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Abstract

Analysis and Simulation of Noise
in
Nonlinear Electronic Circuits and Systems

by

Alper Demir
Doctor of Philosophy in Engineering-Flectrical Engineering

and Computer Sciences
University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

Electrical noise originates from the fact that electrical charge is not continuous
but is carried in discrete amounts equal to the electron charge. Hence it represents a
fundamental limit on the performance of electronic circuits and systems. With the explosive
growth of the personal mobile communications market, noise analysis/simulation techniques
for nonlinear electronic circuits and systems have become an essential part of the design
process. Even though most of the signal processing is done in the digital domain, every
wireless communication device has an analog front-end which usually is the bottleneck in
the design of the whole system. The requirements for low power operation and higher levels
of integration create new challenges in the design of the analog signal processing subsystems
of these mobile communication devices. Shrinking dimensions, the push for lower voltage
levels, and the use of CMOS technologies for high frequency analog signal processing make
the effect of noise on the performance of these inherently nonlinear analog circuits more
and more significant.

We present analysis, simulation and characterization techniques, and behavioral
models for noise in nonlinear electronic circuits and systems. The problem is treated within
the framework of, and using techniques from, the probabilistic theory of stochastic processes
and stochastic differential systems. A novel time-domain algorithm for the simulation and

complete second-order probabilistic characterization of the behavior of nonlinear electronic



circuits in the presence of noise is proposed. With this algorithm, one can simulate a non-
linear dynamic circuit with electrical noise sources and arbitrary large-signal excitations
by directly calculating the correlation matrix of the state variables of the system which
are represented by nonstationary stochastic processes. This method enables us to analyze
transient and nonstationary noise phenomena since a steady-state condition for the circuit
is not required. The noise simulation algorithm is a core tool which can be used to in-
vestigate, simulate, understand, and model various noise phenomena in nonlinear analog
and mixed-signal circuits. We use the noise simulation algorithm to investigate, understand
and model the phase noise/timing jitter phenomenon in oscillator circuits. We present a
formal definition for phase noise and propose algorithms for its probabilistic characteriza-
tion. A hierarchical behavioral specification and simulation methodology for the design of
phase-locked loops used in clock generation and frequency synthesis applications is then
proposed. We develop behavioral models of phase-locked loop components which capture
various nonidealities including the phase noise/timing jitter and spurious tone behavior. A
mixed-signal behavioral simulation algorithm and techniques to postprocess the data from
behavioral simulation to characterize the spurious tones and the timing jitter/phase noise

of the output of the phase-locked loop are presented.

Professor Alberto L. Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

Introduction

In electronic circuit and system design, the word noise is used to refer to any
undesired ezcitation on the system. In other contexts, noise is also used to refer to signals
or excitations which exhibit chaotic or random behavior. The source of noise can be either
internal or external to the system. For instance, the thermal and shot noise generated
within integrated circuit devices are internal noise sources, and the noise picked up from
the environment through electromagnetic interference is an external one. Electromagnetic
interference can also occur between different components of the same system. In integrated
circuits (ICs), signals in one part of the system can propagate to the other parts of the
same system through electromagnetic coupling, power supply lines and the IC substrate.
For instance, in a mixed-signal IC, the switching activity in the digital parts of the circuit
can adversely affect the performance of the analog section of the circuit by traveling through
the power supply lines and the substrate.

Prediction of the effect of these noise sources on the performance of an electronic
system is called noise analysis or noise simulation. A methodology for the noise analysis

or simulation of an electronic system usually has the following four components:
e Mathematical representations or models for the noise sources.

e Mathematical model or representation for the system that is under the influence of

the noise sources.

e A numerical analysis/simulation algorithm to “analyze” or “simulate” the effect of

the noise sources on the system in some useful sense.
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e Post-processing techniques to characterize the effect of the noise sources on the sys-
tem by calculating useful performance specifications using the “data” created by the

analysis/simulation of the system.

In this work, we will be concentrating on the type of noise phenomena caused by
the small current and voltage fluctuations, such as thermal, shot and flicker noise, which
are generated within the integrated-circuit devices themselves. This type of noise is usually
referred to as electrical or electronic noise, because it originates from the fact that electrical
charge is not continuous but is carried in discrete amounts equal to the electron charge.
Electrical noise is associated with fundamental processes in integrated-circuit devices. In
practical electronic circuits and systems, the effect of external noise sources, such as dig-
ital switching noise coupled through the power supply lines and the IC substrate, can be
overwhelming compared with the effect of the electrical noise sources on the performance.
The effect of such external noise sources can and should be minimized by using techniques
such as differential circuit architectures, separate power supply lines for the analog and
digital portions of the circuit, and isolation of the sensitive analog portion from the rest of
the system. However, the effect of electrical noise sources can not be eliminated, since it
is generated within the electronic devices that make up the system. Thus, electrical noise
represents a fundamental limit on the performance of electronic circuits [1]. Even though
the noise analysis and simulation methodology we will be presenting was developed to an-
alyze the effects of electrical noise, it can also be quite useful in analyzing the effects of
other types of noise on electronic circuits. The effects of electrical noise on the performance
is most relevant for analog and mized-signal electronic circuits, which will be the types of
circuits and systems this work is concerned with.

Noise analysis based on wide-sense stationary noise source models and the theory
of linear time-invariant systems has been used by analog circuit and system designers for
quite some time. This type of noise analysis, usually referred to as AC noise analysis, is
implemented in almost every circuit simulator such as SPICE, and it has been quite an
invaluable tool in linear analog IC design. For instance, in most cases, analog amplifier
circuits operate in small-signal conditions, that is, the “operating-point” of the circuit does
not change. For noise analysis and simulation, the amplifier circuit with a fixed operating-
point can be modeled as a linear time-invariant network by making use of the small-signal

models of the integrated-circuit devices. On the other hand, some amplifier circuits and
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other analog circuits such as mixers, filters, oscillators, etc. do not operate in small-signal
conditions. For instance, for a mixer circuit, the presence of a large local-oscillator signal
causes substantial change in the active devices’ operating points over time.

The noise analysis/simulation of electronic circuits and systems that operate in an
inherent nonlinear fashion is much more involved than the noise analysis of circuits which
can be treated with techniques from the theory of linear time-invariant systems. Even
though nonlinear analog circuits has been used extensively in many applications, little
work has been done in the analog design and analog CAD community to develop analy-
sis/simulation techniques to characterize the performance of such circuits in the presence
of noise sources. This is most probably due to the conceptually difficult nature of the
problem, as well as the complexity of the specialized mathematical techniques needed for
its treatment. With the explosive growth of the personal mobile communications market,
noise analysis/simulation techniques for nonlinear electronic circuits and systems have be-
come an essential part of the design process. Even though most of the signal processing is
done in the digital domain, every wireless communication device has an analog front-end
which usually is the bottleneck in the design of the whole system. Considerations of power
dissipation, form factor and cost push the analog front-end of these devices to higher and
higher levels of integration. The requirements for low power operation and higher levels of
integration create new challenges in the design of the analog signal processing subsystems
of these mobile communication devices. Shrinking dimensions, the push for lower voltage
levels, and the use of CMOS technologies for high frequency analog signal processing make
the effect of noise on the performance of these inherently nonlinear analog circuits more
and more significant. Hence, noise analysis/simulation techniques for the design of such
nonlinear analog circuits and systems are bound to be relevant.

In our opinion, some of the work in the literature on the analysis of various noise
phenomena in nonlinear electronic circuits and systems treated the problem using ad-hoc
and non-rigorous techniques, hence resulting in unreliable and often wrong information
about the behavior of the circuit under analysis. We will be treating the problem within
the framework of the probabilistic theory of stochastic processes and stochastic differential
systems. The well-defined axiomatic structure of the rather well developed theory of prob-
ability and stochastic processes provides us a firm foundation in our attempt to understand
and analyze the noise phenomena in nonlinear electronic circuits and systems. We would

like to point out that a rigorous treatment of the problem does not mean that one is dealing
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with uncomputable quantities. Indeed, efficient simulation techniques which have a rigorous
foundation can be developed.

We will start in Chapter 2 with a review of the mathematical background needed
to follow the rest of our treatment. In Chapter 3, we review the basic physical mechanisms
for electrical noise sources and describe their models as stochastic processes. Chapter 4
gives an overview of several noise analysis/simulation techniques that have been proposed
in the literature to predict the performance of electronic circuits under the influence of
noise sources. In Chapter 5, we describe a novel noise simulation algorithm for nonlinear
electronic circuits proposed by us [2, 3]. Then, in Chapter 6, we use the noise simulation
algorithm of Chapter 5 to investigate the phase noise/timing jitter phenomenon in free
running oscillators. We describe numerical algorithms for the characterization of phase
noise in oscillators, and develop models based on its characterization. Top-down hierarchical
design methodologies for analog and mixed-signal systems [4] have been proven to be quite
effective in dealing with complexity, and in making the design systematic and modular. We
believe that a hierarchical approach will be quite effective in dealing with the complexity
of the nonlinear noise analysis problem for large and complicated systems. Chapter 7
describes a hierarchical behavioral modeling and simulation methodology for the design of
phase-locked loops used in clock generation and frequency synthesis applications. Finally,

in Chapter 8, we conclude with a summary and discussion of future directions.



Chapter 2

Mathematical Background

This chapter presents
e an overview of probability, random variables and stochastic processes,

o filtering of stochastic processes with linear time-invariant, linear time-varying and, in

particular, linear periodically time-varying transformations,

e basic results from linear algebra about the eigenvalues and eigenvectors of a matrix

and its transpose, positive definiteness, properties of a covariance matrix,
e Floquet theory of a system of linear periodically time-varying differential equations,
e overview of the theory of stochastic differential equations/systems.

Since the topics to be covered are rather extensive, most of the derivations or proofs will
not be given here. Definitions and a list of results will be presented as they relate to the
analysis of noise in nonlinear systems. For a detailed treatment of the above topics, the
reader is referred to the textbooks and other references listed below. We borrowed heavily

from these references for our discussion in this chapter.

Probability, random variables and stochastic processes: [5], [6],[7].
e Filtering of stochastic processes with linear transformations: [5],[8].

e Stochastic differential equations and systems: [9], [10], [11], [12], [13].

Floquet theory: [14], [15].
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2.1 Probability and Random Variables '

Mathematical probability has its origins in the games of chance, i.e. gambling.
Starting in the sixteenth century many famous mathematicians wrote on probability. By the
end of the nineteenth century, the lack of a well-defined axiomatic structure was recognized
as a serious handicap of the probability theory. In 1933, Andrei Nikolaevich Kolmogorov

provided the axioms which are today the foundations for most mathematical probability.

2.1.1 Events and their probabilities

The set of all possible outcomes of an experiment is called the sample space and
is denoted by Q2. A collection F of subsets of € is called a o-field if it satisfies the following

conditions:
1. 0 e F;
2. if Ay, Ag,... € F then U2, A; € F;
3. it Ae F then A° € F.

A°¢ denotes the complement of a subset A of . A subset A of Q is called an event if it
belongs to the o-field F.
A probability measure P on (2, F) is a function P : F — [0, 1] satisfying

2. if Ay, Ay, ...is a collection of disjoint members of F, so that A;( A; = 0 for all pairs
v, j satisfying ¢ # 7, then

P (Ej AZ) = io: P (AZ) (2.1)

=1
The triple (2, F,P), comprising a set Q, a o-field F of subsets of 2, and a probability
measure P on (2, F), is called a probability space.
Given two events A and B in F,if P (B) > 0 then the conditional probability that
A occurs given that B occurs is defined to be

P (AN B)

PAIB) =~

(2.2)

'The material in this section is summarized from [5], [6] and [7].
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A family of events {A;: 1€ 1, A€ F}is called independent if
P (ﬂ AZ) = H P (AZ) (2.3)
1€J ed
for all finite subsets .J of [I.

2.1.2 Random variables and their distributions

A random wvariable is a function X : Q — IR with the property that {w € Q :
X(w) <z} e Fforeach z € IR. Such an X is called to be F-measurable. The distribution

function of a random variable X is the function F': IR — [0, 1] given by
F(z) =P (X <2) (2.4)

where the abbreviation {X < z} denotes the event {w € Q: X(w) < 2} € F.
The random variable X is called discrete if it takes values only in some countable
subset {x1,22,...} of IR. The random variable X is called continuous if its distribution

function can be expressed as

F(z) = /x f(u)du zé€R, (2.5)
for some integrable function f : IR — [0, 00). The distribution function of a continuous ran-
dom variable is obviously continuous. There is also another kind of random variable, called
a “singular” random variable. Other random variables (which are not discrete, continuous
or singular) are “mixtures” of these three kinds.

The joint distribution function of a random vector X = [Xy, Xg,..., X,,] on the
probability space (2, F,P) is the function F' : IR® — [0, 1] given by F(x) = P (X < x)
for x = [z1,22,...,2,] € R™. The expression {X < x} is an abbreviation for the event
{w e Q:Xj(w) <y, Xo(w) <agy..., Xp(w) <a,} € F. The random variables X and Y
on the probability space (2, F,P) are called jointly discrete if the vector [X, Y] takes values

only in some countable subset of IR?, and jointly continuous if their distribution function

can be expressed as
@ y
F(ac,y):/ / flu,v)ydudv z,y € R, (2.6)

for some integrable function f:IR? — [0, 00).
The (probability) mass function of a discrete random variable X is the function

f:IR —[0,1] given by f(z) =P (X = z).



CHAPTER 2. MATHEMATICAL BACKGROUND 8

Example 2.1.1 (Poisson distribution) If a random variable X takes values in the set
{0,1,2,...} with mass function
DU
Flky=""e k=0,1,2,... (2.7)
where A > 0, then X is said to have the Poisson distribution with parameter A. Poisson

distribution plays a key role in modeling shot noise in electronic and other systems.o

The (probability) density function of a continuous random variable is the integrable
function f : IR — [0,00) in (2.5). The joint (probability) density function of two random
variables X and Y is the integrable function f:1R* — [0,00) in (2.6).

Example 2.1.2 (Exponential distribution) The random variable X is exponential with

parameter A > 0, if it has the density function

F(z)=Xe ™, 2z >0. (2.8)

This distribution is a cornerstone in modeling shot noise, and is closely related to the Pois-

son distribution. For an exponential random variable X, we have
PX>s4+2|X>s5 =P (X >a). (2.9)

This is called the lack of memory property. Exponential distribution is the only continuous

distribution with this property.o

Example 2.1.3 (Gaussian (Normal) distribution) Probably the most important con-
tinuous distribution is the Gaussian distribution, which has two parameters p and o2 and

the density function

flz)= \/% exp (— (962_05)2) , —oo<z<oo. (2.10)

It is denoted by N (u,0?).0

Two random variables X and Y are called independentif {X < 2} and {Y <y} are
independent events for all 2,y € IR. This definition applies to both discrete and continuous
random variables.

Let X and Y be random variables, and let g,k : IR — IR. Then, ¢(X) and h(Y)

are functions which map the sample space Q2 into IR by

9(X) (@) = g(X (@),  AhY)(w) = (Y (w)).
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Let us assume that ¢(X) and A(Y) are random variables. (This holds only if they are
F-measurable.) If X and Y are independent, then so are g(X) and A(Y').

Let X and Y be two jointly continuous random variables on (2, F,P). The con-
ditional distribution function of Y given X = z written Fy x(y|z) or P (Y < y[X =z), is
defined to be

Fyx (yle) = /Ui_oo ]}f(’;))dv

for any « such that fx(z) > 0. fx(z) is the density function of X, and f(z,y) is the joint
density function of X and Y. Then, the conditional (probability) density function of Fy x,

written fy |y, is given by

frixtole) = Z24.

Similarly, conditional distribution functions and conditional density functions can be defined

for jointly discrete random variables.

2.1.3 Expectation

Ezxpectation is probably the single most important notion in probability theory.

The expectation of a discrete random variable X with mass function f is defined to be

EX]= > zf(2) (2.11)

z:f ()>0
whenever this sum is absolutely convergent. The expectation of a continuous random vari-
able X with density function f is defined to be
E[X]= / v f(z) do (2.12)
—o0
whenever this integral exists. A rigorous definition of expectation for an arbitrary random
variable, regardless of its type (discrete, continuous, and ...), is constructed in measure
theory through abstract integration (Lebesgue-Stieltjes integral), which will not be discussed
here. The interested reader is referred to the texts on probability and measure theory.

In our treatment, we have first defined probability measure, which then formed the
basis for the definition of expectation. It is also possible to first construct a definition for
expectation through abstract integration, and then define a probability measure based on
the expectation of a special kind of random variable. Hence, expectation is a key concept

in probability theory. The expectation operator will be denoted by E [].
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If X and ¢(X) are continuous random variables then

E [¢(X)] =/ g(z) f(x) da (2.13)

where f is the density function of X. A similar relationship holds for discrete random
variables.
If £ is a positive integer, then the kth moment my of a random variable X is
defined as
mi = E [ X*]. (2.14)

The kth central moment o is then defined by
or=E [(X —my)]. (2.15)

The two moments of most use are m; = E [X] and 03 = E {(X — E [X])Q}, called the mean
(or expectation) and the variance of X respectively. The variance of a random variable can

not be negative.

Example 2.1.4 (Mean and variance) Both the mean and variance of the Poisson distri-
bution defined in Frample 2.1.1 are equal to A. The mean and variance of the Fxponential
distribution (Ezample 2.1.2) are 1/\ and 1/X?. For the Gaussian distribution (Ezample
2.1.3), they are p and o*.0

Two random variables X and Y are called uncorrelatedif E[X Y] = E [X]E [Y]. If X and
Y are independent then they are uncorrelated, but the converse is not true in general.

The covariance of two random variables X and Y is defined as
cov(X,Y)=E[(X-EX])(Y-E[Y]D]=E[XY]-EI[X]E[Y] (2.16)

If X and Y are uncorrelated then cov(X,Y) = 0.

A vector X = [Xy, X, ..., X,;] of random variables is said to have the multivariate
Gaussian distribution whenever, for all a € R™,a’ X = a; X; + a2 Xo + ...+ a, X, has
a Gaussian distribution. Two bivariate Gaussian random variables are independent if and
only if they are uncorrelated.

For a vector X = [Xy, X, ..., X,;] of random variables, the mean vector is given

by @ = E [X], and the n X n matrix

V=E[(X-p)(X-pT] (2.17)
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is called the covariance matriz, because v;; = cov(X;, X;).

Let X and Y be two jointly continuous random variables on (€2, F,P). Suppose
X = = is given. Conditional upon this, ¥ has a density function fy|x(y|z), which is
considered to be a function of y. The expected value [ yfy|x(y|z)dy of this density is
called the conditional expectation of Y given X = z, and is denoted by E [V |X = z]. The
conditional expectation depends on the value z taken by X, and hence can be thought of as
a function of X itself. Then the conditional expectation E [Y|X] is itself a random variable,

and one can calculate its expectation. It satisfies the following important property

E[E[Y|X]] = E [Y]. (2.18)

2.1.4 Convergence of random variables

The concept of a limit of a sequence of random variables naturally arises in many
problems in probability theory. Random variables are real-valued functions on some sample
space, so convergence of a sequence of random variables is similar to the convergence of
a sequence of functions. There are several definitions of convergence for a sequence of
functions: pointwise convergence, norm convergence, convergence in measure [6]. These
modes of convergence can be adapted to suit families of random variables.

There are four principal ways of interpreting the statement “X,, — X as n — o0”,
where {X,,} is a sequence of random variables. Let X, Xo,..., X be random variables on

some probability space (€2, F,P). We say that

L. X, — X almost surely, written X,, 23 X if {w € Q: X,,(w) = X (w) as n — oo} is an

event whose probability is 1,

2. X,, = X in the rth mean, where r > 1, written X,, = X, if E [|X”|] < oo for all n
and

E[|X,—- X|]—=0asn— oo,
3. X,, = X in probability, written X, LA X, if
P(|X,—X|>¢) >0asn— ooforalle >0,
4. X,, = X in distribution, written X, B X, if

P(X,<z)—=P(X<z)asn— o0
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for all points @ at which F(z) = P (X < z) is continuous.

The definition for almost sure convergence involves a limit for the value of a random variable
at a particular point w € Q in the sample space: The sequence {X,,(w)} is a sequence of real
numbers, and the limit X, (w) — X (w) as n — oo is defined in terms of the definition of
limit for a sequence of real numbers. Similarly, the other definitions above involve limits for
sequences of probabilities and expectations, which are, basically, sequences of real numbers.
These limits are also defined in terms of the limit for a sequence of real numbers. A sequence
of real non-random numbers {z,,} converges to a number z if and only if for all € > 0, there
exists N, such that |z, — 2| < e if n > N..

The following implications hold:

(X, 3 X) = (X, 5X) (2.19)
(X, > X) = (XngX)foranyrZ 1 (2.20)
(X, 2 X) = (X,BX) (2.21)
(X, =5 X) = (X, X)forr>s>1. (2.22)

No other implications hold in general.

2.1.4.1 Strong law of large numbers

Let X1, Xg,... be independent identically distributed (i.i.d.) random variables.

Then
1

n
— ZXi — p almost surely, as n — oo,
n

=1
for some constant p, if and only if E [|X1]] < co. In this case g = E [X;]. A sufficient
condition for the strong law of large numbers is given by the following: Let X, X5,... be

i.i.d. random variables with E [X{] < oco. Then
%2?21 X; % p, % S X 2 [ as n — oo. (2.23)

2.1.4.2 Central limit theorem

Let X1, Xo,... be independent identically distributed random variables with finite

means g and finite non-zero variances o2, and let

Sn=X14+Xo+ ...+ X,.
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Then
Sp —np p

W — N(0,1) as n — oo. (2.24)

where N(0,1) denotes the Gaussian distribution with mean 0 and variance 1. The same
result also holds under various weaker hypotheses than independence and identical distri-
butions. The central limit theorem is the primary reason why so many random phenomena
are modeled in terms of Gaussian random variables. For example, the thermal noise voltage
of a resistor is the result of a large number of elementary effects, namely the tiny voltage

impulses due to the individual ion cores and free electrons.

2.2 Stochastic Processes 2

A stochastic process X is a family {X; : t € T} of random variables indexed by
some set T and taking values in some set S. There is an underlying probability space
(Q,F,P), and each random variable X; is an F-measurable function which maps € into
S. For stochastic processes in the study of signals and systems, the index set T usually
represents time. We shall only be concerned with the cases when T represents time, and
is one of the sets Z,{0,1,2,...},IR, or [0,00). When T is an uncountable subset of IR,
X is called a continuous-time stochastic process, and when T is a countable set, such as
{0,1,2,...}, it is called a discrete-time stochastic process. We shall write X (¢) rather than
X; for continuous-time stochastic processes, and X, for discrete-time processes. The state
space S might be a countable (e.g. Z), or an uncountable set such as IR or R". We will
be mostly dealing with the case when .S is an uncountable set, usually IR. A stochastic
process may be interpreted as a “random function” of time, which is useful in relating
evolutionary physical phenomenon to its probabilistic model as a stochastic process, but
note that we have not formally defined what a “random function” is. We have formally
defined a stochastic process to be a time-indexed family of random variables, and all the
mathematical methods and tools of analysis for stochastic processes are developed based
on this formal definition.

Evaluation of X (¢) at some w € Q yields a point in S, which will be denoted by
X (t;w). For any fixed w € , there is a corresponding collection {X (t;w) : ¢t € T} of

members of §; this is called a realization or sample path of the stochastic process X at w.

2The material in this section is summarized from [5], [6] and [7].
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The “complete” collection of the sample paths of a stochastic process is called the ensemble.

The X (t) (for different values of t) are not independent in general. If S C IR and
t = [t1,t2,...,t,] is a vector of members of T, then the vector [ X (#1), X (t2),..., X (¢,)] has
the joint distribution function F(x,t): R"™ — [0, 1] given by

F(x,t) = P (X(t1) < 21, ..., X (tn) < 2).

The collection {F(x,t)}, as t ranges over all vectors of members of T" of any finite length, is
called the collection of finite-dimensional distributions (fdds) of X. In general, the knowl-
edge of fdds of a process X does not yield complete information about the properties of its
sample paths.

Expectation, as defined in Section 2.1.3, can be interpreted as an ensemble average,
and forms the basis in developing mathematical methods and tools of analysis for stochastic
processes in the probabilistic approach to the design and analysis of signals and systems.
Expectation in the context of stochastic processes can also be defined in terms of time
averages instead of ensemble averages. There does exist a deterministic theory of stochastic
processes based on time averages (i.e generalized harmonic analysis developed by Norbert
Wiener). We choose to use the probabilistic theory of stochastic processes. One important
reason for this is that the theory based on ensemble averages (i.e. probabilistic theory)
for stochastic processes accommodates time-varying averages. On the other hand, time-
averages remove all time-varying effects. Thus, to study the statistical behavior of time-
varying phenomena, we must rely on the probabilistic theory and models. However the
averages measured in practice are often time averages on a single member of an ensemble,
that is, a single sample path. For instance, experimental evaluation of signal-to-noise ratio
(SNR) is often accomplished by time averaging. So, the connection between time averages

and ensemble averages needs to be formalized, which is treated in the theory of ergodicity.

2.2.1 Mean and autocorrelation

The mean of the stochastic process X, at time ¢, is simply the mean of the random

variable X (¢), and is denoted by

mx(t) = E [X ()] (2.25)
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The autocorrelation of a stochastic process X, at times t; and t9, is simply the correlation

of the two random variables X (¢;) and X (¢2), and is denoted by
Rx(t1,t2) = E [X(t1) X (t2)] (2.26)
The autocovariance of a stochastic process X, at times ¢; and 5, is given by
Kx(ti,ts) = E[(X(t) = mx(t1)) (X(t2) — mx (t2))]- (2.27)
From (2.26) and (2.27), it follows that
Kx(t1,t2) = Rx (t1,t2) — mx (t1) mx (t2). (2.28)

The cross-correlation and cross-covariance for two random processes X and Y are defined

by

Rxy(ti,ta) = E[X(t)Y(t2)] (2.29)
Kxy(ti,tz) = E[(X(0) —mx(t)) (Y(t2) = my(t2))] (2.30)
= RXY(th tg) - mX(tl) MY(tQ). (231)

2.2.2 (Gaussian processes

A real-valued continuous-time process is called Gaussian if each finite-dimensional
vector [X (¢1), ..., X (¢,)] has the multivariate Gaussian distribution N (p(t), V(t)) for some
mean vector g and some covariance matrix V which may depend on t = [ty,...,t,].

Gaussian processes are very widely used to model physical phenomena. The central
limit theorem, presented in Section 2.1.4.2,is the primary reason for this. If we have a vector

of Gaussian processes X(t) = [X1(f),..., X, (t)], the mean vector

mx (t) = [mx, (t),...,mx,(t)] (2.32)
and the correlation matrix

Rx (t1,12) = E [X(t1) X(t2)"] (2.33)

for all t1 and tq, completely specify the fdds for the vector of processes X(t). This fact
together with the central limit theorem leads us to a very important practical conclusion:

If we are able to (approximately) model the signals in our system with Gaussian processes
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(based on the central limit theorem), then to completely characterize these signals proba-
bilistically, all we need is to calculate the means and all the correlations as given in (2.32)
and (2.33). The mean and the correlations are sometimes called the first and second-order
probabilistic characteristics of the process, due to the fact that they are obtained by calcu-
lating the first and second-order moments through expectation. Even if the processes are
not Gaussian, a second-order probabilistic characterization (i.e. means and correlations)
often yields “adequate” information for most practical problems. Hence, means and corre-
lations and methods to calculate them are extremely important from a practical point of

view.

2.2.3 Markov processes

The continuous-time process X, taking values in IR, is called a Markov process if
P (X(t,) <z|X(t1) =21,..., X(tno1) =@p_1) = P (X (tn) < 2| X (tno1) = Tno1)

for all z,2y,29,...,2,-1 and all increasing sequences ¢; < --- < t,, of times.

A Gaussian process X is a Markov process if and only if
E[X(t)|X () =21,..., X(tne1) = no1] = E [X ()| X (tno1) = 2p1]

for all zy,29,...,2,-1 and all increasing sequences t; < --- < ¢, of times. If a process is
both Gaussian and Markov, then its autocovariance function satisfies

Kx (tg, tg)I(X (tg, tl)
Kx (tg, tg)

Kx (tg, tl) =

for all tl S tz S t3.
Discrete state-space Markov processes are called Markov chains, which have been

studied extensively in the literature.

2.2.4 Stationary processes

A real-valued stochastic process X is called nth-order stationary if its nth-order

fdds are invariant under time shifts, that is, if the families

(X(t),.., X(t))} and {X(t1+h), ..., X(tn+h)}
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have the same joint distribution for all ¢1,...,¢, and h > 0. If X is nth-order stationary for
every positive integer n, then X is said to be strictly stationary. If X is strictly stationary,

we must have

mx(t) = my(ts) (2.34)
Rx(ti,ts) = Ry(ti+hyts+h) (2.35)

for all ¢y, t2, and h > 0. If it is only known that (2.34) and (2.35) are valid, then X is
said to be wide-sense stationary (WSS). Similarly, two real-valued processes X and Y are
said to be jointly WSS if and only if every linear combination {a X (¢) + bY (¢) : a,b € IR}
is a WSS process. It follows that they are jointly WSS if and only if both means, both
correlation functions, and the cross-correlation function are invariant under time shifts.

In general, a WSS process is not necessarily strictly stationary. A Gaussian process
is strictly stationary if and only if it is WSS.

For a WSS process, the mean m, is independent of time, and the autocorrelation

(and the autocovariance) depends only on the time difference t; — ¢, i.e.
Rx(t1,t2) = Rx (t1 — t2). (2.36)

Hence, for a WSS process X, the autocorrelation is a function of a single variable 7 = t; — {5,
and is given by

Rx(r) = E [X(t+7/2)X(t - 7/2)]. (2.37)

Note that Rx(7) in (2.37) is an even function of 7.

2.2.5 Cyclostationary processes

A process X is said to be wide-sense cyclostationary if its mean and autocorrelation

are periodic with some period T':

mX(t—I—T) = mX(t) (2.38)
Rx(ti+T,ta+T) = Rx(t1,t2) (2.39)

for all t,t1,t2. The modifier “wide-sense” will be omitted in the rest of our discussion.
Unless noted otherwise, we will be dealing with wide-sense cyclostationary processes only.
With a change of variables ty =t + 7/2, to =t — 7/2, we will express the autocorrelation
function in (2.39) as

Rx(t,7)=E[X({t+71/2)X(t—7/2)] (2.40)
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which is a function of two independent variables, ¢ and 7, is periodic in ¢ with period
T for each value of 7, and is an even function of 7. We assume that the Fourier series
representation for this periodic function converges, so that Ry in (2.40) can be expressed

as

Ry(t,7) = f: RW () exp (j2rk £.t), (2.41)

k=—c0

(%)

where f, = 1/T is the fundamental frequency, and the Fourier coefficients RY;’(7) are given

by
(k) I .
RY(r) = / Ro(t, 7) exp (—j2rk fut)dt. (2.42)
T /)-1/2
The concept of cyclostationarity can be generalized to almost cyclostationarity, in which
case the autocorrelation in (2.40) is an almost periodic function of t.

A process X is called mean-square periodic if
E[|X(t+7)-XO)F] =0 (2.43)
for every ¢ and for some period T'. From this it follows that, for a specific ¢
P(X(t+T)=X()=1. (2.44)

It does not, however, follow that X (t;w) = X (t + T;w) for all w € Q and for all £. The
mean of a mean square periodic process is periodic just like a cyclostationary process. On

the other hand, the autocorrelation of a mean square periodic process is doubly periodic
RX (tl + nT, tz + mT) = RX (th tz) (245)

for all integers m and n. The autocorrelation of a cyclostationary process is not, in general,
doubly periodic, because it does not satisfy (2.45) for any m and n, but it does satisfy
(2.45) for m = n. A mean-square periodic process is cyclostationary, but a cyclostationary

process is not necessarily mean-square periodic.

2.2.6 Spectral density

Frequency-domain concepts and methods are widely used in the theory of signals
and systems. Fourier series and Fourier transform are the main mathematical tools for
frequency-domain analysis. Up to this point in our treatment of stochastic processes, we

have not used frequency-domain concepts except for the Fourier series representation of the
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autocorrelation of a cyclostationary process. At first sight, it is not obvious how we can use
Fourier transforms with stochastic processes. One idea is to apply the Fourier transform to
the sample paths (which was defined before) of stochastic processes. However for most of the
stochastic processes (e.g. WSS processes), the sample paths are not finite-energy functions,
hence they are not Fourier transformable. A generalized (integrated) Fourier transform was
developed by Norbert Wiener in his work on generalized harmonic analysis (1930). We will
not further discuss this rather technically involved approach.

Even though the sample paths for stochastic processes are not Fourier trans-
formable in general, it is possible to use Fourier transforms on the autocorrelation functions
of stochastic processes and obtain practically useful frequency domain characterizations.
The spectral density or the spectrum of a WSS stochastic process X is defined as the Fourier
transform of the autocorrelation function in (2.37), i.e.

oo
Sx(f) = /_ _ Bx(r)exp(—j2n fr)dr (2.46)
whenever the integral exists. Since Rx(7) is an even function of 7, Sx(f) is a real and even
function. It can also be shown that it is a nonnegative function. From (2.46), we can derive
oo
Rx(0 =& [X(0"] = [ sx(as (2.47)
using the inverse Fourier transform relationship

Ry(r) = / 0; Sx (f) exp (j2r fr)df. (2.48)

For a nonstationary process X, the autocorrelation is not a function of a single variable in

general, i.e.

Rx(t,7) = E [X(t+ 1/2)X (t — 7/2)]. (2.49)

In this case, an instantaneous or time-varying spectral density is defined as
oo
Sx(t, f) = /_ ~ Rx(t.7)exp (~j2n /). (2.50)
For a complete second-order probabilistic characterization of a nonstationary process, spec-
ification of either the time-varying autocorrelation function in (2.49) or the time-varying
spectral density in (2.50) is needed.
If X is a cyclostationary process, then the time-varying spectral density in (2.50)

is periodic in ¢t with fundamental frequency f. = 1/T. We assume that the Fourier series
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representation for this periodic function converges, so that Sx in (2.50) can be expressed

as
Sx(t,f)= 3 SP(f)exp (j2rkfut). (2.51)
k=—oc0
It can be shown that
W f) = /_ RY (7) exp (—j2n fr)dr (2.52)

(%) (k

where Sy’ (f) are the Fourier series coefficients in (2.51), and RX)(T) are the Fourier series
coefficients in (2.41). Second-order probabilistic characteristics of cyclostationary processes
are completely characterized by either Sg?)(f) in (2.51) or Rg?)(r) in (2.41).
Nonstationary processes (as opposed to WSS processes) are said to exhibit so-called
spectral correlation, which is a concept that comes from the deterministic theory of stochastic
processes based on time averages. To get an intuitive feeling for spectral correlation, we will
discuss the WSS case. This discussion is very non-rigorous and simplistic, but it illustrates
the concept of spectral correlation. Let X be a zero-mean WSS process. Assume that the
sample paths of the process are Fourier transformable (which is not correct, since a WSS
process has sample paths with infinite energy), and the Fourier transform X
_ oo
X(f) = /_OOX(t) exp (—j2r ft)dt (2.53)
is also a well-defined zero-mean stochastic process. Then, one can show, by formal manip-

ulation of integrals, that

E [X(M)X(f)7] = Sx(f) (i - o), (2.54)

where Sy is the spectral density of X as defined in (2.46), and § is the Dirac impulse.
Hence, the correlation between two different frequency samples of X is zero, which would

not be true for a nonstationary process.

2.2.7 Wiener process

The Wiener process to be defined in this section is of fundamental importance,
not only as a model for a variety of physical phenomena such as Brownian motion, but also
as the core of the theory of calculus for stochastic processes. A standard Wiener process

W ={W(t):t >0} is a real-valued Gaussian process such that

1. W(0) = 0.
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2. W has independent stationary increments:

e The distribution of W (t) — W (s) depends on ¢t — s alone.
e The random variables W (t;) — W (s;), 1 < j < n, are independent whenever the
intervals (s;,t;] are disjoint.

3. W(t+s) — W(s) is a Gaussian random variable, N(0,¢) for all s,¢ > 0.

Given the axiomatic definition of the Wiener process, it can be shown that it is a Markov
process.

The mean and the autocorrelation function of the Wiener process are given by

mw(l) = E [W(1)] =0 (2.55)
RW(th tg) = E [W(tl) W(tg)] = min (th tg). (256)

Since a Wiener process is a Gaussian process, the mean and autocorrelation given above
completely characterize its fdds. Note that a Wiener process is neither WSS nor cyclosta-

tionary.

2.2.8 Poisson process

The Poisson process to be defined in this section is of fundamental importance,
not only as a model for shot noise in electronic devices, but also as the core of the theory of
point processes. An inhomogeneous Poisson (counting) process with time-varying intensity

A(t) is a process N = {N(t) : t > 0} taking values in S = {0,1,2,...} such that
1. N(0) =0;if s <t then N(s) < N(t),

A(t)h + o(h) if m=1
2. P(N(t+h)=n+m|N({)=mn)=1 ofh) it m>1,
1=Xt)h+o(h) if m=0

3. if s < t then the number N (¢) — N(s) of emissions/crossings/arrivals in the interval

(s,t] is independent of the times of emissions/crossings/arrivals during [0, s].

Given the axiomatic definition of the Poisson counting process above, it can be shown that

the probability of the number of emissions/crossings/arrivals in the interval (¢1,%2) being
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equal to k is given by

t t2 K
P (k emissions in (t1,%2)) = exp (— /t1 A(t)dt) (ftl/\k('t)dt)

(2.57)
We observe that the number of emissions in the interval (¢,¢2) is a Poisson random variable
(see Example 2.1.1) with parameter
t2
/ ().
t1

There is an important, alternative and equivalent formulation of a Poisson counting process

which provides much insight into its behavior. Let Ty, Ty, ... be given by
To=0, 1T,=inf{t:N(t)=n}.

Then T;, is the time of the nth arrival. The interarrival times are the random variables
X1, Xg,...given by
X, =T,-T,_1.

From a knowledge of N, one can determine X7, Xo,.... Conversely, one can reconstruct
N from a knowledge of the X;. For a homogeneous Poisson counting process (A(t) =
A a constant), the interarrival times X7, Xo,... are independent identically distributed
exponential random variables with parameter A. Using the memoryless property of the
exponential distribution, one can then show that a homogeneous Poisson process is a Markov
process.

The mean and the autocorrelation function of the Poisson process are given by

my(t) = E [N({#)] = f§ Ma)da (2.58)
Ry (t1,12) = E [N()N ()] = [0 @ [1+ 0D A@ar] . (2.59)
If A(f) = A is a constant, these reduce to
my(t) = At (2.60)
RN(th tz) = Amin (th tz) + A2t1t2. (261)
Note that the (homogeneous or inhomogeneous) Poisson process is neither WSS nor cyclo-
stationary.

For a homogeneous Poisson process, if it is known that there are exactly k arrivals

in an interval (¢1,2), then these arrival times have the same statistics as k arbitrary points
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placed at random in this interval. In other words, the k points can be assumed to be k
independent random variables uniformly distributed in the interval (¢1,%2).
A homogeneous Poisson process has stationary independent increments, meaning

that

1. The distribution of N(t) — N(s) depends only on ¢ — s.

2. The increments N(¢;) — N(s;), 1 < j < n, are independent, whenever the intervals

(s;,t;] are disjoint.

2.2.9 Continuity and differentiability of stochastic processes

The notions of continuity and differentiability for non-random real-valued functions
are defined through the concept of limit of sequences of real numbers. Similarly, one can de-
fine continuity and differentiability for stochastic processes through the limit of sequences of
random variables. In Section 2.1.4, we discussed four different ways of defining convergence
for sequences of random variables. Now, we will discuss continuity and differentiability for
stochastic processes using mean-square convergence, which can also be defined using other
forms of convergence such as almost sure convergence.

A stochastic process X is called mean-square continuous at t if
E[|X(1) = X(t—h)’| = 0ash—0. (2.62)

It can be shown that (2.62) is satisfied if and only if the autocorrelation Rx(t1,t2) is

continuous in t; and ¢y at the point t = t; = t5, that is, if
[Rx(t,t) — Rx(t — hq,t — hg)] — 0 as hy, hy — 0. (2.63)
If X is WSS, then (2.63) is satisfied if and only if Rx(7) is continuous at 7 = 0, that is, if
[Rx(h) — Rx(0)] = 0ash — 0 (2.64)

The autocorrelation in (2.56) (for t;,¢; > 0) for the Wiener process satisfies (2.63) for all
t > 0. Hence, the Wiener process is mean-square continuous for all ¢ > 0.

A stochastic process X is called mean-square differentiable at t if there exists a
random variable X'(t) such that

2 |[fxo - xu-w- v

2
] —0ash —0. (2.65)
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If X is mean-square differentiable for all ¢, then the process X'(t) = d/dt X (t) (assuming
that it is a well-defined process in the underlying probability space) is called the derivative
of X. It can be shown that (2.65) is satisfied if and only if the autocorrelation Rx (¢1,t2) is

differentiable jointly in ¢; and ¢y at the point t = t; = t5, that is, if the limit

P [Rx(t,t) — Rx(t — hy,t)
2
“Rx(t,t—ho)+ Rx(t—hyt—h)] = bl

(2.66)

t1=to=t
as hi,hg — 0

exists. If X is WSS, then the limit in (2.66) exists if and only if Ry (7) is twice differentiable
at 7 = 0, that is, if the limit

5 [ (h) = 2R (0) + R (~h)] 825% as b= 0 (2.67)

T7=0

exists. The autocorrelation in (2.56) for the Wiener process violates (2.66). Hence, the
Wiener process is not mean-square differentiable although it is mean-square continuous.
If a process X is mean-square differentiable for all #, and the derivative process X’

exists, then the mean and the autocorrelation of the derivative process are given by

mxdt) =m0 (2.69)
Rxi(ti,t2) = %, (2.69)
and if X is WSS, then
mx:/(t) = 0 (2.70)
Ryi(r) = —%. (2.71)

These can be obtained by interchanging the order of the operations of differentiation and
expectation (which should be justified).
Mean-square integrability is defined in a similar way through the use of a rectan-

gular Riemann sum.

2.2.10 White noise

The so-called white noise is generally understood in engineering literature as a

WSS (not necessarily Gaussian) process £, for —oo < t < oo, with mean E [£(¢)] =0 and a
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constant spectral density on the entire real axis, i.e.
Se(f)y=1forall feR. (2.72)

Using (2.48), we can calculate the autocorrelation function to be

Re(r) = E[S(t+7/2)E(t —7/2)] = 6(7) (2.73)

where ¢ is the Dirac impulse. From (2.73), we see that £ is a process such that &(t + 7/2)
and £(t — 7/2) are uncorrelated for arbitrarily small values of 7. In particular, we would

have

B [c0?] = [ se(n)dr =, (2.74)

which means that the variance of £(¢) is infinite for all ¢.

In our above discussion of white noise, we have freely used the Dirac’s ¢ as it is
widely used in engineering. As 4 is not a well-defined function but a generalized function,
white noise is not a well-defined stochastic process. White noise as defined above does not
exist as a physically realizable process, and the singular behavior it exhibits does not arise in
any realizable context. White noise is a so-called generalized stochastic process, and plays
a very important role in the theory of calculus for stochastic processes. The differential
equations which include white noise as a driving term have to be handled with great care.

If we calculate the autocorrelation function for the derivative W’ of the Wiener
process using (2.69), we obtain

0? Ry (t1,t2)
Jt10ty

2
= min (th tz)

91101
= 5(t - t) (2.75)

RW’ (th t2) =

which involves the Dirac impulse. This is the autocorrelation for the WSS white noise
process!
Let us define a zero-mean process N by subtracting the mean of a homogeneous

Poisson process (with parameter A) from itself:

Then the autocorrelation function for N is given by

RN(tth) = Amin (thtz) (276)
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which is exactly in the same form as the autocorrelation of the Wiener process (except for

a constant factor). Hence, the autocorrelation of the derivative N’ of N is given by
RN/(tl,tg) = /\5(t1 — tg)

which is the autocorrelation of a WSS white noise process (with a constant spectral density
equal to A on the entire real axis). Actually, it can be shown that a process obtained as the
formal derivative of any zero-mean process with stationary and uncorrelated increments has
an autocorrelation function in the form of (2.73), and is therefore a white noise process. The
WSS white process obtained as the derivative of the Wiener process is a Gaussian process,
and therefore called Gaussian white noise. The process obtained as the derivative of the
Poisson process (after subtraction of the mean) is called Poisson white noise. Note that even
though both the Wiener process and the Poisson process are not WSS, their “derivative”,
white noise, is a WSS (generalized) process. White noise is a very useful mathematical
idealization for modeling random physical phenomena that fluctuate rapidly with virtually

uncorrelated values for different instants of time.

2.2.11 Ergodicity

The theory of ergodicity deals with the relationship between ensemble averages (i.e.
expectation) and time averages, and hence formalizes the connection between the proba-
bilistic theory of stochastic processes based on ensemble averages, and the deterministic
theory based on time averages.

Let X be a stochastic process with mean mx (t), and the autocorrelation and

autocovariance functions Rx (¢, 7) and Ky (t1,t2) given by

Rx(t,7) = E[X(t+7/2)X (t — 7/2)] (2.77)
Kx(ti,t2) = E [X (1) X (t2)] — mx (1) mx (t2) (2.78)

We define the average mean (mx) for X as the limit

T/2
/ t)dt = (mx) as T — oo, (2.79)
T T/2

and the average autocorrelation (Rx)(7) for X as the limit

T/2
L/ x(t,7)dt = (Ry)(r) as T — oo (2.80)
T T/2
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whenever these limits exist. The finite-time empirical mean for a stochastic process X is

defined as
T/2
2.81
T /T/2 ( )

Note that mx (7") is a random variable (assuming that it is well-defined with the integral
above interpreted as the mean-square limit of a rectangular Riemann sum) indexed by 7.

The finite-time empirical autocorrelation for a stochastic process X is defined as
B ()7 = / X(t+7/2)X (t = 7/2)dt. (2.82)
T J_1/2

Note that Ry ()7 is a random variable (assuming that it is well-defined with the integral
above interpreted as the mean-square limit of a rectangular Riemann sum) indexed by 7'

If the following limit
x (T) 2 iy asT — oo (2.83)

exists (See Section 2.1.4 for the definition of mean-square limit that is denoted by “« 2y
n (2.83).), X is said to exhibit mean-square regularity of the mean, and 7x is called the

empirical mean of X, which is also a random variable. If the following limit

Rx(r)r > Rx(r)as T = (2.84)

exists for every 7, X is said to exhibit mean-square reqularity of the autocorrelation, and
]%X(T) is called the empirical autocorrelation function of X, which is also a random vari-
able indexed by 7. It can be shown that mean-square regularity of the mean and the

autocorrelation implies that

(mx) = E [rmx] (2.85)
(Rx)(r) = E [Rx(r)]. (2.86)

A regular process X is said to have mean-square ergodicity of the mean if
. ~o1p2
E [[inx — E [mx]]’] =0, (2.87)
and a necessary and sufficient condition for this is

T/2 rT/2
T2 /T/z/T/2 I(X thtz dtldtz —0asT — oo. (288)
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If the process X is WSS, then the condition (2.88) reduces to
1 T
T / Kx(r)dr - 0asT — o0 (2.89)
0
where
Kx(r)=E[X{t+7/2)X{t—-7/2)]—mx(t+7/2)mx(t—71/2)
A regular process X is said to have mean-square ergodicity of the autocorrelation if
. . 2
E URX(T) — E [Rx(r)]| ] =0 (2.90)

for every 7. A necessary and sufficient condition for the mean-square ergodicity of the
autocorrelation can be found by replacing X (¢) in (2.88) and (2.89) with Y, (t) = X (¢t +
7/2) X (t — 7/2) where Y, is a process which is indexed by 7. Note that

my, (1) = Rx(t, 7). (2.91)

If X has mean-square ergodicity of the mean and the autocorrelation (which also means

that it is regular), then we have

E [y — (mx)[*] =0 (2.92)
E UJ%X(T) = <RX>(T)H = 0. (2.93)
For a WSS process X, we have
mx = E [X(t)] = (mx) (2.94)
Rx(r) = E[X(t+7/2)X(t —7/2)] = (Rx)(T). (2.95)

Then, if X is WSS and ergodic (which also means that it is regular), we have
E [[ix — mx|*] =0 (2.96)
E UJ%X(T) - RX(T)‘Q] = 0. (2.97)
Summarizing:

e For a WSS regular process the empirical autocorrelation function Ry (7) is in general
a random variable (indexed by 7) and its expectation is equal to the probabilistic
autocorrelation Rx (7). If X is regular, WSS and ergodic then the variance of the
empirical autocorrelation is zero. Thus, for a regular, WSS and ergodic X one can
calculate the probabilistic autocorrelation by calculating the empirical autocorrelation

using a single sample path of the process.
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e For a nonstationary regular process, the empirical autocorrelation function ]%X(T)
is in general a random variable (indexed by 7) and its expectation is equal to the
time-average of the instantaneous probabilistic autocorrelation Rx (¢, 7) (averaging
over t). If X is regular and ergodic then the variance of the empirical autocorrelation
is zero. Thus, for a regular, nonstationary, ergodic process X, one can calculate
the time-average of the instantaneous probabilistic autocorrelation by calculating the

empirical autocorrelation using a single sample path of the process.

Up to this point, our discussion of ergodicity involved time-domain second-order
probabilistic characteristics (i.e. the autocorrelation). One can extend the ergodicity con-
cepts for regular processes to frequency domain by defining the empirical spectral density
Sx (f) as the Fourier transform of the empirical autocorrelation Ry ()

. 0o

sein=[ ~Rx(ryexp(—j2nfr)dr. (2.98)
One can define the average spectral density (Sx)(f) as in (2.80) but, this time, as the
time-average of the instantaneous probabilistic spectral density defined by (2.50). Then,
for a regular process, expectation of the empirical spectral density is equal to the time-
average of the instantaneous probabilistic spectral density Sx (¢, f) (averaging over t). For
a regular and ergodic process the variance of the empirical spectral density is zero. Thus,
for a regular, nonstationary, ergodic process X, one can calculate the time-average of the
instantaneous probabilistic spectral density by calculating the empirical spectral density
using a single sample path of the process.

For a regular and ergodic process X, although the limit in (2.84) exists and the
Fourier transform in (2.98) is well-defined, it can be shown that the limit

) 1 o) T/2 .
Tlgnoo T /_Oo l/_T/zX(t—I—T/Q)X(t— 7/2)dt| exp (—j27 fr)dr (2.99)

does not exist in general in any useful sense (i.e. the order of the limit in (2.84) and the
Fourier transform in (2.98) cannot be changed). This has significant practical implications
in estimating the empirical spectral density, which we will discuss next.

Let X be a regular and ergodic stochastic process, and let X,,(t) = X (¢t;w) be a
sample path for some fixed w € . Our goal is to calculate an estimate for the time-average
of the instantaneous probabilistic spectral density for X. Since X is ergodic, we can get

this estimate by calculating an estimate of the empirical spectral density using the sample
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path X,,(t). The finite-time spectrum or the finite-time periodogram for X is given by

Speli (2.100)
where
N T/2
Xr(f) = s Xop(t) exp (—j2n ft)dt. (2.101)

It can be shown that (for the reason pointed out above), the limit of the periodogram
1/T |)~(T(f)|2 as T — oo does not exist. It becomes more and more erratic as 7' is increased.
The erratic behavior of (2.100) can be removed by time-averaging before the limit as 7" — oo
is taken. This can be accomplished by allowing the location of time interval of analysis
[-T/2,T/2] to depend on time u to obtain [u — T/2,u+ T /2]. The corresponding time-

varying finite-time periodogram for X is given by

1 5 2
7 [Xr(u, /)| (2.102)
where
ut+T/2
Xor(u, f) = / X, (£) exp (=27 f1)dt. (2.103)
u=T/2
Then, it can be shown that
Uz 1
/ X (u, )P du — Sx(f) as T, U — oo (2.104)
U U/2 T

where Sx(f) is the empirical spectral density with mean (Sx)(f) and variance equal to
zero. In practice, we can not calculate this limit as T, U — oo, since we only have a
finite time-segment of the sample path X, (¢). However, from (2.104), we know that the
calculated estimate for the empirical spectral density using (2.104) will get better as we
use more information (increase the width of the time interval) for Xj,(¢). On the other
hand, the estimate obtained by calculating (2.100) becomes more and more erratic as T is
increased. In practice, we have a sampled version of X, (¢). Hence, the integrals in (2.103)
and (2.104) are converted to summations for numerical calculations, and the FFT algorithm

is used the calculate the Fourier transform in (2.103).

2.2.12 Numerical simulation of stochastic processes

Effective analytical methods for analyzing systems involving stochastic processes

are most of the time achievable only in some simple cases. In practice, one is often confronted
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with the problem of “simulating” a stochastic process on the computer. In this context,
numerical simulation of a continuous-time stochastic process is meant to mean generating
sample paths of the process at discrete time points in a specified time interval. Numerical
simulation of stochastic processes in this sense, is a vast and widely explored topic.

The most common technique in simulation of stochastic processes is based on a
trigonometric representation of stationary stochastic processes. The following assertion is
the basis for such approaches: For an arbitrary stationary stochastic process X, for any
€ > 0 and arbitrary 7' (sufficiently large), there exist pairwise uncorrelated random variables
Ay, ..., A, and By,..., B,, and real numbers f,..., f, such that, for arbitrary t € [-T,T],

we have
n

E |[(X(t) - Z(Ak cos (27 fit) 4+ By sin (27 f11))?)| < e. (2.105)

i=1
For numerical simulation purposes, one needs to have a way of characterizing or choosing
Apg, Br and fi. Practical numerical simulations of stationary stochastic processes are most
often accomplished by use of finite sum of cosine functions with random phase angles.

We will not further discuss the vast topic of numerical simulation of stochastic
processes, but we would like to emphasize the fact that using ad-hoc and “unjustified” ways
of simulating stochastic processes will often yield wrong conclusions about the behavior
of a system under the effect of the stochastic process. One always has to justify that a
representation of a stochastic process, and the approximate numerical simulation scheme
based on this representation generate sample paths which converge, in some rigorous and

useful sense, to the sample paths of the original stochastic process.

2.3 Filtering of Stochastic Processes with Linear Transfor-

mations *

In Section 2.2, we have seen that the mean and autocorrelation function /spectral
density provide useful information about a stochastic process. We will use stochastic pro-
cesses to model noise sources. We are naturally interested in investigating the effect of these
noise sources as inputs to a “system”. We would like to be able to calculate the probabilis-

tic characteristics of the stochastic process at the output of the “system”, in particular the

®The material in this section is summarized mostly from [5] and [8]. See [5] for a detailed discussion of
cyclostationary processes.
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mean and the autocorrelation. We will concentrate on linear transformations, because most
of the practical systems we will be dealing with can be approximately modeled as linear
systems for noise signals. We will investigate the effect of linear transformations on the
mean and the autocorrelation function/spectral density of stochastic processes. The effect
of the linear transformations on the fdds of the process will not be studied here. It directly
follows from the definition of a Gaussian process (see Section 2.2.2) that a linearly trans-
formed Gaussian process is still a Gaussian process, and the fdds for Gaussian processes are

completely specified by their mean and autocorrelation functions.

2.3.1 Dynamical system representation

Up to this point, our discussion concentrated on a formalism (theory of proba-
bility and stochastic processes) for mathematical representation of “random” signals (i.e.
noise signals) as stochastic processes. Now, we will move on to discuss the mathematical
representation of systems. We will assume that the systems themselves are deterministic,
i.e. “non-random”. All systems are also considered to be causal, since they are supposed
to model physical systems.

A very general dynamical system representation as a mathematical model for all
kinds of systems can be constructed as a six-tuple which is composed of a set (which usually
represents time), an input space (set of input functions), a set of output functions, a set
of states, a state-transition function, and a read-out map for the output, along with some
axioms about causality, Markovian property, and the semigroup property. This dynamical
system representation is general enough to represent differential systems as well as finite-
state machines. One can formally define the notions of linearity and time-invariance based
on this dynamical system representation. We will not go into this rather technically involved
discussion here. Instead, for our current discussion, we will concentrate on a mathematical
representation of a continuous-time dynamical system from an input/output relationship
perspective, considering it as a black box: A system is defined to be a function % : ¢ — ¢t
that maps an input {z(t),—oco < t < 4oo} into an output {y(t),—oco < t < oo}, with
complex-valued inputs and outputs.* In our discussion, we will consider single-input, single-
output (SISO) systems for notational simplicity. The extension to multiple-input, multiple-

output (MIMO) systems is straightforward.

4C denotes the set of complex numbers.
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2.3.2 Linear dynamical system representation

A system H is said to be linearif H(az1+bxg) = a H(z1)+bH(xs), for all @ and b
in C and all ¥ and x4 in C®. A system # is said to be time-invariant if H({z(t+7), —o00 <
t < +oo}) ={H(x)(t+T), —00 <t < F00}.

One can define Dirac’s §(.) by

/ e(w)6(t — w)du = 2 (1) (2.106)
for all z(.) continuous at t. Now, let H be a linear system. The impulse response of H is
defined as h(t,u) = H(d(t — u)). The system H is said to be causal if ~(¢,u) = 0 for t < w.

It can be shown that
o0

H(z)(t) = / e(u)h(t, u)du (2.107)

for some input @ € C®. If H is linear and time-invariant (LTI), then h(t,u) = h(t — u).

A linear system H is said to be memoryless if h(t,u) = ¢c(t)é(t — u) for some
c¢: IR — IR. An LTI system is memoryless if h(t — u) = ¢d(t — u) for some ¢ € IR.

If the input to an LTI system H is z(t) = exp (j27 ft), then it can be shown that
the output is

Hiw)(t) = H(f) exp (j2r 1) (2.108)

where H(f) is the Fourier transform of the impulse response h(t),
H(f) :/ h(t = ) exp (=27 f(t — u))du (2.109)

and is called the system transfer function. If x(t) = [%_ X (f) exp (j2r ft)df, i.e. X(f) =
F {z(t)}, then

@0 = [ HX() expliznsods (2.110)
also
Y(f) = F {H(2)(®)} = H() X (). (2.111)

For a memoryless LTI system with impulse response h(t) = ¢4(t), we have H(f) = ¢,
independent of f.

The usefulness of the Laplace/Fourier transform theory for the analysis and syn-
thesis of LTI systems is apparent by looking at (2.107) (an integral relationship) and (2.111)
(simple multiplication relationship). The Laplace/Fourier transform belongs to a class of

analysis and synthesis techniques called integral transforms for linear systems. We will not
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go into a general discussion of the integral transform theory here. A detailed treatment can
be found in [14]. Motivated by the usefulness of the Laplace/Fourier transform theory for
LTI systems, an effort was made in the literature to develop a complete operational cal-
culus for linear time-varying (LTV) systems by “extending” the Laplace/Fourier transform
theory. Such a transform was proposed by Létfi Zadeh in 1950 [8]. There was a contro-
versy in the literature on the usefulness of this transform. Nevertheless, for our purposes,
this transform forms a rigorous basis for analyzing the effect of noise on LTV systems. By
analogy with (2.109), Zadeh defines the system transfer function H(f,t) for an LTV system
by

H(ﬁt):t/a)h@;@emp(—jQrf@——uDdu. (2.112)

Note that, in contrast to H(f) in (2.109), H(f,t) in (2.112) is a function of both f and ¢.
It can be easily shown that, if the input to an LTV system H is x(t) = exp (527 ft), then
the output is

H() (1) = H(f, 1) exp (25 1) (2.113)
which is a generalization of (2.108) to LTV systems. If z(¢) = [°° X (f)exp (j27 ft)df, i.e.
X(f) = F {e(t)}, then

@) = [ HUOX () exp(2n [0, (2.114)

For a memoryless LTV system with h(t,u) = ¢(t)d(t — u), we have H(f,t) = ¢(t), indepen-
dent of f.

A linear system is said to be (linear) periodically time-varying (LPTV), if the
impulse response satisfies

h(t,u) = h(t +T,u+T) (2.115)

for all t,u € IR, and for some period T > 0. Then, for an LTPV system, the impulse
response h(t+7,t) is periodic in ¢ for every 7, and can therefore be represented by a Fourier

series (assumed to converge)

h(t+1,t) Z hy (1) exp (7270 fet) (2.116)

where f. = 1/T' is the fundamental frequency, and the Fourier coefficients h,(7) are given
by

T/2
B ( / h(t 4 7,t) exp (—j27n f.t)dt. (2.117)
T T/2
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Then the system transfer function

H(f,1) = /_O; h(t,t — 1) exp (—j2m fr)dr (2.118)

is also periodic in ¢ and can be represented by a Fourier series

H(ft)= i H,(f+nf.)exp(j2rnf.t) (2.119)
where
H.(f) = / "l (7) exp (—j2m fr)dr. (2.120)

If the input to an LPTV system # is z(t) = exp (j2r ft), then the output is

o0

H(z)(t) = H(f,t) exp (j27 ft) = Z H,(f+nf.)exp (j2r(f + nfe)t) (2.121)

n=—0oo

which is a special case of (2.113). If z(t) = [0 X (f) exp (j2= ft)df is the input to an LPTV
system, i.e. X(f)= F {z(¢)}, then the output is given by

M) = [ HUEOX() exp 2 (2.122)

-/ S Ho(f + nf) exp (2en )X () exp (j2m [} (2.123)

n=—00
oo
= F! { > Hn(f)X(f—l—nfc)}. (2.124)
n=—00

Hence, the Fourier transform of the output is Y (f) = Y02 H,.(f)X(f + nf.), which
is a generalization of (2.111) to LPTV systems. For a memoryless LPTV system with

h(t,u) = c(t)d(t — u), we have H(f,t) = c(t), independent of f, and ¢(¢) is periodic in ¢.
From (2.108), we observe that if a single complex exponential at frequency f is
input to an LTI system, the output is also a single complex exponential at frequency f with
a scaled amplitude, where the scaling is set by the transfer function H(f). For an LTV
system, the output for a single complex exponential input, in general, contains a continuum
of frequencies. For LPTV systems, from (2.121), we observe that the output corresponding
to a single complex exponential at frequency f is a summation of complex exponentials at
frequencies f 4+ nf., n € Z, where f. is the fundamental frequency for the LPTV system.
It is interesting to compare this with the fact that the steady-state response of a nonlinear
time-invariant system to a complex exponential with frequency f is a summation of complex

exponentials at the harmonics of the input frequency f.
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2.3.3 Stochastic processes and linear systems

In the previous section, we considered deterministic inputs to linear systems. Now,
let a stochastic process X be the input to a linear system with impulse response h(t,u). Note
that the system is considered to be deterministic. Then the output is another stochastic

process Y given by
Y (1) :/ X (w)h(t, ) du (2.125)

— 00
assuming that the above integral is well-defined for all ¢ in some rigorous sense (e.g. mean-
square integrability). Then the mean and the autocorrelation of Y, in terms of the mean

and autocorrelation of X, are given by

my (t) = [°2 mx(u)h(t, u)du (2.126)
Ry (t1,t2) = [0 [70, Rx(r,s)h(t1,7)h(ts, s)drds . (2.127)

2.3.3.1 WSS processes and LTI systems

If the input X is a WSS process and the system is a stable LTI system (with
impulse response h(t)), then it can be shown that the output Y is also a WSS process. A

sufficient condition for stability is
/ h(t)?dt < oo. (2.128)

For instance, an ideal integrator does not satisfy the stability condition. When a WSS
process is the input to an integrator, the output is, in general, not a WSS process.
Assuming that the LTI system is stable and the output is WSS, then the mean

and autocorrelation of the output are given by

my = mx /_Oo h(t)dt (2.129)

and
Ry(r) = /_Oo R (w)rn(7 — u)du (2.130)
— Rx(r) @ r(r) (2.131)

where rp(7) is given by

rp(t) = h(1) © h(-T) (2.132)
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and & denotes the convolution operation. The cross-correlations of the input X and output

Y are given by

Ryx(7) = Rx(7) © h(7), (2.133)
Rxy(7) = Rx(7) © h(-7). (2.134)

Then, if we assume that the autocorrelation of the output possesses a Fourier transform,

the spectral density of the output is given by

Sy (f) = [H(/)P Sx(f) (2.135)

where H(f) is the transfer function. This relationship plays a crucial role in the analysis of
signal processing systems involving linear time-invariant transformations, and is the basis
for analyzing the effect of noise which can be modeled as a WSS process input to an LTI
system. (2.135) also shows how the spectral density links to the notion of a frequency
decomposition of the power in the stochastic process X. Recall that the total power for the
output process Y is given by
B[] = [ (P Sx () (2.136)
which is a constant as a function of ¢, since Y is WSS.
The cross-spectral densities for the input and the output, defined as the Fourier

transforms of the cross-correlations, are given by

SY)((T) :Sx(f)H(f), (2.137)
Sxy(T)=Sx(f)H(-f). (2.138)

The spectral density is an even and real function, but cross-spectral densities are, in general,
not real-valued functions. Cross-spectral densities play a crucial role in evaluating the
degree to which two processes are approximately related by an LTI transformation. The
relationship (2.137) is important from a system identification point of view: The transfer
function of an LTI system can be calculated easily if we can calculate the cross- spectral

density of the input and the output. We can choose any input process with a known spectral

density Sx (f).
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2.3.3.2 Cyclostationary processes and LPTV systems

Another special case of interest is when cyclostationary processes are inputs to
LPTYV systems. Assuming that the cyclostationary input process X has the same funda-
mental frequency as the LPTV system, it can be shown that the output process Y is also
cyclostationary with the same fundamental frequency, provided that the LPTV system sat-
isfies a “stability” condition. This condition will be discussed in detail later in the chapter,
now we concentrate on relating the autocorrelation function/spectral density of the out-
put to those of the input through the transfer function of the LPTV system. The Fourier
series coefficients given by (2.42)/(2.52), and (2.117)/(2.120) completely characterize the
autocorrelation function/time-varying spectral density for a cyclostationary process, and
the impulse response/transfer function for an LPTV system respectively. It can be shown
that the Fourier series coefficients for the autocorrelation of the cyclostationary process Y

at the output are given by

B = 3 RECT () exp (<jr(n+ m) for) © ¥ (1) (2.139)
where
rB(r) = / T bt + /2R (E = 7/2) exp (=2 fut)dt. (2.140)

Then, it can be shown that the Fourier series coeflicients for the time-varying spectral
density of the output are given by

o0

S = N H(f+kf/2)SE TS — (b m) f/2)HL(f — kfe/2). (2.141)

n,m=—00

We might be interested in some special cases. For instance, if the system is LTI and the

input is cyclostationary, (2.139) and (2.141) reduce to

R’y (7) = BY) () @ (=7) (2.142)
and
Sy = H(f + kfo/2)SONH (]~ kfef2) (2.143)
where
i (r) = /_OO h(t +7/2)h(t — 7/2) exp (—j2rk f.t)dt (2.144)



CHAPTER 2. MATHEMATICAL BACKGROUND 39

and, h(t) is the impulse response, and H(f) is the transfer function. Another special case
is when the input is WSS and the system is LPTV. In this case, the output, is in general,
cyclostationary. Then, (2.139) and (2.141) reduce to

o0

R (r) = > Bx(m)exp(=jm(2n—k)fr) © P (=7) (2.145)
and
SO = S Hualf + kI/2Sx(f — (k2 m) ) HET — k1/2). (2.146)

n=—00
One can also calculate the cross-correlations and cross-spectral densities for the input and
output processes. Cross-spectral densities play a crucial role in the identification of LPTV
systems. A generalization of (2.137) holds for cyclostationary processes and LPTV systems.

All the above results for cyclostationary processes and LPTV systems can be
generalized for almost cyclostationary processes and linear almost periodically time-varying

systems.

2.4 Matrix Algebra, Linear Differential Equations and Flo-
quet Theory °

Now, we will cover some basic results from matrix algebra and the differential

equation theory.

2.4.1 Eigenvalues and eigenvectors of a matrix and its transpose

Given a real n x n matrix A, the polynomial d(A) = det (A\I - A) is called the
characteristic polynomial of the matrix A, and the equation d(\) = 0 is called the charac-
teristic equation of A. Then, d(\) is an n-th degree monic polynomial with real coefficients.
Thus, the characteristic equation has n roots, which are called the eigenvalues of the matrix

A. If Xis an eigenvalue of A, then AI — A is singular, and the equation

(M-A)x=0 (2.147)

See [14], [15] and textbooks on linear algebra and linear system theory for proofs and more details. Some
of the material in this section is summarized from the notes of the linear system theory course taught by
Prof. Erol Sezer in Fall 1990 at Bilkent University, Turkey.
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has nontrivial solutions. Each of these solutions is called an eigenvector of A corresponding
to the eigenvalue A. Eigenvalues of a real matrix may be real or complex, however complex
eigenvalues occur in conjugate pairs. If A and A* are a pair of complex conjugate eigenvalues,
and if x is an eigenvector corresponding to A, then x* is an eigenvector corresponding to
A*. A matrix can have repeated eigenvalues. A square matrix is nonsingular if and only if
it does not have any zero eigenvalues.

It can be easily shown that the matrix A and its transpose AT have the same

eigenvalues. Let us assume that the real n x n matrix A, and hence its transpose AT, have

distinct eigenvalues Ay, Ao, ..., A,. Let xq,Xo,...,x, be the corresponding eigenvectors for
A, and y1,y2,...,¥, be the corresponding eigenvectors for AT. Then, we have

A ij X, = ij AiX; (2.148)

=yl Ax; (2.149)

= ANylx. (2.150)

If i = 7, the above reduces to a trivial equality, but for i # j we have
/\iijxi = A ijxi. (2.151)

For ¢ # j, (2.151) is satisfied only if ij x; = 0, since A; # X;. It can also be shown that for
t = j, we must have ij x; # 0. So, we conclude that, for a matrix with distinct eigenvalues,
the eigenvectors of the matrix are orthogonal to the eigenvectors of the transposed matrix

corresponding to different eigenvalues, i.e.

=0 if i £ j

yTx; 7 : (2.152)
#0 ifi=1j

The eigenvalues of a real symmetric matrix are real. If the eigenvalues of a matrix

A are Ay, ..., A,, then the eigenvalues of the matrix ¢l + A are ¢+ Aq,...,c+ A, where
c € R.

2.4.2 Similar matrices

Two matrices A and B which are related as B = U~ AU, where U is a nonsingular
matrix, are called similar, and the process of obtaining B from A is called a similarity
transformation. Similar matrices have the same characteristic polynomial, and therefore,

the same eigenvalues.
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It can be shown that the eigenvectors of a matrix corresponding to distinct eigen-
values are linearly independent. If an n X n matrix A has simple eigenvalues, that is, if

the eigenvalues are distinct, then the matrix A is similar to a diagonal matrix whose di-

agonal values are the eigenvalues of A. Let Ay, Ag, ..., A, be the simple eigenvalues, and
X1, X3, ...,X, be the corresponding eigenvectors. Then, the matrix
P= [X17X27 ce '7Xn]

is nonsingular, and

P~ 'AP = diag.(A, Aoy ..o, M)

The matrix P, which consists of the eigenvectors of A, is called the modal matrix of A. Note
that, neither the eigenvectors nor the modal matrix are unique, but every modal matrix
reduces A to its diagonal form.

Every matrix with simple eigenvalues can be diagonalized by a similarity transfor-
mation. In the general case when the matrix has multiple eigenvalues, whether the matrix
can be diagonalized depends on whether or not we can find sufficient number of linearly
independent eigenvectors for each eigenvalue. Some matrices with multiple eigenvalues can
not be diagonalized. However, they can still be reduced to a simple form, not diagonal
though, by means of a similarity transformation, which is called the Jordan form. We will

not further discuss this here.

2.4.3 Function of a square matrix

Let A be an n X n matrix, and let p(A) = ag + a1 A+ ...+ a,, A be a polynomial
in the variable A with real coefficients. The polynomial p(A) of the matrix A is defined as

p(A) = agl + ;A + ...+ a, A™. (2.153)

It can be shown that every matrix satisfies its own characteristic polynomial. This result is
known as the Cayley- Hamilton theorem.

Let a matrix A have distinct eigenvalues Aq,..., Ay with multiplicities nq, ..., ng
in the characteristic polynomial. Let f(A) be a function which is analytic in some simply
connected region of the complex plane that contains Ay, ..., Ax. Then, there exists a unique

polynomial p()) of degree n — 1 where n = Zle n;, such that for each i
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where p(j)(/\i) denotes the j-th derivative of p evaluated at A = A;. Then the function
f(A) of the matrix A is defined to be p(A). The polynomial p(}) is called the annihilating
polynomial for f(\).

It can be shown that if the matrix A has distinct eigenvalues Ay, Ag, ..., Ay with
multiplicities n1,ng, ..., nk, and if the function f(A) is defined, then the matrix f(A) has
the eigenvalues f(A1), f(A2), ..., f(Ax) with multiplicities ny, ng, ..., ng.

If A is diagonalizable, i.e. there exists nonsingular P such that A = PDP~!,
where D = diag.();), then

f(A) = Pdiag.(f(\)P L. (2.154)

2.4.4 Positive definite/semidefinite matrices
A symmetric n X n matrix A (A = AT) is said to be
1. positive definite, if x” Ax has a positive value for all x # 0,

2. positive semidefinite, if x” Ax = 0 for some x # 0, and has a positive value for the

remaining x # 0,
3. indefinite, if xT Ax takes both positive and negative values.

q(x) = xTAx is called a quadratic form. It can be shown that a symmetric matrix A is
positive definite if and only if all of its eigenvalues are positive, and is positive semidefinite if
and only if at least one eigenvalue is zero and the remaining ones are positive. Note that the
eigenvalues of any real symmetric matrix are real. It can easily be shown that the diagonal
elements of a positive semidefinite matrix are nonnegative, and the diagonal elements of a
positive definite matrix are strictly positive.

In Section 2.1.3, we have defined the covariance matrix V for a vector of random

variables X as

V=E[(X-p)(X-pT] (2.155)

By definition, the covariance matrix V is a symmetric matrix. Now, let us define the random

variable Y = a” X, where a € IR™. Then, the variance of Y is given by
var(Y) =al Va. (2.156)

We know that var(Y) > 0 for a random variable Y, hence we conclude that the covariance

matrix V for a vector of random variables X is a positive semidefinite matrix. If there
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exists an a # 0 such that a’ Va = 0, then the variance of the random variable Y = a’ X
is zero.

Let A be a real symmetric matrix. Then, it can be shown that there exists an

orthogonal matrix P (PP = PP = 1I) such that
PTAP =D = diag.(\;) (2.157)

where D is a diagonal matrix with eigenvalues of A as the diagonal elements.
For the covariance matrix of the vector of random variables X, the eigenvalues are

nonnegative since it is a semidefinite matrix. Then, we have
UTVU =D = diag.(\) (2.158)

for some orthogonal matrix U, where D is a diagonal matrix with nonnegative diagonal
elements. Let us define the vector of random variables Z = UTX. Then, it can be shown
that the covariance matrix of Z is D. Since D is diagonal, the entries of Z are pairwise
uncorrelated. Note that, we also have X = UZ, since U is an orthogonal matrix.

Let A be a real n X n symmetric matrix. A is positive definite if and only if
A = BTB for some nonsingular n x n matrix B. A is positive semidefinite if and only if
A = CCT for some n x r matrix C, where r < n. If > n, A is positive definite or positive

semidefinite depending on the rank of C.

2.4.5 Differential equations
Let
x=1f(t,x) x(tp) =x¢ t€R,xecR", f:RxRR" = R" (2.159)
If the following conditions are satisfied
1. For every fixed x, the function ¢ — f(¢,x) (f(.,x)) is piecewise continuous.

2. f satisfies a Lipschitz condition, i.e. there exists a piecewise continuous k(.) : R—IR
such that
If(t,x) — £(t,x)|| < k@)||x—x|| Vx,x' € R”

which is a stronger condition than continuity. For instance f(z) = +/z is continuous,

but does not satisfy a Lipschitz condition.



CHAPTER 2. MATHEMATICAL BACKGROUND 44

then, the differential equation in (2.159) has a unique continuous solution. The proof of the
existence of the solution is done by defining a sequence {x,,}3°_ in the space of continuous
functions defined on an interval [to, ¢;] (which is a complete vector space, meaning that every
Cauchy sequence in this vector space converges to a vector in the space) as x¢(t) = xg, and

t
Xpm(t) =x0+ [ (7, %xp-1(7))dr m=1,2,... (2.160)

to
It can be shown that this sequence converges to a continuous function which is a solution
for (2.159). The iteration in (2.160), called the Peano-Picard-Lindeldf iteration, is actually
one way of obtaining a solution for the differential equation (2.159). The uniqueness of the
solution depends on the Lipschitz condition: e.g. & = \/x, 2(0) = 0 does not satisfy the
Lipschitz condition, and ¢(¢) = 0, and ¢(t) = ¢?/4 are two distinct solutions.

2.4.6 Linear homogeneous differential equations

The differential equation
x=A(t)x, x(t)€R" x(to) =x0, A(.)piecewise continuous (2.161)
satisfies
1. For every fixed x, t — A(t)x is piecewise continuous.
2. Lipschitz condition:

[A(H)x — AOX|| < [ADIx =X ¥vx,x" € R™

So, (2.161) has a unique solution. It can be shown that the set of solutions for (2.161),
{o(t,to,%0) : X9 € R™}, is an n-dimensional linear space. Let {x;}”_, be an arbitrary
basis for IR”. Define ¥;(t) = ¢(t,t0,x;). Then, it can be shown that {¢;}", is a linearly

independent set, and spans the set of solutions. For {x;}" , linearly independent, define

X (t,to) = [6(t, to, 1) - - .|6(t, to, X)) (2.162)

which is called a fundamental matriz for (2.161). If x;, = [0,...,0,1,0,...,0], with 1 at
the i-th position, then the corresponding fundamental matrix is called the state-transition

matriz for the differential equation (2.161), denoted as ®(t,ty). It can be shown that

e X(t,10) is nonsingular for all ¢.
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e Lor any xg, there exists a unique ¢ € IR™ such that ¢(¢, 0, x0) = X(¢, o) c.

e Any two fundamental matrices are related as Xj(¢,t0) = Xz(¢,t0) C where C is a

nonsingular n X n constant matrix.
o ®(t,10) is uniquely defined as the solution of X = A(£)X, X(t) =1

e The solution of (2.161) is given by ¢(t,t0,x0) = ®(f,4p) %o in terms of the state

transition matrix and the initial condition.
2.4.7 Linear nonhomogeneous differential equations
For the nonhomogeneous linear differential equation
x=A(t)x+b(t), x(to) =x0, A(.),b(.)piecewise continuous (2.163)

the solution is given by
t

o(t, to,x0) = ®(t, to) xo+ [ (¢, 7) b(1)dr (2.164)

to

where ®(t,1p) is the state transition matrix for the homogeneous equation (2.161).
2.4.8 Linear differential equations with constant coefficients
If A(t) in (2.161) is a constant matrix A(t) = A, i.e.
% = Ax, (2.165)
then the state transition matrix is given by
®(t,to) = exp (A(t —tg)) = ®(t — to) (2.166)
Now, let us assume that the constant matrix A is diagonalizable (with distinct eigenvalues):
A =PDP™! (2.167)
where D = diag.();), and P is the modal matrix for A:

P = [x,%X9,...,%X,]. (2.168)
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Then
®(t,0) = exp(Al) (2.169)
= exp(PDP™ 1) (2.170)
= Pexp(Dt)P! (2.171)

and hence, P exp (Dt) is a fundamental matrix for (2.165), which can be expressed as

X(t,0) = Pexp(Dt) (2.172)

= [exp (A1t)xq,exp (Aol)Xg, ..., exp (Ant)x,]. (2.173)

We know that any solution of the differential equation (2.163) can be expressed as a linear

combination of the columns of a fundamental matrix. So, any solution is in the form

o(t,0,%x0) = ¢1 exp (A1t)x1 + caexp (Aal)xo + ... + ¢ exp (Apt)x, (2.174)
where ¢1,...,¢, € R depend on the initial condition, Ay, ..., Ay are the eigenvalues of A,
and X1, X2, ..., X, are the eigenvectors. This is called a modal decomposition of the solutions

of (2.165), and each of exp (A;t)x; is called a mode of the system. For obvious reasons, the
LTI system described by (2.165) is said to be stable if all of the eigenvalues of A have strictly
negative real parts.

Now, let us concentrate on the differential equation
x=-ATx. (2.175)

Assuming that A is diagonalizable with distinct eigenvalues, and following analogous steps

to the above ones, one can show that any solution of (2.175) is in the form
P(t,0,%x0) = crexp (—A1t)y1 + coexp (= A2t)y2 + ...+ cnexp (= Aut)y, (2.176)

where ¢1,...,¢, € R, Af,..., A are the eigenvalues of AT (and also A), and yy,...,y,
are the eigenvectors of AT. Recall that the eigenvectors of A and AT satisfy (2.152).

Furthermore, these eigenvectors can be chosen such that

0 s

yTx; = iz (2.177)

J P .
1 ifi=
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Then, it is trivial to verify that the state transition matrix for the differential equation

(2.165) can be expressed as
t,r)=P(t—1) = Zn:exp (it = m))x: vyl (2.178)
1=1
The state transition matrix of (2.175), U(¢ — 7), is then given by
Ut —71)=0(r—t)T (2.179)

in terms of the state transition matrix of (2.165).

2.4.9 Linear differential equations with periodic coefficients

Now, we consider the case when the coefficient matrix in (2.161) is periodically

time-varying
x=A(t)x, x(to) =x0 (2.180)
A(t)=A(t+T), forsome period T, Vt.
Let ®(t,to) be the state transition matrix for (2.180). It can be shown that it satisfies
1. ®(t,to) = ®(t + nT,to+nT) Vi, to.
2. ®(t + nT,to) = B(t,t0)D(to + nT,to) ¥ 1,1t

Let us define

F = %m (@(to+Toto), Dt + T, to) = exp (FT). (2.181)

Now we present a result due to do G. Floquet (1883): Given (2.181), the state transition

matrix of (2.180) can be expressed as

O(t,tg) = P(t, to) exp ((t — to)F) (2.182)
where P(.,tg) is periodic with period T, i.e. P(t 4+ T, t9) = P(t, ), and is nonsingular.
Now, let us assume that the constant matrix F is diagonalizable (with distinct eigenvalues),

F =UDU™! (2.183)

where D = diag.(n;) with eigenvalues of F on the diagonal, and U is the modal matrix for
F with the eigenvectors of F as the columns. The eigenvalues of F are called the Floguet

exponents for (2.180). The eigenvalues of ®(to + T, tg) = exp (FT) are given by

wi = exp (1) (2.184)
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in terms of the eigenvalues of F. Then

B(t,to) = P(t,lo)exp((t —to)F) (2.185)
= P(t, to)exp ((t —to)UDU™) (2.186)
= P(t,to)Uexp((t —to)D)U! (2.187)

and hence P(¢,20)Uexp (D(t — to)) is a fundamental matrix for (2.180), which can be ex-

pressed as
X(t,tg) = P(t,t0)Uexp (D(t - to)) (2.188)
= exp (it — to))ur (E,to), - exp (alt — to))un(t,0)]  (2.189)

where u;(t,tg) are the columns of the matrix P(¢,%9)U, and hence, they are periodic in ¢
with period T. We know that any solution of the differential equation can be expressed as a

linear combination of the columns of a fundamental matrix. So, any solution is in the form

o(t, to,x0) = crexp (1 (t — to))us(t,to) + ...+ cpexp (m,(t — to))u, (¢, to) (2.190)

where ¢1,...,¢, € R depend on the initial condition. (2.190) is similar to (2.174) for the

linear differential equations with constant coefficients. Note that
P(to + nT, to) = I7 (2191)

and hence u;(tg+nT',tg) = @;, where @; are the eigenvectors of F. One important corollary
is: (2.180) has a periodic solution with period 7' if and only if ®(to + T',tg) = exp (FT)
has an eigenvalue equal to 1. The LPTV system defined by (2.180) is said to be stable if
all the Floquet exponents, i.e. the eigenvalues of F, have strictly negative real parts. The
eigenvalues of F for (2.180) play the same role as the eigenvalues of A do for (2.165) in
determining the stability properties of the system. Note that, even if the eigenvalues of
A (t) have strictly negative real parts for all ¢, the LPTV system described by (2.180) can
be unstable. It is the eigenvalues of F that determine the stability properties of (2.180).
Analogous to the constant coefficient case, now we will look into the differential
equation
x=-AT(t)x. (2.192)
With the definition of F in (2.181), it can be shown that the state transition matrix W(¢, ¢o)
for (2.192) is given by
W(t, to) = Q(t,to) exp (—(t — to)FT) (2.193)
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where Q(.,%0) is periodic with period T, i.e. Q(t + T,t9) = Q(t,t0), and is nonsingular.
Again assuming that F is diagonalizable with distinct eigenvalues, and following analogous
steps to the ones for the untransposed equation system, one can show that any solution of

(2.192) is in the form

P(t, to,x0) = crexp (—mi(t —to))vi(t,to) + ...+ cnexp (—mn(t — to))val(t,to)  (2.194)

where 7; are the eigenvalues of F (and hence F7), and v;(t, ) are periodic in ¢ with T,
and satisfy v;(to + nT,tg) = ¥;, where ¥; are the eigenvectors of FT. From (2.152), the

eigenvectors @; and ¥; can be chosen to satisfy
0 ifi£j
v!a, = #i (2.195)
1 ifi=j
We know that w;(t) = exp (1;(t — to))u;(t, o) is a solution of (2.180), hence satisfies x =

A(t)x. Similarly, z;(t) = exp (—n;(t —to))v;(t,1o) is a solution of (2.192), hence satisfies

x = —A(t)Tx. Then, we have

d d d

a(Zj(t)TWi(t)) = (@Z]‘(t)T) wilt) +2z;(t)" S vi(t) (2.196)
= —z;(OTA) wi(t) +2;()T A(t) wi(t) (2.197)
= 0. (2.198)

From (2.195) we also know that

25(t)” wilto) = { Lo ij (2.199)
Combining (2.199) and (2.198), we get
23 (0T wilt) = exp (1 — 1) (t — to)vY (1 bo) it o) = { Lo ij (2.200)
for all ¢t > ¢y, which implies
vI(t, to)u;(t, to) = { 0 sy (2.201)
1 ifi=j

for all ¢t > tg.
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Given all the above, one can easily verify that the state transition matrix for

(2.180) can be expressed as [16]

o(t,7) = Zn:exp (mi(t — T))lli(t)VZT(T). (2.202)

=1
The state transition matrix of (2.192), U(¢, 7) is then given by

U(t,7) = ®(r, )T (2.203)

in terms of the state transition matrix of (2.180). Then,

o(1,0) = Zn:eXP(WT)Ui(T)ViT(O) (2.204)
— Y exp WD) u OV 0) (2.205)

since u;(t) is periodic in ¢ with period 7. From (2.205), u;(0) are the eigenvectors of ®(7T',0)
with corresponding eigenvalues exp (7;T), and v;(0) are the eigenvectors of ®(T,0)7 with

corresponding eigenvalues exp (1;,7').

2.5 Stochastic Differential Equations and Systems °

In Section 2.3, we have presented a dynamical system representation from an
input/output relationship perspective, considering the system as a black box, (impulse re-
sponses and transfer functions) to study the effect of the input noise signals modeled as
stochastic processes on the system. However we did not discuss how one would arrive at
these transfer functions from a physical description of the system. The systems we are going
to deal with, i.e. electronics circuits and systems, are usually modeled with a system of
ordinary differential equations. Other forms of system representation, e.g partial differen-
tial equations or finite-state machines, are also used for electronic circuits. For the type of
circuits we are concerned with, i.e. analog and mixed-signal circuits, systems of differential
equations, with some additions, are the most appropriate mathematical models for various
levels of the design hierarchy. Since we model the noise signals as stochastic processes,
a mathematical model of the system with a system of differential equations will involve

stochastic processes. In this section, we will give an overview of the theory of stochastic

®Most of the material in this section is summarized from [9] and [10], which are excellent books on the
topic. Other useful references are [11], [12] and [13].
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differential equations and systems. The transfer function model of a system, and the sys-
tem of differential equations model are closely related. One can convert a transfer function
model to a system of differential equations model and vice versa, but this is not always
practically feasible. Mathematical analysis of these models provide information about the
system in different but related forms. Usually, using a combination of these two forms of
mathematical models will provide the most useful information to the system designer. In
a “loose” and nonrigorous sense, one can say that a system of differential equations model
is more “precise” than a transfer function model. In engineering practice, transfer function
models are widely used. Using a transfer function model (and the associated operational
calculus) blindly can, sometimes, yield wrong results and obscure some properties of the
system. We will give examples for this later. In principle, one should always exercise care
in using the operational calculus associated with transfer function models, and make sure
that the underlying differential equation model and its meaning are mathematically sound

and rigorous.

2.5.1 Overview

Differential equations involving random variables and stochastic processes arise in
the investigation of numerous physics and engineering problems. They are usually of one
of the following two fundamentally different types. On the one hand, certain functions,
coefficients, parameters, and boundary or initial values in classical differential equation

problems can be random. Simple examples are
X(t) = AOX () + B(t) X(to)=C (2.206)
with stochastic processes A(t) and B(t) as coefficients and with random initial value C', or
X(1) = F(6,X(),C(0) X (o) = C (2.207)

with the stochastic process ((t), the random initial value C', and the fixed deterministic
function f. If these stochastic processes have certain regularity properties, one can consider
the above-mentioned problems simply as a family of classical problems for the individual
sample paths, and treat them with the classical methods of the theory of differential equa-
tions.

The situation is quite different if “stochastic processes” of the so-called “white

noise” type appear in what is written formally as an ordinary differential equation, for
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example, the “stochastic process” £(¢) in the equation
X(t) = f(t, X))+ Gt X(t)E(E) X(to) =C. (2.208)

As discussed in Section 2.2.10, white noise £(t) does not exist in the conventional sense,
but it is widely used in engineering practice as a very useful mathematical idealization for
describing random influences that fluctuate rapidly, and hence, are virtually uncorrelated
for different instants of time.

Such equations were first treated in 1908 by Langevin in the study of the Brownian
motion of a particle in a fluid. If X (¢) is a component of the velocity, at an instant ¢, of a

free particle that performs a Brownian motion, Langevin’s equation is
X(t) = —aX(t) + 0&(t) >0, o constants. (2.209)

Here, —a X (t) is the systematic part of the influence of the surrounding medium due to
dynamic friction. The constant « is found from Stoke’s law to be a = 6wan/m, where a is
the radius of the (spherical) particle, m is its mass, and 7 is the viscosity of the surrounding
fluid. On the other hand, the term o&(¢) represents the force exerted on the particle by
the molecular collisions. Since, under normal conditions, the particle uniformly undergoes
about 102! molecular collisions per second from all directions, ¢&(¢) is indeed a rapidly
varying fluctuational term, which can be idealized as “white noise”. The covariance for £(¢)
is the Dirac’s delta function, then ¢ = 2akT/m (where k is Boltzmann’s constant and T
is the absolute temperature of the surrounding fluid). Note that, (2.209) is a special case
of (2.208), the right-hand member of which is decomposed as the sum of a systematic part
f and a fluctuational G&(t).

In the model of Brownian motion, (2.209), one can calculate explicitly the fdds of
X (t) even though £(¢#) is not a stochastic process in the usual sense. Every process X () with
these distributions (Ornstein-Uhlenbeck process) is nondifferentiable in any useful sense (see
Section 2.2.9), hence (2.209) and, more generally, (2.208) cannot be regarded as ordinary
differential equations.

For a mathematically rigorous treatment of equations of type (2.208), a new theory
was necessary. As we have seen it in Section 2.2.10, even though “white noise” is only a

generalized stochastic process, the indefinite integral

W(t) = /Otf(s)ds (2.210)
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can be identified with the Wiener process, or any other zero-mean process with uncorrelated
stationary increments. Gaussian white noise is identified as the formal derivative of the
Wiener process.

If we write (2.210) symbolically as
dW(t) = &(t)dt (2.211)
(2.208) can be put in the differential form
dX(t)= f(t,X(1))dt+G(t, X(t))dW(t) X(to)=C. (2.212)

This is a stochastic differential equation (SDE) for the process X (¢). It should be understood
as an abbreviation for the integral equation
t t
X({t)=C+ ; f(s, X(s))ds + ; G(s, X (s))dW (s). (2.213)
The second integral in (2.213) cannot, even for smooth GG , be regarded in general as an
ordinary Riemann-Stieltjes integral, because the value depends on the intermediate points
in the approximating sums. We will elaborate on this later. In 1951, K. Ito defined integrals

of the form

Y (1) = /tG(s)dW(s) (2.214)

to

for a broad class of so-called “nonanticipating” functionals of the Wiener process W (t), and
in doing so, put the theory of stochastic differential equations on a solid foundation. This

theory has its peculiarities. For example, the solution of the stochastic differential equation
dX(t)=XHdW(t) X(0)=1 (2.215)

is not exp (W(t)), but
X(t)=exp(W(t) —t/2) (2.216)

which can not be derived by formal calculation according to the classical rules of calculus.

It turns out that the solution of a stochastic differential equation of the form (2.212)
is a Markov process with continuous sample paths, which is called a diffusion process. In
a loose sense, diffusion processes are “smooth” Markov processes. The Markov property
discussed in Section 2.2.3 is basically the causality principle of classical physics carried over

to stochastic dynamic systems. It specifies that the knowledge of the state of a system at a
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given time is sufficient to determine its state at any future time. For instance, the ordinary
differential equation
&= f(t,z) (2.217)

states that the change taking place in z(t) at time ¢ depends only on z(¢) and ¢, and not on
the values of x(s) for s < ¢t. A consequence of this is that, under certain conditions on f,
discussed in Section 2.4.5, the solution curve for z(¢) is uniquely determined by an initial
point (g, ¢)

z(t) = z(t, to,c), t>ty, x(ty) =c. (2.218)
If this idea is carried over to stochastic dynamic systems, we get the Markov property. It
says that if the state of the system at a particular time s (the present) is known, additional
information regarding the behavior of the system at times ¢ < s (the past) has no effect on
our knowledge of the probable development of the system at ¢ > s (in the future).

For Markov and diffusion processes, there exist effective methods for calculating
transitional probabilities and fdds, which deal with the timewise development of transition
probabilities P (X (t) € B|X(s) = ), where B C IR. In contrast, the calculus of stochastic
differential equations deals with the random variable X (¢) and its variation. An equation
of the form (2.212) or (2.213) represents a construction rule with which one can construct
the trajectories of X (¢) from the trajectories of a Wiener process W (t) and an initial value
C.

The law of motion for the state of a Markovian stochastic dynamic system can be

described by an equation of the form
dX (t) = g(t, X(1),dt). (2.219)

In the case of fluctuational influences, i.e noise, that are additively superimposed on a

systematic part (which will be the case for noise in electronic circuits), we have
g(t,z, h)= f(t,2)h+ G(t,2)(Y(E+h) = Y (). (2.220)
Here, Y (t) is a process with uncorrelated stationary increments and (2.219) takes the form
dX (t) = f(t,X())dt+ G(t, X ())dY (t). (2.221)
Y (t) is any process with uncorrelated stationary increments. In particular, Y (¢) could be
the Wiener process, or the Poisson process (with mean subtracted). Due to the central

limit theorem, our models of white noise will be assumed to be Gaussian, which is then the

symbolic derivative of the Wiener process.
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2.5.2 An example

Now, we will analyze the following differential equation to illustrate how using clas-

sical calculus can yield wrong results when a “white noise” type driving source is present’:

L11) = —al(t) + 45 N () (2.222)

where N(t) is a homogeneous Poisson process with parameter A (see Section 2.2.8). This
equation is actually a model for shot noise in electronic circuit devices. This is a kind of
stochastic differential equation similar to Langevin’s equation (2.209), in which, however,

the fluctuational force is given by u(t) = ¢d/dt N(t). The mean of u(t) is nonzero, in fact

E [p(t)dt] = E [dN(t)] = Adt, (2.223)
E [(dN(t) — Adt)?] = \dt (2.224)

from the properties of the Poisson distribution (variance equals the mean) and the Poisson
process discussed before. We, then, define the fluctuation as the difference between the

mean value and dN ()
dv(t) = dN(t) — Adt, (2.225)
so the stochastic differential equation (2.222) takes the form

dI(t) = (Mg — ad(t))dt + qdv(t). (2.226)

Now, let us use ordinary calculus to solve this equation. If we take the expectation of both
sides of (2.226) and exchange the order of differentiation and expectation, we get

d

ZE[I(1)] = Ag—aE [I(1)], (2.227)

since v(t) is a zero-mean process. Now, we will use the following differentiation rule of

ordinary calculus:

d(I*) = 21Idl. (2.228)
Using (2.228),
%d([(t)z) — [(0)dI(t) (2.229)
= I(t)((\g— al())dt + qdv(t)) (2.230)
= (Al (t) — ol (t)*)dt + qI (t)dv(t), (2.231)

"The discussion in this section is borrowed from [10].
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where we have used (2.226) for dI(t). If we take the expectation of both sides of (2.231) we
get
1d

5B [T = ME 0] - 0k [10)7], (2.232)

where we have used E [I(t)dv(t)] = 0. Now, we will evaluate (2.227) and (2.232) at steady-
state, that is in the limit ¢ — co. Setting £ E [/()] = 0 in (2.227) we get

E [I(o0)] = Aq/a, (2.233)

which is reasonable, it gives us the average current through the system. Then we set

% E [I(t)?] = 0, and use (2.233) in (2.232) to get
E [1(00)?] = (Ag/)?, (2.234)

which says that the mean-square current is the same as the square of the mean, i.e. the
variance of the current at ¢ — oo is zero. This is a rather unreasonable result. Now, we

reexamine the differentiation rule (2.228) we used. In deriving (2.228), one writes
d(I?) = (I +dI)? — I* = 21dI + (dI)? (2.235)

and then drops the term (dI)? as being of second order in dI. However, now recall (2.224)
and (2.225), which say that

E [(dv(1))?] = Adt, (2.236)
so that a quantity of second order in dv is actually of first order in dt. A sample path of
N(t) is a step function, discontinuous, and certainly not differentiable at the times of the
arrivals. In the ordinary sense, none of these calculus manipulations are permissible. Now,

let us rederive the differentiation rule (2.228) by paying attention to (2.236):
E[d(%)] = E[(+dD)?- 1| = E [20d] + (d])?] (2.237)
= 2B [[((Ag— ol (t))dt + qdv())] + E [((\g — al (1))dt + qdv(t))?].

Again using E [[(t)dv(t)] = 0, with (2.236), and dropping terms that are higher than first

order in dt, we obtain

A

%dE [10)?] = O 1) — 0 [10°] + L) (2.238)
and as t — o0, this gives
E [1(c0)’] = (E [I(c0)])* = q;% (2.239)
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So, the variance of I(t) does not go to zero as t — oo. The conclusion is that stochastic
processes can not normally be differentiated according to the usual laws of calculus. Special
rules have to be developed when dealing with “white noise” type of processes, and a precise

specification of what one means by differentiation becomes important.

2.5.3 Stochastic integrals

The analysis of stochastic systems often leads to differential equations of the form
X(t) = f(t, X(t))+ G, X ()&(R), X(to) =C, (2.240)

where £(¢) is a “white noise” type of process. From now on, we will assume that £(¢) is
Gaussian, i.e. the formal derivative of the Wiener process. For notational simplicity, we
will concentrate on scalar equations of the form (2.240). All of the results we are going to
present can be translated to the multidimensional case in a straightforward manner. As
we discussed, £(f) does not exist in a strict mathematical sense, but it is interpreted as the
derivative of a well-defined process, i.e. the Wiener process.

The solution of a deterministic differential equation
(t) = f(t,x(t)), z(to)=c (2.241)

(with some conditions on f) is equivalent to the solution of the integral equation
x(t) =c+ ttf(s,x(s))ds (2.242)
0
for which it is possible to find a solution by means of the classical iteration procedure. In
the same way, (2.240) is transformed into an integral equation
X({t)=C+ tt f(s, X(s))ds + ;G(s, X (s))&(s)ds. (2.243)
0 0
Then, &(s)ds above is replaced by dW (s) where W (s) is the Wiener process to obtain
Xt)y=C+ tt f(s, X (s))ds+ ;G(s, X (s)dW (s). (2.244)
0 0
Now, (2.244) involves only well-defined stochastic processes. The second-integral above can
not, in general, be interpreted as an ordinary Riemann-Stieltjes integral. Now, we move on

to discuss the integrals of the type

/ " G(s)aw (s) (2.245)

to
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where G/(t) is an arbitrary stochastic process. The integral above is defined as a kind of
Riemann-Stieltjes integral. Namely, the interval [to,t] is divided into n subintervals by
means of partitioning points

o <ty < -+ <Hpoy < U, (2246)

and the intermediate points 7; are defined such that

ti_1 <1 <t (2.247)

The stochastic integral fti) G (s)dW (s) is defined as the limit of the partial sums

n

Sp = G(r)(W(t:) — W(ti_1)) (2.248)

=1
where the limit is to be taken using one of the limit notions discussed in Section 2.1.4.
In general, the integral defined as the limit of S,, depends on the particular choice of the
intermediate points 1;. For instance, if G(¢t) = W (¢) then, using the properties of the Wiener

process, it can be shown that
E[Sp] = (1 —tic1) (2.249)

and
9 n
Sp = (W) = W(t)?)/2 = (t—to)/2+ > _(Ti — tic1)  asn — oo (2.250)
=1
where we used the notion of mean-square limit. (See Section 2.1.4 for the definition of mean-
square limit that is denoted by “i”.) Therefore, in order to obtain a unique definition of
the stochastic integral, it is necessary to define specific intermediate points 7;. For example,

if we choose
n=aot;+(1-a)t;.1, 0<a<l, =1,2,...,n (2.251)
then
Sp 2 (W2 = W(t0)))/24 (a = 1/2)(t —to) asn — oo (2.252)

and the stochastic integral is defined as this limit which depends on the choice of a:

¢
() | W(s)dW(s) = (W(t)* = W (t0)*)/2+ (& = 1/2)(t — Lo). (2.253)

0
“((«))” in front of the integral in (2.253) denotes that the integral definition depends on
the choice of a. For general G(t), the stochastic integralis defined as the mean-square limit

Sn =Y G(m)(W(t:) = W(ti-1)) % () /tG(s)dW(s) as n — 00. (2.254)

=1 to
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For a choice of o = 0, that is 7; = #;_1, the stochastic integral defined above is called the
Tto stochastic integral. For the rest of our discussion, unless otherwise stated, we will be
dealing with Ito stochastic integrals. For G'(t) = W (t), with the Ito stochastic integral, we
obtain

(1t0) [ W(s)dW (s) = (W() = W (t)2)/2 — (t — to),2 (2.255)

to
which does not agree with
/tt W (s)dW (s) = (W(t)* — W (t0)*)/2 (2.256)
0
which we would get using the ordinary Riemann-Stieltjes integral. The reason for this is
that |W (t+At)—W (t)| is almost always of the order of \/At, so that in contrast to ordinary
integration, terms of second order in AW (t) do not vanish on taking the limit.

It is disconcerting that the result (2.255) obtained by the Ito stochastic integral
does not coincide with (2.256) obtained by formal application of the classical rules. The
applicability of the rules of classical Riemann-Stieltjes calculus with a choice of @ = 1/2 in
(2.254) (and hence in (2.253)) was the motivation for the definition of a stochastic integral
given by R. L. Stratonovich. Again for G/(t) = W (t), Stratonovich’s definition (with o =
1/2) yields

(Strat) t W (s)dW (s) = (W(t)* — W (t)?)/2 (2.257)

to
We will return to the discussion of Stratonovich’s stochastic integral and its comparison to
the Ito stochastic integral in the next section. Now, we concentrate on the Ito stochastic
integral.

The stochastic process G(t) in the definition of the stochastic integral (2.254) is
called nonanticipating, if for all s and t such that ¢ < s, the random variable G(t) is
probabilistically independent of W (s) — W (t). This means that G(¢) is independent of
the behavior of the Wiener process in the future of ¢. Since we are studying differential
equations involving time which are supposed to model real physical systems that are causal
(in the sense that the unknown future can not affect the present), we will restrict ourselves
to nonanticipating G/(t) in the definition of the stochastic integral. As we shall see in the
next section, this is required to define stochastic differential equations.

One can show that the Ito stochastic integral j;i G (s)dW (s) exists whenever the
stochastic process (G/(t) is nonanticipating and satisfies some “smoothness” conditions on

the closed interval [tg,].
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It can also be shown that the Ito stochastic integral satisfies the following formula

to

(2.258)

fti G(s)ds for N =0
0 for N >0

for an arbitrary nonanticipating stochastic process G/(¢), which means that

¢
” G(s)ds f N=0
ST Gt (W () — W (i)Y 2 Sy Gls)ds for asn - 0o, (2.259)
i=1 0 for N >0
Similarly, one can show that
¢
/ G(s)dsdW (s) = 0 (2.260)
to

in the mean-square limit sense. The simplest way of characterizing these results is to say
that dW (t) is an infinitesimal order of 1/2 and that in calculating differentials, infinitesimals

of order higher than 1 are discarded.

2.5.4 Stochastic differential equations

We will concentrate on a scalar stochastic differential of the form
dX ()= f(t, X))+ G, X()dW(t), X(to)=C, to<t<T < o0, (2.261)

or in the integral form

X(t)y=C+ ttf(s,X(s))ds—l— ;G(s,X(s))dVV(s)7 to <t <T < oo, (2.262)

0 0

where X (¢) is a stochastic process (assumed unknown for now) defined on [ty, 7] and W (t)
is the Wiener process. The functions f(¢,2) and G(t, ) are assumed to be deterministic
for fixed ¢ and z, i.e. the “randomness” in f(¢, X (¢)) and G(t, X (t)) appears only indi-
rectly through X (¢). The fixed functions f and G determine the “system”, and we have
the two independent random elements: The initial condition €', and the Wiener process
W (t) modeling (as its formal derivative) a white “noise source” in the “system”. We will
interpret the second integral in (2.262) as the Ito stochastic integral, and later comment
on the Stratonovich interpretation. Then, (2.262) is called an (Ito’s) stochastic differential
equation. Now, we consider conditions that need to be satisfied for the existence of a unique
solution. An ordinary differential equation is a special case of (2.262) with G = 0 and C'
deterministic. The sufficient conditions for the existence of a unique solution are similar to

the ones we have presented for an ordinary differential equation in Section 2.4.5. Suppose
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the functions f(¢, ) and G(t, z) are defined on [tg, 7] x IR and have the following properties:

There exists a constant K > 0 such that

1. (Lipschitz condition) for all ¢ € [to,T], =,y € R
|f(t7 $) - f(tv y)| + |G(t7 $) - G(tv y)| < I(|$ - y| (2263)
2. (Restriction on growth) for all ¢ € [tg, T], @ € R

|f(t,2))? + |G (t,2)]* < K*(1 4+ |z[%). (2.264)

Then, (2.262) has on [tg,T] a unique solution X (¢), which is a stochastic process that is
almost surely continuous (definition is analogous to mean-square continuity), and it satisfies
the initial condition X (o) = C. If X (¢) and Y (¢) are almost-surely continuous solutions
with the same initial value C', then

P ( sup | X () -Y () > 0) =0. (2.265)

to<t<T

Existence of the solution is proven using an analogous iteration to the Peano-Picard-Lindel6f
iteration that is used for an ordinary differential equation as discussed in Section 2.4.5. We
have already discussed the importance of the Lipschitz condition in Section 2.4.5. Failing to
satisfy the Lipschitz condition can cause (2.262) to have distinct (i.e. nonunique) solutions.
If the restricted growth condition is violated, the solution may “explode” in a finite time in
the time interval [to, T, which is a random finite time for (2.262). For instance, the following

ordinary differential equation (which does not satisfy the restricted growth condition)
i=2% 2(0)=c (2.266)
has the solution
z(t) = (1/c—t)7" (2.267)
for ¢ # 0. For ¢ > 0, the solution explodes to oo at t = 1/c.
Now, let us consider an arbitrary function of X (¢): h(X(¢)). We would like to

find out what stochastic differential equation k(X (¢)) obeys. Now, we will use (2.258) and
(2.260) to expand dh(X (t)) to second order in dW (t):

[\
DO
(@)
o0

Ah(X() = h(X (1) +dX (1)) - h(X (1)

= B(X(0))dX 1)+ 1/2K(X (1)) (dX ()2 + . ..
= WX X))+ G, X ()dW ()]
)

(
(2.
(
+1/2h" (X (1) G2 (1, X () (dW (8))* + ... (

)
)
)
)

S
b
N
=l
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where all other terms have been discarded since they are of higher order. Now we use

dW (t)* = dt to obtain

AR(X (1) = [F(t, X ()X (1) + 1/2G2(t, X (0" (X (0))]dt + G(t, X (©)A'(X (1)) aW (1)
(2.272)
This formula is a special case of a general formula on stochastic differentials known as fto’s
Jormula, and shows that the rule for changing variables is not given by ordinary calculus
unless h(z) is linear in z. The general form of Ito’s formula for the multivariate case is quite
complicated, and the easiest method is to simply use the multivariate form of the rule that
dW (t) is an infinitesimal of order 1/2. It can be shown that for an n dimensional Wiener

process W (1)

(AW ()dW ()T = L,dt, (2.273)
dtdW(t) = 0 (2.274)

which is obtained assuming that the components of the multidimensional Wiener process
W () are independent.

It can be shown that the solution X (¢) of (2.261) is a Markov processes. The
keystone for the Markov property of the solution is the fact that the “white noise” £(t) =

%W(t) is a “process” with independent values at every time point.

2.5.5 Ito vs. Stratonovich

The Ito stochastic integral is mathematically and technically the most satisfactory,
but, unfortunately, it is not always the most natural choice physically. The Stratonovich
integral is the natural choice for an interpretation which assumes £(¢) is a real noise (not
“white” noise) with finite correlation time, which is then allowed to become infinitesimally
small after calculating measurable quantities. Hence, the system-theoretic significance of
Stratonovich equations consists in the fact that, in many cases, they present themselves
automatically when one approximates a white noise or a Wiener process with smoother
processes, solves the approximating equation, and in the solution shifts back to white noise.
Furthermore, a Stratonovich interpretation enables us to use ordinary calculus, which is
not possible for an Ito interpretation. On the other hand, from a mathematical point of
view, the choice is made clear by the near impossibility of carrying out proofs using the

Stratonovich integral.
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It is true that for the same stochastic differential equation (2.261), one can obtain
different solutions using the Ito and Stratonovich interpretations of the stochastic integral.
This discrepancy arises not from errors in the mathematical calculation but from a general
discontinuity of the relationship between differential equations for stochastic processes and
their solutions.

If the second integral in (2.262) is interpreted using the Stratonovich stochastic
integral, then (2.261) is called a Stratonovich stochastic differential equation. It can be

shown that the Ito stochastic differential equation
dX = fdt+ GdW () (2.275)
is the same as the Stratonovich stochastic differential equation
dX = (f - 1/2G0,G) dt + G dW (t) (2.276)
or conversely, the Stratonovich stochastic differential equation
dX = fdt+GdW(t) (2.277)
is the same as the Ito stochastic differential equation
X = (F + %Gagg(;) dt + G AW (1). (2.278)

Thus, whether we think of a given formal equation (2.261) in the sense of Ito or Stratonovich,
we arrive at the same solution as long as G/(t,z) = G/(t) is independent of z. In general,
we obtain two distinct Markov processes as solutions, which differ in the systematic (drift)
behavior but not in the fluctuational (diffusion) behavior. If we consider f(¢,2) to be the
model of the “systematic”, or “large-signal” behavior of the system, and G(¢,z) as the
effect of the state of the system on the intensity of a noise source modeled by the derivative
of the Wiener process, then we can say that switching between the Ito and Stratonovich
interpretations of the stochastic differential equation (2.261) is equivalent to changing the
model of the systematic/deterministic behavior of the system on the “order” of the noise
source intensity, and keeping the noise source intensity the same. For most of the practical
physical systems, the noise signals are small compared with the deterministic/desired signals
in the system. Hence, from a practical point of view, the choice between the Ito and
Stratonovich interpretations of a stochastic differential equation is not a significant issue
as it is from a technical point of view. For the rest of our discussion, we will use the Ito

interpretation of the stochastic integral and Ito calculus for its nice mathematical properties.
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2.5.6 Fokker-Planck equation

Consider the time development of an arbitrary k(X (¢)), where X (¢) satisfies the
stochastic differential equation (2.261). Using Ito’s formula in (2.272), we obtain

E[dh(X())]/dt = E [%h(X(t))] _ %E h(X (1)) (2.279)
_ g [f(t,X(t))@xh—k%Gz(t,X(t))é?gh . (2.280)

Now, assume that X (¢) has a conditional probability density p(z,t|zo,to). Then

%E (X (8)] = /h(x) B,p(x, |0, to) da (2.281)
_ /[f(t, 2)h + %GQ (t, 2)02hp(x, tlzo, to)de.  (2.282)

One can proceed to obtain
[ omdr = [ @) -0.(7000) + 120G 0 o) de (2259

and, since h(z) is arbitrary, we obtain
1
Oep(, t|xo, to) = —0x[f (L, z)p(z, tlzo, to)] + §8§[G2(t, z)p(x, t|zo, to)]. (2.284)

This is a partial differential equation for the conditional probability density p(z,t|zo,to) of
the state X (¢) of the solution of (2.261). This equation is called the Fokker-Planck equation,
or the forward Kolmogorov equation in one dimension. It can easily be generalized to the
multivariate case. The conditional probability density as the solution of (2.284) is said to be
the conditional probability density of a diffusion process with drift and diffusion coefficients
given by f(t,z) and G*(t,z) respectively. One can “loosely” define a diffusion process to
be a Markov process with continuous sample paths. Then the drift p(z,t) and the diffusion

o%(z,t) coefficients of a stochastic process X are defined by

E[X(t+0 — X(OIX (1) = 2] = a(t,2) + o), (2.255)
E {|X(t +e) = XX (1) = 2| = a*(t,2) + ofe). (2.286)
Wiener process W (t) is a diffusion process with drift and diffusion coefficients given by p = 0

and ¢ = 1. If X(¢) is the solution of an (Ito) stochastic differential equation (2.261), then

it is a diffusion process with drift and diffusion coefficients f(¢,x) and G*(t, z) respectively.
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2.5.7 Numerical solution of stochastic differential equations

Effective analytical solutions of stochastic differential equations are most of the
time achievable only in some simple cases. So, there is great interest in extending numerical
integration techniques that are widely used for ordinary deterministic differential equations
for use with stochastic differential equations. In this context, numerical simulation of a
stochastic differential equation is meant to mean generating sample paths of the solution
stochastic process X (t) for the stochastic differential equation (2.261) at some discrete time
points in a specified time interval. We will refer to this technique as the direct numeri-
cal integration of a stochastic differential equation to differentiate it from other numerical
methods we will discuss later that are associated with stochastic differential equations.
We would like to emphasize the fact that even though the stochastic numerical integra-
tion schemes are based on the ones that are used for ordinary differential equations, the
extension to the stochastic case is by no means trivial. One has to exercise great care in
the direct numerical integration of stochastic differential equations, and avoid using ad-hoc
and unjustified extensions of deterministic numerical integration schemes. For instance, in
contrast to the deterministic case, where different numerical methods converge (if they are
convergent) to the same solution, in the case of the stochastic differential equation (2.261),
different schemes can converge to different solutions (for the same noise source sample path
and the initial condition). One also needs to consider various notions of convergence.

The final goal of numerically generating sample paths of the solution X (¢) for
(2.261) at discrete time points is usually achieved in three steps. In the first step, the task
is to design a numerical integration scheme so that the approximate solution generated at
discrete time points converges to the real solution in some useful sense. As an example, let
us consider the scalar Ito stochastic differential equation (2.261). Let the discretization of
the interval [tg,T] be

o<ty <---<t, =T, (2.287)

and define the time increment as At; = t;11 —t; = h;, the increment of the standard Wiener
process as AW; = W11 — W;, and the approximation process as X(ti) = X;. Now let us
consider the integral version of (2.261) on the interval [¢;,;41]
tig1 tig1
X(tiy1) =X () + f(s, X (s))ds+ G(s, X(s))dW (s). (2.288)

t; t;

Approximate schemes are constructed in such a way to approximate the integrals in (2.288)
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in some useful sense. For instance, for an approximation in the mean-square sense, for each

t € [to,T] we would like to have
E[|X(1) - XOP] =0 as  max(h) =0 (2.289)

to assure convergence. Moreover, for fixed small h = h; (i.e. for large n), we would like
to have E [|X(T) — X,,|*] to be small in some useful sense, e.g. we would like to have a

numerical scheme such that, for all t € [tg, t]
E[|X(1) - X)) =0 (2.290)

for » > 1. The simplest numerical scheme for the Ito stochastic differential equation (2.261)

is the stochastic analog of the forward FKuler scheme, which is

Xi-l—l :XZ—I—f(t“XZ)h—I—G(t“XZ) AW, (2.291)
It can be shown that the stochastic forward Fuler scheme converges in the mean-square
sense to X (t) governed by (2.261) as h — 0. It can also be shown that, the order of
convergence of the forward Euler scheme is O(h), that is, for each ¢t € [tg, T']

E[|X(1) - XOP] =0(h), (2.292)

The stochastic forward Euler scheme is not suitable for most practical problems. We will
not further discuss other stochastic numerical integration schemes here. We would like
to point out that another essential feature of numerical integration schemes for stochastic
differential equations manifests itself in additional methodical difficulties when one wishes
to deal with multidimensional equations. Again, one has to exercise great care in extending
deterministic numerical schemes to the stochastic case.

The second step, for achieving the final goal of numerically generating a time dis-
cretized approximation of the sample paths of the solution stochastic process, is to replace
the Wiener process with a suitable approximate simulation. There are various ways to
accomplish this task. One way is to use a sequence of so-called transport processes. Let
Zn(t), n = 1,2,... be a sequence of continuous, piecewise linear “functions” with alter-
nating slopes n and —n with Z,(0) = 0. The times between consecutive slope changes

2

are independent, exponentially distributed random variables with parameter n®. It can be

shown that the transport process Z,,(t) converges to the Wiener process W (t), in a useful
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sense, as n — oo in finite time intervals. It can also be shown that when W (t) in (2.261) is
replaced by Z,(t), the solution of the stochastic differential equation (2.261) converges to
the real solution in a useful sense, provided that f(¢,2) and G(¢, z) in (2.261) satisfy certain
conditions.

In the third step, one combines a stochastic numerical integration scheme with
a method to simulate the noise source, i.e. the Wiener process. This can be interpreted
as mixing two limiting procedures, one of which approximates the Wiener process and the
other approximates the stochastic integration. This might lead to a result which may not
coincide with the actual solution of the stochastic differential equation in a useful limiting
sense. Special care has to be taken to make sure that the sample paths generated by
the overall numerical algorithm converge to the sample paths of the true solution in some

rigorous sense.
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Chapter 3

Noise Models

To reach the final goal of simulating and characterizing the effect of noise on the
performance of an electronic circuit or system, we first need to investigate the actual noise
sources in the system and develop models for these noise sources in the framework of the
theory of signals and systems we will be operating with. The models we are going to use
for the actual noise sources will be developed and described within the framework of the
theory of probability and stochastic processes outlined in Chapter 2. In this chapter, we
will first discuss the physical origins of noise sources in electronic systems. As mentioned
in Chapter 1, we will concentrate on those noise sources which have their origin in the
“random” statistical behavior of the atomic constituents of matter, and hence which are
fundamentally unavoidable, i.e. the so-called electrical or electronic noise. We will exclude
from our discussion those noise sources which have their origin in external effects on the

system, e.g. atmospheric and power line interferences.

3.1 Physical Origins of Electrical Noise

Electrical noise is, basically a consequence of discrete or particle nature of matter
and energy. Electrical charge is not continuous, but is carried in discrete amounts equal
to the electron charge. Most macroscopically observable physical variables, such as electric
current, are only averages over a large number of particles, e.g. electrons, of some parameter
describing those particles [17]. When observed more precisely, the statistical or “random”
nature of the macroscopic variables become apparent from the fluctuations in their values

around the average. A complete specification of the microscopic state of a macroscopic
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system (such as a resistor) in classical physics would involve a specification of not only
of the physical structure but also of the coordinates and momenta of all of the atomic
and subatomic particles involved in its construction [18]. This is not possible, considering
the large number of particles we are talking about. A complete specification on a particle
by particle basis does not make sense in quantum mechanics, but the specification of an
exact quantum state for the system as a whole is equally impossible [18]. Hence, the
state of a macroscopic system is coarsely specified in terms of a relatively small number
of parameters. A branch of physics, statistical mechanics, allows us to make predictions
about the behavior of the system. The objective of statistical mechanics is to describe the
properties of a large system in terms of macroscopic state variables such as temperature,
volume, resistance, etc. One can calculate the most probable state of a system when it is
subject to various constraints [19]. In particular, one can calculate the probability with
which any possible microscopic configuration of particles will occur. Since each microscopic
configuration corresponds to a particular value of the macroscopically observable quantities
associated with the system, this allows us to calculate the probability distribution of one of
these quantities, for example the current through a resistor. Although one can not specify
the exact configuration of the particles at any instant, these particles are subject to precise
dynamical laws, and these laws govern the evolution of one microscopic configuration into
another as time proceeds [18]. One of the most significant and simplest system constraints is
thermodynamic equilibrium. The concept of thermodynamic equilibrium is fundamentally
associated with time-invariance. A system in thermodynamic equilibrium will remain in
that state forever unless acted on by an external force. With different assumptions on the
characteristics of particles in a system, and with constant mass and energy constraints, one
arrives at different equilibrium distributions. For instance, Maxwell-Boltzmann statistics is
for a system with classical particles, and Bose-Einstein and Fermi-Dirac statistics are for
systems with quantum particles.

An ideal gas is a system of identical noninteracting particles. Although it is a
classical system, its properties are useful in illustrating many basic physical principles.
Many properties of conduction electrons in a metal, for example, can be derived from the
assumption that they behave like an ideal gas. The ideal-gas law relates the macroscopic
variables of the system.

pV =nkT (3.1)
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where p is the pressure, V is the volume, n is the number of particles, and T is the ab-
solute temperature. The quantity k is a universal constant, called Boltzmann’s constant
(1.38 x 10723 J/K). Starting with the ideal-gas law, and assuming that the system is in
thermodynamic equilibrium (which means that the temperature of the gas and its con-
tainer of volume V are the same, and hence collisions of the particles with the walls of the
container are elastic, i.e no energy is exchanged in collisions), one can calculate the mean

kinetic energy F of an ideal-gas particle to be
3

The corresponding average thermal velocity corresponding to the above average kinetic
energy for an electron has a value on the order of 107 cm/s. With the assumption that the
ideal-gas particles do not interact and the gravity is negligible, the &, y and z components
of motion are independent. Each particle is said to have three degrees of freedom. For any
one degree i, we have

1
B; = SkT. (3.3)

The quantity 1/2 kT is often referred to as the thermal energy per degree of freedom. “Ran-
dom” thermal motion is a very general phenomenon that is a characteristic of all physical
systems, and is the cause of so-called thermal noise. In the context of electronic systems,
thermal noise is a result of the “random” thermal motion of charge carriersin a device [19].

Let us consider a fictitious electronic device with free charge carriers. The terminal
currents of the device are caused by charge carriers which are drawn from a source or emitter
of carriers in some region of the device. The voltages at the terminals of the device produce
fields with which the above carriers interact in some interaction region, which gives rise
to the particular terminal characteristics for that device. The fluctuations in the terminal
voltages and currents arise from certain stochastic properties of the charge carriers. In
the most general case, the stochastic properties of the carriers will be determined by the
“source” region as well as the “interaction” region of the device. For thermal noise, the
stochastic properties of the charge carriers are established in a region where the charge
carriers are in thermal equilibrium. If there is no applied external electric field, the charge
carriers are in thermal equilibrium with the crystal lattice (in much the same sense that
ideal-gas molecules are in thermal equilibrium with the walls of a container) with an average

velocity equal to the thermal velocity for the particular charge carrier and the temperature.
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When an external field is applied, the acceleration of the electrons does not result in a
significant change in the velocity of the charge carriers between different collisons. The
average component of the velocity added by the external field is called the drift velocity.
Now, we give a definition for the so-called shot noise using the notions that were
introduced in the discussion of this fictitious electronic device. The noise present at the
terminals of the device can be called shot noise when the stochastic properties of the charge
carriers are determined by the “source” region of the device, and not by the interaction
region. So, for shot noise, the region in which the charge carriers interact with external fields
is physically distinct from the region in which their statistical properties are established.
Thus, as they interact with external fields, they neither influence nor are influenced by
random processes in the source region. For thermal noise, on the other hand, the interaction
region coincides with the region where the carrier fluctuations are generated and, during
their interaction, the carriers remain in approximate thermal equilibrium with a lattice.
Still, thermal noise and shot noise are not mutually exclusive phenomena. FEven for a
device that has distinct source and interaction regions, if the charge carriers are in thermal
equilibrium throughout, the noise can be considered to be of thermal origin. Then we
can say that any classical system in thermal equilibrium is directly subject to the laws of
thermodynamics, and the only noise it can exhibit is thermal noise. If a device is not in

thermodynamic equilibrium, it may (and usually does) have other sources of noise!.

3.1.1 Nyquist’s theorem on thermal noise

In 1906, Einstein predicted that Brownian motion of the charge carriers would
lead to a fluctuating e.m.f. across the ends of any resistance in thermal equilibrium. The
effect was first observed by Johnson (1928), and its spectral density was calculated by Harry
Nyquist (1928).

The first fundamental result in the theory of thermal noise is the Nyquist theorem.
We will now present a restricted version of the statement for the theorem and describe
its generalizations later. Nyquist’s theorem states that the random fluctuations in the
short-circuit terminal current of an arbitrary linear resistor (as a matter of fact, any two-
terminal linear electrical circuit with a purely resistive impedance), having a resistance R,

maintained in thermal equilibrium at a temperature 7', are independent of such parameters

'The discussion of shot and thermal noise and their distinction is summarized from [17] and [18].
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as its conduction mechanism, composition, construction, or dimensions, and depend only
upon the values of the resistance R and the temperature T, and can be modeled as a WSS
stochastic process with a spectral density given by

2kT

Stni(f) = 7

(3.4)

where k is Boltzmann’s constant. This is the spectral density for a white noise process. To
be consistent with our previous definition of spectral density (which is defined for negative
frequencies as well as positive frequencies), a factor of 2 appears in the above formula
as opposed to the usual form with a factor of 4. The statement for the theorem can be
also stated for the open-circuit terminal noise voltage. We are not going to present a
derivation for Nyquist’s result. See [17] for a discussion of different methods of derivation
for Nyquist’s theorem. There are various generalizations of the theorem, from an arbitrary
interconnection of impedances to nonreciprocal linear networks. Nyquist’s result applies to
any system in which the charge carriers are in equilibrium with a lattice, and can be assigned
a temperature T equal to that of the lattice. See [17] for a discussion of the generalizations
of Nyquist’s theorem.

The spectral density given in (3.4) is the one for a white noise. This, of course,
can not be true for a physical noise process. A quantum-statistical calculation (which was

considered by Nyquist in his original treatment) of the spectral density yields

h
kT

where £ is Planck’s constant. In the limit Af/kT— 0, (3.5) reduces to (3.4). (3.5) can be

expressed as

I/ fo
exp (f/fo) = 1) (3.6)

where fo = 6000 GHz at room temperature. Hence, for practical purposes, at room tempera-

Sunilf) = HTR(S S/ o +

ture, (3.5) is very well approximated by (3.4). Practical electronic systems have bandwidths
much smaller than 6000 GHz.

It can be shown that the thermal noise of a linear resistor as a white WSS stochastic
process with spectral density (3.4) is accurately modeled by a Gaussian process (derived
by G.E Uhlenbeck and L.S. Ornstein in 1930), as a direct consequence of the central limit
theorem. Thus, as a white Gaussian process, we identify the model for thermal noise of a

linear resistor as the formal derivative of the Wiener process.



CHAPTER 3. NOISE MODELS 73

The thermal noise model based on Nyquist’s theorem for a linear resistor is very
convenient for use in circuit theory. A noisy linear resistor is modeled as a noiseless linear
resistor with the same resistance R, and a noise current source connected across the ter-
minals of the noiseless resistor representing a WSS white Gaussian stochastic process with
spectral density given by (3.4). This is a Norton equivalent model for the noisy resistor.
Similarly, in a Thevenin equivalent model, a noise voltage source is connected in series
with the noiseless resistor. The noise voltage source also represents a WSS white Gaussian

process with a spectral density

Snw(f) = 2kTR. (3.7)

With the above models of thermal noise of a linear resistor in circuit theory, it is implic-
itly assumed that the internal noise generation for the resistor is independent of the load
connected across the resistor. At this point, we would like to reemphasize the fact that

Nyquist’s result was derived for a linear resistor in thermal equilibrium.

3.1.2 Shot noise

We have already tried to give an “intuitive” explanation for shot noise in general
and its distinction from thermal noise. Now, we discuss shot noise in semiconductor devices.
In vacuum tubes (where shot noise was first observed) and semiconductor devices incorpo-
rating a pn junction, the charge carriers interact with fields due to applied external voltages
only in specific regions of the device, e.g. the depletion layer at the junction. The reason for
this is simply that the fields within the devices, due to applied voltages, are approximately
zero except in these regions. A pn junction consists of two contacting regions of relatively
highly doped material, of two different types, both regions being fitted with ohmic contacts.
Except for a small thermal noise contribution due to their finite conductance, the bulk p
and n regions make no contribution to the noise. In a depletion layer for a pn junction,
the motion of the electrons is dominated by the effect of the macroscopic field in the layer,
and is little influenced by the very “small” number of collisions that occur in the layer.
Therefore, the fluctuations in the behavior of the electrons in the interaction region are
due to the fluctuations in the emissions into the region, i.e. shot noise. For instance, in
a bipolar transistor, the fluctuations in the active carrier flow are established within the
emitter and, to a lesser extent, within the base where collisions occur but there is approx-

imately no field due to externally applied voltages. Fields and interactions occur only in
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the emitter-base and base-collector depletion layers. Hence, bipolar transistors are typical
shot noise limited devices. By contrast, in a field-effect transistor, the carrier fluctuations
are established in the channel, and this is also where the carriers interact with the applied
voltages. A field-effect transistor is, therefore, a thermal noise limited device [18]. For MOS
field-effect transistors in weak-inversion (subthreshold operation), the generated noise can
also be explained using shot noise arguments. In fact, at thermal equilibrium, both shot and
thermal noise arguments produce identical results, consistent with the previous comment
on shot and thermal noise not being mutually exclusive [20]. A similar observation can
also be made for a pn junction at thermal equilibrium, which we will present later in this
chapter.

A stochastic process model for shot noise will be presented later in this chapter.
At this point, we will only state that the shot noise in the current through a pn junction
which is biased by a time-invariant signal can also be modeled as a WSS white Gaussian

process for practical purposes.

3.1.3 Flicker or 1/f noise

The noise at “low” frequencies for semiconductor devices often considerably ex-
ceeds the value expected from thermal and shot noise considerations. The spectral density
of noise increases as the frequency decreases, which is observed experimentally. Generally,
this low frequency excess noise is known as flicker noise, and in many cases the spectral
density is inversely proportional to the frequency. The characteristics of flicker noise consid-
erably change from device to device, even for two same type of devices on the same die. This
suggests that flicker noise is often associated with the fine details of the device structure
[18]. Flicker noise has been experimentally observed in a great variety of electronic compo-
nents and devices, including carbon resistors, pn junction diodes, bipolar transistors, and
field-effect transistors. Unfortunately, the precise mechanisms involved in flicker noise are
complicated, vary greatly from device to device, and have been the subject of speculation
and controversy [20]. For bipolar transistors, it is believed to be caused mainly by traps as-
sociated with contamination and crystal defects in the emitter-base depletion layer. These
traps capture and release carriers in a random fashion and the time constants associated
with the process give rise to a noise signal with energy concentrated at low frequencies [1].

For MOS field-effect transistors, according to some studies, the carrier density fluctuations
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caused by the exchange of charge carriers between the channel and the interface traps are
the cause [20]. Many theories have been proposed for flicker noise in various electronic com-
ponents. Each theory is involved, and gives rise to a different spectral density expression for
the stochastic process that models the noise current in the device. The one important point
on which all the theories, as well as experimental results, agree is that the spectral density
for the stochastic process that models flicker noise is approximately inversely proportional
to the frequency f for a WSS stochastic process model [20]. This is the reason why flicker
noise is also referred to as 1/f noise. At this point, we would like to emphasize the fact
that any device in thermal equilibrium is directly subject to the laws of thermodynamics,
s0 its noise is solely thermal noise modeled as a WSS white Gaussian process. Thus, flicker
or 1/f noise can only occur in non-equilibrium situations in devices subjected to applied
bias voltages or bias voltages derived from a signal [18].

1/f noise has been observed as fluctuations in the parameters of many systems
apart from semiconductor devices. Many of these systems are completely unrelated to
semiconductors. 1/f type fluctuations have been observed in average seasonal temperature,
annual amount of rainfall, rate of traffic flow, economic data, loudness and pitch of music,

etc. [21]. Keshner in [21] describes 1/ f noise as

1/f noise is a nonstationary stochastic process suitable for modeling evolution-
ary or developmental systems. It combines the strong influence of the past events
on the future and, hence somewhat predictable behavior, with the influence of
random events.

The presence of 1/ f noise in such a diverse group of systems has led researchers to speculate
that there exists some profound law of nature that applies to all nonequilibrium systems

and results in 1/ f noise. Keshner in [21] “speculates”

The fact that music has 1/f noise statistics and that when notes are chosen at
random, they sound most musical when their spectral density is 1/f, suggests a
connection between the way humans perceive and remember, and the structure
of 1/f noise. Because of this connection and the influence of human memory
and behavior on the development of our institutions: the development of our-
selves, our economic system, our government, and our culture may each have
the statistics of a 1/f noise stochastic process.
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3.2 Model for Shot Noise as a Stochastic Process

For a pn junction diode, it can be shown that the current in the external leads is,
approximately, a result of the charge carriers crossing the depletion layer [18]. For every
charge carrier crossing the depletion layer, the current in the external leads consists of a short
pulse, of total charge ¢ of the charge carrier. Now, let us assume that the charge carriers
are being emitted into the depletion layer from only one side of the junction. Then, let N ()
be the number of charge carriers that have crossed the depletion layer prior to time ¢, with
the initial condition N (0) = 0. Assuming that the carrier crossings are instantaneous, N (t)
can be “reasonably” modeled with an inhomogeneous Poisson counting process with time-
varying rate A(t) (see Section 2.2.8). For a constant rate (homogeneous) Poisson counting
process, we recall that inter-crossing times for the carriers are exponentially distributed, the
only continuous distribution that has the memoryless property described in Example 2.1.2.
Then, the stochastic process that describes the total charge that has crossed the depletion
layer prior to time ¢ is given by

Q) =g N(t) (3.8)

where ¢ is the charge of one charge carrier. The stochastic process that describes the current
through the junction is, by definition, given as the time derivative of Q(¢). However Q(¢)
has instantaneous jumps exactly at the times of the instantaneous carrier crossings, and it
is not mean-square differentiable. From Section 2.2.10, we know that the formal derivative
of a Poisson counting process (after mean is subtracted) can be identified as a white noise
process. Then, in the generalized sense of differentiation for stochastic processes, the formal

time derivative of Q(f) can be expressed as
d
I(1) = 2Q) = 3_qd(t = Ty) (3.9)

where T; are the (random) crossing times for the Poisson counting process N(t). T; are
called a set of Poisson time points, and I(t) in (3.9) is called a Poisson pulse train [7]. In
(3.9), we let —oo < t < oo and let the starting time for the Poisson counting process N (t)
go to —oo so that the current process I(t) is in “steady-state”. In reality, the charge carrier
crossings can not be instantaneous. Now, we replace the ¢ function in (3.9) with a finite
width pulse h(t) which also has a total area equal to 1, and satisfies h(t) = 0 for ¢t < 0.
This is equivalent to passing the Poisson pulse train in (3.9) through an LTI system with



CHAPTER 3. NOISE MODELS 77

impulse response h(t) [7]. We get
=> qh(t-T). (3.10)

The shape of the pulse h(t) is determined by the specific characteristics of the device. As
far as we are concerned, it is a pulse with area equal to 1 and the pulse width is equal to
the transit time of the carrier through the depletion layer. One can calculate the mean of

the current [(¢) [7], using the properties of the Poisson counting process, to be

T(t) = E [1(t)] = q/_z Aw)h(t — u)du. (3.11)

Now, we define the noise current I(t) to be the difference between the total current I(t)

and its mean I(t)

[(t) = I(t) — E [I(t)]. (3.12)

Obviously, the mean of the noise current f(t) is zero, and its autocorrelation (which is equal

to the autocovariance of the total current /(¢)) can be calculated to be [7]

Rit,r) = E[[(t+7/2)I(t-7/2)] (3.13)
. /_O; Nw)h(t+7/2 — w)h(t — 7/2 — u)du. (3.14)

If the rate A(f) = A is a constant, then (3.11) and (3.14) reduce to
[(t)=1= /\/ h(t — u)du = gA (3.15)

and

Rit,7) = qQA/OO h(t 4+ 7/2 — w)h(t — 7/2 — u)du (3.16)
_ 2/\/ hu+ 7/2)h(u - 7/2)du (3.17)
- (3.18)

From (3.15) and (3.17), we conclude that the shot noise current I(t) is a WSS process for

constant rate A. The spectral density of I(t) with a constant rate A can be calculated to be
[7]

Si(f) = A*H(f) (3.19)
where H(f) = F {h(t)}. Note that H(0) = 1, since the area under h(t) is equal to 1. From
(3.15), we have
(3.20)
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If we substitute (3.20) in (3.19), we get
Si(f) = q TIH(f)P (3.21)

which expresses the shot noise current spectral density in terms of the mean current and

the charge of a carrier. If h(t) is the Dirac delta function, then (3.21) reduces to
Sif)=ql (3.22)

which is the spectral density for a WSS white noise process! This is no surprise to us,
because we have already seen in Section 2.2.10 that the formal derivative of a Poisson
counting process with a constant rate (after the mean is subtracted) can be identified as a
WSS white noise process. The “usual” factor “2” does not appear in (3.22), because the
spectral density in (3.22) is a double-sided density, i.e. it is defined for negative frequencies
as well.

We go back to the shot noise process with the time-varying rate A(t). Now, we
assume that the change in A(¢) as a function of time is slow enough so that it can be
approximated with a constant over the width of a single current pulse (i.e. the width of

h(t)). Then, we can approximate (3.11) as
It = E[I(1)] = /OO h(t — u)du (3.23)
q/ AR (t — w)du (3.24)

gA(t) /Oo (t —u) (3.25)
qgA(t) (3.26)

Q

Q

Q

where we have used the fact that the area under the pulse h(t) is 1. Now, let the pulse
width of h(t) be 7., which is equal to the transit time of carriers crossing the depletion
layer. From (3.14), R;(t,7) = 0 for |7| > 7. For |7| < 7, (as a matter of fact for all 7),

we can approximate (3.14) as

Rit,r) = E[[(t+7/2)I(t—7/2)] (3.27)
_ / h(t+7/2 — wh(t — /2 — u)du (3.28)
N / h(t+7/2 — Wh(t — 7/2 — u)du (3.29)

Q

/_ Wt +7/2 — wh(t = 7/2 — u)du (3.30)
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~ @A) /OO hu+7/2)h(u— 7/2)du. (3.31)

Then using (3.31), the instantaneous (time-varying) spectral density (see Section 2.2.6) of
I(t) can be calculated to be
Splt, £) = A(t) ¢* [H (f)]* (3.32)

where H(f) = F {h(t)}. From (3.26), we have

A = = ] _ 1) (3.33)

If we substitute (3.33) in (3.32), we get
Si(t, ) = ¢ I(t) [H(f)[? (3.34)

which expresses the shot noise current (time-varying) spectral density in terms of the (time-
varying) mean current and the charge of a carrier. (3.26) and (3.34) seem to be straight-
forward generalizations of (3.15) and (3.21) obtained by simply replacing the constant rate
Ain (3.15) and (3.21) by the time-varying rate A(t), but these generalizations are correct
only for the case where the change in A(¢) as a function of time is slow enough so that it
can be approximated by a constant value over the width of h(%).

If A(t) is the Dirac impulse, then (3.34) reduces to
Si(t, f) = qI(t) (3.35)

which is independent of f, and hence, is similar to the spectral density of a WSS white noise
process which has a spectral density independent of f. However, there is one important
difference: The stochastic process that has the spectral density in (3.35) is not a WSS
process, because its spectral density is not a constant function of .

Up to this point, we have discussed the second-order probabilistic characterization,
i.e the autocorrelation and spectral density, of shot noise. Now, we discuss the fdds for the
shot noise process. It can be shown that if the rate A(¢) is large compared with the inverse of
the width of the pulse h(t), then the shot noise process j(t) is approximately Gaussian [7].
If A(t) is large compared with the inverse of the width of the pulse h(t), it means that many
pulses overlap at each instant in time, and hence the central limit theorem can be used to
conclude that the shot noise process is approximately Gaussian [5]. For instance, if the mean

current [ is 1 mA, and if the charge carriers are electrons with charge ¢ = 1.6 x 1072 C,
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then the rate A

A===6.2510" 1/sec (3.36)

2|~

is much greater than the inverse of 7, = 10712 sec, which is a typical transit time (i.e. pulse
width) for a pn junction diode.

As a Gaussian process, and as a WSS white noise process with spectral density
given by (3.22), the shot noise process I(t) with a constant rate A can be identified as the
formal derivative of the Wiener process, i.e. £(t) (up to a scaling factor to be discussed)
defined in Section 2.2.7. As a matter of fact, it can be shown that the spectral density of
the Gaussian WSS process \/ﬁf(t) is exactly given by (3.22). Hence, as Gaussian WSS
processes having the same mean and the spectral density, the shot noise process f(t) with
a constant rate A, and the scaled version of the derivative of the Wiener process \/ﬁf(t)
are “probabilistically equivalent”, i.e. they have the same fdds. Similarly, it can be shown
that the time-varying spectral density of the Gaussian, but not necessarily WSS, process

q I(t)&(t) is exactly given by (3.35). Hence, as Gaussian processes having the same mean
and the time-varying spectral density, the shot noise process f(t) with a time-varying rate
A(t), and the “modulated” version of the derivative of the Wiener process \/q I(t) £(t) are
“probabilistically equivalent”, i.e. they have the same fdds. In the above discussion, we
have assumed that ¢ I(t) > 0. Obviously, if the charge carriers are electrons, we have ¢ < 0
and [(t) < 0.

We conclude that the shot noise with a time-varying rate can be modeled as a

modulated version of the derivative of the Wiener process

ity = Jalwew (3.37)

This result was achieved with the following three basic assumptions:

e The emission of carriers into the depletion layer can be “reasonably” modeled as a

Poisson process.

e The change in the time-varying rate A(t) = I(t)/q as a function of time is slow enough
so that it can be approximated by a constant value over the width of a current pulse

h(t) caused by a single charge carrier.

e The time constants of the system (the shot noise process is affecting) are much larger
than the carrier transit time, so that the finite width pulse h(t) can be approximated

by an ideal impulse function.
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Of course, these last two assumptions are closely related, and express the same condition
from two different points of view. The connection between these assumptions becomes clear
when one considers the fact that the mean current I(t) (which sets the time-varying rate
as A(t) = I(t)/q for the shot noise process) is set by the system that the pn junction is a
part of.

Shot noise is not a phenomenon specific to pn junctions. Whenever a device con-
tains a potential barrier (e.g. pn junctions, vacuum tubes, MOSFETSs in weak inversion,
etc.), the current is limited to those charge carriers that have sufficient energy to surmount
the potential barrier. In our above discussion of the pn junction to derive a model for shot
noise as a stochastic process, we have assumed that there is only one kind of charge car-
rier present, and the charge carriers are emitted from only one side of the depletion layer.
The real situation is more complicated, of course. There are two types of charge carriers,
electrons and holes, and they are emitted into the depletion layer from both sides of the
junction. Now, we summarize Robinson’s discussion from [18] for the different current com-
ponents for a pn junction diode. To simplify the discussion, we assume that recombination
between holes and electrons is negligible. Hence, electron and hole currents can be consid-
ered to be independent and additive. (The summation of two independent Poisson counting
processes is another Poisson counting process, and the rate for the sum counting process is
given by the summation of the rates for the two Poisson counting processes that are being
added.) Now, consider the electrons. The electron current in a pn junction consists of two
components. A forward component consisting of electrons from the n region crossing to the
p region, and a reverse component passing from p to n. At zero bias across the junction,
these currents balance on average. The reverse current is controlled by density of electrons
(minority carriers) in the p material, and there is no potential barrier to their transit into
the n region. This current is unchanged by an applied bias, which is denoted by V. The
forward current is controlled partially by the majority carrier (electron) concentration in
the n material, but, since this is large, the dominant effect is due to the retarding potential
barrier at the junction. An applied potential V, with the p region positive, reduces this
barrier, and the forward current increases by a factor exp (V/Vy), where Vp = kT /q with
Boltzmann’s constant k, the temperature T and the electron charge ¢. So, the total current
I is given by

I =1I(exp(V/Vr)—1). (3.38)
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Each component of I (modeled as the derivative of independent Poisson processes) displays
shot noise, so the shot noise current for the diode can be modeled with a Gaussian process

with possibly time-varying spectral density given by
S(t, f) = qls(exp (V/Vr) + 1) = q (I +21,). (3.39)

The differential or small-signal conductance of the diode is

GV) = j—é - é—T exp (V/Vi). (3.40)
Then, (3.39) can be expressed as
S(t, f)=2kTG(V) —qI(V). (3.41)
At zero bias, V =0, (3.41) becomes
S(t, f) = 2kT G(0). (3.42)

At zero bias, the diode is a system in thermodynamic equilibrium, so (3.42) can be inter-
preted as the spectral density of thermal noise associated with the conductance G'(0) [18].
However, note that, the conductance GG(0) does not correspond to a physical resistor. A
similar observation for the noise of a MOSFET in weak inversion can be made [20].

The shot noise model derived above for a time-varying bias current [(t) as a
modulated version of the derivative of the Wiener process is very convenient for use in
circuit theory to model shot noise associated with various current components of devices
such as pn junction diodes, bipolar junction transistors, etc. Shot noise sources in these
devices are modeled with noise current sources connected across various nodes of the devices,
and they represent Gaussian stochastic processes with spectral density given by (3.35). For
instance, shot noise in a bipolar transistor is modeled with two independent current noise
sources, which are connected across the base-emitter and collector-emitter junctions.

It is interesting to observe that all the devices that display shot noise (pn junction
diodes, bipolar transistors, vacuum tubes, MOSFETs in weak inversion) obey the same
exponential relationship between the terminal currents and voltages. The explanation of
this goes back to the first principles of thermodynamics, i.e. Maxwell-Boltzmann statistics,
and the Second Law of Thermodynamics [22]. Coram and Wyatt in [22] prove a nonlinear

fluctuation-dissipation theorem for devices that can be accurately described by a model
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given by (3.38), where the forward and reverse currents satisfy

i

7 = (V/Vr). (3.43)
Finally, we would like to emphasize the fact that shot noise is not only a result of

the fact that electrical charge is carried in discrete amounts equal to the electron charge,

but also a result of the fact that charge carriers which attain sufficient energy to overcome

the potential barrier enter the depletion layer randomly, as modeled by a Poisson process.

If the emission of charge carriers was spaced evenly in time instead of randomly, the current

would be a deterministic periodic waveform which obviously does not have a white spectral

density.

3.3 Model for Thermal Noise as a Stochastic Process

In Section 3.1.1, we have seen that the thermal noise of a linear resistor in thermo-
dynamic equilibrium can be modeled as a WSS Gaussian white current noise source with

spectral density given by
2kT
=

As a Gaussian process, and as a WSS white noise process, the thermal noise of a linear

Seni(f) = (3.44)

resistor R in thermodynamic equilibrium can be identified as the formal derivative of the
Wiener process, i.e. £(t) (up to a scaling factor to be discussed) defined in Section 2.2.7.
As a matter of fact, it can be shown that the spectral density of the Gaussian WSS process
V2ET]RE(t) is exactly given by (3.44). Hence, as Gaussian WSS processes having the
same mean (which is zero) and spectral density, the thermal noise current process and the
scaled version of the derivative of the Wiener process /2kT/R&(t) are “probabilistically
equivalent”, i.e. they have the same fdds.

In Section 3.2, we derived a stochastic process model for shot noise in devices
biased with possibly time-varying signals, which was based on several assumptions stated
in Section 3.2. Now, the question is: Can Nyquist’s theorem be generalized to nonlinear
dissipative systems biased with possibly time-varying signals? A nonlinear resistor with
a time-varying bias is, obviously, not a system in thermodynamic equilibrium. It turns
out that the above question has been a widely explored research topic in both physics
and engineering literature. Gupta in [17] summarizes the work done in the area of the

theory of thermal noise in nonlinear dissipative systems up to 1982. The general theory of
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thermal noise in nonlinear dissipative systems is quite intricate, but from an engineering
perspective the problem can be stated as: Can we use a straightforward generalization of
Nyquist’s theorem for nonlinear resistors with a time-varying bias, simply by replacing the
R in (3.44) with the time-varying small-signal resistance R(t) obtained by differentiating
the nonlinear relationship that relates the terminal voltages and currents for the particular
nonlinear dissipative device and evaluating it at a trajectory set by the time-varying bias?
This generalization would be similar to the one we described for shot noise. The answer
to the above question is no in the general case as explained by Gupta in [17]. Hence, the
question is: Under what conditions can we make the above generalization, if any at all?
“Intuitively”, one might think that if the change in the time-varying bias as a function of
time is “slow enough” so that the device stays approximately at thermal equilibrium, and
the fluctuations caused by the noise are much “smaller” compared with the deterministic
desired signals in the system, the above generalization is reasonable. Indeed this seems to
be the case, i.e. Nyquist’s theorem applies to systems in approximately thermal equilibrium
with the understanding that the resistance is the small-signal resistance of the system [17].
However it is stated in [17] that this result is not rigorously established (probably as a
result of the imprecise statement of the assumptions and approximate nature of the theory,
we believe), and is not universally valid. Nyquist’s theorem has been liberally applied to
nonlinear dissipative devices in electronic device literature to develop noise models, the
most conspicuous one being the MOSFET for a model of its channel noise. The results
obtained with the noise models arrived at by applying Nyquist’s theorem to biased nonlinear
dissipative devices seem to match experimental results. However, in our opinion, one has
to be very suspicious of measurements matching results obtained with the noise models.
Because, in noise measurements, some of the parameters describing the noise model are
usually “calibrated” using some measurement results. So, it is not always clear that the
match is due to a good “calibration” of the parameters, a reasonable noise model, or both.
This might be acceptable when one has access to the devices, as stand-alone components,
she/he is going to use for her/his design. This is usually the case for microwave design.
However, in 1C design, the particular device that is important for the noise performance
may not be, and almost always is not, accessible. The parameters describing the noise
behavior of a device can be quite different for two devices from the same fab, and even for
the devices on the same die, or on the same chip.

In summary, a rigorous justification for any thermal noise model used for a de-
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vice, which does not satisfy the assumptions of the Nyquist theorem, is definitely needed.
Recent work by Coram and Wyatt [22] focuses on testing the consistency of these “un-
rigorously” generalized noise models with basic equilibrium (Maxwell-Boltzmann statistics)
and non-equilibrium (monotonically increasing entropy as the system relaxes to equilibrium)
thermodynamic principles. Using techniques from the theory of stochastic differential equa-
tions, they conclude that, in the general case, these “generalized” thermal noise models for
nonlinear dissipative devices do not yield results that are consistent with basic principles of
thermodynamics.

From a practical “engineering” perspective, modeling the thermal noise of a non-
linear dissipative device as a Gaussian stochastic process obtained by “modulating” the

derivative of a Wiener process seems to be reasonable with the following assumptions:

e The change in the time-varying bias as a function of time is “slow enough” so that

the nonlinear dissipative device stays approximately at thermal equilibrium.

e The fluctuations caused by the noise are much “smaller” compared with the deter-

ministic desired signals in the system.

The above statement, of course, is not rigorously justified.

Let G(t) be the time-varying small signal conductance obtained by differentiating
the nonlinear relationship between the terminal currents and voltages of a dissipative device
evaluated at a time-varying trajectory imposed by the deterministic large signals in the
system. Note that the nonlinear relationship has to describe a dissipative device. For
instance, the small-signal input resistance r, of a bipolar transistor does not correspond
to a physical resistor, hence does not generate thermal noise [1]. The thermal noise of the
device is modeled as a current noise source across the terminals of the device, and it is
mathematically described as a modulated version of the derivative of the Wiener process,
i.e /2kT G(t)&(t), and the time-varying spectral density for this nonstationary Gaussian
process is given by

Suni(t, f) = 26T G(2) (3.45)

3.4 Models for Correlated or non-White Noise

In the two previous sections, we concluded that, for practical purposes, thermal

noise and shot noise in electronic devices and components can be modeled as modulated
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versions of a white Gaussian process, i.e. by modulating the derivative of the Wiener
process. The Gaussian processes that represent current noise sources connected across the
two terminals of a device and modeling thermal and shot noise have time-varying spectral

densities given by

Sthermal(t, f) = 2T G(t) (3.46)
Sahot (£, f) = q I(t). (3.47)

These spectral densities correspond to the following autocorrelation functions

Rthermal(t7 T) = 2kT G(t) 5(7—) (348)
Rspot(t,7) = q I(t) §(7). (3.49)
The modulated processes which have the spectral densities and the autocorrelation functions

given above are expressed as

Iihermal (t) = \/2KT G(t) £(t) (3.50)
Lopot (1) = £/ I(8) £(1) (3.51)

where £(t) is the WSS white Gaussian process, i.e. the derivative of the standard Wiener
process. The stochastic processes defined by (3.50) and (3.51) are not WSS processes, but
as seen from (3.48) and (3.49), they are “delta-correlated”, i.e. the 7 variable appears
only as the argument of a delta function in their autocorrelation functions, and hence the
time-varying spectral densities (3.46) and (3.47) are independent of f. We will refer to such
processes as nonstationary white noise processes.

The stochastic process models summarized above for thermal noise and shot noise
are exactly in the same form: modulated versions of the derivative of the Wiener process.
Moreover, the modulation functions are fully described in terms of the device equations
that relate the terminal voltages and currents, and these processes represent current noise
sources to be connected across the nodes of the device. We will later see that the differential
equations describing an electronic circuit containing thermal and shot noise sources modeled
as above can be formulated as a system of stochastic differential equations (see Section 2.5),
where the noise sources are additively superimposed on a system of ordinary differential
equations that describe the deterministic or systematic behavior of the electronic circuit.

This is rather desirable, because it enables us to use results from the theory of stochastic



CHAPTER 3. NOISE MODELS 87

differential equations in analyzing the effect of noise sources on electronic circuits and
systems. Thus, we would like to have models for other types of noise sources which satisfy

the following two conditions:

e The only way “randomness” enters a model of any noise source has to be through the

derivative of the Wiener process.

e In the formulation of differential equations describing the electronic circuit, the noise
source model can be “additively” superimposed on top of the equations that describe

the systematic behavior of the circuit.

These conditions might seem to be too restrictive at first sight, but models for most of the
noise sources encountered in practice can be developed to satisfy these conditions. This
will become clearer with the following observations: The model for the noise source can
involve any number of Wiener processes (actually its derivative, the WSS Gaussian white
noise process) which can be independent or correlated. Moreover, the noise model itself
can contain a subsystem, i.e. the noise source can be modeled to be the output of a
subsystem that has WSS Gaussian white noise inputs. Including a subsystem in the noise
model usually requires the introduction of extra variables to describe the whole system, i.e.
the state variables of the system have to be augmented. State augmentation is a common
technique used in many problems. We will see examples for this later.

As a matter of fact, the modulating functions in the models of thermal and shot
noise can be thought to be memoryless time-varying, but not necessarily linear, subsystems
(see Section 2.3). If G(t) in (3.46) and I(f) in (3.47) are functions of only time, then
these subsystems are linear, but if G(¢) and I(t) also depend on some state variables (e.g.
terminal voltages of the device) of the system, then these subsystems are nonlinear. Since
they are memoryless, these subsystems do not have internal state variables, and hence do
not require the introduction of extra state variables into the overall system. For a more
“realistic” model of thermal noise or shot noise, one may consider introducing internal state
variables to these subsystems to model a finite response time, for instance, between the
changes in I(t) in (3.47) as a function of time and the appearance of the effect of these
changes on the spectral density of shot noise.

For example, if we would like to model a noise source as a WSS Gaussian process

with spectral density S(f), this noise model can be realized as the output of a SISO, stable,
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LTI subsystem with the transfer function H(f) satisfying

S(f)=1H(f) (3.52)

and setting the input to &(¢), the WSS Gaussian white noise. In general, this subsystem
has internal state variables and requires state augmentation.

If we use a linear multi-input single-output (MISO) subsystem, with a number of
WSS Gaussian white noise inputs, then the stochastic process at the output that models a
noise source will also be Gaussian, but not necessarily WSS. If we would like to realize a

non-Gaussian noise model, this can be accomplished with a nonlinear subsystem.

3.4.1 1/f noise model for time-invariant bias

As discussed in Section 3.1.3, at present there does not exist a unified theory
for 1/f noise. Using the results of experimental work (i.e. measurements), for practical
purposes, 1/f noise in electronic devices and components associated with a direct time-
invariant current I is modeled as a “WSS” stochastic process with spectral density given

by

a
Sush) =K (3.53)
where K is a constant for a particular device, @ is a constant in the range 0.5 to 2, b is a
constant approximately equal to 1, and f is the frequency. If b = 1, the spectral density
has a 1/f frequency dependence. Observe that when b = 1, (3.53) can not be the spectral
density of a “well-defined” stochastic process, because the variance of this WSS process has
to be oo, which can be observed using (2.47). Keshner in [21] argues that this problem
arises, because 1/f noise is inherently a nonstationary process and should be modeled as
such. Please see [21] for an in-depth discussion of this issue. Nevertheless, for “engineering”
calculations, the model in (3.53) seems to be adequate for a time-invariant bias, but, as we
will discuss later, the generalization of (3.53) to time-varying bias is not straightforward.
1/ f noise as modeled by (3.53) is not a “delta-correlated” process, and hence does
not have independent values at every time point (unlike the thermal and shot noise models).
Actually, its present behavior is equally correlated with both the recent and distant past
[21]. Based on our previous discussion, we would like to develop a model for 1/f noise as

the output of a subsystem with WSS white Gaussian processes as inputs. So, the question

is: Does there exist a stable, SISO, LTI system, the output of which has the spectral density
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given by (3.53) (with b = 1 which is most common) when driven by a WSS white noise?
This requires that the system transfer function H(f) satisfies

a

H ()2 = Suys(f) = K 17 (3.54)

Keshner answers this question in [21]. The system he describes consists of a WSS white
noise current source driving the input of a one-dimensional continuous resistor-capacitor
(RC) line of infinite length. The transfer function (i.e. the impedance) Z(f) of an infinite
RC line is given by

Z(f) = (].2713]50)1/2 (3.55)

where R is the resistance of the line per unit length, and C' is the capacitance of the line
per unit length. Hence it satisfies (3.54) (up to a scaling), but this is true only if the line is
infinite. We actually expect to have a pathological case like this, because we know that a
WSS stochastic process with a spectral density given by (3.53) is not a “well-defined” one.
If the line is is finite, and terminated with a finite resistance, then the spectral density of
the process (which represents a voltage, since the transfer function is an impedance and the
input is a current) at the output will have a lowest frequency below which it is constant, i.e.
white [21], which then corresponds to a well-defined stochastic process with finite variance.

Another approach for a 1/f noise model is to use the summation of Lorentzian
spectra [23]. This approach has been used in instrumentation to generate continuous-time

1/ f noise over a specified range of frequencies. A sum of N Lorentzian spectra is given by

202 N

- Z o7 2 +f2 (3.56)

where &, designate the pole-frequencies and f is the frequency [23]. It has been shown in
[23] that N = 20 poles uniformly distributed over 14 decades are sufficient to generate 1/ f
noise over 10 decades with a maximum error less than 1%. Each Lorentzian spectrum in
the summation in (3.56) can be easily obtained by using the thermal noise generator (which
is modeled as a “constant modulated” version of the WSS Gaussian process as discussed
before) of an LTI resistor R}, connected in parallel to a capacitance C = C, and their sum
can be achieved by putting N of such Rj, — C}, groups in series [23], as shown in Figure 3.1.
This is a MISO, stable, LTI system with inputs as the WSS Gaussian processes modeling
the thermal noise current sources of the resistors. Obviously, this system has internal states

(represented by the capacitors), and hence it introduces new variables in the state vector of
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Figure 3.1: 1/f noise synthesizing circuit

the system. Actually, this is inherent to 1/ f noise, because the minimum amount of memory
for a subsystem that exhibits 1/f noise is one state variable per decade of frequency [21].

The WSS process model with spectral density given by (3.53) was given for 1/f
noise associated with a time-invariant bias. As for thermal and shot noise, we are inter-
ested in generalizing the 1/f noise model to the time-varying case. This was relatively
straightforward for thermal and shot noise, since they are modeled as “delta-correlated”
noise processes having independent values at every time point, and they were modeled as
modulated WSS white Gaussian noise processes. In [1], it is pointed out that no 1/f noise
is present in carbon resistors until a direct current (DC) is passed through the resistor 2.
Robinson in [18] mentions that any electronic device or component subjected to either a DC
bias, or a strong AC (alternating current) signal can generate 1/f noise. Ambrozy in [24]
reviews some experimental work investigating 1/ f noise associated with DC bias and/or AC
signals. van der Ziel in [25] mentions that if an AC current [, cos (27 f,t) is passed through
a resistor, two 1/ f noise sidebands appear around the frequency f,.

In the next section, we will be discussing models for noise sources associated with
a time-varying bias or signal, which can not be modeled as “delta-correlated” stochastic
processes (and hence which can not be modeled as modulated WSS Gaussian processes).
1/f noise is certainly one such noise source, but our discussion in the next section will

concentrate more generally on models for “correlated” noise, not just on 1/f noise. We will

2We would like to thank Ken Kundert for several fruitful discussions on this topic.
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also discuss the observations we stated in the above paragraph on 1/f noise from several

references in the context of the noise models we will investigate in the next section.

3.4.2 Models for correlated noise associated with time-varying signals

We assume that the “correlated” noise sources we are considering already have
some kind of a WSS model for the time-invariant bias case. The WSS model for the time-
invariant case could have either been derived from basic mechanisms that is behind this
particular noise source, or it could have been derived from experimental investigation. For
instance, the WSS model for 1/f noise has been derived from experimental investigation
and it is characterized by the spectral density given by (3.53). We assume that the WSS
model for the time-invariant case is characterized by a spectral density S(f). We further
assume that S(f) is “separable” in the sense that it can be expressed as the product of two
terms, one of which is a function of f but independent of bias quantities and hence sets the
frequency dependence of S(f), and the other term is a function of the bias quantities but

is independent of f. Thus, we express S(f) as

S(f)y=m*S(f). (3.57)

We assume that m > 0, and S(f) > 0 so that (3.57) is a sound spectral density. For

instance, for 1/f noise modeled with (3.53), we can choose

m=4/(1%) S == (3.58)

We also assume that there exists a SISO, LTI system with transfer function H(f) that

satisfies
[H(HI*=S(f). (3.59)
When the bias is not time-invariant, i.e. m(t) in (3.57) is a function of time, we will

investigate the below cases as alternatives for the generalization of the WSS model described

by (3.57):

1. The noise source is modeled as the output of a SISO, linear time-varying system
which is a cascade of a memoryless modulator m(¢) (the output of which is basically
the input multiplied with m(¢)) and an LTI system with transfer function H(f) that
satisfies (3.59). The input to the system is the WSS white noise £(¢) with spectral
density S(f) = 1.
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2. The noise source is modeled as the output of a SISO, linear time-varying system which
is a cascade of an LTI system with transfer function H(f) that satisfies (3.59), and
a memoryless modulator m(t). The input to the system is the WSS white noise £(¢)
with spectral density S(f) = 1. Note that this is not equivalent to the above model

unless m(t) is a constant function of time.

3. The noise source is modeled as a nonstationary process with time-varying spectral

density given by
S(t, f) = m*(t) S(f). (3.60)

4. The noise source is modeled as a WSS process with spectral density given by
S(f) = (m*) 5(f), (3.61)

where

(m?) = lim — m?(t)dt, (3.62)
whenever this limit exists.

5. The noise source is modeled as a WSS process with spectral density given by

S(f) = (m)* S(f) (3.63)
where i
(m) = Tlgnoo T /T/Qm (t)dt (3.64)

whenever this limit exists.

We will discuss the differences and similarities among these models, in terms of their proba-
bilistic characterization, and also in terms of the implications of these models in their effect
on a target system.

The first three models, in general for time-varying m(t), are nonstationary. The
last two are by definition WSS.

In the description of the models above, we have not made any assumptions on
how m(t) varies with time, so the models described above are general in that sense. For
simplicity of discussion, and to be able to clearly see the similarities and differences of these

models, for the rest of our discussion we will assume that m(t) is a periodically time-varying
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function with period T'= 1/f,. And hence, we assume that m(¢) can be expanded into a

Fourier series as follows

m(t) = f: brexp (j27k fot). (3.65)

k=—cc
Then m?(¢) is also periodic with the same fundamental frequency f, and we assume that it
can also be expanded into a Fourier series as follows
o0
m*(t) = > apexp (j2wk fot). (3.66)
k=—cc

Obviously the Fourier series coeflicients ay and by are related. In particular, they satisfy

o0

ag= Y brb_p= > |bkl* (3.67)

k=—cc k=—0o0
which implies

ag > b3. (3.68)

Note that ag and by are real for real m(t). For periodic m(t), we also have
ap = (m?) (3.69)
bop = (m) (3.70)

where (m?) and (m) are defined by (3.62) and (3.64).

3.4.2.1 Probabilistic characterization of the models

We would like to calculate the probabilistic characterization of the first model. Let
us first consider the output Y of the memoryless modulator m(t) with input £(¢). We can
easily see that the autocorrelation of Y (t) = m(t)&(¢) is given by

Ry(t,7) = E[Y(t+1/2)Y(t — 7/2)] = m2(t) 6(7) (3.71)

since the autocorrelation of £(t) is R¢(7) = 6(7). Then, the time-varying spectral density
of Y is simply given by
Sy(t, f)=m?({t) = Y arexp (j27kfot) (3.72)
k=—cc
which is independent of f. The Fourier series coefficients for Sy (¢, f) are given by (see

(2.52))
SP(f) = ay. (3.73)
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Let us now consider the output Z of the LTI system with transfer function H(f) that has
Y asits input. The Fourier series coefficients for the time-varying spectral density Sz(¢, f)

of Z are then given by

SO = H(f+EL/2H (- k[/2)S5(f) (3.74)
= H(f+kfo/2)H(f — kf./2) ax (3.75)

which we obtained using (2.143), as a complete second-order probabilistic characterization
for Z, which is a cyclostationary process and also the process that models the noise source.

Now, we consider the second model. Let us first consider the output Y of the LTI
filter with transfer function H(f) that has £(¢) as its input. Then, the spectral density of
Y which is a WSS process is simply given by

Sy (f) = H(f)? (3.76)

and the autocorrelation of Y, by definition, is

Ry (r) = F 1 {Sy (1)} = F {|H ()12} (3.77)

Next, we consider the output Z of the memoryless modulator m(t) with Y as its input. So,

we have Z(t) = m(¢t)Y (¢). Then, the autocorrelation of Z(t) can be expressed as
Rz(t,7) = Ry (7)[m(t+ 7/2)m(t — 7/2)]. (3.78)

If we substitute (3.65) in (3.78), we get

Rolt,r) = Ry(r) 3 S bibro exp (2n(k — [ fr/2) exp (2 (e + D f0)  (3:79)

k=—cc l=—
Now, we make a change of variables for the indexes of the double summation, k + [ = n.

After some rearrangement, we obtain

o0

Rz(t,7) = Z Ry (1) f: brby—k. exp (727 (2k — n) f,7/2) exp (j27nfot) (3.80)

n=—oo k=—oc0

In (3.80), we can identify the Fourier series coefficients of Rz (¢, 7) for Z (which is a cyclo-

stationary process) as

R (r) = Ry (1) f: bibo_i. exp (j2r(2k — n) f,7/2) (3.81)

k=—c0
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Then, the Fourier series coefficients of the time-varying spectral density Sz(¢, f) of Z are

given by

k=—c0

sUNf = F {Ry(r) f: bibn_ exp (727 (2k — n) foT/Q)} (3.82)

k=—c0

= FA{Ry(T)}OF { f: brbn—r exp (527 (2k — n)fOT/Q)} (3.83)

where we used (2.52). If we substitute (3.77) and

{ Z brby,—i exp (j27(2k — n) f,7/2) } Z brb,—k0(f ( )fo) (3.84)

k=—c0 k=—c0

n (3.83), we obtain

S bl (- 2

k=—c0

S f)I? (3.85)

which is a complete second-order probabilistic characterization of the cyclostationary pro-
cess /Z, which is the stochastic process that models the noise source.
For the third model, we already have an expression for the time-varying spectral

density given by (3.60). If we substitute (3.66) and (3.59) in (3.60), we obtain

o0

S(t, f) =m*t) S(f) = Z ap|H(f)|*exp (j27k f.t). (3.86)

k=—cc
Now, we can easily identify the Fourier series coeflicients of the time-varying spectral density

S(t, f) as
SB(f) = ax|H(f)]*- (3.87)

The fourth and fifth models are WSS with spectral densities given by (3.61) and
(3.63) which fully characterize their second-order probabilistic characteristics. We rewrite
(3.61) as
S(f) = ao [H (H). (3.5%)
and (3.63) as
S(f)=bo[H(f)I* (3.89)
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3.4.2.2 Comparison of the models

Now, we discuss the differences and similarities among these five models charac-
terized by (3.75), (3.85), (3.87), (3.88), and (3.89). Our first observation is obvious: For
periodically time-varying m(t), the first three models are cyclostationary processes, but the
last two are WSS. If we compare the two WSS models considering (3.68), we observe that
the fourth model describes a noise source with more total power than the one described by
the fifth model.

Now, let us assume that H(f) = S(f) satisfies

H(f)=0 for fZ%, (3.90)
i.e. it is a low pass transfer function with a cut-off frequency which is less than f,/2, the
fundamental frequency of the periodic m(t). If the noise source we are considering is 1/f

noise, we can choose

H(f)= «/R% (3.91)

Obviously, this H(f) does not have a cut-off frequency, but if f, is “large enough”, we will
have

H(f)=0 for fZ% (3.92)

For 1/ f noise, this is actually a reasonable approximation for many practical cases. We will
further discuss this in the later chapters. If we evaluate the first model described by (3.75)
considering (3.90), (3.75) reduces to

a|H(f)* k=0

S = { . e (3.93)

Thus, with (3.90), we observe that the first model, which is cyclostationary in general,
reduces to a WSS model, and moreover it becomes equivalent to the fourth model. This
applies to 1/ f noise model. Hence, the first and fourth model are in essence equivalent with
(3.90) approximately satisfied.

Let us know consider that the noise sources modeled by the five models (charac-
terized by (3.75), (3.85), (3.87), (3.88), and (3.89)) are inputs to a SISO, LTI system with
transfer function G'(f). We assume that G/(f) satisfies

G(fy=0 for f> % (3.94)
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i.e. it is a low pass transfer function with a cut-off frequency which is less than f,/2, the
fundamental frequency of the periodic m(t). (It turns out that, for open-loop oscillators, a
low-pass transformation which approximately satisfies the above condition can be defined
between a noise source in the oscillator circuit and phase noise, a very important specifi-
cation for oscillators. This fact, which we will later elaborate on extensively, is stated here
to motivate for choosing such a system to compare the five noise models.) Now, we would
like to calculate the probabilistic characterization of the output of the LTI system with the
transfer function G/(f) when each of the five noise sources is the input to the system. With
(3.94) and (3.90) satisfied, it can be shown that (using (2.143)) the output is a WSS process
for all of the five noise models as inputs. Moreover, for the first, third and the fourth model,

the spectral density of the output is given by
S(f) = ao [H(N)PIG) (3.95)

and, for the second and the fifth model, the spectral density of the output is given by

Sy = b [HNPFIGI (3.96)

Recall, that H(f) is the transfer function of a system that is part of the noise models, and
G(f) is the transfer function of the system the noise sources are affecting. We conclude
that (with (3.94) and (3.90) satisfied), as far as we are concerned with the probabilistic
characterization of the output of G(f), the first, third and the fourth model are equivalent,
and similarly the second and the fifth model are equivalent. From (3.68), the first, third
and the fourth model predict a larger noise power at the output than the third and fifth do.

To test the validity or choose one of these noise models for a particular correlated
noise source (e.g. 1/f noise), we would like to perform measurements. We will now assume
that, one can measure the spectral density for a WSS noise source, and the zeroth order
coefficient of the time-varying spectral density (which is basically the time-average) for
a cyclostationary process. Let us compare the five noise models from this perspective,
i.e. using the spectral density expressions for the WSS models, and only the zeroth order
coeflicient of the time-varying spectral density for the cyclostationary models, which we will

denote by a subscript m,, for “measured” spectral density for the nth model.
Smy = ao[H(f)? (3.97)

Sm, = i bb_1|H(f — kf,)|? (3.98)

k=—c0
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Spms = ao|H(f)|? (3.99)
Sy = aolH(f)|? (3.100)
Sms = OFIH() (3.101)

We observe that the “measured” spectral density of the first, third and the fourth model
are exactly the same. The “measured” spectral density for the fifth model is also similar
to these in terms of the shape of the frequency dependence. The only model that has
frequency translated versions of |H (f)]? at all the harmonics of the fundamental frequency
is the second model. van der Ziel in [25] mentions that if an AC current I, cos (27 ft) is
passed through a resistor, two 1/f noise sidebands appear around the frequency f,. The
only model that can exhibit this behavior is the second one. On the other hand, one has
to be very careful in interpreting measurement results. Assuming that we are trying to
measure the 1/f noise of a reasonably linear resistor biased with a periodic signal with
fundamental frequency f,, the 1/f noise sidebands at the harmonics of f, could be arising
from nonlinearities in our measurement set-up. Assuming that this is not the case, and if
we observe 1/f noise sidebands at the harmonics of f,, then we need to make our noise
model compatible with this observation. Hence, the second model is the only choice. Of
course, observing 1/f noise sidebands at the harmonics of f, does not justify the second
model completely. Even if we observe sidebands for the 1/f noise of a linear resistor of
certain type, this does not imply that 1/f noise in all kinds of resistors, or other electronic
components and devices will display the same behavior.

The main goal of our above discussion of alternatives for models for “correlated”
noise sources was, most importantly, to pose the problem, and illustrate the properties of
some simple and straightforward extensions of WSS models that have been used in practical
noise calculations to the time-varying bias case, in a unified way using techniques from the
second-order theory of stochastic processes. We hope that our discussion here will excite
experimental and/or theoretical work on models for “correlated” noise sources that are
associated with time-varying signals.

We would like to reemphasize the fact that even though the five noise models we
have discussed turn out to be equivalent in special circumstances or seem to be equivalent
when characterized in terms of “experimentally measurable” quantities (e.g. the zeroth
order coefficient of the time-varying spectral density for a cyclostationary noise source), they

are not equivalent in general. We believe that one can come up with practical electronic
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circuits, for which, using these “seemingly” equivalent noise models can yield completely

different results in analyzing the noise performance.

3.5 Summary

In this chapter, we first reviewed the physical origins of electrical noise in electronic
components and devices, concentrating on the most important ones, namely, thermal, shot,
and 1/f noise. In particular, we discussed Nyquist’s theorem on thermal noise in LTI
dissipative systems. Then, we described stochastic process models for thermal and shot
noise, which were generalizations of the WSS models associated with LTI resistors and time-
invariant bias to LTV resistors and time-varying signals. The stochastic process models
we described to model thermal and shot noise are, in general, nonstationary processes
which are “modulated” versions of the standard WSS Gaussian white noise process, i.e.
the formal derivative of the Wiener process. We have pointed out the problems in these
generalizations, and the necessity of rigorously justifying them, especially the model for
thermal noise associated with a nonlinear or time-varying resistor [22], for example the
channel noise of a MOSFET transistor. We explained our motivation for requiring that all
the noise source models be described in terms of the derivative of the Wiener process, so
that the governing equations for the whole electronic circuit or system can be formulated
as a system of stochastic differential equations. Then, we went on to discuss stochastic
process models for “correlated” noise (e.g. 1/f noise) associated with time-varying signals.
Our starting point was again the WSS models for time-invariant bias. We investigated
several alternatives, calculated their second-order probabilistic characterization, and based
on these characterizations analyzed several special cases, and pointed out the differences

and similarities among these correlated noise models associated with time-varying signals.
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Chapter 4

Overview of Noise Simulation for

Nonlinear Electronic Circuits

In this chapter, we will present an overview of the techniques that have been pro-
posed and used to analyze the effects of noise sources on the performance of electronic
circuits and systems. We will discuss only general techniques that can be implemented for
computer analysis. We do not claim to cover all the techniques that have been proposed in
the literature. We especially exclude specialized ones that have been proposed for particular
types of electronic circuits (e.g. noise analysis techniques for switched-capacitor circuits).
We will go over the main characteristics of several different techniques, point out the simi-
larities and differences among them, and briefly discuss their implementations for numerical

computation.

4.1 Overview

In the previous chapter, we investigated the physical origins of electrical noise
sources in electronic circuits or systems, and presented mathematical representations for
them as stochastic processes. From this point on, when we refer to the noise sources in the
system, we will be actually referring to their mathematical models as stochastic processes.
To reach the final goal of simulating and characterizing the effect of these noise sources on
the performance of an electronic circuit or system, the next thing we need is a mathematical
representation of the system itself. As for many other systems, the dynamics of an electronic

circuit can be described with a system of differential and algebraic equations. In this work,
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we will be mainly (except in Chapter 7) dealing with electronic circuits that can be modeled
as an interconnection of basic network elements such as resistors, capacitors, inductors,
controlled sources, independent voltage and current sources, etc. Resistors are usually
described by possibly nonlinear relationships relating the terminal current to the terminal
voltage. Similarly, controlled sources are described by possibly nonlinear relationships that
relate the port voltages and currents. Capacitors and inductors are reactive elements,
i.e. they can store energy, hence their descriptions involve time derivatives. For voltage-
controlled capacitors, the terminal current is expressed as the time-derivative of the charge
stored in the capacitor, and the charge is in general related to the terminal voltage with a
nonlinear relationship. Similarly, for current-controlled inductors, the terminal voltage is
expressed as the time-derivative of the flux of the inductor, and the flux is in general related
to the terminal current with a nonlinear relationship. Resistors, capacitors and inductors
are basic components of an electronic circuit. The models for semiconductor devices in
electronic circuits are represented as an interconnection of the basic network elements.
Given an interconnection of network elements, a system of mixed algebraic and differential
equations can be written to describe the dynamics of the system. These equations consist of
the Kirchoff’s current law (KCL), the Kirchoff’s voltage law (KVL) and the branch equations
(i.e. the relationships that relate the terminal voltages and currents of the components).
A particular way of formulating KVL, KCL and the branch equations, called the Modified
Nodal Analysis (MNA) formulation, has been extensively used in circuit theory because of
its generality and some other desirable properties for numerical computation. We will not
further discuss the details of formulating network equations for electronic circuits, which
is extensively covered elsewhere. For our purposes, it suffices to know that the governing
equations that describe an electronic circuit can be formulated (using MNA) as a system of

mixed algebraic and differential equations in the following form
d
10x,0) 4 Q) = 0 (4.1

where I(x,?) : R" x R—IR" represents the “memoryless” network elements and the inde-
pendent sources, and Q(x) : IR”"—IR"™ represents the reactive elements, i.e the capacitors
and the inductors. The state variables of the system, represented by the vector x € IR", con-
sist of the node voltages, the inductor currents and the independent voltage source currents.
There is one KCL equation in (4.1) for every node (except for the “ground” or reference

node), which basically equates the sum of currents entering the node to the ones that are
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leaving it. The rest of the equations in (4.1) are the branch equations of inductors and volt-
age sources. The branch equations for the network elements other than the inductors and
the voltage sources, and KVL equations are implicitly included in the MNA formulation.
Now that we have a mathematical representation of both the noise sources and
the system, we can go ahead with the discussion of the noise analysis techniques. Note
that, we include the deterministic excitations (i.e. the desired signals) in our mathematical
description of the system (represented by the explicit time dependence of I(x,t) in (4.1)).
We assume that there is no “randomness” (e.g. random parameters) in the system itself.
Even though the system is deterministic, when we have noise source excitations (modeled
as stochastic processes) on the system, the state variables (e.g. node voltages) will be in
general stochastic processes as opposed to deterministic signals. We formally define “noise
analysis” or “noise simulation” of a system excited by noise sources to be the calculation of
the probabilistic characteristics of the stochastic processes that represent the state variables.
To make this definition precise we have to also define what we mean by “probabilistic char-
acteristics”. It could be a complete characterization of the fdds for the vector of stochastic
processes that represent the state variables of the system, or for a second-order character-
ization, the autocorrelations/spectral densities as well as cross-correlations/cross-spectral
densities of the stochastic processes that represent the state variables can be calculated.
The several noise analysis techniques we are going to discuss can be classified in terms of
what kind of a probabilistic characterization is being calculated. We will refer to the tech-
niques that calculate spectral densities as frequency-domain techniques, and the techniques
that calculate autocorrelation functions or moments as time-domain ones. We would like
to point out that even though we refer to the techniques that calculate spectral densities
as frequency-domain ones, this does not mean that the actual calculation is done entirely
in frequency-domain. For instance, the time-varying spectral density for a nonstationary
process could be calculated using a mixed frequency and time domain technique.
Frequency-domain techniques assume that the system is in some kind of steady-
state condition, i.e. time-invariant, sinusoidal, periodic or quasi-periodic steady-state.
Recall that we defined the system to include the deterministic excitations. In forced
systems, the steady-state is set by the deterministic excitations on the system. In au-
tonomous systems such as oscillators, the steady-state is set by the system itself. Moreover,
frequency-domain techniques assume that the noise sources are WSS, cyclostationary or

quasi-cyclostationary, as a natural consequence of the steady-state assumptions on the sys-
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tem itself. The steady-state properties of the noise sources are actually set by the system.
For instance, as we have seen it in Chapter 3, shot noise is modeled as a modulated WSS
Gaussian process, but the modulation is a function of the terminal current of the pn junc-
tion, which is set by the system.

For time-domain techniques, a steady-state condition on the system or the noise
sources is not required. In general, one can have arbitrary time-varying deterministic exci-
tations and hence nonstationary noise sources acting on the system. Thus, one can analyze
transient noise phenomena with time-domain methods. In Chapter 6, we will see an exam-
ple for how one can use the time-domain noise simulation technique we proposed to analyze
a seemingly steady-state noise phenomenon, i.e. phase noise in free running oscillators, and
arrive at some very useful results.

All but one (Monte Carlo noise simulation) of the noise simulation techniques
we will be reviewing in this chapter treat the deterministic and noise excitations on the
system separately. First, the nonlinear system is analyzed only with the deterministic
excitations. The analysis with deterministic excitations is basically the solution of the
system of differential equations given in (4.1). Then, using the results of this large-signal
nonlinear analysis, a linear but possibly time-varying model for the system is constructed
for noise analysis. The justification for such an approach lies in the assumption that noise
signals are “small” signals and they do not “excite” the nonlinearities in the system. As
a natural consequence of the separate treatment of the deterministic and noise excitations,
the state variables (i.e. node voltages) are expressed as a summation of two terms, one
of them due to the deterministic excitations and the other due to the noise sources. Each
component is simulated or characterized separately. The small-signal analysis approach
has been very popular in circuit theory. It is not only used for noise analysis but also
for analyzing electronic circuits with large and small deterministic excitations present at
the same time. In this case the nonlinear system is analyzed with the large excitations
first, and then a linear model is constructed for the small excitations. In Chapter 5, we
will formalize the small-signal approximation and linearization approach for noise sources

modeled as stochastic processes.
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4.2 Noise Simulation with LTI Transformations

In this method, a nonlinear circuit is assumed to have only time-invariant (DC)
deterministic excitations, and it is also assumed that there exists a time-invariant steady-
state solution. Note that, having only time-invariant excitations on the circuit does not
necessarily imply that there exists a time-invariant steady-state solution. A time-invariant
steady-state solution is obtained by setting the time derivative in (4.1) to zero and solving
the resultant system of nonlinear algebraic equations, for instance, using Newton’s method.
This is referred to as the DC' analysis of the circuit. It is possible to have more than one
time-invariant steady-state solution. Then, the nonlinear circuit is linearized around the
time-invariant steady-state solution to construct an LTI model for noise analysis. If this is
applied to (4.1), we obtain

d
GX +C-X =0 (4.2)

where G and C are n X n matrices, and the state vector X € IR", which is a vector
of stochastic processes, represents the component of the node voltages and other circuit
variables due to the noise sources. Obviously X = 0 satisfies (4.2), because we have not
included the noise sources in (4.2) yet. Let us connect a current noise source between two
nodes in the LTI network represented by (4.2), which could be a noise source modeling the
thermal noise of a resistor. (4.2) can be reformulated as below to include this noise source

d
GX—I—C%X—I—bu(t) =0, (4.3)

where u(t) is the stochastic process that models the noise source, and b is an n X 1 column
vector with all entries set to zero except two, one of which is 1 and the other is —1. The
two nonzero entries in b map the noise source to the nodes it is connected to, by modifying
the corresponding KCL equations. The stochastic process u(t) representing the noise source
is assumed to be zero-mean, hence the current noise source does not have a direction and
the 1 and —1 entries in b are interchangeable. Along with the time-invariant steady-state
assumption, it is also assumed that both the noise sources, and the stochastic processes
that are components of X (which model the components of the state variables due to noise)
are WSS stochastic processes. Having only WSS noise sources does not necessarily imply
that X is vector of WSS stochastic processes. A sufficient condition for this to be true is
that the LTI system represented by the matrices G and C is stable.

We assume that we know the spectral density of the WSS noise source: S, (f).
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We would like to calculate the spectral densities of the WSS stochastic processes that are
components of X. We could accomplish this easily by using (2.135) if we can calculate the
transfer functions from the noise source u(t) to the components of X. Let us now replace
u(t) in (4.3) with a complex exponential at frequency f, i.e. exp (j27 ft). Then, using the
definition of the transfer function for an LTI system (given by (2.108)), we obtain

GHy () exp (j2r /1) + O (HL(f)exp (j27 1)) + bexp (25 /) =0 (14

where Hy(f) denotes the vector of transfer functions from the noise source to X. After

expanding the derivative in (4.4), we arrive at

GH,(f) + j2r f[CHy(f)+b = 0 (4.5)
(G +j2nfC)H(f) = —b. (4.6)

Hence, we need to solve a linear system of equations given by (4.6) at every frequency point
f to calculate the vector of transfer functions Hy(f). This could be accomplished with
an LU decomposition of the matrix T(f) = G + 727 fC, and a forward elimination and a
backward substitution step. Then, the n X n matrix of spectral and cross-spectral densities
for X is given by

Sx (f) = Hy(f)Su(HH} (f)" (4.7)

where S, (f) is the spectral density of the noise source. (4.7) is a generalization of (2.135)
(for a SISO LTI system) to the single-input multiple-output (SIMO) case.

In our above discussion, we considered a single noise source. One usually has a
number of noise sources in the circuit. If we would like to calculate the spectral densities
of the components of X due to all of the noise sources, we can repeat the above calculation
for all of the noise sources to calculate a matrix of transfer functions from all of the noise
sources to X. Let us now assume that we have p noise sources (which could be correlated)
with corresponding mapping vectors b; ¢ = 1,2,...,p. Then, the n X p matrix of transfer
functions H(f) from all the noise sources to X is obtained as the solution of the system of

equations

(G + j2r fC)H(f) = —[by, ..., b,] = —B. (4.8)

The ijth element of H(f) represents the transfer function from the jth noise source to the
ith component of X. (4.8) can be solved with a single LU decomposition of the matrix

T(f) = G + j2r fC and p forward elimination and backward substitution steps at each
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frequency point f. It can be shown that the n X n matrix of spectral and cross-spectral
densities for X is given by
Sx(f) =H(f)S.(HH'(f)" (4.9)
where the p X p matrix S, (f) represents the matrix of spectral and cross-spectral densities
for the noise sources. Most often, the noise sources are uncorrelated, hence S,(f) is a
diagonal matrix of the individual spectral densities of the noise sources. Even so, the
matrix of spectral and cross-spectral densities for X is, in general, a full matrix. (4.9) is a
generalization of (2.135) (for a SISO LTI system) to the MIMO case.
One is usually interested in calculating the spectral density of a single output
instead of the whole spectral, cross-spectral density matrix of X. This output can usually

be expressed as a linear combination of the components of X as follows:
Y(t) = dTX(t) (4.10)

where d € IR™ is a constant vector. Most often, the output of interest is a voltage difference
between two nodes. In this case, d has only two nonzero entries, set to 1 and —1, just like
the b vectors that map the current noise sources to the nodes. Then, the spectral density

of Y is given by

d’sx(f)d (4.11)
= d'H(/)S.(HH(/)d (4.12)

Sy (f)

To calculate Sy (f), we need to calculate only the vector dTH(f) instead of the whole
matrix H(f). From (4.8), we have

H(f)=-T(f)"'B (4.13)

and hence
d'H(f) = (-d"T(/)™")B (4.14)
= w(H)'B (4.15)

where the vector w(f) is the solution of the equation
T(f)'w(f) = —d. (4.16)

Thus, to calculate d”H(f), we need a single LU decomposition of the matrix T(f) and a

single forward elimination and backward substitution step at every frequency point f to
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solve the above equation with the right hand side set to —d. The calculation of d” H(f)
using (4.15) requires only n subtractions since each column of B has only two nonzero
entries set to 1 and —1. The linear system of equations in (4.16) is called the adjoint
system, because the LTI network represented by the matrix T(f)7 is the adjoint of the one
that is represented by the untransposed matrix T(f). The idea of using the adjoint network
concept in efficiently calculating the spectral density of a single output due to many noise
sources was first proposed in [26]. Historically, the adjoint network method was derived
through the use of Tellegen’s theorem. This derivation is rather complicated compared
with the pure matrix algebra approach we have presented above [27]. The adjoint network
method is also used in efficiently performing sensitivity analysis of LTI networks.

Typically, one is interested in calculating the spectral density of the output, Sy (f),
for a range of frequencies. Obviously, the frequency range of interest needs to be discretized
for numerical computation. Then, the calculations described above are repeated for all
of the frequency points. If we use a direct method (i.e. LU decomposition followed by
elimination and substitution steps) to solve the linear system of equations in (4.16), then
the cost of numerical computation is the same for all of the frequency points. To calculate
the total power (i.e. E [Y (£)?]) of the output with this method, we would have to calculate
the spectral density for the whole range of the frequencies where Sy (f) is not negligible and
use a summation version of the integral in (2.47).

The noise analysis technique we described in this section is usually referred to
as AC noise analysis, since it models a nonlinear circuit with an LTI network for noise
analysis. It is available in almost every circuit simulator including SPICE [28], and it is
widely used by analog circuit designers. The major limitation of this technique lies in
the assumption that the nonlinear circuit has only time-invariant deterministic excitations
and a time-invariant steady-state solution. Of course, all practical electronic circuits are
supposed to deal with time-varying excitations. However, for certain types of circuits, such
as amplifiers with excitations small enough so that they can be modeled as LTI networks
for all purposes, this noise analysis method works very well. It is easy to implement, and
it efficiently calculates the spectral density of the output for a range of frequencies. It is
also easy to understand conceptually, because it is based on LTI network analysis and WSS
stochastic processes. Unfortunately, it is not appropriate for noise analysis of circuits with

“large” time-varying deterministic excitations or time-varying steady-state.



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 108

4.3 Noise Simulation with LPTV Transformations

In this method, a nonlinear electronic circuit is assumed to have only periodi-
cally time-varying (DC) deterministic excitations, and it is also assumed that there exists
a periodic steady-state solution. (The methods to be presented can be easily generalized
to circuits with a quasi-periodic steady-state, but to keep the discussion simple we will
concentrate on the periodic case only.) Having only periodically time-varying excitations
does not necessarily imply that there exists a periodic steady-state solution. The periodic
steady-state solution for (4.1) can be obtained using several different techniques [29]: direct
time-domain numerical integration (i.e. transient analysis), shooting method analysis, har-
monic balance analysis, etc. Then, the nonlinear circuit is linearized around the periodic
steady-state solution to construct an LPTV model for noise analysis. If this is applied to
(4.1) we obtain .

G(X+C(t) 2 X =0 (4.17)

where G (t) and C(¢) are n X n periodically time-varying matrices as opposed to the constant
ones in (4.2). Let us connect a current noise source between two nodes in the LPTV network

represented by (4.17), which can then be reformulated as below to include the noise source
d
G(t)X + C(t)%X—I—bu(t) =0 (4.18)

which is similar to (4.3) for the LTI case. Along with the periodic steady-state assumption, it
is also assumed that both the noise sources and the stochastic processes that are components
of X are cyclostationary stochastic processes. Note that, having only cyclostationary noise
sources does not necessarily imply that X is vector of cyclostationary stochastic processes. A
sufficient condition for this to be true is that the LPTV system represented by the matrices
G(t) and C(t) is stable, i.e. all the Floquet exponents of the LPTV system should have
negative real parts (see Section 2.4.9). As we will see in Chapter 6, this is not true for a
free running oscillator.

We assume that we know the periodically time-varying spectral density of the
cyclostationary noise source: S,(t, f). We would like to calculate the periodically time-
varying spectral densities of the cyclostationary stochastic processes that are components
of X. To accomplish this, we need to calculate the time-varying transfer functions (see
(2.112) for the definition) from the noise source u(t) to the components of X. Let us now

replace u(t) in (4.18) with a complex exponential at frequency f, i.e. exp (527 ft). Then,
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using the definition of the time-varying transfer function for an LPTV system (see (2.113)),

we obtain
GVH(f,1) exp (727 1) + O1) % (HU(f, 1) exp (72 1)) + bexp (j2r 1) =0 (4.19)

where H;(f,t) denotes the vector of periodically time-varying transfer functions from the
noise source to X. (4.19) is different from (4.4) in the sense that both the coefficient matrices
G(t) and C(t) and the transfer function are time-varying.

Okumura et. al. in [30]! propose to calculate a time discretized version of the
periodically time-varying transfer function vector H,(f,¢). With this method, one places
k time points in a period and approximate the time derivative in (4.19) using a numerical
differentiation formula such as backward Euler, or more generally backward differentiation
formula, etc. We will not present the details of this formulation. For details, the reader
is referred to [30]. The resulting linear system of equations, the solution of which yields
H,(f,t) at k time points for a single frequency point f, is of dimension nk as opposed
to the linear system of equations (4.6) of dimension n for the LTI case. A direct method
(i.e. LU decomposition followed by forward elimination and backward substitution) is used
to solve this system of equations in [30]. The large-signal analysis method that is used
by [30] to calculate the periodic steady-state, and hence to construct the LPTV model for
noise analysis, is the shooting method [29]. Telichevesky et. al. in [31]% greatly improve the
efficiency of the method proposed by [30]. [31] uses a matrix-implicit Krylov subspace based
iterative method to solve the n k dimensional linear system for the discretized time-varying
transfer function. [31] also makes use of a property of the Krylov subspace based iterative
methods to efficiently calculate the discretized time-varying transfer function Hy(f,?) at
different frequency points: Once the n k dimensional linear system of equations is solved
for one frequency point f; using the matrix-implicit Krylov subspace based method, the
numerical solution for another frequency point fo can reuse the results of some of the
computations that were performed for fi. In the above discussion, we have been considering
the case where there is only one noise source. A straightforward generalization of the
adjoint network formulation that was discussed for the LTI case can be applied to the
LPTYV case to calculate the time-varying transfer functions from many noise sources to a

single output. Once the discretized transfer functions are calculated, one can calculate the

'We believe that [30] has a formulation error regarding the linearization of nonlinear capacitors around
the periodic steady-state.
2The formulation presented in [31] is correct.
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spectral density of the output, which is assumed to be a cyclostationary process. Both [30]
and [31] calculate only the zeroth order Fourier series coefficient (i.e. the time-average)
of the periodically time-varying spectral density of the cyclostationary output (see (2.51)),
i.e S}(/O)(f)7 for a range of frequencies. This, obviously, is not a complete second-order
probabilistic characterization of the output.

Hull et. al. [32, 33] propose a different method to calculate the periodically
time-varying transfer functions. They first calculate the impulse responses for the LPTV
transformations from the noise sources to the output, by solving a number of linear peri-
odically time-varying systems of ordinary differential equations. The large-signal analysis
with the deterministic excitations to calculate the periodic steady-state is performed with
time domain numerical integration, i.e. transient analysis. Then, they use two-dimensional
FFTs to calculate the Fourier series coefficients of the periodically time varying transfer
functions (see (2.120)). Then, [33] calculates only the zeroth order Fourier series coeflicient
of the periodically time-varying spectral density of the cyclostationary output noise, but
Hull [33] justifies this for his particular application, i.e. mixer noise analysis. He states that
the mixers are almost always followed by an IF filter (a bandpass filter with bandwidth
much smaller than the local oscillator frequency), and even if the noise at the output of the
mixer is cyclostationary, the noise at the output of the IF filter is WSS.

Roychowdhury et.al. [34] present a frequency-domain method which can calcu-
late a complete second-order probabilistic characterization of the cyclostationary output,
i.e. they calculate not only the zeroth order Fourier series coefficient of the periodically
time-varying spectral density, but also the higher order harmonics. They present a simple
example with which they demonstrate the necessity of a full cyclostationary characteriza-
tion as opposed to a time averaged characterization of the output. The frequency domain
formulation presented by Roychowdhury [34] that uses the adjoint network concept yields
in an efficient computational method to calculate a number of Fourier series coefficients of
the time varying spectral density. The periodic steady-state with the large-signal deter-
ministic excitations is calculated using the harmonic balance method [35], and the LPTV
system for noise analysis is obtained by linearization. The Fourier series coefficients of the
periodically time-varying transfer functions (see (2.120)) from the noise sources to the out-
put for the LPTV system are calculated by solving a linear system of equations. In this
case, this system is n h dimensional, where h is the number of harmonics used to represent

the periodic steady-state. The efficient computation of the cyclostationary characterization
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of the output is obtained through factored-matrix methods together with preconditioned
iterative techniques to solve the n h dimensional linear system. The authors also propose
to use the PVL (Pade via Lanczos) [36] method and the shifted-QMR method to efficiently
calculate the Fourier series coefficients of the time varying spectral densities for a range of

frequencies.

4.4 Monte Carlo Noise Simulation with Direct Numerical

Integration

The time domain Monte Carlo method is the only method, we discuss in this
chapter, which does not treat the deterministic excitations and the noise signals separately.
A linear model is not used for noise analysis. Instead, a number of time domain analyses
are performed to simulate the full nonlinear model of the circuit under the influence of both
the deterministic large excitations and the noise signals. The nonlinear circuit equations
can be formulated (using MNA) including all the deterministic excitations and the noise
sources to yield

I(X, ) + %Q(X) +BX)U{t) =0 (4.20)

where U is a vector of stochastic processes representing the noise sources in the circuit,
and X is a vector of stochastic processes (with a nonzero mean due to the deterministic
excitations) representing the state variables, e.g. node voltages. We will discuss this for-
mulation in detail in Chapter 5. With the time domain Monte Carlo technique, (4.20) is
numerically integrated directly in time domain to generate a number of sample paths (at
discrete time points) for the vector of stochastic processes X (see Section 2.5.7 and Section
2.2.12 for a discussion of direct numerical integration of stochastic differential equations and
simulation of stochastic processes). Thus, an ensemble of sample paths is created. Then, by
calculating various expectations over this ensemble, one can evaluate various probabilistic
characteristics, including correlation functions and spectral densities. If one can prove that
the vector of stochastic processes satisfies some ergodicity properties (see Section 2.2.11),
it may be possible to calculate time averages over a single sample path to evaluate some
time-averaged probabilistic characteristics which provide adequate information in some ap-
plications. This method is referred to as a Monte Carlo method, because in generating the

sample paths using numerical integration, one has to realize or simulate the noise sources
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on the computer using a random number generator.

[37] uses a sum of sinusoids (with random phases) representation to realize the
noise sources for time domain integration. [38] uses random amplitude pulse waveforms.
Both [37] and [38] use standard numerical integration techniques (i.e. the transient analysis
in circuit simulators) to generate sample paths for the node voltages. “Many” transient
analyses of the circuit are performed with different sample paths of the noise sources.

The methods used by [37] and [38] have several problems. Shot and thermal noise
sources in electronic circuits are ideally modeled as “white” noise sources. To simulate
“white” noise sources accurately, one must either include very high frequency components
in the sum of sinusoids representation, or set the pulse width to a very small value (to the
correlation width of the noise sources, which is approximately 0.17 picoseconds for thermal
noise at room temperature [5]) in the random amplitude pulse waveform representation.
This limits the maximum time-step in numerical integration of (4.20) to a very small value
making the simulation highly inefficient, which has to be repeated “many” times in a Monte
Carlo fashion.

The portion due to noise sources in a waveform (i.e. sample path) obtained with
a single run of the transient analysis will be much “smaller” (for most practical problems)
when compared with the portion due to the deterministic signals. As a result, the sample
paths obtained for different realizations of the noise sources will be very close to each
other. These sample paths are only numerical approximations to the actual waveforms,
therefore they contain numerical noise generated by the numerical integration algorithm.
For instance, the variance of a node voltage as a function of time is calculated by taking
averages over an ensemble of these sample paths. First, the mean as a function of time is
calculated. Then, the variance at every time point is calculated by computing the average of
the differences between the values from all of the sample paths and the mean. Consequently,
the variance calculated for the node voltages includes the “noise” generated by the numerical
algorithms. This creates another constraint on the time steps to be used during numerical
integration.

Pseudo-random number generators on a computer often do not generate a large
sequence of independent numbers, but reuse old random numbers instead. This can also
become a problem if a circuit with many noise sources is simulated. This is usually the
case, because every device has several noise sources associated with its model.

On the other hand, this method has a key property which might be very desirable



CHAPTER 4. OVERVIEW OF NOISE SIMULATION 113

in some applications: It does not assume that the noise signals are small compared with the
deterministic excitations. The justification for using a linear model of the circuit for noise
analysis is based on this assumption for all of the other methods we discuss in this chapter.
For instance, the Monte Carlo technique can be useful in evaluating the noise performance
of low noise amplifiers (LNAs) (a key component of the analog RF front-end of any wireless
communication system). For LNAs, the desired deterministic signal can be weak enough
so that its magnitude is comparable with the noise sources in the amplifier. In this case,
the presence of other undesired large signals can preclude the use of an LTI model for AC

small-signal and noise analysis.

4.5 Summary

We presented an overview of several techniques for noise analysis of nonlinear
electronic circuits. We defined “noise analysis” to be the calculation of the probabilistic
characteristics of the state variables (e.g. node voltages) of a circuit. The traditional noise
analysis method that is based on LTI analysis and WSS noise sources assumes that the
nonlinear circuit is in time-invariant steady-state under the influence of the deterministic
excitations. With this method, the spectral density of the output is calculated at discrete
frequency points in a frequency range of interest. Assuming that the output is a WSS
process, this method calculates a complete second-order probabilistic characterization. We
pointed out that the time-invariant steady-state assumption is not justified for many appli-
cations.

Then, we reviewed frequency domain techniques that are based on LPTV analysis
with cyclostationary noise sources, which assume that the nonlinear circuit is in (quasi-)
periodic steady-state under the influence of the deterministic excitations. In particular,
a formulation based on the shooting method was proposed in [30]. Assuming that the
output is also cyclostationary, this method calculates only a time-averaged probabilistic
characterization. The efficiency of the method proposed in [30] was greatly improved by
[31] using matrix-implicit Krylov subspace based iterative techniques for the solution of the
large linear system of equations that needs to be solved to calculate the time discretized
periodically time-varying transfer functions. The frequency domain steady-state technique
proposed in [34] is based on a harmonic balance/conversion matrix formulation, and calcu-

lates a complete second-order characteristics of the cyclostationary output efficiently using
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factored matrix, preconditioned iterative techniques for the solution of the large linear sys-
tem of equations that needs to be solved to calculate the frequency discretized periodically
time-varying transfer functions.

We reviewed the time domain Monte Carlo noise analysis. This method is based
on a direct numerical integration of the nonlinear differential equations that represent the
circuit with the noise excitations to generate an ensemble of sample paths for the stochastic
processes that represent the state variables. The information that is needed for a complete
second-order characterization of the nonstationary output is contained in the ensemble of
the sample paths generated with this method, even though a post-processing step is re-
quired to calculate spectral densities or correlation functions. We pointed out the efficiency
and accuracy problems associated with this method. We believe that the results of rigorous
systematic work on stochastic direct numerical simulation methods for differential equations
involving stochastic processes have applications in electronic circuit and system design. Di-
rect numerical simulation of the stochastic processes and the differential equations involving
them can be useful in problems which can not be dealt with some simplifying approxima-
tions (i.e. linearization) that allow us to use the other noise analysis techniques reviewed
in this chapter.

The time domain non-Monte Carlo method we proposed directly calculates the
autocorrelation, cross-correlation matrix of the state variables of the system that are repre-
sented by nonstationary stochastic processes. With this method, one can analyze transient
and nonstationary noise phenomena since a steady-state is not required. We discuss this
method in the next chapter.

We believe that the combined use of frequency domain steady state techniques
that calculate spectral densities and the time domain technique that calculates correlation
functions will be most effective in investigating various important noise phenomena in elec-
tronic circuit design where the assumption that the effect of noise on the output is much
smaller than the effect of desired deterministic signals (i.e. the linearization approximation)
is justified. In problems where this assumption can not be justified, one has to revert to
techniques, e.g. time domain Monte Carlo noise analysis, which treat the noise excitations

and the deterministic signals together.
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Chapter 5

Time-Domain non-Monte Carlo

Noise Simulation

The time domain non-Monte Carlo (meaning that no random number generators
are used) noise analysis technique we proposed [2, 3] is not restricted to circuits with a
time-invariant or (quasi-) periodic steady-state with WSS or cyclostationary noise sources.
The deterministic excitations on the circuit can be arbitrary time domain signals, including
transient waveforms without a steady-state characteristics. As a result, the noise sources
in the circuit will be nonstationary in general as opposed to being WSS or cyclostationary.
All the circuit variables, i.e. node voltages, will also be nonstationary stochastic processes
in general. A complete second-order probabilistic characterization would then require the
calculation of the autocorrelation, cross-correlation matrix of the component of the state

vector due to noise, which is given by
R(t,7) = E [X(t+7/2)X(t - 7/2)"] (5.1)
or the time-varying spectral, cross-spectral density matrix

Sx(t, f) = F{R(t,7)}. (5.2)

In the general case, R(t,7) or S(¢, f) are arbitrarily time varying functions of ¢, as opposed
to a periodically time varying one. In this method, we directly calculate a time discretized
version of R(t, 7) numerically. For 7 = 0, the diagonal elements of R(t, 7) gives us the noise
variance (i.e. the total noise power) of the node voltages as a function of time, which can

be directly calculated using this time domain non-Monte Carlo noise simulation technique.
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Similar to the frequency domain methods, first, a large signal analysis of the circuit
is performed with only the deterministic excitations. Then an LTV (as opposed to an LPTV
one) model is constructed for noise analysis. Since this method does not require a large
signal steady-state, the noise analysis can be performed along with the large signal analysis.
This is useful in the sense that one does not need to store information about the large signal
behavior of the circuit.

Apart from being able to analyze transient noise phenomena, this method is useful
in applications where total noise power as a function of time is required. This is a natural
output of this technique, which would be quite difficult to calculate using the frequency
domain methods that calculate spectral densities.

In Chapter 6, we will present how one can use this technique to investigate and
model an inherently nonstationary noise phenomenon, the so-called phase noise or timing
jitter of oscillators, which is an extremely important concern in the design of clock generators
for all kinds of applications and frequency synthesizers that generate the local oscillator (LO)
signal in analog RF front-end of wireless communication systems.

We now present a detailed devlopment of the time domain non-Monte Carlo noise
analysis algorithm for nonlinear electronic circuits, and describe its implementation for
numerical computation. We also present noise simulation examples to illustrate the use of

the noise simulation technique.

5.1 Formulation of Circuit Equations with Noise

The MNA formulation [39][27] of the mixed algebraic and differential equations
that govern the behavior of a nonlinear electronic circuit including the deterministic exci-
tations can be expressed as

I(x,t)+ %Q(x) =0 (5.3)
where I(x,¢) : R” Xx R—IR" and Q(x) : R"—=IR". The components of the vector x € R"
are the state variables of the nonlinear circuit. (See Section 4.1 for an explanation of this
formulation.)

Under some rather mild conditions (which are satisfied by “well-modeled” circuits)
on the continuity and differentiability of I and Q, it can be proven that there exists a unique
solution to (5.3) assuming that a fixed initial value x(0) = x¢ is given [39]. Let x, be the

deterministic solution to (5.3). Transient analysis in circuit simulators solves for x; in time
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domain using numerical integration techniques for ordinary differential equations (ODEs)
[39]. The initial value vector is obtained by a DC or operating point analysis (i.e. the
solution of the system of nonlinear algebraic equations obtained from (5.3) by setting the
time derivative to zero and using the ¢ = 0 values for the independent sources) of the circuit
before the numerical integration is started. For a nonlinear circuit, there may be more than
one solution to the DC analysis problem.

We would like to include the noise sources in the formulation of the circuit equa-

tions in (5.3). Now, we state a number of assumptions on the models of the noise sources:

e As explained in Chapter 3, we assume that all of the noise sources in the circuit are
modeled in terms of a standard white Gaussian noise process, i.e. the formal derivative

of a standard Wiener process.

e If the model of a noise source contains a subsystem that has internal states, we assume
that the variables that represent these internal states are included in the state vector x
for the nonlinear circuit, and the equations that describe the noise modeling subsystem
are appended to (5.3). For instance, an LTI low-pass subsystem can be used to filter a
white Gaussian noise source, and the output of this subsystem is then used to model

a WSS noise source with a low-pass spectral density.

e We furthermore assume that all of the noise sources can be modeled as current and
voltage sources that can be inserted into the model of an electronic device or com-
ponent which is composed of an interconnection of basic network elements such as
linear/nonlinear controlled sources, linear/nonlinear capacitors, linear/nonlinear re-
sistors, etc. In practice, the noise sources of electronic components and devices are

modeled as current sources, because current sources are more convenient to use with

the MNA formulation.

e We assume that the properties of the stochastic processes that represent the noise
sources can be expressed in terms of the terminal voltages and currents of the device
(or in terms of quantities that can be calculated using the terminal voltages and
currents) and some fixed parameters such as the electron charge, the temperature and

the Boltzmann’s constant.

All of the stochastic process models we have presented in Chapter 3 for thermal, shot and

1/f noise satisfy these assumptions. Any other model for a noise source that satisfies the
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above assumptions can be included in the formulation we are going to present.

With the above assumptions on the noise source models, we can modify the “de-
terministic” model of the system in (5.3) to formulate a system of stochastic algebraic and
differential equations that describe the dynamics of the nonlinear circuit including the noise

sources:

I(X, ) + %Q(X) +B(X,0)E(t) = 0. (5.4)

We will refer to this formulation as the NLSDE (nonlinear stochastic differential equation)
formulation. The last term in (5.4), B(x,¢){(t), that describes the noise sources, appears
as an additive noise term. This is due to the assumptions we have stated above on the noise
source models.

X € R" in (5.4) is now a vector of stochastic processes that represents the state
variables (e.g. node voltages) of the circuit. £(¢) in (5.4) is a p-dimensional vector of WSS
white Gaussian processes (i.e. the formal derivative of the standard Wiener process). We
assume that the components of £(t) are uncorrelated stochastic processes to simplify the
discussion. Various noise sources in electronic devices usually have independent physical
origin, and hence they are most often modeled as uncorrelated stochastic processes. For
instance, all of the noise source models of semiconductor devices that are implemented in
SPICE are uncorrelated. The generalization of the time domain noise analysis algorithm
to handle correlated noise sources is straightforward, apart from slightly complicating the
notation.

B(x,t) in (5.4) is an n X p matrix, the entries of which are functions of the state
x and possibly ¢t. In other words, B(x,t) is state and time dependent modulation for the
vector of stochastic processes (or noise sources) £(t). Every column of B(x,¢) corresponds
to a noise source in £(¢), and has normally either one or two nonzero entries. The rows of
B(x,t) correspond to either a node equation (KCL) or a branch equation of an inductor or
a voltage source. If there are no voltage noise sources in the circuit, there are no nonzero
entries in the rows which correspond to the branch equations. Thus, B(x,?) maps the noise
sources in £(¢) to the nodes they are connected to. Some semiconductor device models
might contain two noise sources that are modeled with two fully correlated (which means
that the noise sources are stochastically equivalent) stochastic processes. This situation can
be handled naturally with this formulation by mapping the same noise source to different

locations in the circuit. Thus, one can have two stochastically equivalent noise sources at
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different locations. Moreover, the modulations for these noise sources placed in B(x, t) need
not be equal.

Thermal and shot noise sources as modulated white Gaussian noise sources are
naturally included in this formulation. The modulation expressions to be placed in B(x,t)
for thermal and shot noise were described in Chapter 3.

For a current noise source that is connected between two nodes, the two nonzero
entries (modulations) to be placed in B(x,t) have equal absolute values but opposite signs.
The sign of the modulations for the two nodes can be chosen arbitrarily, since a current
noise source that is modeled with a zero mean stochastic process has no direction. For a
voltage noise source there is only one nonzero entry in B(x, ).

We will interpret (5.4) as an [to system of stochastic differential equations. Now,

we rewrite (5.4) in the more natural differential form
I(X,t)dt + dQ(X) + B(X,t)dW(t) =0 (5.5)

where we substituted dW (t) = £(t)dt. W(t) is a vector of uncorrelated Wiener processes.
Thus, our formulation is now in terms of the well-defined Wiener process, instead of the

white Gaussian noise which does not exist in a strict mathematical sense.

5.2 Probabilistic Characterization of the Circuit with Noise

We formulated the equations that govern the behavior of a nonlinear circuit as
a system of mixed stochastic algebraic and Ito stochastic differential equations. Now, we
would like to “solve” (in some sense) this system of equations to generate “information”
about the noise performance of the nonlinear circuit, which we refer to as the noise analysis
of the circuit. In particular, we would like to calculate a probabilistic characterization of
the vector of stochastic processes X(¢) that represents the state variables of the system.
The finite-dimensional distributions (i.e. fdds, see Section 2.2) for X(t) form a complete
probabilistic characterization. If we can calculate the joint probability density for the state
variables of the system, we can use the expectation operator over the calculated joint prob-
ability density to calculate all kinds of probabilistic characteristics of the state variables. In
particular, we can obtain autocorrelation functions and spectral densities which can be cal-
culated through second-order moments. It is also possible to calculate higher-order moments

and hence a higher-order probabilistic characterization using the information contained in



CHAPTER 5. TIME-DOMAIN NON-MONTE CARLO NOISE SIMULATION 120

the joint probability density function of the state X(¢). The joint probability density is a
time dependent function p(x,t) : R™ x IR—[0, c0), because the stochastic processes that
are components of X(¢) are in general nonstationary. We have seen it in Section 2.5.6
that, given a system of Ito stochastic differential equations, one can derive a corresponding
system of partial differential equations, called the Fokker-Planck equation, the solution of
which gives us the conditional joint probability density function p(x,t|xo,to) for the state
X(t). A Fokker-Planck equation that corresponds to (5.5) for a nonlinear circuit can be
derived. Solving this Fokker-Planck equation analytically for the time-varying joint proba-
bility density for a practical nonlinear circuit is obviously out of the question. A numerical
solution approach to this partial differential equation is also infeasible due to the large di-
mension (i.e. number of state variables) of the problem. Obtaining analytical or numerical
solutions for the Fokker-Planck equation for a nonlinear circuit is only possible for simple
“toy” circuits with a state-space dimension that is smaller than 5.1

Because of great difficulties in obtaining nonstationary solutions of the Fokker-
Planck equation that corresponds to (5.5) for a nonlinear circuit, we could attempt to
calculate the time-varying moments of X(¢) separately, instead of calculating the whole
joint probability density which, in a sense, is equivalent to calculating all orders of moments
at the same time. To accomplish this, we could derive differential equations, the solution of
which will give us the time-varying moments of X(¢). The differential equations for moments
can be obtained in two ways [13]. One way is to use the Fokker-Planck equation. However,
another and more natural way of deriving equations for moments is based on applying Ito’s

formula (see Section 2.5.4) for stochastic differentials to the function
h(X () = X{H(1) X5 (1) ... X (1) (5.6)

(where Xy (t), X3(t), ..., X,(t) are the stochastic processes that are components of X(t)) to
calculate an expression for d/dt h(X(t)). Then, the expectation of this expression is taken
to calculate d/dt E [h(X(¢))] and hence to derive the differential equations for the moments.
This is very similar to what we did to derive the Fokker-Planck equation in Section 2.5.6 for
the one-dimensional case. Here, we are using the specific A(X(t)) in (5.6), which is specif-
ically chosen to extract the moments. For a system of nonlinear Ito stochastic differential

equations such as (5.5), the differential equation for a lower order moment may contain

'See [40] for an example of calculating analytical solutions of the Fokker-Planck equation. [40] uses the
Fokker-Planck equations to study the “cycle-slipping” behavior of simple phase-locked loops.
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terms of higher order moments. Thus, an infinite hierarchy of moment equations [13] is
obtained. In order to obtain a closed form of moment equations, some closure approxima-
tions have to be introduced to truncate the infinite hierarchy. In a practical problem, one
is usually interested only in some lower order moments. Closure approximations have been
proposed in the literature in solving stochastic problems in several disciplines such as turbu-
lence theory, control and vibratory systems [13]. One of the simplest closure approximations
that first comes to mind is the Gaussian closure scheme, according to which, higher order
moments are expressed in terms of the first and second order moments as if the components
of X are Gaussian stochastic processes. Recall that the distribution of a Gaussian random
variable is completely characterized with its mean and variance, i.e. the first and second
order moments. Variations on the basic Gaussian closure scheme have been proposed for
different kinds of problems in the literature. Closure schemes are designed using specific
characteristics of the problem in hand. Not all the closure approximations proposed in
the literature have sound mathematical basis, but they can be justified using the physical
properties of the specific problem they are being used for [13]. Using these closure schemes,
one arrives at systems of nonlinear ordinary differential equations for various moments. By
solving these equations numerically, one can calculate the time evolution of the moments
of the state X(¢).

We now point out some properties of the problem we are trying to solve. The
system we are dealing with is a nonlinear electronic circuit with electrical (e.g. shot and
thermal) noise sources. In general, the noise signals can be considered as small excitations
on the system. In this case, the time development of the system will almost be deterministic,
and the fluctuations due to noise will be small perturbations. This observation immediately
brings to mind the technique of small-signal analysis that is widely used in the analysis
and design of electronic circuits (and in many other problems), i.e. modeling the system
with a linear (but possibly time-varying) model for noise signals. In this case, if we assume
that the noise sources are Gaussian processes (satisfied by shot and thermal noise), then
the state X will be a vector of Gaussian processes, since it can be considered as the output
of a linear system with Gaussian processes as inputs. We know that a Gaussian process is
completely characterized by the first and second-order moments. Thus, we would need to

calculate the time evolution of only the mean

E [X (1) (5.7)
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and the autocorrelation function
E [X(t+7/2)X(t—7/2)"] (5.8)

for a complete probabilistic characterization.

Treating the noise sources as small deterministic excitations and deriving a small-
signal analysis scheme with such a consideration is not mathematically sound. The small
deterministic signals satisfy certain smoothness conditions. For small-signal analysis, they
are usually modeled with sinusoidal signals. On the other hand, noise signals in general
do not satisfy smoothness conditions (i.e. continuity and differentiability) and usually
exhibit erratic behavior. Thus, the derivation of a small-signal analysis scheme for noise
signals should be done using approximation techniques developed for stochastic processes
and systems. An approximate technique developed in the analysis of engineering nonlinear
dynamical systems subjected to random excitations is the perturbation method [13]. The
idea behind this method comes from the classical theory of ordinary differential equations.
In this method, a small parameter ¢ < 1 is usually introduced to the system, and the
solution is expressed in the form of an expansion with respect to the powers of ¢. In the
next section, we will apply such a stochastic perturbation scheme to (5.5). The result we
are going to obtain at the end of the next section can also be derived using deterministic
arguments through the use of first-order Taylor’s expansion of nonlinearities in (5.5) [3], but
some of the steps in this derivation are not mathematically sound (which has to do with

considering the “derivative” of a stochastic process using deterministic arguments).

5.3 Small Noise Expansion

We will apply a stochastic perturbation scheme [10] to the NLSDE formulation
given in (5.5) for a nonlinear circuit with noise sources. We introduce a parameter ¢ to
(5.5) as a multiplying factor in the last term that describes the noise sources. To keep (5.5)
invariant, we then need to modify the entries of B(X,¢), i.e. divide them by e. For the
perturbation approximation to be justified, we need to have ¢ < 1. If we set ¢ to a value
such that the “magnitude” of B(X,t)/e will be “comparable” to the “magnitude” of the
deterministic excitations (which are represented by the explicit ¢ dependence of I(x,t) in
(5.5)), then € <« 1 will indeed be satisfied for a practical nonlinear electronic circuit with

electrical noise sources. This is the assumption that will be used to justify the perturbation
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approximation. For the notational simplicity of the discussion below, we will keep the
entries of B(X,¢) unchanged, i.e. we will not divide them by ¢, but we will introduce € as

a multiplying factor for the noise term in (5.5):
(X, 1)dt + dQ(X) + B (X, 1)dW (1) = 0. (5.9)

If we substitute ¢ = 1 in (5.9), we obtain the original NLSDE formulation (5.5). If ¢ = 0,
then (5.5) reduces to (5.3) which describes the nonlinear circuit without the noise sources.
The solution for (5.9) will be written as an expansion with respect to the powers of e. Thus,

we assume that the solution X(¢) of (5.9) can be written as
X(t) = Xo(t) + Xy (t) + EXo(t) + ... (5.10)

where Xq(t), X1(t), X3(t), ... are all n-dimensional vectors of stochastic processes. We also

assume that we can expand I(x,t) as

I(x,t) = I(xo+ex;+e*xg+...,1) (5.11)
= Io(X07t)—|—€Il(X07X17t) —|—€212(X07X17X27t)—|— (512)
where Ip(xo,1), I1(X0, X1,t), ... are all vector-valued deterministic functions. Now, not to

complicate the notation, we assume that both x and I are scalars to demonstrate how one

can obtain the expansion in (5.12). For scalar x and I, we have [10]

I(z,t) = I(yco—l—Zeiwi,t) (5.13)
> 18‘7] $07) > ; ]

= — tay 5.14

Lo H o

which is obtained by using Taylor’s expansion. By expanding the above expression, we can

calculate the zeroth and first order coefficients, lo(zo,t) and Iy (2o, z1,t), in (5.12) to be

Io($07t) = I($07t) (515)
01 (xo,t
Il($07$17t) = %$1. (516)

(5.14) can be generalized to the multidimensional case when x and I are n-vectors. In this

case, we obtain

In(x0,t) = I(x0,t) (5.17)

01(xq,t
Il(X07X17t) = éXToo)Xl (518)
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for the zeroth and first order coefficients in (5.12). We define

G(x0,t) = %Xoo’t) (5.19)

which is an n X n matrix-valued function. Even though it is not easy to write explicitly the
full set of coefficients in general for the expansion (5.12), it is easy to see that we can write
for:>1

I (x0, X1, .. ., Xi, t) = G(x0,)x; + L’(Xm X1y .oy Xio1, 1) (5.20)

where I; is independent of x; [10]. Note that I, = 0. The validity of the above expression
can be easily seen by examining (5.14).

Similarly, we assume that Q(x) and B(x,?) can be expanded as

Q(x) = Qo(xo) + €Q(x0,x1) + € Qa (X0, X1, X2) + - . . (5.21)
B(X7 t) = B()(XO7 t) + 6B1(X07 X1, t) + 62B2(X07 X1y X2, t) +... (522)
where
Qo(Xo) = Q(Xo) (523)
Q1 (XO7 Xl) = 8 C;)(:O(O) X1 (524)
and
B()(XO7 t) = B(XO7 t) (525)

Recall that B(x,t) is an n x p matrix-valued function, unlike I(x,?) and Q(x) which are
vector-valued functions. We define the n x n matrix-valued function

d Q(xo)

dXO

C(x0) = (5.26)

which appears in the expansion of Q(x) exactly in the same way G(xg,t) appears in the

expansion of I(x,¢). Similar to (5.20), we can write for ¢ > 1

Q. (%0, X1, - - -, %;) = C(x0)%; + Qi (X0, X1, -+ -, Xi_1) (5.27)

where Q; is independent of x;. Note that Q; =0
We now substitute the expansions (5.10), (5.12), (5.21) and (5.22) along with
(5.20) and (5.27) in the system of stochastic differential equations (5.9). We equate the
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coeflicients of the like powers of €. We then obtain an infinite set of systems of stochastic

differential equations.

I(Xy, t)dt + dQ(Xg) = 0 (5.28)

is obtained by equating the terms that are independent of €. By equating the coefficients

of the ith powers of ¢, we obtain

[G(Xo, )X + 1;(Xo, Xy, ..., X1, 8)]dt

) (5.29)
+d[C(X)X; + Qi (Xo, Xy, ..., Xi21)] + Bis1 (Xo, Xy, ..., X1, 1)dW (L) = 0.

These equations can now be treated (i.e. solved) sequentially. (5.28) is exactly (5.3) which
describes the nonlinear circuit without the noise sources, and hence has a solution x; as

defined in Section 5.1. Thus, we have
Xo(t) = x4(1). (5.30)

The solution Xq(t) is deterministic provided that the initial conditions that are specified

for (5.28) are deterministic. If we set ¢ = 1 1in (5.29), we obtain
G (x5, ) X1 dt + d[C(x5)X1] + B(x5,£)dW(t) =0 (5.31)

where we used T; = 0, Q; = 0 and (5.30). Let us define

G(t) = G(xs(1),1)
C(t) = C(x,(1)) (5.32)
B(t) = B(xs(1),1)

and rewrite (5.31) as
G(t)X dt +d[C(t)X 1]+ B(t)dW(t) = 0. (5.33)

The solution of (5.31), Xy(¢), is the first-order term in the expansion (5.10) and is called
a multivariate time-varying Ornstein- Uhlenbeck process. For our purposes, the first-order
term X;(¢) is quite adequate to characterize the solution of (5.9), and it amounts to a

linearization of the original system (5.9) about the deterministic solution. We approximate

the solution X(¢) of (5.9) with

X (1) & Xo(t) + Xy (1) (5.34)
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To solve for X(t), we first calculate Xo(t) = x5(¢) as the solution of (5.3), which is deter-
ministic. Then, we use the calculated x,(¢) to calculate G(t), C(t) and B(¢) (which are all
deterministic) using (5.32), (5.19) and (5.26). X;(¢) is obtained as the solution of the sys-
tem of linear stochastic differential equations (5.33) with time-varying coefficient matrices.
Calculating higher-order terms in (5.10) is more complicated because of the more complex
form of (5.29) for ¢ > 2, but, in essence, they are treated in exactly the same way. In order
to solve the equation for X;(t), we assume we know all the X;(¢) for j < i so that I, Q
and B;_; become known stochastic functions of ¢ after substituting these solutions. Then

(5.29) becomes
[G(1)X; + L (1)]dt + d[CH)X; + Q; ()] + Bi_1 () dW (t) = 0 (5.35)

where G (t) and C(t) are deterministic, and I;(¢), Q;(t) and B;_; (¢) are stochastic functions

of time.

5.4 Derivation of a Linear Time Varying SDE Model for

Noise Analysis

We now concentrate on (5.33) which we repeat below with the substitution Xy (¢) =
X, (t), to denote the stochastic noise component in the expansion (5.34) for the total solu-
tion,

G()X,, dt + d[C(1)X,] + B{t)dW (1) = 0. (5.36)

The time-varying matrix G(t) represents the linear and nonlinear resistive components in
the circuit linearized around the deterministic solution x,(¢), and the time-varying matrix
C(t) represents the linear and nonlinear reactive components (i.e. capacitors and inductors)
linearized around the deterministic solution x,(¢). We expand the second term above to

obtain

G()X,, dt + [d(;—t(t)]xn dt + C(t) dX,, + Bl)dW (1) = 0. (5.37)

Notice that we used a classical calculus differentiation rule above. In this case, the Ito
stochastic differentiation rule is same as the classical one, because the argument is merely
linear in X,,. The time-varying matrix C(t) = d/dt C(t) in (5.37) represents the time-

derivative of the time-varying capacitors in the linearized circuit. With reorganization,
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(5.37) becomes
A1) X, dt + C(t) dX, + B(t)dW (t) = 0 (5.38)

where

A(t) = G(t) + C(t). (5.39)

The system of stochastic differential equations in (5.38) is not in the standard

state equations form

dY = B(t) Y + F(t) dW (1) (5.40)

because we obtained it from an MNA formulation of the circuit equations. C(¢) is not a
full-rank matrix in general, it may have zero rows and columns. For instance, if a circuit
variable is a node voltage, and if this node does not have any capacitors connected to it in
the circuit, then all of the entries in the column of C(¢) corresponding to this circuit variable
will be zero for all t. Also, the node equation (KCL) corresponding to this node will not
contain any time-derivatives, hence the row of C(¢) corresponding to this node equation
will also be zero for all t. Thus, some of the rows and columns of C(t) are structurally
zero, independent of t. Moreover, the number of zero rows is equal to the number of zero
columns. If we reorder the variables in X,, in such a way that the zero columns of C(t) are
grouped at the right-hand side of the matrix, and reorder the equations in such a way that

the zero rows of C(t) are grouped in the lower part of the matrix, (5.38) becomes

A11 (t) Alg(t)
A21 (t) Agg(t)

Cu(t) 0
0 0

anl
dX,

B, (t)
B ()

nl

Xn2

dt + dW(t) =0

(5.41)
where Aj;(t) and Cq1(t) are m x m, Aga(t) is k X k, A1a(t) is m X k , Agi(t) is k X m,
Bi(t) is m x p, Ba(t) is k x p, X1 is an m-dimensional vector, X, is a k-dimensional
vector, m is the number of nonzero columns (rows) in C'(t) and k is the number of zero
columns (rows). Naturally, n = m+k. If we expand (5.41), we obtain two sets of equations,

consisting of m and k equations:
Aq1(t) Xpq dt + Ar2(t) Xpg dt + Cri(t) dX 1 + B1(t) dW(t) = 0, (5.42)

Ay () Xy dt + Aga(t) Xy dt + Ba(t) dW(t) = 0. (5.43)

We solve for X, dt in (5.43) to get

Xopg dt = —[Aga(t) ™' Agi(t) Xy dt — [Aga ()7 By (t) dW (). (5.44)
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The above step assumes that Agq(t) (k X k) is nonsingular. Nonsingularity of Ay, (¢) means
that the variables in X, which appear without time-derivatives in the equations can be
expressed in terms of the variables which appear with derivatives. This condition is always
satisfied if the variable is a node voltage. On the other hand, this condition is not always
satisfied for voltage source currents, which always appear without derivatives in the equa-
tions. The only equations a voltage source current can appear in, are the KCL equations
corresponding to the nodes the voltage source is connected to. If capacitors are connected
to these nodes, then the only equations containing the voltage source current have deriva-
tives in them, hence they can not be used to express the voltage source current in terms
of the other variables, which means that Aj3(¢) is singular. Note that, Aj3(¢) becomes
singular only if both nodes of the voltage source are connected to capacitors, or one of them
is connected to a capacitor and the other is ground. This problem can be taken care of
by eliminating the voltage source current variable and substituting the branch equation for
this voltage source in the circuit equations in (5.38). At this point, we will assume that

Ay, (t) is nonsingular. Define

Di(t) = —[Axn()"']Ayul(t) (5.45)
Dy(t) = —[Axn(t)”']Ba(t).
Next, we use (5.44) and (5.45) in (5.42) to get
Aqq(t) Xpg dt + Aqa(t) Dy(t) X, dt (5.46)

+C11(t) dX1 + By (1) AW () + Aga(t) Do (t) AW (1) = 0

and hence

Cii (1) dXpy = —[A11 (1) + A1z (t) Dy ()] Xt dt — [B1 (1) + Aya(t) Da(t)] dW(L).  (5.47)

Defining
]?(t) = —(An(t)+ Ap(t) Di(t)) (5.45)
F(t) = —(Bi(t)+ A1) D2(1))
and using (5.48) in (5.47) results in
Cyi(t) dX,y = E(t) X, dt + F(t) dW (1). (5.49)

Now, we multiply both sides of (5.49) by the inverse of Cy;(¢) to obtain

dX, = E(t) X,y dt + F(t) dW (1) (5.50)
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where E(t) = [Cy1(1)]™* E(t) and F(t) = [Cy1(t)]"! F(t). Ci1(t) is nonsingular provided
that every node in the circuit with a connection to a capacitor has a capacitive path to
ground or an independent voltage source node. We assume that this condition is satisfied
by the circuit, hence Cy;(f) is nonsingular.

(5.50) is a system of linear stochastic differential equations in standard form. The
right-hand-side in (5.50) is linear in X,,;, and the coefficient matrices are independent of
Xp1. Just as with linear ordinary differential equations, a much more complete theory can
be developed for linear stochastic differential equations [9]. As with ordinary differential
equations, the general solution of a linear stochastic differential equation can be found
explicitly. The method of solution also involves an integrating factor or, equivalently, a
fundamental solution of an associated homogeneous differential equation. The solution of
(5.50) is given by

X (t) = ®(t,to) X1 (to) + tt ®(t,7)F(r) dW (1) (5.51)
0

where ®(t, 7) is the state-transition matrix for the homogeneous differential equation
y=E()y (5.5

and hence can be determined as a function of ¢ as the solution of

d®(t,7)

o =E@l) ®(t,7) , ®(r,7)=1,. (5.53)

(5.51) involves a stochastic (Ito) integral. If the deterministic matrix functions E(¢) and
F(t) are bounded in the time interval of interest, there exists a unique solution for every
initial value vector X,1(to) [9]. The initial value vector X,1(#p) can either be a nonrandom
constant vector or a vector of possibly correlated random variables. If the initial value
X1 (to) is either a nonrandom constant vector or a vector of possibly correlated Gaussian
random variables, then the solution X,;(t) for ¢ > ty of (5.50) is a vector of possibly
nonstationary Gaussian processes [9]. This is a direct consequence of the fact that (5.50)
represents a linear system. At this point, we assume that the initial condition X, (#o) is a

vector of zero-mean Gaussian random variables.
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5.5 Derivation of Linear Time Varying ODEs for the Au-

tocorrelation Matrix
We recall that the solution X(¢) of (5.9) is approximated with

X(t) =~ Xo(t)+ eXq(t) (5.54)
~ X(t) 4 X, (8). (5.55)

With € = 1, (5.9) reduces to the original NLSDE (5.5) that describes a nonlinear circuit

with the noise sources. Thus, we substitute ¢ = 1 in (5.55) to obtain
X(t) = x5(t) + X, (). (5.56)
We now would like to calculate the time evolution of the mean
E [X(t)] (5.57)
and the autocorrelation function
E [X(t+7/2)X(t—7/2)"] (5.58)

of X(t) for a complete second-order probabilistic characterization.

By taking expectations of both sides of (5.51), we find out that
E[X,1(t)]=0 (5.59)

because E [X,1(tp)] = 0 as assumed, and E [W(¢)] = 0 from the properties of the Wiener
process. From (5.44) and (5.59), we conclude

E [X,2(1)] = 0. (5.60)
Then
E [X,(t)] = E i:g; ” = 0. (5.61)
follows from (5.59) and (5.60). Thus,
E [X(#)] = x(1) (5.62)

where x,(t) is the solution of (5.3).
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Using (5.61), the autocorrelation function of X () is given by

E [X(t+7/2)X(t—7/2)T] = x,(t + 7/2) x,(t = 7/2) + E [X,(t +7/2) X, (t = 7/2)7]
(5.63)
in terms of x,(¢) and the autocorrelation function of X,,(¢). So, we would like to calculate

E {Xn(t +7/2)X,.(t - 7'/2)T}7 which is given by

X, (L4 7/2) ]T
X ot + 7/2) 56
E [Xui(t+7/2) Xt —7/2)7] B [Xu(t+7/2) ng(t—r/z)T}]
E [Xuo(t+7/2) Xt = 7/2)7] B [Xpalt +7/2)Xa(t = 7/2)7] |

Xt —71/2)

T —-r/2)7| =
E [Xn(t—l- /2)X,(t = 7/2) } E Xa(t — 7/2)

Recall that the vector X,,2 represents the noise component of the node voltages for the
nodes which do not have a capacitive path to ground. For instance, the node between two
resistors with no other connections is such a node. Since we are using idealized “white”
noise models for thermal and shot noise, the variance of the node voltage for a node without
a capacitive path the ground will be oo! One way of intuitively seeing this is considering
that the transfer functions from noise source currents in the circuit to a node without a
capacitive path to ground will be “high-pass” functions of frequency, and hence the spectral
density of this node voltage will not decay to zero as f—o0, resulting in infinite noise power.
We rewrite (5.44) in the following form
dW (1)
dt

Xna(t) = —[Ag2(t) '] Aau (1) Xy (t) — [Aga(t) '] Ba(t) (5.65)

Thus, X,,2(t) is a summation of two terms, and the second term is a modulated vector of
white Gaussian processes (i.e. the formal derivative of the Wiener process). Hence, in gen-
eral, all of the components of X,,2(¢) have infinite variance, i.e. infinite power. So, it does not
make sense to calculate E {an(t +7/2)X,2(t — T/Q)T} , E {an (t+7/2)Xn(t - T/Q)T} or
E {an (t+7/2)X2(t — T/Q)T} in (5.64). We can only calculate the first diagonal block
n (5.64), i.e. E {an(t +7/2) X (t — 7'/2)T}7 the autocorrelation matrix of X,,;. Recall
that X,; represents the noise component of the node voltages for the nodes which have a
capacitive path to ground and the noise component of the inductor currents.

We now derive a system of ordinary differential equations for the time-varying

variance-covariance matrix of X,1(¢) defined as

K(t) = E [Xu ()X (0], (5.66)
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We start with calculating the following differential using lto’s formula (see Section 2.5.4)
d(Xu X)) = (X1 + dX) (XL, + dXT)) - Xu XD (5.67)
From (5.67), it follows that

d(Xu X)) = X dXJ) 4 (dX) X+ dX,y dXT (5.68)
= Xu[XLE®T dt+ (dW(t)T F(1)T] (5.69)
HE(t) X,y dt + F(t) dW ()] XL,
+[E(t) Xy dt + F(t) dW ()] [XL, E()T dt + (dW (1))T F(t)T]
where we used (5.50). We expand (5.69) and neglect higher order terms according to (2.274),
and obtain
d(XX]) = XX E()T dt + X (dW ()T F(1)T+ (5.70)
E(t) X XE, dt + F(t) (dW (1)) X+
F(t) dW(t) (dW ()T F(t)T.
Then, we use (2.273) to substitute (dW (t))dW ()T = 1,.dt, and take the expectations of
both sides of (5.70) to obtain

E[d(XuX1)] = E[XuXL| BT di+E(0) E XX | di+ FO) F@)Tdt . (5.71)
where we used the fact that X,,;(¢) and dW (t) are uncorrelated, i.e.

E [(dW(1)Xu(®)T| = o, (5.72)

E [Xa(h@w@)’| = o (5.73)

This is merely a statement of the fact that the statistical properties of the white noise

sources in the system at time ¢ are independent of the past behavior of the system up to

time ¢. Next, we substitute (5.66) in (5.71) and rewrite it in differential equation form:

dK(1)
dt

=Et) K@)+ KO EGHT +F@t) F)T. (5.74)

(5.74) is a system of ordinary differential equations for the m x m time-varying variance-
covariance matrix of X,,;(¢) defined by (5.66). Being a variance-covariance matrix, K(¢) is
a symmetric and positive semi-definite matrix for all £. Assuming that (5.74) satisfies the
Lipschitz and boundedness conditions in the time interval of interest, a unique symmetric

and positive semi-definite solution exists. In view of symmetry of K(¢), (5.74) represents a
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system of m(m 4 1)/2 linear ordinary differential equations with time-varying coefficients.
(5.74) can be solved numerically to calculate K(¢) in the time interval of interest, given
appropriate initial conditions. Choice of initial conditions and the numerical integration of
(5.74) will be discussed in Section 5.7.

K(¢) is the autocorrelation matrix of X, i.e. E {an(t—l— 7/2) X1 (t — T/Q)T}
evaluated at 7 = 0. For a complete second-order probabilistic characterization of X,1, we
would like to be able to calculate E {an(t—l— 7/2) X1 (t — T/Q)T} for 7 # 0 as well. We

now derive a system of ordinary differential equations for
K(trefv t) =E {an (tref)an (t)T} (575)

where ¢,.; is a fixed reference time point such that ¢ > ¢,.;. We start with calculating the

following differential
(X1 (trep) Xt (1)) = Xt (re ) (@K (1)), (5.76)
From (5.76), it follows that

A X (tre) X (") = Xualtres) X ()T E(@)T dt + (@W (@) F(1)']  (5.77)
= Xuiltres) X (T E@)T dt (5.78)
Xt (treg) (AW ()T F(B)T.

where we used (5.50). Then, we take the expectations of both sides of (5.78) to obtain
E [d(Xn1(tre) Xt (07)] = B [Xut(trey) Xon (07| BO)T dt (5.79)

where we used the fact that X, (¢,cf) and dW (t) are uncorrelated. Next, we substitute
(5.75) in (5.79) and rewrite it in differential equation form:

O K (trer t
IRt _ i1,y 1y BO). (5.50)
(5.80) is a system of ordinary differential equations for K(¢,.f,t) defined by (5.75). Inte-
grating (5.80) for ¢ > t,.; at various values of ¢,.7, one can obtain a number of sections of
the correlation matrix K(¢,cr,t). For these calculations, the initial condition for (5.80) is
chosen as

K(trefv t) =E {an (tref)an (tref)T} (581)

|t:tref
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which is obtained from the solution of (5.74). Note that K(¢,.f, ¢) is not a symmetric matrix.
The solution of (5.80) gives us K(¢1,?2) for t3 > t1. To calculate K(ty,¢3) for t3 < t1, one
can use the simple formula

K(ty,ts) = K(ta, 1) 7. (5.82)

By solving the system of ordinary differential equations given by (5.74) and (5.80),
one can calculate E {an(t +7/2)X,a(t - 7'/2)T}7 i.e. the autocorrelation function of X1,
for a range of ¢ and 7 that is of interest. Together with (5.59), we now have a method to
calculate the complete second-order probabilistic characteristics of X,,; that represents the
noise component of the node voltages for the nodes which have a capacitive path to ground,
and the noise component of the inductor currents.

The derivations of (5.74) and (5.80) were based on (5.50), the system of linear
stochastic differential equations in standard form we derived in Section 5.4. To obtain
(5.50), we multiplied both sides of (5.49) by the inverse of Cy1(f).% Recall that Cy1(¢) is the
MNA matrix of the reactive elements, i.e. the capacitances and inductances in the circuit.
For some circuits with widely varying capacitor values, even though Cyy(¢) is nonsingular,
the numerical calculation of the coefficient matrices E(t) and F(¢) in (5.50), which requires
an LU decomposition of Cyy(t), can become ill-conditioned. This was not an issue for
the nonlinear circuits we analyzed. For broader applicability, we provide derivations of
alternative systems of ordinary differential equations in Section 5.8. The equations that
will be derived in Section 5.8 are based on the formulation (5.49) instead of (5.50), and

hence these alternative derivations result in more numerically stable implementations.

5.6 Solution of the Linear Time Varying ODEs for the Au-

tocorrelation Matrix

The analytical solution of (5.74) has the form
t
K(t) = ®(t,0) Ko ®(£,0)" +/ ®(t,7)F(NF(r) @, 7)" dr (5.83)
0

where ®(¢, 1) is the state transition matrix for the system of linear time-varying homoge-
neous differential equations
vy =E(t)y. (5.84)

?In an actual numerical calculation, the inverse of Ci1(t) is not explicitly calculated. Instead, the LU
decomposition of Cii(¢) is followed by a number of forward elimination and backward solution steps to
effectively multiply both sides of (5.49) by the inverse of Ci1(¢).
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Ko in (5.83) denotes the initial condition K(0) = Kq. (5.83) is similar to (2.164), and it
can be easily verified by substituting it into (5.74) [41].
The analytical solution of (5.80) has the form

K(tref 1) = Kltres,tref) D(ttre)” (5.85)

where the initial condition K(¢,.f,¢.cf) is obtained by solving (5.74).

Obviously, we can not, in general, obtain analytical expressions for the state tran-
sition matrix @ (¢, 7) and hence for the solutions given in (5.83) and (5.85). We then revert
to numerical methods to compute the solutions of (5.74) and (5.80), which we discuss in
the next section along with some basic properties of the system of differential equations in

(5.74) that is of interest to us.

5.7 Numerical Computation of the Autocorrelation Matrix

In this section, we describe how we numerically solve the system of ordinary differ-
ential equations in (5.74) and (5.80) to calculate E {an(t +7/2)X 1 (t — 7'/2)T}7 i.e. the

autocorrelation function of X, for a range of ¢t and 7 that is of interest.

5.7.1 Computation of the coefficient matrices

To be able to solve (5.74), which we repeat below for convenience,

dK(t)
dt

=EQ) KO +KOEGHT +F@)F@)T (5.86)

we first need to calculate the coefficient matrices E(¢) and F(¢) in the time interval of interest
[0,77. The time-varying coefficient matrices E(t) and F(¢) are not available analytically. To
calculate E(¢) and F(¢) numerically, we first need to solve the nonlinear circuit equations

without noise, i.e.

I(x,t)+ %Q(x) =0, (5.87)

to calculate x4(¢) in the time interval of interest. I(x,t¢) and Q(x) in (5.87) are usually
available as analytical expressions in the models of electronic components and semiconductor

devices. The numerical calculation of x4(¢) is already implemented in the circuit simulator
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SPICE, and is called the transient analysis. The numerical methods for solving (5.87)

subdivide the time interval of interest [0, 7] into a finite set of distinct points:
tOIO7 tRI/‘T7 trItr_1—|—h7» T‘IL...,R (588)

where h, are the time steps. At each time point ¢,, the numerical methods compute an
“approximation” x,[r] to the exact solution x,(t,) [39].

Once we know x;(¢,) at a specific time point ¢,, we can now calculate G(¢,), C(t,)
and B(¢,) (all defined in Section 5.3) using (5.32), (5.19) and (5.26). The matrices G(¢,) and
C(t,) are basically the Jacobians of the vector functions I(x, ¢) and Q(x) evaluated at x4(¢,),
respectively. Since I(x,t) and Q(x) are available as analytical expressions, the Jacobians
are also calculated analytically apriori (or with automatic differentiation methods), and
they are included in the device models. B(t,) is basically B(x(t),t) (which contains the
modulating functions for the noise sources that are available as analytical expressions as
described in Chapter 3) evaluated at x5(¢,). Then, E(t,) and F(t,) are calculated from
G(t,), C(t.) and B(t,) by performing the straightforward matrix operations described by
the equations (5.36)-(5.50) in Section 5.4. All of these operations are performed with sparse
matrix data structures. The numerical operations actually implemented somewhat differ
from what has been described in Section 5.4 because of efficiency reasons.

The calculation of the matrix A (t) = G(t)+C(t) in (5.38) requires the calculation
of the time derivative C(t). We compute C(t) using the same time discretization formulas
that were used by the transient analysis routines to discretize (5.87) in time to calculate
x5(t). For example, if Backward Euler is used to discretize (5.87), then

C(t,) — C(t,_1)

C(t,) = "

(5.89)

is used to calculate the time derivative of C(¢,) in calculating A(¢,) at the time point
t.. Alternatively, one can calculate the matrix C(t) by “multiplying” the Hessian of Q(x)
evaluated at x,(t) with the vector x4(¢), since C(t) is the Jacobian of Q(x) evaluated at
X5(t). In this case, we again use the same time discretization formulas that were used by the
transient analysis routines to discretize (5.87) to calculate %(¢). With this second method,
one needs to calculate the second-order derivatives of Q(x), i.e. the Hessian, which has to
be done apriori and the analytical expressions for the second-order derivatives have to be

placed in the device models.
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5.7.2 Numerical solution of the differential Lyapunov matrix equation

We now concentrate on the numerical integration of (5.86). In view of the symme-
try of K(¢) (which is a variance-covariance matrix), (5.86) represents a system of m(m+1)/2
linear ordinary differential equations with time-varying coefficients. The “matrix” differen-
tial equation (5.86) is in a special form. Matrix differential equations of this form appear in
many engineering and mathematics problems in control theory, system theory, optimization,
power systems, signal processing, etc. [41], and are referred to as the differential Lyapunov
matriz equation. It is named after the Russian mathematician Alexander Mikhailovitch
Lyapunov, who in 1892, introduced his famous stability theory for linear and nonlinear
systems. In Lyapunov’s stability theory for continuous-time systems, equations of the form
(5.86) arise in the stability analysis of linear time-varying systems. The reader is referred
to [41] for a discussion of problems where Lyapunov-like matrix equations appear. Given
an initial condition, the time-varying matrix differential equation (5.86) has a unique so-
lution under the condition that E(¢) and F(¢) are continuous and bounded time functions.
This condition is satisfied in our case. The m x m matrix F(¢t) F(t)T in (5.86) is positive
semidefinite for all ¢ (see Section 2.4.4). If the initial condition K(0) = K is also positive
semidefinite, then the solution of (5.86), K(t), is positive semidefinite for ¢ > 0. We recall
that K(¢) is the time-varying variance-covariance matrix for the vector of stochastic pro-
cesses X,1(t). As we stated in Section 5.4, we assume that X1 (0) is a vector of zero-mean
Gaussian random variables. Then, Ko = E {an(O)an(O)T} is positive semidefinite, and
hence K(t) is positive semidefinite for ¢ > 0 as required since it is a variance-covariance
matrix.

For the numerical solution of (5.86), we discretize it in time using a suitable scheme.
In general, one can use any linear multi-step method, or a Runge-Kutta method. For cir-
cuit simulation problems, implicit linear multi-step methods, and especially the trapezoidal
method and the backward differentiation formula were found to be most suitable [39]. The
trapezoidal method and the backward differentiation formula are almost exclusively used in
circuit simulators in the numerical solution of (5.87). We use the trapezoidal method and
the backward differentiation formula to discretize (5.86). Here, we will discuss the appli-
cation of only backward Euler (backward differentiation formula of order 1). If backward

Euler is applied to (5.86), we obtain
K(t,) — K(t,—1)

- =E(t,) K(t,) + K(t,) E(t,)" + F(t,) F(t,)". (5.90)
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One can put (5.90) in the below form by rearranging the terms

1. 1. Kt -
E(,) — 2K () + K@) [B(t) - 2207+ B(t) BT+ 2= o0 (501
2 h, 2 h, h,
Let us define
I,
P, = E(,)- 92
) - 52 (5.92)
Kt -
Q = F(t)F)" + % (5.93)
With these definitions, (5.91) is rewritten as
P, K(t,)+ K(t,) Pl +Q, = 0. (5.94)

K(t) at time point ¢, is calculated by solving the system of linear equations in (5.94). In view
of symmetry of K(¢,), (5.94) represents a system of m(m+ 1)/2 linear algebraic equations.
The “matrix” equation (5.94) is in a special form, and algebraic matrix equations in this
form are referred to as the continuous-time algebraic Lyapunov matriz equation in contrast
with the differential Lyapunov matrix equation. Let Ay, Ag, ..., A, be the eigenvalues of the
m x m matrix P, in (5.94). It can be shown that (5.94) has a unique symmetric solution
if and only if A; + A7 #O0forall 1 <i<mand 1<j<m [41]. This condition is obviously
satisfied if every A; has a negative real part. Moreover, if every A; has a negative real part
(i.e. P, is “stable”), and if Q, is positive semidefinite, then K(¢,) is also positive semidefinite
[42]. Since K(¢,) is a variance-covariance matrix, it has to be positive semidefinite. During
numerical integration, we have to make sure that this condition is satisfied at every time
point, i.e. K(¢,) at every time point is a valid variance-covariance matrix. We assume that
K(t,—-1) calculated for the previous time point is a valid variance-covariance matrix, hence
it is positive semidefinite. Since F(t,)F(t,)7 is always positive semidefinite, then Q, is also
positive semidefinite, because it is the summation of two positive semidefinite matrices.
E(t,) in (5.91) might have eigenvalues which have nonnegative real parts. This might be
the case if the nonlinear circuit is an autonomous one, i.e. an oscillator. In nonautonomous
circuits, there might be positive feedback loops in the circuit that become active for some
period of time, e.g. during regenerative switchings. In order to guarantee that K(¢,) to
be calculated is a valid variance-covariance matrix, all the eigenvalues of P, should have
negative real parts. This can be secured by choosing a small enough time step, because the

eigenvalues of P, are given by
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in terms of the eigenvalues y; of E(¢,). Choosing “smaller” time steps during time intervals
where E(t) have eigenvalues with nonnegative real parts also makes sense from an accuracy
point of view, because E(t) having eigenvalues with nonnegative real parts suggests that
the nonlinear circuit is in a fast “switching” positive feedback mode, which in turn means
that the noise variances for the node voltages are also changing fast.

The numerical integration of (5.86) can be performed concurrently with the nu-
merical solution of (5.87). Since the solution of (5.87) is needed to calculate the coefficient
matrices for (5.86), transient analysis is “forced” to solve for the time points that are needed
during the numerical integration of (5.86). Ideally, the numerical integration of (5.87), i.e.
transient analysis, and the numerical integration of (5.86), i.e. noise analysis, have separate
automatic time step control mechanisms. There is, of course, an obvious correlation be-
tween the choice of time steps for (5.87) and (5.86), because the need to take smaller time
steps for (5.87) suggests that smaller time steps are also necessary for (5.86).

We are solving (5.86) as an initial value problem, hence we need an initial condition
Ko = K(0). We have to “choose” a positive semidefinite K¢ as the initial condition. We

set Ko to the solution of the following Lyapunov matrix equation
E(0) Ko 4+ Ko E(0)T + F(0) F(0)T =0 (5.96)

whenever the solution is positive semidefinite. This will be the case if all of the eigenvalues
of E(0) have negative real parts. If the solution of (5.96) is not positive semidefinite, we
choose the initial condition as

Ky=0 (5.97)
which is, for instance, the case for oscillator circuits. In Section 5.9, we will discuss the
motivation behind choosing the initial condition as the solution of (5.96).

If any implicit linear multi-step method is applied to (5.86), we obtain a linear
system of equations exactly in the form of (5.94). (P, and Q, will be given by different
expressions for different implicit linear multi-step methods, but the resulting equation will
always be in the form of (5.94).) We need to solve (5.94) at every time point. We discuss
the numerical solution of (5.94) in the next section.

Above, we have only considered the numerical solution of (5.86). To be able to
calculate the complete autocorrelation matrix of X,,;1, we also need to solve (5.80), which

we repeat below

O K(tyes, )

o = K(tres, t) E(t)T, (5.98)
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The initial condition for (5.98), K(¢,cf,t ¢7), is obtained by solving (5.86) from ¢ = 0 to
t = t,es. If backward Euler is applied to (5.98), we obtain

K(trefv tr) - K(trefv tr—l)

- =K(tes,t,) Et,)T. (5.99)

One can put (5.99) in the below form by rearranging the terms

L, K(tref,tr—1)"
B(t) — 2K (1g.1,)7 = = Klreb ) (5.100)

Then, one can solve (5.100) at a time point ¢, for the columns of K(t,.s,¢,)T with one LU
decomposition of E(t,) — Ih—’: and m forward elimination and backward substitution steps.

In Section 5.8, we derive more numerically stable alternatives to (5.86) and (5.98)
for circuits which have widely varying capacitor values that might result in numerical ill-
conditioning when calculating the coefficient matrices E(t) and F(t). In Section 5.8, we
also discuss the numerical solution of these more numerically stable alternatives to (5.86)

and (5.98).

5.7.3 Numerical solution of the algebraic Lyapunov matrix equation

The first approach that comes to mind to solve (5.94) is to rewrite it as a sparse
linear matrix-vector system in standard form and then use sparse matrix techniques for

solving such systems. With this method, the system of equations (5.94) is converted into
Ay =-b (5.101)

where

A = L,2P. +P. @1,
y = [Ki,Kotyoo o, Ko, Koy oo, K] © (5.102)
b [Q11,Qa1s -+, Q1 Qr2, -+ o5 Q] -

K;; and Q;; in (5.102) denote the ¢jth entry of K(¢,) and Q, respectively, and @ denotes

the Kronecker matrix product defined as

aHB algB alnB

as B as9 B ce. Qop B

A®B= (5.103)

am1B a,2B ... a,,B
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for an m x n matrix A and a matrix B. A in (5.101) is a “very” sparse matrix. Even if the
matrix P, is full, A contains many entries which are structurally zero due to the special
form of (5.94). Moreover, being an MNA circuit matrix, P, is also sparse which contributes
to the sparsity of A.

We used both a general-purpose direct method (i.e. sparse Gaussian elimination)
sparse matrix solver, and an iterative sparse linear solver [43] (based on conjugate gradients
squared) to solve the linear equation system in (5.101). The iterative solver performed
significantly better than the direct solver, especially for equations obtained from larger
circuits. Experiments with several circuits have shown that CPU time can be further
reduced by using a parallel iterative linear solver (running on a CM-5) [44]. Parallel speed-
ups with up to 50% efficiency were obtained with this parallel solver.

In the control theory literature, apart from the brute force method, several meth-
ods were proposed for the numerical solution of the algebraic Lyapunov matrix equation
[41]. The Bartels-Stewart algorithm [45] was shown to be accurate and reliable. In this
method, first P, in (5.94) is reduced to upper Hessenberg form by means of Householder
transformations, and then the QR-algorithm (not to be confused with the QR-factorization)

is applied to the Hessenberg form to calculate the real Schur decomposition
s=u’p,U (5.104)

of the matrix P,., where the real Schur form S is upper quasi-triangular (block upper
triangular with 1 x 1 and 2 x 2 blocks on the diagonal, the eigenvalues of a 2 x 2 block
being a complex conjugate pair), and U is orthonormal. The transformation matrices are
accumulated at each step to form U [45]. Since reduction to Schur form is accomplished
with orthogonal transformations, this process is numerically stable in contrast with, for
instance, the computation of the Jordan form. Computation of the real Schur form of the

matrix P, requires O(m?) flops [45]. If we now set

K = UTK(@)U (5.105)

Q = ufqu (5.106)
then (5.94) becomes

SK+KsT=-qQ. (5.107)

Solution of (5.107) for K can readily be accomplished by a process of forward substitution

[45], because S is an upper quasi-triangular matrix. Once (5.107) is solved for K, then
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K(t,) can be computed using
K(t,) = UKUT (5.108)

since U is orthonormal. The substitution phase also requires O(m?) flops [45]. In our ex-
perience, the Bartels-Stewart algorithm was computationally more efficient (for our specific
problem) than the brute force methods described above. Moreover it requires less storage.
It has very good numerical stability properties since it uses orthogonal transformations [46].
A variant of the Bartels-Stewart algorithm was proposed in [42] that allows the Cholesky
factor of K(¢,) in (5.94) to be computed, without first computing K(¢,), when all of the
eigenvalues of P, have negative real parts and Q, is positive semidefinite. Unfortunately,
the Bartels-Stewart algorithm can not exploit the sparsity of the matrix P, [47].

The numerical integration of (5.86) (with the Bartels-Stewart algorithm used to
solve the algebraic Lyapunov matrix equation (5.94)) requires O(m?>) flops at every time
point compared with the roughly O(m?!-5) flops required by the numerical solution of (5.87).
Hence, the CPU time usage will be largely dominated by the solution of (5.86). The
computational cost would be high for “large” circuits, but this noise analysis method is
intended for evaluating the noise performances of small (i.e. with several hundred state
variables) subblocks (e.g. analog blocks such as mixers and oscillators) of a mixed-signal
system design. Several iterative techniques have been proposed for the solution of the
algebraic Lyapunov matrix equation (5.94) arising in some specific problems where the
matrix P, is large and sparse [47, 41]. The Krylov subspace based methods proposed in
[48] and [49] seem to be promising. A matrix-implicit (without explicitly forming the matrix
P, in (5.94)) Krylov subspace based method with a specific preconditioner tuned for our
problem to solve (5.94) seems to be a promising avenue to explore in an attempt to reduce

the computational cost of the numerical solution of (5.86).

5.8 Alternative ODEs for the Autocorrelation Matrix *

4

We will use the formulation (5.49) for the derivations® in this section, which is

reproduced here for convenience:

Cyi(t) dX,y = E(t) X, dt + F(t) dW (1). (5.109)

®This section can be omitted without loss of continuity.
4Please see the discussion at the end of Section 5.5 for the motivation to derive these alternative ODEs
for the autocorrelation matrix.
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For notational simplicity, we now rewrite (5.110) with a change of symbols:

C(t) dX,1 = B(t) X1 dt + F(t) dW (1), (5.110)

5.8.1 Alternative ODE for the variance-covariance matrix

We derive a system of ordinary differential equations for the time-varying variance-

covariance matrix of X, (¢) defined as
K(t) = E [Xu1 ()X ()], (5.111)
We start with calculating the following differential using lto’s formula (see Section 2.5.4)
COAXuXINCHT = COXn + dXo) (XT, + dXTy) - XuXLCWT.  (5.112)
From (5.112), it follows that
CH[AXuXp)ICH)" =  C1)[Xn dX]) + dX X, (5.113)

+dX,y dXT]C ()T
—  CHXu[XLENT dt + (@WE)TFBOT]  (5.114)
+[E() an dt + F(t) dW (1)) X, C(t)"
HE() X dt + F(t) dW ()]
(X5 E@)T dt+ (dW ()T F(1)T)

where we used (5.110). We expand (5.114) and neglect higher order terms according to
(2.274), and obtain

Cd(XuX3,)CN)! = CHXuX] BT dt+ CO)Xnu(dW @) F()T+  (5.115)
B(t) Xou X35 C()T dt + F (1) (dW (1)) X7, C(1) T+
F(t) dW(t) (dW(1))T F(t)".

Then, we use (2.273) and substitute (dW (¢))dW ()T = 1,,dt and take the expectations of
both sides of (5.115) to obtain
C(HE [dXuXL)|Ct)” = CE [XuXL] E@®)T dt (5.116)
+E(1) E [Xu XD | dr
+Ft) F)T dt
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where we used the fact that X1 (¢) and dW (¢) are uncorrelated. Next, we substitute (5.111)
in (5.116) and rewrite it in differential equation form:

dK(1)
dt

C(t) cH =En K@) ct)l +ct) K EWT +F(t) Ft)T. (5.117)

(5.117), the alternative to (5.74), is a system of ordinary differential equations for the m xm

time-varying variance-covariance matrix of X, (¢) defined by (5.111).

5.8.2 Alternative ODE for the correlation matrix

We derive a system of ordinary differential equations for
K(trefv t) =E {an (tref)an (t)T} (5118)

where ¢,.; is a fixed reference time point such that ¢ > ¢,.;. We start with calculating the

following differential
Cltre Aot b ) Xt (VT NCH T = Cltre ) Ko () (X (ODICHT. (5.119)
From (5.119), it follows that

Cltre)d(Xna(trep) Xnt ())COT = Cltres) Xt (tres) X () B dt + dW () F(1)]
= Clltre))Xntltres) X (T E@)T dt (5.120)
+C(tres) Xt (tres) (AW ()T F(1)T

where we used (5.110). Then, we take the expectations of both sides of (5.120) to obtain
Cltres) E [d(X 1 (breg) Xt ()| C)T = Cltref) B [ Xyt (tres) X ()| BTt (5.121)

where we used the fact that X, (¢,cf) and dW (t) are uncorrelated. Next, we substitute
(5.118) in (5.121) and rewrite it in differential equation form:

O K(tyes, )

o C)T = Ctre))K(tres, t) E(O)T (5.122)

Cltres)

Since C(t,.s) is a constant nonsingular matrix, (5.122) is equivalent to

O K(tyes, )

o c)” = K(t,es,t) E)T. (5.123)

(5.123), the alternative to (5.80), is a system of ordinary differential equations for K(t,¢y, )
defined by (5.118).
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5.8.3 Numerical computation of the autocorrelation matrix

If backward Euler is applied to (5.117), we obtain
K(t) —K(t,—1)

C(t)! A JC(t:)" = E(t,) K(t,) C(t,)" + C(t,) K(t,) E(t,)" + F(t,) F(t,)"
' (5.124)
One can put (5.124) in the below form by rearranging the terms
C(tr C(tr
[B(t) = SEK @) C)T + Ot Kt [B(ty) - Si]"
< (5.125)
+F(t) F(t,)T + C(t,) Ble=l c(t,) = 0.
Let us define
_ C(t,)
P, = E()- 2h. (5.126)
Q = F@)Fit)"+Ct,) K(Z‘l) C(t,) (5.127)
C. = C{t) (5.128)
With these definitions, (5.125) is rewritten as
P, K()Cl +C, K, )Pl +Q, =o0. (5.129)

K(t) at time point ¢, is calculated by solving the system of linear equations in (5.129). In
view of the symmetry of K(t,), (5.129) represents a system of m(m + 1)/2 linear algebraic
equations. The “matrix” equation (5.129) is in a special form. When C, is nonsingular
(which is assumed to be true), (5.129) can be put into the form of the continuous-time alge-
braic Lyapunov matrix equation given in (5.94), but this would defeat the whole purpose of
deriving the alternative ODE (5.117), for which the coefficient matrices can be computed in
a numerically stable way. Thus, when C, is poorly conditioned, we avoid the transforma-
tion of (5.129) into the form of (5.94) and solve (5.129) directly at every time point using
an algorithm that is similar to the Bartels-Stewart algorithm [46]. . If any implicit linear
multi-step method is applied to (5.117), we obtain a linear system of equations exactly in
the form of (5.129).
If backward Euler is applied to (5.123), we obtain

[K(tref7 tr) - K(trefv tr—l)
i

One can put (5.130) in the below form by rearranging the terms

C(tr)T T K(trefvtr—l)T
h, h

]C(tr) = K(trefv tr) E(tr)T' (5'130)

[E(t,) — 1K(tyes,t,) = —C(t,) (5.131)
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Then, one can solve (5.131) at time ¢, for the columns of K(t,.f,t,)? with one LU decom-

position of [E(t,) — C(ht—:)T] and m forward elimination and backward substitution steps.
Thus, with the formulation described in this section, we avoid calculating the LU

decomposition of C(¢) which might be a numerically ill-conditioned operation for circuits

with widely varying capacitor values.

5.9 Time-Invariant and Periodic Steady-State

We now concentrate on nonlinear circuits with a large signal time-invariant or pe-

riodic steady-state solution, and hence the time-invariant or periodic steady-state solutions

of (5.86) and (5.98).

5.9.1 Time-invariant steady-state

In general, for a nonlinear dynamic circuit with arbitrary time-varying excita-
tions, E(t) and F(¢) in (5.86) are arbitrary time-varying functions. On the other hand, for
nonlinear circuits with a time-invariant large-signal steady-state solution (i.e. (5.87) has a
steady-state solution x(¢) that is a constant function of time), E(¢) and F(¢) are constant
functions of time. We assume that the nonlinear circuit is in time-invariant large-signal

steady-state at t = 0, that is,

E() = E(0) (5.132)
F(t) = F(0) (5.133)

for t > 0. In this case, with the initial value K¢ being set to the solution of (5.96) (when

there is a positive semidefinite solution), the solution of (5.86) is given by
Kit) =K, t>0. (5.134)

Thus, the initial condition K calculated as the solution of (5.96) is basically the time-
invariant steady-state solution (when there exists one) of (5.86). In steady-state, X, (t)
has a time-invariant variance-covariance matrix. With (5.134), it can be shown that X,,; (¢)
(the noise component of the node voltages for the nodes which have a capacitive path to
ground and the noise component of the inductor currents) is a vector of (asymptotically)
WSS stochastic processes. Note that the existence of a large-signal time-invariant steady-

state solution for (5.87) does not guarantee that there exists a positive semidefinite solution
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for (5.94) and hence a steady-state solution for (5.86). There exists a time-invariant steady-
state solution for (5.86) only if all of the eigenvalues of E(t) = E(0) have negative real parts,
i.e. if the circuit is “stable”. In this case, the autocorrelation matrix for the WSS X, (%),
ie.

Rx

(7)) =E [an(t+r)Xn1(t)T} (5.135)
can be calculated by solving (5.98). The initial condition for the system of homogeneous
differential equations (5.98), i.e. Rx  (0), is the steady-state time-invariant solution of
(5.86) given in (5.134). In general, for a “stable” circuit, the autocorrelation function
Rx  (7) satisfies

Rx  (1)=0 as 17— Foo0. (5.136)

The time-domain noise simulation for a “stable” circuit in time-invariant large-
signal steady-state reduces to solving the linear equation system (5.96), and then solving
(5.98) to calculate the autocorrelation functions for the WSS output. This can be com-
pared with the traditional frequency domain noise analysis based on LTI transformations
(see Section 4.2) which works for circuits in time-invariant steady-state, and calculates the
spectral densities. Solving (5.96) is equivalent to calculating the total integrated noise for
all of the circuit variables over the frequency range from 0 to oo (that is, the noise variances
for all of the circuit variables computed by calculating the integral of the spectral densities)
in SPICE AC noise analysis. In fact, the solution of (5.96) also provides the noise covari-
ances for all of the circuit variables. Calculating the noise covariance between two circuit
variables in SPICE noise simulation requires the calculation of total integrated noise over

the frequency range from 0 to oo for the difference of the two circuit variables.

5.9.2 Periodic steady-state

For nonlinear circuits with a periodic large-signal steady-state solution (i.e. (5.87)
has a steady-state solution x,(¢) that is a periodic function of time), E(¢) and F(¢) in
(5.86) are periodic functions of time. We assume that the nonlinear circuit is in periodic

large-signal steady-state (if there exists one), that is,

E(t+kT) = E(@) (5.137)
F(t+kT) = F(1) (5.138)
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for all ¢, and k& € Z, and for some period T > 0. The existence of a large-signal peri-
odic steady-state solution for (5.87) does not necessarily mean that there exists a positive
semidefinite periodic steady-state solution for (5.86). In general, we can say that there ex-
ists a periodic steady-state solution for (5.86) if the nonlinear circuit is nonautonomous and
the large-signal periodic steady-state is forced with some periodic excitations. This condi-
tion is “roughly” equivalent to the following: The Floquet exponents® that are associated
with the periodically time-varying system matrix E(¢) have strictly negative real parts. In
this case, the initial condition Kg for (5.86), which will enable us to calculate the periodic
steady-state solution for (5.86) by numerically integrating it from ¢ = 0 to ¢t = T, satisfies

the equation
Ko =®(7,0) Ko ®(T,0)T + /OT ®(t,7)F(nF(n)T @, )T dr (5.139)
which was obtained from (5.83) by setting K(7') = Ko. We can rewrite (5.139) as follows:
Ko — ®(T,0) Ko ®(T,0)T = K, (T) (5.140)

where

K, (T) = /OT &(1,7)F(r)F(r)T &(t,7) dr (5.141)

which can be calculated by numerically integrating (5.86) with an initial condition K(0) =
0. ®(7,0) can be calculated by numerically integrating (5.84) with an initial condition
y(0) = I,. (5.140) is a system of algebraic linear equations for the entries of the matrix
K. Algebraic matrix equations of the form (5.140) are referred to as discrete-time algebraic
Lyapunov matriz equations, because they arise in Lyapunov’s stability theory for discrete-
time systems. It can be shown that (5.140) has a unique symmetric solution if and only if
i ,u; # 1forall 1 <¢<mand 1 <5 < m, where uy, pig, ..., i, are the eigenvalues of
the m X m matrix ®(7',0) [42]. Recall that the eigenvalues p; of ®(7,0) are related to the

Floquet exponents 7; that are associated with the periodic E(¢) as follows:
w; = exp (). (5.142)

Thus, the above condition is obviously satisfied if all of the Floquet exponents have negative
real parts. Moreover, if all of the Floquet exponents have negative real parts, (5.140) has

a positive semidefinite solution, because K,(T') is positive semidefinite [42]. (5.140) can be

5See Section 2.4.9 for the definition. Recall that the Floquet exponents are not related to the eigenvalues
of E(t), but they are related to the eigenvalues of the state transition matrix ®(7,0) of (5.84).
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numerically solved with an algorithm that is similar to the Bartels-Stewart algorithm for
the continuous-time algebraic Lyapunov matrix equation [46].

When there exists a periodic steady-state solution for (5.86), X,,; (¢) has a periodi-
cally time-varying variance-covariance matrix. Thus, it can be shown that X,,; (¢) (the noise
component of the node voltages for the nodes which have a capacitive path to ground and
the noise component of the inductor currents) is a vector of (asymptotically) cyclostation-
ary stochastic processes. In this case, the solution of (5.98) for a nonautonomous nonlinear
circuit in periodic steady-state (with Floquet exponents that all have negative real parts),

i.e. K(tes,t), satisfies
K(tref, t) =0 as (& —tf)— % 00. (5.143)

As we will see in Chapter 6, for autonomous circuits with a large-signal periodic
steady-state solution for (5.87), e.g. oscillators, one of the Floquet exponents associated
with the periodic system matrix E(¢) is exactly equal to zero. Hence, (5.86) does not have
a periodic steady-state solution. Moreover, the solution of (5.86) with an initial condition
K(0) = 0 becomes unbounded as t—oo0. Thus, X,;(¢) is not a vector of cyclostationary
stochastic processes. In this case, (5.98) has a periodic steady-state solution for nonzero
initial conditions. In Chapter 6, we will deeply investigate the meaning of these results for

autonomous nonlinear circuits with a large-signal periodic steady-solution for (5.87).

5.10 Examples

We implemented the numerical computation of the autocorrelation matrix, as de-
scribed in Section 5.7, in the circuit simulator SPICE [28, 50]. We now present several
examples® of noise simulation using this implementation of the non-Monte Carlo time-

domain technique we presented in this chapter.

In the examples to be presented, only the shot and thermal noise sources associated with the electronic
components and the semiconductor devices have been included in the device models.
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Figure 5.1: Noise voltage variance for the parallel RLC circuit

5.10.1 Parallel RLC circuit
We start with a simple parallel RLC

R =
C =
L =

circuit. The values for the components are
1 KQ

1pF (5.144)
1 pH.

This is obviously a simple LTI circuit and the noise analysis can be accomplished using the

technique described in Section 4.2, but it illustrates what one can compute with the time-

domain noise simulation technique described in Chapter 5. The noise source in the circuit

is the current noise source that models the thermal noise of the resistor. We computed the

variance of the noise voltage across the parallel RLC circuit, i.e. E [V, (¢)?], as a function

of time, which can be seen in Figure 5.1.7 For this simulation, the initial condition for the

noise voltage variance was set as E [V,,(0)?] = 0. As seen in Figure 5.1, the variance settles

to a time-invariant steady-state value. Thus, at steady-state, the noise voltage across the

parallel RLC circuit is a WSS process. We can also compute the autocorrelation function

"This is obtained from the numerical solution of (5.86).
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Noise Correlation (Volts*2) X 10e9 ~Nonlinear Noise Simulation
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Figure 5.2: Noise voltage autocorrelation for the parallel RLC circuit

Ry, (1) = E [V (6)V,(t + 7)] for this WSS process, which can be seen in Figure 5.2.% Note
that Ry, (0) in Figure 5.2 is the steady-state value of E [V, (¢)?] in Figure 5.1. Since the
parallel RLC circuit (with R > 0) is a stable system, the autocorrelation function Ry, (7)
satisfies

Ry, (1)—0 as 17— £o0. (5.145)

5.10.2 Switching noise of an inverter

For a CMOS inverter that is loaded with a 1 pF capacitor, and driven with a
periodic large-signal waveform at the input, a noise simulation was performed. The large-
signal waveform (obtained by transient analysis in SPICE) and the voltage noise variance
waveform E [V,,(¢)?] (obtained from the solution of (5.86) with initial condition set to the
solution of (5.96)) at the output of this inverter can be seen in Figure 5.3. We conclude
from Figure 5.3 that the noise at the output is in general nonstationary®, because the noise

variance is not a constant as a function of time. We also observe that noise variance (i.e.

8This is obtained from the numerical solution of (5.98).
°For this case, the noise voltage at the output is cyclostationary at steady-state, because we are driving
the inverter with a periodic waveform.
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Figure 5.3: Large-signal waveform and the noise voltage variance for the CMOS inverter
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Figure 5.4: Noise voltage correlation for the CMOS inverter

mean-squared noise power) is highest during the low-to-high and high-to-low transitions
of the large-signal output waveform. It is possible to calculate the timing jitter of the
transitions at the output using the information in Figure 5.3. We will deeply explore the
notion of timing jitter and its characterization in Chapter 6.

We can also compute the correlation function Ry, (t,cf,t) = E [V, (tycr)Vi(t)] for
the noise voltage at the output by solving (5.98). Since the noise voltage is a nonstationary
process, Ry, (tycf,t) is also a function of a reference time point ¢,.;. For the simulation
shown in Figure 5.4, the reference time point was chosen as ..y = 15 nsecs. The initial
condition Ry, (t;cf,trcf) is obtained from the simulation in Figure 5.3. The correlation

function Ry, (t,cf,t) for the CMOS inverter satisfies
Rvn(tref,t)—}o as (t— t,,ef)—>:|:oo (5.146)

because it is a “stable” circuit.
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Figure 5.5: Large signal IF output for the mixer

5.10.3 Mixer noise figure

This bipolar Gilbert mixer circuit contains 14 BJTs, 21 resistors, 5 capacitors,
and 18 parasitic capacitors connected between some of the nodes and ground. The LO
(local oscillator) input is a sine-wave at 1.75 GHz with an amplitude of 178 mV. The RF
input is a sine-wave at 2 GHz with an amplitude of 31.6 mV. Thus, the IF frequency
is 250 M Hz. With the above RF and LO inputs, the AC coupled IF output, obtained
by transient analysis, is shown in Figure 5.5. This circuit was simulated to compute the
noise voltage variance E [V,,(¢)?] at the IF output as a function of time, which can be seen
in Figure 5.6. This noise variance waveform is periodic in steady-state with a period of
4 nsecs (IF frequency is 250 M H z.), because the circuit is being driven with two periodic
excitations that have commensurate frequencies. The noise voltage at the IF output of
this circuit is nonstationary, because the signals applied to the circuit are large enough to
change the operating point.

The noise performance of a mixer circuit is usually characterized by its noise figure
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Figure 5.6: Noise voltage variance at the IF output for the mixer

[1], which can be defined by

o total 1F output noise power (5.147)
 that part of output noise power due to source resistance at RE port’ '

This definition is intended for circuits in small-signal operation. For such circuits, noise
power is a constant function of time. In our case, the noise variance, i.e. the mean-squared
noise power, at the output of the mixer circuit changes as a function of time. Thus, we can
say that the noise figure is also an instantaneous quantity that varies with time. Hence, we

define a time-varying noise figure as follows:

total 1F output noise variance

NF(t)

= - - - . 5.148
1 F output noise variance due to source resistance at RF port ( )

To calculate the time-varying noise figure as defined, we simulate the mixer circuit again to
calculate the noise variance waveform at the output with all of the noise sources turned off
except for the noise source for the source resistance RSpp = 50 € at the RF port. In this
case, we obtain the noise variance waveform in Figure 5.7. We now can compute the time-
varying noise figure in (5.148). The noise figure “waveform” (in dBs) is shown in Figure

5.8. In practice, what one measures with a piece of equipment is usually a single number to
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characterize the noise figure, because one does not measure the instantaneous noise power
as a time-varying quantity. Instead, one measures a time-average of the time-varying noise

power. Thus, we define the average noise figure as follows:

avg. of total I'F output notse variance

Nlaug = avg. of IF output noise variance due to source resistance at RF port’

(5.149)
We calculate the average noise figure for the mixer by first computing the average noise
variances in Figure 5.6 and Figure 5.7, and then by computing the ratio. The result in dBs
is NIy, =17.9 dB.

This bipolar mixer circuit has 65 nodes (including the internal nodes for BJTs)
which have capacitive paths to ground. There are a total of 91 noise sources associated with
the bipolar transistors and the resistors in the circuit. The numerical solution of (5.86) to
calculate the variance-covariance matrix as a function of time (with 400 time points) took
140 C'PU seconds on a DEC Alpha machine!® with our current implementation (with the
Bartels-Stewart algorithm used to solve the algebraic Lyapunov matrix equation). In this
simulation, 2145 noise variance-covariance matrix entries for the 65 nodes are calculated at
400 time points.

We can also compute the correlation function Ry, (t,cf,t) = E [V, (tycr)Vi(t)] for
the noise voltage at the IF output by solving (5.98). Since the noise voltage is a nonstation-
ary process, Ry, (tyc,t) is also a function of a reference time point ¢,.¢. For the simulation
shown in Figure 5.9, the reference time point was chosen as ..y = 10 nsecs. The initial
condition Ry, (t;cf,trcf) is obtained from the simulation in Figure 5.6. The correlation

function Ry, (t,cf,t) for the CMOS inverter satisfies
Rvn(tref,t)—}o as (t— t,,ef)—>:|:oo (5.150)
because it is also a “stable” circuit.

5.10.4 Negative resistance oscillator

The “negative resistance” oscillator consists of a two-terminal nonlinear voltage-

controlled resistor (VCR) with a negative resistance region that is connected across a parallel

1The CPU is a DEC Alpha chip 21164 with 250 M Hz clock frequency, 4 Mb of cache, and a SPEC int_92
of 277.
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Figure 5.9: Noise voltage correlation for the mixer

RLC circuit. For simplicity, the values of the components for the circuit were chosen as

R =1
c =1 (5.151)
L =1

and the I — V relationship for the VCR is given by
I =tanh (=5 V). (5.152)

In steady-state, this autonomous circuit settles into a “stable” limit cycle which is illustrated
in Figure 5.10. This is a plot of the large-signal capacitor voltage (the voltage across the
parallel RLC circuit) versus the large-signal inductor current with time as a parameter.
The waveform for the capacitor voltage is periodic in steady-state, as seen in Figure 5.11.
The thermal noise source for the resistor in the circuit is turned off. Instead, a

white Gaussian WSS current noise source with a double-sided spectral density
Sa(f)=10719 A% /H > (5.153)

is connected across the parallel RLC circuit. (5.86) corresponding to this autonomous

circuit was numerically solved to compute the capacitor noise voltage variance E [V, (f)?].
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Figure 5.11: Oscillation waveform for the negative resistance oscillator
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Figure 5.12: Noise voltage variance for the negative resistance oscillator

The initial condition was set to zero as discussed in Section 5.7 and Section 5.9. The
waveform calculated for the capacitor noise voltage variance is shown in Figure 5.12. The
noise voltage variance does not reach a periodic steady-state, it is an oscillatory waveform
with a linear ramp envelope. (5.86) for this circuit does not have a periodic steady-state
solution. Thus, the capacitor noise voltage is not a cyclostationary process in steady-state
even though the circuit is in large-signal periodic steady-state. The peaks of the voltage
variance waveform coincide with the transitions, i.e. zero-crossings, of the large-signal
periodic voltage waveform in Figure 5.11.

We then compute the correlation function Ry, (t,c5,t) = E [V, (t,cf)Vi(t)] for the
capacitor noise voltage by solving (5.98). Since the noise voltage is a nonstationary process,
Ry, (tyef,t) is also a function of a reference time point ¢,.;. For the waveform shown in
Figure 5.13, the reference time point was chosen as ¢,.; = 70.7 secs to coincide with one of
the peaks in the waveform of Figure 5.12. The initial condition Ry, (t,cf,¢,cs) is obtained
from the waveform in Figure 5.12. (5.98) for this oscillator circuit has a periodic steady-state

solution. The correlation function Ry, (t,¢7,t) does not satisfy

Rvn(tref,t)—}o as (t—t,,ef)—hl:oo. (5.154)
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Figure 5.13: Noise voltage correlation for the negative resistance oscillator

We will discuss the interpretation of the noise simulation results for the negative resistance

oscillator circuit in Chapter 6.

5.11 Summary

We presented a time-domain non-Monte Carlo noise simulation algorithm for non-
linear dynamic circuits with arbitrary large-signal excitations. The nonlinear network equa-
tions (KVL, KCL and the constitutive relations of the components) that govern the behavior
of a nonlinear circuit with noise sources were formulated as a system of stochastic differen-
tial equations. Then, we set out to calculate a probabilistic characterization of the circuit
variables (e.g. node voltages) that are modeled with stochastic processes. We discussed
the practical infeasibility of the calculation of a complete probabilistic characterization that
requires the solution of the Fokker-Planck equation for the time evolution of the proba-
bility density of the state vector of the nonlinear system. The “small-signal” nature of
the noise signals led us to a stochastic small noise expansion of the state vector and the

system of nonlinear stochastic differential equations. As a result of the small noise expan-
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sion, the state vector of the system was decomposed as a summation of a deterministic
large-signal component and a stochastic noise one. A linear but time-varying system of
stochastic differential equations was derived which describes the dynamics of the stochastic
noise component. The deterministic time-varying coefficient matrices for the system of LTV
stochastic differential equations are dependent on the solution of the system of nonlinear
ODEs that describe the behavior of the nonlinear circuit without the noise sources. Then,
using stochastic calculus, two sets of systems of ODEs for the autocorrelation matrix of the
stochastic noise component of the system state vector were derived. Assuming that all of
the noise sources are Gaussian, the stochastic noise component of the system state vector is
a vector of nonstationary zero-mean Gaussian stochastic processes, because the system of
stochastic differential equations that describes its dynamics is linear although time-varying.
Thus, the autocorrelation matrix is a complete probabilistic characterization. We then pre-
sented techniques to numerically solve the ODEs to compute the autocorrelation matrix for
the stochastic noise component of the system state vector. The conditions for the existence
of “valid” solutions for the system of ODEs for the autocorrelation matrix were discussed.
Then, two special cases, namely when the nonlinear circuit is in large-signal time-invariant
or periodic steady-state were discussed. For these special cases, the conditions for the exis-
tence of steady-state solutions of the ODEs for the autocorrelation matrix were presented
along with a description of their numerical computation. Finally, we presented several
practical examples of the numerical computation of the autocorrelation function of a noise
signal in nonlinear circuits. These were simple examples which meant to describe how to
use the time-domain non-Monte Carlo noise simulation algorithm to characterize the noise
performance of practical nonlinear circuits. In particular, we discussed the switching noise
of an inverter that is driven with a periodic waveform, and the computation of the noise
figure of a mixer that is driven with two signals at its RF and LO inputs. We also used the
noise simulation algorithm on an autonomous nonlinear circuit.

The time-domain non-Monte Carlo noise simulation algorithm, and its implemen-
tation in the circuit simulator SPICE, enables us to calculate the complete second-order
probabilistic characteristics of the state variables (e.g. node voltages) of a nonlinear circuit
under the influence of both large-signal deterministic excitations and noise sources. In this
sense, it is a core tool which will enable us to investigate, simulate, understand, and model
various phenomena that is related to noise, and which is of concern from a performance

point of view, in nonlinear circuit design. As a result, it will also enable us to develop more
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specific algorithms and numerical techniques to characterize specific noise phenomena, and
define and compute quantities that will become noise performance measures.

In the next chapter, we will use the core noise simulation algorithm to investigate,
understand and model an extremely important phenomenon in oscillator circuits that is
related to noise, the so-called phase noise or timing jitter. As a result of this analysis,
we will arrive at a more specific algorithm to characterize phase noise/timing jitter for
oscillators. We will develop models which can be used in various ways to analyze the effect
of the phase noise/timing jitter of an oscillator on the performance of a larger system that
contains the oscillator as a component. This will be a perfect illustration of the enabling

features (claimed above) of the core noise simulation technique that was presented.
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Chapter 6

Noise in Free Running Oscillators

Oscillators are among the key components of many different kinds of electronic
systems. They are used for on-chip clock generation for microprocessors. Every com-
munications receiver/transmitter has at least one oscillator that is used in the frequency
synthesis of an oscillation signal which up or down converts the incoming/outgoing signal.
Oscillators have one property that makes them quite unique from several aspects: They are
autonomous systems. They generate an oscillatory signal at their output without an input
(apart from a power supply input, and a control signal that sets the frequency), as opposed
to amplifiers and mixers which generate an output when they are being driven with some
input signals. The design, analysis and simulation of oscillators often require techniques
which are specific for autonomous systems.

An oscillator can be defined as a system that generates a periodic signal with a
specified or controllable frequency, but any periodic signal with the specified frequency is
not acceptable. An oscillator is not just any autonomous system that generates a periodic
signal. It is hard to formalize the distinction of a signal an oscillator is supposed to generate
from any periodic signal, but ideally, we would like it to be as close as to a square-wave or
a pure sinusoid at the specified frequency. Square-wave-like waveforms with fast transitions
(between “high” and “low” states) that are evenly spaced in time are desirable in some
applications. In other applications, a sinusoidal waveform is the choice because of its spectral
properties.

The autonomous nature of oscillators also makes them quite unique in their be-
havior in response to the electrical noise that is present in the circuit. The analysis and

characterization of oscillators in the presence of noise is quite an intricate topic. Because
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of the practical importance of understanding and characterizing the behavior of oscillators
in the presence of noise, this topic attracted considerable attention in the literature. It is
quite impossible to review all the approaches that were proposed to analyze oscillators in
the presence of noise.! Most of the approaches in the literature for oscillator noise anal-
ysis use techniques from the theory of LTI systems and WSS stochastic processes. This
is obviously not justified at all, because practical oscillators are always nonlinear systems.
Many try to explain the experimental measurements of the “spectrum” of practical oscil-
lator circuits and develop models based on the results of the LTI/WSS analysis. A small
number of approaches do use techniques suitable for analysis of nonlinear systems in the
presence of noise, but most of these are analytical approaches for specific oscillator circuits.
Moreover, they use simplified models of the circuit and make simplifying assumptions, be-
cause the analysis of a nonlinear oscillator circuit in the presence of noise is not analytically
tractable. Even a smaller number of approaches treat the problem in general, and propose
methods that are amenable for a numerical implementation to simulate and characterize
the noise performance of oscillators on the computer.

We believe that there is a lot of confusion on the definitions of certain notions
connected to oscillator noise analysis. Some of the papers in the literature characterize the
noise behavior of oscillators using the notions of amplitude noise, phase noise, and timing
jitter. Very few of them fully define exactly what they mean by amplitude and phase noise,
and timing jitter. Some other papers do not even discuss the distinction of amplitude and
phase noise, and talk about oscillator noise in general. In this chapter, we will first discuss
the effect of noise on the periodic signal that is generated by an oscillator, and then make
an attempt to clarify the notions of amplitude and phase noise, and timing jitter, and
discuss their relevance from a practical point of view. We will give a definition for phase
noise/timing jitter as a stochastic process, and present an algorithm to characterize these
quantities that is based on the time-domain noise simulation technique we presented in
the previous chapter. We will prove a key property of our definition of phase noise and the
characterization algorithm: Phase noise is same at all nodes in the oscillator circuit. We will
then discuss the work of Franz Kaertner [16] on phase noise (a rigorous approach to noise

analysis of oscillators), and review his phase noise definition and characterization algorithm

'The February 1966 issue of the Proceedings of the IEEFE contains a number of papers on the analysis of
noise in oscillators. This issue contains a letter from D.B. Leeson [51] (pages 329-330), which is probably
the most cited reference on noise analysis of oscillators. There are also a number of books on phase-locked
loops which discuss noise in oscillators, i.e. [40] and [52].
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and its connection to our definition and characterization algorithm. In this chapter, we will
be mainly concerned with the noise analysis of free running or open-loop oscillators, but we
will briefly discuss the noise performance of closed-loop oscillators, i.e. phase-locked loops,

which will be the main topic of the next chapter.

6.1 Phase Noise and Timing Jitter Concepts

We have already used the time-domain noise simulation technique on an oscillator
in Section 5.10.4. With our noise simulation technique, we decompose a “noisy” oscillation
signal X (¢) as follows:

X(t) = as(t) + X,.(t) (6.1)

where z,(t) is the deterministic oscillation waveform that is periodic with 7', and X, (¢) is
a stochastic process that represents the effect of the noise sources. We first simulate the
circuit to numerically calculate x4(¢). Then, we calculate the autocorrelation function of
X, (t) for a complete second-order probabilistic characterization. We have found out that
the variance of X,,(t) (E [X,,(¢)?] in Figure 5.12) for the negative resistance oscillator circuit
does not reach a periodic steady-state. It is an oscillatory waveform with a linear ramp
envelope that grows without bound. This result, at first sight, is rather counter intuitive. It
suggests that the oscillation waveform is becoming “noisier” or “fuzzier” as time progresses,
and the oscillator is drifting away from a stable oscillation. However we know that this can
not be true. The negative resistance oscillator we considered in Section 5.10.4 does settle
into a stable limit cycle, and the noise in the circuit causes only small fluctuations in the
oscillation waveform, which we state here without proof. Then, how do we resolve this
dilemma and interpret the results we obtained with time-domain noise simulation? The
resolution of this dilemma lies in the following observations: The peaks (which have a linear
ramp envelope) in the waveform of E [X,,(¢)?] coincide (in time) with the transitions of the
large-signal periodic waveform for z,(t), i.e. the zero-crossings in Figure 5.11. The dips in
E [X,(¢)?] coincide (in time) with the “high” and “low” states of the large-signal periodic
waveform for x(t), i.e. the peaks and dips in Figure 5.11. If E [X,,(£)?] is sampled at the
peaks, we obtain a linear ramp waveform. However, if it is sampled at the dips, then we
obtain a waveform that settles to a time-invariant steady-state. Thus, the variance of the

noise in the oscillation waveform at the transitions grows without bound, but the variance
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at the peaks and dips of the oscillation waveform does not grow without bound, moreover
it settles to a time-invariant steady-state value.
Next, we consider a sinusoidal waveform to gain more insight into the above ob-

servations. Let

z4(t) = A cos (27 f.t) (6.2)

be a noiseless sinusoidal waveform with frequency f. and amplitude A. Let us represent a

noisy sinusoidal waveform with
X(t) = (A+a(t)) cos(2m fot + &(t)) (6.3)

where a(t) and ¢(t) are possibly nonstationary and correlated zero-mean stochastic pro-
cesses, and will be referred to as the amplitude and the phase noise respectively. We define
the stochastic process X,,(¢) to be the difference between the noisy and the noiseless sinu-

soidal waveform, i.e.
X, (t) = (A4 a(t)) cos (2r fot + ¢(t)) — A cos (27 fot). (6.4)

Now, we would like to assign properties to the stochastic processes a(t) and ¢(t) so that
E [X,,(t)?] for the sinusoidal waveform will “look like” the one we calculated for the negative
resistance oscillator in Figure 5.12. If the amplitude and phase noise are “small”, we can

approximate X, (t) as follows:
X, (t) = a(t) cos (2r fot) — A @(t) sin (27 f.t). (6.5)

We observe that the first term in (6.5) vanishes at the zero-crossings of z5(t) = A cos (27 fet),
and the second term vanishes at the peaks and dips of z,(t) = A cos (27 f.t). Thus, we
choose a(t) to be a WSS process, and choose ¢(t) to be a scaled version of the Wiener
process, so that E [X,,(¢)?] for the sinusoidal waveform will “look like” the one we calculated
for the negative resistance oscillator in Figure 5.12. Figure 6.1 shows an ensemble of noisy
sinusoidal waveforms (all at the same frequency f.) compiled with a WSS a(t) and a Wiener
process ¢(t). All of the waveforms in the ensemble are synchronized at ¢t = 0. Recall that

for a standard Wiener process W (t), we have
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Figure 6.1: Ensemble of noisy sinusoidal waveforms

Figure 6.2 shows the ensemble for X, (¢) obtained by using (6.4) on all of the waveforms

in the ensemble of Figure 6.1. Figure 6.2 also shows the noiseless sinusoidal waveform.
Then, Figure 6.3 shows the variance E [X,(¢)?] as a function of time, which was calculated
by taking expectations over the ensemble in Figure 6.2.  Each of the noisy sinusoidal
waveforms in the ensemble of Figure 6.1, when plotted by itself, can not be differentiated
from the noiseless waveform since the amplitude noise a(t) is WSS and small compared
with A. However, due to the nonstationary phase noise ¢(t) with an increasing variance,
the error in the zero-crossing times of a noisy sinusoidal waveform with respect to the zero-
crossings of the noiseless waveform increases as time progresses. A Wiener process ¢(t) can
also be interpreted as a white noise deviation in the frequency of the sinusoidal waveform.
One can also interpret the phase noise ¢(t) as noise in time. If we were to redefine time ¢
as a stochastic process t' as follows

¢(t)
27 fe

then a sinusoidal waveform with phase noise becomes

t'=t+ (6.8)

A cos (27 ft + ¢(t)) = A cos (27 fot'). (6.9)
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Thus, phase noise is equivalent to a time or timing noise for the oscillatory waveform which
manifests itsell as jitter in the zero-crossing times.

In most applications, the jitter in the timings of the zero-crossings of oscillation
waveforms due to noise is of practical importance. The noise in the amplitude of the
signal is usually “cleaned” by passing it through a limiter, and it is unimportant in many
applications, for instance, when the oscillator output is fed into a digital phase detector
or a switching mixer. These circuits are sensitive to only the jitter in the timing of the
transitions, and not to the noise in the amplitude of the signal. We would like to model
and characterize the timing jitter, i.e. phase noise, as a stochastic process. In particular,
we would like to calculate its complete second-order probabilistic characteristics, i.e. the
autocorrelation function or the (possibly time-varying) spectral density. The “spectrum” of
a noiseless oscillation waveform consists of impulses at the frequency of oscillation and its
harmonics, where spectrum is defined as the Fourier transform of the periodic deterministic
oscillation waveform. If we model a noisy oscillation waveform as a stochastic process, then
a “spectrum” may be defined through spectral densities of stochastic processes. The notion
of a “spectrum” for a noisy oscillation waveform has been used extensively in the literature,
almost everywhere without an exact definition. Gardner in [40] dicusses the problems in
characterizing the noise of an oscillator with a “spectrum”.

In the next section, we will formalize the notion of timing jitter or phase noise
which both refer to the same phenomenon, i.e. the noise in the zero-crossing or transition
times of oscillation waveforms. We will first present a definition of phase noise as a discrete-
time stochastic process, and then describe an algorithm for its characterization along with
examples. The above discussion of amplitude and phase noise for a sinusoidal waveform
was meant to give some intuition into the notion of phase noise or timing jitter, and provide

motivation for the definition we will present next.

6.2 Phase Noise Characterization with Time Domain Noise

Simulation

We assume that the behavior of the autonomous oscillator circuit (without the

noise sources) is governed by the following system of equations in MNA form

I(x)+ %Q(x) =0 (6.10)
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which was obtained from (5.3) by omitting the explicit time dependence of I, because the
autonomous oscillator circuit does not have any time-varying deterministic excitations. We
now assume that (6.10) has a periodic steady-state solution x,(t), which is a stable limit

cycle in the n-dimensional space. Thus, x,(¢) satisfies
xs(t) = x5(t + k7)) (6.11)

for all ¢, & € Z and for some period T. We define f. = 1/T to be the frequency of the
periodic x(t). The equations for the oscillator circuit with the noise sources is formulated

as follows

I(X)dt + dQ(X) + B(X)dW (t) = 0 (6.12)

as a system of stochastic algebraic and differential equations, which was obtained from
(6.12) by omitting the explicit time dependence of I and B. With the small noise expansion

described in Section 5.3, we approximate the solution of (6.12) with
X(t) = x5(t) + X, (). (6.13)

With the time domain noise simulation algorithm described in Chapter 5, we can calculate
the autocorrelation function of the components of the vector of stochastic processes X,,,
which represent the noise component of the node voltages for the nodes which have a

capacitive path to ground and the noise component of the inductor currents.

6.2.1 Definition of timing jitter and phase noise

We will now formally define timing jitter and phase noise for the oscillator circuit.
We will define timing jitter and phase noise for a specific node (which has a capacitive path
to ground) voltage or an inductor current. Whether it is a node voltage or an inductor
current, this circuit variable is a component of the state vector x for the circuit. Let this

circuit variable be the ¢th component of the state vector. Hence
wlt) = {x(0): (6.14)
Xall) = {Xa(0)): (6.15)

where {.}; denotes the ith component of a vector. Thus, x4(¢) is the deterministic periodic

steady-state waveform for the circuit variable, and X, (¢) is the noise component. Let

S(t) = = a,(t) (6.16)
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be the time derivative of the periodic steady-state waveform z(t). Hence, S(¢) is also
periodic with the same period T'. Let us now define the set I' of evenly spaced time points

as

= > 0: = — Th—1 = . .
I'={m >0:S5(m) oréltagXTS(t)’ Tk — The1 = 1} (6.17)

Thus, I' is the set of time points where the periodic oscillation waveform z,(t) is making
low-to-high transitions. The definition of I' as given above makes sense only for a certain
class of periodic waveforms. For instance, it does not make sense for a triangle-wave z(¢),
because S(t) for a triangle-wave is a periodic piecewise constant function, and hence z,(¢)
does not have well-defined low-to-high transition times that can be identified as the time
points where z,(¢) has the highest slew rate, i.e. the time-derivative or the rate of change.
However, it is well-defined for a sinusoidal waveform, or a square-wave with a finite slope
during the short switching times. It is hard to give a formal characterization of periodic
waveforms for which I' is well-defined, but one can roughly say that I' is well-defined for
periodic waveforms which have a high and a low “state” and transitions between these
that are identifiable as the time points with highest time-derivative, i.e. waveforms we
would like the oscillators to produce. One property of these periodic waveforms is that the
periodic waveforms obtained as their time derivatives look like themselves. For instance,
the derivative of a sinusoidal waveform is also a sinusoidal waveform, and the derivative of
a square-wave with a finite slope during the transitions is also square-wave (though with
a duty cycle that is smaller then 50%). It is very plausible that every practical oscillator
circuit will have a circuit variable for which I' will be well-defined. This will be the case for
all of the practical oscillator circuits we will consider. Note that, for the definition of I', we
have arbitrarily chosen the low-to-high transitions times. As we will see in the next section,
choosing the high-to-low transitions yields exactly the same results for phase noise or timing

jitter characterization. Let S be the maximum value of the derivative S(t) = &(¢), i.e.

S = B, S(t). (6.18)
Note that
S(rg) =5 for all 7 el (6.19)

We define timing jitter to be the discrete-time stochastic process J

Xo(m) _ Xalmi)
S(re) S

Jk] = (6.20)
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for 7, € I' and £ > 0. Thus, the timing jitter J is a sampled and scaled version of
X, (t). Note that J has the units of time. Then, phase noise is defined as the discrete-time
stochastic process ¢

oK) = 21,720

which is only a scaled version of the timing jitter J. ¢ is in radians. Thus, timing jitter and

(6.21)

phase noise are basically the same discrete-time stochastic process up to a scaling factor
that is equal to the angular frequency 27 f..

If we use the definition of phase noise in (6.21) on the noisy sinusoidal waveform
discussed in the previous section (see (6.2) and (6.5)), we obtain a sample of the continuous-
time phase noise process ¢(t) that was introduced to the noiseless sinusoidal waveform. By
sampling X, (¢) in (6.5) at the zero-crossings or transition times of z4(t) given in (6.2),
we reject the first term in (6.5) that is due to amplitude noise and obtain a sample of
the continuous-time phase noise process ¢(¢). Thus, the definition of phase noise given
by (6.21) is consistent with the usual definition of phase for a sinusoidal waveform. For
nonsinusoidal oscillation waveforms, there is no obvious definition for phase, but we still
use the terminology phase noise to describe the noise in the zero-crossing times of general

oscillation waveforms as defined by (6.21).

6.2.2 Probabilistic characterization of phase noise

Now, we would like to calculate a second-order probabilistic characterization of
phase noise and timing jitter as defined. Using the time-domain noise simulation technique
described in Chapter 5, we can numerically calculate the autocorrelation function of X, (¢)
for the circuit variable we are considering. Since phase noise is obtained by sampling the
stochastic process X,,(t), its autocorrelation function can be easily calculated by sampling
the autocorrelation function of X,,(¢). E [X,(¢)?] as a function of ¢ is obtained by numeri-
cally solving (5.74), and E [X,,(¢,c5) X, (¢)] as a function ¢ for a reference time point ¢,.f < ¢

is obtained by numerically solving (5.80). Then, for phase noise ¢, we have

E[¢[k?] = B%E |Xu(r)?] (6.22)
E [¢[k,cr] olk]) = 3% E [Xo(mh,.,) Xa(m)] (6.23)

where k& > k,.;, and Thyess Th € I', and
§ =2t (6.24)

S
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Figure 6.4: Time-derivative of the oscillation waveform for the negative resistance oscillator

S was defined by (6.18). For timing jitter,

E[JH]?] = E(Q[fij[f;? (6.25)

E [¢[kres] S]]

E [J[kyes] JE]] (2r f.)?

(6.26)

follow from (6.22) and (6.23).

Let us now calculate the second-order probabilistic characterization of phase noise
for the negative resistance oscillator described in Section 5.10.4. We choose the capacitor
voltage as the circuit variable for phase noise characterization. Figure 5.11 shows the steady-
state deterministic oscillation waveform z,(¢). The waveform that is obtained as the time
derivative of z4(t) in Figure 5.11, i.e. @4(t), is shown in Figure 6.4, from which we identify
I' as defined by (6.17), and also S = 1.93 volts/secs that was defined in (6.18). Notice
that the waveform of i,(t) looks like exactly the waveform in Figure 5.13. We will see the
reason for this in Section 6.3. The waveform obtained for the noise variance E [X,(¢)?]
of the capacitor voltage is in Figure 5.12. This is an oscillatory waveform with a linear
ramp envelope that grows without bound. The peaksin the waveform of E [X,,(t)?] coincide

(in time) with the transitions of the large-signal periodic waveform for z,(t), i.e. the time
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points in I'. Hence, if E [X,(f)?] is sampled to calculate E [¢[k]?] as defined by (6.22) for

the discrete-time stochastic process ¢ that represents phase noise, we obtain
E [¢[k]?] = 32 akT k>0 (6.27)

where «vin volts? /secs is the slope of the linear ramp envelope for E [X,,(¢)?]. The waveform
obtained for E [X,,(¢,cf) X, (t)] is in Figure 5.13. The reference time point was chosen as
trey = 70.7 secs to coincide with one of the peaks in the waveform of E [Xn(t)Q]7 i.e. one
of the time points in I'. E [X, (t,¢f) X,,(¢)] is a periodic waveform. Similarly, the peaks in
E [X,,(tres) X5 (t)] coincide with the time points in I'. Hence, if it is sampled to calculate
E [¢[k,cr] ¢[k]] as defined by (6.23) for the phase noise process ¢, we obtain

E [$lkref] 01K = E [@lkres]’] (6.28)
= ﬁz « kref T (629)
= ﬁz E {Xn(tref)ﬂ (630)

where t,cf = kyefT and k > kycy. It can be shown that (6.29) is valid for all ¢,.f = k.7,
not just the simulation results are shown for. Thus, if we combine (6.27) and (6.29), we

obtain

E [¢[k] o[m]] = * @ min (k,m)T for k,m > 0. (6.31)

The autocorrelation function given in (6.31) is a complete second-order probabilistic char-
acterization of the discrete-time zero-mean stochastic process ¢ that represents the phase
noise. The autocorrelation function given in (6.31) can be identified as the autocorrelation
function of a so-called discrete-time random walk process. A discrete-time random walk

process R can be constructed as follows:

= Zk: Z, (6.32)

r=1
where 7y, Zs, ... are uncorrelated identically distributed zero-mean random variables taking

values in IR. The autocorrelation function of R is given by

k. m
E [R[k] R[m]] = ZZ E [Z, 7] (6.33)
= o E 72 (6.34)

r=1
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min (k,m)
= o (6.35)
r=1
= o? min (k, m) (6.36)
where
o?=E |7} =E[4|= (6.37)

We obtained the phase noise process ¢ by sampling X,,(¢) which is a Gaussian process as
explained at the end of Section 5.4. Hence, ¢ is also a Gaussian process. If we let 71, 75, . ..

be uncorrelated zero-mean Gaussian random variables with variance
E |7} =0 =520l (6.38)

then, the random walk process R will also be Gaussian, and it will have the same auto-
correlation function as the phase noise process ¢. Since the autocorrelation function is a
complete characterization of a Gaussian process, then R and ¢ are stochastically equiva-
lent. The representation of the sampled phase noise process as a discrete-time random walk
process with uncorrelated, identically distributed, Gaussian increments will be very useful
when we discuss behavioral modeling and simulation of phase noise in phase-locked loops
in the next chapter. The random walk representation of phase noise allows us to define
a figure of merit to characterize the phase noise performance of the oscillator. If we have
two oscillators at the same frequency, then the one with a larger value of 02 = 3% a T for
phase noise will be worse than the other one from a phase noise performance perspective.
0% = % aT is the rate of change of the variance of the discrete-time phase noise process ¢.

The random walk phase noise representation we discussed above was derived for the
negative resistance oscillator based on the characterization we obtained using time-domain
noise simulation. At this point, we do not know that the random walk representation
for phase noise is valid for other oscillator circuits. However, we have an algorithm which
allows us to numerically calculate the autocorrelation function of the phase noise of the node
voltages or the inductor currents of an oscillator. We outline the steps of this algorithm

below:

1. We first calculate the steady-state solution of (6.10). This could be done using the
transient analysis in SPICE, or with a specific numerical algorithm such as the shoot-
ing method for finding periodic steady-state solutions of nonlinear autonomous cir-

cuits.
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2. We identify the frequency of oscillation f. = 1/T.

3. We apply the time-domain noise simulation algorithm described in Chapter 5 to cal-
culate the noise autocorrelation functions of the node voltages with a capacitive path

to ground and the inductor currents.

4. We choose a circuit variable which could be a node voltage, a differential voltage or
an inductor current. We choose a node with a steady-state oscillation waveform for

which I' can be defined as discussed before.
5. We identify I" and calculate S defined by (6.18).

6. We sample and scale the autocorrelation function (which was calculated numerically
with the time-domain noise simulation algorithm) of the circuit variable we have cho-

sen to calculate the autocorrelation function of the discrete-time phase noise process

defined by (6.21).

In the next section, we will apply the above algorithm to characterize the phase noise of

several practical oscillator circuits.

6.2.3 Examples

We will apply the phase noise characterization methodology to three oscillators: a
ring-oscillator, a relaxation oscillator and a harmonic oscillator. For the characterizations
to be presented, we consider only the thermal and shot noise sources of the devices, i.e.
the noise sources that can be modeled as white Gaussian processes. We will consider the

non-white noise sources in Section 6.6.

6.2.3.1 Ring-oscillator

The ring-oscillator circuit is a three stage oscillator with fully differential ECL
buffer delay cells (differential pairs followed by emitter followers). This circuit is from [38].
[38] and [53] use analytical techniques to to characterize the timing jitter/phase noise per-
formance of ring-oscillators with ECL type delay cells. [38] does the analysis for a bipolar
ring-oscillator, and [53] does it for a CMOS one. Since they use analytical techniques, they

use a simplified model of the circuit and make several approximations in their analysis. [38]
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Differential Tap Voltage (V) x 10e-3 Steady-State Oscillation Waveform
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Figure 6.5: Large-signal oscillation waveform for the ring-oscillator

and [53] use time-domain Monte Carlo noise simulations to verify the results of their ana-
lytical results. They obtain qualitative and some quantitative results, and offer guidelines
for the design of low phase noise ring-oscillators with ECL type delay cells. However, their
results are only valid for their specific oscillator circuits. We will compare their results with
the results we will obtain for the above ring-oscillator using the general phase noise charac-
terization methodology we have proposed which makes it possible to analyze a complicated
oscillator circuit without simplifications.

For a ring-oscillator, the natural choice for the circuit variable for phase noise
characterization is any tap voltage in the ring. Since the circuit is differential, we use a
differential tap voltage for phase noise characterization. Figure 6.5 shows the steady-state
deterministic oscillation waveform z4(¢). The noise variance E [X,,(¢)?] for the differential
voltage is in Figure 6.6, and E [X,, (¢t cf) X, (¢)] for ¢,y = 50 nsecs is in Figure 6.7. The
waveform obtained for the variance in Figure 6.6 is an oscillatory waveform with a linear
ramp envelope, The peaks of this oscillatory waveform coincide with the transition times of
z4(t), i.e. the time-points in I'. The waveform for E [ X, (¢,.5) X, (t)] is a periodic waveform

with the peaks coinciding in time with the time points in I'. The situation is exactly the
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Figure 6.6: Differential noise voltage variance for the ring-oscillator

AutoCorrelation (V/2) x 10e-9 Nonlinear Noise Simulation
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Figure 6.7: Differential noise voltage correlation for the ring-oscillator
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R. | rn | Igp | S o Je =3
() (Q) | (nA) | (volts/usecs) | (volts?/secs) | (MHz) | (sec?.Hz)
500 58 331 186 9.3 167.7 0.269
2000 58 331 287 12.2 74 0.149
500 | 1650 | 331 159 17.38 94.6 0.686
500 58 450 259 12.32 169.5 0.182
500 58 600 330 16.40 169.7 0.151
500 58 715 373 19.77 167.7 0.142

Table 6.1: Ring-oscillator phase noise characterization results

same as the one for the negative resistance oscillator. Hence, the autocorrelation function for
the sampled phase noise process for the differential tap voltage of this oscillator is exactly in
the form given by (6.31). Thus, the random walk model for phase noise is also valid for this
ring-oscillator. This result is in agreement with the results and experimental observations
presented in [38] for this ring-oscillator.

For further comparison of phase noise characterization results obtained by our
numerical method and the ones presented in [38], we performed several other phase noise
characterizations for the bipolar ring-oscillator. The results are shown in Table 6.1, where
R, is the collector load resistance for the differential pair (DP) in the delay cell, ry is the
zero bias base resistance for the BJTs in the DP, I'rg is the tail bias current for the DP,
and f. is the oscillation frequency for the three stage ring-oscillator.

For all of the cases listed in Table 6.1, the noise variance for the differential voltage
obtained by time-domain noise simulation had a linear ramp envelope. The random walk
phase noise model is valid for all the cases. Hence, the phase noise performance can be
characterized by the slope of this ramp envelope a together with § that was defined by
(6.24). Note that the changes in R. and r;, affect the oscillation frequency, unlike the
changes in I. Figure 6.8 shows a plot of 3%« versus I using the data from Table 6.1.
This prediction of the dependence of phase noise/timing jitter performance on the tail bias
current is in agreement with the analysis and experimental results presented in [38] and [53]
for ring-oscillators with ECL type delay cells. Note that larger values of 3?a means worse

phase noise performance.
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Figure 6.8: Phase noise performance versus Igg for the ring-oscillator

6.2.3.2 Relaxation oscillator

The relaxation oscillator is a VCO that is based on the emitter-coupled multivibra-
tor circuit [1]. [54] analyzes the “process of jitter production” for this circuit by describing
the circuit behavior with a single first-order stochastic differential equation based on a sim-
plified model for the circuit, and lumping all of the noise sources into a single stationary
current noise source. [54] arrives at intuitive qualitative results for low jitter relaxation
oscillator design. A relaxation oscillator operates in a highly nonlinear fashion due to re-
generative switchings. The analysis of the “process of jitter production” is not analytically
tractable without reverting to simplifications. With our general phase noise characteriza-
tion methodology, we can simulate the process of jitter production in a relaxation oscillator
numerically without simplifying the circuit.

Figure 6.9 shows the noise variance for the voltage across the timing capacitor.
The envelope for the variance waveform is also a linear ramp as it was the case for the
negative resistance and also the ring-oscillator. Obviously, the spikes in the variance wave-
form coincide with the regenerative switchings of the multivibrator. We conclude that the

random walk phase noise model is also valid for this relaxation oscillator. The large signal
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Figure 6.9: Timing capacitor voltage noise variance for the multivibrator

182

waveform for the timing capacitor voltage is triangular. Hence, switching times character-

ized by largest slope are not well defined, i.e. I' for the voltage across the timing capacitor

can not be constructed. For phase noise characterization, we choose the output of the

multivibrator, which is a square-wave-like waveform. Going through the steps of the phase

noise characterization algorithm, we obtain

0.88 MHz

fe

o = 1.3 x 10° volts?/sec

S = 3.29 x 10” volts/sec

which results in

5% o = 0.37 rad?.Hz.

6.2.3.3 Harmonic oscillator

(6.39)
(6.40)
(6.41)

(6.42)

The harmonic oscillator has an LC tank, several inductors and a single bipolar-

junction transistor with a Colpitts feedback circuit around it. The oscillation frequency is
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Figure 6.10: Oscillation waveform for the harmonic oscillator

| Node || S (volts/nsecs) | o (volts?/secs) | 5%« (rad?®.Hz) |

1 1.53 0.127 1.28
2 1.104 0.063 1.22
3 1.69 0.151 1.25

Table 6.2: Harmonic oscillator phase noise characterization with different nodes

773.2 MHz. The large-signal oscillation waveform at the output is shown in Figure 6.10.
Time-domain noise simulation showed that the random walk phase noise model is also valid
for this oscillator. Hence, phase noise performance can be summarized with the parameters
« and (3 defined before. We calculated 3% « for three different nodes in the circuit to compare
the phase noise characterizations for different nodes. The results are in Table 6.2. We can
observe in Table 6.2 that even though the large signal slew rate at the transitions, i.e. S,
and the slope of the linear ramp envelope for the noise variance waveform, i.e. «, have
different values, the calculated value of 32 a is equal for the three nodes considered. Hence,

stochastically equivalent discrete-time random walk processes are obtained for all of the
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nodes which were considered for phase noise characterization. This intuitively makes sense.
Phase noise or timing jitter is basically equivalent to noise in the zero-crossing or transition
times of the oscillator waveforms, and we expect it to be equal in all of the waveforms
of an oscillator circuit. In Section 6.3, we will show that the phase noise characterization
obtained with the definition and the characterization algorithm we have presented is, in
general, same for all of the circuit variables of an oscillator. Thus, it is a property of the
oscillator itself, not just a property of one of the state variables.

The ring-oscillator and the relaxation oscillator we have considered are fully dif-
ferential circuits. Hence, the low-to-high and high-to-low transitions of the large signal
waveforms were symmetric. So, the definition of phase noise obtained as discrete-time
stochastic process by sampling at either kind of transition is equivalent. On the other hand,
the harmonic oscillator we are considering is not a fully differential circuit, and the low-
to-high and high-to-low transitions are not symmetric (i.e. the largest slew rate value is
different). However, the phase noise characterization obtained by sampling at either kind
of transition for the same node gave the same result, similar to the case where results were
compared by calculating the phase noise characterization for different nodes. In Section 6.3,

we will also show that this is true in general for the definition of phase noise we presented.

6.2.3.4 Conclusions

We defined phase noise as a discrete-time stochastic process, and found out that it
can be characterized as a random walk process for several practical free running oscillators
for which the oscillation mechanisms are quite different. Our definition of phase noise was
for a specific circuit variable of the oscillator. However, we observed in our phase noise
characterization of the harmonic oscillator that, we indeed obtain the same characteriza-
tion for different circuit variables of the same oscillator. In Section 6.3, we will take a
mathematical viewpoint and explore the reason behind these findings, and show that for a
class of oscillators (with white noise sources only, i.e. thermal and shot noise) the random
walk phase noise model is valid in general, and the phase noise characterization obtained is

independent of the circuit variable used.
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6.2.4 Phase noise “spectrum”

Almost all of the work in literature on phase noise characterizes it in frequency
domain with a “spectrum”. Phase noise is clearly a nonstationary stochastic process as we
have found out for the several practical oscillator circuits we have considered above. It is
neither WSS nor cyclostationary, its variance is a monotonically increasing function of time.
It is not clear how one would define and characterize a “spectrum” for phase noise.

In our above discussion, we defined phase noise as a discrete-time stochastic pro-
cess, and gave a full second-order probabilistic characterization for it as a random walk
process. We believe that this is the most suitable characterization, given that it is a process
without a steady-state characteristics. However, to show the connection of our characteri-
zation and the frequency domain characterization usually used for phase noise, we will next
discuss the issues that arise when a frequency domain spectrum is derived for phase noise.

We have defined phase noise as a discrete-time stochastic process to character-
ize the noise in the transition times of an oscillation waveform. For frequency domain
characterization, we will consider a continuous-time “equivalent” for it. Thus, we define a

continuous-time phase noise process 1 (¢) which satisfies
(kT) = ¢[k] (6.43)

where ¢ is the discrete-time phase noise process we have defined earlier. The autocorrelation

function of ¢ was given in (6.31). Then, the autocorrelation of #, i.e.
E[p(t+7/2)p(t - 7/2)] (6.44)
should satisfy
E [Y(kT)w(mT)] = 2« min (kT,mT) for k,m >0 (6.45)

when t + 7/2 = kT and t — 7/2 = mT for t > 0 and —2¢t < 7 < 2¢. Obviously, (6.43)
and (6.45) only partially characterize ¢ as a stochastic process. As long as (6.43) and
(6.45) are satisfied, ¢ and the sampled 1 are stochastically equivalent, and the probabilistic
characteristics of v is only relevant at the transition times. Hence, we use the extra freedom

to specify ¥ as a Gaussian stochastic process with the autocorrelation function

Ry(t,7) = E[W({t+71/2)90(t—1/2)] (6.46)
= famin(t+7/2,t—1/2) (6.47)
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fort > 0 and |7] < 2t. Recall that ¢ is also a Gaussian process. The autocorrelation function
in (6.47) obviously satisfies (6.45), and it is the autocorrelation function of a (scaled) Wiener
process. The scaled Wiener process 1 is the output of an ideal integrator when the input

is a white noise source with spectral density

Si(f) = % (6.48)

The transfer function (as defined by (2.109)) of an ideal integrator is given by

1 1
Hint(f) = 56(f) + ot

6.49
. (6.49)
If we use (6.48), (6.49) and (2.135) to calculate the “spectral density” of the output of the

integrator, we obtain
1

a 472 f2

by ignoring the singularitites at f = 0. The spectrum expression above is the one that is

Su(f) = B (6.50)

extensively used to characterize the phase noise of free running oscillators. In the phase noise
literature, it is most often interpreted as if it is the spectral density of a WSS process that
models the phase noise of the oscillator. This interpretation is clearly wrong. The expression
in (6.50) obviously can not be the spectral density of a well-defined WSS stochastic process:
A WSS process having the spectral density in (6.50) has infinite variance. The formula
in (2.135) assumes that the LTI system is stable so that the output of the LTI system is
guaranteed to be WSS when the input is WSS. An ideal integrator is not a stable LTI
system. When a WSS process is the input to an integrator, the output is, in general,
not a WSS process. This is very similar to what has been done for 1/f noise: Trying to
model an inherently nonstationary phenomenon such as 1/f noise, or phase noise in free
running oscillators, using notions and techniques from the theory of WSS processes is not

appropriate.

6.3 Phase Noise: Same at All Nodes

In the phase noise characterization of the oscillator circuits in the previous section,
we calculated the noise variance of circuit variables for several oscillator circuits, and found
out that the variance waveforms, which were obtained by numerically solving (5.74), had

linear ramp envelopes. In Section 5.6, we gave an analytical expression for the solution of
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(5.74), which we repeat below
t
K(t) = @(t,0) K0<I>(t,0)T+/ ®(t,7)F(NF(r) @, 7)" dr (6.51)
0

where ®(¢, 1) is the state transition matrix for the system of linear time-varying homoge-

neous differential equations

vy =E(t)y. (6.52)
We will now show that, for an oscillator circuit with a stable steady-state oscillation, one of
the eigenvalues of & (7', 0) must be exactly 1. We assume that (6.10) for the oscillator circuit
has a periodic steady-state solution x,(t), which is a stable limit cycle in the n-dimensional

space. Hence,
d
I(xs) + %Q(XS) =0 (6.53)

holds. (6.53) can be rewritten as

I(x,) + C(x,)xs =0 (6.54)
where C(x;) is the Jacobian of Q(x;) as defined by (5.26). Let us take the time derivative
of both sides of (6.53) to obtain

d .
%[C (x5)%s] =0 (6.55)

G(xs)%s +
where G(x;) is the Jacobian of I(x;) as defined by (5.19). In this case, ¢t does not appear
explicitly as an argument of G, because the circuit is autonomous and it does not have

external time-varying excitations. If we expand the derivative in (6.55), we get

G(xs)%s + [%C(xs)]fcs + C(x4)%X, =0 (6.56)
and hence
[G(xs) + %C(xs)]ks + C(xs)%s = 0. (6.57)

Then, we substitute A(t) and C(¢) into (6.57), which were defined by (5.32) and (5.39) in
terms of G(x;) and C(x;), to obtain

A(t)xs + C(t)xs = 0. (6.58)
Thus, the time derivative of the periodic steady-state solution, i.e. X, is a solution of the
following homogeneous system of linear periodically time-varying differential equations

Ay +ct)l

—v =0 .
oY (6.59)
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which represents the LPTV system that is obtained by linearizing the nonlinear autonomous
oscillator circuit around the periodic steady-state solution. Since x; is periodic, %, is also
periodic. Thus, (6.59) has a periodic steady-state solution. Now, we can easily show that
the homogeneous system (6.52) also has a periodic steady-solution, because it was obtained
from (6.59) by eliminating the pure algebraic equations to remove the rank deficiency of
C(t), which was explained in detail in Section 5.4. The state vector for (6.52) is a reduced
version of the state vector for (6.59). Hence, the periodic steady-state solution of (6.52) is
obtained from x; by eliminating some of the variables.

As we saw in Section 2.4.9, the LPTV system (6.52) has a periodic solution if and
only if ®@(7,0) has an eigenvalue equal to 1, where ®(¢, 7) is the state transition matrix for
(6.52), and 7' is the period of oscillation. Furthermore, one can show that the rest of the
possibly complex eigenvalues of ®(7',0) should have magnitudes less than 1, if the oscillator
is in a stable limit cycle. We state this stability condition without proof. Intuitively, it
is easy to see the validity of this statement: (6.52) represents an LPTV system that is
obtained by linearizing the nonlinear autonomous oscillator circuit around the periodic
steady-state solution. If ®(7,0) has eigenvalues with magnitudes greater than 1, or more
than one eigenvalue with a magnitude that is equal to 1, the homogeneous system (6.52) can
have solutions that grow without bound, implying that small perturbations on the periodic
steady-state trajectory can cause the oscillator to drift away from the limit cycle, which
in turn implies an unstable oscillation. For most oscillator circuits, ®(7,0) will have an
eigenvalue that is equal to 1, and the rest of the eigenvalues will have magnitudes that
are “much” smaller than 1. A second eigenvalue that has a magnitude close to 1 suggests
that the oscillator circuit is close to being unstable, which is usually the case for high-Q
oscillators [16]. We will calculate the eigenvalues of ®(7T',0) for several oscillators later.

We will now consider the representation of the state transition matrix for the
LPTV system (6.52) that was derived in Section 2.4.9 and given by (2.202), which we

repeat below
O(t, 1) = Z_: exp (1;(t — 7))us (t)v? (1) (6.60)

where 7; are the Floquet exponents for (6.52), and wu;(t) and v;(¢) are vectors that are

periodic with 7. We know that ® (7, 0) has an eigenvalue equal to 1, we arbitrarily set?

m =0. (6.61)

2See Section 2.4.9 for the relationship between the Floquet exponents n; and the eigenvalues of (T, 0).
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With (6.61), we know from Section 2.4.9 that uy(¢) is a periodic steady-state solution of
(6.52). However we also know that %, is a periodic steady-state solution of (6.52). Thus,

we set?

uy (1) = x,(t). (6.62)
Moreover, since 71 = 0, vy (t) is a periodic steady-state solution of

< T

§ =BTy (6.63)

which also follows from our discussion in Section 2.4.9.
Next, we use the representation of the state transition matrix in (6.60) for (6.52),
to calculate the analytical solution of (5.74) given in (6.51). For oscillator circuits, we set

the initial condition to zero
Ko =K(0) = 0. (6.64)
We will calculate the kth diagonal entry of K(t), which is the noise variance of the kth

state variable that is either an inductor current or a node voltage with a capacitive path to

ground. The kth diagonal entry of K(¢) is given by

el K(t) e (6.65)
where
T
ek:{() o010 - 0} (6.66)
with 1 as the kth entry. From (6.51) and (6.64)
¢
T K (1) ek:/ I &(t,7)F(r)F(r) ®(t,7) ey dr (6.67)
0

from which it follows that

el K(t)er = /Ot el ®(t,)F(r)F(r) el ®(t, 7)) dr (6.68)
We then calculate
el ®(t,7) = Zn:exp (mi(t — T))ezui(t)viT(T) (6.69)

= Sesp - ) ) (670

®Note that any scaled version of the periodic steady-state solution (6.52) is also a periodic steady-state
solution of (6.52). We have the freedom of choosing the scaling for u;(¢), and hence setting u; (t) = %.(¢), as
long as we choose the scaling of vi(¢) such that (2.201) is satisfied. This is required for the representation
(6.60) to be valid.
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where {u;(¢) } denotes the kth entry of u;(¢). We have 7, = 0, and we assume that
lexp ()| <1 fori=2,....n (6.71)

since 7; have negative real parts for ¢« = 2,...,n. (6.71) is satisfied for “most” oscillator
circuits. We will later discuss the cases for which (6.71) is not satisfied. When (6.71) is
satisfied, the contribution of the terms for ¢ = 2,...,n in the summation (6.70) to the
integral in (6.68) will be negligible. The value of the integral will be determined by the

term for ¢ = 1 as a quite accurate approximation. Then, (6.70) can be approximated with

eg ®(t,7) =~ exp(m(t-— T)){ul(t)}kvlT(T) (6.72)
= {w(O)}v{ () (6.73)

to evaluate the integral in (6.68). We substitute (6.73) in (6.68) to obtain

el K(t) e, = /Ot{ul(t)}kvlT(T) F(r)F(r)" {wi()}pvi (r)]" dr (6.74)
and hence .
eg K(t)er = /0 a’vs(t)zvlT(T) F(T)F(T)Tvl(T) dr (6.75)

where we substituted
(1) = {1 () }r = {%s(t) }& (6.76)

using (6.62). We observe that vi (7)F(7)F(r)Tvy(r) in (6.75) is periodic in 7 with period
T and satisfies
Vi (T) F(r)F(r) vi(r) > 0 (6.77)

for all 7 > 0, because F(7)F(7)7 is a positive semidefinite matrix for all 7 > 0. Since @, (t)?
is independent of the integration variable 7, it can be taken out of the integral, and we
obtain

el K(t) e, = i,(t)* /Ot vi(r)F(r)F(r) L vi(r) dr. (6.78)

Thus, we obtained an analytical expression for the noise variance of the kth state variable
of the circuit. Recall that we can numerically solve (5.74) to calculate the noise variance of
circuit variables as a function of time. We did this for the negative resistance oscillator in

Section 5.10.4, and obtained the waveform in Figure 5.12. (6.78) tells us that the variance
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waveform in Figure 5.12 can be approximately constructed by “modulating” the periodic

waveform? i,(¢)? with the waveform that is given by the integral
t
[ O POFE v dr (6.79)
0

where the integrand is a nonnegative-valued periodic function of 7. We can also see from
(6.79) that the variance waveform will have a linear ramp ramp envelope. Moreover, we
observe that the peaks in the variance waveform are going to be at the time points where
the peaks in i4(¢)? occur, i.e. at the transition or zero-crossing points of the large-signal
steady-state periodic oscillation waveform, which are identified as the time points where
i5(t)* takes its largest value. The set I' we defined with (6.17) contains these time points.

We can actually calculate the slope « of the linear ramp envelope as follows:

o= [Org% (@S(t)Z)] % /0 T () F(AF ()T vi () dr. (6.80)

Recall that we used the slope a in Section 6.2.2 to characterize phase noise as a random
walk process. The autocorrelation function of phase noise represented as a random walk

process was given by (6.31), which we repeat below

E [¢[k] o[m]] = > a min (k,m)T for k,m >0 (6.81)
where
_2nf.
p=—3 (6.82)

as defined by (6.24). Recall the definition of S as

S = B, E(t). (6.83)

Let us now use (6.80), (6.82) and (6.83) to calculate 32 a:

B2 o= (2 f)F o OSIST (isgti]g % /0 T FORE () dr, (6.8)

[max g<i<1 T5(t

from which it follows that

Ba=(2rf.)* % /OT VlT(T) F(T)F(T)Tvl(T) dr. (6.85)

B%a in (6.85) is independent of @4(t). Thus, the autocorrelation of phase noise in (6.81)

is independent of i4(t)! Recall that the phase noise characterization was obtained for a

*See Figure 6.4 for a plot of % s(t).
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specific circuit variable. The slope for the envelope of the noise variance o was calculated
for a specific state variable of the system. As seen in (6.80), « depends on &,4(t) which is
the derivative of the large-signal periodic steady-solution for this specific state variable as
defined by (6.76). However, even though both a and 3 depend on i4(¢), 3? « is independent
of it. Thus, the phase noise autocorrelation (6.81) is independent of the state variable we
choose, making phase noise a property of the whole oscillator circuit instead of only the
state variable it was calculated for. This result we arrived at is not obvious for the phase
noise definition we presented, and is by no means a trivial observation. Recall that we
“experimentally” observed this result for the harmonic oscillator in Section 6.2.3.3.

(6.85) also suggests a way to directly calculate 3% o without first numerically solv-
ing (5.74), if we can somehow calculate the periodic vector vq(t) for 0 < ¢t < T. The
periodic vector vy () can be computed as a periodic steady-state solution of (6.63). It turns
out that the phase noise characterization methodology proposed by Franz Kaertner [16]
arrives at exactly the same phase noise characterization represented by (6.85) we obtained,
even though his definition of phase noise, and his derivation of the phase noise characteri-
zation is completely different than ours. The numerical method he proposes for phase noise
characterization is based on calculating v;(¢) and using (6.85). We will discuss Kaertner’s

work in more detail in the next section.

6.4 Kaertner’s Work on Phase Noise

Kaertner [16]° defines timing jitter/phase noise for a free running autonomous

oscillator as a continuous-time stochastic process:
X(t) =xs(t+v(t)) + AX(t+v(t)) (6.86)

where x,(t) represents the periodic steady state solution of the oscillator circuit without
the noise sources (which is a limit cycle in the n-dimensional space), X(¢) is the trajectory
of the oscillator with the noise sources, v(t) represents the phase noise/timing jitter as
a stochastic time shift, and he calls AX(t) the amplitude noise process. Obviously, the
decomposition of the noisy trajectory X(¢) as in (6.86) is not unique, and needs further

specification. (6.86) can be interpreted as the decomposition of the “difference” between

5We will summarize Kaertner’s work using the notation and formulation we have introduced, so that the
connection between his work on phase noise and ours can be clearly seen.
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the noisy trajectory X(¢) and the noiseless limit cycle x4(¢) into a tangential motion v(t)
and a transversal motion AX(t). Kaertner arbitrarily restricts the transversal deviation
AX (t) onto the hyperplane that is spanned by the vectors uz(t), us(t), ..., u,(t) in (6.60).°
Thus, he obtains

vil)T AX(t) =0 (6.87)

using the orthogonality relations given in (2.201). Using orthogonal projection operations
which are based on (2.201), he proceeds to derive the following stochastic “integral” equation

for the stochastic time shift v(¢) that represents phase noise:
()
vy = [ VIO Faw (). (6.88)
0

Then, he derives a “spectrum” expression for phase noise” starting from (6.88). After some
“juggling”, it can be shown that the phase noise spectrum he derives is exactly equal to
(6.50) with 3? a given by (6.85).

Phase noise is a concept with a lot of confusion and controversy around it, because
it can be defined in many ways, and it can be characterized in various different ways. We
found Kaertner’s work on phase noise to be one of the very few that treats the problem
using non ad-hoc mathematical techniques, and with clear definitions.® We believe that
Kaertner’s treatment of phase noise and the treatment we presented complement each other

by producing consistent results with different definitions and derivations.

6.5 Alternative Phase Noise Characterization Algorithm

The phase noise characterization for an oscillator boils down to the calculation of
B% o in (6.85), which requires the computation of the periodic vector vy(¢) for 0 < ¢ < T.

Kaertner [16] describes a numerical method for the computation of v¢(¢). Without providing

®In a former paper [55], Kaertner uses a different restriction to fully specify the decomposition in (6.86).
He reexamines this restriction in [16], and modifies it as described above. His motivation for the new
definition is that, with the new definition, the decomposition into amplitude and phase noise is independent
of the coordinate system used. With his former definition in [55], a change of coordinates also transforms
a part of phase noise into amplitude noise and vice versa. The requirement for the invariance of phase
noise under coordinate transformations is actually exactly equivalent to the invariance of phase noise for
the different state variables of the oscillator circuit we have proved in Section 6.3 for our definition of phase
noise.

"Note that the units of v(t) is the units of time, hence it represents the timing jitter process. Thus, if we
scale v(t) with 27 f. we obtain the phase noise process.

8The reader is referred to [16] for the details of his work, although it might require some “digging” into
his notation to clearly see what is going on.
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details, we will present the outline of the numerical algorithm for computing vy (¢), which
is very similar to the algorithm proposed by Kaertner:

1. Compute the large-signal periodic steady-state solution x,(t) for 0 <¢ <7

2. Compute the state-transition matrix ®(7,0) by numerically integrating

Y=E1)Y, Y(0)=I (6.89)
from 0 to T'. Note that
O(1,0)=Y(T). (6.90)
3. Compute u;(0) using
u; (0) = %x4(0). (6.91)

Note that uy(0) is an eigenvector of ®(7,0) corresponding to the eigenvalue 1.

4. v1(0) is an eigenvector of ®(7,0)T corresponding to the eigenvalue 1. To compute
v1(0), first compute an eigenvector of ® (T, 0)7 corresponding to the eigenvalue 1, then
scale this eigenvector so that

vi(0) T u (0) =1 (6.92)

is satisfied. (6.92) has to be satisfied for the representation of the state transition

matrix ¢ (¢, 7) given in (6.60) to be correct, as derived in Section 2.4.9.

5. Compute the periodic vector vy(t) for 0 < ¢ < T by numerically solving
§ =BTy (6.93)

using v1(0) = v¢(T) as the initial condition. Recall that v;(¢) is a periodic steady-
state solution of (6.93) corresponding to the Floquet exponent that is equal to 0.
All of the other Floquet exponents for (6.93) have positive real parts as discussed in
Section 2.4.9. Thus, it is not possible to calculate v;(¢) by numerically integrating
(6.93) forward in time, because the numerical errors in computing the solution and
the numerical errors in the initial condition v1(0) will excite the modes of the solution
with Floquet exponents that have positive real parts. However one can integrate
(6.93) backwards in time with the “initial” condition v;(T") = v1(0) to calculate vy(t)

for 0 <t < 7T in a numerically stable way.
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6. Then, 3%« is calculated using (6.85). Thus, the the discrete-time process ¢, i.e.
phase noise, is fully characterized as a random walk process with the autocorrelation

function given in (6.81).

The algorithm we described above is an alternative to the one we have presented in Section
6.2.2. The phase noise characterizations calculated with both of the algorithms should
agree, because, in Section 6.3, we have shown that the above algorithm can be derived from
the one that was described in Section 6.2.2.% The algorithm described in Section 6.2.2 was
based on using the general time-domain noise analysis (Chapter 5) technique on an oscillator
circuit. Then, using some properties of oscillator circuits, we were able to derive the above
algorithm which enables us to calculate the phase noise characterization efficiently without
performing a full time-domain noise analysis. This specific phase noise characterization
algorithm turns out to be exactly equivalent to the one proposed by Kaertner [16] with a
different definition for phase noise, and a different derivation.

We implemented the above algorithm in SPICE. We will not present a detailed de-
scription of this implementation here, but we will mention a few important points. In imple-
menting the above algorithm, one can increase the efficiency by saving LU factored matrices
that needs to be calculated in Step 2 and reuse them in Step 5. If the large-signal periodic
steady-state of the oscillator is calculated using the shooting method!'® in Step 1, then the
state transition matrix ®(7, 0) of the linear time-varying system obtained by linearizing the
nonlinear oscillator circuit around the large-signal periodic steady-state is already available.
It can be shown that the Jacobian of the nonlinear system of equations that is solved in
the shooting method (using Newton’s method, to calculate the initial condition that results
in the periodic steady-state solution) is equal to ®(7,0) — I [56][57]. Moreover, one can
avoid calculating ®(7',0) explicitly, and use matrix-implicit iterative methods both for the
shooting method, and at Step 4 to calculate the eigenvector of ®(7', O)T that corresponds to
the eigenvalue 1 [58]. For high-Q oscillators, the iterative methods can run into problems,
because ®(7',0) may have several other eigenvalues which are close to 1. In our implemen-
tation in SPICE, we explicitly calculate ®(7',0) and perform a full eigenvalue/eigenvector

calculation, which will allow us to investigate the properties of the state-transition matrix

°Recall that, in this derivation, we have assumed that the eigenvalues of P(T,0) (except the one that
is equal to 1 due to the zero Floquet exponent) have magnitudes that is “much” smaller than 1. This
assumption is not justified for high-Q circuits. We will see an example for this later.

2Computing the large-signal periodic steady-state for autonomous circuits is still an active research area,
which is especially difficult for high-Q oscillator circuits.
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for various oscillator circuits. Oscillator circuits are usually small circuits, i.e the dimen-
sion of the state vector is not too large. Hence, a full eigenvalue/eigenvector calculation
for ®(7',0) is feasible. Even with a full eigenvalue/eigenvector calculation for ®(7°,0), the
phase noise characterization algorithm discussed above is still very efficient.

We used this implementation to characterize the phase noise of the oscillator cir-
cuits we have already characterized with the algorithm in Section 6.2.2. Next, we will
present these results and discuss various issues in using this algorithm, and comment on
the results we obtain. In the presentation of the examples, we will refer to the phase noise
characterization algorithm presented in Section 6.2.2 as Algorithm I, and the phase noise

characterization algorithm presented in Section 6.5 as Algorithm II.

6.5.1 Examples

We first applied this algorithm to the simple negative resistance oscillator we
considered in Section 5.10.4. This circuit has only two state variables, i.e. the inductor
current and the capacitor voltage. We computed the 2 x 2 ®(7,0) for this circuit, and

performed an eigenvalue/eigenvector calculation. The two eigenvalues computed are

1 = 0.996652
e = 0.033287

As expected, one of the eigenvalues is very close to 1.'' The other one is almost two orders
of magnitude smaller than 1, justifying our assumption in the derivation of Algorithm II.
We computed 3% o using Algorithm II and obtained the same result as the one that was
obtained with Algorithm Iin Section 6.2.2.

We calculated the state-transition matrix ®(7,0) for both the ring-oscillator con-
sidered in Section 6.2.3.1 and the relaxation oscillator considered in Section 6.2.3.2, and
performed a full eigenvalue/eigenvector calculation. The first seven eigenvalues (in order
of decreasing magnitude) with magnitudes larger than the machine € are shown in Table
6.3. As expected, one of the eigenvalues for both of the oscillators is close to 1. The second

largest eigenvalue for the ring oscillator is more than two orders of magnitude smaller than

Since we calculate the state transition matrix ®(7), 0) by numerical integration which discretizes time, this
eigenvalue is not equal to 1. If we use smaller time steps to calculate ®(7,0), then the eigenvalue calculated
becomes closer to 1. However the time discretization is not the only numerical error source. Numerical
errors also arise due to errors in calculating the oscillation period 7' and in the numerical calculation of the
eigenvalues.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 197

’ || Ring Oscillator | Relaxation Oscillator ‘
| State vector dimension || 105 | 44 |
Eigenvalues

1 0.974039 1.134139

2 6.676138e-3 3.941591e-16

3 -5.507e-3 + j 7.128e-4 €

4 -5.507e-3 - j 7.128e-4 €

5 2.47he-4 + j 2.946¢-3 €

6 2.47he-4 - j 2.946e-3 €

7 5.393619e-4 €

Table 6.3: Eigenvalues of ®(7',0) for the ring and the relaxation oscillators

1, whereas for the relaxation oscillator it is 15 orders of magnitude smaller, justifying our
assumption in using Algorithm II for phase noise characterization. The 3? o values calcu-
lated using Algorithm II, and the ones obtained with Algorithm I in Section 6.2.3.1 and
Section 6.2.3.2 were the same.

We now consider the harmonic oscillator of Section 6.2.3.3. Table 6.4 shows eleven
of the eigenvalues for the state-transition matrix ®(7',0). The other five eigenvalues were
smaller than the machine . We observe that ®(7,0) has 7 eigenvalues with magnitudes that
are very close to 1, some of them as complex conjugate pairs. Only one of these eigenvalues
is the one that is theoretically equal to 1 as we know from the Floquet theory of an oscillator
with a stable limit cycle. All the others have magnitudes less than 1. Because of various
numerical error sources (mainly the time discretization), the eigenvalues are not calculated
precisely. Since this circuit is a high-Q one, ®(7',0) has eigenvalues with magnitudes close
to 1 other than the one which is supposed to be equal to 1 as obtained theoretically. Because
of numerical errors, we can not identify the eigenvalue that is supposed to be equal to 1
theoretically.!? For the oscillator circuits we have considered up to now, all of the other
eigenvalues have magnitudes much smaller than 1, so we were not faced with the problem
of identifying the correct eigenvalue. At Step 4 of Algorithm II, we need to identify this
eigenvalue so that we can choose the corresponding eigenvector of ®(7,0)7 as v1(0). As
seen in Table 6.4, the eigenvalues with magnitudes close to 1 are very “close” to each other,

so it is not feasible to identify the correct eigenvalue by calculating ®(7’,0) more accurately

12The issue of identifying the correct eigenvalue was not addressed by Kaertner in [16].
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| | Harmonic Oscillator |

| State vector dimension || 16 |
Eigenvalues
1 9.654e-1 4 j 1.402e-2
2 9.654e-1 - j 1.402e-2
3 9.985166e-1
4 9.99999999827e-1 + j 1.886e-5
5 9.99999999827e-1 - j 1.886e-5
6 9.99999999982¢-1
7 9.99999899752e-1
8 7.068e-1 4+ j 5.030e-1
9 7.068e-1 - j 5.030e-1
10 4.878e-1
11 3.110e-2

Table 6.4: Eigenvalues of ®(7',0) for the harmonic oscillator

by taking smaller time steps. Instead, we use the following relationship to identify the

correct eigenvalue

vi()Tu(0) = v;(0)T x,(0)

1 i=1
= {0 i (6.94)

which follows from (2.152), since v;(0) are the eigenvectors of ®(7,0)7 and u;(0) are
the eigenvectors of ®(7,0) corresponding to the same eigenvalues. We first calculate
u;(0) = %,(0) from the large-signal periodic steady-state solution x,(t). Next, we per-
form a full eigenvalue-eigenvector decomposition of ®(7,0)7, and select the eigenvectors
with corresponding eigenvalues that are close to 1. Then, we compute the dot products of
these eigenvectors with uy(0) = %,(0). Of course, (6.94) will not be satisfied exactly due
to numerical errors, but we will still be able to identify the eigenvector that corresponds
to the eigenvalue that is theoretically equal to 1. This identification is not feasible by just
looking at the eigenvalues. Using the above procedure, we have identified the 3rd eigenvalue
in Table 6.4 as the one that is theoretically equal to 1. Then, we used the eigenvector of
(T, O)T that corresponds to this eigenvalue in Algorithm Il to characterize the phase noise

for the harmonic oscillator, and we obtained the same result as the one that was obtained
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with Algorithm I in Section 6.2.3.3. Recall that, in Section 6.3, we derived Algorithm II
from Algorithm I assuming that all the other eigenvalues of ®(7’,0) other than the one that
is exactly equal to 1 have magnitudes “much” less than 1. Clearly, this assumption is not
satisfied for the harmonic oscillator, but, still, we obtained the same phase noise charac-
terizations using both Algorithm I and Algorithm Il. We conjecture that the derivation of
Algorithm II from Algorithm I is still valid for an oscillator with a stable limit cycle even
when there are other eigenvalues with magnitudes “close” to 1. We do not currently have
a proof for this claim, but we will provide some intuition for why we believe this claim
is true: Even when the magnitudes of the eigenvalues corresponding to other modes are
close to 1, the “directions” of the eigenvectors of ®(7',0) corresponding to these eigenvalues
will be different enough from the “direction” of the eigenvector, i.e. uy(0) = %5(0), that
corresponds to the eigenvalue that is exactly equal to 1.

If there is a second eigenvalue close to 1 with an eigenvector that has a direction
close to uy(0) = %,(0), then this suggests that the limit cycle of the oscillator is close to
being unstable. This condition can be observed using time-domain noise simulation. The
envelope of the noise variance of a state variable for this oscillator will be a parabola instead
of a linear ramp. We will now present such an example. Let us consider the nonlinear

autonomous system that is described by the following state equations:

& = x—-00lzy (6.95)
y = —-y+0.02zy (6.96)

These state equations describe the Volterra predator-prey model. The limit cycle this system
settles into depends on the initial conditions the system is started at. Hence, this system
has an infinite number of limit cycles. Thus, the limit cycle is not stable, and disturbances
will cause the nonlinear autonomous system to move from one limit cycle to another. Two

limit cycles resulting from the initial conditions

z(0) =20 y(0)=20
and

z(0)=19 y(0)=19

are shown in Figure 6.11. We linearized the system around the limit cycle for the initial
conditions

2(0)=20 y(0) =20
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Figure 6.11: Two limit cycles for the Volterra predator-prey model

and inserted two white noise sources as disturbances to perform a time domain noise sim-
ulation. Figure 6.12 shows the noise variance of the state variable x, which has a parabolic
envelope as opposed to a linear ramp, which suggests an unstable limit cycle. The noise
correlation E [X,,(¢ycf) X, (¢)] for ¢..; ~ 33.3 secs is in Figure 6.13, which has a linear
ramp envelope. This indeed means that the LPTV system has two Floquet exponents
that are equal to 0. We computed the 2 x 2 ®(7',0) for this system, and performed an

eigenvalue/eigenvector calculation to obtain

1 = 9.99448e — 1+ j3.137e — 2
po = 9.99448e — 1 —j3.137e — 2

two complex conjugate eigenvalues close to 1! In fact, the system has two eigenvalues at
1, hence unstable. Due to numerical errors, the two eigenvalues calculated are not exactly
equal to 1. There is no point in trying to characterize phase noise for this system, because
the definition of phase noise for this system does not make sense. Phase noise definition
only makes sense for a nonlinear autonomous oscillator circuit that is designed to settle into

a stable limit cycle. For an oscillator with a stable limit cycle, phase noise characterizes
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Figure 6.12: Noise variance for the Volterra predator-prey model
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the errors in the transition times as compared to a noiseless oscillator with transition times

separated evenly in time with the period of the oscillation.

6.6 Non-White Noise Sources and Phase Noise

Up to this point in our treatment of phase noise, we considered oscillator circuits
with thermal and shot noise sources, i.e. white Gaussian noise sources only. For oscillator
circuits with thermal and shot noise, we found out that the phase noise in general can
be modeled as a discrete-time random walk process. We obtained this result in general
for multiple white noise sources in the oscillator circuit, but we could have obtained it for
a single noise source and use the superposition principle to generalize it to the multiple
noise source case. We can use the superposition principle for uncorrelated noise sources
by summing mean-square noise powers, because we model the oscillator circuit as a linear

system for noise analysis. For instance, (6.85) can be rewritten as

2 2 1 T T T
Fra = (2rf) f/o vi (1) F(r)F(r)" vi(r) dr (6.97)
P 1 T
= Yenf? g [ e aEFe (6.99

where p is the number of the noise sources, i.e. the column dimension of F, and f; is the

1th column of F which maps the 2th noise source to the nodes of the circuit. Hence,

(27 f.)* % /OT[VIT(T) fi(r)]>dr (6.99)

represents the contribution of the 7th noise source to 3% a.

For a white noise source, phase noise is identified as a random walk process, which
can be obtained by sampling a Wiener process, i.e. the integral of a white noise process.
We can then model the discrete-time phase noise process due to a white noise source as
the output of a SISO system which is a cascade of three blocks: an ideal integrator, a gain
block and a sampler. The input to the system is a standard stationary white Gaussian noise
source. The gain for the gain block is given as the square root of (6.99) for a single noise
source. If there are multiple white noise sources, this model is still valid when we set the
gain to the square root of 3% a given in (6.98).

We will now address the following questions:
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e Can we model the discrete-time phase noise process due to a non-white noise source
in the circuit as the output of a SISO system which is a cascade of three blocks: an
ideal integrator, a gain block and a sampler. The input to the system is a normalized,
i.e scaled, version of the non-white noise source. In other words, is the phase noise
model we have described above for a white noise source also valid for a non-white

noise source?

e If the answer to the above question is affirmative, how do we calculate the gain of the
gain block in the model so that we can characterize the phase noise of an oscillator

due to non-white noise sources?!?

We will answer the above questions for a single noise source that can be obtained
by passing a stationary white noise through a low pass filter with a single pole. We will
augment the MNA equations for the oscillator circuit so that the low pass filter that is used

in the model of the non-white noise source becomes part of the system:
d
I(X) + o QX)+bY({#)=0 (6.100)
d
%Y: —vY +£(1) (6.101)

where Y (t) represents the low pass filtered white noise source, and the constant vector b
maps this noise source to the nodes of the oscillator circuit. We augment the state vector
X for the oscillator circuit with Y to obtain the new state vector X,. Now, we can rewrite

(6.100) as a system of Ito stochastic differential equations:

I.(X,) + %QG(X) +B&(t)=0 (6.102)
where
X 0 ]
X, = B = (6.103)
Y 1
and
_ | IX)+bY _ | ex)
I.(Xa) = oy , Qu(X,) = y (6.104)

If we apply the small noise expansion of Section 5.3 to (6.102), and go through all the steps
of Section 5.4 to calculate the augmented versions of E and F in (5.74) for the augmented

Y3Recall that we presented two algorithms, referred to as Algorithm I and Algorithm II to calculate the
gain, i.e. the square root of 82 @, for the white noise case.
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E b ] [ 0 ]
F,= (6.105)
0 —v 1

where E is for the unaugmented system. Note that b in (6.105) is not going to be in general

system, we obtain

E, =

equal to the one in (6.104). In fact, even when b in (6.104) is a constant vector, b in (6.105)
can be time-varying. However we will use the same symbol in order not to complicate the
notation.

The augmented E, is a periodically time-varying matrix. We will now express the
state transition matrix of the homogeneous LPTV system with the coefficient matrix E,
in terms of the state transition matrix of the LPTV system with coefficient matrix E. In

other words, we will express the state transition matrix ®,(t, 7) for the system
Yo =Ea(t)ya (6.106)
in terms of the state transition matrix ®(¢, 7) for
vy =E()y. (6.107)

It can be shown that ®,(¢,7) is given by

®(t, 1) a(t,7)
&,(1,7) = 6.108
L T R
where .
a(t,r):/T ®(1, 2)b(2) exp (—y(z — 7)) d=. (6.109)

(6.108) can be easily verified using the representation of E, in (6.105).
We now proceed as in Section 6.3 to calculate the analytical solution of (5.74) as

given in (6.51). For the augmented system, (6.51) takes the form
t
K, (t) = ®,(t,0) K0 ®,(t,0)7 +/ ®,(t,7)Fo(r)Fo (1) &, (t, )T dr (6.110)
0

We set the initial condition to
0 O
Ko =K.(0) = [ ) ] (6.111)
0

In (6.111), we specifically set the initial condition for the variance of the augmented state

1

variable Y to 5 Recall that the augmented state variable Y represents a low pass filtered
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white noise. We would like the augmented state Y to represent a WSS process. If we set

the initial condition for the variance of Y to 0, then it will not be a WSS process, and in

fact its variance as a function of time will be given by

1 —exp (—27t)
2y

which satisfies E [Y(0)?] = 0. As seen in (6.112), the steady-state value of the variance for

E |V (1)?] = (6.112)

Y is equal to % This is exactly why we set the initial condition to this value so that

E[V(1)?] = 217 for t>0 (6.113)

is satisfied, and hence, Y is a WSS process that is in steady-state.

We will now calculate the kth diagonal entry of K, (¢), which is the noise variance
of the kth state variable that is either an inductor current or a node voltage with a capacitive
path to ground. We restrict k to be between 1 and n. The (n+41)th state variable represents
the low pass filtered white noise, and hence the (n + 1)th diagonal entry of K,(¢) is given
by (6.113). The kth diagonal entry of K, (¢) is given by

el K, (t)ey, (6.114)

where
T
ek:{() .01 0 .- 0} (6-115)
with 1 as the kth entry.
We will calculate the first term in (6.110) due to the initial conditions and the
second integral term separately. We will refer to the term due to the initial conditions as

K,;, and the second term as K,,. We now proceed to calculate K,;(¢):
Kui(t) = @4(t,0) K o®,(t,0)
[ &(1,0)  a(t,0) ] [ 0 0 &(t,0) a(t,0)
0 exp (—vt) 0 %

a(t,0)a(¢,0)7 exp (—y(t—7)) a(t,0) ]

0 exp (=t

T
6.116
) ] (6.116)

_ 2y 2y
exp (—y(t=7))a(t,0)* exp (=241)
L 2y 2y

where we used (6.108) and (6.111). From (6.117), the kth diagonal entry of K,;(¢) is given
by

(6.117)

t,0)a(t,0)"
el Kyt er = e%%ek (6.118)
v
t,0)?
= M (6.119)
2y
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where ay(t,0) denotes the kth entry of the n x 1 vector a(¢,0). From (6.109)
a(t,0) = /Ot ®(1, 2)b () exp (—72) dz. (6.120)
Now, we approximate ®(¢, z) in (6.60) with
B(t,2) = uy (t)vi(z) (6.121)

as explained in Section 6.3. Then, we substitute (6.121) and (6.120) in (6.119), and after
some simple manipulations we obtain

el K,i(t) e, = Ly’cs(t)2 [/Ot vI(2)b(2) exp (—vz) dz (6.122)

where i4(t) was defined by (6.76) as the kth entry of uy (¢). Recall that uy(¢) is the derivative
of the large-signal periodic steady-state solution of the oscillator.

We now proceed to calculate K,,(t), the second term in (6.110):

K., (1) = /Ot &, (t,7) Fo(r)Fa(r)T ®u(t, )7 dr

- ik

o a(t, ) Y TdT 6193
I [exm—w—r))][ )" (2t (6.123)

where we used (6.108). From (6.123), the kth diagonal entry of K,,(¢) is given by

T T
o(t,r) a(t,7) ] h
)

0 e (t=7

&(t,7) alt,r) ]

0 e_w(t_,r)

t
T K, (t) ey, = / ay(t, 7)2 dr (6.124)
0
where ay(t, 7) denotes the kth entry of the n X 1 vector a(t, 7). Then, we proceed as in the
calculation of K,;(t), and substitute (6.121) and (6.109) in (6.124), and after some simple

manipulations we obtain

el Koy (l) er = i4(1)? /t [/t VI (2)b(2) exp (=7 (= = 7)) dzr dr (6.125)

0

Now, we calculate the kth diagonal entry of K, (¢)

el K, (t)er = el Ku(t)e,+el Kip(t)ep (6.126)

2 % [J}f VlT(z)b(z) exp (—vz) dz} :

t [t T 2 (6.127)
+J3 [JvT(2)b(2) exp (—(z = 7)) d2] " dr

= i(t)
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where e} K,;(t) er and el K,,(t) ex were substituted from (6.122) and (6.125) respectively.
We calculated the noise variance of the kth state variable due to a WSS non-white noise
source that was obtained by low pass filtering a WSS white Gaussian process. Recall that, in
Section 6.3, we have done the same calculation for white noise sources and obtained (6.78).
We observe that (6.78) and (6.127) are in the same form, i.e. they can be expressed as the
product of the periodic i(¢)? and a modulating function. For multiple white noise sources,
the modulating function is given by (6.79) as calculated in Section 6.3. The modulating
function for the non-white noise source is given by

1 t - 2 t t - 2

2 [/0 vy (2)b(z) exp (—7v2) dz] —I—/O [/T vy (2)b(z) exp (—y(z — 7)) dz| dr (6.128)
as seen in (6.127). When the modulating function in (6.79) is sampled at the peak points of
i4(t)?, we obtain a linear ramp waveform. This was the reason we were able to model phase
noise for white noise sources as the sampled output of an ideal integrator-gain block that is
driven by a white noise source. Now, the question is: What do we obtain when we sample
the modulating function in (6.128) at the peak points of i,(t)2? Note that vi(z)b(z) in
(6.128) is a scalar that is a periodic function of its argument z, and recall that v{ (7)F(7)
in (6.79) is a periodic function of its argument, and it is also a scalar if there is only one

noise source in the circuit. Now, we will first evaluate (6.128) by substituting

vi(z)b(z) = c. (6.129)

We will later consider the general case when v{ (2)b(z) is periodically time-varying. If we

substitute (6.129) in (6.128) and evaluate the integrals, we obtain

2Lt texp (=v1)

5 (6.130)

However (6.130) is ezactly equal to the variance of a stochastic process that can be obtained
as the output of an ideal integrator and a gain block (with gain ¢) when driven by the same
non-white noise source that was in the oscillator. To show this equivalence, we will calculate
the variance of the output of an ideal integrator driven by the low pass filtered white noise.
It can be shown that the autocorrelation function for the WSS low pass filtered white noise
is given by

Ry (r) = 220D (6.131)

2y
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Let this process Y be the input to an integrator, and let Z be the output. Then, the

variance of 7 as a function of time is given by [40]

E[2()?] = /Ot /Ot Ry (t; — ta)dty dt (6.132)

—14+~t+exp (—7t)
- = . (6.133)

Thus, we obtain the same expression in (6.130). When v{ (z2)b(z) is a constant ¢, i.e. when
(6.129) is satisfied, we conclude that the phase noise of the oscillator due to a non-white
noise source can be modeled as the sampled (at the peak points of @4(¢)?) output of a system
that is a cascade of an ideal integrator and a gain block with gain ¢ when driven by the
same non-white noise source that was in the oscillator. It can be shown that this model is

also valid when v{(z)b(z) is periodically time-varying. We will discuss the calculation of

the gain when v{ (2)b(z) is periodically time-varying.
We will first give an approximate formula for the square of the gain A without a
derivation, and then discuss some special cases to provide some intuition into it. We expand

the periodic v{ (2)b(z) into a Fourier series:

vI(2)b(z) = i Cm €xp (j2rmfez). (6.134)

m=—00

Then, the formula for the square of the gain is given by:

o0

AP =(2nf)? > |cm|277—2. (6.135)

m=—0o0
Let us know consider the case when y—o0, i.e. the bandwidth of the low pass filter goes

to oo, which means that the noise source approaches a white noise source.!* Then, (6.135)

reduces to
A? = (2rf.)? i | |? (6.136)
T
= @rf? g [ BT b (6.137)

which is exactly in the same from as (6.99). Recall that (6.99) is the square of the gain for
a single white noise excitation. Thus, (6.135) is consistent with our results for white noise

sources.

1 Actually, to take this limit one has to scale the noise source Y (as defined by (6.101)) by ~ so that it
becomes a white noise source with unity spectral density in the limit y—o0o. One also has to truncate the
Fourier series in (6.134) so that this limit makes sense.
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When v < 27 f., i.e. when the bandwidth of the noise source is much smaller than

the fundamental frequency of the oscillator, (6.135) reduces to
A? = (27 £) |eol® (6.138)

We now have a way of characterizing the phase noise of an oscillator due to a
non-white noise source. We already have a numerical algorithm to calculate the periodic
vector vi (z). Thus, we can calculate the Fourier series coefficients in (6.134), and use
them in (6.135) to calculate the gain of the gain block. Then, phase noise is obtained by
sampling the output of a SISO system which is the cascade of an ideal integrator and a gain
block driven by the non-white noise source. The sampled phase noise is not a random walk
process as it was the case for the white noise source case. Using the above model, we can
calculate the autocorrelation function of the sampled phase noise process by first calculating
the autocorrelation function of the integrated non-white noise source, then scaling it by the
square of the gain given in (6.135) and finally sampling it.

We have seen in Section 3.4.1 that 1/f noise sources can be modeled as a sum-
mation of Lorentzian spectra, i.e. as the summation of a number of low pass (single pole)
filtered white noise sources. So, we can use our results for a low pass filtered white noise
source to characterize the phase noise of an oscillator due to a 1/ f noise source. We accom-

15 We separately calculate the autocorrelation

plish this using the superposition principle.
function of sampled phase noise due to each low pass filtered white noise component in the
model of a 1/f noise, and then sum these autocorrelation functions to calculate the overall
autocorrelation function due to the 1/ f noise source. For 1/ f noise sources, noise power will
usually be concentrated at frequencies much below the oscillation frequency 27 f.. Thus,
~v & 27 f. will be satisfied for all of the significant low pass filtered white noise components
in the model of a 1/f noise source. Then, (6.138) can be used for all of the components.
Kaertner in [16] also proposes a phase noise characterization technique for 1/ f noise sources.
After some “digging” into his notation, it can be shown that his results are consistent with

what we have concluded above.

Finally, we use superposition to combine the phase noise characterizations we

15\We can use the superposition principle, because we model the oscillator as a linear system for noise
sources. However the application of superposition to stochastic process excitations is not the same as it
is for deterministic excitations. For stochastic process excitations, we use superposition with mean square
quantities such as spectral density or autocorrelation functions. The stochastic process excitations need to
be independent to use superposition.



CHAPTER 6. NOISE IN FREE RUNNING OSCILLATORS 210

obtained for white and non-white noise sources by separately calculating the autocorrelation

functions due to each noise source and then summing them.

6.7 Phase Noise of Phase-Locked Loops

In this chapter, we concentrated on the characterization of phase noise of open-
loop, i.e. free running, oscillators. Most often, oscillators are used as the reference oscillator
or the voltage/current-controlled oscillator in a phase-locked loop. We would like to be able
to characterize the phase noise of oscillators in closed-loop configurations, i.e. when they
are placed in phase-locked loops.

If we reexamine the phase noise characterization algorithm we presented in Section
6.2.2 for open-loop oscillators, we can see that it can be easily generalized to characterize the
phase noise of closed-loop oscillators. For the closed-loop case, the circuit may not have,
and most often will not, have a periodic large signal steady-state solution. However at
steady-state, i.e. when the loop is in lock, the VCO will be in “quasi” periodic steady-state.

We now consider a simple phase-locked loop [1], which uses the relaxation oscillator
of Section 6.2.3.2 as the VCO, a Gilbert multiplier type phase detector and a single pole
low pass filter as the loop filter. The reference is a noiseless periodic signal onto which the
VCO is supposed to lock on. We first simulated this phase-locked loop (at the transistor-
level) using transient analysis till the VCO locked onto the reference signal. Hence, we
calculated the large signal noiseless steady-state of the circuit. Then, we used the time-
domain noise simulation algorithm to calculate the noise variance of the voltage across
the timing capacitor in the VCO when the loop is in lock. The variance waveform is in
Figure 6.14. In this simulation, the initial condition for the noise variance was chosen to be
0. We observe that the envelope for the noise variance waveform settles to a steady-state
value. Recall that the noise variance for the open-loop case had a linear ramp envelope
that grows without bound. However we are not surprised with this observation, because
the phase-locked loop we are considering is not an autonomous system. Even though the
noise voltage for the timing capacitor is nonstationary for the open-loop case, it becomes
a quasi-cyclostationary process as a result of the negative feedback that comes with the
phase-locked loop. Following the phase noise characterization algorithm of Section 6.2.2,
we sample the envelope of the noise voltage variance waveform in Figure 6.14, and obtain

the variance of the sampled phase noise process as a function of time. The variance of
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Figure 6.14: Timing capacitor voltage noise variance for the closed-loop multivibrator

the phase noise process settles to a time-invariant steady-state value. Hence, the sampled
phase noise is a WSS process at steady-state. Recall that the sampled phase noise for the
open-loop case is a random walk process, with a variance that increases monotonically with
time.16

In theory, it is possible to use time-domain noise simulation to characterize the
phase noise of oscillators in closed-loop configurations at the transistor-level as we did above
for a simple phase-locked loop. However, in practice, there are several difficulties. First
of all, even calculating the large-signal steady-state solution of a phase-locked loop can
be quite hard. This is due to the fact that a phase-locked loop is a stiff system, i.e. it

has widely varying time constants. The time constant of the negative feedback loop is

usually much greater than the period of oscillation for the VCO. As a result, one has to

YNote that these results were obtained for a noiseless reference signal for the phase-locked loop. If the
reference signal is generated by a real oscillator, instead of being an ideal noiseless periodic waveform, the
closed-loop VCO phase noise will not be a WSS process. Even though the negative feedback affects the
noise generated in the VCO in such a way so that the resulting closed loop phase noise is WSS, it does not
have the same affect on the noise generated in the reference oscillator. If the reference oscillator itself is an
open-loop circuit with a nonstationary phase noise, this will cause the phase noise of the closed-loop VCO
to be nonstationary.
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simulate for many cycles of the VCO to be able to observe the behavior of the loop. The
situation gets worse when the loop has frequency dividers, which are almost always present
in phase-locked loops designed for clock generation and frequency synthesis applications.
Even if it is possible to calculate the large signal steady-state at the transistor-level, the
time-domain noise simulation at the transistor level (with the current numerical algorithms)
is not feasible for complicated phase-locked loop circuits with many components. In the
next chapter, we will present a hierarchical behavioral modeling and simulation approach
for phase noise characterization of phase-locked loops. As we will see, this approach not
only enables us to characterize the phase noise of signals generated by complicated phase-
locked loops in a bottom-up fashion, it also supports the top-down hierarchical design of

phase-locked loops.

6.8 Summary

In this chapter, we investigated the phase noise/timing jitter phenomenon which
is of major concern in electronic systems that contain oscillators. We first tried to give some
intuition into the problem, and pointed out that both phase noise and timing jitter are re-
lated to the noise in the transition or zero-crossing times of an oscillation waveform. We gave
a formal definition for phase noise and timing jitter as discrete-time stochastic processes.
This definition was given for a general noisy oscillation waveform. Then, we presented a
probabilistic characterization algorithm for phase noise based on using the time-domain
noise simulation technique of Chapter 5. We used this phase noise characterization algo-
rithm on several practical oscillator circuits, and found out that phase noise of an oscillator
can be modeled as a discrete-time random walk process with white noise sources, i.e. ther-
mal and shot noise sources. The phase noise characterization algorithm of Section 6.2.2,
i.e. Algorithm I, gave us the characterization for a specific state variable of the oscillator
circuit. Using results from the Floquet theory of linear periodically time-varying systems,
we showed that the characterization that is calculated by Algorithm Iis in fact independent
of the state variable used. Furthermore, we showed that, in general'”, the phase noise of
an oscillator with white noise excitations can be modeled as a random walk process, which

is consistent with the results we obtained with Algorithm I on several practical oscillator

"For this derivation, we assumed that the Floquet exponents (except the one that is exactly equal to 0)
associated with the LPTYV system obtained by linearizing the oscillator circuit around the periodic steady-
state have magnitudes much less than 1.
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circuits. Moreover, the analysis in Section 6.3 resulted in a more specific and efficient algo-
rithm, i.e. Algorithm II, to characterize the random walk process that models phase noise.
We then reviewed Franz Kaertner’s work on phase noise [16], which we believe is one of the
few that treats the problem rigorously. We reviewed his definition of phase noise and the
characterization algorithm and pointed out that his algorithm is equivalent to Algorithm
1I, even though we derived it using a different definition of phase noise from Algorithm I
Our derivation of Algorithm II was based on the time-domain noise simulation technique
of Chapter 5. Kaertner’s definition of phase noise is based on the Floquet theory. Using
Floquet theory, we showed the equivalence of his characterization algorithm and ours. We
used Algorithm II on the same oscillator circuits we characterized with Algorithm I, and
obtained the same results as expected, since Algorithm Il was derived from Algorithm I. We
also discussed various issues in using Algorithm II.

We then showed that the phase noise of an oscillator with white noise sources can
be modeled as the output of a SISO system that is a cascade of an integrator, a gain block
and a sampler driven by a standard white Gaussian noise processes. Then, all we need is
to calculate the gain of the gain block to fully characterize phase noise. We pointed out
that the gain can be calculated either using Algorithm I or Algorithm Il. We then showed
that (again using the techniques of Chapter 5) the same model is valid for a non-white
noise source, that is obtained by a single pole low-pass filtering of a white noise source.
In this case, the noise source driving the integrator-gain-sampler system is the low-pass
filtered white noise source. Hence, the phase noise of an oscillator due to a non-white noise
source can not be modeled as a random walk process, but it is modeled as a discrete-time
process that can be obtained by sampling a continuous-time process that is the output of
an integrator that is driven by the non-white noise source. We then presented the version of
Algorithm Ilfor a non-white noise source to calculate the gain of the gain block in the phase
noise model. We discussed two special cases, when the bandwidth of the non-white noise
source is either very large or very small compared with the oscillation frequency. In the
limit as the bandwidth of the non-white noise becomes oo, the characterizations obtained
by the two versions of Algorithm II (for white and non-white noise sources) were consistent
as expected. We also discussed how one can use the above results to characterize the phase
noise of an oscillator due to 1/f noise sources.

We discussed the phase noise characterization of closed-loop oscillators, i.e. phase-

locked loops, and pointed out the applicability of Algorithm I to this case, and presented
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the phase noise characterization of a simple phase-locked loop. We also pointed out some
practical difficulties in transistor-level phase noise characterization of phase-locked loops,

and motivated for a hierarchical approach, which is going to be discussed in the next chapter.
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Chapter 7

Behavioral Modeling and
Simulation of Phase-Locked Loops

Phase-locked loops (PLLs) are widely used as clock generators for microprocessors,
for the frequency synthesis of the LO (local oscillator) signal in transceivers, etc. Almost
every RF transceiver used in wireless communications contains at least one frequency syn-
thesis PLL. PLL circuits can be quite large and complex. They may contain both analog
and digital components. A PLL is basically a nonlinear feedback system. PLLs have a
unique property that makes their analysis and simulation, even just for their deterministic
behavior, quite difficult: A PLL is a stiff system with widely-varying time constants.

One of the major concerns in the design of PLLs for clock generation applications
is the timing jitter of the clock signal produced by the PLL. Accurate and efficient charac-
terization of the timing jitter of the signal produced by the PLL is crucial. For PLLs that
are used as frequency synthesizers in transceivers, the spectral purity of the oscillation sig-
nal is extremely important. Ideally, one would like the oscillation signal to be at a constant
frequency with equally spaced transitions. However, due to noise and systematic (i.e. non
random) nonidealities in the system, the signal frequency fluctuates and the transitions of
the oscillation are not equally spaced in time. Accurate and efficient characterization of the
spectral properties of the oscillation signal in the presence of noise and other systematic

nonidealities is crucial. We would like to be able to get estimates for the timing jitter/phase
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noise of the signal as well as the distortion due to systematic nonidealities at the concept
phase of our PLL design, so that we can make design decisions and choose and/or develop a
PLL architecture that will meet the specifications that are given to us. We would like to be
able to accomplish this without having to design all of the PLL components in detail. Once
this top-down design process is completed, we would like to be able to simulate the PLL
before we fabricate it, and verify that it indeed meets the specifications we have designed
it for. Again, at this stage of the design, verification of the timing jitter/phase noise and
the distortion performance is crucial.

Our above discussion dictates the following requirements on any modeling and

simulation technique for the design of PLLs:

e The model that is to be used to simulate the whole PLL circuit has to be abstract
enough so that we will be able to see the results in a reasonable amount of time,
considering that the simulation of the PLL will be the part of an optimization (manual

or automated) loop.

e The model for the simulation of the PLL is generic enough so that we can simulate it

even when we do not have the detailed designs of its building blocks.

e The model for the PLL has to capture nonideal effects so that we can use it to estimate

the distortion and phase noise/timing jitter of the output.

At first sight, these requirements could seem to be contradictory. We are required to use
abstract and generic models for efficiency and generality. On the other hand, we are re-
quired to capture seemingly low-level effects such as distortion causing nonidealities and
the timing jitter/phase noise behavior. In this chapter, we will present models and simu-
lation techniques for PLLs which satisfy the above requirements, which we will refer to as
behavioral modeling and simulation techniques for PLLs. The behavioral models we will be
describing for the timing jitter/phase noise behavior of PLLs will rely on the techniques
and results of Chapter 6, where we already discussed the characterization and modeling of
timing jitter/phase noise for open-loop oscillators.

The objective of behavioral modeling, in general, is to represent circuit functions
with abstract mathematical models that are independent of implementation details. While
there is a great deal of activity to define and develop a standard analog hardware behavioral

description language, in our opinion, there is still little work being done to develop behavioral
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models and specialized simulation techniques for analog and mixed-signal circuits. The top-
down design process implies a well-defined behavioral description of the analog function.
The behavioral characterization of analog circuits is quite different from the digital one;
the analog characterization is composed of not only the function that the circuit is to
perform, but also the second order non-idealities intrinsic to analog operation. In fact,
errors in the design often stem from the non-ideal behavior of the analog section, not from
the selection of the “wrong” functionality. To shorten the design cycle, it is essential that
design problems be discovered as early as possible. For this reason, behavioral simulation
is an essential component of any methodology for the design of analog and mixed-signal
systems. This simulation can help in selecting the correct architecture to implement the
analog function with constraints on the amount of non-idealities that is allowable given a
set of specifications at the system level. The reader is referred to [59, 4] for a detailed
treatment of behavioral modeling and simulation for analog and mixed-signal circuits, and
its use within the framework of a top-down constraint-driven design methodology for analog
and mixed-signal systems.

In Chapter 4, Chapter 5 and Chapter 6, we discussed the analysis and simulation
of noise in electronic circuits and systems that can be described by a system of algebraic
and stochastic differential equations in MNA form. The dynamics of any electronic circuit
or system, which is modeled as an interconnection of basic network elements such as re-
sistors, capacitors, inductors, controlled sources, independent voltage and current sources,
etc., can be described with a system of algebraic and stochastic differential equations in
MNA form. Recall that the models of basic semiconductor devices (diodes, transistors,
etc.) are expressed as an interconnection of basic network elements. We will refer to the
model of an electronic circuit that is described as an interconnection of basic semiconductor
devices and other network elements as a transistor-level model. In the former chapters,
we were mainly dealing with electronic circuits that were described with a transistor-level
model. The noise sources in the system are then the shot, thermal and 1/f noise sources
associated with the semiconductor devices and other dissipative components. On the other
hand, the negative resistance oscillator we discussed in Section 5.10.4 was not described by
a transistor-level model. The nonlinear resistor in this circuit that has a negative resistance
region was described by a macromodel, which could have been realized using some inter-
connection of semiconductor devices and other components. Thus, electronic circuits which

contain macromodels as well as semiconductor devices can be described with a system of
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algebraic and stochastic differential equations in MNA form. Moreover, one can “emulate”
the model of any system (which need not be electronic) that is described as a system of
stochastic differential equations by using the basic network elements, e.g. nonlinear and
linear controlled sources. We already saw an example for this at the end of Section 6.5, the
simple Volterra model of a predator-prey system.

Hence, we can perform noise analysis of all kinds of electronic circuits (and other
kinds of systems with stochastic excitations that satisfy our assumptions), which are mod-
eled as an interconnection of basic network elements with noise sources that can be modeled
in terms of white noise sources. However we saw in Section 6.7 that it may not be feasible or
practical to perform a noise analysis for an electronic circuit fully described at the transistor-
level. Phase-locked loops (PLLs) used for clock generation and as frequency synthesizers in
RF transceivers are such circuits. One idea in trying to overcome the difficulties in analyzing
and simulating PLLs was to use macromodels for some of the components instead of their
full transistor-level description. Traditionally, macromodeling for analog circuits is used to
mean creating a model of a circuit block from the implementation details (transistor-level
circuit configuration) using pre-defined circuit primitives, i.e. basic network components
such as linear/nonlinear controlled sources, resistors, capacitors, switches, etc. Actually, all
the semiconductor device models available in circuit simulators are implicitly composed of
the same circuit primitives, which makes them conceptually equivalent to a macromodel.
The transistor-level representation of a circuit block can be thought to be a very detailed
“macromodel”. In a macromodel, one tries to capture much more “functionality” than
there is in a single semiconductor device, with far less implementation details. This sug-
gests a definite trade-off between accuracy and the complexity (number of components)
of the macromodel. Macromodels in circuit simulators are used to reduce the simulation
time (because of reduced number of nodes and complexity), and to simulate circuits with
subblocks without implementation details.

Macromodel creation (for a specific circuit block described at the transistor level)

for nonlinear circuits is done by “iterating” over the below two steps:

e Iirst, a parameterized model (an interconnection of circuit primitives) which captures
the “functionality” of the circuit block being modeled is created. There is no system-
atic way to create these models and this step heavily depends on the experience of

the designer.
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e Then, the parameters of the created model is optimized (manually or automatically)

to meet some specifications.

When macromodels are used for some of the components of a PLL (e.g. phase detectors and
frequency dividers), the time it takes to simulate the acquisition of a PLL can come down
to days from weeks, which is still not acceptable if we are going to use the results of these
simulations for design decisions. Even when macromodels are used for all of the components
of a PLL, simulating just the acquisition behavior can take hours. Hence, we need to work
with even more abstract models of a PLL to be able to simulate it in a reasonable time.

Trying to simulate a PLL with all of its components described at the transistor-
level is one extreme. The other extreme is to use an LTI model to describe the PLL circuit,
even though it is an inherently nonlinear system. The LTI models, usually referred to as
phase domain models, have indeed been very useful in understanding the operation of PLLs
and investigating various trade-offs in their design. LTI analysis of PLLs is very efficient
and it is very useful in the concept phase of a design. However the usefulness of LTI
phase domain models are limited by the fact that they are linear and can not capture some
nonidealities in the system that arise from nonlinearities and the interaction of nonlinearities
with noise.

In this chapter, we present a behavioral specification and simulation methodology
for PLLs. Mathematical abstraction is the crucial concept behind this methodology. This
approach enables one to concentrate on one aspect of the problem, e.g. noise performance.

Thus, one can deal with complexity in an efficient and effective way.

7.1 PLLs for Clock Generators and Frequency Synthesizers

In this chapter, we will be concentrating on a particular phase-locked loop archi-
tecture that is widely used in clock generation and frequency synthesis applications. Even
though we will be describing the behavioral models and the simulation techniques within
the context of this architecture, the modeling and the simulation methodology are general,
and hence they can be used for other PLL architectures.

The PLL architecture is shown in Figure 7.1. It consists of a voltage-controlled

oscillator (VCO), three frequency dividers (FDs), a reference oscillator (RO), a phase-
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Figure 7.1: Charge-pump phase-locked loop

frequency detector (PFD), a charge pump (CP) and a loop filter (LF). Given a reference
oscillator (which is usually an off-chip low phase noise crystal oscillator) with a fixed oscil-
lation frequency f..y, when the PLL is in lock, the frequency of oscillation at the output of
the PLL is given by

fo= % fres- (7.1)
By choosing the FD divide ratios appropriately, one can use this PLL to generate oscillation
signals at a number of frequencies in a frequency range that is supported by the VCO. In
video driver systems, on-chip PLLs with this architecture are used to generate clocks at a
number of discrete frequencies. In RF transceivers, PLLs with this architecture are used
to generate the local oscillator (LO) signal which has to have a programmable frequency so
that the receiver/transmitter can be tuned to the particular channel of interest.

We will not go into the details of the operation principles of this PLL architecture
here, which is covered in many textbooks on PLLs.!. It is basically a nonlinear feedback
system. It is also a mixed-signal system: PFD is a digital component which is sensitive
to only the low-to-high or high-to-low transitions at its inputs. It has two digital outputs
which control two switches in the CP. CP and the LF “convert” the digital error information
at the output of the PFD into an analog signal that controls the frequency of the VCO. The
divide ratio of the FD inside the feedback loop (i.e. the FD with divide ratio N) can be

quite large (e.g. 5000). This is one of the main reasons why it is very difficult to simulate

'For instance, see [40], [52].
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Figure 7.2: LTI phase domain model for the charge-pump PLL

this PLL architecture. For a single comparison of the signals at the PFD input, the VCO
has to go through many cycles of oscillation. When we describe the behavioral models for
the components of this PLL, we will see how one can eliminate the high frequency “node”
between the VCO and the divider with very little loss of accuracy but with great gain in
the efficiency of the simulation.

Now, we would like to discuss a phase domain LTI model for this PLL, which is
very commonly used to analyze its behavior when the loop is in lock. Our main purpose in
discussing the LTI phase domain noise model is to gain a qualitative understanding about
the operation of the loop, which will very useful in creating abstractions of the components
for behavioral simulation. One of the key requirements for developing and using behavioral
models in the design of a complex mixed-signal system is to have a good understanding of
the operation of the system. In the end, what we put into the behavioral models will be our
experience and knowledge about the operation of the circuit. The phase domain LTI model
for the PLL architecture in Figure 7.1 is shown in Figure 7.2. To simplify the discussion,
we omitted the FDs which are outside of the feedback loop. Ideally, when the loop is in
lock, without any nonidealities in the system, the frequency of the VCO will be given by

fo=N fres. (7.2)

Since the PFD is a digital component, and is only sensitive to the transitions of the oscilla-

tion signals, the particular shape of the waveforms generated by the VCO or the reference
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oscillator are irrelevant. Thus, the VCO and the reference oscillator are represented with

their phases only. The phase of the VCO with a fixed frequency f, is given by
O, (t) = 2w f,t (7.3)

which is a linear function of time. The VCO makes a transition at its output every time
the phase crosses an integer multiple of #. The phase variable 8, in the LTI phase domain
model of Figure 7.2 represent deviations from the one in (7.3) due to the noise sources in
the system. 6; in Figure 7.2 represents the phase noise process for the reference oscillator,
and 6., represents the phase noise of the VCO. The phase noise contribution of the FD is
represented by 6;. We assume that the relationship between the frequency of the VCO and

the control voltage is given by
fvco = fo + I(UUC (74)

where f, is given by (7.2) and wv. is the control voltage. The PFD is modeled as a gain
block with gain %.2 CP is modeled as a gain block with gain [,. The LF is modeled as
a SISO LTI system with transfer function H(f). The variable at the output of the VCO
represents its phase, and the variable at its input is the control voltage. Phase of the VCO
is the integral of its frequency, and its frequency is proportional to the control voltage as
given by (7.4). Hence, the VCO is modeled as an integrator with transfer function

K,

E
The FD is simply modeled as a gain block with gain %, since its input and output are
phase variables. The phase domain LTI model of Figure 7.2 can be considered as a small-
signal model obtained by linearization around a steady-state where the reference signal is
at frequency f,.r, the VCO is at frequency f, and the control voltage v. is 0. If §; = 0,
Ay =0 and 6,., = 0, then

8, =0 v =0

is satisfied at steady-state.
We will now calculate the transfer functions from 6;, 8; and 8,., to the output 6,.

Since, the system is LTI, we can use the superposition principle. Let us first define

1 K,
o p H(f) T

2This model obviously does not capture the complete behavior of the PFD, but we are going to use this
model only for qualitative analysis.

G(f) = (7.5)
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To calculate the transfer function 7;(f) from 6; to 6,, we set §; = 0 and ,., = 0, and write

the following frequency-domain relationship from the model in Figure 7.2:

LD )| @y = 00, (7.6)
From (7.6), it follows that ) .
Tz(f) — O(f) _ (f) (77)

. = Gl
0:(f) 14 G
To calculate the transfer function Tyeo(f) from 6,., to 60,, we set §; = 0 and 6; = 0, and

write the following frequency-domain relationship from the model in Figure 7.2:

_ 600

N G(f)+ 0peo = 0,(f). (7.8)
From (7.8), it follows that
0.(f) 1
Toeo(f) = = =Y (7.9)
f
Ovco (f) 1+ %
Similarly, the transfer function Ty(f) from 6, to 6, is calculated as
6, -G
Tvco(f) = (f) = (f) (710)

G (1) 13 200

First, we observe that the transfer functions Ty(f) and T;(f) are equal.® Hence,
the phase noise of the reference oscillator and the phase noise contributed by FD have
exactly the same effect on the phase noise of the output. We have not shown it in the
model of Figure 7.2, but the PFD also contributes to the phase noise of the output. It can
be shown that the effect of the phase noise contributed by the PFD has also the same effect
on the phase noise of the output as the reference oscillator or the FD. The transfer function
from the phase noise contributed by the PFD to the output 6, is the same as the transfer
function from 6; to 6,.

The loop filter transfer function H (f) always has a low pass characteristics. Hence,

the transfer function G/(f) given by (7.5) also has a low pass characteristics, i.e.
|G(f)|=0 as f—o0.

Moreover,

|G(f)|= o0 as f—0

*To be precise, Ta(f) = =Ti(f). However §;, 84 and §, represent zero-mean stochastic processes, more-
over, #; and 64 are assumed to be independent. Hence, only the magnitudes of the transfer functions are
relevant.
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i.e. it has infinite gain at f = 0. Then, we have

|T5(f)|—=0 as f— oo
|Ta(f)|—=0 as f— oo

|Tyveo(f)]—1 as f— oo

and

T3(f
| Tu(f
|Tyveo(f)]—0 as f—0

)= N as f—0
)

| =N as f—0

Hence, we conclude that

e The low frequency phase fluctuations in the reference oscillator signal or the ones
contributed by the FD or the PFD are not modified by the feedback loop and appear
as phase fluctuations at the output.? The high frequency phase fluctuations in the
reference oscillator signal or the ones contributed by the FD or the PFD are rejected

by the feedback loop and do not appear as phase fluctuations at the output.

e The low frequency phase fluctuations contributed by the VCO are rejected by the
feedback loop, but the high frequency phase fluctuations contributed by the VCO are
not modified by the feedback loop and appear as phase fluctuations at the output.

We now have some qualitative understanding on how the PLL reacts to phase
fluctuations that are contributed from various sources, which will be extremely useful when
we are trying to develop behavioral models, i.e. abstractions, of the PLL components
that capture the phase noise behavior. We presented this simple LTI analysis to illustrate
the behavioral model development process, i.e how one uses qualitative understanding, or

designer experience, about the operation of the system in developing the behavioral models.

7.2 Behavioral Models of PLL Components

We now have a qualitative understanding of the operation of the PLL. We have also

extensively investigated the phase noise/timing jitter of open-loop oscillators in Chapter 6.

4 Actually, amplified (by N) versions of the phase fluctuations of the reference, FD, and the PFD appear
as phase fluctuations at the output. However, note that the signal frequency at the output is also N times
the frequency of the reference, and the signal frequencies at the output of the FD and the inputs of the PFD.
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We will now present a description of the behavioral models of the PLL components that

capture the phase noise/timing jitter behavior.

7.2.1 Reference oscillator and the VCO

The phase detector in the PLL architecture we are considering is a digital one.
It is sensitive to only the transitions of the oscillation signals at its input. The particular
shapes of the oscillation signals generated by the reference oscillator and the VCO are
irrelevant and have very little effect on the operation of the loop. Hence, we model all the
oscillation signals generated by the reference oscillator and the VCO as digital signals with
high and low states, and transitions between these states, as proposed by Liu in [60]. Let f
be the instantaneous frequency of the oscillator. The time derivative of the phase 8 of the

oscillation signal is equal to the instantaneous angular frequency. Hence,

(1) = 2m f(1). (7.11)
Since the frequency of the oscillator is a positive quantity, the phase 6 is a monotonically
increasing function of time ¢{. Every time the phase # crosses an integer multiple of =, the

oscillation signal makes a transition, i.e.
O(ty) =km (7.12)

where ty is the time for the kth transition of the oscillation signal. At even multiples of 7, it
makes a low-to-high transition, and at odd multiples of 7, it makes a high-to-low transition,
or vice versa. For the reference oscillator, the frequency f(t) = f,.s does not change with
time. Then, the transition times, identified as the time points where the phase 6 crosses

integer multiples of 7, i.e.

_k
2fref

will be evenly separated with a separation that is equal to the half of the period of oscilla-

Lk (7.13)

tion. Obviously, this model does not capture the phase noise/timing jitter behavior of the
reference oscillator. To capture the phase noise/timing jitter of the oscillator, we modify
(7.12) as follows:

0(tr) =k + ¢[k] (7.14)

where ¢ is a discrete-time stochastic process that represents the phase noise of the oscillator.

In Chapter 6, we have defined and characterized phase noise for open-loop oscillators as
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discrete-time stochastic processes. We also presented algorithms to calculate the autocor-
relation function of the discrete-time phase noise process ¢. Note that the characterization
of phase noise for an oscillator is done for a specific oscillation frequency. The reference
oscillator is at a fixed frequency, but the VCO can oscillate at a number of frequencies
determined by the divide ratio N of the FD. When the loop is in lock, the VCO oscillation
frequency is given by®

fo=N fres. (7.15)

However, of course, this is true if there are no systematic error sources and there is no noise
in the PLL. Typically, the VCO frequency will exhibit fluctuations around the frequency
given in (7.15). The VCO frequency is controlled by the signal that is produced by the LF.

We model this relationship with a memoryless® nonlinear map g

fo=g(ve). (7.16)

We characterize the VCO phase noise for the single oscillation frequency in (7.15) and use
this characterization to model the VCO phase noise when the PLL is in lock.

In summary, we model the reference oscillator with

Or’ef(t) = 27Tfref (7 17)
bres(t§ ) = B+ dreslh]
and the VCO with )
Ouco(t) = 2mg(ve) (7.18)

Ovco (tE:CO)) = knx + ¢vco [k]

where k = {0,1,2,3,...}. t;fef) denotes the kth transition time for the reference oscillator,
t;ﬂvco) denotes the kth transition time for the VCO. v, is the control voltage that sets the
instantaneous oscillation frequency for the VCO. ¢,.; and ¢,., are discrete-time stochastic
processes that represent the phase noise of the reference oscillator and the VCO respectively.
The probabilistic characterizations of ¢,.s and ¢,., are obtained at the frequencies f,.y and

fo = N [y for the reference oscillator and the VCO respectively. These characterizations

5We assume that the divide ratios L and M for the FDs outside of the feedback loop are set to 1 in the
model of Figure 7.1.

5This means that the frequency of the VCO can change instantaneously when the control voltage changes.
Of course, this is not possible in practice. This model can be easily generalized by introducing state variables
to represent the memory in the nonlinear map g that relates the VCO frequency to the control voltage at
the LF output. Furthermore, these state variables can be included in the model of the LF to be discussed.
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can be obtained using the techniques of Chapter 6 or using the specification sheets for
off-the-shelf components.

In describing the above models for the VCO and the reference oscillator, we did
not make any assumptions on the implementation details of the oscillators. Any type of
oscillator, e.g. ring-oscillators, relaxation oscillators or LC/resonant oscillators, can be rep-
resented using the above oscillator model that captures the phase noise behavior. We made
a distinction between the VCO and the reference oscillator, because the reference oscillator
has a fixed oscillation frequency, on the other hand, the VCO frequency is controlled by the
LF output.

7.2.2 Frequency dividers

FDs are basically digital counters. An FD with divide ratio NV transfers every Nth
transition at its input to its output, hence it effectively creates an oscillation signal at its
output that is at a frequency that is equal to the input signal frequency divided by N.

The input to the FD inside the feedback loop in Figure 7.1 is the VCO output
that is modeled by (7.18). Then, the oscillation signal at the output of the FD is modeled
by

Ofd(tggfd)) = kn+ %CTO[H

where k = {0,1,2,3,...}. t;ﬂfd) denotes the kth transition time for the oscillation signal at
the output of the divider. The model in (7.19) is for a noiseless FD that does not contribute
any phase noise/timing jitter. We will discuss the modeling of the phase noise contribution
of the FD shortly, but we would like to first discuss how a noiseless FD “transfers” the
phase noise of the signal at its input to its output. An ideal noiseless FD simply passes
every Nth transition at its input to its output. Hence, the timing jitter of the transitions
at the input are transferred to the output without change. Recall that the timing jitter

process J,., for the VCO signal in terms of the phase noise process ¢,., is given by

Jueolk] = Oucolt] (7.20)

27 fo

where f, is the frequency of the signal at the output of the VCO. Then, the signal at the

output of the noiseless FD will have the same timing jitter for the transitions, but the phase
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noise at the output of the FD will be given by

27 fo _ Puco[K]
2 oK) = . (7.21)

N

Hence, the phase noise at the output of the FD is smaller than the phase noise at its input
by a factor of N, but the timing jitter is the same. On the other hand, the frequency of
the signal at the output of the FD is also smaller than the frequency of the signal at its
input by a factor of N. Phase noise is a quantity that should be considered relative to
the frequency of the signal. In order to compare the phase noise of two oscillation signals,
they need to be at the same frequency. Timing jitter can be considered, in a sense, as the
“frequency-normalized” version of phase noise. Hence, one can compare the timing jitter of
two oscillation signals at different frequencies. It is misleading to compare the phase noise
characterizations of the signals at the input and the output of the FD, since it suggests that
the FD “improves” the phase noise behavior of the signal. It just seems to be improved,
because the signal is just at a lower frequency, but with the same timing jitter around the
transitions.

The FD also contributes to the timing jitter /phase noise of the signal at its output.

To model this contribution, we modify (7.19) as follows:
Oralt) = 4

(7.22)
Ofd(tggfd)) = krn+ (b—”?\‘;[k] + % de[k]

where k = {0,1,2,3,...}. t;ﬂfd) denotes the kth transition time for the oscillation signal
at the output of the divider. .Jy,4 is a discrete-time stochastic process that represents the

timing jitter contribution of the FD.

7.2.2.1 Characterization of timing jitter for frequency dividers

Given the implementation of an FD, one can use the time domain noise simulation
of Chapter 5 to characterize the timing jitter process J;q. This is done by driving the FD
with the large signal output of the VCO to calculate the large signal solution, and then
performing a time domain noise simulation to calculate the time varying noise variance of
the periodic waveform at the output. We already saw an example for such a noise analysis
in Section 5.10.2 for a CMOS inverter. Then, using the time varying noise variance obtained
from noise analysis and the slew rate of the large signal waveform at the transitions, one can

characterize the timing jitter of the transitions. The timing jitter process Jq contributed by
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an FD can be quite accurately modeled as a discrete-time, zero-mean, WSS white Gaussian
process, which means that Jz4[k]s are uncorrelated random variables for different k. For
comparison, recall that the timing jitter J,., contributed by the VCO is modeled as a
random walk process, i.e. J,.,[k]s are correlated random variables for different k.

For a complete second-order probabilistic characterization of the WSS white dis-
crete time process Jyq, all we need is the variance of the random variable Jz4[k], which
does not depend on k since Jyg is WSS. The variance of Jy4[k] can be calculated using
the data from the time domain noise analysis of the FD. It is calculated by dividing the
noise variance at the transitions of the output of the D by the square of the slew rate (i.e.
time derivative) of the large signal periodic waveform at the same transition times. As a
matter of fact, we define the timing jitter at the output of the FD just like we did it for an
oscillator in Section 6.2 and use the same characterization algorithm that is based on using
the time domain noise simulation of Chapter 5. Since the FD is a nonautonomous system,
the noise variance waveform at the output is a periodic steady-state one. Recall that the
noise variance waveform for free running oscillators has a linear ramp envelope and grows

without bound.

7.2.3 Phase-frequency detector

The phase-frequency detector (PFD) is modeled as a digital state machine, as
in [60]. Depending on its design, it is sensitive to either the low-to-high or high-to-low
transitions of its two inputs. PFD has two digital outputs which control the two switches
for the two current sources in the charge pump. Depending on its design, the outputs are
active, i.e. the current sources are on, when the outputs are either in the high or low state.
A standard PFD can be in only three of the possible four states of the outputs, i.e. the
state where both of the outputs are active is not allowed. The state machine model for a
PEFD, which is sensitive to low-to-high transitions, is shown in Figure 7.3. Every time there
is a transition event at one of the inputs of the PFD, the transition type (TRANSITION
which is either LOW-TO-HIGH or HIGH-TO-LOW) and the input (INPUT, set to REF
for the reference oscillator, and to VCO for the output of the F'D inside the feedback loop)
where transition has occurred is passed to the code in Figure 7.3 to determine the next state
of the PFD. The NEUTRAL state for the PFD is the state where both of its outputs are
inactive. The UP and DOWN states refer to the states where one of the outputs is active
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if TRANSITION == LOW-TO-HIGH {
if PFDSTATE == NEUTRAL {
if INPUT == REF PFDSTATE = UP;
elseif INPUT == VCO  PFDSTATE = DOWN;
}
elseif PFDSTATE == UP {
if INPUT == REF PFDSTATE = UP;
elseif INPUT == VCO  PFDSTATE = NEUTRAL;
}
elseif PFDSTATE == DOWN {
if INPUT == REF PFDSTATE = NEUTRAL;
elseif INPUT == VCO  PFDSTATE = DOWN;
}
}

Figure 7.3: State machine model of a standard PFD

and the other one is inactive. In the model of Figure 7.3, when there is a LOW-TO-HIGH
transition at the REF input of the PFD, the state of the PFD changes from DOWN to
NEUTRAL or NEUTRAL to UP. If it is already in the UP state, it stays there. On the
other hand, when there is a LOW-TO-HIGH transition at the VCO input of the PFD, the
state of the PFD changes from NEUTRAL to DOWN or UP to NEUTRAL. If it is already
in the DOWN state, it stays there.

The PFD model we just described assumes that the effect of the transitions at its
inputs appears at its outputs instantaneously, without any delay. This is, of course, not
possible for a practical PFD. There will be a finite delay before the effect of the changes
at its inputs are propagated to its outputs. This finite delay renders the PFD insensitive
to the transitions at its inputs that are separated with a time difference that is less than
the propagation delay. This results in, what is commonly referred to as, a dead-zone for
the PFD. For instance, if there are closely spaced transitions (with a separation that is less
than the propagation delay of the PFD) at the input of the PE'D which require it to change
its state from NEUTRAL to UP and back to NEUTRAL again, the PFD will not be able
to respond to these transitions, and its state will remain at NEUTRAL.

To model the dead-zone, we form an event queue for the PFD during simulation.

Every time a transition occurs at one of the inputs of the PFD, it is placed in the event
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queue. Then, the event queue is processed to check for consecutive transitions which require
the PFD to switch its state to create pulses at its outputs which have widths that are smaller
than the propagation delay. If such consecutive transitions are detected, they are removed
from the event queue. The consecutive transitions that create pulses with widths larger
than the propagation delay remain in the queue, and they are passed to the code in Figure
7.3 at their scheduled times to determine the next state of the PFD. When transitions are
placed in the event queue, they are scheduled for evaluation after one propagation delay
time.

PEFD can not create pulses at its outputs with a width that is less than the prop-
agation delay, but it can create pulses at both of the outputs which have widths that are
larger than the propagation delay. The difference of the widths of the pulses at the outputs
can be smaller than the propagation delay. Thus, one can obtain an effective pulse at one
of the outputs with a width that is less than the propagation delay. This is the basic idea
behind the alive-zone PFD described in [61]. The alive-zone PFD introduces a reset delay
into a standard edge-sensitive PFD and creates minimum duration pulses for each phase
comparison at both of its outputs, and hence enables the fourth state where both of the
outputs are active. In this state, both of the current sources of the charge pump are on.
The positive and negative charge pump currents both deliver a charge greater than zero at
each phase comparison. Ideally, with zero phase error, the net charge pumped sums to zero.
The alive-zone PFD is also modeled for simulation using a simple event queue (which has
only one event at a time) to realize the minimum width pulses at each phase comparison.
The width of the pulses the alive-zone PFD creates at its outputs (even when there is zero
phase error) is a design parameter, and, obviously, has to be greater than the propagation
delay.

PED also contributes to the timing jitter of the signal at its output. The timing
jitter characterization for the PFD can also be done using time domain noise simulation as

it was described for the FD.

7.2.4 Charge pump and the loop filter

The charge pump (CP) usually consists of two current sources which are turned
on and off with the two switches that are controlled by the outputs of the PFD. The loop

filter (LF) is usually a simple passive RLC network, but LFs with active components are
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Figure 7.4: Simple charge pump and second-order loop filter

also used. We will first present a general model for the CP and the LF, and then describe
the model of a very simple CP-LF configuration within the framework of the general model
as an example. The CP and the LF are modeled with

x = g(X7 Sup7 Sdown)

v, =cl'x

(7.23)

where S, and Sgoun are the two outputs of the PF'D, and they are equal to 1 when they

are active, and 0 when inactive. Recall that for a standard PFD with a dead-zone, the state
Sup =1 Sdown =1 (724)

is not allowed. x € IR™ in (7.23) is a vector of state variables which represent the states of
the CP and the LF. G : R™ x {0,1} x {0,1}—IR" is a nonlinear map that describes the
dynamics for the states of the CP and the LF. v, is the output of the LF that controls the
frequency of the VCO.

Let us now consider a simple example. A CP with ideal current sources that are
controlled with ideal switches, and a simple second-order LF are shown in Figure 7.4. We
choose the capacitor voltages vy and vy as the state variables. Then, the equations that
describe the dynamics of the CP and the LF are given by

v = %QUQ — RLClvl
(7.25)

down)
(5 Sup=1" Sun) 1 1
vz = s ~ R V2 T R U
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The control voltage for the VCO is the voltage across (5. Hence,
ve=1[0 1][vy wo]T. (7.26)

The model represented by (7.23) is general enough, so one can include all kinds of
nonidealities in this model. For practical charge pumps, the current sources can be modeled
as nonlinear ones with finite output impedances. The loading impedance of the VCO on
the CP can also be included in this model. The output of the LF controls the frequency of
the VCO, hence it is an extremely important node in the circuit. Any kind of noise on this
node will directly translate into spurious tones and phase noise at the output of the VCO.
Ideally, this node should not have a resistive path to ground. For instance, this is the case
for the simple CP-LF configuration in Figure 7.4. When the loop is in lock, this node will
keep its charge and hold the VCO at a constant frequency. Loading impedance of the VCO
on the LF, or the finite output impedances of the current sources will cause charge leakage
from this node. Then, the feedback loop will try to compensate for this leakage, and the
PFD will turn on the CP current sources so that the leaked charge can be replaced. If the
leakage is severe, the CP current sources will turn on and off at every phase comparison
at the PFD. Hence, it is extremely important to accurately model the leakage at the input
and the output of the LF (e.g. finite output impedances for the CP current sources, loading
impedance of the VCO, etc.) so that the spurious tones at the output of the VCO can be
estimated accurately by simulating the PLL model.

7.3 Behavioral Simulation Algorithm

We described the models for all of the components of the PLL in Figure 7.1. We

will now put these models together to form the simulation model for the whole PLL:

Or.ef (t) = 27Tfref (7 27)
O (1) = o Gpesb] + Spalk] + Gy galk]
O}d(t) = 2W%UC) (7 28)
Ofd(tggfd)) = kn+ (b—v?\?[k]
X = g(X7 Sup7 Sdown) (7 29)
ve =cl'x

where k = {0,1,2,3,...}.
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(7.27) is the model of the reference oscillator, but we included the phase noise
contributions of the FD and the PFD, i.e. ¢4 and ¢,r4, in the model of the reference
oscillator. This is based on the results we obtained from the simple LTI analysis in Section
7.1. The phase noise contributed by the FD and the PFD is indistinguishable from the
phase noise of the reference oscillator when we evaluate their effects on the phase noise of
the oscillation signal produced by the PLL at the output of the VCO. ¢,.; for the reference
oscillator is modeled as a random walk process, on the other hand, ¢4 and ¢, ¢4 for the FD
and the PFD are modeled as WSS white discrete-time processes.

(7.28) models the VCO signal and the phase noise contribution of the VCO at the
output of the FD. Alternatively, we could have modeled the VCO signal at the output of the
VCO itself. The node between the VCO and the FD is a high frequency node. By modeling
the VCO signal at the output of the FD, we effectively eliminate this high frequency node
which makes N transitions for every one transition of the FD output. With almost no loss
of accuracy, eliminating this high frequency node increases the efficiency of the simulation
considerably, especially when N is a very large integer.

(7.29) models the CP and the LF. The state machine model for the PFD was
described in Section 7.2. When the output of the reference oscillator and the output of
the FD make transitions at times t;fef) and t;ﬂfd) determined by (7.27) and (7.28), these

transition events are scheduled in the event queue for the PFD.

7.3.1 Numerical integration with threshold crossing detection

To simulate the PLL model, we solve the following system of differential equations

in time domain using numerical integration

Or.ef (t) = 27Tfref
bra(t)y = ~ elex (7.30)
x = g(X7 Sup7 Sdown)

where we replaced v, with ¢l x. At the time instants t;fef) and t;gfd), when §,..; and 84

cross the threshold values

OEZiQhold[k] =k7m+ ¢ref[k] + ¢fd[k] + ¢pfd[k] (7.31)

and

Pueolk]
N

d
eggre)shold[k] =km+ (7.32)
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Figure 7.5: Integration algorithm with threshold crossing detection

respectively, transition events need to be scheduled in the PFD event queue. Hence, the
numerical integration algorithm has to detect these threshold crossings. Accurate estimation
of the timing of these threshold crossings is crucial, because we will characterize the spurious
tones and the timing jitter for the PLL output based on the timings of the transitions
calculated during the simulation. At a time point during the numerical integration of
(7.30), if a transition is detected in between the previous time point and current one,
the integration algorithm should track back and estimate the exact time point where the
transition occurred more accurately, as illustrated in Figure 7.5.

The first thing that comes to mind to estimate the timings of the transitions is to
use interpolation. With this scheme, transition times are estimated based on a polynomial
interpolation using the information from the current and previous time points. Linear multi-
step methods for numerical integration actually calculate the solution of the differential
equation at discrete time points by fitting polynomials. Hence, to estimate the timing
of the transition times, one can and should use the same polynomial that was used by
the numerical integration scheme to calculate the solution at the current time point. For
instance, if backward Euler was the scheme in calculating the solution at the current time
point, one uses a first-order polynomial to interpolate the timing of the detected threshold

crossing. Let a transition event be detected between the time points ¢ and ¢t + h, where h
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is the current time step size. Then, the timing of the transition event is estimated by

Othreshold - O(t)
8t + h) — 0(1)

where 0;,csn0id 18 the threshold value that was crossed.

by =1+

(7.33)

Alternatively, one can estimate the timing of the transitions using an iterative
method. Actually, calculating the transition time can be interpreted as the calculation
of the solution of a nonlinear algebraic equation with one variable, i.e. we would like to

calculate the time ¢ that satisfies
O(t) - Othreshold =0. (734)

Hence, to estimate the transition time, one can use any algorithm for finding the roots of a
nonlinear algebraic equation. Obviously, #(¢) is not available analytically as a function of ¢,
but it can be evaluated numerically using the numerical integration scheme. A brute-force
method, which works quite well, to calculate the root of (7.34) is to use a bisection search,
which is illustrated in Figure 7.6. Recall that the phase #(¢) is a monotonically increasing
function of ¢t. If at time ¢ 4 h, the phase 6(¢) is larger than the threshold 0y4,csnoiq While at ¢
it was smaller, then a transition event has occurred in between. To calculate the transition
time, we divide the present time step by 2. Then, we evaluate (¢ + h/2). If this is still to
the right of the transition time, we repeat the bisection procedure. If it is to the left, then
we return the control to the integration algorithm. To prevent the algorithm from taking
too much of a time step, we limit the maximum step size to a quarter of the last time step.
Other iterative algorithms can also be used to calculate the root of (7.34). One can first
use the interpolation scheme to calculate an initial starting point for the iterative algorithm
that is used to calculate the root of (7.34). The iterative algorithm, e.g. bisection search,
is terminated when the tolerance specified for calculating the timing of the transition times
is reached. Tolerance for the calculating the transitions is set to a small enough value, so
that the phase noise/timing jitter that will be estimated for the PLL output will not be
corrupted by the numerical noise due to the errors in calculating the transition times.
Threshold crossings of 6,y and 6;4 cause events at the inputs of the PFD. The
events at the output of the PFD (coming out of its event queue) change the state of the
PED, i.e. they set or reset the two outputs S,, and Sgoun. Every time an event is placed
in the event queue for the PFD, a break point in time is scheduled, so that the numerical

integration algorithm will place a time point at the time instants where PFD outputs may
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Figure 7.6: Iterative solution for transition times

switch their values. After each break point, a “small” time step is taken and the numerical
integration scheme is reset to backward Euler (i.e to order 1) if a variable order numerical
scheme is being used.

Some commercial circuit simulators, which support behavioral modeling for analog
and mixed-signal circuits with a behavioral analog hardware description language, provide
constructs for the detection of thresholds crossings and to estimate the timings for them.

They also provide constructs for scheduling break points in time.

7.3.2 Simulating the timing jitter in numerical integration

Timing jitter of the reference oscillator, VCO, FD and the PFD is introduced into
the time domain noise simulation as in (7.27) and (7.28) through the threshold values which
indirectly determine the transition times. The threshold value for the reference oscillator
and the output of the FD are discrete-time stochastic processes given by (7.31) and (7.32).
The phase noise processes for the reference oscillator and the VCO are modeled as random
walk processes,” and the phase noise processes for the FD and the PFD are modeled as white
WSS discrete time processes. In time domain noise simulation, they are realized by using
a Gaussian random number generator. To realize a random walk phase noise process with

a Gaussian random number generator, we use the construction of a random walk process

"Recall that the phase noise of a free running oscillator can be modeled as a random walk process when
only white noise sources are considered. This means that we are modeling the phase noise of the reference
oscillator and the VCO considering thermal and shot noise sources only, and ignoring the 1/f noise sources.
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given by (6.32) and (6.38) that was discussed in Section 6.2.2. With this construction, we
can generate a random walk process by using uncorrelated identically distributed Gaussian
random variables. Hence, all we need is a standard Gaussian random number generator.
The realization of a white WSS Gaussian phase noise process is straightforward: a sequence

of uncorrelated Gaussian random variables generated from the same distribution.

7.3.3 Acquisition detection and the simulation output

The simulation algorithm has the following three components, which were all de-

scribed above:
e Numerical integration algorithm with threshold crossing detection and break points.
e PFD event queue scheduling and evaluation.

e Realization of the phase noise/timing jitter processes using a Gaussian random number

generator.

During the simulation, events are placed into the PFD event queue at the time instants
of the threshold crossings detected by the integration algorithm. At the threshold crossing
instants, break points are scheduled for the time points where the events coming out of the
PEFD queue need to be evaluated.

When the simulation is started at ¢ = 0, the phase noise sources are turned off. The
PLL is simulated without the phase noise sources, i.e. with deterministic threshold values
set to kw for the kth transition, till the VCO locks onto the reference signal. Acquisition
of the reference signal is detected automatically by observing v, = ¢’ x which controls
the frequency of the VCO. Even though the phase noise sources are turned off during
acquisition, there may be systematic error sources in the PLL (e.g. leakage from the node at
the output of the LF, dead-zone of the PFD, etc.) which will cause steady-state fluctuations

T x even after the PLL has locked onto the reference signal. Thus, the algorithm

inv.=c
that automatically detects acquisition uses a tolerance parameter so that it can declare the
PLL as locked even when there are steady-state fluctuations in v. = ¢/ x. On the other
hand, the PLL may never lock onto the reference signal, for instance if the feedback loop
is not stable. Acquisition detection algorithm aborts the simulation if the PLL can not

T

lock onto the reference signal in a specified amount of time. v. = ¢* x and any other state
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variable in x are dumped at every time point during the acquisition phase, so that they can
be plotted to observe the acquisition behavior of the PLL.

If the algorithm that automatically detects acquisition declares the PLL as locked,
then the phase noise sources are turned on. The PLL, which is in lock, is simulated for a
period of time® in the presence of the phase noise sources of the reference oscillator, VCO,
FD and the PFD, and systematic error sources. During this simulation, the control voltage
v, = ¢! x as a function of time is dumped for postprocessing. The timings of the threshold
crossings detected at the output of the FD by the numerical integration algorithm are also

dumped for postprocessing. The postprocessing of the simulation output to evaluate several

performance measures for the PLL will be described in the next section.

7.4 Post Processing for Spurious Tones and Timing Jit-

ter /Phase Noise

The acquisition behavior of the PLL is observed by plotting the dumped control
voltage v. = ¢! x during the time period when the PLL is acquiring the reference signal.
Observing the steady-state fluctuations in the waveforms of v. = ¢’ x and other state
variables in x after the PLL has locked can provide crucial information about the systematic
error sources in the PLL that cause spurious tones at the output. For instance, by observing
these waveforms, one can observe the severity of the leakage from the nodes at the input
and the output of the LF. In the next two subsections, we will describe the post processing

techniques used to estimate the spurious tones and the timing jitter/phase noise of the

oscillation signal generated by the PLL at the output of the VCO.

7.4.1 Spurious tones

The frequency of the signal at the output of the VCO is controlled by the control

voltage v, = ¢! x, i.e.
Jour (1) = g(ve(t)). (7.35)
When the PLL is locked onto a reference signal with frequency f,.s, at steady-state, the
VCO frequency fou:(t) = g(ve(t)) will have a mean value that is equal to N f,.;. However

8The period of time PLL needs to be simulated for depends on the particular PLL architecture. Roughly,
PLL needs to be simulated for a period of time that is several, i.e. 10, loop time constants long. Loop time
constant is roughly estimated from the time it takes the PLL to lock onto the reference signal.
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fout (t) will exhibit fluctuations around this mean value due to the phase noise contributed
by the loop components and other systematic error sources. During the time domain noise
simulation of the PLL, we dumped the steady-state waveform for v.(¢). In general, the
steady-state waveform for v.(¢) will be neither periodic nor quasi-periodic. It will be a
chaotic steady-state waveform. However the power in the fluctuations of v.(f) are usually
concentrated at a set of frequencies. For instance, v.(f) may contain distinguishable spectral
components at the reference oscillator frequency and its several harmonics. One can usually
identify these strong spectral components by just looking at the waveform of v.(¢). By
performing Fourier analysis (using an appropriate numerical technique such as FFT, almost
periodic transform, etc. [29, 62]) on the steady-state waveform of v.(t) obtained from time
domain noise simulation, one can identify and quantify these spectral components. At
this point, we assume that the steady-state waveform of v.(¢) can be approximated as a

quasi-periodic waveform by identifying the strong spectral components, i.e.

M
vet) & Y amexp (27 fintl) (7.36)
m=—M
where f_,, = —f,, m = {0,1,2,...} is a set of frequencies at which the steady-state

waveform v, (f) has significant power. The frequency of the VCO, f,., is related to the
control voltage v. through a nonlinear map ¢(.). Hence, in general, f,,; will have spectral
components at the frequencies f,, as well as their harmonics. However the fluctuations in
v, are usually small around the mean value g7'(N f,.;). Thus, the spectral components
of f,u+ at the harmonics of the frequencies f,, will be negligible. Hence, one can linearize
the nonlinear map ¢(.) around the mean value ¢g='(N f,.;) of v. to calculate the spectral
components of f,:. At this point, we assume that f,,; has the following approximate

quasi-periodic representation

M
fout@) & > b exp (527 fint) (7.37)
m=—M
where fo = 0, and hence the zeroth order term is given by

bo =N fres. (7.38)
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Let us also assume that the free running VCO generates the following periodic waveform?

with fundamental frequency N f,..; at its output

L

Vose(t) = > crexp (27N fregt) (7.39)
l=—L

which is expressed as a Fourier series with coefficients ¢;. (7.39) is the waveform that is
generated by a free running VCO with its control voltage set to the constant g7 (N f,.c/).
To approximate the waveform at the output of the VCO in the PLL with its control voltage
set to (7.36), we replacel® N f, ¢t in (7.39) with

M

i b .

/ Jour(T)dT = N frept + Y Tonf P (27 finl) (7.40)

m=-M

m#0
to obtain
L M b
Vose(l) = Z_Z_:L crexp |72xl | N frept + Z ol exp (727 fmt) | |- (7.41)
B m=-M
m# 0

The waveform in (7.41) can be interpreted as a frequency modulated periodic carrier. The
spectrum of the waveform in (7.41) has nonzero components at frequencies [ N f..s £k f,, for
[=0,1,2,...,Land £ =0,1,2,..., for each frequency modulation component at frequency
fmy, m€{1,2,...,M}. One is usually most concerned with the components of (7.41) at
frequencies N f,.y £k f,, for k =0,1,2,..., for each f,,. These frequency components are
usually referred to as the spurious tonesin the output of the PLL. One can estimate the
magnitudes of the spurious tones in (7.41) by using techniques from frequency modulation
theory, i.e. Bessel functions. We will not discuss the details of how one can do this, since it

is covered in any textbook that discusses frequency modulation in communications.

°This waveform is obtained by setting the control voltage input of a stand-alone VCO circuit to
g_l(N fres) and then performing a transistor-level simulation (e.g. transient analysis, shooting method
or harmonic balance simulation can be used) to calculate the periodic steady-state for the oscillator.
Note that it would not be correct to replace N frep with four(£).
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7.4.2 Timing jitter/phase noise

The spurious tones in the VCO output are caused by the systematic error sources in
the PLL, which show up as periodic or quasi-periodic fluctuations at a number of frequencies
in the control voltage v. dumped from the simulation. With only systematic error sources,
the spectrum of the VCO output would contain components at discrete frequencies. These
are the spurious tones we calculated in the previous section.

The phase noise sources of the VCO, FD, reference oscillator, and the PFD will
also effect the output of the VCO. To characterize the phase noise of the VCO output, we
use the sequence of transition times, i.e. threshold crossing times, at the output of the FD,
which were saved during the simulation of the PLL after it acquired the reference oscillaton
signal. If there were no error sources in the PLL, i.e. no phase noise contribution from any
of the components, and also no systematic error sources, then the transition times dumped
from the simulator would be evenly spaced in time with a separation that is equal to the

half of the period of oscillation, i.e. with a separation that is equal to

1
2fref‘

Because of the noise sources in the PLL, these transition times will not be evenly spaced

(7.42)

in time, and they will, in general, be random variables. Let v be the discrete-time stochas-
tic process that represents these random transition times, and let ¢ be the discrete-time
stochastic process that represents the deviation of these random transition times from the

ideal ones that are evenly spaced with separation as in (7.42). ¢ can be obtained from v by

(k] = ~v[k] - (k ﬁ + tsynch) k=0,1,2,... (7.43)

toyncn in (7.43) is the time instant for the ideal transition that corresponds to k = 0, and
it is unknown. Even though we have a sample path of v from the simulation, we can not

calculate the sample path for ¢, since tsy,.; is unknown [38]. v satisfies

1

E[y[k] =k 3y

Flognen  k=0,1,2,... (7.44)

Hence, ( is a zero mean process.
We would like to calculate a second-order probabilistic characterization of the

timing jitter/phase noise of the oscillation waveform that is represented by the transition
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time deviations (. We obtain a stochastic process J from ( using self-referencing [38] as

follows:

Il = Ck] —c[0] k=0,1,2,... (7.45)

for k=0,1,2,.... Note that
J[0] = 0. (7.46)

Even though t¢sy,c, is unknown, we can calculate the sample path for J from the sample

path of v we obtained from simulation. From (7.43) and (7.45), J in terms of v is given by

J[k] = v[k] - (k + 7[0]) k=0,1,2,... (7.47)

2fref

For the PLL, the discrete-time process ¢ that represents the transition time devi-
ations is a WSS process in steady-state (assuming that the reference signal is noiseless).!!
The way we obtained the timing jitter process J from ( is called self-referencing, because
we calculate the jitter J[k] in (7.45) at the transitions for k = 1,2, ... with respect to the
reference transition at k = 0.!2 Even though ( is a WSS process, the self-referenced jitter

process J defined by (7.45) is not WSS, but it is asymptotically WSS.

7.4.2.1 Variance of the timing jitter of transitions

Using the dumped transition times (i.e. a sample path for v) from the simulation
of the PLL, we can generate a sample path for the self-referenced timing jitter process .J
using (7.47). In general, we need to compile an ensemble of sample paths for J so that we
can calculate ensemble averages, i.e. expectations, to estimate its second-order probabilistic
characteristics. However, if J satisfies some ergodicity properties, then, we need only a single
sample path to characterize its probabilistic characteristics by calculating expectations using
time averages instead of ensemble averages. Next, we explore the ergodicity properties of
the self-referenced timing jitter process J.
Let R; be the autocorrelation function of the WSS process ¢. It can be shown
that ¢ is in the form
Re[m] = p 2[m] (7.45)

1Please see the discussion in Section 6.7.

2This is similar to what is done in timing jitter measurements with sampling oscilloscopes [38]. A
transition of the oscillation waveform is designated as the reference or trigger transition, and a histogram of
transition times is compiled at a specified distance from this transition.
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where p is the variance of the zero mean, WSS process (, i.e.

p=E [¢[K?] (7.49)
and z[m] satisfies
z[m]—0 as |m|—ooo (7.50)
and
2[0] = 1. (7.51)

Thus, z[m] is the normalized autocorrelation function: It is equal to 1 at m = 0 and decays
to 0 as |m| is increased. Actually, z[m] will be approximately 0 for |m| > M for some

positive integer M. M is roughly determined by the PLL feedback loop time constant, i.e.

M 2f1 - is roughly equal to the loop time constant [38]. The particular shape of z[m] is not

important for our discussion here. We will only use the fact that it becomes negligible for
|m| > M.
Given the autocorrelation function of (, we can calculate the autocorrelation func-

tion Ry of the self-referenced jitter process J defined by (7.45) as follows:

Rylk,m] = E[J0K] Jm]]
= E[(¢TH] - ¢[0) (¢[m] - CTO])]
= Relk—m] — Re[M — Re[m] + Re[0]
= p(elk— m] = 2[k] = =[m] +1).

In particular, the variance of .J is given by
E [J[K]?] = Rk, k] = 2p (1 - =[K)). (7.56)

Note that E [J[0]*] = 0, i.e. the variance of the self-referenced timing jitter process in (7.56)
is zero at the reference transition represented by k& = 0, which also follows from (7.46). It
reaches the steady-state value of 2p for large k. Recall from Chapter 6 that the variance of
the timing jitter process for a free running oscillator increases linearly without bound, and
does not reach a steady-state value.

Now, let S be the length of the sample path of the transition times v we obtained
from simulation. Let v,[k], &k = 0,1,...,5 denote this sample path. Then, we can
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calculate the sample path Jg,[k], k£ =0,1,...,5 for the self-referenced jitter process J by
using (7.47). We assume that M < S. Recall that

z[k] =0 for |kl > M. (7.57)
Hence,
E[JEP] ~2p for [k > M. (7.58)

Thus, J is an asymptotically WSS process. We ensure that M < S is satisfied so that the
sample path of J we generated represents its steady-state characteristics.
We would like to estimate the probabilistic characteristics of J using the sample

path Jg[k], £=0,1,...,5. First, we calculate the sample mean that is given by

1 S
M = 5 Z Jspli]. (7.59)

=0

Obviously, the sample mean in (7.59) is an unbiased estimator for the mean of J, i.e.
E [ms,] = 0= E [J[£]]. (7.60)

Next, we calculate the mean-square error of the sample mean as follows

E {(msp —E [msp])ﬂ = E {mgp} (761)
1 s S

= ﬁz; E [Jspli]JsplJ]] (7.62)

~ (7.63)

where we used (7.55), (7.57) and M < S. Thus, (7.63) tells us that the mean-square error
in estimating the mean of J using a sample path of length S does not decay to 0 as the
length S of the sample path is increased. The sample mean mg,, can be interpreted as a
random variable with mean 0 and variance p. Thus, the self-referenced jitter process J does
not possess mean-square ergodicity of the mean. We observed this in practice by calculating
the sample means of an ensemble of sample paths of the jitter process that was generated
from the simulation of a PLL.

Next, we calculate the sample variance Vy, for J using the sample path Jg,[k], k =

0,1,...,5 as follows

1 S
Vip = g Z (splt] = m5p)2 (7.64)
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where the sample mean my, is given by (7.59). By taking the expectation of both sides of
(7.64), we obtain

S
=<2 (B [Jolil?] + & [m2] = 2B [l may)) - (7.65)
It can be shown that
E [Jspli] msp] = p (7.66)

by using (7.55), (7.57) and M < S. Then, we use M < S, (7.58), (7.63) and (7.66) in
(7.65) to obtain

S
E V] ~ 3 Z (204 p — 2p) (7.67)
=0

(7.68)

Q
b

Hence, the sample variance Vj, is an unbiased estimator for

p=E[ClH?]. (7.69)

Next, we calculate the mean-square error of the sample variance:
E|(Vo— EVi)? = E[VZ]-E[V,) (7.70)
= E[V2] -~ (7.71)

Calculation of E {Vsﬂ requires the calculation of the fourth-order moments of J, but we
know only the second-order moments of J, i.e. its autocorrelation function. To calculate the
fourth-order moments for .JJ, we assume that it is a Gaussian process. Then, the fourth-order
moments can be expressed in terms of the second-order moments using Isserlis’s formula
[5]. Using (7.55), (7.57), M < S, (7.58), (7.63), (7.66) and Isserlis’s formula for calculating

the fourth-order moments of .J one can show that
E[V2] ~p (7.72)
Then, from (7.71) and (7.72) if follows that
E (Vo — E[V = sp])?| = 0. (7.73)

Thus, the mean-square error in estimating p goes to zero as we increase the length S of

the sample path, when the sample variance V;, defined by (7.64) is used as the estimator.
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We observed this in practice by calculating the sample variances of the sample paths of the

jitter process that was generated from the simulation of a PLL.

p=E [¢[K?] (7.74)

is the variance of the timing jitter of the transitions for the oscillation waveform at the
output of the FD, and it can be estimated by calculating the sample variance of a single

sample path for the self-referenced timing jitter process J produced during simulation.

7.4.2.2 Spectral density of phase noise/timing jitter

The variance p of the timing jitter of the transitions is only a partial second-order
probabilistic characterization of the self-referenced timing jitter process J. We would also
like to calculate an estimate of the autocorrelation function or the spectral density of the
asymptotically WSS process J.

We calculate the spectral density of the self-referenced timing jitter process J using
the time-averaged periodogram method discussed at the end of Section 2.2.11. We apply
the time-averaged periodogram method to the sample path Jg,[k], k£ =0,1,...,5, after we
subtract the sample mean from every sample. We already used the same sample path to
estimate the variance p for the timing jitter. Recall that the sample mean, i.e. the average
of the samples in J,[k], &k =0,1,...,5, can be nonzero. In fact, as derived previously,
the sample mean myg, is a random variable with mean 0 and variance p. We subtract the

sample mean from the sample path to obtain

Joplk] = Joplk] — map,  k=0,1,...,5. (7.75)

We then use the time-averaged periodogram method on the sample path jsp k], k =
0,1,...,5, to calculate the spectral density of the timing jitter process at the output of the
FD. Recall that the timing jitter of the transitions for the oscillation waveform at the input
of the FD (i.e. at the output of the VCO) is the same as the timing jitter of the transitions
at its output. Hence, J also represents the timing jitter process for the oscillation waveform

at the output of the VCO. The phase noise process at the output of the FD is given by
27 frep J (7.76)
and the phase noise process at the output of the VCO is given by

27N fres J. (7.77)
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Hence, we can easily calculate the spectral density of the phase noise processes from the spec-
tral density of the timing jitter process J by simply scaling it with (27 f,.£)% or (27N f,.c7)?.

The timing jitter process J at the output of the FD represents the jitter of the
transitions separated by ﬁ We can interpret .J as the output of a sampler with a
continuous-time process as its input with a sampling rate that is equal to 2 f..;. So, the
spectral densities can be calculated for the frequency range [—f,cf, fref]. The phase noise
spectral density calculated as such corresponds to the phase noise spectrum that can be
measured on a spectrum analyzer as a function of the offset frequency from the carrier,
i.e. the fundamental oscillation frequency. The units for the phase noise spectral density
is rad?/Hz. 1t is usually plotted in decibels, and then the unit is dBe which stands for
decibels below carrier.

If there are systematic error sources in the PLL, the spectral densities calculated
for timing jitter/phase noise may exhibit peaks et certain frequencies, i.e. spurious tones.
In Section 7.4.1, we described another numerical method to estimate these spurious tones,
which was based on performing Fourier analysis on the steady-state VCO control voltage

calculated by the simulation algorithm.

7.5 Examples

We will now present examples of PLL behavioral simulation using the techniques
presented in this chapter. In particular, we will present examples for the analysis of the
acquisition characteristics of PLLs, and timing jitter/phase noise characterization.

The PLL behavioral modeling and simulation techniques presented in this chapter
were used in the top-down constraint-driven design of an on-chip clock generator for a video
driver system (which was fabricated) [63, 4]. The architecture of this clock generator PLL
circuit is the one shown in Figure 7.1, and the the loop filter is as the one shown in Figure
7.4. Some behavioral simulation results will be presented for this PLL, but the reader is
referred to [63, 4] for a detailed description of how the behavioral modeling and simulation
techniques of this chapter were used in its top-down design.

We used the techniques of this chapter in the bottom-up verification of a frequency
synthesizer PLL that was designed to generate the L.O signal in a cellular telephony appli-
cation. We were able to identify the systematic error sources and make predictions for the

spurious tone and the phase noise performance of this PLL using the behavioral modeling
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and simulation methodology. The results we obtained were quite close to the measurements
on the fabricated PLL circuit. Thus, the usefulness of the techniques we described in this
chapter for the design of PLLs for clock generation and frequency synthesis applications was
proven for an industrial design example. Unfortunately, due to the proprietary nature of
this project, we will not be able to present the behavioral modeling and simulation results

we obtained for this circuit.

7.5.1 Acquisition behavior

Bottom-up verification of a phase-locked system using behavioral simulation is

done in two steps:

e Set up the behavioral models for the components. The model parameters are extracted
using SPICE and other transistor-level simulation techniques from the transistor-level

description of the components.

e Simulate the system in time-domain using behavioral simulation and postprocess the

simulation output to characterize various performance measures.

To illustrate this procedure for the analysis of the acquisition characteristics, component
behavioral models for a bipolar PLL [1] were set up, and behavioral simulation was used
to analyze its acquisition characteristics. The VCO of the PLL circuit is the relaxation
oscillator we analyzed in Chapter 6. The phase detector is a Gilbert multiplier, and the
loop filter is a one pole, passive low pass filter. There is no frequency divider in the feedback
loop. Figure 7.7 shows the SPICE domain extraction of the relation between the effective
frequency of the VCO and the control voltage. Other model parameters are extracted in a
similar way from the transistor level description. Model extraction is done only once for a
circuit. Then, created models are used in many behavioral simulations of the PLL. Figure
7.8 shows the response of the modeled PLL to a frequency step at the reference oscillator
signal, both SPICE and behavioral simulation. Behavioral simulation is two orders of
magnitude faster than SPICE.

The acquisition characteristics of the clock generator PLL of [63, 4] was analyzed
using behavioral simulation. The waveform shown in Figure 7.9 is the control voltage of
the VCO when the PLL is acquiring the reference signal. This simulation was performed to

analyze the stability of the feedback loop for the worst case frequency divider ratio. Figure
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Figure 7.7: Extraction of frequency versus control voltage relationship for the VCO

7.9 shows the waveforms obtained with both behavioral and SPICE simulation, which are
almost identical. The behavioral simulation took 560 CPU seconds, whereas the full circuit

simulation took 20 CPU hours.!?

7.5.2 Timing jitter characterization

The role of behavioral simulation in the top-down design of a phase/delay-locked
system will be illustrated for the design of a multi-phase clock generator. A PLL with
a ring-oscillator VCO or a delay-locked loop (DLL) can be used to generate multi-phase
clocks, as in Figure 7.10. These two architectures were compared for their timing jitter
performance using behavioral simulation. Figure 7.11 shows the relationship between the
rms clock jitter (the square root of p that was defined in Section 7.4.2.1) and the percentage
delay cell jitter contribution for a given design of both architectures. Ring-oscillator VCO
for PLL, as well as the delay line of the DLL, has 5 delay cells. Reference clock frequency
is 50 M H z. From Figure 7.11, we conclude that DLL has better timing jitter performance,
when compared with a PLL, for fixed percentage delay cell jitter contribution. Then, the

relationship between clock jitter and percentage delay cell jitter is used to predict the

13For SPICE simulation, macromodels were used for the frequency dividers instead of their transistor-level
implementations. Both of the simulations were performed on a DEC Alpha machine with a CPU that is a
DEC Alpha chip 21164 with 250 M Hz clock frequency, 4 Mb of cache, and a SPEC int_92 of 277.
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