SYNOPSYS

Verification with VCS
Workshop

Synopsys Education and Training Services
© 2006 Synopsys, Inc. All Rights Reserved

Synopsys Ver. 1.0

Synopsys Support Center -2

n https://solvnet.synopsys.com/EnterACall

n Send e-mails: prchelp@synopsys.com

n Make a call: 800-820-0284

Introduction
Synopsys Ver. 1.0 Verification with VCS Workshop

https://solvnet.synopsys.com/EnterACall
mailto:prchelp@synopsys.com

What i1s Your SolvNet ID? -3

i | kKnow my
veeno | SOIVNet ID!

Introduction
Synopsys Ver. 1.0 Verification with VCS Workshop

First Things First -4

n Instructor Introduction
n Student Guide

n Lab Guide

Introduction
Synopsys Ver. 1.0 Verification with VCS Workshop

Workshop Prerequisites 1-5

n Understanding of digital IC design

n Familiarity with UNIX and X-Windows
n Familiarity with a UNIX-based text editor

n Familiarity with Verilog

Introduction
Synopsys Ver. 1.0 Verification with VCS Workshop

Workshop Target Audience 1-6

n Digital ASIC design engineers
n Digital ASIC verification engineers

n Limited VCS debugging experience

Introduction
Synopsys Ver. 1.0 Verification with VCS Workshop

Workshop Goal i-7

Acquire the skills to verify and debug Verilog
designs using Synopsys VCS

S

e

Introduction
Synopsys Ver. 1.0 Verification with VCS Workshop

Workshop Measurable Objectives 1-8

Synopsys Ver. 1.0

By the end of this workshop you should be able to:

N

N

Simulate Verilog designs using VCS
Debug Verilog designs using VCS

Run fast RTL-level regression tests for your
Verilog design

Run fast gate-level regression tests for your
Verilog design

Acquire the skills and knowledge to successfully
Implement coverage driven verification
methodology using Synopsys tools

Introduction
Verification with VCS Workshop

Agenda: Day 1

1-9

DAY

Synopsys Ver. 1.0

Topic

VCS Simulation Basics

VCS Debugging Basics

Debugging with DVE

o

Post-Processing with VCD+ Files

aooon

Introduction

Verification with VCS Workshop

Agenda: Day 2 1-10

DAY

Unit Topic

Debugging Simulation Mismatches

:

Fast RTL Level Verification

:

V4 Fast Gate Level Verification

Code Coverage

"

Introduction
Synopsys Ver. 1.0 Verification with VCS Workshop

Student Introductions 1-11

n What is your name?
n What is your job?
n What is your background/work experience?

n What do you want to get out of this workshop?

Introduction
Synopsys Ver. 1.0 Verification with VCS Workshop

Ilcons Used in this Workshop 1-12

Lab Exercise @ Caution
Question @ Note
Hint, Tip, or Suggestion @ Remember

Checklist

Introduction
Synopsys Ver. 1.0 Verification with VCS Workshop

Agenda: Day 1 1-1

DAY

Topic

Synopsys

VCS Simulation Basics

VCS Debugging Basics

Debugging with DVE

Post-Processing with VCD+ Files

103

VCS Simulation Basics
Verification with VCS Workshop

Unit Objectives 1-2

After completing this unit, you should be able to:
n Compile a Verilog design using VCS

n Simulate the Verilog design

VCS Simulation Basics
Synopsys Verification with VCS Workshop

VCS?e s 1-3

n A compiled simulator
1 Verilog Compiled Simulator
1 Digital functional simulator

n Complies with IEEE-1364
1 Including PLI 1.0/VPI (PLI 2.0)
(Programming Language Interface)

n Supports simulation at multiple
abstraction levels

1 Behavioral

1 RTL

1 Gate (with SDF support)
1 Sign-off

VCS Simulation Basics
Synopsys Verification with VCS Workshop

How VCS Works 1-4

nAccepts design descriptions in Verilog, C/C++ PLI and models

nTwo step simulation process:

1 Step 1: Compile

1 Step 2: Run
Depending upon platform, VCS first generates C code from the Verilog
source, then it compiles and links the object files to the simulation

engine to create an executable.

Alpha, SGI, IBM

platforms
A N A N A N
Verilog C language Object Link
Source files files simyv
(mem.v (mem.c (mem.o (executable)
cpu.v) cpu.c) Cpu.o)

V PLI code links to simv
On Solaris, Linux & HP compile not to VCS

direct to object code
VCS Simulation Basics
Synopsys Verification with VCS Workshop

VCS Compilation Command Format 1-5

> vcs sources files [conpile tine options]

n sources files

1 All Verilog source files of the Design Under Test (DUT)
1 Separated multiple source files by spaces

1 Top module should contain testbench for the DUT

n conpile time options (optional)
1 Controls how VCS compiles the source files
1 Ciritical for optimization for visibility and performance
1 Each unit of this workshop will describe how best to use these
conpil e_tine_options

n Generates simulation binary executable si nv
(defaul t)

VCS Simulation Basics
Synopsys Verification with VCS Workshop

Compile-Time Option Examples 1-6

vcs -help lists compile options, run-time options, environment variables

Command line options (commonly used):

-Mupdate Incremental compilation (only changed files are compiled)
-R Run after compilation

-gui Starts the DVE gui at runtime.

-| <filename> set log file name

-sverilog Enable SystemVerilog language support

+v2K Compile with support for Verilog 2001 extensions

VCS Simulation Basics
Synopsys Verification with VCS Workshop

Compile-Time Option Examples 1-7

n Compile-time options to access Verilog library files
-v lib file Search for unresolved module references infilelib file

-y lib dir Search for unresolved module references in files residing
indirectory i b_dir

+l i bext+li b_ext Use file extension| i b_ext when searching for files in library
directory | i b_dir

+incdir+inc_dir Searchinc_dir directory for ‘i ncl ude files

n Access Verilog files and options via a file

-f file File containing a list of absolute pathnames for the
sources_fil es and a subset of VCS options

n User selected simulation binary name

-0 foo Creates executable f oo instead of si nv

VCS Simulation Basics
Synopsys Verification with VCS Workshop

VCS Incremental Compilation 1-8

Faster compilation by compiling
only the modules you have changed

If you made a change to module mem in mem.v, then VCS compiles only
the module mem. The cpu module object code is used from a previous
compilation and linked with the new mem object code in the creation of

the executable.

A N = A N
: Link
Verilog C language Y[l
Source - files ‘

files simv
(mem.v) (mem.c)

(mem.o (executable)
Cpu.o)

VCS Simulation Basics

Synopsys Verification with VCS Workshop

VCS -Mupdate 1-9

Creates a makefile that is built and maintained by vcs:

Example
vcs filel.v file2.v file3.v -Mupdate:
« Compiles Verilog source files, puts c files in directory called csrc
« Makefile created in csrc directory
« C compilation accomplished via makefile
* Object files linked to produce simv
Subsequent compilations will be incremental:
« Appropriate c files updated
« Makefile adjusted
* Incremental c compilation as appropriate
* Object files re-linked

Handy tip: The —Mupdate switch can be shortened to —M but this will make use of
an existing makefile whereas —Mupdate generates a brand new makefile.

VCS Simulation Basics
Synopsys Verification with VCS Workshop

VCS Simulation Command Format 1-10

> simv [run_tinme_options]

n run_tine_options (optional)
1 Controls how VCS executes the simulation binary
n Simulation results reported via

1 Verilog system task calls

1 User defined PLI routines

VCS Simulation Basics
Synopsys Verification with VCS Workshop

Run-Time Option Examples 1-11

n Stop simulation at time 0

- s Stops simulation at time O

n $plusargs() switches

+user sw t ch User defined run-time switch

n Compile-time option status

- Eecho Displays compile-time options used for the creation of the current
simv executable

n Log file control

-1 logfile Write outputtol ogfile

VCS Simulation Basics
Synopsys Verification with VCS Workshop

Sample Simulation Run

1-12

Compile all Verilog
source files
including testbench

~

VCS generated the
simulation binary ~_
Si nv

Run simulation with
simulation binary ™~

Simulation results
reported via Verilog
system task calls

>| s
adder4bit.v addertb.v
~>vcs addertb.v adder4bit.v

Parsing design file ‘addertb.v’ ‘adder4bit.v’
Top Level WModul es:
adder _t estbench
No Ti neScal e specified
uni que nodul es to generate

20 dul es done

| nvoki ng [..

simv generation ssfully conpl eted

>| s

adder4bit.v addertb.v csrc/ sinv
~S>sionv

Chronol ogi ¢ VCS Si nul at or copyright 1991-2005
Cont ai ns Synopsys proprietary information

Conpi |l er version Y-2006.06; Runtine version Y-2006. 06;
11 11: 35 2006

Dec

0+0=0
F+F=E
*** \erification conpleted wthout error ***

VCS Si ml ati on Report
Time: O
CPU Tinme: 0.070 seconds; Data Structure size: 0.0M
Fri May 12 11:35:31 2000

>

VCS Simulation Basics

Synopsys Verification with VCS Workshop

Misc Switches 1-13

n Useful switches for working with
Synopsys support
-1D Gets host machine information

- Xman=4 Combines all source files into a single file “tokens.v”
(Use for submitting test cases to Synopsys)

VCS Simulation Basics
Synopsys Verification with VCS Workshop

Using DesignWare Library with VCS 1-14

n Instantiating DesignWare components in Verilog

1 Format:

DWhart #(paraneters) ul(.porta(a), .portb(b));

1 DesignWare multiplier example:
DW2 mult #(inst_A width, inst B wdth)
ul(.A(inst _A), .B(inst_B),.TC(inst_TC),.PRODUCT(inst_ PRODUCT));

n Accessing DesignWare simulation library
-y $SYNOPSYS/ dw si m ver +libext+. v+

VCS Simulation Basics
Synopsys Verification with VCS Workshop

Summary 1-15

n Compile a Verilog design using VCS

n Simulate the Verilog design

VCS Simulation Basics
Synopsys Verification with VCS Workshop

Lab 1 Introduction 1-16

@ Simulate a simple
Verilog design

15 min Compile Verilog code

Run simulation

VCS Simulation Basics
Synopsys Verification with VCS Workshop

Agenda: Day 1 2-1

DAY

VCS Simulation Basics

VCS Debugging Basics

Debugging with DVE E
Post-Processing with VCD+ Files -

i

VCS Debugging Basics
Synopsys Verification with VCS Workshop

Unit Objectives 2-2

After completing this unit, you should be able to:

n Describe three methods of debugging Verilog
code using VCS

n Invoke UCLI debugger
n Debug Verilog designs using UCLI

VCS Debugging Basics

Synopsys Verification with VCS Workshop

VCS Debugging Support 2-3

n Trace and locate causes of errors

n Three general methods:
1 Verilog System Task calls
1 VCS UCLI
1 VCS DVE

n Four factors to consider:
1 Simulation speed
1 Signal visibility
1 Signal tractability
1 Usability

VCS Debugging Basics
Synopsys Verification with VCS Workshop

Debugging via Verilog System Tasks 2-4

n Simulation speed

1 Fast

n Signal visibility
1 Specified by the Verilog system task calls

n Signal traceability

1 Mainly pencil and paper

n Usability
1 Useful for quick visual feedback

1 May require multiple iterations of inserting Verilog
system task calls followed by compile and simulate

VCS Debugging Basics
Synopsys Verification with VCS Workshop

Common Verilog System Task Calls 2-5

Synopsys

n Debug visibility:
$di spl ay Prints formatted message to console

$strobe Like $di spl ay except printing is delayed until all events
in the current time step have executed

$noni t or Monitor signals listed and prints formatted message
whenever one of the listed signals changes

$tine Returns current simulation time as a 64-bit integer

n Stopping simulation:

$st op Halts simulation like a breakpoint.

$fi ni sh Halts simulation and terminate the simulation session

n Simulation stimulus and reference:

$r eadnenh Reads ASCII data from a disk file. Each digit is hexadecimal

$readnmenb Reads ASCII data from a disk file. Each digit is binary

VCS Debugging Basics
Verification with VCS Workshop

Embedding Verilog System Task Calls

2-6

Instantiated Design
Under Test (DUT)
\

Print adder result
whenever input or output
of adder changes =

Stimulus generation =—»

Verify results ~—

Indicate completion
of test —

Design Under Test

(DUT) ~—,

nmodul e adder test;
wire [3:0] sumout;

reg [3:0] a_in, b_in;
in [8:0]
adder ul(a_in, b_in, sumout);
initial
—> $noni t or ($ti ne, % + % = %", a_in, b_in,
initial
begi n
{ for (in =0; in<=9'h0ff; in =1in + 1) begin
ain=1in/[7:4]; b_in =1in [3:0];
fif (sumout !'== (a_in + b_in)) begin
$display("***ERROR at time = 9%0d ***",k $t
~ $di spl ay("a=%, b=%, sunm=%", a in, b_in
\ $st op;
end
\ #100;
end
> $display("*** Testbench Successfully conplete
$fini sh;
end
endnodul e

nodul e adder(a, b,
input [3:0] a, b;
out put [3:0] sum
assign sum=a + b
endnodul e

sum ;

sum out) ;

i me) ;
sum out) ;

d!

***u) .
’

Synopsys

VCS Debugging Basics
Verification with VCS Workshop

Debugging via UCLI 2-7

n Simulation speed
1 Speed depends on the scale of visibility you specify

n Signal visibility
1 User specified

n Signal traceability
1 User specified breakpoints
1 Some pen and paper

n Usability
I Supports scripting

1 UCLI is compatible with TCL 8.3 and any TCL
command can be used with UCLI.

VCS Debugging Basics
Synopsys Verification with VCS Workshop

Compile and Invoke UCLI Debugger 2-8

n Compile and invoke UCLI in one step

> vcS source.v -debug|debug all -R -ucli

1 -ul ci invokes UCLI and stop simulation time at time O

n Compile and invoke UCLI in two steps
1 Compile

> vCcS source.v -debug|debug all

1 Invoke UCLI and stop simulation time at time O

> sinmv -ucli

VCS Debugging Basics
Synopsys Verification with VCS Workshop

UCLI Debugger Command Line Options 2-9

n -debug

1 Enables command line debugging option. This
flag does not enable line stepping.

n -debug_all

1 Enables command line debugging option
Including line stepping.

n -ucli
1 Forces runtime to go into UCLI mode by default
n -gui

1 Compile time option invokes the DVE gui when
Issued at runtime.

VCS Debugging Basics
Synopsys Verification with VCS Workshop

UCLI Debugger Command Line Options 2-10

n -l logFilename

1 Captures simulation output, such as user input
UCLI commands and responses to UCLI
commands.

n -i InputFilename

1 Reads interactive UCLI commands from a file, then
switches to reading from standard command line
Input.

n -k keyFilename

1 Writes interactive commands entered to
InputFilename, which can be used by a later simv
as -l inputFilename

VCS Debugging Basics

Synopsys Verification with VCS Workshop

UCLI Commands

2-11

Synopsys

Command Purpose Old VCS command (if
any)

show List scopes, objects and show vars
types

get Get value in any radix print

stop Breakpoint w/ time, break
event, file/line/thread

change Assign value set

force Hold value - can't force
override from design
Clock Gen support

scope Scope in design show scopes
hierarchy

run Run the simulation ., continue

VCS Debugging Basics

Verification with VCS Workshop

UCLI Commands

2-12

Command Purpose Old VCS command (if
any)

dump Dump the objects - post- $vcdpluson
processing

save Save the current $checkpoint
simulation state.

restore Restore $restore

senv Show environment -
settings in TcL

config Change the base etc. -

step interactive line stepping step

next interactive line stepping -

Synopsys

VCS Debugging Basics

Verification with VCS Workshop

UCLI Commands

2-13

Synopsys

Command Purpose Old VCS command (if
any)
listing Displays source text -
start Start a new simulation -
loads Get loads (fan-out) across | -
boundaries
drivers Get drivers (fan-in) across | -

the boundaries

VCS Debugging Basics
Verification with VCS Workshop

Sample UCLI Command Set 2-14

Synopsys

n Changing scope:

scope [-up [level] | -active] [hierarchical path]

Show or set the current scope to the specified

I nstance. Wth no argunents, the current scope is
retur ned.

-active (Sets the scope to the active point wwthin the
t ool)

-up (A inbs up the scope hierarchy one or n |evels)

show -[scopes | ports | vari abl es| signal s]

n Read/write commands:

force [-deposit | -freeze | -drive] path val ue
rel ease path
menory -read|-wite nid -file filename [-radi x radi X]

[-start start _address] [-end end address]

VCS Debugging Basics
Verification with VCS Workshop

UCLI Example

2-15

Synopsys

shel | > vcs -debug_all driversget.v

Si mv generation successfully conpl eted
shell > simv -ucli

J L

ucl i % scope
t op

ucli%config -ti nebase 1ns
1ns

ucli % dunp -add top.t1 -depth 2

VCD+ Witer Y-2006.06 Copyright 2005 Synopsys Inc.
1

ucli % stop -change top.t1l.cnt
1

ucli % stop -absolute 3
2
ucli % step

driversget.v, 16 : ra = O;
ucli % step
driversget.v, 17 : rb = O;

VCS Debugging Basics

Verification with VCS Workshop

UCLI Example (cont)

2-16

ucli % listing

file ./driversget.v, line 17
12: wire wa, wb, wc, wd, we;
13:

14: initial

15: begin

16: ra = O;

17:=>rb = 0;

18: rc = 0O;

19: rd = 0;

20: re = 0;

21: rf = 0;

22: clk = 0;

ucli % run

Stop point #1 @00 ps; top.tl.cnt =0
ucli% stop -disable 1

1

ucli % run

Stop point #2 @ 3000 ps;

ucli % stop -change rc

VCSSi mul ati onRepor:t
Ti me: 10000 psCPU Tine: 0.010 seconds;
size: 0.0MoWed Nov 3 08:13:36 2004

3

ucli % run

Stop point #3 @5000 ps; top.tl.rc =0
ucli % run

Stop point #3 @ 10000 ps; top.tl.rc =
ucli % quit

1

Data structure

Synopsys

VCS Debugging Basics
Verification with VCS Workshop

Problems in Simulation? 2-17

If you suspect simulation is having problems

n Determine whether or not time is advancing:
1 Halt simulation by hitting CTRL-C
1 Check simulation time
1 Continue simulation by typing in “run” at UCLI prompt
1 Halt simulation again after a short period of time

1 If simulation time has not changed, simulation may be
caught in an infinite loop or waiting for a phantom trigger

n Determine potential location of problem:
1 Re-compile with —debug_al | compile-time option
1 Halt simulation
1 Use UCLI command showto display variables
1 Trace code execution with UCLI command next

VCS Debugging Basics
Synopsys Verification with VCS Workshop

Problems in Simulation? (cont) 2-18

n Use Verilog system tasks to help isolate error

1 Insert $display statements in the area indicated by source
code tracing

1 Display all variables associated with branching statements

n Re-Compile and monitor $display print out to
determine the cause of the problem

n Repeat procedure if necessary

Example:

The following is caught in an infinite loop -

reg [3:0] i, test;
initial
for (i =0; i <=4'hf; i =i + 1)
begi n

test = test + 7

[
I$disp|ay(“i = 99d”, i);

end

Inserting this $display statement will clearly
show that this loop never ends

VCS Debugging Basics
Synopsys Verification with VCS Workshop

Lab 2 Introduction 2-19

@ Debug a simple
Verilog design

30 min using UCLI

Compile Verilog code

Invoke UCLI debugger

Trace code execution

VCS Debugging Basics
Synopsys Verification with VCS Workshop

Agenda: Day 1 1

DAY

Topic

VCS Simulation Basics

VCS Debugging Basics

oo

Debugging with DVE

4 Post-Processing with VCD+ Files

Synopsys Debugging with DVE

ODbjectives

n Learn to use basic features for debugging RTL

1 An introduction to the basic features
u Waveform debugging
u Source code debugging
u Listing features
u Assertions
u “C/C++" debugger

1 Analyzing design components
u memories, busses, gates

Documentation

N

N

N

N

N

User reference manual
1 $VCS_HOME/doc/UserGuide/dve ug.pdf

Release notes (DVE)
1 $VCS_HOME/gui/dve/doc/DVEReleaseNotes.txt

Quick start example
1 $VCS_HOME/gui/dve/examples/tutorial/quickstart/quickStart.html
1 Help-> Tutorial (for Mixed HDL)

Example directory
1 $VCS_HOME/gui/dve/examples

dve —help

1 Gives information about the current DVE command line options

DVE™

Discovery Visual Environment

A

Design Debug Productivity

OVE - Tuplewnl, i - [hasrce,L - Lh_estch, SSTCH, HATCHELY, CORE , 5E TERCOVE . HE TEREORE_CLERRT setorcire,]

F
File Edit ¥iew Gigmdador Signal Geope Tmie Window Hele
[s @ e e C LT W S | R e
fases I N £ NILE B B N N SN 5 - R e ‘-.*‘hl
| —T B[Guhiwielie & el
W1 =Bugypd _:-J' :|.::J I :J| T j 7 2
m!'l]T!JIL Varay & W
gales (gabes] Mo s =CLEART © = N
nan fran 1] B-CLE 40 ¥ [cItwvant and cik = 77 Then
i_waich th_s_ Mol |} tfﬁ;"-.cT- i i A
- L1 m Y 1] n
@I CHECKERE | Mo I_'::‘ELDE:'G- gt
+ 1} ¥
gl:I:lLl-lTDl:l'.\'N Hal 4 lI-HZII.Fl_‘ME iz Setondl «= ZEAD; i
SECOMDE_C_ Mar ; !
FTngk 030 F HOLAG 4% Fnules <« TERS,
w TiRaE_0_0_ o 4B WIN_METE & i
TPFTIMES_UF_C.. Nal ~MMUTES 44 Hakifs == 2ERD.
o EwaTcH (WAt Mo || = i
-'ﬂw.ﬁTl:HRLh Ma @R:T 45 '.'l.ll'!'\&lil_:lllt <= Chaar]
Sbcores o Ma) ||| 7 RIEC_ET R
I-]ﬂcm:m: Ma r-SECONDE :? e
T TER
P Stan N Sralt Fi ace cument_siole ik
={BDIsFLa_ Mo
ri-} whan el =
FDEL L1 I [#0e w GOl 1hen
FFOL. Pro L1} ———
® F1L. Fro |
®.PEL. P 52 TRl HIAIE o D0,
PRETER. Fro CLEART
B3 L1H]
Htiuo: v oS LT ourrEnt_siala 4= Claarl;
=Tkl Mo EART =
BT el "-ai:J - [y — A— . hL.] e #hess Ao
i i
PPt ™ T R NS Lot i TweteTcoe i | ™ Reute | oy e T, | g e nemoey | B e |
& Fivar Tirse Aange 0 - 20118 f
First FailEndest * |FrolFoil Starled [Detia. [instanee | #ssarion [omendng |
00 FE=) 10 1b_walch CHECKERS SEC_I0_CHECKER [380 == A
745 bl A0 et K1 o
|| A ssarion Falkre Sumnan
1 (METERCORE] [0 waioh WaTCH WA M e R

Docked windows inside workspace boundaries

Synopsys

An Intuitive and Easy to
use GUI
Quickly Find Bugs

1 RTL or Gate

1 Assertions

1 Testbench

Supports
1 Interactive
1 Post-simulation analysis

Multiple Languages
1 Verilog
1 VHDL
1 C/C++
1 SystemC
1 NTB

Debugging with DVE

Both Interactive and Post-simulation 5

n Full Interactive and Post-simulation Analysis Support

n Analyze value change data
1 value and strength information
1 delta cycle information
1 annotated in Source, Schematic, Path or List views

n Analyze source execution
1 Available only in interactive analysis !
1 Ability to select time and instances of interest !
1 Line by line

n Save and Restore simulation state
1 Save current state then redisplay it

Synopsys Debugging with DVE

Context Sensitive Menus (CSM)

Synopsys

N

N

N

N

Point at an object
1 signals, instances, ports, panes, and assertions.
1 configure main toolbar

Click Right Mouse Button (RMB) down
I menu appears with relevant options

Point to choice

Release button

Debugging with DVE

Drag and Drop & Selection 7

Drag and Drop

1 Point at an object in a pane or window
u Instance, signal, assertion

1 Hold LMB down
1 Drag object to a new location
1 Release button

Selection
1 Use LMB for a simple selection
1 Use LMB and Control key (to add or remove an item to selection)
1 Or Use LMB and Shift key (to group select)
1 Press LMB and drag to select a group of objects

Synopsys Debugging with DVE

Invoking DVE 3

Interactive Mode

n Starting from compilation
%cs source.v -R —gui -debug_al |

1 -R
u Starts DVE immediately after compilation (optional)
1 -gui

u Enables DVE

1 -debug or -debug_all

u -debug enable command line debugging (no line stepping)

u -debug _all enables command line debug including line tracing (optional)
1 -ucli

u Forces runtime to go into UCLI debugger mode (optional)

n With existing simulation executable

U%si mv -qgui
1 -gui
u Starts DVE from existing simulation executable (defaultis si nmv)

Synopsys Debugging with DVE

Invoking DVE 9

Post-Processing Mode

n Launch DVE GUI
% dve &

n Open Database (vcd,vpd)
1 click the Open Database icon Ei'l"*| open dialog box

Look in: [3ieastdijgirard/DVEfsva_labsiLabs/5_Labd x| 4= (== Detailed
or List view
MName size Type |Date Aftributes [=
== L WU TS a8 g T al =yl Ile
_simv. daidir Cir 02/09/06 14:54:32 Aead—write
_simyovdb Dir 02/098/06 15:02:10H=ad-write Note:
ile 53 36Read-write : :

107g0424File 02/08/06 15:02:11Read-write brmgs up dve with
[verilog dump 1494466668File 02/09/06 15:0211Read-write 7| | file already loaded
File name: vedplus vpd Open
File type: Catabase Files (*.vpd;* ved* dump) j Cancel
Designatar: 41 _— Optional:

Select time slice
Time range frnm:(lﬁ to: |d1 1963600 ¥ 10ps
7

2

Synopsys Debugging with DVE

Windows Icons 10

n DVE pop-level window
1 Frame for displaying current data objects

1 Can contain other windows and panes
u Source, Schematic, Path, Wave, List, Memory

n Opening new-top level window

1 Click the corresponding window icon to remove
target symbol (red circle)

1 Window-> New-> Source
u New objects will be displayed in new window

Synopsys Debugging with DVE

Interactive Simulator Controls 11

n Simulation Execution
1 Click the continue icon Irl to “start/continue” button

1 Click the stop icon # to stop

1 Enter a ucli command
u ucli% run (run until break point)
u ucli% run 100 (run for 100 time units)
u ucli% run 100ms (run for 100 ms)
u ucli% run -posedge wb_ack i (run until positive of wb_ack i)

1 Use simulator controls to set a simulation break point and
run VCS

u “Step Time”

u “Go To Time” —l \
|JJ| 17625500 % 10ps|| & [1000

Synopsys Debugging with DVE

Interactive Simulator Controls (Cont’d) 12

n Simulation controls

1 Click stepicon # to simulate next executable line
1 Click nexticon f to step over tasks and functions
1 Click restarticon & to reset simulation to time zero

1 ucli commands

u ucli% step
u ucli% next
u ucli% restart

Synopsys Debugging with DVE

Searching for Objects 13

n Toolbar menu: Edit -> Search for Signals/ Instances

. . . — Search for Signals/Iinstances
1 Viewing objects = : -
Search for: |wb_* j Search
u Select ObjeCtS I~ Match case W Match whole word only =0
u right click to activate CSM RSE wildcards = Close
Select wind t &~ Signalsfariables ¢ Scopes ¢ Modules/Entities —
u Select window ype I design: |AII Catabases j &

—€e.0. Wave Within this ggope: |AII Scopes

=

Filter results
o Jnput Name °

B Output ss_through_0.wh_ack_| Wire(Port In)
oot Wire(Part In}
It Assertion - R — T e—
1+ Buffer R : Dowh_addr_i[31:0] Wire(Paort In)

@ Linkage ¢_PIE e | DG
- Wire/Signal ~B-test.ul.check_pass_through_0wh_data_i[3
0 RegMariable ----D—test.uD.check_pass_thmugh_ﬂ.wb_data_cn[i Show Source _
E Eﬁg;?qate ~p-test.ul.check_pass_through Owh_err j show Schematic
& Pararmeter --I--D—test.uD.check pass throuoh Owh err o Show Path Schematic
SIC AN : . Add To Waves
;3[3';_2'?;5 225 objects were found. Add To Lists
Select All
CSM

Synopsys Debugging with DVE

Wave Window

Overview 14
Finl: |wt-' j F -d ~=x I .
T b oo, [+ wrap gro. -d Tl U p p er tl m eS C aI e
Wb o ol werd enb T Saare S is .
e Ee : (current range display)
Fielz: | .4 o v

VWE - Toplewel 2 — [Wwave. 1]
B File Edw View Simulator Signal Scope Trace Windoy aeip

([350594600 x 10ps| |2 & | S| % B @ X ([ga[wb-

® 00 &« »[ayEage S| [BPE R B B E

Marme 350596000 250598000 =

+-DMA

5-Wishbone Mst
Bl =i
- B-rst St

- rh_cye o S Drag zoom
~2wh sth o Stl—==t

- Ewh owe 0 Stl—z=t
- B-wh_ack_i St
-2wh_addr_o[31:0] 32'h0000 0008- 0000 4000 0000 00*) 0000 400 0000 00* 0000 4008 | 0000 00 0000 40° 3 0000 00 000 407
- E-wh iy | =t
+-B-mast_pt_in[70:0] TR R e
“-emast_pt_out[34:0] 35'hS 7777 7277z

~B-mast_go . St] |5CIODCI 00 |1CIDDCI oo |1EDDO noao |2[JDCIO Qoo |25CICID Qoo |30CIOD goo 350000000 |£1CI
ERT S DU PR L B a b | I‘i'\"\lll.-. —————— ;I [| [| [B [| L [[B [B [B L [| [B [| [| [| L [
_ Wane 1 I
Ready 1 |pwh_cyc_of test.u0.u3.ud N Nz
Lower timescale (entire range display) — Marker location —

Synopsys Debugging with DVE

Wave Window
Managing Signals

15

n Viewing signals
1 Select object (signals, scopes or assertions)

u Click the wave icon to add objects to a wave window

u Use CSM and select B Add To Waves | item

u Double click on a failing assertion summary tab
u Or drag and drop object to open wave window

n Grouping signals

1 Toolbar menu: Signal -> Signal Groups ...

Create Signal Group.1: fest.ul.ui
Group ca| | v|m|m] <]) EEN
Vi =vedplus vpd === === =
ierarchy 5 |Type -] Type Signal Groups |
FATsw_ed_desc] | ask +-Wishbone Interface

Synopsys

+-&chl_adriWire(Pe

iﬂuﬂ twh_dma_top) Module B ch0 adr Wire(Pt J:r--DMA Engine
g--ﬂcheck_pass_through_ﬂ... Module i--ﬁchﬂ_am(Wiren[Pc 5----|New Group |
~Tkcheck_pass_through_1.. Module—] i---DchCI_am'Wire(Pt - :‘_E
ull |:_'-a'-'b_-:r'r'| a_rf_:l l'...' .:..;u_ = ‘:| | Tl

4 1 [|jvariable iAssertion i I

QK Cancel Apply Tips ==
Drag & drop | | | |
FHeady A

Debugging with DVE

User Defined Radixes 16

n User Define Radixes

1 Toolbar menu: Signal -> Set Radix->User-Defined->Edit

u Import or Export user types: IDLE 11'b00000000001 |-- file format

B Fil= Edit View Simulator Signal Scope Trace Window Help =l
[344177800 x 10ps |2 & | S| [& B W X | gafstate MRS supad |« »[avEde S|k n BB e EEBREEEN
Iy s waa e ola sy
== ==]
Mame |Value |
- rowrite_hold St
- 0 wiite_r St0->SH Edit User—Defined Radix
-2 dma_done_all =] : :
~Dde_tHsz_we St User—Defined Radix: Idma_type 'I
+-radrl_cnt_next[29 30'h0000 0004 Value |Di5play]
--de_adrl_we < {1 = : =
+- 0 state[10:0] READ—-VRITE | {1 1= S 1T S SN [¢ - [F S e[| | 1100000000010 READ
& 1 state[10:0] 0 11'b00000000100 WRITE
4 0 next_state[10:0] 11'b00000001000 LIPDATE
Bt St 11'L00000010000 LD _DESCH
-0 mi_we Sto |5CIDUDUCI |1UDUDUU 0 |15UDUDU g [11'900000100000 LD_DESC2
<I P Y I:_ ~ _I’I I f:\l LI B | L I B LI B | L N B LI B B L I B LI I B | 1 ‘I‘I'bUDUO‘IODUDUD LD_DESCS
Wave 1 11'L00010000000 LD_DEC4
| = 11'b00100000000 LDOEC_5
Ready 1 |[state[10:0]} test ud.u2 =4 |11'b01000000000 WB
11'R10000000000 [PAUSE -
4| | 2l
To create a user-defined radix, click New, mport.. | _Export.. | Add ow | Defete Row|
enter a radIX name, then preSS Retum 0] I Cancel | Apply | Tips == |

Synopsys Debugging with DVE

Signal Compare Tool

17

n Compare function
1 Select two signals, scopes or designs

1 Toolbar menu: Signal -> Compare

u A new signal is created for each
compare point

B File Edit View Simulator Signal Scope Trace Window Help
([72724500 % 10ps| |5 & | &/ % B2 M X | g state
I»&aae/agga/alja % al

2 - [wawve 1]

]
T

IR s B S ||« ~[raue][F s
[] :
B

Mame |Va|ue

match-=mismatch i ! A
32'hzz222 2277 | |———
St0—=3H

o _sth_o<swh_ack_i#1
#-o-wh_data_i[31:0]

“-Dwh_we_o
--DMA_Engine
: §----D—de_start St |'|DOC][‘UUUU ‘ |15UUUUU] |2
JLAL .
Wifave, 1 I
Ready [2 [pwb_sth_o} {wh_ack_i} test.u0.u3.ud = stopped

IE

Example — Comparing Interactive signal (design 1)

Waveform Compare

—Compare selection

Reference waveform:
Design: | Sim=inter.vpd @

Fegion: |Sim:test.uO.uS.uD.wb_stb_oI

Test waveform :

Cesign: |V1=veri|clg.dump.vpd

(Design 2

—=1]|

Region: |‘u’1 testul ud ulwh ack |

¥ Compare recursive

—Options —Signal types
I Display only differences v Internal Signal
I~ Ignore X ¥ In port
I~ lgnore £ ¥ Cut port

¥ Inout port

—Time tolerance

Time:

0 = |1Dps j

—Hesults summary

Compare results Summary:

Test W1testulul.ulwh_ack |
Mumber of Signals Compared: 1
Mumber of Values Compared: 86403

Reference: Sim:test.ulud.ulwh_sth_o

Mumber of Differences Found: 101 =l
(I} I Cancel Sl | Tips == |

to post processed signal (design 2)

Synopsys

Debugging with DVE

Bus Builder Tool 18

n Creating a bus

Select the signals (List / Wave)

Toolbar menu: Signal -> Set Bus ...

Specify Name

Use +| #| up/down selection button to arrange order

Bit reverse order, select bus and click @| the reverse order button

Bus padding, use [#| add one’s and 0] to add zero’s

n Search for events

Synopsys

Event searching in either time direction (List / Wave)
Select the signals

Toolbar menu: Signal -> Set Expressions ...
Specify Name

Debugging with DVE

Bus Builder Example 19

Example — Merge two busses

S . I
DYE - Taplavel 2 - [wave 1] 3n D | ﬁ

B Filz Edit View Simulator Signal Scope Trace Window Help =18 %
[svoze7eo0 x itps| |3 & | S % W X | dafned -llBa,
[raaeadga|uaaal

[am = |::T‘ Al e -‘luut.l

(4] o mB & [« Rl cwpen
JJJJJJ 3] 1] ol

= W ey R R 1] 1I'] al =
" — l FI'.I cﬁu E R R Ty ﬁ
jl"l+j| e B ST I T =N :E: k U5 L e L

N (R I I N I [[y E—

Name [value | 30038000 0038000 B0039G000 T w4 G| v— s
R S [RN NI Y Tt -d 2 u' = =

..... Arhlter iy _‘: i ‘_:1:'_5_15 AnizEF Rl ahng b3

= DMA B I S o R T 1 ﬂ E ;EI
BRI Y S o R 1

Eu= '1|-'L—:zi-:r||

B i F L aceslztcd s gqrazton

B rangs * am: l:_ - I:'_ BT I:"aC'F el ol Top. |Woraey =
1) aTalal] . SRR
LLL’: S R L (T R i R U e g I 1) W)
= == . EE R T B o CF TR 1 T NI Bt T
i@ E}{P StateMachme 22'h00 1004 —=22'h00 2002 002002 0071004 002002 OO _
~real_ing_en St [Epe
- o-amD[31 0] 32 0 5000000) 100000000 150000000~ “ponoat | A1 % | | | |
‘I H I JJ J LI | [| [| [| LI | [| LI | e [| o | | _ | _ | _ |
Wave. 1 I | s |_ 0 | |_ i |+ |
. , - s
Ready 2 [next_state[10:0]} {state[10:0]} [Sim test u0.u2 e>stopped: test.r : : : : : :

Example — User Expression that checks
Read follows a Write cycle

Synopsys Debugging with DVE

Displaying Delta Cycle

20

n Value changes that occurred within the same time step

1 Toggle recording of
delta cycle
u Simulator =>

Capture Delta Cycle
Values

1 Record delta cycle data

In the VCD+ file add
u $vcdplusdeltacycleon

1 To view event queue

u right click to activate
CSM

u Select Expand Time

Warning Perf
Impacted

Synopsys

DYE - Taplevel11 - [wWave. 2]
B File Edit Yiew Simulator Signal Scope Trace Window Help

+9 represents 9th
value order change

[14453600 x 10ps

2 & | % EmX #4

|+ o &0 ||« »|anyEdge =

XXX X

&5 e REKLH | §[& &K

M1:14453600+1

Marme

Yalue

- SimGroup
- ack
- rmem_we

e ILMEMm_Te

each tic mark

represents a
value chang

=t0

L

oonn oRd0

1445001 4453600

LT

+- B dout[31:0] J2'hzzz
+-p-5e([3:0] 4'hx
N it
B-ACK_| 510
-5TB O 510
B-CYC O 510
B-CLK_| sfSse 00000000 (2000
- e = ™y) 4 1 1 1 1 1 1 1 1 1 1
[« v} 4
l Waye 2

| Select atabto activl {tmp[31:0]} test.s1 = stopped: test 50231932500 x 10ps ElEIMEFE

Debugging with DVE

List Window 21

Overview

n Views simulation results in
ASCII format DVE - Toplevel.7 — [List.1]

. Eile Edit View Simulator Signal Scope Trace Window Help —|&] x|
1 Updates when displayed [79328500 x 10ps| | = = | @
signal changes

1 Locks to C1 cursor

El

Group3
'ICLF{_I
1 Set markers Values that change | || cxco
: | indicated in green | |: T
1 Compare signals ACK_T
. ADD_0[31:0]
| Vlew database Stl Stl St0 St0 32'h0000 0144 -]
79322600 stl Stl St0 32'h0000 0148
- TR3220900 (D 5t 5t 5tl 327h0O0C00 0148
| Prlnt tabUIal’ Output {0 a 79323000 \5t0/ Stl stl stl 32'h0000 0148
793235040 Stl Stl Stl 327ha330 a1448
textfile 79323700 Stl Sl st0 Sl 32'H0000 0148
M1| 79324000] Sta Stl Sta Sti 327RO000 0148 1
Markers 9324500 5tl 5tl Sta 5t0 327h0O000 0148
93280040 St Stl Sta Stad 327ha330 a1448
9325500 St 5t Sta 5t0 327haA300 a1418
79326000 5t0 Stl St0 St0 32'h0000 0148
TA326500 Stl 5t Sta 5t0 327h0O0C00 0148
79327000 Sta S5tl St0 5t0 327h0O000 0148
mz[78327500 stl St St Std 327ha0a0 a1ds
9327600 5t 5t St 5t0 327hAGOG Alde
79327900 stl Stl stl Stl 32'h0000 Oldc
79328000 Sta 5t 5t 5tl 327hA0A0 Olde
79328500 5tl 5tl 5tl 5tl 327h0A000 dlde
9328600 Stl St St Stl 32 haemawe el ﬂ
L
To Add signals click [E] i | 2
or drag & drop them |2
| Ready of [A N EEREEE

Synopsys Debugging with DVE

Memory Viewer 29

Currently requires:

_ $vcdplusmemon or
n To dump memories Simulator->Add Dump ..

: i ” Check Aggregates box
1 Select a memory in the “Data” pane (29189)

u right click to activate CSM
! DYE - ToplevelZ - [Memory. 1]

u SeIeCt ShOW Memory 4@ Eile Edit View Simulator Signal Scope Trace Window Help =
u right click to activate |/ 9997 trsf | = | B) B < g s[.ae,
memory properties (4] emoSjis> Hm]~~]e=
Y prop [FPrizzssENNERR |4 &%)

0 [1 | 2 E

M 33'had Q200 40030 33'hd 00A0 Q001 33'haA GQQ0 Q032 33'haD Q0G0 JA03
i 4 33'ha 0000 Q004 33'h0 0000 Q005 337haO 0000 QA& 337 ha Q000 Jad7T
8
c

33'had QA00Q 4008 33'ha 0GA0 A0A9| 33'RA 3A0G QAds 33'hO Q00D A0k
33'had Q200 G00c 33'hd 00A0 Q0Q4[33'ha 3Q30 Qdde) 33'ha3 Q0G0 JA0f
10 33'ha0 0000 0010 33 h0 0000 Q011 33'h0O 0000 001233 ha3 Q000 0013

[Memory Properties]

Memory: ram_test.il.CORE[0:255] A12 [23'nm0 0000 0014/33'h0 0000 0015 33'h0 0000 Q016 33'hO 0000 0Q17
show L [<rows [] W1z |23'nh0 0000 0018/ 33'h0 0000 0019/33'h0 0000 001a 33'h0 QO00 001k
T T PR ﬂl Wic |33'n0 0000 001c/33'ho G000 001d/33'h0 0000 G01e/33'h0 0000 001f
B il | W20 [23'n0 0000 0020/23'h0 0000 0021 33'h0 0000 0022 33'h0 0000 Q023

24 33'ha0 0000 0024 33'h0 0000 Q025 337h0O 0000 0026 33RO Q000 0327
25 33'had Q200 G028 33'h0 00A0 Q029 33'haA 3A0G 002z 33'hO Q000 A02k
Start address: ID . 33'ha 0000 002c 3370 0000 Q024[33'h0 0000 J02e 33RO Q000 Q02f
End address: Iﬂ W30 33'h0 Q200 Q0330 33'h3 Q000 Q331 33'h4 0000 Q032 33"haO Q0G0 0033

34 33'had Q200 G034 33'hd 00Q0 QO35[33'haA 0QQ0 Q436 33'haD A0GQ JA37T

. . - -|— &
Address radix; IHe:{ademmaI J Lips == | II] ram_test.i. CORE
Example — Memory Properties dialog || Ready ST A 23000 1ns IR
Example — Memory dump @ 23090ns

Debugging with DVE

Address = |1 * ndex + ICI

]
]

Synopsys

Assertion Summary Window 23

n Compile VCS with -debug -assert dve

1 Double click assertion failure to populate wave window
u Place cursor over guidance symbols to obtain details status

Attempts ending at time 208025500

I DVE - TopLevel, 1 - [Assartion. 1] Start time | Result |Reason
B8 File Edit View Simulator Signal Scope Trace Window Help 298025500 | Failure | {chunk_dec == & x|

= . - $past{state) |= READ) |
[298025500 x 10ps |5 & | B[% B2 M X [ghfwite o] A onnalle > (gf&p(staie ::)HEAD)}))
jFriznssEnREEN] ace|adagana] E

+ failure
I\Elamej |Va|ue | ca802 700 atoms evaluated: '{chunk_dec ==
0) _ ((Spast(state) l= READ) && (state —
L assert_chunk_dec Failure

e clk_event E'D
-B-chunk_dec =]
ek » state[10:0] READ
noch_adrl_we

- New Grou S et |
P LS 00000 |600C|C| Qoo i
gu|dance Symbols S | =] ([|.-h' IR RS I T T T IR T 3 e SR | T =
I BT Wave. 1 I Waye 2 I Trcovarre b asc Zizn has 10400 ares, 208147 suzerzacs ot 1 neov - cies.
St
Showlall =] |at time 7] |current] to |end El s [=N =l [rer o [rar =] fne o
EName Instance |Start |End | malz s -zl w3 lﬁ BoFITIETEL lﬁ o peltE m
#WB_MAS 3 75 6 test.u0.u3.ul whmst_ul 446946500 446947500 1
+ assert_load_nxde test.ul.u2. check_external_descriptor 439661500 438662500 'klanr:. |’:\Ian N |Heaf,:n []
+-assert_pass_through test.ul.check_pass_through_0 BE1500 661500 o 11 ::‘::._TI ;;;"h’::"‘; P :';::j'k T”"“‘:’::::::: - T":::‘;:':T -
| MR L H H It IEH et skl 2y 1= el =
+-assert_pass_through lostul chock _pass through 1 148757500 148A87500 (| +| 4 urer | sutrwotin uzzustonn LohUK_35% = UEpAETStal B I L_rL 8% EHELS -
e assert_chunk_dec] 9802 [bTaured | 0ETO5%00 207700000 chu-l d=: posislalt | L.-J:--.w et
4'| Ba — T 208 30E00 2051 3CE000 : St Bl 21 1- ?..—"E'I i3
MName filter: |* Qapy gj’ - #Atte TR e M R (0 EE R R
Trace Assertion — .‘mm_ 2= =
x| =T T T hgilll = s Taurcin (208106500 202 106ER000 ichi - Ix d-: tposislal: LN
dve> gui_wv_zoom_ E Assertion Attempts. ##023172 298030537 A ' ' == [
dwer gui_wv_zoom_ 023172 2080320546 —
dves> gui_wv_zoom | [=] SNOW S0UrGe 023172 298030546 el Cze | Tipeas |
L‘I . Synchronize Selection
og AHistory AErrors T . .
i Fieady Assertion window CSM te[10:0]} test.uD.u2. check_control_signals i@ terminated: test A |E]EE

Synopsys Debugging with DVE

Source Window 24

Overview

DVE - Topleveld - [Source. — Testul.u2: wh_dma_deav]
E Eile Edit View Simulator Signal Scope Trace Window Help =
| 147995600 x 10ps| = & | || & W B < | ¢4 M PCEN CHT S
= Alefav<=pFrizsss | NEE NN
ey o | =
¢ 386 Break point enabled =l
® 397 G
388
3849
® a0 always @{posedge clk)
* ig; chunk 0 <= 41 it(" Break point disabled
st Blrzelszali : * 303 assj =TnE_ I 7 t;z‘_cn z_cnt_i= 0_d | chunk_cnt_ iz 0_dj:
Enable Breakpoint D 394=Taszign dms_done = dma_done_d & done:
Dizable Breakpairt * 305 assign dma_dene_all = dma_deone_d & (tsz_cot_is_0_r | {nd & chunk_cnt is_0_d)):
; 396
Delete Breakpoint ® 307 |always @(posedge clk)
. . = .
Delete All Breakpoints 2oo next_ch < Current executable line
| Breakpoints. .. 400 /{ Register U =
v Line Mumhber ®* 01 assign = 1d_desc_s=1 ? mastl_din[l11:0] : t=s=z_cnt;
® 402 - = 1d_desc_s=1 ? mastl_din : {adrl_cnt, 2'k00}:
Breakp0|nt @ 103 7 gssign de_adrl = 1d_desc _sel ? mastl_din : {adrl_ecnt, 2'BQ3}:
® 104 gssign de_csr = mastd_din; . .
CSM 105 Working with
A04 /i Abort legic : :
& a07 always @{pocsedge clk) Slngle WIndOW
® 108 drma_akort r <= $#1 dma_abort | mastl_err maztl_err:
409
® 110 gssign dma_err = dma_akbcrt_r:
411
. L 412 Aa==21irm dmAa kFaisar = l=stasts 1= THOTERD - -
Source flle p— |3alfwa5_nurtheastSfjgirardeVEfsva_Iabstabsff:_Labf..f..fwb_dma.-’rtlfverilagfwb_dma_de.v ¥ Reuse >
& location wh_dma_de.v /\(
o] test uD u2 e stopped: test 10 u2 147995600 x 10ks F|E

Synopsys Debugging with DVE

Debugging Source 25

n Stepping source (-debug_all)
1 Select object (signals, scopes or assertions)

u Click the source icon to add objects to a source window

u Use CSM and select Show Source item

u Double click on a scope icon
u Drag and drop object to open source window

1 Click stepicon §# to simulate next executable line
1 Click nexticon ¥ to step over tasks and function
1 Click annotate values icon | & [for backannotation

n Navigating hierarchy

1 Place cursor on module instance and click right
u select Move Down to Definition (Source CSM) or click |
u select Move Up to Parent_ or click | =
u To move backwards or forwards in a list of scopes click @ &

Synopsys Debugging with DVE

C/C++, SystemC - Cbug |

J_I-l_I o ogoa

VIR tiFner| o [T
P SIS

S LTAT HAnT AP s W ndier Bep

ekl 2 @) wl e A
[s ¥ TR

26

C files must be compiled with the "-g" C compiler option A R T :
9 S e the ety [INTRI
DYWE — Taplevel.1 — [Console 1 — DVE Co R el = i
E File Edit View Simulator Signal Scope Trace Window Help 8 o P
LI | = =p o= [mLlASTASe R TR
I 20055 x ips| 2 @ |4] 5 B < | ah] feald A5 o o T
IDERAEEET T 2 ey - B et o
= xa_ H H 8 nd R e
— 2l e 4o — Pre-Compiled libsystemc.a """
I Sim=inter.vpd jl"l"j : g‘g min_s::Lg] L L T L T e Tl W TR P T M Griea ||3‘|.|l_-ﬂ|a_£
5 - SeC_S14 = SEC_CANELY
H!_'_eramhy \'_ |T}v‘p—| ® 100 PLI call led_sig = "led _type_stopwatch
T TIWES UF_UHEL W * 101 \ g CITTENT = diSpIETT C++
STEPWATCH OWATCHY M. @ 102 $0 FZeroMinder (hour_sig, min_sig@
Systemc M. 133 end
. Mo 104 else
Hierarchy y 105 begin [
| ey —— e ® 108 hour =ig = hour_meter:
T B DISPLAY (DI M. ® 107 min_sig = min_meter;
’%METEF{COHE... E. ® 108 sec_sig = s=c_meter: C
5 ilnmer Mo : 1?3 iqd_iig = ‘lcd_typzfstipwatch i HDL
i isplay current <= display: _
gQClDCk—E}C}“Dn P.. 111 =nd ﬁ i i Mouroe s Sglob Loesg: ol Adnirar Ml LY EASa b il s
< g--?reset_tlm Er P... &% 112 end FHo-ie Bl ams Smlvs Mordl Seape aen windvs bela)
@wun timer P | o p ek & [rem o w00 Example of cross-stepping
g [obaliwwas_northesstijflal« - |e=ll-issss|nmmmmm [« 5% —
L Pset timer P. =
STFCTLKUKU (CTL) M... =] | B dki.c | Eltimer opp | B watch.v
dver stack
: EercMinder (iTabDataValue=0] (ZercMinder/dki.c, line LR FTRA

splif)
Ftb_watch wBoWAkE 1 _15_01)
wvosProcessDhelta)

)
[A N N R NN ENENENENENRNHE.]

alucklaghzac:a =
vovmzzstal aesloviaae ol ©L

" lavaeal 1:
" bavaesll -

i) TR P R TE L rads el dne]

F L) I TENRR P SCEFtiy

zaul,
alu sk Lagh: zaul,
*oldwihigqaLl

[PSSIE Y R B |
ERIE, P AT

Synopsys

4]
iN:
2:
3 =3 .) .
4:]TIhdJ.PIE'MEIiDVCSMK |::| :Ec T'.'.' (R AATEY -EON T RN T LR PR § R RO A TEX -] |
5: SCJTIE'TI'I_C.EIJ.]. l:] -ii .::ij:I_::I-IJ-l-:4-_:"-11:.-.-.".- L - aoeld: and cogionz: g valus wlaoww il [oL
£: mhdl_Simulate(]) i P P U S M Ut T TR AT -
11 mhlereMa:.LnchM:{ “ |-'s'-l clelvwws persellr R iems Co2oelon oo wwd v i cESiZaekdindend4d |1II'-' = "are
8: mhdlPreMainVcsM=i) Ea1s
EJI mhdlPreMainVesMe (] Tewre ! : st o AEiAETE
‘Log AHistory AErrorsfiarnings f 1|
de> |fun ~<+——— C Debugger commands ||
| Ready o] th_watch WATCHWATCHBLK. CORE DISPLAY. DISPLAY _display = stopped: C/C++ 20055 % 1ps B

Debugging with DVE

Backtrace 27

n Problem
1 A number of signals exhibiting less desirable values

n Solution
1 Perform a “backtrace”
1 Displays a list of active drivers/loads at specified time
1 Trace back to the earliest unwanted signal transition or value
1 Identify signal responsible for the erring behavior
1 Reapply procedure, and eventually locate source of misbehavior

n Displaying Drivers/Loads
1 In any DVE analysis window highlight or select a signal
1 Then simply click either the B driver or o load icon
1 Orin aWave or list window double click on signal

1 Then use next & and previous E# instances icons

Synopsys Debugging with DVE

Driver / Load Pane

28

Previous instance

DWE - Toplavael.1 - [Hier.1]

E Eile Edit View Simulator Signal Scope Tracq Window Help =l
] 0400 x 1ps S @ | || 4 B < N@[sec S| .ma, enm||+ » EIOERARE
brigges DEREEN |4 a\x [
—_— ——
— #0 FZercMinder (hour_sig, min_sig, g ;I
Sim=inter.vpd '“33 'l 51 hOG &'h01 £'h3c
Hierarchy ° |Type B 103 end
. 104 else
S{FCORE (CORE) WMadule 105 T
’;DCLOCKCOHE {CLO... Module ® 106 heur_sig = hour_meter;
H:EDISPLAY {DISPLAY)Y Module . 5'hoa. 5'hao =
CMETERCORE (ME.. Entity 107 e
S ktimer Module 01103 5
9P clock_action Process &'hic 5‘3c =l
§--<?reset_timer Process N -
é-ﬁ’run_timer Process _ILI |1east3f]g|rardf9ystemc DVEfwatch _mhdl_sva_sysc | pI| gates mem r2;‘watchv|108 v Heuse
al | [|Blwalq Cyrrent instance
= Showlall j |at time J |currem =[7or]end | -] With: I failures [~ successes [T incompletes [T no attempts
MWarme | Instance |Start |End |Delt| Reason

| FaiILI Succesl Incompll Attem

#RESET_CHECKER
'SEC 60 CHECKER

4]

th watChCHECKEHS 8295 BSDCI 5

th_watch. CHECKER

4024

02

{({hour == 5'h0} && (min == 6'h0}) && (sec == 6'h0Y)

8 4015 |0

2 oo 0|
| »l

Mame filter: I* 'l Instance filter: I* 'I

HAttempts — failures: |1D 'l SUCCES5ES: |10 'l incompletes: |1Cl 'I

B

dure>
dure>
drex
dre>
dre>
dre>

K-

1 driwveri(z] feound for signaﬁ]
dver gui_get drivers -id So
7 driveris) fcund focr signa
gui_pnext driver lecad -
gui_pnext driver lecad -
gui_teggle_value_annct
gui_next driver_ load -

gui_next driver_ load -
gui_list expand -id :llj

\Log AHistory AErrorsfWarnings /

dves |

A~ Add to Waves Lirks: I Source. 1 v" <new Schematics |-
Signalstriverstoads | Time |Value | Line/File £
= r-Simth_watch WATCHWATCHBLK. CORE.DISPLAY sec_sig 8400 B'h3c

e pSim th_watch WATCH.WATCHBLK CORE.DISPLAY 67 watch
- Eim th_watch WATCH WATCHBLK.CORE DISPLAY . DISPLAY _display 78 watch
-2 Eim th_watch WATCH WATCHBLK.CORE DISPLAY DISPLAY _display 91 watch
-2 Eim th_watch WATCH WATCHBLK.CORE DISPLAY DISPLAY _display 89 watch |
- @ Sim th_watch WATCH WATCHBLK. CORE. DISF’LAY DISF’LAY d|5p|ay 102 watc

4

Simth_watch WaAT CHWATCHBLE

. . E 108 watc
o Sim th wateh WATCHWATCHRIL K CORE MISPL AY NS &V Hu:nl:lw 1487 watn

Ready

.
|1 [CHECKERS] stopped: th_watch. COUNTDOWN_CHECKER 20116 x 1ps E E#i

Synopsys

'

Drives/Loads
Pane

Debugging with DVE

Schematic Window 290

DWE - Toplevel.2 - [Schematic.l gates]
B File Edit Mew Simulator Signal Scope Trace Window Help
30275 % ips| || = B | & it - 4
5 Eo of RO REA Q]

M purple

M hiue
green
wellow

orange

M =d

i

|F{eady 1 nota |gates (RN P

Synopsys Debugging with DVE

Path Tracing

30

Synopsys

DVE - Toplevel.? — [Schematic.

I Ready

th_watch.hour]

B File Edit View Simulator Signal Scope Trace Window Help

30275 x 1ps| = B | & & Bz B X | ¢4 M
Bo of R G o &) e g5

ell:

hour_mae

Hierarchy Crossing Up:
th watch WATCHWATCHBLE. CORE.min

I'l:l.l f_l:l Lo sl
Ehoo T Ehgh
i:-_'r.'ath.'.-'.'.ﬁ.Tl::H-"t'—— ki

Met:

th_watch.sed
- +_wemch MATCH~

n i - ‘I : - 3
th_watch.hour ‘

Debugging with DVE

Lab 3 Introduction 31

_ VCD+ File Dump
@ Locating sources
of error in Verilog
45 min code using DVE in

Post-Processing
mode

Run to
Generate VCD+ File

Invoke DVE in
Post-Processing Mode

Debug

Synopsys Debugging with DVE

Agenda: Day 1 4-1

DAY

Topic

VCS Simulation Basics

VCS Debugging Basics

Debugging with DVE

. -
Q@
&
KN

4 Post-Processing with VCD+ Files

Post-Processing with VCD+ Files
Synopsys Verification with VCS Workshop

Unit Objectives 4-2

Synopsys

Embed VCD+ system tasks in source code

Compile and run simulation to generate VCD+
file

Invoke DVE in post-processing mode
Read VCD+ file into debugger memory

Debug

Post-Processing with VCD+ Files
Verification with VCS Workshop

DVE Post-Processing Mode 4-3

n Simulation speed
1 Simulation speed depends on data dump commands

1 Debugging speed is fastest
n Signal visibility
1 User specified

n Signal tractability

1 Signal traced via waveform, schematic or source

n Usability
1 Graphical interface is the most user friendly

1 Can be used at all levels of complexity

Post-Processing with VCD+ Files
Synopsys Verification with VCS Workshop

When to Use Post-Processing Mode 4-4

n Use post-processing mode when:
1 Debugging a mature design
1 Simulation analysis needed by multiple engineers

1 Run simulation in script

n Multiple users can debug in parallel

1 The VCD+ file, once generated, can be read by multiple
users to debug different problems in parallel

Post-Processing with VCD+ Files
Synopsys Verification with VCS Workshop

What are VCD+ files? 4-5

n Binary simulation history files
1 Similar to VCD (Verilog Change Dump) ASCII files

1 Stores transition times, values of nets and registers
and design hierarchy

n Differs from VCD files in the following ways:
1 Compressed binary format requires less disk space
1 Compressed binary format loads faster
1 Supports recording of order of source code execution

1 Built-in VCD+ system tasks provided for controlling
contents of VCD+ file and size

n DVE only process VCD+ files

1 VCD files can be converted into VCD+ files

Post-Processing with VCD+ Files
Synopsys Verification with VCS Workshop

Post-processing Debugging Procedure 4-6

Synopsys

1 Modifying the Verilog source code to include VCD+ file
dump system task call $vcdpluson

1 Compiling the Verilog source code with VCS

1 Generating VCD+ file by executing the simulation binary
created by VCS

1 Invoking DVE in post-processing mode
1 Reading VCD+ dump file in DVE

1 Examine simulation results in Waveform window,
Schematic window and Assertion window to locate error
In source code displayed on Source window

Post-Processing with VCD+ Files
Verification with VCS Workshop

VCD+ System Tasks 4-7

n VCD+ system tasks may be inserted in source files or entered at the
simulation interactive prompt

n $vcdpl uson(l evel nunber, nodul e_i nstance, ..| net _or _reg, ..)

Start recording nets and registers (require —debug compile switch):
1 | evel nunbers

specifies levels of hierarchy to record

0 - record the entire hierarchy of specified module
1 - record the top-level hierarchy of specified module
n - record through n-levels of hierarchy of specified module

1 nodul e i nstance
specifies module to record
1 net_or _reg
specifies individual net or register to record
1 Omitting all arguments records all nets and registers of entire design

n $vcdpl usoff (nodul e i nstance, ..| net _or _reg,..)

Stops recording in a module instance or individual net or register

Post-Processing with VCD+ Files
Synopsys Verification with VCS Workshop

VCD+ System Tasks (cont) 4-8

n $vcdpl usaut of | ushon

Instructs VCS to write results from simulation memory to
VCD+ file whenever there is an interrupt such as $stop
system task or a ucli stop command or a DVE Stop button
activation

n $vcdpl usaut of | ushof f

Turns off automatic flushing of data on an interrupt

n $vcdpl usfl ush

Instructs VCS to write results from memory to VCD+ file

Post-Processing with VCD+ Files
Synopsys Verification with VCS Workshop

VCD+ System Tasks 4-9

Synopsys

$vcdpl usdel t acycl eon

Turns on delta cycle recording for post-processing

$vcdpl usdel t acycl eof f

Turns off delta cycle recording

$vcdpl usglitchon

Turns on zero delay glitches for post-processing

$vcdpl usglitchoff

Turns off zero delay glitches recording

Post-Processing with VCD+ Files
Verification with VCS Workshop

VCD+ System Tasks Example

4-10

Synopsys

n Sample Verilog source code

nodul e adder _testbe
reg test_cin
Wre adder co

reg [3:0] test_a,

wire [3:0] adder_su
reg [15:0] addr, st
reg [15:0] testnmem

adder ul(test_a, te

initial

begi n
$vcdpl uson;
$vcdpl usdel t acyc
$vcdpl usglitchon
$readnmenb(" adder _
for (addr=0; addr

begi n
#100 sti nmul us
test _cin
test_a =
test b =
end

#100 $display("\n
end

nch;

ut ;

test b;

n

imulus, ref _result;
[0:1023];

st _b, test_cin, adder_cout, adder_sum;

eon;

ref.vec", testmem;
<= 16' h03ff; addr=addr +2)

= testnmeni addr];
= stinmulus[8];
stimulus[7:4];
stimulus[3:0];

----- Simul ati on Conpleted Wt hout Error

Post-Processing with VCD+ Files
Verification with VCS Workshop

Compiling for VCD+ file

Synopsys

>vcs files vedplus swtches O her _swtches

files
1 Source files (including Verilog, C/C++ PLI) as defined in Unit 1

vcdpl us_sw tches

1 Instructs VCS compiler to recognize VCD+ system tasks
1 Controls VCD+ file generation

ot her _swi tches

1 Compile-time options (e.g. - Mupdat e, - R, etc...)

Sample VCD+ file compilation command:
vCcs source.v -debug_all

Sample command for invoking DVE in post-processing mode:

dve -vpd vcdpl us. vpd

Post-Processing with VCD+ Files
Verification with VCS Workshop

4-11

VCD+ file Compilation Switches 4-12

Synopsys

- debug

+vpdfil e+fil enane

+vpdupdat e

+vpdbuf si ze+MB

+vpdfil esi ze+MB

Required compile-time option

Specifies writing to an alternative VCD+
filename rather than the default vcdpl us. vpd

Allows simultaneous writing and reading of the
VCD+ file

Specifies the size of temporary buffer to store
VCD+ values before writing to disk (default is
5MB or room for 15 value changes)

Specifies maximum size of VCD+ file (when
limit is reached, new event replaces oldest)

Post-Processing with VCD+ Files
Verification with VCS Workshop

VCD+ Tips and Suggestions 4-13

n Use target based dumping:

1 Capture time slices

u Use $vcdpluson in conjunction with $vcdplusoff and #delay

nodul e sour ce;
nmodul eA ul (a, b, c);
nodul eB u2 (d, e, f,Q);
nmodul eC u3 (siga, sigb,sigc);

/'l save all signal data in nmodule ul fromtine 100 to 300,
/'l save all the variables in nodule u2 along with 5 levels
/1 of hierarchy fromtime 200 to 500, save two vari abl es
/1 in nodule u3 starting at 600
fork
#100 $vcdpl uson(source. ul);
#200 $vcdpl uson(5, source. u2);
#300 $vcdpl usof f (source. ul);
#500 $vcdpl usof f (5, source. u2);
#600 $vcdpl uson(source. u3. si ga, source. u3. si gb);
join

u stop and resume recording anytime during simulation

1 Start by dumping only the first few levels and work down
until the problem is isolated

Post-Processing with VCD+ Files
Synopsys Verification with VCS Workshop

VCD+ Tips and Suggestions (cont) 4-14

n Avoid recording Verilog statements execution
n Selectively dump only small modules

n Use +vcdbufsize+nn to control memory buffer size
1 rule-of-thumb 1M for every 5K gates
1 bigger the buffer the faster simulation runs

Post-Processing with VCD+ Files
Synopsys Verification with VCS Workshop

VCD+ Tips and Suggestions (cont) 4-15

n Use compiler directives ‘ifdef and endif

‘i fdef dunpne
$vcdpl uson();
‘endi f

n Dumping controlled by compile time switch
+define+dumpme

n Itis not recommended to use $test$plusargs

Example:

i nitial begin:enabl e_dunping
i f ($test$plusargs("dunpall ™)) $vcdpl uson();
el se i f ($test$plusargs("dunp+nodul eA"))
$vcdpl uson(1, nodul eA) ;
end

1 Even if dumping is disabled at run-time, the fact that
$vcdpluson is enable at compile time means slower
simulation

Post-Processing with VCD+ Files
Synopsys Verification with VCS Workshop

Agenda: Day 2 5-1

DAY

Synopsys

Fast RTL Level Verification E

7 Fast Gate Level Verification

:

Code Coverage

Debugging Simulation Mismatches
Verification with VCS Workshop

Unit Objectives 5-2

After completing this unit, you should be able to:
n Use +race utility to locate race condition code

n Use $vcdplusdeltacycleon to locate race
condition code

n Use vcdiff & vcat to locate race condition code

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Causes of Simulation Mismatches 5-3

n Functional simulation mismatches:

1 Different simulator vendors
u Race condition in source code
u Vendor implementation
1 Different version of simulator from same vendor

u Race condition in source code

n RTL-Gate mismatches:

1 Same simulator
u Race condition in source code

u Poor coding style

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Race Conditions 5-4

Synopsys

The most common causes of simulation mismatches are
race conditions

A race condition is a coding style for which there could
be several correct results; i.e. the code is_ ambiguous

All race conditions are some variation of using (read) or
setting (write) a data value at the same time it is changing

Race conditions may result in logic that behaves
unexpectedly, and should be fixed before synthesis

Debugging Simulation Mismatches
Verification with VCS Workshop

Verilog Simulation Event Scheduling 5-5

Organization of events in Verilog simulation time step:

n Current time step:

1 Slot 1:
u Evaluate right-hand side of non-blocking assignments
u Evaluate right-hand side of & change left-hand side of blocking assignments
u Evaluate right-hand side of & change left-hand side of continuous assignments
u Evaluate inputs and change outputs of primitives
u Print output from $display and $write
u Call PLI calltf routines for system tasks and system functions

u Note: All actions in Slot 1 are intermixed in any order!!!
1 Slot 2:

u Call misctf routines which were scheduled using tf_synchronize()
1 Slot 3:

u Change left-hand side of non-blocking assignments evaluated in Slot 1
1 Slot 4:

u print output from $monitor and $strobe
u Call misctf routines which were scheduled using tf_rosynchronize()

n Next time step

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Race Conditions: Read-Write 5-6

n Race: Using and setting a value at the same time

nodul e race;

reg a;
Initial begin
a = 0;
#10 a = 1;
end

Initial begin
#10 if (a) $display(™May not print”);
end
endnodul e

There is no guaranteed ordering of the two initial blocks, so the
$di spl ay may never execute

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Race Conditions: Read-Write 5-7

n Race: Using and setting a value at the same time

nodul e race;

reg a;
initial begin
a = 0;

#10 a = 1;
end

Initial begin
#11 if (a) $display(™WII print”);
end
endnodul e

4 Solution: Delay the 1 f statement to another time-step

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Race Conditions: Write-Write 5-8

n Race: Setting a signal with different values at the same
time

nodul e race;

reg a,
Initial #10 a = 0O;
Initial #10 a = 1;
Initial
#20 if (a) $display(“May not print”);
endnodul e

A race occurs at time 10 because there is no guaranteed ordering
between the two initial blocks

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Race Conditions: Write-Write 5-9

n Race: Setting a signal with different values at the same
time

nodul e race;

reg a,
Initial #10 a = 0O;
Initial #11 a = 1;
Initial
#20 if (a) $display(™WII print”);
endnodul e

4 Solution: Stagger the assignments to reg a by adding delay

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Other Types of Races 5-10

n Continuous Assignment Evaluation

assign p = qQ;
al ways @ posedge cl k)
begi n

q = 0;

1 f (p) $display(“May not display”);
end

Continuous assignments with zero delays may propagate earlier
than in V-XL, and hence $display may not print

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Other Types of Races (cont) 5-11

n Continuous Assignment Evaluation

assign p = qQ;
al ways @ posedge cl k)
begi n
q <= 0;
I f (p) $display(“*WI I display”);
end

4 Solution: Use a non-blocking assignment to g.
p will be updated in the next time-step

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Other Types of Races (cont) 5-12

n Time Zero Races

Initial begin
reset = 0;
clock = 0O;
forever #50 cl ock=~cl ock;
end
al ways @ negedge reset)
$di spl ay(“*May or nay not display at tine
zero”);

Transition of reset to 0 may happen before or after event trigger
(al ways @ negedge reset))

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Other Types of Races (cont) 5-13

n Time Zero Races

initial begin

reset = 1;

#10 reset = 0O;

cl ock = 0;

forever #50 cl ock=~cl ock;
end

al ways @ negedge reset)
$di splay(“*WII| not display at tinme zero”);

4Solution 1: Delay the negedge to after time 0.
4Solution 2: Initialize reset to 1 to ensure no x—0 transition.

Debugging Simulation Mismatches

Synopsys Verification with VCS Workshop

Time Zero Mismatches 5-14

n The +alwaystrigger (5.1 and later, +vcs+arm in 5.0) compile-
time switch resolves some time-zero races

n Ensures that always blocks with an initialized signal in its
event control list are triggered at time zero

n +alwaystrigger became default compile option after vcs 5.2

Modul e t op;
\rM_e?er\s/;i ; Without +alwaystrigger, the i ni ti al block
bot bil(rst,val); races with the al ways block. Output signal
initial rst=1’bl; bot . val may be x or 1 at time zero.
endnodul e
nmodul e bot (rst, val);
I nput rst; With +alwaystrigger, the al ways block is
?gép\ljgl yal ! triggered at time zero, because r st is
al way's é}rst); initialized. Bot . val ==
val =1"b1;

endnodul e

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Flip-Flop Race: Read-Write 5-15

dffl dff2

clk

module dff(q, d, clk);

output q;

regq;

input d, clk;

always @ (posedge clk)

gl =d;

always @ (posedge clk)

q=9al;

W

Debugging Simulation Mismatches

Synopsys Verification with VCS Workshop

Flip-Flop Race: Read-Write (cont) 5-16

dffl dff2

clk

module dff(q, d, clk);

output q;

regq;

input d, clk;

always @ (posedge clk)
ql<=d;

always @ (posedge clk)

q<=ql
W

4 Solution: Use Non Blocking Assignment

Debugging Simulation Mismatches

Synopsys Verification with VCS Workshop

Coding Rules of Thumb 5-17

n Synchronous blocks drive only with Non-Blocking
Assignments

n Combinatorial and initial blocks drive only with
Blocking Assignments

n Don’t drive regs from multiple blocks

n Be careful with the interaction of continuous
assignments and procedural blocks

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Debugging Race Conditions 5-18

n Use Delta Cycle Display feature in DVE to view
event ordering in waveforms

n Use VCS provides race condition checker:

1 Enabled with compile switch +r ace

1 Produces report file r ace. out that shows most races
n Back-track from visible mismatch to the origin:

1 Use $dunpvar s to dump VCD files

1 Use vcdi ff to show differences in simulation
1 Use vcat to display VCD file values in readable format

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

VCS Race Tool +race 5-19

n A dynamic tool sitting on top of VCS event-
scheduler and “observes” events on variables

n Enabled with:
1 +r ace for entire design

1 +r acecd for part of design enclosed in " r ace and
“endrace

n Outputs race. out file with reports on races
exposed by simulation run

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Race output example 5-20

[/ File test.v

nmodul e test;

reg a;

Initiral a=1; // wite at tine O
initial $display(a); // read at tine O
endnodul e

% Vvcs -R +race test.v

O “a”: read test (test.v: 5) && wite test (test.v: 4)

Debugging Simulation Mismatches

Synopsys Verification with VCS Workshop

Post-Process race.out File 5-21

n Use post-processing perl scripts to prune the
verbose r ace. out output:

1 PostRace.pl
1 In $VCS_HOME/bin directory

n Options in the PostRace.pl:
1 -hier <hierarchy-name> (ex:-hier top)
1 -Sig <sig-name> (ex: -sig databusl)
I -minmax <min> <max> (ex: -minmax 12 16)
1 -nozero (ex: -nozero)
1 -unig (ex: -uniq)

n Modifying the PostRace.pl Script:

1 The first line of the PostRace.pl Perl script is as follows:
u #! /usr/local/bin/perl

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Back Tracking Mismatches 5-22

n Some races will not be found by +r ace

n Use $dunpvar s to generate VCD dump files from
the two simulator runs:

1 VCD file shows all signal changes in the simulation
1 VCS comes with two utilities to examine a VCD file.
1 Located in VCS install dir: $VCS_HOME/<arch>/util/

n Use vcat to filter the contents of a VCD file
n Usevcdi ff to compare two VCD files

n Add $di spl ay or $noni t or can provide
additional help to show important signals

Debugging Simulation Mismatches

Synopsys Verification with VCS Workshop

vcat Usage

5-23

vcat dumpl.vcd -scopetop.dut.moda

dumpl.vcd: scopes:8 signals:496 value-
changes:23582

--- top.dut.moda.A ---
00
101
1000
1301
1600
240 1
440 1
--- top.dut.moda.enable ---
00
240 1
6000
--- top.cla_0. top.dut.moda.write_bus ---
0001

vcat broken.vcd -scopetop.dut.moda

--- 0 --- top.dut.moda.A --- 0 ---

--- 0 --- top.dut.moda.enable --- O ---
--- 0 --- top.dut.moda .B --- 0 ---

--- 0 --- top.dut.moda.sel --- 1 ---

--- 0 --- top.dut.moda.H --- 10100 ---
--- 0 --- top.dut.moda.L --- O ---

-raw

--- 0 --- top.dut.moda.write_bus --- 001 ---

--- 0 --- top.dut.moda.z --- 1 ---

--- 0 --- top.dut.moda.data_bus --- 010000000 ---

--- 10 --- top.dut.moda.A --- 1 ---

--- 10 --- top.dut.moda.sel --- 1 ---

--- 10 --- top.dut.moda .B --- 1 ---

--- 10 --- top.dut.moda.H --- 11100 ---
--- 20 --- top.dut.moda.btmp --- 0 ---
--- 20 --- top.dut.moda.ctmp --- O ---

--- 20 --- top.dut.moda.write_bus --- 101 ---

--- 20 --- top.dut.moda.z --- 0 ---

--- 30 --- top.dut.moda.data_bus --- 011110000 ---

Debugging Simulation Mismatches

Synopsys Verification with VCS Workshop

vcdiff Usage 5-24

vediff dumpl.ved dump2.ved

< dumpl.vcd: scopes.58 signals: 1294

> dump2.ved: scopes:58 signals: 1294 Timethat a
--- top.dut.modb.a --- 112360 --- difference
< 112360 01001000000000000001000 occurred

PI‘_GV lous y/>. 33120 00010000000000000000000
driven at
thi S ti me --- top.dut.modb.dbus --- 112360 --- Current val ue

< 112360 010010000 from dumpl
> 33120 000100000

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Lab 5 Introduction 5-25

@ Locating Verilog
Race Conditions in

30min Verilog code

Record Delta Cycle

Debugging Simulation Mismatches
Synopsys Verification with VCS Workshop

Revisiting the Unit Objectives 5-26

Having completed this unit, can you:
n Use +race utility to locate race condition code

n Use $vcdplusdeltacycleon to locate race
condition code

n Use vcdiff & vcat to locate race condition code

Debugging Simulation Mismatches

Synopsys Verification with VCS Workshop

Agenda: Day 2

6-1

DAY

Synopsys

Topic

Debugging Simulation Mismatches

o

Fast RTL Level Verification

Fast Gate Level Verification

:

Code Coverage

Fast RTL Level Verification
Verification with VCS Workshop

Unit Objectives 6-2

After completing this unit you should be able to:

n Improve RTL simulation performance with good
coding styles

n Improve RTL simulation performance by using
the +rad compile time switch

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Simulation Performance Depends On 6-3

n Good coding practices
n Good use of tool optimization features
n Good control in use of debugging switches

n Good control of need for re-compile

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

VCS Architecture 0-4

n Parser

Verilog n Three major components in VCS
Code to improve performance:

1 Parser accelerate-able code to code

VCS Compiler generators

n Event code generator
1 Accelerate random logic simulation
Event code
generator generator n Cycle code generator

! | 1 Accelerate sequential block simulation
n Performance starts at the parser
Simulation
Executable

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

General Coding Guidelines 6-5

n Use synthesizable subset of Verilog language
1 Give VCS better chance of performing code
optimization
n Raise your level of abstraction

1 Give simulator less work to do

n Avoid inefficient constructs
1 Switch level primitives (trans) and bidirectional
1 Strength modeling

n Use small stimulus blocks
1 Avoid large initial blocks (<10,000 lines of code)
1 Use file based stimulus (e.g. $readmembh)

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Things to Avoid for Sequential Logic 6-6

n Avoid these constructs in sequential logic:
1 repeat
1 wait
1 fork - join
1 assign - deassign
1 force - release
1 disable

1 CaSe

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

General Things to Avoid 6-7

n Gate-level constructs:

I NMOS, pPMOoS, CMOS, rnmos, rpmos, rcmos, pullup,
pulldown, tranifO, tranifl, rtran, rtranifO and rtranifl

n Unaccelerated data types:

1 time, realtime, real, named event, trireg net and integer
array

n Cross module referencing:
1 Cross module reference is not optimized
1 Writing hierarchical XMRs is not a good idea

e.g. top.x =y

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Use VCS Optimization Features 6-8

n +rad optimization:
1 Compile time switch

1 Attempts to optimize design by:
u Raising the level of abstraction

u Parsing code for fast event and cycle-based simulation

1 Often referred to as Radiant Technology

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

+rad Optimization 6-9

Synopsys

Performs semantically-preserved optimization for
both RTL and Gate level simulation

Optimizes complex logic to simpler form through
logic expression abstraction:

assign x[0] = (a==0);

assign x[1] = (a==1); assign x = (1 << a);

assign x[2] = (a==2);
Performs global optimizations across hierarchy

Optimized results more “event efficient” leading to
faster simulations

May change hierarchy and signal of a design

Fast RTL Level Verification
Verification with VCS Workshop

Another +rad Example: Vectorization 6-10

Synopsys

n Input Verilog

module up;
Dff d0(in[0], out[0],clk):
DFf d(in[1],out[1],clk):

bff dn(in[n],out[n],clk);

endmodule

module Dff(in,out,clk);

input in, clk;

output out;

reg out;

always @(posedge clk)
out <=In;

endmodule

n Optimized Verilog

module up;

endmodule

module Dff veci_vec(in,out,clk);
input clk;

input [n:0] in;

output [n:0] out;

reg [n:0] out;

always @ (posedge clk)
out <= In;
endmodule

Fast RTL Level Verification
Verification with VCS Workshop

Using +rad Optimization 6-11

n Ideal designs for +rad optimization:
1 No debug capabilities enabled
1 No timing checks or sdf back-annotation

1 Simulation times dominate the compile times

n Compile with +rad compile-time switch:

>vcs source.v +rad +optconfigfil e+fil enane

1 +toptconfigfil e+fil enane (optional)

u Localize scope of +rad optimizations

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Configuration File Line Format 6-12

nodul e| i nstance|tree [(depth)]{identifier} {attribute};

1 nodul e
u Apply attribute to all instances of module named “identifier”
1l nstance

u Apply attribute to all instances of module named “identifier”

u Apply attribute to all module instances in path specified by
“identifier”

u Apply attribute to individual signal specified by “identifier”
1tree

u Apply attribute to all instances of module named “identifier”
1 dept h

u Specifies number of lower level hierarchy to apply attribute
1 attri butes =noOpt, noPortOpt, RadLight, Opt, PortOpt

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Minimize Compile Time 6-13

n Use Local Disk:

1 Avoid over-the-network disk space for code generation

n Minimize debug flags:
1 +acc Use PLI Table file with minimum ACC enabled
1 -debug Use only if doing interactive debugging
1 - Use only if doing debugging
1 -debug_all Use only if doing line tracing during debug

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

VCS +prof:. A Verilog Profiler 6-14

n Determine simulation bottleneck

1 Key to improving simulation performance

n Use VCS +prof utility

1 Breaks simulation CPU time and memory
consumption down by percentage for each module
and Verilog construct

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Using the Profiler 6-15

n C

ompile and simulation design with +pr of

>vcs -f ny _design.f -R +prof

n V
C

CS generates vcs.prof file with the following view on
PU time & memory based simulation profile report:

n For CPU time

Top level view

Module view

Instance view

Module to Construct mapping view
Top level construct view

Construct view across design

n For memory

Synopsys

Top Level View

Module View

Fast RTL Level Verification
Verification with VCS Workshop

Top Level View 6-16

n Display CPU time used by:

Synopsys

PLI applications that executed along with VCS
VCS for writing VCD and VCD+ files
VCS for internal operation overhead

The constructs and statements in your design

TYPE Ti me %lotal tine
DPI 1024 0. 06
PLI 39309 2.48
VCD 0 0. 00
KERNEL 1544664 97. 35
MODULES 0 0. 00
PROGRAMS 1728 0.11

Fast RTL Level Verification
Verification with VCS Workshop

Module View 6-17

n Display modules (all instances) using most CPU time

MODULE VI EW
Modul e(i ndex) %otal tine No of Instances Definition
fifo32X8th (1) 20. 30 1 fifo32X8th.v:7.
fifo_mem (2) 12. 90 2 fifo_memv: 1.
fifo_cntrl (3) 10. 57 1 fifo_cntrl.v: 1.
ranil6X8 (4) 7.82 2 ranil6Xxs. v: 1.
fifo32X8 (5) 5.92 1 fifo32X8.v:1.

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Instance View 6-18

n Displays individual module instances using
most CPU time

| nst ance %otal tine
fitos2xeth (1 2030
fifo32X8th.fifo.nmem even (2) 10. 57
fifo32X8th.fifo.cntrl (3) 10. 57
fifo32X8tb.fifo (5) 5.92
fifo32X8th.fifo.mem odd.ram (4) 4. 44
fifo32X8th.fifo.nmem even.ram (4) 3.38
fifo32X8th.fifo.mem odd (2) 2.33

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Top Level Construct View 6-19

n Display memory for each type of construct in

design
TOP- LEVEL CONSTRUCT VI EW
Veril og Construct %lotaltine
Conbi nat i onal 23. 89
Al ways 13. 32
Task 13. 11
Initial 7.19
Ti m ng Check 0. 00
Functi on 0. 00
Modul e Pat h 0. 00
Por t 0. 00
Udp 0. 00
Pr ot ect ed 0. 00

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Module to Construct Mapping View

6-20

n Displays CPU time used by Verilog construct

I nitial
Task
Task

fifo32X8th.v :
fifo32X8th.v :
fifo32X8th.v :

29- 36.
83-114.
50- 76.

Conbi nat i onal
Al ways
Al ways

fifo_memyv :
fifo_memyv :
fifo_memyv :

Synopsys

Fast RTL Level Verification
Verification with VCS Workshop

Top Level View 6-21

n This view shows you how much memory was used

1 Any PLI or DPI application that executes along with VCS
1 VCS for writing VCD and VPD files

1 VCS for internal operations (known as the kernel) that can’t be
attributed to any part of your design.

1 The Verilog modules in your design
1 A SystemVerilog testbench program block, if used

TYPE Menory %ot al menory

DPI 0 0. 00

PLI 4721 0. 65

VCD 0 0. 00
KERNEL 716395 98. 19
MODULES 8472 1.16
PROGRAMS 0 0. 00

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Module View 0-22

n The module view shows the amount of memory used, and the
percentage of memory used, by each module definition.

MODULE VI EW
Modul e(i ndex) Menory %lot al menory No of | nstances Definition
codectb (1) 8472 1.16 1 codectb. v: 7.

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Profiler Tips 6-23

n Use VCS profiler on aregular basis to catch
potential simulation bottlenecks
n Resolving simulation bottlenecks:

1 Provides better simulation performance

1 May expose real design issues

Fast RTL Level Verification
Synopsys Verification with VCS Workshop

Lab 6 Introduction

6-24

Synopsys

X

60 min

Improve simulation
performance for an
existing Verilog
design

Compile Verilog code

Run simulation

Observe performance

Optimize then repeat

Fast RTL Level Verification
Verification with VCS Workshop

Agenda: Day 2 7-1

DAY

Synopsys

Topic

Debugging Simulation Mismatches

o

Fast RTL Level Verification

:

Fast Gate Level Verification

Code Coverage

Fast Gate Level Verification
Verification with VCS Workshop

Unit Objectives 7-2

Synopsys

After completing this unit you should be able to:

n

Verify the Verilog Gate-Level netlist matches the RTL-
Level simulation using VCS

Demonstrate the same Verilog Gate-Level netlist
simulates faster with the +rad

Compile, back-annotate SDF and verify functionality
of an existing Verilog design

Fast Gate Level Verification
Verification with VCS Workshop

Gate-Level Validation Flow 7-3

Generate gate netlist Generate SDF file

/Verilog code/
Synthesis
D

Place&Route

____________________ [I |
Gate-level netlist SDF file
T T T T T T T T T T T —I ————————— -
Simulate | VCS
Slmulatlon - — Compiler
Librar |

I
Debugger

|

i |
| |
| |
']
| |
| |
| |
| |
| .

| Simulator |
| |
| |
| |
| |
' |
| |
|

| |

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Fast Gate-Level Functional Validation 7-4

> vcs -f gate.f +rad +nospecify +noti m ngcheck +nocel | defi nepli +2

n Use +rad

n +nospecify

1 Ignores specify blocks (allows +rad to work, since +rad
does not optimize modules with specify blocks)

n +notimingcheck
1 Disables timing check system tasks

n +nocelldefinepli+[1|2]:

1 +1 disable dumping of internal information of a library
element defined by celldefine compiler directive

1 +2 also disables dumping of information in library or
directory specified by -v or -y compile-time switch

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Performance & Debug Considerations 7-5

n Synthesis:

1 Preserve design hierarchy

u Flat designs simulate slower

n Compilation

1 Limit excessive use of debug switches

n Debugging:
1 Use post-processing debugging techniques
u Dump VCD+ files

u Limit amount of dump data

1 Use the race utilities to resolve race issues

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Gate-Level Verification with Timing 7-6

n Gate-level timing simulation may be needed for:

1 Asynchronous logic
1 ATPG vector verification

1 Initialization conditions

n Timing information is embedded in SDF file:
1 Delays (module path, device, interconnect, port)

1 Timing checks (setup, hold, setuphold, recovery,
removal, recrem, skew, width, period, nochange)

1 Timing constraints (pathconstraint, skewconstraint,
periodconstraint, sum, diff)

1 Timing environment (arrival, departure, slack,
waveform)

Fast Gate Level Verification

Synopsys Verification with VCS Workshop

SDF - Example

7-7

Synopsys

(CELL
(CELLTYPE “bl ock”)
(DELAY
(ABSOLUTE
(1 NTERCONNECT P1/z Bl/C1/i
(.15:.15:.15) (.12:.12:.12))

)))
(CELL

(CELLTYPE ™I NV”)
(1 NSTANCE B1/C1)
(DELAY
(ABSOLUTE
(IOPATH i z
(.34:.34:.34) (.32:.32:.32))

)))

Bl

C1l

C2

Fast Gate Level Verification
Verification with VCS Workshop

SDF Back-Annotation in VCS 7-8

Compiled back-annotation
n Insert $sdf _annot at e in Verilog code
$sdf _annotate(“sdf _file” [, nodul e i nstance]

[, “sdf _configfile”] [,“sdf logfile”] [, “ntm spec”]
[, “scal e factors”] [, “scale _type”]);

n Compile:

> vcs dut _gate.v -v simlib.v

1 Requires vendor supplied Verilog simulation library

n SDF configuration file is not supported

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Alternative Back-Annotation Method 7-9

Run-time back-annotation

n Insert $sdf _annot at e in Verilog code

n Create a PLI .tab file
1 Map $sdf _annot at e to sdf _annotate_cal |

n Compile

> ves -R -P sdf.tab dut _gate.v -v simlib.v

n Use only if the following is true

1 Included sdf _configfileorscale typein
$sdf _annot at e task call

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Compiled SDF Versus Runtime SDF

7-10

Synopsys

Compiled SDF Flow

Run-time SDF Flow

$sd.f_annot.at.ef.r'

("design.sdf",
/test/chip) ;

%

fem task added

Verilog Source ASCIl format

SDF File in

$sdf annotate
("design.sdf",
/test/chip) ;

[4

$sdf annotate
call=

acc=tchk ,mp: 8CELL

B

4

VCS Compiler

& Min
P @1
" .Mmr
i]
Simulatien Bigary Jiming

simv +mindelays

simv +typdela
simv +ma_1|:dela¥

.S;r:rnm task added

Verilog Source

VCS Table File

B

VCS Compiler

)-8

.".l"l'mul'nﬂnn
Executable
simv +mindelays

simv +typdela
simv +maxdel aﬁ

SDF File in
ASCII format

Fast Gate Level Verification
Verification with VCS Workshop

Handling Large SDF Files 7-11

n VCS will either parse ASCII SDF file or a
precompiled version of the ASCII SDF file

n Parsing of the precompiled SDF file is faster

n Creating precompiled version of ASCII SDF file:
1 Use +csdf +preconpi | e compile-time switch

1 VCS creates a precompiled version of the SDF file by
appending “_c” to the ASCII SDF file’s extension

Example:
VCS creates dut . sdf _c from dut . sdf file

n Once created, VCS will read the precompiled
SDF file during compilation

1 No compile-time switch is required

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Selecting min/typ/max Delays 7-12

n Selecting min/typ/max for timing:

1 Compile-time switch:
u +mindelays
u +typdelays
u +maxdelays
1 Or, run-time switch:
u Compile with +allmtm compile-time switch

u Specify delay at run time with run-time switch:
+mindelays
+typdelays
+maxdelays

u Can NOT be used with compile-time switch

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Delay Filtering 7-13

n Two types of delay filtering: inertial or transport

n Inertial delay:
1 Default VCS delay process
1 Pulses shorter than device delay are filtered out

n Transport delay:

1 All pulses are propagated through (no filter)

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Inertial delay VS Transport delay 7-14

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Enable transport delay 7-15

With compile-time switches:

u+transport pat h_del ays

Turns on transport delay mode for path delays
u+transport i nt _del ays

Turns on transport delay mode for interconnects

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Modifying Delay Filtering Criteria 7-16

n For module path delays:
1 +pul se_e/ nunber (error limit in %)
1 +pul se_r/ nunber (reject limitin %)
Example: +pul se_e/ 70 and +pul se_r/ 50

u Rejects pulses less than 50% of the delay

u Outputs X for pulses less than 70% but greater than
50% of the delay and display an error message

n For INTERCONNECT delays:
1 +pul se_int_e/ nunber (error limit in %)
1 +pul se_int_r/nunber (rejectlimitin %)

I Same usage as shown in above example

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Additional Features 7-17

Synopsys

Support for Negative Timing Checks
Support for Multisource Interconnect Delays

Support for on-event and on-detect pulse
filtering

Support for Delay Mode Selection

Refer to VCS User Guide for more information

Fast Gate Level Verification
Verification with VCS Workshop

Performance & Debug Considerations 7-18

n Use compiled SDF

n Useful guideline
1 Limit excessive use of debug switches
1 Preserve design hierarchy
1 Use post-processing debugging techniques
1 Use the race utilities to resolve any race issues

n Things to bear in mind

1 +rad is disabled for entire design when compiled SDF
methodology is used

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Lab 7 Introduction

7-19

Synopsys

X

45 min

Run a Verilog gate-
level simulation
with and without
timing

Verify gate-level netlist

Simulate without SDF

Repeat with SDF

Fast Gate Level Verification
Verification with VCS Workshop

Agenda: Day 2

8-1

DAY

Synopsys

Topic

Debugging Simulation Mismatches

o

Fast RTL Level Verification

:

Fast Gate Level Verification

!

8 Code Coverage

Fast Gate Level Verification
Verification with VCS Workshop

What i1s Code Coverage? 8-2

n Code Coverage answers questions such as...
1 Have all the lines of the RTL been stimulated?
1 Have all the states of a FSM been exercised?

1 Have all the conditions of an 'if' statement in the RTL
simulated?

1 Have all the blocks of a 'case' statement been
exercised?

Fast Gate Level Verification

Synopsys Verification with VCS Workshop

What Code Coverage is NOT! 8-3

n Functional Coverage, which answers questions
such as...

1 Have all possible combinations of instructions been
verified on a processor ?

1 Have all the 'corner-cases' been tested for a design ?
1 Did an asynchronous interrupt occur when a cache
miss was being handled by the processor ?

n Synopsys has other tools & methodologies to
address Functional Coverage

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Types of Coverage in VCS 8-4

Synopsys

N

N

N

N

N

Statement or line coverage

1 Has the line been executed?

Toggle coverage

1 What type of switching activity is there?

Conditional coverage

1 Have various permutations of conditions been exercised?

FSM coverage

1 Have | reached all possible states?

Path Coverage

1 Did all paths in an initial or always block get executed?

Fast Gate Level Verification
Verification with VCS Workshop

Defining Code Coverage 8-5

n Traditional code coverage includes

1 Line or Statement coverage
u Least powerful but easiest to understand
u Checks every assignment has been executed

u Aim for 100% before using more powerful coverage types

1 Condition
u Checks all combinations in complex branches
If (@==1) or (b==1) or (c==1)
u Various formats available to identify values of multiple conditions

u Start with basic (sensitized) condition coverage before applying
advance condition coverage

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Defining Code Coverage (Cont’d) 8-6

1 Finite State Machine Coverage
u Checks states and state transitions

u Automatically identifies individual state machines, but not cross
product states, communication between FSM'’s

1 Toggle Coverage
u Ensures every node has transitioned from 0->1 and 1->0
u Used mostly for gate level code coverage

u Also used for system level connectivity testing

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Line Coverage

8-7

Synopsys

n

n

n

Reports : which lines, statements, and blocks for any instance/module of design
were exercised during simulation

Verilog :

procedural assignment statement
system task

case

while

if

for

continuous assignment statement
initial block

always block

missing else

Verilog: assignment statement - which assignment statement causes a bit of a

signal to toggle 0->1, 1->0 (Verilog only)

Fast Gate Level Verification
Verification with VCS Workshop

Line Coverage - Verilog Example 8-8

Verilog source code

al ways @rst or enable)
begi n
case (rst && enabl e)
0: if (condl) cas = 1' bO;
1: if (cond2 || cond3) cas= 1'Dbl;

else S$display (" No
condition true") ;

endcase

i f (rst &% enable) casl = cas;

el se casl = 1' bz;
I f (rst) cas2 = 1'DbO;

end

Line coverage annotated data

17 al ways @rst or enable)

18 begi n

19 ==> case (rst && enabl e)

20 ==> 0: if (condl) cas = 1'bO;
20 ==> if (condl)

20.1 ==> cas = 1' bO;

20. 2 ==> M SSI NG_ELSE

21 ==> 1:if(cond2 || cond3)cas =1'b1l;
21 ==> if (cond2 || cond3)

21.1 ==> cas = 1'b1;

22 ==> el se S$display ("No .);
22.1 ==> M SSI NG_DEFAULT

23 endcase

Annotated files help to understand how VCS extracts constructs for different metrics (line,
statement, block) and what constructs are covered by a given test

Synopsys

Fast Gate Level Verification
Verification with VCS Workshop

Line Coverage - Verilog Example (cont.) 8-9

Line coverage report file details

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Condition Coverage 8-10

n Monitors values taken on by Boolean and bitwise
expressions

1 Conditional expressions in conditional operator (?:)
1 if statement

1 EXpressions in continuous assignment statement (
assignc=a &&b;)

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Condition Coverage

- Example 1

8-11

Verilog source code

al ways @ posedge cl k)

if (((a[3] & a[?2]) && a[1]) && a[0])
begi n
#1 $display("&& if triggered");

end

LINE 39
STATEMENT

EXPRESSI ON

Synopsys

Condition coverage report

if ((a[3] & a[2] && a[1l] && a[0]))

- 7= - S ke - il -
2- - 3- -4-
1 1 1 | Not Covered
0 1 1 | Not Covered
1 0 1 | Not Covered
1 1 O | Not Covered
1 1 1 | Not Covered

Fast Gate Level Verification
Verification with VCS Workshop

Condition Coverage - Example 2

8-12

Verilog source code

assign d = al || b |

Synopsys

cmView groups expressions to make considered sub-expressions smaller

C,

Condition coverage report

LINE 33
STATEMENT

EXPRESSI ON

LINE 33
STATEMENT

EXPRESSI ON

=(al || (b] ¢))

il Sy S
-1- -2-
0 0 | Covered
0 1 | Not Covered
1 0O | Not Covered

=(al || (b] ¢))

1 2
-1- -2-
0 0 | Covered
0 1 | Covered
1 0O | Not Covered

Fast Gate Level Verification
Verification with VCS Workshop

Condition Coverage - Example 3 8-13

Verilog source code

LI NE 35
_ STATEMENT g = (((f == 1'b1) | (e == 1'b0)) ? ((a
assigng=((f ==1) | (e==0)) ? Il (b] ¢)) : 0)
oA e 1-----
(a|] b] ¢c): O
EXPRESSI ON 1-
0 | Covered
Condition coverage report 1 | Covered
LINE 35 LINE 35
STATEMENT g = (((f == 1'bl) | (e == 1'b0)) ? ((a STATENENTb g = (((f o: 1'b1l) | (e == 1'b0)) ? ((a
[l (b] ¢))) : 0) [l (b] c))) : 0)
_____________ Lom e mmm e scocoilsocas
EXPRESSI ON 1 EXPRESSI ON 1
0 | Not Covered 0 | Not Covered
1 | Covered 1 | Covered
[flammooammoo0mm000mm000 00000000000 00000 50005
LI NE 35
STATEMENT g = (((f == 1'b1) | (e == 1'b0)) ? ((a Il Modul e Coverage Sunmary
[l (b] c))) : 0)
""" i 11 TOTAL COVERED
EXPRESSI ON -1- 2 PERCENT
0 0 | Not Covered Il condi ti ons 24 9
37.50
0 1 | Covered .
/1 | ogi cal 24 9
1 0O | Not Covered 37.50

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Toggle Coverage 8-14

n Reports whether signals and signal bits had 0->1
and 1->0 transitions

n A signal is considered fully covered if and only if
It toggled in both directions: 0->1 and 1->0

1 X->1 and x->0 transitions are not counted

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Toggle Coverage - Verilog and VHDL 8-15

n Verilog
1 Registers
1 Wires
1 Memories (with the +memcbk compile-time option)

n VHDL - ports and signals of types
1 bit
1 bit_vector
1 std_logic
1 std_ulogic
1 std_logic_vector
1 std_ulogic_vector
1 sighed
1 unsigned

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Toggle Coverage - Example 8-16

Verilog source code

i nput clk, rst;
input [7:0] d; Toggle coverage report (no cm_count)

reg [7:0] ff_out;

/1 Net Cover age
I | k or
rS;’;1)Ways @ posedge c or posedge [Toggled 1->0 0->1
] cl k Yes
<= 0;
if (rst) ff_out 0; - No No No
el se ff _out <= d; d[2: 0] Yes
d[3] No No Yes
d[7: 4] No No No
/1 Regi st er Cover age
[l Nane Toggl ed 1->0 0->1
ff_out[2:0] Yes
ff _out[3] No No Yes
ff out[7:4] No No No

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Toggle Coverage - Example (cont.) 8-17

Verilog source code Toggle coverage report (with cm_count)
I Net Coverage
input clk, rst; /1l Nanme Toggl ed 1->0 0->1 Toggl eCount
input [7:0] d clk Yes Yes Yes 8
reg [7:0] ff_out; rst No No No
d[0] Yes Yes Yes 4
d[1] Yes Yes Yes
al ways @ posedge clk or posedge rst) d[2] Yes Yes ves 1
if (rst) ff_out <= 0; d[3] No No Yes
el se ff _out <= d; d[4] No No No
d[5] No No No
d[6] No No No
d[7] No No No
/1 Regi st er Cover age
/1 Nanme Toggl ed 1->0 0->1 Toggl eCount
ff_out[O0] Yes Yes Yes 3
ff_out[1] Yes Yes Yes 2
ff_out[2] Yes Yes Yes 1
ff_out[3] No No Yes
ff_out[4] No No No
ff_out[5] No No No
ff_out[6] No No No
ff_out[7] No No No

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Finite State Machine Coverage 8-18

n Recognizes some portion of sequential logic as an FSM
and reports which FSM states and which state
transitions (among all possible) were executed

n FSM coverage can tell which parts of the design are
Implemented as FSMs and gives specific information,
which other kinds of coverage do not provide, on all
possible sequences of state transitions

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

FSM Coverage - Example 1 8-19

Verilog source code

paraneter idle = 2'b00,
first = 2'b01,
second = 2'bl0,
third = 2'bl1;

al ways @ (posedge cl k or posedge rst)

if (rst) state= idle;

el se st at e=next ;
always @in)
begi n

next = state; // by default hold case
(state)

case (state)

ide: if (in) next = first;
first : if (in) next = second;
second : if (in) next = third;
third : if (in) next = idle;
default: next = idle;
endcase

end

Synopsys

FSM coverage report (no cm_count)

FSM state

/] state coverage results

idle->first->idle Not Covered Loop

idle->first->second->third->idle

ide | Covered
first | Covered
second | Covered
third | Covered
/] state transition coverage results
idle->first | Covered
first->idle | Not Covered
/| sequence coverage results
idle->first | Covered
first->idle | Not Covered
idle->first->second | Covered
first->second->idle | Not Covered
first->second->third | Covered
third->idl e->first->second | Covered
I
I

Covered Loop

Fast Gate Level Verification
Verification with VCS Workshop

FSM Coverage - Example 1 (cont.) 8-20

Verilog source code FSM coverage report (with cm_count)

paranmeter idle = 2'b00, FSM state
first = 2'bo1, /| state coverage results
second = 2' b10, el @ I 2
third = 2' bll; first I 2
second | 2
third | 2
rsta; TS @ (pescels 6l o PesetiE /] state transition coverage results
. . idle->first | 2
if (rst) state= idle;
first->idle | O
el se st at e=next ; first->second | 2
second->i dl e | O
always @in) second->third | 2
begi n third->idle | 1
next = state; // by default hold /| sequence coverage results
case (state) idl e->first | Covered
case (state) first->second->third->idle | Covered
ide: if (in) next = first; second- >t hi rd->i dl e->first | Covered
first : if (in) next = second; third->idl e->first->second | Covered
second : if (in) next = third; idle->first->idle | Not Covered Loop
third : if (in) next = idle; Ff e e e s
. /1 Si ngl e FSM Cover age Summary
default: next = idle;
TOTAL COVERED PERCENT
endcase States 4 4 100. 00
end Transi ti ons 6 4 66. 67
Sequences 25 16 64. 00

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Path Coverage 8-21

n Tracks which paths in an initial or always block were
executed

1 Checks consecutive branches through the RTL

1 Branching statements can be “if” or “case” statements

module dev (out,clk,c1,c2,c3,c4,i1,i2);
input clk,cl,c2,c3,c4,i1,i2;
output out;
reg out,c,d,b;
always @(posedge clk)
begin
out = 1’b0;

begin
out =il &&i1;

b=il]|i2;
end

c=~i1;
c=~i2;
1'b0:d
1'bl:d
endcase

end
endmodule

1’b0;
1'b1;

Fast Gate Level Verification

Synopsys Verification with VCS Workshop

How Can Coverage Be Used?

8-22

n Behavioral code

Line
Condition
Path
FSM

n RTL code

Line

Condition

Path

Toggle (not recommended)
FSM

n Gate-level code

Synopsys

Toggle

Fast Gate Level Verification
Verification with VCS Workshop

VCS Coverage Metrics 8-23

n VCM functionality is tightly integrated into VCS

n At compilation/elaboration time, it instruments the design for
collection of coverage data and creates a coverage database

n At simulation time, it collects coverage data and fills the
coverage database

1 Usual simulation time overhead is no more than 20%-30%

1 Toggle coverage is expensive, up to 3 times overhead

n At post-simulation time there are two modes:
1 Batch mode: to generate coverage report file and grade test cases

1 GUI mode: to show and manipulate coverage data in graphical form

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Code Coverage Flow 8-24

Design coverage DB
creation/modification

Note: The GUI provides
a subset of the batch
functionality and is not
GUI always recommended

coverage simulation data

batch

o g g

=
HCECPE]

report files
generation

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Excluding Lines, Source Files, and

Module Instances from Coverage 8-25

n Use pragmas (meta-comments) in VHDL/Verilog source code

u Pragmas for Verilog:
//IVCS coverage on
IIVCS coverage off

u Pragmas for VHDL.:
-- VCS coverage on
-- VCS coverage off

n Design Compiler pragmas act the same for coverage:
//synopsys translate off
//synopsys translate_on

n Compile-time/report-time configuration file (-cm_hier <name_of file>
) allows inclusion/exclusion of any instance, module/entity, or sub-
hierarchy

Fast Gate Level Verification

Synopsys Verification with VCS Workshop

Compiling with Coverage 8-26

Synopsys

%> vcs sourcefiles -cm <coverage type> <other
coverage options>

-cm <coverage type> specifies the type of coverage to
collect

The options are:

line
tgl
cond
fsm
path

Enables statement (line) coverage
Enables toggle coverage

Enables condition coverage
Enables FSM coverage

Enables path coverage

Any combination of coverage types can be enabled
simultaneously

-cm cond+tgl+line+fsm-+path

Fast Gate Level Verification
Verification with VCS Workshop

Compiling with Coverage (cont.) 8-27

Synopsys

n Default location for coverage data:

1 ./simv.cm directory - for Verilog and Verilog top designs

n Use -cm_dir to specify an alternate location and/or
name of the coverage database

n Renaming simv with -o (-exe) will also rename simv.cm
n Compiling with

%> vcs sourcefiles -0 mysimv -cm line
n Will create a mysimv.cm coverage directory

n -cm_dir option takes precedence over -0 (-exe)

Fast Gate Level Verification
Verification with VCS Workshop

Compile-Time Coverage Options 8-28

n -cm_ cond <arguments> - different features of condition
coverage

n -cm_count - enables counting how many times constructs
were executed (for line, condition, toggle, and FSM
coverage)

n -cm_noconst - excludes constructs that cannot be covered
because some operands are constants (not supported across
module boundaries)

n -cm_fsmcfg - specifies FSM coverage configuration file

n -cm_hier -configuration file, which includes/excludes parts
of design for different kinds of coverage

Important note: do not use +rad option; it will change coverage results

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Simulation with Coverage 8-29

Synopsys

%> simv -cm <coverage_type> <other coverage options>

n

n

Simulation-Time Coverage Options

-cm_name filename - specifies the name of the intermediate
data files (highly recommended)

-cm_glitch period - specifies a glitch period during which
VCS does not monitor for coverage caused by value changes
(recommended to use with period = 0)

-cm_dir directory_path_name - specifies an alternative name
and location for the coverage database

-cm_log filename - specifies a log file for monitoring for
coverage during simulation

Fast Gate Level Verification
Verification with VCS Workshop

Coverage Database 8-30

Note: The coverage database is the directory *.cm with subdirectories and files
inside; the default name is simv.cm (for Verilog and Verilog top designs)

Iverilog)

/db >~ Design data written at compilation time
/vhdl

Iverilog)

—— /coverage — > Coverage data written at simulation time
/vhdl

/annotated ~ Design source files, with added coverage information

ITEPOrtS Report files generated at report time

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Report Files for Each Type of Coverage 8-31

Synopsys

cmView.short_| - A short report file containing only sections for instances
in which all coverable objects were not covered. In these sections are
only listed the uncovered objects. The report ends with summary
information.

cmView.short_|d - Another short report file, for module definitions instead
of module instances

cmView.hier | - coverage of sub-hierarchies in the design
cmView.mod | - coverage of instances in the design

cmView.mod _|d - coverage of each module in the design (summary of all
module instances)

cmView.long | - detailed coverage of each instance in the design

cmView.long |d - detailed coverage of each module in the design

Note: file names shown are for line coverage

Fast Gate Level Verification
Verification with VCS Workshop

Report-Time Coverage Options 8-32

n -cm_tests <file_name> - defines names of tests cmView reads

n -cm_nocasedef - excludes default choice of case statement from
coverage

n -cm_autograde - generates report file with absolute and relative coverage
estimation of each test

n -cm_hier - configuration file, which includes/excludes parts of design for
different kinds of coverage

n -cm_name - specifies the name of report files (instead of default cmView)
- usually defines test case name for coverage database

n -cm_report - to change the position of summary in report files, ascending
or descending order of covered instances

n -cm_verbose - reports coverage summary in terms of tests and type of
coverage

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Accumulating Coverage Results 8-33

n To get the total coverage for the design:

1 Merge different test-case results for the same design
(possibly with different test environments)

1 Import module/block-level coverage results to the chip-
level design

n Methods to Merge Coverage Results

1 Method 1: Build the simv executable once, then
simulate several times sequentially using the
same testbench but different inputs

1 Method 2: Build several simv executables and
simulate sequentially or in parallel

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

Method 1 Example 8-34

Build the simv executable once, then simulate three times sequentially using
the same testbench but different inputs

Synopsys

set COV =(line+cond+tgl+path+fsm)

#compilation for Coverage

vcs tst.v -cm $COV

#simulation of all test cases

simv -cm $COV +TEST1 -cm_name TEST1

simv -cm $COV +TEST2 -cm_name TEST2

simv -cm $COV +TEST3 -cm_name TEST3

merging Coverage for all test cases, and generation of report files

vcs -cm_pp -cm $COV -cm_nocasedef -cm_name TOTAL

Fast Gate Level Verification
Verification with VCS Workshop

Autograding 8-35

Synopsys

Determines how much each test case contributes uniquely to
the total coverage

Autograding is coverage-type dependent

For example, a particular test case can be valuable for line coverage, but not for
toggle or other types of coverage

Implemented for line, condition, toggle, and FSM coverage

cmView can generate an autograding report for one type of
coverage per run

Autograding report provides the list of all test cases and their
metrics:

Covered - coverage for given test
Accumulated - coverage summary of given test and previous ones

Difference - additional coverage of given test over the previous accumulated
+additional coverage of previous accumulated and missed in given test

Incremental - additional coverage of given test over the previous test

Fast Gate Level Verification
Verification with VCS Workshop

Autograding - Example 8-36

Commands:

VCS -cm_pp -b -cm line -cm_autograding 100
VCS -cm_pp -b -cm cond -cm_autograding 100
Line coverage

Conditional coverage

Fast Gate Level Verification

Synopsys Verification with VCS Workshop

Coverage Metrics Summary 8-37

Synopsys

Integration with VCS
Supports line, condition, toggle, FSM and Path
Graphical and text based results

Automatic and/or custom coverage

1 Now extended with Tcl
Merge coverage for a design using different tests

Autograding helps create more efficient
testbenches

Fast Gate Level Verification
Verification with VCS Workshop

Lab 8 Introduction 8-38

@ FSM coverage

30 min

Merging coverage

Autograding

Fast Gate Level Verification
Synopsys Verification with VCS Workshop

