condition Representation

Normal 0 , exponent , 255 (21)s � 2e2127
� 1.m

Subnormal exponent ¼ 0 (21)s � 22126
� 0.m

Figure 9.1 32-bit floating point representation.

Figure 9.2 Fully pipelined FPU.

128 Chapter 9 Example Design: Floating-Point Unit

扫码可进资料分享群

All overflow and special condition operations are performed with compara-

tors and multiplexers as shown in the final Verilog implementation but are not

shown in these logic diagrams. Finally, because the design is pipelined, a new

floating-point operation may take place on every clock edge. The following list

describes the steps necessary to perform a floating-point addition:

1. Present the operands OpA and OpB to the input. They will be clocked in

on the next rising edge of Clk.

2. Present the control signals AddSub and Rmode (rounding mode) to the

input synchronous to OpA and OpB. These four inputs define an operation

that will begin on the next rising edge of Clk.

3. When the Add-Sub operation has completed, the operation output

becomes valid synchronous with all of the condition flags.

Figure 9.4 Mantissa normalization.

Figure 9.3 Subnormal detection.

Figure 9.5 Sign detection.

9.2 Pipelined Architecture 129

扫码可进资料分享群

F
ig
u
re

9
.6

P
o
st
-n
o
rm

al
iz
at
io
n
.

130

扫码可进资料分享群

9.2.1 Verilog Implementation

// Floating point addition according to the IEEE 754 standard.
//

‘define ROUNDEVEN 2’b00
‘define ROUNDZERO 2’b01
‘define ROUNDUP 2’b10
‘define ROUNDDOWN 2’b11

// other
‘define INF 31’b1111111100000000000000000000000
‘define INDVAL 31’b1111111110000000000000000000000
‘define LARGESTVAL 31’b1111111011111111111111111111111

module FPAdd(
output [31:0] oFPSum, // floating

point sum
output oIneAdd, // inexact

addition
output oOverflowAdd, // overflow

from addition
input iClk,
input [31:0] iFP1, iFP2, // floating

point inputs
input [1:0] iRMode, // rounding

mode
// "Not a number" was input
input iSNaNS5);

wire [47:0] Man2Shifted; // shifted
mantissa

wire [48:0] ManS2Norm, ManS2SubnormalNorm; // normalized
mantissa

// amount shifted during normalization
wire [7:0] NormShiftedS2;
// number of times to shift mantissa if result is sub-normal
wire [7:0] ShiftSubNormalS2;
// Value to be subtracted for rounding adjustment
wire RoundAdjS2;
// amount to shift second mantissa
wire [7:0] ShiftVal;
// input mantissas in stage 0
wire [23:0] Man1, Man2;
wire IneAddS0;
wire [22:0] ManS4p1;
// adjusted exponent in stage 3
wire [7:0] ExpOutS4;
wire coS4;

9.2 Pipelined Architecture 131

扫码可进资料分享群

// staged sign bits
reg Sign1S2, Sign2S2, SignS3, SignS4, SignS5;
// normalized mantissa
reg [48:0] ManS3Norm, ManS3SubnormalNorm, ManSubNormAdjS3;
// staged exponent bits
reg [7:0] ExpS2, ExpS3, ExpS4;
// staged mantissa values
reg [48:0] ManS2, ManS3, ManS4, ManS5;
// staged inexact flags
reg IneAddS1, IneAddS2, IneAddS3, IneAddS4, IneAddS5;
// staged rounding mode values
reg [1:0] RModeS0, RModeS1, RModeS2, RModeS3, RModeS4,
RModeS5;

// flags if operation was subtract
reg SubS2, SubS3, SubS4;
// flags if mantissa is zero
reg ManZeroS3;
// input sign
reg s1, s2;
// input exponent
reg [7:0] e1, e2;
// input mantissa
reg [22:0] f1, f2;
// flags a round-down adjustment
reg ExpAdjS4;
reg ManZeroS2;
reg [7:0] NormShiftedS3;
// shifted mantissa
reg [47:0] Man2ShiftedS1;
reg [23:0] Man1S1;
// adjusted floating point inputs: swap so first is larger
reg [31:0] FP1Adj, FP2Adj;
// mantissa stage 3, and man stage 3 plus 1
reg [22:0] ManS5Out, ManS5p1;
// carry out from plus 1 operation
reg coS5;
// adjusted exponent in stage 3
reg [7:0] ExpOutS5;
// flags a swap of input operators
reg SwapS0;
reg [7:0] ShiftValSwapS0, ShiftValNoSwapS0;
reg RoundAdjS3;

assign Man1 = (FP1Adj[30:23] == 0) ? {1’b0,
FP1Adj[22:0]} :
// if e1=0, then it is subnormal
{1’b1, FP1Adj[22:0]};

132 Chapter 9 Example Design: Floating-Point Unit

扫码可进资料分享群

assign Man2 = (FP2Adj[30:23] == 0) ? {1’b0,
FP2Adj[22:0]} :
{1’b1, FP2Adj[22:0]};

// shift less 1 if the smaller value is subnormal and
larger is not

assign ShiftVal = SwapS0 ? ShiftValSwapS0 :
ShiftValNoSwapS0;

// stage 3 mantissa plus 1
assign {coS4, ManS4p1} = ManS4[47:25] + 1;

assign ExpOutS4 = ExpS4 - ExpAdjS4;

// adjust for rounding mode
// - if rounding away from infinity, then we end up at

largest value
assign oFPSum = ((ExpOutS5 == 8’hff) & !iSNaNS5 &

(RModeS5 == ‘ROUNDEVEN)) ?
{SignS5, ‘INF } :
((ExpOutS5 == 8’hff) & !iSNaNS5 &
(RModeS5 == ‘ROUNDZERO)) ?
{SignS5, ‘LARGESTVAL } :
((ExpOutS5 == 8’hff) & !iSNaNS5 &
(RModeS5 == ‘ROUNDUP) & !SignS5) ?
{1’b0,‘INF } :
((ExpOutS5 == 8’hff) & !iSNaNS5 &
(RModeS5 == ‘ROUNDUP) & SignS5) ?
{1’b1, ‘LARGESTVAL } :
((ExpOutS5 == 8’hff) & !iSNaNS5 &
(RModeS5 == ‘ROUNDDOWN) & !SignS5) ?
{1’b0, ‘LARGESTVAL } :
((ExpOutS5 == 8’hff) & !iSNaNS5 &
(RModeS5 == ‘ROUNDDOWN) & SignS5) ?
{1’b1,‘INF } :
((ExpOutS5 == 8’hff) && iSNaNS5) ?
{SignS5, ExpOutS5, 1’b1,
ManS5Out[21:0]} :
{SignS5, ExpOutS5 + (coS5 &
(ManS5Out == ManS5p1)), ManS5Out};
// adjust exponent if there is a

carry over

// overflow if we reached our maximum value
assign oOverflowAdd = ((oFPSum[30:0] == ‘LARGESTVAL) &

({ExpOutS5, ManS5Out} !=
‘LARGESTVAL));

// inexact also if there is overflow or if there are
truncated bits

assign oIneAdd = IneAddS5 | oOverflowAdd |
(|ManS5[24:0]);

9.2 Pipelined Architecture 133

扫码可进资料分享群

// number of times to shift mantissa if result is subnormal
assign ShiftSubNormalS2 = ExpS2 + (ExpS2 == 0); // shift at

least
once

// Rounding conditions to subtract 1 from result
assign RoundAdjS2 = ((RModeS2 == ‘ROUNDZERO) &

IneAddS2 & SubS2 & ManZeroS2) |
((RModeS2 == ‘ROUNDDOWN) &
IneAddS2 &
!Sign1S2 & SubS2 & ManZeroS2) |
((RModeS2 == ‘ROUNDUP) &
IneAddS2 & Sign1S2 & SubS2 &
ManZeroS2);

// pre-normalize second operator so that decimals are
aligned

PreNormAdd PreNormAdd (.iPreShift(Man2),
.iShiftVal(ShiftVal),
.oPostShift(Man2Shifted),
.oIneAdd(IneAddS0));

// normalize result by shifting mantissa and adjusting
// exponent by NormShifted
PostNormAdd PostNormAdd (.iMantissa(ManS2),

.oMantissaNorm(ManS2Norm),

.oNormShifted(NormShiftedS2));

// normalization if result is sub normal
NormSubNormalAdd NSNA (.iPreShift(ManS2),

.oPostShift(ManS2SubnormalNorm),

.iShiftVal(ShiftSubNormalS2));

always @(posedge iClk) begin
// Stage 0
// First FP must be bigger than the second
// if not, then swap the two
if(iFP1[30:0] > iFP2[30:0]) begin

FP1Adj <= iFP1;
FP2Adj <= iFP2;
SwapS0 <= 0;

end
else begin

FP1Adj <= iFP2;
FP2Adj <= iFP1;
SwapS0 <= 1;

end
ShiftValNoSwapS0 <= iFP1[30:23]-iFP2[30:23] -

((iFP2[30:23] == 0) &
(iFP1[30:23] != 0));

134 Chapter 9 Example Design: Floating-Point Unit

扫码可进资料分享群

ShiftValSwapS0 <= iFP2[30:23]-iFP1[30:23] -
((iFP1[30:23] == 0) &
(iFP2[30:23] != 0));

RModeS0 <= iRMode;

// Stage 1
{s1, e1, f1} <= FP1Adj; // pick out fields from

raw FP values
{s2, e2, f2} <= FP2Adj;
RModeS1 <= RModeS0;
IneAddS1 <= IneAddS0;
Man2ShiftedS1 <= Man2Shifted;
Man1S1 <= Man1;

// Stage 2
Sign1S2 <= s1;
Sign2S2 <= s2;
ExpS2 <= e1;
RModeS2 <= RModeS1;
IneAddS2 <= IneAddS1;
ManZeroS2 <= (Man2ShiftedS1 == 0); // flags

addition
to zero

// add or sub mantissa values
if(s1 == s2) begin // add mans if signs equal

ManS2 <= {Man1S1, 24’b0} + Man2ShiftedS1;
SubS2 <= 0;

end
else begin // subtract mans if signs opposite

ManS2 <= {Man1S1, 24’b0} - Man2ShiftedS1;
SubS2 <= 1;

end

// Stage 3
SignS3 <= Sign1S2;
ExpS3 <= ExpS2;
IneAddS3 <= IneAddS2;
RModeS3 <= RModeS2;
ManZeroS3 <= ManZeroS2;
SubS3 <= SubS2;
ManS3 <= ManS2;
ManS3Norm <= ManS2Norm;
ManS3SubnormalNorm <= ManS2SubnormalNorm;
NormShiftedS3 <= NormShiftedS2;
ManSubNormAdjS3 <= ManS2SubnormalNorm - RoundAdjS2;
RoundAdjS3 <= RoundAdjS2;

// Stage 4
RModeS4 <= RModeS3;

9.2 Pipelined Architecture 135

扫码可进资料分享群

// zeroth bit shifted out of mantissa - if 1 then inexact
IneAddS4 <= IneAddS3;
SubS4 <= SubS3;

if(ManS3 == 0) begin
// sign depends on rounding mode
SignS4 <= ((RModeS3 == ‘ROUNDDOWN) &

(SubS3 | SignS3)) |
((RModeS3 == ‘ROUNDEVEN) &
(!SubS3 & SignS3)) |
((RModeS3 == ‘ROUNDZERO) &
(!SubS3 & SignS3)) |
((RModeS3 == ‘ROUNDUP) &
(!SubS3 & SignS3));

// if the total mantissa is zero, then result is zero
// and therefore exponent is zero

ExpS4 <= 0;
ExpAdjS4 <= 0;
ManS4 <= ManS3Norm; // normalized result

end
else if((ExpS3 < NormShiftedS3) & (NormShiftedS3 != 1)) begin

// the result is a subnormal number
SignS4 <= SignS3;
ExpS4 <= 0;
ExpAdjS4 <= 0;
ManS4 <= ManSubNormAdjS3; // adjust for

rounding mode
end
else begin

// otherwise, the final exponent is reduced by the
number of

// shifts to normalize the mantissa
SignS4 <= SignS3;
ExpS4 <= ExpS3 - NormShiftedS3 + 1 +

(ExpS3 == 0);
ExpAdjS4 <= (RoundAdjS3 &

(ManS3Norm[47:24] == 0));
ManS4 <= ManS3Norm - {24’b0, RoundAdjS3,

24’b0};
end

// Stage 5
SignS5 <= SignS4;
RModeS5 <= RModeS4;
ManS5p1 <= ManS4p1;
IneAddS5 <= IneAddS4;
ManS5 <= ManS4;
coS5 <= coS4;

136 Chapter 9 Example Design: Floating-Point Unit

扫码可进资料分享群

// adjust for rounding mode
// - various conditions to round up
ManS5Out <= (RModeS4 == ‘ROUNDEVEN &((ManS4[24]&

|ManS4[23:0])|(ManS4[24] & ManS4[25]&
((SubS4 & !IneAddS4)|!SubS4)))?
ManS4p1:
(RModeS4 == ‘ROUNDUP)&((|ManS4[24:0]&
!SignS4)|(IneAddS4 & !SignS4 &
!SubS4))?
ManS4p1 : (RModeS4 == ‘ROUNDDOWN) &
((|ManS4[24:0] & SignS4) | (IneAddS4 &
SignS4 & !SubS4)) ? ManS4p1 :
ManS4[47:25];

ExpOutS5 <= ExpOutS4;
end
endmodule

9.2.2 Resources and Performance

This section reports the resource utilization of the Add-Sub module targeted at

various architectures as well as performance measurements. The pipelined archi-

tecture is designed for maximum throughput and therefore has many pipelining

registers and parallel logic. The implementation results are shown in Table 9.2.

The throughput at the maximum frequency is 3.52 Gbps. Note that we can

avoid register duplication by targeting a slower frequency. At the low end, we

can achieve a throughput of 2.08 Gbps.

Much of the area in a true IEEE floating-point calculation is related to the

subnormal region, overflow conditions, and the detection of various conditions of

the input/output including infinity, not-a-number, and so forth. If a given appli-

cation does not have the requirement to be IEEE compliant and the range can be

bounded within the normal region of the floating-point representation, the design

can be implemented with about half the resources shown in Table 9.2.

Table 9.2 Implementation in a Xilinx Spartan-3

Frequency 65 MHz 110 MHz

FFs 538 1087

LUTs 2370 2363

9.2 Pipelined Architecture 137

扫码可进资料分享群

扫码可进资料分享群

Chapter 10

Reset Circuits

Despite their critical importance, reset circuits are among the most often

ignored aspects of an FPGA design. A common misconception among FPGA

designers is that reset synchronization is only important in ASIC design and

that the global reset resources in the FPGA will handle any synchronization

issues. This is simply not true. Most FPGA vendors provide library elements with

both synchronous and asynchronous resets and can implement either topology.

Reset circuits in FPGAs are critically important because an improperly designed

reset can manifest itself as an unrepeatable logical error. As mentioned in

previous chapters, the worst kind of error is one that is not repeatable.

This chapter discusses the problems associated with improperly designed resets

and how to properly design a reset logic structure. To understand the impact reset

has on area, see Chapter 2.

During the course of this chapter, we will discuss the following topics:

. Discussion of asynchronous versus synchronous resets.

Problems with fully asynchronous resets

Advantages and disadvantages of fully synchronous resets

Advantages of asynchronous assertions, synchronous deassertion of reset

. Issues involved with mixing reset types.

Flip-flops that are not resettable

Dealing with internally generated resets

. Managing resets over multiple clock domains.

139

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

10.1 ASYNCHRONOUS VERSUS SYNCHRONOUS

10.1.1 Problems with Fully Asynchronous Resets

A fully asynchronous reset is one that both asserts and deasserts a flip-flop asyn-

chronously. Here, asynchronous reset refers to the situation where the reset net is

tied to the asynchronous reset pin of the flip-flop. Additionally, the reset assertion

and deassertion is performed without any knowledge of the clock. An example

circuit is shown in Figure 10.1.

The code for the asynchronous reset of Figure 10.1 is trivial:

module resetff(
output reg oData,
input iClk, iRst,
input iData);

always @(posedge iClk or negedge iRst)
if(!iRst)

oData <= 0;
else

oData <= iData;
endmodule

The above coding for a flip-flop is very common but is very dangerous if the

module boundary represents the FPGA boundary. Reset controllers are typically

interested in the voltage level they are monitoring. During power-up, the reset

controller will assert reset until the voltage has reached a certain threshold. At

this threshold, the logic is assumed to have enough power to operate in a valid

Figure 10.1 Example asynchronous

reset source.

140 Chapter 10 Reset Circuits

扫码可进资料分享群

manner, and so the reset is deasserted. Likewise during a power-down or a brown-

out condition, reset is asserted when the voltage rail drops below a corresponding

threshold. Again, this is done with no thought to the system clock of the device

that is being reset.

The biggest problem with the circuit described above is that it will work

most of the time. Periodically, however, the edge of the reset deassertion will be

located too close to the next clock edge and violate the reset recovery time. The

reset recovery time is a type of setup timing condition on a flip-flop that defines

the minimum amount of time between the deassertion of reset and the next rising

clock edge as shown in Figure 10.2.

As can be seen in the waveform of Figure 10.2, the reset recovery con-

dition is met when the reset is deasserted with an appropriate margin before

the rising edge of the clock. Figure 10.3 illustrates a violation of the reset

recovery time that causes metastability at the output and subsequent unpredict-

able behavior.

Reset recovery time violations occur at the deassertion of reset.

It is important to note that reset recovery time violations only occur on the

deassertion of reset and not the assertion. Therefore, fully asynchronous resets are

not recommended. The solutions provided later in this chapter regarding the reset

recovery compliance will be focused on the transition from a reset state to a func-

tional state.

Figure 10.2 Reset recovery time.

Figure 10.3 Reset recovery time violation.

10.1 Asynchronous Versus Synchronous 141

扫码可进资料分享群

10.1.2 Fully Synchronized Resets

The most obvious solution to the problem introduced in the preceding section is

to fully synchronize the reset signal as you would any asynchronous signal. This

is illustrated in Figure 10.4.

The code to implement a fully synchronous reset is similar to the double-

flopping technique for asynchronous data signals.

module resetsync(
output reg oRstSync,
input iClk, iRst);
reg R1;

always @(posedge iClk) begin
R1 <= iRst;
oRstSync <= R1;

end
endmodule

The advantage to this type of topology is that the reset presented to all func-

tional flip-flops is fully synchronous to the clock and will always meet the reset

recovery time conditions assuming the proper buffering is provided for the high

fan-out of the synchronized reset signal. The interesting thing about this reset

topology is actually not the deassertion of reset for recovery time compliance as

discussed in the previous section but rather the assertion (or more specifically

the duration of reset). In the previous section, it was noted that the assertion of

reset is not of interest, but that is true only for asynchronous resets and not

necessarily with synchronous resets. Consider the scenario illustrated in

Figure 10.5.

Figure 10.4 Fully synchronized reset.

142 Chapter 10 Reset Circuits

扫码可进资料分享群

Here, a single reset is synchronized to a fast clock domain and a relatively

slow clock domain. For purposes of illustration, this could also be a non-periodic-

enabled clock. What happens to the circuit’s ability to capture the reset under

conditions where the clock is not running? Consider the waveforms shown in

Figure 10.6.

In the scenario where the clock is running sufficiently slow (or when the

clock is gated off), the reset is not captured due to the absence of a rising clock

edge during the assertion of the reset signal. The result is that the flip-flops within

this domain are never reset.

Fully synchronous resets may fail to capture the reset signal itself (failure of

assertion) depending on the nature of the clock.

For this reason, fully synchronous resets are not recommended unless the

capture of the reset signal (reset assertion) can be guaranteed by design. Combin-

ing the last two reset types into a hybrid solution that asserts the reset asynchro-

nously and deasserts the reset synchronously would provide the most reliable

solution. This is discussed in the next section.

Figure 10.5 Fully synchronous reset with slow/gated clock.

Figure 10.6 Reset synchronization failure.

10.1 Asynchronous Versus Synchronous 143

扫码可进资料分享群

10.1.3 Asynchronous Assertion, Synchronous
Deassertion

A third approach that captures the best of both techniques is a method that asserts

all resets asynchronously but deasserts them synchronously.

In Figure 10.7, the registers in the reset circuit are asynchronously reset via

the external signal, and all functional registers are reset at the same time. This

occurs asynchronous with the clock, which does not need to be running at the

time of the reset. When the external reset deasserts, the clock local to that domain

must toggle twice before the functional registers are taken out of reset. Note that

the functional registers are taken out of reset only when the clock begins to

toggle and is done so synchronously.

A reset circuit that asserts asynchronously and deasserts synchronously generally

provides a more reliable reset than fully synchronous or fully asynchronous

resets.

The code for this synchronizer is shown below.

module resetsync(
output reg oRstSync,
input iClk, iRst);
reg R1;

always @(posedge iClk or negedge iRst)
if(!iRst) begin

R1 <= 0;
oRstSync <= 0;

end

Figure 10.7 Asynchronous assertion, synchronous deassertion.

144 Chapter 10 Reset Circuits

扫码可进资料分享群

else begin
R1 <= 1;
oRstSync <= R1;

end
endmodule

The above reset implementation allows a group of flip-flops to be placed into

reset independent of a clock but taken out of reset in a manner synchronous with

the clock. As a matter of good design practice, the asynchronous assertion–

synchronous deassertion method is recommended for system resets.

10.2 MIXING RESET TYPES

10.2.1 Nonresetable Flip-Flops

As a matter of good design practice, flip-flops of different reset types should not be

combined into a single always block. The following code illustrates the scenario

where a nonresetable flip-flop is fed by a resetable flip-flop:

module resetckt (
output reg oDat,
input iReset, iClk,
input iDat);
reg datareg;

always @(posedge iClk)
if(!iReset)

datareg <= 0;
else begin

datareg <= iDat;
oDat <= datareg;

end
endmodule

The second flip-flop (oDat) will be synthesized with a flip-flop that has a load

or clock enable input driven by the reset of the first. This is illustrated in

Figure 10.8.

This requires larger sequential elements as well as extra routing resources. If

the two flip-flops are split according to the following code:

module resetckt(
output reg oDat,
input iReset, iClk);
input iDat);
reg datareg;

always @(posedge iClk)
if(!iReset)

datareg <= 0;

10.2 Mixing Reset Types 145

扫码可进资料分享群

else
datareg <= iDat;

always @(posedge iClk)
oDat <= datareg;

endmodule

the second flip-flop will have no unnecessary circuitry as represented in

Figure 10.9.

Different reset types should not be used in a single always block.

10.2.2 Internally Generated Resets

In some designs, there are conditions where an internal event will cause a reset

condition for a portion of the chip. There are two options in this case:

. Using asynchronous resets, design the logic that derives the reset to be free

of any static hazards.

. Use synchronous resets.

The main problem with a static hazard on an asynchronous reset is that due

to variances in propagation delays, a reset pulse could occur even though the

logic is switching from one inactive state to another. Assuming an active low

Figure 10.9 Optimal implementation with mixed reset types.

Figure 10.8 Implementation with mixed reset types.

146 Chapter 10 Reset Circuits

扫码可进资料分享群

reset, a glitch on an inactive state would be defined as a static-1 hazard. As an

example, consider Figure 10.10.

With the circuit in Figure 10.10, a static-1 hazard can occur during the tran-

sition (a, b, c) = (1, 0, 1) 2. (0, 0,1) as shown in Figure 10.11.

As can be seen from the waveforms in Figure 10.11, a static-1 glitch can

occur on the reset line when one of the terms that sets the output inactive

(logic-1) becomes invalid before the next term sets the reset high. Remembering

back to logic design 101, this can be represented in a K-map format as shown in

Figure 10.12.

Each circled region in Figure 10.12 indicates a product term that sets the

reset inactive. The static-1 hazard occurs when the state of the inputs changes

from one adjacent product term to another. If the first product term becomes in-

active before the second is set, a glitch will occur. To fix this problem, a redun-

dant prime implicant is created to bridge the two product terms as shown in

Figure 10.13.

By adding the new product term as indicated by the redundant logic

mapping, we eliminate the possibility of a hazard that will cause a glitch while

the reset is in the inactive state.

In general, the technique for eliminating static-1 hazards will prevent a glitch

on an internally generated reset line. However, the use of a fully synchronous

Figure 10.10 Potential hazard on reset

pin.

Figure 10.11 Example wave-

form with reset hazard.

10.2 Mixing Reset Types 147

扫码可进资料分享群

reset synchronizer is typically recommended in practice. This helps to maintain a

fully synchronous design and to eliminate the redundant logic necessary to main-

tain a glitch-free reset signal.

10.3 MULTIPLE CLOCK DOMAINS

We have already established that reset deassertion must always be synchronous

and that asynchronous reset signals must be resynchronized for deassertion. As an

Figure 10.13 Adding a prime implicant.

Figure 10.14 Reset synchronization with multiple clock domains.

Figure 10.12 Identifying the static-1 hazard.

148 Chapter 10 Reset Circuits

扫码可进资料分享群

extension of this principle, it is important to synchronize resets independently for

each asynchronous clock domain.

As can be seen in Figure 10.14, a separate reset synchronization circuit is

used for each clock domain. This is necessary because of the fact that a synchro-

nous reset deassertion on one clock domain will not solve the clock recovery pro-

blems on an asynchronous clock domain. In other words, a synchronized reset

signal will still be asynchronous relative to the synchronized reset from an inde-

pendent clock domain.

A separate reset synchronizer must be used for each independent clock domain.

10.4 SUMMARY OF KEY POINTS

. Reset recovery time violations occur at the deassertion of reset.

. Fully synchronous resets may fail to capture the reset signal itself (failure

of assertion) depending on the nature of the clock.

. A reset circuit that asserts asynchronously and deasserts synchronously

generally provides a more reliable reset than fully synchronous or fully

asynchronous resets.

. Different reset types should not be used in a single always block.

. A separate reset synchronizer must be used for each independent clock

domain.

10.4 Summary of Key Points 149

扫码可进资料分享群

扫码可进资料分享群

Chapter 11

Advanced Simulation

Because of recent advancements in rapid implementation, FPGA programming,

and in-system debugging, many FPGA designers are spending less time creating

comprehensive simulation testbenches and relying more on hardware debug to

validate their designs. A trend with many modern FPGA designers is to only

write “quick-and-dirty” simulations for individual modules, ignore the top-level

sims, and anxiously jump directly to hardware. This is of course not the case in

regulated industries such as medical or aviation but is the case in many of the

thousands of new unregulated industries recently introduced to the power of

FPGAs. Although in-system debug methods have become very sophisticated and

design methods that focus on this type of debug and design validation have

matured, one rarely regrets creating a comprehensive, fully automated simulation

environment.

This chapter discusses many of the techniques involved in creating a useful

simulation environment for verifying FPGA designs and describes a number of

heuristics that have proved to work across numerous industries. During the course

of this chapter, we will discuss the following topics:

. Architecting a testbench.

Components of a testbench

Proper flow of a testbench including the main thread, clock generation,

and testcase inclusion

. Creating system stimulus using tools such as MATLAB.

. Bus-functional models for common interfaces.

. Gaining insight into overall coverage of stimulus.

. Running gate-level sims for verification, debug, and power estimation.

. Common testbench traps and proper methods for modeling devices.

151

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

11.1 TESTBENCH ARCHITECTURE

The first step in creating a useful simulation environment is setting up and orga-

nizing the testbench properly. The testbench is the top-level module in the simu-

lation that is responsible for stitching all the models together. Often, the

testbench will provide portions of the stimulus depending on the size and com-

plexity of the design. A poorly designed testbench, typically one that was orig-

inally designed to be quick and dirty, can grow into a monstrous abomination of

scattered behavioral constructs and stimulus that no one can read or completely

understand.

11.1.1 Testbench Components

A top-level testbench can be modeled abstractly according to Figure 11.1.

The testbench is the top-level module in the simulation and stitches together

all subcomponents in the system model. The test procedure, which typically

resides within the testbench, manages the main thread of the simulation and the

flow of tests. This process defines which tests are run, which vectors are used,

and how the data is logged and reported.

The global stimulus represents the basic vectors that apply to the system as a

whole. These most often include the system clocks, resets, or any initial con-

ditions that set the system into an appropriate state for simulation.

The hardware models are called out in the testbench as well. These are the

devices-under-test in the simulation, and these are the modules that will ultimately

Figure 11.1 Testbench components.

152 Chapter 11 Advanced Simulation

扫码可进资料分享群

be implemented in the FPGA. Often, there is only one hardware model in the test-

bench, that is, the top-level module in the FPGA.

Finally, the testbench calls out any number of simulation models. These

modules represent other components in the system that the FPGA will interact

with but will not be implemented in the FPGA. These could be models of

memories, microprocessors, analog components, or any other system components

that interact with the FPGA.

11.1.2 Testbench Flow

The flow of a simulation is typically quite a bit different from the hardware

description itself. At a very fundamental level, the hardware is described in a con-

current fashion, whereas simulations operate in a procedural fashion. In other

words, hardware is described based on logical operations triggered from synchro-

nous events. There are no valid descriptions for chronological execution in

synthesizable hardware and synthesis will simply ignore timing information

written into the code. This is the primary conceptual difference between software

and hardware design. Simulation code, similar to a software design, operates on

primarily a procedural basis. In other words, a simulation will apply stimulus a,

then b, then c in a particular order and with specific timing. Thus, simulation

much more closely represents software design than hardware design.

11.1.2.1 Main Thread

To model procedural behavior in the testbench, certain behavioral constructs are

used that would not be used for hardware design. In Verilog, the main simulation

thread is often modeled with an initial statement that contains a series of blocking

expressions. Consider the following code example.

initial begin
errors = 0; // reset error count

// reset inputs to chip
chipin1 = 0;
chipin2 = 16’ha5;

// reset simulation parameters
resetsim();

// reset for chip
reset_fpga();

//
// Add testcases here
//
‘include "test1.v"
‘include "test2.v"

11.1 Testbench Architecture 153

扫码可进资料分享群

$display("\nSimulation completed with %d errors\n", errors);
$stop;

end

There are a number of interesting observations that can be made from the above

code. First, all assignments are blocking in nature. This means that they will be

executed one at a time in a sequence, similar to execution in software. Second,

the main simulation thread only contains global initialization assignments,

whereas all specific functional tests are written into the individual testcases

“test1.v” and “test2.v.” Third, the main execution path is kept thin and modular-

ized. In other words, the main initial statement does not contain large amounts of

initialization data to maintain a readable format.

It is good design practice to partition the individual test cases from the main

thread.

Finally, the testbench is self-checking. It is assumed that each of the individ-

ual functional tests comprehensively checks the conditions within the hardware

models, reports any mismatches to the standard output or the log file, and incre-

ments the error count. When the simulation completes, a success or failure is indi-

cated by the final statement. This basic automation greatly reduces the amount of

time spent verifying vectors.

It is good design practice to create an automated, self-checking testbench. This

will save a significant amount of time down the road as the testbench grows.

There is a certain temptation to skip this automation step early on in the

development of the testbench. However, this typically creates major portability

issues downstream as new designers begin to analyze the system. If a new

designer is focusing on a particular module, it may be necessary to verify particu-

lar changes against the system to ensure that nothing else was broken by the modi-

fications. A fully automated testbench will greatly speed this process as it will

allow for the appropriate validation without complete understanding of the system.

11.1.2.2 Clocks and Resets

The testbench clocks and resets should be modeled at a global level. The main

initial statement should not define the starting or transition points for the clocks

and resets. Instead, an independent initial statement external to the main loop

generates the initial condition and the oscillation.

‘timescale 1ns/1ns

‘define PERIOD 5 // 100MHz clock

initial begin
clk <= 0;
forever #(‘PERIOD) clk = ~clk;

end

154 Chapter 11 Advanced Simulation

扫码可进资料分享群

In the above code, the timescale is set to 1 ns meaning that any timing infor-

mation as defined by the “#” symbol will be of the order 1 ns. Also, by defining

the period as 5 ns, we are really defining the time between transitions on the

clock (there will be two transitions in a 10-ns period). In the above example, the

signal clk will be logic-0 at time ¼ 0, logic-1 at time ¼ 5 ns, logic-0 at

time ¼ 10 ns, and so on throughout the entire simulation.

The reset can be modeled in a similar fashion as shown below.

initial begin
reset <= 0;
@(posedge clk); //may need several cycles for reset
@(negedge clk) reset = 1;

end

One interesting thing to note about these initial blocks is that we have mixed non-

blocking and blocking assignments, noted in later chapters to be a bad coding

style. Although it is certainly a poor coding style for synthesizable always blocks,

it is not necessarily so for initial blocks that are used for simulation only. In this

case, nonblocking assignments to the initial value of logic-0 are used. This ensures

that all always blocks in the design are evaluated prior to this assignment. In other

words, this ensures that any always blocks that might be triggered from the initial

assignment are properly evaluated. If asynchronous resets are used, then this

would apply to the initial reset assertion as well (assuming it is asserted at time 0).

Initialize testbench clocks and resets with nonblocking assignments and update

them with blocking assignments.

11.1.2.3 Test Cases

If at all possible, it is good design practice to make the test cases themselves as

modular as possible. By this we mean that any of the test-case calls can be

removed from the testbench, reordered, or new test cases inserted. This is import-

ant as it clearly defines a boundary for the conditions for a particular test making

the simulation more understandable. Also, during the debug phase it will be very

common to run only particular tests to attempt to reproduce a problem.

Create test cases such that they can stand alone inside the main thread.

If the entire test suite is extensive and time consuming, it will be desirable to

quickly remove all unnecessary tests that do not focus on the problem at hand.

This is where a modular design becomes extremely useful.

Consider the following code for the first test case defined in our testbench:

// test1.v
// test scenario #1
resetsim();
reset_fpga();

11.1 Testbench Architecture 155

扫码可进资料分享群

$display("Begin testing scenario 1... \n");
...
// compare output with expected value and report if mismatch
verify_output(output_value, expected_value);

$display("\nCompleted testing scenario 1 with %d errors",
errors);

There are a number of notable aspects to the example test case above. First, the

test case ensures modularity by resetting the simulation parameters as well as

resetting the FPGA. If every test case resets the simulation, modularity can be

ensured. In most cases, this will have a performance impact on the simulation

run-time, but as a matter of good design practice this is typically recommended.

Second, note that the reset is always deasserted on the falling edge of the clock.

Due to the fact that the free running clock may not be reset with the other simu-

lation parameters, it is important to have a consistent method of releasing the reset

to avoid any reset recovery times (although a good reset circuit will eliminate this

problem). Third, a common function called “verify_output()” is used throughout

all test cases as a means to compare simulated values with expected values. This

function is typically defined in the testbench itself but used in the particular test

cases. This checking function can be implemented as a task in Verilog:

task verify_output;
input [23:0] simulated_value;
input [23:0] expected_value;
begin
if (simulated_value[23:0] != expected_value[23:0])

begin
errors = errors + 1;
$display("Simulated Value = %h, Expected Value = %h,
errors = %d,
at time = %d\n", simulated_value, expected_value,
errors, $time);

end
endtask

The task shown above simply compares the simulated value with the

expected value (both of which were passed in from the test case), and any mis-

matches are reported.

An additional note for creating test cases is to try and reference signals at

module boundaries. In other words, when comparing signals inside the FPGA

hierarchy to expected vectors, it is good design practice to reference signals that

are defined as inputs or outputs somewhere in the hierarchy. The reason for this is

that during the debug phase, a designer will often back-annotate a netlist into the

simulation environment to debug a specific problem or to simply run the entire

test suite against the final implementation (design that has been placed and

routed) depending on the verification standards at a particular organization. When

back-annotating a netlist with all low-level component and timing information, it

156 Chapter 11 Advanced Simulation

扫码可进资料分享群

is fairly easy to maintain the hierarchy but quite difficult to preserve the structure

and naming conventions of all nets and registers. There is a particular conflict to

preserving names if certain optimizations such as resource sharing or register

balancing are performed by the synthesis tool.

Reference signals inside the design at the module boundaries whenever possible.

If the design is partitioned well and the hierarchy is preserved during

implementation, then a testbench that references only module boundaries will

have a much easier mapping to a back-annotated environment.

11.2 SYSTEM STIMULUS

Generating stimulus for a testbench can be one of the most tedious and time-

consuming tasks of the simulation development. At a very low level (typically at

the module level sim), it is easy to “bit-bang” the inputs with hard-coded values

that exercise the basic functionality of a design. For instance, in the case of an

FIR filter, it may be fairly straightforward to present a dozen or so inputs that test

the basic multiply and accumulate functionality at the boundary conditions.

However, at a system level, it is not so easy to generate stimulus and analyze the

results to measure characteristics of the filter such as frequency and phase

response. Also, when communicating with standardized interfaces such as PCI or

an SDRAM device, it is no easy task to generate a set of hard-coded vectors that

emulate the response of the device.

11.2.1 MATLAB

MATLAB is a high-level mathematical modeling and analysis tool that is extre-

mely useful when generating large sets of vectors that have some regular pattern

or mathematical description. For the case of the DSP filter described earlier, it

would be difficult to generate the appropriate superposition of signals to allow for

a proper filter simulation. With a tool like MATLAB, however, this is trivial.

clear;
% generate 100Hz wave sampled at 40kHz
sinewave = sin(10.*(1:4000).*2.*pi./4000); % 10 periods
sinehalfamp = sinewave * hex2dec(’3fff’); % for normalization
fid = fopen(’100hz.vec’, ’w’); % file containing sim vectors
% normalize for 2’s complement
for i=1:length(sinehalfamp)

if(sinehalfamp(i) < 0)
sinehex(i) = floor(hex2dec(’ffff’) + sinehalfamp(i) + 1);

else
sinehex(i) = floor(sinehalfamp(i));

end

11.2 System Stimulus 157

扫码可进资料分享群

fwrite(fid, dec2hex(sinehex(i), 4));
fprintf(fid, ’\n’);

end
fclose(fid);

The MATLAB script above generates 10 periods of a 100-Hz sine wave sampled at

40 kHz (each vector represents a sample). The data is normalized to a 16-bit 2’s comp-

lement hex format that can be read into a Verilog simulation with minimal effort.

MATLAB can be very useful when creating large or complex patterns for

simulation.

11.2.2 Bus-Functional Models

Very often, certain system-level components are important to simulate yet difficult

to model. An HDL netlist or Spice model will provide a high level of accuracy

and reliability, but it will suffer poor simulation performance. For off-the-shelf

components such as memories, microprocessors, or even standard bus interfaces

such as PCI, bus-functional models (BFMs) can provide a means to simulate

against the interface defined in the model without requiring a model for the entire

device. For instance, a bus-functional model for a PCI interface will provide all

of the timing information and functional checks to verify that the PCI protocol is

operating correctly. It will not, however, necessarily contain a model for a micro-

processor or other device behind the PCI bus.

BFMs have an obvious advantage in their simplicity. A designer can verify

against a set of timing or protocol requirements without simulating a low-level

model for an entire device. The disadvantage is, of course, that the model is only

as good as the engineer that writes it. It is typically recommended that a BFM is

used when it is provided by the vendor of the device. For instance, consider the

example where an FPGA interfaces the PCI bus with a burstable Flash device as

shown in Figure 11.2.

Figure 11.2 Testbench with bus functional models.

158 Chapter 11 Advanced Simulation

扫码可进资料分享群

In this example, the synthesizable FPGA design sits between the BFMs for

the PCI bus interface and the burstable Flash. The BFMs are simply high-level

descriptions of the interfaces that will check the timing and protocol of the PCI

core and the state machine to control the Flash. Most PCI core vendors such as

Quicklogic will provide BFMs for the PCI bus, which allows the user to apply

read and write commands at the testbench level. Additionally, vendors that sell

large Flash devices with any complexity, such as Intel, will provide BFMs to

verify the handshaking, buffering, and so forth.

11.3 CODE COVERAGE

A very powerful simulation technique is that of code coverage. To put it simply,

code coverage is a feature of the simulation tool that provides statistical infor-

mation regarding the simulation including the structures and transitions that were

exercised and how often they were exercised. The most common pieces of data

include lines that were covered (covered vs. not covered) with an associated

“code coverage” number, state-machine coverage to verify all states and tran-

sitions, toggle coverage to estimate the amount of activity in different regions of

the design, and so on. Code coverage is often used in an ASIC design because of

the high importance verification plays in the process (every spin of the ASIC is

relatively expensive, and thus the ASIC must be exhaustively simulated prior to

tape-out).

Due to the strides forward in recent years relative to the sizes and densities

of high-end FPGAs, designs have become complex enough that code coverage is

playing a greater role in the verification of these as well. It is often not good

enough to run a quick-and-dirty simulation and then debug in hardware. The

designs are becoming too complex and the debug methods too time consuming.

Code coverage provides a slick means to quickly determine which portions of the

design have not been simulated. This can indicate weaknesses in the design and

help to identify new verification tasks.

Code coverage checks the extent to which the design has been simulated and

identifies any unsimulated structures.

11.4 GATE-LEVEL SIMULATIONS

The utility of gate-level simulations in the typical design flow has always been a

debate, particularly in recent years with the advancements of in-system debugging

tools such as Chipscope from Xilinx or Identify from Synplicity. Despite the speed

at which these tools provide visibility into a design real-time, they cannot provide

all the hooks necessary to observe every element and every net with characterized

accuracy. Additionally, gate level simulations are the only way to debug certain

types of unusual behavior, especially during conditions such as reset deassertion

that are not easily analyzed by static timing analysis or in-system debug tools.

11.4 Gate-Level Simulations 159

扫码可进资料分享群

A well-designed testbench will typically allow for an easy migration to a

gate-level simulation. Figure 11.3 illustrates the various components in a gate-

level simulation.

Note that the simulation models, test procedures, global elements, external

vectors, and so on are essentially unchanged from the RTL simulation environ-

ment. The primary change is the removal of the synthesizable RTL files and the

addition of a netlist with supporting libraries and timing info.

The netlist is the gate-level representation of the design after implementation.

The netlist contains a list of primitive elements in the FPGA with relevant inter-

connect information. Relative to the logic and cycle-by-cycle functionality, it

should be identical to the RTL description. For instance, consider the following

Verilog module.

module andor (
output oDat,
input iDat1, iDat2, iDat3);
wire ANDNET;

assign ANDNET = iDat1 & iDat2;
assign oDat = ANDNET | iDat3;

endmodule

This code simply combines the three inputs into an AND-OR operation. Although

we think of this as a two-gate operation, the low-level FPGA structure allows us

to combine this entire operation into a single LUT. The physical implementation

into a Xilinx device is represented in the netlist as shown below.

Figure 11.3 Testbench with gate-level blocks.

160 Chapter 11 Advanced Simulation

扫码可进资料分享群

X_LUT4 #(.INIT(16’hFCF0)) oDat1 (
.ADR0(VCC),
.ADR1(iDat2_IBUF_1),
.ADR2(iDat3_IBUF_2),
.ADR3(iDat1_IBUF_0),
.O(oDat_OBUF_3)

);

As can be seen from the LUT instantiation above, all I/O are connected to a

single LUT that handles the two-logic-gate operation. Larger designs will have

many LUT instantiations with wire interconnects to represent the physical

implementation of the logic. Note that the LUT is configured (via the INIT state-

ment) such that the logical operation is identical to our RTL description.

The library files are low-level technology models provided by the FPGA

vendor that define the cells in the FPGA. In our Xilinx implementation above, the

library file would contain a definition of the X_LUT4 element. Note that we

cannot simulate this netlist until all cells are defined down to a level of abstraction

that only contains generic Verilog constructs. The library file for the Xilinx cell

shown above contains the following definition.

o_out = INIT[{a3, a2, a1, a0}];

Here, the signals a0–a3 are the inputs to the LUT, and INIT is a 16-element array

of bits defined by the defparam statement in the netlist. Because Xilinx is an

SRAM-based FPGA, all logic is packed into small LUTs implemented as

SRAMs. The above description of the LUT is consistent with what we understand

about how this works and is constructed with generic Verilog constructs that can

be interpreted by any simulator.

The final component to the back-annotated netlist is the timing information.

In the ASIC design world, a designer would be concerned about both hold and

setup violations in the fast and slow extremes, respectively. However, in the

FPGA world we are typically not concerned with hold delays due to the built-in

signal delays through the routing matrices and the low-skew clock lines. Thus, we

will only concern ourselves with the slow corner; that is, the extreme condition

where the voltage supply is at the minimum level and temperature is at the

maximum. The following entries in the SDF (Standard Delay Format) file illus-

trate this condition.

(VOLTAGE 1.14)
(TEMPERATURE 85)
(TIMESCALE 1 ps)

The above entries indicate that the timing defined in this SDF file are with the

assumption that we want to simulate at the minimum voltage allowable (1.14 V)

and the maximum temperature that this device is rated for (858C). Additionally,

11.4 Gate-Level Simulations 161

扫码可进资料分享群

all timing information is defined in picoseconds. The timing info for the single

LUT is shown as follows.

(CELL (CELLTYPE "X_LUT4")
(INSTANCE oDat1)

(DELAY
(ABSOLUTE

(PORT ADR1 (499))
(PORT ADR2 (291))
(PORT ADR3 (358))
(IOPATH ADR0 O (519))
(IOPATH ADR1 O (519))
(IOPATH ADR2 O (519))
(IOPATH ADR3 O (519))

)
)

)

This SDF entry contains both interconnect and device delay. The SDF specifica-

tion allows interconnect delay to be abstracted as a port delay; that is, only occur-

ring at the input port of a device. The PORT entries of this LUT contain the

interconnect delay from the input buffers to the individual inputs of this LUT.

The IOPATH entries contain the timing through the LUT. Specifically, this is the

delay from an input to the output and is defined here to be 519 ps.

A simulation with all of these components will provide a very accurate

model of the inner workings of the FPGA as real vectors are used to stimulate the

design. Not only can this be useful when debugging the design, but it can also be

used to uncover other important pieces of information about the design as shown

in the following sections.

11.5 TOGGLE COVERAGE

Node coverage is not frequently applied to gate-level netlists for FPGA design

verification. Due to the ability of an FPGA to rapidly prototype the design and to

run vectors real-time in hardware, the development time for gate-level code cove-

rage is rarely justified. That said, code coverage can still be useful at the gate

level as it is at the RTL level. When running a gate-level simulation, the code

coverage analysis will provide a coverage number relative not to the logical

constructs but to the physical elements themselves.

One aspect of code coverage at the gate level that can often provide useful

information not available through a rapid prototype is that of toggle coverage.

Toggle coverage provides not only coverage statistics in the form of “covered”

and “not-covered” but also in the form of frequency-related information. In the

absence of a more sophisticated power analysis tool, designers can use toggle

coverage to produce an estimate of power dissipation based on the average

162 Chapter 11 Advanced Simulation

扫码可进资料分享群

number of toggles per clock cycle, the system voltage, and the average gate

capacitance.

Pdynamic ¼ CV2
dd f (11:1)

In the dynamic power-dissipation equation (11.1), statistical values for C

(capacitance) and Vdd (supply voltage) are provided by the silicon manufacturer,

and the frequency f is dependent on both the design and the stimulus. An accurate

value for f is difficult to find without specific statistical information from the

simulation environment.

To see how different stimulus will affect the dynamic power, the Xilinx

tools can generate a testbench shell for the design that can be used as a starting

point.

‘include "C:/Xilinx/verilog/src/glbl.v"
‘timescale 1 ns/1 ps

// Xilinx generated testbench shell
module testtb;
reg iDat1;
reg iDat2;
reg iDat3;
wire oDat;
test UUT (

.iDat1 (iDat1),

.iDat2 (iDat2),

.iDat3 (iDat3),

.oDat (oDat)
);
initial begin

$display(" T iiio");
$display(" i DDDD");
$display(" m aaaa");
$display(" e tttt");
$display(" 123 ");
$monitor("%t",$realtime,,iDat1,iDat2,iDat3,oDat);

end
initial begin

#1000 $stop;
// #1000 $finish;

end
endmodule

The testbench shell above includes the library file for global elements, instantiates

the design under consideration (the instance of “test” is automatically assigned

the name “UUT”), and initializes a text-based log of the vector changes. We can

initialize the data and provide stimulus for periodic events.

11.5 Toggle Coverage 163

扫码可进资料分享群

initial begin
$dumpfile("test.vcd");
$dumpvars(1, testtb.UUT);
$dumpon;

#1000 $dumpoff;
#10 $stop;
end

initial begin
iDat1 <= 0;
forever #5 iDat1 = ~iDat1;

end

initial begin
iDat2 <= 0;
forever #10 iDat2 = ~iDat2;

end

initial begin
iDat3 <= 0;
forever #15 iDat3 = ~iDat3;

end

In the above simulation, all inputs are initialized to logic-0 and at 10-ns iDat3

transitions to a logic-1, which means the output will subsequently change to a

logic-1. The “dump” commands define how the simulation vectors will be

recorded in the VCD (vector change dump) file. This VCD file (test.vcd) contains

the stimulus in vector format and can be used to estimate toggle activity and

power estimation.

Gate-level simulations can be useful when estimating dynamic power dissipation.

Side Note: In the FPGA design world, more sophisticated power-estimation

tools are often bundled with the implementation tools. Xilinx provides a tool

called XPower, which provides power estimation for a given netlist and stimulus.

After reading in the above VCD file, XPower provides the following as a

dynamic power estimate.

Power summary: I(mA) P(mW)
--
Total estimated power consumption: 36

———
Vccint 1.20V: 6 7
Vccaux 2.50V: 7 18
Vcco25 2.50V: 5 12

The numbers provided by XPower will be similar to those generated by running

toggle coverage and plugging the average toggle rate into our equation for

dynamic power dissipation.

164 Chapter 11 Advanced Simulation

扫码可进资料分享群

11.6 RUN-TIME TRAPS

11.6.1 Timescale

The timescale directive defines the units of the simulation timing as well as the

resolution of the simulation. Consider the following timescale directive:

‘timescale 1ns/100ps

This directive defines the absolute timing unit to be 1 ns, and the precision is

defined to be 100 ps. The following assignment will resolve as 1.1 ns:

assign #1.1 out = in;

If the units were set to 100 ps and the resolution set to 10 ps, the delay in the

above statement would resolve to 110 ps. One potential hazard in simulation is

not providing sufficient resolution to the simulator. If an RTL simulation is per-

formed with no back-annotated timing information and the system clock has a

period that is an integer multiple of the timescale, the precision will have essen-

tially no effect on the results. However, if fractional timing is defined (as it often

is with SDF timing information), the resolution must be set high enough to

resolve the number. If the resolution were set to 1 ns in the first example, the

1.1 ns delay would resolve to 1 ns and may cause simulation errors.

In addition to hazards due to resolutions that are too coarse, resolutions that

are too fine will directly impact the simulation time. If the resolution is chosen to

be, say, 1 ps when the finest timing precision is 100 ps, the simulation will run

much slower than necessary. Because simulation run-time is often long (particu-

larly with back-annotated netlists), this dramatic decrease in speed will directly

affect the designer’s productivity.

Timescale precision must be chosen to balance simulation accuracy against

run-time.

It is also important to note that although the timescale is clearly an important

directive for simulations, it is completely ignored by synthesis tools. Thus, it is

important that any absolute timing information only be used in the testbench and

simulation-only modules and should not define specific behavior of synthesizable

hardware.

11.6.2 Glitch Rejection

A common trap with gate-level simulations is the automatic glitch rejection built

into simulation algorithms. A device is defined as having transport delay if a

pulse of any width is propagated from the input to the output (Fig. 11.4).

A wire is a device that exhibits transport delay. There is no minimum pulse

width required to pass over a wire model. In contrast, a device is defined as

11.6 Run-Time Traps 165

扫码可进资料分享群

having inertial delay if there is a minimum pulse width required to propagate

from a device input to the output.

A logic gate is a device that exhibits inertial delay. As can be seen from

Figure 11.5, if the pulse width of the input to the logic gate is smaller than the

inertial delay of the gate, the pulse (glitch) will be rejected at the output. This

illustrates the importance of obtaining correct simulation models and providing

accurate stimulus to the gate-level simulation. This is especially important if the

logic is driving an asynchronous circuit that does not have the glitch-filtering

benefit of an intermediate register.

Glitch rejection becomes an issue particularly when a designer needs to

model delay through logic elements. The next section discusses the topic of

proper delay modeling.

11.6.3 Combinatorial Delay Modeling

Delay modeling is a common problem for creating behavioral models of

nonsynthesizable elements and interfaces. Typically, delays should not be added

to synthesizable constructs to fix race conditions or to change the cycle-by-cycle

Figure 11.4 Transport delay.

Figure 11.5 Inertial delay.

166 Chapter 11 Advanced Simulation

扫码可进资料分享群

behavior of the circuit. Delays are always ignored by synthesis tools, and this

type of modeling can easily create mismatches between simulation and synthesis.

That said, hard-coded delays can be useful for simulation-only models to approxi-

mate certain types of behavior.

Due to the nature of the Verilog language, combinatorial delays should never

be added to blocking assignments. Consider the following code for an 8-bit adder:

// INCORRECT DELAY MODELING
module delayadd(
output reg [8:0] oDat,
input [7:0] iDat1, iDat2);

always @*
#5 oDat = iDat1 + iDat2;

endmodule

The danger here is that a very simple simulation will probably work. If both

inputs change at T0, the output will change at T0þ 5. However, with this type

of modeling scheme, the output will change 5 ns after the first trigger of the

always block since the last update to the output. In other words, if iDat1 and

iDat2 change at T0, iDat1 changes again at T0þ 2, and the output will update

at T0þ5 with the latest values of both iDat1 and iDat2. This is illustrated in

Figure 11.6.

This does not model combinatorial logic with 5 ns of prop delay and was not

likely the intended behavior. To model pure transport delays, a designer could use

nonblocking assignments as follows.

// POOR CODING STYLE
// MODELS TRANSPORT DELAY
module delayadd(

Figure 11.6 Result of

incorrect delay modeling.

11.6 Run-Time Traps 167

扫码可进资料分享群

output reg [8:0] oDat,
input [7:0] iDat1, iDat2);

// nonblocking assignment typically not used for
combinatorial logic

always @*
oDat <= #5 iDat1 + iDat2;

endmodule

As can be seen in Figure 11.7, this accurately models the transport delay scenario

of the previous example.

When modeling transport delay behavior such as with behavioral or bus-

functional models, this method is sufficient. However, when modeling the behavior

Figure 11.7 Result with transport delays.

Figure 11.8 Result with inertial delays.

168 Chapter 11 Advanced Simulation

扫码可进资料分享群

of true combinatorial logic, it is better to use a coding style that represents inertial

delay. This is accomplished with a continuous assignment as shown below.

module delayadd(
output [8:0] oDat,
input [7:0] iDat1, iDat2);
assign #5 oDat = iDat1 + iDat2;

endmodule

This type of representation will behave as shown in Figure 11.8.

As can be seen from the waveform of Figure 11.8, the output rejects the 2-ns

pulse where iDat1 holds the value of 3. The output changes to the final value of 8

5-ns after both inputs have settled at 4. Thus, the continuous assignment models

inertial delay and should be used for modeling combinatorial logic. If the combi-

natorial logic is complex and requires an always block, the outputs should drive a

continuous assignment to model the delay.

Intertial delays due to combinatorial logic should be modeled with continuous

assignments.

11.7 SUMMARY OF KEY POINTS

. It is good design practice to partition the individual test cases from the

main thread.

. It is good design practice to create an automated, self-checking testbench.

This will save a significant amount of time down the road as the testbench

grows.

. Initialize testbench clocks and resets with nonblocking assignments and

update them with blocking assignments.

. Create test cases such that they can stand alone inside the main thread.

. Reference signals inside the design at the module boundaries whenever

possible.

. MATLAB can be very useful when creating large or complex patterns for

simulation.

. Code coverage checks the extent to which the design has been simulated

and identifies any unsimulated structures.

. Gate-level simulations can be useful when estimating dynamic power

dissipation.

. Timescale precision must be chosen to balance simulation accuracy against

run-time.

. Intertial delays due to combinatorial logic should be modeled with continu-

ous assignments.

11.7 Summary of Key Points 169

扫码可进资料分享群

扫码可进资料分享群

Chapter 12

Coding for Synthesis

At the level of abstraction where logic is coded in an HDL language, synthesis

optimizations can only take a designer so far when meeting design requirements.

At its very fundamental level, a synthesis tool will follow the coding structure

and map the logic according to the architecture laid out in the RTL. Only for very

regular structures such as FSMs, RAMs, and so forth can a synthesis tool extract

the functionality, identify alternative architectures, and implement accordingly.

Aside from optimization, a fundamental guiding principle when coding for syn-

thesis is to minimize, if not eliminate, all structures and directives that could

potentially create a mismatch between simulation and synthesis. A good coding

style typically ensures that the RTL simulation will behave the same as the syn-

thesized netlist. One class of deviations are the vendor-supplied directives that

can be added to the RTL code in the form of special comments (that are ignored

by the simulation tool) that will cause the synthesis tool to interpret a logic struc-

ture in a way that is not obvious from the RTL code itself.

During the course of this chapter, we will discuss the following topics:

. Creating efficient decision trees.

Trade-offs between priority and parallel structures

Dangers of the “parallel_case” and “full_case” directives

Dangers of multiple control branches

. Coding style traps.

Usage of blocking and nonblocking assignments

Proper and improper usage of for-loops

Inferrence of combinatorial loops and latches

. Design partitioning and organization.

Organizing data path and control structures

Modular design

. Parameterizing a design for reuse.

171

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

12.1 DECISION TREES

In the context of FPGA design, we refer to a decision tree as the sequence of con-

ditions that are used to decide what action the logic will take. Usually, this breaks

down to if/else and case structures. Consider a very simple register write

example:

module regwrite(
output reg rout,
input clk,
input [3:0] in,
input [3:0] ctrl);

always @(posedge clk)
if(ctrl[0]) rout <= in[0];
else if(ctrl[1]) rout <= in[1];
else if(ctrl[2]) rout <= in[2];
else if(ctrl[3]) rout <= in[3];

endmodule

This type of if/else structure can be conceptualized according to the mux struc-

ture shown in Figure 12.1.

This type of decision structure could be implemented in a number of different

ways depending on speed/area trade-offs and required priority. This section

describes how various decision trees can be coded and constrained to target differ-

ent synthesized architectures.

12.1.1 Priority Versus Parallel

Inherent in the if/else structure is the concept of priority. Those conditions that

occur first in the if/else statement are given priority over others in the tree. A

higher priority with the structure above would correspond with the muxes near

the end of the chain and closer to the register.

Figure 12.1 Simple priority with seri-

alized mux structure.

172 Chapter 12 Coding for Synthesis

扫码可进资料分享群

In Figure 12.2, if bit 0 of the control word is set, in[0] will be registered

regardless of the state of the other bits of the control word. If bit 0 of the control

word is not set, then the states of the other bits are used to determine the signal

that is passed to the register. In general, a bit will only be used to select the

output if all bits ahead of it (in this case the LSBs) are not set. This is true of the

priority mux implementation shown in Figure 12.3.

Regardless of the final implementation of the if/else structure, a higher pri-

ority is given to the conditional statements that occur previous to any given

condition.

If/else structures should be used when the decision tree has a priority encoding.

Case structures, on the other hand, are often (but not always) used in circum-

stances where all conditions are mutually exclusive. In other words, they can be

used to optimize the decision tree when only one condition can be true at any

given time. For instance, when making a decision based on the value of some

Figure 12.2 Priority placement.

Figure 12.3 Priority mux.

12.1 Decision Trees 173

扫码可进资料分享群

other multibit net or register (say for an address decoder), only one condition can

be true at one time. This is true of the decode operation that is implemented

above with an if/else structure. To implement the exact same functionality in

Verilog, a case statement can be used:

case(1)
ctrl[0]: rout <= in[0];
ctrl[1]: rout <= in[1];
ctrl[2]: rout <= in[2];
ctrl[3]: rout <= in[3];

endcase

Due to the fact that the case statement is available as an alternative to the if/else
structure, many novice designers assume that this will implement a priority-less

decision tree automatically. This happens to be true for the more rigorous

language VHDL but is not the case for Verilog as can be seen in the implemen-

tation of the case statement in Figure 12.4.

As can be seen in Figure 12.4, the default is such that the priorities are

encoded to set the appropriate enable pins on the mux. This leads many designers

into a trap. To remove the priority encoding, it is possible to use the synthesis

Figure 12.4 Priority-encoded logic.

174 Chapter 12 Coding for Synthesis

扫码可进资料分享群

directive “parallel_case” to implement a truly parallel structure. The syntax

shown below will work with Synplicity and XST synthesis tools.

// DANGEROUS CASE STATEMENT
case(1) // synthesis parallel_case

This directive can typically be added to the synthesis constraints. If this directive

is used, it is certainly better to add it to the constraints so it is not “hidden” in the

code if the designer needs to port to a new tool. This directive informs the syn-

thesis tool that the cases are mutually exclusive and that it may forego any pri-

ority encoding as shown in Figure 12.5.

Here, all inputs are selected based on enable bits that are assumed to be

mutually exclusive. This implementation is faster and consumes less logic

resources.

Note that the parallel_case directive is a synthesis-only directive, and thus

mismatches between simulation and actual implementation can occur. Frequent

use of synthesis directives in general is bad design practice. It is better to code

the RTL such that both the synthesis and simulation tools recognize the parallel

architecture.

Use of the parallel_case directive is generally bad design practice.

Good coding practice dictates that priority encoders should be implemented

with if/else statements, and structures that are parallel by design should be coded

with case statements. There is typically no good reason to use the parallel_case

Figure 12.5 No priority encoding.

12.1 Decision Trees 175

扫码可进资料分享群

directive. Some designers can successfully use these statements to optimize

one-hot decoders, but because of the risks involved it is better to never use these

statements at all. If the synthesis tool reports that the case structure is not parallel,

then the RTL must be changed to make it so. If it is truly a priority condition,

then an if/else should be used in its place.

12.1.2 Full Conditions

In the decision trees examined thus far, if none of the conditions of a case state-

ment were true, the synthesis tool has fed the output of the register back around

to the decision tree as a default condition (this behavior will of course depend on

the default implementation style of the synthesis tool, but for this section we will

assume it is true). Even with the “full_case” implementation, there is logic that

will disable the register if none of the selection bits are asserted. The assumption

is that if no conditions are met, the value does not change.

One option available to the designer is to add a default condition. This may

or may not be the current value, but it avoids the condition where the tool auto-

matically latches the current value assuming that the output is assigned a value

under each case condition. The register enable will be eliminated with this default

condition as shown in the following modification to the case statement.

// DANGEROUS CASE STATEMENT
module regwrite(

output reg rout,
input clk,
input [3:0] in,
input [3:0] ctrl);

always @(posedge clk)
case(1) // synthesis parallel_case

ctrl[0]: rout <= in[0];
ctrl[1]: rout <= in[1];
ctrl[2]: rout <= in[2];
ctrl[3]: rout <= in[3];
default: rout <= 0;

endcase
endmodule

As can be seen in Figure 12.6, the default condition is now explicit and is

implemented as an alternative input to the mux. Although the flip-flop no longer

requires an enable, the total logic resources have not necessarily decreased. Also note

that if not every condition defines an output for the register (this often occurs when

multiple outputs are assigned within a single case statement), neither a default con-

dition nor any synthesis tag will prevent the creation of a latch. To ensure that a value

is always assigned to the register, an initial assignment can be used to assign a value

to the register prior to the case statement. This is shown in the following example.

176 Chapter 12 Coding for Synthesis

扫码可进资料分享群

module regwrite(
output reg rout,
input clk,
input [3:0] in,
input [3:0] ctrl);

always @(posedge clk) begin
rout <= 0;
case(1)

ctrl[0]: rout <= in[0];
ctrl[1]: rout <= in[1];
ctrl[2]: rout <= in[2];
ctrl[3]: rout <= in[3];

endcase
end

endmodule

This type of coding style eliminates the need for a default case and also ensures

that the register is assigned to the default value if no other assignment is defined.

A synthesis directive similar to the parallel_case statement is the full_case

directive. This directive informs the synthesis tool that all cases have been

covered and that an implied default condition is not required. In general, the

full_case directive is dangerous and can create a number of traps leading to incor-

rect or inefficient synthesis as well as mismatches with simulation.

Use of the full_case directive is generally bad design practice.

Full conditions can be designed with proper coding styles that completely

avoid this directive as shown in the following example.

Figure 12.6 Encoding for default condition.

12.1 Decision Trees 177

扫码可进资料分享群

The full_case directive can be added in a similar way to the parallel_case

directive as shown in the following example.

// DANGEROUS CASE STATEMENT
case(1) // synthesis full_case

Figure 12.7 illustrates the implementation with this directive.

The full_case statement tells the synthesis tool that all possible conditions

have been covered by the case statement regardless of how the tool interprets the

conditions. This implies that a default condition such as holding its current value

is not necessary. As can be seen from the above implementation, all logic for

maintaining the current value has been removed. All cases are assumed to be

covered, and thus the only logic remaining is the mux itself.

The full_case directive, like the parallel_case directive, is synthesis-only

meaning that it will be ignored by simulation. This makes the full_case directive

dangerous in that mismatches between simulation and synthesis may occur.

Specifically, if an output value is not provided by each condition, the simulation

tool will latch the current value, whereas the synthesis tool will consider this a

“don’t care.”

Parallel_case and full_case can cause mismatches between simulation and

synthesis.

The recommended approach is to avoid this constraint and to guarantee full

coverage by design; that is, by using a default condition and setting default values

prior to the case statement as shown above. This will make the code more porta-

ble and reduce the possibility of undesirable mismatches.

One of the biggest dangers when setting FPGA synthesis options is the allow-

ance of a default setting whereby all case statements are automatically assumed to

be full_case, parallel_case, or both. It is quite frankly shocking that any vendors

actually provide this as an option. In practice, this option should never be used.

This type of option only creates hidden dangers in the form of improperly

Figure 12.7 No default condition.

178 Chapter 12 Coding for Synthesis

扫码可进资料分享群

synthesized code that may not be discovered with basic in-system testing and cer-

tainly not in simulation.

12.1.3 Multiple Control Branches

One common mistake (in the form of a poor coding style) is to disconnect the

control branches for a single register. In the following example, oDat is assigned

to two different values in two unique decision trees.

// BAD CODING STYLE
module separated(

output reg oDat,
input iClk,
input iDat1, iDat2, iCtrl1, iCtrl2);

always @(posedge iClk) begin
if(iCtrl2) oDat <= iDat2;
if(iCtrl1) oDat <= iDat1;

end
endmodule

Because there is no way to tell if iCtrl1 and iCtrl2 are mutually exclusive, this

coding is ambiguous, and the synthesis tool must make certain assumptions for

the implementation. Specifically, there is no explicit way to handle the priority

when both conditions are true simultaneously. Thus, the synthesis tool must

assign a priority based on the sequence in which these conditions occur. In this

case, if the condition appears last, it will take priority over the first.

Based on Figure 12.8, iCtrl1 has priority over iCtrl2. If the order of these is

swapped, the priority will likewise be swapped. This is the opposite behavior of

an if/else structure that will give priority to the first condition.

It is good design practice to keep all register assignments inside one single

control structure.

Figure 12.8 Implementation with implicit priority.

12.1 Decision Trees 179

扫码可进资料分享群

12.2 TRAPS

Because of the fact that behavioral HDL is very flexible in terms of its ability to

describe functionality relative to the constrictive nature of synthesizable RTL,

there will naturally be a number of traps that a designer can fall into when they

do not understand how various structures are interpreted by synthesis tools. This

section identifies a number of traps and discusses design methods to avoid them.

12.2.1 Blocking Versus Nonblocking

In the world of software design, functionality is created by defining operations

that are executed in a predefined sequence. In the world of HDL design, this type

of execution can be thought of as blocking. This means that future operations are

blocked (they are not executed) until after the current operation has completed.

All future operations are under the assumption that all previous operations have

completed and all variables in memory have been updated. A nonblocking oper-

ation executes independent of order. Updates are triggered off of specified events,

and all updates occur simultaneously when the trigger event occurs.

HDL languages such as Verilog and VHDL provide constructs for both

blocking and nonblocking assignments. Failure to understand where and how to

use these can lead not only to unexpected behavior but also to mismatches

between simulation and synthesis. For example, consider the following code.

module blockingnonblocking(
output reg out,
input clk,
input in1, in2, in3);
reg logicfun;

always @(posedge clk) begin
logicfun <= in1 & in2;
out <= logicfun | in3;

end
endmodule

The logic is implemented as a logic designer would expect as shown in

Figure 12.9.

Figure 12.9 Simple logic with nonblocking assignments.

180 Chapter 12 Coding for Synthesis

扫码可进资料分享群

In the implementation shown in Figure 12.9, both the signals “logicfun” and

“out” are flip-flops, and any changes on “in1” or “in2” will take two clock cycles

to propagate to “out.” A move to blocking assignments appears to be only a

subtle change.

// BAD CODING STYLE
logicfun = in1 & in2;
out = logicfun | in3;

In the above modification, the nonblocking statements have been changed to

blocking. This means that out will not be updated until logicfun has been

updated, and both updates must occur on one event of the clock.

As can be seen from Figure 12.10, by changing the assignments to blocking,

we have effectively eliminated the register for logicfun and changed the timing

through the entire design. This is certainly not to say that the same functionality

cannot be accomplished with blocking assignments. Consider the following

modification.

// BAD CODING STYLE
out = logicfun | in3;
logicfun = in1 & in2;

In the above modification, we force the out register to be updated before logicfun,

which forces a 2-clock cycle delay for the inputs in1 and in2 to propagate to out.

This will give us the intended logic implementation, but with a less straightfor-

ward approach. In fact, for many logic structures with a significant amount of

complexity, this is not a clean or even a feasible approach. One temptation may

be to use independent always statements for each assignment.

// BAD CODING STYLE
always @(posedge clk)
logicfun = in1 & in2;

always @(posedge clk)
out = logicfun | in3;

Despite the fact that these assignments are split into seemingly parallel blocks,

they will not simulate as such. This type of coding style should be avoided.

Figure 12.10 Incorrect implementation with blocking assignments.

12.2 Traps 181

扫码可进资料分享群

One case where blocking assignments often arise is with operations that

require a relatively large number of default conditions. In the following code

example that uses nonblocking assignments, the control signal ctrl defines which

input is assigned to the corresponding output. The remaining outputs are assigned

to zero.

// POOR CODING STYLE
module blockingnonblocking(

output reg [3:0] out,
input clk,
input [3:0] ctrl, in);

always @(posedge clk)
if(ctrl[0]) begin

out[0] <= in[0];
out[3:1] <= 0;

end
else if(ctrl[1]) begin

out[1] <= in[1];
out[3:2] <= 0;
out[0] <= 0;

end
else if(ctrl[2]) begin

out[2] <= in[2];
out[3] <= 0;
out[1:0] <= 0;

end
else if(ctrl[3]) begin

out[3] <= in[3];
out[2:0] <= 0;

end
else

out <= 0;
endmodule

In each decision branch in the above implementation, all outputs that are not

assigned must be set to zero. Each branch contains a single output assignment to

an input and three zero assign statements. To simplify the code, blocking state-

ments are sometimes used with initial assignments as shown in the following

example.

// BAD CODING STYLE
module blockingnonblocking(

output reg [3:0] out,
input clk,
input [3:0] ctrl, in);

always @(posedge clk) begin
out = 0;

182 Chapter 12 Coding for Synthesis

扫码可进资料分享群

if(ctrl[0]) out[0] = in[0];
else if(ctrl[1]) out[1] = in[1];
else if(ctrl[2]) out[2] = in[2];
else if(ctrl[3]) out[3] = in[3];

end
endmodule

Because the last assignment is the one that “sticks,” the above modification sets

an initial value for all output bits and then only changes one output as necessary.

Although this code will synthesize to the same logic structure as the more

complex nonblocking structure, race conditions may appear in simulation.

Although it is less intuitive, nonblocking assignments can be used to accomplish

the same thing with a similar coding style as shown below.

module blockingnonblocking(
output reg [3:0] out,
input clk,
input [3:0] ctrl, in);

always @(posedge clk) begin
out <= 0;
if(ctrl[0]) out[0] <= in[0];
else if(ctrl[1]) out[1] <= in[1];
else if(ctrl[2]) out[2] <= in[2];
else if(ctrl[3]) out[3] <= in[3];

end
endmodule

This coding style is superior as the race conditions have been eliminated with the

nonblocking assignments. There are a number of widely accepted guidelines

regarding blocking and nonblocking assignments when coding for synthesis:

Use blocking assignments to model combinatorial logic.

Use nonblocking assignments to model sequential logic.

Never mix blocking and nonblocking assignments in one always block.

Violating these guidelines will likely lead to mismatches in simulation versus

synthesis, poor readability, decreased simulation performance, and hardware

errors that are difficult to debug.

12.2.2 For-Loops

C-like looping structures such as the for-loop can present a trap to a designer with

a background in software design. The reason for this is, unlike the C software

language, these loops cannot typically be used for algorithmic iterations in synthe-

sizable code. Instead, HDL designers will typically use these looping structures to

minimize typing a large array of similar assignments that operate on similar

12.2 Traps 183

扫码可进资料分享群

elements. For instance, a software designer may use a for-loop to take X to the

power of N as shown in the following snippet.

PowerX = 1;
for(i=0;i<N;i++) PowerX = PowerX * X;

This algorithmic loop uses iteration to perform a multiply operation N times.

Each time through the loop, the running variable is updated. This works well in

software because for every loop iteration, an internal register is updated with the

current value of PowerX.

Synthesizable HDL, in contrast, does not have any implied registering that

occurs during an iterative loop. Instead, all register operations are defined expli-

citly. If a designer attempted to create the above structure in a similar way with

synthesizable HDL, they might end up with something that looks like the follow-

ing code segment.

// BAD CODING STYLE
module forloop(

output reg [7:0] PowerX,
input [7:0] X, N);
integer i;

always @* begin
PowerX = 1;
for(i=0;i<N;i=i+1)

PowerX = PowerX * X;
end

endmodule

This will work in a behavioral simulation and, depending on the synthesis tool,

may be synthesizable to gates. XST will not synthesize this code without a fixed

value of N, whereas Synplify will synthesize this loop based on the worst-case

value of N. The end result if this is indeed synthesized will be a loop that is com-

pletely unrolled into a massive block of logic that runs extremely slow. A design

that manages the registers during each iteration of the loop may utilize control

signals as shown in the following example.

module forloop(
output reg [7:0] PowerX,
output reg Done,
input Clk, Start,
input [7:0] X, N);
integer i;

always @(posedge Clk)
if(Start) begin

PowerX <= 1;
i <= 0;

184 Chapter 12 Coding for Synthesis

扫码可进资料分享群

Done <= 0;
end
else if(i < N) begin

PowerX <= PowerX * X;
i <= i + 1;

end
else

Done <= 1;
endmodule

In the above design, the power function will be an order of magnitude smaller and

will run an order of magnitude faster than the “software-like” implementation.

For-loops should not be used to implement software-like iterative algorithms.

In contrast with the previous example, understanding the proper use

of for-loops can help to create readable and efficient HDL code. As mentioned

earlier, for-loops are often used as a short form to reduce the length of repetitive

but parallel code segments. For instance, the following code generates an output

by taking every bit in X and applying the XOR operation with every even

bit of Y.

Out[0] <= Y[0] ^ X[0];
Out[1] <= Y[2] ^ X[1];
Out[2] <= Y[4] ^ X[2];
...
Out[31] <= Y[62] ^ X[31];

To write this out in long form would require 32 lines and a fair amount of typing.

To condense this, and to make it more readable, a for-loop can be used to

replicate the operation for each bit.

always @(posedge Clk)
for(i=0;i<32;i=i+1) Out[i] = Y[i*2] ^ X[i];

As can be seen from the above example, there are no feedback mechanisms in the

loop. Rather, the for-loop is used to condense similar operations.

12.2.3 Combinatorial Loops

Combinatorial loops are logic structures that contain feedback without any inter-

mediate synchronous elements. As can be seen from Figure 12.11, a combinator-

ial loop occurs when the output of a cloud of combinatorial logic feeds back to

itself with no intermediate registers. This type of behavior is rarely desirable and

typically indicates an error in the design or implementation. In Chapter 18, we

will discuss how to handle the timing analysis of such a structure, but for this

12.2 Traps 185

扫码可进资料分享群

discussion we will discuss traps that may create such a structure and how to avoid

them. Consider the following code segment.

// BAD CODING STYLE
module combfeedback(

output out,
input a);
reg b;

// BAD CODING STYLE: this will feed b back to b
assign out = b;

// BAD CODING STYLE: incomplete sensitivity list
always @(a)

b = out ^ a;
endmodule

The above module represents a behavioral description that in simulation may

behave as follows: when the wire “a” changes, the output is assigned the result of

the current output XOR “a.” The output only changes when “a” changes and does

not exhibit any feedback or oscillatory behavior. In FPGA synthesis, however, an

always structure describes the behavior of either registered or combinatorial logic.

In this case, the synthesis tool will likely expand the sensitivity list (currently con-

taining only “a”) to include all inputs assuming the structure is combinatorial.

When this happens, the feedback loop is closed and will be implemented as an

XOR gate that feeds back on itself. This is represented in Figure 12.12.

This type of structure is very problematic as it will oscillate any time the

input “a” is a logic-1. The Verilog listed above describes a circuit with a very

poor coding style. The designer clearly did not have the hardware in mind and

Figure 12.11 Combinatorial versus sequential loops.

Figure 12.12 Accidental combinatorial

feedback.

186 Chapter 12 Coding for Synthesis

扫码可进资料分享群

will see a drastic mismatch between simulation and synthesis. As a matter of

good coding practice, all combinatorial structures should be coded such that all

inputs to the expressions contained within the always block are listed in the sensi-

tivity list. If this had been done in the prior example, the problem would have

been detected prior to synthesis.

12.2.4 Inferred Latches

Special types of combinatorial feedback can actually infer sequential elements.

The following module models a latch in the typical manner.

// latch inferrence
module latch (

input iClk, iDat,
output reg oDat);

always @*
if(iClk) oDat <= iDat;

endmodule

Whenever the control is asserted, the input is passed directly to the output. When the

control is deasserted, the latch is disabled. A very common coding mistake is to

create a combinatorial if/else tree and forget to define the output for every condition.

The implementation will contain a latch and will usually indicate a coding error.

Latches are typically not recommended for FPGA designs, but it is possible

to design and perform timing analysis with these devices (timing analysis with

latches is discussed in future chapters). Note that there are other ways of acciden-

tally inferring latches and are more than likely unintended. In the following

assignment, the default condition is the signal itself.

// BAD CODING STYLE
assign O = C ? I: O;

Instead of inferring a mux with feedback to one of its inputs (which would not be

desirable anyway), some synthesis tools will infer a latch that enables passthrough

of the input whenever the control is asserted. The problem with this is that a

timing end point (the latch) is inserted into a path that was most likely not

designed to have an intermediate sequential element. This type of latch inference

typically indicates an error in the HDL description.

Functions

Latches are typically not recommended for FPGA designs and can very easily

become implemented improperly or not implemented at all. One example is

through the use of a function call. Consider, for example the typical instantiation

of a latch encapsulated into a function as shown in the following example.

12.2 Traps 187

扫码可进资料分享群

// BAD CODING STYLE
module latch (

input iClk, iDat,
output reg oDat);

always @*
oDat <= MyLatch(iDat, iClk);

function MyLatch;
input D, G;

if(G) MyLatch = D;
endfunction

endmodule

In this case, the conditional assignment of the input to the output is pushed into a

function. Despite the seemingly accurate representation of the latch, the function

will always evaluate to combinatorial logic and will pass the input straight

through to the output.

12.3 DESIGN ORGANIZATION

Anyone who has worked with a team of engineers to design a large FPGA under-

stands the importance of organizing a design into useful functional boundaries

and designing for reusability and expandability. The goal when organizing a

design at the top level is to create a design that is easier to manage on a

module-by-module basis, to create readable and reusable code, and to create a

basis that will allow the design to scale. This section discusses some of the issues

to consider when architecting a design that will affect the readability, reusability,

and synthesis efficiency.

12.3.1 Partitioning

Partitioning refers to the organization of the design in terms of modules, hierar-

chy, and other functional boundaries. The partitioning of a design should be con-

sidered up front, as major changes to the design organization will become more

difficult and expensive as the project progresses. Designers can easily wrap their

minds around one piece of functionality, and this will allow them to design, simu-

late, and debug their block in an efficient manner.

12.3.1.1 Data Path Versus Control

Many architectures can be partitioned into what is called data path and control

structures. The data path is typically the “pipe” that carries the data from the

input of the design to the output and performs the necessary operations on the

data. The control structure is usually one that does not carry or process the data

188 Chapter 12 Coding for Synthesis

扫码可进资料分享群

through the design but rather configures the data path for various operations.

Figure 12.13 illustrates a logic partitioning between the data path and the control.

With the partitioning shown in Figure 12.13, it would be logical to place the

data path and control structures into different modules and to clearly define the

interface for the individual designers. This makes it easier not only for various

logic designers to divide up the design activities but also for the optimizations

that may be required downstream.

Data path and control blocks should be partitioned into different modules.

Because the data path is often the critical path of the design (the throughput

of the design will be related to the timing of the pipeline), it may be required that

a floorplan is designed for this path to achieve maximum performance. The

control logic, on the other hand, will often have slower timing requirements

placed on it because it is not a part of the primary data path.

For instance, it is very common to have a simple SPI (Serial Peripheral Inter-

face) or I2C (Inter-IC) type bus to set up control registers in the design. If the

pipeline is running at perhaps hundreds of megahertz, there will certainly be a

large discrepancy between the two timing requirements. Thus, if a floorplan is

required for the data path, the control logic can usually remain unconstrained

(spatially) and scattered around the pipeline wherever it fits and as decided by the

automatic place and route tool.

12.3.1.2 Clock and Reset Structures

Good design practice dictates that any given module should have only one type of

clock and one type of reset. If, as is the case in many designs, there are multiple

Figure 12.13 Partitioning between datapath and control.

12.3 Design Organization 189

扫码可进资料分享群

clock domains and/or reset structures, it is important to partition the hierarchy so

that they are separated by different modules.

It is good design practice to use only one clock and only one type of reset in

each module.

Other chapters discuss the hazards involved with mixing clock and reset

types in procedural descriptions, but if any given module has only one clock and

reset, these problems are less likely to arise.

12.3.1.3 Multiple Instantiations

If there are cases where certain logic operations occur more than once in a par-

ticular module (or across multiple modules), a natural partition to the design

would be to group that block into a separate module and push it into the hierarchy

for multiple instantiations.

There are a number of advantages to the partitioning described in

Figure 12.14. First of all, it will be much easier to assign blocks of functionality

to designers independent of one another. One designer can focus on the top-level

design, organization, and simulation, while another designer can focus on the

functionality specific to the submodule. If the interfaces are clearly defined, this

type of group design can work very well. If, however, both designers are develop-

ing within the same module, greater confusion and difficulty can occur. Addition-

ally, the submodules can be reused in other areas of the design or perhaps in

different designs altogether. It is typically much easier to reinstantiate an existing

module rather than cut and paste out of larger modules and redesign the corre-

sponding interfaces.

One difficulty that may arise with such a strategy is the case where there are

slight variations on the individual modules such as data width, iteration count, and

so forth. These cases are addressed with a design method called parameterization,

whereby like-kind modules can share a common code-base that is parameterizable

on an instance-by-instance basis. The next section discusses this in more detail.

Figure 12.14 Modular design.

190 Chapter 12 Coding for Synthesis

扫码可进资料分享群

12.3.2 Parameterization

In the context of FPGA design, a parameter is a property of a module that can

be changed either on a global sense or on an instance-by-instance basis while

maintaining the root functionality of the module. This section describes the

forms of parameterization and how they can be leveraged for efficient coding

for synthesis.

12.3.2.1 Definitions

Parameters and definitions are similar and in many cases can be used interchange-

ably. However, there are a number of circumstances where one is preferred over

another for efficient, readable, and modular design. Definitions are typically used

either to define global values that are constant across all modules or to provide

compiler time directives for inclusion and exclusion of portions of code. In

Verilog, definitions are utilized with the ‘define statement, and for compiler time

controls with subsequent ‘ifdef statements. Examples of global definitions may be

to define design-wide constants such as:

‘define CHIPID 8’hC9 // global chip ID
‘define onems 90000 // approximately 1ms with an 11ns

clock
‘define ulimit16 65535 // upper limit of an unsigned

16-bit word

The definitions listed above are examples of global “truisms” that will not change

from submodule to submodule. The other use for a global define is to specify

compile-time directives for code selection. One very common application is that

of ASIC prototyping in an FPGA. There will often be slight modifications to the

design (particularly at the I/O and global structures) that will be different

between the ASIC and FPGA. For example, consider the following lines in a

defines file:

‘define FPGA
//‘define ASIC

In the top-level module, there may be entries such as:

‘ifdef ASIC
input TESTMODE;
output TESTOUT;
‘endif

‘ifdef FPGA
output DEBUGOUT;
‘endif

12.3 Design Organization 191

扫码可进资料分享群

In the above code example, test pins must be included for ASIC test insertion but

have no meaning in the FPGA implementation. Thus, a designer would only

include these placeholders in ASIC synthesis. Likewise, the designer may have

outputs that are used for debug in the FPGA prototype but will not be included in

the final ASIC implementation. Global definitions allow the designer to maintain

a single code base with the variations included in-line.

Ifdef directives should be used for global definitions.

To ensure that definitions are applied in a global sense and do not contradict

one another, it is recommended that a global definitions file be created that can be

included in all design modules. Thus, any global parameters that change can be

modified in one central location.

12.3.2.2 Parameters

Unlike global definitions, parameters are typically localized to specific modules

and can vary from instantiation to instantiation. A very common parameter is that

of size or bus width as shown in the following example of a register.

module paramreg #(parameter WIDTH = 8) (
output reg [WIDTH-1:0] rout,
input clk,
input [WIDTH-1:0] rin,
input rst);

always @(posedge clk)
if(!rst) rout <= 0;
else rout <= rin;

endmodule

The above code example illustrates a simple parameterized register with variable

width. Although the parameter defaults to 8 bits, every individual instantiation

can modify the width for that instantiation only. For instance, a module at a

higher level in the hierarchy could instantiate the following 2-bit register:

// CORRECT, BUT OUTDATED PARAMETER PASSING
paramreg #(2) r1(.clk(clk), .rin(rin), .rst(rst),
.rout(rout));

Or the following 22-bit register:

// CORRECT, BUT OUTDATED PARAMETER PASSING
paramreg #(22) r2(.clk(clk), .rin(rin), .rst(rst),
.rout(rout));

As can be seen from the above instantiations, the same code base for “paramreg”

was used to instantiate two registers with different properties. Also note that the

192 Chapter 12 Coding for Synthesis

扫码可进资料分享群

base functionality of the module did not change between the instantiations (a reg-

ister) but only a specific property of that functionality (size).

Parameters should be used for local definitions that will change from module to

module.

Parameterized code such as this is useful when different modules of similar

functionality but slightly different characteristics are required. Without parameter-

ization, the designer would need to maintain a large code base for variations of

the same module where changes would be tedious and error-prone. The alterna-

tive would be to use the same module across instantiations for which the charac-

teristics are not optimal.

An alternative to the above parameter definition is the use of the “defparam”

command in Verilog. This allows the designer to specify any parameter in the

design hierarchy. The danger here is that because parameters are typically used at

specific module instances and are not seen outside of that particular instance (ana-

logous to local variables in software design), it is easy to confuse the synthesis

tool and create mismatches to simulation. A common scenario that illustrates poor

design practice is shown in Figure 12.15.

Figure 12.15 illustrates the practice of passing parameters through the hierar-

chy from top to bottom through instantiations but then redefining the top-level

parameter from a submodule in the hierarchy. This is poor design practice not

only from an organization and readability standpoint; there also exists the poten-

tial for a mismatch between simulation and synthesis. Although the simulation

tool may simulate properly and as the designer intended, synthesis tools often

evaluate parameters from the top down and construct the physical structure

accordingly. It is therefore recommended that if defparams are used, they should

always be included at the module instantiation corresponding with the parameter

it is defining.

A superior form of parameterization was introduced in Verilog-2001, and this

is discussed in the next section.

Figure 12.15 Abuse of defparam.

12.3 Design Organization 193

扫码可进资料分享群

12.3.2.3 Parameters in Verilog-2001

An improved method of parameterization was introduced in Verilog-2001. In

older versions of Verilog, the passing of parameter values was either cryptic or

hard to read with positional parameter passing, and a number of dangers arose

with defparams as discussed in the previous section. Ideally, a designer would

pass a list of parameter values to a module in a similar way that signals

are passed between the I/O of a module. In Verilog-2001, the parameters can be

referenced by name outside of the module, eliminating the readability issues

as well as the dangers associated with defparam. For instance, the instantiation

of paramreg from the previous section would be modified to include the par-

ameter name.

paramreg #(.WIDTH(22)) r2(.clk(clk), .rin(rin), .rst(rst),
.rout(rout));

This unlocks the position requirement, enhances the readability of the code, and

reduces the probability of human error. This type of named parameterization is

highly recommended.

Named parameter passing is superior to positional parameter passing or the def-

param statement.

The other major enhancement to parameterization in Verilog-2001 is the

“localparam.” The localparam is a Verilog parameter version of a local variable.

The localparam can be derived from an expression using other parameters and is

confined to the particular instantiation of the module in which it resides. For

instance, consider the following parameterized multiplier.

// MIXED HEADER STYLE FOR LOCALPARAM
module multparam #(parameter WIDTH1 = 8, parameter WIDTH2 = 8)

(oDat, iDat1, iDat2);
localparam WIDTHOUT = WIDTH1 + WIDTH2;
output [WIDTHOUT-1:0] oDat;
input [WIDTH1-1:0] iDat1;
input [WIDTH2-1:0] iDat2;

assign oDat = iDat1 * iDat2;
endmodule

In the above example, the only parameters that need to be defined externally are

the widths of the two inputs. Because the designer is always assuming that the

width of the output is the sum of the widths of the inputs, this parameter can be

derived off of the input parameters and not redundantly calculated externally.

This makes the job of the designer easier and eliminates the possibility that the

output size does not match the sum of the input sizes.

194 Chapter 12 Coding for Synthesis

扫码可进资料分享群

Currently, localparam is not supported in the module header, and thus the

port list must be stated redundantly (Verilog-1995 style) if the localparam is used

in the I/O list. Regardless, localparam is recommended whenever it can be

derived off of other input parameters as it will further reduce the possibility of

human error.

12.4 SUMMARY OF KEY POINTS

. If/else structures should be used when the decision tree has a priority

encoding.

. Use of the parallel_case directive is generally bad design practice.

. Use of the full_case directive is generally bad design practice.

. Parallel_case and full_case can cause mismatches between simulation and

synthesis.

. It is good design practice to keep all register assignments inside one single

control structure.

. Use blocking assignments to model combinatorial logic.

. Use nonblocking assignments to model sequential logic.

. Never mix blocking and nonblocking assignments in one always block.

. For-loops should not be used to implement software-like iterative

algorithms.

. Data path and control blocks should be partitioned into different modules.

. It is good design practice to use only one clock and only one type of reset

in each module.

. Ifdef directives should be used for global definitions.

. Parameters should be used for local definitions that will change from

module to module.

. Named parameter passing is superior to positional parameter passing or the

defparam statement.

12.4 Summary of Key Points 195

扫码可进资料分享群

扫码可进资料分享群

Chapter 13

Example Design: The Secure

Hash Algorithm

The secure hash algorithm (SHA) defines a method for creating a condensed

representation of a message (the message digest) that is computationally infeasible

to create without the message itself. This property makes the SHA useful for

applications such as digital signatures to verify the authenticity of a message or

for more ancillary applications such as random number generation.

One of the advantages of the SHA algorithms defined by NIST is that they lend

themselves to an easy implementation in hardware. All of the operations are rela-

tively simple to code with logical operations that are efficiently implemented in

FPGAs. The objective of this chapter is to implement the SHA-1 standard in a

parameterized fashion and evaluate the effects of varying the parameters.

13.1 SHA-1 ARCHITECTURE

The various SHA standards are related to the hash size, which corresponds

directly with the level of security (particularly for applications such as digital sig-

natures). The SHA standard that is considered in this chapter is the most basic,

the SHA-1. The SHA-1 algorithm operates on 32-bit words, and each intermediate

calculation (hash) is computed from 512-bit blocks (16 words). The message

digest is 160 bits, which is the condensed representation of the original message.

For the purposes of this illustration, we will assume that the initial message

has been properly padded and parsed. The 160-bit hash is initialized with five

32-bit words defined by the SHA standard and are labeled H0
(i), H1

(i), H2
(i), H3

(i), and

H4
(i) (with initialized values H(0)). The message schedule is represented as 80

words W0, W1, . . . , W79, the five working variables are represented by registers

A–E, and the one temporary word is represented as T. The basic architecture is

shown in Figure 13.1.

197

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

Initially, the working variables are updated with the current hash values

H0
(i)–H4

(i) where the initial hash values themselves are defined as constants in the

SHA specification. For a total of 80 loops, the message schedule must generate a

unique Wt, which is added to a function of the working variables over the finite

field mod 232. The constant generator is defined as shown in Table 13.1. The func-

tion ft of B, C, and D is defined in Table 13.2. After 80 updates of the working

variables, A–E are added to H0–H4, respectively, for the final hash value.

The implementation under consideration is a compact implementation

designed to iteratively reuse logic resources. Both the message schedule and the

working variable updates operate in an iterative manner as shown in the block

diagram. It is not until the hash is complete that a new hash can begin. Note that

because the previous hash must complete before the next can begin, there is very

little in the design that can be pipelined. The code is shown below.

‘define H0INIT 32’h67452301

‘define H1INIT 32’hefcdab89

‘define H2INIT 32’h98badcfe

Figure 13.1 Basic SHA-1 architecture.

Table 13.1 Constant Generator Definition

Kt Iteration t

5a827999 0 � t � 19

6ed9eba1 20 � t � 39

8f1bbcdc 40 � t � 59

ca62c1d6 60 � t � 79

Table 13.2 ft Definition

ft Iteration t

(B & C) ^ (�B & D) 0 � t � 19

B ^ C ^ D 20 � t � 39

(B & C) ^ (C & D)

^ (B & D)

40 � t � 59

B ^ C ^ D 60 � t � 79

198 Chapter 13 Example Design: The Secure Hash Algorithm

扫码可进资料分享群

‘define H3INIT 32’h10325476

‘define H4INIT 32’hc3d2e1f0

‘define K0 32’h5a827999

‘define K1 32’h6ed9eba1

‘define K2 32’h8f1bbcdc

‘define K3 32’hca62c1d6

module sha1 #(parameter WORDNUM = 16, parameter WORDSIZE = 32,

parameter WSIZE = 480)(

output [159:0] oDat,

output reg oReady,

input [WORDSIZE-1:0] iDat,

input iClk,

input iInitial, iValid);

reg [6:0] loop;

reg [WORDSIZE-1:0] H0, H1, H2, H3, H4;

reg [WSIZE-1:0] W;

reg [WORDSIZE-1:0] Wt, Kt;

reg [WORDSIZE-1:0] A, B, C, D, E;

// Hash functions

wire [WORDSIZE-1:0] f1,f2,f3, WtRaw, WtROTL1;

wire [WORDSIZE-1:0] ft;

wire [WORDSIZE-1:0] T;

wire [WORDSIZE-1:0] ROTLB; // rotate B left

// define SHA-1 function based on loop iteration

assign f1 = (B & C) ^ (~B & D);

assign f2 = B ^ C ^ D;

assign f3 = (B & C) ^ (C & D) ^ (B & D);

assign ft = (loop < 21) ? f1:(loop < 41) ? f2:(loop < 61) ?

f3:f2;

// Raw Wt computation before ROTL1

assign WtRaw = {W[(WORDNUM-2)*WORDSIZE-1:(WORDNUM-3)*WORDSIZE]̂

W[(WORDNUM-7) * WORDSIZE-1:(WORDNUM-8) * WORDSIZE] ^

W[(WORDNUM-13)* WORDSIZE-1:(WORDNUM-14)* WORDSIZE] ^

W[(WORDNUM-15)* WORDSIZE-1:(WORDNUM-16)* WORDSIZE]};

// Wt ROTL by 1

assign WtROTL1 = {WtRaw[WORDSIZE-2:0],

WtRaw[WORDSIZE-1]};

assign T ={A[WORDSIZE-6:0],A[WORDSIZE-1:WORDSIZE-5]} +

ft + E + Kt + Wt;

assign ROTLB = {B[1:0],B[WORDSIZE-1:2]};

assign oDat = {H0, H1, H2, H3, H4};

// define Kt based on loop iteration

always @ (posedge iClk)

if (loop < 20) Kt <= ‘K0;

else if (loop < 40) Kt <= ‘K1;

else if (loop < 60) Kt <= ‘K2;

else Kt <= ‘K3;

13.1 SHA-1 Architecture 199

扫码可进资料分享群

// message schedule

always @(posedge iClk) begin

// preparing message schedule

if(loop < WORDNUM) Wt <= iDat;

else Wt <= WtROTL1;

// shift iDat into MS position

if((loop < WORDNUM-1) & iValid)

W[WSIZE-1:0] <= {iDat, W[WSIZE-1:WORDSIZE]};

// shift Wt into MS position

else if(loop > WORDNUM-1)

W[WSIZE-1:0] <={Wt,W[(WORDNUM-1)* WORDSIZE-1:WORDSIZE]};

end

always @(posedge iClk)

if(loop == 0) begin

if(iValid) begin

// initialize working variables

if(!iInitial) begin

A <= ‘H0INIT;

B <= ‘H1INIT;

C <= ‘H2INIT;

D <= ‘H3INIT;

E <= ‘H4INIT;

H0 <= ‘H0INIT;

H1 <= ‘H1INIT;

H2 <= ‘H2INIT;

H3 <= ‘H3INIT;

H4 <= ‘H4INIT;

end

else begin

A <= H0;

B <= H1;

C <= H2;

D <= H3;

E <= H4;

end

oReady <= 0;

loop <= loop + 1;

end

else

oReady <= 1;

end

else if(loop == 80) begin

// compute intermediate hash

H0 <= T + H0;

H1 <= A + H1;

H2 <= ROTLB + H2;

H3 <= C + H3;

H4 <= D + H4;

oReady <= 1;

loop <= 0;

end

200 Chapter 13 Example Design: The Secure Hash Algorithm

扫码可进资料分享群

else if(loop < 80) begin

E <= D;

D <= C;

C <= ROTLB;

B <= A;

A <= T;

loop <= loop + 1;

end

else

loop <= 0;

endmodule

Both the function ft(B,C,D) and Kt are implemented as muxes with the appropri-

ate outputs selected based on the current iteration. The function ft(B,C,D) selects

the appropriate transformation as shown in Figure 13.2.

Likewise, the constant generator simply selects predefined constants depend-

ing on the current iteration (Fig. 13.3).

Note that because only constants are selected, the synthesis tool was able to

optimize certain bits. For the finite field addition, simple adders are used as

shown in Figure 13.4.

Additions over mod 232 are trivial in hardware because the modulus is

handled automatically with a 32-bit register width containing the sum. Thus, the

math for this type of finite field is easier than standard arithmetic because no

overflow checks are necessary.

Figure 13.2 ft implementation.

13.1 SHA-1 Architecture 201

扫码可进资料分享群

Figure 13.3 Constant generator implementation.

202 Chapter 13 Example Design: The Secure Hash Algorithm

扫码可进资料分享群

Note from the example that both definitions and parameters were used. Nor-

mally, the definitions would be contained in a separate defines.v file, but for this

illustration they are included above the module. Note that the definitions contain

the global or system-wide constants. The SHA specification defines the initial

hash values and the constant table, both of which will never change. The par-

ameters are used for module-specific parameters. The SHA specification defines

the word size to be 32 bits and the block size to be 512 bits (16 words), but these

are listed as parameters to serve as an illustration. It is feasible that a bus is

driving data to the SHA core that is less than 32 bits, in which case parameters

such as these as well as a parameterizable interface would be required. Note how

all signal declarations and bit operations are based off of the basic parameters.

Figure 13.4 Finite field addition.

13.1 SHA-1 Architecture 203

扫码可进资料分享群

Using this method, data paths of different widths can be created simply by chan-

ging the corresponding parameter, and the corresponding implementation results

are described next.

13.2 IMPLEMENTATION RESULTS

In this section, we discuss speed/area trade-offs of parameter variances based off

of a Xilinx Spartan-3 implementation. All variances were performed with the

same code base with only the parameter definitions as independent variables.

Table 13.3 shows the effects of varying both the width of the data path (WORD-

SIZE) and the number of input words (WORDNUM).

The implementation results in Table 13.3 illustrate the vast difference small

parameterizations can make. The first parameter, WORDNUM, made very little

difference as it simply adjusts the number of inputs that are initially muxed into

the message schedule. This should add very little overhead as it will only impact

a comparison and multiplex operation. The second parameter WORDSIZE, on the

other hand, directly impacts the data path of the entire design. In this case, dou-

bling the word size will effectively double the total number of resources required

to implement this design.

Table 13.3 Speed/Area Statistics Targeting a Xilinx Spartan-3

WORDNUM WORDSIZE

Max clock

frequency

(MHz)

Area

(Xilinx LUTs)

16 32 86 858

32 32 86 860

16 64 78 1728

204 Chapter 13 Example Design: The Secure Hash Algorithm

扫码可进资料分享群

Chapter 14

Synthesis Optimization

Most implementation tools for FPGA synthesis provide the designer with

dozens of optimization options. The main problem most designers run into is that

it is not clear what these options do exactly and more importantly how these can

be used to actually optimize a design. Most designers never fully understand

these optimization options, and after spending hours, days, or weeks playing

around with the endless combinations, they find a formula that seems to give

them the best results. After having gone down this road, few designers ever

approach these optimizations beyond the formulas that have worked for them

in the past. Thus, most optimizations go unused due to a fundamental lack of

understanding and the difficulty in developing a full arsenal of heuristics.

This chapter describes the most important aspects of synthesis optimization at the

implementation level based on tried-and-true real-world experience and will

provide practical heuristics along the way that can be immediately leveraged by

the reader. During the course of this chapter, we will discuss the following topics

in detail:

. Trade-offs with speed versus area.

. Resource sharing for area optimization.

. Pipelining, retiming, and register balancing for performance optimization.

The effect of reset on register balancing

Handling resynchronization registers

. Optimizing FSMs.

. Handling black boxes.

. Physical synthesis for performance.

205

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

14.1 SPEED VERSUS AREA

Most synthesis tools provide switches that allow the designer to target speed

versus area optimization. This seems like a no-brainer: If you want it to run

faster, choose speed. If you want it to be smaller, choose area. This switch is mis-

leading because it is a generalization of certain algorithms that can sometimes

produce the opposite result (i.e., the design becomes slower after telling it to go

faster). Before we understand why this happens, we must first understand what

speed and area optimizations actually do to our design.

At the synthesis level, speed and area optimizations determine the logic top-

ology that will be used to implement our RTL. At this level of abstraction, there

is little known about the physical nature of the FPGA. Specific to this discussion,

this would relate to the interconnect delay based on the place and route. Synthesis

tools use what are called wire load models, which are statistical estimates of inter-

connect delay based on various criteria of the design. In an ASIC, this is accessi-

ble to the designer, but with FPGA design this is hidden behind the scenes. This

is where the synthesis tool comes up with its estimates, which are often signifi-

cantly different from the end result. Due to this lack of knowledge from the back

end, synthesis tools will primarily execute gate-level optimizations. In high-end

FPGA design tools, there exists a flow called placement-based synthesis to help

close this loop, and this is discussed at the end of the chapter.

The synthesis-based gate-level optimizations will include things like state-

machine encoding, parallel versus staggered muxing, logic duplication, and so on.

As a general rule of thumb (although certainly not always true), faster circuits

require more parallelism, which equates with a larger circuit. Therein lies the

basic conceptual trade-off between speed and area: Faster circuits require more

parallelism and an increase in area. Because of the second-order effects from

FPGA layout, however, this does not always work out as expected.

It isn’t until place and route is completed before the tool really knows how

congested the device is or the difficulty in the place and route process. At this

point in the flow, a particular logic topology has already been committed to by

the synthesis tool. Thus, if an optimization effort was set to speed at the synthesis

level and the back-end tool finds that the device is overly congested, it must still

attempt to place and route all the extra logic. When the device is congested, the

tool will have no choice but to place the components wherever they will fit and

will therefore introduce long delays due to the suboptimal routes. Because of the

fact that designers will often use the smallest FPGA possible for economic

reasons, this situation occurs very frequently. This leads to the general heuristic:

As the resource utilization approaches 100%, a speed optimization at the

synthesis level may not always produce a faster design. In fact, an area

optimization can actually result in a faster design.

The plot in Figure 14.1 represents actual timing data from a RISC micropro-

cessor implemented in a Virtex-II FPGA relative to the timing constraint.

206 Chapter 14 Synthesis Optimization

扫码可进资料分享群

To illustrate the effect, the critical path was constrained to a tight physical region

via placement constraints.

Based on Figure 14.1, the performance graph can be divided into four

regions:

. Underconstrained: This is the flat region near the bottom where the con-

straint was defined to be less than 95 MHz. In this region, a compact

implementation of the logic will run at approximately 95 MHz without any

significant timing optimizations.

. Optimization region: The linear region between 95 MHz and 135 MHz that

represents the range where increases in the timing constraints can be ful-

filled by corresponding optimizations in the logic implementation. In other

words, the timing constraints in this region can be met by synthesizing

higher speed (and correspondingly higher area) logic structures.

. Peak: The upper peak represents the maximum constraint that can be satis-

fied with improvements to the logic structure given the parallel architec-

tures for the specific design and the amount of space available in the

FPGA.

. Overconstrained: This is the flat region near the top where the constraint

exceeds the maximum achievable frequency.

This example helps to illustrate the problem associated with overconstraining

a design. If the target frequency is set too high (i.e., greater than 15–20% above

the final speed), the design can be implemented in a suboptimal manner that actu-

ally results in a lower maximum speed. During the initial implementation, the

synthesis tool will create logic structures based on the timing requirements.

If during the initial timing analysis phase it is determined that the design is too

Figure 14.1 Actual speed versus constrained speed.

14.1 Speed Versus Area 207

扫码可进资料分享群

far from achieving timing, the tool may give up early. If, however, the constraints

are set to the correct target and not more than 20% above the final frequency

(assuming it does not make timing initially), the logic will be implemented with

minimal area to achieve the specified timing and will have more flexibility during

timing closure. It is also important to point out that due to second order effects of

the FPGA implementation, targeting a smaller design may or may not also

improve timing depending on the particular circumstances. This issue is discussed

in later sections.

14.2 RESOURCE SHARING

Architectural resource sharing was discussed in an earlier chapter, whereby por-

tions of the design that can be used for different blocks of functionality are reused

via steering logic. At a high level, this type of architecture can dramatically

reduce the overall area with a penalty that may include throughput if the oper-

ations are not mutually exclusive. Resource sharing on the synthesis optimization

level typically operates on groups of logic between register stages. These simpler

architectures can be boiled down to simple logical and often arithmetic

operations.

A synthesis engine that supports resource sharing will identify similar arith-

metic operations that are mutually exclusive and combine the operations via steer-

ing logic. For instance, consider the following example.

module addshare (
output oDat,
input iDat1, iDat2, iDat3,
input iSel);

assign oDat = iSel ? iDat1 + iDat2: iDat1 + iDat3;
endmodule

In the above example, the output oDat is assigned either the sum of the first two

inputs or the sum of the first and third input depending on a selection bit. A direct

implementation of this logic would be as shown in Figure 14.2.

In Figure 14.2, both sums are computed independently and selected based on

the input iSel. This is a direct mapping from the code but may not be the most

efficient method. An experienced designer will recognize that the input iDat1 is

used in both addition operations, and that a single adder could be used with the

inputs iDat2 and iDat3 muxed at the input as shown below.

This result can also be achieved by use of a synthesis-provided resource

sharing option. Resource sharing will identify the two add operations as two

mutually exclusive events. Either one adder will be updated or the other depend-

ing on the state of the selection bit (or other conditional operator). The synthesis

tool is then able to combine the adders and mux the input (Fig. 14.3).

208 Chapter 14 Synthesis Optimization

扫码可进资料分享群

Although the maximum delay through the above implementation was not

affected by the resource-sharing optimization, there are cases where resource-

sharing will require additional muxing along an individual path. Consider the

following extension of the previous example.

module addshare (
output oDat,
input iDat1, iDat2, iDat3,
input [1:0] iSel);

assign oDat = (iSel == 0) ? iDat1 + iDat2:
(iSel == 1) ? iDat1 + iDat3:
iDat2 + iDat3;

endmodule

A direct mapping will produce a structure as shown in Figure 14.4. This

implementation has been created with parallel structures for all adders and selec-

tion logic. The worst-case delay will be the path through an adder plus a mux.

With resource sharing enabled, the adder inputs are combined as shown in

Figure 14.5. In this implementation, all adders have been reduced to a single

adder with muxed inputs. Note now, however, that the critical path spans three

levels of logic. Whether or not this actually affects the timing of this path

depends not only on the specifics of the logic that is implemented but also on the

available resources in the FPGA.

Figure 14.2 Direct implementation of two adders.

Figure 14.3 Combined adder resource.

14.2 Resource Sharing 209

扫码可进资料分享群

Figure 14.4 Direct mapping of three adders.

Figure 14.5 An extra logic level when adders are shared.

210 Chapter 14 Synthesis Optimization

扫码可进资料分享群

An intelligent synthesis tool will typically utilize resource sharing if the path

is not critical; that is, if the operation is not in the worst-case flip-flop to flip-flop

timing path. If the synthesis tool has this capability, then this option will almost

always be useful. If not, then the designer must analyze the critical path to see if

this optimization is adding additional delay.

If resource sharing is activated, verify that it is not adding delay to the critical path.

14.3 PIPELINING, RETIMING, AND REGISTER
BALANCING

In earlier chapters that discussed architecting for speed, pipelining was a method

that was used to increase the throughput and flip-flop to flip-flop timing by adding

register stages between groups of logic. A well-designed module can usually be

pipelined by adding additional register stages and only impact total latency with a

small penalty in area. The synthesis options for pipelining, retiming, and register

balancing operate on the same structures but do not add or remove the registers

themselves. Instead, these optimizations move flip-flops around logic to balance

the amount of delay between any two register stages and therefore minimize the

worst-case delay. Pipelining, retiming, and register balancing are very similar in

meaning and often only vary slightly from vendor to vendor. Conceptually, this is

illustrated in Figure 14.6.

Figure 14.6 Balancing combinatorial logic.

14.3 Pipelining, Retiming, and Register Balancing 211

扫码可进资料分享群

Pipelining typically refers to the first widely adopted method of load balan-

cing whereby regular structures such as pipelined memories or multipliers could

be identified by the synthesis tool and rearchitected with redistributed logic. In

this case, pipelining requires that a regular pipeline exists and that it is easily

recognizable by the tool. For instance, the following code defines a parameteriz-

able pipelined multiplier:

module multpipe #(parameter width = 8, parameter depth = 3) (
output [2*width-1: 0] oProd,
input [width-1: 0] iIn1, iIn2,
input iClk);
reg [2*width-1: 0] ProdReg [depth-1: 0];
integer i;

assign oProd = ProdReg [depth-1];

always @(posedge iClk) begin
ProdReg[0] <= iIn1 * iIn2;

for(i=1;i <depth;i=i+1)
ProdReg[i] <= ProdReg [i-1];

end
endmodule

In the above code, the two inputs are simply multiplied together, registered, and

succeeded with a number of register stages defined by the parameter depth. A

direct mapping without automatic pipelining will produce the implementation

shown in Figure 14.7.

In the example of Figure 14.7, only one register was pulled into the multiplier

to serve as an output register (indicated by the number 1 in the multiplier block).

The remainder of the pipeline registers are left at the output with an overall

imbalance of logic. By enabling the pipeline, we can push the output registers

into the multiplier as shown in Figure 14.8. The number “3” in the symbol indi-

cates that the register has a three-layer pipeline internally.

Retiming and register balancing typically refer to the more general case

where a flip-flop is moved around logic while maintaining the same logic function

to the outside world. This general case is illustrated in the following example.

module genpipe (
output reg oProd,

Figure 14.7 Multiplier behind a pipeline.

212 Chapter 14 Synthesis Optimization

扫码可进资料分享群

input [7:0] iIn1,
input iReset,
input iClk);
reg [7:0] inreg1;

always @(posedge iClk)
if(iReset) begin

inreg1 <= 0;
oProd <= 0;

end
else begin

inreg1 <= iIn1;
oProd <= (inreg1[0]|inreg1[1]) & (inreg1[2]|inreg1[3]) &

(inreg1[4]|inreg1[5]) & (inreg1[6]|inreg1[7]);
end

endmodule

A synthesis run that is accurate register-for-register would produce the implemen-

tation shown in Figure 14.9.

Here, all logic is contained between two distinct register stages as represented

in the code. If register balancing is enabled, the overall timing can be improved

by moving registers into the critical path logic as shown in Figure 14.10.

As can be seen from the diagram of Figure 14.10, there is no penalty in

terms of latency or throughput when register balancing is used. The register utiliz-

ation may increase or decrease depending on the application, and run time will be

extended. Thus, if retiming is not a necessity for timing compliance, an intelligent

synthesis tool will not perform these operations on noncritical paths.

Register balancing should not be applied to noncritical paths.

14.3.1 The Effect of Reset on Register Balancing

As with many other optimizations, the reset can have a direct impact on the

ability of the synthesis tool to use register balancing. Specifically, if two flip-flops

Figure 14.8 Pipeline moved into multiplier.

14.3 Pipelining, Retiming, and Register Balancing 213

扫码可进资料分享群

Figure 14.9 Imbalanced logic.

Figure 14.10 Balanced logic.

214 Chapter 14 Synthesis Optimization

扫码可进资料分享群

are required to combine to balance the logic load, the two flip-flops must have the

same reset state. For instance, if one reset has a synchronous reset and another an

asynchronous reset (which would typically be poor design practice) or if one had

a set versus a reset, the two could not be combined, and register balancing would

have no effect. If this condition existed in the previous example, the final

implementation would be prevented as shown in Figure 14.11. In this implemen-

tation, the registers that drive the logic gates are initialized to an alternating

1-0-1-0 pattern. This prevents any register balancing or recombination due to

incompatible register types. A smart synthesis tool may analyze the path and

determine that inverting the reset type along with a corresponding inversion of

the flip-flop input and inversion of the flip-flop output (a workaround for the

offending flip-flop) will improve the overall timing. However, if the delay intro-

duced by this workaround eliminates the overall effectiveness of the register bal-

ancing, the synthesis tool will use a direct mapping and this technique will offer

no significant optimization.

Adjacent flip-flops with different reset types may prevent register balancing from

taking place.

14.3.2 Resynchronization Registers

One case where register balancing would be a problem is in the area of signal

resynchronization. In previous chapters, we discussed the double-flop method for

resynchronizing an asynchronous signal either from outside the FPGA or from

another clock domain as shown in Figure 14.12.

Figure 14.11 Mixed reset types preventing register balancing.

14.3 Pipelining, Retiming, and Register Balancing 215

扫码可进资料分享群

If register balancing is enabled, the logic following the resynchronization reg-

isters could be pushed between these registers as shown in Figure 14.13.

Because it is desirable not to perform any logical operations on a potentially

metastable signal, as well as provide as much time as possible for the signal to

become stable, it is important that register balancing does not affect these special

circuits. If register balancing is enabled, these circuits must be analyzed to ensure

there will be no effect to the resynchronization. Most synthesis tools will have the

ability to constrain the design to prevent register balancing on individual

registers.

Constrain resynchronization registers such that they are not affected by register

balancing.

14.4 FSM COMPILATION

FSM compilation refers to the automatic identification of a finite state machine in

the RTL and recoding as needed for the speed/area constraints. This means that

as long as a standard state-machine architecture is used, the exact coding in the

RTL is unimportant. Due to the regular structure of a state machine coded with a

standard style, the synthesis tool can easily extract the state transitions and output

dependencies and transform the FSM into something that is more optimal for a

given design and set of constraints.

Figure 14.12 Resynchronization registers without balancing.

Figure 14.13 Balancing applied to resynchronization registers.

216 Chapter 14 Synthesis Optimization

扫码可进资料分享群

Design state machines with standard coding styles so they can be identified and

reoptimized by the synthesis tool.

Binary and sequential encoding will depend on all flip-flops in the state rep-

resentation, and thus a state-decode will be necessary. FPGA technologies that are

logic rich or that have multiple input gates for the decode logic will optimally

implement these FSMs.

One-hot encoding is implemented such that one unique bit is set for each

state.With this encoding, there is no state decode and the FSMwill usually run faster.

The disadvantage is that one-hot encodings typically require many registers.

Gray codes are a common alternative to one-hot encoding in two primary

applications:

. Asynchronous outputs

. Low-power devices

If the output of the state machine, or any of the logic that the state machine oper-

ates on, is asynchronous, gray codes are typically preferred. This is due to the

fact that asynchronous circuits are not protected from race conditions and glitches.

Thus, the path differential between two bits in the state register can cause unex-

pected behavior and will be very dependent on layout and parasitics. Consider the

output encoding for a Moore machine as shown in Figure 14.14. In this case, state

transition events will occur where a single bit will be cleared and a single bit will

be set, thereby creating the potential for race conditions. The waveforms illustrat-

ing this condition are shown in Figure 14.15.

One solution to this problem is to use gray encoding. A gray code only

experiences a single bit change for any transition. The fact that gray codes can be

used to safely drive asynchronous outputs is apparent after analyzing the structure

of coding scheme. To construct a gray code, use the mirror-append sequence as

described below.

1. Begin with a “0” and a “1” listed vertically.

2. Mirror the code from the bottom digit.

3. Append “0” to the upper half of the code (the section that was copied in

the mirror operation).

4. Append “1” to the lower half of the code (the section that was created in

the mirror operation).

Figure 14.14 Example moore machine output.

14.4 FSM Compilation 217

扫码可进资料分享群

This sequence is illustrated in Figure 14.16.

As can be seen in Figure 14.16, a gray code will only experience a single bit

toggle for every state transition and thus eliminates race conditions within the

asynchronous logic.

Use gray codes when driving asynchronous outputs.

Aside from conditions such as described above, one-hot encoding is typically

preferred for FPGA design. This is because FPGAs are register rich, there is no

decoding logic required, and because it is usually faster. For these reasons, most

state machines will be replaced with a one-hot structure, so for good design prac-

tice and to reduce overall run time it is advised to design all state machines with

one-hot encoding unless there is a compelling reason to do otherwise.

Figure 14.15 Potential hazard.

Figure 14.16 Creating gray codes.

218 Chapter 14 Synthesis Optimization

扫码可进资料分享群

14.4.1 Removal of Unreachable States

Most state-machine compilers will remove unused states and may be intelligent

enough to detect and remove unreachable states. For most applications, this will

help to optimize both speed and reduce area. The main application that would

require the retention of unreachable states would be for high-reliability circuits

used in aviation, by the military, or in spacecraft. With ultrasmall geometries, par-

ticles of radiation from solar or nuclear events can cause flip-flops to spon-

taneously change states. If this happens in a circuit that is critical to human life, it

is important to ensure that any combination of register states has a quick recovery

path. If every possible state in a FSM is not accounted for, it is possible that such

events could put the circuit into a state from which it cannot recover. Thus, syn-

thesis tools often have a “safe mode” to cover all states even if they are unreach-

able through normal operation.

The following module contains a simple FSM that continuously sequences

through three states after reset. The output of the module is simply the state itself.

module safesm (
output [1:0] oCtrl,
input iClk, iReset);
reg [1:0] state;

// used to alias state to oCtrl
assign oCtrl = state;

parameter STATE0 = 0,
STATE1 = 1,
STATE2 = 2,
STATE3 = 3;

always @(posedge iClk)
if(!iReset) state <= STATE0;
else

case(state)
STATE0: state <= STATE1;
STATE1: state <= STATE2;
STATE2: state <= STATE0;

endcase
endmodule

The implementation is simply a shift register as shown in Figure 14.17. Note

that if bits 1 and 2 are errantly set simultaneously, this error will continue to recir-

culate and generate an incorrect output until the next reset. If safe mode is

enabled, however, this event will cause an immediate reset as shown in

Figure 14.18.

With the implementation of Figure 14.18, an incorrect state will be detected

by the additional logic and force the state registers to the reset value.

14.4 FSM Compilation 219

扫码可进资料分享群

14.5 BLACK BOXES

Black boxes are placeholders in the synthesis flow for a netlist or layout opti-

mized block that will be included in the design later in the implementation flow.

The main problem with a black box is that it cannot be optimized by synthesis,

and the synthesis tool will have trouble optimizing around it. If the timing engine

in the synthesis tool does not know the nature of the interfaces or the timing in

and out of the black box, it must assume the worst-case condition and optimize

accordingly.

In general, it is not recommended to generate low-level optimized cores that

require black boxes in synthesis because this prevents the synthesis from optimiz-

ing the entire design. If this is not possible, it is important to include the timing

models provided by the core generation tool if optimization around the black box

is required.

If a black box is required, include the timing models for the I/O.

Consider the following example of a counter that is periodically pushed into

a FIFO.

module fifotop(
output [15:0] oDat,
output oEmpty,

Figure 14.17 Simple state machine implementation.

Figure 14.18 State machine implementation with safe mode.

220 Chapter 14 Synthesis Optimization

扫码可进资料分享群

input iClk, iReset,
input iRead,
input iPushReq);
reg [15:0] counter;
wire wr_en, full;

assign wr_en = iPushReq & !full;

always @(posedge iClk)
if(!iReset) counter <= 0;
else counter <= counter + 1;

myfifo myfifo (
.clk (iClk),
.din (counter),
.rd_en(iRead),
.rst (iReset),
.wr_en(wr_en),
.dout (oDat),
.empty(oEmpty),
.full (full));

endmodule

In the above example, the 16-bit free running counter pushes its current value

into the FIFO whenever a push request is input (iPushReq) and only if the FIFO

is not full. Note that the FIFO myfifo is an instantiation of a core generated from

the Xilinx core generator tool. The black-box instantiation is defined with only

the I/O as placeholders as shown in the following module definition.

module myfifo(
output [15: 0] dout,
output empty,
output full,
input clk,

Figure 14.19 Critical path around black box.

14.5 Black Boxes 221

扫码可进资料分享群

input [15: 0] din,
input rd_en,
input rst,
input wr_en) /* synthesis syn_black_box */;

endmodule

The black-box synthesis directive shown in the above code tells the synthesis

tool not to optimize this module out of the design and to leave placeholders for

the netlist in the back-end tool. The drawbacks as stated earlier are the fact that

timing and area utilization are unknown. This prevents the synthesis tool from

making any optimizations on or around the interface of the black box. Addition-

ally, if the critical path intersects with the black box, the perceived worst-case

timing will be incorrect and will render max speed estimates entirely incorrect.

For instance, in the above design, the worst-case path is determined to lie

between one of the black-box outputs and one of the inputs.

Because no setup or hold timing is defined for the black box represented in

Figure 14.20, this is determined to be zero, and thus a max frequency of 248 MHz

is provided as an estimate. To see the inaccuracy of this, consider the modified

black-box instantiation that simply defines setup and hold times on the black box

relative to the system clock.

module myfifo(
output [15: 0] dout,
output empty,
output full,
input clk,
input [15: 0] din,
input rd_en,
input rst,

Figure 14.20 Simplified routing matrix.

222 Chapter 14 Synthesis Optimization

扫码可进资料分享群

input wr_en) /* synthesis syn_black_box
syn_tsu1 = "din[15:0]->clk=4.0"
syn_tsu2 = "rd_en->clk=3.0"
syn_tsu3 = "wr_en->clk=3.0"
syn_tco1 = "clk->dout=4.0"
syn_tco2 = "clk->empty=3.0"
syn_tco3 = "clk->full=3.0"
*/;

endmodule

In this case, we define the setup and hold times for the control signals to be 3 ns and

the setup and hold times for the I/O data to be 4 ns. Using this new information, the

synthesis tool decides that the identical path is still critical, but the timing can now

be accurately estimated at 125 MHz, which is about half of the original estimate.

14.6 PHYSICAL SYNTHESIS

Physical synthesis has taken on a number of different forms from various

vendors, but ultimately it is the utilization of physical layout information to opti-

mize the synthesis process. In other words, by providing either preliminary phys-

ical estimates about placement or by performing actual physical layout, the

synthesis tool will have better loading models to work with and will be able to

optimize a design with information that is very close to the final implementation.

The physical synthesis tools that perform preliminary placement will forward

annotate the layout information to the back-end place and route tool.

In some ways, physical synthesis is simpler in the ASIC world than with

FPGAs. The reason is than because ASICs have flexible routing resources, the

delays can be statistically estimated based on the distance between the two end

points of the route. In an FPGA, the routing resources are fixed. There will be a

number of fast routing resources (usually long lines between major areas of the chip)

and a number of slower routing resources (switch matrices) to handle local routing

congestion. Figure 14.20 illustrates a simplified view of an abstract routing matrix.

As can be seen from Figure 14.20, there will be a hierarchy of routing

resources. The low-skew lines will have the ability to carry signals long distances

around the FPGA with little delay but are very limited in extent among all logic

elements. The local routing resources are used to make connections to local

resources but are very inefficient in their ability to carry signals for any distance

and will be very dependent on congestion in adjacent elements. Thus, the ability

to route between point A and point B will greatly depend on the availability of

routing resources near the logic elements and the utilization of these resources.

For the reasons discussed above, estimating routing delay can be very

complex for FPGA synthesis tools. This is a major problem with modern FPGAs

as routing delays become dominant in smaller geometries. Thus, an inaccurate

estimate of routing delays can prevent a synthesis tool from optimizing accord-

ingly. Physical synthesis provides a solution to this by generating placement

information during synthesis.

14.6 Physical Synthesis 223

扫码可进资料分享群

14.6.1 Forward Annotation Versus Back-Annotation

Back-annotation is the traditional path to timing closure. The synthesis

implements logic based on statistical estimates of the final place and routing

timing information. The place and route tool then takes this netlist and creates a

physical layout of the logic structures. Timing analysis is then performed, and

any timing violations are fed back either to the placement tool (smaller violations

can typically be fixed with a better placement as discussed in later chapters) or to

the synthesis tool for major violations. In the latter case, the designer creates con-

straints either by hand to inform the synthesis tool that a particular path needs to

be tightened or in an automated manner with more sophisticated tools.

Although the methodology described above does typically bring the design to

timing closure, the primary drawback is the total design time and lack of auto-

mation to close the entire loop. The above methodology forces the designer to run

the tool many times and for each iteration to feed timing information back to syn-

thesis. Figure 14.21 illustrates the traditional timing closure flow, which includes

design constraints, synthesis, place and route, and static timing analysis. Note that

the timing information for the design is fed back to an earlier point in the flow for

optimization.

Figure 14.21 Back-annotating timing violations.

224 Chapter 14 Synthesis Optimization

扫码可进资料分享群

Forward annotation, on the other hand, passes design-related information

forward as a set of constraints or physical parameters that indicates or defines the

assumptions that were made by synthesis. By using this information to drive the

back-end implementation, the estimates from synthesis will be more accurate, and

the need to re-run the flow will be minimized.

Physical synthesis provides tighter correlation between synthesis and layout.

In Figure 14.22, the timing failures may still need to feed back to the physical

synthesis tool. Even if timing failed due to poor routing, either the placement or

the fundamental logic structures will need to be reoptimized. The key here is that

because synthesis and placement are tightly coupled, the number of iterations

before achieving timing closure will be far fewer. The degree to which this

process can be automated is directly related to algorithms used in the physical

synthesis for placement estimates as discussed in the next section.

14.6.2 Graph-Based Physical Synthesis

One of the keys to high-performance physical synthesis is to create accurate esti-

mates of routing congestion and delay. Synplicity has developed a technology for

FPGA physical synthesis called graph-based physical synthesis. The idea is to

Figure 14.22 Forward-annotating placement data.

14.6 Physical Synthesis 225

扫码可进资料分享群

abstract the routing resources and related timing information into a routing resource

graph. The physical placement is performed based not on a physical distance but on

weighted calculations from the graph. Figure 14.23 illustrates the difference

between minimum physical distance and weighted distance based on congestion.

The graph-based synthesis flow takes into account certain criteria that will

affect the final layout including routing resources between any two points as well

as existing utilization. This methodology creates a tighter correlation between

synthesis and layout but does not address high-level partitioning issues or critical

path constraints. This is discussed further in Chapter 15.

14.7 SUMMARY OF KEY POINTS

. As the resource utilization approaches 100%, a speed optimization at the

synthesis level may not always produce a faster design. In fact, an area

optimization can actually result in a faster design.

Figure 14.23 Graph based physical synthesis.

226 Chapter 14 Synthesis Optimization

扫码可进资料分享群

. If resource sharing is activated, verify that it is not adding delay to the criti-

cal path.

. Register balancing should not be applied to noncritical paths.

. Adjacent flip-flops with different reset types may prevent register balancing

from taking place.

. Constrain resynchronization registers such that they are not affected by reg-

ister balancing.

. Design state machines with standard coding styles so they can be identified

and reoptimized by the synthesis tool.

. Use gray codes when driving asynchronous outputs.

. If a black box is required, include the timing models for the I/O.

. Physical synthesis provides tighter correlation between synthesis and

layout.

14.7 Summary of Key Points 227

扫码可进资料分享群

扫码可进资料分享群

Chapter 15

Floorplanning

As discussed in Chapter 14, there are only so many optimizations that can be

made in the synthesis tool, and only a small subset of those can be forward anno-

tated to the back-end place and route tool such as described in the physical syn-

thesis flow. All of those optimizations are performed at a low level of abstraction

and operate on individual logic structures. There are no methodologies discussed

thus far that address higher-level constraints that can be passed to the back-end

tools to optimize the speed and quality of the place and route algorithms. This

chapter describes one such high-level method called floorplanning.

During the course of this chapter, we will discuss the following topics:

. Partitioning a design with a floorplan.

. Performance improvements by constraining the critical path.

. Floorplanning dangers.

. Creating an optimal floorplan.

Floorplanning the data path

Constraining high fan-out logic

Shaping the floorplan around built-in FPGA devices

Reusability

. Floorplanning to reduce power dissipation.

15.1 DESIGN PARTITIONING

As device densities and corresponding design sizes have become very large

(millions of gates), newer methodologies have been developed to assist the place-

ment tools when laying out logic elements from a sea of gates. To address this

issue, floorplanning has become common in the area of design partitioning.

A typical design flow that utilizes floorplanning to partition a design is shown in

Figure 15.1 (with and without physical synthesis).

229

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

In the two flow diagrams of Figure 15.1, the floorplanning stage must always

come before the placement operation. In the case of the physical synthesis flow,

the floorplan is created prior to synthesis. In either case, the floorplan is fixed and

used as a guide to partition the physical location of all logic elements.

A high-level floorplan such as one that is used to partition designs not only

captures all major blocks in the design but also abstracts those blocks such that

the individual logic structures need no specific reference. This allows large func-

tional blocks to be partitioned for very large designs that have precisely defined

timing at their interfaces. For instance, consider a design with three main func-

tional blocks called A, B, and C, respectively. The pipeline is defined as shown in

Figure 15.2.

In the design partition of Figure 15.2, there are three major functional blocks,

each of which is assigned to a separate designer. The blocks only interact at

specific interfaces that have been predefined by the system designer, who has also

defined the timing of these interfaces by means of a timing budget. Because the

interfaces have been clearly defined, and most likely all I/O of the functional

blocks will be registered, the critical path timing will lie within the blocks them-

selves. In other words, with a good design partition, the critical path will not

cross any major functional boundaries, and so timing compliance can be

Figure 15.1 Standard versus physical synthesis flow.

230 Chapter 15 Floorplanning

扫码可进资料分享群

considered on a block-by-block basis. This assumption can dramatically speed up

the implementation of a large device as an alternative to placing a sea of gates.

By partitioning the floorplan between major functional boundaries, timing

compliance can be considered on a block-by-block basis.

The floorplanner from Synplicity provides outstanding control over a parti-

tioned design on a very abstract level. Figure 15.3 shows a possible floorplan of

the design partition of Figure 15.2 for a Spartan-3 5000.

Figure 15.2 Pipeline with well-defined interfaces.

Figure 15.3 Example floorplan for design partitioning.

15.1 Design Partitioning 231

扫码可进资料分享群

The regions in this diagram define the physical area occupied by each block.

An FPGA device of this size would normally take many hours to successfully place

and route with a blanket sea of gates. With the above partitioning, however, this run

time will be dramatically reduced to three smaller (and more manageable) place

and route operations. Assuming all interfaces are registered at the boundary, the

relatively large gaps between the blocks will not cause timing problems. Besides

run time, another benefit to this type of partitioning is that major structural or layout

changes in one block need not affect the others. Thus, a methodology that employs

design partitioning works in close harmony with an incremental design flow.

15.2 CRITICAL-PATH FLOORPLANNING

Floorplanning is often used by designers who have very difficult timing con-

straints and need to tighten their critical paths as much as possible. The floorplan

in this case would be created after the final implementation results were generated

and the critical path was defined. This information would be back-annotated to

the floorplanner whereby the designer would manually define location constraints

for the critical logic elements. These physical constraints would then be forward

annotated into the place and route tool to complete an iterative cycle. Figure 15.4

illustrates the design flow when using a floorplan to constrain only critical paths.

Figure 15.4 Design flow with critical path floorplanning.

232 Chapter 15 Floorplanning

扫码可进资料分享群

In this case, the floorplanning step is not a static and unchanged step in the

process as it is with a design partition but rather a key link in the iterative timing

closure loop.

When floorplanning the critical path, the floorplan is a key link in the iterative

timing closure loop.

Note that the floorplan is not modified until a critical path has been deter-

mined and will be modified during every iteration of the timing closure loop.

Figure 15.5 illustrates two possible critical-path-floorplan constraints.

In this example, there are no major functional partitions in the floorplan.

Instead, the floorplan consists of two small regions designed to tighten the timing

for two distinct critical paths in the design. These regions are created ad hoc

based on the timing info that is fed back to the floorplanner and will be updated

for every iteration of the timing closure loop.

15.3 FLOORPLANNING DANGERS

The danger in floorplanning is that if done incorrectly, it can dramatically

decrease the performance of the implementation. This is because of the fact that

good placement directly corresponds with a design that performs well, and bad

placement directly corresponds with a design that performs poorly. This may

seem like an obvious statement, but a corollary to this is that a bad floorplan will

lead to bad placement and will subsequently lead to poor performance. Thus, a

floorplan of any type will not have a nondecreasing impact on performance.

Rather, a bad floorplan will make things much worse.

A bad floorplan can dramatically reduce the performance of a design.

It is important to note that not all designs lend themselves to floorplanning.

Designs that are pipelined and have a very regular data flow, such as with a pipe-

lined microprocessor, clearly lend themselves to floorplanning. Devices that

implement primarily control or glue logic or that don’t have any definable major

Figure 15.5 Example critical-path-floorplan constraints.

15.3 Floorplanning Dangers 233

扫码可进资料分享群

data path often do not lend themselves to a good floorplan that is intended to par-

tition the design. If the design is indeed simply a sea of gates, then it would be

optimal to allow the synthesis and place and route tools to treat it as such.

One general heuristic to determine if a design is a good candidate for critical-

path floorplanning is to analyze the routing versus logic delays. If the percentage

of a critical path that is consumed in routing delay is the vast majority of the total

path delay, then floorplanning may assist in bringing these structures closer

together and optimizing the overall routing resources and improving timing per-

formance. If, however, the routing delay does not take up the majority of the

critical-path delay and there is no clearly definable data path, then the design may

not be a good candidate for floorplanning.

Floorplanning is a good fit for highly pipelined designs or for layouts dominated

by routing delay.

For designs that may lend themselves to a good floorplan, there are a number

of considerations that must be taken into account to ensure that the performance

will actually be improved. This is discussed in the next section.

15.4 OPTIMAL FLOORPLANNING

The optimal floorplan will group logic structures that have direct interconnect in

close proximity to one another and will not artificially separate elements that may

lie in a critical path. The following sections describe methods to optimize the

floorplan.

15.4.1 Data Path

A design that is data path centric is often relatively easy to partition. For most

high-speed applications, the pipeline to be partitioned will usually apply to the

data path. Because the data path carries the processed information and is required

to do so at very high speeds (often running continuously), it is recommended to

floorplan this first as shown in Figure 15.6.

In this scenario, a floorplan is created to partition the data path only. This

includes the main pipeline stages and all associated logic. The control structures

and any glue logic that do not lie on the primary data path can be placed auto-

matically by the back-end tools.

The floorplan usually includes the data path but not the associated control or glue

logic.

15.4.2 High Fan-Out

High fan-out nets are often good candidates for floorplanning as they require a

large amount of routing resources in one specific region. This requirement often

234 Chapter 15 Floorplanning

扫码可进资料分享群

leads to a high degree of congestion if the loads are not placed in a close proxi-

mity to the driver as shown in Figure 15.7.

If the loads are located a relatively long distance from the driver, the inter-

connect will occupy a large amount of routing resource at the output of the

driver. This will make other local routes more difficult and correspondingly

longer with larger delays. Figure 15.8 illustrates the benefit of constraining the

high fan-out region to a small area.

By confining the high fan-out region to a small and localized area, the effects

to other routes will be minimized. This will provide faster run times for the place

and route tool as well as a higher performance implementation due to the mini-

mization of routing delays.

15.4.3 Device Structure

The device structure is critical in the floorplan, as built-in structures cannot be

moved around with either the floorplan or the placement tools. These built-in

Figure 15.6 Data-path floorplanning.

15.4 Optimal Floorplanning 235

扫码可进资料分享群

structures include memories, DSPs, hard PCI interfaces, hard microprocessors,

carry chains, and so forth. It is therefore important not only to floorplan the

design such that the blocks are placed optimally relative to one another but also

such that built-in structures can be utilized efficiently and that routes to the

custom logic are minimized.

A floorplan should take into consideration built-in resources such as memories,

carry chains, DSPs, and so forth.

In Figure 15.9, input and output logic resources are tied to the RAM inter-

face. For a sizable RAM block, it is usually more desirable to use the fixed RAM

Figure 15.7 Congestion near high fan-out regions.

Figure 15.8 Floorplanning high fan-out regions.

236 Chapter 15 Floorplanning

扫码可进资料分享群

resources available in certain regions of the FPGA as opposed to an aggregation

of smaller RAM elements distributed throughout the FPGA. The constraint for a

floorplan on this path would then be dependent on the fixed location of the RAM

resource as shown in Figure 15.10.

Figure 15.9 Fixed FPGA resources.

Figure 15.10 Floorplanning around fixed FPGA resources.

15.4 Optimal Floorplanning 237

扫码可进资料分享群

15.4.4 Reusability

A good floorplan will allow various modules and groups of modules to be reused

without a dramatic impact on the performance of those modules. In a sea of gates

design, it is common to find that changes to totally unrelated areas of the design

can cause timing problems in other aspects of the design. This is due to the pro-

gressive nature of an unconstrained place and route algorithm. The chaos effect

ensues when a small placement change on one side of the FPGA shifts logic

resources over, forcing other local logic structures out of the way, and so on until

the entire chip has been replaced with entirely new timing. For a constrained pla-

cement via a good floorplan, this is not an issue as the relative timing is fixed for

the critical-path modules, and any changes must operate around that floorplan.

In Figure 15.11, the critical logic is constrained inside the floorplan region

and will not be affected internally as placement changes around it.

15.5 REDUCING POWER DISSIPATION

Previous sections discussed floorplanning in the context of timing performance,

organization, and implementation run-time. There is an additional use for floor-

planning, and that is the reduction of the dynamic power dissipation. A route

from logic device A to device B is illustrated in Figure 15.12.

Because of the fact that the capacitance of the trace (Ctrace) is proportional to

the area of the trace, and assuming the width of the trace is fixed for an FPGA

routing resource, the capacitance will be proportional to the length of the trace. In

other words, the capacitance that the driver must charge and discharge will be

proportional to the distance between the driver and the receiver.

Figure 15.11 Shielding from layout changes.

238 Chapter 15 Floorplanning

扫码可进资料分享群

In our original discussion on dynamic power dissipation, it was determined

that the power dissipated on high-activity lines was proportional to the capaci-

tance of the trace times the frequency. In this section, we will assume that the

functionality is locked down and the activity on the various traces cannot be

changed. Thus, to minimize the power dissipation, we must minimize the routing

lengths of high-activity lines.

For timing optimization, the place and route tool will place critical-path com-

ponents in close proximity to one another in an attempt to achieve timing compli-

ance. The critical path, however, does not indicate anything about high activity.

In fact, a critical path may have a very low toggle rate, whereas a component that

easily meets timing such as a free running counter may have a very high toggle

rate. Consider the scenario where the critical path has been constrained to a small

region.

In Figure 15.13, the critical path has been constrained, and the clock frequency

has been maximized. However, the timing-driven placement has not identified the

high-activity circuit as a timing problem and has scattered the components around

Figure 15.12 LC trace parasitics.

Figure 15.13 Floorplanning to minimizing high-activity nets.

15.5 Reducing Power Dissipation 239

扫码可进资料分享群

the critical path as was convenient. The problem is that due to the long routes on

the high-activity lines, the total dynamic power dissipation will be relatively high.

To reduce this power consumption, another placement region can be added for the

high-activity circuit to ensure that the interconnect is minimized. If the high-

activity circuit is independent of the critical path, this can usually be done with

little impact to the timing performance.

A floorplan targeted at minimizing trace lengths of high-activity nets can reduce

dynamic power dissipation.

15.6 SUMMARY OF KEY POINTS

. By partitioning the floorplan between major functional boundaries, timing

compliance can be considered on a block-by-block basis.
. When floorplanning the critical path, the floorplan is a key link in the itera-

tive timing closure loop.
. A bad floorplan can dramatically reduce the performance of a design.
. Floorplanning is a good fit for highly pipelined designs or for layouts domi-

nated by routing delay.
. The floorplan usually includes the data path but not the associated control

or glue logic.
. A floorplan should take into consideration built-in resources such as mem-

ories, carry chains, DSPs, and so forth.
. A floorplan targeted at minimizing trace lengths of high-activity nets can

reduce dynamic power dissipation.

240 Chapter 15 Floorplanning

扫码可进资料分享群

Chapter 16

Place and Route Optimization

Most implementation tools for FPGA layout (commonly referred to by the two

main stages of layout: place and route) provide the designer with dozens of

optimization options. The problem designers will run into with these options is

similar to the problem they will run into with synthesis optimization; that is, they

typically do not fully understand the implication of all of these options. Therefore,

certain optimizations are often used where they are not needed, and other optimi-

zations go unused where they could have a significant impact on performance.

Similar to Chapter 14, this chapter describes the most important aspects of place

and route optimization and provides practical heuristics that can be immediately

leveraged by the reader. During the course of this chapter, we will discuss the

following topics:

. Creating optimal constraints prior to place and route optimization.

. The relationship between placement and routing.

. Reducing route delays with logic replication.

. Optimization across hierarchy.

. Packing registers into I/O buffers.

. Utilizing the pack factor.

. When to pack logic into RAM.

. Ordering registers.

. Variances with placement seed.

. Greater consistency with guided place and route.

16.1 OPTIMAL CONSTRAINTS

Before launching into the actual place and route optimizations themselves, it is

important to emphasize the importance of defining a complete set of timing

241

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

constraints. The reason this topic is listed first is to ensure that the optimizations

contained in this chapter are not addressed until sufficient time has been spent

creating accurate design constraints.

A complete set of constraints should be created before any optimization takes

place.

The constraints that must be included on every design include all clock defi-

nitions, I/O delays, pin placements, and any relaxed constraints including multi-

cycle and false paths. Although a particular path may not be a critical timing path,

often by relaxing specifications on unrelated paths, placement and routing

resources can be freed for more critical paths. For more information regarding

these constraints, see Chapter 18.

One class of constraints that is often not covered by typical timing analysis

for FPGAs (and is not included in Chapter 18) includes voltage and temperature

specifications. The voltage/temperature specifications are among the set of con-

straints that most often go overlooked by designers but in many cases provide the

easiest way to achieve significant timing improvements.

Most designers know that all FPGA devices (like most semiconductor devices)

specify a worst-case voltage and temperature under which the device will operate.

In the context of FPGA timing analysis, worst-case temperature would be the

highest temperature, and the worst-case voltage would be the lowest voltage,

because both of these constraints will increase the propagation delays (we typically

don’t worry about hold delays in FPGAs because of the minimum delays built into

the routing matrix). For example, the high end of the commercial temperature

range for Xilinx FPGAs is 858C, and the worst-case voltage rating is usually

between 5% and 10% of the recommended operating voltage. This would corre-

spond with approximately 1.14 V for a 1.2-V rail, 3.0 V for a 3.3-V rail, and so on.

These worst-case voltage and temperature conditions are used by default

when performing worst-case timing analysis. However, few systems will require

the FPGA to run at the extreme conditions of 858C (junction temperature of the

FPGA) and a 10% droop in the power rail. In fact, most systems will only experi-

ence conditions far less extreme than this.

If the system in which the FPGA operates is designed within certain temperature

and voltage conditions, then the FPGA timing analysis can and should be

performed under the same conditions.

When this is taken into consideration, many engineers find that they can

shave full nanoseconds off of their critical path (depending on the device technol-

ogy of course). If the timing violations are less than this incremental improve-

ment, engineers will find that they were struggling over timing violations that

didn’t really exist!

Consider the example of a 16-bit counter. Under default timing analysis con-

ditions, this counter will run at 276 MHz in a Virtex-II device. The menu in

242 Chapter 16 Place and Route Optimization

扫码可进资料分享群

Figure 16.1 shows the default voltage and temperature settings that will be passed

to the Xilinx timing analysis tool.

In this case, the worst-case voltage setting is 95% of the specified supply

voltage. A 5% voltage variance may be reasonable for a switching supply, but if this

is running off of a linear supply that can supply more than enough current to the

core, this specification is overkill. Additionally, the junction temperature setting is at

858C. Most likely, the functional design will not generate such a temperature, and

thus this specification is again probably overkill. We can reduce these to more

reasonable parameters for our hypothetical “light-weight” system where the supply

only varies by 2% and the temperature never exceeds 458C (Fig. 16.2).

Figure 16.1 Default operating voltage and temperature settings.

Figure 16.2 Realistic operating voltage and temperature settings.

16.1 Optimal Constraints 243

扫码可进资料分享群

The result is that the counter now runs at just under 290 MHz. This perform-

ance improvement did not require any actual changes to the FPGA but was

simply a matter of analyzing the design under the correct conditions.

Adjusting the voltage and temperature settings does not require any changes to

the FPGA implementation and can provide an easy means to incrementally

improve the worst-case performance.

The only drawback to this approach is that devices need to be fully character-

ized according to temperature and voltage before the vendor will allow access to

this option. Due to the ongoing battle between the FPGA vendors to produce the

fastest FPGAs before their competitors, they typically release devices before this

characterization has been completed. In fact, if you are using a brand-new tech-

nology, you can usually count on this option not being available. In the timing

analysis tools, this option will be inaccessible. This is one of the advantages of

using a device with a moderate amount of maturity.

16.2 RELATIONSHIP BETWEEN PLACEMENT
AND ROUTING

Most modern FPGA place and route tools do a very good job of achieving timing

compliance with the automated algorithms, and because of this, manual placement

and/or routing is no longer commonplace. However, many FPGA design engin-

eers have been “spoiled” by automated implementation tools to the point where

the layout is not even considered outside of very-high-speed designs. This lack of

attention has created a lack of understanding and therefore a very inefficient use

of the various implementation options available for the layout. Most important of

all these options, whether the goal is area or speed, is the relationship of place-

ment and routing relative to processor effort.

Specifically, we are referring to the hooks provided to the FPGA design in

the back-end tools that allow the designer to adjust the processor effort and corre-

sponding algorithmic sophistication of the placement and routing. These options

are almost always presented and controlled independently, which is unfortunate

due to the strong relationship they possess.

In basic training, engineers are told that they can increase the effort of place-

ment and routing to achieve better results. We practice increasing the effort levels

in lab experiments and see the improvements. In practice, we see similar improve-

ments. So what’s the problem? The problem is that if you turn the router effort

level up beyond trivial effort before you have an optimal placement, you are

wasting time. Because of the fact that most projects have schedules with deadlines

and the fact that most FPGA designers go through many iterations before achiev-

ing timing closure, this is certainly something worth considering.

The fundamental concept to understand here is that routing is extremely

dependent on placement. For a design of any complexity, a good route can only

be achieved with a good placement. Most FPGA design engineers have not run

244 Chapter 16 Place and Route Optimization

扫码可进资料分享群

enough experiments to realize this on their own, but placement is vastly more

important to performance than is routing. This is particularly true of FPGAs due

to the coarse nature of a routing matrix (in an ASIC, there is more flexibility to

be creative with the routing).

If you were to take a typical design and run hundreds of combinations of

placement and routing effort levels and then plot your data, you would likely see

something very similar to the graph shown in Figure 16.3.

As can be seen from the curves in Figure 16.3, placement has a dominant

(call it first-order effect) on the performance of the design, and routing has a

relatively minor effect.

Placement effort has a dominant effect on performance, whereas routing effort

has a relatively minor effect.

To determine the optimal placement and routing effort levels, a designer

should follow this procedure:

1. Set both placement and routing effort levels to minimum.

2. Run place and route to determine if the worst case timing is in fact due to

a sub-optimal layout and not due to excessive logic levels.

3. Increment placement effort until timing is met or max effort has been

reached.

4. If at max placement effort timing is not met, begin incrementally increas-

ing the routing effort.

5. If timing closure cannot be met, revisit the architecture of the design.

6. If a high routing effort is required to meet timing, it may be a good

idea to revisit the architecture of the design to optimize for timing (see

Chapter 1).

Figure 16.3 Performance versus placement and routing effort.

16.2 Relationship between Placement and Routing 245

扫码可进资料分享群

16.3 LOGIC REPLICATION

Logic replication occurs early in the placement process for structures that fan out

to other logic elements that cannot (for any number of reasons) reside in the same

proximity. The problem this addresses is illustrated in Figure 16.4.

In this scenario, the output of D2 fans out to two structures that are relatively

distant from one another. Regardless of where the driver is placed, the resultant

route will be lengthy to one of the driven elements. To eliminate potentially long

routing delays, logic duplication will replicate the driver as shown in Figure 16.5.

Logic duplication should be used only on critical path nets with multiple loads

that cannot be physically localized.

The effect of this duplication is that an individual driver can be placed closer

to each load, thereby minimizing the route length and delay of the route. Clearly,

Figure 16.4 A fan-out that forces long routes.

Figure 16.5 Registers duplicated to balance route length.

246 Chapter 16 Place and Route Optimization

扫码可进资料分享群

this optimization will reduce routing delays but will increase area. This optimiz-

ation may cause inferior results if the utilization of the device is already high. If

the placement tool is not intelligent enough to only perform this on critical-path

routes, this option may need to be disabled and duplication added to the RTL

with corresponding “don’t touch” attributes to ensure that the synthesis does not

optimize the duplicate structures.

16.4 OPTIMIZATION ACROSS HIERARCHY

Optimizing across hierarchical boundaries will allow any of the placement algor-

ithms to operate when the path extends across a module boundary as shown in

Figure 16.6.

Typically, if a particular optimization is desired, it will be beneficial to apply

it to intermodule interfaces as well as simply the paths within the modules them-

selves. Often, logic at the module boundaries does not fully occupy entire LUTs.

An example is shown in Figure 16.7.

In this above, a separate LUT is used to implement a NAND operation at

each module boundary. By enabling the optimization across boundaries, each of

these logical operations can be combined into a single LUT, thereby reducing the

area utilization of this operation by one half.

The primary case where this would not be desired is if gate-level simulations

need to be run on the postimplementation netlist. In this case, a hierarchy that is

intact will be very desirable.

Optimization across hierarchy is not desirable when gate-level simulations are

required.

If debug is required on the back-annotated netlist, a preserved hierarchy will

allow the designer not only to traverse the design but also to easily identify

signals at the boundaries of the modules that may be useful for debug.

Figure 16.6 Critical path that crosses hierarchy.

16.4 Optimization across Hierarchy 247

扫码可进资料分享群

16.5 I/O REGISTERS

Many FPGAs have flip-flops built into the input and output buffers to optimize

the timing in and out of the chip. Along with these special I/O buffers will be an

optimization to enable or disable the packing of these registers into the I/O.
Figure 16.8 illustrates the concept of packing registers into the I/O buffers.

There are a number of advantages to placing a register in the I/O:

. The delays at the I/O of the FPGA are minimized.

. More logic is available internally.

. Superior clock-to-out timing.

. Superior setup timing.

The disadvantage of this optimization is that a register that is placed in an

I/O buffer may not be optimally placed for the internal logic as shown in

Figure 16.9.

For high-speed designs that have tight timing requirements at both the I/O
and the internal logic, it may be advantageous to add another layer of pipeline

registers at the I/O if allowed by the design protocol as shown in Figure 16.10.

Figure 16.7 Example hierarchy optimization.

248 Chapter 16 Place and Route Optimization

扫码可进资料分享群

Figure 16.8 Register packed into I/O buffer.

Figure 16.9 Imbalanced route delays with I/O packing.

16.5 I/O Registers 249

扫码可进资料分享群

If there are a large number of I/O registers, the extra pipeline layer may add

significant overhead in terms of register utilization and potentially congestion.

An extra pipeline register may be required for high-speed designs when packing

registers into I/O.

Thus, if there are not tight I/O timing requirements and there are a relatively

large number of I/O registers, this optimization is not recommended.

16.6 PACK FACTOR

The pack factor is defined as a percentage and will artificially limit the usage of

logic resources in the FPGA. For instance, a pack factor of 100% tells the placement

tool that all logic elements are available for implementation, whereas a pack factor

of 50% will tell the tool that only half of the total logic resources are available.

The uses for this optimization are limited but can be leveraged by advanced

users. For instance, to keep a placeholder for future logic that is not included in the

current flow, the pack factor can be reduced according to the estimated size. The

ease of implementation will be similar to what the designer can expect when the

new core is integrated. Thus, resource utilization problems may be identified sooner.

Additionally, the pack factor can be used to determine the amount of head-

room in a design, or “true” utilization. If there are unused logic elements, the

place and route tool will be more liberal in the duplication of logic elements and

the manner in which these are spread out to optimize the layout. A logic element

is defined as utilized if any portion of it is used to implement logic and not

necessarily when it is fully utilized. Thus, the percentage utilization will usually

be higher than the true utilization.

Setting a pack factor can help to determine the true utilization.

In other words, an FPGA that reports 60% utilization may have much more

than 40% more logic resources available (ignoring the routability issues as utiliz-

ation approaches 100% of course). To estimate true utilization and headroom in

the design, the pack factor can be reduced until the design cannot be properly

routed.

Figure 16.10 Additional pipeline register with I/O packing.

250 Chapter 16 Place and Route Optimization

扫码可进资料分享群

16.7 MAPPING LOGIC INTO RAM

The major players in the high-end FPGA world are SRAM based, which means

that logic functions are coded into LUTs. These LUTs are small SRAM cells dis-

tributed across the FPGA and available for general logic implementation. It

would seem that a natural extension of this would be to implement logic in the

larger dedicated RAM blocks (the ones actually used like RAM), particularly

when utilization is running low. Although this may make sense conceptually, the

problem associated with this is performance.

The small distributed RAM cells will have very small delays, and logic will

propagate through these LUTs very quickly and efficiently relative to other logic

elements. The larger RAM blocks, on the other hand, will have much larger

delays associated with them and will subsequently create a very slow implemen-

tation. In general, it is not wise to rely on logic that is packed into dedicated

RAM blocks. Only as a last resort in an extremely high density and slow design

would this be useful.

16.8 REGISTER ORDERING

Register ordering is a method used by the placement tool to group adjacent bits

of a multibit register into a single logic element. Most cell-based logic elements

have more than one flip-flop, and thus by placing adjacent bits together the timing

can be optimized as shown in Figure 16.11.

Figure 16.11 Sequential bits are ordered.

16.8 Register Ordering 251

扫码可进资料分享群

The problem that arises with register ordering is that it may prevent a group

of registers that have added pipelining for route balancing to be grouped together.

This will prevent the additional registers from dividing the routing delay as orig-

inally intended. Consider the delay balancing register used above when packing

registers into I/O buffers.

As can be seen from Figure 16.12, the benefit of the pipelined register has

been eliminated due to the fact that it has been placed adjacent to its driver.

Register ordering should not be used when extra flip-flops have been added to

divide routing delay.

16.9 PLACEMENT SEED

Designers typically do not like the concept that there may be a certain degree of

randomness in their design flow or implementation tools. However, it is important

to note that a placement for a given design with a set of constraints is not entirely

deterministic. In other words, there is no single optimal placement for any given

design; at least, not one that can be easily determined by today’s technology prior

to the placement process itself. In fact, as shown in Figure 16.13 this is not an

obvious problem at all, even for an automated placer, to determine the optimal

starting point for the placement process.

Thus, the placement tool needs to be “seeded” similar to a process for

random number generation. The exact definition of a seed is a bit abstracted from

the standpoint of the designer, but for useful purposes, different seeds essentially

provide the placer with slightly different starting points by which the rest of the

placement process branches. This is illustrated in Figure 16.14.

Some vendors extend this beyond simply the initialization to other “random”

parameters of the placement process such as relative weighting of the various

constraints, desirable placement distances, and estimates for routing congestion.

Xilinx calls this the placement “cost table,” which affects the various placement

parameters, but abstracts this to an integer (1, 2, 3, etc.). Each integer corresponds

with a different set of initial conditions and placement parameters, but because of

the low level complexity, it is abstracted to a single number and the actual func-

tionality is hidden from the parameter table.

Figure 16.12 Performance reduction with register ordering.

252 Chapter 16 Place and Route Optimization

扫码可进资料分享群

The benefit to adjusting the placement seed is that the user can “take another

shot” at meeting the timing constraints without actually changing anything in the

design. This can be automated with a process called multipass place and route.

When this option is selected, the place and route tool will run the implementation

multiple times and automatically vary the seed on every run. This will of course

require a large amount of time to produce effective results, so this is typically

used on overnight runs where the target design is not already meeting the timing

constraints in a repeatable manner.

It is important to note here that the place and route algorithms are actually

very good regardless of the seed, and any changes to the various parameters will

have a very small effect. The danger some newer designers run into is to spend

Figure 16.13 Initial placement.

Figure 16.14 Different placement starting conditions.

16.9 Placement Seed 253

扫码可进资料分享群

large amounts of time focusing on this type of optimization to meet their timing

constraints instead of focusing on the true issues in their design. Adjustment of

the placer seed should only be used as a last resort when all architectural changes

have been exhausted, all constraints have been added, and the timing violations

are very small (hundreds of picoseconds or less).

Seed variances with multipass place and route should only be used as a last

resort.

This should also be used only when repeatability is not a critical issue. If

timing is so tight that tweaking the seed is required to meet timing, then any

other changes to the RTL or constraints will more than likely lead to new random

behavior in the design and require multiple runs of the placer with new variations

in the seed. Thus, with this type of methodology, the designer will not have

repeatability in the timing closure when small changes are made. This issue of

repeatability is discussed in the following section.

16.10 GUIDED PLACE AND ROUTE

A very common situation for a designer is to spend days or weeks tweaking a

design to meet timing, perhaps even using the automated seed variances as

described above, only to be faced with a small change that could ripple through

the existing placement and completely change the timing characteristics. At this

point, the designer may have to reoptimize the design and possibly find a new

seed that allows timing closure.

To avoid a situation where small changes initiate a domino effect on the

placement of logic elements and subsequent change in overall performance

characteristics (not to mention the run-time associated with reimplementing every-

thing for a small change), FPGA place and route tools often provide a guide

option that leverages the placement and routes from a prior implementation.

A placement guide will find all components that match the old implemen-

tation and lock the same elements to the same location. The advantage to this

strategy is that the run time is dramatically reduced and the timing characteristics

of the guided elements stay the same. Thus, a guide mode such as described

above can provide the designer with a means to make small changes with a corre-

sponding small change in the place and route process.

The place and route process following small changes should utilize a guide file to

maximize consistency and minimize run time.

16.11 SUMMARY OF KEY POINTS

. A complete set of constraints should be created before any optimization

takes place.

254 Chapter 16 Place and Route Optimization

扫码可进资料分享群

. Adjusting the voltage and temperature settings does not require any

changes to the FPGA implementation and can provide an easy means to

incrementally improve the worst-case performance.

. Placement effort has a dominant effect on performance, whereas routing

effort has a relatively minor effect.

. Logic duplication should be used only on critical-path nets with multiple

loads that cannot be physically localized.

. Optimization across hierarchy is not desirable when gate-level simulations

are required.

. An extra pipeline register may be required for high-speed designs when

packing registers into I/O.

. Setting a pack factor can help to determine the true utilization.

. Register ordering should not be used when extra flip-flops have been added

to divide routing delay.

. Seed variances with multipass place and route should only be used as a last

resort.

. The place and route process following small changes should utilize a guide

file to maximize consistency and minimize run time.

16.11 Summary of Key Points 255

扫码可进资料分享群

扫码可进资料分享群

Chapter 17

Example Design:

Microprocessor

The simple RISC computer (SRC) implemented in this chapter is a widely used

microprocessor model for academic purposes (a detailed description of the SRC

architecture can be found in the book Computer Systems Design and Architecture

by Vincent Heuring and Harry Jordan). The SRC microprocessor has a fairly

generic architecture and is not complicated by many of the optimizations

required in a commercial processor. Thus, it lends itself well to a straightforward

pipelined implementation that helps to illustrate some of the various optimization

strategies.

The objective of this chapter is to describe an implementation for the SRC pro-

cessor and optimize the performance characteristics using various options

described in previous chapters.

17.1 SRC ARCHITECTURE

The SRC is a 32-bit machine with 32 general-purpose registers (5-bit register

addressing), 232 bytes of main memory (addressable from any of the 32-bit registers),

a single 32-bit program counter, and a 32-bit instruction register (Fig. 17.1).

The instruction classes are defined as follows:

. Load and store

. Branch

. Simple arithmetic: add, sub, invert

. Bitwise and shift

The pipelined implementation of the SRC processor partitions the main func-

tional operations into distinct stages. Each stage is separated by a layer of

257

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

registers that limits the timing between the stages themselves. The pipeline is

shown in Figure 17.2.

With the topology shown in Figure 17.2, it is possible to theoretically

execute instructions such that one operation is completed every clock cycle. Note

that because of a number of conditions that will periodically stall the pipeline, the

number of clocks per instruction will be slightly larger than one, but for the pur-

poses of this example we will assume that the fully pipelined implementation pro-

vides us with one instruction per clock cycle.

The code for the top level of the pipeline is shown in Appendix B. For

brevity, the code for the submodules is not listed unless explicitly referred to for

the sake of the example. There are a few interesting things to note about this

implementation. First, it is assumed that the register file and system memory are

located outside of the FPGA. These could be implemented inside the FPGA if

block RAM resources are available, but if a large amount of system memory is

required, it may be more cost effective to use an external memory device.

Second, note that each stage is separated by a layer of registers that define the

pipeline. Any feedback signals as defined by the “Feedback” elements are also reg-

isters. Thus, any signal that passes to any stage is clearly defined as to the stage it

belongs to and keeps the timing organized as the design becomes more complex.

Third, notice the parameterization of the registers themselves. The first par-

ameter passed to the DRegister module is the width, which allows the register

module to be reused among all DRegister elements.

Figure 17.1 SRC registers and memory.

258 Chapter 17 Example Design: Microprocessor

扫码可进资料分享群

Taking this pipelined design as a starting point, the following section

describes some of the key optimization options and how they can be used to

modify the performance of this design.

17.2 SYNTHESIS OPTIMIZATIONS

The SRC microprocessor was implemented in a Xilinx Virtex-2 part for this

example as this is a mature FPGA technology that has been well characterized. A

first-pass synthesis targeted at a XC2V250 with a 50-MHz clock gives us the per-

formance as shown in Table 17.1.

Figure 17.2 Main SRC pipeline.

17.2 Synthesis Optimizations 259

扫码可进资料分享群

Note that due to the relatively slow timing constraint, the logic in the critical

path is implemented in a serialized compact fashion and contains 23 levels of

logic as shown in Figure 17.3.

17.2.1 Speed Versus Area

In the initial implementation, timing was easily met. This means that any paths

that were not determined to be critical (worst-case delay) would be implemented

with a compact architecture. This is not to say, however, that this is the

maximum achievable frequency. If we push the timing constraint to 100 MHz,

the synthesis tool will implement parallel architectures with a corresponding

increase in area.

As can be seen from Table 17.2, the synthesis tool was able to expand the

critical paths into higher speed implementations, thereby increasing the area 9%

and the speed by more than 50%. Note that the timing increase does not display a

1 : 1 mapping to the area increases. This is because of the fact that the timing is

only limited to the worst-case path. Therefore, the area increase is only an indi-

cator that represents the number of paths that have been expanded to achieve the

faster timing constraint. For example, the path that was previously the critical

path with 23 levels of logic was remapped to a parallel structure as shown in

Figure 17.4.

Assuming all reasonable architectural trade-offs have been made, there are

various synthesis options that can be used to improve performance as described in

the following sections.

Table 17.1 Initial Synthesis

Speed 63.6 MHz Slack ¼ 4.3 ns

LUTs 1386 45% utilization

Registers 353 11% utilization

Figure 17.3 Serialized logic in critical path.

Table 17.2 Increase in Target Frequency

Speed 97.6 MHz Slack ¼ 22.4 ns

LUTs 1538 50% utilization

Registers 358 11% utilization

260 Chapter 17 Example Design: Microprocessor

扫码可进资料分享群

17.2.2 Pipelining

The new critical path now lies on the feedback path from IR2, through stage 2,

and ending at X3 as shown in Figure 17.5.

To increase the performance of the new critical path, pipelining can be

enabled to rebalance the logic around register layers. In this example, X3 is pushed

into stage 2 and rebalanced around the multiplexing logic. Due to the replication of

Figure 17.4 Parallel logic in the old critical path.

Figure 17.5 New critical path in stage 2.

17.2 Synthesis Optimizations 261

扫码可进资料分享群

registers from the output of muxes to multiple inputs, the total register utilization

essentially doubled with an insignificant change to the overall logic utilization.

The end result is that by pushing registers across logic boundaries and adding

the necessary registers for all inputs, the critical path was reduced enough to meet

timing at 100 MHz. Note that once the timing constraint was met, the synthesis

tool stopped the pipelining operations to minimize overall register utilization.

This is illustrated by the fact that bumping up the timing requirement to 110 MHz

increases the additional register utilization as shown in Table 17.4.

17.2.3 Physical Synthesis

By engaging physical synthesis, we now begin to use physical placement infor-

mation to optimize the performance of the design. With this placement infor-

mation, we are able to target 120 MHz and easily close timing.

Note that the results in Table 17.5 are obtained by allowing the synthesis tool

to determine all placement information with no user intervention. However,

because this microprocessor design is highly pipelined, it is possible to guide the

placement via a floorplan to achieve even better timing. This is discussed in the

next section.

17.3 FLOORPLAN OPTIMIZATIONS

Because of the fact that the design is nicely partitioned into clearly defined pipe-

line stages, there is an opportunity to increase performance even further using

predefined floorplan topologies.

Table 17.3 Results with Pipelining

Speed 100.7 MHz Slack ¼ 0.1 ns

LUTs 1554 50% utilization

Registers 678 22% utilization

Table 17.4 Results with Extra Pipelining

Speed 111.2 MHz Slack ¼ 0.1 ns

LUTs 1683 54% utilization

Registers 756 24% utilization

Table 17.5 Results with Physical Synthesis using Synplify

Premiere

Speed 122 MHz Slack ¼ 0.2 ns

LUTs 1632 53% utilization

Registers 772 25% utilization

262 Chapter 17 Example Design: Microprocessor

扫码可进资料分享群

17.3.1 Partitioned Floorplan

The first method that is used is that of a design partition. This is where the pipe-

line structure itself provides guidance as to the initial floorplan. In Figure 17.6,

stages 2–4 are shown in block diagram form with intermediate register layers.

It is sensible to begin floorplanning with a similar physical layout. In the initial

floorplan shown in Figure 17.7, the various pipeline stages are defined to be vertical

sections of area to allow for ease of carry chain structures inside the FPGA.

For this floorplan, it was noted that the majority of the long paths reside

between stages 1, 2, and 3. The three stages are given individual regions as

shown in the floorplan of Figure 17.7. The data path flows from left to right, and

a small amount of space is left between the stages for register placement. The

critical paths between these modules are incrementally optimized as shown in

Table 17.6. Note that the timing constraint has been increased to 125 MHz.

Our initial try did not produce results significantly better than the default phys-

ical synthesis approach. This is because of the large groups of constrained elements,

the high aspect ratio of the physical regions themselves, and the fact that little

importance was given to grouping only those paths that had tighter timing

Figure 17.6 Natural pipeline flow between stages 2 through 4.

17.3 Floorplan Optimizations 263

扫码可进资料分享群

requirements. To continue optimizing the performance, we must focus on the critical

paths one at a time and physically group these together to minimize routing delays.

17.3.2 Critical-Path Floorplan: Abstraction 1

The iterative process begins by identifying the critical path and grouping these

components together in a specified region. In this example, the critical paths lie

between the registers surrounding stage 2. Figure 17.8 shows the worst-case path

through stage 2.

With the first iterative method, we can first try constraining stage 2 and then

adding in surrounding registers as required. The new floorplan is shown in Figure 17.9.

The advantage of the floorplan of Figure 17.9 is that it is more closely focused

on the problem area and provides an even aspect ratio for ease of routing. The

floorplan of Figure 17.9 represents stage 2 as well as the source register IR2 and

the destination registers X3 and Y3. The performance is shown in Table 17.7.

As can be seen from these results, focusing our floorplan will allow us to

achieve timing compliance at 125 MHz.

Table 17.6 Results with Initial Floorplan

Speed 123 MHz Slack ¼ 20.17 ns

LUTs 1840 59% utilization

Registers 492 16% utilization

Figure 17.7 Floorplan that reflects pipeline flow.

264 Chapter 17 Example Design: Microprocessor

扫码可进资料分享群

17.3.3 Critical-Path Floorplan: Abstraction 2

The final approach used to optimize the floorplan is to focus solely on the logic

elements in the critical path itself. This has the advantage of constraining the difficult

paths very tightly with minimal constraints on paths not under consideration. This is

Figure 17.8 Worst case path through stage 2.

Figure 17.9 Floorplan with stage 2.

Table 17.7 Results with a Focused Floorplan

Speed 127.6 MHz Slack ¼ 0.16 ns

LUTs 1804 58% utilization

Registers 559 18% utilization

17.3 Floorplan Optimizations 265

扫码可进资料分享群

performed by taking the critical path from the default run and only constraining

these components to a particular region to reduce all routing delays in the path.

In the default implementation, the critical path lies between stage 2 and the

feedback register IR2. The implementation report indicates that approximately

50% of the total critical-path delay is routing delay only, which indicates there is

room for improvement from critical-path floorplanning.

Table 17.8 Results with Critical-Path Floorplanning

Speed 135 MHz Slack ¼ 0.0 ns

LUTs 1912 62% utilization

Registers 686 22% utilization

Figure 17.10 Critical path floorplan.

Figure 17.11 Final critical path.

266 Chapter 17 Example Design: Microprocessor

扫码可进资料分享群

The first two critical paths from our default run are from IR2 to Y3 and

another between IR2 and X3. The elements from just these paths can be con-

strained to a region smaller than that of the previous floorplan.

By constraining only the critical paths to a smaller region, we again improve

the performance. In Table 17.8, we are now targeting 135 MHz.

After these paths have been constrained to the region shown in Figure 17.10,

the critical path now moves to the path between Y3 and Z4 through stage 3 as

shown in Figure 17.11.

The routing delay has now dropped to 40% of the total delay (60% of the

path is logic delay), which means that although there may be additional perform-

ance increases with further floorplanning, there will certainly be a diminishing

rate of return relative to the effort involved.

17.3 Floorplan Optimizations 267

扫码可进资料分享群

扫码可进资料分享群

Chapter 18

Static Timing Analysis

The goal of this chapter is to describe general static timing analysis (STA) as

well as methods for performing static timing analysis on complex circuit

configurations not commonly discussed in the context of STA such as

asynchronous circuits, latches, and combinatorial feedback paths. Note that these

latter structures are typically not recommended for FPGA designers mainly

because of the difficulty in implementing them correctly. However, an advanced

designer can use these structures if necessary as long as the associated issues

(particularly the timing analysis) are understood.

During the course of this chapter, we will discuss the following topics:

. Summary of basic static timing analysis

. Understanding latches in STA

. Handling asynchronous circuits in STA with combinatorial logic or event-

driven clocks

This chapter assumes the reader is already familiar with general static timing

analysis but will provide a brief summary of the basic concepts.

18.1 STANDARD ANALYSIS

Static timing analysis, as it is referred to in this chapter, is the comprehensive

analysis of all timing paths in a design relative to a set of constraints so as to

determine whether a design is “timing compliant.” The basic paths encountered

by an FPGA designer will be input to flip-flop, flip-flop to flip-flop, and flip-flop

to output as illustrated in Figure 18.1.

These have associated input delay, output delay, setup, and hold timing

requirements. The setup timing analysis refers to the long-path analysis, and the

hold timing refers to the short-path analysis. The maximum frequency is set by

the longest path in the design, which is also referred to as the critical path. The

269

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

path analysis takes into consideration more than just the logic delays as shown in

Figure 18.2.

The maximum path delay is a function of the clock-to-Q delay, the logic and

routing delays, the setup time, and the clock skew. The maximum frequency

(minimum period) will be determined by the sum of the data-path delays minus

the clock skew. In Chapter 1, we defined the maxium frequency in terms of all

the associated delays, and here we define the minimum period as the inverse of

this relationship as shown in Equation (18.1) (minimum clock period calculation):

(again ignoring clock jitter).

Equation 18.1 minimum clock period calculation.

Tmin ¼ Tclk-q þ Tlogic þ Trouting þ Tsetup � Tskew (18:1)

where Tmin is minimum allowable period for clock, Tclk-q is time from clock

arrival until data arrives at Q, Tlogic is propagation delay through logic between

flip-flops, Trouting is routing delay between flip-flops, Tsetup is minimum time data

must arrive at D before the next rising edge of clock (setup time), and Tskew is

propagation delay of clock between the launch flip-flop and the capture flip-flop.

If the required period is greater than the minimum period defined by Tmin,

then there will be positive slack as shown in Figure 18.3.

As can be seen from the waveforms of Figure 18.3, positive slack occurs

when the data arrive at the capture flip-flop before the capture clock less the setup

time. If the data arrive after the capture clock less the setup time, the path will

Figure 18.1 Typical synchronous timing paths.

Figure 18.2 Elements of timing analysis.

270 Chapter 18 Static Timing Analysis

扫码可进资料分享群

have negative slack and will not meet timing. Setup analysis also applies to I/O.
For an input, the launch clock-to-Q and external prop time are lumped into a

single external delay for the analysis. Similarly, the output setup analysis will

assume a single external prop time that includes the setup time and clock skew.

Because these external delays are unknown to the FPGA timing analysis tool,

they must be defined by the designer.

Hold violations occur when data arrives at a flip-flop too soon after the rising

edge of the clock and are relatively easy to fix by adding additional buffering.

Hold delay violations are rare in FPGA designs due to the built-in delay of the

routing matrix. If a hold violation occurs, it usually indicates a clock skew

problem.

In addition to defining accurate constraints for the system clocks, it is also

important to define any path constraints that can be relaxed. The two most

common constraints that fall into this category are multicycle and false paths. The

multicycle path is illustrated in Figure 18.4.

Figure 18.3 Positive slack.

Figure 18.4 Multicycle path.

18.1 Standard Analysis 271

扫码可进资料分享群

The multicycle path allows constrained signals n-cycles to propagate between

timing end points. Note that even with a multicycle path, the setup and hold

requirements are still in effect. This is because regardless of which clock edge the

data arrives at, if it arrives too close to the clock edge, a metastable condition

could still occur. A multicycle path may be added as a constraint if the data does

not need to be used in the immediately following clock period. This could occur

when interfacing to devices that do not require the immediate arrival of the data.

This often occurs in DSP applications where there is a fixed sampling rate and an

available number of clocks per sample.

A false path is similar to the multicycle path in that it is not required to pro-

pagate signals within a single clock period. The difference is that a false path is

not logically possible as dictated by the design. In other words, even though the

timing analysis tool sees a physical path from one point to the other through a

series of logic gates, it is not logically possible for a signal to propagate between

those two points during normal operation. This is illustrated in Figure 18.5.

Because the path will never be traversed during normal operation of the design,

the static timing analysis tool ignores the path between these points and is not con-

sidered during timing optimization and critical-path analysis. The main difference

between a multicycle path with many available cycles (large n) versus a false path is

that the multicycle path will still be checked against setup and hold requirements and

will still be included in the timing analysis. It is possible for a multicycle path to still

fail timing, but a false path will never have any associated timing violations.

It is possible for a multicycle path to fail timing even with an arbitrarily high

cycle constraint, but it is not possible for false paths to fail timing.

Once these constraints are in place, the STA tool can run a comprehensive

analysis of every path in the design. There are a number of advantages of static

timing analysis over simulation-based dynamic timing analysis as discussed in

previous chapters:

. Dynamic timing analysis (simulations with timing information) will only

catch a few problems. The utility of dynamic analysis is only as good as

Figure 18.5 False path.

272 Chapter 18 Static Timing Analysis

扫码可进资料分享群

the person that wrote the simulation. STA, on the other hand, will catch all

problems within the bounds of standard timing analysis. In other words, STA

performs an exhaustive analysis on the design. The only requirement for the

designer is to set up the necessary conditions and constraints.

. It is hard to model characteristics such as jitter, as this would create a very

complex testbench and push the run times to unreasonable levels.

. With STA, combinations of various conditions can be verified with a pro-

portional increase in run time. With dynamic timing analysis, combinations

of various conditions can push the run time out exponentially.

. STA does not require any simulation cycles, and there is no overhead due

to event schedulers.

. STA provides a larger scope of timing violations including positive and

negative setup/hold, min and max transition, clock skew, glitch detection,

and bus contention.

. STA tools have the ability to automatically detect and identify critical

paths, violations, and asynchronous clocks.

The difficulty with STA arises when structures that are not well suited for

STA are analyzed in this environment. Because of these constraints, dynamic

timing analysis is often used to analyze these structures. The following sections

discuss some of the more complex topologies in more detail and recommend

methods to analyze these structures. Note that many of these structures are

uncommon and are typically not recommended for FPGA designs. Listing these

structures is not an endorsement to use them, but if an FPGA designer has good

reason, then the suggestions can be used to analyze these successfully.

18.2 LATCHES

A latch can certainly be a useful device when creating very-high-speed chips such

as microprocessors or with other high-speed pipelines. Latches should only be

used by expert designers, and even then there must be a good justification to do

so. Most of the time, latches are implemented unintentionally by poor coding

styles and then show up in the STA reports to create confusion.

Latches are usually created unintentionally by poor coding styles.

One of the most common ways latches get implemented is with modules

such as the one shown below.

// CAUTION: LATCH INFERENCE
module latch (
output reg oDat,
input iClk, iDat);

always @*
if (iClk) oDat <= iDat;

endmodule

18.2 Latches 273

扫码可进资料分享群

In the above assignment, when iClk goes low the current value of oDat is held

until the next assertion of iClk. Latches such as this are typically not desirable,

but in some cases they are. Consider the following module where the latch was

most likely induced unintentionally:

// POOR CODING STYLE
module latchinduced(
output reg oData,
input iClk, iCtrl,
input iData);
reg rData;
reg wData;

always @*
if (iCtrl) wData <= rData;

always @(posedge iClk) begin
rData <= iData;
oData <= wData;

end
endmodule

In the above code segment, a latch is induced between the two D flip-flops as

shown in Figure 18.6.

In this example, the data input and the data output are both registered with a

standard D-type rising edge flip-flop, whereas the data is latched between the flip-

flops. This circuit configuration is not one that is likely implemented intentionally,

but it helps to cleanly illustrate the points regarding STA. We call this latch

active-high because the data passes through when the control input is high,

whereas the output is held when the control to the latch is low. From a timing

analysis standpoint, we are not concerned with the condition where the control to

the latch is high because the data is simply flowing through. Likewise, we are not

concerned with the condition where the control is low because the output is

frozen. What we are concerned with, however, is the timing relative to the point at

which the data is actually latched; that is, during the transition from high to low.

When analyzing timing through a latch, the STA tool will be primarily concerned

with the edge of the control signal that switches the latch into a hold state.

Figure 18.6 Induced latch.

274 Chapter 18 Static Timing Analysis

扫码可进资料分享群

In a sense, the control to the latch is treated like a clock in STA, and the

latch is treated like a falling-edge flip-flop. The waveforms shown in Figure 18.7

illustrate the conditions for timing compliance.

A common topology that utilizes latches is called two-phase latching. In this

technique, one stage in a pipeline is latched with one polarity of the clock, while

the stages on either side are latched with the opposite polarity as shown in

Figure 18.8.

Figure 18.7 Timing compliance with induced latch.

Figure 18.8 Dual-phase latching.

18.2 Latches 275

扫码可进资料分享群

A dual-phase module could be designed as shown in the example below.

// CAUTION: LATCH INFERENCE
module dualphase(

output oData,
input iCtrl, iNCtrl,
input iData);
reg [3:0] wData;

assign oData = wData[3];

always @* begin
if(iCtrl) wData[0] <= iData;
if(iNCtrl) wData[1] <= wData[0];
if(iCtrl) wData[2] <= wData[1];
if(iNCtrl) wData[3] <= wData[2];

end
endmodule

This would be implemented with a single clock signal and alternating latch

polarities (Fig. 18.9).

In heavily pipelined designs such as microprocessors, a two-phase latching

method can provide a smaller implementation (latches are smaller than flip-flops)

and a lower power implementation (both edges of the clock are used for proces-

sing data). Note that this does not necessarily extend to all designs. If a circuit

does not have a very well defined pipeline (and this is not always possible), then

two-phase latching will be very difficult if not impossible.

For heavily pipelined designs, a dual-phase latching topology can lead to a

smaller and faster implementation.

The STA report for such an implementation will define a single clock domain;

that is, the control signal to all of the latches. All of the paths will be reported

between a rising edge (active low latch) and a falling edge (active high latch).

18.3 ASYNCHRONOUS CIRCUITS

In the context of this discussion, asynchronous circuits will refer to the broad

class of circuits not within the domain of clocked element to clocked element

paths that lend themselves to straightforward analysis. We will define a few of the

most common configurations (although none are very common in general) and

Figure 18.9 Alternating polarities with dual-phase latching.

276 Chapter 18 Static Timing Analysis

扫码可进资料分享群

describe methods for analyzing the corresponding timing paths. Note that these

are typically not recommended for FPGA designs, and so any designer that

utilizes these must have a very good justification for doing so.

18.3.1 Combinatorial Feedback

A combinatorial feedback loop is a path through logic that begins at a net or

wire, traverses combinatorial logic gates (AND, OR, MUX, etc.), and ends up at

the same net without passing through any synchronous elements. Typically, a

combinatorial feedback loop is a result of a design error and should be flagged as

a warning by the synthesis tool. These can also cause problems for simulators

(particularly if there are no combinatorial delays).

Combinatorial feedback typically indicates a coding error.

Depending on the specifics of the design, a combinatorial feedback loop will

either exhibit oscillatory behavior (such as a free-running oscillator built with an

inverter and a delay element) or contain properties of a memory element (basic

latches and flip-flops can be built with cross-coupled NAND gates). Although it is

possible to build a limited number of useful circuits with combinatorial feedback

there is typically not an easy way to perform timing analysis because the end

points are not sequential elements. Instead of measuring timing from one flip-flop

to another, a designer needs to artificially define timing end points in the

constraints. Take for example the free-running oscillator:

// BAD CODING STYLE.
module freeosc(
output oDat,
input iOscEn, iOutEn);
wire wdat;

assign wdat = iOscEn ? !wdat: 0;
assign oDat = iOutEn ? wdat : 0;

endmodule

This is implemented with a combinatorial loop as shown in Figure 18.10. This

type of combinatorial feedback would certainly indicate a coding error, but it

serves to illustrate the point.

Figure 18.10 Accidental combinatorial feedback.

18.3 Asynchronous Circuits 277

扫码可进资料分享群

This design will synthesize unless the tool is explicitly prevented from

synthesizing combinatorial loops. During analysis, the STA will only include

paths from the input to the output. In fact, the STA tool will probably not even

have the necessary data to measure the delay of the loop itself. To solve this

problem, it is necessary to add a timing end point to at least one of the nets. In

this case, we can add one to the net wdat (the net that is fed back). In a Xilinx

implementation, the UCF (user constraints file) constraint would be:

NET "wdat" TPSYNC = "looptime";
TIMESPEC "ts_looptime" = FROM "looptime" TO "looptime"

1 ns;

In the above constraint, we place a timing end point on the net wdat as a part of

the timing group looptime. We then place a constraint on looptime so the STA

has something to measure against. The STA will now report about 850 ps as the

loop delay.

18.4 SUMMARY OF KEY POINTS

. It is possible for a multicycle path to fail timing even with an arbitrarily

high cycle constraint, but it is not possible for false paths to fail timing.

. Latches are usually created unintentionally by poor coding styles.

. When analyzing timing through a latch, the STA tool will be primarily con-

cerned with the edge of the control signal that switches the latch into a hold

state.

. For heavily pipelined designs, a dual-phase latching topology can lead to a

smaller and faster implementation.

. Combinatorial feedback typically indicates a coding error.

278 Chapter 18 Static Timing Analysis

扫码可进资料分享群

Chapter 19

PCB Issues

The topic of PCB (Printed Circuit Board) design has been discussed in great

detail in hundreds of other engineering texts. Thus, rather than regurgitate the

same information that has been repeated dozens of times in these other books,

I will refer the reader to one of these for a general discussion. There are a

number of PCB design issues, however, that are specific (or exceptionally

important) in an FPGA-based system.

During the course of this chapter, we will discuss the following topics:

. Characteristics of a proper FPGA power supply.

. Calculating, choosing, and placing decoupling capacitors.

19.1 POWER SUPPLY

The topic of power supply may seem trivial, but for FPGA applications in particu-

lar it is not. Poor use of decoupling around the FPGA can dramatically reduce the

reliability of the FPGA, and worse yet, most problems will not be repeatable and

may not show up in a lab environment at all (particularly if the nature of the

failure is not understood). As mentioned in previous chapters, the worst kind of

failure is one that is not repeatable.

19.1.1 Supply Requirements

Modern FPGAs that are fabricated with extremely small geometries will often

have multiple supply voltages and complex power supply requirements. There

have been many appnotes and white papers on the topic of power supply design,

but as of yet there is no perfect power and decoupling solution for every FPGA

application. The problem is that FPGAs themselves are so widely configurable

relative to functionality, I/O, and system clock speeds that the corresponding

279

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

power requirements can be just as variable. Small, low-speed devices that reside

in electrically shielded environments will not have a significant impact on the

power rail, and excessive decoupling will only add unnecessary cost. Applications

with high electrical noise or applications that produce excessive transients due to

high-speed signals, on the other hand, will have a dramatic impact on the power

supply, and a miscalculation of those effects can lead to a failure of the device.

The power supply requirements for FPGAs can be complex, but ignoring these

requirements may lead to failures in the field that are not repeatable in the lab.

Overall requirements for FPGA power will vary from device to device, but

out of these are a number of requirements that are worth noting in this discussion.

. Monotonicity

. Soft start

. Ramp control: min and max ramp times

. Peak-to-peak ripple

. Ripple rate of change

. Clean power for clock management

. Supply sequencing and tracking

Monotonicity is the requirement that during power-on, the rail is nondecreas-

ing. That is, the power supply must always have a positive slope (or zero slope)

and must never decrease (negative slope). For example, the time-domain power

curve shown in Figure 19.1 illustrates a violation to this rule. In contrast, the

curve in Figure 19.2 illustrates a monotonic power-on condition where the slope

is always positive (or, more precisely, nondecreasing).

Soft start is a requirement that defines the amount of in-rush current that can

be supplied to the FPGA during power-up. Most off-the-shelf power supply

devices do not have built-in soft-start capability, and so an external circuit is

often added to the PCB to satisfy this requirement.

Figure 19.1 Nonmonotonic power curve.

280 Chapter 19 PCB Issues

扫码可进资料分享群

As can be seen from the circuit in Figure 19.3, if the power supply ramps up

too quickly, the polarity of the gate on the pass-transistor will adjust itself to

increase the output impedance of the power supply and reduce the rate of

increase. This is directly related to the maximum ramp-time requirement.

The minimum and maximum ramp time requirements define the rate at which

the power supply can increase during power-up. Ramping too quickly will cause

Figure 19.2 Monotonic power curve.

Figure 19.3 Typical soft-start circuit.

Figure 19.4 Min and max ramp times.

19.1 Power Supply 281

扫码可进资料分享群

an in-rush condition as described above, and an unnecessarily slow ramp will

dwell at threshold voltages and may not reset properly. This is illustrated in

Figure 19.4.

For sensitive analog components such as clock-control circuitry, there is

sometimes a requirement on the rate of change on the power supply ripple itself

as illustrated in Figure 19.5. In other words, the power output must be clean of

any high-frequency components above a certain threshold.

The requirement to have a clean supply for sensitive analog circuitry will

typically require a linear supply on that particular rail to ensure that the majority

of the frequency components have been removed (within the bandwidth of the

linear supply itself).

In general, it is good design practice to add supply sequencing and supply

tracking to a power supply design as shown in Figure 19.6. This comes from a

basic principle that I/Os should not be powered before the core that drives the

logic states. Most ICs including FPGAs will have circuitry built in to prevent any

catastrophic failures due to unknown logic values driven to the outputs, but these

problems have not always been successfully eliminated (despite what the data

sheets say), and as a matter of good design practice, the core voltage should be

powered before the I/O.

Figure 19.5 Ripple rate of change.

Figure 19.6 Supply sequencing.

282 Chapter 19 PCB Issues

扫码可进资料分享群

19.1.2 Regulation

The first and most obvious component in the overall power supply is the voltage

regulator. A linear voltage regulator compensates for changes in the demand of

current as shown in Figure 19.7.

If the load fluctuates momentarily, the current through the transistor will

increase and drop the voltage at the output according to the series resistance of the

transistor. The op-amp in the feedback senses this drop and increases the gate

voltage, which has the effect of decreasing series resistance and increasing the output

voltage to compensate for the drop. Although this feedback loop works well for rela-

tively low- frequency signals in the low- to sub-megahertz range, the bandwidth of

this type of loop is not fast enough to compensate for very-high-frequency transients.

19.2 DECOUPLING CAPACITORS

Decoupling capacitors are used to deliver small amounts of transient energy as the

power rail fluctuates. Most PCB designers are trained to add capacitors to the

power supply and place those capacitors close to the power pins of the ICs under

consideration. The problem is that because this is not fully understood by many

designers (particularly FPGA designers), the decoupling strategy is not executed

properly, and capacitors are wasted without achieving any real benefit. For instance,

many engineers will simply add one capacitor type to the power supply, and dupli-

cate that for all power pins on the PCB. It is common to spread a number of 0.1-mF

capacitors around the PCB with a bulk cap at the output of the regulator. Other

PCB designers will use a variety of capacitor sizes, but not understanding why, they

will use them in a proportion that is not appropriate for optimal decoupling.

Xilinx has published a great application note regarding power distribution

system (PDS) design in XAPP623. It is recommended that the reader study this

appnote for an in-depth discussion of this topic. The purpose of the following sec-

tions is to describe these issues as they apply to the FPGA designer.

19.2.1 Concept

Taking a step back, it is important to first understand the nature of a real capaci-

tor. Every real-world capacitor will not only have capacitance as a dominant

Figure 19.7 Linear regulation.

19.2 Decoupling Capacitors 283

扫码可进资料分享群

property but also inductance and resistance. A second-order model of a capacitor

will be an RLC (Resistor-Inductor-Capacitor) circuit as shown in Figure 19.8.

Conceptually, the dominant impedance will be controlled by the capacitor at

low frequencies and by the inductor at high frequencies. Due to this behavior, the

real capacitor will have a high impedance at both very low and very high frequen-

cies. There will also be a frequency at which the capacitive and inductive com-

ponents effectively cancel each other out, and this will be a point of minimum

impedance for the real capacitor modeled as a RLC circuit. This is shown in

Figure 19.9.

This point of minimum impedance is called the resonance frequency and will

define the band over which the decoupling cap will provide the most benefit for

filtering out disturbances in the supply. Thus, it makes sense that to achieve a

wide band of frequency attenuation, a relatively wide range of capacitors with

different resonance frequencies will need to be used together.

As can be seen from Figure 19.10, by using a range of capacitors, we can

achieve attenuation over a wide range of frequencies. Note, too, that to achieve

significant attenuation with smaller capacitors (higher frequencies), a greater

number of capacitors must be used. Because of the fact that a smaller capacitor

Figure 19.9 RLC resonance in a real capacitor.

Figure 19.8 RLC capacitor model.

284 Chapter 19 PCB Issues

扫码可进资料分享群

will hold a smaller amount of charge, a smaller capacitor will not be able to

deliver as much energy to support the power rail as a larger capacitor.

A wide range of decoupling capacitors is required to attenuate a wide frequency

range.

Although parasitics vary from technology to technology, as a general heuris-

tic, a smaller package for an equivalent capacitance will tend to have smaller

inductance. Thus, it is typically desirable to choose the smallest package available

for a given capacitance to minimize the parasitic inductance and increase the

bandwidth of the capacitor.

19.2.2 Calculating Values

Conceptually understanding capacitor resonance is one thing, but calculating the

correct distribution of capacitors is another. Fortunately, there are a number of

tools available to help automate this process. For instance, Xilinx provides a

spreadsheet that allows a designer to plug in a range of capacitor values, and the

corresponding impedance plot is graphed. This allows the designer to modify the

capacitance values and visually adjust the attenuation plot for a specific set of cri-

teria. As a general rule of thumb, capacitors of the following orders of magnitude

should be used:

. 100–1000 mF

. 1–10 mF

. 0.1 mF

. 0.01 mF

. 0.001 mF

Additionally, for every reduction in the order of capacitance magnitude, the

number of capacitors in that range should approximately double. In other words,

Figure 19.10 Wideband attenuation with multiple capacitors.

19.2 Decoupling Capacitors 285

扫码可进资料分享群

if two 0.1-mF caps are used, four 0.01-mF caps should be used to achieve the

same level of attenuation in the higher frequency band. The total number of caps,

however, will be determined by the overall power requirements and the noise

characteristics.

To make things even easier, Xilinx has added a feature to their XPower tool

that calculates the recommended decoupling capacitors based not only on the

static characteristics of the FPGA device but also on the dynamic power usage.

For an example design and vector set (not shown here), XPower calculates 7 mW

of dynamic power in the core and determines the following decoupling strategy.

Decoupling Network Summary: Cap Range (mF) #

––
Capacitor Recommendations:
Total for Vccint : 4

470.0 - 1000.0 : 1
0.0100 - 0.0470 : 1
0.0010 - 0.0047 : 2

Total for Vccaux : 8

470.0 - 1000.0 : 1
0.0470 - 0.2200 : 1
0.0100 - 0.0470 : 2
0.0010 - 0.0047 : 4

Total for Vcco25 : 8

470.0 - 1000.0 : 1
0.0470 - 0.2200 : 1
0.0100 - 0.0470 : 2
0.0010 - 0.0047 : 4

Minimally, a designer needs to put at least one capacitor near each power

pin. Maximally, if high-frequency capacitors cannot fit near the FPGA power

pins, their effectiveness is greatly reduced and may need to be removed. This is

discussed in the next section.

19.2.3 Capacitor Placement

Aside from the actual capacitance values, poor placement of the cap can add to the

parasitic inductance and diminish the utility of a decoupling cap as illustrated in

Figure 19.11. Specifically, long narrow traces will tend to have a significant induc-

tive component and will add to the effective inductance of the decoupling cap.

This increase in inductance will become a dominant feature in the RLC

circuit for high frequencies, and as a consequence of this, it is extremely

286 Chapter 19 PCB Issues

扫码可进资料分享群

important that the high-frequency caps be placed very close to the power pin of

the FPGA.

Higher-frequency caps should be placed closer to the FPGA power pins.

Because there will never be enough space to place all caps next to the power

pin on a real PCB layout, the trade-off must be made such that the smaller caps

are placed closer than the larger caps. The bulk caps (100–1000 mF), at the other

extreme, can be placed virtually anywhere on the PCB as they only respond to

slower transients.

At times, there is a temptation to share traces or vias as shown in Figure 19.12.

The effect of this is to increase the inductance and eliminate the overall effective-

ness of the additional capacitors. It is recommended to assign a single via to each

capacitor pad and to connect the two through minimal trace lengths.

Minimize trace lengths to decoupling caps and assign a unique via to each

capacitor pad.

Figure 19.11 Decoupling capacitor placement.

Figure 19.12 Poor design practice: shared vias.

19.2 Decoupling Capacitors 287

扫码可进资料分享群

If any additional parasitic inductance is added to the decoupling capacitor

through any of the methods discussed here, the range of attenuation will be dra-

matically affected. As can be seen in Figure 19.13, the additional inductance will

reduce the overall bandwidth of the capacitor and reduce the amount of attenu-

ation at the resonance frequency.

For a more comprehensive study of PCB design, refer to the book

High-Speed Digital Design by Howard Johnson and Martin Graham.

19.3 SUMMARY OF KEY POINTS

. The power supply requirements for FPGAs can be complex, but ignoring

these requirements may lead to failures in the field that are not repeatable

in the lab.

. A wide range of decoupling capacitors is required to attenuate a wide

frequency range.

. Higher-frequency caps should be placed closer to the FPGA power pins.

. Minimize trace lengths to decoupling caps and assign a unique via to each

capacitor pad.

Figure 19.13 Bandwidth reduction with extra inductance.

288 Chapter 19 PCB Issues

扫码可进资料分享群

Appendix A

Pipeline Stages for AES

Encryption

The modules defined in this appendix belong to the AES core of Chapter 4.

// Provides necessary parameters to the
AES implementation

// number of data words (always 32*4 = 128)
‘define Nb 4

// 128 bit key mode
‘define Nk4

// 192 bit key mode
//‘define Nk6

// 256 bit key mode
//‘define Nk8

‘ifdef Nk4
‘define Nk 4
‘define Nr 10

‘endif

‘ifdef Nk6
‘define Nk 6
‘define Nr 12

‘endif

‘ifdef Nk8
‘define Nk 8
‘define Nr 14

‘endif

// Performs the column mapping for MixColumns
module MapColumnEnc(

output reg [31:0] oColumnOut,
input iClk, iReset,

289

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

input [31:0] iColumnIn);
// intermediate Poly mult results
wire [7:0] S0x2, S1x2, S2x2, S3x2;
wire [7:0] S0x3, S1x3, S2x3, S3x3;
// Mapped cells in column
wire [7:0] S0PostMap, S1PostMap,

S2PostMap, S3PostMap;

// Modules that will perform poly mults over GF(2^8)
PolyMultx2Enc PolyMultS0x2(.iPolyIn(iColumnIn[31:24]),

.oPolyOut(S0x2));

PolyMultx2Enc PolyMultS1x2(.iPolyIn(iColumnIn[23:16]),
.oPolyOut(S1x2));

PolyMultx2Enc PolyMultS2x2(.iPolyIn(iColumnIn[15:8]),
.oPolyOut(S2x2));

PolyMultx2Enc PolyMultS3x2(.iPolyIn(iColumnIn[7:0]),
.oPolyOut(S3x2));

PolyMultx3Enc PolyMultS0x3(.iPolyIn(iColumnIn[31:24]),
.oPolyOut(S0x3));

PolyMultx3Enc PolyMultS1x3(.iPolyIn(iColumnIn[23:16]),
.oPolyOut(S1x3));

PolyMultx3Enc PolyMultS2x3(.iPolyIn(iColumnIn[15:8]),
.oPolyOut(S2x3));

PolyMultx3Enc PolyMultS3x3(.iPolyIn(iColumnIn[7:0]),
.oPolyOut(S3x3));

// Sum terms over GF(2)
assign S0PostMap = S0x2 ^ S1x3 ^ iColumnIn[15:8] ^

iColumnIn[7:0];
assign S1PostMap = iColumnIn[31:24] ^ S1x2 ^ S2x3 ^

iColumnIn[7:0];
assign S2PostMap = iColumnIn[31:24] ^

iColumnIn[23:16] ^ S2x2 ^ S3x3;
assign S3PostMap = S0x3 ^ iColumnIn[23:16] ^

iColumnIn[15:8] ^ S3x2;

always @(posedge iClk or negedge iReset) begin
if (!iReset)

oColumnOut <= 0;
else // output is combination of post mapped cells

oColumnOut <= {S0PostMap, S1PostMap, S2PostMap,
S3PostMap};

end
endmodule

module MixColumnsEnc(
output reg [32 * ‘Nb - 1:0] oBlockOut,

290 Appendix A

扫码可进资料分享群

output reg oValid,
input iClk, iReset,
input [32 *‘Nb - 1:0] iBlockIn, // Data input to

be transformed
input iReady,
input [3:0] iRound);
reg [32 *‘Nb - 1:0] BlockInHold; // registered

output
wire [32 *‘Nb - 1:0] wPostMap;

MapColumnEnc MapColumnEnc0(.iClk(iClk),.iReset(iReset),
.iColumnIn({iBlockIn[127:120],

iBlockIn[119:112],
iBlockIn[111:104],
iBlockIn[103:96]}),

.oColumnOut
({wPostMap[127:120],

wPostMap[119:112],
wPostMap[111:104],
wPostMap[103:96]}));

MapColumnEnc MapColumnEnc1(.iClk(iClk), .iReset(iReset),
.iColumnIn({iBlockIn[95:88],

iBlockIn[87:80],
iBlockIn[79:72],
iBlockIn[71:64]}),

.oColumnOut({wPostMap[95:88],
wPostMap[87:80],
wPostMap[79:72],
wPostMap[71:64]}));

MapColumnEnc MapColumnEnc2(.iClk(iClk), .iReset(iReset),
.iColumnIn({iBlockIn[63:56],

iBlockIn[55:48],
iBlockIn[47:40],
iBlockIn[39:32]}),

.oColumnOut({wPostMap[63:56],
wPostMap[55:48],
wPostMap[47:40],
wPostMap[39:32]}));

MapColumnEnc MapColumnEnc3(.iClk(iClk), .iReset(iReset),
.iColumnIn({iBlockIn[31:24],

iBlockIn[23:16],
iBlockIn[15:8],
iBlockIn[7:0]}),

.oColumnOut({wPostMap[31:24],
wPostMap[23:16],
wPostMap[15:8],
wPostMap[7:0]}));

Appendix A 291

扫码可进资料分享群

always @*
if (iRound != ‘Nr)

oBlockOut = wPostMap;
else

oBlockOut = BlockInHold;

always @(posedge iClk or negedge iReset)
if (!iReset) begin

oValid = 0;
BlockInHold = 0;

end
else begin

BlockInHold = iBlockIn;
oValid = iReady;

end
endmodule

// Multiplies input poly by {02} over GF(2^8) and reduces
// mod m(x) = x^8 + x^4 + x^3 + x + 1
module PolyMultx2Enc(

output [7:0] oPolyOut,
input [7:0] iPolyIn);
wire [8:0] PolyPreShift, PolyPostShift, PolyReduced;

assign PolyPreShift = {1’b0, iPolyIn};
assign PolyPostShift = PolyPreShift << 1;
assign PolyReduced = PolyPostShift[8] ?

(PolyPostShift ^ (9’b100011011)):
PolyPostShift;

assign oPolyOut = PolyReduced[7:0];
endmodule

// PolyMultx2Enc
// Multiplies input poly by {03} over GF(2^8) and reduces
// mod m(x) = x^8 + x^4 + x^3 + x + 1
module PolyMultx3Enc(

output [7:0] oPolyOut,
input [7:0] iPolyIn);
wire [8:0] PolyPreShift, PolyPostShift, PolyReduced;

assign PolyPreShift = {1’b0, iPolyIn};
assign PolyPostShift = (PolyPreShift << 1) ^ PolyPreShift;
assign PolyReduced = PolyPostShift[8] ?

(PolyPostShift ^ (9’b100011011)):
PolyPostShift;

assign oPolyOut = PolyReduced[7:0];
endmodule

// PolyMultx3Enc
module ShiftRowsEnc(

292 Appendix A

扫码可进资料分享群

output [32 *‘Nb - 1:0] oBlockOut,
output oValid,
input [32 *‘Nb - 1:0] iBlockIn, // Data input to be

transformed
input iReady);

assign oValid = iReady;
assign oBlockOut[7:0] = iBlockIn[39:32];
assign oBlockOut[15:8] = iBlockIn[79:72];
assign oBlockOut[23:16] = iBlockIn[119:112];
assign oBlockOut[31:24] = iBlockIn[31:24];
assign oBlockOut[39:32] = iBlockIn[71:64];
assign oBlockOut[47:40] = iBlockIn[111:104];
assign oBlockOut[55:48] = iBlockIn[23:16];
assign oBlockOut[63:56] = iBlockIn[63:56];
assign oBlockOut[71:64] = iBlockIn[103:96];
assign oBlockOut[79:72] = iBlockIn[15:8];
assign oBlockOut[87:80] = iBlockIn[55:48];
assign oBlockOut[95:88] = iBlockIn[95:88];
assign oBlockOut[103:96] = iBlockIn[7:0];
assign oBlockOut[111:104] = iBlockIn[47:40];
assign oBlockOut[119:112] = iBlockIn[87:80];
assign oBlockOut[127:120] = iBlockIn[127:120];

endmodule

// ShiftRowsEnc
// This block performs the SboxEnc transformation

on the iBlockIn data
// and places it on oBlockOut
module SubBytesEnc(

output reg [32 *‘Nb - 1:0] oBlockOut,
output reg oValid,
input iClk, iReset, iReady,
input [32 *‘Nb - 1:0] iBlockIn); // Data input

to be transformed
wire [32 *‘Nb - 1:0] wPostMap;

SboxEnc SboxEnc1(.oPostMap(wPostMap[7:0]),
.iPreMap(iBlockIn[7:0]));

SboxEnc SboxEnc2(.oPostMap(wPostMap[15:8]),
.iPreMap(iBlockIn[15:8]));

SboxEnc SboxEnc3(.oPostMap(wPostMap[23:16]), .iPreMap(
iBlockIn[23:16]));

SboxEnc SboxEnc4(.oPostMap(wPostMap[31:24]), .iPreMap(
iBlockIn[31:24]));

SboxEnc SboxEnc5(.oPostMap(wPostMap[39:32]), .iPreMap(
iBlockIn[39:32]));

SboxEnc SboxEnc6(.oPostMap(wPostMap[47:40]), .iPreMap(
iBlockIn[47:40]));

SboxEnc SboxEnc7(.oPostMap(wPostMap[55:48]), .iPreMap(
iBlockIn[55:48]));

Appendix A 293

扫码可进资料分享群

SboxEnc SboxEnc8(.oPostMap(wPostMap[63:56]), .iPreMap(
iBlockIn[63:56]));

SboxEnc SboxEnc9(.oPostMap(wPostMap[71:64]), .iPreMap(
iBlockIn[71:64]));

SboxEnc SboxEnc10(.oPostMap(wPostMap[79:72]), .iPreMap(
iBlockIn[79:72]));

SboxEnc SboxEnc11(.oPostMap(wPostMap[87:80]), .iPreMap(
iBlockIn[87:80]));

SboxEnc SboxEnc12(.oPostMap(wPostMap[95:88]), .iPreMap(
iBlockIn[95:88]));

SboxEnc SboxEnc13(.oPostMap(wPostMap[103:96]), .iPreMap(
iBlockIn[103:96]));

SboxEnc SboxEnc14(.oPostMap(wPostMap[111:104]), .iPreMap(
iBlockIn[111:104]));

SboxEnc SboxEnc15(.oPostMap(wPostMap[119:112]), .iPreMap(
iBlockIn[119:112]));

SboxEnc SboxEnc16(.oPostMap(wPostMap[127:120]), .iPreMap(
iBlockIn[127:120]));

always @(posedge iClk or negedge iReset)
if (!iReset) begin

oBlockOut <= 0;
oValid <= 0;

end
else begin
oBlockOut <= wPostMap;
oValid <= iReady;

end
endmodule

// SubBytesEnc
// This block performs the AddRoundKey transformation

on the iBlockIn data
// and places it on oBlockOut
module AddRoundKeyEnc(

output reg [32 *‘Nb - 1:0] oBlockOut,
output reg oValid,
input iClk, iReset, iReady,
// Data input to be transformed
input [32 *‘Nb - 1:0] iBlockIn, iRoundKey);
reg [32 *‘Nb - 1:0] BlockOutStaged;
reg ValidStaged;

always @(posedge iClk or negedge iReset)
if (!iReset) begin

oBlockOut <= 0;
oValid <= 0;
BlockOutStaged <= 0;
ValidStaged <= 0;

end

294 Appendix A

扫码可进资料分享群

else begin
BlockOutStaged <= iBlockIn ^ iRoundKey;
ValidStaged <= iReady;
oBlockOut <= BlockOutStaged;
oValid <= ValidStaged;

end
endmodule

// Registers all inputs
module InputRegsEnc(
output reg [32 *‘Nk - 1:0] oKey,
output reg oReady, oKeysValid,
output reg [127:0] oPlaintext,
input iClk, iReset,
input [32 *‘Nk - 1:0] iKey,
input iNewKey, iReady,
input [127:0] iPlaintext);
reg [32 *‘Nk - 1:0] KeyReg;
reg NewKeyReg, ReadyStaged;
reg [127:0] PlaintextStaged;

always @(posedge iClk or negedge iReset)
if (!iReset) begin

oKey <= 0;
oReady <= 0;
oPlaintext <= 0;
NewKeyReg <= 0;
KeyReg <= 0;
oKeysValid <= 0;
ReadyStaged <= 0;
PlaintextStaged <= 0;

end
else begin

NewKeyReg <= iNewKey;
KeyReg <= iKey;

if (NewKeyReg) begin
oKeysValid <= 1;
oKey <= KeyReg;

end
else
oKeysValid <= 0;

ReadyStaged <= iReady;
PlaintextStaged <= iPlaintext;
oReady <= ReadyStaged;
oPlaintext <= PlaintextStaged;

end
endmodule

Appendix A 295

扫码可进资料分享群

// RoundsIterEnc.v
// This module iterates the intermediate data through

the round block
module RoundsIterEnc(

output reg [32*‘Nb-1:0] oBlockOut,
output reg oValid,
input iClk, iReset,
input [32*‘Nb-1:0] iBlockIn,
input iReady,
input [127:0] iRoundKey);
reg [3:0] round;
// keeps track of current round
reg ValidReg;
reg [127:0] BlockOutReg;
wire [127:0] wBlockIn, wBlockOut;
wire wReady, wValid;

assign wBlockIn = iReady ? iBlockIn: wBlockOut;

// ready is asserted when we have a new input or when the
// previous round has completed and we are not done
assign wReady = iReady || (wValid && (round !=

‘Nr));

RoundEnc Riter(.iClk(iClk), .iReset(iReset),
.iBlockIn(wBlockIn), .iRoundKey(iRoundKey),
.oBlockOut(wBlockOut), .iReady(wReady),
.oValid(wValid), .iRound(round));

always @(posedge iClk or negedge iReset)
if(!iReset) begin

round <= 0;
oValid <= 0;
oBlockOut <= 0;
ValidReg <= 0;
BlockOutReg <= 0;

end
else begin

oValid <= ValidReg;
oBlockOut <= BlockOutReg;

if(iReady) begin
round <= 1;
ValidReg <= 0;

end
else if(wValid && (round != 0)) begin

// rounds continue and data has completed another round
if(round == ‘Nr) begin

// data has completed last round
round <= 0;

296 Appendix A

扫码可进资料分享群

ValidReg <= 1;
BlockOutReg <= wBlockOut;

end
else begin

// data will continue through rounds
round <= round + 1;
ValidReg <= 0;

end
end

else ValidReg <= 0;
end

endmodule

// SboxEnc.v
// returns mapped value from LUT
module SboxEnc(

output reg [7:0] oPostMap,
input [7:0] iPreMap);

// Define the Sbox
always @*
case(iPreMap[7:0])

8’h00: oPostMap = 8’h63;
8’h01: oPostMap = 8’h7c;
8’h02: oPostMap = 8’h77;
8’h03: oPostMap = 8’h7b;
8’h04: oPostMap = 8’hf2;
8’h05: oPostMap = 8’h6b;
8’h06: oPostMap = 8’h6f;
8’h07: oPostMap = 8’hc5;
8’h08: oPostMap = 8’h30;
8’h09: oPostMap = 8’h01;
8’h0a: oPostMap = 8’h67;
8’h0b: oPostMap = 8’h2b;
8’h0c: oPostMap = 8’hfe;
8’h0d: oPostMap = 8’hd7;
8’h0e: oPostMap = 8’hab;
8’h0f: oPostMap = 8’h76;
8’h10: oPostMap = 8’hca;
8’h11: oPostMap = 8’h82;
8’h12: oPostMap = 8’hc9;
8’h13: oPostMap = 8’h7d;
8’h14: oPostMap = 8’hfa;
8’h15: oPostMap = 8’h59;
8’h16: oPostMap = 8’h47;
8’h17: oPostMap = 8’hf0;
8’h18: oPostMap = 8’had;
8’h19: oPostMap = 8’hd4;
8’h1a: oPostMap = 8’ha2;

Appendix A 297

扫码可进资料分享群

8’h1b: oPostMap = 8’haf;
8’h1c: oPostMap = 8’h9c;
8’h1d: oPostMap = 8’ha4;
8’h1e: oPostMap = 8’h72;
8’h1f: oPostMap = 8’hc0;
8’h20: oPostMap = 8’hb7;
8’h21: oPostMap = 8’hfd;
8’h22: oPostMap = 8’h93;
8’h23: oPostMap = 8’h26;
8’h24: oPostMap = 8’h36;
8’h25: oPostMap = 8’h3f;
8’h26: oPostMap = 8’hf7;
8’h27: oPostMap = 8’hcc;
8’h28: oPostMap = 8’h34;
8’h29: oPostMap = 8’ha5;
8’h2a: oPostMap = 8’he5;
8’h2b: oPostMap = 8’hf1;
8’h2c: oPostMap = 8’h71;
8’h2d: oPostMap = 8’hd8;
8’h2e: oPostMap = 8’h31;
8’h2f: oPostMap = 8’h15;
8’h30: oPostMap = 8’h04;
8’h31: oPostMap = 8’hc7;
8’h32: oPostMap = 8’h23;
8’h33: oPostMap = 8’hc3;
8’h34: oPostMap = 8’h18;
8’h35: oPostMap = 8’h96;
8’h36: oPostMap = 8’h05;
8’h37: oPostMap = 8’h9a;
8’h38: oPostMap = 8’h07;
8’h39: oPostMap = 8’h12;
8’h3a: oPostMap = 8’h80;
8’h3b: oPostMap = 8’he2;
8’h3c: oPostMap = 8’heb;
8’h3d: oPostMap = 8’h27;
8’h3e: oPostMap = 8’hb2;
8’h3f: oPostMap = 8’h75;
8’h40: oPostMap = 8’h09;
8’h41: oPostMap = 8’h83;
8’h42: oPostMap = 8’h2c;
8’h43: oPostMap = 8’h1a;
8’h44: oPostMap = 8’h1b;
8’h45: oPostMap = 8’h6e;
8’h46: oPostMap = 8’h5a;
8’h47: oPostMap = 8’ha0;
8’h48: oPostMap = 8’h52;
8’h49: oPostMap = 8’h3b;
8’h4a: oPostMap = 8’hd6;
8’h4b: oPostMap = 8’hb3;

298 Appendix A

扫码可进资料分享群

8’h4c: oPostMap = 8’h29;
8’h4d: oPostMap = 8’he3;
8’h4e: oPostMap = 8’h2f;
8’h4f: oPostMap = 8’h84;
8’h50: oPostMap = 8’h53;
8’h51: oPostMap = 8’hd1;
8’h52: oPostMap = 8’h00;
8’h53: oPostMap = 8’hed;
8’h54: oPostMap = 8’h20;
8’h55: oPostMap = 8’hfc;
8’h56: oPostMap = 8’hb1;
8’h57: oPostMap = 8’h5b;
8’h58: oPostMap = 8’h6a;
8’h59: oPostMap = 8’hcb;
8’h5a: oPostMap = 8’hbe;
8’h5b: oPostMap = 8’h39;
8’h5c: oPostMap = 8’h4a;
8’h5d: oPostMap = 8’h4c;
8’h5e: oPostMap = 8’h58;
8’h5f: oPostMap = 8’hcf;
8’h60: oPostMap = 8’hd0;
8’h61: oPostMap = 8’hef;
8’h62: oPostMap = 8’haa;
8’h63: oPostMap = 8’hfb;
8’h64: oPostMap = 8’h43;
8’h65: oPostMap = 8’h4d;
8’h66: oPostMap = 8’h33;
8’h67: oPostMap = 8’h85;
8’h68: oPostMap = 8’h45;
8’h69: oPostMap = 8’hf9;
8’h6a: oPostMap = 8’h02;
8’h6b: oPostMap = 8’h7f;
8’h6c: oPostMap = 8’h50;
8’h6d: oPostMap = 8’h3c;
8’h6e: oPostMap = 8’h9f;
8’h6f: oPostMap = 8’ha8;
8’h70: oPostMap = 8’h51;
8’h71: oPostMap = 8’ha3;
8’h72: oPostMap = 8’h40;
8’h73: oPostMap = 8’h8f;
8’h74: oPostMap = 8’h92;
8’h75: oPostMap = 8’h9d;
8’h76: oPostMap = 8’h38;
8’h77: oPostMap = 8’hf5;
8’h78: oPostMap = 8’hbc;
8’h79: oPostMap = 8’hb6;
8’h7a: oPostMap = 8’hda;
8’h7b: oPostMap = 8’h21;
8’h7c: oPostMap = 8’h10;

Appendix A 299

扫码可进资料分享群

8’h7d: oPostMap = 8’hff;
8’h7e: oPostMap = 8’hf3;
8’h7f: oPostMap = 8’hd2;
8’h80: oPostMap = 8’hcd;
8’h81: oPostMap = 8’h0c;
8’h82: oPostMap = 8’h13;
8’h83: oPostMap = 8’hec;
8’h84: oPostMap = 8’h5f;
8’h85: oPostMap = 8’h97;
8’h86: oPostMap = 8’h44;
8’h87: oPostMap = 8’h17;
8’h88: oPostMap = 8’hc4;
8’h89: oPostMap = 8’ha7;
8’h8a: oPostMap = 8’h7e;
8’h8b: oPostMap = 8’h3d;
8’h8c: oPostMap = 8’h64;
8’h8d: oPostMap = 8’h5d;
8’h8e: oPostMap = 8’h19;
8’h8f: oPostMap = 8’h73;
8’h90: oPostMap = 8’h60;
8’h91: oPostMap = 8’h81;
8’h92: oPostMap = 8’h4f;
8’h93: oPostMap = 8’hdc;
8’h94: oPostMap = 8’h22;
8’h95: oPostMap = 8’h2a;
8’h96: oPostMap = 8’h90;
8’h97: oPostMap = 8’h88;
8’h98: oPostMap = 8’h46;
8’h99: oPostMap = 8’hee;
8’h9a: oPostMap = 8’hb8;
8’h9b: oPostMap = 8’h14;
8’h9c: oPostMap = 8’hde;
8’h9d: oPostMap = 8’h5e;
8’h9e: oPostMap = 8’h0b;
8’h9f: oPostMap = 8’hdb;
8’ha0: oPostMap = 8’he0;
8’ha1: oPostMap = 8’h32;
8’ha2: oPostMap = 8’h3a;
8’ha3: oPostMap = 8’h0a;
8’ha4: oPostMap = 8’h49;
8’ha5: oPostMap = 8’h06;
8’ha6: oPostMap = 8’h24;
8’ha7: oPostMap = 8’h5c;
8’ha8: oPostMap = 8’hc2;
8’ha9: oPostMap = 8’hd3;
8’haa: oPostMap = 8’hac;
8’hab: oPostMap = 8’h62;
8’hac: oPostMap = 8’h91;
8’had: oPostMap = 8’h95;

300 Appendix A

扫码可进资料分享群

8’hae: oPostMap = 8’he4;
8’haf: oPostMap = 8’h79;
8’hb0: oPostMap = 8’he7;
8’hb1: oPostMap = 8’hc8;
8’hb2: oPostMap = 8’h37;
8’hb3: oPostMap = 8’h6d;
8’hb4: oPostMap = 8’h8d;
8’hb5: oPostMap = 8’hd5;
8’hb6: oPostMap = 8’h4e;
8’hb7: oPostMap = 8’ha9;
8’hb8: oPostMap = 8’h6c;
8’hb9: oPostMap = 8’h56;
8’hba: oPostMap = 8’hf4;
8’hbb: oPostMap = 8’hea;
8’hbc: oPostMap = 8’h65;
8’hbd: oPostMap = 8’h7a;
8’hbe: oPostMap = 8’hae;
8’hbf: oPostMap = 8’h08;
8’hc0: oPostMap = 8’hba;
8’hc1: oPostMap = 8’h78;
8’hc2: oPostMap = 8’h25;
8’hc3: oPostMap = 8’h2e;
8’hc4: oPostMap = 8’h1c;
8’hc5: oPostMap = 8’ha6;
8’hc6: oPostMap = 8’hb4;
8’hc7: oPostMap = 8’hc6;
8’hc8: oPostMap = 8’he8;
8’hc9: oPostMap = 8’hdd;
8’hca: oPostMap = 8’h74;
8’hcb: oPostMap = 8’h1f;
8’hcc: oPostMap = 8’h4b;
8’hcd: oPostMap = 8’hbd;
8’hce: oPostMap = 8’h8b;
8’hcf: oPostMap = 8’h8a;
8’hd0: oPostMap = 8’h70;
8’hd1: oPostMap = 8’h3e;
8’hd2: oPostMap = 8’hb5;
8’hd3: oPostMap = 8’h66;
8’hd4: oPostMap = 8’h48;
8’hd5: oPostMap = 8’h03;
8’hd6: oPostMap = 8’hf6;
8’hd7: oPostMap = 8’h0e;
8’hd8: oPostMap = 8’h61;
8’hd9: oPostMap = 8’h35;
8’hda: oPostMap = 8’h57;
8’hdb: oPostMap = 8’hb9;
8’hdc: oPostMap = 8’h86;
8’hdd: oPostMap = 8’hc1;
8’hde: oPostMap = 8’h1d;

Appendix A 301

扫码可进资料分享群

8’hdf: oPostMap = 8’h9e;
8’he0: oPostMap = 8’he1;
8’he1: oPostMap = 8’hf8;
8’he2: oPostMap = 8’h98;
8’he3: oPostMap = 8’h11;
8’he4: oPostMap = 8’h69;
8’he5: oPostMap = 8’hd9;
8’he6: oPostMap = 8’h8e;
8’he7: oPostMap = 8’h94;
8’he8: oPostMap = 8’h9b;
8’he9: oPostMap = 8’h1e;
8’hea: oPostMap = 8’h87;
8’heb: oPostMap = 8’he9;
8’hec: oPostMap = 8’hce;
8’hed: oPostMap = 8’h55;
8’hee: oPostMap = 8’h28;
8’hef: oPostMap = 8’hdf;
8’hf0: oPostMap = 8’h8c;
8’hf1: oPostMap = 8’ha1;
8’hf2: oPostMap = 8’h89;
8’hf3: oPostMap = 8’h0d;
8’hf4: oPostMap = 8’hbf;
8’hf5: oPostMap = 8’he6;
8’hf6: oPostMap = 8’h42;
8’hf7: oPostMap = 8’h68;
8’hf8: oPostMap = 8’h41;
8’hf9: oPostMap = 8’h99;
8’hfa: oPostMap = 8’h2d;
8’hfb: oPostMap = 8’h0f;
8’hfc: oPostMap = 8’hb0;
8’hfd: oPostMap = 8’h54;
8’hfe: oPostMap = 8’hbb;
8’hff: oPostMap = 8’h16;

endcase
endmodule

302 Appendix A

扫码可进资料分享群

Appendix B

Top-Level Module for the

SRC Processor

The module defined in this appendix belongs to the SRC processor example of

Chapter 17.

module SrcProcessor(
output hasExecutedStop,
output [31:0] memory_Port1_DataIn,
output [31:0] memory_Port1_AddressIn,
output memory_Port1_WriteStrobe,
output [31:0] memory_Port2_DataIn,
output [31:0] memory_Port2_AddressIn,
output memory_Port2_WriteStrobe,
output [31:0] registerFile_Port1_DataIn,
output [4:0] registerFile_Port1_AddressIn,
output registerFile_Port1_WriteStrobe,
output [31:0] registerFile_Port2_DataIn,
output [4:0] registerFile_Port2_AddressIn,
output registerFile_Port2_WriteStrobe,
output [31:0] registerFile_Port3_DataIn,
output [4:0] registerFile_Port3_AddressIn,
output registerFile_Port3_WriteStrobe,
output [31:0] registerFile_Port4_DataIn,
output [4:0] registerFile_Port4_AddressIn,
output registerFile_Port4_WriteStrobe,
input clock,
input srcProcessorReset,
input canRun,
input [31:0] memory_Port1_DataOut,
input [31:0] memory_Port2_DataOut,
input [31:0] registerFile_Port1_DataOut,
input [31:0] registerFile_Port2_DataOut,
input [31:0] registerFile_Port3_DataOut,
input [31:0] registerFile_Port4_DataOut,

303

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

input enableForwarding,
input [31:0] cycleNumber);
wire hasDecodedStop;
wire hasExecutedStop;

// Stage1 declarations
wire [31:0] intoStage1_PC;
wire [31:0] intoStage1_IR;
wire stage2IsStalled;
wire intoStage1_CanRun;
wire intoStage1_ShouldStop;
wire fromStage2_BranchIsTaken;
wire [31:0] fromStage1_PC;
wire [31:0] fromStage1_IR;
wire [31:0] fromStage1_NextPC;
wire stage1IsStalled;

// Stage2 declarations
wire [31:0] intoStage2_PC;
wire [31:0] intoStage2_IR;
wire [31:0] intoStage2_NextPC;
wire [31:0] fromStage2_PC;
wire [31:0] fromStage2_IR;
wire [31:0] fromStage2_DecodedIR;
wire [31:0] fromStage2_X;
wire [31:0] fromStage2_Y;
wire [31:0] fromStage2_MD;
wire fromStage2_IsRegisterWrite;
wire [4:0] fromStage2_Ra;
wire [31:0] fromStage2_NextPC;
wire fromStage2_IsStop;
wire [4:0] ra;
wire [31:0] contentsRaFromRegisterFile;
wire [4:0] rb;
wire [31:0] contentsRbFromRegisterFile;
wire [4:0] rc;
wire [31:0] contentsRcFromRegisterFile;
wire isRegisterWriteInStage3;
wire [4:0] raInStage3;
wire [31:0] contentsRaFromStage3;
wire contentsRaFromStage3Ready;
wire isRegisterWriteInStage4;
wire [4:0] raInStage4;
wire [31:0] contentsRaFromStage4;
wire contentsRaFromStage4Ready;
wire isRegisterWriteInStage5;
wire [4:0] raInStage5;
wire [31:0] contentsRaFromStage5;
wire contentsRaFromStage5Ready;
wire enableForwarding;

304 Appendix B

扫码可进资料分享群

// Stage3 declarations
wire [31:0] intoStage3_PC;
wire [31:0] intoStage3_IR;
wire [31:0] intoStage3_DecodedIR;
wire [31:0] intoStage3_X;
wire [31:0] intoStage3_Y;
wire [31:0] intoStage3_MD;
wire intoStage3_IsRegisterWrite;
wire [4:0] intoStage3_Ra;
wire [31:0] fromStage3_PC;
wire [31:0] fromStage3_IR;
wire [31:0] fromStage3_DecodedIR;
wire [31:0] fromStage3_Z;
wire [31:0] fromStage3_MD;
wire fromStage3_IsRegisterWrite;
wire [4:0] fromStage3_Ra;

// Stage4 declarations
wire [31:0] intoStage4_PC;
wire [31:0] intoStage4_IR;
wire [31:0] intoStage4_DecodedIR;
wire [31:0] intoStage4_Z;
wire [31:0] intoStage4_MD;
wire intoStage4_IsRegisterWrite;
wire [4:0] intoStage4_Ra;
wire [31:0] fromStage4_PC;
wire [31:0] fromStage4_IR;
wire [31:0] fromStage4_DecodedIR;
wire [31:0] fromStage4_Z;
wire fromStage4_IsRegisterWrite;
wire [4:0] fromStage4_Ra;
wire [31:0] toDataMemory_Address;
wire [31:0] toDataMemory_Data;
wire toDataMemory_WriteStrobe;
wire [31:0] fromDataMemory_Data;

// Stage5 declarations
wire [31:0] intoStage5_PC;
wire [31:0] intoStage5_IR;
wire [31:0] intoStage5_DecodedIR;
wire [31:0] intoStage5_Z;
wire intoStage5_IsRegisterWrite;
wire [4:0] intoStage5_Ra;
wire fromStage5_IsStop;
wire [4:0] toRegisterFile_Address;
wire [31:0] toRegisterFile_Data;
wire toRegisterFile_WriteStrobe;

// unused but included here for completeness
wire [31:0] fromRegisterFile_Data;

Appendix B 305

扫码可进资料分享群

// logic for interface to instruction and data memory
assign intoStage1_IR = memory_Port1_

DataOut;
assign memory_Port1_DataIn = 32’b0;
assign memory_Port1_AddressIn = intoStage1_PC;
assign memory_Port1_WriteStrobe = 1’b0;

assign fromDataMemory_Data = memory_Port2_
DataOut;

assign memory_Port2_DataIn = toDataMemory_
Data;

assign memory_Port2_AddressIn = toDataMemory_
Address;

assign memory_Port2_WriteStrobe = toDataMemory_
WriteStrobe;

// logic for interface to register file
assign contentsRaFromRegisterFile = registerFile_

Port1_DataOut;
assign registerFile_Port1_DataIn = 32’b0;
assign registerFile_Port1_AddressIn = ra;
assign registerFile_Port1_WriteStrobe = 1’b0;

assign contentsRbFromRegisterFile = registerFile_
Port2_DataOut;

assign registerFile_Port2_DataIn = 32’b0;
assign registerFile_Port2_AddressIn = rb;
assign registerFile_Port2_WriteStrobe = 1’b0;

assign contentsRcFromRegisterFile = registerFile_
Port3_DataOut;

assign registerFile_Port3_DataIn = 32’b0;
assign registerFile_Port3_AddressIn = rc;
assign registerFile_Port3_WriteStrobe = 1’b0;

assign fromRegisterFile_Data = registerFile_
Port4_DataOut;

assign registerFile_Port4_DataIn = toRegisterFile_
Data;

assign registerFile_Port4_AddressIn = toRegisterFile_
Address;

assign registerFile_Port4_WriteStrobe = toRegisterFile_
WriteStrobe;

//
// Module: FeedbackDRegisterWith2Inputs
//
// Description:
// Special register for PC

306 Appendix B

扫码可进资料分享群

//
// Inputs:
// clk <-- clock
// shouldHold <-- stage1IsStalled
// d0 <-- fromStage1_NextPC
// d1 <-- fromStage2_NextPC
// select <-- fromStage2_BranchIsTaken
// reset <-- srcProcessorReset
// resetValue
//
// Outputs:
// q --> intoStage1_PC
//

FeedbackDRegisterWith2Inputs #(32, 5, 0, 0) PC
(clock,
stage1IsStalled,
fromStage1_NextPC,
fromStage2_NextPC,
fromStage2_BranchIsTaken,
intoStage1_PC,
srcProcessorReset,
32’b0);

or IntoStage1_ShouldStop (intoStage1_ShouldStop,
hasDecodedStop,
fromStage2_IsStop);

assign intoStage1_CanRun = canRun;

//
// Module: Stage1
//
// Description:
// Instruction Fetch
//
// Inputs:
// inputPC <-- intoStage1_PC
// inputIR <-- intoStage1_IR
// stage2IsStalled <-- stage2IsStalled
// canRun <-- intoStage1_CanRun
// shouldStop <-- intoStage1_ShouldStop
// branchIsTakenInStage2 <-- fromStage2_BranchIsTaken
//
// Outputs:
// outputPC --> fromStage1_PC
// outputIR --> fromStage1_IR
// outputNextPC --> fromStage1_NextPC

Appendix B 307

扫码可进资料分享群

// stage1IsStalled --> stage1IsStalled
//

Stage1 stage1 (intoStage1_PC,
intoStage1_IR,
stage2IsStalled,
intoStage1_CanRun,
intoStage1_ShouldStop,
fromStage2_BranchIsTaken,
fromStage1_PC,
fromStage1_IR,
fromStage1_NextPC,
stage1IsStalled);

//
// Module: FeedbackDRegisterWith1Input
//
// Description:
// Registers for interface between stage 1 and stage 2
//
// Inputs:
// clk <-- clock
// shouldHold <-- stage2IsStalled
// d
// reset <-- srcProcessorReset
// resetValue
//
// Outputs:
// q
//

FeedbackDRegisterWith1Input #(32, 5, 0, 0) IR2
(clock,

stage2IsStalled,
fromStage1_IR,
intoStage2_IR,
srcProcessorReset,
32’hF0000000);

FeedbackDRegisterWith1Input #(32, 5, 0, 0) PC2
(clock,

stage2IsStalled,
fromStage1_PC,
intoStage2_PC,
srcProcessorReset,
32’b0);

FeedbackDRegisterWith1Input #(32, 5, 0, 0) NextPC2
(clock,

stage2IsStalled,
fromStage1_NextPC,

308 Appendix B

扫码可进资料分享群

intoStage2_NextPC,
srcProcessorReset,
32’b0);

//
// Module: Stage2
//
// Description:
// Instruction Decode and Operand Read
//
// Inputs from Stage1 to Stage2:
// inputPC <-- intoStage2_PC
// inputIR <-- intoStage2_IR
// inputNextPC <-- intoStage2_NextPC
//
// Outputs from Stage2 to Stage3:
// outputPC --> fromStage2_PC
// outputIR --> fromStage2_IR
// outputDecodedIR --> fromStage2_DecodedIR
// outputX --> fromStage2_X
// outputY --> fromStage2_Y
// outputMD --> fromStage2_MD
// outputIsRegisterWrite --> fromStage2_

IsRegisterWrite
// outputRa --> fromStage2_Ra
//
// Outputs from Stage2 to Stage1 and PC register:
// outputBranchIsTaken --> fromStage2_

BranchIsTaken
// outputNextPC --> fromStage2_NextPC
//
// Output to indicate that Stage2 current sees stop

instruction:
// outputIsStop --> fromStage2_IsStop
//
// Interface with Register File:
// ra --> ra
// contentsRaFromRegisterFile <-- contentsRaFrom

RegisterFile
// rb --> rb
// contentsRbFromRegisterFile <-- contentsRbFrom

RegisterFile
// rc --> rc
// contentsRcFromRegisterFile <-- contentsRcFrom

RegisterFile
//
// Interface with Stage3 for forwarding:
// isRegisterWriteInStage3 <-- isRegisterWrite

InStage3

Appendix B 309

扫码可进资料分享群

// raInStage3 <-- raInStage3
// contentsRaFromStage3 <-- contentsRaFromStage3
// contentsRaFromStage3Ready <-- contentsRaFromStage3

Ready
//
// Interface with Stage4 for forwarding:
// isRegisterWriteInStage4 <-- isRegisterWrite

InStage4
// raInStage4 <-- raInStage4
// contentsRaFromStage4 <-- contentsRaFromStage4
// contentsRaFromStage4Ready <-- contentsRaFromStage

4Ready
//
// Interface with Stage5 for forwarding:
// isRegisterWriteInStage5 <-- isRegisterWrite

InStage5
// raInStage5 <-- raInStage5
// contentsRaFromStage5 <-- contentsRaFromStage5
// contentsRaFromStage5Ready <-- contentsRaFromStage

5Ready
//
// Output to Stage1 to indicate stall condition:
// stage2IsStalled --> stage2IsStalled
//
// Selectively enable forwarding for experimentation:
// enableForwarding <-- enableForwarding
//

Stage2 stage2 (intoStage2_PC,
intoStage2_IR,
intoStage2_NextPC,
fromStage2_PC,
fromStage2_IR,
fromStage2_DecodedIR,
fromStage2_X,
fromStage2_Y,
fromStage2_MD,
fromStage2_IsRegisterWrite,
fromStage2_Ra,
fromStage2_BranchIsTaken,
fromStage2_NextPC,
fromStage2_IsStop,
ra,
contentsRaFromRegisterFile,
rb,
contentsRbFromRegisterFile,
rc,
contentsRcFromRegisterFile,
isRegisterWriteInStage3,

310 Appendix B

扫码可进资料分享群

raInStage3,
contentsRaFromStage3,
contentsRaFromStage3Ready,
isRegisterWriteInStage4,
raInStage4,
contentsRaFromStage4,
contentsRaFromStage4Ready,
isRegisterWriteInStage5,
raInStage5,
contentsRaFromStage5,
contentsRaFromStage5Ready,
stage2IsStalled,
enableForwarding);

//
// Module: DRegister
//
// Description:
// Registers for interface between stage 2 and stage 3
//
// Inputs:
// clk <-- clock
// d
// reset <-- srcProcessorReset
// resetValue
//
// Outputs:
// q
//

DRegister #(32, 5, 0, 0) PC3 (clock,
fromStage2_PC,
intoStage3_PC,
srcProcessorReset,
32’b0);

DRegister #(32, 5, 0, 0) IR3 (clock,
fromStage2_IR,
intoStage3_IR,
srcProcessorReset,
32’hF0000000);

DRegister #(32, 5, 0, 0) DecodedIR3
(clock,

fromStage2_DecodedIR,
intoStage3_DecodedIR,
srcProcessorReset,
32’h40000000);

DRegister #(32, 5, 0, 0) X3 (clock,
fromStage2_X,

Appendix B 311

扫码可进资料分享群

intoStage3_X,
srcProcessorReset,
32’b0);

DRegister #(32, 5, 0, 0) Y3 (clock,
fromStage2_Y,
intoStage3_Y,
srcProcessorReset,
32’b0);

DRegister #(32, 5, 0, 0) MD3 (clock,
fromStage2_MD,
intoStage3_MD,
srcProcessorReset,
32’b0);

DRegister #(1, 5, 0, 0) IsRegisterWrite3
(clock,

fromStage2_IsRegisterWrite,
intoStage3_IsRegisterWrite,
srcProcessorReset,
1’b0);

DRegister #(5, 5, 0, 0) Ra3 (clock,
fromStage2_Ra,
intoStage3_Ra,
srcProcessorReset,
5’b0);

//
// Module: FeedbackDRegisterWith1Input
//
// Description:
// Registers for interface between stage 1 and stage 2
//
// Inputs:
// clk <-- clock
// shouldHold <-- hasDecodedStop
// d <-- fromStage2_IsStop
// reset <-- srcProcessorReset
// resetValue
//
// Outputs:
// q --> hasDecodedStop
//

FeedbackDRegisterWith1Input #(1, 5, 0, 0) HasDecodedStop
(clock,

hasDecodedStop,
fromStage2_IsStop,

312 Appendix B

扫码可进资料分享群

hasDecodedStop,
srcProcessorReset,
1’b0);

//
// Module: Stage3
//
// Description:
// ALU operations
//
// Inputs from Stage2:
// inputPC <-- intoStage3_PC
// inputIR <-- intoStage3_IR
// inputDecodedIR <-- intoStage3_DecodedIR
// inputX <-- intoStage3_X
// inputY <-- intoStage3_Y
// inputMD <-- intoStage3_MD
// inputIsRegisterWrite <-- intoStage3_IsRegister

Write
// inputRa <-- intoStage3_Ra
//
// Outputs to Stage3:
// outputPC --> fromStage3_PC
// outputIR --> fromStage3_IR
// outputDecodedIR --> fromStage3_DecodedIR
// outputZ --> fromStage3_Z
// outputMD --> fromStage3_MD
// outputIsRegisterWrite --> fromStage3_IsRegister

Write
// outputRa --> fromStage3_Ra
//
// Interface with Stage2 for forwarding:
// isRegisterWrite --> isRegisterWriteInStage3
// ra --> raInStage3
// contentsRa --> contentsRaFromStage3
// contentsRaReady --> contentsRaFromStage3Ready
//

Stage3 stage3 (intoStage3_PC,
intoStage3_IR,
intoStage3_DecodedIR,
intoStage3_X,
intoStage3_Y,
intoStage3_MD,
intoStage3_IsRegisterWrite,
intoStage3_Ra,
fromStage3_PC,
fromStage3_IR,
fromStage3_DecodedIR,

Appendix B 313

扫码可进资料分享群

fromStage3_Z,
fromStage3_MD,
fromStage3_IsRegisterWrite,
fromStage3_Ra,
isRegisterWriteInStage3,
raInStage3,
contentsRaFromStage3,
contentsRaFromStage3Ready);

//
// Module: DRegister
//
// Description:
// Registers for interface between stage 3 and stage 4
//
// Inputs:
// clk <-- clock
// d
// reset <-- srcProcessorReset
// resetValue
//
// Outputs:
// q
//

DRegister #(32, 5, 0, 0) PC4 (clock,
fromStage3_PC,
intoStage4_PC,
srcProcessorReset,
32’b0);

DRegister #(32, 5, 0, 0) IR4 (clock,
fromStage3_IR,
intoStage4_IR,
srcProcessorReset,
32’hF0000000);

DRegister #(32, 5, 0, 0) DecodedIR4
(clock,

fromStage3_DecodedIR,
intoStage4_DecodedIR,
srcProcessorReset,
32’h40000000);

DRegister #(32, 5, 0, 0) Z4 (clock,
fromStage3_Z,
intoStage4_Z,
srcProcessorReset,
32’b0);

314 Appendix B

扫码可进资料分享群

DRegister #(32, 5, 0, 0) MD4 (clock,
fromStage3_MD,
intoStage4_MD,
srcProcessorReset,
32’b0);

DRegister #(1, 5, 0, 0) IsRegisterWrite4
(clock,

fromStage3_IsRegisterWrite,
intoStage4_IsRegisterWrite,
srcProcessorReset,
1’b0);

DRegister #(5, 5, 0, 0) Ra4 (clock,
fromStage3_Ra,
intoStage4_Ra,
srcProcessorReset,
5’b0);

//
// Module: Stage4
//
// Description:
// Memory Access
//
// Inputs from Stage3:
// inputPC <-- intoStage4_PC
// inputIR <-- intoStage4_IR
// inputDecodedIR <-- intoStage4_DecodedIR
// inputZ <-- intoStage4_Z
// inputMD <-- intoStage4_MD
// inputIsRegisterWrite <-- intoStage4_IsRegisterWrite
// inputRa <-- intoStage4_Ra
//
// Clock phase for qualifying write strobe:
// qualifierClock <-- clock
//
// Outputs to Stage5:
// outputPC --> fromStage4_PC
// outputIR --> fromStage4_IR
// outputDecodedIR --> fromStage4_DecodedIR
// outputZ --> fromStage4_Z
// outputIsRegisterWrite --> fromStage4_

IsRegisterWrite
// outputRa --> fromStage4_Ra
//
// Interface with Stage2 for forwarding:
// isRegisterWrite --> isRegisterWriteInStage4

Appendix B 315

扫码可进资料分享群

// ra --> raInStage4
// contentsRa --> contentsRaFromStage4
// contentsRaReady --> contentsRaFromStage4Ready
//
// Interface with data memory:
// toDataMemory_Address --> toDataMemory_Address
// toDataMemory_Data --> toDataMemory_Data
// toDataMemory_WriteStrobe --> toDataMemory_Write

Strobe
// fromDataMemory_Data <-- fromDataMemory_Data
//

Stage4 stage4 (intoStage4_PC,
intoStage4_IR,
intoStage4_DecodedIR,
intoStage4_Z,
intoStage4_MD,
intoStage4_IsRegisterWrite,
intoStage4_Ra,
clock,
fromStage4_PC,
fromStage4_IR,
fromStage4_DecodedIR,
fromStage4_Z,
fromStage4_IsRegisterWrite,
fromStage4_Ra,
isRegisterWriteInStage4,
raInStage4,
contentsRaFromStage4,
contentsRaFromStage4Ready,
toDataMemory_Address,
toDataMemory_Data,
toDataMemory_WriteStrobe,
fromDataMemory_Data);

//
// Module: DRegister
//
// Description:
// Registers for interface between stage 4 and stage 5
//
// Inputs:
// clk <-- clock
// d
// reset <-- srcProcessorReset
// resetValue
//
// Outputs:
// q
//

316 Appendix B

扫码可进资料分享群

DRegister #(32, 5, 0, 0) IR5 (clock,
fromStage4_IR,
intoStage5_IR,
srcProcessorReset,
32’hF0000000);

DRegister #(32, 5, 0, 0) PC5 (clock,
fromStage4_PC,
intoStage5_PC,
srcProcessorReset,
32’b0);

DRegister #(32, 5, 0, 0) DecodedIR5
(clock,

fromStage4_DecodedIR,
intoStage5_DecodedIR,
srcProcessorReset,
32’h40000000);

DRegister #(32, 5, 0, 0) Z5 (clock,
fromStage4_Z,
intoStage5_Z,
srcProcessorReset,
32’b0);

DRegister #(1, 5, 0, 0) IsRegisterWrite5
(clock,

fromStage4_IsRegisterWrite,
intoStage5_IsRegisterWrite,
srcProcessorReset,
1’b0);

DRegister #(5, 5, 0, 0) Ra5 (clock,
fromStage4_Ra,
intoStage5_Ra,
srcProcessorReset,
5’b0);

//
// Module: Stage5
//
// Description:
// Register Write
//
// Inputs from Stage4:
// inputPC <-- intoStage5_PC
// inputIR <-- intoStage5_IR
// inputDecodedIR <-- intoStage5_DecodedIR

Appendix B 317

扫码可进资料分享群

// inputZ <-- intoStage5_Z
// inputIsRegisterWrite <-- intoStage5_IsRegisterWrite
// inputRa <-- intoStage5_Ra
//
// Clock phase for qualifying write strobe:
// qualifierClock <-- clock
//
// Outputs from Stage5:
// outputIsStop --> fromStage5_IsStop
//
// Interface with Stage2 for forwarding:
// isRegisterWrite --> isRegisterWriteInStage5
// ra --> raInStage5
// contentsRa --> contentsRaFromStage5
// contentsRaReady --> contentsRaFromStage5Ready
//
// Interface with data memory:
// toRegisterFile_Address --> toRegisterFile_

Address
// toRegisterFile_Data --> toRegisterFile_Data
// toRegisterFile_WriteStrobe --> toRegisterFile_

WriteStrobe
//

Stage5 stage5 (intoStage5_PC,
intoStage5_IR,
intoStage5_DecodedIR,
intoStage5_Z,
intoStage5_IsRegisterWrite,
intoStage5_Ra,
clock,
fromStage5_IsStop,
isRegisterWriteInStage5,
raInStage5,
contentsRaFromStage5,
contentsRaFromStage5Ready,
toRegisterFile_Address,
toRegisterFile_Data,
toRegisterFile_WriteStrobe);

FeedbackDRegisterWith1Input #(1, 5, 0, 0) HasExecute Stop(
clock,
hasExecutedStop,
fromStage5_IsStop,
hasExecutedStop,
srcProcessorReset,
1’b0);

endmodule

318 Appendix B

扫码可进资料分享群

Bibliography

MARK ALEXANDER. Power distribution

system (PDS) design: using bypass/
decoupling capacitors. Xilinx XAPP623,

San Jose, CA 95124 February 2005.

PETER ALFKE AND CLIFFORD E. CUMMINGS.

Simulation and synthesis techniques for

asynchronous FIFO design with asynchro-

nous pointer comparisons. SNUG 2002

(Synopsys Users Group), San Jose, CA

April 2002.

KEN CHAPMAN. Get smart about reset

(think local, not global). Xilinx Tech-

XClusives, San Jose, CA 95124 October

2001.

KEN COFFMAN. Real World FPGA Design

with Verilog. Prentice Hall, Upper Saddle

River, NJ, 2000.

CLIFFORD E. CUMMINGS. Full case parallel

case, the evil twins of verilog synthesis.

SNUG 1999 (Synopsys Users Group)

Boston MA.

CLIFFORD E. CUMMINGS. Synthesis and

scripting techniques for designing multi-

asynchronous clock designs. SNUG 2001

San Jose, CA (Synopsys Users Group),

March 2001.

CLIFFORD E. CUMMINGS. New Verilog-

2001 techniques for creating parameter-

ized models (or down with `define and

death of a defparam!). HDLCON 2002,

San Jose, CA May 2002.

CLIFFORD E. CUMMINGS, STEVE GOLSON,

AND DON MILLS. Asynchronous &

synchronous reset design techniques —

part deux. SNUG 2003 (Synopsys Users

Group), Boston, MA September 2003.

WILLIAM J. DALLY AND JOHN W.

POULTON. Digital Systems Engineering.

Cambridge University Press, Cambridge,

UK, 1998.

VINCENT P. HEURING AND HARRY

F. JORDAN. Computer Systems Design

and Architecture. Addison Wesley

Longmann, Menlo Park, CA, 1997.

PHILIPPE GARRAULT AND BRIAN

PHILOFSKY. HDL coding practices to

accelerate design performance. Xilinx

White Paper WP231, San Jose, CA

95124 January 2006.

HOWARD W. JOHNSON AND MARTIN

GRAHAM. High-Speed Digital Design: A

Handbook of Black Magic. Prentice Hall,

Upper Saddle River, NJ, 1992.

The Institute of Electrical and Electronics

Engineers (IEEE). IEEE Standard for

Binary Floating-Point Arithmetic. IEEE

Standards Board, New York, NY March

1985.

National Institute of Standards and Tech-

nology (NIST). Advanced Encryption

Standard (AES). Federal Information

Processing Standards Publication 197,

Gaithersburg, MD 20899 November

2001.

National Institute of Standards and Tech-

nology (NIST). Secure Hash Standard

(SHA). Federal Information Processing

Standards Publication 180-2, Gaithersburg,

MD 20899 2001

SAMIR PALNITKAR. Verilog HDL, A Guide

to Digital Design and Synthesis. Prentice

Hall, Upper Saddle River, NJ, 1996.

319

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

BOAZ PORAT. A Course in Digital Signal

Processing. John Wiley & Sons,

New York, 1997.

Synplicity Inc. Fast timing closure on

FPGA designs using graph-based phys-

ical synthesis. Synplicity White papers,

Sunnyvale, CA 94086 September 2005.

320 Bibliography

扫码可进资料分享群

Index

Abstract design techniques

FPGA, 75

high-level design, 69

Adders critical paths, 13

Address decoder, 11, 174

Add-round-key block, 53

Advanced encryption standard (AES),

47–67

architectures, 47–64

compact architecture, 53–56

fully pipelined architecture, 60–64

one stage for add round key, 52

one stage for sub-bytes, 51

partially pipelined architecture,

57–59

two pipeline stages for mix-column, 52

zero stages for shift rows, 51

clock cycles, 57

performance versus area, 66

Advanced simulation, 151–169

code coverage, 159

gate-level simulations, 159–161

run-time traps, 165–166

combinatorial delay modeling,

166–168

glitch rejection, 165

timescale, 165

system stimulus, 157–158

bus-functional models, 158

MATLAB, 157

testbench architecture, 152–155

testbench components, 152

testbench flow, 153–155

toggle coverage, 162

AES. See Advanced encryption standard

(AES)

Algorithm division, 119

Alternating polarities

dual-phase latching, 276

Analog feedback

resynchronization, 91

Application specific integrated circuits

(ASIC)

versus FPGA, 99, 223

test insertion, 192

gated clocks, 98

Architecting area, 18–35

control-based logic reuse, 20–22

reset impact on area, 25–34

resetting RAM, 29–30

resources without asynchronous

reset, 27–28

resources without reset, 25

resources without set, 26

utilizing set/reset flip-flop pins, 31–34

resource sharing, 23–24

rolling up pipeline, 18–19

Architecting power, 37–46

clock control, 38–41

clock skew, 39–40

managing skew, 40–41

dual-edge triggered flip-flops, 44

input control, 42–43

terminations modification, 45

voltage supply reduction, 44

Architecting speed, 2–16

high throughput, 2–3

low latency, 4–5

timing, 6–14

add register layers, 6–7

flatten logic structures, 10–11

parallel structures, 8–9

321

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

扫码可进资料分享群

Architecting speed (Continued)

register balancing, 12–13

reorder paths, 14

Architectural resource sharing, 208

Architectural timing

strategies for improvement, 6, 8, 10, 12, 14

ASIC. See Application specific integrated

circuits (ASIC)

Asynchronous assertion

reset circuits, 144

synchronous deassertion, 144

Asynchronous circuits

STA, 269

static timing analysis, 276–277

Asynchronous clock domains

FIFO, 100

Asynchronous data signals, 142

Asynchronous feedback signals, 91

Asynchronous reset, 33, 140

external logic implementation, 29

external signal, 144

logic, Xilinx BRAM, 31

resource utilization, 29

for BRAM, 31

source example, 140

static hazard, 146

versus synchronous circuits, 140–144

Auto-generated pipelined FIR, 78

Back-annotation, 224

Back-annotations

versus forward annotation, 224

timing violations, 224

Balanced logic, 214

Balance route length

registers duplication, 246

Balancing combinatorial logic, 211

BCK. See Bit clock (BCK)

Behavioral tools

synthesis tools, 184

BFM. See Bus-functional model (BFM)

Binary division

long, 119

Binary encoding

FPGA technology, 217

Biphase Mark Code (BMC), 107

encoding example, 108

Bit capture, 105

Bit clock (BCK), 102

rising edge, 102

Bit detection, 114

32-bit floating point

representation, 128

32-bit key expansion stages

propagation through, 61

8-bit mapping

sub-bytes module, 51

Black box, 227

critical path, 221

synthesis directive, 222

synthesis flow, 220

synthesis optimization, 220–222

Blocking, 180

assignments, 155

incorrect implementation of, 181

mixing with nonblocking

assignments, 195

code example statements, 182

expressions, 153

versus nonblocking, 180–182

Block RAM (BRAM)

elements, 30

resource utilization, 31

BMC. See Biphase Mark Code (BMC)

BRAM. See Block RAM (BRAM)

Built-in delays

logic blocks, 42

Built-in shift register

advantages, 25

Burstable Flash

PCI bus interface, 159

Bus-functional model (BFM), 158, 168

advanced simulation

system stimulus, 158

PCI interface, 158

test bench, 158

Capacitor placement

PCB issues, 286

Capacitor resonance, 285

Capacitor values, 286

Cell-based logic elements, 251

Chipscope, 159

C-level synthesis, 80

Clock. See also Bit clock (BCK); Gated

clocks; Multiple clock domains

ASIC prototypes, 98

asynchronous domains, 100

audio bit speed, 106

clock skew, 41

322 Index

扫码可进资料分享群

consolidated module, 98

control

architecting power, 38–41

resources, 46

CoolClock, 45

cross domain, 84–87

cycles, 57

derived, 83

distribution, 106

domains, 84–100, 98

clocks module, 98

creation, 84

crossing, 84–87

double flopping, 89–91

FIFO, 100

FIFO structure, 92–96

gated clocks in ASIC prototypes,

97–99

gating removal, 99

metastability, 86–87

partitioning synchronizer blocks, 97

phase control, 88

simple propagation, 85

timing between, 86

dual domains, 84

fast, 85

fast domain, 143

FPGA, 98, 99

gating, 46, 84

global buffer, 42

mixing, hazards, 190

module, 98

path logic, 41

placement, 42

propagation delay, 39–40

removal, 99, 100

resources, 98

signal, 39–40

single domain, 276

skew, 40

architecting power, 39–40

clock control, 39–40

dominant delay, 41

introduced with clock gating, 41

slow/gated, 143
speed, 12

design, 6, 16

timing reference, 16

CMOS transistor, 37, 42, 45

simple I/V curve, 43

Coding styles

conventions, 66

coverage

advanced simulation, 159

ASIC design, 159

design state machines, 227

latches, 273, 278

types, 177

types of, 181–182

Combinatorial delay modeling

advanced simulation, 166–168

Combinatorial feedback, 278

asynchronous circuits, 277

static timing analysis, 277

types of, 187

Combinatorial logic, 169

internal delays, 169

Combinatorial loops

versus sequential loops, 186

synthesis coding traps, 185–186

synthesizing of, 278

Combined adder resource, 209

Compact architecture

AES architectures, 53–56

Compact implementation, 54

Consolidated clocks module, 98

Constrained speed

versus speed, 207

Control-based logic reuse

architecting area, 20–22

Control signals, 11

CoolClock, 45

Coordinate rotation digital computer

(CORDIC), 124

algorithms, 124–125

angle with cosine, 125

angle with sine, 125

initialization, 124

rotation, 125

theory, 125

CORDIC. See Coordinate rotation digital

computer (CORDIC)

Cosine

CORDIC angle, 125

Taylor expansion, 126

Cost table, 252

Critical path

adders, 13

black box, 221

floorplanning, 232, 266

Index 323

扫码可进资料分享群

Critical path (Continued)

design flow, 232

example design microprocessor,

264–265

example of constraints, 233

optimizations, 264–265

reduction, 15

reorganizing codes, 15

SRC, 261

Cross clock domain

clock domains, 84–87

failures, 85

Cycle-based C syntax

HDL, 80

Cycle-by-cycle

FPGA, 160

Data encryption

pipeline design, 60

Data flow

FIFO, 94

Data path

floorplanning, 235

optimal, 234

Debug phase, 155

Decision trees

absence of priority encoding, 175

case statement examination, 176

FPGA design, 172

implementation with implicit priority, 179

in-system testing, 179

modular designs, 190

priority placement, 173

synthesis coding, 172–179

synthesis tools, 179

Decoupling capacitor, 283

parasitic inductance, 288

PCB issues, 283–286

placement, 287

poor design practice, 287

Default conditions

absence of, 178

encoding for, 177

Default operating voltage

temperature settings, 243

Defparam

abuse of, 193

Verilog, 193

Delay locked loop (DLL), 88–89

phase matching, 88

Delay modeling, 166

result of incorrect, 167

Derived clocks, 83

Design

clock speed, 6

coding styles, 227

floorplanning, 229–231, 232

flow with critical paths, 232

organization, 188–194

partitioning, 229–231

floorplanning example, 231

priority requirements, 10

state machines, 227

synthesis coding, 188–194

Destination register critical paths, 14

Device delay SDF entry, 162

Device structure floorplanning, 235

Digital design, HDL, 69

Digital filters, 75

Digital Signal Processing

(DSP), 27

algorithms, 75

applications, 272

design, high-level, 75–79

fixed sampling rate, 272

hardware, 79

multifunction resources, 35

synthesis core, 29

DLL. See Delay locked loop (DLL)

Double flopping

crossing clock domains, 89–91

resynchronization, 90

technique, 89, 90, 100, 142

DSP. See Digital Signal

Processing (DSP)

D-type rising edge

flip-flop, 274

Dual clock domains, 84

Dual-edge triggered flip-flops, 44

architecting power, 44

Dual-phase latching, 275

alternating polarities, 276

Dual rank synchronizers, 89

Dynamic power

consumption, 44

dissipation, 46, 164

equation, 163

estimation of, 169

reduction, 38

Dynamic timing analysis, 272

324 Index

扫码可进资料分享群

EDA. See Electronic design automation

(EDA) tools

8-bit mapping

sub-bytes module, 51

Electronic design automation (EDA)

tools, 39

Event-driven flip-flops, 83

Example design, 101–116, 127–138,

197–204, 257–265

floating-point formats, 127

floating-point unit, 127–138

floorplan optimizations, 262–265

critical-path, 264–265

partitioned, 263

implementation results, 204

I2S, 101–106

analysis, 105

hardware architecture,

102–105

protocol, 102

microprocessor, 257–265

pipelined architecture, 128–137

resources and performance, 137

Verilog implementation,

131–136

secure hash algorithm, 197–204

SHA-1 architecture, 197–203

SPDIF, 107–116

analysis, 114

hardware architecture, 108–114

protocol, 107–108

SRC architecture, 257–258

synthesis optimizations, 259–262

physical synthesis, 262

pipelining, 261

speed versus area, 260

External logic

asynchronous reset implementation, 29

set implementations, 27

External signal

asynchronously reset, 144

False path STA, 272

Fan-out long routes, 246

Federal Information Processing Standard

(FIPS), 48

Federal Information Processing Standards

Publication (FIPS PUB), 47

Feedback elements, 258

Feedback mechanisms loops, 185

FIFO. See First-in, first-out structure (FIFO)

Finite impulse response (FIR), 6

area efficiency, 79

auto-generated pipelined, 78

filter, 20

Simulink model, 76

logic, 79

MAC, 22

parameterization, 77

FIPS. See Federal Information Processing

Standard (FIPS)

FIR. See Finite impulse response (FIR)

First-in, first-out structure (FIFO), 92

asynchronous clock domains, 100

crossing clock domains, 92–96

data flow, 94

FPGA, 94

vendors, 96

handshaking, 95

PCI application, 92

synchronization, 106

Fixed FPGA resources, 237

Fixed-point fractional multiplier, 18

Fixed-point multiplication, 124

Fixed-point representation, 118

Flatten logic structures

architecting speed, 10–11

Flip-flops, 83

implementation shift register, 26

setup time, 40

timing path, 211

Floating-point formats

example design floating-point unit, 127

Floating point unit (FPU), 127

IEEE standard, 127

pipe lined architecture, 128

Floorplanning, 229–240

candidates for, 234

critical-path, 232

dangers, 233

data path, 234

design flow with critical paths, 232

design partitioning, 229–231, 231

device structures, 235

example design microprocessor,

262–265

fixed FPGA resources, 237

focused, 265

Index 325

扫码可进资料分享群

Floorplanning (Continued)

functional partitions, 233

glue logic, 240

high-activity nets, 239

high fan-out nets, 234

high fan-out regions, 236

initial results, 264

method, 229

optimal, 234–237

data path, 234

device structure, 235–237

high fan-out, 234

reusability, 238

optimizations, 262–265

paths of, 240

performance of design, 240

pipeline flow reflection, 264

reducing power dissipation, 238–239

shielding from layout changes,

238

timing constraints, 232

worst case path, 265

Focused floorplanning, 265

Folded FIR

implementation results, 80

For-loops

synthesis coding traps, 183–184

Forward annotation

versus back-annotations, 224

placement data, 225

FPGA

ASIC, 223

catastrophic failures, 87

clock resources, 98

complex math functions, 117

corresponding timing paths, 277

cycle-by-cycle, 160

design, 187

decision tree, 172

flow, 87

ignored aspects, 139

quick-and-dirty simulations, 151

RTL-based design, 75

timing analysis performance, 187

device voltage, 242

FIFO, 94

fixed resources, 237

hierarchy, 156

hold delay violations, 271

instance-by-instance basis, 191

layout implementation tools, 241

logic resources, 250

physical synthesis technology for, 225

placement route tools, 254

power pins, 288

power supply requirements, 279, 288

programming, 151

prototype

AISC test insertion, 192

versus ASIC, 99

clock gating, 99

prototype designing, 97

routing matrix, 245

SRAM, 251

synthesis

dangers of options, 178

optimization options, 205

structure description, 186

tools, 223

technology

binary encoding, 217

sequential encoding, 217

timing analysis, 241

vendor, 161

FIFO, 96

library elements, 139

FPU. See Floating point unit (FPU)

Free-running oscillator, 277

Frequency

maximum, 6

FSM, 171, 205

compilation, 219

synthesis optimization, 216–219

RTL, 216

Full case directive, 171

synthesis, 195

Fully asynchronous resets problems

asynchronous versus synchronous,

140–143

Fully pipelined

AES architectures, 60–65

architecture, 60

FPU, 128

key expansion, 61

Fully synchronized resets, 142

asynchronous versus synchronous

circuits, 142–143

slow/gated clock, 143

326 Index

扫码可进资料分享群

Gated clocks, 46, 83, 84

ASIC prototypes, 97–99, 98

clock domains, 97–99

creation, 84

FPGA prototype, 99

placement, 42

global clock buffer, 42

removal, 99, 100

skew, 41

Gate-level blocks

test bench, 160

Gate-level simulations, 255

advanced simulation, 159–161

Gating removal, 99

Glitch rejection, 165, 166

Global clock buffer

gated clock placement, 42

Global initialization assignments, 154

Glue logic, 240

Goldschmidt algorithm, 120

Goldschmidt method, 120

math functions implementation

hardware division, 120–121

Graph-based physical synthesis

optimization, 225

Graphical state machines, 81

design, 73

high-level design, 70–74

Gray codes, 100

synthesis optimization, 218

Guided place and route

place and route optimization, 254

Hardware architecture

example design

I2S, 102–105

SPDIF, 108–114

high-level design, 80

Hardware Description Language

(HDL), 69

cycle-based C syntax, 80

designers

looping structures, 183

digital design, 69

iterative loops, 184

languages, 180

synthesis optimization, 171

representations, 118

synthesizable, 184

Hardware designs

repetition, 81

speed, 81

Hardware division

math functions implementation, 117–121

HDL. See Hardware Description

Language (HDL)

Hierarchical boundaries, 247

Hierarchy optimization, 248

High-activity nets, 239

High fan-out

floorplanning, 234, 236

nets, 234

optimal floorplanning, 234

regions, 236

High-level design, 69–81

abstract design techniques, 69

DSP design, 75–79

graphical state machines, 70–74

software/hardware codesign, 80
High throughput, 1

architecting speed, 2–3

architecture, 16

Hold delay violations

FPGA, 271

I2S

architecture, 103

design issues, 101

example design I2S versus SPDIF,

101–106

format, 101

hardware architecture, 102

signals, 102

three-wire synchronous protocol, 102

timing, 102

IEEE standard, 88, 120, 122, 127, 131

floating-point calculation, 137

FPU, 127

Imbalanced logic, 214

Induced latch

STA, 274

timing compliance, 275

Inertial delays, 166

results with, 168

Inferred latches

synthesis coding traps, 187

Input control

architecting power, 42–43

Index 327

扫码可进资料分享群

Input/output (I/O)
buffer, register packs, 249

packing

additional pipeline register, 250

imbalanced route delays, 249

registers place and route optimization,

248–249

Interconnect delay

SDF entry, 162

Internal delays

combinatorial logic, 169

Internally generated resets

mixing reset types, 146–147

I/O. See Input/output (I/O)
Iterative implementation, 3

computations, 3

Iterative key expansion, 56

Iterative loops

HDL, 184

penalty for unrolling, 16

Key-exp1

single word expansion, 62

KeyExpansionEnc, 55

Key Expansion function, 60

Latches

coding styles, 273, 278

static timing analysis, 273–275

Latency, 1

LC trace parasitics, 239

Left/right channel select (LRCK), 102–105
detection, 105

Linear regulation, 283

Load balancing method, 212

Localparam, 194

human error, 195

Logic blocks

built-in delays, 42

Logic duplication, 255

Logic replication

place and route optimization, 246

Logic resources

FPGA, 250

sharing, 20

Logic structures

levels of, 229

non blocking structure, 183

Long critical path, 15

Long routes

fan-out, 246

Look-up table

subtypes, 51

Looping structures

HDL designers, 183

Loops. See also Delay locked loop (DLL);

Phase locked loop (PLL)

combinatorial

versus sequential loops, 186

synthesis coding traps, 185–186

synthesizing of, 278

feedback mechanisms, 185

for-loops

synthesis coding traps, 183–184

iterative

HDL, 184

penalty for unrolling, 16

sequential

combinatorial versus, 186

unrolling, 2, 4

Low latency

architecting speed, 4–5

implementation, 5

Low-pass DSP function, 70

Low-skew resources, 40

LRCK. See Left/right channel select
(LRCK)

LUT, 27, 29, 31, 35, 66, 67, 79, 106, 247,

261, 264

hierarchy optimization, 248

instantiation, 161

SRAM implementation, 161

timing, 162

MAC, 29

FIR, 22

long path, 7

module, 30

operations, 79

Maclaurin series expansions, 122

Mantissa normalization, 129

Map-column hierarchy, 53

Mapping

logic into RAM, 251

sub-bytes module, 51

Math functions implementation,

117–126

hardware division, 117–121

328 Index

扫码可进资料分享群

Goldschmidt method, 120–121

iterative division, 119

multiply and shift, 118

Taylor and Maclaurin series expansion,

122–123

CORDIC algorithms,

124–125

MATLAB, 75

advanced simulation, 157

system stimulus creation, 152

Metastability

crossing clock domains, 86–87

timing violation, 87

Mix-column

hierarchy, 52

two pipeline stages, 52

Mixed reset types

implementation, 146

optimal implementation, 146

Mixing clock

hazards involved with, 190

Mixing reset types, 145–146

Modular designs decision

trees, 190

Monotonic power curve, 281

Multiple capacitors wide

band attenuation, 285

Multiple clock domains, 84

reset circuits, 148

reset synchronization with, 148

Multipliers

addition, 19

architectural design, 19

implementations, 22

output decoding, 74

separated stages, 10

shifting, 19

Mux

alternative input, 176

priority, 173

implementation, 173

serialized structure, 172

National Institute of Standards and

Technology (NIST), 47

Natural pipeline

SRC, 263

N-channel MOSFET (NMOS), 43

NIST. See National Institute of Standards

and Technology (NIST)

NMOS. See N-channel

MOSFET (NMOS)

Nonblocking, 180

assignments, 155

code examples, 182

coding for synthesis, 183

race conditions of, 183

simple logic with, 180

versus blocking

synthesis coding traps, 180–182

Noncritical paths

register balancing, 213

Nonmonotonic power curve, 280

Nonresetable flip-flops

mixing reset types, 145

Normal regions, 128

Operating voltage

temperature settings, 243

Optimization across hierarchy

place and route optimization, 247

Optimization options

FPGA synthesis, 205

Optimization region, 207

Optimization without reset, 33

Output. See also Input/Output
decoding multipliers, 74

logic resources, 236

pins, 45

RAM interfaces, 236

resistive loads, 45

Over constrained, 207

Overflow issues, 9

Pack factor, 250

Parallel case directive, 171, 175

full case directives, 178

synthesis, 195

Parallel logic

SRC, 261

Parallel structures

creation, 8

timing, 8–9

Parameterization

synthesis coding, 191–194

Paramreg, 192

Index 329

扫码可进资料分享群

Partially pipelined architecture

AES architectures, 57–59

Partitioning, 188–189

between data path and control, 189

floorplan example design

microprocessor, 263

synchronizer blocks, 97, 97

synthesis coding, 188–190

PCB. See Printed circuit

board (PCB)

P-channel MOSFET (PMOS), 42–43

PCI

application

FIFO, 92

burstable Flash, 159

bus interface, 159

interface, 236

BFM, 158

standardized, 157

PDS. See Power distribution system (PDS)

Performance

pipelined architecture, 137

Performance reduction

register ordering, 252

Phase control

crossing clock domains, 88

techniques, 100

Phase locked loop (PLL), 88–89

Phase matching DLL, 88

Physical synthesis, 227

example design microprocessor, 262

flow versus standard, 230

FPGA technology, 225

graph based on, 226

optimization, 223–225, 262

tool, 223

Pipeline

architecture, 8, 66

example design floating-point unit,

128–137

FPU, 128

design data encryption, 60

example design microprocessor, 261

FIR implementation results, 79

implementation, 4

partially planned, 57

SRC processor, 257

moved into multiplier, 213

multiplier, 212

registers

addition, 8

latency, 16

latency of design, 5

removal, 5

rolling up, 35

SRC, 262

stages distribution, 51

synthesis optimization, 211–215, 261

well-defined interfaces, 231

Place and route optimization, 241–254

guided place and route, 254

I/O registers, 248–249

logic replication, 246

mapping logic into RAM, 251

optimal constraints, 241–243

optimization across hierarchy, 247

pack factor, 250

placement and routing relationship,

244–245

placement seed, 252–253

register ordering, 251

Placement-based synthesis, 206

Placement relationship

place and route optimization, 244–245

Placement seed

initial placement, 253

place and route optimization,

252–253

Placer seed

adjustment, 254

PLL. See Phase locked loop (PLL)

PMOS. See P-channel MOSFET

(PMOS)

Polynomial multiplication X2, 53

Port in. See also Input/output (I/O)
blocks, 75

Port out. See also Input/output (I/O)
blocks, 75

Positive power rail, 42, 280, 281, 282

Positive slack

STA, 271

Power distribution system (PDS), 283

Power-of-3 example, 5

Power supply

PCB designers, 283

PCB issues, 279–282

requirements

FPGA, 279, 288

330 Index

扫码可进资料分享群

ramp time, 281

Preamble detection, 114

Prime implicant

addition of, 148

Printed circuit board (PCB),

279–288

decoupling capacitors, 283–286

calculating values, 285

capacitor placement, 286

design, 279, 283

power supply, 279–282

regulation, 283

supply requirements, 279–282

Priority encoding, 11

absence, 12

logic, 174

removal, 16

Priority-less decision tree, 174

Priority mux, 173

implementation, 173

Propagation delay

clock signal, 39–40

Pulse width reference, 113

RAM

cells, 251

interfaces output logic resources, 236

mapping logic, 251

resetting, 29–30, 30

synchronous blocks, 83

Ramp times, 281

requirements

power supply, 281

Reducing power dissipation

floorplanning, 238–239

Register adder, 13

Register balancing, 14, 157, 205,

212, 227

architecting speed, 12–13

improvements, 16

mixed reset types, 215

noncritical paths, 213

pipelining, retiming, and register

balancing, 213–214

signal resynchronization, 215

synthesis optimization, 211–215

timing, 12–13

Register duplication

balance route length, 246

Register layers

addition, 16

timing, 6–7

Register ordering

performance reduction, 252

place and route optimization, 251

Register packs

I/O buffer, 249

Register stage

add operations, 14

Reorder paths

timing, 14

Repetitive shift-add operations,

122

Resetable flip-flop code, 145

Reset circuits, 139–149

asynchronous versus synchronous,

140–144

fully asynchronous resets problems,

140–143

fully synchronized resets, 142–143

mixing reset types, 145–146

internally generated resets,

146–147

nonresetable flip-flops, 145

multiple clock domains, 148

Reset hazard

example wave form, 147

Reset impact on area

architecting area, 25–34

Reset implementations

resource utilization, 27

Reset pin

optimization, 34

potential hazard, 147

Reset RAM

architecting area, 29–30

Reset recovery

compliance, 141

time, 141

Reset structures, 25

Reset synchronization

failure, 143

multiple clock domains, 148

Reset types

hazards involved with, 190

Resistive loads

output pins, 45

Resistive termination, 45

Index 331

扫码可进资料分享群

Resistor inductor capacitor (RLC), 286

model, 284

resonance, 284

Resources

pipelined architecture, 137

sharing, 23, 157

architecting area, 23–24

optimization, 209

synthesis optimization, 208–210

utilization

asynchronous resets, 29

for BRAM, 31

set implementations, 27

shift register implementations, 26

synchronous resets, 29, 31

without reset

asynchronous, 27–28

reset impact on area, 25

without set, 26

Resynchronization

analog feedback, 91

flip-flop, 100

registers

balancing applied to, 216

synthesis optimization, 215

without balancing, 216

timing analysis, 100

Retiming

balancing, 212

synthesis optimization, 211–215

Reusability

optimal floorplanning, 238

Ripple rate of change

voltage, 282

RLC. See Resistor inductor capacitor

(RLC)

Rolling up pipeline

architecting area, 18–19

method, 18

Round encryption, 50

Round key

one stage for add, 52

RoundsIterEnc, 55

Round sunblocks

implementation, 51

Round transformation blocks, 65

Route algorithms, 253

Route optimizations, 241–254

Route tools

FPGA placement, 254

Routine delay, 267

Routing effort

performance versus placement, 245

Routing matrix

FPGA, 245

simplification, 222

Routing relationship

place and route optimization, 244–245

RTL

based design

FPGA, 75

coding for synthesis, 171, 175

constrictive nature, 180

FSM, 216

gating removal, 99

levels of abstraction, 74

simulation, 87, 160

StateCad implementation, 74

synthesis, 79

synthesis level, 206

traps, 180

Run-time traps

advanced simulation, 165–166

Safe mode, 219

state machine implementation,

220

SDF. See Standard Delay Format

(SDF)

Secure hash algorithm (SHA), 197

algorithms, 197

constant generator implementation, 203

current values, 198

NIST definition, 197

Self-checking test bench, 169

Separated counters, 23

Sequential bits

ordering, 251

Sequential encoding

FPGA technology, 217

Sequential loops

versus combinatorial, 186

Serial audio data, 102

Serialized logic

SRC, 260

Serialized mux structure

simple priority, 172

Serial Peripheral Interface (SPI), 189

332 Index

扫码可进资料分享群

Set implementations

external logic, 27

resource utilization, 27

Set pin

optimization, 34

SHA. See Secure hash algorithm

(SHA)

SHA-1 architecture

example design secure hash algorithm,

197–203

Shared counters, 24

Shared logic

controls of reuse, 35

Shift register

implementations, 219

flip-flop, 26

resource utilization, 26

SRL 16 element, 26

Shift rows

AES architectures, 51

implementation, 52

Shunt termination

transmission lines, 45

Signal feedback

timing violations, 91

Signal resynchronization

register balancing, 215

Sign detection, 129–130

Simple clock gating

poor design practice, 39

Simple-fixed point division architecture,

119

Simple I/V curve

CMOS transistor, 43

Simple RISC computer (SRC)

architecture, 257–258

critical paths, 261

increase in target frequency, 260

initial synthesis, 260

memory, 258

microprocessor, 257

natural pipeline, 263

parallel logic, 261

pipelining, 259

results with, 262

processor

implementation, 257

registers, 258

results with pipelining, 262

serialized logic, 260

Simple synchronous logic

OR gate, 31

Simplified asynchronous FIFO, 96

Simulation code, 153

Simulink model

FIR filter, 76

Sine

CORDIC angle, 125

Taylor expansion, 126

wave approximations, 123

Single clock domain

STA, 276

Single word expansion

Key-Exp1, 62

Skewing

clock control, 40–41

key pipeline, 62

managing, 40–41

Slow/gated clock

fully synchronous reset, 143

Soft start, 280

circuit, 281

Software, 2

high-level design, 80

implementation, 185

Sony/Philips Digital Interface Format

(SPDIF), 101, 107

architecture, 109

basic architecture, 108

frame definition, 108

input resynchronization, 113

versus I2S, 107–114

output synchronization, 115

preambles, 108

pulse width counter, 113

receiver, 107

sampling rates, 115

Source-synchronous, 101

data stream, 105

SPDIF. See Sony/Philips Digital Interface
Format (SPDIF)

Speed

characteristics, 25

versus constrained speed, 207

definition, 1

expense, 17

SPI. See Serial Peripheral Interface (SPI)

SRC. See Simple RISC computer (SRC)

Index 333

扫码可进资料分享群

SRL 16 element

shift register, 26

STA. See Static timing analysis (STA)

Standard analysis

static timing analysis, 269–272

Standard Delay Format (SDF), 161

device delay, 162

interconnect delay, 162

Standard flow

versus physical synthesis flow, 230

Starting conditions

different placement, 253

State-CAD, 72

StateCad implementation

RTL, 74

State machine implementation, 220

safe mode, 220

State machines

implementation requirements, 22

State-transition diagrams, 70

Static hazard

asynchronous reset, 146

Static-1 hazard

identification of, 148

Static timing analysis (STA),

269–278

asynchronous circuits, 269,

276–277

combinatorial feedback, 277

comprehensive analysis, 272

false path, 272

induced latch, 274

latches, 273–275

multicycle path, 271

positive slack, 271

single clock domain, 276

standard analysis, 269–272

timing violations, 273

Steady-state current dissipation, 45

Sub-bytes

AES architectures, 51

8-bit mapping, 51

Subnormal detection, 129

Subnormal regions, 128

Supply sequencing, 282

Synchronous deassertion

asynchronous assertion, 144

method, 145

Synchronous digital circuits, 38

Synchronous elements, 83

Synchronous logic, 32

Synchronous reset

Xilinx BRAM, 30

Synchronous reset circuits

versus asynchronous, 140–144

Synchronous resets

resource utilization, 29, 31

Synchronous reset signals, 34

Synchronous set signals, 34

Synchronous timing paths, 270

Synplify

Identify, 160

Synplify DSP, 75, 76, 81

Synplify Premiere

results with physical synthesis, 262

Synplify Pro, 120

Synthesis coding, 171, 172–195

decision trees, 172–179

full conditions, 176–179

multiple control branches, 179

priority versus parallel, 172–176

design organization, 188–194

parameterization, 191–194

partitioning, 188–190

traps, 180–187

blocking versus nonblocking,

180–182

combinatorial loops, 185–186

for-loops, 183–184

inferred latches, 187

Synthesis core

DSP core, 29

Synthesis flow

black boxes, 220

Synthesis optimization, 206–226

black boxes, 220–222

FSM compilation, 216–219

unreachable states removal, 219

gray code creation, 218

HDL language, 171

physical synthesis, 223–225

forward annotation versus

back-annotations, 224

graph-based physical synthesis, 225

pipelining, retiming, and register

balancing, 211–215

reset effect on register balancing,

213–214

334 Index

扫码可进资料分享群

resynchronization registers, 215

potential hazard, 218

resource sharing, 208–210

speed versus area, 206–207

Synthesis optimizations

example design microprocessor,

259–262

Synthesis-provided resource sharing

option, 208

Synthesis tags, 176

Synthesis tools

behavioral tools, 184

decision trees, 179

structure reports, 176

Synthesizable

HDL, 184

System stimulus

advanced simulation, 157–158

Taylor and Maclaurin series expansion

math functions implementation, 122–123

Taylor expansion, 122

calculation of cosine operations, 126

calculation of sine operations, 126

Temperature settings, 255

default operating voltage, 243

operating voltage, 243

Terminations modification

architecting power, 45

Testbench

architecture, 152–155

BFM, 158

calls, 153

components, 152

advanced simulation, 152

development of, 154

flow, 153–155

gate-level blocks, 160

organization, 152

shell, 163

32-bit floating point representation, 128

32-bit key expansion stages

propagation through, 61

Three-wire synchronous protocol

I2S, 102

Throughput (speed)

expense, 17

Time-domain power curve, 280

Timescale

directive, 165

run-time traps, 165

Timing, 1

analysis

complexity, 106

elements, 270

FPGA, 187, 241

resynchronization flip-flop, 100

architecting speed, 6–14

between clock domains, 86

clock speed design reference, 16

compliant, 269

induced latch, 275

constraints, 232

direct impact, 16

LUT, 162

measurement of, 277

paths

FPGA, 277

reordering, 16

violation

back-annotation, 224

metastability, 87

phase relationship, 86

signal feedback, 91

STA, 273

Toggle coverage

advanced simulation, 162

Transistors

intermediate voltage, 86

Transmission lines

shunt termination, 45

Transport delay, 165, 166, 167

behavior, 168

results, 168

Traps

synthesis coding, 180–187

True utilization, 250

Two-phase latching, 275

Ultra low-power design

techniques, 37

Under constrained, 207

Unreachable states removal

synthesis optimization, 219

Index 335

扫码可进资料分享群

Unrolling loops, 2

penalty to pay, 4

User interfaces, 81

US National Institute of Standards and

Technology, 47

Utilizing set/reset flip-flop pins, 31–34

VDD (positive power rail), 42, 280,

281, 282

Vector change dump, 164

Verify output function, 156

Verilog, 66, 153, 156, 180

code, 76, 91

defparam, 193

implementation, 131–136

language, 167

representation, 73

Verilog-2001, 193, 194

VHDL, 180

language, 174

Virtex-II device, 242

Voltage

architecting power, 44

FPGA devices, 242

ripple rate of change, 282

settings, 255

supply reduction, 44

transistors, 86

Xilinx, 161, 252, 286

implementation, 278

state-machine editor, 72

Xilinx BRAM

asynchronous reset

logic, 31

synchronous reset, 30

Xilinx-cool runner-II dual-edge

flip-flops, 45

Xilinx DSP block

with synchronous reset, 28

Xilinx Spartan-3

area statistics, 204

implementation, 137

speed statistics, 204

XC3S50, 115

Xilinx Virtex

area statistics, 66

speed statistics, 66

Xilinx Virtex-2, 259

Xilinx Virtex-4 devices, 30

Xilinx Virtex II FPGA, 66

Xpower tool, 286

336 Index

扫码可进资料分享群

	Advanced FPGA Design
	Flowchart of Contents
	Contents
	Preface
	Acknowledgments
	1. Architecting Speed
	1.1 High Throughput
	1.2 Low Latency
	1.3 Timing
	1.3.1 Add Register Layers
	1.3.2 Parallel Structures
	1.3.3 Flatten Logic Structures
	1.3.4 Register Balancing
	1.3.5 Reorder Paths

	1.4 Summary of Key Points

	2. Architecting Area
	2.1 Rolling Up the Pipeline
	2.2 Control-Based Logic Reuse
	2.3 Resource Sharing
	2.4 Impact of Reset on Area
	2.4.1 Resources Without Reset
	2.4.2 Resources Without Set
	2.4.3 Resources Without Asynchronous Reset
	2.4.4 Resetting RAM
	2.4.5 Utilizing Set/Reset Flip-Flop Pins

	2.5 Summary of Key Points

	3. Architecting Power
	3.1 Clock Control
	3.1.1 Clock Skew
	3.1.2 Managing Skew

	3.2 Input Control
	3.3 Reducing the Voltage Supply
	3.4 Dual-Edge Triggered Flip-Flops
	3.5 Modifying Terminations
	3.6 Summary of Key Points

	4. Example Design: The Advanced Encryption Standard
	4.1 AES Architectures
	4.1.1 One Stage for Sub-bytes
	4.1.2 Zero Stages for Shift Rows
	4.1.3 Two Pipeline Stages for Mix-Column
	4.1.4 One Stage for Add Round Key
	4.1.5 Compact Architecture
	4.1.6 Partially Pipelined Architecture
	4.1.7 Fully Pipelined Architecture

	4.2 Performance Versus Area
	4.3 Other Optimizations

	5. High-Level Design
	5.1 Abstract Design Techniques
	5.2 Graphical State Machines
	5.3 DSP Design
	5.4 Software/Hardware Codesign
	5.5 Summary of Key Points

	6. Clock Domains
	6.1 Crossing Clock Domains
	6.1.1 Metastability
	6.1.2 Solution 1: Phase Control
	6.1.3 Solution 2: Double Flopping
	6.1.4 Solution 3: FIFO Structure
	6.1.5 Partitioning Synchronizer Blocks

	6.2 Gated Clocks in ASIC Prototypes
	6.2.1 Clocks Module
	6.2.2 Gating Removal

	6.3 Summary of Key Points

	7. Example Design: I2S Versus SPDIF
	7.1 I2S
	7.1.1 Protocol
	7.1.2 Hardware Architecture
	7.1.3 Analysis

	7.2 SPDIF
	7.2.1 Protocol
	7.2.2 Hardware Architecture
	7.2.3 Analysis

	8. Implementing Math Functions
	8.1 Hardware Division
	8.1.1 Multiply and Shift
	8.1.2 Iterative Division
	8.1.3 The Goldschmidt Method

	8.2 Taylor and Maclaurin Series Expansion
	8.3 The CORDIC Algorithm
	8.4 Summary of Key Points

	9. Example Design: Floating-Point Unit
	9.1 Floating-Point Formats
	9.2 Pipelined Architecture
	9.2.1 Verilog Implementation
	9.2.2 Resources and Performance

	10. Reset Circuits
	10.1 Asynchronous Versus Synchronous
	10.1.1 Problems with Fully Asynchronous Resets
	10.1.2 Fully Synchronized Resets
	10.1.3 Asynchronous Assertion, Synchronous Deassertion

	10.2 Mixing Reset Types
	10.2.1 Nonresetable Flip-Flops
	10.2.2 Internally Generated Resets

	10.3 Multiple Clock Domains
	10.4 Summary of Key Points

	11. Advanced Simulation
	11.1 Testbench Architecture
	11.1.1 Testbench Components
	11.1.2 Testbench Flow
	11.1.2.1 Main Thread
	11.1.2.2 Clocks and Resets
	11.1.2.3 Test Cases

	11.2 System Stimulus
	11.2.1 MATLAB
	11.2.2 Bus-Functional Models

	11.3 Code Coverage
	11.4 Gate-Level Simulations
	11.5 Toggle Coverage
	11.6 Run-Time Traps
	11.6.1 Timescale
	11.6.2 Glitch Rejection
	11.6.3 Combinatorial Delay Modeling

	11.7 Summary of Key Points

	12. Coding for Synthesis
	12.1 Decision Trees
	12.1.1 Priority Versus Parallel
	12.1.2 Full Conditions
	12.1.3 Multiple Control Branches

	12.2 Traps
	12.2.1 Blocking Versus Nonblocking
	12.2.2 For-Loops
	12.2.3 Combinatorial Loops
	12.2.4 Inferred Latches

	12.3 Design Organization
	12.3.1 Partitioning
	12.3.1.1 Data Path Versus Control
	12.3.1.2 Clock and Reset Structures
	12.3.1.3 Multiple Instantiations

	12.3.2 Parameterization
	12.3.2.1 Definitions
	12.3.2.2 Parameters
	12.3.2.3 Parameters in Verilog-2001

	12.4 Summary of Key Points

	13. Example Design: The Secure Hash Algorithm
	13.1 SHA-1 Architecture
	13.2 Implementation Results

	14. Synthesis Optimization
	14.1 Speed Versus Area
	14.2 Resource Sharing
	14.3 Pipelining, Retiming, and Register Balancing
	14.3.1 The Effect of Reset on Register Balancing
	14.3.2 Resynchronization Registers

	14.4 FSM Compilation
	14.4.1 Removal of Unreachable States

	14.5 Black Boxes
	14.6 Physical Synthesis
	14.6.1 Forward Annotation Versus Back-Annotation
	14.6.2 Graph-Based Physical Synthesis

	14.7 Summary of Key Points

	15. Floorplanning
	15.1 Design Partitioning
	15.2 Critical-Path Floorplanning
	15.3 Floorplanning Dangers
	15.4 Optimal Floorplanning
	15.4.1 Data Path
	15.4.2 High Fan-Out
	15.4.3 Device Structure
	15.4.4 Reusability

	15.5 Reducing Power Dissipation
	15.6 Summary of Key Points

	16. Place and Route Optimization
	16.1 Optimal Constraints
	16.2 Relationship between Placement and Routing
	16.3 Logic Replication
	16.4 Optimization across Hierarchy
	16.5 I/O Registers
	16.6 Pack Factor
	16.7 Mapping Logic into RAM
	16.8 Register Ordering
	16.9 Placement Seed
	16.10 Guided Place and Route
	16.11 Summary of Key Points

	17. Example Design: Microprocessor
	17.1 SRC Architecture
	17.2 Synthesis Optimizations
	17.2.1 Speed Versus Area
	17.2.2 Pipelining
	17.2.3 Physical Synthesis

	17.3 Floorplan Optimizations
	17.3.1 Partitioned Floorplan
	17.3.2 Critical-Path Floorplan: Abstraction 1
	17.3.3 Critical-Path Floorplan: Abstraction 2

	18. Static Timing Analysis
	18.1 Standard Analysis
	18.2 Latches
	18.3 Asynchronous Circuits
	18.3.1 Combinatorial Feedback

	18.4 Summary of Key Points

	19. PCB Issues
	19.1 Power Supply
	19.1.1 Supply Requirements
	19.1.2 Regulation

	19.2 Decoupling Capacitors
	19.2.1 Concept
	19.2.2 Calculating Values
	19.2.3 Capacitor Placement

	19.3 Summary of Key Points

	Appendix A
	Appendix B
	Bibliography
	Index

