
i-1

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

Verification with VCS
Workshop

Synopsys Ver. 1.0

Synopsys Education and Training Services
© 2006 Synopsys, Inc. All Rights Reserved

i-2

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

Synopsys Support Center

n https://solvnet.synopsys.com/EnterACall

n Send e-mails: prchelp@synopsys.com

n Make a call: 800-820-0284

https://solvnet.synopsys.com/EnterACall
mailto:prchelp@synopsys.com

i-3

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

What is Your SolvNet ID?

Yes No

I know my
SolvNet ID!

If you do not have a SolvNet ID, please
speak with the instructor.

i-4

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

First Things First

n Instructor Introduction

n Student Guide

n Lab Guide

i-5

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

Workshop Prerequisites

n Understanding of digital IC design

n Familiarity with UNIX and X-Windows

n Familiarity with a UNIX-based text editor

n Familiarity with Verilog

i-6

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

Workshop Target Audience

n Digital ASIC design engineers

n Digital ASIC verification engineers

n Limited VCS debugging experience

i-7

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

Acquire the skills to verify and debug Verilog

designs using Synopsys VCS

Workshop Goal

i-8

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

Workshop Measurable Objectives

By the end of this workshop you should be able to:

n Simulate Verilog designs using VCS

n Debug Verilog designs using VCS

n Run fast RTL-level regression tests for your
Verilog design

n Run fast gate-level regression tests for your
Verilog design

n Acquire the skills and knowledge to successfully
implement coverage driven verification
methodology using Synopsys tools

i-9

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

Agenda: Day 1

Topic LabUnit

VCS Debugging Basics2

Debugging with DVE3

Post-Processing with VCD+ Files4

DAY
1

VCS Simulation Basics1

i-10

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

Code Coverage8

Fast RTL Level Verification6

Fast Gate Level Verification7

Agenda: Day 2

Topic LabUnit

DAY
2

Debugging Simulation Mismatches5

i-11

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

Student Introductions

n What is your name?

n What is your job?

n What is your background/work experience?

n What do you want to get out of this workshop?

i-12

Introduction
Verification with VCS Workshop Synopsys Ver. 1.0

Icons Used in this Workshop

Lab Exercise

Question

Checklist

Hint, Tip, or Suggestion

Caution

Note

Remember

1-1

VCS Simulation Basics
Verification with VCS Workshop Synopsys

Agenda: Day 1

VCS Simulation Basics1

Topic LabUnit

VCS Debugging Basics2

Debugging with DVE3

Post-Processing with VCD+ Files4

DAY
1

1-2

VCS Simulation Basics
Verification with VCS Workshop Synopsys

Unit Objectives

After completing this unit, you should be able to:

n Compile a Verilog design using VCS

n Simulate the Verilog design

1-3

VCS Simulation Basics
Verification with VCS Workshop Synopsys

VCS is

n A compiled simulator
l Verilog Compiled Simulator
l Digital functional simulator

n Complies with IEEE-1364
l Including PLI 1.0/VPI (PLI 2.0)
(Programming Language Interface)

n Supports simulation at multiple
abstraction levels
l Behavioral
l RTL
l Gate (with SDF support)
l Sign-off

1-4

VCS Simulation Basics
Verification with VCS Workshop Synopsys

How VCS Works
nAccepts design descriptions in Verilog, C/C++ PLI and models

nTwo step simulation process:
l Step 1: Compile

l Step 2: Run
Depending upon platform, VCS first generates C code from the Verilog
source, then it compiles and links the object files to the simulation
engine to create an executable.

simv
(executable)

Object
files

(mem.o
cpu.o)

C language
files

(mem.c
cpu.c)

Verilog
Source
(mem.v
cpu.v)

Link

Alpha, SGI, IBM
platforms

On Solaris, Linux & HP compile
direct to object code

PLI code links to simv
not to VCS

1-5

VCS Simulation Basics
Verification with VCS Workshop Synopsys

VCS Compilation Command Format

n sources_files

l All Verilog source files of the Design Under Test (DUT)

l Separated multiple source files by spaces

l Top module should contain testbench for the DUT

n compile_time_options (optional)
l Controls how VCS compiles the source files

l Critical for optimization for visibility and performance

l Each unit of this workshop will describe how best to use these
compile_time_options

n Generates simulation binary executable simv
(default)

> vcs sources_files [compile_time_options]> vcs sources_files [compile_time_options]

1-6

VCS Simulation Basics
Verification with VCS Workshop Synopsys

Compile-Time Option Examples

vcs -help lists compile options, run-time options, environment variables

Command line options (commonly used):
-Mupdate Incremental compilation (only changed files are compiled)
-R Run after compilation
-gui Starts the DVE gui at runtime.
-l <filename> set log file name
-sverilog Enable SystemVerilog language support
+v2k Compile with support for Verilog 2001 extensions

1-7

VCS Simulation Basics
Verification with VCS Workshop Synopsys

Compile-Time Option Examples

n Compile-time options to access Verilog library files
-v lib_file Search for unresolved module references in file lib_file
-y lib_dir Search for unresolved module references in files residing

in directory lib_dir

+libext+lib_ext Use file extension lib_ext when searching for files in library
directory lib_dir

+incdir+inc_dir Search inc_dir directory for ‘include files

n Access Verilog files and options via a file
-f file File containing a list of absolute pathnames for the

sources_files and a subset of VCS options

n User selected simulation binary name
-o foo Creates executable foo instead of simv

1-8

VCS Simulation Basics
Verification with VCS Workshop Synopsys

simv
(executable)

Object
files

(mem.o
cpu.o)

C language
files

(mem.c)

VCS Incremental Compilation

Faster compilation by compiling
only the modules you have changed

If you made a change to module mem in mem.v, then VCS compiles only
the module mem. The cpu module object code is used from a previous
compilation and linked with the new mem object code in the creation of
the executable.

Verilog
Source

(mem.v)

Link

1-9

VCS Simulation Basics
Verification with VCS Workshop Synopsys

VCS -Mupdate

Creates a makefile that is built and maintained by vcs:

Example
vcs file1.v file2.v file3.v -Mupdate:

• Compiles Verilog source files, puts c files in directory called csrc
• Makefile created in csrc directory
• C compilation accomplished via makefile
• Object files linked to produce simv

Subsequent compilations will be incremental:
• Appropriate c files updated
• Makefile adjusted
• Incremental c compilation as appropriate
• Object files re-linked

Handy tip: The –Mupdate switch can be shortened to –M but this will make use of
an existing makefile whereas –Mupdate generates a brand new makefile.

Handy tip: The –Mupdate switch can be shortened to –M but this will make use of
an existing makefile whereas –Mupdate generates a brand new makefile.

1-10

VCS Simulation Basics
Verification with VCS Workshop Synopsys

VCS Simulation Command Format

n run_time_options (optional)
l Controls how VCS executes the simulation binary

n Simulation results reported via
l Verilog system task calls

l User defined PLI routines

> simv [run_time_options]> simv [run_time_options]

1-11

VCS Simulation Basics
Verification with VCS Workshop Synopsys

Run-Time Option Examples

n Stop simulation at time 0

-s Stops simulation at time 0

n $plusargs() switches

+userswitch User defined run-time switch

n Compile-time option status

-E echo Displays compile-time options used for the creation of the current
simv executable

n Log file control

-l logfile Write output to logfile

1-12

VCS Simulation Basics
Verification with VCS Workshop Synopsys

Sample Simulation Run

>ls
adder4bit.v addertb.v
>vcs addertb.v adder4bit.v
...
Parsing design file ‘addertb.v’ ‘adder4bit.v’
Top Level Modules:

adder_testbench
No TimeScale specified
2 unique modules to generate
2 of 2 modules done
Invoking loader…
simv generation successfully completed
>ls
adder4bit.v addertb.v csrc/ simv
>simv
Chronologic VCS Simulator copyright 1991-2005
Contains Synopsys proprietary information.
Compiler version Y-2006.06; Runtime version Y-2006.06; Dec
11 11:35 2006
0 + 0 = 0
...
F + F = E
*** Verification completed without error ***

V C S S i m l a t i o n R e p o r t
Time: 0
CPU Time: 0.070 seconds; Data Structure size: 0.0Mb
Fri May 12 11:35:31 2000
>

Compile all Verilog
source files

including testbench

VCS generated the
simulation binary

simv

Run simulation with
simulation binary

Simulation results
reported via Verilog

system task calls

1-13

VCS Simulation Basics
Verification with VCS Workshop Synopsys

Misc Switches

n Useful switches for working with
Synopsys support

-ID Gets host machine information

-Xman=4 Combines all source files into a single file “tokens.v”
(Use for submitting test cases to Synopsys)

1-14

VCS Simulation Basics
Verification with VCS Workshop Synopsys

Using DesignWare Library with VCS

n Instantiating DesignWare components in Verilog
l Format:

l DesignWare multiplier example:
DW02_mult #(inst_A_width, inst_B_width)
u1(.A(inst_A), .B(inst_B),.TC(inst_TC),.PRODUCT(inst_PRODUCT));

n Accessing DesignWare simulation library
-y $SYNOPSYS/dw/sim_ver +libext+.v+

DWpart #(parameters) u1(.porta(a), .portb(b));DWpart #(parameters) u1(.porta(a), .portb(b));

1-15

VCS Simulation Basics
Verification with VCS Workshop Synopsys

Summary

n Compile a Verilog design using VCS

n Simulate the Verilog design

1-16

VCS Simulation Basics
Verification with VCS Workshop Synopsys

Lab 1 Introduction

15 min

Simulate a simple
Verilog design

Check Result

Compile Verilog code

Run simulation

2-1

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

VCS Simulation Basics1

Agenda: Day 1

Topic LabUnit

Debugging with DVE3

Post-Processing with VCD+ Files4

VCS Debugging Basics2

DAY
1

2-2

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

Unit Objectives

After completing this unit, you should be able to:

n Describe three methods of debugging Verilog
code using VCS

n Invoke UCLI debugger

n Debug Verilog designs using UCLI

2-3

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

VCS Debugging Support

n Trace and locate causes of errors

n Three general methods:
l Verilog System Task calls

l VCS UCLI

l VCS DVE

n Four factors to consider:
l Simulation speed

l Signal visibility

l Signal tractability

l Usability

2-4

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

Debugging via Verilog System Tasks

n Simulation speed
l Fast

n Signal visibility
l Specified by the Verilog system task calls

n Signal traceability
l Mainly pencil and paper

n Usability
l Useful for quick visual feedback

l May require multiple iterations of inserting Verilog
system task calls followed by compile and simulate

2-5

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

Common Verilog System Task Calls

n Debug visibility:
$display Prints formatted message to console

$strobe Like $display except printing is delayed until all events
in the current time step have executed

$monitor Monitor signals listed and prints formatted message
whenever one of the listed signals changes

$time Returns current simulation time as a 64-bit integer

n Stopping simulation:
$stop Halts simulation like a breakpoint.

$finish Halts simulation and terminate the simulation session

n Simulation stimulus and reference:
$readmemh Reads ASCII data from a disk file. Each digit is hexadecimal

$readmemb Reads ASCII data from a disk file. Each digit is binary

2-6

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

Instantiated Design
Under Test (DUT)

Embedding Verilog System Task Calls
module adder_test;
wire [3:0] sum_out;
reg [3:0] a_in, b_in;
in [8:0]
adder u1(a_in, b_in, sum_out);

initial
$monitor($time, " %h + %h = %h", a_in, b_in, sum_out);

initial
begin
for (in = 0; in <= 9’h0ff; in = in + 1) begin

a_in = in [7:4]; b_in = in [3:0];
if (sum_out !== (a_in + b_in)) begin
$display("***ERROR at time = %0d ***", $time);
$display("a=%h, b=%h, sum=%h", a_in, b_in, sum_out);
$stop;

end
#100;

end
$display("*** Testbench Successfully completed! ***");
$finish;

end
endmodule
module adder(a, b, sum);
input [3:0] a, b;
output [3:0] sum;
assign sum = a + b;
endmodule

Verify results

Print adder result
whenever input or output

of adder changes

Stimulus generation

Indicate completion
of test

Design Under Test
(DUT)

2-7

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

Debugging via UCLI

n Simulation speed
l Speed depends on the scale of visibility you specify

n Signal visibility
l User specified

n Signal traceability
l User specified breakpoints
l Some pen and paper

n Usability
l Supports scripting
l UCLI is compatible with TCL 8.3 and any TCL

command can be used with UCLI.

2-8

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

Compile and Invoke UCLI Debugger

n Compile and invoke UCLI in one step

l -ulci invokes UCLI and stop simulation time at time 0

n Compile and invoke UCLI in two steps
l Compile

l Invoke UCLI and stop simulation time at time 0

> vcs source.v –debug|debug_all -R -ucli

> vcs source.v –debug|debug_all

> simv -ucli

2-9

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

UCLI Debugger Command Line Options

n -debug
l Enables command line debugging option. This

flag does not enable line stepping.
n -debug_all

l Enables command line debugging option
including line stepping.

n -ucli
l Forces runtime to go into UCLI mode by default

n -gui
l Compile time option invokes the DVE gui when

issued at runtime.

2-10

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

UCLI Debugger Command Line Options

n -l logFilename
l Captures simulation output, such as user input

UCLI commands and responses to UCLI
commands.

n -i inputFilename
l Reads interactive UCLI commands from a file, then

switches to reading from standard command line
input.

n -k keyFilename
l Writes interactive commands entered to

inputFilename, which can be used by a later simv
as -i inputFilename

2-11

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

UCLI Commands

. , continueRun the simulationrun

show scopesScope in design
hierarchy

scope

forceHold value - can't
override from design
Clock Gen support

force

setAssign valuechange

breakBreakpoint w/ time,
event, file/line/thread

stop

printGet value in any radixget

show varsList scopes, objects and
types

show

Old VCS command (if
any)

PurposeCommand

2-12

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

UCLI Commands

-interactive line steppingnext

stepinteractive line steppingstep

-Change the base etc.config

-Show environment
settings in TcL

senv

$restoreRestorerestore

$checkpointSave the current
simulation state.

save

$vcdplusonDump the objects - post-
processing

dump

Old VCS command (if
any)

PurposeCommand

2-13

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

UCLI Commands

-Displays source textlisting

-Get drivers (fan-in) across
the boundaries

drivers

-Get loads (fan-out) across
boundaries

loads

-Start a new simulationstart

Old VCS command (if
any)

PurposeCommand

2-14

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

Sample UCLI Command Set

n Changing scope:
scope [-up [level] | -active] [hierarchicalpath]
Show or set the current scope to the specified
instance. With no arguments, the current scope is
returned.

-active (Sets the scope to the active point within the
tool)

-up (Climbs up the scope hierarchy one or n levels)
show -[scopes | ports | variables| signals]

n Read/write commands:
force [-deposit | -freeze | -drive] path value

release path
memory -read|-write nid -file filename [-radix radix]
[-start start_address] [-end end_address]

2-15

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

UCLI Example
shell> vcs –debug_all driversget.v

.

.
Simv generation successfully completed
shell> simv -ucli

ucli% scope
top

ucli% config -timebase 1ns
1ns

ucli% dump -add top.t1 -depth 2

VCD+ Writer Y-2006.06 Copyright 2005 Synopsys Inc.
1

ucli% stop -change top.t1.cnt
1

ucli% stop -absolute 3
2
ucli% step
driversget.v, 16 : ra = 0;

ucli% step
driversget.v, 17 : rb = 0;

2-16

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

UCLI Example (cont)
ucli% listing
file ./driversget.v, line 17
12: wire wa, wb, wc, wd, we;
13:
14: initial
15: begin
16: ra = 0;
17:=> rb = 0;
18: rc = 0;
19: rd = 0;
20: re = 0;
21: rf = 0;
22: clk = 0;

ucli% run
Stop point #1 @ 00 ps; top.t1.cnt = 0
ucli% stop -disable 1
1
ucli% run
Stop point #2 @ 3000 ps;
ucli% stop -change rc
3
ucli% run
Stop point #3 @ 5000 ps; top.t1.rc = 0
ucli% run
Stop point #3 @ 10000 ps; top.t1.rc = 1
ucli% quit
V C S S i m u l a t i o n R e p o r t
Time: 10000 psCPU Time: 0.010 seconds; Data structure
size: 0.0MbWed Nov 3 08:13:36 2004

2-17

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

Problems in Simulation?

If you suspect simulation is having problems
n Determine whether or not time is advancing:

l Halt simulation by hitting CTRL-C
l Check simulation time
l Continue simulation by typing in “run” at UCLI prompt
l Halt simulation again after a short period of time
l If simulation time has not changed, simulation may be

caught in an infinite loop or waiting for a phantom trigger

n Determine potential location of problem:
l Re-compile with –debug_all compile-time option
l Halt simulation
l Use UCLI command show to display variables
l Trace code execution with UCLI command next

2-18

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

Problems in Simulation? (cont)

n Use Verilog system tasks to help isolate error
l Insert $display statements in the area indicated by source

code tracing
l Display all variables associated with branching statements

n Re-Compile and monitor $display print out to
determine the cause of the problem

n Repeat procedure if necessary
Example:

The following is caught in an infinite loop -
reg [3:0] i, test;
initial
for (i = 0; i <= 4’hf; i = i + 1)
begin
test = test + ^i

end
$display(“i = %0d”, i);

Inserting this $display statement will clearly
show that this loop never ends

2-19

VCS Debugging Basics
Verification with VCS WorkshopSynopsys

Lab 2 Introduction

30 min

Debug a simple
Verilog design
using UCLI

Trace code execution

Invoke UCLI debugger

Compile Verilog code

1

Debugging with DVESynopsys

VCS Debugging Basics2

Agenda: Day 1

VCS Simulation Basics1

Topic LabUnit

Post-Processing with VCD+ Files4

Debugging with DVE3

DAY
1

2

Debugging with DVESynopsys

n Learn to use basic features for debugging RTL
l An introduction to the basic features

u Waveform debugging
u Source code debugging
u Listing features
u Assertions
u “C/C++” debugger

l Analyzing design components
u memories, busses, gates

Objectives

3

Debugging with DVESynopsys

Documentation

n User reference manual
l $VCS_HOME/doc/UserGuide/dve_ug.pdf

n Release notes (DVE)
l $VCS_HOME/gui/dve/doc/DVEReleaseNotes.txt

n Quick start example
l $VCS_HOME/gui/dve/examples/tutorial/quickstart/quickStart.html
l Help-> Tutorial (for Mixed HDL)

n Example directory
l $VCS_HOME/gui/dve/examples

n dve –help
l Gives information about the current DVE command line options

4

Debugging with DVESynopsys

DVE™
Discovery Visual Environment

n An Intuitive and Easy to
use GUI

n Quickly Find Bugs
l RTL or Gate
l Assertions
l Testbench

n Supports
l Interactive
l Post-simulation analysis

n Multiple Languages
l Verilog
l VHDL
l C/C++
l SystemC
l NTB

Design Debug Productivity

Docked windows inside workspace boundaries

5

Debugging with DVESynopsys

Both Interactive and Post-simulation

n Full Interactive and Post-simulation Analysis Support
n Analyze value change data

l value and strength information
l delta cycle information
l annotated in Source, Schematic, Path or List views

n Analyze source execution
l Available only in interactive analysis !
l Ability to select time and instances of interest !
l Line by line

n Save and Restore simulation state
l Save current state then redisplay it

6

Debugging with DVESynopsys

Context Sensitive Menus (CSM)

n Point at an object
l signals, instances, ports, panes, and assertions.
l configure main toolbar

n Click Right Mouse Button (RMB) down
l menu appears with relevant options

n Point to choice
n Release button

7

Debugging with DVESynopsys

Drag and Drop & Selection

Drag and Drop
l Point at an object in a pane or window

u instance, signal, assertion
l Hold LMB down
l Drag object to a new location
l Release button

Selection
l Use LMB for a simple selection
l Use LMB and Control key (to add or remove an item to selection)
l Or Use LMB and Shift key (to group select)
l Press LMB and drag to select a group of objects

8

Debugging with DVESynopsys

Invoking DVE
Interactive Mode

n Starting from compilation

l -R
u Starts DVE immediately after compilation (optional)

l -gui
u Enables DVE

l -debug or -debug_all
u -debug enable command line debugging (no line stepping)
u -debug _all enables command line debug including line tracing (optional)

l -ucli
u Forces runtime to go into UCLI debugger mode (optional)

n With existing simulation executable

l -gui
u Starts DVE from existing simulation executable (default is simv)

%vcs source.v –R –gui –debug_all

%simv -gui

9

Debugging with DVESynopsys

Invoking DVE
Post-Processing Mode

n Launch DVE GUI

n Open Database (vcd,vpd)
l click the Open Database icon open dialog box

% dve &

Detailed
or List view

Optional:
Select time slice

Note:
dve -vpd <filename>
brings up dve with
file already loaded

10

Debugging with DVESynopsys

Windows Icons

n DVE pop-level window
l Frame for displaying current data objects
l Can contain other windows and panes

u Source, Schematic, Path, Wave, List, Memory

n Opening new-top level window
l Click the corresponding window icon to remove

target symbol (red circle)

l Window-> New-> Source
u New objects will be displayed in new window

11

Debugging with DVESynopsys

n Simulation Execution
l Click the continue icon to “start/continue” button
l Click the stop icon to stop
l Enter a ucli command

u ucli% run (run until break point)
u ucli% run 100 (run for 100 time units)
u ucli% run 100ms (run for 100 ms)
u ucli% run -posedge wb_ack_i (run until positive of wb_ack_i)

l Use simulator controls to set a simulation break point and
run VCS
u “Step Time”
u “Go To Time”

Interactive Simulator Controls

12

Debugging with DVESynopsys

Interactive Simulator Controls (Cont’d)

n Simulation controls
l Click step icon to simulate next executable line

l Click next icon to step over tasks and functions

l Click restart icon to reset simulation to time zero

l ucli commands
u ucli% step
u ucli% next
u ucli% restart

13

Debugging with DVESynopsys

Searching for Objects

l Viewing objects
u Select objects
u right click to activate CSM
u Select window type

– e.g. Wave

n Toolbar menu: Edit -> Search for Signals/ Instances

Filter results

CSM

14

Debugging with DVESynopsys

Wave Window
Overview

Lower timescale (entire range display)

Upper timescale
(current range display)

Drag zoom

Signal groups

Set time Search icons

Marker location

15

Debugging with DVESynopsys

Wave Window
Managing Signals

n Viewing signals
l Select object (signals, scopes or assertions)

u Click the wave icon to add objects to a wave window

u Use CSM and select item
u Double click on a failing assertion summary tab
u Or drag and drop object to open wave window

n Grouping signals

l Toolbar menu: Signal -> Signal Groups …

Create Signal
Group

Drag & drop

16

Debugging with DVESynopsys

User Defined Radixes
n User Define Radixes

l Toolbar menu: Signal -> Set Radix->User-Defined->Edit

u Import or Export user types: -- file format

To create a user-defined radix, click New,
enter a radix name, then press Return.

IDLE 11'b00000000001

17

Debugging with DVESynopsys

Signal Compare Tool
n Compare function

l Select two signals, scopes or designs
l Toolbar menu: Signal -> Compare

u A new signal is created for each
compare point

Design 2

Design 1

Example – Comparing Interactive signal (design 1)
to post processed signal (design 2)

18

Debugging with DVESynopsys

Bus Builder Tool

n Creating a bus
l Select the signals (List / Wave)
l Toolbar menu: Signal -> Set Bus …
l Specify Name
l Use up/down selection button to arrange order
l Bit reverse order, select bus and click the reverse order button
l Bus padding, use add one’s and to add zero’s

n Search for events
l Event searching in either time direction (List / Wave)
l Select the signals
l Toolbar menu: Signal -> Set Expressions …
l Specify Name

19

Debugging with DVESynopsys

Bus Builder Example

Example – User Expression that checks
Read follows a Write cycle

Example – Merge two busses

20

Debugging with DVESynopsys

n Value changes that occurred within the same time step

Displaying Delta Cycle

each tic mark
represents a
value change

l Toggle recording of
delta cycle
u Simulator =>

Capture Delta Cycle
Values

l Record delta cycle data
in the VCD+ file add
u $vcdplusdeltacycleon

l To view event queue
u right click to activate

CSM
u Select Expand Time

+9 represents 9th
value order change

Warning Perf
Impacted

21

Debugging with DVESynopsys

List Window
Overview

n Views simulation results in
ASCII format
l Updates when displayed

signal changes
l Locks to C1 cursor
l Set markers
l Compare signals
l View database
l Print tabular output to a

textfile

To Add signals click
or drag & drop them

Markers

Values that change
indicated in green

22

Debugging with DVESynopsys

Memory Viewer
n To dump memories

l Select a memory in the “Data” pane
u right click to activate CSM
u Select Show Memory
u right click to activate

memory properties

Example – Memory dump @ 23090ns
Example – Memory Properties dialog

Currently requires:
$vcdplusmemon or
Simulator->Add Dump ..
(Check Aggregates box)

23

Debugging with DVESynopsys

Assertion Summary Window
n Compile VCS with -debug -assert dve

l Double click assertion failure to populate wave window
u Place cursor over guidance symbols to obtain details status

guidance symbols

Assertion window CSM

24

Debugging with DVESynopsys

Source Window
Overview

Break point enabled

Break point disabled

Current executable line

Source file
& location

Working with
single window

Breakpoint
CSM

25

Debugging with DVESynopsys

Debugging Source
n Stepping source (-debug_all)

l Select object (signals, scopes or assertions)
u Click the source icon to add objects to a source window

u Use CSM and select item
u Double click on a scope icon
u Drag and drop object to open source window

l Click step icon to simulate next executable line

l Click next icon to step over tasks and function

l Click annotate values icon for backannotation

n Navigating hierarchy
l Place cursor on module instance and click right

u select Move Down to Definition (Source CSM) or click
u select Move Up to Parent or click
u To move backwards or forwards in a list of scopes click

26

Debugging with DVESynopsys

C/C++, SystemC - Cbug

PLI call

Example of cross-stepping

HDL Code

C files must be compiled with the "-g" C compiler option
SystemC Code

run C Debugger commands

SystemC
Hierarchy

Pre-Compiled libsystemc.a

PLI Code

C++

C
HDL

27

Debugging with DVESynopsys

Backtrace

n Problem
l A number of signals exhibiting less desirable values

n Solution
l Perform a “backtrace”
l Displays a list of active drivers/loads at specified time
l Trace back to the earliest unwanted signal transition or value
l Identify signal responsible for the erring behavior
l Reapply procedure, and eventually locate source of misbehavior

n Displaying Drivers/Loads
l In any DVE analysis window highlight or select a signal
l Then simply click either the driver or load icon
l Or in a Wave or list window double click on signal

l Then use next and previous instances icons

28

Debugging with DVESynopsys

Driver / Load Pane

Drives/Loads
Pane

Current instance

Previous instance

29

Debugging with DVESynopsys

Schematic Window

Trace -> Highlight -> Selected by Color

Example of a design view

30

Debugging with DVESynopsys

Path Tracing

Example of a path view

Trace -> Follow Signal

Hierarchy crossings

tooltips

Double click on
pin to expand path

31

Debugging with DVESynopsys

Lab 3 Introduction

45 min

Locating sources
of error in Verilog
code using DVE in
Post-Processing
mode

Invoke DVE in
Post-Processing Mode

Run to
Generate VCD+ File

Enable
VCD+ File Dump

Debug

Compile

4-1

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

Post-Processing with VCD+ Files4

VCS Debugging Basics2

Agenda: Day 1

VCS Simulation Basics1

Topic LabUnit

DAY
1

Debugging with DVE3

4-2

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

Unit Objectives

n Embed VCD+ system tasks in source code

n Compile and run simulation to generate VCD+
file

n Invoke DVE in post-processing mode

n Read VCD+ file into debugger memory

n Debug

4-3

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

DVE Post-Processing Mode

n Simulation speed
l Simulation speed depends on data dump commands

l Debugging speed is fastest

n Signal visibility
l User specified

n Signal tractability
l Signal traced via waveform, schematic or source

n Usability
l Graphical interface is the most user friendly

l Can be used at all levels of complexity

4-4

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

When to Use Post-Processing Mode

n Use post-processing mode when:
l Debugging a mature design

l Simulation analysis needed by multiple engineers

l Run simulation in script

n Multiple users can debug in parallel
l The VCD+ file, once generated, can be read by multiple

users to debug different problems in parallel

4-5

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

What are VCD+ files?

n Binary simulation history files
l Similar to VCD (Verilog Change Dump) ASCII files

l Stores transition times, values of nets and registers
and design hierarchy

n Differs from VCD files in the following ways:
l Compressed binary format requires less disk space

l Compressed binary format loads faster

l Supports recording of order of source code execution

l Built-in VCD+ system tasks provided for controlling
contents of VCD+ file and size

n DVE only process VCD+ files
l VCD files can be converted into VCD+ files

4-6

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

Post-processing Debugging Procedure

l Modifying the Verilog source code to include VCD+ file
dump system task call $vcdpluson

l Compiling the Verilog source code with VCS

l Generating VCD+ file by executing the simulation binary
created by VCS

l Invoking DVE in post-processing mode

l Reading VCD+ dump file in DVE

l Examine simulation results in Waveform window,
Schematic window and Assertion window to locate error
in source code displayed on Source window

4-7

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

VCD+ System Tasks

n VCD+ system tasks may be inserted in source files or entered at the
simulation interactive prompt

n $vcdpluson(level_number,module_instance,…|net_or_reg,…)
Start recording nets and registers (require –debug compile switch):
l level_numbers

specifies levels of hierarchy to record
0 - record the entire hierarchy of specified module
1 - record the top-level hierarchy of specified module
n - record through n-levels of hierarchy of specified module

l module_instance
specifies module to record

l net_or_reg
specifies individual net or register to record

l Omitting all arguments records all nets and registers of entire design

n $vcdplusoff (module_instance,…|net_or_reg,…)
Stops recording in a module instance or individual net or register

4-8

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

VCD+ System Tasks (cont)

n $vcdplusautoflushon
Instructs VCS to write results from simulation memory to
VCD+ file whenever there is an interrupt such as $stop
system task or a ucli stop command or a DVE Stop button
activation

n $vcdplusautoflushoff
Turns off automatic flushing of data on an interrupt

n $vcdplusflush
Instructs VCS to write results from memory to VCD+ file

4-9

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

VCD+ System Tasks

n $vcdplusdeltacycleon

Turns on delta cycle recording for post-processing

n $vcdplusdeltacycleoff

Turns off delta cycle recording

n $vcdplusglitchon

Turns on zero delay glitches for post-processing

n $vcdplusglitchoff

Turns off zero delay glitches recording

4-10

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

VCD+ System Tasks Example

n Sample Verilog source code
module adder_testbench;
reg test_cin;
wire adder_cout;
reg [3:0] test_a, test_b;
wire [3:0] adder_sum;
reg [15:0] addr, stimulus, ref_result;
reg [15:0] testmem [0:1023];

adder u1(test_a, test_b, test_cin, adder_cout, adder_sum);

initial
begin
$vcdpluson;
$vcdplusdeltacycleon;
$vcdplusglitchon;
$readmemb("adder_ref.vec", testmem);
for (addr=0; addr <= 16'h03ff; addr=addr+2)
begin
#100 stimulus = testmem[addr];

test_cin = stimulus[8];
test_a = stimulus[7:4];
test_b = stimulus[3:0];

end
#100 $display("\n----- Simulation Completed Without Error -----\n");

end

4-11

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

Compiling for VCD+ file

n files
l Source files (including Verilog, C/C++ PLI) as defined in Unit 1

n vcdplus_switches
l Instructs VCS compiler to recognize VCD+ system tasks

l Controls VCD+ file generation

n other_switches
l Compile-time options (e.g. -Mupdate, -R, etc…)

n Sample VCD+ file compilation command:
Ø vcs source.v –debug_all

n Sample command for invoking DVE in post-processing mode:
> dve -vpd vcdplus.vpd

>vcs files vcdplus_switches Other_switches>vcs files vcdplus_switches Other_switches

4-12

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

VCD+ file Compilation Switches

-debug Required compile-time option

+vpdfile+filename Specifies writing to an alternative VCD+
filename rather than the default vcdplus.vpd

+vpdupdate Allows simultaneous writing and reading of the
VCD+ file

+vpdbufsize+MB Specifies the size of temporary buffer to store
VCD+ values before writing to disk (default is
5MB or room for 15 value changes)

+vpdfilesize+MB Specifies maximum size of VCD+ file (when
limit is reached, new event replaces oldest)

4-13

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

VCD+ Tips and Suggestions

n Use target based dumping:
l Capture time slices

u Use $vcdpluson in conjunction with $vcdplusoff and #delay
module source;
moduleA u1 (a,b,c);
moduleB u2 (d,e,f,g);
moduleC u3 (siga,sigb,sigc);
....

// save all signal data in module u1 from time 100 to 300,
// save all the variables in module u2 along with 5 levels
// of hierarchy from time 200 to 500, save two variables
// in module u3 starting at 600
fork

#100 $vcdpluson(source.u1);
#200 $vcdpluson(5,source.u2);
#300 $vcdplusoff(source.u1);
#500 $vcdplusoff(5,source.u2);
#600 $vcdpluson(source.u3.siga,source.u3.sigb);

join
....

u stop and resume recording anytime during simulation

l Start by dumping only the first few levels and work down
until the problem is isolated

4-14

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

VCD+ Tips and Suggestions (cont)

n Avoid recording Verilog statements execution

n Selectively dump only small modules

n Use +vcdbufsize+nn to control memory buffer size
l rule-of-thumb 1M for every 5K gates

l bigger the buffer the faster simulation runs

4-15

Post-Processing with VCD+ Files
Verification with VCS WorkshopSynopsys

VCD+ Tips and Suggestions (cont)

n Use compiler directives `ifdef and `endif
‘ifdef dumpme

$vcdpluson();
‘endif

n Dumping controlled by compile time switch
+define+dumpme

n It is not recommended to use $test$plusargs
Example:

initial begin:enable_dumping
if ($test$plusargs("dumpall")) $vcdpluson();
else if ($test$plusargs("dump+moduleA"))
$vcdpluson(1,moduleA);

end

l Even if dumping is disabled at run-time, the fact that
$vcdpluson is enable at compile time means slower
simulation

5-1

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Agenda: Day 2

DAY
2

Topic LabUnit

Fast Gate Level Verification7

Code Coverage 8

Debugging Simulation Mismatches5

Fast RTL Level Verification6

5-2

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Unit Objectives

After completing this unit, you should be able to:

n Use +race utility to locate race condition code

n Use $vcdplusdeltacycleon to locate race
condition code

n Use vcdiff & vcat to locate race condition code

5-3

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Causes of Simulation Mismatches

n Functional simulation mismatches:
l Different simulator vendors

u Race condition in source code

u Vendor implementation

l Different version of simulator from same vendor
u Race condition in source code

n RTL-Gate mismatches:
l Same simulator

u Race condition in source code

u Poor coding style

5-4

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Race Conditions

n The most common causes of simulation mismatches are
race conditions

n A race condition is a coding style for which there could
be several correct results; i.e. the code is ambiguous

n All race conditions are some variation of using (read) or
setting (write) a data value at the same time it is changing

n Race conditions may result in logic that behaves
unexpectedly, and should be fixed before synthesis

5-5

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Verilog Simulation Event Scheduling

Organization of events in Verilog simulation time step:

n Current time step:
l Slot 1:

u Evaluate right-hand side of non-blocking assignments

u Evaluate right-hand side of & change left-hand side of blocking assignments

u Evaluate right-hand side of & change left-hand side of continuous assignments

u Evaluate inputs and change outputs of primitives

u Print output from $display and $write

u Call PLI calltf routines for system tasks and system functions

u Note: All actions in Slot 1 are intermixed in any order!!!

l Slot 2:
u Call misctf routines which were scheduled using tf_synchronize()

l Slot 3:
u Change left-hand side of non-blocking assignments evaluated in Slot 1

l Slot 4:
u print output from $monitor and $strobe

u Call misctf routines which were scheduled using tf_rosynchronize()

n Next time step

5-6

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

n Race: Using and setting a value at the same time

Race Conditions: Read-Write

module race;
reg a;
initial begin

a = 0;
#10 a = 1;

end
initial begin

#10 if (a) $display(“May not print”);
end

endmodule

There is no guaranteed ordering of the two initial blocks, so the
$display may never execute

5-7

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

n Race: Using and setting a value at the same time

Race Conditions: Read-Write

4 Solution: Delay the if statement to another time-step

module race;
reg a;
initial begin

a = 0;
#10 a = 1;

end
initial begin

#11 if (a) $display(“Will print”);
end

endmodule

5-8

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

n Race: Setting a signal with different values at the same
time

Race Conditions: Write-Write

module race;
reg a;
initial #10 a = 0;
initial #10 a = 1;
initial

#20 if (a) $display(“May not print”);
endmodule

A race occurs at time 10 because there is no guaranteed ordering
between the two initial blocks

5-9

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

n Race: Setting a signal with different values at the same
time

Race Conditions: Write-Write

4 Solution: Stagger the assignments to reg a by adding delay

module race;
reg a;
initial #10 a = 0;
initial #11 a = 1;
initial

#20 if (a) $display(“Will print”);
endmodule

5-10

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

n Continuous Assignment Evaluation

Other Types of Races

assign p = q;
always @(posedge clk)
begin

q = 0;
if (p) $display(“May not display”);

end

Continuous assignments with zero delays may propagate earlier
than in V-XL, and hence $display may not print

5-11

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

n Continuous Assignment Evaluation

Other Types of Races (cont)

assign p = q;
always @(posedge clk)
begin

q <= 0;
if (p) $display(“Will display”);

end

4 Solution: Use a non-blocking assignment to q.
p will be updated in the next time-step

5-12

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

n Time Zero Races

Other Types of Races (cont)

initial begin
reset = 0;
clock = 0;
forever #50 clock=~clock;

end
always @(negedge reset)

$display(“May or may not display at time
zero”);

Transition of reset to 0 may happen before or after event trigger
(always @(negedge reset))

5-13

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

n Time Zero Races

Other Types of Races (cont)

initial begin
reset = 1;
#10 reset = 0;
clock = 0;
forever #50 clock=~clock;

end
always @(negedge reset)

$display(“Will not display at time zero”);

4Solution 1: Delay the negedge to after time 0.
4Solution 2: Initialize reset to 1 to ensure no x 0 transition.

5-14

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Time Zero Mismatches

n The +alwaystrigger (5.1 and later, +vcs+arm in 5.0) compile-
time switch resolves some time-zero races

n Ensures that always blocks with an initialized signal in its
event control list are triggered at time zero

n +alwaystrigger became default compile option after vcs 5.2
Module top;

reg rst;
wire val;
bot b1(rst,val);
initial rst=1’b1;

endmodule
module bot(rst, val);

input rst;
output val;
reg val;
always @(rst);

val=1’b1;
endmodule

Without +alwaystrigger, the initial block
races with the always block. Output signal
bot.val may be x or 1 at time zero.

With +alwaystrigger, the always block is
triggered at time zero, because rst is
initialized. Bot.val == 1

5-15

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Flip-Flop Race: Read-Write

module dff(q, d, clk);
output q;
reg q;
input d, clk;
always @ (posedge clk)

q1 = d;
always @ (posedge clk)

q = q1;

endmodule

dff1

clk

d q

dff2

clk

d q
d

clk

q1 q

5-16

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Flip-Flop Race: Read-Write (cont)

module dff(q, d, clk);
output q;
reg q;
input d, clk;
always @ (posedge clk)

q1 <= d;
always @ (posedge clk)

q <= q1;
endmodule

dff1

clk

d q

dff2

clk

d q
d

clk

q1 q

4 Solution: Use Non Blocking Assignment

5-17

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Coding Rules of Thumb

n Synchronous blocks drive only with Non-Blocking
Assignments

n Combinatorial and initial blocks drive only with
Blocking Assignments

n Don’t drive regs from multiple blocks

n Be careful with the interaction of continuous
assignments and procedural blocks

5-18

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Debugging Race Conditions

n Use Delta Cycle Display feature in DVE to view
event ordering in waveforms

n Use VCS provides race condition checker:
l Enabled with compile switch +race
l Produces report file race.out that shows most races

n Back-track from visible mismatch to the origin:
l Use $dumpvars to dump VCD files
l Use vcdiff to show differences in simulation
l Use vcat to display VCD file values in readable format

5-19

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

VCS Race Tool +race

n A dynamic tool sitting on top of VCS event-
scheduler and “observes” events on variables

n Enabled with:
l +race for entire design

l +racecd for part of design enclosed in `race and
`endrace

n Outputs race.out file with reports on races
exposed by simulation run

5-20

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Race output example

// File test.v
module test;
reg a;
initial a=1; // write at time 0
initial $display(a); // read at time 0
endmodule

% vcs -R +race test.v
...
...
0 “a”: read test (test.v: 5) && write test (test.v: 4)

5-21

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Post-Process race.out File

n Use post-processing perl scripts to prune the
verbose race.out output:
l PostRace.pl
l In $VCS_HOME/bin directory

n Options in the PostRace.pl:
l -hier <hierarchy-name> (ex:-hier top)
l -sig <sig-name> (ex: -sig databus1)
l -minmax <min> <max> (ex: -minmax 12 16)
l -nozero (ex: -nozero)
l -uniq (ex: -uniq)

n Modifying the PostRace.pl Script:
l The first line of the PostRace.pl Perl script is as follows:

u #! /usr/local/bin/perl

5-22

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Back Tracking Mismatches

n Some races will not be found by +race
n Use $dumpvars to generate VCD dump files from

the two simulator runs:
l VCD file shows all signal changes in the simulation

l VCS comes with two utilities to examine a VCD file.

l Located in VCS install dir: $VCS_HOME/<arch>/util/

n Use vcat to filter the contents of a VCD file

n Use vcdiff to compare two VCD files

n Add $display or $monitor can provide
additional help to show important signals

5-23

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

vcat Usage

vcat dump1.vcd -scope top.dut.moda

dump1.vcd: scopes:8 signals:496 value-
changes:23582

--- top.dut.moda.A ---
0 0
10 1
100 0
130 1
160 0
240 1
440 1

--- top.dut.moda.enable ---
0 0
240 1
600 0

--- top.cla_0. top.dut.moda.write_bus ---
0 001

vcat broken.vcd -scope top.dut.moda -raw

--- 0 --- top.dut.moda.A --- 0 ---
--- 0 --- top.dut.moda.enable --- 0 ---
--- 0 --- top.dut.moda .B --- 0 ---
--- 0 --- top.dut.moda.sel --- 1 ---
--- 0 --- top.dut.moda.H --- 10100 ---
--- 0 --- top.dut.moda.L --- 0 ---
--- 0 --- top.dut.moda.write_bus --- 001 ---
--- 0 --- top.dut.moda.z --- 1 ---
--- 0 --- top.dut.moda.data_bus --- 010000000 ---
--- 10 --- top.dut.moda.A --- 1 ---
--- 10 --- top.dut.moda.sel --- 1 ---
--- 10 --- top.dut.moda .B --- 1 ---
--- 10 --- top.dut.moda.H --- 11100 ---
--- 20 --- top.dut.moda.btmp --- 0 ---
--- 20 --- top.dut.moda.ctmp --- 0 ---
--- 20 --- top.dut.moda.write_bus --- 101 ---
--- 20 --- top.dut.moda.z --- 0 ---
--- 30 --- top.dut.moda.data_bus --- 011110000 ---

5-24

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

vcdiff Usage

vcdiff dump1.vcd dump2.vcd

< dump1.vcd: scopes:58 signals:1294
> dump2.vcd: scopes:58 signals:1294

--- top.dut.modb.a --- 112360 ---
< 112360 01001000000000000001000

> 33120 00010000000000000000000

--- top.dut.modb.dbus --- 112360 ---
< 112360 010010000

> 33120 000100000

Time that a
difference
occurred

Previously
driven at
this time Current value

from dump1

5-25

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Lab 5 Introduction

30 min

Locating Verilog
Race Conditions in
Verilog code

Use vcdiff

Record Delta Cycle

Run race checker

5-26

Debugging Simulation Mismatches
Verification with VCS Workshop Synopsys

Revisiting the Unit Objectives

Having completed this unit, can you:

n Use +race utility to locate race condition code

n Use $vcdplusdeltacycleon to locate race
condition code

n Use vcdiff & vcat to locate race condition code

6-1

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Agenda: Day 2

DAY
2

Topic LabUnit

Fast Gate Level Verification7

Code Coverage 8

Debugging Simulation Mismatches5

Fast RTL Level Verification6

6-2

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Unit Objectives

After completing this unit you should be able to:

n Improve RTL simulation performance with good
coding styles

n Improve RTL simulation performance by using
the +rad compile time switch

6-3

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Simulation Performance Depends On

n Good coding practices

n Good use of tool optimization features

n Good control in use of debugging switches

n Good control of need for re-compile

6-4

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

VCS Architecture

n Three major components in VCS
to improve performance:

n Parser

l Parser accelerate-able code to code
generators

n Event code generator

l Accelerate random logic simulation

n Cycle code generator

l Accelerate sequential block simulation

n Performance starts at the parser

VCS Compiler

Event code
generator

Parser

Cycle code
generator

Verilog
Code

Simulation
Executable

6-5

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

General Coding Guidelines

n Use synthesizable subset of Verilog language
l Give VCS better chance of performing code

optimization

n Raise your level of abstraction
l Give simulator less work to do

n Avoid inefficient constructs
l Switch level primitives (trans) and bidirectional

l Strength modeling

n Use small stimulus blocks
l Avoid large initial blocks (<10,000 lines of code)
l Use file based stimulus (e.g. $readmemh)

6-6

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Things to Avoid for Sequential Logic

n Avoid these constructs in sequential logic:
l repeat

l wait

l fork - join

l assign - deassign

l force - release

l disable

l case

6-7

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

General Things to Avoid

n Gate-level constructs:
l nmos, pmos, cmos, rnmos, rpmos, rcmos, pullup,

pulldown, tranif0, tranif1, rtran, rtranif0 and rtranif1

n Unaccelerated data types:
l time, realtime, real, named event, trireg net and integer

array

n Cross module referencing:
l Cross module reference is not optimized

l Writing hierarchical XMRs is not a good idea

e.g. top.x = y

6-8

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Use VCS Optimization Features

n +rad optimization:
l Compile time switch

l Attempts to optimize design by:
u Raising the level of abstraction

u Parsing code for fast event and cycle-based simulation

l Often referred to as Radiant Technology

6-9

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

+rad Optimization

n Performs semantically-preserved optimization for
both RTL and Gate level simulation

n Optimizes complex logic to simpler form through
logic expression abstraction:
assign x[0] = (a==0);

assign x[1] = (a==1); assign x = (1 << a);

assign x[2] = (a==2);

n Performs global optimizations across hierarchy

n Optimized results more “event efficient” leading to
faster simulations

n May change hierarchy and signal of a design

6-10

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Another +rad Example: Vectorization

n Input Verilog n Optimized Verilog

module up;
…..
Dff d0(in[0],out[0],clk);
Dff d1(in[1],out[1],clk);
..
Dff dn(in[n],out[n],clk);
…..
endmodule

module Dff(in,out,clk);
input in, clk;
output out;
reg out;
always @(posedge clk)

out <= in;
endmodule

module up;
…..
Dff_veci_vec i1(in,out,clk)
…..
endmodule

module Dff_veci_vec(in,out,clk);
input clk;
input [n:0] in;
output [n:0] out;
reg [n:0] out;

always @(posedge clk)
out <= in;

endmodule

6-11

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Using +rad Optimization

n Ideal designs for +rad optimization:
l No debug capabilities enabled

l No timing checks or sdf back-annotation

l Simulation times dominate the compile times

n Compile with +rad compile-time switch:

l +optconfigfile+filename (optional)
u Localize scope of +rad optimizations

>vcs source.v +rad +optconfigfile+filename

6-12

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Configuration File Line Format

l module
u Apply attribute to all instances of module named “identifier”

l instance
u Apply attribute to all instances of module named “identifier”

u Apply attribute to all module instances in path specified by
“identifier”

u Apply attribute to individual signal specified by “identifier”

l tree
u Apply attribute to all instances of module named “identifier”

l depth
u Specifies number of lower level hierarchy to apply attribute

l attributes = noOpt, noPortOpt, RadLight, Opt, PortOpt

module|instance|tree [(depth)]{identifier} {attribute};

6-13

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Minimize Compile Time

n Use Local Disk:
l Avoid over-the-network disk space for code generation

n Minimize debug flags:
l +acc Use PLI Table file with minimum ACC enabled

l -debug Use only if doing interactive debugging

l -I Use only if doing debugging

l -debug_all Use only if doing line tracing during debug

6-14

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

VCS +prof: A Verilog Profiler

n Determine simulation bottleneck
l Key to improving simulation performance

n Use VCS +prof utility
l Breaks simulation CPU time and memory

consumption down by percentage for each module
and Verilog construct

6-15

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Using the Profiler
n Compile and simulation design with +prof

n VCS generates vcs.prof file with the following view on
CPU time & memory based simulation profile report:

n For CPU time
l Top level view

l Module view

l Instance view

l Module to Construct mapping view

l Top level construct view

l Construct view across design

n For memory
l Top Level View

l Module View

>vcs -f my_design.f -R +prof

6-16

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Top Level View

n Display CPU time used by:
l PLI applications that executed along with VCS

l VCS for writing VCD and VCD+ files

l VCS for internal operation overhead

l The constructs and statements in your design

==
TOP LEVEL VIEW

==
TYPE Time %Totaltime

--
DPI 1024 0.06
PLI 39309 2.48
VCD 0 0.00

KERNEL 1544664 97.35
MODULES 0 0.00

PROGRAMS 1728 0.11
--

6-17

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Module View

n Display modules (all instances) using most CPU time

===
MODULE VIEW

===
Module(index) %Totaltime No of Instances Definition

fifo32X8tb (1) 20.30 1 fifo32X8tb.v:7.
fifo_mem (2) 12.90 2 fifo_mem.v:1.
fifo_cntrl (3) 10.57 1 fifo_cntrl.v:1.
ram16X8 (4) 7.82 2 ram16X8.v:1.
fifo32X8 (5) 5.92 1 fifo32X8.v:1.

6-18

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Instance View

n Displays individual module instances using
most CPU time

===
INSTANCE VIEW

===
Instance %Totaltime

fifo32X8tb (1) 20.30

fifo32X8tb.fifo.mem_even (2) 10.57

fifo32X8tb.fifo.cntrl (3) 10.57

fifo32X8tb.fifo (5) 5.92

fifo32X8tb.fifo.mem_odd.ram (4) 4.44

fifo32X8tb.fifo.mem_even.ram (4) 3.38

fifo32X8tb.fifo.mem_odd (2) 2.33

6-19

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Top Level Construct View

n Display memory for each type of construct in
design

===
TOP-LEVEL CONSTRUCT VIEW

Verilog Construct %Totaltime

Combinational 23.89

Always 13.32
Task 13.11

Initial 7.19
Timing Check 0.00

Function 0.00
Module Path 0.00

Port 0.00
Udp 0.00

Protected 0.00

6-20

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Module to Construct Mapping View

===
MODULE TO CONSTRUCT MAPPING

===

1. fifo32X8tb

Construct type %Totaltime %Moduletime LineNo

Initial 7.19 35.42 fifo32X8tb.v : 29-36.
Task 6.55 32.29 fifo32X8tb.v : 83-114.
Task 4.02 19.79 fifo32X8tb.v : 50-76.

2. fifo_mem

Construct type %Totaltime %Moduletime LineNo

Combinational 7.61 59.02 fifo_mem.v : 21, 23, 25.
Always 4.86 37.70 fifo_mem.v : 13-15.
Always 0.42 3.28 fifo_mem.v : 17-19.

n Displays CPU time used by Verilog construct

6-21

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Top Level View

n This view shows you how much memory was used
by:
l Any PLI or DPI application that executes along with VCS

l VCS for writing VCD and VPD files

l VCS for internal operations (known as the kernel) that can’t be
attributed to any part of your design.

l The Verilog modules in your design

l A SystemVerilog testbench program block, if used
==
// Simulation memory: 729588 bytes

==
TOP LEVEL VIEW

==
TYPE Memory %Totalmemory

--
DPI 0 0.00
PLI 4721 0.65
VCD 0 0.00

KERNEL 716395 98.19
MODULES 8472 1.16

PROGRAMS 0 0.00

6-22

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Module View

n The module view shows the amount of memory used, and the
percentage of memory used, by each module definition.

==
MODULE VIEW

==
Module(index) Memory %Totalmemory No of Instances Definition
--
codectb (1) 8472 1.16 1 codectb.v:7.
--

6-23

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Profiler Tips

n Use VCS profiler on a regular basis to catch
potential simulation bottlenecks

n Resolving simulation bottlenecks:
l Provides better simulation performance

l May expose real design issues

6-24

Fast RTL Level Verification
Verification with VCS WorkshopSynopsys

Lab 6 Introduction

60 min

Improve simulation
performance for an
existing Verilog
design

Optimize then repeat

Observe performance

Compile Verilog code

Run simulation

7-1

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Agenda: Day 2

DAY
2

Topic LabUnit

Fast Gate Level Verification7

Code Coverage 8

Debugging Simulation Mismatches5

Fast RTL Level Verification6

7-2

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Unit Objectives

After completing this unit you should be able to:

n Verify the Verilog Gate-Level netlist matches the RTL-
Level simulation using VCS

n Demonstrate the same Verilog Gate-Level netlist
simulates faster with the +rad

n Compile, back-annotate SDF and verify functionality
of an existing Verilog design

7-3

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Gate-Level Validation Flow

Verilog code

VCS

DC

Generate gate netlist

Simulate

Synthesis
Library

Simulation
Library

Simulator

Debugger

Gate-level netlist

Compiler

Place&Route

SDF file

Generate SDF file

7-4

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Fast Gate-Level Functional Validation

n Use +rad

n +nospecify
l Ignores specify blocks (allows +rad to work, since +rad

does not optimize modules with specify blocks)

n +notimingcheck
l Disables timing check system tasks

n +nocelldefinepli+[1|2]:
l +1 disable dumping of internal information of a library

element defined by `celldefine compiler directive
l +2 also disables dumping of information in library or

directory specified by -v or -y compile-time switch

> vcs -f gate.f +rad +nospecify +notimingcheck +nocelldefinepli+2

7-5

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Performance & Debug Considerations

n Synthesis:
l Preserve design hierarchy

u Flat designs simulate slower

n Compilation
l Limit excessive use of debug switches

n Debugging:
l Use post-processing debugging techniques

u Dump VCD+ files

u Limit amount of dump data

l Use the race utilities to resolve race issues

7-6

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Gate-Level Verification with Timing

n Gate-level timing simulation may be needed for:
l Asynchronous logic

l ATPG vector verification

l Initialization conditions

n Timing information is embedded in SDF file:
l Delays (module path, device, interconnect, port)

l Timing checks (setup, hold, setuphold, recovery,
removal, recrem, skew, width, period, nochange)

l Timing constraints (pathconstraint, skewconstraint,
periodconstraint, sum, diff)

l Timing environment (arrival, departure, slack,
waveform)

7-7

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

SDF - Example

(CELL
(CELLTYPE “block”)
(DELAY
(ABSOLUTE
(INTERCONNECT P1/z B1/C1/i
(.15:.15:.15) (.12:.12:.12))

…
)))
(CELL
(CELLTYPE “INV”)
(INSTANCE B1/C1)
(DELAY
(ABSOLUTE
(IOPATH i z
(.34:.34:.34) (.32:.32:.32))
…

)))

P1

B1

C1

C2

i2

i1
z i

z

i1
i2

7-8

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

SDF Back-Annotation in VCS

Compiled back-annotation

n Insert $sdf_annotate in Verilog code

$sdf_annotate(“sdf_file” [,module_instance]
[,“sdf_configfile”] [,“sdf_logfile”] [,“mtm_spec”]
[,“scale_factors”] [,“scale_type”]);

n Compile:

l Requires vendor supplied Verilog simulation library

n SDF configuration file is not supported

> vcs dut_gate.v -v sim_lib.v

7-9

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Alternative Back-Annotation Method

Run-time back-annotation

n Insert $sdf_annotate in Verilog code

n Create a PLI .tab file
l Map $sdf_annotate to sdf_annotate_call

n Compile

n Use only if the following is true
l Included sdf_configfile or scale_type in

$sdf_annotate task call

> vcs -R -P sdf.tab dut_gate.v -v sim_lib.v

7-10

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Compiled SDF Flow Run-time SDF Flow

Compiled SDF Versus Runtime SDF

7-11

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Handling Large SDF Files

n VCS will either parse ASCII SDF file or a
precompiled version of the ASCII SDF file

n Parsing of the precompiled SDF file is faster

n Creating precompiled version of ASCII SDF file:
l Use +csdf+precompile compile-time switch

l VCS creates a precompiled version of the SDF file by
appending “_c” to the ASCII SDF file’s extension

Example:
VCS creates dut.sdf_c from dut.sdf file

n Once created, VCS will read the precompiled
SDF file during compilation
l No compile-time switch is required

7-12

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Selecting min/typ/max Delays

n Selecting min/typ/max for timing:
l Compile-time switch:

u +mindelays

u +typdelays

u +maxdelays

l Or, run-time switch:
u Compile with +allmtm compile-time switch

u Specify delay at run time with run-time switch:
+mindelays
+typdelays
+maxdelays

u Can NOT be used with compile-time switch

7-13

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Delay Filtering

n Two types of delay filtering: inertial or transport

n Inertial delay:
l Default VCS delay process

l Pulses shorter than device delay are filtered out

n Transport delay:
l All pulses are propagated through (no filter)

7-14

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Inertial delay VS Transport delay

7-15

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Enable transport delay

With compile-time switches:

u+transport_path_delays
Turns on transport delay mode for path delays

u+transport_int_delays
Turns on transport delay mode for interconnects

7-16

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Modifying Delay Filtering Criteria

n For module path delays:
l +pulse_e/number (error limit in %)

l +pulse_r/number (reject limit in %)

Example: +pulse_e/70 and +pulse_r/50
u Rejects pulses less than 50% of the delay

u Outputs X for pulses less than 70% but greater than
50% of the delay and display an error message

n For INTERCONNECT delays:
l +pulse_int_e/number (error limit in %)

l +pulse_int_r/number (reject limit in %)

l Same usage as shown in above example

7-17

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Additional Features

n Support for Negative Timing Checks

n Support for Multisource Interconnect Delays

n Support for on-event and on-detect pulse
filtering

n Support for Delay Mode Selection

n Refer to VCS User Guide for more information

7-18

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Performance & Debug Considerations

n Use compiled SDF

n Useful guideline
l Limit excessive use of debug switches
l Preserve design hierarchy
l Use post-processing debugging techniques
l Use the race utilities to resolve any race issues

n Things to bear in mind
l +rad is disabled for entire design when compiled SDF

methodology is used

7-19

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Lab 7 Introduction

45 min

Run a Verilog gate-
level simulation
with and without
timing

Repeat with SDF

Verify gate-level netlist

Simulate without SDF

8-1

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Agenda: Day 2

DAY
2

Topic LabUnit

Fast Gate Level Verification7

Code Coverage8

Debugging Simulation Mismatches5

Fast RTL Level Verification6

8-2

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

What is Code Coverage?

n Code Coverage answers questions such as…
l Have all the lines of the RTL been stimulated?

l Have all the states of a FSM been exercised?

l Have all the conditions of an 'if' statement in the RTL
simulated?

l Have all the blocks of a 'case' statement been
exercised?

8-3

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

What Code Coverage is NOT!

n Functional Coverage, which answers questions
such as…
l Have all possible combinations of instructions been

verified on a processor ?

l Have all the 'corner-cases' been tested for a design ?

l Did an asynchronous interrupt occur when a cache
miss was being handled by the processor ?

n Synopsys has other tools & methodologies to
address Functional Coverage

8-4

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Types of Coverage in VCS

n Statement or line coverage
l Has the line been executed?

n Toggle coverage
l What type of switching activity is there?

n Conditional coverage
l Have various permutations of conditions been exercised?

n FSM coverage
l Have I reached all possible states?

n Path Coverage
l Did all paths in an initial or always block get executed?

8-5

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Defining Code Coverage

n Traditional code coverage includes

l Line or Statement coverage

u Least powerful but easiest to understand

u Checks every assignment has been executed

u Aim for 100% before using more powerful coverage types

l Condition

u Checks all combinations in complex branches

If (a==1) or (b==1) or (c==1)

u Various formats available to identify values of multiple conditions

u Start with basic (sensitized) condition coverage before applying
advance condition coverage

8-6

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Defining Code Coverage (Cont’d)

l Finite State Machine Coverage

u Checks states and state transitions

u Automatically identifies individual state machines, but not cross
product states, communication between FSM’s

l Toggle Coverage

u Ensures every node has transitioned from 0->1 and 1->0

u Used mostly for gate level code coverage

u Also used for system level connectivity testing

8-7

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Line Coverage
n Reports : which lines, statements, and blocks for any instance/module of design

were exercised during simulation

n Verilog :
l procedural assignment statement
l system task
l case
l while
l if
l for
l continuous assignment statement
l initial block
l always block
l missing else

n Verilog: assignment statement - which assignment statement causes a bit of a
signal to toggle 0->1, 1->0 (Verilog only)

8-8

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Line Coverage - Verilog Example

Verilog source code
always @(rst or enable)

begin
case (rst && enable)
0: if (cond1) cas = 1'b0;
1: if (cond2 || cond3) cas= 1'b1;

else $display (" No
condition true") ;

endcase
if (rst && enable) cas1 = cas;
else cas1 = 1'bz;
if (rst) cas2 = 1'b0;

end

17 always @(rst or enable)
18 begin
19 ==> case (rst && enable)
20 ==> 0: if (cond1) cas = 1'b0;
20 ==> if (cond1)
20.1 ==> cas = 1'b0;
20.2 ==> MISSING_ELSE
21 ==> 1:if(cond2 || cond3)cas =1'b1;
21 ==> if (cond2 || cond3)
21.1 ==> cas = 1'b1;
22 ==> else $display ("No …);
22.1 ==> MISSING_DEFAULT
23 endcase

Line coverage annotated data

Annotated files help to understand how VCS extracts constructs for different metrics (line,
statement, block) and what constructs are covered by a given test

8-9

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Line Coverage - Verilog Example (cont.)

Line No Coverage Block Type
8 1 INITIAL
19 0 ALWAYS
20 0 CASEITEM
20.1 0 IF
20.2 0 MISSING_ELSE
21 0 CASEITEM
21.1 0 IF
22 0 ELSE
22.1 0 MISSING_DEFAULT
24 0
24.1 0 IF
25 0 ELSE
26 0
26.1 0 IF
26.2 0 MISSING_ELSE

Line coverage report file details
// Module Coverage Summary

TOTAL COVERED PERCENT
lines 8 1 12.50
statements 12 1 8.33
blocks 10 1 10.00

ALWAYS 1 0 0.00
CASEITEM 2 0 0.00
IF 4 0 0.00
ELSE 2 0 0.00
MISSING_ELSE 2 0 0.00
INITIAL 1 1 100.00
MISSING_DEFAULT 1 0 0.00

8-10

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Condition Coverage

n Monitors values taken on by Boolean and bitwise
expressions
l Conditional expressions in conditional operator (?:)

l if statement

l Expressions in continuous assignment statement (
assign c = a && b;)

8-11

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Condition Coverage - Example 1

Verilog source code
always @(posedge clk)
if (((a[3] && a[2]) && a[1]) && a[0])
begin
#1 $display("&& if triggered");

end

LINE 39
STATEMENT if ((a[3] && a[2] && a[1] && a[0]))

-1-- -2-- -3-- -4--
EXPRESSION -1- -2- -3- -4-

0 1 1 1 | Not Covered
1 0 1 1 | Not Covered
1 1 0 1 | Not Covered
1 1 1 0 | Not Covered
1 1 1 1 | Not Covered

Condition coverage report

8-12

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Condition Coverage - Example 2

Verilog source code

assign d = a1 || b | c;
LINE 33
STATEMENT d = (a1 || (b | c))

1- ---2---
EXPRESSION -1- -2-

0 0 | Covered
0 1 | Not Covered
1 0 | Not Covered

LINE 33
STATEMENT d = (a1 || (b | c))

1 2
EXPRESSION -1- -2-

0 0 | Covered
0 1 | Covered
1 0 | Not Covered

Condition coverage report

cmView groups expressions to make considered sub-expressions smaller

8-13

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Condition Coverage - Example 3

Verilog source code

assign g = ((f == 1) | (e == 0)) ?
(a || b | c) : 0;

Condition coverage report

LINE 35
STATEMENT g = (((f == 1'b1) | (e == 1'b0)) ? ((a

|| (b | c))) : 0)
-----1-----

EXPRESSION -1-
0 | Covered
1 | Covered

LINE 35
STATEMENT g = (((f == 1'b1) | (e == 1'b0)) ? ((a

|| (b | c))) : 0)
-----1-----

EXPRESSION -1-
0 | Not Covered
1 | Covered

//--

// Module Coverage Summary

// TOTAL COVERED
PERCENT

// conditions 24 9
37.50

// logical 24 9
37.50

LINE 35
STATEMENT g = (((f == 1'b1) | (e == 1'b0)) ? ((a

|| (b | c))) : 0)
-------------1-------------

EXPRESSION -1-
0 | Not Covered
1 | Covered

LINE 35
STATEMENT g = (((f == 1'b1) | (e == 1'b0)) ? ((a

|| (b | c))) : 0)
-----1----- -----2-----

EXPRESSION -1- -2-
0 0 | Not Covered
0 1 | Covered
1 0 | Not Covered

8-14

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Toggle Coverage

n Reports whether signals and signal bits had 0->1
and 1->0 transitions

n A signal is considered fully covered if and only if
it toggled in both directions: 0->1 and 1->0
l x->1 and x->0 transitions are not counted

8-15

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Toggle Coverage – Verilog and VHDL

n Verilog
l Registers
l Wires
l Memories (with the +memcbk compile-time option)

n VHDL - ports and signals of types
l bit
l bit_vector
l std_logic
l std_ulogic
l std_logic_vector
l std_ulogic_vector
l signed
l unsigned

8-16

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Toggle Coverage - Example

Verilog source code

input clk, rst;
input [7:0] d;
reg [7:0] ff_out;

always @(posedge clk or posedge
rst)

if (rst) ff_out <= 0;
else ff_out <= d;

Toggle coverage report (no cm_count)

// Net Coverage

// Name Toggled 1->0 0->1
clk Yes
rst No No No
d[2:0] Yes
d[3] No No Yes
d[7:4] No No No

// Register Coverage

// Name Toggled 1->0 0->1
ff_out[2:0] Yes
ff_out[3] No No Yes
ff_out[7:4] No No No

8-17

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Toggle Coverage - Example (cont.)

Verilog source code

input clk, rst;
input [7:0] d;
reg [7:0] ff_out;

always @(posedge clk or posedge rst)
if (rst) ff_out <= 0;
else ff_out <= d;

Toggle coverage report (with cm_count)

// Net Coverage
// Name Toggled 1->0 0->1 ToggleCount

clk Yes Yes Yes 8
rst No No No -
d[0] Yes Yes Yes 4
d[1] Yes Yes Yes 2
d[2] Yes Yes Yes 1
d[3] No No Yes -
d[4] No No No -
d[5] No No No -
d[6] No No No -
d[7] No No No -

// Register Coverage
// Name Toggled 1->0 0->1 ToggleCount

ff_out[0] Yes Yes Yes 3
ff_out[1] Yes Yes Yes 2
ff_out[2] Yes Yes Yes 1
ff_out[3] No No Yes -
ff_out[4] No No No -
ff_out[5] No No No -
ff_out[6] No No No -
ff_out[7] No No No -

8-18

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Finite State Machine Coverage

n Recognizes some portion of sequential logic as an FSM
and reports which FSM states and which state
transitions (among all possible) were executed

n FSM coverage can tell which parts of the design are
implemented as FSMs and gives specific information,
which other kinds of coverage do not provide, on all
possible sequences of state transitions

8-19

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

FSM Coverage - Example 1

Verilog source code
parameter idle = 2'b00,

first = 2'b01,
second = 2'b10,
third = 2'b11;

always @ (posedge clk or posedge rst)
if (rst) state= idle;
else state=next;

always @(in)
begin

next = state; // by default hold case
(state)

case (state)
idle : if (in) next = first;
first : if (in) next = second;
second : if (in) next = third;
third : if (in) next = idle;
default: next = idle;
endcase

end

FSM coverage report (no cm_count)

FSM state
// state coverage results

idle | Covered
first | Covered
second | Covered
third | Covered

// state transition coverage results
idle->first | Covered
first->idle | Not Covered

.
// sequence coverage results

idle->first | Covered
first->idle | Not Covered
idle->first->second | Covered
first->second->idle | Not Covered
first->second->third | Covered
third->idle->first->second | Covered
idle->first->idle | Not Covered Loop
idle->first->second->third->idle | Covered Loop

.

8-20

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

FSM Coverage - Example 1 (cont.)
Verilog source code

parameter idle = 2'b00,
first = 2'b01,
second = 2'b10,
third = 2'b11;

always @ (posedge clk or posedge
rst)
if (rst) state= idle;
else state=next;

always @(in)
begin

next = state; // by default hold
case (state)

case (state)
idle : if (in) next = first;
first : if (in) next = second;
second : if (in) next = third;
third : if (in) next = idle;
default: next = idle;
endcase

end

FSM coverage report (with cm_count)

FSM state
// state coverage results

idle | 2
first | 2
second | 2
third | 2

// state transition coverage results
idle->first | 2
first->idle | 0
first->second | 2
second->idle | 0
second->third | 2
third->idle | 1

// sequence coverage results
idle->first | Covered
first->second->third->idle | Covered
second->third->idle->first | Covered
third->idle->first->second | Covered
idle->first->idle | Not Covered Loop

//---
// Single FSM Coverage Summmary

TOTAL COVERED PERCENT
States 4 4 100.00
Transitions 6 4 66.67
Sequences 25 16 64.00

8-21

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

n Tracks which paths in an initial or always block were
executed
l Checks consecutive branches through the RTL

l Branching statements can be “if” or “case” statements
module dev (out,clk,c1,c2,c3,c4,i1,i2);
input clk,c1,c2,c3,c4,i1,i2;
output out;
reg out,c,d,b;
always @(posedge clk)
begin

out = 1’b0;
if (c1)

begin
out = i1 && i1;
if (c2)

b = i1 || i2;
end

if (c3)
c = ~i1;

else
c = ~i2;

case (c4)
1’b0 : d = 1’b0;
1’b1 : d = 1’b1;

endcase
end
endmodule

Path Coverage

8-22

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

How Can Coverage Be Used?

n Behavioral code
l Line
l Condition
l Path
l FSM

n RTL code
l Line
l Condition
l Path
l Toggle (not recommended)
l FSM

n Gate-level code
l Toggle

8-23

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

VCS Coverage Metrics

n VCM functionality is tightly integrated into VCS

n At compilation/elaboration time, it instruments the design for
collection of coverage data and creates a coverage database

n At simulation time, it collects coverage data and fills the
coverage database
l Usual simulation time overhead is no more than 20%-30%

l Toggle coverage is expensive, up to 3 times overhead

n At post-simulation time there are two modes:
l Batch mode: to generate coverage report file and grade test cases

l GUI mode: to show and manipulate coverage data in graphical form

8-24

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Code Coverage Flow

%> vcs -cm <options>

vcs –cm_pp gui

cmView -b

batch GUI

simv.cm/reports

%> simv -cm <options>
Coverage Database

cmView

GUI ?
Text Reader

vcs –cm_pp

Design coverage DB
creation/modification

coverage simulation data

report files
generation

Excluding lines, source files,
instances from coverage

Note: The GUI provides
a subset of the batch
functionality and is not
always recommended

8-25

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

n Use pragmas (meta-comments) in VHDL/Verilog source code
u Pragmas for Verilog:

//VCS coverage on
//VCS coverage off

u Pragmas for VHDL:
-- VCS coverage on
-- VCS coverage off

n Design Compiler pragmas act the same for coverage:
//synopsys translate_off
//synopsys translate_on

n Compile-time/report-time configuration file (-cm_hier <name_of_file>
) allows inclusion/exclusion of any instance, module/entity, or sub-
hierarchy

Excluding Lines, Source Files, and
Module Instances from Coverage

8-26

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Compiling with Coverage

n %> vcs sourcefiles -cm <coverage_type> <other
coverage options>

n -cm <coverage_type> specifies the type of coverage to
collect

n The options are:
l line Enables statement (line) coverage
l tgl Enables toggle coverage
l cond Enables condition coverage
l fsm Enables FSM coverage
l path Enables path coverage

n Any combination of coverage types can be enabled
simultaneously
l -cm cond+tgl+line+fsm+path

8-27

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Compiling with Coverage (cont.)

n Default location for coverage data:
l ./simv.cm directory - for Verilog and Verilog top designs

n Use -cm_dir to specify an alternate location and/or
name of the coverage database

n Renaming simv with -o (-exe) will also rename simv.cm

n Compiling with

n Will create a mysimv.cm coverage directory

n -cm_dir option takes precedence over -o (-exe)

%> vcs sourcefiles -o mysimv -cm line

8-28

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Compile-Time Coverage Options

n -cm_ cond <arguments> - different features of condition
coverage

n -cm_count - enables counting how many times constructs
were executed (for line, condition, toggle, and FSM
coverage)

n -cm_noconst - excludes constructs that cannot be covered
because some operands are constants (not supported across
module boundaries)

n -cm_fsmcfg - specifies FSM coverage configuration file

n -cm_hier - configuration file, which includes/excludes parts
of design for different kinds of coverage

Important note: do not use +rad option; it will change coverage results

8-29

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

%> simv -cm <coverage_type> <other coverage options>

n Simulation-Time Coverage Options

n -cm_name filename - specifies the name of the intermediate
data files (highly recommended)

n -cm_glitch period - specifies a glitch period during which
VCS does not monitor for coverage caused by value changes
(recommended to use with period = 0)

n -cm_dir directory_path_name - specifies an alternative name
and location for the coverage database

n -cm_log filename - specifies a log file for monitoring for
coverage during simulation

Simulation with Coverage

8-30

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Coverage Database

/verilog

/vhdl

/reports

/db

/verilog

/vhdl

/coverage

Coverage Database
simv.cm

Design data written at compilation time

Coverage data written at simulation time

Report files generated at report time

/annotated

Note: The coverage database is the directory *.cm with subdirectories and files
inside; the default name is simv.cm (for Verilog and Verilog top designs)

Design source files, with added coverage information

8-31

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Report Files for Each Type of Coverage

n cmView.short_l - A short report file containing only sections for instances
in which all coverable objects were not covered. In these sections are
only listed the uncovered objects. The report ends with summary
information.

n cmView.short_ld - Another short report file, for module definitions instead
of module instances

n cmView.hier_l - coverage of sub-hierarchies in the design

n cmView.mod_l - coverage of instances in the design

n cmView.mod_ld - coverage of each module in the design (summary of all
module instances)

n cmView.long_l - detailed coverage of each instance in the design

n cmView.long_ld - detailed coverage of each module in the design

Note: file names shown are for line coverage

8-32

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Report-Time Coverage Options

n -cm_tests <file_name> - defines names of tests cmView reads

n -cm_nocasedef - excludes default choice of case statement from
coverage

n -cm_autograde - generates report file with absolute and relative coverage
estimation of each test

n -cm_hier - configuration file, which includes/excludes parts of design for
different kinds of coverage

n -cm_name - specifies the name of report files (instead of default cmView)
- usually defines test case name for coverage database

n -cm_report - to change the position of summary in report files, ascending
or descending order of covered instances

n -cm_verbose - reports coverage summary in terms of tests and type of
coverage

8-33

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Accumulating Coverage Results

n To get the total coverage for the design:
l Merge different test-case results for the same design

(possibly with different test environments)

l Import module/block-level coverage results to the chip-
level design

n Methods to Merge Coverage Results
lMethod 1: Build the simv executable once, then

simulate several times sequentially using the
same testbench but different inputs

lMethod 2: Build several simv executables and
simulate sequentially or in parallel

8-34

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Method 1 Example

set COV =(line+cond+tgl+path+fsm)

#compilation for Coverage

vcs tst.v -cm $COV

#simulation of all test cases

simv -cm $COV +TEST1 -cm_name TEST1

simv -cm $COV +TEST2 -cm_name TEST2

simv -cm $COV +TEST3 -cm_name TEST3

merging Coverage for all test cases, and generation of report files

vcs -cm_pp -cm $COV -cm_nocasedef -cm_name TOTAL

Build the simv executable once, then simulate three times sequentially using
the same testbench but different inputs

8-35

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Autograding

n Determines how much each test case contributes uniquely to
the total coverage

n Autograding is coverage-type dependent
l For example, a particular test case can be valuable for line coverage, but not for

toggle or other types of coverage

n Implemented for line, condition, toggle, and FSM coverage

n cmView can generate an autograding report for one type of
coverage per run

n Autograding report provides the list of all test cases and their
metrics:
l Covered - coverage for given test
l Accumulated - coverage summary of given test and previous ones
l Difference - additional coverage of given test over the previous accumulated

+additional coverage of previous accumulated and missed in given test
l Incremental - additional coverage of given test over the previous test

8-36

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Autograding - Example

Test No. Incremental Difference Covered Accumulated Test Name

0 82.35 82.35 82.35 82.35 TEST1

1 11.76 55.88 50.00 94.12 TEST2

2 5.88 70.59 35.29 100.00 TEST3

Line coverage

Test No. Incremental Difference Covered Accumulated Test Name

0 66.67 66.67 66.67 66.67 TEST1

1 16.67 83.33 16.67 83.33 TEST2

2 0.00 66.67 16.67 83.33 TEST3

Conditional coverage

Commands:

vcs -cm_pp -b -cm line -cm_autograding 100
vcs -cm_pp -b -cm cond -cm_autograding 100

8-37

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

n Integration with VCS

n Supports line, condition, toggle, FSM and Path

n Graphical and text based results

n Automatic and/or custom coverage
l Now extended with Tcl

n Merge coverage for a design using different tests

n Autograding helps create more efficient
testbenches

Coverage Metrics Summary

8-38

Fast Gate Level Verification
Verification with VCS WorkshopSynopsys

Lab 8 Introduction

30 min

Autograding

FSM coverage

Merging coverage

