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Jitter and Phase Noise in Ring Oscillators
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Abstract—A companion analysis of clock jitter and phase noise
of single-ended and differential ring oscillators is presented. The
impulse sensitivity functions are used to derive expressions for the
jitter and phase noise of ring oscillators. The effect of the number
of stages, power dissipation, frequency of oscillation, and short-
channel effects on the jitter and phase noise of ring oscillators is
analyzed. Jitter and phase noise due to substrate and supply noise
is discussed, and the effect of symmetry on the upconversion of
1/f noise is demonstrated. Several new design insights are given
for low jitter/phase-noise design. Good agreement between theory
and measurements is observed.

Index Terms—Design methodology, jitter, noise measurement,
oscillator noise, oscillator stability, phase jitter, phase-locked
loops, phase noise, ring oscillators, voltage-controlled oscillators.

I. INTRODUCTION

DUE to their integrated nature, ring oscillators have be-
come an essential building block in many digital and

communication systems. They are used as voltage-controlled
oscillators (VCO’s) in applications such as clock recovery
circuits for serial data communications [1]–[4], disk-drive read
channels [5], [6], on-chip clock distribution [7]–[10], and
integrated frequency synthesizers [10], [11]. Although they
have not found many applications in radio frequency (RF),
they can be used for some low-tier RF systems.

Recently, there has been some work on modeling jitter
and phase noise in ring oscillators. References [12] and [13]
develop models for the clock jitter based on time-domain
treatments for MOS and bipolar differential ring oscillators,
respectively. Reference [14] proposes a frequency-domain
approach to find the phase noise based on an linear time-
invariant model for differential ring oscillators with a small
number of stages.

In this paper, we develop a parallel treatment of frequency-
domain phase noise [15] and time-domain clock jitter for ring
oscillators. We apply the phase-noise model presented in [16]
to obtain general expressions for jitter and phase noise of the
ring oscillators.

The next section briefly reviews the phase-noise model
presented in [16]. In Section III, we apply the model to timing
jitter and develop an expression for the timing jitter of oscilla-
tors, while Section IV provides the derivation of a closed-form
expression to calculate the rms value of the impulse sensitivity
function (ISF). Section V introduces expressions for jitter and
phase noise in single-ended and differential ring oscillators
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in long- and short-channel regimes of operation. Section VI
describes the effect of substrate and supply noise as well as
the noise due to the tail-current source in differential struc-
tures. Section VII explains the design insights obtained from
this treatment for low jitter/phase-noise design. Section VIII
summarizes the measurement results.

II. PHASE NOISE

The output of a practical oscillator can be written as

(1)

where the function is periodic in 2 and and
model fluctuations in amplitude and phase due to internal
and external noise sources. The amplitude fluctuations are
significantly attenuated by the amplitude limiting mechanism,
which is present in any practical stable oscillator and is
particularly strong in ring oscillators. Therefore, we will
focus on phase variations, which are not quenched by such
a restoring mechanism.

As an example, consider the single-ended ring oscillator
with a single current source on one of the nodes shown in
Fig. 1. Suppose that the current source consists of an impulse
of current with area (in coulombs) occurring at time
This will cause an instantaneous change in the voltage of that
node, given by

(2)

where is the effective capacitance on that node at
the time of charge injection. This produces a shift in the
transition time. For small the change in the phase is
proportional to the injected charge

(3)

where is the voltage swing across the capacitor and
The dimensionless function is

the time-varying proportionality constant and is periodic in 2
It is large when a given perturbation causes a large phase shift
and small where it has a small effect [16]. Since thus
represents the sensitivity of every point of the waveform to a
perturbation, is called theimpulse sensitivity function.

The time dependence of the ISF can be demonstrated by
considering two extreme cases. The first is when the impulse
is injected during a transition; this will result in a large phase
shift. As the other case, consider injecting an impulse while
the output is saturated to either the supply or the ground.
This impulse will have a minimal effect on the phase of the
oscillator, as shown in Fig. 2.
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Fig. 1. Five-stage inverter-chain ring oscillator.

Fig. 2. Effect of impulses injected during transition and peak.

Being interested in its phase we can treat an oscillator
as a system that converts voltages and currents to phase. As
is evident from the discussion leading to (3), this system is
linear for small perturbations. It is also time variant, no matter
how small the perturbations are.

Unlike amplitude changes, phase shifts persist indefinitely,
since subsequent transitions are shifted by the same amount.
Thus, the phase impulse response of an oscillator is a time-
varying step. Also note that as long as the introduced change
in the voltage due to the current impulse is small, the resultant
phase shift is linearly proportional to the injected charge, and
hence the transfer function from current to phase is linear.

The unit impulse response of the system is defined as the
amount of phase shift per unit current impulse [16]. Based

on the foregoing argument, we obtain the following time-
dependent impulse response:

(4)

where is a unit step.
Knowing the response to an impulse, we can calculate

in response to any injected current using the superposition
integral

(5)
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where represents the noise current injected into the node
of interest. Note that the integration arises from the closed-
loop nature of the oscillator. The single-sideband phase-noise
spectrum due to a white-noise current source is given by [16]1

(6)

where is the rms value of the ISF, is the single-
sideband power spectral density of the noise current source,
and is the frequency offset from the carrier. In the case
of multiple noise sources injecting into the same node,
represents the total current noise due to all the sources and is
given by the sum of individual noise power spectral densities
[17]. If the noise sources on different nodes are uncorrelated,
the waveform (and hence the ISF) of all the nodes are the same
except for a phase shift, assuming identical stages. Therefore,
the total phase noise due to all noise sources is times
the value given by (6) (or 2 times for a differential ring
oscillator).

From (5), it follows that the upconversion of low-frequency
noise, such as 1 noise, is governed by the dc value of the
ISF. The corner frequency between 1 and 1 regions in
the spectrum of the phase noise is called and is related to
the 1 noise corner through the following equation [16]:

(7)

where is the dc value of the ISF. Since the height of the
positive and negative lobes of the ISF is determined by the
slope of the rising and falling edges of the output waveform,
respectively, symmetry of the rising and falling edges can
reduce and hence the upconversion of 1noise.

III. JITTER

In an ideal oscillator, the spacing between transitions is
constant. In practice, however, the transition spacing will
be variable. This uncertainty is known as clock jitter and
increases with measurement interval (i.e., the time de-
lay between the reference and the observed transitions), as
illustrated in Fig. 3. This variability accumulation (i.e., “jitter
accumulation”) occurs because any uncertainty in an earlier
transition affects all the following transitions, and its effect
persists indefinitely. Therefore, the timing uncertainty when

seconds have elapsed is the sum of the uncertainties
associated with each transition.

The statistics of the timing jitter depend on the correlations
among the noise sources involved. The case of each transi-
tion’s being affected by independent noise sources has been
considered in [12] and [13]. The jitter introduced by each stage
is assumed to be totally independent of the jitter introduced
by other stages, and therefore the total variance of the jitter is
given by the sum of the variances introduced at each stage. For
ring oscillators with identical stages, the variance will be given
by where is the number of transitions during and

1A more accurate treatment [17] shows that the phase noise does not grow
without bound asfo� approaches zero (it becomes flat for small values of
fo� ): However, this makes no practical difference in this discussion.

Fig. 3. Clock jitter increasing with time.

Fig. 4. RMS jitter versus measurement time on a log–log plot.

is the variance of the uncertainty introduced by one stage
during one transition. Noting that is proportional to
the standard deviation of the jitter after seconds is [13]

(8)

where is a proportionality constant determined by circuit
parameters.

Another instructive special case that is not usually consid-
ered is when the noise sources are totally correlated with one
another. Substrate and supply noise are examples of such noise
sources. Low-frequency noise sources, such as 1noise, can
also result in a correlation between induced jitter on transitions
over multiple cycles. In this case, the standard deviations rather
than the variances add. Therefore, the standard deviation of the
jitter after seconds is proportional to

(9)

where is another proportionality constant. Noise sources
such as thermal noise of devices are usually modeled as
uncorrelated, while substrate and supply-noise sources, as
well as low-frequency noise, are approximated as partially
or fully correlated sources. In practice, both correlated and
uncorrelated sources exist in a circuit, and hence alog–log
plot of the timing jitter versus the measurement delay

for an open-loop oscillator will demonstrate regions with
slopes of 1/2 and 1, as shown in Fig. 4.
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Fig. 5. ISF for ring oscillators of the same frequency with different number of stages.

In most digital applications, it is desirable for to
decrease at the same rate as the periodIn practice, we wish
to keep constant the ratio of the timing jitter to the period.
Therefore, in many applications, phase jitter, defined as

(10)

is a more useful measure.
An expression for can be obtained using (5). As shown

in Appendix A, for or where is an
integer, the phase jitter due to a single white noise source is
given by

(11)

Using (10) and (11), the proportionality constantin (8) is
calculated to be

(12)

IV. CALCULATION OF THE ISF FOR RING OSCILLATORS

To calculate phase noise and jitter using (6) and (12), one
needs to know the rms value of the ISF. Although one can
always find the ISF through simulation, we obtain a closed-
form approximate equation for the rms value of the ISF of ring
oscillators, which usually makes such simulations unnecessary.

It is instructive to look at the actual ISF of ring oscillators to
gain insight into what constitutes a good approximation. Fig. 5
shows the shape of the ISF for a group of single-ended CMOS
ring oscillators. The frequency of oscillation is kept constant
(through adjustment of channel length), while the number of
stages is varied from 3 to 15 (in odd numbers). To calculate the
ISF, a narrow current pulse is injected into one of the nodes
of the oscillator, and the resulting phase shift is measured a
few cycles later in simulation.

As can be seen, increasing the number of stages reduces the
peak value of the ISF. The reason is that the transitions of the
normalized waveform become faster for larger Since the
sensitivity during the transition is inversely proportional to the
slope, the peak of the ISF drops. It should be noted that only
the peak of the ISF is inversely proportional to the slope, and

Fig. 6. Approximate waveform and ISF for ring oscillator.

Fig. 7. Relationship between rise time and delay.

this relation should not be generalized to other points in time.
Also, the widths of the lobes of the ISF decrease asbecomes
larger, since each transition occupies a smaller fraction of the
period. Based on these observations, we approximate the ISF
as triangular in shape and with symmetric rising and falling
edges, as shown in Fig. 6. The case of nonsymmetric rising
and falling edges is considered in Appendix B.

The ISF has a maximum of 1 where is the
maximum slope of the normalized waveformin (1). Also, the
width of the triangles is approximately 2 , and hence the
slopes of the sides of the triangles are1. Therefore, assuming
equality of rise and fall times, can be estimated as

(13)
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Fig. 8. RMS values of the ISF’s for various single-ended ring oscillators versus number of stages.

On the other hand, stage delay is proportional to the rise time

(14)

where is the normalized stage delay andis a proportion-
ality constant, which is typically close to one, as can be seen
in Fig. 7.

The period is 2 times longer than a single stage delay

(15)

Using (13) and (15), the following approximate expression for
is obtained:

(16)

Note that the 1 dependence of is independent of
the value of Fig. 8 illustrates for the ISF shown in
Fig. 5 with plus signs onlog–log axes. The solid line shows
the line of which is obtained from (16) for

To verify the generality of (16), we maintain a
fixed channel length for all the devices in the inverters while
varying the number of stages to allow different frequencies of
oscillation. Again, is calculated, and is shown in Fig. 8
with circles. We also repeat the first experiment with a different
supply voltage (3 V as opposed to 5 V), and the result is shown
with crosses. As can be seen, the values of are almost
identical for these three cases.

It should not be surprising that is primarily a function
of because the effect of variations in other parameters,
such as and device noise, have already been decoupled
from , and thus the ISF is a unitless, frequency- and
amplitude-independent function.

Equation (16) is valid for differential ring oscillators as
well, since in its derivation no assumption specific to single-
ended oscillators was made. Fig. 9 shows the for three
sets of differential ring oscillators, with a varying number of
stages (4–16). The data shown with plus signs correspond to
oscillators in which the total power dissipation and the drain
voltage swing are kept constant by scaling the tail-current
sources and load resistors as changes. Members of the
second set of oscillators have a fixed total power dissipation
and fixed load resistors, which result in variable swings and
for whom data are shown with circles. The third case is
that of a fixed tail current for each stage and constant load
resistors, whose data are illustrated using crosses. Again, in
spite of the diverse variations of the frequency and other
circuit parameters, the 1 dependency of and its
independence from other circuit parameters still holds. In the
case of a differential ring oscillator, which
corresponds to is the best fit approximation for
This is shown with the solid line in Fig. 9. A similar result
can be obtained for bipolar differential ring oscillators.

Although decreases as the number of stages increases,
one should not prematurely conclude that the phase noise can
be reduced using a larger number of stages because the number
of noise sources, as well as their magnitudes, also increases for
a given total power dissipation and frequency of oscillation.

In the case of asymmetric rising and falling edges, both
and will change. As shown in Appendix B, the 1

corner of the phase-noise spectrum is inversely proportional
to the number of stages. Therefore, the 1 corner can be
reduced either by making the transitions more symmetric in
terms of rise and fall times or by increasing the number of
stages. Although the former always helps, the latter has other
implications on the phase noise in the 1 region, as will be
shown in the following section.
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Fig. 9. RMS values of the ISF’s for various differential ring oscillators versus number of stages.

V. EXPRESSIONS FORJITTER AND

PHASE NOISE IN RING OSCILLATORS

In this section, we derive expressions for the phase noise
and jitter of different types of ring oscillators. Throughout
this section, we assume that the symmetry criteria required to
minimize (and hence the upconversion of 1noise) are
already met and that the jitter and phase noise of the oscillator
are dominated by white noise. For CMOS transistors, the drain
current noise spectral density is given by

(17)

where is the zero-bias drain source conductance,is
the mobility, is the gate-oxide capacitance per unit area,

and are the channel width and length of the device,
respectively, and is the gate voltage overdrive. The
coefficient is 2/3 for long-channel devices in the saturation
region and typically two to three times greater for short-
channel devices [18]. Equation (17) is valid in both short-
and long-channel regimes as long as an appropriate value for

is used.

A. Single-Ended CMOS Ring Oscillators

We start with a single-ended CMOS ring oscillator with
equal-length NMOS and PMOS transistors. Assuming that

the maximum total channel noise from NMOS
and PMOS devices, when both the input and output are at

is given by

(18)

where

(19)

and

(20)

and is the gate overdrive in the middle of transition, i.e.,

During one period, each node is charged to and
then discharged to zero. In an -stage single-ended ring
oscillator, the power dissipation associated with this process
is However, during the transitions, some extra
current, known as crowbar current, is drawn from the supply,
which does not contribute to charging and discharging the
capacitors and goes directly from supply to ground through
both transistors. In a symmetric ring oscillator, these two
components are approximately equal, and their difference will
depend on the ratio of the rise time and stage delay. Therefore,
the total power dissipation is approximately given by

(21)

Assuming to make the waveforms symmetric
to the first order, we have

(22)

where is the delay of each stage and and are the
rise and fall time, respectively, associated with the maximum
slope during a transition.

Assuming that the thermal noise sources of the different
devices are uncorrelated, and assuming that the waveforms
(and hence the ISF) of all the nodes are the same except for a
phase shift, the total phase noise due to allnoise sources is
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times the value given by (6). Taking only these inevitable
noise sources into account, (6), (16), (18), (21), and (22) result
in the following expressions for phase noise and jitter:

(23)

(24)

where is the characteristic voltageof the device. For
long-channel mode of operation, it is defined as

Any extra disturbance, such as substrate and supply
noise, or noise contributed by extra circuitry or asymmetry in
the waveform will result in a larger number than (23) and (24).
Note that lowering threshold voltages reduces the phase noise,
in agreement with [12]. Therefore, the minimum achievable
phase noise and jitter for a single-ended CMOS ring oscillator,
assuming that all symmetry criteria are met, occurs for zero
threshold voltage

(25)

(26)

As can be seen, the minimum phase noise is inversely propor-
tional to the power dissipation and grows quadratically with
the oscillation frequency. Further, note the lack of dependence
on the number of stages (for a given power dissipation
and oscillation frequency). Evidently, the increase in the
number of noise sources (and in the maximum power due
to the higher transition currents required to run at the same
frequency) essentially cancels the effect of decreasing as

increases, leading to no net dependence of phase noise on
This somewhat surprising result may explain the confusion

that exists regarding the optimum, since there is not a strong
dependence on the number of stages for single-ended CMOS
ring oscillators. Note that (25) and (26) establish the lower
bound and therefore should not be used to calculate the phase
noise and jitter of an arbitrary oscillator, for which (6) and
(12) should be used, respectively.

We may carry out a similar calculation for the short-channel
case. For such devices, the drain current may be expressed as

(27)

where is the critical electric field and is defined as the value
of electric field resulting in half the carrier velocity expected
from low field mobility. Combining (17) with (27), we obtain
the following expression for the drain current noise of a MOS
device in short channel:

(28)

The frequency of oscillation can be approximated by

(29)

Using (28) and (29), we obtain the same expressions for
phase noise and jitter as given by (23) and (24), except for
a new

(30)

which results in a larger phase noise and jitter than the long-
channel case by a factor of Again, note the absence
of any dependency on the number of stages.

B. Differential CMOS Ring Oscillators

Now consider a differential MOS ring oscillator with resis-
tive load. The total power dissipation is

(31)

where is the number of stages, is the tail bias current
of the differential pair, and is the supply voltage. The
frequency of oscillation can be approximated by

(32)

Surprisingly, tail-current source noise in the vicinity of
does not affect the phase noise. Rather, its low-frequency noise
as well as its noise in the vicinity ofevenmultiples of the
oscillation frequency affect the phase noise. Tail noise in the
vicinity of even harmonics can be significantly reduced by a
variety of means, such as with a series inductor or a parallel
capacitor. As before, the effect of low-frequency noise can
be minimized by exploiting symmetry. Therefore, only the
noise of the differential transistors and the load are taken into
account. The total current noise on each single-ended node is
given by

(33)

where is the load resistor, for a
balanced stage in the long-channel limit and
in the short-channel regime. The phase noise and jitter due
to all 2 noise sources is 2 times the value given by (6)
and (12). Using (16), the expression for the phase noise of the
differential MOS ring oscillator is

(34)

and is given by

(35)

Equations (34) and (35) are valid in both long- and short-
channel regimes of operation with the right choice of

Note that, in contrast with the single-ended ring oscillator,
a differential oscillator does exhibit a phase noise and jitter
dependency on the number of stages, with the phase noise
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degrading as the number of stages increases for a given fre-
quency and power dissipation. This result may be understood
as a consequence of the necessary reduction in the charge
swing that is required to accommodate a constant frequency
of oscillation at a fixed power level as increases. At the
same time, increasing the number of stages at a fixed total
power dissipation demands a proportional reduction of tail-
current sources, which will reduce the swing, and hence ,
by a factor of 1

C. Bipolar Differential Ring Oscillator

A similar approach allows us to derive the corresponding
results for a bipolar differential ring oscillator. In this case,
the power dissipation is given by (31) and the oscillation
frequency by (32). The total noise current is given by the
sum of collector shot noise and load resistor noise

(36)

where is the electron charge, is the collector
current during the transition, and Using these
relations, the phase noise and jitter of a bipolar ring oscillator
are again given by (34) and (35) with the appropriate choice
of

VI. OTHER NOISE SOURCES

Other noise sources, such as tail-current source noise in a
differential structure, or substrate and supply noise sources,
may play an important role in the jitter and phase noise of
ring oscillators. The low-frequency noise of the tail-current
source affects phase noise if the symmetry criteria mentioned
in Section II are not met by each half circuit. In such cases,
the ISF for the tail-current source has a large dc value, which
increases the upconversion of low-frequency noise to phase
noise. This upconversion is particularly prominent if the tail
device has a large 1 noise corner.

Substrate and supply noise are among other important
sources of noise. There are two major differences between
these noise sources and internal device noise. First, the power
spectral density of these sources is usually nonwhite and often
demonstrates strong peaks at various frequencies. Even more
important is that the substrate and supply noise on different
nodes of the ring oscillator have a very strong correlation.
This property changes the response of the oscillator to these
sources.

To understand the effect of this correlation, let us consider
the special case of having equal noise sources on all the nodes
of the oscillator. If all the inverters in the oscillator are the
same, the ISF for different nodes will only differ in phase by
multiples of as shown in Fig. 10. Therefore, the total
phase due to all the sources is given by superposition of (5)

(37)

Fig. 10. Phasors for noise contributions from each source.

Fig. 11. Sideband power below carrier for equal sources on all five nodes
at nf0 + fm:

Expanding the term in brackets in a Fourier series, we can
show that it is zero except at dc and multiples of i.e.,

(38)

where is the th Fourier coefficient of the ISF. Equation (38)
means that for identical sources, only noise in the vicinity of
integer multiples of affects the phase.

To verify this effect, sinusoidal currents with an amplitude
of 10 A were injected into all five nodes of the five-stage ring
oscillator of Fig. 1 at different offsets from integer multiples
of the frequency of oscillation, and the induced sidebands were
measured. The measured sideband power with respect to the
carrier is plotted in Fig. 11.

As can be seen in Fig. 11, only injection at low frequency
and in the vicinity of the fifth harmonic are integrated, and
show a 20 dB/dec slope. The effect of injection in the vicinity
of harmonics that are not integer multiples of is much
smaller than at the integer ones. Ideally, there should be no
sideband induced by the injection in the vicinity of harmonics
that are not integer multiples of ; however, as can be seen
in Fig. 11, there is some sideband power due to the amplitude
response.

Low-frequency noise can also result in correlation between
uncertainties introduced during different cycles, as its value
does not change significantly over a small number of periods.
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Therefore, the uncertainties add up in amplitude rather than
power, resulting in a region with a slope of one in thelog–log
plot of jitter even in the absence of external noise sources
such as substrate and supply noise.

VII. D ESIGN IMPLICATIONS

One can use (23) and (34) to compare the phase-noise
performance of single-ended and differential MOS ring os-
cillators. As can be seen for stages, the phase noise
of the differential ring oscillator is approximately

times larger than the phase noise of a single-
ended oscillator of equal and Since the minimum

for a regular ring oscillator is three, even a properly
designed differential CMOS ring oscillator underperforms its
single-ended counterpart, especially for a larger number of
stages. This difference is even more pronounced if proper
precautions to reduce the noise of the tail current are not
taken. However, the differential ring oscillator may still be
preferred in IC’s because of the lower sensitivity to substrate
and supply noise, as well as lower noise injection into other
circuits on the same chip. The decision to use differential
versus single-ended ring oscillators should be based on both
of these considerations.

The common-mode sensitivity problem in a single-ended
ring oscillator can be mitigated to some extent by using two
identical ring oscillators laid out close to each other that
oscillate out of phase because of small coupling inverters
[19]. Single-ended configurations may be used in a less noisy
environment to achieve better phase-noise performance for a
given power dissipation.

As shown in Appendix B, asymmetry of the rising and
falling edges degrades phase noise and jitter by increasing
the 1 corner frequency. Thus, every effort should be taken
to make the rising and falling edges symmetric. By properly
adjusting the symmetry properties, one can suppress or even
eliminate low-frequency-noise upconversion [16]. As shown in
[16], differential symmetry is insufficient, and the symmetry of
each half circuit is important. One practical method to achieve
this symmetry is to use more linear loads, such as resistors or
linearized MOS devices. This method reduces the 1noise
upconversion and substrate and supply coupling [20]. Another
revealing implication, shown in Appendix A, is the reduction
of the 1 corner frequency as increases. Hence for a
process with large 1 noise, a larger number of stages may
be helpful.

One question that frequently arises in the design of ring
oscillators is the optimum number of stages for minimum jitter
and phase noise. As seen in (23), for single-ended oscillators,
the phase noise and jitter in the 1 region is not a strong
function of the number of stages for single-ended CMOS ring
oscillators. However, if the symmetry criteria are not well
satisfied and/or the process has a large 1noise, a larger

will reduce the jitter. In general, the choice of the number
of stages must be made on the basis of several design criteria,
such as 1 noise effect, the desired maximum frequency of
oscillation, and the influence of external noise sources, such
as supply and substrate noise, that may not scale with

The jitter and phase noise behavior are different for dif-
ferential ring oscillators. As (34) suggests, jitter and phase
noise increase with an increasing number of stages. Hence
if the 1 noise corner is not large, and/or proper symmetry
measures have been taken, the minimum number of stages
(three or four) should be used to give the best performance.
This recommendation holds even if the power dissipation is
not a primary issue. It is not fair to argue that burning more
power in a larger number of stages allows the achievement of
better phase noise, since dissipating the same total power in a
smaller number of stages results in better jitter/phase noise as
long as it is possible to maximize the total charge swing.

Another insight one can obtain from (34) and (35) is
that the jitter of a MOS differential ring oscillator at a
given and is smaller than that of a differential
bipolar ring oscillator, at least for today’s range of circuit
and process parameters. As we go to shorter channel lengths,
the characteristic voltage for the MOS devices given by (30)
becomes smaller, and thus phase noise degrades with scaling.
Bipolar ring oscillators do not suffer from this problem.

LC oscillators generally have better phase noise and jitter
compared to ring oscillators for two reasons. First, a ring
oscillator stores a certain amount of energy in the capacitors
during every cycle and then dissipates all the stored energy
during the same cycle, while an LC resonator dissipates only
2 of the total energy stored during one cycle. Thus, for a
given power dissipation in steady state, a ring oscillator suffers
from a smaller maximum charge swing Second, in a ring
oscillator, the device noise is maximum during the transitions,
which is the time where the sensitivity, and hence the ISF, is
the largest [16].

VIII. E XPERIMENTAL RESULTS

The phase-noise measurements in this section were per-
formed using three different systems: an HP 8563E spectrum
analyzer with phase-noise measurement capability, an RDL
NTS-1000A phase-noise measurement system, and an HP
E5500 phase-noise measurement system. The jitter measure-
ments were performed using a Tektronix CSA 803A commu-
nication signal analyzer.

Tables I–III summarize the phase-noise measurements. All
the reported phase-noise values are at a 1-MHz offset from
the carrier, chosen to achieve the largest dynamic range in
the measurement. Table I shows the measurement results for
three different inverter-chain ring oscillators. These oscillators
are made of the CMOS inverters shown in Fig. 12(a), with no
frequency tuning mechanism. The output is taken from one
node of the ring through a few stages of tapered inverters.
Oscillators number 1 and 2 are fabricated in a 2-m 5-V
CMOS process, and oscillator number 3 is fabricated in a 0.25-

m 2.5-V process. The second column shows the number of
stages in each of the oscillators. The ratios of the NMOS
and PMOS devices, as well as the supply voltages, the total
measured supply currents, and the frequencies of oscillation
are shown next. The phase-noise prediction using (23) and
(6), together with the measured phase noise, are shown in the
last three columns.
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TABLE I
INVERTER-CHAIN RING OSCILLATORS

TABLE II
CURRENT-STARVED INVERTER-CHAIN RING OSCILLATORS

As an illustrative example, we will show the details of
phase-noise calculations for oscillator number 3. Using (16) to
calculate the phase noise can be obtained from (6). We
calculate the noise power when the stage is halfway through
a transition. At this point, the drain current is simulated to be
3.47 mA. An of 4 10 V/m and a of 2.5 is used in
(28) to obtain a noise power of A Hz
The total capacitance on each node is fF, and
hence fC. There is one such noise source on
each node; therefore, the phase noise istimes the value
given by (6), which results in MHz dBc/Hz.

Table II summarizes the data obtained for current-starved
ring oscillators with the cell structure shown in Fig. 12(b),
all implemented in the same 0.25-m 2.5-V process. Ring
oscillators with a different number of stages were designed
with roughly constant oscillation frequency and total power
dissipation. Frequency adjustment is achieved by changing
the channel length, while total power dissipation control is
performed by changing device width. The ratios of the
inverter and the tail NMOS and PMOS devices are shown
in Table II. The node is kept at while node

is at 0 V. The measured total current dissipation and
the frequency of oscillation can be found in columns 7 and
8. Phase-noise calculations based on (23) and (6) are in good

agreement with the measured results. The die photo of the chip
containing these oscillators is shown in Fig. 13. The slightly
superior phase noise of the three-stage ring oscillator (number
4) can be attributed to lower oscillation frequency and longer
channel length (and hence smaller).

Table III summarizes the results obtained for differential
ring oscillators of various sizes and lengths with the inverter
topology shown in Fig. 12(c), covering a large span of frequen-
cies up to 5.5 GHz. All these ring oscillators are implemented
in the same 0.25-m 2.5-V process, and all the oscillators,
except the one marked with N/A, have the tuning circuit
shown. The resistors are implemented using an unsilicided
polysilicon layer. The main reason to use poly resistors is to
reduce 1 noise upconversion by making the waveform on
each node closer to the step response of an RC network, which
is more symmetrical. The value of these load resistors and the

ratios of the differential pair are shown in Table III. A
fixed 2.5-V power supply is used, resulting in different total
power dissipations. As before, the measured phase noise is in
good agreement with the predicted phase noise using (34) and
(6). The die photo of oscillator number 26 can be found in
Fig. 14.

To illustrate further how one obtains the phase-noise pre-
dictions shown in Table III, we elaborate on the phase-noise
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TABLE III
DIFFERENTIAL RING OSCILLATORS

(a) (b) (c)

Fig. 12. Inverter stages for (a) inverter-chain ring oscillators, (b) current-starved inverter-chain ring oscillators, and (c) differential ringoscillators.

calculations for oscillator number 12. The noise current due
to one of differential pair NMOS devices is given by (28).
The total capacitance on each node in the balanced case is

fF, and the simulated voltage swing is 1.208 V;
therefore, fC. In the balanced case, this current
is half of the tail current, i.e., mA, and therefore
the noise current of the NMOS device has a single-sideband
spectral density of A Hz The thermal
noise due to the load resistor is A Hz;
therefore, the total current noise density is given by

A Hz For a differential ring oscillator with
stages, there is one such noise source on each node;

therefore, the phase noise is 2times the value given by
(6), which results in MHz dBc/Hz The total
power dissipation is mW, and

Therefore, with an of 0.9, (34) predicts a phase noise of
MHz dBc/Hz

Timing jitter for oscillator number 12 can be measured using
the setup shown in Fig. 15. The oscillator output is divided
into two equal-power outputs using a power splitter. The CSA
803A is not capable of showing the edge it uses to trigger,
as there is a 21-ns minimum delay between the triggering
transition and the first acquired sample. To be able to look
at the triggering edge and perhaps the edges before that, a
delay line of approximately 25 ns is inserted in the signal
path in front of the sampling head. This way, one may look
at the exact edge used to trigger the signal. If the sampling
head and the power splitter were noiseless, this edge would
show no jitter. However, the power splitter and the sampling
head introduce noise onto the signal, which cannot be easily
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Fig. 13. Die photograph of the current-starved single-ended oscillators.

Fig. 14. Die photograph of the 12-stage differential ring oscillator.

Fig. 15. Timing jitter measurement setup using CSA803A.

distinguished from the device under test (DUT)’s jitter. This
extra jitter can be directly measured by looking at the jitter on
the triggering edge. This edge can be readily identified since
it has lower rms jitter than the transitions before and after it.

The effect of this excess jitter should be subtracted from the
jitter due to the DUT. Assuming no correlation between the
jitter of the DUT and the sampling head, the equivalent jitter
due to the DUT can be estimated by

(39)

where is the effective rms timing jitter, is the
measured rms jitter at a delay after the triggering edge,
and is the jitter on the triggering edge.

Fig. 16 shows the rms jitter versus the measurement delay
for oscillator number 12 on alog–logplot. The best fit for the
data shown in Fig. 16 is Equations (12)
and (35) result in and
respectively. The region of the jitter plot with the slope of one
can be attributed to the 1 noise of the devices, as discussed
at the end of Section VI.

In a separate experiment, the phase noise of oscillator
number 7 is measured for different values of and
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Fig. 16. RMS jitter versus measurement interval for the four-stage, 2.8-GHz differential ring oscillator (oscillator number 12).

Fig. 17. Phase noise versus symmetry voltage for oscillator number 7.

These bias voltages are chosen in such a way as
to keep a constant oscillation frequency while changing only
the ratio of rise time to fall time. The 1 corner of the
phase noise is measured for different ratios of the pullup and
pulldown currents while keeping the frequency constant. One
can observe a sharp reduction in the corner frequency at the
point of symmetry in Fig. 17.

IX. CONCLUSION

An analysis of the jitter and phase noise of single-ended
and differential ring oscillators was presented. The general
noise model, based on the ISF, was applied to the case of ring
oscillators, resulting in a closed-form expression for the phase
noise and jitter of ring oscillators [(6), (23), (34)]. The model
was used to perform a parallel analysis of jitter and phase
noise for ring oscillators. The effect of the number of stages

on the phase noise and jitter at a given total power dissipation
and frequency of oscillation was shown for single-ended and
differential ring oscillators using the general expression for
the rms value of the ISF. The upconversion of low-frequency
1 was analyzed showing the effect of waveform asymmetry
and the number of stages. New design insights arising from
this approach were introduced, and good agreement between
theory and measurements was obtained.

APPENDIX A
RELATIONSHIP BETWEEN JITTER AND PHASE NOISE

The phase jitter is

(40)

where

(41)

Therefore

(42)

For a white-noise current source, the autocorrelation func-
tion is ; therefore

(43)

which is

for (44)
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Analog and digital designers prefer using phase noise and
timing jitter, respectively. The relationship between these two
parameters can be obtained by noting that timing jitter is the
standard deviation of the timing uncertainty

(45)

where represents the expected value. Since the autocor-
relation function of is defined as

(46)

the timing jitter in (45) can be written as

(47)

The relation between the autocorrelation and the power spec-
trum is given by the Khinchin theorem [21], i.e.,

(48)

where represents the power spectrum of There-
fore, (47) results in the following relationship between clock
jitter and phase noise:

(49)

It may be useful to know that can be approximated
by for large offsets [22]. As can be seen from the
foregoing, the rms timing jitter has less information than the
phase-noise spectrum and can be calculated from phase noise
using (49). However, unless extra information about the shape
of the phase-noise spectrum is known, the inverse is not
possible in general.

In the special case where the phase noise is dominated
by white noise, and are given by (6) and (12).
Therefore, can be expressed in terms of phase noise in the
1 region as

(50)

where is the phase noise measured in the 1
region at an offset frequency of and is the oscillation
frequency. Therefore, based on (8), the rms cycle-to-cycle jitter
will be given by

(51)

Note that for (50) and (51) to be valid, the phase noise at
should be in the 1 region.

Fig. 18. Approximate waveform and the ISF for asymmetric rising and
falling edges.

APPENDIX B
NONSYMMETRIC RISING AND FALLING EDGES

We approximate the ISF in this Appendix by the function
depicted in Fig. 18. The rms value of the ISF is

(52)

where and are the maximum slope during the rising
and falling edge, respectively, andrepresents the asymmetry
of the waveform and is defined as

(53)

noting that

(54)

Combining (52) and (54) results in the following:

(55)

which reduces to (16) in the special case of i.e.,
symmetric rising and falling edges. The dc value of the ISF,

can be calculated from Fig. 18 in a similar manner and
is given by

(56)

Using (7), the 1 corner is given by

(57)

As can be seen for a constant rise-to-fall ratio, the 1corner
decreases inversely with the number of stages; therefore, ring
oscillators with a smaller number of stages will have a larger
1 noise corner. As a special case, if the rise and fall time
are symmetric, , and the 1 corner approaches zero.
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