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1AbstractAnalysis and Simulation of NoiseinNonlinear Electronic Circuits and SystemsbyAlper DemirDoctor of Philosophy in Engineering-Electrical Engineeringand Computer SciencesUniversity of California, BerkeleyProfessor Alberto L. Sangiovanni-Vincentelli, ChairElectrical noise originates from the fact that electrical charge is not continuousbut is carried in discrete amounts equal to the electron charge. Hence it represents afundamental limit on the performance of electronic circuits and systems. With the explosivegrowth of the personal mobile communications market, noise analysis/simulation techniquesfor nonlinear electronic circuits and systems have become an essential part of the designprocess. Even though most of the signal processing is done in the digital domain, everywireless communication device has an analog front-end which usually is the bottleneck inthe design of the whole system. The requirements for low power operation and higher levelsof integration create new challenges in the design of the analog signal processing subsystemsof these mobile communication devices. Shrinking dimensions, the push for lower voltagelevels, and the use of CMOS technologies for high frequency analog signal processing makethe e�ect of noise on the performance of these inherently nonlinear analog circuits moreand more signi�cant.We present analysis, simulation and characterization techniques, and behavioralmodels for noise in nonlinear electronic circuits and systems. The problem is treated withinthe framework of, and using techniques from, the probabilistic theory of stochastic processesand stochastic di�erential systems. A novel time-domain algorithm for the simulation andcomplete second-order probabilistic characterization of the behavior of nonlinear electronic



2circuits in the presence of noise is proposed. With this algorithm, one can simulate a non-linear dynamic circuit with electrical noise sources and arbitrary large-signal excitationsby directly calculating the correlation matrix of the state variables of the system whichare represented by nonstationary stochastic processes. This method enables us to analyzetransient and nonstationary noise phenomena since a steady-state condition for the circuitis not required. The noise simulation algorithm is a core tool which can be used to in-vestigate, simulate, understand, and model various noise phenomena in nonlinear analogand mixed-signal circuits. We use the noise simulation algorithm to investigate, understandand model the phase noise/timing jitter phenomenon in oscillator circuits. We present aformal de�nition for phase noise and propose algorithms for its probabilistic characteriza-tion. A hierarchical behavioral speci�cation and simulation methodology for the design ofphase-locked loops used in clock generation and frequency synthesis applications is thenproposed. We develop behavioral models of phase-locked loop components which capturevarious nonidealities including the phase noise/timing jitter and spurious tone behavior. Amixed-signal behavioral simulation algorithm and techniques to postprocess the data frombehavioral simulation to characterize the spurious tones and the timing jitter/phase noiseof the output of the phase-locked loop are presented.Professor Alberto L. Sangiovanni-VincentelliDissertation Committee Chair
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1Chapter 1IntroductionIn electronic circuit and system design, the word noise is used to refer to anyundesired excitation on the system. In other contexts, noise is also used to refer to signalsor excitations which exhibit chaotic or random behavior. The source of noise can be eitherinternal or external to the system. For instance, the thermal and shot noise generatedwithin integrated circuit devices are internal noise sources, and the noise picked up fromthe environment through electromagnetic interference is an external one. Electromagneticinterference can also occur between di�erent components of the same system. In integratedcircuits (ICs), signals in one part of the system can propagate to the other parts of thesame system through electromagnetic coupling, power supply lines and the IC substrate.For instance, in a mixed-signal IC, the switching activity in the digital parts of the circuitcan adversely a�ect the performance of the analog section of the circuit by traveling throughthe power supply lines and the substrate.Prediction of the e�ect of these noise sources on the performance of an electronicsystem is called noise analysis or noise simulation. A methodology for the noise analysisor simulation of an electronic system usually has the following four components:� Mathematical representations or models for the noise sources.� Mathematical model or representation for the system that is under the in
uence ofthe noise sources.� A numerical analysis/simulation algorithm to \analyze" or \simulate" the e�ect ofthe noise sources on the system in some useful sense.



CHAPTER 1. INTRODUCTION 2� Post-processing techniques to characterize the e�ect of the noise sources on the sys-tem by calculating useful performance speci�cations using the \data" created by theanalysis/simulation of the system.In this work, we will be concentrating on the type of noise phenomena caused bythe small current and voltage 
uctuations, such as thermal, shot and 
icker noise, whichare generated within the integrated-circuit devices themselves. This type of noise is usuallyreferred to as electrical or electronic noise, because it originates from the fact that electricalcharge is not continuous but is carried in discrete amounts equal to the electron charge.Electrical noise is associated with fundamental processes in integrated-circuit devices. Inpractical electronic circuits and systems, the e�ect of external noise sources, such as dig-ital switching noise coupled through the power supply lines and the IC substrate, can beoverwhelming compared with the e�ect of the electrical noise sources on the performance.The e�ect of such external noise sources can and should be minimized by using techniquessuch as di�erential circuit architectures, separate power supply lines for the analog anddigital portions of the circuit, and isolation of the sensitive analog portion from the rest ofthe system. However, the e�ect of electrical noise sources can not be eliminated, since itis generated within the electronic devices that make up the system. Thus, electrical noiserepresents a fundamental limit on the performance of electronic circuits [1]. Even thoughthe noise analysis and simulation methodology we will be presenting was developed to an-alyze the e�ects of electrical noise, it can also be quite useful in analyzing the e�ects ofother types of noise on electronic circuits. The e�ects of electrical noise on the performanceis most relevant for analog and mixed-signal electronic circuits, which will be the types ofcircuits and systems this work is concerned with.Noise analysis based on wide-sense stationary noise source models and the theoryof linear time-invariant systems has been used by analog circuit and system designers forquite some time. This type of noise analysis, usually referred to as AC noise analysis, isimplemented in almost every circuit simulator such as SPICE, and it has been quite aninvaluable tool in linear analog IC design. For instance, in most cases, analog ampli�ercircuits operate in small-signal conditions, that is, the \operating-point" of the circuit doesnot change. For noise analysis and simulation, the ampli�er circuit with a �xed operating-point can be modeled as a linear time-invariant network by making use of the small-signalmodels of the integrated-circuit devices. On the other hand, some ampli�er circuits and



CHAPTER 1. INTRODUCTION 3other analog circuits such as mixers, �lters, oscillators, etc. do not operate in small-signalconditions. For instance, for a mixer circuit, the presence of a large local-oscillator signalcauses substantial change in the active devices' operating points over time.The noise analysis/simulation of electronic circuits and systems that operate in aninherent nonlinear fashion is much more involved than the noise analysis of circuits whichcan be treated with techniques from the theory of linear time-invariant systems. Eventhough nonlinear analog circuits has been used extensively in many applications, littlework has been done in the analog design and analog CAD community to develop analy-sis/simulation techniques to characterize the performance of such circuits in the presenceof noise sources. This is most probably due to the conceptually di�cult nature of theproblem, as well as the complexity of the specialized mathematical techniques needed forits treatment. With the explosive growth of the personal mobile communications market,noise analysis/simulation techniques for nonlinear electronic circuits and systems have be-come an essential part of the design process. Even though most of the signal processing isdone in the digital domain, every wireless communication device has an analog front-endwhich usually is the bottleneck in the design of the whole system. Considerations of powerdissipation, form factor and cost push the analog front-end of these devices to higher andhigher levels of integration. The requirements for low power operation and higher levels ofintegration create new challenges in the design of the analog signal processing subsystemsof these mobile communication devices. Shrinking dimensions, the push for lower voltagelevels, and the use of CMOS technologies for high frequency analog signal processing makethe e�ect of noise on the performance of these inherently nonlinear analog circuits moreand more signi�cant. Hence, noise analysis/simulation techniques for the design of suchnonlinear analog circuits and systems are bound to be relevant.In our opinion, some of the work in the literature on the analysis of various noisephenomena in nonlinear electronic circuits and systems treated the problem using ad-hocand non-rigorous techniques, hence resulting in unreliable and often wrong informationabout the behavior of the circuit under analysis. We will be treating the problem withinthe framework of the probabilistic theory of stochastic processes and stochastic di�erentialsystems. The well-de�ned axiomatic structure of the rather well developed theory of prob-ability and stochastic processes provides us a �rm foundation in our attempt to understandand analyze the noise phenomena in nonlinear electronic circuits and systems. We wouldlike to point out that a rigorous treatment of the problem does not mean that one is dealing



CHAPTER 1. INTRODUCTION 4with uncomputable quantities. Indeed, e�cient simulation techniques which have a rigorousfoundation can be developed.We will start in Chapter 2 with a review of the mathematical background neededto follow the rest of our treatment. In Chapter 3, we review the basic physical mechanismsfor electrical noise sources and describe their models as stochastic processes. Chapter 4gives an overview of several noise analysis/simulation techniques that have been proposedin the literature to predict the performance of electronic circuits under the in
uence ofnoise sources. In Chapter 5, we describe a novel noise simulation algorithm for nonlinearelectronic circuits proposed by us [2, 3]. Then, in Chapter 6, we use the noise simulationalgorithm of Chapter 5 to investigate the phase noise/timing jitter phenomenon in freerunning oscillators. We describe numerical algorithms for the characterization of phasenoise in oscillators, and develop models based on its characterization. Top-down hierarchicaldesign methodologies for analog and mixed-signal systems [4] have been proven to be quitee�ective in dealing with complexity, and in making the design systematic and modular. Webelieve that a hierarchical approach will be quite e�ective in dealing with the complexityof the nonlinear noise analysis problem for large and complicated systems. Chapter 7describes a hierarchical behavioral modeling and simulation methodology for the design ofphase-locked loops used in clock generation and frequency synthesis applications. Finally,in Chapter 8, we conclude with a summary and discussion of future directions.



5Chapter 2Mathematical BackgroundThis chapter presents� an overview of probability, random variables and stochastic processes,� �ltering of stochastic processes with linear time-invariant, linear time-varying and, inparticular, linear periodically time-varying transformations,� basic results from linear algebra about the eigenvalues and eigenvectors of a matrixand its transpose, positive de�niteness, properties of a covariance matrix,� Floquet theory of a system of linear periodically time-varying di�erential equations,� overview of the theory of stochastic di�erential equations/systems.Since the topics to be covered are rather extensive, most of the derivations or proofs willnot be given here. De�nitions and a list of results will be presented as they relate to theanalysis of noise in nonlinear systems. For a detailed treatment of the above topics, thereader is referred to the textbooks and other references listed below. We borrowed heavilyfrom these references for our discussion in this chapter.� Probability, random variables and stochastic processes: [5], [6],[7].� Filtering of stochastic processes with linear transformations: [5],[8].� Stochastic di�erential equations and systems: [9], [10], [11], [12], [13].� Floquet theory: [14], [15].



CHAPTER 2. MATHEMATICAL BACKGROUND 62.1 Probability and Random Variables 1Mathematical probability has its origins in the games of chance, i.e. gambling.Starting in the sixteenth century many famous mathematicians wrote on probability. By theend of the nineteenth century, the lack of a well-de�ned axiomatic structure was recognizedas a serious handicap of the probability theory. In 1933, Andrei Nikolaevich Kolmogorovprovided the axioms which are today the foundations for most mathematical probability.2.1.1 Events and their probabilitiesThe set of all possible outcomes of an experiment is called the sample space andis denoted by 
. A collection F of subsets of 
 is called a �-�eld if it satis�es the followingconditions:1. ; 2 F ;2. if A1; A2; : : : 2 F then S1i=1 Ai 2 F ;3. if A 2 F then Ac 2 F .Ac denotes the complement of a subset A of 
. A subset A of 
 is called an event if itbelongs to the �-�eld F .A probability measure P on (
;F) is a function P : F ! [0; 1] satisfying1. P (;) = 0, P (
) = 1;2. if A1; A2; : : : is a collection of disjoint members of F , so that AiTAj = ; for all pairsi; j satisfying i 6= j, then P  1[i=1Ai! = 1Xi=1 P (Ai): (2.1)The triple (
;F ; P), comprising a set 
, a �-�eld F of subsets of 
, and a probabilitymeasure P on (
;F), is called a probability space.Given two events A and B in F , if P (B) > 0 then the conditional probability thatA occurs given that B occurs is de�ned to beP (A j B) = P (ATB)P (B) : (2.2)1The material in this section is summarized from [5], [6] and [7].



CHAPTER 2. MATHEMATICAL BACKGROUND 7A family of events fAi : i 2 I ; A 2 Fg is called independent ifP  \i2J Ai! = Yi2J P (Ai) (2.3)for all �nite subsets J of I .2.1.2 Random variables and their distributionsA random variable is a function X : 
 ! IR with the property that f! 2 
 :X(!) � xg 2 F for each x 2 IR. Such an X is called to be F -measurable. The distributionfunction of a random variable X is the function F : IR ! [0; 1] given byF (x) = P (X � x) (2.4)where the abbreviation fX � xg denotes the event f! 2 
 : X(!) � xg 2 F .The random variable X is called discrete if it takes values only in some countablesubset fx1; x2; : : :g of IR. The random variable X is called continuous if its distributionfunction can be expressed as F (x) = Z x�1 f(u) du x 2 IR; (2.5)for some integrable function f : IR ! [0;1). The distribution function of a continuous ran-dom variable is obviously continuous. There is also another kind of random variable, calleda \singular" random variable. Other random variables (which are not discrete, continuousor singular) are \mixtures" of these three kinds.The joint distribution function of a random vector X = [X1; X2; : : : ; Xn] on theprobability space (
;F ; P) is the function F : IRn ! [0; 1] given by F (x) = P (X � x)for x = [x1; x2; : : : ; xn] 2 IRn. The expression fX � xg is an abbreviation for the eventf! 2 
 : X1(!) � x1; X2(!) � x2; : : : ; Xn(!) � xng 2 F . The random variables X and Yon the probability space (
;F ; P) are called jointly discrete if the vector [X; Y ] takes valuesonly in some countable subset of IR2, and jointly continuous if their distribution functioncan be expressed asF (x; y) = Z xu=�1 Z yv=�1 f(u; v) du dv x; y 2 IR; (2.6)for some integrable function f : IR2 ! [0;1).The (probability) mass function of a discrete random variable X is the functionf : IR ! [0; 1] given by f(x) = P (X = x).



CHAPTER 2. MATHEMATICAL BACKGROUND 8Example 2.1.1 (Poisson distribution) If a random variable X takes values in the setf0; 1; 2; : : :g with mass functionf(k) = �kk! e��; k = 0; 1; 2; : : : (2.7)where � > 0, then X is said to have the Poisson distribution with parameter �. Poissondistribution plays a key role in modeling shot noise in electronic and other systems.�The (probability) density function of a continuous random variable is the integrablefunction f : IR ! [0;1) in (2.5). The joint (probability) density function of two randomvariables X and Y is the integrable function f : IR2 ! [0;1) in (2.6).Example 2.1.2 (Exponential distribution) The random variable X is exponential withparameter � > 0, if it has the density functionF (x) = � e��x; x � 0: (2.8)This distribution is a cornerstone in modeling shot noise, and is closely related to the Pois-son distribution. For an exponential random variable X, we haveP (X > s + x jX > s) = P (X > x): (2.9)This is called the lack of memory property. Exponential distribution is the only continuousdistribution with this property.�Example 2.1.3 (Gaussian (Normal) distribution) Probably the most important con-tinuous distribution is the Gaussian distribution, which has two parameters � and �2 andthe density functionf(x) = 1p2��2 exp �(x� �)22�2 ! ; �1 < x <1: (2.10)It is denoted by N(�; �2).�Two random variables X and Y are called independent if fX � xg and fY � yg areindependent events for all x; y 2 IR. This de�nition applies to both discrete and continuousrandom variables.Let X and Y be random variables, and let g; h : IR ! IR. Then, g(X) and h(Y )are functions which map the sample space 
 into IR byg(X)(!) = g(X(!)); h(Y )(!) = h(Y (!)):



CHAPTER 2. MATHEMATICAL BACKGROUND 9Let us assume that g(X) and h(Y ) are random variables. (This holds only if they areF -measurable.) If X and Y are independent, then so are g(X) and h(Y ).Let X and Y be two jointly continuous random variables on (
;F ; P). The con-ditional distribution function of Y given X = x written FY jX(yjx) or P (Y � yjX = x), isde�ned to be FY jX(yjx) = Z yv=�1 f(x; v)fX(x) dvfor any x such that fX(x) > 0. fX(x) is the density function of X , and f(x; y) is the jointdensity function of X and Y . Then, the conditional (probability) density function of FY jX ,written fY jX , is given by fY jX(yjx) = f(x; y)fX(x) :Similarly, conditional distribution functions and conditional density functions can be de�nedfor jointly discrete random variables.2.1.3 ExpectationExpectation is probably the single most important notion in probability theory.The expectation of a discrete random variable X with mass function f is de�ned to beE [X ] = Xx:f(x)>0x f(x) (2.11)whenever this sum is absolutely convergent. The expectation of a continuous random vari-able X with density function f is de�ned to beE [X ] = Z 1�1 x f(x) dx (2.12)whenever this integral exists. A rigorous de�nition of expectation for an arbitrary randomvariable, regardless of its type (discrete, continuous, and ...), is constructed in measuretheory through abstract integration (Lebesgue-Stieltjes integral), which will not be discussedhere. The interested reader is referred to the texts on probability and measure theory.In our treatment, we have �rst de�ned probability measure, which then formed thebasis for the de�nition of expectation. It is also possible to �rst construct a de�nition forexpectation through abstract integration, and then de�ne a probability measure based onthe expectation of a special kind of random variable. Hence, expectation is a key conceptin probability theory. The expectation operator will be denoted by E [ ].



CHAPTER 2. MATHEMATICAL BACKGROUND 10If X and g(X) are continuous random variables thenE [g(X)] = Z 1�1 g(x) f(x) dx (2.13)where f is the density function of X . A similar relationship holds for discrete randomvariables.If k is a positive integer, then the kth moment mk of a random variable X isde�ned as mk = E hXki: (2.14)The kth central moment �k is then de�ned by�k = E h(X �m1)ki: (2.15)The two moments of most use are m1 = E [X ] and �2 = E h(X � E [X ])2i, called the mean(or expectation) and the variance of X respectively. The variance of a random variable cannot be negative.Example 2.1.4 (Mean and variance) Both the mean and variance of the Poisson distri-bution de�ned in Example 2.1.1 are equal to �. The mean and variance of the Exponentialdistribution (Example 2.1.2) are 1=� and 1=�2. For the Gaussian distribution (Example2.1.3), they are � and �2.�Two random variables X and Y are called uncorrelated if E [X Y ] = E [X ] E [Y ]. If X andY are independent then they are uncorrelated, but the converse is not true in general.The covariance of two random variables X and Y is de�ned ascov(X; Y ) = E [(X � E [X ])(Y � E [Y ])] = E [X Y ]� E [X ] E [Y ]: (2.16)If X and Y are uncorrelated then cov(X; Y ) = 0.A vector X = [X1; X2; : : : ; Xn] of random variables is said to have the multivariateGaussian distribution whenever, for all a 2 IRn; aT X = a1X1 + a2X2 + : : :+ anXn hasa Gaussian distribution. Two bivariate Gaussian random variables are independent if andonly if they are uncorrelated.For a vector X = [X1; X2; : : : ; Xn] of random variables, the mean vector is givenby � = E [X], and the n� n matrixV = E h(X� �) (X� �)Ti (2.17)



CHAPTER 2. MATHEMATICAL BACKGROUND 11is called the covariance matrix, because vij = cov(Xi; Xj).Let X and Y be two jointly continuous random variables on (
;F ; P). SupposeX = x is given. Conditional upon this, Y has a density function fY jX(yjx), which isconsidered to be a function of y. The expected value R yfY jX(yjx)dy of this density iscalled the conditional expectation of Y given X = x, and is denoted by E [Y jX = x]. Theconditional expectation depends on the value x taken by X , and hence can be thought of asa function of X itself. Then the conditional expectation E [Y jX] is itself a random variable,and one can calculate its expectation. It satis�es the following important propertyE [E [Y jX]] = E [Y ]: (2.18)2.1.4 Convergence of random variablesThe concept of a limit of a sequence of random variables naturally arises in manyproblems in probability theory. Random variables are real-valued functions on some samplespace, so convergence of a sequence of random variables is similar to the convergence ofa sequence of functions. There are several de�nitions of convergence for a sequence offunctions: pointwise convergence, norm convergence, convergence in measure [6]. Thesemodes of convergence can be adapted to suit families of random variables.There are four principal ways of interpreting the statement \Xn ! X as n!1",where fXng is a sequence of random variables. Let X1; X2; : : : ; X be random variables onsome probability space (
;F ; P). We say that1. Xn ! X almost surely, written Xn a:s:! X if f! 2 
 : Xn(!)! X(!) as n!1g is anevent whose probability is 1,2. Xn ! X in the rth mean, where r � 1, written Xn r! X , if E [jXrnj] < 1 for all nand E [jXn �X jr]! 0 as n!1;3. Xn ! X in probability, written Xn P! X , ifP (jXn �X j > ")! 0 as n! 1 for all " > 0;4. Xn ! X in distribution, written Xn D! X , ifP (Xn � x)! P (X � x) as n!1



CHAPTER 2. MATHEMATICAL BACKGROUND 12for all points x at which F (x) = P (X � x) is continuous.The de�nition for almost sure convergence involves a limit for the value of a random variableat a particular point ! 2 
 in the sample space: The sequence fXn(!)g is a sequence of realnumbers, and the limit Xn(!) ! X(!) as n ! 1 is de�ned in terms of the de�nition oflimit for a sequence of real numbers. Similarly, the other de�nitions above involve limits forsequences of probabilities and expectations, which are, basically, sequences of real numbers.These limits are also de�ned in terms of the limit for a sequence of real numbers. A sequenceof real non-random numbers fxng converges to a number x if and only if for all � > 0, thereexists N� such that jxn � xj < � if n � N�.The following implications hold:(Xn a:s:! X) ) (Xn P! X) (2.19)(Xn r! X) ) (Xn P! X) for any r � 1 (2.20)(Xn P! X) ) (Xn D! X) (2.21)(Xn r! X) ) (Xn s! X) for r > s � 1: (2.22)No other implications hold in general.2.1.4.1 Strong law of large numbersLet X1; X2; : : : be independent identically distributed (i.i.d.) random variables.Then 1n nXi=1Xi ! � almost surely; as n!1;for some constant �, if and only if E [jX1j] < 1. In this case � = E [X1]. A su�cientcondition for the strong law of large numbers is given by the following: Let X1; X2; : : : bei.i.d. random variables with E �X21� <1. Then1nPni=1Xi a:s:! �; 1nPni=1Xi 2! � as n!1: (2.23)2.1.4.2 Central limit theoremLet X1; X2; : : : be independent identically distributed random variables with �nitemeans � and �nite non-zero variances �2, and letSn = X1 +X2 + : : :+Xn:



CHAPTER 2. MATHEMATICAL BACKGROUND 13Then Sn � n�p(n�2) D! N(0; 1) as n!1: (2.24)where N(0; 1) denotes the Gaussian distribution with mean 0 and variance 1. The sameresult also holds under various weaker hypotheses than independence and identical distri-butions. The central limit theorem is the primary reason why so many random phenomenaare modeled in terms of Gaussian random variables. For example, the thermal noise voltageof a resistor is the result of a large number of elementary e�ects, namely the tiny voltageimpulses due to the individual ion cores and free electrons.2.2 Stochastic Processes 2A stochastic process X is a family fXt : t 2 Tg of random variables indexed bysome set T and taking values in some set S. There is an underlying probability space(
;F ; P), and each random variable Xt is an F -measurable function which maps 
 intoS. For stochastic processes in the study of signals and systems, the index set T usuallyrepresents time. We shall only be concerned with the cases when T represents time, andis one of the sets Z; f0; 1; 2; : : :g; IR, or [0;1). When T is an uncountable subset of IR,X is called a continuous-time stochastic process, and when T is a countable set, such asf0; 1; 2; : : :g, it is called a discrete-time stochastic process. We shall write X(t) rather thanXt for continuous-time stochastic processes, and Xn for discrete-time processes. The statespace S might be a countable (e.g. Z), or an uncountable set such as IR or IRn. We willbe mostly dealing with the case when S is an uncountable set, usually IR. A stochasticprocess may be interpreted as a \random function" of time, which is useful in relatingevolutionary physical phenomenon to its probabilistic model as a stochastic process, butnote that we have not formally de�ned what a \random function" is. We have formallyde�ned a stochastic process to be a time-indexed family of random variables, and all themathematical methods and tools of analysis for stochastic processes are developed basedon this formal de�nition.Evaluation of X(t) at some ! 2 
 yields a point in S, which will be denoted byX(t;!). For any �xed ! 2 
, there is a corresponding collection fX(t;!) : t 2 Tg ofmembers of S; this is called a realization or sample path of the stochastic process X at !.2The material in this section is summarized from [5], [6] and [7].



CHAPTER 2. MATHEMATICAL BACKGROUND 14The \complete" collection of the sample paths of a stochastic process is called the ensemble.The X(t) (for di�erent values of t) are not independent in general. If S � IR andt = [t1; t2; : : : ; tn] is a vector of members of T , then the vector [X(t1); X(t2); : : : ; X(tn)] hasthe joint distribution function F (x; t) : IRn ! [0; 1] given byF (x; t) = P (X(t1) � x1; : : : ; X(tn) � xn):The collection fF (x; t)g, as t ranges over all vectors of members of T of any �nite length, iscalled the collection of �nite-dimensional distributions (fdds) of X . In general, the knowl-edge of fdds of a process X does not yield complete information about the properties of itssample paths.Expectation, as de�ned in Section 2.1.3, can be interpreted as an ensemble average,and forms the basis in developing mathematical methods and tools of analysis for stochasticprocesses in the probabilistic approach to the design and analysis of signals and systems.Expectation in the context of stochastic processes can also be de�ned in terms of timeaverages instead of ensemble averages. There does exist a deterministic theory of stochasticprocesses based on time averages (i.e generalized harmonic analysis developed by NorbertWiener). We choose to use the probabilistic theory of stochastic processes. One importantreason for this is that the theory based on ensemble averages (i.e. probabilistic theory)for stochastic processes accommodates time-varying averages. On the other hand, time-averages remove all time-varying e�ects. Thus, to study the statistical behavior of time-varying phenomena, we must rely on the probabilistic theory and models. However theaverages measured in practice are often time averages on a single member of an ensemble,that is, a single sample path. For instance, experimental evaluation of signal-to-noise ratio(SNR) is often accomplished by time averaging. So, the connection between time averagesand ensemble averages needs to be formalized, which is treated in the theory of ergodicity.2.2.1 Mean and autocorrelationThe mean of the stochastic process X , at time t, is simply the mean of the randomvariable X(t), and is denoted by mX(t) = E [X(t)] (2.25)



CHAPTER 2. MATHEMATICAL BACKGROUND 15The autocorrelation of a stochastic process X , at times t1 and t2, is simply the correlationof the two random variables X(t1) and X(t2), and is denoted byRX(t1; t2) = E [X(t1)X(t2)] (2.26)The autocovariance of a stochastic process X , at times t1 and t2, is given byKX(t1; t2) = E [(X(t1)�mX(t1)) (X(t2)�mX(t2))]: (2.27)From (2.26) and (2.27), it follows thatKX(t1; t2) = RX(t1; t2)�mX(t1)mX(t2): (2.28)The cross-correlation and cross-covariance for two random processes X and Y are de�nedby RXY (t1; t2) = E [X(t1) Y (t2)] (2.29)KXY (t1; t2) = E [(X(t1)�mX(t1)) (Y (t2)�mY (t2))] (2.30)= RXY (t1; t2)�mX(t1)mY (t2): (2.31)2.2.2 Gaussian processesA real-valued continuous-time process is called Gaussian if each �nite-dimensionalvector [X(t1); : : : ; X(tn)] has the multivariate Gaussian distribution N(�(t);V(t)) for somemean vector � and some covariance matrix V which may depend on t = [t1; : : : ; tn].Gaussian processes are very widely used to model physical phenomena. The centrallimit theorem, presented in Section 2.1.4.2, is the primary reason for this. If we have a vectorof Gaussian processes X(t) = [X1(t); : : : ; Xn(t)], the mean vectormX(t) = [mX1(t); : : : ; mXn(t)] (2.32)and the correlation matrix RX(t1; t2) = E hX(t1)X(t2)Ti (2.33)for all t1 and t2, completely specify the fdds for the vector of processes X(t). This facttogether with the central limit theorem leads us to a very important practical conclusion:If we are able to (approximately) model the signals in our system with Gaussian processes



CHAPTER 2. MATHEMATICAL BACKGROUND 16(based on the central limit theorem), then to completely characterize these signals proba-bilistically, all we need is to calculate the means and all the correlations as given in (2.32)and (2.33). The mean and the correlations are sometimes called the �rst and second-orderprobabilistic characteristics of the process, due to the fact that they are obtained by calcu-lating the �rst and second-order moments through expectation. Even if the processes arenot Gaussian, a second-order probabilistic characterization (i.e. means and correlations)often yields \adequate" information for most practical problems. Hence, means and corre-lations and methods to calculate them are extremely important from a practical point ofview.2.2.3 Markov processesThe continuous-time process X , taking values in IR, is called a Markov process ifP (X(tn) � xjX(t1) = x1; : : : ; X(tn�1) = xn�1) = P (X(tn) � xjX(tn�1) = xn�1)for all x; x1; x2; : : : ; xn�1 and all increasing sequences t1 < � � � < tn of times.A Gaussian process X is a Markov process if and only ifE [X(tn)jX(t1) = x1; : : : ; X(tn�1) = xn�1] = E [X(tn)jX(tn�1) = xn�1]for all x1; x2; : : : ; xn�1 and all increasing sequences t1 < � � � < tn of times. If a process isboth Gaussian and Markov, then its autocovariance function satis�esKX(t3; t1) = KX(t3; t2)KX(t2; t1)KX(t2; t2)for all t1 � t2 � t3.Discrete state-space Markov processes are called Markov chains, which have beenstudied extensively in the literature.2.2.4 Stationary processesA real-valued stochastic process X is called nth-order stationary if its nth-orderfdds are invariant under time shifts, that is, if the familiesfX(t1); : : : ; X(tn)g and fX(t1 + h); : : : ; X(tn + h)g



CHAPTER 2. MATHEMATICAL BACKGROUND 17have the same joint distribution for all t1; : : : ; tn and h > 0. If X is nth-order stationary forevery positive integer n, then X is said to be strictly stationary. If X is strictly stationary,we must have mX(t1) = mX(t2) (2.34)RX(t1; t2) = RX(t1 + h; t2 + h) (2.35)for all t1, t2, and h > 0. If it is only known that (2.34) and (2.35) are valid, then X issaid to be wide-sense stationary (WSS). Similarly, two real-valued processes X and Y aresaid to be jointly WSS if and only if every linear combination faX(t) + bY (t) : a; b 2 IRgis a WSS process. It follows that they are jointly WSS if and only if both means, bothcorrelation functions, and the cross-correlation function are invariant under time shifts.In general, a WSS process is not necessarily strictly stationary. A Gaussian processis strictly stationary if and only if it is WSS.For a WSS process, the mean mx is independent of time, and the autocorrelation(and the autocovariance) depends only on the time di�erence t1 � t2, i.e.RX(t1; t2) = RX(t1 � t2): (2.36)Hence, for a WSS process X , the autocorrelation is a function of a single variable � = t1�t2,and is given by RX(�) = E [X(t+ �=2)X(t� �=2)]: (2.37)Note that RX(�) in (2.37) is an even function of � .2.2.5 Cyclostationary processesA processX is said to be wide-sense cyclostationary if its mean and autocorrelationare periodic with some period T : mX(t+ T ) = mX(t) (2.38)RX(t1 + T; t2 + T ) = RX(t1; t2) (2.39)for all t; t1; t2. The modi�er \wide-sense" will be omitted in the rest of our discussion.Unless noted otherwise, we will be dealing with wide-sense cyclostationary processes only.With a change of variables t1 = t + �=2; t2 = t � �=2, we will express the autocorrelationfunction in (2.39) as RX(t; �) = E [X(t+ �=2)X(t� �=2)] (2.40)



CHAPTER 2. MATHEMATICAL BACKGROUND 18which is a function of two independent variables, t and � , is periodic in t with periodT for each value of � , and is an even function of � . We assume that the Fourier seriesrepresentation for this periodic function converges, so that RX in (2.40) can be expressedas RX(t; �) = 1Xk=�1R(k)X (�) exp (j2�kfct); (2.41)where fc = 1=T is the fundamental frequency, and the Fourier coe�cients R(k)X (�) are givenby R(k)X (�) = 1T Z T=2�T=2Rx(t; �) exp(�j2�kfct)dt: (2.42)The concept of cyclostationarity can be generalized to almost cyclostationarity, in whichcase the autocorrelation in (2.40) is an almost periodic function of t.A process X is called mean-square periodic ifE hjX(t+ T )�X(t)j2i = 0 (2.43)for every t and for some period T . From this it follows that, for a speci�c tP (X(t+ T ) = X(t)) = 1: (2.44)It does not, however, follow that X(t;!) = X(t + T ;!) for all ! 2 
 and for all t. Themean of a mean square periodic process is periodic just like a cyclostationary process. Onthe other hand, the autocorrelation of a mean square periodic process is doubly periodicRX(t1 + nT; t2 +mT ) = RX(t1; t2) (2.45)for all integers m and n. The autocorrelation of a cyclostationary process is not, in general,doubly periodic, because it does not satisfy (2.45) for any m and n, but it does satisfy(2.45) for m = n. A mean-square periodic process is cyclostationary, but a cyclostationaryprocess is not necessarily mean-square periodic.2.2.6 Spectral densityFrequency-domain concepts and methods are widely used in the theory of signalsand systems. Fourier series and Fourier transform are the main mathematical tools forfrequency-domain analysis. Up to this point in our treatment of stochastic processes, wehave not used frequency-domain concepts except for the Fourier series representation of the



CHAPTER 2. MATHEMATICAL BACKGROUND 19autocorrelation of a cyclostationary process. At �rst sight, it is not obvious how we can useFourier transforms with stochastic processes. One idea is to apply the Fourier transform tothe sample paths (which was de�ned before) of stochastic processes. However for most of thestochastic processes (e.g. WSS processes), the sample paths are not �nite-energy functions,hence they are not Fourier transformable. A generalized (integrated) Fourier transform wasdeveloped by Norbert Wiener in his work on generalized harmonic analysis (1930). We willnot further discuss this rather technically involved approach.Even though the sample paths for stochastic processes are not Fourier trans-formable in general, it is possible to use Fourier transforms on the autocorrelation functionsof stochastic processes and obtain practically useful frequency domain characterizations.The spectral density or the spectrum of a WSS stochastic process X is de�ned as the Fouriertransform of the autocorrelation function in (2.37), i.e.SX(f) = Z 1�1RX(�) exp (�j2�f�)d� (2.46)whenever the integral exists. Since RX(�) is an even function of � , SX(f) is a real and evenfunction. It can also be shown that it is a nonnegative function. From (2.46), we can deriveRX(0) = E hX(t)2i = Z 1�1 SX(f)df (2.47)using the inverse Fourier transform relationshipRX(�) = Z 1�1 SX(f) exp (j2�f�)df: (2.48)For a nonstationary process X , the autocorrelation is not a function of a single variable ingeneral, i.e. RX(t; �) = E [X(t+ �=2)X(t� �=2)]: (2.49)In this case, an instantaneous or time-varying spectral density is de�ned asSX(t; f) = Z 1�1 RX(t; �) exp (�j2�f�)d�: (2.50)For a complete second-order probabilistic characterization of a nonstationary process, spec-i�cation of either the time-varying autocorrelation function in (2.49) or the time-varyingspectral density in (2.50) is needed.If X is a cyclostationary process, then the time-varying spectral density in (2.50)is periodic in t with fundamental frequency fc = 1=T . We assume that the Fourier series



CHAPTER 2. MATHEMATICAL BACKGROUND 20representation for this periodic function converges, so that SX in (2.50) can be expressedas SX(t; f) = 1Xk=�1 S(k)X (f) exp (j2�kfct): (2.51)It can be shown that S(k)X (f) = Z 1�1R(k)X (�) exp (�j2�f�)d� (2.52)where S(k)X (f) are the Fourier series coe�cients in (2.51), and R(k)X (�) are the Fourier seriescoe�cients in (2.41). Second-order probabilistic characteristics of cyclostationary processesare completely characterized by either S(k)X (f) in (2.51) or R(k)X (�) in (2.41).Nonstationary processes (as opposed toWSS processes) are said to exhibit so-calledspectral correlation, which is a concept that comes from the deterministic theory of stochasticprocesses based on time averages. To get an intuitive feeling for spectral correlation, we willdiscuss the WSS case. This discussion is very non-rigorous and simplistic, but it illustratesthe concept of spectral correlation. Let X be a zero-mean WSS process. Assume that thesample paths of the process are Fourier transformable (which is not correct, since a WSSprocess has sample paths with in�nite energy), and the Fourier transform �X�X(f) = Z 1�1X(t) exp (�j2�ft)dt (2.53)is also a well-de�ned zero-mean stochastic process. Then, one can show, by formal manip-ulation of integrals, that E h �X(f1) �X(f2)�i = SX(f1) �(f1 � f2); (2.54)where SX is the spectral density of X as de�ned in (2.46), and � is the Dirac impulse.Hence, the correlation between two di�erent frequency samples of �X is zero, which wouldnot be true for a nonstationary process.2.2.7 Wiener processThe Wiener process to be de�ned in this section is of fundamental importance,not only as a model for a variety of physical phenomena such as Brownian motion, but alsoas the core of the theory of calculus for stochastic processes. A standard Wiener processW = fW (t) : t � 0g is a real-valued Gaussian process such that1. W (0) = 0.



CHAPTER 2. MATHEMATICAL BACKGROUND 212. W has independent stationary increments:� The distribution of W (t)�W (s) depends on t � s alone.� The random variables W (tj)�W (sj); 1 � j � n, are independent whenever theintervals (sj ; tj ] are disjoint.3. W (t+ s)�W (s) is a Gaussian random variable, N(0; t) for all s; t � 0.Given the axiomatic de�nition of the Wiener process, it can be shown that it is a Markovprocess. The mean and the autocorrelation function of the Wiener process are given bymW (t) = E [W (t)] = 0 (2.55)RW (t1; t2) = E [W (t1)W (t2)] = min (t1; t2): (2.56)Since a Wiener process is a Gaussian process, the mean and autocorrelation given abovecompletely characterize its fdds. Note that a Wiener process is neither WSS nor cyclosta-tionary.2.2.8 Poisson processThe Poisson process to be de�ned in this section is of fundamental importance,not only as a model for shot noise in electronic devices, but also as the core of the theory ofpoint processes. An inhomogeneous Poisson (counting) process with time-varying intensity�(t) is a process N = fN(t) : t � 0g taking values in S = f0; 1; 2; : : :g such that1. N(0) = 0; if s < t then N(s) � N(t),2. P (N(t+ h) = n +m jN(t) = n) = 8>>><>>>: �(t)h+ o(h) if m = 1o(h) if m > 11� �(t)h+ o(h) if m = 0 ;3. if s < t then the number N(t) �N(s) of emissions/crossings/arrivals in the interval(s; t] is independent of the times of emissions/crossings/arrivals during [0; s].Given the axiomatic de�nition of the Poisson counting process above, it can be shown thatthe probability of the number of emissions/crossings/arrivals in the interval (t1; t2) being



CHAPTER 2. MATHEMATICAL BACKGROUND 22equal to k is given byP (k emissions in (t1; t2)) = exp (� Z t2t1 �(t)dt) (R t2t1 �(t)dt)kk! : (2.57)We observe that the number of emissions in the interval (t1; t2) is a Poisson random variable(see Example 2.1.1) with parameter Z t2t1 �(t)dt:There is an important, alternative and equivalent formulation of a Poisson counting processwhich provides much insight into its behavior. Let T0; T1; : : : be given byT0 = 0; Tn = infft : N(t) = ng:Then Tn is the time of the nth arrival. The interarrival times are the random variablesX1; X2; : : : given by Xn = Tn � Tn�1:From a knowledge of N , one can determine X1; X2; : : :. Conversely, one can reconstructN from a knowledge of the Xi. For a homogeneous Poisson counting process (�(t) =� a constant), the interarrival times X1; X2; : : : are independent identically distributedexponential random variables with parameter �. Using the memoryless property of theexponential distribution, one can then show that a homogeneous Poisson process is a Markovprocess. The mean and the autocorrelation function of the Poisson process are given bymN(t) = E [N(t)] = R t0 �(�)d� (2.58)RN(t1; t2) = E [N(t1)N(t2)] = Rmin(t1;t2)0 �(t)dt h1 + Rmax(t1;t2)0 �(t)dti : (2.59)If �(t) = � is a constant, these reduce tomN(t) = �t (2.60)RN(t1; t2) = �min (t1; t2) + �2t1t2: (2.61)Note that the (homogeneous or inhomogeneous) Poisson process is neither WSS nor cyclo-stationary.For a homogeneous Poisson process, if it is known that there are exactly k arrivalsin an interval (t1; t2), then these arrival times have the same statistics as k arbitrary points



CHAPTER 2. MATHEMATICAL BACKGROUND 23placed at random in this interval. In other words, the k points can be assumed to be kindependent random variables uniformly distributed in the interval (t1; t2).A homogeneous Poisson process has stationary independent increments, meaningthat1. The distribution of N(t)�N(s) depends only on t � s.2. The increments N(tj) � N(sj); 1 � j � n, are independent, whenever the intervals(sj ; tj ] are disjoint.2.2.9 Continuity and di�erentiability of stochastic processesThe notions of continuity and di�erentiability for non-random real-valued functionsare de�ned through the concept of limit of sequences of real numbers. Similarly, one can de-�ne continuity and di�erentiability for stochastic processes through the limit of sequences ofrandom variables. In Section 2.1.4, we discussed four di�erent ways of de�ning convergencefor sequences of random variables. Now, we will discuss continuity and di�erentiability forstochastic processes using mean-square convergence, which can also be de�ned using otherforms of convergence such as almost sure convergence.A stochastic process X is called mean-square continuous at t ifE hjX(t)�X(t� h)j2i! 0 as h! 0: (2.62)It can be shown that (2.62) is satis�ed if and only if the autocorrelation RX(t1; t2) iscontinuous in t1 and t2 at the point t = t1 = t2, that is, if[RX(t; t)� RX(t� h1; t� h2)]! 0 as h1; h2 ! 0: (2.63)If X is WSS, then (2.63) is satis�ed if and only if RX(�) is continuous at � = 0, that is, if[RX(h)�RX(0)]! 0 as h! 0 (2.64)The autocorrelation in (2.56) (for t1; t2 > 0) for the Wiener process satis�es (2.63) for allt > 0. Hence, the Wiener process is mean-square continuous for all t > 0.A stochastic process X is called mean-square di�erentiable at t if there exists arandom variable X 0(t) such thatE "���� 1h [X(t)�X(t� h)]�X 0(t)����2#! 0 as h! 0: (2.65)



CHAPTER 2. MATHEMATICAL BACKGROUND 24If X is mean-square di�erentiable for all t, then the process X 0(t) = d=dtX(t) (assumingthat it is a well-de�ned process in the underlying probability space) is called the derivativeof X . It can be shown that (2.65) is satis�ed if and only if the autocorrelation RX(t1; t2) isdi�erentiable jointly in t1 and t2 at the point t = t1 = t2, that is, if the limit1h1h2 [RX(t; t)� RX(t� h1; t)�RX(t; t� h2) + RX(t� h1; t� h2)] ! @2 RX(t1;t2)@ t1@ t2 ���t1=t2=tas h1; h2 ! 0 (2.66)exists. If X is WSS, then the limit in (2.66) exists if and only if RX(�) is twice di�erentiableat � = 0, that is, if the limit1h2 [RX(h)� 2RX(0) +RX(�h)]! @2 RX(�)@ �2 ������=0 as h! 0 (2.67)exists. The autocorrelation in (2.56) for the Wiener process violates (2.66). Hence, theWiener process is not mean-square di�erentiable although it is mean-square continuous.If a process X is mean-square di�erentiable for all t, and the derivative process X 0exists, then the mean and the autocorrelation of the derivative process are given bymX 0(t) = ddtmX(t) (2.68)RX 0(t1; t2) = @2 RX(t1; t2)@ t1@ t2 ; (2.69)and if X is WSS, then mX 0(t) = 0 (2.70)RX 0(�) = �@2 RX(�)@ �2 : (2.71)These can be obtained by interchanging the order of the operations of di�erentiation andexpectation (which should be justi�ed).Mean-square integrability is de�ned in a similar way through the use of a rectan-gular Riemann sum.2.2.10 White noiseThe so-called white noise is generally understood in engineering literature as aWSS (not necessarily Gaussian) process �, for �1 < t <1, with mean E [�(t)] = 0 and a



CHAPTER 2. MATHEMATICAL BACKGROUND 25constant spectral density on the entire real axis, i.e.S�(f) = 1 for all f 2 IR: (2.72)Using (2.48), we can calculate the autocorrelation function to beR�(�) = E [�(t+ �=2)�(t� �=2)] = �(�) (2.73)where � is the Dirac impulse. From (2.73), we see that � is a process such that �(t + �=2)and �(t � �=2) are uncorrelated for arbitrarily small values of � . In particular, we wouldhave E h�(t)2i = Z 1�1 S�(f)df =1; (2.74)which means that the variance of �(t) is in�nite for all t.In our above discussion of white noise, we have freely used the Dirac's � as it iswidely used in engineering. As � is not a well-de�ned function but a generalized function,white noise is not a well-de�ned stochastic process. White noise as de�ned above does notexist as a physically realizable process, and the singular behavior it exhibits does not arise inany realizable context. White noise is a so-called generalized stochastic process, and playsa very important role in the theory of calculus for stochastic processes. The di�erentialequations which include white noise as a driving term have to be handled with great care.If we calculate the autocorrelation function for the derivative W 0 of the Wienerprocess using (2.69), we obtainRW 0(t1; t2) = @2 RW (t1; t2)@ t1@ t2= @2@ t1@ t2 min (t1; t2)= �(t1 � t2) (2.75)which involves the Dirac impulse. This is the autocorrelation for the WSS white noiseprocess! Let us de�ne a zero-mean process �N by subtracting the mean of a homogeneousPoisson process (with parameter �) from itself:�N(t) = N(t)� �t:Then the autocorrelation function for �N is given byR �N(t1; t2) = �min (t1; t2) (2.76)



CHAPTER 2. MATHEMATICAL BACKGROUND 26which is exactly in the same form as the autocorrelation of the Wiener process (except fora constant factor). Hence, the autocorrelation of the derivative �N 0 of �N is given byR �N 0(t1; t2) = � �(t1 � t2)which is the autocorrelation of a WSS white noise process (with a constant spectral densityequal to � on the entire real axis). Actually, it can be shown that a process obtained as theformal derivative of any zero-mean process with stationary and uncorrelated increments hasan autocorrelation function in the form of (2.73), and is therefore a white noise process. TheWSS white process obtained as the derivative of the Wiener process is a Gaussian process,and therefore called Gaussian white noise. The process obtained as the derivative of thePoisson process (after subtraction of the mean) is called Poisson white noise. Note that eventhough both the Wiener process and the Poisson process are not WSS, their \derivative",white noise, is a WSS (generalized) process. White noise is a very useful mathematicalidealization for modeling random physical phenomena that 
uctuate rapidly with virtuallyuncorrelated values for di�erent instants of time.2.2.11 ErgodicityThe theory of ergodicity deals with the relationship between ensemble averages (i.e.expectation) and time averages, and hence formalizes the connection between the proba-bilistic theory of stochastic processes based on ensemble averages, and the deterministictheory based on time averages.Let X be a stochastic process with mean mX(t), and the autocorrelation andautocovariance functions RX(t; �) and KX(t1; t2) given byRX(t; �) = E [X(t+ �=2)X(t� �=2)] (2.77)KX(t1; t2) = E [X(t1)X(t2)]�mX(t1)mX(t2) (2.78)We de�ne the average mean hmXi for X as the limit1T Z T=2�T=2mX(t)dt! hmXi as T !1; (2.79)and the average autocorrelation hRXi(�) for X as the limit1T Z T=2�T=2RX(t; �)dt! hRXi(�) as T !1 (2.80)



CHAPTER 2. MATHEMATICAL BACKGROUND 27whenever these limits exist. The �nite-time empirical mean for a stochastic process X isde�ned as m̂X(T ) = 1T Z T=2�T=2X(t)dt: (2.81)Note that m̂X(T ) is a random variable (assuming that it is well-de�ned with the integralabove interpreted as the mean-square limit of a rectangular Riemann sum) indexed by T .The �nite-time empirical autocorrelation for a stochastic process X is de�ned asR̂X(�)T = 1T Z T=2�T=2X(t+ �=2)X(t� �=2)dt: (2.82)Note that R̂X(�)T is a random variable (assuming that it is well-de�ned with the integralabove interpreted as the mean-square limit of a rectangular Riemann sum) indexed by T .If the following limit m̂X(T ) 2! m̂X as T !1 (2.83)exists (See Section 2.1.4 for the de�nition of mean-square limit that is denoted by \ 2!"in (2.83).), X is said to exhibit mean-square regularity of the mean, and m̂X is called theempirical mean of X , which is also a random variable. If the following limitR̂X(�)T 2! R̂X(�) as T !1 (2.84)exists for every � , X is said to exhibit mean-square regularity of the autocorrelation, andR̂X(�) is called the empirical autocorrelation function of X , which is also a random vari-able indexed by � . It can be shown that mean-square regularity of the mean and theautocorrelation implies that hmXi = E [m̂X ] (2.85)hRXi(�) = E hR̂X(�)i: (2.86)A regular process X is said to have mean-square ergodicity of the mean ifE hjm̂X � E [m̂X ]j2i = 0; (2.87)and a necessary and su�cient condition for this is1T 2 Z T=2�T=2 Z T=2�T=2KX(t1; t2)dt1dt2 ! 0 as T !1: (2.88)



CHAPTER 2. MATHEMATICAL BACKGROUND 28If the process X is WSS, then the condition (2.88) reduces to1T Z T0 KX(�)d� ! 0 as T !1 (2.89)where KX(�) = E [X(t+ �=2)X(t� �=2)]�mX(t+ �=2)mX(t� �=2)A regular process X is said to have mean-square ergodicity of the autocorrelation ifE ����R̂X(�)� E hR̂X(�)i���2� = 0 (2.90)for every � . A necessary and su�cient condition for the mean-square ergodicity of theautocorrelation can be found by replacing X(t) in (2.88) and (2.89) with Y� (t) = X(t +�=2)X(t� �=2) where Y� is a process which is indexed by � . Note thatmY� (t) = RX(t; �): (2.91)If X has mean-square ergodicity of the mean and the autocorrelation (which also meansthat it is regular), then we have E hjm̂X � hmXij2i = 0 (2.92)E ����R̂X(�)� hRXi(�)���2� = 0: (2.93)For a WSS process X , we have mX = E [X(t)] = hmXi (2.94)RX(�) = E [X(t+ �=2)X(t� �=2)] = hRXi(�): (2.95)Then, if X is WSS and ergodic (which also means that it is regular), we haveE hjm̂X �mX j2i = 0 (2.96)E ����R̂X(�)�RX(�)���2� = 0: (2.97)Summarizing:� For a WSS regular process the empirical autocorrelation function R̂X(�) is in generala random variable (indexed by �) and its expectation is equal to the probabilisticautocorrelation RX(�). If X is regular, WSS and ergodic then the variance of theempirical autocorrelation is zero. Thus, for a regular, WSS and ergodic X one cancalculate the probabilistic autocorrelation by calculating the empirical autocorrelationusing a single sample path of the process.



CHAPTER 2. MATHEMATICAL BACKGROUND 29� For a nonstationary regular process, the empirical autocorrelation function R̂X(�)is in general a random variable (indexed by �) and its expectation is equal to thetime-average of the instantaneous probabilistic autocorrelation RX(t; �) (averagingover t). If X is regular and ergodic then the variance of the empirical autocorrelationis zero. Thus, for a regular, nonstationary, ergodic process X , one can calculatethe time-average of the instantaneous probabilistic autocorrelation by calculating theempirical autocorrelation using a single sample path of the process.Up to this point, our discussion of ergodicity involved time-domain second-orderprobabilistic characteristics (i.e. the autocorrelation). One can extend the ergodicity con-cepts for regular processes to frequency domain by de�ning the empirical spectral densityŜX(f) as the Fourier transform of the empirical autocorrelation R̂X(�)ŜX(f) = Z 1�1 R̂X(�) exp (�j2�f�)d�: (2.98)One can de�ne the average spectral density hSXi(f) as in (2.80) but, this time, as thetime-average of the instantaneous probabilistic spectral density de�ned by (2.50). Then,for a regular process, expectation of the empirical spectral density is equal to the time-average of the instantaneous probabilistic spectral density SX(t; f) (averaging over t). Fora regular and ergodic process the variance of the empirical spectral density is zero. Thus,for a regular, nonstationary, ergodic process X , one can calculate the time-average of theinstantaneous probabilistic spectral density by calculating the empirical spectral densityusing a single sample path of the process.For a regular and ergodic process X , although the limit in (2.84) exists and theFourier transform in (2.98) is well-de�ned, it can be shown that the limitlimT!1 1T Z 1�1 "Z T=2�T=2X(t+ �=2)X(t� �=2)dt# exp (�j2�f�)d� (2.99)does not exist in general in any useful sense (i.e. the order of the limit in (2.84) and theFourier transform in (2.98) cannot be changed). This has signi�cant practical implicationsin estimating the empirical spectral density, which we will discuss next.Let X be a regular and ergodic stochastic process, and let Xsp(t) = X(t;!) be asample path for some �xed ! 2 
. Our goal is to calculate an estimate for the time-averageof the instantaneous probabilistic spectral density for X . Since X is ergodic, we can getthis estimate by calculating an estimate of the empirical spectral density using the sample



CHAPTER 2. MATHEMATICAL BACKGROUND 30path Xsp(t). The �nite-time spectrum or the �nite-time periodogram for X is given by1T j ~XT (f)j2 (2.100)where ~XT (f) = Z T=2�T=2Xsp(t) exp (�j2�ft)dt: (2.101)It can be shown that (for the reason pointed out above), the limit of the periodogram1=T j ~XT(f)j2 as T !1 does not exist. It becomes more and more erratic as T is increased.The erratic behavior of (2.100) can be removed by time-averaging before the limit as T ! 1is taken. This can be accomplished by allowing the location of time interval of analysis[�T=2; T=2] to depend on time u to obtain [u � T=2; u+ T=2]. The corresponding time-varying �nite-time periodogram for X is given by1T j ~XT (u; f)j2 (2.102)where ~XT (u; f) = Z u+T=2u�T=2 Xsp(t) exp (�j2�ft)dt: (2.103)Then, it can be shown that1U Z U=2�U=2 1T j ~XT (u; f)j2du! ŜX(f) as T; U !1 (2.104)where ŜX(f) is the empirical spectral density with mean hSXi(f) and variance equal tozero. In practice, we can not calculate this limit as T; U ! 1, since we only have a�nite time-segment of the sample path Xsp(t). However, from (2.104), we know that thecalculated estimate for the empirical spectral density using (2.104) will get better as weuse more information (increase the width of the time interval) for Xsp(t). On the otherhand, the estimate obtained by calculating (2.100) becomes more and more erratic as T isincreased. In practice, we have a sampled version of Xsp(t). Hence, the integrals in (2.103)and (2.104) are converted to summations for numerical calculations, and the FFT algorithmis used the calculate the Fourier transform in (2.103).2.2.12 Numerical simulation of stochastic processesE�ective analytical methods for analyzing systems involving stochastic processesare most of the time achievable only in some simple cases. In practice, one is often confronted



CHAPTER 2. MATHEMATICAL BACKGROUND 31with the problem of \simulating" a stochastic process on the computer. In this context,numerical simulation of a continuous-time stochastic process is meant to mean generatingsample paths of the process at discrete time points in a speci�ed time interval. Numericalsimulation of stochastic processes in this sense, is a vast and widely explored topic.The most common technique in simulation of stochastic processes is based on atrigonometric representation of stationary stochastic processes. The following assertion isthe basis for such approaches: For an arbitrary stationary stochastic process X , for any� > 0 and arbitrary T (su�ciently large), there exist pairwise uncorrelated random variablesA1; : : : ; An and B1; : : : ; Bn, and real numbers f1; : : : ; fn such that, for arbitrary t 2 [�T; T ],we have E "(X(t)� nXi=1(Ak cos (2�f1t) +Bk sin (2�f1t))2)# � �: (2.105)For numerical simulation purposes, one needs to have a way of characterizing or choosingAk, Bk and fk . Practical numerical simulations of stationary stochastic processes are mostoften accomplished by use of �nite sum of cosine functions with random phase angles.We will not further discuss the vast topic of numerical simulation of stochasticprocesses, but we would like to emphasize the fact that using ad-hoc and \unjusti�ed" waysof simulating stochastic processes will often yield wrong conclusions about the behaviorof a system under the e�ect of the stochastic process. One always has to justify that arepresentation of a stochastic process, and the approximate numerical simulation schemebased on this representation generate sample paths which converge, in some rigorous anduseful sense, to the sample paths of the original stochastic process.2.3 Filtering of Stochastic Processes with Linear Transfor-mations 3In Section 2.2, we have seen that the mean and autocorrelation function/spectraldensity provide useful information about a stochastic process. We will use stochastic pro-cesses to model noise sources. We are naturally interested in investigating the e�ect of thesenoise sources as inputs to a \system". We would like to be able to calculate the probabilis-tic characteristics of the stochastic process at the output of the \system", in particular the3The material in this section is summarized mostly from [5] and [8]. See [5] for a detailed discussion ofcyclostationary processes.



CHAPTER 2. MATHEMATICAL BACKGROUND 32mean and the autocorrelation. We will concentrate on linear transformations, because mostof the practical systems we will be dealing with can be approximately modeled as linearsystems for noise signals. We will investigate the e�ect of linear transformations on themean and the autocorrelation function/spectral density of stochastic processes. The e�ectof the linear transformations on the fdds of the process will not be studied here. It directlyfollows from the de�nition of a Gaussian process (see Section 2.2.2) that a linearly trans-formed Gaussian process is still a Gaussian process, and the fdds for Gaussian processes arecompletely speci�ed by their mean and autocorrelation functions.2.3.1 Dynamical system representationUp to this point, our discussion concentrated on a formalism (theory of proba-bility and stochastic processes) for mathematical representation of \random" signals (i.e.noise signals) as stochastic processes. Now, we will move on to discuss the mathematicalrepresentation of systems. We will assume that the systems themselves are deterministic,i.e. \non-random". All systems are also considered to be causal, since they are supposedto model physical systems.A very general dynamical system representation as a mathematical model for allkinds of systems can be constructed as a six-tuple which is composed of a set (which usuallyrepresents time), an input space (set of input functions), a set of output functions, a setof states, a state-transition function, and a read-out map for the output, along with someaxioms about causality, Markovian property, and the semigroup property. This dynamicalsystem representation is general enough to represent di�erential systems as well as �nite-state machines. One can formally de�ne the notions of linearity and time-invariance basedon this dynamical system representation. We will not go into this rather technically involveddiscussion here. Instead, for our current discussion, we will concentrate on a mathematicalrepresentation of a continuous-time dynamical system from an input/output relationshipperspective, considering it as a black box: A system is de�ned to be a function H : CIR ! CIRthat maps an input fx(t);�1 < t < +1g into an output fy(t);�1 < t < 1g, withcomplex-valued inputs and outputs.4 In our discussion, we will consider single-input, single-output (SISO) systems for notational simplicity. The extension to multiple-input, multiple-output (MIMO) systems is straightforward.4C denotes the set of complex numbers.



CHAPTER 2. MATHEMATICAL BACKGROUND 332.3.2 Linear dynamical system representationA system H is said to be linear if H(a x1+b x2) = aH(x1)+bH(x2), for all a and bin C and all x1 and x2 in CIR. A system H is said to be time-invariant if H(fx(t+ �);�1 <t < +1g) = fH(x)(t+ �);�1 < t < +1g.One can de�ne Dirac's �(:) byZ 1�1 x(u)�(t� u)du = x(t) (2.106)for all x(:) continuous at t. Now, let H be a linear system. The impulse response of H isde�ned as h(t; u) = H(�(t � u)). The system H is said to be causal if h(t; u) = 0 for t < u.It can be shown that H(x)(t) = Z 1�1 x(u)h(t; u)du (2.107)for some input x 2 CIR. If H is linear and time-invariant (LTI), then h(t; u) = h(t � u).A linear system H is said to be memoryless if h(t; u) = c(t)�(t � u) for somec : IR! IR. An LTI system is memoryless if h(t� u) = c �(t� u) for some c 2 IR.If the input to an LTI system H is x(t) = exp (j2�ft), then it can be shown thatthe output is H(x)(t) = H(f) exp (j2�ft) (2.108)where H(f) is the Fourier transform of the impulse response h(t),H(f) = Z 1�1 h(t� u) exp (�j2�f(t� u))du (2.109)and is called the system transfer function. If x(t) = R1�1X(f) exp(j2�ft)df , i.e. X(f) =F fx(t)g, then H(x)(t) = Z 1�1H(f)X(f) exp(j2�ft)df (2.110)also Y (f) = F fH(x)(t)g = H(f)X(f): (2.111)For a memoryless LTI system with impulse response h(t) = c �(t), we have H(f) = c,independent of f .The usefulness of the Laplace/Fourier transform theory for the analysis and syn-thesis of LTI systems is apparent by looking at (2.107) (an integral relationship) and (2.111)(simple multiplication relationship). The Laplace/Fourier transform belongs to a class ofanalysis and synthesis techniques called integral transforms for linear systems. We will not



CHAPTER 2. MATHEMATICAL BACKGROUND 34go into a general discussion of the integral transform theory here. A detailed treatment canbe found in [14]. Motivated by the usefulness of the Laplace/Fourier transform theory forLTI systems, an e�ort was made in the literature to develop a complete operational cal-culus for linear time-varying (LTV) systems by \extending" the Laplace/Fourier transformtheory. Such a transform was proposed by L}ot� Zadeh in 1950 [8]. There was a contro-versy in the literature on the usefulness of this transform. Nevertheless, for our purposes,this transform forms a rigorous basis for analyzing the e�ect of noise on LTV systems. Byanalogy with (2.109), Zadeh de�nes the system transfer function H(f; t) for an LTV systemby H(f; t) = Z 1�1 h(t; u) exp (�j2�f(t� u))du: (2.112)Note that, in contrast to H(f) in (2.109), H(f; t) in (2.112) is a function of both f and t.It can be easily shown that, if the input to an LTV system H is x(t) = exp (j2�ft), thenthe output is H(x)(t) = H(f; t) exp (j2�ft) (2.113)which is a generalization of (2.108) to LTV systems. If x(t) = R1�1X(f) exp (j2�ft)df , i.e.X(f) = F fx(t)g, then H(x)(t) = Z 1�1H(f; t)X(f) exp(j2�ft)df: (2.114)For a memoryless LTV system with h(t; u) = c(t)�(t� u), we have H(f; t) = c(t), indepen-dent of f .A linear system is said to be (linear) periodically time-varying (LPTV), if theimpulse response satis�es h(t; u) = h(t + T; u+ T ) (2.115)for all t; u 2 IR, and for some period T > 0. Then, for an LTPV system, the impulseresponse h(t+�; t) is periodic in t for every � , and can therefore be represented by a Fourierseries (assumed to converge)h(t + �; t) = 1Xn=�1 hn(�) exp (j2�nfct) (2.116)where fc = 1=T is the fundamental frequency, and the Fourier coe�cients hn(�) are givenby hn(�) = 1T Z T=2�T=2 h(t+ �; t) exp(�j2�nfct)dt: (2.117)



CHAPTER 2. MATHEMATICAL BACKGROUND 35Then the system transfer functionH(f; t) = Z 1�1 h(t; t� �) exp (�j2�f�)d� (2.118)is also periodic in t and can be represented by a Fourier seriesH(f; t) = 1Xn=�1Hn(f + nfc) exp (j2�nfct) (2.119)where Hn(f) = Z 1�1 hn(�) exp (�j2�f�)d�: (2.120)If the input to an LPTV system H is x(t) = exp (j2�ft), then the output isH(x)(t) = H(f; t) exp (j2�ft) = 1Xn=�1Hn(f + nfc) exp (j2�(f + nfc)t) (2.121)which is a special case of (2.113). If x(t) = R1�1X(f) exp(j2�ft)df is the input to an LPTVsystem, i.e. X(f) = F fx(t)g, then the output is given byH(x)(t) = Z 1�1H(f; t)X(f) exp(j2�ft)df (2.122)= Z 1�1 1Xn=�1Hn(f + nfc) exp (j2�nfct)X(f) exp(j2�ft)df (2.123)= F�1 ( 1Xn=�1Hn(f)X(f + nfc)): (2.124)Hence, the Fourier transform of the output is Y (f) = P1n=�1Hn(f)X(f + nfc), whichis a generalization of (2.111) to LPTV systems. For a memoryless LPTV system withh(t; u) = c(t)�(t� u), we have H(f; t) = c(t), independent of f , and c(t) is periodic in t.From (2.108), we observe that if a single complex exponential at frequency f isinput to an LTI system, the output is also a single complex exponential at frequency f witha scaled amplitude, where the scaling is set by the transfer function H(f). For an LTVsystem, the output for a single complex exponential input, in general, contains a continuumof frequencies. For LPTV systems, from (2.121), we observe that the output correspondingto a single complex exponential at frequency f is a summation of complex exponentials atfrequencies f + nfc; n 2 Z, where fc is the fundamental frequency for the LPTV system.It is interesting to compare this with the fact that the steady-state response of a nonlineartime-invariant system to a complex exponential with frequency f is a summation of complexexponentials at the harmonics of the input frequency f .



CHAPTER 2. MATHEMATICAL BACKGROUND 362.3.3 Stochastic processes and linear systemsIn the previous section, we considered deterministic inputs to linear systems. Now,let a stochastic processX be the input to a linear system with impulse response h(t; u). Notethat the system is considered to be deterministic. Then the output is another stochasticprocess Y given by Y (t) = Z 1�1X(u)h(t; u)du (2.125)assuming that the above integral is well-de�ned for all t in some rigorous sense (e.g. mean-square integrability). Then the mean and the autocorrelation of Y , in terms of the meanand autocorrelation of X , are given bymY (t) = R1�1mX(u)h(t; u)du (2.126)RY (t1; t2) = R1�1 R1�1 RX(r; s)h(t1; r)h(t2; s)drds : (2.127)2.3.3.1 WSS processes and LTI systemsIf the input X is a WSS process and the system is a stable LTI system (withimpulse response h(t)), then it can be shown that the output Y is also a WSS process. Asu�cient condition for stability is Z 1�1 h(t)2dt <1: (2.128)For instance, an ideal integrator does not satisfy the stability condition. When a WSSprocess is the input to an integrator, the output is, in general, not a WSS process.Assuming that the LTI system is stable and the output is WSS, then the meanand autocorrelation of the output are given bymY = mX Z 1�1 h(t)dt (2.129)and RY (�) = Z 1�1RX(u)rh(� � u)du (2.130)= RX(�)� rh(�) (2.131)where rh(�) is given by rh(�) = h(�)� h(��) (2.132)



CHAPTER 2. MATHEMATICAL BACKGROUND 37and � denotes the convolution operation. The cross-correlations of the input X and outputY are given by RYX(�) = RX(�)� h(�); (2.133)RXY (�) = RX(�)� h(��): (2.134)Then, if we assume that the autocorrelation of the output possesses a Fourier transform,the spectral density of the output is given bySY (f) = jH(f)j2 SX(f) (2.135)where H(f) is the transfer function. This relationship plays a crucial role in the analysis ofsignal processing systems involving linear time-invariant transformations, and is the basisfor analyzing the e�ect of noise which can be modeled as a WSS process input to an LTIsystem. (2.135) also shows how the spectral density links to the notion of a frequencydecomposition of the power in the stochastic process X . Recall that the total power for theoutput process Y is given byE hY (t)2i = Z 1�1 jH(f)j2 SX(f)df (2.136)which is a constant as a function of t, since Y is WSS.The cross-spectral densities for the input and the output, de�ned as the Fouriertransforms of the cross-correlations, are given bySY X(�) = SX(f)H(f); (2.137)SXY (�) = SX(f)H(�f): (2.138)The spectral density is an even and real function, but cross-spectral densities are, in general,not real-valued functions. Cross-spectral densities play a crucial role in evaluating thedegree to which two processes are approximately related by an LTI transformation. Therelationship (2.137) is important from a system identi�cation point of view: The transferfunction of an LTI system can be calculated easily if we can calculate the cross- spectraldensity of the input and the output. We can choose any input process with a known spectraldensity SX(f).



CHAPTER 2. MATHEMATICAL BACKGROUND 382.3.3.2 Cyclostationary processes and LPTV systemsAnother special case of interest is when cyclostationary processes are inputs toLPTV systems. Assuming that the cyclostationary input process X has the same funda-mental frequency as the LPTV system, it can be shown that the output process Y is alsocyclostationary with the same fundamental frequency, provided that the LPTV system sat-is�es a \stability" condition. This condition will be discussed in detail later in the chapter,now we concentrate on relating the autocorrelation function/spectral density of the out-put to those of the input through the transfer function of the LPTV system. The Fourierseries coe�cients given by (2.42)/(2.52), and (2.117)/(2.120) completely characterize theautocorrelation function/time-varying spectral density for a cyclostationary process, andthe impulse response/transfer function for an LPTV system respectively. It can be shownthat the Fourier series coe�cients for the autocorrelation of the cyclostationary process Yat the output are given byR(k)Y (�) = 1Xn;m=�1R(k�(n�m))X (�) exp (�j�(n+m)fc�)� r(k)nm(��) (2.139)where r(k)nm(�) = Z 1�1 hn(t+ �=2)h�m(t� �=2) exp(�j2�kfct)dt: (2.140)Then, it can be shown that the Fourier series coe�cients for the time-varying spectraldensity of the output are given byS(k)Y (f) = 1Xn;m=�1Hn(f + kfc=2)S(k�(n�m))X (f � (n +m)fc=2)H�m(f � kfc=2): (2.141)We might be interested in some special cases. For instance, if the system is LTI and theinput is cyclostationary, (2.139) and (2.141) reduce toR(k)Y (�) = R(k)X (�)� r(k)h (��) (2.142)and S(k)Y (f) = H(f + kfc=2)S(k)X (f)H�(f � kfc=2) (2.143)where r(k)h (�) = Z 1�1 h(t + �=2)h(t� �=2) exp (�j2�kfct)dt (2.144)



CHAPTER 2. MATHEMATICAL BACKGROUND 39and, h(t) is the impulse response, and H(f) is the transfer function. Another special caseis when the input is WSS and the system is LPTV. In this case, the output, is in general,cyclostationary. Then, (2.139) and (2.141) reduce toR(k)Y (�) = 1Xn=�1RX(�) exp (�j�(2n� k)fc�)� r(k)n(n�p)(��) (2.145)and S(k)Y (f) = 1Xn=�1Hn+k(f + kfc=2)SX(f � (k=2 + n)fc)H�n(f � kfc=2): (2.146)One can also calculate the cross-correlations and cross-spectral densities for the input andoutput processes. Cross-spectral densities play a crucial role in the identi�cation of LPTVsystems. A generalization of (2.137) holds for cyclostationary processes and LPTV systems.All the above results for cyclostationary processes and LPTV systems can begeneralized for almost cyclostationary processes and linear almost periodically time-varyingsystems.2.4 Matrix Algebra, Linear Di�erential Equations and Flo-quet Theory 5Now, we will cover some basic results from matrix algebra and the di�erentialequation theory.2.4.1 Eigenvalues and eigenvectors of a matrix and its transposeGiven a real n � n matrix A, the polynomial d(�) = det (�I�A) is called thecharacteristic polynomial of the matrix A, and the equation d(�) = 0 is called the charac-teristic equation of A. Then, d(�) is an n-th degree monic polynomial with real coe�cients.Thus, the characteristic equation has n roots, which are called the eigenvalues of the matrixA. If � is an eigenvalue of A, then �I�A is singular, and the equation(�I�A)x = 0 (2.147)5See [14], [15] and textbooks on linear algebra and linear system theory for proofs and more details. Someof the material in this section is summarized from the notes of the linear system theory course taught byProf. Erol Sezer in Fall 1990 at Bilkent University, Turkey.



CHAPTER 2. MATHEMATICAL BACKGROUND 40has nontrivial solutions. Each of these solutions is called an eigenvector of A correspondingto the eigenvalue �. Eigenvalues of a real matrix may be real or complex, however complexeigenvalues occur in conjugate pairs. If � and �� are a pair of complex conjugate eigenvalues,and if x is an eigenvector corresponding to �, then x� is an eigenvector corresponding to��. A matrix can have repeated eigenvalues. A square matrix is nonsingular if and only ifit does not have any zero eigenvalues.It can be easily shown that the matrix A and its transpose AT have the sameeigenvalues. Let us assume that the real n�n matrix A, and hence its transpose AT , havedistinct eigenvalues �1; �2; : : : ; �n. Let x1;x2; : : : ;xn be the corresponding eigenvectors forA, and y1;y2; : : : ;yn be the corresponding eigenvectors for AT . Then, we have�i yTj xi = yTj �ixi (2.148)= yTj Axi (2.149)= �j yTj xi: (2.150)If i = j, the above reduces to a trivial equality, but for i 6= j we have�i yTj xi = �j yTj xi: (2.151)For i 6= j, (2.151) is satis�ed only if yTj xi = 0, since �i 6= �j . It can also be shown that fori = j, we must have yTj xi 6= 0. So, we conclude that, for a matrix with distinct eigenvalues,the eigenvectors of the matrix are orthogonal to the eigenvectors of the transposed matrixcorresponding to di�erent eigenvalues, i.e.yTj xi8<: = 0 if i 6= j6= 0 if i = j : (2.152)The eigenvalues of a real symmetric matrix are real. If the eigenvalues of a matrixA are �1; : : : ; �n, then the eigenvalues of the matrix cI + A are c + �1; : : : ; c + �n, wherec 2 IR.2.4.2 Similar matricesTwomatricesA andB which are related asB = U�1AU, whereU is a nonsingularmatrix, are called similar, and the process of obtaining B from A is called a similaritytransformation. Similar matrices have the same characteristic polynomial, and therefore,the same eigenvalues.



CHAPTER 2. MATHEMATICAL BACKGROUND 41It can be shown that the eigenvectors of a matrix corresponding to distinct eigen-values are linearly independent. If an n � n matrix A has simple eigenvalues, that is, ifthe eigenvalues are distinct, then the matrix A is similar to a diagonal matrix whose di-agonal values are the eigenvalues of A. Let �1; �2; : : : ; �n be the simple eigenvalues, andx1;x2; : : : ;xn be the corresponding eigenvectors. Then, the matrixP = [x1;x2; : : : ;xn]is nonsingular, and P�1AP = diag:(�1; �2; : : : ; �n):The matrix P, which consists of the eigenvectors ofA, is called the modal matrix ofA. Notethat, neither the eigenvectors nor the modal matrix are unique, but every modal matrixreduces A to its diagonal form.Every matrix with simple eigenvalues can be diagonalized by a similarity transfor-mation. In the general case when the matrix has multiple eigenvalues, whether the matrixcan be diagonalized depends on whether or not we can �nd su�cient number of linearlyindependent eigenvectors for each eigenvalue. Some matrices with multiple eigenvalues cannot be diagonalized. However, they can still be reduced to a simple form, not diagonalthough, by means of a similarity transformation, which is called the Jordan form. We willnot further discuss this here.2.4.3 Function of a square matrixLet A be an n� n matrix, and let p(�) = a0 + a1�+ : : :+ am�m be a polynomialin the variable � with real coe�cients. The polynomial p(A) of the matrix A is de�ned asp(A) = a0I+ a1A+ : : :+ amAm: (2.153)It can be shown that every matrix satis�es its own characteristic polynomial. This result isknown as the Cayley-Hamilton theorem.Let a matrix A have distinct eigenvalues �1; : : : ; �k with multiplicities n1; : : : ; nkin the characteristic polynomial. Let f(�) be a function which is analytic in some simplyconnected region of the complex plane that contains �1; : : : ; �k. Then, there exists a uniquepolynomial p(�) of degree n� 1 where n =Pki=1 ni, such that for each ip(j)(�i) = f (j)(�i); j = 1; 2; : : : ; ni



CHAPTER 2. MATHEMATICAL BACKGROUND 42where p(j)(�i) denotes the j-th derivative of p evaluated at � = �i. Then the functionf(A) of the matrix A is de�ned to be p(A). The polynomial p(�) is called the annihilatingpolynomial for f(�).It can be shown that if the matrix A has distinct eigenvalues �1; �2; : : : ; �k withmultiplicities n1; n2; : : : ; nk, and if the function f(A) is de�ned, then the matrix f(A) hasthe eigenvalues f(�1); f(�2); : : : ; f(�k) with multiplicities n1; n2; : : : ; nk.If A is diagonalizable, i.e. there exists nonsingular P such that A = PDP�1,where D = diag:(�i), then f(A) = P diag:(f(�i))P�1: (2.154)2.4.4 Positive de�nite/semide�nite matricesA symmetric n � n matrix A (A = AT ) is said to be1. positive de�nite, if xTAx has a positive value for all x 6= 0,2. positive semide�nite, if xTAx = 0 for some x 6= 0, and has a positive value for theremaining x 6= 0,3. inde�nite, if xTAx takes both positive and negative values.q(x) = xTAx is called a quadratic form. It can be shown that a symmetric matrix A ispositive de�nite if and only if all of its eigenvalues are positive, and is positive semide�nite ifand only if at least one eigenvalue is zero and the remaining ones are positive. Note that theeigenvalues of any real symmetric matrix are real. It can easily be shown that the diagonalelements of a positive semide�nite matrix are nonnegative, and the diagonal elements of apositive de�nite matrix are strictly positive.In Section 2.1.3, we have de�ned the covariance matrix V for a vector of randomvariables X as V = E h(X� �) (X� �)Ti (2.155)By de�nition, the covariance matrixV is a symmetric matrix. Now, let us de�ne the randomvariable Y = aT X, where a 2 IRn. Then, the variance of Y is given byvar(Y ) = aT Va: (2.156)We know that var(Y ) � 0 for a random variable Y , hence we conclude that the covariancematrix V for a vector of random variables X is a positive semide�nite matrix. If there



CHAPTER 2. MATHEMATICAL BACKGROUND 43exists an a 6= 0 such that aT Va = 0, then the variance of the random variable Y = aT Xis zero. Let A be a real symmetric matrix. Then, it can be shown that there exists anorthogonal matrix P (PTP = PPT = I) such thatPTAP = D = diag:(�i) (2.157)where D is a diagonal matrix with eigenvalues of A as the diagonal elements.For the covariance matrix of the vector of random variables X, the eigenvalues arenonnegative since it is a semide�nite matrix. Then, we haveUTVU = D = diag:(�i) (2.158)for some orthogonal matrix U, where D is a diagonal matrix with nonnegative diagonalelements. Let us de�ne the vector of random variables Z = UTX. Then, it can be shownthat the covariance matrix of Z is D. Since D is diagonal, the entries of Z are pairwiseuncorrelated. Note that, we also have X = UZ, since U is an orthogonal matrix.Let A be a real n � n symmetric matrix. A is positive de�nite if and only ifA = BTB for some nonsingular n � n matrix B. A is positive semide�nite if and only ifA = CCT for some n� r matrix C, where r < n. If r > n, A is positive de�nite or positivesemide�nite depending on the rank of C.2.4.5 Di�erential equationsLet _x = f(t;x) x(t0) = x0 t 2 IR; x 2 IRn; f : IR � IRn ! IRn (2.159)If the following conditions are satis�ed1. For every �xed x, the function t! f(t;x) (f(:;x)) is piecewise continuous.2. f satis�es a Lipschitz condition, i.e. there exists a piecewise continuous k(:) : IR!IR+such that kf(t;x)� f(t;x0)k � k(t)kx� x0k 8x;x0 2 IRnwhich is a stronger condition than continuity. For instance f(x) = px is continuous,but does not satisfy a Lipschitz condition.



CHAPTER 2. MATHEMATICAL BACKGROUND 44then, the di�erential equation in (2.159) has a unique continuous solution. The proof of theexistence of the solution is done by de�ning a sequence fxmg1m=0 in the space of continuousfunctions de�ned on an interval [t0; t1] (which is a complete vector space, meaning that everyCauchy sequence in this vector space converges to a vector in the space) as x0(t) = x0, andxm(t) = x0 + Z tt0 f(�;xm�1(�))d� m = 1; 2; : : : (2.160)It can be shown that this sequence converges to a continuous function which is a solutionfor (2.159). The iteration in (2.160), called the Peano-Picard-Lindel}of iteration, is actuallyone way of obtaining a solution for the di�erential equation (2.159). The uniqueness of thesolution depends on the Lipschitz condition: e.g. _x = px; x(0) = 0 does not satisfy theLipschitz condition, and �(t) = 0, and �(t) = t2=4 are two distinct solutions.2.4.6 Linear homogeneous di�erential equationsThe di�erential equation_x = A(t)x; x(t) 2 IRn; x(t0) = x0; A(:) piecewise continuous (2.161)satis�es1. For every �xed x, t ! A(t)x is piecewise continuous.2. Lipschitz condition:kA(t)x�A(t)x0k � kA(t)k kx� x0k 8x;x0 2 IRn:So, (2.161) has a unique solution. It can be shown that the set of solutions for (2.161),f�(t; t0;x0) : x0 2 IRng, is an n-dimensional linear space. Let fxigni=1 be an arbitrarybasis for IRn. De�ne  i(t) = �(t; t0;xi). Then, it can be shown that f igni=1 is a linearlyindependent set, and spans the set of solutions. For fxigni=1 linearly independent, de�neX(t; t0) = [�(t; t0;x1)j : : : j�(t; t0;xn)] (2.162)which is called a fundamental matrix for (2.161). If xi = [0; : : : ; 0; 1; 0; : : : ; 0], with 1 atthe i-th position, then the corresponding fundamental matrix is called the state-transitionmatrix for the di�erential equation (2.161), denoted as �(t; t0). It can be shown that� X(t; t0) is nonsingular for all t.



CHAPTER 2. MATHEMATICAL BACKGROUND 45� For any x0, there exists a unique c 2 IRn such that �(t; t0;x0) = X(t; t0) c.� Any two fundamental matrices are related as X1(t; t0) = X2(t; t0)C where C is anonsingular n� n constant matrix.� �(t; t0) is uniquely de�ned as the solution of _X = A(t)X; X(t0) = I� The solution of (2.161) is given by �(t; t0;x0) = �(t; t0)x0 in terms of the statetransition matrix and the initial condition.2.4.7 Linear nonhomogeneous di�erential equationsFor the nonhomogeneous linear di�erential equation_x = A(t)x+ b(t); x(t0) = x0; A(:);b(:) piecewise continuous (2.163)the solution is given by�(t; t0;x0) = �(t; t0)x0+ Z tt0 �(t; �)b(�)d� (2.164)where �(t; t0) is the state transition matrix for the homogeneous equation (2.161).2.4.8 Linear di�erential equations with constant coe�cientsIf A(t) in (2.161) is a constant matrix A(t) = A, i.e._x = Ax; (2.165)then the state transition matrix is given by�(t; t0) = exp (A(t� t0)) = �(t� t0) (2.166)Now, let us assume that the constant matrix A is diagonalizable (with distinct eigenvalues):A = PDP�1 (2.167)where D = diag:(�i), and P is the modal matrix for A:P = [x1;x2; : : : ;xn]: (2.168)



CHAPTER 2. MATHEMATICAL BACKGROUND 46Then �(t; 0) = exp (At) (2.169)= exp (PDP�1t) (2.170)= P exp (Dt)P�1 (2.171)and hence, P exp (Dt) is a fundamental matrix for (2.165), which can be expressed asX(t; 0) = P exp (Dt) (2.172)= [exp (�1t)x1; exp (�2t)x2; : : : ; exp (�nt)xn]: (2.173)We know that any solution of the di�erential equation (2.163) can be expressed as a linearcombination of the columns of a fundamental matrix. So, any solution is in the form�(t; 0;x0) = c1 exp (�1t)x1 + c2 exp (�2t)x2 + : : :+ cn exp (�nt)xn (2.174)where c1; : : : ; cn 2 IR depend on the initial condition, �1; : : : ; �k are the eigenvalues of A,and x1;x2; : : : ;xn are the eigenvectors. This is called amodal decomposition of the solutionsof (2.165), and each of exp (�it)xi is called a mode of the system. For obvious reasons, theLTI system described by (2.165) is said to be stable if all of the eigenvalues ofA have strictlynegative real parts.Now, let us concentrate on the di�erential equation_x = �ATx: (2.175)Assuming that A is diagonalizable with distinct eigenvalues, and following analogous stepsto the above ones, one can show that any solution of (2.175) is in the form (t; 0;x0) = c1 exp (��1t)y1 + c2 exp (��2t)y2 + : : :+ cn exp (��nt)yn (2.176)where c1; : : : ; cn 2 IR, �1; : : : ; �k are the eigenvalues of AT (and also A), and y1; : : : ;ynare the eigenvectors of AT . Recall that the eigenvectors of A and AT satisfy (2.152).Furthermore, these eigenvectors can be chosen such thatyTj xi = 8<: 0 if i 6= j1 if i = j : (2.177)



CHAPTER 2. MATHEMATICAL BACKGROUND 47Then, it is trivial to verify that the state transition matrix for the di�erential equation(2.165) can be expressed as�(t; �) = �(t� �) = nXi=1 exp (�i(t � �))xi yTi : (2.178)The state transition matrix of (2.175), 	(t� �), is then given by	(t� �) = �(� � t)T (2.179)in terms of the state transition matrix of (2.165).2.4.9 Linear di�erential equations with periodic coe�cientsNow, we consider the case when the coe�cient matrix in (2.161) is periodicallytime-varying _x = A(t)x; x(t0) = x0 (2.180)A(t) = A(t+ T ); for some period T; 8t:Let �(t; t0) be the state transition matrix for (2.180). It can be shown that it satis�es1. �(t; t0) = �(t+ nT; t0 + nT ) 8 t; t0.2. �(t+ nT; t0) = �(t; t0)�(t0 + nT; t0) 8 t; t0.Let us de�ne F = 1T ln (�(t0 + T; t0)); �(t0 + T; t0) = exp (FT ): (2.181)Now we present a result due to do G. Floquet (1883): Given (2.181), the state transitionmatrix of (2.180) can be expressed as�(t; t0) = P(t; t0) exp ((t� t0)F) (2.182)where P(:; t0) is periodic with period T , i.e. P(t + T; t0) = P(t; t0), and is nonsingular.Now, let us assume that the constant matrix F is diagonalizable (with distinct eigenvalues),F = UDU�1 (2.183)where D = diag:(�i) with eigenvalues of F on the diagonal, and U is the modal matrix forF with the eigenvectors of F as the columns. The eigenvalues of F are called the Floquetexponents for (2.180). The eigenvalues of �(t0 + T; t0) = exp (FT ) are given by�i = exp (�iT ) (2.184)



CHAPTER 2. MATHEMATICAL BACKGROUND 48in terms of the eigenvalues of F. Then�(t; t0) = P(t; t0) exp ((t� t0)F) (2.185)= P(t; t0) exp ((t� t0)UDU�1) (2.186)= P(t; t0)U exp ((t� t0)D)U�1 (2.187)and hence P(t; t0)U exp (D(t� t0)) is a fundamental matrix for (2.180), which can be ex-pressed as X(t; t0) = P(t; t0)U exp (D(t� t0)) (2.188)= [exp (�1(t� t0))u1(t; t0); : : : ; exp (�n(t � t0))un(t; t0)] (2.189)where ui(t; t0) are the columns of the matrix P(t; t0)U, and hence, they are periodic in twith period T . We know that any solution of the di�erential equation can be expressed as alinear combination of the columns of a fundamental matrix. So, any solution is in the form�(t; t0;x0) = c1 exp (�1(t � t0))u1(t; t0) + : : :+ cn exp (�n(t� t0))un(t; t0) (2.190)where c1; : : : ; cn 2 IR depend on the initial condition. (2.190) is similar to (2.174) for thelinear di�erential equations with constant coe�cients. Note thatP(t0 + nT; t0) = I; (2.191)and hence ui(t0+nT; t0) = �ui, where �ui are the eigenvectors of F. One important corollaryis: (2.180) has a periodic solution with period T if and only if �(t0 + T; t0) = exp (FT )has an eigenvalue equal to 1. The LPTV system de�ned by (2.180) is said to be stable ifall the Floquet exponents, i.e. the eigenvalues of F, have strictly negative real parts. Theeigenvalues of F for (2.180) play the same role as the eigenvalues of A do for (2.165) indetermining the stability properties of the system. Note that, even if the eigenvalues ofA(t) have strictly negative real parts for all t, the LPTV system described by (2.180) canbe unstable. It is the eigenvalues of F that determine the stability properties of (2.180).Analogous to the constant coe�cient case, now we will look into the di�erentialequation _x = �AT (t)x: (2.192)With the de�nition of F in (2.181), it can be shown that the state transition matrix 	(t; t0)for (2.192) is given by 	(t; t0) = Q(t; t0) exp (�(t� t0)FT ) (2.193)



CHAPTER 2. MATHEMATICAL BACKGROUND 49where Q(:; t0) is periodic with period T , i.e. Q(t + T; t0) = Q(t; t0), and is nonsingular.Again assuming that F is diagonalizable with distinct eigenvalues, and following analogoussteps to the ones for the untransposed equation system, one can show that any solution of(2.192) is in the form (t; t0;x0) = c1 exp (��1(t� t0))v1(t; t0) + : : :+ cn exp (��n(t� t0))vn(t; t0) (2.194)where �i are the eigenvalues of F (and hence FT ), and vi(t; t0) are periodic in t with T ,and satisfy vi(t0 + nT; t0) = �vi, where �vi are the eigenvectors of FT . From (2.152), theeigenvectors �ui and �vi can be chosen to satisfy�vTj �ui = 8<: 0 if i 6= j1 if i = j : (2.195)We know that wi(t) = exp (�i(t� t0))ui(t; t0) is a solution of (2.180), hence satis�es _x =A(t)x. Similarly, zj(t) = exp (��j(t � t0))vj(t; t0) is a solution of (2.192), hence satis�es_x = �A(t)Tx. Then, we haveddt(zj(t)T wi(t)) = ( ddtzj(t)T )wi(t) + zj(t)T ddtwi(t) (2.196)= �zj(t)TA(t)wi(t) + zj(t)T A(t)wi(t) (2.197)= 0: (2.198)From (2.195) we also know thatzj(t0)T wi(t0) = 8<: 0 if i 6= j1 if i = j : (2.199)Combining (2.199) and (2.198), we getzj(t)T wi(t) = exp ((�i � �j)(t� t0))vTj (t; t0)ui(t; t0) = 8<: 0 if i 6= j1 if i = j (2.200)for all t � t0, which impliesvTi (t; t0)ui(t; t0) = 8<: 0 if i 6= j1 if i = j (2.201)for all t � t0.



CHAPTER 2. MATHEMATICAL BACKGROUND 50Given all the above, one can easily verify that the state transition matrix for(2.180) can be expressed as [16]�(t; �) = nXi=1 exp (�i(t� �))ui(t)vTi (�): (2.202)The state transition matrix of (2.192), 	(t; �) is then given by	(t; �) = �(�; t)T (2.203)in terms of the state transition matrix of (2.180). Then,�(T; 0) = nXi=1 exp (�iT )ui(T )vTi (0) (2.204)= nXi=1 exp (�iT )ui(0)vTi (0) (2.205)since ui(t) is periodic in t with period T . From (2.205), ui(0) are the eigenvectors of �(T; 0)with corresponding eigenvalues exp (�iT ), and vi(0) are the eigenvectors of �(T; 0)T withcorresponding eigenvalues exp (�iT ).2.5 Stochastic Di�erential Equations and Systems 6In Section 2.3, we have presented a dynamical system representation from aninput/output relationship perspective, considering the system as a black box, (impulse re-sponses and transfer functions) to study the e�ect of the input noise signals modeled asstochastic processes on the system. However we did not discuss how one would arrive atthese transfer functions from a physical description of the system. The systems we are goingto deal with, i.e. electronics circuits and systems, are usually modeled with a system ofordinary di�erential equations. Other forms of system representation, e.g partial di�eren-tial equations or �nite-state machines, are also used for electronic circuits. For the type ofcircuits we are concerned with, i.e. analog and mixed-signal circuits, systems of di�erentialequations, with some additions, are the most appropriate mathematical models for variouslevels of the design hierarchy. Since we model the noise signals as stochastic processes,a mathematical model of the system with a system of di�erential equations will involvestochastic processes. In this section, we will give an overview of the theory of stochastic6Most of the material in this section is summarized from [9] and [10], which are excellent books on thetopic. Other useful references are [11], [12] and [13].



CHAPTER 2. MATHEMATICAL BACKGROUND 51di�erential equations and systems. The transfer function model of a system, and the sys-tem of di�erential equations model are closely related. One can convert a transfer functionmodel to a system of di�erential equations model and vice versa, but this is not alwayspractically feasible. Mathematical analysis of these models provide information about thesystem in di�erent but related forms. Usually, using a combination of these two forms ofmathematical models will provide the most useful information to the system designer. Ina \loose" and nonrigorous sense, one can say that a system of di�erential equations modelis more \precise" than a transfer function model. In engineering practice, transfer functionmodels are widely used. Using a transfer function model (and the associated operationalcalculus) blindly can, sometimes, yield wrong results and obscure some properties of thesystem. We will give examples for this later. In principle, one should always exercise carein using the operational calculus associated with transfer function models, and make surethat the underlying di�erential equation model and its meaning are mathematically soundand rigorous.2.5.1 OverviewDi�erential equations involving random variables and stochastic processes arise inthe investigation of numerous physics and engineering problems. They are usually of oneof the following two fundamentally di�erent types. On the one hand, certain functions,coe�cients, parameters, and boundary or initial values in classical di�erential equationproblems can be random. Simple examples are_X(t) = A(t)X(t) +B(t) X(t0) = C (2.206)with stochastic processes A(t) and B(t) as coe�cients and with random initial value C, or_X(t) = f(t; X(t); �(t)) X(t0) = C (2.207)with the stochastic process �(t), the random initial value C, and the �xed deterministicfunction f . If these stochastic processes have certain regularity properties, one can considerthe above-mentioned problems simply as a family of classical problems for the individualsample paths, and treat them with the classical methods of the theory of di�erential equa-tions. The situation is quite di�erent if \stochastic processes" of the so-called \whitenoise" type appear in what is written formally as an ordinary di�erential equation, for



CHAPTER 2. MATHEMATICAL BACKGROUND 52example, the \stochastic process" �(t) in the equation_X(t) = f(t; X(t)) + G(t; X(t))�(t) X(t0) = C: (2.208)As discussed in Section 2.2.10, white noise �(t) does not exist in the conventional sense,but it is widely used in engineering practice as a very useful mathematical idealization fordescribing random in
uences that 
uctuate rapidly, and hence, are virtually uncorrelatedfor di�erent instants of time.Such equations were �rst treated in 1908 by Langevin in the study of the Brownianmotion of a particle in a 
uid. If X(t) is a component of the velocity, at an instant t, of afree particle that performs a Brownian motion, Langevin's equation is_X(t) = ��X(t) + ��(t) � > 0; � constants: (2.209)Here, ��X(t) is the systematic part of the in
uence of the surrounding medium due todynamic friction. The constant � is found from Stoke's law to be � = 6�a�=m, where a isthe radius of the (spherical) particle, m is its mass, and � is the viscosity of the surrounding
uid. On the other hand, the term ��(t) represents the force exerted on the particle bythe molecular collisions. Since, under normal conditions, the particle uniformly undergoesabout 1021 molecular collisions per second from all directions, ��(t) is indeed a rapidlyvarying 
uctuational term, which can be idealized as \white noise". The covariance for �(t)is the Dirac's delta function, then �2 = 2�kT=m (where k is Boltzmann's constant and Tis the absolute temperature of the surrounding 
uid). Note that, (2.209) is a special caseof (2.208), the right-hand member of which is decomposed as the sum of a systematic partf and a 
uctuational G�(t).In the model of Brownian motion, (2.209), one can calculate explicitly the fdds ofX(t) even though �(t) is not a stochastic process in the usual sense. Every processX(t) withthese distributions (Ornstein-Uhlenbeck process) is nondi�erentiable in any useful sense (seeSection 2.2.9), hence (2.209) and, more generally, (2.208) cannot be regarded as ordinarydi�erential equations.For a mathematically rigorous treatment of equations of type (2.208), a new theorywas necessary. As we have seen it in Section 2.2.10, even though \white noise" is only ageneralized stochastic process, the inde�nite integralW (t) = Z t0 �(s)ds (2.210)



CHAPTER 2. MATHEMATICAL BACKGROUND 53can be identi�ed with the Wiener process, or any other zero-mean process with uncorrelatedstationary increments. Gaussian white noise is identi�ed as the formal derivative of theWiener process.If we write (2.210) symbolically asdW (t) = �(t)dt (2.211)(2.208) can be put in the di�erential formdX(t) = f(t; X(t))dt+G(t; X(t))dW (t) X(t0) = C: (2.212)This is a stochastic di�erential equation (SDE) for the processX(t). It should be understoodas an abbreviation for the integral equationX(t) = C + Z tt0 f(s;X(s))ds+ Z tt0 G(s;X(s))dW (s): (2.213)The second integral in (2.213) cannot, even for smooth G , be regarded in general as anordinary Riemann-Stieltjes integral, because the value depends on the intermediate pointsin the approximating sums. We will elaborate on this later. In 1951, K. Ito de�ned integralsof the form Y (t) = Z tt0 G(s)dW (s) (2.214)for a broad class of so-called \nonanticipating" functionals of the Wiener process W (t), andin doing so, put the theory of stochastic di�erential equations on a solid foundation. Thistheory has its peculiarities. For example, the solution of the stochastic di�erential equationdX(t) = X(t)dW (t) X(0) = 1 (2.215)is not exp (W (t)), but X(t) = exp (W (t)� t=2) (2.216)which can not be derived by formal calculation according to the classical rules of calculus.It turns out that the solution of a stochastic di�erential equation of the form (2.212)is a Markov process with continuous sample paths, which is called a di�usion process. Ina loose sense, di�usion processes are \smooth" Markov processes. The Markov propertydiscussed in Section 2.2.3 is basically the causality principle of classical physics carried overto stochastic dynamic systems. It speci�es that the knowledge of the state of a system at a



CHAPTER 2. MATHEMATICAL BACKGROUND 54given time is su�cient to determine its state at any future time. For instance, the ordinarydi�erential equation _x = f(t; x) (2.217)states that the change taking place in x(t) at time t depends only on x(t) and t, and not onthe values of x(s) for s < t. A consequence of this is that, under certain conditions on f ,discussed in Section 2.4.5, the solution curve for x(t) is uniquely determined by an initialpoint (t0; c) x(t) = x(t; t0; c); t > t0; x(t0) = c: (2.218)If this idea is carried over to stochastic dynamic systems, we get the Markov property. Itsays that if the state of the system at a particular time s (the present) is known, additionalinformation regarding the behavior of the system at times t < s (the past) has no e�ect onour knowledge of the probable development of the system at t > s (in the future).For Markov and di�usion processes, there exist e�ective methods for calculatingtransitional probabilities and fdds, which deal with the timewise development of transitionprobabilities P (X(t) 2 BjX(s) = x), where B � IR. In contrast, the calculus of stochasticdi�erential equations deals with the random variable X(t) and its variation. An equationof the form (2.212) or (2.213) represents a construction rule with which one can constructthe trajectories of X(t) from the trajectories of a Wiener process W (t) and an initial valueC. The law of motion for the state of a Markovian stochastic dynamic system can bedescribed by an equation of the formdX(t) = g(t; X(t); dt): (2.219)In the case of 
uctuational in
uences, i.e noise, that are additively superimposed on asystematic part (which will be the case for noise in electronic circuits), we haveg(t; x; h) = f(t; x)h+ G(t; x)(Y (t+ h)� Y (t)): (2.220)Here, Y (t) is a process with uncorrelated stationary increments and (2.219) takes the formdX(t) = f(t; X(t))dt+ G(t; X(t))dY (t): (2.221)Y (t) is any process with uncorrelated stationary increments. In particular, Y (t) could bethe Wiener process, or the Poisson process (with mean subtracted). Due to the centrallimit theorem, our models of white noise will be assumed to be Gaussian, which is then thesymbolic derivative of the Wiener process.



CHAPTER 2. MATHEMATICAL BACKGROUND 552.5.2 An exampleNow, we will analyze the following di�erential equation to illustrate how using clas-sical calculus can yield wrong results when a \white noise" type driving source is present7:ddtI(t) = ��I(t) + q ddtN(t) (2.222)where N(t) is a homogeneous Poisson process with parameter � (see Section 2.2.8). Thisequation is actually a model for shot noise in electronic circuit devices. This is a kind ofstochastic di�erential equation similar to Langevin's equation (2.209), in which, however,the 
uctuational force is given by �(t) = q d=dtN(t). The mean of �(t) is nonzero, in factE [�(t)dt] = E [dN(t)] = �dt; (2.223)E h(dN(t)� �dt)2i = �dt (2.224)from the properties of the Poisson distribution (variance equals the mean) and the Poissonprocess discussed before. We, then, de�ne the 
uctuation as the di�erence between themean value and dN(t) d�(t) = dN(t)� �dt; (2.225)so the stochastic di�erential equation (2.222) takes the formdI(t) = (�q � �I(t))dt+ qd�(t): (2.226)Now, let us use ordinary calculus to solve this equation. If we take the expectation of bothsides of (2.226) and exchange the order of di�erentiation and expectation, we getddt E [I(t)] = �q � � E [I(t)]; (2.227)since �(t) is a zero-mean process. Now, we will use the following di�erentiation rule ofordinary calculus: d(I2) = 2IdI: (2.228)Using (2.228), 12d(I(t)2) = I(t)dI(t) (2.229)= I(t)((�q� �I(t))dt+ qd�(t)) (2.230)= (�qI(t)� �I(t)2)dt+ qI(t)d�(t); (2.231)7The discussion in this section is borrowed from [10].



CHAPTER 2. MATHEMATICAL BACKGROUND 56where we have used (2.226) for dI(t). If we take the expectation of both sides of (2.231) weget 12 ddt E hI(t)2i = �q E [I(t)]� � E hI(t)2i; (2.232)where we have used E [I(t)d�(t)] = 0. Now, we will evaluate (2.227) and (2.232) at steady-state, that is in the limit t!1. Setting ddt E [I(t)] = 0 in (2.227) we getE [I(1)] = �q=�; (2.233)which is reasonable, it gives us the average current through the system. Then we setddt E �I(t)2� = 0, and use (2.233) in (2.232) to getE hI(1)2i = (�q=�)2; (2.234)which says that the mean-square current is the same as the square of the mean, i.e. thevariance of the current at t ! 1 is zero. This is a rather unreasonable result. Now, wereexamine the di�erentiation rule (2.228) we used. In deriving (2.228), one writesd(I2) = (I + dI)2 � I2 = 2IdI + (dI)2 (2.235)and then drops the term (dI)2 as being of second order in dI . However, now recall (2.224)and (2.225), which say that E h(d�(t))2i = �dt; (2.236)so that a quantity of second order in d� is actually of �rst order in dt. A sample path ofN(t) is a step function, discontinuous, and certainly not di�erentiable at the times of thearrivals. In the ordinary sense, none of these calculus manipulations are permissible. Now,let us rederive the di�erentiation rule (2.228) by paying attention to (2.236):E hd(I2)i = E h(I + dI)2 � I2i = E h2IdI + (dI)2i (2.237)= 2 E [I((�q � �I(t))dt+ qd�(t))] + E h((�q � �I(t))dt+ qd�(t))2i:Again using E [I(t)d�(t)] = 0, with (2.236), and dropping terms that are higher than �rstorder in dt, we obtain12d E hI(t)2i = (�q E [I(t)]� � E hI(t)2i+ q2�2 )dt; (2.238)and as t!1, this gives E hI(1)2i� ( E [I(1)])2 = q2�2� : (2.239)



CHAPTER 2. MATHEMATICAL BACKGROUND 57So, the variance of I(t) does not go to zero as t ! 1. The conclusion is that stochasticprocesses can not normally be di�erentiated according to the usual laws of calculus. Specialrules have to be developed when dealing with \white noise" type of processes, and a precisespeci�cation of what one means by di�erentiation becomes important.2.5.3 Stochastic integralsThe analysis of stochastic systems often leads to di�erential equations of the form_X(t) = f(t; X(t)) +G(t; X(t))�(t); X(t0) = C; (2.240)where �(t) is a \white noise" type of process. From now on, we will assume that �(t) isGaussian, i.e. the formal derivative of the Wiener process. For notational simplicity, wewill concentrate on scalar equations of the form (2.240). All of the results we are going topresent can be translated to the multidimensional case in a straightforward manner. Aswe discussed, �(t) does not exist in a strict mathematical sense, but it is interpreted as thederivative of a well-de�ned process, i.e. the Wiener process.The solution of a deterministic di�erential equation_x(t) = f(t; x(t)); x(t0) = c (2.241)(with some conditions on f) is equivalent to the solution of the integral equationx(t) = c+ Z tt0 f(s; x(s))ds (2.242)for which it is possible to �nd a solution by means of the classical iteration procedure. Inthe same way, (2.240) is transformed into an integral equationX(t) = C + Z tt0 f(s;X(s))ds+ Z tt0 G(s;X(s))�(s)ds: (2.243)Then, �(s)ds above is replaced by dW (s) where W (s) is the Wiener process to obtainX(t) = C + Z tt0 f(s;X(s))ds+ Z tt0 G(s;X(s))dW (s): (2.244)Now, (2.244) involves only well-de�ned stochastic processes. The second-integral above cannot, in general, be interpreted as an ordinary Riemann-Stieltjes integral. Now, we move onto discuss the integrals of the type Z tt0 G(s)dW (s) (2.245)



CHAPTER 2. MATHEMATICAL BACKGROUND 58where G(t) is an arbitrary stochastic process. The integral above is de�ned as a kind ofRiemann-Stieltjes integral. Namely, the interval [t0; t] is divided into n subintervals bymeans of partitioning points t0 < t1 < � � �< tn�1 < t; (2.246)and the intermediate points �i are de�ned such thatti�1 � �i � ti: (2.247)The stochastic integral R tt0 G(s)dW (s) is de�ned as the limit of the partial sumsSn = nXi=1G(�i)(W (ti)�W (ti�1)) (2.248)where the limit is to be taken using one of the limit notions discussed in Section 2.1.4.In general, the integral de�ned as the limit of Sn depends on the particular choice of theintermediate points �i. For instance, if G(t) = W (t) then, using the properties of the Wienerprocess, it can be shown that E [Sn] = nXi=1(�i � ti�1) (2.249)and Sn 2! (W (t)2 �W (t0)2)=2� (t� t0)=2 + nXi=1(�i � ti�1) as n!1 (2.250)where we used the notion of mean-square limit. (See Section 2.1.4 for the de�nition of mean-square limit that is denoted by \ 2!".) Therefore, in order to obtain a unique de�nition ofthe stochastic integral, it is necessary to de�ne speci�c intermediate points �i. For example,if we choose �i = �ti + (1� �)ti�1; 0 � � � 1; i = 1; 2; : : : ; n (2.251)then Sn 2! (W (t)2 �W (t0)2)=2 + (�� 1=2)(t� t0) as n!1 (2.252)and the stochastic integral is de�ned as this limit which depends on the choice of �:((�)) Z tt0 W (s)dW (s) = (W (t)2 �W (t0)2)=2 + (�� 1=2)(t� t0): (2.253)\((�))" in front of the integral in (2.253) denotes that the integral de�nition depends onthe choice of �. For general G(t), the stochastic integral is de�ned as the mean-square limitSn = nXi=1G(�i)(W (ti)�W (ti�1)) 2! ((�)) Z tt0 G(s)dW (s) as n!1: (2.254)



CHAPTER 2. MATHEMATICAL BACKGROUND 59For a choice of � = 0, that is �i = ti�1, the stochastic integral de�ned above is called theIto stochastic integral. For the rest of our discussion, unless otherwise stated, we will bedealing with Ito stochastic integrals. For G(t) = W (t), with the Ito stochastic integral, weobtain (Ito) Z tt0 W (s)dW (s) = (W (t)2 �W (t0)2)=2� (t� t0)=2 (2.255)which does not agree withZ tt0 W (s)dW (s) = (W (t)2 �W (t0)2)=2 (2.256)which we would get using the ordinary Riemann-Stieltjes integral. The reason for this isthat jW (t+4t)�W (t)j is almost always of the order ofp4t, so that in contrast to ordinaryintegration, terms of second order in 4W (t) do not vanish on taking the limit.It is disconcerting that the result (2.255) obtained by the Ito stochastic integraldoes not coincide with (2.256) obtained by formal application of the classical rules. Theapplicability of the rules of classical Riemann-Stieltjes calculus with a choice of � = 1=2 in(2.254) (and hence in (2.253)) was the motivation for the de�nition of a stochastic integralgiven by R. L. Stratonovich. Again for G(t) = W (t), Stratonovich's de�nition (with � =1=2) yields (Strat) Z tt0 W (s)dW (s) = (W (t)2 �W (t0)2)=2: (2.257)We will return to the discussion of Stratonovich's stochastic integral and its comparison tothe Ito stochastic integral in the next section. Now, we concentrate on the Ito stochasticintegral. The stochastic process G(t) in the de�nition of the stochastic integral (2.254) iscalled nonanticipating, if for all s and t such that t < s, the random variable G(t) isprobabilistically independent of W (s) � W (t). This means that G(t) is independent ofthe behavior of the Wiener process in the future of t. Since we are studying di�erentialequations involving time which are supposed to model real physical systems that are causal(in the sense that the unknown future can not a�ect the present), we will restrict ourselvesto nonanticipating G(t) in the de�nition of the stochastic integral. As we shall see in thenext section, this is required to de�ne stochastic di�erential equations.One can show that the Ito stochastic integral R tt0 G(s)dW (s) exists whenever thestochastic process G(t) is nonanticipating and satis�es some \smoothness" conditions onthe closed interval [t0; t].



CHAPTER 2. MATHEMATICAL BACKGROUND 60It can also be shown that the Ito stochastic integral satis�es the following formulaZ tt0 G(s)(dW (s))2+N = 8<: R tt0 G(s)ds for N = 00 for N > 0 (2.258)for an arbitrary nonanticipating stochastic process G(t), which means thatnXi=1G(ti�1)(W (ti)�W (ti�1))2+N 2! 8<: R tt0 G(s)ds for N = 00 for N > 0 as n! 1: (2.259)Similarly, one can show that Z tt0 G(s)dsdW (s) = 0 (2.260)in the mean-square limit sense. The simplest way of characterizing these results is to saythat dW (t) is an in�nitesimal order of 1=2 and that in calculating di�erentials, in�nitesimalsof order higher than 1 are discarded.2.5.4 Stochastic di�erential equationsWe will concentrate on a scalar stochastic di�erential of the formdX(t) = f(t; X(t)) + G(t; X(t))dW (t); X(t0) = C; t0 � t � T <1; (2.261)or in the integral formX(t) = C + Z tt0 f(s;X(s))ds+ Z tt0 G(s;X(s))dW (s); t0 � t � T <1; (2.262)where X(t) is a stochastic process (assumed unknown for now) de�ned on [t0; T ] and W (t)is the Wiener process. The functions f(t; x) and G(t; x) are assumed to be deterministicfor �xed t and x, i.e. the \randomness" in f(t; X(t)) and G(t; X(t)) appears only indi-rectly through X(t). The �xed functions f and G determine the \system", and we havethe two independent random elements: The initial condition C, and the Wiener processW (t) modeling (as its formal derivative) a white \noise source" in the \system". We willinterpret the second integral in (2.262) as the Ito stochastic integral, and later commenton the Stratonovich interpretation. Then, (2.262) is called an (Ito's) stochastic di�erentialequation. Now, we consider conditions that need to be satis�ed for the existence of a uniquesolution. An ordinary di�erential equation is a special case of (2.262) with G = 0 and Cdeterministic. The su�cient conditions for the existence of a unique solution are similar tothe ones we have presented for an ordinary di�erential equation in Section 2.4.5. Suppose



CHAPTER 2. MATHEMATICAL BACKGROUND 61the functions f(t; x) and G(t; x) are de�ned on [t0; T ]�IR and have the following properties:There exists a constant K > 0 such that1. (Lipschitz condition) for all t 2 [t0; T ]; x; y 2 IRjf(t; x)� f(t; y)j+ jG(t; x)�G(t; y)j � Kjx� yj: (2.263)2. (Restriction on growth) for all t 2 [t0; T ]; x 2 IRjf(t; x)j2+ jG(t; x)j2 � K2(1 + jxj2): (2.264)Then, (2.262) has on [t0; T ] a unique solution X(t), which is a stochastic process that isalmost surely continuous (de�nition is analogous to mean-square continuity), and it satis�esthe initial condition X(t0) = C. If X(t) and Y (t) are almost-surely continuous solutionswith the same initial value C, thenP  supt0�t�T jX(t)� Y (t)j > 0! = 0: (2.265)Existence of the solution is proven using an analogous iteration to the Peano-Picard-Lindel}ofiteration that is used for an ordinary di�erential equation as discussed in Section 2.4.5. Wehave already discussed the importance of the Lipschitz condition in Section 2.4.5. Failing tosatisfy the Lipschitz condition can cause (2.262) to have distinct (i.e. nonunique) solutions.If the restricted growth condition is violated, the solution may \explode" in a �nite time inthe time interval [t0; T ], which is a random �nite time for (2.262). For instance, the followingordinary di�erential equation (which does not satisfy the restricted growth condition)_x = x2; x(0) = c (2.266)has the solution x(t) = (1=c� t)�1 (2.267)for c 6= 0. For c > 0, the solution explodes to 1 at t = 1=c.Now, let us consider an arbitrary function of X(t): h(X(t)). We would like to�nd out what stochastic di�erential equation h(X(t)) obeys. Now, we will use (2.258) and(2.260) to expand dh(X(t)) to second order in dW (t):dh(X(t)) = h(X(t) + dX(t))� h(X(t)) (2.268)= h0(X(t))dX(t)+ 1=2 h00(X(t))(dX(t))2+ : : : (2.269)= h0(X(t))[f(t; X(t))+ G(t; X(t))dW (t)] (2.270)+1=2h00(X(t))G2(t; X(t))(dW (t))2+ : : : (2.271)



CHAPTER 2. MATHEMATICAL BACKGROUND 62where all other terms have been discarded since they are of higher order. Now we usedW (t)2 = dt to obtaindh(X(t)) = [f(t; X(t))h0(X(t)) + 1=2G2(t; X(t))h00(X(t))]dt+G(t; X(t))h0(X(t))dW (t)(2.272)This formula is a special case of a general formula on stochastic di�erentials known as Ito'sformula, and shows that the rule for changing variables is not given by ordinary calculusunless h(x) is linear in x. The general form of Ito's formula for the multivariate case is quitecomplicated, and the easiest method is to simply use the multivariate form of the rule thatdW (t) is an in�nitesimal of order 1=2. It can be shown that for an n dimensional Wienerprocess W(t) (dW(t))dW(t)T = Indt; (2.273)dtdW(t) = 0 (2.274)which is obtained assuming that the components of the multidimensional Wiener processW(t) are independent.It can be shown that the solution X(t) of (2.261) is a Markov processes. Thekeystone for the Markov property of the solution is the fact that the \white noise" �(t) =ddtW (t) is a \process" with independent values at every time point.2.5.5 Ito vs. StratonovichThe Ito stochastic integral is mathematically and technically the most satisfactory,but, unfortunately, it is not always the most natural choice physically. The Stratonovichintegral is the natural choice for an interpretation which assumes �(t) is a real noise (not\white" noise) with �nite correlation time, which is then allowed to become in�nitesimallysmall after calculating measurable quantities. Hence, the system-theoretic signi�cance ofStratonovich equations consists in the fact that, in many cases, they present themselvesautomatically when one approximates a white noise or a Wiener process with smootherprocesses, solves the approximating equation, and in the solution shifts back to white noise.Furthermore, a Stratonovich interpretation enables us to use ordinary calculus, which isnot possible for an Ito interpretation. On the other hand, from a mathematical point ofview, the choice is made clear by the near impossibility of carrying out proofs using theStratonovich integral.



CHAPTER 2. MATHEMATICAL BACKGROUND 63It is true that for the same stochastic di�erential equation (2.261), one can obtaindi�erent solutions using the Ito and Stratonovich interpretations of the stochastic integral.This discrepancy arises not from errors in the mathematical calculation but from a generaldiscontinuity of the relationship between di�erential equations for stochastic processes andtheir solutions.If the second integral in (2.262) is interpreted using the Stratonovich stochasticintegral, then (2.261) is called a Stratonovich stochastic di�erential equation. It can beshown that the Ito stochastic di�erential equationdX = f dt+ GdW (t) (2.275)is the same as the Stratonovich stochastic di�erential equationdX = (f � 1=2G@xG) dt+GdW (t) (2.276)or conversely, the Stratonovich stochastic di�erential equationdX = �f dt+ �GdW (t) (2.277)is the same as the Ito stochastic di�erential equationdX = ( �f + 12 �G@x �G) dt+ �GdW (t): (2.278)Thus, whether we think of a given formal equation (2.261) in the sense of Ito or Stratonovich,we arrive at the same solution as long as G(t; x) = G(t) is independent of x. In general,we obtain two distinct Markov processes as solutions, which di�er in the systematic (drift)behavior but not in the 
uctuational (di�usion) behavior. If we consider f(t; x) to be themodel of the \systematic", or \large-signal" behavior of the system, and G(t; x) as thee�ect of the state of the system on the intensity of a noise source modeled by the derivativeof the Wiener process, then we can say that switching between the Ito and Stratonovichinterpretations of the stochastic di�erential equation (2.261) is equivalent to changing themodel of the systematic/deterministic behavior of the system on the \order" of the noisesource intensity, and keeping the noise source intensity the same. For most of the practicalphysical systems, the noise signals are small compared with the deterministic/desired signalsin the system. Hence, from a practical point of view, the choice between the Ito andStratonovich interpretations of a stochastic di�erential equation is not a signi�cant issueas it is from a technical point of view. For the rest of our discussion, we will use the Itointerpretation of the stochastic integral and Ito calculus for its nice mathematical properties.



CHAPTER 2. MATHEMATICAL BACKGROUND 642.5.6 Fokker-Planck equationConsider the time development of an arbitrary h(X(t)), where X(t) satis�es thestochastic di�erential equation (2.261). Using Ito's formula in (2.272), we obtainE [dh(X(t))]=dt = E � ddth(X(t))� = ddt E [h(X(t))] (2.279)= E �f(t; X(t)) @xh+ 12G2(t; X(t)) @2xh�: (2.280)Now, assume that X(t) has a conditional probability density p(x; tjx0; t0). Thenddt E [h(X(t))] = Z h(x) @tp(x; tjx0; t0)dx (2.281)= Z [f(t; x)@xh+ 12G2(t; x)@2xh]p(x; tjx0; t0)dx: (2.282)One can proceed to obtainZ h(x) @tp dx = Z h(x)[�@x(f(t; x)p) + 1=2@2x(G2(t; x)p)] dx (2.283)and, since h(x) is arbitrary, we obtain@tp(x; tjx0; t0) = �@x[f(t; x)p(x; tjx0; t0)] + 12@2x[G2(t; x)p(x; tjx0; t0)]: (2.284)This is a partial di�erential equation for the conditional probability density p(x; tjx0; t0) ofthe state X(t) of the solution of (2.261). This equation is called the Fokker-Planck equation,or the forward Kolmogorov equation in one dimension. It can easily be generalized to themultivariate case. The conditional probability density as the solution of (2.284) is said to bethe conditional probability density of a di�usion process with drift and di�usion coe�cientsgiven by f(t; x) and G2(t; x) respectively. One can \loosely" de�ne a di�usion process tobe a Markov process with continuous sample paths. Then the drift �(x; t) and the di�usion�2(x; t) coe�cients of a stochastic process X are de�ned byE [X(t+ �) �X(t)jX(t) = x] = �(t; x) + o(�); (2.285)E hjX(t+ �)�X(t)j2 jX(t) = xi = �2(t; x) + o(�): (2.286)Wiener processW (t) is a di�usion process with drift and di�usion coe�cients given by � = 0and � = 1. If X(t) is the solution of an (Ito) stochastic di�erential equation (2.261), thenit is a di�usion process with drift and di�usion coe�cients f(t; x) and G2(t; x) respectively.



CHAPTER 2. MATHEMATICAL BACKGROUND 652.5.7 Numerical solution of stochastic di�erential equationsE�ective analytical solutions of stochastic di�erential equations are most of thetime achievable only in some simple cases. So, there is great interest in extending numericalintegration techniques that are widely used for ordinary deterministic di�erential equationsfor use with stochastic di�erential equations. In this context, numerical simulation of astochastic di�erential equation is meant to mean generating sample paths of the solutionstochastic process X(t) for the stochastic di�erential equation (2.261) at some discrete timepoints in a speci�ed time interval. We will refer to this technique as the direct numeri-cal integration of a stochastic di�erential equation to di�erentiate it from other numericalmethods we will discuss later that are associated with stochastic di�erential equations.We would like to emphasize the fact that even though the stochastic numerical integra-tion schemes are based on the ones that are used for ordinary di�erential equations, theextension to the stochastic case is by no means trivial. One has to exercise great care inthe direct numerical integration of stochastic di�erential equations, and avoid using ad-hocand unjusti�ed extensions of deterministic numerical integration schemes. For instance, incontrast to the deterministic case, where di�erent numerical methods converge (if they areconvergent) to the same solution, in the case of the stochastic di�erential equation (2.261),di�erent schemes can converge to di�erent solutions (for the same noise source sample pathand the initial condition). One also needs to consider various notions of convergence.The �nal goal of numerically generating sample paths of the solution X(t) for(2.261) at discrete time points is usually achieved in three steps. In the �rst step, the taskis to design a numerical integration scheme so that the approximate solution generated atdiscrete time points converges to the real solution in some useful sense. As an example, letus consider the scalar Ito stochastic di�erential equation (2.261). Let the discretization ofthe interval [t0; T ] be t0 < t1 < � � � < tn = T; (2.287)and de�ne the time increment as4ti = ti+1� ti = hi, the increment of the standard Wienerprocess as 4Wi = Wi+1 �Wi, and the approximation process as �X(ti) = �Xi. Now let usconsider the integral version of (2.261) on the interval [ti; ti+1]X(ti+1) = X(ti) + Z ti+1ti f(s;X(s))ds+ Z ti+1ti G(s;X(s))dW (s): (2.288)Approximate schemes are constructed in such a way to approximate the integrals in (2.288)



CHAPTER 2. MATHEMATICAL BACKGROUND 66in some useful sense. For instance, for an approximation in the mean-square sense, for eacht 2 [t0; T ] we would like to haveE hjX(t)� �X(t)j2i! 0 as max (hi)! 0 (2.289)to assure convergence. Moreover, for �xed small h = hi (i.e. for large n), we would liketo have E �jX(T )� �Xnj2� to be small in some useful sense, e.g. we would like to have anumerical scheme such that, for all t 2 [t0; t]E hjX(t)� �X(t)j2i = O(hr) (2.290)for r � 1. The simplest numerical scheme for the Ito stochastic di�erential equation (2.261)is the stochastic analog of the forward Euler scheme, which is�Xi+1 = �Xi + f(ti; �Xi)h+ G(ti; �Xi)4Wi: (2.291)It can be shown that the stochastic forward Euler scheme converges in the mean-squaresense to X(t) governed by (2.261) as h ! 0. It can also be shown that, the order ofconvergence of the forward Euler scheme is O(h), that is, for each t 2 [t0; T ]E hjX(t)� �X(t)j2i = O(h): (2.292)The stochastic forward Euler scheme is not suitable for most practical problems. We willnot further discuss other stochastic numerical integration schemes here. We would liketo point out that another essential feature of numerical integration schemes for stochasticdi�erential equations manifests itself in additional methodical di�culties when one wishesto deal with multidimensional equations. Again, one has to exercise great care in extendingdeterministic numerical schemes to the stochastic case.The second step, for achieving the �nal goal of numerically generating a time dis-cretized approximation of the sample paths of the solution stochastic process, is to replacethe Wiener process with a suitable approximate simulation. There are various ways toaccomplish this task. One way is to use a sequence of so-called transport processes. LetZn(t); n = 1; 2; : : : be a sequence of continuous, piecewise linear \functions" with alter-nating slopes n and �n with Zn(0) = 0. The times between consecutive slope changesare independent, exponentially distributed random variables with parameter n2. It can beshown that the transport process Zn(t) converges to the Wiener process W (t), in a useful



CHAPTER 2. MATHEMATICAL BACKGROUND 67sense, as n!1 in �nite time intervals. It can also be shown that when W (t) in (2.261) isreplaced by Zn(t), the solution of the stochastic di�erential equation (2.261) converges tothe real solution in a useful sense, provided that f(t; x) and G(t; x) in (2.261) satisfy certainconditions.In the third step, one combines a stochastic numerical integration scheme witha method to simulate the noise source, i.e. the Wiener process. This can be interpretedas mixing two limiting procedures, one of which approximates the Wiener process and theother approximates the stochastic integration. This might lead to a result which may notcoincide with the actual solution of the stochastic di�erential equation in a useful limitingsense. Special care has to be taken to make sure that the sample paths generated bythe overall numerical algorithm converge to the sample paths of the true solution in somerigorous sense.



68Chapter 3Noise ModelsTo reach the �nal goal of simulating and characterizing the e�ect of noise on theperformance of an electronic circuit or system, we �rst need to investigate the actual noisesources in the system and develop models for these noise sources in the framework of thetheory of signals and systems we will be operating with. The models we are going to usefor the actual noise sources will be developed and described within the framework of thetheory of probability and stochastic processes outlined in Chapter 2. In this chapter, wewill �rst discuss the physical origins of noise sources in electronic systems. As mentionedin Chapter 1, we will concentrate on those noise sources which have their origin in the\random" statistical behavior of the atomic constituents of matter, and hence which arefundamentally unavoidable, i.e. the so-called electrical or electronic noise. We will excludefrom our discussion those noise sources which have their origin in external e�ects on thesystem, e.g. atmospheric and power line interferences.3.1 Physical Origins of Electrical NoiseElectrical noise is, basically a consequence of discrete or particle nature of matterand energy. Electrical charge is not continuous, but is carried in discrete amounts equalto the electron charge. Most macroscopically observable physical variables, such as electriccurrent, are only averages over a large number of particles, e.g. electrons, of some parameterdescribing those particles [17]. When observed more precisely, the statistical or \random"nature of the macroscopic variables become apparent from the 
uctuations in their valuesaround the average. A complete speci�cation of the microscopic state of a macroscopic



CHAPTER 3. NOISE MODELS 69system (such as a resistor) in classical physics would involve a speci�cation of not onlyof the physical structure but also of the coordinates and momenta of all of the atomicand subatomic particles involved in its construction [18]. This is not possible, consideringthe large number of particles we are talking about. A complete speci�cation on a particleby particle basis does not make sense in quantum mechanics, but the speci�cation of anexact quantum state for the system as a whole is equally impossible [18]. Hence, thestate of a macroscopic system is coarsely speci�ed in terms of a relatively small numberof parameters. A branch of physics, statistical mechanics, allows us to make predictionsabout the behavior of the system. The objective of statistical mechanics is to describe theproperties of a large system in terms of macroscopic state variables such as temperature,volume, resistance, etc. One can calculate the most probable state of a system when it issubject to various constraints [19]. In particular, one can calculate the probability withwhich any possible microscopic con�guration of particles will occur. Since each microscopiccon�guration corresponds to a particular value of the macroscopically observable quantitiesassociated with the system, this allows us to calculate the probability distribution of one ofthese quantities, for example the current through a resistor. Although one can not specifythe exact con�guration of the particles at any instant, these particles are subject to precisedynamical laws, and these laws govern the evolution of one microscopic con�guration intoanother as time proceeds [18]. One of the most signi�cant and simplest system constraints isthermodynamic equilibrium. The concept of thermodynamic equilibrium is fundamentallyassociated with time-invariance. A system in thermodynamic equilibrium will remain inthat state forever unless acted on by an external force. With di�erent assumptions on thecharacteristics of particles in a system, and with constant mass and energy constraints, onearrives at di�erent equilibrium distributions. For instance, Maxwell-Boltzmann statistics isfor a system with classical particles, and Bose-Einstein and Fermi-Dirac statistics are forsystems with quantum particles.An ideal gas is a system of identical noninteracting particles. Although it is aclassical system, its properties are useful in illustrating many basic physical principles.Many properties of conduction electrons in a metal, for example, can be derived from theassumption that they behave like an ideal gas. The ideal-gas law relates the macroscopicvariables of the system. p V = n k T (3.1)



CHAPTER 3. NOISE MODELS 70where p is the pressure, V is the volume, n is the number of particles, and T is the ab-solute temperature. The quantity k is a universal constant, called Boltzmann's constant(1:38 � 10�23 J/K). Starting with the ideal-gas law, and assuming that the system is inthermodynamic equilibrium (which means that the temperature of the gas and its con-tainer of volume V are the same, and hence collisions of the particles with the walls of thecontainer are elastic, i.e no energy is exchanged in collisions), one can calculate the meankinetic energy E of an ideal-gas particle to beE = 32kT: (3.2)The corresponding average thermal velocity corresponding to the above average kineticenergy for an electron has a value on the order of 107 cm=s. With the assumption that theideal-gas particles do not interact and the gravity is negligible, the x, y and z componentsof motion are independent. Each particle is said to have three degrees of freedom. For anyone degree i, we have Ei = 12kT: (3.3)The quantity 1=2 kT is often referred to as the thermal energy per degree of freedom. \Ran-dom" thermal motion is a very general phenomenon that is a characteristic of all physicalsystems, and is the cause of so-called thermal noise. In the context of electronic systems,thermal noise is a result of the \random" thermal motion of charge carriers in a device [19].Let us consider a �ctitious electronic device with free charge carriers. The terminalcurrents of the device are caused by charge carriers which are drawn from a source or emitterof carriers in some region of the device. The voltages at the terminals of the device produce�elds with which the above carriers interact in some interaction region, which gives riseto the particular terminal characteristics for that device. The 
uctuations in the terminalvoltages and currents arise from certain stochastic properties of the charge carriers. Inthe most general case, the stochastic properties of the carriers will be determined by the\source" region as well as the \interaction" region of the device. For thermal noise, thestochastic properties of the charge carriers are established in a region where the chargecarriers are in thermal equilibrium. If there is no applied external electric �eld, the chargecarriers are in thermal equilibrium with the crystal lattice (in much the same sense thatideal-gas molecules are in thermal equilibrium with the walls of a container) with an averagevelocity equal to the thermal velocity for the particular charge carrier and the temperature.



CHAPTER 3. NOISE MODELS 71When an external �eld is applied, the acceleration of the electrons does not result in asigni�cant change in the velocity of the charge carriers between di�erent collisons. Theaverage component of the velocity added by the external �eld is called the drift velocity.Now, we give a de�nition for the so-called shot noise using the notions that wereintroduced in the discussion of this �ctitious electronic device. The noise present at theterminals of the device can be called shot noise when the stochastic properties of the chargecarriers are determined by the \source" region of the device, and not by the interactionregion. So, for shot noise, the region in which the charge carriers interact with external �eldsis physically distinct from the region in which their statistical properties are established.Thus, as they interact with external �elds, they neither in
uence nor are in
uenced byrandom processes in the source region. For thermal noise, on the other hand, the interactionregion coincides with the region where the carrier 
uctuations are generated and, duringtheir interaction, the carriers remain in approximate thermal equilibrium with a lattice.Still, thermal noise and shot noise are not mutually exclusive phenomena. Even for adevice that has distinct source and interaction regions, if the charge carriers are in thermalequilibrium throughout, the noise can be considered to be of thermal origin. Then wecan say that any classical system in thermal equilibrium is directly subject to the laws ofthermodynamics, and the only noise it can exhibit is thermal noise. If a device is not inthermodynamic equilibrium, it may (and usually does) have other sources of noise1.3.1.1 Nyquist's theorem on thermal noiseIn 1906, Einstein predicted that Brownian motion of the charge carriers wouldlead to a 
uctuating e.m.f. across the ends of any resistance in thermal equilibrium. Thee�ect was �rst observed by Johnson (1928), and its spectral density was calculated by HarryNyquist (1928).The �rst fundamental result in the theory of thermal noise is the Nyquist theorem.We will now present a restricted version of the statement for the theorem and describeits generalizations later. Nyquist's theorem states that the random 
uctuations in theshort-circuit terminal current of an arbitrary linear resistor (as a matter of fact, any two-terminal linear electrical circuit with a purely resistive impedance), having a resistance R,maintained in thermal equilibrium at a temperature T , are independent of such parameters1The discussion of shot and thermal noise and their distinction is summarized from [17] and [18].



CHAPTER 3. NOISE MODELS 72as its conduction mechanism, composition, construction, or dimensions, and depend onlyupon the values of the resistance R and the temperature T , and can be modeled as a WSSstochastic process with a spectral density given bySth;i(f) = 2kTR (3.4)where k is Boltzmann's constant. This is the spectral density for a white noise process. Tobe consistent with our previous de�nition of spectral density (which is de�ned for negativefrequencies as well as positive frequencies), a factor of 2 appears in the above formulaas opposed to the usual form with a factor of 4. The statement for the theorem can bealso stated for the open-circuit terminal noise voltage. We are not going to present aderivation for Nyquist's result. See [17] for a discussion of di�erent methods of derivationfor Nyquist's theorem. There are various generalizations of the theorem, from an arbitraryinterconnection of impedances to nonreciprocal linear networks. Nyquist's result applies toany system in which the charge carriers are in equilibrium with a lattice, and can be assigneda temperature T equal to that of the lattice. See [17] for a discussion of the generalizationsof Nyquist's theorem.The spectral density given in (3.4) is the one for a white noise. This, of course,can not be true for a physical noise process. A quantum-statistical calculation (which wasconsidered by Nyquist in his original treatment) of the spectral density yieldsSth;i(f) = 2R(12hf + hfexp ( hfkT )� 1) (3.5)where h is Planck's constant. In the limit hf=kT! 0, (3.5) reduces to (3.4). (3.5) can beexpressed as Sth;i(f) = 2kTR(12f=f0 + f=f0exp (f=f0)� 1) (3.6)where f0 = 6000GHz at room temperature. Hence, for practical purposes, at room tempera-ture, (3.5) is very well approximated by (3.4). Practical electronic systems have bandwidthsmuch smaller than 6000GHz.It can be shown that the thermal noise of a linear resistor as a white WSS stochasticprocess with spectral density (3.4) is accurately modeled by a Gaussian process (derivedby G.E Uhlenbeck and L.S. Ornstein in 1930), as a direct consequence of the central limittheorem. Thus, as a white Gaussian process, we identify the model for thermal noise of alinear resistor as the formal derivative of the Wiener process.



CHAPTER 3. NOISE MODELS 73The thermal noise model based on Nyquist's theorem for a linear resistor is veryconvenient for use in circuit theory. A noisy linear resistor is modeled as a noiseless linearresistor with the same resistance R, and a noise current source connected across the ter-minals of the noiseless resistor representing a WSS white Gaussian stochastic process withspectral density given by (3.4). This is a Norton equivalent model for the noisy resistor.Similarly, in a Thevenin equivalent model, a noise voltage source is connected in serieswith the noiseless resistor. The noise voltage source also represents a WSS white Gaussianprocess with a spectral density Sth;v(f) = 2kTR: (3.7)With the above models of thermal noise of a linear resistor in circuit theory, it is implic-itly assumed that the internal noise generation for the resistor is independent of the loadconnected across the resistor. At this point, we would like to reemphasize the fact thatNyquist's result was derived for a linear resistor in thermal equilibrium.3.1.2 Shot noiseWe have already tried to give an \intuitive" explanation for shot noise in generaland its distinction from thermal noise. Now, we discuss shot noise in semiconductor devices.In vacuum tubes (where shot noise was �rst observed) and semiconductor devices incorpo-rating a pn junction, the charge carriers interact with �elds due to applied external voltagesonly in speci�c regions of the device, e.g. the depletion layer at the junction. The reason forthis is simply that the �elds within the devices, due to applied voltages, are approximatelyzero except in these regions. A pn junction consists of two contacting regions of relativelyhighly doped material, of two di�erent types, both regions being �tted with ohmic contacts.Except for a small thermal noise contribution due to their �nite conductance, the bulk pand n regions make no contribution to the noise. In a depletion layer for a pn junction,the motion of the electrons is dominated by the e�ect of the macroscopic �eld in the layer,and is little in
uenced by the very \small" number of collisions that occur in the layer.Therefore, the 
uctuations in the behavior of the electrons in the interaction region aredue to the 
uctuations in the emissions into the region, i.e. shot noise. For instance, ina bipolar transistor, the 
uctuations in the active carrier 
ow are established within theemitter and, to a lesser extent, within the base where collisions occur but there is approx-imately no �eld due to externally applied voltages. Fields and interactions occur only in



CHAPTER 3. NOISE MODELS 74the emitter-base and base-collector depletion layers. Hence, bipolar transistors are typicalshot noise limited devices. By contrast, in a �eld-e�ect transistor, the carrier 
uctuationsare established in the channel, and this is also where the carriers interact with the appliedvoltages. A �eld-e�ect transistor is, therefore, a thermal noise limited device [18]. For MOS�eld-e�ect transistors in weak-inversion (subthreshold operation), the generated noise canalso be explained using shot noise arguments. In fact, at thermal equilibrium, both shot andthermal noise arguments produce identical results, consistent with the previous commenton shot and thermal noise not being mutually exclusive [20]. A similar observation canalso be made for a pn junction at thermal equilibrium, which we will present later in thischapter. A stochastic process model for shot noise will be presented later in this chapter.At this point, we will only state that the shot noise in the current through a pn junctionwhich is biased by a time-invariant signal can also be modeled as a WSS white Gaussianprocess for practical purposes.3.1.3 Flicker or 1=f noiseThe noise at \low" frequencies for semiconductor devices often considerably ex-ceeds the value expected from thermal and shot noise considerations. The spectral densityof noise increases as the frequency decreases, which is observed experimentally. Generally,this low frequency excess noise is known as 
icker noise, and in many cases the spectraldensity is inversely proportional to the frequency. The characteristics of 
icker noise consid-erably change from device to device, even for two same type of devices on the same die. Thissuggests that 
icker noise is often associated with the �ne details of the device structure[18]. Flicker noise has been experimentally observed in a great variety of electronic compo-nents and devices, including carbon resistors, pn junction diodes, bipolar transistors, and�eld-e�ect transistors. Unfortunately, the precise mechanisms involved in 
icker noise arecomplicated, vary greatly from device to device, and have been the subject of speculationand controversy [20]. For bipolar transistors, it is believed to be caused mainly by traps as-sociated with contamination and crystal defects in the emitter-base depletion layer. Thesetraps capture and release carriers in a random fashion and the time constants associatedwith the process give rise to a noise signal with energy concentrated at low frequencies [1].For MOS �eld-e�ect transistors, according to some studies, the carrier density 
uctuations



CHAPTER 3. NOISE MODELS 75caused by the exchange of charge carriers between the channel and the interface traps arethe cause [20]. Many theories have been proposed for 
icker noise in various electronic com-ponents. Each theory is involved, and gives rise to a di�erent spectral density expression forthe stochastic process that models the noise current in the device. The one important pointon which all the theories, as well as experimental results, agree is that the spectral densityfor the stochastic process that models 
icker noise is approximately inversely proportionalto the frequency f for a WSS stochastic process model [20]. This is the reason why 
ickernoise is also referred to as 1=f noise. At this point, we would like to emphasize the factthat any device in thermal equilibrium is directly subject to the laws of thermodynamics,so its noise is solely thermal noise modeled as a WSS white Gaussian process. Thus, 
ickeror 1=f noise can only occur in non-equilibrium situations in devices subjected to appliedbias voltages or bias voltages derived from a signal [18].1=f noise has been observed as 
uctuations in the parameters of many systemsapart from semiconductor devices. Many of these systems are completely unrelated tosemiconductors. 1=f type 
uctuations have been observed in average seasonal temperature,annual amount of rainfall, rate of tra�c 
ow, economic data, loudness and pitch of music,etc. [21]. Keshner in [21] describes 1=f noise as1=f noise is a nonstationary stochastic process suitable for modeling evolution-ary or developmental systems. It combines the strong in
uence of the past eventson the future and, hence somewhat predictable behavior, with the in
uence ofrandom events.The presence of 1=f noise in such a diverse group of systems has led researchers to speculatethat there exists some profound law of nature that applies to all nonequilibrium systemsand results in 1=f noise. Keshner in [21] \speculates"The fact that music has 1=f noise statistics and that when notes are chosen atrandom, they sound most musical when their spectral density is 1=f , suggests aconnection between the way humans perceive and remember, and the structureof 1=f noise. Because of this connection and the in
uence of human memoryand behavior on the development of our institutions: the development of our-selves, our economic system, our government, and our culture may each havethe statistics of a 1=f noise stochastic process.



CHAPTER 3. NOISE MODELS 763.2 Model for Shot Noise as a Stochastic ProcessFor a pn junction diode, it can be shown that the current in the external leads is,approximately, a result of the charge carriers crossing the depletion layer [18]. For everycharge carrier crossing the depletion layer, the current in the external leads consists of a shortpulse, of total charge q of the charge carrier. Now, let us assume that the charge carriersare being emitted into the depletion layer from only one side of the junction. Then, let N(t)be the number of charge carriers that have crossed the depletion layer prior to time t, withthe initial condition N(0) = 0. Assuming that the carrier crossings are instantaneous, N(t)can be \reasonably" modeled with an inhomogeneous Poisson counting process with time-varying rate �(t) (see Section 2.2.8). For a constant rate (homogeneous) Poisson countingprocess, we recall that inter-crossing times for the carriers are exponentially distributed, theonly continuous distribution that has the memoryless property described in Example 2.1.2.Then, the stochastic process that describes the total charge that has crossed the depletionlayer prior to time t is given by Q(t) = q N(t) (3.8)where q is the charge of one charge carrier. The stochastic process that describes the currentthrough the junction is, by de�nition, given as the time derivative of Q(t). However Q(t)has instantaneous jumps exactly at the times of the instantaneous carrier crossings, and itis not mean-square di�erentiable. From Section 2.2.10, we know that the formal derivativeof a Poisson counting process (after mean is subtracted) can be identi�ed as a white noiseprocess. Then, in the generalized sense of di�erentiation for stochastic processes, the formaltime derivative of Q(t) can be expressed asI(t) = ddtQ(t) =Xi q �(t� Ti) (3.9)where Ti are the (random) crossing times for the Poisson counting process N(t). Ti arecalled a set of Poisson time points, and I(t) in (3.9) is called a Poisson pulse train [7]. In(3.9), we let �1 < t < 1 and let the starting time for the Poisson counting process N(t)go to �1 so that the current process I(t) is in \steady-state". In reality, the charge carriercrossings can not be instantaneous. Now, we replace the � function in (3.9) with a �nitewidth pulse h(t) which also has a total area equal to 1, and satis�es h(t) = 0 for t < 0.This is equivalent to passing the Poisson pulse train in (3.9) through an LTI system with



CHAPTER 3. NOISE MODELS 77impulse response h(t) [7]. We get I(t) =Xi q h(t� Ti): (3.10)The shape of the pulse h(t) is determined by the speci�c characteristics of the device. Asfar as we are concerned, it is a pulse with area equal to 1 and the pulse width is equal tothe transit time of the carrier through the depletion layer. One can calculate the mean ofthe current I(t) [7], using the properties of the Poisson counting process, to be�I(t) = E [I(t)] = q Z 1�1 �(u)h(t� u)du: (3.11)Now, we de�ne the noise current ~I(t) to be the di�erence between the total current I(t)and its mean �I(t) ~I(t) = I(t)� E [I(t)]: (3.12)Obviously, the mean of the noise current ~I(t) is zero, and its autocorrelation (which is equalto the autocovariance of the total current I(t)) can be calculated to be [7]R~I(t; �) = E h~I(t+ �=2)~I(t� �=2)i (3.13)= q2 Z 1�1 �(u)h(t+ �=2� u)h(t� �=2� u)du: (3.14)If the rate �(t) = � is a constant, then (3.11) and (3.14) reduce to�I(t) = �I = q� Z 1�1 h(t� u)du = q� (3.15)and R~I(t; �) = q2� Z 1�1 h(t+ �=2� u)h(t� �=2� u)du (3.16)= q2� Z 1�1 h(u+ �=2)h(u� �=2)du (3.17)= R~I(�): (3.18)From (3.15) and (3.17), we conclude that the shot noise current ~I(t) is a WSS process forconstant rate �. The spectral density of ~I(t) with a constant rate � can be calculated to be[7] S~I(f) = � q2 jH(f)j2 (3.19)where H(f) = F fh(t)g. Note that H(0) = 1, since the area under h(t) is equal to 1. From(3.15), we have � = E [I(t)]q = �I(t)q = �Iq : (3.20)



CHAPTER 3. NOISE MODELS 78If we substitute (3.20) in (3.19), we getS~I(f) = q �I jH(f)j2; (3.21)which expresses the shot noise current spectral density in terms of the mean current andthe charge of a carrier. If h(t) is the Dirac delta function, then (3.21) reduces toS~I(f) = q �I (3.22)which is the spectral density for a WSS white noise process! This is no surprise to us,because we have already seen in Section 2.2.10 that the formal derivative of a Poissoncounting process with a constant rate (after the mean is subtracted) can be identi�ed as aWSS white noise process. The \usual" factor \2" does not appear in (3.22), because thespectral density in (3.22) is a double-sided density, i.e. it is de�ned for negative frequenciesas well. We go back to the shot noise process with the time-varying rate �(t). Now, weassume that the change in �(t) as a function of time is slow enough so that it can beapproximated with a constant over the width of a single current pulse (i.e. the width ofh(t)). Then, we can approximate (3.11) as�I(t) = E [I(t)] = q Z 1�1 �(u)h(t� u)du (3.23)� q Z 1�1 �(t)h(t� u)du (3.24)� q�(t) Z 1�1 h(t� u)du (3.25)� q�(t) (3.26)where we have used the fact that the area under the pulse h(t) is 1. Now, let the pulsewidth of h(t) be �tr, which is equal to the transit time of carriers crossing the depletionlayer. From (3.14), R~I(t; �) = 0 for j� j > �tr. For j� j � �tr (as a matter of fact for all �),we can approximate (3.14) asR~I(t; �) = E h~I(t+ �=2)~I(t � �=2)i (3.27)= q2 Z 1�1 �(u)h(t+ �=2� u)h(t� �=2� u)du (3.28)� q2 Z 1�1 �(t)h(t+ �=2� u)h(t� �=2� u)du (3.29)� q2�(t) Z 1�1 h(t + �=2� u)h(t� �=2� u)du (3.30)



CHAPTER 3. NOISE MODELS 79� q2�(t) Z 1�1 h(u+ �=2)h(u� �=2)du: (3.31)Then using (3.31), the instantaneous (time-varying) spectral density (see Section 2.2.6) of~I(t) can be calculated to be S~I(t; f) = �(t) q2 jH(f)j2 (3.32)where H(f) = F fh(t)g. From (3.26), we have�(t) = E [I(t)]q = �I(t)q : (3.33)If we substitute (3.33) in (3.32), we getS~I(t; f) = q �I(t) jH(f)j2 (3.34)which expresses the shot noise current (time-varying) spectral density in terms of the (time-varying) mean current and the charge of a carrier. (3.26) and (3.34) seem to be straight-forward generalizations of (3.15) and (3.21) obtained by simply replacing the constant rate� in (3.15) and (3.21) by the time-varying rate �(t), but these generalizations are correctonly for the case where the change in �(t) as a function of time is slow enough so that itcan be approximated by a constant value over the width of h(t).If h(t) is the Dirac impulse, then (3.34) reduces toS~I(t; f) = q �I(t) (3.35)which is independent of f , and hence, is similar to the spectral density of a WSS white noiseprocess which has a spectral density independent of f . However, there is one importantdi�erence: The stochastic process that has the spectral density in (3.35) is not a WSSprocess, because its spectral density is not a constant function of t.Up to this point, we have discussed the second-order probabilistic characterization,i.e the autocorrelation and spectral density, of shot noise. Now, we discuss the fdds for theshot noise process. It can be shown that if the rate �(t) is large compared with the inverse ofthe width of the pulse h(t), then the shot noise process ~I(t) is approximately Gaussian [7].If �(t) is large compared with the inverse of the width of the pulse h(t), it means that manypulses overlap at each instant in time, and hence the central limit theorem can be used toconclude that the shot noise process is approximately Gaussian [5]. For instance, if the meancurrent �I is 1mA, and if the charge carriers are electrons with charge q = 1:6 � 10�19C,



CHAPTER 3. NOISE MODELS 80then the rate � � = �Iq = 6:25 1015 1=sec (3.36)is much greater than the inverse of �tr = 10�12 sec, which is a typical transit time (i.e. pulsewidth) for a pn junction diode.As a Gaussian process, and as a WSS white noise process with spectral densitygiven by (3.22), the shot noise process ~I(t) with a constant rate � can be identi�ed as theformal derivative of the Wiener process, i.e. �(t) (up to a scaling factor to be discussed)de�ned in Section 2.2.7. As a matter of fact, it can be shown that the spectral density ofthe Gaussian WSS process qq �I �(t) is exactly given by (3.22). Hence, as Gaussian WSSprocesses having the same mean and the spectral density, the shot noise process ~I(t) witha constant rate �, and the scaled version of the derivative of the Wiener process qq �I �(t)are \probabilistically equivalent", i.e. they have the same fdds. Similarly, it can be shownthat the time-varying spectral density of the Gaussian, but not necessarily WSS, processqq �I(t) �(t) is exactly given by (3.35). Hence, as Gaussian processes having the same meanand the time-varying spectral density, the shot noise process ~I(t) with a time-varying rate�(t), and the \modulated" version of the derivative of the Wiener process qq �I(t) �(t) are\probabilistically equivalent", i.e. they have the same fdds. In the above discussion, wehave assumed that q �I(t) � 0. Obviously, if the charge carriers are electrons, we have q < 0and �I(t) < 0.We conclude that the shot noise with a time-varying rate can be modeled as amodulated version of the derivative of the Wiener process~I(t) = qq �I(t) �(t) (3.37)This result was achieved with the following three basic assumptions:� The emission of carriers into the depletion layer can be \reasonably" modeled as aPoisson process.� The change in the time-varying rate �(t) = �I(t)=q as a function of time is slow enoughso that it can be approximated by a constant value over the width of a current pulseh(t) caused by a single charge carrier.� The time constants of the system (the shot noise process is a�ecting) are much largerthan the carrier transit time, so that the �nite width pulse h(t) can be approximatedby an ideal impulse function.



CHAPTER 3. NOISE MODELS 81Of course, these last two assumptions are closely related, and express the same conditionfrom two di�erent points of view. The connection between these assumptions becomes clearwhen one considers the fact that the mean current �I(t) (which sets the time-varying rateas �(t) = �I(t)=q for the shot noise process) is set by the system that the pn junction is apart of. Shot noise is not a phenomenon speci�c to pn junctions. Whenever a device con-tains a potential barrier (e.g. pn junctions, vacuum tubes, MOSFETs in weak inversion,etc.), the current is limited to those charge carriers that have su�cient energy to surmountthe potential barrier. In our above discussion of the pn junction to derive a model for shotnoise as a stochastic process, we have assumed that there is only one kind of charge car-rier present, and the charge carriers are emitted from only one side of the depletion layer.The real situation is more complicated, of course. There are two types of charge carriers,electrons and holes, and they are emitted into the depletion layer from both sides of thejunction. Now, we summarize Robinson's discussion from [18] for the di�erent current com-ponents for a pn junction diode. To simplify the discussion, we assume that recombinationbetween holes and electrons is negligible. Hence, electron and hole currents can be consid-ered to be independent and additive. (The summation of two independent Poisson countingprocesses is another Poisson counting process, and the rate for the sum counting process isgiven by the summation of the rates for the two Poisson counting processes that are beingadded.) Now, consider the electrons. The electron current in a pn junction consists of twocomponents. A forward component consisting of electrons from the n region crossing to thep region, and a reverse component passing from p to n. At zero bias across the junction,these currents balance on average. The reverse current is controlled by density of electrons(minority carriers) in the p material, and there is no potential barrier to their transit intothe n region. This current is unchanged by an applied bias, which is denoted by V . Theforward current is controlled partially by the majority carrier (electron) concentration inthe n material, but, since this is large, the dominant e�ect is due to the retarding potentialbarrier at the junction. An applied potential V , with the p region positive, reduces thisbarrier, and the forward current increases by a factor exp (V=VT), where VT = kT=q withBoltzmann's constant k, the temperature T and the electron charge q. So, the total currentI is given by I = Is(exp (V=VT)� 1): (3.38)



CHAPTER 3. NOISE MODELS 82Each component of I (modeled as the derivative of independent Poisson processes) displaysshot noise, so the shot noise current for the diode can be modeled with a Gaussian processwith possibly time-varying spectral density given byS(t; f) = q Is(exp (V=VT) + 1) = q (I + 2 Is): (3.39)The di�erential or small-signal conductance of the diode isG(V ) = d Id V = IsVT exp (V=VT): (3.40)Then, (3.39) can be expressed asS(t; f) = 2kT G(V )� q I(V ): (3.41)At zero bias, V = 0, (3.41) becomesS(t; f) = 2kT G(0): (3.42)At zero bias, the diode is a system in thermodynamic equilibrium, so (3.42) can be inter-preted as the spectral density of thermal noise associated with the conductance G(0) [18].However, note that, the conductance G(0) does not correspond to a physical resistor. Asimilar observation for the noise of a MOSFET in weak inversion can be made [20].The shot noise model derived above for a time-varying bias current �I(t) as amodulated version of the derivative of the Wiener process is very convenient for use incircuit theory to model shot noise associated with various current components of devicessuch as pn junction diodes, bipolar junction transistors, etc. Shot noise sources in thesedevices are modeled with noise current sources connected across various nodes of the devices,and they represent Gaussian stochastic processes with spectral density given by (3.35). Forinstance, shot noise in a bipolar transistor is modeled with two independent current noisesources, which are connected across the base-emitter and collector-emitter junctions.It is interesting to observe that all the devices that display shot noise (pn junctiondiodes, bipolar transistors, vacuum tubes, MOSFETs in weak inversion) obey the sameexponential relationship between the terminal currents and voltages. The explanation ofthis goes back to the �rst principles of thermodynamics, i.e. Maxwell-Boltzmann statistics,and the Second Law of Thermodynamics [22]. Coram and Wyatt in [22] prove a nonlinear
uctuation-dissipation theorem for devices that can be accurately described by a model



CHAPTER 3. NOISE MODELS 83given by (3.38), where the forward and reverse currents satisfyIfIr = exp (V=VT): (3.43)Finally, we would like to emphasize the fact that shot noise is not only a result ofthe fact that electrical charge is carried in discrete amounts equal to the electron charge,but also a result of the fact that charge carriers which attain su�cient energy to overcomethe potential barrier enter the depletion layer randomly, as modeled by a Poisson process.If the emission of charge carriers was spaced evenly in time instead of randomly, the currentwould be a deterministic periodic waveform which obviously does not have a white spectraldensity.3.3 Model for Thermal Noise as a Stochastic ProcessIn Section 3.1.1, we have seen that the thermal noise of a linear resistor in thermo-dynamic equilibrium can be modeled as a WSS Gaussian white current noise source withspectral density given by Sth;i(f) = 2kTR : (3.44)As a Gaussian process, and as a WSS white noise process, the thermal noise of a linearresistor R in thermodynamic equilibrium can be identi�ed as the formal derivative of theWiener process, i.e. �(t) (up to a scaling factor to be discussed) de�ned in Section 2.2.7.As a matter of fact, it can be shown that the spectral density of the Gaussian WSS processp2kT=R�(t) is exactly given by (3.44). Hence, as Gaussian WSS processes having thesame mean (which is zero) and spectral density, the thermal noise current process and thescaled version of the derivative of the Wiener process p2kT=R�(t) are \probabilisticallyequivalent", i.e. they have the same fdds.In Section 3.2, we derived a stochastic process model for shot noise in devicesbiased with possibly time-varying signals, which was based on several assumptions statedin Section 3.2. Now, the question is: Can Nyquist's theorem be generalized to nonlineardissipative systems biased with possibly time-varying signals? A nonlinear resistor witha time-varying bias is, obviously, not a system in thermodynamic equilibrium. It turnsout that the above question has been a widely explored research topic in both physicsand engineering literature. Gupta in [17] summarizes the work done in the area of thetheory of thermal noise in nonlinear dissipative systems up to 1982. The general theory of



CHAPTER 3. NOISE MODELS 84thermal noise in nonlinear dissipative systems is quite intricate, but from an engineeringperspective the problem can be stated as: Can we use a straightforward generalization ofNyquist's theorem for nonlinear resistors with a time-varying bias, simply by replacing theR in (3.44) with the time-varying small-signal resistance R(t) obtained by di�erentiatingthe nonlinear relationship that relates the terminal voltages and currents for the particularnonlinear dissipative device and evaluating it at a trajectory set by the time-varying bias?This generalization would be similar to the one we described for shot noise. The answerto the above question is no in the general case as explained by Gupta in [17]. Hence, thequestion is: Under what conditions can we make the above generalization, if any at all?\Intuitively", one might think that if the change in the time-varying bias as a function oftime is \slow enough" so that the device stays approximately at thermal equilibrium, andthe 
uctuations caused by the noise are much \smaller" compared with the deterministicdesired signals in the system, the above generalization is reasonable. Indeed this seems tobe the case, i.e. Nyquist's theorem applies to systems in approximately thermal equilibriumwith the understanding that the resistance is the small-signal resistance of the system [17].However it is stated in [17] that this result is not rigorously established (probably as aresult of the imprecise statement of the assumptions and approximate nature of the theory,we believe), and is not universally valid. Nyquist's theorem has been liberally applied tononlinear dissipative devices in electronic device literature to develop noise models, themost conspicuous one being the MOSFET for a model of its channel noise. The resultsobtained with the noise models arrived at by applying Nyquist's theorem to biased nonlineardissipative devices seem to match experimental results. However, in our opinion, one hasto be very suspicious of measurements matching results obtained with the noise models.Because, in noise measurements, some of the parameters describing the noise model areusually \calibrated" using some measurement results. So, it is not always clear that thematch is due to a good \calibration" of the parameters, a reasonable noise model, or both.This might be acceptable when one has access to the devices, as stand-alone components,she/he is going to use for her/his design. This is usually the case for microwave design.However, in IC design, the particular device that is important for the noise performancemay not be, and almost always is not, accessible. The parameters describing the noisebehavior of a device can be quite di�erent for two devices from the same fab, and even forthe devices on the same die, or on the same chip.In summary, a rigorous justi�cation for any thermal noise model used for a de-



CHAPTER 3. NOISE MODELS 85vice, which does not satisfy the assumptions of the Nyquist theorem, is de�nitely needed.Recent work by Coram and Wyatt [22] focuses on testing the consistency of these \un-rigorously" generalized noise models with basic equilibrium (Maxwell-Boltzmann statistics)and non-equilibrium (monotonically increasing entropy as the system relaxes to equilibrium)thermodynamic principles. Using techniques from the theory of stochastic di�erential equa-tions, they conclude that, in the general case, these \generalized" thermal noise models fornonlinear dissipative devices do not yield results that are consistent with basic principles ofthermodynamics.From a practical \engineering" perspective, modeling the thermal noise of a non-linear dissipative device as a Gaussian stochastic process obtained by \modulating" thederivative of a Wiener process seems to be reasonable with the following assumptions:� The change in the time-varying bias as a function of time is \slow enough" so thatthe nonlinear dissipative device stays approximately at thermal equilibrium.� The 
uctuations caused by the noise are much \smaller" compared with the deter-ministic desired signals in the system.The above statement, of course, is not rigorously justi�ed.Let G(t) be the time-varying small signal conductance obtained by di�erentiatingthe nonlinear relationship between the terminal currents and voltages of a dissipative deviceevaluated at a time-varying trajectory imposed by the deterministic large signals in thesystem. Note that the nonlinear relationship has to describe a dissipative device. Forinstance, the small-signal input resistance r� of a bipolar transistor does not correspondto a physical resistor, hence does not generate thermal noise [1]. The thermal noise of thedevice is modeled as a current noise source across the terminals of the device, and it ismathematically described as a modulated version of the derivative of the Wiener process,i.e p2kT G(t) �(t), and the time-varying spectral density for this nonstationary Gaussianprocess is given by Sth;i(t; f) = 2kT G(t) (3.45)3.4 Models for Correlated or non-White NoiseIn the two previous sections, we concluded that, for practical purposes, thermalnoise and shot noise in electronic devices and components can be modeled as modulated



CHAPTER 3. NOISE MODELS 86versions of a white Gaussian process, i.e. by modulating the derivative of the Wienerprocess. The Gaussian processes that represent current noise sources connected across thetwo terminals of a device and modeling thermal and shot noise have time-varying spectraldensities given by Sthermal(t; f) = 2kT G(t) (3.46)Sshot(t; f) = q �I(t): (3.47)These spectral densities correspond to the following autocorrelation functionsRthermal(t; �) = 2kT G(t) �(�) (3.48)Rshot(t; �) = q �I(t) �(�): (3.49)The modulated processes which have the spectral densities and the autocorrelation functionsgiven above are expressed as ~Ithermal(t) = q2kT G(t) �(t) (3.50)~Ishot(t) = qq �I(t) �(t) (3.51)where �(t) is the WSS white Gaussian process, i.e. the derivative of the standard Wienerprocess. The stochastic processes de�ned by (3.50) and (3.51) are not WSS processes, butas seen from (3.48) and (3.49), they are \delta-correlated", i.e. the � variable appearsonly as the argument of a delta function in their autocorrelation functions, and hence thetime-varying spectral densities (3.46) and (3.47) are independent of f . We will refer to suchprocesses as nonstationary white noise processes.The stochastic process models summarized above for thermal noise and shot noiseare exactly in the same form: modulated versions of the derivative of the Wiener process.Moreover, the modulation functions are fully described in terms of the device equationsthat relate the terminal voltages and currents, and these processes represent current noisesources to be connected across the nodes of the device. We will later see that the di�erentialequations describing an electronic circuit containing thermal and shot noise sources modeledas above can be formulated as a system of stochastic di�erential equations (see Section 2.5),where the noise sources are additively superimposed on a system of ordinary di�erentialequations that describe the deterministic or systematic behavior of the electronic circuit.This is rather desirable, because it enables us to use results from the theory of stochastic



CHAPTER 3. NOISE MODELS 87di�erential equations in analyzing the e�ect of noise sources on electronic circuits andsystems. Thus, we would like to have models for other types of noise sources which satisfythe following two conditions:� The only way \randomness" enters a model of any noise source has to be through thederivative of the Wiener process.� In the formulation of di�erential equations describing the electronic circuit, the noisesource model can be \additively" superimposed on top of the equations that describethe systematic behavior of the circuit.These conditions might seem to be too restrictive at �rst sight, but models for most of thenoise sources encountered in practice can be developed to satisfy these conditions. Thiswill become clearer with the following observations: The model for the noise source caninvolve any number of Wiener processes (actually its derivative, the WSS Gaussian whitenoise process) which can be independent or correlated. Moreover, the noise model itselfcan contain a subsystem, i.e. the noise source can be modeled to be the output of asubsystem that has WSS Gaussian white noise inputs. Including a subsystem in the noisemodel usually requires the introduction of extra variables to describe the whole system, i.e.the state variables of the system have to be augmented. State augmentation is a commontechnique used in many problems. We will see examples for this later.As a matter of fact, the modulating functions in the models of thermal and shotnoise can be thought to be memoryless time-varying, but not necessarily linear, subsystems(see Section 2.3). If G(t) in (3.46) and �I(t) in (3.47) are functions of only time, thenthese subsystems are linear, but if G(t) and �I(t) also depend on some state variables (e.g.terminal voltages of the device) of the system, then these subsystems are nonlinear. Sincethey are memoryless, these subsystems do not have internal state variables, and hence donot require the introduction of extra state variables into the overall system. For a more\realistic" model of thermal noise or shot noise, one may consider introducing internal statevariables to these subsystems to model a �nite response time, for instance, between thechanges in �I(t) in (3.47) as a function of time and the appearance of the e�ect of thesechanges on the spectral density of shot noise.For example, if we would like to model a noise source as a WSS Gaussian processwith spectral density S(f), this noise model can be realized as the output of a SISO, stable,



CHAPTER 3. NOISE MODELS 88LTI subsystem with the transfer function H(f) satisfyingS(f) = jH(f)j2 (3.52)and setting the input to �(t), the WSS Gaussian white noise. In general, this subsystemhas internal state variables and requires state augmentation.If we use a linear multi-input single-output (MISO) subsystem, with a number ofWSS Gaussian white noise inputs, then the stochastic process at the output that models anoise source will also be Gaussian, but not necessarily WSS. If we would like to realize anon-Gaussian noise model, this can be accomplished with a nonlinear subsystem.3.4.1 1=f noise model for time-invariant biasAs discussed in Section 3.1.3, at present there does not exist a uni�ed theoryfor 1=f noise. Using the results of experimental work (i.e. measurements), for practicalpurposes, 1=f noise in electronic devices and components associated with a direct time-invariant current I is modeled as a \WSS" stochastic process with spectral density givenby S1=f(f) = K Iaf b (3.53)where K is a constant for a particular device, a is a constant in the range 0:5 to 2, b is aconstant approximately equal to 1, and f is the frequency. If b = 1, the spectral densityhas a 1=f frequency dependence. Observe that when b = 1, (3.53) can not be the spectraldensity of a \well-de�ned" stochastic process, because the variance of this WSS process hasto be 1, which can be observed using (2.47). Keshner in [21] argues that this problemarises, because 1=f noise is inherently a nonstationary process and should be modeled assuch. Please see [21] for an in-depth discussion of this issue. Nevertheless, for \engineering"calculations, the model in (3.53) seems to be adequate for a time-invariant bias, but, as wewill discuss later, the generalization of (3.53) to time-varying bias is not straightforward.1=f noise as modeled by (3.53) is not a \delta-correlated" process, and hence doesnot have independent values at every time point (unlike the thermal and shot noise models).Actually, its present behavior is equally correlated with both the recent and distant past[21]. Based on our previous discussion, we would like to develop a model for 1=f noise asthe output of a subsystem with WSS white Gaussian processes as inputs. So, the questionis: Does there exist a stable, SISO, LTI system, the output of which has the spectral density



CHAPTER 3. NOISE MODELS 89given by (3.53) (with b = 1 which is most common) when driven by a WSS white noise?This requires that the system transfer function H(f) satis�esjH(f)j2 = S1=f(f) = K Iaf : (3.54)Keshner answers this question in [21]. The system he describes consists of a WSS whitenoise current source driving the input of a one-dimensional continuous resistor-capacitor(RC) line of in�nite length. The transfer function (i.e. the impedance) Z(f) of an in�niteRC line is given by Z(f) = ( Rj2�fC )1=2 (3.55)where R is the resistance of the line per unit length, and C is the capacitance of the lineper unit length. Hence it satis�es (3.54) (up to a scaling), but this is true only if the line isin�nite. We actually expect to have a pathological case like this, because we know that aWSS stochastic process with a spectral density given by (3.53) is not a \well-de�ned" one.If the line is is �nite, and terminated with a �nite resistance, then the spectral density ofthe process (which represents a voltage, since the transfer function is an impedance and theinput is a current) at the output will have a lowest frequency below which it is constant, i.e.white [21], which then corresponds to a well-de�ned stochastic process with �nite variance.Another approach for a 1=f noise model is to use the summation of Lorentzianspectra [23]. This approach has been used in instrumentation to generate continuous-time1=f noise over a speci�ed range of frequencies. A sum of N Lorentzian spectra is given byS(f) = 2�2� NXh=1 �h�2h + f2 (3.56)where �h designate the pole-frequencies and f is the frequency [23]. It has been shown in[23] that N = 20 poles uniformly distributed over 14 decades are su�cient to generate 1=fnoise over 10 decades with a maximum error less than 1%. Each Lorentzian spectrum inthe summation in (3.56) can be easily obtained by using the thermal noise generator (whichis modeled as a \constant modulated" version of the WSS Gaussian process as discussedbefore) of an LTI resistor Rh connected in parallel to a capacitance Ch = C, and their sumcan be achieved by putting N of such Rh�Ch groups in series [23], as shown in Figure 3.1.This is a MISO, stable, LTI system with inputs as the WSS Gaussian processes modelingthe thermal noise current sources of the resistors. Obviously, this system has internal states(represented by the capacitors), and hence it introduces new variables in the state vector of
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1/f noiseFigure 3.1: 1=f noise synthesizing circuitthe system. Actually, this is inherent to 1=f noise, because the minimum amount of memoryfor a subsystem that exhibits 1=f noise is one state variable per decade of frequency [21].The WSS process model with spectral density given by (3.53) was given for 1=fnoise associated with a time-invariant bias. As for thermal and shot noise, we are inter-ested in generalizing the 1=f noise model to the time-varying case. This was relativelystraightforward for thermal and shot noise, since they are modeled as \delta-correlated"noise processes having independent values at every time point, and they were modeled asmodulated WSS white Gaussian noise processes. In [1], it is pointed out that no 1=f noiseis present in carbon resistors until a direct current (DC) is passed through the resistor 2.Robinson in [18] mentions that any electronic device or component subjected to either a DCbias, or a strong AC (alternating current) signal can generate 1=f noise. Ambrozy in [24]reviews some experimental work investigating 1=f noise associated with DC bias and/or ACsignals. van der Ziel in [25] mentions that if an AC current Io cos (2�fot) is passed througha resistor, two 1=f noise sidebands appear around the frequency fo.In the next section, we will be discussing models for noise sources associated witha time-varying bias or signal, which can not be modeled as \delta-correlated" stochasticprocesses (and hence which can not be modeled as modulated WSS Gaussian processes).1=f noise is certainly one such noise source, but our discussion in the next section willconcentrate more generally on models for \correlated" noise, not just on 1=f noise. We will2We would like to thank Ken Kundert for several fruitful discussions on this topic.



CHAPTER 3. NOISE MODELS 91also discuss the observations we stated in the above paragraph on 1=f noise from severalreferences in the context of the noise models we will investigate in the next section.3.4.2 Models for correlated noise associated with time-varying signalsWe assume that the \correlated" noise sources we are considering already havesome kind of a WSS model for the time-invariant bias case. The WSS model for the time-invariant case could have either been derived from basic mechanisms that is behind thisparticular noise source, or it could have been derived from experimental investigation. Forinstance, the WSS model for 1=f noise has been derived from experimental investigationand it is characterized by the spectral density given by (3.53). We assume that the WSSmodel for the time-invariant case is characterized by a spectral density S(f). We furtherassume that S(f) is \separable" in the sense that it can be expressed as the product of twoterms, one of which is a function of f but independent of bias quantities and hence sets thefrequency dependence of S(f), and the other term is a function of the bias quantities butis independent of f . Thus, we express S(f) asS(f) = m2 ~S(f): (3.57)We assume that m > 0, and ~S(f) > 0 so that (3.57) is a sound spectral density. Forinstance, for 1=f noise modeled with (3.53), we can choosem = q(Ia) ~S(f) = Kf b : (3.58)We also assume that there exists a SISO, LTI system with transfer function H(f) thatsatis�es jH(f)j2 = ~S(f): (3.59)When the bias is not time-invariant, i.e. m(t) in (3.57) is a function of time, we willinvestigate the below cases as alternatives for the generalization of the WSS model describedby (3.57):1. The noise source is modeled as the output of a SISO, linear time-varying systemwhich is a cascade of a memoryless modulator m(t) (the output of which is basicallythe input multiplied with m(t)) and an LTI system with transfer function H(f) thatsatis�es (3.59). The input to the system is the WSS white noise �(t) with spectraldensity S(f) = 1.



CHAPTER 3. NOISE MODELS 922. The noise source is modeled as the output of a SISO, linear time-varying system whichis a cascade of an LTI system with transfer function H(f) that satis�es (3.59), anda memoryless modulator m(t). The input to the system is the WSS white noise �(t)with spectral density S(f) = 1. Note that this is not equivalent to the above modelunless m(t) is a constant function of time.3. The noise source is modeled as a nonstationary process with time-varying spectraldensity given by S(t; f) = m2(t) ~S(f): (3.60)4. The noise source is modeled as a WSS process with spectral density given byS(f) = hm2i ~S(f); (3.61)where hm2i = limT!1 1T Z T=2�T=2m2(t)dt; (3.62)whenever this limit exists.5. The noise source is modeled as a WSS process with spectral density given byS(f) = hmi2 ~S(f) (3.63)where hmi = limT!1 1T Z T=2�T=2m(t)dt (3.64)whenever this limit exists.We will discuss the di�erences and similarities among these models, in terms of their proba-bilistic characterization, and also in terms of the implications of these models in their e�ecton a target system.The �rst three models, in general for time-varying m(t), are nonstationary. Thelast two are by de�nition WSS.In the description of the models above, we have not made any assumptions onhow m(t) varies with time, so the models described above are general in that sense. Forsimplicity of discussion, and to be able to clearly see the similarities and di�erences of thesemodels, for the rest of our discussion we will assume thatm(t) is a periodically time-varying



CHAPTER 3. NOISE MODELS 93function with period T = 1=fo. And hence, we assume that m(t) can be expanded into aFourier series as follows m(t) = 1Xk=�1 bk exp (j2�kfot): (3.65)Then m2(t) is also periodic with the same fundamental frequency fo and we assume that itcan also be expanded into a Fourier series as followsm2(t) = 1Xk=�1 ak exp (j2�kfot): (3.66)Obviously the Fourier series coe�cients ak and bk are related. In particular, they satisfya0 = 1Xk=�1 bk b�k = 1Xk=�1 jbkj2; (3.67)which implies a0 � b20: (3.68)Note that a0 and b0 are real for real m(t). For periodic m(t), we also havea0 = hm2i (3.69)b0 = hmi (3.70)where hm2i and hmi are de�ned by (3.62) and (3.64).3.4.2.1 Probabilistic characterization of the modelsWe would like to calculate the probabilistic characterization of the �rst model. Letus �rst consider the output Y of the memoryless modulator m(t) with input �(t). We caneasily see that the autocorrelation of Y (t) = m(t)�(t) is given byRY (t; �) = E [Y (t+ �=2)Y (t� �=2)] = m2(t) �(�) (3.71)since the autocorrelation of �(t) is R�(�) = �(�). Then, the time-varying spectral densityof Y is simply given by SY (t; f) = m2(t) = 1Xk=�1 ak exp (j2�kfot) (3.72)which is independent of f . The Fourier series coe�cients for SY (t; f) are given by (see(2.52)) S(k)Y (f) = ak : (3.73)



CHAPTER 3. NOISE MODELS 94Let us now consider the output Z of the LTI system with transfer function H(f) that hasY as its input. The Fourier series coe�cients for the time-varying spectral density SZ(t; f)of Z are then given byS(k)Z (f) = H(f + kfo=2)H�(f � kfo=2)S(k)Y (f) (3.74)= H(f + kfo=2)H�(f � kfo=2) ak (3.75)which we obtained using (2.143), as a complete second-order probabilistic characterizationfor Z, which is a cyclostationary process and also the process that models the noise source.Now, we consider the second model. Let us �rst consider the output Y of the LTI�lter with transfer function H(f) that has �(t) as its input. Then, the spectral density ofY which is a WSS process is simply given bySY (f) = jH(f)j2 (3.76)and the autocorrelation of Y , by de�nition, isRY (�) = F�1 fSY (f)g = F�1 njH(f)j2o: (3.77)Next, we consider the output Z of the memoryless modulator m(t) with Y as its input. So,we have Z(t) = m(t)Y (t). Then, the autocorrelation of Z(t) can be expressed asRZ(t; �) = RY (�)[m(t+ �=2)m(t� �=2)]: (3.78)If we substitute (3.65) in (3.78), we getRZ(t; �) = RY (�) 1Xk=�1 1Xl=�1 bkbl: exp (j2�(k� l)fo�=2) exp (j2�(k+ l)fot) (3.79)Now, we make a change of variables for the indexes of the double summation, k + l = n.After some rearrangement, we obtainRZ(t; �) = 1Xn=�1RY (�) 1Xk=�1 bkbn�k : exp (j2�(2k� n)fo�=2) exp (j2�nfot) (3.80)In (3.80), we can identify the Fourier series coe�cients of RZ(t; �) for Z (which is a cyclo-stationary process) asR(n)Z (�) = RY (�) 1Xk=�1 bkbn�k : exp (j2�(2k� n)fo�=2) (3.81)



CHAPTER 3. NOISE MODELS 95Then, the Fourier series coe�cients of the time-varying spectral density SZ(t; f) of Z aregiven by S(n)Z (f) = F 8<:RY (�) 1Xk=�1 bkbn�k exp (j2�(2k� n)fo�=2)9=; (3.82)= F fRY (�)g � F 8<: 1Xk=�1 bkbn�k exp (j2�(2k� n)fo�=2)9=; (3.83)where we used (2.52). If we substitute (3.77) andF 8<: 1Xk=�1 bkbn�k exp (j2�(2k� n)fo�=2)9=; = 1Xk=�1 bkbn�k�(f � (2k � n)2 fo) (3.84)in (3.83), we obtain S(n)Z (f) = 1Xk=�1 bkbn�k jH(f � (2k� n)2 fo)j2 (3.85)which is a complete second-order probabilistic characterization of the cyclostationary pro-cess Z, which is the stochastic process that models the noise source.For the third model, we already have an expression for the time-varying spectraldensity given by (3.60). If we substitute (3.66) and (3.59) in (3.60), we obtainS(t; f) = m2(t) ~S(f) = 1Xk=�1 ak jH(f)j2 exp (j2�kfot): (3.86)Now, we can easily identify the Fourier series coe�cients of the time-varying spectral densityS(t; f) as S(k)(f) = akjH(f)j2: (3.87)The fourth and �fth models are WSS with spectral densities given by (3.61) and(3.63) which fully characterize their second-order probabilistic characteristics. We rewrite(3.61) as S(f) = a0 jH(f)j2: (3.88)and (3.63) as S(f) = b0 jH(f)j2 (3.89)



CHAPTER 3. NOISE MODELS 963.4.2.2 Comparison of the modelsNow, we discuss the di�erences and similarities among these �ve models charac-terized by (3.75), (3.85), (3.87), (3.88), and (3.89). Our �rst observation is obvious: Forperiodically time-varying m(t), the �rst three models are cyclostationary processes, but thelast two are WSS. If we compare the two WSS models considering (3.68), we observe thatthe fourth model describes a noise source with more total power than the one described bythe �fth model.Now, let us assume that H(f) = ~S(f) satis�esH(f) = 0 for f � fo2 ; (3.90)i.e. it is a low pass transfer function with a cut-o� frequency which is less than fo=2, thefundamental frequency of the periodic m(t). If the noise source we are considering is 1=fnoise, we can choose H(f) = pK 1pf : (3.91)Obviously, this H(f) does not have a cut-o� frequency, but if fo is \large enough", we willhave H(f) � 0 for f � fo2 : (3.92)For 1=f noise, this is actually a reasonable approximation for many practical cases. We willfurther discuss this in the later chapters. If we evaluate the �rst model described by (3.75)considering (3.90), (3.75) reduces toS(k)Z (f) = 8<: a0 jH(f)j2 k = 00 k 6= 0 : (3.93)Thus, with (3.90), we observe that the �rst model, which is cyclostationary in general,reduces to a WSS model, and moreover it becomes equivalent to the fourth model. Thisapplies to 1=f noise model. Hence, the �rst and fourth model are in essence equivalent with(3.90) approximately satis�ed.Let us know consider that the noise sources modeled by the �ve models (charac-terized by (3.75), (3.85), (3.87), (3.88), and (3.89)) are inputs to a SISO, LTI system withtransfer function G(f). We assume that G(f) satis�esG(f) = 0 for f � fo2 (3.94)



CHAPTER 3. NOISE MODELS 97i.e. it is a low pass transfer function with a cut-o� frequency which is less than fo=2, thefundamental frequency of the periodic m(t). (It turns out that, for open-loop oscillators, alow-pass transformation which approximately satis�es the above condition can be de�nedbetween a noise source in the oscillator circuit and phase noise, a very important speci�-cation for oscillators. This fact, which we will later elaborate on extensively, is stated hereto motivate for choosing such a system to compare the �ve noise models.) Now, we wouldlike to calculate the probabilistic characterization of the output of the LTI system with thetransfer function G(f) when each of the �ve noise sources is the input to the system. With(3.94) and (3.90) satis�ed, it can be shown that (using (2.143)) the output is a WSS processfor all of the �ve noise models as inputs. Moreover, for the �rst, third and the fourth model,the spectral density of the output is given byS(f) = a0 jH(f)j2 jG(f)j2 (3.95)and, for the second and the �fth model, the spectral density of the output is given byS(f) = b20 jH(f)j2 jG(f)j2: (3.96)Recall, that H(f) is the transfer function of a system that is part of the noise models, andG(f) is the transfer function of the system the noise sources are a�ecting. We concludethat (with (3.94) and (3.90) satis�ed), as far as we are concerned with the probabilisticcharacterization of the output of G(f), the �rst, third and the fourth model are equivalent,and similarly the second and the �fth model are equivalent. From (3.68), the �rst, thirdand the fourth model predict a larger noise power at the output than the third and �fth do.To test the validity or choose one of these noise models for a particular correlatednoise source (e.g. 1=f noise), we would like to perform measurements. We will now assumethat, one can measure the spectral density for a WSS noise source, and the zeroth ordercoe�cient of the time-varying spectral density (which is basically the time-average) fora cyclostationary process. Let us compare the �ve noise models from this perspective,i.e. using the spectral density expressions for the WSS models, and only the zeroth ordercoe�cient of the time-varying spectral density for the cyclostationary models, which we willdenote by a subscript mn for \measured" spectral density for the nth model.Sm1 = a0 jH(f)j2 (3.97)Sm2 = 1Xk=�1 bkb�kjH(f � kfo)j2 (3.98)



CHAPTER 3. NOISE MODELS 98Sm3 = a0 jH(f)j2 (3.99)Sm4 = a0 jH(f)j2 (3.100)Sm5 = b20 jH(f)j2 (3.101)We observe that the \measured" spectral density of the �rst, third and the fourth modelare exactly the same. The \measured" spectral density for the �fth model is also similarto these in terms of the shape of the frequency dependence. The only model that hasfrequency translated versions of jH(f)j2 at all the harmonics of the fundamental frequencyis the second model. van der Ziel in [25] mentions that if an AC current Io cos (2�fot) ispassed through a resistor, two 1=f noise sidebands appear around the frequency fo. Theonly model that can exhibit this behavior is the second one. On the other hand, one hasto be very careful in interpreting measurement results. Assuming that we are trying tomeasure the 1=f noise of a reasonably linear resistor biased with a periodic signal withfundamental frequency fo, the 1=f noise sidebands at the harmonics of fo could be arisingfrom nonlinearities in our measurement set-up. Assuming that this is not the case, and ifwe observe 1=f noise sidebands at the harmonics of fo, then we need to make our noisemodel compatible with this observation. Hence, the second model is the only choice. Ofcourse, observing 1=f noise sidebands at the harmonics of fo does not justify the secondmodel completely. Even if we observe sidebands for the 1=f noise of a linear resistor ofcertain type, this does not imply that 1=f noise in all kinds of resistors, or other electroniccomponents and devices will display the same behavior.The main goal of our above discussion of alternatives for models for \correlated"noise sources was, most importantly, to pose the problem, and illustrate the properties ofsome simple and straightforward extensions of WSS models that have been used in practicalnoise calculations to the time-varying bias case, in a uni�ed way using techniques from thesecond-order theory of stochastic processes. We hope that our discussion here will exciteexperimental and/or theoretical work on models for \correlated" noise sources that areassociated with time-varying signals.We would like to reemphasize the fact that even though the �ve noise models wehave discussed turn out to be equivalent in special circumstances or seem to be equivalentwhen characterized in terms of \experimentally measurable" quantities (e.g. the zerothorder coe�cient of the time-varying spectral density for a cyclostationary noise source), theyare not equivalent in general. We believe that one can come up with practical electronic



CHAPTER 3. NOISE MODELS 99circuits, for which, using these \seemingly" equivalent noise models can yield completelydi�erent results in analyzing the noise performance.3.5 SummaryIn this chapter, we �rst reviewed the physical origins of electrical noise in electroniccomponents and devices, concentrating on the most important ones, namely, thermal, shot,and 1=f noise. In particular, we discussed Nyquist's theorem on thermal noise in LTIdissipative systems. Then, we described stochastic process models for thermal and shotnoise, which were generalizations of the WSS models associated with LTI resistors and time-invariant bias to LTV resistors and time-varying signals. The stochastic process modelswe described to model thermal and shot noise are, in general, nonstationary processeswhich are \modulated" versions of the standard WSS Gaussian white noise process, i.e.the formal derivative of the Wiener process. We have pointed out the problems in thesegeneralizations, and the necessity of rigorously justifying them, especially the model forthermal noise associated with a nonlinear or time-varying resistor [22], for example thechannel noise of a MOSFET transistor. We explained our motivation for requiring that allthe noise source models be described in terms of the derivative of the Wiener process, sothat the governing equations for the whole electronic circuit or system can be formulatedas a system of stochastic di�erential equations. Then, we went on to discuss stochasticprocess models for \correlated" noise (e.g. 1=f noise) associated with time-varying signals.Our starting point was again the WSS models for time-invariant bias. We investigatedseveral alternatives, calculated their second-order probabilistic characterization, and basedon these characterizations analyzed several special cases, and pointed out the di�erencesand similarities among these correlated noise models associated with time-varying signals.



100Chapter 4Overview of Noise Simulation forNonlinear Electronic CircuitsIn this chapter, we will present an overview of the techniques that have been pro-posed and used to analyze the e�ects of noise sources on the performance of electroniccircuits and systems. We will discuss only general techniques that can be implemented forcomputer analysis. We do not claim to cover all the techniques that have been proposed inthe literature. We especially exclude specialized ones that have been proposed for particulartypes of electronic circuits (e.g. noise analysis techniques for switched-capacitor circuits).We will go over the main characteristics of several di�erent techniques, point out the simi-larities and di�erences among them, and brie
y discuss their implementations for numericalcomputation.4.1 OverviewIn the previous chapter, we investigated the physical origins of electrical noisesources in electronic circuits or systems, and presented mathematical representations forthem as stochastic processes. From this point on, when we refer to the noise sources in thesystem, we will be actually referring to their mathematical models as stochastic processes.To reach the �nal goal of simulating and characterizing the e�ect of these noise sources onthe performance of an electronic circuit or system, the next thing we need is a mathematicalrepresentation of the system itself. As for many other systems, the dynamics of an electroniccircuit can be described with a system of di�erential and algebraic equations. In this work,



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 101we will be mainly (except in Chapter 7) dealing with electronic circuits that can be modeledas an interconnection of basic network elements such as resistors, capacitors, inductors,controlled sources, independent voltage and current sources, etc. Resistors are usuallydescribed by possibly nonlinear relationships relating the terminal current to the terminalvoltage. Similarly, controlled sources are described by possibly nonlinear relationships thatrelate the port voltages and currents. Capacitors and inductors are reactive elements,i.e. they can store energy, hence their descriptions involve time derivatives. For voltage-controlled capacitors, the terminal current is expressed as the time-derivative of the chargestored in the capacitor, and the charge is in general related to the terminal voltage with anonlinear relationship. Similarly, for current-controlled inductors, the terminal voltage isexpressed as the time-derivative of the 
ux of the inductor, and the 
ux is in general relatedto the terminal current with a nonlinear relationship. Resistors, capacitors and inductorsare basic components of an electronic circuit. The models for semiconductor devices inelectronic circuits are represented as an interconnection of the basic network elements.Given an interconnection of network elements, a system of mixed algebraic and di�erentialequations can be written to describe the dynamics of the system. These equations consist ofthe Kircho�'s current law (KCL), the Kircho�'s voltage law (KVL) and the branch equations(i.e. the relationships that relate the terminal voltages and currents of the components).A particular way of formulating KVL, KCL and the branch equations, called the Modi�edNodal Analysis (MNA) formulation, has been extensively used in circuit theory because ofits generality and some other desirable properties for numerical computation. We will notfurther discuss the details of formulating network equations for electronic circuits, whichis extensively covered elsewhere. For our purposes, it su�ces to know that the governingequations that describe an electronic circuit can be formulated (using MNA) as a system ofmixed algebraic and di�erential equations in the following formI(x; t) + ddtQ(x) = 0 (4.1)where I(x; t) : IRn � IR!IRn represents the \memoryless" network elements and the inde-pendent sources, and Q(x) : IRn!IRn represents the reactive elements, i.e the capacitorsand the inductors. The state variables of the system, represented by the vector x 2 IRn, con-sist of the node voltages, the inductor currents and the independent voltage source currents.There is one KCL equation in (4.1) for every node (except for the \ground" or referencenode), which basically equates the sum of currents entering the node to the ones that are



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 102leaving it. The rest of the equations in (4.1) are the branch equations of inductors and volt-age sources. The branch equations for the network elements other than the inductors andthe voltage sources, and KVL equations are implicitly included in the MNA formulation.Now that we have a mathematical representation of both the noise sources andthe system, we can go ahead with the discussion of the noise analysis techniques. Notethat, we include the deterministic excitations (i.e. the desired signals) in our mathematicaldescription of the system (represented by the explicit time dependence of I(x; t) in (4.1)).We assume that there is no \randomness" (e.g. random parameters) in the system itself.Even though the system is deterministic, when we have noise source excitations (modeledas stochastic processes) on the system, the state variables (e.g. node voltages) will be ingeneral stochastic processes as opposed to deterministic signals. We formally de�ne \noiseanalysis" or \noise simulation" of a system excited by noise sources to be the calculation ofthe probabilistic characteristics of the stochastic processes that represent the state variables.To make this de�nition precise we have to also de�ne what we mean by \probabilistic char-acteristics". It could be a complete characterization of the fdds for the vector of stochasticprocesses that represent the state variables of the system, or for a second-order character-ization, the autocorrelations/spectral densities as well as cross-correlations/cross-spectraldensities of the stochastic processes that represent the state variables can be calculated.The several noise analysis techniques we are going to discuss can be classi�ed in terms ofwhat kind of a probabilistic characterization is being calculated. We will refer to the tech-niques that calculate spectral densities as frequency-domain techniques, and the techniquesthat calculate autocorrelation functions or moments as time-domain ones. We would liketo point out that even though we refer to the techniques that calculate spectral densitiesas frequency-domain ones, this does not mean that the actual calculation is done entirelyin frequency-domain. For instance, the time-varying spectral density for a nonstationaryprocess could be calculated using a mixed frequency and time domain technique.Frequency-domain techniques assume that the system is in some kind of steady-state condition, i.e. time-invariant, sinusoidal, periodic or quasi-periodic steady-state.Recall that we de�ned the system to include the deterministic excitations. In forcedsystems, the steady-state is set by the deterministic excitations on the system. In au-tonomous systems such as oscillators, the steady-state is set by the system itself. Moreover,frequency-domain techniques assume that the noise sources are WSS, cyclostationary orquasi-cyclostationary, as a natural consequence of the steady-state assumptions on the sys-



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 103tem itself. The steady-state properties of the noise sources are actually set by the system.For instance, as we have seen it in Chapter 3, shot noise is modeled as a modulated WSSGaussian process, but the modulation is a function of the terminal current of the pn junc-tion, which is set by the system.For time-domain techniques, a steady-state condition on the system or the noisesources is not required. In general, one can have arbitrary time-varying deterministic exci-tations and hence nonstationary noise sources acting on the system. Thus, one can analyzetransient noise phenomena with time-domain methods. In Chapter 6, we will see an exam-ple for how one can use the time-domain noise simulation technique we proposed to analyzea seemingly steady-state noise phenomenon, i.e. phase noise in free running oscillators, andarrive at some very useful results.All but one (Monte Carlo noise simulation) of the noise simulation techniqueswe will be reviewing in this chapter treat the deterministic and noise excitations on thesystem separately. First, the nonlinear system is analyzed only with the deterministicexcitations. The analysis with deterministic excitations is basically the solution of thesystem of di�erential equations given in (4.1). Then, using the results of this large-signalnonlinear analysis, a linear but possibly time-varying model for the system is constructedfor noise analysis. The justi�cation for such an approach lies in the assumption that noisesignals are \small" signals and they do not \excite" the nonlinearities in the system. Asa natural consequence of the separate treatment of the deterministic and noise excitations,the state variables (i.e. node voltages) are expressed as a summation of two terms, oneof them due to the deterministic excitations and the other due to the noise sources. Eachcomponent is simulated or characterized separately. The small-signal analysis approachhas been very popular in circuit theory. It is not only used for noise analysis but alsofor analyzing electronic circuits with large and small deterministic excitations present atthe same time. In this case the nonlinear system is analyzed with the large excitations�rst, and then a linear model is constructed for the small excitations. In Chapter 5, wewill formalize the small-signal approximation and linearization approach for noise sourcesmodeled as stochastic processes.



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 1044.2 Noise Simulation with LTI TransformationsIn this method, a nonlinear circuit is assumed to have only time-invariant (DC)deterministic excitations, and it is also assumed that there exists a time-invariant steady-state solution. Note that, having only time-invariant excitations on the circuit does notnecessarily imply that there exists a time-invariant steady-state solution. A time-invariantsteady-state solution is obtained by setting the time derivative in (4.1) to zero and solvingthe resultant system of nonlinear algebraic equations, for instance, using Newton's method.This is referred to as the DC analysis of the circuit. It is possible to have more than onetime-invariant steady-state solution. Then, the nonlinear circuit is linearized around thetime-invariant steady-state solution to construct an LTI model for noise analysis. If this isapplied to (4.1), we obtain GX+C ddtX = 0 (4.2)where G and C are n � n matrices, and the state vector X 2 IRn, which is a vectorof stochastic processes, represents the component of the node voltages and other circuitvariables due to the noise sources. Obviously X = 0 satis�es (4.2), because we have notincluded the noise sources in (4.2) yet. Let us connect a current noise source between twonodes in the LTI network represented by (4.2), which could be a noise source modeling thethermal noise of a resistor. (4.2) can be reformulated as below to include this noise sourceGX+C ddtX+ bu(t) = 0; (4.3)where u(t) is the stochastic process that models the noise source, and b is an n� 1 columnvector with all entries set to zero except two, one of which is 1 and the other is �1. Thetwo nonzero entries in b map the noise source to the nodes it is connected to, by modifyingthe corresponding KCL equations. The stochastic process u(t) representing the noise sourceis assumed to be zero-mean, hence the current noise source does not have a direction andthe 1 and �1 entries in b are interchangeable. Along with the time-invariant steady-stateassumption, it is also assumed that both the noise sources, and the stochastic processesthat are components of X (which model the components of the state variables due to noise)are WSS stochastic processes. Having only WSS noise sources does not necessarily implythat X is vector of WSS stochastic processes. A su�cient condition for this to be true isthat the LTI system represented by the matrices G and C is stable.We assume that we know the spectral density of the WSS noise source: Su(f).



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 105We would like to calculate the spectral densities of the WSS stochastic processes that arecomponents of X. We could accomplish this easily by using (2.135) if we can calculate thetransfer functions from the noise source u(t) to the components of X. Let us now replaceu(t) in (4.3) with a complex exponential at frequency f , i.e. exp (j2�ft). Then, using thede�nition of the transfer function for an LTI system (given by (2.108)), we obtainGHb(f) exp (j2�ft) +C ddt(Hb(f) exp (j2�ft)) + b exp (j2�ft) = 0 (4.4)where Hb(f) denotes the vector of transfer functions from the noise source to X. Afterexpanding the derivative in (4.4), we arrive atGHb(f) + j2�fCHb(f) + b = 0 (4.5)(G+ j2�fC)Hb(f) = �b: (4.6)Hence, we need to solve a linear system of equations given by (4.6) at every frequency pointf to calculate the vector of transfer functions Hb(f). This could be accomplished withan LU decomposition of the matrix T(f) = G + j2�fC, and a forward elimination and abackward substitution step. Then, the n�n matrix of spectral and cross-spectral densitiesfor X is given by SX(f) = Hb(f)Su(f)HTb (f)� (4.7)where Su(f) is the spectral density of the noise source. (4.7) is a generalization of (2.135)(for a SISO LTI system) to the single-input multiple-output (SIMO) case.In our above discussion, we considered a single noise source. One usually has anumber of noise sources in the circuit. If we would like to calculate the spectral densitiesof the components of X due to all of the noise sources, we can repeat the above calculationfor all of the noise sources to calculate a matrix of transfer functions from all of the noisesources to X. Let us now assume that we have p noise sources (which could be correlated)with corresponding mapping vectors bi i = 1; 2; : : : ; p. Then, the n � p matrix of transferfunctions H(f) from all the noise sources to X is obtained as the solution of the system ofequations (G+ j2�fC)H(f) = �[b1; : : : ;bp] = �B: (4.8)The ijth element of H(f) represents the transfer function from the jth noise source to theith component of X. (4.8) can be solved with a single LU decomposition of the matrixT(f) = G + j2�fC and p forward elimination and backward substitution steps at each



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 106frequency point f . It can be shown that the n � n matrix of spectral and cross-spectraldensities for X is given by SX(f) = H(f)Su(f)HT (f)� (4.9)where the p� p matrix Su(f) represents the matrix of spectral and cross-spectral densitiesfor the noise sources. Most often, the noise sources are uncorrelated, hence Su(f) is adiagonal matrix of the individual spectral densities of the noise sources. Even so, thematrix of spectral and cross-spectral densities for X is, in general, a full matrix. (4.9) is ageneralization of (2.135) (for a SISO LTI system) to the MIMO case.One is usually interested in calculating the spectral density of a single outputinstead of the whole spectral, cross-spectral density matrix of X. This output can usuallybe expressed as a linear combination of the components of X as follows:Y (t) = dTX(t) (4.10)where d 2 IRn is a constant vector. Most often, the output of interest is a voltage di�erencebetween two nodes. In this case, d has only two nonzero entries, set to 1 and �1, just likethe b vectors that map the current noise sources to the nodes. Then, the spectral densityof Y is given by SY (f) = dTSX(f)d (4.11)= dTH(f)Su(f)HT (f)�d (4.12)To calculate SY (f), we need to calculate only the vector dTH(f) instead of the wholematrix H(f). From (4.8), we have H(f) = �T(f)�1B (4.13)and hence dTH(f) = (�dTT(f)�1)B (4.14)= w(f)TB (4.15)where the vector w(f) is the solution of the equationT(f)Tw(f) = �d: (4.16)Thus, to calculate dTH(f), we need a single LU decomposition of the matrix T(f) and asingle forward elimination and backward substitution step at every frequency point f to



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 107solve the above equation with the right hand side set to �d. The calculation of dTH(f)using (4.15) requires only n subtractions since each column of B has only two nonzeroentries set to 1 and �1. The linear system of equations in (4.16) is called the adjointsystem, because the LTI network represented by the matrix T(f)T is the adjoint of the onethat is represented by the untransposed matrix T(f). The idea of using the adjoint networkconcept in e�ciently calculating the spectral density of a single output due to many noisesources was �rst proposed in [26]. Historically, the adjoint network method was derivedthrough the use of Tellegen's theorem. This derivation is rather complicated comparedwith the pure matrix algebra approach we have presented above [27]. The adjoint networkmethod is also used in e�ciently performing sensitivity analysis of LTI networks.Typically, one is interested in calculating the spectral density of the output, SY (f),for a range of frequencies. Obviously, the frequency range of interest needs to be discretizedfor numerical computation. Then, the calculations described above are repeated for allof the frequency points. If we use a direct method (i.e. LU decomposition followed byelimination and substitution steps) to solve the linear system of equations in (4.16), thenthe cost of numerical computation is the same for all of the frequency points. To calculatethe total power (i.e. E �Y (t)2�) of the output with this method, we would have to calculatethe spectral density for the whole range of the frequencies where SY (f) is not negligible anduse a summation version of the integral in (2.47).The noise analysis technique we described in this section is usually referred toas AC noise analysis, since it models a nonlinear circuit with an LTI network for noiseanalysis. It is available in almost every circuit simulator including SPICE [28], and it iswidely used by analog circuit designers. The major limitation of this technique lies inthe assumption that the nonlinear circuit has only time-invariant deterministic excitationsand a time-invariant steady-state solution. Of course, all practical electronic circuits aresupposed to deal with time-varying excitations. However, for certain types of circuits, suchas ampli�ers with excitations small enough so that they can be modeled as LTI networksfor all purposes, this noise analysis method works very well. It is easy to implement, andit e�ciently calculates the spectral density of the output for a range of frequencies. It isalso easy to understand conceptually, because it is based on LTI network analysis and WSSstochastic processes. Unfortunately, it is not appropriate for noise analysis of circuits with\large" time-varying deterministic excitations or time-varying steady-state.



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 1084.3 Noise Simulation with LPTV TransformationsIn this method, a nonlinear electronic circuit is assumed to have only periodi-cally time-varying (DC) deterministic excitations, and it is also assumed that there existsa periodic steady-state solution. (The methods to be presented can be easily generalizedto circuits with a quasi-periodic steady-state, but to keep the discussion simple we willconcentrate on the periodic case only.) Having only periodically time-varying excitationsdoes not necessarily imply that there exists a periodic steady-state solution. The periodicsteady-state solution for (4.1) can be obtained using several di�erent techniques [29]: directtime-domain numerical integration (i.e. transient analysis), shooting method analysis, har-monic balance analysis, etc. Then, the nonlinear circuit is linearized around the periodicsteady-state solution to construct an LPTV model for noise analysis. If this is applied to(4.1) we obtain G(t)X+C(t) ddtX = 0 (4.17)whereG(t) and C(t) are n�n periodically time-varying matrices as opposed to the constantones in (4.2). Let us connect a current noise source between two nodes in the LPTV networkrepresented by (4.17), which can then be reformulated as below to include the noise sourceG(t)X+C(t) ddtX+ bu(t) = 0 (4.18)which is similar to (4.3) for the LTI case. Along with the periodic steady-state assumption, itis also assumed that both the noise sources and the stochastic processes that are componentsof X are cyclostationary stochastic processes. Note that, having only cyclostationary noisesources does not necessarily imply thatX is vector of cyclostationary stochastic processes. Asu�cient condition for this to be true is that the LPTV system represented by the matricesG(t) and C(t) is stable, i.e. all the Floquet exponents of the LPTV system should havenegative real parts (see Section 2.4.9). As we will see in Chapter 6, this is not true for afree running oscillator.We assume that we know the periodically time-varying spectral density of thecyclostationary noise source: Su(t; f). We would like to calculate the periodically time-varying spectral densities of the cyclostationary stochastic processes that are componentsof X. To accomplish this, we need to calculate the time-varying transfer functions (see(2.112) for the de�nition) from the noise source u(t) to the components of X. Let us nowreplace u(t) in (4.18) with a complex exponential at frequency f , i.e. exp (j2�ft). Then,



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 109using the de�nition of the time-varying transfer function for an LPTV system (see (2.113)),we obtainG(t)Hb(f; t) exp (j2�ft) +C(t) ddt(Hb(f; t) exp (j2�ft)) + b exp (j2�ft) = 0 (4.19)where Hb(f; t) denotes the vector of periodically time-varying transfer functions from thenoise source toX. (4.19) is di�erent from (4.4) in the sense that both the coe�cient matricesG(t) and C(t) and the transfer function are time-varying.Okumura et. al. in [30]1 propose to calculate a time discretized version of theperiodically time-varying transfer function vector Hb(f; t). With this method, one placesk time points in a period and approximate the time derivative in (4.19) using a numericaldi�erentiation formula such as backward Euler, or more generally backward di�erentiationformula, etc. We will not present the details of this formulation. For details, the readeris referred to [30]. The resulting linear system of equations, the solution of which yieldsHb(f; t) at k time points for a single frequency point f , is of dimension n k as opposedto the linear system of equations (4.6) of dimension n for the LTI case. A direct method(i.e. LU decomposition followed by forward elimination and backward substitution) is usedto solve this system of equations in [30]. The large-signal analysis method that is usedby [30] to calculate the periodic steady-state, and hence to construct the LPTV model fornoise analysis, is the shooting method [29]. Telichevesky et. al. in [31]2 greatly improve thee�ciency of the method proposed by [30]. [31] uses a matrix-implicit Krylov subspace basediterative method to solve the n k dimensional linear system for the discretized time-varyingtransfer function. [31] also makes use of a property of the Krylov subspace based iterativemethods to e�ciently calculate the discretized time-varying transfer function Hb(f; t) atdi�erent frequency points: Once the n k dimensional linear system of equations is solvedfor one frequency point f1 using the matrix-implicit Krylov subspace based method, thenumerical solution for another frequency point f2 can reuse the results of some of thecomputations that were performed for f1. In the above discussion, we have been consideringthe case where there is only one noise source. A straightforward generalization of theadjoint network formulation that was discussed for the LTI case can be applied to theLPTV case to calculate the time-varying transfer functions from many noise sources to asingle output. Once the discretized transfer functions are calculated, one can calculate the1We believe that [30] has a formulation error regarding the linearization of nonlinear capacitors aroundthe periodic steady-state.2The formulation presented in [31] is correct.



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 110spectral density of the output, which is assumed to be a cyclostationary process. Both [30]and [31] calculate only the zeroth order Fourier series coe�cient (i.e. the time-average)of the periodically time-varying spectral density of the cyclostationary output (see (2.51)),i.e S(0)Y (f), for a range of frequencies. This, obviously, is not a complete second-orderprobabilistic characterization of the output.Hull et. al. [32, 33] propose a di�erent method to calculate the periodicallytime-varying transfer functions. They �rst calculate the impulse responses for the LPTVtransformations from the noise sources to the output, by solving a number of linear peri-odically time-varying systems of ordinary di�erential equations. The large-signal analysiswith the deterministic excitations to calculate the periodic steady-state is performed withtime domain numerical integration, i.e. transient analysis. Then, they use two-dimensionalFFTs to calculate the Fourier series coe�cients of the periodically time varying transferfunctions (see (2.120)). Then, [33] calculates only the zeroth order Fourier series coe�cientof the periodically time-varying spectral density of the cyclostationary output noise, butHull [33] justi�es this for his particular application, i.e. mixer noise analysis. He states thatthe mixers are almost always followed by an IF �lter (a bandpass �lter with bandwidthmuch smaller than the local oscillator frequency), and even if the noise at the output of themixer is cyclostationary, the noise at the output of the IF �lter is WSS.Roychowdhury et.al. [34] present a frequency-domain method which can calcu-late a complete second-order probabilistic characterization of the cyclostationary output,i.e. they calculate not only the zeroth order Fourier series coe�cient of the periodicallytime-varying spectral density, but also the higher order harmonics. They present a simpleexample with which they demonstrate the necessity of a full cyclostationary characteriza-tion as opposed to a time averaged characterization of the output. The frequency domainformulation presented by Roychowdhury [34] that uses the adjoint network concept yieldsin an e�cient computational method to calculate a number of Fourier series coe�cients ofthe time varying spectral density. The periodic steady-state with the large-signal deter-ministic excitations is calculated using the harmonic balance method [35], and the LPTVsystem for noise analysis is obtained by linearization. The Fourier series coe�cients of theperiodically time-varying transfer functions (see (2.120)) from the noise sources to the out-put for the LPTV system are calculated by solving a linear system of equations. In thiscase, this system is n h dimensional, where h is the number of harmonics used to representthe periodic steady-state. The e�cient computation of the cyclostationary characterization



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 111of the output is obtained through factored-matrix methods together with preconditionediterative techniques to solve the n h dimensional linear system. The authors also proposeto use the PVL (Pade via Lanczos) [36] method and the shifted-QMR method to e�cientlycalculate the Fourier series coe�cients of the time varying spectral densities for a range offrequencies.4.4 Monte Carlo Noise Simulation with Direct NumericalIntegrationThe time domain Monte Carlo method is the only method, we discuss in thischapter, which does not treat the deterministic excitations and the noise signals separately.A linear model is not used for noise analysis. Instead, a number of time domain analysesare performed to simulate the full nonlinear model of the circuit under the in
uence of boththe deterministic large excitations and the noise signals. The nonlinear circuit equationscan be formulated (using MNA) including all the deterministic excitations and the noisesources to yield I(X; t) + ddtQ(X) +B(X)U(t) = 0 (4.20)where U is a vector of stochastic processes representing the noise sources in the circuit,and X is a vector of stochastic processes (with a nonzero mean due to the deterministicexcitations) representing the state variables, e.g. node voltages. We will discuss this for-mulation in detail in Chapter 5. With the time domain Monte Carlo technique, (4.20) isnumerically integrated directly in time domain to generate a number of sample paths (atdiscrete time points) for the vector of stochastic processes X (see Section 2.5.7 and Section2.2.12 for a discussion of direct numerical integration of stochastic di�erential equations andsimulation of stochastic processes). Thus, an ensemble of sample paths is created. Then, bycalculating various expectations over this ensemble, one can evaluate various probabilisticcharacteristics, including correlation functions and spectral densities. If one can prove thatthe vector of stochastic processes satis�es some ergodicity properties (see Section 2.2.11),it may be possible to calculate time averages over a single sample path to evaluate sometime-averaged probabilistic characteristics which provide adequate information in some ap-plications. This method is referred to as a Monte Carlo method, because in generating thesample paths using numerical integration, one has to realize or simulate the noise sources



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 112on the computer using a random number generator.[37] uses a sum of sinusoids (with random phases) representation to realize thenoise sources for time domain integration. [38] uses random amplitude pulse waveforms.Both [37] and [38] use standard numerical integration techniques (i.e. the transient analysisin circuit simulators) to generate sample paths for the node voltages. \Many" transientanalyses of the circuit are performed with di�erent sample paths of the noise sources.The methods used by [37] and [38] have several problems. Shot and thermal noisesources in electronic circuits are ideally modeled as \white" noise sources. To simulate\white" noise sources accurately, one must either include very high frequency componentsin the sum of sinusoids representation, or set the pulse width to a very small value (to thecorrelation width of the noise sources, which is approximately 0:17 picoseconds for thermalnoise at room temperature [5]) in the random amplitude pulse waveform representation.This limits the maximum time-step in numerical integration of (4.20) to a very small valuemaking the simulation highly ine�cient, which has to be repeated \many" times in a MonteCarlo fashion.The portion due to noise sources in a waveform (i.e. sample path) obtained witha single run of the transient analysis will be much \smaller" (for most practical problems)when compared with the portion due to the deterministic signals. As a result, the samplepaths obtained for di�erent realizations of the noise sources will be very close to eachother. These sample paths are only numerical approximations to the actual waveforms,therefore they contain numerical noise generated by the numerical integration algorithm.For instance, the variance of a node voltage as a function of time is calculated by takingaverages over an ensemble of these sample paths. First, the mean as a function of time iscalculated. Then, the variance at every time point is calculated by computing the average ofthe di�erences between the values from all of the sample paths and the mean. Consequently,the variance calculated for the node voltages includes the \noise" generated by the numericalalgorithms. This creates another constraint on the time steps to be used during numericalintegration.Pseudo-random number generators on a computer often do not generate a largesequence of independent numbers, but reuse old random numbers instead. This can alsobecome a problem if a circuit with many noise sources is simulated. This is usually thecase, because every device has several noise sources associated with its model.On the other hand, this method has a key property which might be very desirable



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 113in some applications: It does not assume that the noise signals are small compared with thedeterministic excitations. The justi�cation for using a linear model of the circuit for noiseanalysis is based on this assumption for all of the other methods we discuss in this chapter.For instance, the Monte Carlo technique can be useful in evaluating the noise performanceof low noise ampli�ers (LNAs) (a key component of the analog RF front-end of any wirelesscommunication system). For LNAs, the desired deterministic signal can be weak enoughso that its magnitude is comparable with the noise sources in the ampli�er. In this case,the presence of other undesired large signals can preclude the use of an LTI model for ACsmall-signal and noise analysis.4.5 SummaryWe presented an overview of several techniques for noise analysis of nonlinearelectronic circuits. We de�ned \noise analysis" to be the calculation of the probabilisticcharacteristics of the state variables (e.g. node voltages) of a circuit. The traditional noiseanalysis method that is based on LTI analysis and WSS noise sources assumes that thenonlinear circuit is in time-invariant steady-state under the in
uence of the deterministicexcitations. With this method, the spectral density of the output is calculated at discretefrequency points in a frequency range of interest. Assuming that the output is a WSSprocess, this method calculates a complete second-order probabilistic characterization. Wepointed out that the time-invariant steady-state assumption is not justi�ed for many appli-cations. Then, we reviewed frequency domain techniques that are based on LPTV analysiswith cyclostationary noise sources, which assume that the nonlinear circuit is in (quasi-)periodic steady-state under the in
uence of the deterministic excitations. In particular,a formulation based on the shooting method was proposed in [30]. Assuming that theoutput is also cyclostationary, this method calculates only a time-averaged probabilisticcharacterization. The e�ciency of the method proposed in [30] was greatly improved by[31] using matrix-implicit Krylov subspace based iterative techniques for the solution of thelarge linear system of equations that needs to be solved to calculate the time discretizedperiodically time-varying transfer functions. The frequency domain steady-state techniqueproposed in [34] is based on a harmonic balance/conversion matrix formulation, and calcu-lates a complete second-order characteristics of the cyclostationary output e�ciently using



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 114factored matrix, preconditioned iterative techniques for the solution of the large linear sys-tem of equations that needs to be solved to calculate the frequency discretized periodicallytime-varying transfer functions.We reviewed the time domain Monte Carlo noise analysis. This method is basedon a direct numerical integration of the nonlinear di�erential equations that represent thecircuit with the noise excitations to generate an ensemble of sample paths for the stochasticprocesses that represent the state variables. The information that is needed for a completesecond-order characterization of the nonstationary output is contained in the ensemble ofthe sample paths generated with this method, even though a post-processing step is re-quired to calculate spectral densities or correlation functions. We pointed out the e�ciencyand accuracy problems associated with this method. We believe that the results of rigoroussystematic work on stochastic direct numerical simulation methods for di�erential equationsinvolving stochastic processes have applications in electronic circuit and system design. Di-rect numerical simulation of the stochastic processes and the di�erential equations involvingthem can be useful in problems which can not be dealt with some simplifying approxima-tions (i.e. linearization) that allow us to use the other noise analysis techniques reviewedin this chapter.The time domain non-Monte Carlo method we proposed directly calculates theautocorrelation, cross-correlation matrix of the state variables of the system that are repre-sented by nonstationary stochastic processes. With this method, one can analyze transientand nonstationary noise phenomena since a steady-state is not required. We discuss thismethod in the next chapter.We believe that the combined use of frequency domain steady state techniquesthat calculate spectral densities and the time domain technique that calculates correlationfunctions will be most e�ective in investigating various important noise phenomena in elec-tronic circuit design where the assumption that the e�ect of noise on the output is muchsmaller than the e�ect of desired deterministic signals (i.e. the linearization approximation)is justi�ed. In problems where this assumption can not be justi�ed, one has to revert totechniques, e.g. time domain Monte Carlo noise analysis, which treat the noise excitationsand the deterministic signals together.



115Chapter 5Time-Domain non-Monte CarloNoise SimulationThe time domain non-Monte Carlo (meaning that no random number generatorsare used) noise analysis technique we proposed [2, 3] is not restricted to circuits with atime-invariant or (quasi-) periodic steady-state with WSS or cyclostationary noise sources.The deterministic excitations on the circuit can be arbitrary time domain signals, includingtransient waveforms without a steady-state characteristics. As a result, the noise sourcesin the circuit will be nonstationary in general as opposed to being WSS or cyclostationary.All the circuit variables, i.e. node voltages, will also be nonstationary stochastic processesin general. A complete second-order probabilistic characterization would then require thecalculation of the autocorrelation, cross-correlation matrix of the component of the statevector due to noise, which is given byR(t; �) = E hX(t+ �=2)X(t� �=2)Ti (5.1)or the time-varying spectral, cross-spectral density matrixSX(t; f) = F fR(t; �)g: (5.2)In the general case, R(t; �) or S(t; f) are arbitrarily time varying functions of t, as opposedto a periodically time varying one. In this method, we directly calculate a time discretizedversion of R(t; �) numerically. For � = 0, the diagonal elements of R(t; �) gives us the noisevariance (i.e. the total noise power) of the node voltages as a function of time, which canbe directly calculated using this time domain non-Monte Carlo noise simulation technique.



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 116Similar to the frequency domain methods, �rst, a large signal analysis of the circuitis performed with only the deterministic excitations. Then an LTV (as opposed to an LPTVone) model is constructed for noise analysis. Since this method does not require a largesignal steady-state, the noise analysis can be performed along with the large signal analysis.This is useful in the sense that one does not need to store information about the large signalbehavior of the circuit.Apart from being able to analyze transient noise phenomena, this method is usefulin applications where total noise power as a function of time is required. This is a naturaloutput of this technique, which would be quite di�cult to calculate using the frequencydomain methods that calculate spectral densities.In Chapter 6, we will present how one can use this technique to investigate andmodel an inherently nonstationary noise phenomenon, the so-called phase noise or timingjitter of oscillators, which is an extremely important concern in the design of clock generatorsfor all kinds of applications and frequency synthesizers that generate the local oscillator (LO)signal in analog RF front-end of wireless communication systems.We now present a detailed devlopment of the time domain non-Monte Carlo noiseanalysis algorithm for nonlinear electronic circuits, and describe its implementation fornumerical computation. We also present noise simulation examples to illustrate the use ofthe noise simulation technique.5.1 Formulation of Circuit Equations with NoiseThe MNA formulation [39][27] of the mixed algebraic and di�erential equationsthat govern the behavior of a nonlinear electronic circuit including the deterministic exci-tations can be expressed as I(x; t) + ddtQ(x) = 0 (5.3)where I(x; t) : IRn � IR!IRn and Q(x) : IRn!IRn. The components of the vector x 2 IRnare the state variables of the nonlinear circuit. (See Section 4.1 for an explanation of thisformulation.)Under some rather mild conditions (which are satis�ed by \well-modeled" circuits)on the continuity and di�erentiability of I and Q, it can be proven that there exists a uniquesolution to (5.3) assuming that a �xed initial value x(0) = x0 is given [39]. Let xs be thedeterministic solution to (5.3). Transient analysis in circuit simulators solves for xs in time



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 117domain using numerical integration techniques for ordinary di�erential equations (ODEs)[39]. The initial value vector is obtained by a DC or operating point analysis (i.e. thesolution of the system of nonlinear algebraic equations obtained from (5.3) by setting thetime derivative to zero and using the t = 0 values for the independent sources) of the circuitbefore the numerical integration is started. For a nonlinear circuit, there may be more thanone solution to the DC analysis problem.We would like to include the noise sources in the formulation of the circuit equa-tions in (5.3). Now, we state a number of assumptions on the models of the noise sources:� As explained in Chapter 3, we assume that all of the noise sources in the circuit aremodeled in terms of a standard white Gaussian noise process, i.e. the formal derivativeof a standard Wiener process.� If the model of a noise source contains a subsystem that has internal states, we assumethat the variables that represent these internal states are included in the state vector xfor the nonlinear circuit, and the equations that describe the noise modeling subsystemare appended to (5.3). For instance, an LTI low-pass subsystem can be used to �lter awhite Gaussian noise source, and the output of this subsystem is then used to modela WSS noise source with a low-pass spectral density.� We furthermore assume that all of the noise sources can be modeled as current andvoltage sources that can be inserted into the model of an electronic device or com-ponent which is composed of an interconnection of basic network elements such aslinear/nonlinear controlled sources, linear/nonlinear capacitors, linear/nonlinear re-sistors, etc. In practice, the noise sources of electronic components and devices aremodeled as current sources, because current sources are more convenient to use withthe MNA formulation.� We assume that the properties of the stochastic processes that represent the noisesources can be expressed in terms of the terminal voltages and currents of the device(or in terms of quantities that can be calculated using the terminal voltages andcurrents) and some �xed parameters such as the electron charge, the temperature andthe Boltzmann's constant.All of the stochastic process models we have presented in Chapter 3 for thermal, shot and1=f noise satisfy these assumptions. Any other model for a noise source that satis�es the



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 118above assumptions can be included in the formulation we are going to present.With the above assumptions on the noise source models, we can modify the \de-terministic" model of the system in (5.3) to formulate a system of stochastic algebraic anddi�erential equations that describe the dynamics of the nonlinear circuit including the noisesources: I(X; t) + ddtQ(X) +B(X; t)�(t) = 0: (5.4)We will refer to this formulation as the NLSDE (nonlinear stochastic di�erential equation)formulation. The last term in (5.4), B(x; t)�(t), that describes the noise sources, appearsas an additive noise term. This is due to the assumptions we have stated above on the noisesource models.X 2 IRn in (5.4) is now a vector of stochastic processes that represents the statevariables (e.g. node voltages) of the circuit. �(t) in (5.4) is a p-dimensional vector of WSSwhite Gaussian processes (i.e. the formal derivative of the standard Wiener process). Weassume that the components of �(t) are uncorrelated stochastic processes to simplify thediscussion. Various noise sources in electronic devices usually have independent physicalorigin, and hence they are most often modeled as uncorrelated stochastic processes. Forinstance, all of the noise source models of semiconductor devices that are implemented inSPICE are uncorrelated. The generalization of the time domain noise analysis algorithmto handle correlated noise sources is straightforward, apart from slightly complicating thenotation.B(x; t) in (5.4) is an n � p matrix, the entries of which are functions of the statex and possibly t. In other words, B(x; t) is state and time dependent modulation for thevector of stochastic processes (or noise sources) �(t). Every column of B(x; t) correspondsto a noise source in �(t), and has normally either one or two nonzero entries. The rows ofB(x; t) correspond to either a node equation (KCL) or a branch equation of an inductor ora voltage source. If there are no voltage noise sources in the circuit, there are no nonzeroentries in the rows which correspond to the branch equations. Thus, B(x; t) maps the noisesources in �(t) to the nodes they are connected to. Some semiconductor device modelsmight contain two noise sources that are modeled with two fully correlated (which meansthat the noise sources are stochastically equivalent) stochastic processes. This situation canbe handled naturally with this formulation by mapping the same noise source to di�erentlocations in the circuit. Thus, one can have two stochastically equivalent noise sources at



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 119di�erent locations. Moreover, the modulations for these noise sources placed in B(x; t) neednot be equal.Thermal and shot noise sources as modulated white Gaussian noise sources arenaturally included in this formulation. The modulation expressions to be placed in B(x; t)for thermal and shot noise were described in Chapter 3.For a current noise source that is connected between two nodes, the two nonzeroentries (modulations) to be placed in B(x; t) have equal absolute values but opposite signs.The sign of the modulations for the two nodes can be chosen arbitrarily, since a currentnoise source that is modeled with a zero mean stochastic process has no direction. For avoltage noise source there is only one nonzero entry in B(x; t).We will interpret (5.4) as an Ito system of stochastic di�erential equations. Now,we rewrite (5.4) in the more natural di�erential formI(X; t)dt+ dQ(X) +B(X; t)dW(t) = 0 (5.5)where we substituted dW(t) = �(t)dt. W(t) is a vector of uncorrelated Wiener processes.Thus, our formulation is now in terms of the well-de�ned Wiener process, instead of thewhite Gaussian noise which does not exist in a strict mathematical sense.5.2 Probabilistic Characterization of the Circuit with NoiseWe formulated the equations that govern the behavior of a nonlinear circuit asa system of mixed stochastic algebraic and Ito stochastic di�erential equations. Now, wewould like to \solve" (in some sense) this system of equations to generate \information"about the noise performance of the nonlinear circuit, which we refer to as the noise analysisof the circuit. In particular, we would like to calculate a probabilistic characterization ofthe vector of stochastic processes X(t) that represents the state variables of the system.The �nite-dimensional distributions (i.e. fdds, see Section 2.2) for X(t) form a completeprobabilistic characterization. If we can calculate the joint probability density for the statevariables of the system, we can use the expectation operator over the calculated joint prob-ability density to calculate all kinds of probabilistic characteristics of the state variables. Inparticular, we can obtain autocorrelation functions and spectral densities which can be cal-culated through second-order moments. It is also possible to calculate higher-order momentsand hence a higher-order probabilistic characterization using the information contained in



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 120the joint probability density function of the state X(t). The joint probability density is atime dependent function p(x; t) : IRn � IR![0;1), because the stochastic processes thatare components of X(t) are in general nonstationary. We have seen it in Section 2.5.6that, given a system of Ito stochastic di�erential equations, one can derive a correspondingsystem of partial di�erential equations, called the Fokker-Planck equation, the solution ofwhich gives us the conditional joint probability density function p(x; tjx0; t0) for the stateX(t). A Fokker-Planck equation that corresponds to (5.5) for a nonlinear circuit can bederived. Solving this Fokker-Planck equation analytically for the time-varying joint proba-bility density for a practical nonlinear circuit is obviously out of the question. A numericalsolution approach to this partial di�erential equation is also infeasible due to the large di-mension (i.e. number of state variables) of the problem. Obtaining analytical or numericalsolutions for the Fokker-Planck equation for a nonlinear circuit is only possible for simple\toy" circuits with a state-space dimension that is smaller than 5.1Because of great di�culties in obtaining nonstationary solutions of the Fokker-Planck equation that corresponds to (5.5) for a nonlinear circuit, we could attempt tocalculate the time-varying moments of X(t) separately, instead of calculating the wholejoint probability density which, in a sense, is equivalent to calculating all orders of momentsat the same time. To accomplish this, we could derive di�erential equations, the solution ofwhich will give us the time-varying moments ofX(t). The di�erential equations for momentscan be obtained in two ways [13]. One way is to use the Fokker-Planck equation. However,another and more natural way of deriving equations for moments is based on applying Ito'sformula (see Section 2.5.4) for stochastic di�erentials to the functionh(X(t)) = Xk11 (t)Xk22 (t) : : : Xknn (t) (5.6)(where X1(t); X2(t); : : : ; Xn(t) are the stochastic processes that are components of X(t)) tocalculate an expression for d=dt h(X(t)). Then, the expectation of this expression is takento calculate d=dt E [h(X(t))] and hence to derive the di�erential equations for the moments.This is very similar to what we did to derive the Fokker-Planck equation in Section 2.5.6 forthe one-dimensional case. Here, we are using the speci�c h(X(t)) in (5.6), which is specif-ically chosen to extract the moments. For a system of nonlinear Ito stochastic di�erentialequations such as (5.5), the di�erential equation for a lower order moment may contain1See [40] for an example of calculating analytical solutions of the Fokker-Planck equation. [40] uses theFokker-Planck equations to study the \cycle-slipping" behavior of simple phase-locked loops.



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 121terms of higher order moments. Thus, an in�nite hierarchy of moment equations [13] isobtained. In order to obtain a closed form of moment equations, some closure approxima-tions have to be introduced to truncate the in�nite hierarchy. In a practical problem, oneis usually interested only in some lower order moments. Closure approximations have beenproposed in the literature in solving stochastic problems in several disciplines such as turbu-lence theory, control and vibratory systems [13]. One of the simplest closure approximationsthat �rst comes to mind is the Gaussian closure scheme, according to which, higher ordermoments are expressed in terms of the �rst and second order moments as if the componentsof X are Gaussian stochastic processes. Recall that the distribution of a Gaussian randomvariable is completely characterized with its mean and variance, i.e. the �rst and secondorder moments. Variations on the basic Gaussian closure scheme have been proposed fordi�erent kinds of problems in the literature. Closure schemes are designed using speci�ccharacteristics of the problem in hand. Not all the closure approximations proposed inthe literature have sound mathematical basis, but they can be justi�ed using the physicalproperties of the speci�c problem they are being used for [13]. Using these closure schemes,one arrives at systems of nonlinear ordinary di�erential equations for various moments. Bysolving these equations numerically, one can calculate the time evolution of the momentsof the state X(t).We now point out some properties of the problem we are trying to solve. Thesystem we are dealing with is a nonlinear electronic circuit with electrical (e.g. shot andthermal) noise sources. In general, the noise signals can be considered as small excitationson the system. In this case, the time development of the system will almost be deterministic,and the 
uctuations due to noise will be small perturbations. This observation immediatelybrings to mind the technique of small-signal analysis that is widely used in the analysisand design of electronic circuits (and in many other problems), i.e. modeling the systemwith a linear (but possibly time-varying) model for noise signals. In this case, if we assumethat the noise sources are Gaussian processes (satis�ed by shot and thermal noise), thenthe state X will be a vector of Gaussian processes, since it can be considered as the outputof a linear system with Gaussian processes as inputs. We know that a Gaussian process iscompletely characterized by the �rst and second-order moments. Thus, we would need tocalculate the time evolution of only the meanE [X(t)] (5.7)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 122and the autocorrelation functionE hX(t+ �=2)X(t� �=2)Ti (5.8)for a complete probabilistic characterization.Treating the noise sources as small deterministic excitations and deriving a small-signal analysis scheme with such a consideration is not mathematically sound. The smalldeterministic signals satisfy certain smoothness conditions. For small-signal analysis, theyare usually modeled with sinusoidal signals. On the other hand, noise signals in generaldo not satisfy smoothness conditions (i.e. continuity and di�erentiability) and usuallyexhibit erratic behavior. Thus, the derivation of a small-signal analysis scheme for noisesignals should be done using approximation techniques developed for stochastic processesand systems. An approximate technique developed in the analysis of engineering nonlineardynamical systems subjected to random excitations is the perturbation method [13]. Theidea behind this method comes from the classical theory of ordinary di�erential equations.In this method, a small parameter � � 1 is usually introduced to the system, and thesolution is expressed in the form of an expansion with respect to the powers of �. In thenext section, we will apply such a stochastic perturbation scheme to (5.5). The result weare going to obtain at the end of the next section can also be derived using deterministicarguments through the use of �rst-order Taylor's expansion of nonlinearities in (5.5) [3], butsome of the steps in this derivation are not mathematically sound (which has to do withconsidering the \derivative" of a stochastic process using deterministic arguments).5.3 Small Noise ExpansionWe will apply a stochastic perturbation scheme [10] to the NLSDE formulationgiven in (5.5) for a nonlinear circuit with noise sources. We introduce a parameter � to(5.5) as a multiplying factor in the last term that describes the noise sources. To keep (5.5)invariant, we then need to modify the entries of B(X; t), i.e. divide them by �. For theperturbation approximation to be justi�ed, we need to have � � 1. If we set � to a valuesuch that the \magnitude" of B(X; t)=� will be \comparable" to the \magnitude" of thedeterministic excitations (which are represented by the explicit t dependence of I(x; t) in(5.5)), then � � 1 will indeed be satis�ed for a practical nonlinear electronic circuit withelectrical noise sources. This is the assumption that will be used to justify the perturbation



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 123approximation. For the notational simplicity of the discussion below, we will keep theentries of B(X; t) unchanged, i.e. we will not divide them by �, but we will introduce � asa multiplying factor for the noise term in (5.5):I(X; t)dt+ dQ(X) + �B(X; t)dW(t) = 0: (5.9)If we substitute � = 1 in (5.9), we obtain the original NLSDE formulation (5.5). If � = 0,then (5.5) reduces to (5.3) which describes the nonlinear circuit without the noise sources.The solution for (5.9) will be written as an expansion with respect to the powers of �. Thus,we assume that the solution X(t) of (5.9) can be written asX(t) = X0(t) + �X1(t) + �2X2(t) + : : : (5.10)where X0(t);X1(t);X2(t); : : : are all n-dimensional vectors of stochastic processes. We alsoassume that we can expand I(x; t) asI(x; t) = I(x0 + �x1 + �2x2 + : : : ; t) (5.11)= I0(x0; t) + �I1(x0;x1; t) + �2I2(x0;x1;x2; t) + : : : (5.12)where I0(x0; t); I1(x0;x1; t); : : : are all vector-valued deterministic functions. Now, not tocomplicate the notation, we assume that both x and I are scalars to demonstrate how onecan obtain the expansion in (5.12). For scalar x and I, we have [10]I(x; t) = I(x0 + 1Xi=1 �ixi; t) (5.13)= 1Xj=0 1j! @j I(x0; t)@x0j ( 1Xi=1 �ixi)j (5.14)which is obtained by using Taylor's expansion. By expanding the above expression, we cancalculate the zeroth and �rst order coe�cients, I0(x0; t) and I1(x0; x1; t), in (5.12) to beI0(x0; t) = I(x0; t) (5.15)I1(x0; x1; t) = @ I(x0; t)@x0 x1: (5.16)(5.14) can be generalized to the multidimensional case when x and I are n-vectors. In thiscase, we obtain I0(x0; t) = I(x0; t) (5.17)I1(x0;x1; t) = @ I(x0; t)@x0 x1 (5.18)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 124for the zeroth and �rst order coe�cients in (5.12). We de�neG(x0; t) = @ I(x0; t)@x0 (5.19)which is an n�n matrix-valued function. Even though it is not easy to write explicitly thefull set of coe�cients in general for the expansion (5.12), it is easy to see that we can writefor i � 1 Ii(x0;x1; : : : ;xi; t) = G(x0; t)xi +�Ii(x0;x1; : : : ;xi�1; t) (5.20)where �Ii is independent of xi [10]. Note that �I1 = 0. The validity of the above expressioncan be easily seen by examining (5.14).Similarly, we assume that Q(x) and B(x; t) can be expanded asQ(x) = Q0(x0) + �Q1(x0;x1) + �2Q2(x0;x1;x2) + : : : (5.21)B(x; t) = B0(x0; t) + �B1(x0;x1; t) + �2B2(x0;x1;x2; t) + : : : (5.22)where Q0(x0) = Q(x0) (5.23)Q1(x0;x1) = @Q(x0)@x0 x1 (5.24)and B0(x0; t) = B(x0; t): (5.25)Recall that B(x; t) is an n � p matrix-valued function, unlike I(x; t) and Q(x) which arevector-valued functions. We de�ne the n� n matrix-valued functionC(x0) = dQ(x0)dx0 (5.26)which appears in the expansion of Q(x) exactly in the same way G(x0; t) appears in theexpansion of I(x; t). Similar to (5.20), we can write for i � 1Qi(x0;x1; : : : ;xi) = C(x0)xi + �Qi(x0;x1; : : : ;xi�1) (5.27)where �Qi is independent of xi. Note that �Q1 = 0We now substitute the expansions (5.10), (5.12), (5.21) and (5.22) along with(5.20) and (5.27) in the system of stochastic di�erential equations (5.9). We equate the



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 125coe�cients of the like powers of �. We then obtain an in�nite set of systems of stochasticdi�erential equations. I(X0; t)dt+ dQ(X0) = 0 (5.28)is obtained by equating the terms that are independent of �. By equating the coe�cientsof the ith powers of �, we obtain[G(X0; t)Xi +�Ii(X0;X1; : : : ;Xi�1; t)]dt+d[C(X0)Xi + �Qi(X0;X1; : : : ;Xi�1)] +Bi�1(X0;X1; : : : ;Xi�1; t)dW(t) = 0: (5.29)These equations can now be treated (i.e. solved) sequentially. (5.28) is exactly (5.3) whichdescribes the nonlinear circuit without the noise sources, and hence has a solution xs asde�ned in Section 5.1. Thus, we have X0(t) = xs(t): (5.30)The solution X0(t) is deterministic provided that the initial conditions that are speci�edfor (5.28) are deterministic. If we set i = 1 in (5.29), we obtainG(xs; t)X1 dt + d[C(xs)X1] +B(xs; t)dW(t) = 0 (5.31)where we used �I1 = 0, �Q1 = 0 and (5.30). Let us de�neG(t) = G(xs(t); t)C(t) = C(xs(t))B(t) = B(xs(t); t) (5.32)and rewrite (5.31) as G(t)X1 dt+ d[C(t)X1] +B(t)dW(t) = 0: (5.33)The solution of (5.31), X1(t), is the �rst-order term in the expansion (5.10) and is calleda multivariate time-varying Ornstein-Uhlenbeck process. For our purposes, the �rst-orderterm X1(t) is quite adequate to characterize the solution of (5.9), and it amounts to alinearization of the original system (5.9) about the deterministic solution. We approximatethe solution X(t) of (5.9) with X(t) � X0(t) + �X1(t): (5.34)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 126To solve for X(t), we �rst calculate X0(t) = xs(t) as the solution of (5.3), which is deter-ministic. Then, we use the calculated xs(t) to calculate G(t), C(t) and B(t) (which are alldeterministic) using (5.32), (5.19) and (5.26). X1(t) is obtained as the solution of the sys-tem of linear stochastic di�erential equations (5.33) with time-varying coe�cient matrices.Calculating higher-order terms in (5.10) is more complicated because of the more complexform of (5.29) for i � 2, but, in essence, they are treated in exactly the same way. In orderto solve the equation for Xi(t), we assume we know all the Xj(t) for j < i so that �Ii, �Qiand Bi�1 become known stochastic functions of t after substituting these solutions. Then(5.29) becomes [G(t)Xi +�Ii(t)]dt+ d[C(t)Xi + �Qi(t)] +Bi�1(t)dW(t) = 0 (5.35)where G(t) and C(t) are deterministic, and �Ii(t), �Qi(t) and Bi�1(t) are stochastic functionsof time.5.4 Derivation of a Linear Time Varying SDE Model forNoise AnalysisWe now concentrate on (5.33) which we repeat below with the substitution X1(t) =Xn(t), to denote the stochastic noise component in the expansion (5.34) for the total solu-tion, G(t)Xn dt+ d[C(t)Xn] +B(t)dW(t) = 0: (5.36)The time-varying matrix G(t) represents the linear and nonlinear resistive components inthe circuit linearized around the deterministic solution xs(t), and the time-varying matrixC(t) represents the linear and nonlinear reactive components (i.e. capacitors and inductors)linearized around the deterministic solution xs(t). We expand the second term above toobtain G(t)Xn dt + [dC(t)dt ]Xn dt+C(t) dXn+B(t)dW(t) = 0: (5.37)Notice that we used a classical calculus di�erentiation rule above. In this case, the Itostochastic di�erentiation rule is same as the classical one, because the argument is merelylinear in Xn. The time-varying matrix _C(t) = d=dtC(t) in (5.37) represents the time-derivative of the time-varying capacitors in the linearized circuit. With reorganization,



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 127(5.37) becomes A(t)Xn dt+C(t) dXn +B(t)dW(t) = 0 (5.38)where A(t) = G(t) + _C(t): (5.39)The system of stochastic di�erential equations in (5.38) is not in the standardstate equations form dY = E(t)Y + F(t) dW(t) (5.40)because we obtained it from an MNA formulation of the circuit equations. C(t) is not afull-rank matrix in general, it may have zero rows and columns. For instance, if a circuitvariable is a node voltage, and if this node does not have any capacitors connected to it inthe circuit, then all of the entries in the column ofC(t) corresponding to this circuit variablewill be zero for all t. Also, the node equation (KCL) corresponding to this node will notcontain any time-derivatives, hence the row of C(t) corresponding to this node equationwill also be zero for all t. Thus, some of the rows and columns of C(t) are structurallyzero, independent of t. Moreover, the number of zero rows is equal to the number of zerocolumns. If we reorder the variables in Xn in such a way that the zero columns of C(t) aregrouped at the right-hand side of the matrix, and reorder the equations in such a way thatthe zero rows of C(t) are grouped in the lower part of the matrix, (5.38) becomes24 A11(t) A12(t)A21(t) A22(t) 3524 Xn1Xn2 35 dt+ 24 C11(t) 00 0 3524 dXn1dXn2 35+ 24 B1(t)B2(t) 35 dW(t) = 0(5.41)where A11(t) and C11(t) are m � m, A22(t) is k � k, A12(t) is m � k , A21(t) is k � m,B1(t) is m � p , B2(t) is k � p, Xn1 is an m-dimensional vector, Xn2 is a k-dimensionalvector, m is the number of nonzero columns (rows) in C(t) and k is the number of zerocolumns (rows). Naturally, n = m+k. If we expand (5.41), we obtain two sets of equations,consisting of m and k equations:A11(t)Xn1 dt+A12(t)Xn2 dt+C11(t) dXn1 +B1(t) dW(t) = 0; (5.42)A21(t)Xn1 dt+A22(t)Xn2 dt +B2(t) dW(t) = 0: (5.43)We solve for Xn2 dt in (5.43) to getXn2 dt = �[A22(t)�1]A21(t)Xn1 dt� [A22(t)�1]B2(t) dW(t): (5.44)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 128The above step assumes that A22(t) (k�k) is nonsingular. Nonsingularity of A22(t) meansthat the variables in Xn which appear without time-derivatives in the equations can beexpressed in terms of the variables which appear with derivatives. This condition is alwayssatis�ed if the variable is a node voltage. On the other hand, this condition is not alwayssatis�ed for voltage source currents, which always appear without derivatives in the equa-tions. The only equations a voltage source current can appear in, are the KCL equationscorresponding to the nodes the voltage source is connected to. If capacitors are connectedto these nodes, then the only equations containing the voltage source current have deriva-tives in them, hence they can not be used to express the voltage source current in termsof the other variables, which means that A22(t) is singular. Note that, A22(t) becomessingular only if both nodes of the voltage source are connected to capacitors, or one of themis connected to a capacitor and the other is ground. This problem can be taken care ofby eliminating the voltage source current variable and substituting the branch equation forthis voltage source in the circuit equations in (5.38). At this point, we will assume thatA22(t) is nonsingular. De�ne D1(t) = �[A22(t)�1]A21(t)D2(t) = �[A22(t)�1]B2(t): (5.45)Next, we use (5.44) and (5.45) in (5.42) to getA11(t)Xn1 dt+A12(t)D1(t)Xn1 dt+C11(t) dXn1 +B1(t) dW(t) +A12(t)D2(t) dW(t) = 0 (5.46)and henceC11(t) dXn1 = �[A11(t) +A12(t)D1(t)]Xn1 dt� [B1(t) +A12(t)D2(t)] dW(t): (5.47)De�ning ~E(t) = �(A11(t) +A12(t)D1(t))~F(t) = �(B1(t) +A12(t)D2(t)) (5.48)and using (5.48) in (5.47) results inC11(t) dXn1 = ~E(t)Xn1 dt+ ~F(t) dW(t): (5.49)Now, we multiply both sides of (5.49) by the inverse of C11(t) to obtaindXn1 = E(t)Xn1 dt+ F(t) dW(t) (5.50)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 129where E(t) = [C11(t)]�1 ~E(t) and F(t) = [C11(t)]�1 ~F(t). C11(t) is nonsingular providedthat every node in the circuit with a connection to a capacitor has a capacitive path toground or an independent voltage source node. We assume that this condition is satis�edby the circuit, hence C11(t) is nonsingular.(5.50) is a system of linear stochastic di�erential equations in standard form. Theright-hand-side in (5.50) is linear in Xn1, and the coe�cient matrices are independent ofXn1. Just as with linear ordinary di�erential equations, a much more complete theory canbe developed for linear stochastic di�erential equations [9]. As with ordinary di�erentialequations, the general solution of a linear stochastic di�erential equation can be foundexplicitly. The method of solution also involves an integrating factor or, equivalently, afundamental solution of an associated homogeneous di�erential equation. The solution of(5.50) is given by Xn1(t) = �(t; t0)Xn1(t0) + Z tt0 �(t; �)F(�) dW(�) (5.51)where �(t; �) is the state-transition matrix for the homogeneous di�erential equation_y = E(t) y (5.52)and hence can be determined as a function of t as the solution ofd�(t; �)dt = E(t)�(t; �) ; �(�; �) = Im: (5.53)(5.51) involves a stochastic (Ito) integral. If the deterministic matrix functions E(t) andF(t) are bounded in the time interval of interest, there exists a unique solution for everyinitial value vector Xn1(t0) [9]. The initial value vector Xn1(t0) can either be a nonrandomconstant vector or a vector of possibly correlated random variables. If the initial valueXn1(t0) is either a nonrandom constant vector or a vector of possibly correlated Gaussianrandom variables, then the solution Xn1(t) for t � t0 of (5.50) is a vector of possiblynonstationary Gaussian processes [9]. This is a direct consequence of the fact that (5.50)represents a linear system. At this point, we assume that the initial condition Xn1(t0) is avector of zero-mean Gaussian random variables.



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 1305.5 Derivation of Linear Time Varying ODEs for the Au-tocorrelation MatrixWe recall that the solution X(t) of (5.9) is approximated withX(t) � X0(t) + �X1(t) (5.54)� xs(t) + �Xn(t): (5.55)With � = 1, (5.9) reduces to the original NLSDE (5.5) that describes a nonlinear circuitwith the noise sources. Thus, we substitute � = 1 in (5.55) to obtainX(t) � xs(t) +Xn(t): (5.56)We now would like to calculate the time evolution of the meanE [X(t)] (5.57)and the autocorrelation functionE hX(t+ �=2)X(t� �=2)Ti (5.58)of X(t) for a complete second-order probabilistic characterization.By taking expectations of both sides of (5.51), we �nd out thatE [Xn1(t)] = 0 (5.59)because E [Xn1(t0)] = 0 as assumed, and E [W(t)] = 0 from the properties of the Wienerprocess. From (5.44) and (5.59), we concludeE [Xn2(t)] = 0: (5.60)Then E [Xn(t)] = E 2424 Xn1(t)Xn2(t) 3535 = 0: (5.61)follows from (5.59) and (5.60). Thus, E [X(t)] = xs(t) (5.62)where xs(t) is the solution of (5.3).



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 131Using (5.61), the autocorrelation function of X(t) is given byE hX(t+ �=2)X(t� �=2)Ti = xs(t+ �=2) xs(t� �=2) + E hXn(t+ �=2)Xn(t � �=2)Ti(5.63)in terms of xs(t) and the autocorrelation function of Xn(t). So, we would like to calculateE hXn(t+ �=2)Xn(t� �=2)Ti, which is given byE hXn(t + �=2)Xn(t� �=2)Ti = E 26424 Xn1(t+ �=2)Xn2(t+ �=2) 35 24 Xn1(t� �=2)Xn2(t� �=2) 35T375= 24 E hXn1(t+ �=2)Xn1(t� �=2)Ti E hXn1(t + �=2)Xn2(t� �=2)TiE hXn2(t+ �=2)Xn1(t� �=2)Ti E hXn2(t + �=2)Xn2(t� �=2)Ti 35 : (5.64)Recall that the vector Xn2 represents the noise component of the node voltages for thenodes which do not have a capacitive path to ground. For instance, the node between tworesistors with no other connections is such a node. Since we are using idealized \white"noise models for thermal and shot noise, the variance of the node voltage for a node withouta capacitive path the ground will be 1! One way of intuitively seeing this is consideringthat the transfer functions from noise source currents in the circuit to a node without acapacitive path to ground will be \high-pass" functions of frequency, and hence the spectraldensity of this node voltage will not decay to zero as f!1, resulting in in�nite noise power.We rewrite (5.44) in the following formXn2(t) = �[A22(t)�1]A21(t)Xn1(t)� [A22(t)�1]B2(t) dW(t)dt : (5.65)Thus, Xn2(t) is a summation of two terms, and the second term is a modulated vector ofwhite Gaussian processes (i.e. the formal derivative of the Wiener process). Hence, in gen-eral, all of the components ofXn2(t) have in�nite variance, i.e. in�nite power. So, it does notmake sense to calculate E hXn1(t + �=2)Xn2(t� �=2)Ti, E hXn2(t+ �=2)Xn1(t� �=2)Ti orE hXn2(t+ �=2)Xn2(t� �=2)Ti in (5.64). We can only calculate the �rst diagonal blockin (5.64), i.e. E hXn1(t+ �=2)Xn1(t� �=2)Ti, the autocorrelation matrix of Xn1. Recallthat Xn1 represents the noise component of the node voltages for the nodes which have acapacitive path to ground and the noise component of the inductor currents.We now derive a system of ordinary di�erential equations for the time-varyingvariance-covariance matrix of Xn1(t) de�ned asK(t) = E hXn1(t)Xn1(t)Ti: (5.66)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 132We start with calculating the following di�erential using Ito's formula (see Section 2.5.4)d(Xn1XTn1) = (Xn1 + dXn1)(XTn1 + dXTn1)�Xn1XTn1: (5.67)From (5.67), it follows thatd(Xn1XTn1) = Xn1 dXTn1 + (dXn1)XTn1 + dXn1 dXTn1 (5.68)= Xn1[XTn1 E(t)T dt+ (dW(t))T F(t)T ]+[E(t)Xn1 dt+ F(t) dW(t)]XTn1+[E(t)Xn1 dt+ F(t) dW(t)] [XTn1 E(t)T dt+ (dW(t))T F(t)T ](5.69)where we used (5.50). We expand (5.69) and neglect higher order terms according to (2.274),and obtain d(Xn1XTn1) = Xn1XTn1 E(t)T dt+Xn1(dW(t))T F(t)T+E(t)Xn1XTn1 dt+ F(t) (dW(t))XTn1+F(t) dW(t) (dW(t))T F(t)T : (5.70)Then, we use (2.273) to substitute (dW(t))dW(t)T = Imdt, and take the expectations ofboth sides of (5.70) to obtainE hd(Xn1XTn1)i = E hXn1XTn1iE(t)T dt+E(t) E hXn1XTn1i dt+ F(t) F(t)T dt : (5.71)where we used the fact that Xn1(t) and dW(t) are uncorrelated, i.e.E h(dW(t))Xn1(t)T i = 0; (5.72)E hXn1(t)(dW(t))Ti = 0: (5.73)This is merely a statement of the fact that the statistical properties of the white noisesources in the system at time t are independent of the past behavior of the system up totime t. Next, we substitute (5.66) in (5.71) and rewrite it in di�erential equation form:dK(t)dt = E(t)K(t) +K(t)E(t)T + F(t) F(t)T : (5.74)(5.74) is a system of ordinary di�erential equations for the m � m time-varying variance-covariance matrix of Xn1(t) de�ned by (5.66). Being a variance-covariance matrix, K(t) isa symmetric and positive semi-de�nite matrix for all t. Assuming that (5.74) satis�es theLipschitz and boundedness conditions in the time interval of interest, a unique symmetricand positive semi-de�nite solution exists. In view of symmetry of K(t), (5.74) represents a



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 133system of m(m+ 1)=2 linear ordinary di�erential equations with time-varying coe�cients.(5.74) can be solved numerically to calculate K(t) in the time interval of interest, givenappropriate initial conditions. Choice of initial conditions and the numerical integration of(5.74) will be discussed in Section 5.7.K(t) is the autocorrelation matrix of Xn1, i.e. E hXn1(t+ �=2)Xn1(t� �=2)Tievaluated at � = 0. For a complete second-order probabilistic characterization of Xn1, wewould like to be able to calculate E hXn1(t+ �=2)Xn1(t� �=2)Ti for � 6= 0 as well. Wenow derive a system of ordinary di�erential equations forK(tref ; t) = E hXn1(tref )Xn1(t)Ti (5.75)where tref is a �xed reference time point such that t � tref . We start with calculating thefollowing di�erential d(Xn1(tref )Xn1(t)T ) = Xn1(tref )(dXn1(t)T ): (5.76)From (5.76), it follows thatd(Xn1(tref )Xn1(t)T ) = Xn1(tref )[Xn1(t)T E(t)T dt + (dW(t))T F(t)T ] (5.77)= Xn1(tref )Xn1(t)T E(t)T dt+Xn1(tref ) (dW(t))T F(t)T : (5.78)where we used (5.50). Then, we take the expectations of both sides of (5.78) to obtainE hd(Xn1(tref )Xn1(t)T )i = E hXn1(tref )Xn1(t)TiE(t)T dt (5.79)where we used the fact that Xn1(tref ) and dW(t) are uncorrelated. Next, we substitute(5.75) in (5.79) and rewrite it in di�erential equation form:@ K(tref ; t)@t = K(tref ; t)E(t)T : (5.80)(5.80) is a system of ordinary di�erential equations for K(tref ; t) de�ned by (5.75). Inte-grating (5.80) for t � tref at various values of tref , one can obtain a number of sections ofthe correlation matrix K(tref ; t). For these calculations, the initial condition for (5.80) ischosen as K(tref ; t)jt=tref = E hXn1(tref )Xn1(tref )Ti (5.81)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 134which is obtained from the solution of (5.74). Note thatK(tref ; t) is not a symmetric matrix.The solution of (5.80) gives us K(t1; t2) for t2 � t1. To calculate K(t1; t2) for t2 < t1, onecan use the simple formula K(t1; t2) = K(t2; t1)T : (5.82)By solving the system of ordinary di�erential equations given by (5.74) and (5.80),one can calculate E hXn1(t+ �=2)Xn1(t � �=2)Ti, i.e. the autocorrelation function of Xn1,for a range of t and � that is of interest. Together with (5.59), we now have a method tocalculate the complete second-order probabilistic characteristics of Xn1 that represents thenoise component of the node voltages for the nodes which have a capacitive path to ground,and the noise component of the inductor currents.The derivations of (5.74) and (5.80) were based on (5.50), the system of linearstochastic di�erential equations in standard form we derived in Section 5.4. To obtain(5.50), we multiplied both sides of (5.49) by the inverse of C11(t).2 Recall that C11(t) is theMNA matrix of the reactive elements, i.e. the capacitances and inductances in the circuit.For some circuits with widely varying capacitor values, even though C11(t) is nonsingular,the numerical calculation of the coe�cient matrices E(t) and F(t) in (5.50), which requiresan LU decomposition of C11(t), can become ill-conditioned. This was not an issue forthe nonlinear circuits we analyzed. For broader applicability, we provide derivations ofalternative systems of ordinary di�erential equations in Section 5.8. The equations thatwill be derived in Section 5.8 are based on the formulation (5.49) instead of (5.50), andhence these alternative derivations result in more numerically stable implementations.5.6 Solution of the Linear Time Varying ODEs for the Au-tocorrelation MatrixThe analytical solution of (5.74) has the formK(t) = �(t; 0)K0�(t; 0)T + Z t0 �(t; �)F(�)F(�)T�(t; �)T d� (5.83)where �(t; �) is the state transition matrix for the system of linear time-varying homoge-neous di�erential equations _y = E(t)y: (5.84)2In an actual numerical calculation, the inverse of C11(t) is not explicitly calculated. Instead, the LUdecomposition of C11(t) is followed by a number of forward elimination and backward solution steps toe�ectively multiply both sides of (5.49) by the inverse of C11(t).



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 135K0 in (5.83) denotes the initial condition K(0) = K0. (5.83) is similar to (2.164), and itcan be easily veri�ed by substituting it into (5.74) [41].The analytical solution of (5.80) has the formK(tref ; t) = K(tref ; tref)�(t; tref)T (5.85)where the initial condition K(tref ; tref) is obtained by solving (5.74).Obviously, we can not, in general, obtain analytical expressions for the state tran-sition matrix �(t; �) and hence for the solutions given in (5.83) and (5.85). We then revertto numerical methods to compute the solutions of (5.74) and (5.80), which we discuss inthe next section along with some basic properties of the system of di�erential equations in(5.74) that is of interest to us.5.7 Numerical Computation of the Autocorrelation MatrixIn this section, we describe how we numerically solve the system of ordinary di�er-ential equations in (5.74) and (5.80) to calculate E hXn1(t + �=2)Xn1(t� �=2)Ti, i.e. theautocorrelation function of Xn1, for a range of t and � that is of interest.5.7.1 Computation of the coe�cient matricesTo be able to solve (5.74), which we repeat below for convenience,d K(t)dt = E(t)K(t) +K(t)E(t)T + F(t)F(t)T (5.86)we �rst need to calculate the coe�cient matrices E(t) and F(t) in the time interval of interest[0; T ]. The time-varying coe�cient matrices E(t) and F(t) are not available analytically. Tocalculate E(t) and F(t) numerically, we �rst need to solve the nonlinear circuit equationswithout noise, i.e. I(x; t) + ddtQ(x) = 0; (5.87)to calculate xs(t) in the time interval of interest. I(x; t) and Q(x) in (5.87) are usuallyavailable as analytical expressions in the models of electronic components and semiconductordevices. The numerical calculation of xs(t) is already implemented in the circuit simulator



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 136SPICE, and is called the transient analysis. The numerical methods for solving (5.87)subdivide the time interval of interest [0; T ] into a �nite set of distinct points:t0 = 0; tR = T; tr = tr�1 + hr r = 1; : : : ; R (5.88)where hr are the time steps. At each time point tr , the numerical methods compute an\approximation" xs[r] to the exact solution xs(tr) [39].Once we know xs(tr) at a speci�c time point tr, we can now calculate G(tr), C(tr)andB(tr) (all de�ned in Section 5.3) using (5.32), (5.19) and (5.26). The matricesG(tr) andC(tr) are basically the Jacobians of the vector functions I(x; t) and Q(x) evaluated at xs(tr),respectively. Since I(x; t) and Q(x) are available as analytical expressions, the Jacobiansare also calculated analytically apriori (or with automatic di�erentiation methods), andthey are included in the device models. B(tr) is basically B(x(t); t) (which contains themodulating functions for the noise sources that are available as analytical expressions asdescribed in Chapter 3) evaluated at xs(tr). Then, E(tr) and F(tr) are calculated fromG(tr), C(tr) and B(tr) by performing the straightforward matrix operations described bythe equations (5.36)-(5.50) in Section 5.4. All of these operations are performed with sparsematrix data structures. The numerical operations actually implemented somewhat di�erfrom what has been described in Section 5.4 because of e�ciency reasons.The calculation of the matrixA(t) = G(t)+ _C(t) in (5.38) requires the calculationof the time derivative _C(t). We compute _C(t) using the same time discretization formulasthat were used by the transient analysis routines to discretize (5.87) in time to calculatexs(t). For example, if Backward Euler is used to discretize (5.87), then_C(tr) = C(tr)�C(tr�1)hr (5.89)is used to calculate the time derivative of C(tr) in calculating A(tr) at the time pointtr. Alternatively, one can calculate the matrix _C(t) by \multiplying" the Hessian of Q(x)evaluated at xs(t) with the vector _xs(t), since C(t) is the Jacobian of Q(x) evaluated atxs(t). In this case, we again use the same time discretization formulas that were used by thetransient analysis routines to discretize (5.87) to calculate _xs(t). With this second method,one needs to calculate the second-order derivatives of Q(x), i.e. the Hessian, which has tobe done apriori and the analytical expressions for the second-order derivatives have to beplaced in the device models.



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 1375.7.2 Numerical solution of the di�erential Lyapunov matrix equationWe now concentrate on the numerical integration of (5.86). In view of the symme-try ofK(t) (which is a variance-covariance matrix), (5.86) represents a system ofm(m+1)=2linear ordinary di�erential equations with time-varying coe�cients. The \matrix" di�eren-tial equation (5.86) is in a special form. Matrix di�erential equations of this form appear inmany engineering and mathematics problems in control theory, system theory, optimization,power systems, signal processing, etc. [41], and are referred to as the di�erential Lyapunovmatrix equation. It is named after the Russian mathematician Alexander MikhailovitchLyapunov, who in 1892, introduced his famous stability theory for linear and nonlinearsystems. In Lyapunov's stability theory for continuous-time systems, equations of the form(5.86) arise in the stability analysis of linear time-varying systems. The reader is referredto [41] for a discussion of problems where Lyapunov-like matrix equations appear. Givenan initial condition, the time-varying matrix di�erential equation (5.86) has a unique so-lution under the condition that E(t) and F(t) are continuous and bounded time functions.This condition is satis�ed in our case. The m �m matrix F(t) F(t)T in (5.86) is positivesemide�nite for all t (see Section 2.4.4). If the initial condition K(0) = K0 is also positivesemide�nite, then the solution of (5.86), K(t), is positive semide�nite for t � 0. We recallthat K(t) is the time-varying variance-covariance matrix for the vector of stochastic pro-cesses Xn1(t). As we stated in Section 5.4, we assume that Xn1(0) is a vector of zero-meanGaussian random variables. Then, K0 = E hXn1(0)Xn1(0)Ti is positive semide�nite, andhence K(t) is positive semide�nite for t � 0 as required since it is a variance-covariancematrix. For the numerical solution of (5.86), we discretize it in time using a suitable scheme.In general, one can use any linear multi-step method, or a Runge-Kutta method. For cir-cuit simulation problems, implicit linear multi-step methods, and especially the trapezoidalmethod and the backward di�erentiation formula were found to be most suitable [39]. Thetrapezoidal method and the backward di�erentiation formula are almost exclusively used incircuit simulators in the numerical solution of (5.87). We use the trapezoidal method andthe backward di�erentiation formula to discretize (5.86). Here, we will discuss the appli-cation of only backward Euler (backward di�erentiation formula of order 1). If backwardEuler is applied to (5.86), we obtainK(tr)�K(tr�1)hr = E(tr)K(tr) +K(tr)E(tr)T + F(tr) F(tr)T : (5.90)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 138One can put (5.90) in the below form by rearranging the terms[E(tr)� Im2 hr ]K(tr) +K(tr) [E(tr)� Im2 hr ]T + F(tr) F(tr)T + K(tr�1)hr = 0: (5.91)Let us de�ne Pr = E(tr)� Im2 hr (5.92)Qr = F(tr) F(tr)T + K(tr�1)hr : (5.93)With these de�nitions, (5.91) is rewritten asPr K(tr) +K(tr)PTr +Qr = 0: (5.94)K(t) at time point tr is calculated by solving the system of linear equations in (5.94). In viewof symmetry of K(tr), (5.94) represents a system of m(m+1)=2 linear algebraic equations.The \matrix" equation (5.94) is in a special form, and algebraic matrix equations in thisform are referred to as the continuous-time algebraic Lyapunov matrix equation in contrastwith the di�erential Lyapunov matrix equation. Let �1; �2; : : : ; �m be the eigenvalues of them �m matrix Pr in (5.94). It can be shown that (5.94) has a unique symmetric solutionif and only if �i + ��j 6= 0 for all 1 � i � m and 1 � j � m [41]. This condition is obviouslysatis�ed if every �i has a negative real part. Moreover, if every �i has a negative real part(i.e. Pr is \stable"), and ifQr is positive semide�nite, thenK(tr) is also positive semide�nite[42]. Since K(tr) is a variance-covariance matrix, it has to be positive semide�nite. Duringnumerical integration, we have to make sure that this condition is satis�ed at every timepoint, i.e. K(tr) at every time point is a valid variance-covariance matrix. We assume thatK(tr�1) calculated for the previous time point is a valid variance-covariance matrix, henceit is positive semide�nite. Since F(tr)F(tr)T is always positive semide�nite, then Qr is alsopositive semide�nite, because it is the summation of two positive semide�nite matrices.E(tr) in (5.91) might have eigenvalues which have nonnegative real parts. This might bethe case if the nonlinear circuit is an autonomous one, i.e. an oscillator. In nonautonomouscircuits, there might be positive feedback loops in the circuit that become active for someperiod of time, e.g. during regenerative switchings. In order to guarantee that K(tr) tobe calculated is a valid variance-covariance matrix, all the eigenvalues of Pr should havenegative real parts. This can be secured by choosing a small enough time step, because theeigenvalues of Pr are given by �i = �i � 12 hr 1 � i � m (5.95)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 139in terms of the eigenvalues �i of E(tr). Choosing \smaller" time steps during time intervalswhere E(t) have eigenvalues with nonnegative real parts also makes sense from an accuracypoint of view, because E(t) having eigenvalues with nonnegative real parts suggests thatthe nonlinear circuit is in a fast \switching" positive feedback mode, which in turn meansthat the noise variances for the node voltages are also changing fast.The numerical integration of (5.86) can be performed concurrently with the nu-merical solution of (5.87). Since the solution of (5.87) is needed to calculate the coe�cientmatrices for (5.86), transient analysis is \forced" to solve for the time points that are neededduring the numerical integration of (5.86). Ideally, the numerical integration of (5.87), i.e.transient analysis, and the numerical integration of (5.86), i.e. noise analysis, have separateautomatic time step control mechanisms. There is, of course, an obvious correlation be-tween the choice of time steps for (5.87) and (5.86), because the need to take smaller timesteps for (5.87) suggests that smaller time steps are also necessary for (5.86).We are solving (5.86) as an initial value problem, hence we need an initial conditionK0 = K(0). We have to \choose" a positive semide�nite K0 as the initial condition. Weset K0 to the solution of the following Lyapunov matrix equationE(0)K0 +K0 E(0)T + F(0)F(0)T = 0 (5.96)whenever the solution is positive semide�nite. This will be the case if all of the eigenvaluesof E(0) have negative real parts. If the solution of (5.96) is not positive semide�nite, wechoose the initial condition as K0 = 0 (5.97)which is, for instance, the case for oscillator circuits. In Section 5.9, we will discuss themotivation behind choosing the initial condition as the solution of (5.96).If any implicit linear multi-step method is applied to (5.86), we obtain a linearsystem of equations exactly in the form of (5.94). (Pr and Qr will be given by di�erentexpressions for di�erent implicit linear multi-step methods, but the resulting equation willalways be in the form of (5.94).) We need to solve (5.94) at every time point. We discussthe numerical solution of (5.94) in the next section.Above, we have only considered the numerical solution of (5.86). To be able tocalculate the complete autocorrelation matrix of Xn1, we also need to solve (5.80), whichwe repeat below @ K(tref ; t)@t = K(tref ; t)E(t)T : (5.98)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 140The initial condition for (5.98), K(tref ; tref ), is obtained by solving (5.86) from t = 0 tot = tref . If backward Euler is applied to (5.98), we obtainK(tref ; tr)�K(tref ; tr�1)hr = K(tref ; tr)E(tr)T : (5.99)One can put (5.99) in the below form by rearranging the terms[E(tr)� Imhr ]K(tref ; tr)T = �K(tref ; tr�1)Thr : (5.100)Then, one can solve (5.100) at a time point tr for the columns of K(tref ; tr)T with one LUdecomposition of E(tr)� Imhr and m forward elimination and backward substitution steps.In Section 5.8, we derive more numerically stable alternatives to (5.86) and (5.98)for circuits which have widely varying capacitor values that might result in numerical ill-conditioning when calculating the coe�cient matrices E(t) and F(t). In Section 5.8, wealso discuss the numerical solution of these more numerically stable alternatives to (5.86)and (5.98).5.7.3 Numerical solution of the algebraic Lyapunov matrix equationThe �rst approach that comes to mind to solve (5.94) is to rewrite it as a sparselinear matrix-vector system in standard form and then use sparse matrix techniques forsolving such systems. With this method, the system of equations (5.94) is converted intoA y = �b (5.101)where A = Im 
Pr +Pr 
 Imy = [K11; K21; : : : ; Km1; K12; : : : ; Kmm]Tb = [Q11; Q21; : : : ; Qm1; Q12; : : : ; Qmm]T : (5.102)Kij and Qij in (5.102) denote the ijth entry of K(tr) and Qr respectively, and 
 denotesthe Kronecker matrix product de�ned asA
B = 26666664 a11B a12B : : : a1nBa21B a22B : : : a2nB... ... ...am1B am2B : : : amnB 37777775 (5.103)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 141for an m�n matrix A and a matrix B. A in (5.101) is a \very" sparse matrix. Even if thematrix Pr is full, A contains many entries which are structurally zero due to the specialform of (5.94). Moreover, being an MNA circuit matrix, Pr is also sparse which contributesto the sparsity of A.We used both a general-purpose direct method (i.e. sparse Gaussian elimination)sparse matrix solver, and an iterative sparse linear solver [43] (based on conjugate gradientssquared) to solve the linear equation system in (5.101). The iterative solver performedsigni�cantly better than the direct solver, especially for equations obtained from largercircuits. Experiments with several circuits have shown that CPU time can be furtherreduced by using a parallel iterative linear solver (running on a CM-5) [44]. Parallel speed-ups with up to 50% e�ciency were obtained with this parallel solver.In the control theory literature, apart from the brute force method, several meth-ods were proposed for the numerical solution of the algebraic Lyapunov matrix equation[41]. The Bartels-Stewart algorithm [45] was shown to be accurate and reliable. In thismethod, �rst Pr in (5.94) is reduced to upper Hessenberg form by means of Householdertransformations, and then the QR-algorithm (not to be confused with the QR-factorization)is applied to the Hessenberg form to calculate the real Schur decompositionS = UT PrU (5.104)of the matrix Pr, where the real Schur form S is upper quasi-triangular (block uppertriangular with 1 � 1 and 2 � 2 blocks on the diagonal, the eigenvalues of a 2 � 2 blockbeing a complex conjugate pair), and U is orthonormal. The transformation matrices areaccumulated at each step to form U [45]. Since reduction to Schur form is accomplishedwith orthogonal transformations, this process is numerically stable in contrast with, forinstance, the computation of the Jordan form. Computation of the real Schur form of thematrix Pr requires O(m3) 
ops [45]. If we now set~K = UTK(tr)U (5.105)~Q = UTQrU (5.106)then (5.94) becomes S ~K+ ~K ST = �~Q: (5.107)Solution of (5.107) for ~K can readily be accomplished by a process of forward substitution[45], because S is an upper quasi-triangular matrix. Once (5.107) is solved for ~K, then



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 142K(tr) can be computed using K(tr) = U~KUT (5.108)since U is orthonormal. The substitution phase also requires O(m3) 
ops [45]. In our ex-perience, the Bartels-Stewart algorithm was computationally more e�cient (for our speci�cproblem) than the brute force methods described above. Moreover it requires less storage.It has very good numerical stability properties since it uses orthogonal transformations [46].A variant of the Bartels-Stewart algorithm was proposed in [42] that allows the Choleskyfactor of K(tr) in (5.94) to be computed, without �rst computing K(tr), when all of theeigenvalues of Pr have negative real parts and Qr is positive semide�nite. Unfortunately,the Bartels-Stewart algorithm can not exploit the sparsity of the matrix Pr [47].The numerical integration of (5.86) (with the Bartels-Stewart algorithm used tosolve the algebraic Lyapunov matrix equation (5.94)) requires O(m3) 
ops at every timepoint compared with the roughly O(m1:5) 
ops required by the numerical solution of (5.87).Hence, the CPU time usage will be largely dominated by the solution of (5.86). Thecomputational cost would be high for \large" circuits, but this noise analysis method isintended for evaluating the noise performances of small (i.e. with several hundred statevariables) subblocks (e.g. analog blocks such as mixers and oscillators) of a mixed-signalsystem design. Several iterative techniques have been proposed for the solution of thealgebraic Lyapunov matrix equation (5.94) arising in some speci�c problems where thematrix Pr is large and sparse [47, 41]. The Krylov subspace based methods proposed in[48] and [49] seem to be promising. A matrix-implicit (without explicitly forming the matrixPr in (5.94)) Krylov subspace based method with a speci�c preconditioner tuned for ourproblem to solve (5.94) seems to be a promising avenue to explore in an attempt to reducethe computational cost of the numerical solution of (5.86).5.8 Alternative ODEs for the Autocorrelation Matrix 3We will use the formulation (5.49) for the derivations4 in this section, which isreproduced here for convenience:C11(t) dXn1 = ~E(t)Xn1 dt+ ~F(t) dW(t): (5.109)3This section can be omitted without loss of continuity.4Please see the discussion at the end of Section 5.5 for the motivation to derive these alternative ODEsfor the autocorrelation matrix.



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 143For notational simplicity, we now rewrite (5.110) with a change of symbols:C(t) dXn1 = E(t)Xn1 dt+ F(t) dW(t): (5.110)5.8.1 Alternative ODE for the variance-covariance matrixWe derive a system of ordinary di�erential equations for the time-varying variance-covariance matrix of Xn1(t) de�ned asK(t) = E hXn1(t)Xn1(t)Ti: (5.111)We start with calculating the following di�erential using Ito's formula (see Section 2.5.4)C(t)[d(Xn1XTn1)]C(t)T = C(t)[(Xn1 + dXn1)(XTn1 + dXTn1)�Xn1XTn1]C(t)T : (5.112)From (5.112), it follows thatC(t)[d(Xn1XTn1)]C(t)T = C(t)[Xn1 dXTn1 + dXn1XTn1+dXn1 dXTn1]C(t)T (5.113)= C(t)Xn1[XTn1 E(t)T dt+ (dW(t))T F(t)T ]+[E(t)Xn1 dt+ F(t) dW(t)]XTn1C(t)T+[E(t)Xn1 dt+ F(t) dW(t)][XTn1 E(t)T dt+ (dW(t))T F(t)T ] (5.114)where we used (5.110). We expand (5.114) and neglect higher order terms according to(2.274), and obtainC(t)d(Xn1XTn1)C(t)T = C(t)Xn1XTn1 E(t)T dt +C(t)Xn1(dW(t))T F(t)T+E(t)Xn1XTn1C(t)T dt + F(t) (dW(t))XTn1C(t)T+F(t) dW(t) (dW(t))T F(t)T : (5.115)Then, we use (2.273) and substitute (dW(t))dW(t)T = Imdt and take the expectations ofboth sides of (5.115) to obtainC(t) E hd(Xn1XTn1)iC(t)T = C(t) E hXn1XTn1iE(t)T dt+E(t) E hXn1XTn1iC(t)T dt+F(t) F(t)T dt (5.116)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 144where we used the fact thatXn1(t) and dW(t) are uncorrelated. Next, we substitute (5.111)in (5.116) and rewrite it in di�erential equation form:C(t)dK(t)dt C(t)T = E(t)K(t)C(t)T +C(t)K(t)E(t)T + F(t) F(t)T : (5.117)(5.117), the alternative to (5.74), is a system of ordinary di�erential equations for them�mtime-varying variance-covariance matrix of Xn1(t) de�ned by (5.111).5.8.2 Alternative ODE for the correlation matrixWe derive a system of ordinary di�erential equations forK(tref ; t) = E hXn1(tref )Xn1(t)Ti (5.118)where tref is a �xed reference time point such that t � tref . We start with calculating thefollowing di�erentialC(tref )[d(Xn1(tref )Xn1(t)T )]C(t)T = C(tref)[Xn1(tref )(dXn1(t)T )]C(t)T : (5.119)From (5.119), it follows thatC(tref )d(Xn1(tref )Xn1(t)T )C(t)T = C(tref )Xn1(tref )[Xn1(t)TE(t)T dt+ dW(t)TF(t)T ]= C(tref )Xn1(tref )Xn1(t)T E(t)T dt+C(tref )Xn1(tref ) (dW(t))T F(t)T (5.120)where we used (5.110). Then, we take the expectations of both sides of (5.120) to obtainC(tref) E hd(Xn1(tref )Xn1(t)T )iC(t)T = C(tref ) E hXn1(tref )Xn1(t)TiE(t)T dt (5.121)where we used the fact that Xn1(tref ) and dW(t) are uncorrelated. Next, we substitute(5.118) in (5.121) and rewrite it in di�erential equation form:C(tref )@ K(tref ; t)@t C(t)T = C(tref)K(tref ; t)E(t)T (5.122)Since C(tref) is a constant nonsingular matrix, (5.122) is equivalent to@ K(tref ; t)@t C(t)T = K(tref ; t)E(t)T : (5.123)(5.123), the alternative to (5.80), is a system of ordinary di�erential equations for K(tref ; t)de�ned by (5.118).



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 1455.8.3 Numerical computation of the autocorrelation matrixIf backward Euler is applied to (5.117), we obtainC(tr)[K(tr)�K(tr�1)hr ]C(tr)T = E(tr)K(tr)C(tr)T +C(tr)K(tr)E(tr)T + F(tr) F(tr)T(5.124)One can put (5.124) in the below form by rearranging the terms[E(tr)� C(tr)2 hr ]K(tr)C(tr)T +C(tr)K(tr) [E(tr)� C(tr)2hr ]T+F(tr) F(tr)T +C(tr) K(tr�1)hr C(tr) = 0: (5.125)Let us de�ne Pr = E(tr)� C(tr)2 hr (5.126)Qr = F(tr) F(tr)T +C(tr) K(tr�1)hr C(tr) (5.127)Cr = C(tr) (5.128)With these de�nitions, (5.125) is rewritten asPr K(tr)CTr +Cr K(tr)PTr +Qr = 0: (5.129)K(t) at time point tr is calculated by solving the system of linear equations in (5.129). Inview of the symmetry of K(tr), (5.129) represents a system of m(m+ 1)=2 linear algebraicequations. The \matrix" equation (5.129) is in a special form. When Cr is nonsingular(which is assumed to be true), (5.129) can be put into the form of the continuous-time alge-braic Lyapunov matrix equation given in (5.94), but this would defeat the whole purpose ofderiving the alternative ODE (5.117), for which the coe�cient matrices can be computed ina numerically stable way. Thus, when Cr is poorly conditioned, we avoid the transforma-tion of (5.129) into the form of (5.94) and solve (5.129) directly at every time point usingan algorithm that is similar to the Bartels-Stewart algorithm [46]. . If any implicit linearmulti-step method is applied to (5.117), we obtain a linear system of equations exactly inthe form of (5.129).If backward Euler is applied to (5.123), we obtain[K(tref ; tr)�K(tref ; tr�1)hr ]C(tr) = K(tref ; tr)E(tr)T : (5.130)One can put (5.130) in the below form by rearranging the terms[E(tr)� C(tr)Thr ]K(tref ; tr)T = �C(tr)T K(tref ; tr�1)Thr : (5.131)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 146Then, one can solve (5.131) at time tr for the columns of K(tref ; tr)T with one LU decom-position of [E(tr)� C(tr)Thr ] and m forward elimination and backward substitution steps.Thus, with the formulation described in this section, we avoid calculating the LUdecomposition of C(t) which might be a numerically ill-conditioned operation for circuitswith widely varying capacitor values.5.9 Time-Invariant and Periodic Steady-StateWe now concentrate on nonlinear circuits with a large signal time-invariant or pe-riodic steady-state solution, and hence the time-invariant or periodic steady-state solutionsof (5.86) and (5.98).5.9.1 Time-invariant steady-stateIn general, for a nonlinear dynamic circuit with arbitrary time-varying excita-tions, E(t) and F(t) in (5.86) are arbitrary time-varying functions. On the other hand, fornonlinear circuits with a time-invariant large-signal steady-state solution (i.e. (5.87) has asteady-state solution xs(t) that is a constant function of time), E(t) and F(t) are constantfunctions of time. We assume that the nonlinear circuit is in time-invariant large-signalsteady-state at t = 0, that is, E(t) = E(0) (5.132)F(t) = F(0) (5.133)for t � 0. In this case, with the initial value K0 being set to the solution of (5.96) (whenthere is a positive semide�nite solution), the solution of (5.86) is given byK(t) = K0 t � 0: (5.134)Thus, the initial condition K0 calculated as the solution of (5.96) is basically the time-invariant steady-state solution (when there exists one) of (5.86). In steady-state, Xn1(t)has a time-invariant variance-covariance matrix. With (5.134), it can be shown that Xn1(t)(the noise component of the node voltages for the nodes which have a capacitive path toground and the noise component of the inductor currents) is a vector of (asymptotically)WSS stochastic processes. Note that the existence of a large-signal time-invariant steady-state solution for (5.87) does not guarantee that there exists a positive semide�nite solution



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 147for (5.94) and hence a steady-state solution for (5.86). There exists a time-invariant steady-state solution for (5.86) only if all of the eigenvalues of E(t) = E(0) have negative real parts,i.e. if the circuit is \stable". In this case, the autocorrelation matrix for the WSS Xn1(t),i.e. RXn1(�) = E hXn1(t+ �)Xn1(t)Ti (5.135)can be calculated by solving (5.98). The initial condition for the system of homogeneousdi�erential equations (5.98), i.e. RXn1(0), is the steady-state time-invariant solution of(5.86) given in (5.134). In general, for a \stable" circuit, the autocorrelation functionRXn1(�) satis�es RXn1(�)! 0 as �!�1: (5.136)The time-domain noise simulation for a \stable" circuit in time-invariant large-signal steady-state reduces to solving the linear equation system (5.96), and then solving(5.98) to calculate the autocorrelation functions for the WSS output. This can be com-pared with the traditional frequency domain noise analysis based on LTI transformations(see Section 4.2) which works for circuits in time-invariant steady-state, and calculates thespectral densities. Solving (5.96) is equivalent to calculating the total integrated noise forall of the circuit variables over the frequency range from 0 to1 (that is, the noise variancesfor all of the circuit variables computed by calculating the integral of the spectral densities)in SPICE AC noise analysis. In fact, the solution of (5.96) also provides the noise covari-ances for all of the circuit variables. Calculating the noise covariance between two circuitvariables in SPICE noise simulation requires the calculation of total integrated noise overthe frequency range from 0 to 1 for the di�erence of the two circuit variables.5.9.2 Periodic steady-stateFor nonlinear circuits with a periodic large-signal steady-state solution (i.e. (5.87)has a steady-state solution xs(t) that is a periodic function of time), E(t) and F(t) in(5.86) are periodic functions of time. We assume that the nonlinear circuit is in periodiclarge-signal steady-state (if there exists one), that is,E(t+ kT ) = E(t) (5.137)F(t+ kT ) = F(t) (5.138)



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 148for all t, and k 2 Z, and for some period T > 0. The existence of a large-signal peri-odic steady-state solution for (5.87) does not necessarily mean that there exists a positivesemide�nite periodic steady-state solution for (5.86). In general, we can say that there ex-ists a periodic steady-state solution for (5.86) if the nonlinear circuit is nonautonomous andthe large-signal periodic steady-state is forced with some periodic excitations. This condi-tion is \roughly" equivalent to the following: The Floquet exponents5 that are associatedwith the periodically time-varying system matrix E(t) have strictly negative real parts. Inthis case, the initial condition K0 for (5.86), which will enable us to calculate the periodicsteady-state solution for (5.86) by numerically integrating it from t = 0 to t = T , satis�esthe equation K0 = �(T; 0)K0�(T; 0)T + Z T0 �(t; �)F(�)F(�)T�(t; �)T d� (5.139)which was obtained from (5.83) by setting K(T ) = K0. We can rewrite (5.139) as follows:K0 ��(T; 0)K0�(T; 0)T = Kp(T ) (5.140)where Kp(T ) = Z T0 �(t; �)F(�)F(�)T�(t; �)T d� (5.141)which can be calculated by numerically integrating (5.86) with an initial condition K(0) =0. �(T; 0) can be calculated by numerically integrating (5.84) with an initial conditiony(0) = Im. (5.140) is a system of algebraic linear equations for the entries of the matrixK0. Algebraic matrix equations of the form (5.140) are referred to as discrete-time algebraicLyapunov matrix equations, because they arise in Lyapunov's stability theory for discrete-time systems. It can be shown that (5.140) has a unique symmetric solution if and only if�i ��j 6= 1 for all 1 � i � m and 1 � j � m, where �1; �2; : : : ; �m are the eigenvalues ofthe m�m matrix �(T; 0) [42]. Recall that the eigenvalues �i of �(T; 0) are related to theFloquet exponents �i that are associated with the periodic E(t) as follows:�i = exp (�iT ): (5.142)Thus, the above condition is obviously satis�ed if all of the Floquet exponents have negativereal parts. Moreover, if all of the Floquet exponents have negative real parts, (5.140) hasa positive semide�nite solution, because Kp(T ) is positive semide�nite [42]. (5.140) can be5See Section 2.4.9 for the de�nition. Recall that the Floquet exponents are not related to the eigenvaluesof E(t), but they are related to the eigenvalues of the state transition matrix �(T; 0) of (5.84).



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 149numerically solved with an algorithm that is similar to the Bartels-Stewart algorithm forthe continuous-time algebraic Lyapunov matrix equation [46].When there exists a periodic steady-state solution for (5.86),Xn1(t) has a periodi-cally time-varying variance-covariance matrix. Thus, it can be shown thatXn1(t) (the noisecomponent of the node voltages for the nodes which have a capacitive path to ground andthe noise component of the inductor currents) is a vector of (asymptotically) cyclostation-ary stochastic processes. In this case, the solution of (5.98) for a nonautonomous nonlinearcircuit in periodic steady-state (with Floquet exponents that all have negative real parts),i.e. K(tref ; t), satis�es K(tref ; t)!0 as (t� tref )!�1: (5.143)As we will see in Chapter 6, for autonomous circuits with a large-signal periodicsteady-state solution for (5.87), e.g. oscillators, one of the Floquet exponents associatedwith the periodic system matrix E(t) is exactly equal to zero. Hence, (5.86) does not havea periodic steady-state solution. Moreover, the solution of (5.86) with an initial conditionK(0) = 0 becomes unbounded as t!1. Thus, Xn1(t) is not a vector of cyclostationarystochastic processes. In this case, (5.98) has a periodic steady-state solution for nonzeroinitial conditions. In Chapter 6, we will deeply investigate the meaning of these results forautonomous nonlinear circuits with a large-signal periodic steady-solution for (5.87).5.10 ExamplesWe implemented the numerical computation of the autocorrelation matrix, as de-scribed in Section 5.7, in the circuit simulator SPICE [28, 50]. We now present severalexamples6 of noise simulation using this implementation of the non-Monte Carlo time-domain technique we presented in this chapter.6In the examples to be presented, only the shot and thermal noise sources associated with the electroniccomponents and the semiconductor devices have been included in the device models.



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 150
    1.00

    1.50

    2.00

    2.50

    3.00

    3.50

    4.00

    0.00

    0.00     5.00     10.00

    0.50

Time (Seconds) X 10e-9

Nonlinear Noise SimulationNoise Variance (Volts^2) X 10e-9

Figure 5.1: Noise voltage variance for the parallel RLC circuit5.10.1 Parallel RLC circuitWe start with a simple parallel RLC circuit. The values for the components areR = 1 K
C = 1 pFL = 1 �H: (5.144)This is obviously a simple LTI circuit and the noise analysis can be accomplished using thetechnique described in Section 4.2, but it illustrates what one can compute with the time-domain noise simulation technique described in Chapter 5. The noise source in the circuitis the current noise source that models the thermal noise of the resistor. We computed thevariance of the noise voltage across the parallel RLC circuit, i.e. E �Vn(t)2�, as a functionof time, which can be seen in Figure 5.1.7 For this simulation, the initial condition for thenoise voltage variance was set as E �Vn(0)2� = 0. As seen in Figure 5.1, the variance settlesto a time-invariant steady-state value. Thus, at steady-state, the noise voltage across theparallel RLC circuit is a WSS process. We can also compute the autocorrelation function7This is obtained from the numerical solution of (5.86).
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Time (Seconds) X 10e-9Figure 5.2: Noise voltage autocorrelation for the parallel RLC circuitRVn(�) = E [Vn(t)Vn(t+ �)] for this WSS process, which can be seen in Figure 5.2.8 Notethat RVn(0) in Figure 5.2 is the steady-state value of E �Vn(t)2� in Figure 5.1. Since theparallel RLC circuit (with R > 0) is a stable system, the autocorrelation function RVn(�)satis�es RVn(�)! 0 as �!�1: (5.145)5.10.2 Switching noise of an inverterFor a CMOS inverter that is loaded with a 1 pF capacitor, and driven with aperiodic large-signal waveform at the input, a noise simulation was performed. The large-signal waveform (obtained by transient analysis in SPICE) and the voltage noise variancewaveform E �Vn(t)2� (obtained from the solution of (5.86) with initial condition set to thesolution of (5.96)) at the output of this inverter can be seen in Figure 5.3. We concludefrom Figure 5.3 that the noise at the output is in general nonstationary9, because the noisevariance is not a constant as a function of time. We also observe that noise variance (i.e.8This is obtained from the numerical solution of (5.98).9For this case, the noise voltage at the output is cyclostationary at steady-state, because we are drivingthe inverter with a periodic waveform.



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 152
    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    3.50

    4.00

    4.50

    5.00

    0.00     10.00     20.00     30.00     40.00     50.00

    10.00     20.00     30.00     40.00     50.00

    4.00

    5.00

    6.00

    7.00

    8.00

    9.00

Volts

Nonlinear Noise SimulationNoise Variance (Volts^2) X 10e-9

Time (Seconds) X 10e-9

    10.00

    11.00

    12.00

    13.00

    14.00

Transient Simulation

Figure 5.3: Large-signal waveform and the noise voltage variance for the CMOS inverter
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Figure 5.5: Large signal IF output for the mixer5.10.3 Mixer noise �gureThis bipolar Gilbert mixer circuit contains 14 BJTs, 21 resistors, 5 capacitors,and 18 parasitic capacitors connected between some of the nodes and ground. The LO(local oscillator) input is a sine-wave at 1:75 GHz with an amplitude of 178 mV . The RFinput is a sine-wave at 2 GHz with an amplitude of 31:6 mV . Thus, the IF frequencyis 250 MHz. With the above RF and LO inputs, the AC coupled IF output, obtainedby transient analysis, is shown in Figure 5.5. This circuit was simulated to compute thenoise voltage variance E �Vn(t)2� at the IF output as a function of time, which can be seenin Figure 5.6. This noise variance waveform is periodic in steady-state with a period of4 nsecs (IF frequency is 250 MHz.), because the circuit is being driven with two periodicexcitations that have commensurate frequencies. The noise voltage at the IF output ofthis circuit is nonstationary, because the signals applied to the circuit are large enough tochange the operating point.The noise performance of a mixer circuit is usually characterized by its noise �gure
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Figure 5.6: Noise voltage variance at the IF output for the mixer[1], which can be de�ned byNF = total IF output noise powerthat part of output noise power due to source resistance at RF port : (5.147)This de�nition is intended for circuits in small-signal operation. For such circuits, noisepower is a constant function of time. In our case, the noise variance, i.e. the mean-squarednoise power, at the output of the mixer circuit changes as a function of time. Thus, we cansay that the noise �gure is also an instantaneous quantity that varies with time. Hence, wede�ne a time-varying noise �gure as follows:NF (t) = total IF output noise varianceIF output noise variance due to source resistance at RF port : (5.148)To calculate the time-varying noise �gure as de�ned, we simulate the mixer circuit again tocalculate the noise variance waveform at the output with all of the noise sources turned o�except for the noise source for the source resistance RSRF = 50 
 at the RF port. In thiscase, we obtain the noise variance waveform in Figure 5.7. We now can compute the time-varying noise �gure in (5.148). The noise �gure \waveform" (in dBs) is shown in Figure5.8. In practice, what one measures with a piece of equipment is usually a single number to
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Figure 5.7: Noise voltage variance at the IF output due to RSRF = 50 
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Figure 5.8: Time-varying noise �gure for the mixer



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 157characterize the noise �gure, because one does not measure the instantaneous noise poweras a time-varying quantity. Instead, one measures a time-average of the time-varying noisepower. Thus, we de�ne the average noise �gure as follows:NFavg = avg: of total IF output noise varianceavg: of IF output noise variance due to source resistance at RF port :(5.149)We calculate the average noise �gure for the mixer by �rst computing the average noisevariances in Figure 5.6 and Figure 5.7, and then by computing the ratio. The result in dBsis NFavg = 17:9 dB.This bipolar mixer circuit has 65 nodes (including the internal nodes for BJTs)which have capacitive paths to ground. There are a total of 91 noise sources associated withthe bipolar transistors and the resistors in the circuit. The numerical solution of (5.86) tocalculate the variance-covariance matrix as a function of time (with 400 time points) took140 CPU seconds on a DEC Alpha machine10 with our current implementation (with theBartels-Stewart algorithm used to solve the algebraic Lyapunov matrix equation). In thissimulation, 2145 noise variance-covariance matrix entries for the 65 nodes are calculated at400 time points.We can also compute the correlation function RVn(tref ; t) = E [Vn(tref )Vn(t)] forthe noise voltage at the IF output by solving (5.98). Since the noise voltage is a nonstation-ary process, RVn(tref ; t) is also a function of a reference time point tref . For the simulationshown in Figure 5.9, the reference time point was chosen as tref = 10 nsecs. The initialcondition RVn(tref ; tref) is obtained from the simulation in Figure 5.6. The correlationfunction RVn(tref ; t) for the CMOS inverter satis�esRVn(tref ; t)! 0 as (t� tref )!�1 (5.150)because it is also a \stable" circuit.5.10.4 Negative resistance oscillatorThe \negative resistance" oscillator consists of a two-terminal nonlinear voltage-controlled resistor (VCR) with a negative resistance region that is connected across a parallel10The CPU is a DEC Alpha chip 21164 with 250 MHz clock frequency, 4Mb of cache, and a SPEC int 92of 277.
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Time (seconds) X 10e-9Figure 5.9: Noise voltage correlation for the mixerRLC circuit. For simplicity, the values of the components for the circuit were chosen asR = 1C = 1L = 1 (5.151)and the I � V relationship for the VCR is given byI = tanh (�5 V ): (5.152)In steady-state, this autonomous circuit settles into a \stable" limit cycle which is illustratedin Figure 5.10. This is a plot of the large-signal capacitor voltage (the voltage across theparallel RLC circuit) versus the large-signal inductor current with time as a parameter.The waveform for the capacitor voltage is periodic in steady-state, as seen in Figure 5.11.The thermal noise source for the resistor in the circuit is turned o�. Instead, awhite Gaussian WSS current noise source with a double-sided spectral densitySn(f) = 10�10 A2=Hz (5.153)is connected across the parallel RLC circuit. (5.86) corresponding to this autonomouscircuit was numerically solved to compute the capacitor noise voltage variance E �Vn(t)2�.
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Figure 5.10: Limit cycle for the negative resistance oscillator
Transient Simulation
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Figure 5.12: Noise voltage variance for the negative resistance oscillatorThe initial condition was set to zero as discussed in Section 5.7 and Section 5.9. Thewaveform calculated for the capacitor noise voltage variance is shown in Figure 5.12. Thenoise voltage variance does not reach a periodic steady-state, it is an oscillatory waveformwith a linear ramp envelope. (5.86) for this circuit does not have a periodic steady-statesolution. Thus, the capacitor noise voltage is not a cyclostationary process in steady-stateeven though the circuit is in large-signal periodic steady-state. The peaks of the voltagevariance waveform coincide with the transitions, i.e. zero-crossings, of the large-signalperiodic voltage waveform in Figure 5.11.We then compute the correlation function RVn(tref ; t) = E [Vn(tref )Vn(t)] for thecapacitor noise voltage by solving (5.98). Since the noise voltage is a nonstationary process,RVn(tref ; t) is also a function of a reference time point tref . For the waveform shown inFigure 5.13, the reference time point was chosen as tref = 70:7 secs to coincide with one ofthe peaks in the waveform of Figure 5.12. The initial condition RVn(tref ; tref ) is obtainedfrom the waveform in Figure 5.12. (5.98) for this oscillator circuit has a periodic steady-statesolution. The correlation function RVn(tref ; t) does not satisfyRVn(tref ; t)! 0 as (t� tref )!�1: (5.154)
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Figure 5.13: Noise voltage correlation for the negative resistance oscillatorWe will discuss the interpretation of the noise simulation results for the negative resistanceoscillator circuit in Chapter 6.5.11 SummaryWe presented a time-domain non-Monte Carlo noise simulation algorithm for non-linear dynamic circuits with arbitrary large-signal excitations. The nonlinear network equa-tions (KVL, KCL and the constitutive relations of the components) that govern the behaviorof a nonlinear circuit with noise sources were formulated as a system of stochastic di�eren-tial equations. Then, we set out to calculate a probabilistic characterization of the circuitvariables (e.g. node voltages) that are modeled with stochastic processes. We discussedthe practical infeasibility of the calculation of a complete probabilistic characterization thatrequires the solution of the Fokker-Planck equation for the time evolution of the proba-bility density of the state vector of the nonlinear system. The \small-signal" nature ofthe noise signals led us to a stochastic small noise expansion of the state vector and thesystem of nonlinear stochastic di�erential equations. As a result of the small noise expan-



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 162sion, the state vector of the system was decomposed as a summation of a deterministiclarge-signal component and a stochastic noise one. A linear but time-varying system ofstochastic di�erential equations was derived which describes the dynamics of the stochasticnoise component. The deterministic time-varying coe�cient matrices for the system of LTVstochastic di�erential equations are dependent on the solution of the system of nonlinearODEs that describe the behavior of the nonlinear circuit without the noise sources. Then,using stochastic calculus, two sets of systems of ODEs for the autocorrelation matrix of thestochastic noise component of the system state vector were derived. Assuming that all ofthe noise sources are Gaussian, the stochastic noise component of the system state vector isa vector of nonstationary zero-mean Gaussian stochastic processes, because the system ofstochastic di�erential equations that describes its dynamics is linear although time-varying.Thus, the autocorrelation matrix is a complete probabilistic characterization. We then pre-sented techniques to numerically solve the ODEs to compute the autocorrelation matrix forthe stochastic noise component of the system state vector. The conditions for the existenceof \valid" solutions for the system of ODEs for the autocorrelation matrix were discussed.Then, two special cases, namely when the nonlinear circuit is in large-signal time-invariantor periodic steady-state were discussed. For these special cases, the conditions for the exis-tence of steady-state solutions of the ODEs for the autocorrelation matrix were presentedalong with a description of their numerical computation. Finally, we presented severalpractical examples of the numerical computation of the autocorrelation function of a noisesignal in nonlinear circuits. These were simple examples which meant to describe how touse the time-domain non-Monte Carlo noise simulation algorithm to characterize the noiseperformance of practical nonlinear circuits. In particular, we discussed the switching noiseof an inverter that is driven with a periodic waveform, and the computation of the noise�gure of a mixer that is driven with two signals at its RF and LO inputs. We also used thenoise simulation algorithm on an autonomous nonlinear circuit.The time-domain non-Monte Carlo noise simulation algorithm, and its implemen-tation in the circuit simulator SPICE, enables us to calculate the complete second-orderprobabilistic characteristics of the state variables (e.g. node voltages) of a nonlinear circuitunder the in
uence of both large-signal deterministic excitations and noise sources. In thissense, it is a core tool which will enable us to investigate, simulate, understand, and modelvarious phenomena that is related to noise, and which is of concern from a performancepoint of view, in nonlinear circuit design. As a result, it will also enable us to develop more



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 163speci�c algorithms and numerical techniques to characterize speci�c noise phenomena, andde�ne and compute quantities that will become noise performance measures.In the next chapter, we will use the core noise simulation algorithm to investigate,understand and model an extremely important phenomenon in oscillator circuits that isrelated to noise, the so-called phase noise or timing jitter. As a result of this analysis,we will arrive at a more speci�c algorithm to characterize phase noise/timing jitter foroscillators. We will develop models which can be used in various ways to analyze the e�ectof the phase noise/timing jitter of an oscillator on the performance of a larger system thatcontains the oscillator as a component. This will be a perfect illustration of the enablingfeatures (claimed above) of the core noise simulation technique that was presented.



164Chapter 6Noise in Free Running OscillatorsOscillators are among the key components of many di�erent kinds of electronicsystems. They are used for on-chip clock generation for microprocessors. Every com-munications receiver/transmitter has at least one oscillator that is used in the frequencysynthesis of an oscillation signal which up or down converts the incoming/outgoing signal.Oscillators have one property that makes them quite unique from several aspects: They areautonomous systems. They generate an oscillatory signal at their output without an input(apart from a power supply input, and a control signal that sets the frequency), as opposedto ampli�ers and mixers which generate an output when they are being driven with someinput signals. The design, analysis and simulation of oscillators often require techniqueswhich are speci�c for autonomous systems.An oscillator can be de�ned as a system that generates a periodic signal with aspeci�ed or controllable frequency, but any periodic signal with the speci�ed frequency isnot acceptable. An oscillator is not just any autonomous system that generates a periodicsignal. It is hard to formalize the distinction of a signal an oscillator is supposed to generatefrom any periodic signal, but ideally, we would like it to be as close as to a square-wave ora pure sinusoid at the speci�ed frequency. Square-wave-like waveforms with fast transitions(between \high" and \low" states) that are evenly spaced in time are desirable in someapplications. In other applications, a sinusoidal waveform is the choice because of its spectralproperties.The autonomous nature of oscillators also makes them quite unique in their be-havior in response to the electrical noise that is present in the circuit. The analysis andcharacterization of oscillators in the presence of noise is quite an intricate topic. Because



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 165of the practical importance of understanding and characterizing the behavior of oscillatorsin the presence of noise, this topic attracted considerable attention in the literature. It isquite impossible to review all the approaches that were proposed to analyze oscillators inthe presence of noise.1 Most of the approaches in the literature for oscillator noise anal-ysis use techniques from the theory of LTI systems and WSS stochastic processes. Thisis obviously not justi�ed at all, because practical oscillators are always nonlinear systems.Many try to explain the experimental measurements of the \spectrum" of practical oscil-lator circuits and develop models based on the results of the LTI/WSS analysis. A smallnumber of approaches do use techniques suitable for analysis of nonlinear systems in thepresence of noise, but most of these are analytical approaches for speci�c oscillator circuits.Moreover, they use simpli�ed models of the circuit and make simplifying assumptions, be-cause the analysis of a nonlinear oscillator circuit in the presence of noise is not analyticallytractable. Even a smaller number of approaches treat the problem in general, and proposemethods that are amenable for a numerical implementation to simulate and characterizethe noise performance of oscillators on the computer.We believe that there is a lot of confusion on the de�nitions of certain notionsconnected to oscillator noise analysis. Some of the papers in the literature characterize thenoise behavior of oscillators using the notions of amplitude noise, phase noise, and timingjitter. Very few of them fully de�ne exactly what they mean by amplitude and phase noise,and timing jitter. Some other papers do not even discuss the distinction of amplitude andphase noise, and talk about oscillator noise in general. In this chapter, we will �rst discussthe e�ect of noise on the periodic signal that is generated by an oscillator, and then makean attempt to clarify the notions of amplitude and phase noise, and timing jitter, anddiscuss their relevance from a practical point of view. We will give a de�nition for phasenoise/timing jitter as a stochastic process, and present an algorithm to characterize thesequantities that is based on the time-domain noise simulation technique we presented inthe previous chapter. We will prove a key property of our de�nition of phase noise and thecharacterization algorithm: Phase noise is same at all nodes in the oscillator circuit. We willthen discuss the work of Franz Kaertner [16] on phase noise (a rigorous approach to noiseanalysis of oscillators), and review his phase noise de�nition and characterization algorithm1The February 1966 issue of the Proceedings of the IEEE contains a number of papers on the analysis ofnoise in oscillators. This issue contains a letter from D.B. Leeson [51] (pages 329-330), which is probablythe most cited reference on noise analysis of oscillators. There are also a number of books on phase-lockedloops which discuss noise in oscillators, i.e. [40] and [52].



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 166and its connection to our de�nition and characterization algorithm. In this chapter, we willbe mainly concerned with the noise analysis of free running or open-loop oscillators, but wewill brie
y discuss the noise performance of closed-loop oscillators, i.e. phase-locked loops,which will be the main topic of the next chapter.6.1 Phase Noise and Timing Jitter ConceptsWe have already used the time-domain noise simulation technique on an oscillatorin Section 5.10.4. With our noise simulation technique, we decompose a \noisy" oscillationsignal X(t) as follows: X(t) � xs(t) +Xn(t) (6.1)where xs(t) is the deterministic oscillation waveform that is periodic with T , and Xn(t) isa stochastic process that represents the e�ect of the noise sources. We �rst simulate thecircuit to numerically calculate xs(t). Then, we calculate the autocorrelation function ofXn(t) for a complete second-order probabilistic characterization. We have found out thatthe variance ofXn(t) ( E �Xn(t)2� in Figure 5.12) for the negative resistance oscillator circuitdoes not reach a periodic steady-state. It is an oscillatory waveform with a linear rampenvelope that grows without bound. This result, at �rst sight, is rather counter intuitive. Itsuggests that the oscillation waveform is becoming \noisier" or \fuzzier" as time progresses,and the oscillator is drifting away from a stable oscillation. However we know that this cannot be true. The negative resistance oscillator we considered in Section 5.10.4 does settleinto a stable limit cycle, and the noise in the circuit causes only small 
uctuations in theoscillation waveform, which we state here without proof. Then, how do we resolve thisdilemma and interpret the results we obtained with time-domain noise simulation? Theresolution of this dilemma lies in the following observations: The peaks (which have a linearramp envelope) in the waveform of E �Xn(t)2� coincide (in time) with the transitions of thelarge-signal periodic waveform for xs(t), i.e. the zero-crossings in Figure 5.11. The dips inE �Xn(t)2� coincide (in time) with the \high" and \low" states of the large-signal periodicwaveform for xs(t), i.e. the peaks and dips in Figure 5.11. If E �Xn(t)2� is sampled at thepeaks, we obtain a linear ramp waveform. However, if it is sampled at the dips, then weobtain a waveform that settles to a time-invariant steady-state. Thus, the variance of thenoise in the oscillation waveform at the transitions grows without bound, but the variance



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 167at the peaks and dips of the oscillation waveform does not grow without bound, moreoverit settles to a time-invariant steady-state value.Next, we consider a sinusoidal waveform to gain more insight into the above ob-servations. Let xs(t) = A cos (2�fct) (6.2)be a noiseless sinusoidal waveform with frequency fc and amplitude A. Let us represent anoisy sinusoidal waveform withX(t) = (A+ a(t)) cos (2�fct+ �(t)) (6.3)where a(t) and �(t) are possibly nonstationary and correlated zero-mean stochastic pro-cesses, and will be referred to as the amplitude and the phase noise respectively. We de�nethe stochastic process Xn(t) to be the di�erence between the noisy and the noiseless sinu-soidal waveform, i.e.Xn(t) = (A+ a(t)) cos (2�fct+ �(t))� A cos (2�fct): (6.4)Now, we would like to assign properties to the stochastic processes a(t) and �(t) so thatE �Xn(t)2� for the sinusoidal waveform will \look like" the one we calculated for the negativeresistance oscillator in Figure 5.12. If the amplitude and phase noise are \small", we canapproximate Xn(t) as follows:Xn(t) � a(t) cos (2�fct)�A�(t) sin (2�fct): (6.5)We observe that the �rst term in (6.5) vanishes at the zero-crossings of xs(t) = A cos (2�fct),and the second term vanishes at the peaks and dips of xs(t) = A cos (2�fct). Thus, wechoose a(t) to be a WSS process, and choose �(t) to be a scaled version of the Wienerprocess, so that E �Xn(t)2� for the sinusoidal waveformwill \look like" the one we calculatedfor the negative resistance oscillator in Figure 5.12. Figure 6.1 shows an ensemble of noisysinusoidal waveforms (all at the same frequency fc) compiled with a WSS a(t) and a Wienerprocess �(t). All of the waveforms in the ensemble are synchronized at t = 0. Recall thatfor a standard Wiener process W (t), we haveW (t) = 0 (6.6)E hW (t)2i = t: (6.7)
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Figure 6.1: Ensemble of noisy sinusoidal waveformsFigure 6.2 shows the ensemble for Xn(t) obtained by using (6.4) on all of the waveformsin the ensemble of Figure 6.1. Figure 6.2 also shows the noiseless sinusoidal waveform.Then, Figure 6.3 shows the variance E �Xn(t)2� as a function of time, which was calculatedby taking expectations over the ensemble in Figure 6.2. Each of the noisy sinusoidalwaveforms in the ensemble of Figure 6.1, when plotted by itself, can not be di�erentiatedfrom the noiseless waveform since the amplitude noise a(t) is WSS and small comparedwith A. However, due to the nonstationary phase noise �(t) with an increasing variance,the error in the zero-crossing times of a noisy sinusoidal waveform with respect to the zero-crossings of the noiseless waveform increases as time progresses. A Wiener process �(t) canalso be interpreted as a white noise deviation in the frequency of the sinusoidal waveform.One can also interpret the phase noise �(t) as noise in time. If we were to rede�ne time tas a stochastic process t0 as follows t0 = t + �(t)2�fc (6.8)then a sinusoidal waveform with phase noise becomesA cos (2�fct + �(t)) = A cos (2�fct0): (6.9)
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Figure 6.2: Ensemble of the noise components of noisy sinusoidal waveforms

Figure 6.3: Variance of the ensemble for a noisy sinusoidal waveform



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 170Thus, phase noise is equivalent to a time or timing noise for the oscillatory waveform whichmanifests itself as jitter in the zero-crossing times.In most applications, the jitter in the timings of the zero-crossings of oscillationwaveforms due to noise is of practical importance. The noise in the amplitude of thesignal is usually \cleaned" by passing it through a limiter, and it is unimportant in manyapplications, for instance, when the oscillator output is fed into a digital phase detectoror a switching mixer. These circuits are sensitive to only the jitter in the timing of thetransitions, and not to the noise in the amplitude of the signal. We would like to modeland characterize the timing jitter, i.e. phase noise, as a stochastic process. In particular,we would like to calculate its complete second-order probabilistic characteristics, i.e. theautocorrelation function or the (possibly time-varying) spectral density. The \spectrum" ofa noiseless oscillation waveform consists of impulses at the frequency of oscillation and itsharmonics, where spectrum is de�ned as the Fourier transform of the periodic deterministicoscillation waveform. If we model a noisy oscillation waveform as a stochastic process, thena \spectrum" may be de�ned through spectral densities of stochastic processes. The notionof a \spectrum" for a noisy oscillation waveform has been used extensively in the literature,almost everywhere without an exact de�nition. Gardner in [40] dicusses the problems incharacterizing the noise of an oscillator with a \spectrum".In the next section, we will formalize the notion of timing jitter or phase noisewhich both refer to the same phenomenon, i.e. the noise in the zero-crossing or transitiontimes of oscillation waveforms. We will �rst present a de�nition of phase noise as a discrete-time stochastic process, and then describe an algorithm for its characterization along withexamples. The above discussion of amplitude and phase noise for a sinusoidal waveformwas meant to give some intuition into the notion of phase noise or timing jitter, and providemotivation for the de�nition we will present next.6.2 Phase Noise Characterization with Time Domain NoiseSimulationWe assume that the behavior of the autonomous oscillator circuit (without thenoise sources) is governed by the following system of equations in MNA formI(x) + ddtQ(x) = 0 (6.10)



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 171which was obtained from (5.3) by omitting the explicit time dependence of I, because theautonomous oscillator circuit does not have any time-varying deterministic excitations. Wenow assume that (6.10) has a periodic steady-state solution xs(t), which is a stable limitcycle in the n-dimensional space. Thus, xs(t) satis�esxs(t) = xs(t+ kT ) (6.11)for all t, k 2 Z and for some period T . We de�ne fc = 1=T to be the frequency of theperiodic xs(t). The equations for the oscillator circuit with the noise sources is formulatedas follows I(X)dt+ dQ(X) +B(X)dW(t) = 0 (6.12)as a system of stochastic algebraic and di�erential equations, which was obtained from(6.12) by omitting the explicit time dependence of I and B. With the small noise expansiondescribed in Section 5.3, we approximate the solution of (6.12) withX(t) � xs(t) +Xn(t): (6.13)With the time domain noise simulation algorithm described in Chapter 5, we can calculatethe autocorrelation function of the components of the vector of stochastic processes Xn,which represent the noise component of the node voltages for the nodes which have acapacitive path to ground and the noise component of the inductor currents.6.2.1 De�nition of timing jitter and phase noiseWe will now formally de�ne timing jitter and phase noise for the oscillator circuit.We will de�ne timing jitter and phase noise for a speci�c node (which has a capacitive pathto ground) voltage or an inductor current. Whether it is a node voltage or an inductorcurrent, this circuit variable is a component of the state vector x for the circuit. Let thiscircuit variable be the ith component of the state vector. Hencexs(t) = fxs(t)gi (6.14)Xn(t) = fXn(t)gi (6.15)where f:gi denotes the ith component of a vector. Thus, xs(t) is the deterministic periodicsteady-state waveform for the circuit variable, and Xn(t) is the noise component. LetS(t) = ddt xs(t) (6.16)



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 172be the time derivative of the periodic steady-state waveform xs(t). Hence, S(t) is alsoperiodic with the same period T . Let us now de�ne the set � of evenly spaced time pointsas � = f�k � 0 : S(�k) = max0�t�T S(t); �k � �k�1 = Tg: (6.17)Thus, � is the set of time points where the periodic oscillation waveform xs(t) is makinglow-to-high transitions. The de�nition of � as given above makes sense only for a certainclass of periodic waveforms. For instance, it does not make sense for a triangle-wave xs(t),because S(t) for a triangle-wave is a periodic piecewise constant function, and hence xs(t)does not have well-de�ned low-to-high transition times that can be identi�ed as the timepoints where xs(t) has the highest slew rate, i.e. the time-derivative or the rate of change.However, it is well-de�ned for a sinusoidal waveform, or a square-wave with a �nite slopeduring the short switching times. It is hard to give a formal characterization of periodicwaveforms for which � is well-de�ned, but one can roughly say that � is well-de�ned forperiodic waveforms which have a high and a low \state" and transitions between thesethat are identi�able as the time points with highest time-derivative, i.e. waveforms wewould like the oscillators to produce. One property of these periodic waveforms is that theperiodic waveforms obtained as their time derivatives look like themselves. For instance,the derivative of a sinusoidal waveform is also a sinusoidal waveform, and the derivative ofa square-wave with a �nite slope during the transitions is also square-wave (though witha duty cycle that is smaller then 50%). It is very plausible that every practical oscillatorcircuit will have a circuit variable for which � will be well-de�ned. This will be the case forall of the practical oscillator circuits we will consider. Note that, for the de�nition of �, wehave arbitrarily chosen the low-to-high transitions times. As we will see in the next section,choosing the high-to-low transitions yields exactly the same results for phase noise or timingjitter characterization. Let S be the maximum value of the derivative S(t) = _xs(t), i.e.S = max0�t�T S(t): (6.18)Note that S(�k) = S for all �k 2 � (6.19)We de�ne timing jitter to be the discrete-time stochastic process JJ [k] = Xn(�k)S(�k) = Xn(�k)S (6.20)



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 173for �k 2 � and k � 0. Thus, the timing jitter J is a sampled and scaled version ofXn(t). Note that J has the units of time. Then, phase noise is de�ned as the discrete-timestochastic process � �[k] = 2�fcXn(�k)S (6.21)which is only a scaled version of the timing jitter J . � is in radians. Thus, timing jitter andphase noise are basically the same discrete-time stochastic process up to a scaling factorthat is equal to the angular frequency 2�fc.If we use the de�nition of phase noise in (6.21) on the noisy sinusoidal waveformdiscussed in the previous section (see (6.2) and (6.5)), we obtain a sample of the continuous-time phase noise process �(t) that was introduced to the noiseless sinusoidal waveform. Bysampling Xn(t) in (6.5) at the zero-crossings or transition times of xs(t) given in (6.2),we reject the �rst term in (6.5) that is due to amplitude noise and obtain a sample ofthe continuous-time phase noise process �(t). Thus, the de�nition of phase noise givenby (6.21) is consistent with the usual de�nition of phase for a sinusoidal waveform. Fornonsinusoidal oscillation waveforms, there is no obvious de�nition for phase, but we stilluse the terminology phase noise to describe the noise in the zero-crossing times of generaloscillation waveforms as de�ned by (6.21).6.2.2 Probabilistic characterization of phase noiseNow, we would like to calculate a second-order probabilistic characterization ofphase noise and timing jitter as de�ned. Using the time-domain noise simulation techniquedescribed in Chapter 5, we can numerically calculate the autocorrelation function of Xn(t)for the circuit variable we are considering. Since phase noise is obtained by sampling thestochastic process Xn(t), its autocorrelation function can be easily calculated by samplingthe autocorrelation function of Xn(t). E �Xn(t)2� as a function of t is obtained by numeri-cally solving (5.74), and E [Xn(tref )Xn(t)] as a function t for a reference time point tref � tis obtained by numerically solving (5.80). Then, for phase noise �, we haveE h�[k]2i = �2 E hXn(�k)2i (6.22)E [�[kref ]�[k]] = �2 E hXn(�kref )Xn(�k)i (6.23)where k � kref , and �kref ; �k 2 �, and � = 2�fcS : (6.24)
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Figure 6.4: Time-derivative of the oscillation waveform for the negative resistance oscillatorS was de�ned by (6.18). For timing jitter,E hJ [k]2i = E ��[k]2�(2�fc)2 (6.25)E [J [kref ] J [k]] = E [�[kref ]�[k]](2�fc)2 (6.26)follow from (6.22) and (6.23).Let us now calculate the second-order probabilistic characterization of phase noisefor the negative resistance oscillator described in Section 5.10.4. We choose the capacitorvoltage as the circuit variable for phase noise characterization. Figure 5.11 shows the steady-state deterministic oscillation waveform xs(t). The waveform that is obtained as the timederivative of xs(t) in Figure 5.11, i.e. _xs(t), is shown in Figure 6.4, from which we identify� as de�ned by (6.17), and also S = 1:93 volts=secs that was de�ned in (6.18). Noticethat the waveform of _xs(t) looks like exactly the waveform in Figure 5.13. We will see thereason for this in Section 6.3. The waveform obtained for the noise variance E �Xn(t)2�of the capacitor voltage is in Figure 5.12. This is an oscillatory waveform with a linearramp envelope that grows without bound. The peaks in the waveform of E �Xn(t)2� coincide(in time) with the transitions of the large-signal periodic waveform for xs(t), i.e. the time



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 175points in �. Hence, if E �Xn(t)2� is sampled to calculate E ��[k]2� as de�ned by (6.22) forthe discrete-time stochastic process � that represents phase noise, we obtainE h�[k]2i = �2 � kT k � 0 (6.27)where � in volts2=secs is the slope of the linear ramp envelope for E �Xn(t)2�. The waveformobtained for E [Xn(tref )Xn(t)] is in Figure 5.13. The reference time point was chosen astref = 70:7 secs to coincide with one of the peaks in the waveform of E �Xn(t)2�, i.e. oneof the time points in �. E [Xn(tref )Xn(t)] is a periodic waveform. Similarly, the peaks inE [Xn(tref )Xn(t)] coincide with the time points in �. Hence, if it is sampled to calculateE [�[kref ]�[k]] as de�ned by (6.23) for the phase noise process �, we obtainE [�[kref ]�[k]] = E h�[kref ]2i (6.28)= �2 � kref T (6.29)= �2 E hXn(tref )2i (6.30)where tref = krefT and k � kref . It can be shown that (6.29) is valid for all tref = krefT ,not just the simulation results are shown for. Thus, if we combine (6.27) and (6.29), weobtain E [�[k]�[m]] = �2 � min (k;m)T for k;m � 0: (6.31)The autocorrelation function given in (6.31) is a complete second-order probabilistic char-acterization of the discrete-time zero-mean stochastic process � that represents the phasenoise. The autocorrelation function given in (6.31) can be identi�ed as the autocorrelationfunction of a so-called discrete-time random walk process. A discrete-time random walkprocess R can be constructed as follows:R[k] = kXr=1 Zr (6.32)where Z1; Z2; : : : are uncorrelated identically distributed zero-mean random variables takingvalues in IR. The autocorrelation function of R is given byE [R[k]R[m]] = kXr=1 mXl=1 E [Zr Zl] (6.33)= min(k;m)Xr=1 E hZ2r i (6.34)



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 176= min(k;m)Xr=1 �2 (6.35)= �2 min (k;m) (6.36)where �2 = E hZ21i = E hZ22i = � � � (6.37)We obtained the phase noise process � by sampling Xn(t) which is a Gaussian process asexplained at the end of Section 5.4. Hence, � is also a Gaussian process. If we let Z1; Z2; : : :be uncorrelated zero-mean Gaussian random variables with varianceE hZ21i = �2 = �2 �T (6.38)then, the random walk process R will also be Gaussian, and it will have the same auto-correlation function as the phase noise process �. Since the autocorrelation function is acomplete characterization of a Gaussian process, then R and � are stochastically equiva-lent. The representation of the sampled phase noise process as a discrete-time random walkprocess with uncorrelated, identically distributed, Gaussian increments will be very usefulwhen we discuss behavioral modeling and simulation of phase noise in phase-locked loopsin the next chapter. The random walk representation of phase noise allows us to de�nea �gure of merit to characterize the phase noise performance of the oscillator. If we havetwo oscillators at the same frequency, then the one with a larger value of �2 = �2 �T forphase noise will be worse than the other one from a phase noise performance perspective.�2 = �2 �T is the rate of change of the variance of the discrete-time phase noise process �.The random walk phase noise representation we discussed above was derived for thenegative resistance oscillator based on the characterization we obtained using time-domainnoise simulation. At this point, we do not know that the random walk representationfor phase noise is valid for other oscillator circuits. However, we have an algorithm whichallows us to numerically calculate the autocorrelation function of the phase noise of the nodevoltages or the inductor currents of an oscillator. We outline the steps of this algorithmbelow:1. We �rst calculate the steady-state solution of (6.10). This could be done using thetransient analysis in SPICE, or with a speci�c numerical algorithm such as the shoot-ing method for �nding periodic steady-state solutions of nonlinear autonomous cir-cuits.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 1772. We identify the frequency of oscillation fc = 1=T .3. We apply the time-domain noise simulation algorithm described in Chapter 5 to cal-culate the noise autocorrelation functions of the node voltages with a capacitive pathto ground and the inductor currents.4. We choose a circuit variable which could be a node voltage, a di�erential voltage oran inductor current. We choose a node with a steady-state oscillation waveform forwhich � can be de�ned as discussed before.5. We identify � and calculate S de�ned by (6.18).6. We sample and scale the autocorrelation function (which was calculated numericallywith the time-domain noise simulation algorithm) of the circuit variable we have cho-sen to calculate the autocorrelation function of the discrete-time phase noise processde�ned by (6.21).In the next section, we will apply the above algorithm to characterize the phase noise ofseveral practical oscillator circuits.6.2.3 ExamplesWe will apply the phase noise characterization methodology to three oscillators: aring-oscillator, a relaxation oscillator and a harmonic oscillator. For the characterizationsto be presented, we consider only the thermal and shot noise sources of the devices, i.e.the noise sources that can be modeled as white Gaussian processes. We will consider thenon-white noise sources in Section 6.6.6.2.3.1 Ring-oscillatorThe ring-oscillator circuit is a three stage oscillator with fully di�erential ECLbu�er delay cells (di�erential pairs followed by emitter followers). This circuit is from [38].[38] and [53] use analytical techniques to to characterize the timing jitter/phase noise per-formance of ring-oscillators with ECL type delay cells. [38] does the analysis for a bipolarring-oscillator, and [53] does it for a CMOS one. Since they use analytical techniques, theyuse a simpli�ed model of the circuit and make several approximations in their analysis. [38]
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) (
) (�A) (volts=�secs) (volts2=secs) (MHz) (sec2:Hz)500 58 331 186 9.3 167.7 0.2692000 58 331 287 12.2 74 0.149500 1650 331 159 17.38 94.6 0.686500 58 450 259 12.32 169.5 0.182500 58 600 330 16.40 169.7 0.151500 58 715 373 19.77 167.7 0.142Table 6.1: Ring-oscillator phase noise characterization resultssame as the one for the negative resistance oscillator. Hence, the autocorrelation function forthe sampled phase noise process for the di�erential tap voltage of this oscillator is exactly inthe form given by (6.31). Thus, the random walk model for phase noise is also valid for thisring-oscillator. This result is in agreement with the results and experimental observationspresented in [38] for this ring-oscillator.For further comparison of phase noise characterization results obtained by ournumerical method and the ones presented in [38], we performed several other phase noisecharacterizations for the bipolar ring-oscillator. The results are shown in Table 6.1, whereRc is the collector load resistance for the di�erential pair (DP) in the delay cell, rb is thezero bias base resistance for the BJTs in the DP, IEE is the tail bias current for the DP,and fc is the oscillation frequency for the three stage ring-oscillator.For all of the cases listed in Table 6.1, the noise variance for the di�erential voltageobtained by time-domain noise simulation had a linear ramp envelope. The random walkphase noise model is valid for all the cases. Hence, the phase noise performance can becharacterized by the slope of this ramp envelope � together with � that was de�ned by(6.24). Note that the changes in Rc and rb a�ect the oscillation frequency, unlike thechanges in IEE. Figure 6.8 shows a plot of �2� versus IEE using the data from Table 6.1.This prediction of the dependence of phase noise/timing jitter performance on the tail biascurrent is in agreement with the analysis and experimental results presented in [38] and [53]for ring-oscillators with ECL type delay cells. Note that larger values of �2� means worsephase noise performance.
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ΙΕΕ  (µΑ)Figure 6.8: Phase noise performance versus IEE for the ring-oscillator6.2.3.2 Relaxation oscillatorThe relaxation oscillator is a VCO that is based on the emitter-coupled multivibra-tor circuit [1]. [54] analyzes the \process of jitter production" for this circuit by describingthe circuit behavior with a single �rst-order stochastic di�erential equation based on a sim-pli�ed model for the circuit, and lumping all of the noise sources into a single stationarycurrent noise source. [54] arrives at intuitive qualitative results for low jitter relaxationoscillator design. A relaxation oscillator operates in a highly nonlinear fashion due to re-generative switchings. The analysis of the \process of jitter production" is not analyticallytractable without reverting to simpli�cations. With our general phase noise characteriza-tion methodology, we can simulate the process of jitter production in a relaxation oscillatornumerically without simplifying the circuit.Figure 6.9 shows the noise variance for the voltage across the timing capacitor.The envelope for the variance waveform is also a linear ramp as it was the case for thenegative resistance and also the ring-oscillator. Obviously, the spikes in the variance wave-form coincide with the regenerative switchings of the multivibrator. We conclude that therandom walk phase noise model is also valid for this relaxation oscillator. The large signal
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Figure 6.9: Timing capacitor voltage noise variance for the multivibratorwaveform for the timing capacitor voltage is triangular. Hence, switching times character-ized by largest slope are not well de�ned, i.e. � for the voltage across the timing capacitorcan not be constructed. For phase noise characterization, we choose the output of themultivibrator, which is a square-wave-like waveform. Going through the steps of the phasenoise characterization algorithm, we obtainfc = 0:88MHz (6.39)� = 1:3� 105 volts2=sec (6.40)S = 3:29� 109 volts=sec (6.41)which results in �2 � = 0:37 rad2:Hz: (6.42)6.2.3.3 Harmonic oscillatorThe harmonic oscillator has an LC tank, several inductors and a single bipolar-junction transistor with a Colpitts feedback circuit around it. The oscillation frequency is
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Figure 6.10: Oscillation waveform for the harmonic oscillatorNode S (volts=nsecs) � (volts2=secs) �2 � (rad2:Hz)1 1.53 0.127 1.282 1.104 0.063 1.223 1.69 0.151 1.25Table 6.2: Harmonic oscillator phase noise characterization with di�erent nodes773:2 MHz. The large-signal oscillation waveform at the output is shown in Figure 6.10.Time-domain noise simulation showed that the random walk phase noise model is also validfor this oscillator. Hence, phase noise performance can be summarized with the parameters� and � de�ned before. We calculated �2 � for three di�erent nodes in the circuit to comparethe phase noise characterizations for di�erent nodes. The results are in Table 6.2. We canobserve in Table 6.2 that even though the large signal slew rate at the transitions, i.e. S,and the slope of the linear ramp envelope for the noise variance waveform, i.e. �, havedi�erent values, the calculated value of �2 � is equal for the three nodes considered. Hence,stochastically equivalent discrete-time random walk processes are obtained for all of the



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 184nodes which were considered for phase noise characterization. This intuitively makes sense.Phase noise or timing jitter is basically equivalent to noise in the zero-crossing or transitiontimes of the oscillator waveforms, and we expect it to be equal in all of the waveformsof an oscillator circuit. In Section 6.3, we will show that the phase noise characterizationobtained with the de�nition and the characterization algorithm we have presented is, ingeneral, same for all of the circuit variables of an oscillator. Thus, it is a property of theoscillator itself, not just a property of one of the state variables.The ring-oscillator and the relaxation oscillator we have considered are fully dif-ferential circuits. Hence, the low-to-high and high-to-low transitions of the large signalwaveforms were symmetric. So, the de�nition of phase noise obtained as discrete-timestochastic process by sampling at either kind of transition is equivalent. On the other hand,the harmonic oscillator we are considering is not a fully di�erential circuit, and the low-to-high and high-to-low transitions are not symmetric (i.e. the largest slew rate value isdi�erent). However, the phase noise characterization obtained by sampling at either kindof transition for the same node gave the same result, similar to the case where results werecompared by calculating the phase noise characterization for di�erent nodes. In Section 6.3,we will also show that this is true in general for the de�nition of phase noise we presented.6.2.3.4 ConclusionsWe de�ned phase noise as a discrete-time stochastic process, and found out that itcan be characterized as a random walk process for several practical free running oscillatorsfor which the oscillation mechanisms are quite di�erent. Our de�nition of phase noise wasfor a speci�c circuit variable of the oscillator. However, we observed in our phase noisecharacterization of the harmonic oscillator that, we indeed obtain the same characteriza-tion for di�erent circuit variables of the same oscillator. In Section 6.3, we will take amathematical viewpoint and explore the reason behind these �ndings, and show that for aclass of oscillators (with white noise sources only, i.e. thermal and shot noise) the randomwalk phase noise model is valid in general, and the phase noise characterization obtained isindependent of the circuit variable used.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 1856.2.4 Phase noise \spectrum"Almost all of the work in literature on phase noise characterizes it in frequencydomain with a \spectrum". Phase noise is clearly a nonstationary stochastic process as wehave found out for the several practical oscillator circuits we have considered above. It isneither WSS nor cyclostationary, its variance is a monotonically increasing function of time.It is not clear how one would de�ne and characterize a \spectrum" for phase noise.In our above discussion, we de�ned phase noise as a discrete-time stochastic pro-cess, and gave a full second-order probabilistic characterization for it as a random walkprocess. We believe that this is the most suitable characterization, given that it is a processwithout a steady-state characteristics. However, to show the connection of our characteri-zation and the frequency domain characterization usually used for phase noise, we will nextdiscuss the issues that arise when a frequency domain spectrum is derived for phase noise.We have de�ned phase noise as a discrete-time stochastic process to character-ize the noise in the transition times of an oscillation waveform. For frequency domaincharacterization, we will consider a continuous-time \equivalent" for it. Thus, we de�ne acontinuous-time phase noise process  (t) which satis�es (kT ) = �[k] (6.43)where � is the discrete-time phase noise process we have de�ned earlier. The autocorrelationfunction of � was given in (6.31). Then, the autocorrelation of  , i.e.E [ (t+ �=2) (t� �=2)] (6.44)should satisfy E [ (kT ) (mT)] = �2 � min (kT;mT ) for k;m � 0 (6.45)when t + �=2 = kT and t � �=2 = mT for t � 0 and �2t � � � 2t. Obviously, (6.43)and (6.45) only partially characterize  as a stochastic process. As long as (6.43) and(6.45) are satis�ed, � and the sampled  are stochastically equivalent, and the probabilisticcharacteristics of  is only relevant at the transition times. Hence, we use the extra freedomto specify  as a Gaussian stochastic process with the autocorrelation functionR (t; �) = E [ (t+ �=2) (t� �=2)] (6.46)= �2 � min (t + �=2; t� �=2) (6.47)



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 186for t � 0 and j� j � 2t. Recall that � is also a Gaussian process. The autocorrelation functionin (6.47) obviously satis�es (6.45), and it is the autocorrelation function of a (scaled) Wienerprocess. The scaled Wiener process  is the output of an ideal integrator when the inputis a white noise source with spectral densitySi(f) = �2 �: (6.48)The transfer function (as de�ned by (2.109)) of an ideal integrator is given byHint(f) = 12 �(f) + 1j2�f : (6.49)If we use (6.48), (6.49) and (2.135) to calculate the \spectral density" of the output of theintegrator, we obtain S (f) = �2 � 14�2f2 (6.50)by ignoring the singularitites at f = 0. The spectrum expression above is the one that isextensively used to characterize the phase noise of free running oscillators. In the phase noiseliterature, it is most often interpreted as if it is the spectral density of a WSS process thatmodels the phase noise of the oscillator. This interpretation is clearly wrong. The expressionin (6.50) obviously can not be the spectral density of a well-de�ned WSS stochastic process:A WSS process having the spectral density in (6.50) has in�nite variance. The formulain (2.135) assumes that the LTI system is stable so that the output of the LTI system isguaranteed to be WSS when the input is WSS. An ideal integrator is not a stable LTIsystem. When a WSS process is the input to an integrator, the output is, in general,not a WSS process. This is very similar to what has been done for 1=f noise: Trying tomodel an inherently nonstationary phenomenon such as 1=f noise, or phase noise in freerunning oscillators, using notions and techniques from the theory of WSS processes is notappropriate.6.3 Phase Noise: Same at All NodesIn the phase noise characterization of the oscillator circuits in the previous section,we calculated the noise variance of circuit variables for several oscillator circuits, and foundout that the variance waveforms, which were obtained by numerically solving (5.74), hadlinear ramp envelopes. In Section 5.6, we gave an analytical expression for the solution of



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 187(5.74), which we repeat belowK(t) = �(t; 0)K0�(t; 0)T + Z t0 �(t; �)F(�)F(�)T�(t; �)T d� (6.51)where �(t; �) is the state transition matrix for the system of linear time-varying homoge-neous di�erential equations _y = E(t)y: (6.52)We will now show that, for an oscillator circuit with a stable steady-state oscillation, one ofthe eigenvalues of�(T; 0) must be exactly 1. We assume that (6.10) for the oscillator circuithas a periodic steady-state solution xs(t), which is a stable limit cycle in the n-dimensionalspace. Hence, I(xs) + ddtQ(xs) = 0 (6.53)holds. (6.53) can be rewritten as I(xs) +C(xs) _xs = 0 (6.54)where C(xs) is the Jacobian of Q(xs) as de�ned by (5.26). Let us take the time derivativeof both sides of (6.53) to obtainG(xs) _xs + ddt [C(xs) _xs] = 0 (6.55)where G(xs) is the Jacobian of I(xs) as de�ned by (5.19). In this case, t does not appearexplicitly as an argument of G, because the circuit is autonomous and it does not haveexternal time-varying excitations. If we expand the derivative in (6.55), we getG(xs) _xs + [ ddtC(xs)] _xs +C(xs)�xs = 0 (6.56)and hence [G(xs) + ddtC(xs)] _xs +C(xs)�xs = 0: (6.57)Then, we substitute A(t) and C(t) into (6.57), which were de�ned by (5.32) and (5.39) interms of G(xs) and C(xs), to obtainA(t) _xs +C(t)�xs = 0: (6.58)Thus, the time derivative of the periodic steady-state solution, i.e. _xs, is a solution of thefollowing homogeneous system of linear periodically time-varying di�erential equationsA(t)y+C(t) ddty = 0 (6.59)



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 188which represents the LPTV system that is obtained by linearizing the nonlinear autonomousoscillator circuit around the periodic steady-state solution. Since xs is periodic, _xs is alsoperiodic. Thus, (6.59) has a periodic steady-state solution. Now, we can easily show thatthe homogeneous system (6.52) also has a periodic steady-solution, because it was obtainedfrom (6.59) by eliminating the pure algebraic equations to remove the rank de�ciency ofC(t), which was explained in detail in Section 5.4. The state vector for (6.52) is a reducedversion of the state vector for (6.59). Hence, the periodic steady-state solution of (6.52) isobtained from xs by eliminating some of the variables.As we saw in Section 2.4.9, the LPTV system (6.52) has a periodic solution if andonly if �(T; 0) has an eigenvalue equal to 1, where �(t; �) is the state transition matrix for(6.52), and T is the period of oscillation. Furthermore, one can show that the rest of thepossibly complex eigenvalues of �(T; 0) should have magnitudes less than 1, if the oscillatoris in a stable limit cycle. We state this stability condition without proof. Intuitively, itis easy to see the validity of this statement: (6.52) represents an LPTV system that isobtained by linearizing the nonlinear autonomous oscillator circuit around the periodicsteady-state solution. If �(T; 0) has eigenvalues with magnitudes greater than 1, or morethan one eigenvalue with a magnitude that is equal to 1, the homogeneous system (6.52) canhave solutions that grow without bound, implying that small perturbations on the periodicsteady-state trajectory can cause the oscillator to drift away from the limit cycle, whichin turn implies an unstable oscillation. For most oscillator circuits, �(T; 0) will have aneigenvalue that is equal to 1, and the rest of the eigenvalues will have magnitudes thatare \much" smaller than 1. A second eigenvalue that has a magnitude close to 1 suggeststhat the oscillator circuit is close to being unstable, which is usually the case for high-Qoscillators [16]. We will calculate the eigenvalues of �(T; 0) for several oscillators later.We will now consider the representation of the state transition matrix for theLPTV system (6.52) that was derived in Section 2.4.9 and given by (2.202), which werepeat below �(t; �) = nXi=1 exp (�i(t� �))ui(t)vTi (�) (6.60)where �i are the Floquet exponents for (6.52), and ui(t) and vi(t) are vectors that areperiodic with T . We know that �(T; 0) has an eigenvalue equal to 1, we arbitrarily set2�1 = 0: (6.61)2See Section 2.4.9 for the relationship between the Floquet exponents �i and the eigenvalues of �(T; 0).



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 189With (6.61), we know from Section 2.4.9 that u1(t) is a periodic steady-state solution of(6.52). However we also know that _xs is a periodic steady-state solution of (6.52). Thus,we set3 u1(t) = _xs(t): (6.62)Moreover, since �1 = 0, v1(t) is a periodic steady-state solution of_y = �E(t)Ty (6.63)which also follows from our discussion in Section 2.4.9.Next, we use the representation of the state transition matrix in (6.60) for (6.52),to calculate the analytical solution of (5.74) given in (6.51). For oscillator circuits, we setthe initial condition to zero K0 = K(0) = 0: (6.64)We will calculate the kth diagonal entry of K(t), which is the noise variance of the kthstate variable that is either an inductor current or a node voltage with a capacitive path toground. The kth diagonal entry of K(t) is given byeTk K(t) ek (6.65)where ek = h 0 � � � 0 1 0 � � � 0 iT (6.66)with 1 as the kth entry. From (6.51) and (6.64)eTk K(t) ek = Z t0 eTk �(t; �)F(�)F(�)T�(t; �)T ek d� (6.67)from which it follows thateTk K(t) ek = Z t0 eTk �(t; �)F(�)F(�)T [eTk �(t; �)]T d� (6.68)We then calculate eTk �(t; �) = nXi=1 exp (�i(t� �))eTk ui(t)vTi (�) (6.69)= nXi=1 exp (�i(t� �))fui(t)gkvTi (�) (6.70)3Note that any scaled version of the periodic steady-state solution (6.52) is also a periodic steady-statesolution of (6.52). We have the freedom of choosing the scaling for u1(t), and hence setting u1(t) = _xs(t), aslong as we choose the scaling of v1(t) such that (2.201) is satis�ed. This is required for the representation(6.60) to be valid.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 190where fui(t)gk denotes the kth entry of ui(t). We have �1 = 0, and we assume thatj exp (�i)j � 1 for i = 2; : : : ; n (6.71)since �i have negative real parts for i = 2; : : : ; n. (6.71) is satis�ed for \most" oscillatorcircuits. We will later discuss the cases for which (6.71) is not satis�ed. When (6.71) issatis�ed, the contribution of the terms for i = 2; : : : ; n in the summation (6.70) to theintegral in (6.68) will be negligible. The value of the integral will be determined by theterm for i = 1 as a quite accurate approximation. Then, (6.70) can be approximated witheTk �(t; �) � exp (�1(t� �))fu1(t)gkvT1 (�) (6.72)= fu1(t)gkvT1 (�) (6.73)to evaluate the integral in (6.68). We substitute (6.73) in (6.68) to obtaineTk K(t) ek = Z t0 fu1(t)gkvT1 (�)F(�)F(�)T [fu1(t)gkvT1 (�)]T d� (6.74)and hence eTk K(t) ek = Z t0 _xs(t)2vT1 (�)F(�)F(�)T v1(�) d� (6.75)where we substituted _xs(t) = fu1(t)gk = f _xs(t)gk (6.76)using (6.62). We observe that vT1 (�)F(�)F(�)Tv1(�) in (6.75) is periodic in � with periodT and satis�es vT1 (�)F(�)F(�)T v1(�) � 0 (6.77)for all � � 0, because F(�)F(�)T is a positive semide�nite matrix for all � � 0. Since _xs(t)2is independent of the integration variable � , it can be taken out of the integral, and weobtain eTk K(t) ek = _xs(t)2 Z t0 vT1 (�)F(�)F(�)T v1(�) d�: (6.78)Thus, we obtained an analytical expression for the noise variance of the kth state variableof the circuit. Recall that we can numerically solve (5.74) to calculate the noise variance ofcircuit variables as a function of time. We did this for the negative resistance oscillator inSection 5.10.4, and obtained the waveform in Figure 5.12. (6.78) tells us that the variance



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 191waveform in Figure 5.12 can be approximately constructed by \modulating" the periodicwaveform4 _xs(t)2 with the waveform that is given by the integralZ t0 vT1 (�)F(�)F(�)T v1(�) d� (6.79)where the integrand is a nonnegative-valued periodic function of � . We can also see from(6.79) that the variance waveform will have a linear ramp ramp envelope. Moreover, weobserve that the peaks in the variance waveform are going to be at the time points wherethe peaks in _xs(t)2 occur, i.e. at the transition or zero-crossing points of the large-signalsteady-state periodic oscillation waveform, which are identi�ed as the time points where_xs(t)2 takes its largest value. The set � we de�ned with (6.17) contains these time points.We can actually calculate the slope � of the linear ramp envelope as follows:� = � max0�t�T ( _xs(t)2)� 1T Z T0 vT1 (�)F(�)F(�)T v1(�) d�: (6.80)Recall that we used the slope � in Section 6.2.2 to characterize phase noise as a randomwalk process. The autocorrelation function of phase noise represented as a random walkprocess was given by (6.31), which we repeat belowE [�[k]�[m]] = �2 � min (k;m)T for k;m � 0 (6.81)where � = 2�fcS (6.82)as de�ned by (6.24). Recall the de�nition of S asS = max0�t�T _xs(t): (6.83)Let us now use (6.80), (6.82) and (6.83) to calculate �2 �:�2 � = (2�fc)2 max 0�t�T ( _xs(t)2)[max 0�t�T _xs(t)]2 1T Z T0 vT1 (�)F(�)F(�)T v1(�) d�; (6.84)from which it follows that�2 � = (2�fc)2 1T Z T0 vT1 (�)F(�)F(�)T v1(�) d�: (6.85)�2 � in (6.85) is independent of _xs(t). Thus, the autocorrelation of phase noise in (6.81)is independent of _xs(t)! Recall that the phase noise characterization was obtained for a4See Figure 6.4 for a plot of _xs(t).



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 192speci�c circuit variable. The slope for the envelope of the noise variance � was calculatedfor a speci�c state variable of the system. As seen in (6.80), � depends on _xs(t) which isthe derivative of the large-signal periodic steady-solution for this speci�c state variable asde�ned by (6.76). However, even though both � and � depend on _xs(t), �2 � is independentof it. Thus, the phase noise autocorrelation (6.81) is independent of the state variable wechoose, making phase noise a property of the whole oscillator circuit instead of only thestate variable it was calculated for. This result we arrived at is not obvious for the phasenoise de�nition we presented, and is by no means a trivial observation. Recall that we\experimentally" observed this result for the harmonic oscillator in Section 6.2.3.3.(6.85) also suggests a way to directly calculate �2 � without �rst numerically solv-ing (5.74), if we can somehow calculate the periodic vector v1(t) for 0 � t � T . Theperiodic vector v1(t) can be computed as a periodic steady-state solution of (6.63). It turnsout that the phase noise characterization methodology proposed by Franz Kaertner [16]arrives at exactly the same phase noise characterization represented by (6.85) we obtained,even though his de�nition of phase noise, and his derivation of the phase noise characteri-zation is completely di�erent than ours. The numerical method he proposes for phase noisecharacterization is based on calculating v1(t) and using (6.85). We will discuss Kaertner'swork in more detail in the next section.6.4 Kaertner's Work on Phase NoiseKaertner [16]5 de�nes timing jitter/phase noise for a free running autonomousoscillator as a continuous-time stochastic process:X(t) = xs(t+ �(t)) +4X(t+ �(t)) (6.86)where xs(t) represents the periodic steady state solution of the oscillator circuit withoutthe noise sources (which is a limit cycle in the n-dimensional space), X(t) is the trajectoryof the oscillator with the noise sources, �(t) represents the phase noise/timing jitter asa stochastic time shift, and he calls 4X(t) the amplitude noise process. Obviously, thedecomposition of the noisy trajectory X(t) as in (6.86) is not unique, and needs furtherspeci�cation. (6.86) can be interpreted as the decomposition of the \di�erence" between5We will summarize Kaertner's work using the notation and formulation we have introduced, so that theconnection between his work on phase noise and ours can be clearly seen.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 193the noisy trajectory X(t) and the noiseless limit cycle xs(t) into a tangential motion �(t)and a transversal motion 4X(t). Kaertner arbitrarily restricts the transversal deviation4X(t) onto the hyperplane that is spanned by the vectors u2(t);u3(t); : : : ;un(t) in (6.60).6Thus, he obtains v1(t)T 4X(t) = 0 (6.87)using the orthogonality relations given in (2.201). Using orthogonal projection operationswhich are based on (2.201), he proceeds to derive the following stochastic \integral" equationfor the stochastic time shift �(t) that represents phase noise:�(t) = Z t+�(t)0 vT1 (�)F(�)dW(�): (6.88)Then, he derives a \spectrum" expression for phase noise7 starting from (6.88). After some\juggling", it can be shown that the phase noise spectrum he derives is exactly equal to(6.50) with �2 � given by (6.85).Phase noise is a concept with a lot of confusion and controversy around it, becauseit can be de�ned in many ways, and it can be characterized in various di�erent ways. Wefound Kaertner's work on phase noise to be one of the very few that treats the problemusing non ad-hoc mathematical techniques, and with clear de�nitions.8 We believe thatKaertner's treatment of phase noise and the treatment we presented complement each otherby producing consistent results with di�erent de�nitions and derivations.6.5 Alternative Phase Noise Characterization AlgorithmThe phase noise characterization for an oscillator boils down to the calculation of�2 � in (6.85), which requires the computation of the periodic vector v1(t) for 0 � t � T .Kaertner [16] describes a numerical method for the computation of v1(t). Without providing6In a former paper [55], Kaertner uses a di�erent restriction to fully specify the decomposition in (6.86).He reexamines this restriction in [16], and modi�es it as described above. His motivation for the newde�nition is that, with the new de�nition, the decomposition into amplitude and phase noise is independentof the coordinate system used. With his former de�nition in [55], a change of coordinates also transformsa part of phase noise into amplitude noise and vice versa. The requirement for the invariance of phasenoise under coordinate transformations is actually exactly equivalent to the invariance of phase noise forthe di�erent state variables of the oscillator circuit we have proved in Section 6.3 for our de�nition of phasenoise.7Note that the units of �(t) is the units of time, hence it represents the timing jitter process. Thus, if wescale �(t) with 2�fc we obtain the phase noise process.8The reader is referred to [16] for the details of his work, although it might require some \digging" intohis notation to clearly see what is going on.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 194details, we will present the outline of the numerical algorithm for computing v1(t), whichis very similar to the algorithm proposed by Kaertner:1. Compute the large-signal periodic steady-state solution xs(t) for 0 � t � T .2. Compute the state-transition matrix �(T; 0) by numerically integrating_Y = E(t)Y; Y(0) = I (6.89)from 0 to T . Note that �(T; 0) = Y(T ): (6.90)3. Compute u1(0) using u1(0) = _xs(0): (6.91)Note that u1(0) is an eigenvector of �(T; 0) corresponding to the eigenvalue 1.4. v1(0) is an eigenvector of �(T; 0)T corresponding to the eigenvalue 1. To computev1(0), �rst compute an eigenvector of �(T; 0)T corresponding to the eigenvalue 1, thenscale this eigenvector so that v1(0)T u1(0) = 1 (6.92)is satis�ed. (6.92) has to be satis�ed for the representation of the state transitionmatrix �(t; �) given in (6.60) to be correct, as derived in Section 2.4.9.5. Compute the periodic vector v1(t) for 0 � t � T by numerically solving_y = �E(t)Ty (6.93)using v1(0) = v1(T ) as the initial condition. Recall that v1(t) is a periodic steady-state solution of (6.93) corresponding to the Floquet exponent that is equal to 0.All of the other Floquet exponents for (6.93) have positive real parts as discussed inSection 2.4.9. Thus, it is not possible to calculate v1(t) by numerically integrating(6.93) forward in time, because the numerical errors in computing the solution andthe numerical errors in the initial condition v1(0) will excite the modes of the solutionwith Floquet exponents that have positive real parts. However one can integrate(6.93) backwards in time with the \initial" condition v1(T ) = v1(0) to calculate v1(t)for 0 � t � T in a numerically stable way.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 1956. Then, �2 � is calculated using (6.85). Thus, the the discrete-time process �, i.e.phase noise, is fully characterized as a random walk process with the autocorrelationfunction given in (6.81).The algorithm we described above is an alternative to the one we have presented in Section6.2.2. The phase noise characterizations calculated with both of the algorithms shouldagree, because, in Section 6.3, we have shown that the above algorithm can be derived fromthe one that was described in Section 6.2.2.9 The algorithm described in Section 6.2.2 wasbased on using the general time-domain noise analysis (Chapter 5) technique on an oscillatorcircuit. Then, using some properties of oscillator circuits, we were able to derive the abovealgorithm which enables us to calculate the phase noise characterization e�ciently withoutperforming a full time-domain noise analysis. This speci�c phase noise characterizationalgorithm turns out to be exactly equivalent to the one proposed by Kaertner [16] with adi�erent de�nition for phase noise, and a di�erent derivation.We implemented the above algorithm in SPICE. We will not present a detailed de-scription of this implementation here, but we will mention a few important points. In imple-menting the above algorithm, one can increase the e�ciency by saving LU factored matricesthat needs to be calculated in Step 2 and reuse them in Step 5. If the large-signal periodicsteady-state of the oscillator is calculated using the shooting method10 in Step 1, then thestate transition matrix �(T; 0) of the linear time-varying system obtained by linearizing thenonlinear oscillator circuit around the large-signal periodic steady-state is already available.It can be shown that the Jacobian of the nonlinear system of equations that is solved inthe shooting method (using Newton's method, to calculate the initial condition that resultsin the periodic steady-state solution) is equal to �(T; 0)� I [56][57]. Moreover, one canavoid calculating �(T; 0) explicitly, and use matrix-implicit iterative methods both for theshooting method, and at Step 4 to calculate the eigenvector of �(T; 0)T that corresponds tothe eigenvalue 1 [58]. For high-Q oscillators, the iterative methods can run into problems,because �(T; 0) may have several other eigenvalues which are close to 1. In our implemen-tation in SPICE, we explicitly calculate �(T; 0) and perform a full eigenvalue/eigenvectorcalculation, which will allow us to investigate the properties of the state-transition matrix9Recall that, in this derivation, we have assumed that the eigenvalues of �(T; 0) (except the one thatis equal to 1 due to the zero Floquet exponent) have magnitudes that is \much" smaller than 1. Thisassumption is not justi�ed for high-Q circuits. We will see an example for this later.10Computing the large-signal periodic steady-state for autonomous circuits is still an active research area,which is especially di�cult for high-Q oscillator circuits.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 196for various oscillator circuits. Oscillator circuits are usually small circuits, i.e the dimen-sion of the state vector is not too large. Hence, a full eigenvalue/eigenvector calculationfor �(T; 0) is feasible. Even with a full eigenvalue/eigenvector calculation for �(T; 0), thephase noise characterization algorithm discussed above is still very e�cient.We used this implementation to characterize the phase noise of the oscillator cir-cuits we have already characterized with the algorithm in Section 6.2.2. Next, we willpresent these results and discuss various issues in using this algorithm, and comment onthe results we obtain. In the presentation of the examples, we will refer to the phase noisecharacterization algorithm presented in Section 6.2.2 as Algorithm I, and the phase noisecharacterization algorithm presented in Section 6.5 as Algorithm II.6.5.1 ExamplesWe �rst applied this algorithm to the simple negative resistance oscillator weconsidered in Section 5.10.4. This circuit has only two state variables, i.e. the inductorcurrent and the capacitor voltage. We computed the 2 � 2 �(T; 0) for this circuit, andperformed an eigenvalue/eigenvector calculation. The two eigenvalues computed are�1 = 0:996652�2 = 0:033287As expected, one of the eigenvalues is very close to 1.11 The other one is almost two ordersof magnitude smaller than 1, justifying our assumption in the derivation of Algorithm II.We computed �2 � using Algorithm II and obtained the same result as the one that wasobtained with Algorithm I in Section 6.2.2.We calculated the state-transition matrix �(T; 0) for both the ring-oscillator con-sidered in Section 6.2.3.1 and the relaxation oscillator considered in Section 6.2.3.2, andperformed a full eigenvalue/eigenvector calculation. The �rst seven eigenvalues (in orderof decreasing magnitude) with magnitudes larger than the machine � are shown in Table6.3. As expected, one of the eigenvalues for both of the oscillators is close to 1. The secondlargest eigenvalue for the ring oscillator is more than two orders of magnitude smaller than11Since we calculate the state transition matrix �(T; 0) by numerical integration which discretizes time, thiseigenvalue is not equal to 1. If we use smaller time steps to calculate �(T; 0), then the eigenvalue calculatedbecomes closer to 1. However the time discretization is not the only numerical error source. Numericalerrors also arise due to errors in calculating the oscillation period T and in the numerical calculation of theeigenvalues.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 197Ring Oscillator Relaxation OscillatorState vector dimension 105 44Eigenvalues1 0.974039 1.1341392 6.676138e-3 3.941591e-163 -5.507e-3 + j 7.128e-4 �4 -5.507e-3 - j 7.128e-4 �5 2.475e-4 + j 2.946e-3 �6 2.475e-4 - j 2.946e-3 �7 5.393619e-4 �Table 6.3: Eigenvalues of �(T; 0) for the ring and the relaxation oscillators1, whereas for the relaxation oscillator it is 15 orders of magnitude smaller, justifying ourassumption in using Algorithm II for phase noise characterization. The �2 � values calcu-lated using Algorithm II, and the ones obtained with Algorithm I in Section 6.2.3.1 andSection 6.2.3.2 were the same.We now consider the harmonic oscillator of Section 6.2.3.3. Table 6.4 shows elevenof the eigenvalues for the state-transition matrix �(T; 0). The other �ve eigenvalues weresmaller than the machine �. We observe that �(T; 0) has 7 eigenvalues with magnitudes thatare very close to 1, some of them as complex conjugate pairs. Only one of these eigenvaluesis the one that is theoretically equal to 1 as we know from the Floquet theory of an oscillatorwith a stable limit cycle. All the others have magnitudes less than 1. Because of variousnumerical error sources (mainly the time discretization), the eigenvalues are not calculatedprecisely. Since this circuit is a high-Q one, �(T; 0) has eigenvalues with magnitudes closeto 1 other than the one which is supposed to be equal to 1 as obtained theoretically. Becauseof numerical errors, we can not identify the eigenvalue that is supposed to be equal to 1theoretically.12 For the oscillator circuits we have considered up to now, all of the othereigenvalues have magnitudes much smaller than 1, so we were not faced with the problemof identifying the correct eigenvalue. At Step 4 of Algorithm II, we need to identify thiseigenvalue so that we can choose the corresponding eigenvector of �(T; 0)T as v1(0). Asseen in Table 6.4, the eigenvalues with magnitudes close to 1 are very \close" to each other,so it is not feasible to identify the correct eigenvalue by calculating �(T; 0) more accurately12The issue of identifying the correct eigenvalue was not addressed by Kaertner in [16].



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 198Harmonic OscillatorState vector dimension 16Eigenvalues1 9.654e-1 + j 1.402e-22 9.654e-1 - j 1.402e-23 9.985166e-14 9.99999999827e-1 + j 1.886e-55 9.99999999827e-1 - j 1.886e-56 9.99999999982e-17 9.99999899752e-18 7.068e-1 + j 5.030e-19 7.068e-1 - j 5.030e-110 4.878e-111 3.110e-2Table 6.4: Eigenvalues of �(T; 0) for the harmonic oscillatorby taking smaller time steps. Instead, we use the following relationship to identify thecorrect eigenvalue vi(0)T u1(0) = vi(0)T _xs(0)= 8<: 1 i = 10 i 6= 1 (6.94)which follows from (2.152), since vi(0) are the eigenvectors of �(T; 0)T and ui(0) arethe eigenvectors of �(T; 0) corresponding to the same eigenvalues. We �rst calculateu1(0) = _xs(0) from the large-signal periodic steady-state solution xs(t). Next, we per-form a full eigenvalue-eigenvector decomposition of �(T; 0)T , and select the eigenvectorswith corresponding eigenvalues that are close to 1. Then, we compute the dot products ofthese eigenvectors with u1(0) = _xs(0). Of course, (6.94) will not be satis�ed exactly dueto numerical errors, but we will still be able to identify the eigenvector that correspondsto the eigenvalue that is theoretically equal to 1. This identi�cation is not feasible by justlooking at the eigenvalues. Using the above procedure, we have identi�ed the 3rd eigenvaluein Table 6.4 as the one that is theoretically equal to 1. Then, we used the eigenvector of�(T; 0)T that corresponds to this eigenvalue in Algorithm II to characterize the phase noisefor the harmonic oscillator, and we obtained the same result as the one that was obtained



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 199with Algorithm I in Section 6.2.3.3. Recall that, in Section 6.3, we derived Algorithm IIfrom Algorithm I assuming that all the other eigenvalues of �(T; 0) other than the one thatis exactly equal to 1 have magnitudes \much" less than 1. Clearly, this assumption is notsatis�ed for the harmonic oscillator, but, still, we obtained the same phase noise charac-terizations using both Algorithm I and Algorithm II. We conjecture that the derivation ofAlgorithm II from Algorithm I is still valid for an oscillator with a stable limit cycle evenwhen there are other eigenvalues with magnitudes \close" to 1. We do not currently havea proof for this claim, but we will provide some intuition for why we believe this claimis true: Even when the magnitudes of the eigenvalues corresponding to other modes areclose to 1, the \directions" of the eigenvectors of �(T; 0) corresponding to these eigenvalueswill be di�erent enough from the \direction" of the eigenvector, i.e. u1(0) = _xs(0), thatcorresponds to the eigenvalue that is exactly equal to 1.If there is a second eigenvalue close to 1 with an eigenvector that has a directionclose to u1(0) = _xs(0), then this suggests that the limit cycle of the oscillator is close tobeing unstable. This condition can be observed using time-domain noise simulation. Theenvelope of the noise variance of a state variable for this oscillator will be a parabola insteadof a linear ramp. We will now present such an example. Let us consider the nonlinearautonomous system that is described by the following state equations:_x = x� 0:01 x y (6.95)_y = �y + 0:02 x y (6.96)These state equations describe the Volterra predator-prey model. The limit cycle this systemsettles into depends on the initial conditions the system is started at. Hence, this systemhas an in�nite number of limit cycles. Thus, the limit cycle is not stable, and disturbanceswill cause the nonlinear autonomous system to move from one limit cycle to another. Twolimit cycles resulting from the initial conditionsx(0) = 20 y(0) = 20and x(0) = 19 y(0) = 19are shown in Figure 6.11. We linearized the system around the limit cycle for the initialconditions x(0) = 20 y(0) = 20
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    Volterra’s Predator-Prey Model
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    50.00     100.00     150.00    0.00Figure 6.11: Two limit cycles for the Volterra predator-prey modeland inserted two white noise sources as disturbances to perform a time domain noise sim-ulation. Figure 6.12 shows the noise variance of the state variable x, which has a parabolicenvelope as opposed to a linear ramp, which suggests an unstable limit cycle. The noisecorrelation E [Xn(tref )Xn(t)] for tref � 33:3 secs is in Figure 6.13, which has a linearramp envelope. This indeed means that the LPTV system has two Floquet exponentsthat are equal to 0. We computed the 2 � 2 �(T; 0) for this system, and performed aneigenvalue/eigenvector calculation to obtain�1 = 9:99448e� 1 + j3:137e� 2�2 = 9:99448e� 1� j3:137e� 2two complex conjugate eigenvalues close to 1! In fact, the system has two eigenvalues at1, hence unstable. Due to numerical errors, the two eigenvalues calculated are not exactlyequal to 1. There is no point in trying to characterize phase noise for this system, becausethe de�nition of phase noise for this system does not make sense. Phase noise de�nitiononly makes sense for a nonlinear autonomous oscillator circuit that is designed to settle intoa stable limit cycle. For an oscillator with a stable limit cycle, phase noise characterizes
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Noise Variance (volts^2 X 10e-12)
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Figure 6.12: Noise variance for the Volterra predator-prey model
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Figure 6.13: Noise correlation for the Volterra predator-prey model



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 202the errors in the transition times as compared to a noiseless oscillator with transition timesseparated evenly in time with the period of the oscillation.6.6 Non-White Noise Sources and Phase NoiseUp to this point in our treatment of phase noise, we considered oscillator circuitswith thermal and shot noise sources, i.e. white Gaussian noise sources only. For oscillatorcircuits with thermal and shot noise, we found out that the phase noise in general canbe modeled as a discrete-time random walk process. We obtained this result in generalfor multiple white noise sources in the oscillator circuit, but we could have obtained it fora single noise source and use the superposition principle to generalize it to the multiplenoise source case. We can use the superposition principle for uncorrelated noise sourcesby summing mean-square noise powers, because we model the oscillator circuit as a linearsystem for noise analysis. For instance, (6.85) can be rewritten as�2 � = (2�fc)2 1T Z T0 vT1 (�)F(�)F(�)T v1(�) d� (6.97)= pXi=1(2�fc)2 1T Z T0 [vT1 (�) fi(�)]2 d� (6.98)where p is the number of the noise sources, i.e. the column dimension of F, and fi is theith column of F which maps the ith noise source to the nodes of the circuit. Hence,(2�fc)2 1T Z T0 [vT1 (�) fi(�)]2 d� (6.99)represents the contribution of the ith noise source to �2 �.For a white noise source, phase noise is identi�ed as a random walk process, whichcan be obtained by sampling a Wiener process, i.e. the integral of a white noise process.We can then model the discrete-time phase noise process due to a white noise source asthe output of a SISO system which is a cascade of three blocks: an ideal integrator, a gainblock and a sampler. The input to the system is a standard stationary white Gaussian noisesource. The gain for the gain block is given as the square root of (6.99) for a single noisesource. If there are multiple white noise sources, this model is still valid when we set thegain to the square root of �2 � given in (6.98).We will now address the following questions:



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 203� Can we model the discrete-time phase noise process due to a non-white noise sourcein the circuit as the output of a SISO system which is a cascade of three blocks: anideal integrator, a gain block and a sampler. The input to the system is a normalized,i.e scaled, version of the non-white noise source. In other words, is the phase noisemodel we have described above for a white noise source also valid for a non-whitenoise source?� If the answer to the above question is a�rmative, how do we calculate the gain of thegain block in the model so that we can characterize the phase noise of an oscillatordue to non-white noise sources?13We will answer the above questions for a single noise source that can be obtainedby passing a stationary white noise through a low pass �lter with a single pole. We willaugment the MNA equations for the oscillator circuit so that the low pass �lter that is usedin the model of the non-white noise source becomes part of the system:I(X) + ddt Q(X) + b Y (t) = 0 (6.100)ddt Y = �
 Y + �(t) (6.101)where Y (t) represents the low pass �ltered white noise source, and the constant vector bmaps this noise source to the nodes of the oscillator circuit. We augment the state vectorX for the oscillator circuit with Y to obtain the new state vector Xa. Now, we can rewrite(6.100) as a system of Ito stochastic di�erential equations:Ia(Xa) + ddt Qa(X) +B �(t) = 0 (6.102)where Xa = 24 XY 35 B = 24 01 35 (6.103)and Ia(Xa) = 24 I(X) + b Y
 Y 35 ; Qa(Xa) = 24 Q(X)Y 35 : (6.104)If we apply the small noise expansion of Section 5.3 to (6.102), and go through all the stepsof Section 5.4 to calculate the augmented versions of E and F in (5.74) for the augmented13Recall that we presented two algorithms, referred to as Algorithm I and Algorithm II to calculate thegain, i.e. the square root of �2 �, for the white noise case.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 204system, we obtain Ea = 24 E b0 �
 35 Fa = 24 01 35 (6.105)where E is for the unaugmented system. Note that b in (6.105) is not going to be in generalequal to the one in (6.104). In fact, even when b in (6.104) is a constant vector, b in (6.105)can be time-varying. However we will use the same symbol in order not to complicate thenotation.The augmented Ea is a periodically time-varying matrix. We will now express thestate transition matrix of the homogeneous LPTV system with the coe�cient matrix Eain terms of the state transition matrix of the LPTV system with coe�cient matrix E. Inother words, we will express the state transition matrix �a(t; �) for the system_ya = Ea(t)ya (6.106)in terms of the state transition matrix �(t; �) for_y = E(t)y: (6.107)It can be shown that �a(t; �) is given by�a(t; �) = 24 �(t; �) a(t; �)0 exp (�
(t� �)) 35 (6.108)where a(t; �) = Z t� �(t; z)b(z) exp(�
(z � �))dz: (6.109)(6.108) can be easily veri�ed using the representation of Ea in (6.105).We now proceed as in Section 6.3 to calculate the analytical solution of (5.74) asgiven in (6.51). For the augmented system, (6.51) takes the formKa(t) = �a(t; 0)Ka0�a(t; 0)T + Z t0 �a(t; �)Fa(�)Fa(�)T �a(t; �)T d� (6.110)We set the initial condition to Ka0 = Ka(0) = 24 0 00 12
 35 (6.111)In (6.111), we speci�cally set the initial condition for the variance of the augmented statevariable Y to 12
 . Recall that the augmented state variable Y represents a low pass �ltered



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 205white noise. We would like the augmented state Y to represent a WSS process. If we setthe initial condition for the variance of Y to 0, then it will not be a WSS process, and infact its variance as a function of time will be given byE hY (t)2i = 1� exp (�2
t)2
 (6.112)which satis�es E �Y (0)2� = 0. As seen in (6.112), the steady-state value of the variance forY is equal to 12
 . This is exactly why we set the initial condition to this value so thatE hY (t)2i = 12
 for t � 0 (6.113)is satis�ed, and hence, Y is a WSS process that is in steady-state.We will now calculate the kth diagonal entry of Ka(t), which is the noise varianceof the kth state variable that is either an inductor current or a node voltage with a capacitivepath to ground. We restrict k to be between 1 and n. The (n+1)th state variable representsthe low pass �ltered white noise, and hence the (n + 1)th diagonal entry of Ka(t) is givenby (6.113). The kth diagonal entry of Ka(t) is given byeTk Ka(t) ek (6.114)where ek = h 0 � � � 0 1 0 � � � 0 iT (6.115)with 1 as the kth entry.We will calculate the �rst term in (6.110) due to the initial conditions and thesecond integral term separately. We will refer to the term due to the initial conditions asKai, and the second term as Kap. We now proceed to calculate Kai(t):Kai(t) = �a(t; 0)Ka0�a(t; 0)T= 24 �(t; 0) a(t; 0)0 exp (�
t) 35 24 0 00 12
 35 24 �(t; 0) a(t; 0)0 exp (�
t) 35T (6.116)= 24 a(t;0)a(t;0)T2
 exp (�
(t��))a(t;0)2
exp(�
(t��))a(t;0)T2
 exp (�2
t)2
 35 (6.117)where we used (6.108) and (6.111). From (6.117), the kth diagonal entry of Kai(t) is givenby eTk Kai(t) ek = eTk a(t; 0)a(t; 0)T2
 ek (6.118)= ak(t; 0)22
 (6.119)



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 206where ak(t; 0) denotes the kth entry of the n � 1 vector a(t; 0). From (6.109)a(t; 0) = Z t0 �(t; z)b(z) exp(�
z)dz: (6.120)Now, we approximate �(t; z) in (6.60) with�(t; z) = u1(t)vT1 (z) (6.121)as explained in Section 6.3. Then, we substitute (6.121) and (6.120) in (6.119), and aftersome simple manipulations we obtaineTk Kai(t) ek = 12
 _xs(t)2 �Z t0 vT1 (z)b(z) exp(�
z)dz�2 (6.122)where _xs(t) was de�ned by (6.76) as the kth entry of u1(t). Recall that u1(t) is the derivativeof the large-signal periodic steady-state solution of the oscillator.We now proceed to calculate Kap(t), the second term in (6.110):Kap(t) = Z t0 �a(t; �)Fa(�)Fa(�)T �a(t; �)T d�= Z t0 24 �(t; �) a(t; �)0 e�
(t��) 3524 01 3524 01 35T 24 �(t; �) a(t; �)0 e�
(t��) 35T d�= Z t0 24 a(t; �)exp (�
(t� �)) 35 h a(t; �)T exp (�
(t� �)) iT d� (6.123)where we used (6.108). From (6.123), the kth diagonal entry of Kap(t) is given byeTk Kap(t) ek = Z t0 ak(t; �)2 d� (6.124)where ak(t; �) denotes the kth entry of the n� 1 vector a(t; �). Then, we proceed as in thecalculation of Kai(t), and substitute (6.121) and (6.109) in (6.124), and after some simplemanipulations we obtaineTk Kap(t) ek = _xs(t)2 Z t0 �Z t� vT1 (z)b(z) exp(�
(z � �))dz�2 d� (6.125)Now, we calculate the kth diagonal entry of Ka(t)eTk Ka(t) ek = eTk Kai(t) ek + eTk Kap(t) ek (6.126)= _xs(t)28><>: 12
 hR t0 vT1 (z)b(z) exp (�
z)dzi2+ R t0 hR t� vT1 (z)b(z) exp (�
(z � �))dzi2 d� 9>=>; (6.127)



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 207where eTk Kai(t) ek and eTk Kap(t) ek were substituted from (6.122) and (6.125) respectively.We calculated the noise variance of the kth state variable due to a WSS non-white noisesource that was obtained by low pass �ltering a WSS white Gaussian process. Recall that, inSection 6.3, we have done the same calculation for white noise sources and obtained (6.78).We observe that (6.78) and (6.127) are in the same form, i.e. they can be expressed as theproduct of the periodic _xs(t)2 and a modulating function. For multiple white noise sources,the modulating function is given by (6.79) as calculated in Section 6.3. The modulatingfunction for the non-white noise source is given by12
 �Z t0 vT1 (z)b(z) exp(�
z)dz�2 + Z t0 �Z t� vT1 (z)b(z) exp (�
(z � �))dz�2 d� (6.128)as seen in (6.127). When the modulating function in (6.79) is sampled at the peak points of_xs(t)2, we obtain a linear ramp waveform. This was the reason we were able to model phasenoise for white noise sources as the sampled output of an ideal integrator-gain block that isdriven by a white noise source. Now, the question is: What do we obtain when we samplethe modulating function in (6.128) at the peak points of _xs(t)2? Note that vT1 (z)b(z) in(6.128) is a scalar that is a periodic function of its argument z, and recall that vT1 (�)F(�)in (6.79) is a periodic function of its argument, and it is also a scalar if there is only onenoise source in the circuit. Now, we will �rst evaluate (6.128) by substitutingvT1 (z)b(z) = c: (6.129)We will later consider the general case when vT1 (z)b(z) is periodically time-varying. If wesubstitute (6.129) in (6.128) and evaluate the integrals, we obtainc2 ��1 + 
t+ exp (�
t)
3 � (6.130)However (6.130) is exactly equal to the variance of a stochastic process that can be obtainedas the output of an ideal integrator and a gain block (with gain c) when driven by the samenon-white noise source that was in the oscillator. To show this equivalence, we will calculatethe variance of the output of an ideal integrator driven by the low pass �ltered white noise.It can be shown that the autocorrelation function for the WSS low pass �ltered white noiseis given by RY (�) = exp (�
 j� j)2
 : (6.131)



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 208Let this process Y be the input to an integrator, and let Z be the output. Then, thevariance of Z as a function of time is given by [40]E hZ(t)2i = Z t0 Z t0 RY (t1 � t2)dt1 dt2 (6.132)= �1 + 
t+ exp (�
t)
3 : (6.133)Thus, we obtain the same expression in (6.130). When vT1 (z)b(z) is a constant c, i.e. when(6.129) is satis�ed, we conclude that the phase noise of the oscillator due to a non-whitenoise source can be modeled as the sampled (at the peak points of _xs(t)2) output of a systemthat is a cascade of an ideal integrator and a gain block with gain c when driven by thesame non-white noise source that was in the oscillator. It can be shown that this model isalso valid when vT1 (z)b(z) is periodically time-varying. We will discuss the calculation ofthe gain when vT1 (z)b(z) is periodically time-varying.We will �rst give an approximate formula for the square of the gain A without aderivation, and then discuss some special cases to provide some intuition into it. We expandthe periodic vT1 (z)b(z) into a Fourier series:vT1 (z)b(z) = 1Xm=�1 cm exp (j2�mfcz): (6.134)Then, the formula for the square of the gain is given by:A2 = (2�fc)2 1Xm=�1 jcmj2 
2
2 + (2�mfc)2 : (6.135)Let us know consider the case when 
!1, i.e. the bandwidth of the low pass �lter goesto 1, which means that the noise source approaches a white noise source.14 Then, (6.135)reduces to A2 = (2�fc)2 1Xm=�1 jcmj2 (6.136)= (2�fc)2 1T Z T0 [vT1 (�)b(�)]2 d� (6.137)which is exactly in the same from as (6.99). Recall that (6.99) is the square of the gain fora single white noise excitation. Thus, (6.135) is consistent with our results for white noisesources.14Actually, to take this limit one has to scale the noise source Y (as de�ned by (6.101)) by 
 so that itbecomes a white noise source with unity spectral density in the limit 
!1. One also has to truncate theFourier series in (6.134) so that this limit makes sense.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 209When 
 � 2�fc, i.e. when the bandwidth of the noise source is much smaller thanthe fundamental frequency of the oscillator, (6.135) reduces toA2 = (2�fc)2 jc0j2: (6.138)We now have a way of characterizing the phase noise of an oscillator due to anon-white noise source. We already have a numerical algorithm to calculate the periodicvector vT1 (z). Thus, we can calculate the Fourier series coe�cients in (6.134), and usethem in (6.135) to calculate the gain of the gain block. Then, phase noise is obtained bysampling the output of a SISO system which is the cascade of an ideal integrator and a gainblock driven by the non-white noise source. The sampled phase noise is not a random walkprocess as it was the case for the white noise source case. Using the above model, we cancalculate the autocorrelation function of the sampled phase noise process by �rst calculatingthe autocorrelation function of the integrated non-white noise source, then scaling it by thesquare of the gain given in (6.135) and �nally sampling it.We have seen in Section 3.4.1 that 1=f noise sources can be modeled as a sum-mation of Lorentzian spectra, i.e. as the summation of a number of low pass (single pole)�ltered white noise sources. So, we can use our results for a low pass �ltered white noisesource to characterize the phase noise of an oscillator due to a 1=f noise source. We accom-plish this using the superposition principle.15 We separately calculate the autocorrelationfunction of sampled phase noise due to each low pass �ltered white noise component in themodel of a 1=f noise, and then sum these autocorrelation functions to calculate the overallautocorrelation function due to the 1=f noise source. For 1=f noise sources, noise power willusually be concentrated at frequencies much below the oscillation frequency 2�fc. Thus,
 � 2�fc will be satis�ed for all of the signi�cant low pass �ltered white noise componentsin the model of a 1=f noise source. Then, (6.138) can be used for all of the components.Kaertner in [16] also proposes a phase noise characterization technique for 1=f noise sources.After some \digging" into his notation, it can be shown that his results are consistent withwhat we have concluded above.Finally, we use superposition to combine the phase noise characterizations we15We can use the superposition principle, because we model the oscillator as a linear system for noisesources. However the application of superposition to stochastic process excitations is not the same as itis for deterministic excitations. For stochastic process excitations, we use superposition with mean squarequantities such as spectral density or autocorrelation functions. The stochastic process excitations need tobe independent to use superposition.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 210obtained for white and non-white noise sources by separately calculating the autocorrelationfunctions due to each noise source and then summing them.6.7 Phase Noise of Phase-Locked LoopsIn this chapter, we concentrated on the characterization of phase noise of open-loop, i.e. free running, oscillators. Most often, oscillators are used as the reference oscillatoror the voltage/current-controlled oscillator in a phase-locked loop. We would like to be ableto characterize the phase noise of oscillators in closed-loop con�gurations, i.e. when theyare placed in phase-locked loops.If we reexamine the phase noise characterization algorithm we presented in Section6.2.2 for open-loop oscillators, we can see that it can be easily generalized to characterize thephase noise of closed-loop oscillators. For the closed-loop case, the circuit may not have,and most often will not, have a periodic large signal steady-state solution. However atsteady-state, i.e. when the loop is in lock, the VCO will be in \quasi" periodic steady-state.We now consider a simple phase-locked loop [1], which uses the relaxation oscillatorof Section 6.2.3.2 as the VCO, a Gilbert multiplier type phase detector and a single polelow pass �lter as the loop �lter. The reference is a noiseless periodic signal onto which theVCO is supposed to lock on. We �rst simulated this phase-locked loop (at the transistor-level) using transient analysis till the VCO locked onto the reference signal. Hence, wecalculated the large signal noiseless steady-state of the circuit. Then, we used the time-domain noise simulation algorithm to calculate the noise variance of the voltage acrossthe timing capacitor in the VCO when the loop is in lock. The variance waveform is inFigure 6.14. In this simulation, the initial condition for the noise variance was chosen to be0. We observe that the envelope for the noise variance waveform settles to a steady-statevalue. Recall that the noise variance for the open-loop case had a linear ramp envelopethat grows without bound. However we are not surprised with this observation, becausethe phase-locked loop we are considering is not an autonomous system. Even though thenoise voltage for the timing capacitor is nonstationary for the open-loop case, it becomesa quasi-cyclostationary process as a result of the negative feedback that comes with thephase-locked loop. Following the phase noise characterization algorithm of Section 6.2.2,we sample the envelope of the noise voltage variance waveform in Figure 6.14, and obtainthe variance of the sampled phase noise process as a function of time. The variance of
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   Time(sec)x10e-6Figure 6.14: Timing capacitor voltage noise variance for the closed-loop multivibratorthe phase noise process settles to a time-invariant steady-state value. Hence, the sampledphase noise is a WSS process at steady-state. Recall that the sampled phase noise for theopen-loop case is a random walk process, with a variance that increases monotonically withtime.16 In theory, it is possible to use time-domain noise simulation to characterize thephase noise of oscillators in closed-loop con�gurations at the transistor-level as we did abovefor a simple phase-locked loop. However, in practice, there are several di�culties. Firstof all, even calculating the large-signal steady-state solution of a phase-locked loop canbe quite hard. This is due to the fact that a phase-locked loop is a sti� system, i.e. ithas widely varying time constants. The time constant of the negative feedback loop isusually much greater than the period of oscillation for the VCO. As a result, one has to16Note that these results were obtained for a noiseless reference signal for the phase-locked loop. If thereference signal is generated by a real oscillator, instead of being an ideal noiseless periodic waveform, theclosed-loop VCO phase noise will not be a WSS process. Even though the negative feedback a�ects thenoise generated in the VCO in such a way so that the resulting closed loop phase noise is WSS, it does nothave the same a�ect on the noise generated in the reference oscillator. If the reference oscillator itself is anopen-loop circuit with a nonstationary phase noise, this will cause the phase noise of the closed-loop VCOto be nonstationary.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 212simulate for many cycles of the VCO to be able to observe the behavior of the loop. Thesituation gets worse when the loop has frequency dividers, which are almost always presentin phase-locked loops designed for clock generation and frequency synthesis applications.Even if it is possible to calculate the large signal steady-state at the transistor-level, thetime-domain noise simulation at the transistor level (with the current numerical algorithms)is not feasible for complicated phase-locked loop circuits with many components. In thenext chapter, we will present a hierarchical behavioral modeling and simulation approachfor phase noise characterization of phase-locked loops. As we will see, this approach notonly enables us to characterize the phase noise of signals generated by complicated phase-locked loops in a bottom-up fashion, it also supports the top-down hierarchical design ofphase-locked loops.6.8 SummaryIn this chapter, we investigated the phase noise/timing jitter phenomenon whichis of major concern in electronic systems that contain oscillators. We �rst tried to give someintuition into the problem, and pointed out that both phase noise and timing jitter are re-lated to the noise in the transition or zero-crossing times of an oscillation waveform. We gavea formal de�nition for phase noise and timing jitter as discrete-time stochastic processes.This de�nition was given for a general noisy oscillation waveform. Then, we presented aprobabilistic characterization algorithm for phase noise based on using the time-domainnoise simulation technique of Chapter 5. We used this phase noise characterization algo-rithm on several practical oscillator circuits, and found out that phase noise of an oscillatorcan be modeled as a discrete-time random walk process with white noise sources, i.e. ther-mal and shot noise sources. The phase noise characterization algorithm of Section 6.2.2,i.e. Algorithm I, gave us the characterization for a speci�c state variable of the oscillatorcircuit. Using results from the Floquet theory of linear periodically time-varying systems,we showed that the characterization that is calculated by Algorithm I is in fact independentof the state variable used. Furthermore, we showed that, in general17, the phase noise ofan oscillator with white noise excitations can be modeled as a random walk process, whichis consistent with the results we obtained with Algorithm I on several practical oscillator17For this derivation, we assumed that the Floquet exponents (except the one that is exactly equal to 0)associated with the LPTV system obtained by linearizing the oscillator circuit around the periodic steady-state have magnitudes much less than 1.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 213circuits. Moreover, the analysis in Section 6.3 resulted in a more speci�c and e�cient algo-rithm, i.e. Algorithm II, to characterize the random walk process that models phase noise.We then reviewed Franz Kaertner's work on phase noise [16], which we believe is one of thefew that treats the problem rigorously. We reviewed his de�nition of phase noise and thecharacterization algorithm and pointed out that his algorithm is equivalent to AlgorithmII, even though we derived it using a di�erent de�nition of phase noise from Algorithm I.Our derivation of Algorithm II was based on the time-domain noise simulation techniqueof Chapter 5. Kaertner's de�nition of phase noise is based on the Floquet theory. UsingFloquet theory, we showed the equivalence of his characterization algorithm and ours. Weused Algorithm II on the same oscillator circuits we characterized with Algorithm I, andobtained the same results as expected, since Algorithm II was derived from Algorithm I. Wealso discussed various issues in using Algorithm II.We then showed that the phase noise of an oscillator with white noise sources canbe modeled as the output of a SISO system that is a cascade of an integrator, a gain blockand a sampler driven by a standard white Gaussian noise processes. Then, all we need isto calculate the gain of the gain block to fully characterize phase noise. We pointed outthat the gain can be calculated either using Algorithm I or Algorithm II. We then showedthat (again using the techniques of Chapter 5) the same model is valid for a non-whitenoise source, that is obtained by a single pole low-pass �ltering of a white noise source.In this case, the noise source driving the integrator-gain-sampler system is the low-pass�ltered white noise source. Hence, the phase noise of an oscillator due to a non-white noisesource can not be modeled as a random walk process, but it is modeled as a discrete-timeprocess that can be obtained by sampling a continuous-time process that is the output ofan integrator that is driven by the non-white noise source. We then presented the version ofAlgorithm II for a non-white noise source to calculate the gain of the gain block in the phasenoise model. We discussed two special cases, when the bandwidth of the non-white noisesource is either very large or very small compared with the oscillation frequency. In thelimit as the bandwidth of the non-white noise becomes 1, the characterizations obtainedby the two versions of Algorithm II (for white and non-white noise sources) were consistentas expected. We also discussed how one can use the above results to characterize the phasenoise of an oscillator due to 1=f noise sources.We discussed the phase noise characterization of closed-loop oscillators, i.e. phase-locked loops, and pointed out the applicability of Algorithm I to this case, and presented



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 214the phase noise characterization of a simple phase-locked loop. We also pointed out somepractical di�culties in transistor-level phase noise characterization of phase-locked loops,and motivated for a hierarchical approach, which is going to be discussed in the next chapter.



215Chapter 7Behavioral Modeling andSimulation of Phase-Locked LoopsPhase-locked loops (PLLs) are widely used as clock generators for microprocessors,for the frequency synthesis of the LO (local oscillator) signal in transceivers, etc. Almostevery RF transceiver used in wireless communications contains at least one frequency syn-thesis PLL. PLL circuits can be quite large and complex. They may contain both analogand digital components. A PLL is basically a nonlinear feedback system. PLLs have aunique property that makes their analysis and simulation, even just for their deterministicbehavior, quite di�cult: A PLL is a sti� system with widely-varying time constants.One of the major concerns in the design of PLLs for clock generation applicationsis the timing jitter of the clock signal produced by the PLL. Accurate and e�cient charac-terization of the timing jitter of the signal produced by the PLL is crucial. For PLLs thatare used as frequency synthesizers in transceivers, the spectral purity of the oscillation sig-nal is extremely important. Ideally, one would like the oscillation signal to be at a constantfrequency with equally spaced transitions. However, due to noise and systematic (i.e. nonrandom) nonidealities in the system, the signal frequency 
uctuates and the transitions ofthe oscillation are not equally spaced in time. Accurate and e�cient characterization of thespectral properties of the oscillation signal in the presence of noise and other systematicnonidealities is crucial. We would like to be able to get estimates for the timing jitter/phase



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 216noise of the signal as well as the distortion due to systematic nonidealities at the conceptphase of our PLL design, so that we can make design decisions and choose and/or develop aPLL architecture that will meet the speci�cations that are given to us. We would like to beable to accomplish this without having to design all of the PLL components in detail. Oncethis top-down design process is completed, we would like to be able to simulate the PLLbefore we fabricate it, and verify that it indeed meets the speci�cations we have designedit for. Again, at this stage of the design, veri�cation of the timing jitter/phase noise andthe distortion performance is crucial.Our above discussion dictates the following requirements on any modeling andsimulation technique for the design of PLLs:� The model that is to be used to simulate the whole PLL circuit has to be abstractenough so that we will be able to see the results in a reasonable amount of time,considering that the simulation of the PLL will be the part of an optimization (manualor automated) loop.� The model for the simulation of the PLL is generic enough so that we can simulate iteven when we do not have the detailed designs of its building blocks.� The model for the PLL has to capture nonideal e�ects so that we can use it to estimatethe distortion and phase noise/timing jitter of the output.At �rst sight, these requirements could seem to be contradictory. We are required to useabstract and generic models for e�ciency and generality. On the other hand, we are re-quired to capture seemingly low-level e�ects such as distortion causing nonidealities andthe timing jitter/phase noise behavior. In this chapter, we will present models and simu-lation techniques for PLLs which satisfy the above requirements, which we will refer to asbehavioral modeling and simulation techniques for PLLs. The behavioral models we will bedescribing for the timing jitter/phase noise behavior of PLLs will rely on the techniquesand results of Chapter 6, where we already discussed the characterization and modeling oftiming jitter/phase noise for open-loop oscillators.The objective of behavioral modeling, in general, is to represent circuit functionswith abstract mathematical models that are independent of implementation details. Whilethere is a great deal of activity to de�ne and develop a standard analog hardware behavioraldescription language, in our opinion, there is still little work being done to develop behavioral



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 217models and specialized simulation techniques for analog and mixed-signal circuits. The top-down design process implies a well-de�ned behavioral description of the analog function.The behavioral characterization of analog circuits is quite di�erent from the digital one;the analog characterization is composed of not only the function that the circuit is toperform, but also the second order non-idealities intrinsic to analog operation. In fact,errors in the design often stem from the non-ideal behavior of the analog section, not fromthe selection of the \wrong" functionality. To shorten the design cycle, it is essential thatdesign problems be discovered as early as possible. For this reason, behavioral simulationis an essential component of any methodology for the design of analog and mixed-signalsystems. This simulation can help in selecting the correct architecture to implement theanalog function with constraints on the amount of non-idealities that is allowable given aset of speci�cations at the system level. The reader is referred to [59, 4] for a detailedtreatment of behavioral modeling and simulation for analog and mixed-signal circuits, andits use within the framework of a top-down constraint-driven design methodology for analogand mixed-signal systems.In Chapter 4, Chapter 5 and Chapter 6, we discussed the analysis and simulationof noise in electronic circuits and systems that can be described by a system of algebraicand stochastic di�erential equations in MNA form. The dynamics of any electronic circuitor system, which is modeled as an interconnection of basic network elements such as re-sistors, capacitors, inductors, controlled sources, independent voltage and current sources,etc., can be described with a system of algebraic and stochastic di�erential equations inMNA form. Recall that the models of basic semiconductor devices (diodes, transistors,etc.) are expressed as an interconnection of basic network elements. We will refer to themodel of an electronic circuit that is described as an interconnection of basic semiconductordevices and other network elements as a transistor-level model. In the former chapters,we were mainly dealing with electronic circuits that were described with a transistor-levelmodel. The noise sources in the system are then the shot, thermal and 1=f noise sourcesassociated with the semiconductor devices and other dissipative components. On the otherhand, the negative resistance oscillator we discussed in Section 5.10.4 was not described bya transistor-level model. The nonlinear resistor in this circuit that has a negative resistanceregion was described by a macromodel, which could have been realized using some inter-connection of semiconductor devices and other components. Thus, electronic circuits whichcontain macromodels as well as semiconductor devices can be described with a system of



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 218algebraic and stochastic di�erential equations in MNA form. Moreover, one can \emulate"the model of any system (which need not be electronic) that is described as a system ofstochastic di�erential equations by using the basic network elements, e.g. nonlinear andlinear controlled sources. We already saw an example for this at the end of Section 6.5, thesimple Volterra model of a predator-prey system.Hence, we can perform noise analysis of all kinds of electronic circuits (and otherkinds of systems with stochastic excitations that satisfy our assumptions), which are mod-eled as an interconnection of basic network elements with noise sources that can be modeledin terms of white noise sources. However we saw in Section 6.7 that it may not be feasible orpractical to perform a noise analysis for an electronic circuit fully described at the transistor-level. Phase-locked loops (PLLs) used for clock generation and as frequency synthesizers inRF transceivers are such circuits. One idea in trying to overcome the di�culties in analyzingand simulating PLLs was to use macromodels for some of the components instead of theirfull transistor-level description. Traditionally, macromodeling for analog circuits is used tomean creating a model of a circuit block from the implementation details (transistor-levelcircuit con�guration) using pre-de�ned circuit primitives, i.e. basic network componentssuch as linear/nonlinear controlled sources, resistors, capacitors, switches, etc. Actually, allthe semiconductor device models available in circuit simulators are implicitly composed ofthe same circuit primitives, which makes them conceptually equivalent to a macromodel.The transistor-level representation of a circuit block can be thought to be a very detailed\macromodel". In a macromodel, one tries to capture much more \functionality" thanthere is in a single semiconductor device, with far less implementation details. This sug-gests a de�nite trade-o� between accuracy and the complexity (number of components)of the macromodel. Macromodels in circuit simulators are used to reduce the simulationtime (because of reduced number of nodes and complexity), and to simulate circuits withsubblocks without implementation details.Macromodel creation (for a speci�c circuit block described at the transistor level)for nonlinear circuits is done by \iterating" over the below two steps:� First, a parameterized model (an interconnection of circuit primitives) which capturesthe \functionality" of the circuit block being modeled is created. There is no system-atic way to create these models and this step heavily depends on the experience ofthe designer.



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 219� Then, the parameters of the created model is optimized (manually or automatically)to meet some speci�cations.When macromodels are used for some of the components of a PLL (e.g. phase detectors andfrequency dividers), the time it takes to simulate the acquisition of a PLL can come downto days from weeks, which is still not acceptable if we are going to use the results of thesesimulations for design decisions. Even when macromodels are used for all of the componentsof a PLL, simulating just the acquisition behavior can take hours. Hence, we need to workwith even more abstract models of a PLL to be able to simulate it in a reasonable time.Trying to simulate a PLL with all of its components described at the transistor-level is one extreme. The other extreme is to use an LTI model to describe the PLL circuit,even though it is an inherently nonlinear system. The LTI models, usually referred to asphase domain models, have indeed been very useful in understanding the operation of PLLsand investigating various trade-o�s in their design. LTI analysis of PLLs is very e�cientand it is very useful in the concept phase of a design. However the usefulness of LTIphase domain models are limited by the fact that they are linear and can not capture somenonidealities in the system that arise from nonlinearities and the interaction of nonlinearitieswith noise.In this chapter, we present a behavioral speci�cation and simulation methodologyfor PLLs. Mathematical abstraction is the crucial concept behind this methodology. Thisapproach enables one to concentrate on one aspect of the problem, e.g. noise performance.Thus, one can deal with complexity in an e�cient and e�ective way.7.1 PLLs for Clock Generators and Frequency SynthesizersIn this chapter, we will be concentrating on a particular phase-locked loop archi-tecture that is widely used in clock generation and frequency synthesis applications. Eventhough we will be describing the behavioral models and the simulation techniques withinthe context of this architecture, the modeling and the simulation methodology are general,and hence they can be used for other PLL architectures.The PLL architecture is shown in Figure 7.1. It consists of a voltage-controlledoscillator (VCO), three frequency dividers (FDs), a reference oscillator (RO), a phase-
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Figure 7.1: Charge-pump phase-locked loopfrequency detector (PFD), a charge pump (CP) and a loop �lter (LF). Given a referenceoscillator (which is usually an o�-chip low phase noise crystal oscillator) with a �xed oscil-lation frequency fref , when the PLL is in lock, the frequency of oscillation at the output ofthe PLL is given by fo = NLM fref : (7.1)By choosing the FD divide ratios appropriately, one can use this PLL to generate oscillationsignals at a number of frequencies in a frequency range that is supported by the VCO. Invideo driver systems, on-chip PLLs with this architecture are used to generate clocks at anumber of discrete frequencies. In RF transceivers, PLLs with this architecture are usedto generate the local oscillator (LO) signal which has to have a programmable frequency sothat the receiver/transmitter can be tuned to the particular channel of interest.We will not go into the details of the operation principles of this PLL architecturehere, which is covered in many textbooks on PLLs.1. It is basically a nonlinear feedbacksystem. It is also a mixed-signal system: PFD is a digital component which is sensitiveto only the low-to-high or high-to-low transitions at its inputs. It has two digital outputswhich control two switches in the CP. CP and the LF \convert" the digital error informationat the output of the PFD into an analog signal that controls the frequency of the VCO. Thedivide ratio of the FD inside the feedback loop (i.e. the FD with divide ratio N) can bequite large (e.g. 5000). This is one of the main reasons why it is very di�cult to simulate1For instance, see [40], [52].
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:NFigure 7.2: LTI phase domain model for the charge-pump PLLthis PLL architecture. For a single comparison of the signals at the PFD input, the VCOhas to go through many cycles of oscillation. When we describe the behavioral models forthe components of this PLL, we will see how one can eliminate the high frequency \node"between the VCO and the divider with very little loss of accuracy but with great gain inthe e�ciency of the simulation.Now, we would like to discuss a phase domain LTI model for this PLL, which isvery commonly used to analyze its behavior when the loop is in lock. Our main purpose indiscussing the LTI phase domain noise model is to gain a qualitative understanding aboutthe operation of the loop, which will very useful in creating abstractions of the componentsfor behavioral simulation. One of the key requirements for developing and using behavioralmodels in the design of a complex mixed-signal system is to have a good understanding ofthe operation of the system. In the end, what we put into the behavioral models will be ourexperience and knowledge about the operation of the circuit. The phase domain LTI modelfor the PLL architecture in Figure 7.1 is shown in Figure 7.2. To simplify the discussion,we omitted the FDs which are outside of the feedback loop. Ideally, when the loop is inlock, without any nonidealities in the system, the frequency of the VCO will be given byfo = N fref : (7.2)Since the PFD is a digital component, and is only sensitive to the transitions of the oscilla-tion signals, the particular shape of the waveforms generated by the VCO or the reference



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 222oscillator are irrelevant. Thus, the VCO and the reference oscillator are represented withtheir phases only. The phase of the VCO with a �xed frequency fo is given by�o(t) = 2�fot (7.3)which is a linear function of time. The VCO makes a transition at its output every timethe phase crosses an integer multiple of �. The phase variable �o in the LTI phase domainmodel of Figure 7.2 represent deviations from the one in (7.3) due to the noise sources inthe system. �i in Figure 7.2 represents the phase noise process for the reference oscillator,and �vco represents the phase noise of the VCO. The phase noise contribution of the FD isrepresented by �d. We assume that the relationship between the frequency of the VCO andthe control voltage is given by fvco = fo +Kvvc (7.4)where fo is given by (7.2) and vc is the control voltage. The PFD is modeled as a gainblock with gain 12� .2 CP is modeled as a gain block with gain Ip. The LF is modeled asa SISO LTI system with transfer function H(f). The variable at the output of the VCOrepresents its phase, and the variable at its input is the control voltage. Phase of the VCOis the integral of its frequency, and its frequency is proportional to the control voltage asgiven by (7.4). Hence, the VCO is modeled as an integrator with transfer functionKvjf :The FD is simply modeled as a gain block with gain 1N , since its input and output arephase variables. The phase domain LTI model of Figure 7.2 can be considered as a small-signal model obtained by linearization around a steady-state where the reference signal isat frequency fref , the VCO is at frequency fo and the control voltage vc is 0. If �i = 0,�d = 0 and �vco = 0, then �o = 0 vc = 0is satis�ed at steady-state.We will now calculate the transfer functions from �i, �d and �vco to the output �o.Since, the system is LTI, we can use the superposition principle. Let us �rst de�neG(f) = 12� IpH(f) Kvjf : (7.5)2This model obviously does not capture the complete behavior of the PFD, but we are going to use thismodel only for qualitative analysis.



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 223To calculate the transfer function Ti(f) from �i to �o, we set �d = 0 and �vco = 0, and writethe following frequency-domain relationship from the model in Figure 7.2:���o(f)N + �i(f)� G(f) = �o(f): (7.6)From (7.6), it follows that Ti(f) = �o(f)�i(f) = G(f)1 + G(f)N : (7.7)To calculate the transfer function Tvco(f) from �vco to �o, we set �d = 0 and �i = 0, andwrite the following frequency-domain relationship from the model in Figure 7.2:� �o(f)N G(f) + �vco = �o(f): (7.8)From (7.8), it follows that Tvco(f) = �o(f)�vco(f) = 11 + G(f)N : (7.9)Similarly, the transfer function Td(f) from �d to �o is calculated asTvco(f) = �o(f)�vcp(f) = �G(f)1 + G(f)N : (7.10)First, we observe that the transfer functions Td(f) and Ti(f) are equal.3 Hence,the phase noise of the reference oscillator and the phase noise contributed by FD haveexactly the same e�ect on the phase noise of the output. We have not shown it in themodel of Figure 7.2, but the PFD also contributes to the phase noise of the output. It canbe shown that the e�ect of the phase noise contributed by the PFD has also the same e�ecton the phase noise of the output as the reference oscillator or the FD. The transfer functionfrom the phase noise contributed by the PFD to the output �o is the same as the transferfunction from �i to �o.The loop �lter transfer function H(f) always has a low pass characteristics. Hence,the transfer function G(f) given by (7.5) also has a low pass characteristics, i.e.jG(f)j!0 as f!1:Moreover, jG(f)j!1 as f! 03To be precise, Td(f) = �Ti(f). However �i, �d and �o represent zero-mean stochastic processes, more-over, �i and �d are assumed to be independent. Hence, only the magnitudes of the transfer functions arerelevant.



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 224i.e. it has in�nite gain at f = 0. Then, we havejTi(f)j! 0 as f!1jTd(f)j! 0 as f!1jTvco(f)j! 1 as f!1and jTi(f)j!N as f! 0jTd(f)j!N as f! 0jTvco(f)j! 0 as f! 0Hence, we conclude that� The low frequency phase 
uctuations in the reference oscillator signal or the onescontributed by the FD or the PFD are not modi�ed by the feedback loop and appearas phase 
uctuations at the output.4 The high frequency phase 
uctuations in thereference oscillator signal or the ones contributed by the FD or the PFD are rejectedby the feedback loop and do not appear as phase 
uctuations at the output.� The low frequency phase 
uctuations contributed by the VCO are rejected by thefeedback loop, but the high frequency phase 
uctuations contributed by the VCO arenot modi�ed by the feedback loop and appear as phase 
uctuations at the output.We now have some qualitative understanding on how the PLL reacts to phase
uctuations that are contributed from various sources, which will be extremely useful whenwe are trying to develop behavioral models, i.e. abstractions, of the PLL componentsthat capture the phase noise behavior. We presented this simple LTI analysis to illustratethe behavioral model development process, i.e how one uses qualitative understanding, ordesigner experience, about the operation of the system in developing the behavioral models.7.2 Behavioral Models of PLL ComponentsWe now have a qualitative understanding of the operation of the PLL. We have alsoextensively investigated the phase noise/timing jitter of open-loop oscillators in Chapter 6.4Actually, ampli�ed (by N) versions of the phase 
uctuations of the reference, FD, and the PFD appearas phase 
uctuations at the output. However, note that the signal frequency at the output is also N timesthe frequency of the reference, and the signal frequencies at the output of the FD and the inputs of the PFD.



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 225We will now present a description of the behavioral models of the PLL components thatcapture the phase noise/timing jitter behavior.7.2.1 Reference oscillator and the VCOThe phase detector in the PLL architecture we are considering is a digital one.It is sensitive to only the transitions of the oscillation signals at its input. The particularshapes of the oscillation signals generated by the reference oscillator and the VCO areirrelevant and have very little e�ect on the operation of the loop. Hence, we model all theoscillation signals generated by the reference oscillator and the VCO as digital signals withhigh and low states, and transitions between these states, as proposed by Liu in [60]. Let fbe the instantaneous frequency of the oscillator. The time derivative of the phase � of theoscillation signal is equal to the instantaneous angular frequency. Hence,_�(t) = 2�f(t): (7.11)Since the frequency of the oscillator is a positive quantity, the phase � is a monotonicallyincreasing function of time t. Every time the phase � crosses an integer multiple of �, theoscillation signal makes a transition, i.e.�(tk) = k � (7.12)where tk is the time for the kth transition of the oscillation signal. At even multiples of �, itmakes a low-to-high transition, and at odd multiples of �, it makes a high-to-low transition,or vice versa. For the reference oscillator, the frequency f(t) = fref does not change withtime. Then, the transition times, identi�ed as the time points where the phase � crossesinteger multiples of �, i.e. tk = k2 fref (7.13)will be evenly separated with a separation that is equal to the half of the period of oscilla-tion. Obviously, this model does not capture the phase noise/timing jitter behavior of thereference oscillator. To capture the phase noise/timing jitter of the oscillator, we modify(7.12) as follows: �(tk) = k � + �[k] (7.14)where � is a discrete-time stochastic process that represents the phase noise of the oscillator.In Chapter 6, we have de�ned and characterized phase noise for open-loop oscillators as



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 226discrete-time stochastic processes. We also presented algorithms to calculate the autocor-relation function of the discrete-time phase noise process �. Note that the characterizationof phase noise for an oscillator is done for a speci�c oscillation frequency. The referenceoscillator is at a �xed frequency, but the VCO can oscillate at a number of frequenciesdetermined by the divide ratio N of the FD. When the loop is in lock, the VCO oscillationfrequency is given by5 fo = N fref : (7.15)However, of course, this is true if there are no systematic error sources and there is no noisein the PLL. Typically, the VCO frequency will exhibit 
uctuations around the frequencygiven in (7.15). The VCO frequency is controlled by the signal that is produced by the LF.We model this relationship with a memoryless6 nonlinear map gfo = g(vc): (7.16)We characterize the VCO phase noise for the single oscillation frequency in (7.15) and usethis characterization to model the VCO phase noise when the PLL is in lock.In summary, we model the reference oscillator with_�ref (t) = 2�fref�ref (t(ref)k ) = k � + �ref [k] (7.17)and the VCO with _�vco(t) = 2�g(vc)�vco(t(vco)k ) = k � + �vco[k] (7.18)where k = f0; 1; 2; 3; : : :g. t(ref)k denotes the kth transition time for the reference oscillator,t(vco)k denotes the kth transition time for the VCO. vc is the control voltage that sets theinstantaneous oscillation frequency for the VCO. �ref and �vco are discrete-time stochasticprocesses that represent the phase noise of the reference oscillator and the VCO respectively.The probabilistic characterizations of �ref and �vco are obtained at the frequencies fref andfo = N fref for the reference oscillator and the VCO respectively. These characterizations5We assume that the divide ratios L and M for the FDs outside of the feedback loop are set to 1 in themodel of Figure 7.1.6This means that the frequency of the VCO can change instantaneously when the control voltage changes.Of course, this is not possible in practice. This model can be easily generalized by introducing state variablesto represent the memory in the nonlinear map g that relates the VCO frequency to the control voltage atthe LF output. Furthermore, these state variables can be included in the model of the LF to be discussed.



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 227can be obtained using the techniques of Chapter 6 or using the speci�cation sheets foro�-the-shelf components.In describing the above models for the VCO and the reference oscillator, we didnot make any assumptions on the implementation details of the oscillators. Any type ofoscillator, e.g. ring-oscillators, relaxation oscillators or LC/resonant oscillators, can be rep-resented using the above oscillator model that captures the phase noise behavior. We madea distinction between the VCO and the reference oscillator, because the reference oscillatorhas a �xed oscillation frequency, on the other hand, the VCO frequency is controlled by theLF output.7.2.2 Frequency dividersFDs are basically digital counters. An FD with divide ratio N transfers every Nthtransition at its input to its output, hence it e�ectively creates an oscillation signal at itsoutput that is at a frequency that is equal to the input signal frequency divided by N .The input to the FD inside the feedback loop in Figure 7.1 is the VCO outputthat is modeled by (7.18). Then, the oscillation signal at the output of the FD is modeledby _�fd(t) = 2�g(vc)N�fd(t(fd)k ) = k � + �vco[k]N (7.19)where k = f0; 1; 2; 3; : : :g. t(fd)k denotes the kth transition time for the oscillation signal atthe output of the divider. The model in (7.19) is for a noiseless FD that does not contributeany phase noise/timing jitter. We will discuss the modeling of the phase noise contributionof the FD shortly, but we would like to �rst discuss how a noiseless FD \transfers" thephase noise of the signal at its input to its output. An ideal noiseless FD simply passesevery Nth transition at its input to its output. Hence, the timing jitter of the transitionsat the input are transferred to the output without change. Recall that the timing jitterprocess Jvco for the VCO signal in terms of the phase noise process �vco is given byJvco[k] = �vco[k]2�fo (7.20)where fo is the frequency of the signal at the output of the VCO. Then, the signal at theoutput of the noiseless FD will have the same timing jitter for the transitions, but the phase



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 228noise at the output of the FD will be given by2�foN Jvco[k] = �vco[k]N : (7.21)Hence, the phase noise at the output of the FD is smaller than the phase noise at its inputby a factor of N , but the timing jitter is the same. On the other hand, the frequency ofthe signal at the output of the FD is also smaller than the frequency of the signal at itsinput by a factor of N . Phase noise is a quantity that should be considered relative tothe frequency of the signal. In order to compare the phase noise of two oscillation signals,they need to be at the same frequency. Timing jitter can be considered, in a sense, as the\frequency-normalized" version of phase noise. Hence, one can compare the timing jitter oftwo oscillation signals at di�erent frequencies. It is misleading to compare the phase noisecharacterizations of the signals at the input and the output of the FD, since it suggests thatthe FD \improves" the phase noise behavior of the signal. It just seems to be improved,because the signal is just at a lower frequency, but with the same timing jitter around thetransitions.The FD also contributes to the timing jitter/phase noise of the signal at its output.To model this contribution, we modify (7.19) as follows:_�fd(t) = 2�g(vc)N�fd(t(fd)k ) = k � + �vco[k]N + 2�foN Jfd[k] (7.22)where k = f0; 1; 2; 3; : : :g. t(fd)k denotes the kth transition time for the oscillation signalat the output of the divider. Jfd is a discrete-time stochastic process that represents thetiming jitter contribution of the FD.7.2.2.1 Characterization of timing jitter for frequency dividersGiven the implementation of an FD, one can use the time domain noise simulationof Chapter 5 to characterize the timing jitter process Jfd. This is done by driving the FDwith the large signal output of the VCO to calculate the large signal solution, and thenperforming a time domain noise simulation to calculate the time varying noise variance ofthe periodic waveform at the output. We already saw an example for such a noise analysisin Section 5.10.2 for a CMOS inverter. Then, using the time varying noise variance obtainedfrom noise analysis and the slew rate of the large signal waveform at the transitions, one cancharacterize the timing jitter of the transitions. The timing jitter process Jfd contributed by



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 229an FD can be quite accurately modeled as a discrete-time, zero-mean, WSS white Gaussianprocess, which means that Jfd[k]s are uncorrelated random variables for di�erent k. Forcomparison, recall that the timing jitter Jvco contributed by the VCO is modeled as arandom walk process, i.e. Jvco[k]s are correlated random variables for di�erent k.For a complete second-order probabilistic characterization of the WSS white dis-crete time process Jfd, all we need is the variance of the random variable Jfd[k], whichdoes not depend on k since Jfd is WSS. The variance of Jfd[k] can be calculated usingthe data from the time domain noise analysis of the FD. It is calculated by dividing thenoise variance at the transitions of the output of the FD by the square of the slew rate (i.e.time derivative) of the large signal periodic waveform at the same transition times. As amatter of fact, we de�ne the timing jitter at the output of the FD just like we did it for anoscillator in Section 6.2 and use the same characterization algorithm that is based on usingthe time domain noise simulation of Chapter 5. Since the FD is a nonautonomous system,the noise variance waveform at the output is a periodic steady-state one. Recall that thenoise variance waveform for free running oscillators has a linear ramp envelope and growswithout bound.7.2.3 Phase-frequency detectorThe phase-frequency detector (PFD) is modeled as a digital state machine, asin [60]. Depending on its design, it is sensitive to either the low-to-high or high-to-lowtransitions of its two inputs. PFD has two digital outputs which control the two switchesfor the two current sources in the charge pump. Depending on its design, the outputs areactive, i.e. the current sources are on, when the outputs are either in the high or low state.A standard PFD can be in only three of the possible four states of the outputs, i.e. thestate where both of the outputs are active is not allowed. The state machine model for aPFD, which is sensitive to low-to-high transitions, is shown in Figure 7.3. Every time thereis a transition event at one of the inputs of the PFD, the transition type (TRANSITIONwhich is either LOW-TO-HIGH or HIGH-TO-LOW) and the input (INPUT, set to REFfor the reference oscillator, and to VCO for the output of the FD inside the feedback loop)where transition has occurred is passed to the code in Figure 7.3 to determine the next stateof the PFD. The NEUTRAL state for the PFD is the state where both of its outputs areinactive. The UP and DOWN states refer to the states where one of the outputs is active



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 230if TRANSITION == LOW-TO-HIGH fif PFDSTATE == NEUTRAL fif INPUT == REF PFDSTATE = UP;elseif INPUT == VCO PFDSTATE = DOWN;gelseif PFDSTATE == UP fif INPUT == REF PFDSTATE = UP;elseif INPUT == VCO PFDSTATE = NEUTRAL;gelseif PFDSTATE == DOWN fif INPUT == REF PFDSTATE = NEUTRAL;elseif INPUT == VCO PFDSTATE = DOWN;gg Figure 7.3: State machine model of a standard PFDand the other one is inactive. In the model of Figure 7.3, when there is a LOW-TO-HIGHtransition at the REF input of the PFD, the state of the PFD changes from DOWN toNEUTRAL or NEUTRAL to UP. If it is already in the UP state, it stays there. On theother hand, when there is a LOW-TO-HIGH transition at the VCO input of the PFD, thestate of the PFD changes from NEUTRAL to DOWN or UP to NEUTRAL. If it is alreadyin the DOWN state, it stays there.The PFD model we just described assumes that the e�ect of the transitions at itsinputs appears at its outputs instantaneously, without any delay. This is, of course, notpossible for a practical PFD. There will be a �nite delay before the e�ect of the changesat its inputs are propagated to its outputs. This �nite delay renders the PFD insensitiveto the transitions at its inputs that are separated with a time di�erence that is less thanthe propagation delay. This results in, what is commonly referred to as, a dead-zone forthe PFD. For instance, if there are closely spaced transitions (with a separation that is lessthan the propagation delay of the PFD) at the input of the PFD which require it to changeits state from NEUTRAL to UP and back to NEUTRAL again, the PFD will not be ableto respond to these transitions, and its state will remain at NEUTRAL.To model the dead-zone, we form an event queue for the PFD during simulation.Every time a transition occurs at one of the inputs of the PFD, it is placed in the event



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 231queue. Then, the event queue is processed to check for consecutive transitions which requirethe PFD to switch its state to create pulses at its outputs which have widths that are smallerthan the propagation delay. If such consecutive transitions are detected, they are removedfrom the event queue. The consecutive transitions that create pulses with widths largerthan the propagation delay remain in the queue, and they are passed to the code in Figure7.3 at their scheduled times to determine the next state of the PFD. When transitions areplaced in the event queue, they are scheduled for evaluation after one propagation delaytime. PFD can not create pulses at its outputs with a width that is less than the prop-agation delay, but it can create pulses at both of the outputs which have widths that arelarger than the propagation delay. The di�erence of the widths of the pulses at the outputscan be smaller than the propagation delay. Thus, one can obtain an e�ective pulse at oneof the outputs with a width that is less than the propagation delay. This is the basic ideabehind the alive-zone PFD described in [61]. The alive-zone PFD introduces a reset delayinto a standard edge-sensitive PFD and creates minimum duration pulses for each phasecomparison at both of its outputs, and hence enables the fourth state where both of theoutputs are active. In this state, both of the current sources of the charge pump are on.The positive and negative charge pump currents both deliver a charge greater than zero ateach phase comparison. Ideally, with zero phase error, the net charge pumped sums to zero.The alive-zone PFD is also modeled for simulation using a simple event queue (which hasonly one event at a time) to realize the minimum width pulses at each phase comparison.The width of the pulses the alive-zone PFD creates at its outputs (even when there is zerophase error) is a design parameter, and, obviously, has to be greater than the propagationdelay. PFD also contributes to the timing jitter of the signal at its output. The timingjitter characterization for the PFD can also be done using time domain noise simulation asit was described for the FD.7.2.4 Charge pump and the loop �lterThe charge pump (CP) usually consists of two current sources which are turnedon and o� with the two switches that are controlled by the outputs of the PFD. The loop�lter (LF) is usually a simple passive RLC network, but LFs with active components are
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Figure 7.4: Simple charge pump and second-order loop �lteralso used. We will �rst present a general model for the CP and the LF, and then describethe model of a very simple CP-LF con�guration within the framework of the general modelas an example. The CP and the LF are modeled with_x = G(x; Sup; Sdown)vc = cT x (7.23)where Sup and Sdown are the two outputs of the PFD, and they are equal to 1 when theyare active, and 0 when inactive. Recall that for a standard PFD with a dead-zone, the stateSup = 1 Sdown = 1 (7.24)is not allowed. x 2 IRn in (7.23) is a vector of state variables which represent the states ofthe CP and the LF. G : IRn � f0; 1g � f0; 1g!IRN is a nonlinear map that describes thedynamics for the states of the CP and the LF. vc is the output of the LF that controls thefrequency of the VCO.Let us now consider a simple example. A CP with ideal current sources that arecontrolled with ideal switches, and a simple second-order LF are shown in Figure 7.4. Wechoose the capacitor voltages v1 and v2 as the state variables. Then, the equations thatdescribe the dynamics of the CP and the LF are given by_v1 = 1RC1 v2 � 1RC1 v1_v2 = (I(up)p Sup�I(down)p Sdown)C2 � 1RC2 v2 + 1RC2 v1 (7.25)



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 233The control voltage for the VCO is the voltage across C2. Hence,vc = [0 1] [v1 v2]T : (7.26)The model represented by (7.23) is general enough, so one can include all kinds ofnonidealities in this model. For practical charge pumps, the current sources can be modeledas nonlinear ones with �nite output impedances. The loading impedance of the VCO onthe CP can also be included in this model. The output of the LF controls the frequency ofthe VCO, hence it is an extremely important node in the circuit. Any kind of noise on thisnode will directly translate into spurious tones and phase noise at the output of the VCO.Ideally, this node should not have a resistive path to ground. For instance, this is the casefor the simple CP-LF con�guration in Figure 7.4. When the loop is in lock, this node willkeep its charge and hold the VCO at a constant frequency. Loading impedance of the VCOon the LF, or the �nite output impedances of the current sources will cause charge leakagefrom this node. Then, the feedback loop will try to compensate for this leakage, and thePFD will turn on the CP current sources so that the leaked charge can be replaced. If theleakage is severe, the CP current sources will turn on and o� at every phase comparisonat the PFD. Hence, it is extremely important to accurately model the leakage at the inputand the output of the LF (e.g. �nite output impedances for the CP current sources, loadingimpedance of the VCO, etc.) so that the spurious tones at the output of the VCO can beestimated accurately by simulating the PLL model.7.3 Behavioral Simulation AlgorithmWe described the models for all of the components of the PLL in Figure 7.1. Wewill now put these models together to form the simulation model for the whole PLL:_�ref (t) = 2�fref�ref (t(ref)k ) = k � + �ref [k] + �fd[k] + �pfd[k] (7.27)_�fd(t) = 2�g(vc)N�fd(t(fd)k ) = k � + �vco[k]N (7.28)_x = G(x; Sup; Sdown)vc = cT x (7.29)where k = f0; 1; 2; 3; : : :g.



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 234(7.27) is the model of the reference oscillator, but we included the phase noisecontributions of the FD and the PFD, i.e. �fd and �pfd, in the model of the referenceoscillator. This is based on the results we obtained from the simple LTI analysis in Section7.1. The phase noise contributed by the FD and the PFD is indistinguishable from thephase noise of the reference oscillator when we evaluate their e�ects on the phase noise ofthe oscillation signal produced by the PLL at the output of the VCO. �ref for the referenceoscillator is modeled as a random walk process, on the other hand, �fd and �pfd for the FDand the PFD are modeled as WSS white discrete-time processes.(7.28) models the VCO signal and the phase noise contribution of the VCO at theoutput of the FD. Alternatively, we could have modeled the VCO signal at the output of theVCO itself. The node between the VCO and the FD is a high frequency node. By modelingthe VCO signal at the output of the FD, we e�ectively eliminate this high frequency nodewhich makes N transitions for every one transition of the FD output. With almost no lossof accuracy, eliminating this high frequency node increases the e�ciency of the simulationconsiderably, especially when N is a very large integer.(7.29) models the CP and the LF. The state machine model for the PFD wasdescribed in Section 7.2. When the output of the reference oscillator and the output ofthe FD make transitions at times t(ref)k and t(fd)k determined by (7.27) and (7.28), thesetransition events are scheduled in the event queue for the PFD.7.3.1 Numerical integration with threshold crossing detectionTo simulate the PLL model, we solve the following system of di�erential equationsin time domain using numerical integration_�ref (t) = 2�fref_�fd(t) = 2�g(cT x)N_x = G(x; Sup; Sdown) (7.30)where we replaced vc with cT x. At the time instants t(ref)k and t(fd)k , when �ref and �fdcross the threshold values�(ref)threshold [k] = k � + �ref [k] + �fd[k] + �pfd[k] (7.31)and �(fd)threshold [k] = k � + �vco[k]N (7.32)
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Figure 7.5: Integration algorithm with threshold crossing detectionrespectively, transition events need to be scheduled in the PFD event queue. Hence, thenumerical integration algorithm has to detect these threshold crossings. Accurate estimationof the timing of these threshold crossings is crucial, because we will characterize the spurioustones and the timing jitter for the PLL output based on the timings of the transitionscalculated during the simulation. At a time point during the numerical integration of(7.30), if a transition is detected in between the previous time point and current one,the integration algorithm should track back and estimate the exact time point where thetransition occurred more accurately, as illustrated in Figure 7.5.The �rst thing that comes to mind to estimate the timings of the transitions is touse interpolation. With this scheme, transition times are estimated based on a polynomialinterpolation using the information from the current and previous time points. Linear multi-step methods for numerical integration actually calculate the solution of the di�erentialequation at discrete time points by �tting polynomials. Hence, to estimate the timingof the transition times, one can and should use the same polynomial that was used bythe numerical integration scheme to calculate the solution at the current time point. Forinstance, if backward Euler was the scheme in calculating the solution at the current timepoint, one uses a �rst-order polynomial to interpolate the timing of the detected thresholdcrossing. Let a transition event be detected between the time points t and t + h, where h



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 236is the current time step size. Then, the timing of the transition event is estimated byttr = t + ��threshold � �(t)�(t + h)� �(t) � h (7.33)where �threshold is the threshold value that was crossed.Alternatively, one can estimate the timing of the transitions using an iterativemethod. Actually, calculating the transition time can be interpreted as the calculationof the solution of a nonlinear algebraic equation with one variable, i.e. we would like tocalculate the time t that satis�es �(t)� �threshold = 0: (7.34)Hence, to estimate the transition time, one can use any algorithm for �nding the roots of anonlinear algebraic equation. Obviously, �(t) is not available analytically as a function of t,but it can be evaluated numerically using the numerical integration scheme. A brute-forcemethod, which works quite well, to calculate the root of (7.34) is to use a bisection search,which is illustrated in Figure 7.6. Recall that the phase �(t) is a monotonically increasingfunction of t. If at time t+h, the phase �(t) is larger than the threshold �threshold while at tit was smaller, then a transition event has occurred in between. To calculate the transitiontime, we divide the present time step by 2. Then, we evaluate �(t + h=2). If this is still tothe right of the transition time, we repeat the bisection procedure. If it is to the left, thenwe return the control to the integration algorithm. To prevent the algorithm from takingtoo much of a time step, we limit the maximum step size to a quarter of the last time step.Other iterative algorithms can also be used to calculate the root of (7.34). One can �rstuse the interpolation scheme to calculate an initial starting point for the iterative algorithmthat is used to calculate the root of (7.34). The iterative algorithm, e.g. bisection search,is terminated when the tolerance speci�ed for calculating the timing of the transition timesis reached. Tolerance for the calculating the transitions is set to a small enough value, sothat the phase noise/timing jitter that will be estimated for the PLL output will not becorrupted by the numerical noise due to the errors in calculating the transition times.Threshold crossings of �ref and �fd cause events at the inputs of the PFD. Theevents at the output of the PFD (coming out of its event queue) change the state of thePFD, i.e. they set or reset the two outputs Sup and Sdown. Every time an event is placedin the event queue for the PFD, a break point in time is scheduled, so that the numericalintegration algorithm will place a time point at the time instants where PFD outputs may
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Figure 7.6: Iterative solution for transition timesswitch their values. After each break point, a \small" time step is taken and the numericalintegration scheme is reset to backward Euler (i.e to order 1) if a variable order numericalscheme is being used.Some commercial circuit simulators, which support behavioral modeling for analogand mixed-signal circuits with a behavioral analog hardware description language, provideconstructs for the detection of thresholds crossings and to estimate the timings for them.They also provide constructs for scheduling break points in time.7.3.2 Simulating the timing jitter in numerical integrationTiming jitter of the reference oscillator, VCO, FD and the PFD is introduced intothe time domain noise simulation as in (7.27) and (7.28) through the threshold values whichindirectly determine the transition times. The threshold value for the reference oscillatorand the output of the FD are discrete-time stochastic processes given by (7.31) and (7.32).The phase noise processes for the reference oscillator and the VCO are modeled as randomwalk processes,7 and the phase noise processes for the FD and the PFD are modeled as whiteWSS discrete time processes. In time domain noise simulation, they are realized by usinga Gaussian random number generator. To realize a random walk phase noise process witha Gaussian random number generator, we use the construction of a random walk process7Recall that the phase noise of a free running oscillator can be modeled as a random walk process whenonly white noise sources are considered. This means that we are modeling the phase noise of the referenceoscillator and the VCO considering thermal and shot noise sources only, and ignoring the 1=f noise sources.



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 238given by (6.32) and (6.38) that was discussed in Section 6.2.2. With this construction, wecan generate a random walk process by using uncorrelated identically distributed Gaussianrandom variables. Hence, all we need is a standard Gaussian random number generator.The realization of a white WSS Gaussian phase noise process is straightforward: a sequenceof uncorrelated Gaussian random variables generated from the same distribution.7.3.3 Acquisition detection and the simulation outputThe simulation algorithm has the following three components, which were all de-scribed above:� Numerical integration algorithm with threshold crossing detection and break points.� PFD event queue scheduling and evaluation.� Realization of the phase noise/timing jitter processes using a Gaussian random numbergenerator.During the simulation, events are placed into the PFD event queue at the time instantsof the threshold crossings detected by the integration algorithm. At the threshold crossinginstants, break points are scheduled for the time points where the events coming out of thePFD queue need to be evaluated.When the simulation is started at t = 0, the phase noise sources are turned o�. ThePLL is simulated without the phase noise sources, i.e. with deterministic threshold valuesset to k � for the kth transition, till the VCO locks onto the reference signal. Acquisitionof the reference signal is detected automatically by observing vc = cT x which controlsthe frequency of the VCO. Even though the phase noise sources are turned o� duringacquisition, there may be systematic error sources in the PLL (e.g. leakage from the node atthe output of the LF, dead-zone of the PFD, etc.) which will cause steady-state 
uctuationsin vc = cT x even after the PLL has locked onto the reference signal. Thus, the algorithmthat automatically detects acquisition uses a tolerance parameter so that it can declare thePLL as locked even when there are steady-state 
uctuations in vc = cT x. On the otherhand, the PLL may never lock onto the reference signal, for instance if the feedback loopis not stable. Acquisition detection algorithm aborts the simulation if the PLL can notlock onto the reference signal in a speci�ed amount of time. vc = cT x and any other state



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 239variable in x are dumped at every time point during the acquisition phase, so that they canbe plotted to observe the acquisition behavior of the PLL.If the algorithm that automatically detects acquisition declares the PLL as locked,then the phase noise sources are turned on. The PLL, which is in lock, is simulated for aperiod of time8 in the presence of the phase noise sources of the reference oscillator, VCO,FD and the PFD, and systematic error sources. During this simulation, the control voltagevc = cT x as a function of time is dumped for postprocessing. The timings of the thresholdcrossings detected at the output of the FD by the numerical integration algorithm are alsodumped for postprocessing. The postprocessing of the simulation output to evaluate severalperformance measures for the PLL will be described in the next section.7.4 Post Processing for Spurious Tones and Timing Jit-ter/Phase NoiseThe acquisition behavior of the PLL is observed by plotting the dumped controlvoltage vc = cT x during the time period when the PLL is acquiring the reference signal.Observing the steady-state 
uctuations in the waveforms of vc = cT x and other statevariables in x after the PLL has locked can provide crucial information about the systematicerror sources in the PLL that cause spurious tones at the output. For instance, by observingthese waveforms, one can observe the severity of the leakage from the nodes at the inputand the output of the LF. In the next two subsections, we will describe the post processingtechniques used to estimate the spurious tones and the timing jitter/phase noise of theoscillation signal generated by the PLL at the output of the VCO.7.4.1 Spurious tonesThe frequency of the signal at the output of the VCO is controlled by the controlvoltage vc = cT x, i.e. fout(t) = g(vc(t)): (7.35)When the PLL is locked onto a reference signal with frequency fref , at steady-state, theVCO frequency fout(t) = g(vc(t)) will have a mean value that is equal to N fref . However8The period of time PLL needs to be simulated for depends on the particular PLL architecture. Roughly,PLL needs to be simulated for a period of time that is several, i.e. 10, loop time constants long. Loop timeconstant is roughly estimated from the time it takes the PLL to lock onto the reference signal.



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 240fout(t) will exhibit 
uctuations around this mean value due to the phase noise contributedby the loop components and other systematic error sources. During the time domain noisesimulation of the PLL, we dumped the steady-state waveform for vc(t). In general, thesteady-state waveform for vc(t) will be neither periodic nor quasi-periodic. It will be achaotic steady-state waveform. However the power in the 
uctuations of vc(t) are usuallyconcentrated at a set of frequencies. For instance, vc(t) may contain distinguishable spectralcomponents at the reference oscillator frequency and its several harmonics. One can usuallyidentify these strong spectral components by just looking at the waveform of vc(t). Byperforming Fourier analysis (using an appropriate numerical technique such as FFT, almostperiodic transform, etc. [29, 62]) on the steady-state waveform of vc(t) obtained from timedomain noise simulation, one can identify and quantify these spectral components. Atthis point, we assume that the steady-state waveform of vc(t) can be approximated as aquasi-periodic waveform by identifying the strong spectral components, i.e.vc(t) � MXm=�M am exp (j2�fmt) (7.36)where f�m = �fm; m = f0; 1; 2; : : :g is a set of frequencies at which the steady-statewaveform vc(t) has signi�cant power. The frequency of the VCO, fout, is related to thecontrol voltage vc through a nonlinear map g(:). Hence, in general, fout will have spectralcomponents at the frequencies fm as well as their harmonics. However the 
uctuations invc are usually small around the mean value g�1(N fref ). Thus, the spectral componentsof fout at the harmonics of the frequencies fm will be negligible. Hence, one can linearizethe nonlinear map g(:) around the mean value g�1(N fref ) of vc to calculate the spectralcomponents of fout. At this point, we assume that fout has the following approximatequasi-periodic representationfout(t) � MXm=�M bm exp (j2�fmt) (7.37)where f0 = 0, and hence the zeroth order term is given byb0 = N fref : (7.38)



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 241Let us also assume that the free running VCO generates the following periodic waveform9with fundamental frequency N fref at its outputVosc(t) = LXl=�L cl exp (j2�lN fref t) (7.39)which is expressed as a Fourier series with coe�cients cl. (7.39) is the waveform that isgenerated by a free running VCO with its control voltage set to the constant g�1(N fref ).To approximate the waveform at the output of the VCO in the PLL with its control voltageset to (7.36), we replace10 N fref t in (7.39) withZ t fout(�)d� � N fref t + MXm = �Mm 6= 0 bmj2�fm exp (j2�fmt) (7.40)to obtainVosc(t) � LXl=�L cl exp266666666664j2�l 0BBBBBBBBBB@N fref t+ MXm = �Mm 6= 0 bmj2�fm exp (j2�fmt)1CCCCCCCCCCA377777777775: (7.41)The waveform in (7.41) can be interpreted as a frequency modulated periodic carrier. Thespectrum of the waveform in (7.41) has nonzero components at frequencies l N fref�k fm forl = 0; 1; 2; : : : ; L and k = 0; 1; 2; : : :, for each frequency modulation component at frequencyfm; m 2 f1; 2; : : : ;Mg. One is usually most concerned with the components of (7.41) atfrequencies N fref � k fm for k = 0; 1; 2; : : :, for each fm. These frequency components areusually referred to as the spurious tones in the output of the PLL. One can estimate themagnitudes of the spurious tones in (7.41) by using techniques from frequency modulationtheory, i.e. Bessel functions. We will not discuss the details of how one can do this, since itis covered in any textbook that discusses frequency modulation in communications.9This waveform is obtained by setting the control voltage input of a stand-alone VCO circuit tog�1(N fref) and then performing a transistor-level simulation (e.g. transient analysis, shooting methodor harmonic balance simulation can be used) to calculate the periodic steady-state for the oscillator.10Note that it would not be correct to replace N fref with fout(t).



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 2427.4.2 Timing jitter/phase noiseThe spurious tones in the VCO output are caused by the systematic error sources inthe PLL, which show up as periodic or quasi-periodic 
uctuations at a number of frequenciesin the control voltage vc dumped from the simulation. With only systematic error sources,the spectrum of the VCO output would contain components at discrete frequencies. Theseare the spurious tones we calculated in the previous section.The phase noise sources of the VCO, FD, reference oscillator, and the PFD willalso e�ect the output of the VCO. To characterize the phase noise of the VCO output, weuse the sequence of transition times, i.e. threshold crossing times, at the output of the FD,which were saved during the simulation of the PLL after it acquired the reference oscillatonsignal. If there were no error sources in the PLL, i.e. no phase noise contribution from anyof the components, and also no systematic error sources, then the transition times dumpedfrom the simulator would be evenly spaced in time with a separation that is equal to thehalf of the period of oscillation, i.e. with a separation that is equal to12 fref : (7.42)Because of the noise sources in the PLL, these transition times will not be evenly spacedin time, and they will, in general, be random variables. Let 
 be the discrete-time stochas-tic process that represents these random transition times, and let � be the discrete-timestochastic process that represents the deviation of these random transition times from theideal ones that are evenly spaced with separation as in (7.42). � can be obtained from 
 by�[k] = 
[k]�  k 12 fref + tsynch! k = 0; 1; 2; : : : (7.43)tsynch in (7.43) is the time instant for the ideal transition that corresponds to k = 0, andit is unknown. Even though we have a sample path of 
 from the simulation, we can notcalculate the sample path for �, since tsynch is unknown [38]. 
 satis�esE [
[k]] = k 12 fref + tsynch k = 0; 1; 2; : : : (7.44)Hence, � is a zero mean process.We would like to calculate a second-order probabilistic characterization of thetiming jitter/phase noise of the oscillation waveform that is represented by the transition



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 243time deviations �. We obtain a stochastic process J from � using self-referencing [38] asfollows: J [k] = �[k]� �[0] k = 0; 1; 2; : : : (7.45)for k = 0; 1; 2; : : :. Note that J [0] = 0: (7.46)Even though tsynch is unknown, we can calculate the sample path for J from the samplepath of 
 we obtained from simulation. From (7.43) and (7.45), J in terms of 
 is given byJ [k] = 
[k]�  k 12 fref + 
[0]! k = 0; 1; 2; : : : (7.47)For the PLL, the discrete-time process � that represents the transition time devi-ations is a WSS process in steady-state (assuming that the reference signal is noiseless).11The way we obtained the timing jitter process J from � is called self-referencing, becausewe calculate the jitter J [k] in (7.45) at the transitions for k = 1; 2; : : : with respect to thereference transition at k = 0.12 Even though � is a WSS process, the self-referenced jitterprocess J de�ned by (7.45) is not WSS, but it is asymptotically WSS.7.4.2.1 Variance of the timing jitter of transitionsUsing the dumped transition times (i.e. a sample path for 
) from the simulationof the PLL, we can generate a sample path for the self-referenced timing jitter process Jusing (7.47). In general, we need to compile an ensemble of sample paths for J so that wecan calculate ensemble averages, i.e. expectations, to estimate its second-order probabilisticcharacteristics. However, if J satis�es some ergodicity properties, then, we need only a singlesample path to characterize its probabilistic characteristics by calculating expectations usingtime averages instead of ensemble averages. Next, we explore the ergodicity properties ofthe self-referenced timing jitter process J .Let R� be the autocorrelation function of the WSS process �. It can be shownthat R� is in the form R� [m] = � z[m] (7.48)11Please see the discussion in Section 6.7.12This is similar to what is done in timing jitter measurements with sampling oscilloscopes [38]. Atransition of the oscillation waveform is designated as the reference or trigger transition, and a histogram oftransition times is compiled at a speci�ed distance from this transition.



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 244where � is the variance of the zero mean, WSS process �, i.e.� = E h�[k]2i (7.49)and z[m] satis�es z[m]! 0 as jmj!1 (7.50)and z[0] = 1: (7.51)Thus, z[m] is the normalized autocorrelation function: It is equal to 1 at m = 0 and decaysto 0 as jmj is increased. Actually, z[m] will be approximately 0 for jmj > M for somepositive integer M . M is roughly determined by the PLL feedback loop time constant, i.e.M 12fref is roughly equal to the loop time constant [38]. The particular shape of z[m] is notimportant for our discussion here. We will only use the fact that it becomes negligible forjmj > M .Given the autocorrelation function of �, we can calculate the autocorrelation func-tion RJ of the self-referenced jitter process J de�ned by (7.45) as follows:RJ [k;m] = E [J [k] J [m]] (7.52)= E [(�[k]� �[0]) (�[m]� �[0])] (7.53)= R� [k�m]� R�[k]�R� [m] +R� [0] (7.54)= � (z[k�m]� z[k]� z[m] + 1): (7.55)In particular, the variance of J is given byE hJ [k]2i = RJ [k; k] = 2� (1� z[k]): (7.56)Note that E �J [0]2� = 0, i.e. the variance of the self-referenced timing jitter process in (7.56)is zero at the reference transition represented by k = 0, which also follows from (7.46). Itreaches the steady-state value of 2� for large k. Recall from Chapter 6 that the variance ofthe timing jitter process for a free running oscillator increases linearly without bound, anddoes not reach a steady-state value.Now, let S be the length of the sample path of the transition times 
 we obtainedfrom simulation. Let 
sp[k]; k = 0; 1; : : : ; S denote this sample path. Then, we can



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 245calculate the sample path Jsp[k]; k = 0; 1; : : : ; S for the self-referenced jitter process J byusing (7.47). We assume that M � S. Recall thatz[k] � 0 for jkj > M: (7.57)Hence, E hJ [k]2i � 2� for jkj > M: (7.58)Thus, J is an asymptotically WSS process. We ensure that M � S is satis�ed so that thesample path of J we generated represents its steady-state characteristics.We would like to estimate the probabilistic characteristics of J using the samplepath Jsp[k]; k = 0; 1; : : : ; S. First, we calculate the sample mean that is given bymsp = 1S SXi=0 Jsp[i]: (7.59)Obviously, the sample mean in (7.59) is an unbiased estimator for the mean of J , i.e.E [msp] = 0 = E [J [k]]: (7.60)Next, we calculate the mean-square error of the sample mean as followsE h(msp � E [msp])2i = E hm2spi (7.61)= 1S2 SXi=0 SXj=0 E [Jsp[i]Jsp[j]] (7.62)� � (7.63)where we used (7.55), (7.57) and M � S. Thus, (7.63) tells us that the mean-square errorin estimating the mean of J using a sample path of length S does not decay to 0 as thelength S of the sample path is increased. The sample mean msp can be interpreted as arandom variable with mean 0 and variance �. Thus, the self-referenced jitter process J doesnot possess mean-square ergodicity of the mean. We observed this in practice by calculatingthe sample means of an ensemble of sample paths of the jitter process that was generatedfrom the simulation of a PLL.Next, we calculate the sample variance Vsp for J using the sample path Jsp[k]; k =0; 1; : : : ; S as follows Vsp = 1S SXi=0 (Jsp[i]�msp)2 (7.64)



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 246where the sample mean msp is given by (7.59). By taking the expectation of both sides of(7.64), we obtainE [Vsp] = 1S SXi=0 �E hJsp[i]2i+ E hm2spi� 2 E [Jsp[i]msp]� : (7.65)It can be shown that E [Jsp[i]msp] � � (7.66)by using (7.55), (7.57) and M � S. Then, we use M � S, (7.58), (7.63) and (7.66) in(7.65) to obtain E [Vsp] � 1S SXi=0(2�+ �� 2�) (7.67)� �: (7.68)Hence, the sample variance Vsp is an unbiased estimator for� = E h�[k]2i: (7.69)Next, we calculate the mean-square error of the sample variance:E h(Vsp � E [Vsp])2i = E hV 2spi� E [Vsp]2 (7.70)= E hV 2spi� �2: (7.71)Calculation of E hV 2spi requires the calculation of the fourth-order moments of J , but weknow only the second-order moments of J , i.e. its autocorrelation function. To calculate thefourth-order moments for J , we assume that it is a Gaussian process. Then, the fourth-ordermoments can be expressed in terms of the second-order moments using Isserlis's formula[5]. Using (7.55), (7.57),M � S, (7.58), (7.63), (7.66) and Isserlis's formula for calculatingthe fourth-order moments of J one can show thatE hV 2spi � �2: (7.72)Then, from (7.71) and (7.72) if follows thatE h(Vsp � E [V � sp])2i � 0: (7.73)Thus, the mean-square error in estimating � goes to zero as we increase the length S ofthe sample path, when the sample variance Vsp de�ned by (7.64) is used as the estimator.



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 247We observed this in practice by calculating the sample variances of the sample paths of thejitter process that was generated from the simulation of a PLL.� = E h�[k]2i (7.74)is the variance of the timing jitter of the transitions for the oscillation waveform at theoutput of the FD, and it can be estimated by calculating the sample variance of a singlesample path for the self-referenced timing jitter process J produced during simulation.7.4.2.2 Spectral density of phase noise/timing jitterThe variance � of the timing jitter of the transitions is only a partial second-orderprobabilistic characterization of the self-referenced timing jitter process J . We would alsolike to calculate an estimate of the autocorrelation function or the spectral density of theasymptotically WSS process J .We calculate the spectral density of the self-referenced timing jitter process J usingthe time-averaged periodogram method discussed at the end of Section 2.2.11. We applythe time-averaged periodogram method to the sample path Jsp[k]; k = 0; 1; : : : ; S, after wesubtract the sample mean from every sample. We already used the same sample path toestimate the variance � for the timing jitter. Recall that the sample mean, i.e. the averageof the samples in Jsp[k]; k = 0; 1; : : : ; S, can be nonzero. In fact, as derived previously,the sample mean msp is a random variable with mean 0 and variance �. We subtract thesample mean from the sample path to obtain~Jsp[k] = Jsp[k]�msp; k = 0; 1; : : : ; S: (7.75)We then use the time-averaged periodogram method on the sample path ~Jsp[k]; k =0; 1; : : : ; S, to calculate the spectral density of the timing jitter process at the output of theFD. Recall that the timing jitter of the transitions for the oscillation waveform at the inputof the FD (i.e. at the output of the VCO) is the same as the timing jitter of the transitionsat its output. Hence, J also represents the timing jitter process for the oscillation waveformat the output of the VCO. The phase noise process at the output of the FD is given by2�fref J (7.76)and the phase noise process at the output of the VCO is given by2�N fref J: (7.77)



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 248Hence, we can easily calculate the spectral density of the phase noise processes from the spec-tral density of the timing jitter process J by simply scaling it with (2�fref)2 or (2�N fref )2.The timing jitter process J at the output of the FD represents the jitter of thetransitions separated by 12fref . We can interpret J as the output of a sampler with acontinuous-time process as its input with a sampling rate that is equal to 2 fref . So, thespectral densities can be calculated for the frequency range [�fref ; fref ]. The phase noisespectral density calculated as such corresponds to the phase noise spectrum that can bemeasured on a spectrum analyzer as a function of the o�set frequency from the carrier,i.e. the fundamental oscillation frequency. The units for the phase noise spectral densityis rad2=Hz. It is usually plotted in decibels, and then the unit is dBc which stands fordecibels below carrier.If there are systematic error sources in the PLL, the spectral densities calculatedfor timing jitter/phase noise may exhibit peaks et certain frequencies, i.e. spurious tones.In Section 7.4.1, we described another numerical method to estimate these spurious tones,which was based on performing Fourier analysis on the steady-state VCO control voltagecalculated by the simulation algorithm.7.5 ExamplesWe will now present examples of PLL behavioral simulation using the techniquespresented in this chapter. In particular, we will present examples for the analysis of theacquisition characteristics of PLLs, and timing jitter/phase noise characterization.The PLL behavioral modeling and simulation techniques presented in this chapterwere used in the top-down constraint-driven design of an on-chip clock generator for a videodriver system (which was fabricated) [63, 4]. The architecture of this clock generator PLLcircuit is the one shown in Figure 7.1, and the the loop �lter is as the one shown in Figure7.4. Some behavioral simulation results will be presented for this PLL, but the reader isreferred to [63, 4] for a detailed description of how the behavioral modeling and simulationtechniques of this chapter were used in its top-down design.We used the techniques of this chapter in the bottom-up veri�cation of a frequencysynthesizer PLL that was designed to generate the LO signal in a cellular telephony appli-cation. We were able to identify the systematic error sources and make predictions for thespurious tone and the phase noise performance of this PLL using the behavioral modeling



CHAPTER 7. BEHAVIORAL SIMULATION OF PLLS 249and simulation methodology. The results we obtained were quite close to the measurementson the fabricated PLL circuit. Thus, the usefulness of the techniques we described in thischapter for the design of PLLs for clock generation and frequency synthesis applications wasproven for an industrial design example. Unfortunately, due to the proprietary nature ofthis project, we will not be able to present the behavioral modeling and simulation resultswe obtained for this circuit.7.5.1 Acquisition behaviorBottom-up veri�cation of a phase-locked system using behavioral simulation isdone in two steps:� Set up the behavioral models for the components. The model parameters are extractedusing SPICE and other transistor-level simulation techniques from the transistor-leveldescription of the components.� Simulate the system in time-domain using behavioral simulation and postprocess thesimulation output to characterize various performance measures.To illustrate this procedure for the analysis of the acquisition characteristics, componentbehavioral models for a bipolar PLL [1] were set up, and behavioral simulation was usedto analyze its acquisition characteristics. The VCO of the PLL circuit is the relaxationoscillator we analyzed in Chapter 6. The phase detector is a Gilbert multiplier, and theloop �lter is a one pole, passive low pass �lter. There is no frequency divider in the feedbackloop. Figure 7.7 shows the SPICE domain extraction of the relation between the e�ectivefrequency of the VCO and the control voltage. Other model parameters are extracted in asimilar way from the transistor level description. Model extraction is done only once for acircuit. Then, created models are used in many behavioral simulations of the PLL. Figure7.8 shows the response of the modeled PLL to a frequency step at the reference oscillatorsignal, both SPICE and behavioral simulation. Behavioral simulation is two orders ofmagnitude faster than SPICE.The acquisition characteristics of the clock generator PLL of [63, 4] was analyzedusing behavioral simulation. The waveform shown in Figure 7.9 is the control voltage ofthe VCO when the PLL is acquiring the reference signal. This simulation was performed toanalyze the stability of the feedback loop for the worst case frequency divider ratio. Figure
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Figure 7.7: Extraction of frequency versus control voltage relationship for the VCO7.9 shows the waveforms obtained with both behavioral and SPICE simulation, which arealmost identical. The behavioral simulation took 560 CPU seconds, whereas the full circuitsimulation took 20 CPU hours.137.5.2 Timing jitter characterizationThe role of behavioral simulation in the top-down design of a phase/delay-lockedsystem will be illustrated for the design of a multi-phase clock generator. A PLL witha ring-oscillator VCO or a delay-locked loop (DLL) can be used to generate multi-phaseclocks, as in Figure 7.10. These two architectures were compared for their timing jitterperformance using behavioral simulation. Figure 7.11 shows the relationship between therms clock jitter (the square root of � that was de�ned in Section 7.4.2.1) and the percentagedelay cell jitter contribution for a given design of both architectures. Ring-oscillator VCOfor PLL, as well as the delay line of the DLL, has 5 delay cells. Reference clock frequencyis 50 MHz. From Figure 7.11, we conclude that DLL has better timing jitter performance,when compared with a PLL, for �xed percentage delay cell jitter contribution. Then, therelationship between clock jitter and percentage delay cell jitter is used to predict the13For SPICE simulation, macromodels were used for the frequency dividers instead of their transistor-levelimplementations. Both of the simulations were performed on a DEC Alpha machine with a CPU that is aDEC Alpha chip 21164 with 250 MHz clock frequency, 4 Mb of cache, and a SPEC int 92 of 277.
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Figure 7.8: Acquisition characteristics using behavioral simulation and SPICE


