
HIGH-LEVEL POWER ANALYSIS
AND OPTIMIZATION

HIGH-LEVEL POWER ANAL YSIS
AND OPTIMIZATION

by

Anand Raghunathan
NECUSA

Niraj K. Jha
Princeton University

Sujit Dey
NECUSA

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Library of Congress Cataloging-in-Publication Data

A c.I.P. Catalogue record for this book is available
from the Library of Congress.

ISBN 978-1-4613-7481-7 ISBN 978-1-4615-5433-2 (eBook)
DOI 10.1007/978-1-4615-5433-2

Copyright © 1998 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1998
Softcover reprint of the hardcover 1 st edition 1998

AII rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo­
copying, record ing, or otherwise, without the prior written permission of the
publisher, Springer Science+Business Media, LLC.

Printed an acid-free paper.

CONTENTS

LIST OF FIGURES

LIST OF TABLES

PREFACE

1. INTRODUCTION

1.1 Low power design
1.1.1 The emergence of portable systems
1.1.2 Thermal considerations
1.1.3 Reliability issues
1.1.4 Environmental concerns

1.2 Design abstraction and levels of the design hierarchy

1.3 Benefits of high-level power analysis and optimization

1.4 Book overview

2. BACKGROUND

2.1 Sources of power consumption
2.1.1 Capacitive switching power
2.1.2 Short-circuit power
2.1.3 Leakage power
2.1.4 Static power

2.2 Methods for reducing power and energy consumption

ix

xiii

xv

1

2
2
3
4
5

5

12

15

17

18
18
20
20
21

22

v

VI HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

2.3 High-level design techniques
2.3.1 Module selection
2.3.2 Clock selection
2.3.3 Scheduling
2.3.4 Resource sharing

2.4 High-level synthesis application domains

25
29
29
29
31

33

3. ARCHITECTURE-LEVEL POWER ESTIMATION 37

3.1 Analytical power models 38

3.2 Characterization based activity and power macromodels 43
3.2.1 Activity-sensitive power macromodeling 45
3.2.2 Accounting for glitching power consumption 50
3.2.3 Bit-level and cycle-accurate power macromodels 59
3.2.4 Improving macromodel efficiency with statistical sampling 63
3.2.5 Improving estimation accuracy using adaptive

macromodeling 65

3.3 Power and switching activity estimation techniques for control
logic 67
3.3.1 Controller power consumption 68
3.3.2 Estimating glitching activity in the control logic 70

3.4 Conclusions 78

4. POWER MANAGEMENT 81

4.1 Clock-based power management: Gated and multiple clocks 82
4.1.1 Automatic synthesis of gated-clock circuits 84
4.1.2 Clock gating techniques for data path registers 86
4.1.3 Clock tree construction to facilitate clock gating 89
4.1.4 Power management using mUltiple non-overlapping clocks 90

4.2 Pre-computation 93

4.3 Scheduling to enable power management 95

4.4 Operand isolation 97
4.4.1 Guarded evaluation 98

CONTENTS vii

4.4.2 Operand isolation in the context of high-level synthesis 100

4.5 Power management through constrained register sharing

4.6 Controller-based power management

102

107

114 4.7 Conclusions

5. HIGH-LEVEL SYNTHESIS FOR LOW POWER 115

5.1 Behavioral transformations 116
5.1.1 Enabling supply voltage reduction using transformations 117
5.1.2 Minimizing switched capacitance 119

5.2 Module selection 126

5.3 Resource sharing 129
5.3.1 Exploiting signal correlations to reduce switched

capacitance 131
5.3.2 Exploiting regularity to minimize interconnect power 133

5.4 Scheduling 135
5.4.1 Effect of scheduling on peak power consumption 136
5.4.2 Effect of clock period selection on power 137

5.5 Supply voltage vs. switched capacitance trade-offs 139

5.6 Optimizing memory power consumption during high-level
synthesis 142

5.7 Reducing glitching power consumption during high-level design 145

5.8 Conclusions 153

6. CONCLUSIONS AND FUTURE WORK

REFERENCES

INDEX

155

159

173

LIST OF FIGURES

1.1 Factors driving the need for low power design 2

1.2 Synthesis flow and levels of abstraction 7

1.3 High-level design flow: Levels of abstraction 8

1.4 Projected growth in RTL synthesis tool seats 9

1.5 High-level synthesis benefits: Case studies 11

1.6 Benefits of high-level power analysis and optimization 12

1.7 Design flows without and with high-level power analysis 14

2.1 Illustration of capacitive switching power: (a) CMOS inverter,

(b) equivalent circuit for charging the output load capacitor, and

(c) equivalent circuit for discharging the output load capacitor 19

2.2 Data-flow intensive design example: VHDL description of a 6th

order Elliptic Wave Filter 25

2.3 Control-flow intensive design example: VHDL description of a

barcode pre-processor 26

2.4 Data flow graph of the EWF example 27

2.5 Control flow graph of the barcode pre-processor example 28

2.6 Functional RTL VHDL description of the EWF example 32

2.7 Structural RTL implementation of the barcode pre-processor

example 33

IX

x HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

3.1 Estimating clock line capacitance 39

3.2 High-level power estimation flow using power macromodeling:

(a) macromodel construction, and (b) power estimation 44

3.3 Relationship between word-level temporal correlation and bit-

level transition activity [1] 47

3.4 Transition template for a 2-input subtracter with misaligned

breakpoints [1] 48

3.5 The GCD RTL circuit 51

3.6 Activity profiles for data path signals in the GCD circuit 52

3.7 Glitching activity models for an 8-bit subtracter 56

3.8 Circuit used to compute the coefficients Do}, DID, and Dll 58

3.9 Variation of energy consumption with input/output switching

activity for an 8-bit carry-Iookahead adder [2] 60

3.10 Peripheral capacitance model 61

3.11 Overhead for computing bit-level statistics 63

3.12 Statistical sampling to improve the efficiency of high-level power

estimation 64

3.13 Adaptive macromodeling to improve the accuracy of high-level

power estimation 66

3.14 Activity profiles for control signals in the GCD circuit 67

3.15 (a) Implementation of control signal contr[2], and (b) generation

of glitches at gate Gl 71

3.16 Scatter plot of switching activity at control signals: RTL estimate

vs. gate-level estimate 78

4.1 Gating clock signals to save power 82

4.2 Gated-clock FSM architecture 84

4.3 Deriving clock gating conditions for data path registers 86

4.4 Clock gating at multiple levels in the clock tree 88

4.5 Effect of clock tree structure on clock gating possibilities 89

4.6 High-level synthesis of multiple clock designs 92

LIST OF FIGURES xi

4.7 (a) Original circuit, and (b) circuit after applying pre-computation 93

4.8 Input subset disabling through pre-computation 94

4.9 Scheduling to enable power management 96

4.10 Operand isolation 98

4.11 Guarded evaluation 98

4.12 Operand isolation during high-level synthesis: Scheduled DFG 101

4.13 Operand isolation during high-level synthesis: RTL circuit 101

4.14 A scheduled CDFG to illustrate execution of spurious operations 103

4.15 Switching activity in the functional units of Design 1 104

4.16 Switching activity in the functional units of Design 2 105

4.17 Eliminating spurious operations using dynamic variable rebinding 106

4.18 RTL circuit implementing the send process of the X. 25 protocol 109

4.19 Control re-specification example (a) ALU and its multiplexer

tree, (b) original control expressions and activity graph, and (c)

re-specified control expressions and activity graph 110

4.20 (a) Multiplexer tree feeding a register, (b) original control ex-

pressions and acti vity graph for signal M(18), and (c) re-specified

control expressions and activity graph III
4.21 (a) Comparator and its multiplexer trees, and (b) activity graph

used for re-labeling 113

5.1 Using transformations to enable supply voltage reduction [3] 118

5.2 Minimizing switched capacitance by reducing the number of

operations in the DFG [3] 120

5.3 Minimizing switched capacitance by strength reduction [3] 121

5.4 Using differential coefficients to minimize word-length of mul-

tiplication operations [4] 122

5.5 Average switching activity at the output of a constant multiplier

vs. constant value [5] 124

5.6 Minimizing switching activity using transformations 125

5.7 Activity reduction in a linear chain [5] 126

Xli HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

5.8 Minimizing power consumption through module selection 127

5.9 Using multiple supply voltages to minimize power 129

5.10 Effect of resource sharing on the switching activity in a shared

resource [6] 130

5.11 Exploiting regularity to minimize interconnect power: (a) non-

regular assignment, and (b) regular assignment [7] 134

5.12 Effect of scheduling on peak power consumption 137

5.13 Effect of varying the clock period on power consumption 138

5.14 Supply voltage vs. switched capacitance trade-off 140

5.15 Loop transformations for optimizing memory size and number

of memory accesses [8] 143

5.16 Mapping arrays to memories in order to minimize transitions on

the address bus [9] 144

5.17 Alternative architectures that implement the same function: Ef-

fect of glitching 146

5.18 Example circuit used to illustrate the effect of data signal corre-

lations on control signal glitches 147

5.19 (a) Effect of data correlations on select signal glitches, and (b)

use of the consensus term to reduce glitch propagation 148

5.20 Multiplexer restructuring to enhance data correlations: (a) initial

multiplexer network, (b) abstract 3-to-l multiplexer, and (c)

restructured network 150

5.21 (a) Example circuit, (b) multiplexer bit-slice with selective de-

lays inserted, and (c) implementation of a rising delay block 151

LIST OF TABLES

2.1 Characteristics of data-flow and control-flow intensive applications 35

3.1 Capacitance coefficients for a 2-input subtracter [1] 49
4.1 Two variable assignments for the scheduled DFG shown in Fig-

ure 4.14 104

5.1 Bit-level correlations between input and output values of operations 132

Xlll

PREFACE

This book addresses issues that lie at the confluence of two ubiquitous trends in

VLSI design - the move towards designing at higher levels of abstraction, and the

increasing importance of power consumption as a design metric.

Power consumption is one of the most important metrics used in evaluating

electronic systems today. This is due to a variety of requirements, such as pro­
longing battery life in portable devices, reducing chip packaging and cooling costs,

and reliability and environmental considerations. Increasing clock frequencies
and system complexities only serve to increase the demand for reducing power

consumption. In order to address power consumption concerns, it is necessary to

develop power estimation and reduction tools at each level of the design hierarchy.

The move towards designing at higher levels of abstraction is motivated by

the growing complexities of electronic systems, shrinking product cycle times that

require faster time-to-market, and the emergence of high-level design tools that

support validation, analysis, and automatic synthesis starting from architectural

and algorithmic (behavioral) design descriptions. Most research and development

work in the areas of power analysis and optimization have addressed these problems
at the lower (transistor and logic) levels of the design hierarchy. However, it is

important to consider power consumption as a design metric at the higher levels

of the design hierarchy for several reasons. Several studies have shown that large

xv

xvi HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

power savings are obtained through architectural and algorithmic trade-offs, which

often far exceed the power savings obtained through lower-level optimizations.

Tools that provide feedback about the power consumption of a design, given an

architectural description, enable power budgeting decisions to be taken early on in

the design flow, avoiding late surprises and possibly expensive design iterations.

The aim of this book is to describe techniques and tools that can be used to

perform power analysis and optimization at the behavior and architecture levels.

The book covers architecture-level power estimation techniques, power manage­

ment during high-level design, and high-level synthesis techniques for minimizing

power dissipation.

The authors would like to acknowledge their colleagues and students who

helped shape their ideas and knowledge of low power design techniques; Rob Roy

of Intel, Paul Landman of Texas Instruments, Allesandro Bogliolo of Stanford

University, and Cheng-Ta Hsieh of the University of Southern California who pro­

vided additional material that helped with the description of their work; and Ganesh

Lakshminarayana, Indradeep Ghosh, and Kamal Khouri of Princeton University,

and Surendra Bommu of NEC C & C Research Laboratories, who read drafts of

the chapters and suggested changes that improved the quality of the book.

ANAND RAGHUNATH AN

NIRAJ K. JHA

SUJIT DEY

This book is dedicated to our parents

Parthasarthy and Manjula Raghunathan

Chintamani and Raj Kishori Jha

Tarun and Kaberi Dey

and our spouses and children,

Shubha, Naina, Ravi, and Promit

HIGH-LEVEL POWER ANALYSIS
AND OPTIMIZATION

1 INTRODUCTION

This chapter describes the factors dri ving the need for low power design, such as the

growth in the portable electronics market, thermal considerations in very large scale

integration (VLSI), circuit reliability issues, and environmental considerations. It

introduces the commonly used levels of design abstraction, with an illustration of

a typical high-level design flow, and an analysis of the benefits of incorporating

high-level power estimation and optimization techniques into the design flow. The

chapter concludes with an overview of the remaining chapters of the book.

A. Raghunathan et al., High-Level Power Analysis and Optimization
© Springer Science+Business Media New York 1998

2 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

1.1 LOW POWER DESIGN

The need for low power design is driven by several factors which are summarized

in Figure 1.1. These factors are described next.

• Portable Systems
,... Notebooks, palm~tops, PDA, cell ular

pho nes, pagers, efc.
• 32% af PC ma~l!!It, and growing

,... Battery-d riven. long battery lite
crucial

"'" System costJ weight limited by
bat1eries

• ..tOW. 1 0 hrs @ 20.35 W·hr/pound .
7·20 pound II

• S low growth In battety technology

• Must reduce energy drain from
batteries

• Environmental Concerns
.. EPA estimate: 80°/. of office

equ ipment electricity is used in
computers

~ "Energy Star" program to recognize
power officiont PCs

... Power management standard for
desktops and laptops

• Drive towards "Green PC"

• Thermal Considerations
.. 10 (Ie increase in operating

temperature => component fa ilure
rate doubles

Packaging: ceramic vs_ plastic

~ Cooling requirements

• Increasing levels of
integration / clock frequencies
make the problem worse

• 10cm', 500 MHz;> 315Watls

• Reliability Issues
~ Electromigration
.. IR drops on suppty lines

.. Inductive effects

• Tied to peak/average power
consumption

Figure 1.1. Factors driving the need for low power design

1.1.1 The emergence of portable systems

The emergence of portable or mobile computing and communication devices such

as laptop and palmtop computers, cellular phones and pagers, wireless modems and

network access cards, handheld video games, etc., is probably the most important

factor driving the need for low power design. Portable computers already account

for a large portion of the personal computing market, and the demand for these

devices is projected only to grow in the future. According to DataQuest Inc., the

growth of the worldwide handheld electronics market in 1995 over 1994 was 24 %,

INTRODUCTION 3

and the projected compound annualized growth rate for the mobile computing

sector of the personal computer (PC) industry between 1995 to 2000 is 18.9%,

compared to an estimated 16.9% for the entire PC market. Portable devices are

battery -dri ven, and the life of the battery is a very critical parameter in the evaluation

of such products - indeed, the commercial success of such a product depends

significantly on its weight, cost, and battery life. Unfortunately, the advances

in battery technology have not kept up with the growth in energy consumption

requirements of the various system components, accentuating the need for low

power design. Today's typical Nickel-Cadmium (Ni-Cd) batteries offer energy

densities of around 23 Watt-hours/pound [10, 11], which means that providing

10 hours of operation to a device that consumes 20W of operating power would

require a battery weight of 8.7 pounds. Newer battery technologies such as Nickel­

Metal Hydride (Ni-MH) have capacities of 35-40 Watt-hours/pound. However, for

the above scenario, the weight of the battery would remain significant. Thus, the

cost and weight of the batteries become bottlenecks that prevent the reduction of

system cost and weight unless efficient low power design techniques are adopted.

For most portable devices, the power consumed in integrated circuit components

is a significant and increasing portion of the total system power consumption [12].

Thus, the development of low power VLSI design methodologies and tools is of

paramount importance.

1.1.2 Thermal considerations

The power consumed from the supply by integrated circuits is dissipated mostly

in the form of heat. Efficient heat dissipation or cooling techniques are needed in

order to maintain the chip's operating temperature within permissible levels. Fail­

ure to do so leads to circuit degradation and operating failures due to phenomena

such as package-related failure, interconnect and junction fatigue, gate dielectric

breakdown, and thermal runaway. It has been estimated that every 1Doe increase

in operating temperature causes the component failure rate to approximately dou­

ble [13]. Low power design techniques lead to a reducti'Jn in cooling requirements,

4 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

which may lead to a reduction in packaging and cooling costs (e.g. it may be pos­

sible to use a plastic package instead of a ceramic package, or to eliminate the

use of a cooling fan). Modem processors, like the Intel Pentium Pro (200MHz)

which consumes 35 Watts, and the DEC Alpha 21164 which consumes 50 Watts,

require expensive packages and cooling mechanisms. The power consumption

in microprocessors has been growing, and is projected to grow roughly linearly

in proportion to their die size and clock frequency [12]. On the one hand, high­

performance systems will push packaging and cooling system limits, incurring

steep cost overheads, while on the other hand, for high volume, low performance,

and low power products, even a slight increase in per unit packaging and cooling

costs will translate into large revenue reductions.

1.1.3 Reliability issues

Several reliability and signal integrity issues that affect the operation of integrated

circuits are tied to their peak and/or average power consumption. For example,

high levels of currents in metal interconnect lines lead to a phenomenon called

electromigration where there is a mass transport of metal atoms, leading to electrical

cuts or shorts between metal lines [14]. Electromigration is a major concern while

designing the power supply network. Hot -carrier effects in MOS transistors (charge

trapping in the oxide and/or interface trap generation at the Si/ Si0 2 interface

resulting in a shift in the threshold voltage and degradation in transconductance and

electron mobility in the channel) are related to switching rates of transistors [15].

The resistive (I-R) voltage drops on supply lines also affect reliable circuit operation

by resulting in degraded performance, reduced noise margins, and increased clock

skews. Excessive supply current transients cause ground bounce, which refers to

the ringing (voltage fluctuation) in the power supply network due to the inductances

of the package pins and bonding wires. Specialized reliability and signal integrity

analysis tools such as Railmill from EPIC Design Technology, Inc. [16] are required

to help address these problems. Reducing the circuit's peak and average power

consumption typically has the beneficial side-effects of improving the circuit's

reliability.

INTRODUCTION 5

1.1.4 Environmental concerns

Concerns about the direct and indirect environmental impact of computers is an­

other motivation for low power design. According to an estimate by the U.S

Environmental Protection Agency (EPA), 80% of the total office equipment elec­

tricity consumption is due to computing equipment, a large part of which is due

to such equipment consuming current even when unused [17]. This led to the

launching of efforts such as the EPA's Energy Star program [17], which outlines

requirements for power-efficient PCs. This resulted in power management stan­

dards for desktops and laptops alike [18].

1.2 DESIGN ABSTRACTION AND LEVELS OF THE
DESIGN HIERARCHY

Electronic designs can be represented at several levels of abstraction such as a

geometric description of the layout, a logic description, or an architectural de­

scription. The hardware design process is often performed by gradually refining

or detailing the abstract specification or model of the design to lower levels of
abstraction. Circuit models are also classified in terms of the views of the design

that they provide such as the behavioral or functional view, the structural view,

and the physical view. A behavioral view specifies the functionality of the design
and may contain little or no reference to its structure. A structural view represents

the circuit as an interconnection of elements or building blocks. A physical view

represents a circuit as a set of geometric entities that are placed on a chip or a

board. Synthesis tools can automatically convert or refine a design from a higher

level of abstraction to a lower level of abstraction, or can convert a description that

presents a behavioral (structural) view to a structural (physical) view. High-level

or behavioral synthesis converts a behavioral view of a design (henceforth referred

to as a behavioral description for simplicity) into a structural view at the architec­

ture level (henceforth referred to as an architectural or register-transfer level (RTL)

description). Logic synthesis converts a behavioral view of a logic-level model

6 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

(e.g. a finite-state machine, or a set of Boolean equations) into a structural view at

the logic level. Physical or layout synthesis converts a structural view of a design
into a physical view.

Figure 1.2 shows the levels of abstraction and the synthesis steps involved in

refining a design from each level to the next lower level. At the system level,

the design may be modeled as a set of abstract communicating processes or tasks,

with no knowledge of whether the tasks are implemented in hardware or compiled

into software running on an "embedded" processor. System-level synthesis in­

volves partitioning the tasks into hardware and software, choosing the processor(s)
that will execute the software, determining the hardware/software communication

mechanism, etc. For example, the figure shows the partitioned system-level block

diagram of a barcode scanner device. Upon receiving a start signal from the
microprocessor, the camera scans the barcode image, and generates a scan signal

to indicate that it is starting to scan, and a digitized video signal that represents

whether the current pixel is black or white. The pre-processor is an application­

specific integrated circuit (ASIC), which processes the video signal sequence from

the camera, computes the width of each white and bar, stores them in a memory,
and asserts the eoc signal to indicate end of conversion. After that, the micropro­
cessor reads the bar widths from the memory and performs the desired function,

e.g. looking up the price of the scanned item.

The software components of the system go through the software implemen­

tation or compilation flow, which is beyond the scope of this book. The parts

of the system that are to be implemented in hardware are represented by behav­

ioral or algorithmic descriptions, where the detailed cyc1e-by-cyc1e behavior of

the design and its structure may not be specified. High-level synthesis converts a

behavioral description into a structural RTL implementation that is described as an
interconnection of macroblocks and random logic. The RTL representation of the

design can be expanded into a technology-independent logic-level netlist. Mac­

roblocks that have pre-designed layouts (custom designs or module generators) are

directly fed to the layout synthesis step. Logic synthesis optimizes a technology-

BARCODE SCANNER

ARCHIT"£ClVRe al;or1t1'\.~ OF barcode lS
pre--p:-oc PROCeSS
DEe IN

LOOP
IF vIdeo :II 'IIoil TH£!~

;,1hite : - whit. l~

IF UaQ • 1>1 Tl1£N

flaq :_ wh: black .'" a.; &t..a <::I \oo'h!te;
ELSE

black : = blacic • 1:

flag ;_ 1>1: ... -hIe.. ;:.:: 0; data <z black:
£ND IF,;
a.ddr <. actn'lO."lI:
E:XIT \o.'HEN , ... i1it ... Ul=llt) OR (black = limit.)
~D LOOP.

INTRODUCTION 7

System specification

SYSTEM-LEVEL DESIGN

HWISW allocation/partitioning
Selection of processor(s)
Communication mechanisms

Behavioral
description ,

,
HIGH-LEVEL SYNTHESIS

Transformations
Scheduling
Module selection
Clock selection
Resource sharing
RTL optimizations

Structural RTL
description

LOGIC SYNTHESIS

Two-level, multi ·level synthesis
State assignment
Retiming
Technology mapping

Logic-level
nellist

LAYOUT SYNTHES IS

Placement, Routing
Gate and wire sizing
Clock distribution
Power supply distribution

Layout

Figure 1.2. Synthesis flow and levels of abstraction

8 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

RCHITECTURE algorithm OF bucode IS

LOOP
IF video'" vb THEN

white :"" vhite + 1;
IF, ~l~~ .. hI THEN

flag := vb; black : - 0; data < .. white;
ELSE

black ;,. black + 1;

ti~g' :'~ bl; wbite :'" 0; dau <,. black;
END IF;
addr <= actnum;

EXIT WHEN(white=limit) OR (black:limh);ENO LOOP;

END algor i thm; Behavioral description (VHDL)

ARCHITECTURE scheduled OF barcode IS
BEGIN

CASE stau IS

WHEN 93 =>
IF (video = IIh) THEN

vhite := white + 1;
IF (flag = bl) THEN

state <= 94 ;
ELSE

black :.: black. 1 j

state (= 55;

WHEN 94 =)

flag := wh; black : = 0; data (= white;
addr <= actnum;
IF (whi'te .. limit) OR. (black'" limit) THEN

state <= 96;
ELSE

state (::r 93;
END IF;

WHEN 85 =)

flag :'" hI; black : - 0; data < .. black ;
addr <= actnum;

Functional R TL
END scheduled'

-- I
:

Gate-Ie vel netlist

Figure 1.3. High-level design flow: Levels of abstraction

independent representation of a combinational or sequential logic function and

maps it to a semi-custom technology library. The layout synthesis step performs

tasks such as placement, routing, gate and wire sizing, and clock and power net­

work generation, to result in a complete layout of the hardware, from which masks

can be extracted for fabrication .

Figure 1.3 presents a closer look at the higher levels of design abstraction,

that are the focus of this book. The top left portion of the figure shows a part

of the behavioral description of the barcode pre-processor in the VHDL hardware

description language [19]. Note that the behavioral description is very much like a

high-level programming language in that it contains variables of simple data types

like integers, operations on the variables, and dependencies among the operations.

Zl
m
(I) -0

0 z

70000

60000

50000

40000

30000

20000

10000

0

INTRODUCTION 9

1994 1995 1996 1997 1998 1999
Source: EE Times / DataQuest Inc.

Figure 1.4. Projected growth in RTL synthesis tool seats

A behavioral description contains little or no information about timing, i.e. the clock

boundaries or cycle-by-cycle behavior of the design is not fixed. The lower left

portion of Figure 1.3 shows a part of the corresponding functional RTL description,

where the cycle-by-cycle behavior of the design, i.e. the clock boundaries, are

defined. A functional RTL description may be written manually or automatically

generated from a behavioral description through the process of scheduling, which is

one of the sub-tasks involved in high-level synthesis. The next step inthe high-level

design flow is to obtain the structural RTL description that implements the cycle­

by-cycle functionality specified in the functional RTL description. The operations

and variables of the functional RTL description are mapped to macroblocks such

as arithmetic-logic units (ALUs), registers, and memory blocks, with other blocks

like the control or random logic and multiplexers regulating the flow of data in

the structure. The top right portion of Figure 1.3 shows part of the structural RTL

implementation of the barcode pre-processor. A structural RTL design can be

further refined into a gate-level netlist and then into a layout.

10 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

The trend towards designing at the higher levels
Recent years have seen a significant trend towards designs starting at the higher

(architecture, behavior) levels of the design hierarchy. Figure 1.4 shows the

projected growth in the total number of RTL synthesis tool seats from 1994 to

1999 (source: Dataquest, Inc.). The graph projects a growth from 11 K in 1996 to

67K in 1999. The high-level synthesis segment of the electronic design automation

(EDA) market is expected to display a compound annual growth rate of 75%, which

makes it the fastest growing segment in the EDA market.

The factors driving the trend towards starting the design at higher levels of

abstraction include:

• The growing complexities of integrated circuits make it difficult, time­

consuming and error-prone to manually design at the lower levels. Auto­
mated synthesis tools allow the designer to capture and validate the design at

higher levels, concentrating more on architectural trade-offs and less on the

details of logic and physical design.

• The aggressive time-to-market requirements that drive most ASIC designs
are pushing designers to adopt synthesis tools and design flows that enhance

their productivity and cut design time.

• The use of high-level synthesis tools makes it possible to perform a thorough
exploration of architectural trade-offs, which often results in large area, delay,

and power savings.

Figure 1.5 reports the results of two industrial case studies that demonstrate

the benefits of using high-level synthesis tools. These case studies indicate that

the benefits that can be attained using high-level synthesis include reduced design
turnaround times, and faster and smaller designs. Designing at the behavior level

also leads to greatly reduced simulation and validation times, which further cut the

design cycle.

INTRODUCTION 11

RTL Design Behavioral Compiler (BC)

Applications Gates/Speed Design Gate/Speed Design BC Benefits
TIme TIme

ATMCeIl 17,000 6 Weeks 14,000 2 Weeks 4 weeks faster
Scheduler @40MHz @40MHz to JtUIrl<et

Graphics 35,000 12 Months 30,100 3 Weeks 40% less latency
Processor Pixel @72MHz 80 MHz
Engine

Satellite DSP 100,000 20 Months 50,000 9 Months 23X faster
@20MHz @ 20 MHz simulations

MPEG-2 Color 9,800 3 Months 10,000 2 Weeks 10 weeks faster
Space Converter @34MHz @34MHz to madret

Mass Storage 250,000 + 3 Weeks 250,000 + 2 Days Automatically
Channel 300kRAM to modify 300kRAM generate FSM
Controller @ 100 MHz FSM @ 100 MHz

Source: Synopsys Inc.

ManualRTL Behavioral
Approach Compiler Approach

Design Methodology RTL VHDL, Top-Down Behavioral, Top-Down

Lines ofVHDL 23.8K 4.6K

Gate Count 90K -50K

Throughput 28 cycles/frame 32 cycles/frame

Simulation Time 450 mins/frame 19 mins/frame

Man hrs Detailed Design 3360 1512

Design Duration Four months Three months

Source: Crevier et al., Raytheon Company, VIUF -95

Figure 1.5. High-level synthesis benefits: Case studies

12 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

Power reduction opportunities Power analysis iteration times

System level
10-20X

seconds - minutes
(/)
Q)

Behavior level

2-5X

~ :§
·s c: :>
<1J :2 (/)

~
(]) .~ ~

Register-transfer level

0 c:
Q. minutes - hours .<;21
0)

~ ·s
til

Logic level

<1J 0)

~ .s
(.) til
.s <1J

hours - days ~
(.)

20 - 50% Transistor level

(])

a
Layout level

Figure 1.6. Benefits of high-level power analysis and optimization

1.3 BENEFITS OF HIGH-LEVEL POWER ANALYSIS
AND OPTIMIZATION

Given the increasing use of high-level design methodologies and the importance

of low power design, this section examines the benefits of incorporating high-level

power analysis and optimization tools into the design flow. Figure 1.6 lists the

typical power reductions possible through the exploitation of power optimization

opportunities at various levels of the design hierarchy. The figure also shows the

typical design iteration times required to perfonn power analysis at the different

levels of abstraction. Several studies have shown that the power optimization

opportunities are significantly larger at the higher levels [12, 20). System-level

tradeoffs often yield an order of magnitude or more improvements in power.

Algorithmic and architectural power management and optimization techniques can

also yield large power savings. In comparison, the power savings obtained through

INTRODUCTION 13

logic and layout optimizations tend to be much smaller. With increasing levels

of integration and operational speed, the power reduction requirements for most

designs cannot be met by performing logic-level or transistor-level optimizations

alone, pointing to the need to integrate power optimization techniques into the

high-level design flow.

Power analysis tools are required in order to

• Validate that power budgets are met by the different parts of the design, and

if not, identify the hot-spots in the design.

• Evaluate the effect of various optimizations and design modifications on

power.

The use of high-level power analysis tools for the above purpose helps to greatly

reduce the required design cycle. Figure 1.7 shows design flows without and

with the use of high-level (architecture and system level) power analysis tools. In

the absence of high-level power analysis tools, as indicated in the design flow of

Figure 1.7(a), a power analysis iteration (e.g. to evaluate a design modification

or alternative architecture) requires the designer to first synthesize and validate

the functionality of a lower-level netlist, and then run a logic- or transistor-level

power analysis tool to report power consumption. The combination of the large run

times of lower-level power analysis tools, and the large time required to obtain and

validate a gate- or transistor-level netlist make this methodology highly inefficient

for exploring high-level design trade-offs, and infeasible for use in automatic high­

level and system-level synthesis and optimization tools. In a design flow that uses

high-level power analysis tools, such as the one shown in Figure 1.7(b), trade-offs

at each level of the design hierarchy are supported by corresponding power analysis

tools at the same level, leading to fewer and faster design iterations.

The reduced complexity of power analysis at the higher levels does not come

without a penalty. The absolute accuracy of high-level power analysis tools tends to

be lower than analysis tools at the lower levels of the design hierarchy. However,

high-level power analysis tools are still very useful to guide high-level design

14 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

(a) (b)

Figure 1.7. Design flows without and with high-level power analysis

trade-offs if their results provide relative accuracy (i.e. they are able to correctly

predict whether a design modification will result in an increase or decrease in

power consumption) and monotonicity (i.e. they are able to properly rank order

a set of candidate designs in tenns of power consumption) [21, 22]. With the

use of high-level power analysis tools for exploring design trade-offs, the role of

INTRODUCTION 15

lower-level power analysis tools is limited to supporting lower-level optimizations,

and verifying that the power budgets are met with a high level of confidence.

1.4 BOOK OVERVIEW

This book presents an overview of techniques to automatically perform power

analysis and optimization for designs at the architecture or register-transfer (RT)

level, and during high-level synthesis.

Chapter 2 provides the necessary background on power consumption in CMOS

circuits, and high-level synthesis steps and techniques. The RT or architecture

level is the design entry point for most designs today. The availability of a power

estimation tool at this level of the design hierarchy eliminates need to synthesize

gate- or transistor-level netlists and run low-level power analysis tools each time

a high-level optimization or design modification is performed. Chapter 3 presents

analysis techniques that can be used to estimate the power consumption of circuits

described at the RT level. Power consumption in CMOS circuits is dominated

by the dynamic component, which is incurred whenever signals in the circuit

undergo logic transitions. In practice, a large fraction of the signal transitions

that occur in a circuit are unnecessary. A popular class of power optimization

techniques, called power management, are based on identifying and eliminating

such unnecessary transitions. Chapter 4 describes several power management

techniques that can be applied during the high-level design process. Moving higher

up in the design hierarchy, it is often possible to achieve very large power savings by

exploring the design space at the algorithm, or behavior level, and the relationship

between the algorithm and implementation architecture. Chapter 5 describes high­

level transformation techniques that can be applied to optimize designs at the

behavior level, as well as techniques to perform high-level synthesis of a behavioral

description to result in low power architectures. Chapter 6 summarizes the main

conclusions that can be drawn from the material described in this book, and outlines

directions for future work.

2 BACKGROUND

This chapter provides an overview of the sources of power consumption in digital

CMOS circuits, general approaches to reducing power consumption, the sub-tasks

involved in high-level design, and techniques commonly used to perform them.

17

A. Raghunathan et al., High-Level Power Analysis and Optimization
© Springer Science+Business Media New York 1998

18 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

2.1 SOURCES OF POWER CONSUMPTION

The sources of power consumption in digital CMOS circuits are summarized by

the following equation:

P avg = p sw . cap. + Pshort-circuit + Pleakage + Pstatic (2.1)

where psw.cap. refers to the capacitive switching power, Pshort-circuit refers to

short-circuit power, Pleakage is the power consumption due to leakage currents,

and Pstatic is the static power consumption.

2.1.1 Capacitive switching power

The capacitive switching power dissipation (Psw . cap.) is caused by the charging and

discharging of parasitic capacitances in the circuit. The computation of capacitive

switching power is explained through the example of a CMOS inverter driving a

load capacitor C L that is shown in Figure 2.1 (a). The output load capacitor C L

represents the cumulative effect of the parasitic capacitances associated with the

nMOS and pMOS transistors (drain overlap and drain junction capacitances), the

capacitance associated with the wiring internal and external to the inverter cell that

is connected to the inverter's output, and the input capacitance presented by gates

that this inverter drives.

Let us assume that the circuit is initially in a steady state, with the input at a

logic value of 1, and the output at a logic value of O. The output load capacitor

C L is discharged at this point. When the input undergoes a falling transition,

the pMOS transistor turns on and the nMOS transistor turns off, as shown in the

equivalent circuit of Figure 2.1 (b). This leads to a charging current that results

in CL getting charged to Vdd. During this process, the energy that is drawn from

the supply is CL.Vid' of which half is stored in the capacitor and the other half is
dissipated in the pMOS transistor and interconnect. When the input undergoes a

rising transition, the nMOS transistor turns on and the pMOS transistor turns off, as

shown in Figure 2.1 (c). This leads to a discharging current that flows through the

BACKGROUND 19

Vdd Vdd Vdd

(a) (b) (e)

Figure 2.1. Illustration of capacitive switching power: (a) CMOS inverter, (b) equivalent

circuit for charging the output load capacitor, and (c) equivalent circuit for discharging the

output load capacitor

capacitor and the nMOS transistor, that results in the capacitor ultimately getting

completely discharged. During this process, the ~CL.Vid energy that is stored in
the output load capacitor gets dissipated in the nMOS transistor and interconnect.

Thus, the capacitive switching power dissipated by the CMOS inverter shown in

Figure 2.I(a) over a period of time [0, TJ can be computed using the following
equation.

(2.2)

NO'-I is the number of rising transitions at the inverter's output, or equivalently
the number of times CL is charged, over the period of time [0, TJ. Assuming that

the inverter is part of a synchronous circuit running at a clock frequency j, and

that the number of rising transitions (NO.-I) is half the total number of transitions

at the inverter's output, the above equation can be re-written as follows.

(2.3)

In the above equation, N is the average or expected number of transitions per

clock cycle at the inverter's output, and is, henceforth, referred to as the switching

20 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

activity. In most static CMOS technologies, the capacitive switching power ac­

counts for a dominant part of the total power. As a result, most power estimation

and optimization techniques targeting such technologies focus on reducing this

component of a circuit's power consumption.

2.1.2 Short-circuit power

The short-circuit power (Pshort-circuit) is caused by direct supply-to-ground paths

that are created due to transients in signal values. Consider again the CMOS

inverter shown in Figure 2.1. When the input changes from 1 to 0, there is a period

of time when both the nMOS and pMOS transistors are conducting, leading to a

short-circuit current being drawn from the supply. Assuming symmetric rise and

fall delays and threshold voltages, the short-circuit power dissipation of a CMOS

inverter can be approximated by the following equation [23].

Pshort-circuit = K.(Vdd - 2VT)3. r .N.! (2.4)

where K is a constant that depends on the transistor sizes and the technology, VT is

the magnitude of the threshold voltage of the nMOS and pMOS transistors, r is the

input rise/fall time, N is the average number of transitions at the inverter's output,

and! is the clock frequency. Short-circuit power dissipation can be controlled to a

small portion of the total power by appropriate sizing of transistors and reducing the

input rise/fall times to all the gates in the circuit. Short-circuit power dissipation is

also reduced by scaling the supply voltage, and by reducing the switching activity

at the gate outputs. Note that dynamic CMOS logic families, such as Domino

CMOS [24], do not dissipate any short-circuit power.

2.1.3 Leakage power

The leakage power consumption (Pleakage) can be further decomposed into two

components that are shown in the following equation [20]:

Pleakage = (Idiode + Isubthreshold) . V dd (2.5)

BACKGROUND 21

In the above equation, Idiode refers to the currents flowing through the reverse­

biased diodes that are fonned between the diffusion regions and the substrate.

These currents are very small for current technologies, a typical value being 1

femto-ampere per device junction.

The tenn Isubthreshold refers to the currents arising due to the fact that transistors

that are "off" conduct some non-zero current. The expression for subthreshold

current in the nMOS transistor of a CMOS inverter whose input voltage Yin varies

between 0 and its threshold voltage VTn is as follows [23].

.. Vin-VTn

Isubthreshold = Ii. WeI I.e s (2.6)

where J(and S are constants that depend on the technology, and WeI I is the
effective transistor channel width. The subthreshold power is small for current

technologies. However, it increases for transistors with large channel widths, and

more significantly at reduced threshold voltages.

Leakage power dissipation is especially important for devices that are in an
idle state most of the time.

2.1.4 Static power

Static power consumption (Pstatic) is of importance for logic families such as
pseudo-nMOS, where a gate consists of a single pull-up pMOS transistor and an

nMOS network, in which there is a constantly conducting supply-to-ground path.

In fully complementary CMOS circuits, static power consumption can result due

to degenerated voltage levels at the inputs to a static gate, or due to selector- or

bus-conflicts where multiple drivers attempt to drive a signal to different logic

values. Such situations are undesirable, and are typically avoided through proper

circuit design techniques.

22 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

2.2 METHODS FOR REDUCING POWER AND
ENERGY CONSUMPTION

It is important to make a distinction between the terms power consumption and

energy consumption which are often used interchangeably [25]. Battery-driven

systems are limited by the amount of energy that can be supplied by the battery.

Power is the rate at which energy is drawn from the batteries. Power dissipation is

critical from cooling and packaging considerations, whereas energy consumed is

important for battery life considerations. If a computation can be performed in such

a way as to consume half the power it previously did (i.e. draw energy from the

batteries at half the rate) but takes twice the time to complete, the energy consumed

for the entire computation is no different from what it was before. Therefore, power

savings and energy savings, in the strict sense of the terms, do not necessarily go

hand-in-hand. However, given a fixed time for a computation to complete, power

and energy consumption do vary proportionately.

The equations for the various components of power consumption presented in

the previous section indicate that the parameters that can be varied to affect power

as well as energy consumption are the supply voltage, the clock frequency, the

switching activity per clock cycle at various signals in the circuit, and the parasitic

capacitances. Optimizing power consumption invariably involves reducing one

or more of these parameters. It is important to note that these parameters are not

independent. It is necessary to take into account the interactions and trade-offs

among these parameters to minimize power consumption.

Reducing the supply voltage (Vdd), which has a quadratic effect on the switching

power consumption, is often the most fruitful way of reducing power. Supply

voltage reduction, however, does not come without penalties. The delay of circuit

elements increases according to the following equation [25].

(2.7)

BACKGROUND 23

where k is a constant. Thus, performance requirements impose a limit on the extent

to which supply voltage scaling can be done. Reductions in the supply voltage

also result in a reduction in the circuit's noise margins, making the circuit more

susceptible to noise-related soft failures [20]. A practical consideration arises due

to the requirement for standard supply voltages in order to enable easy integration

of off-the-shelf components. The availability of high-efficiency DC-DC voltage

converters for use at the chip and board levels eases this problem to a certain

extent [26]. A common practice is to use separate supply voltages for the I/O

circuitry and the chip's core.

Several approaches have been proposed to maximize the extent of voltage

scaling possible. For example, scaling down the dimensions of devices along
with the supply voltage compensates for the negative effects of supply voltage

on performance. Another technique used to avoid the performance penalties of

supply voltage scaling is to reduce the threshold voltage VT of transistors [20].

However, decreasing the threshold voltage leads to a significant increase in the

power consumption due to subthreshold and leakage currents, making it disadvan­

tageous to lower the threshold voltage beyond a certain point. One solution that
has been proposed to work around this problem is to dynamically vary the thresh­

old voltages of devices, using lower threshold voltages when devices are active,

and higher threshold voltages when they are not [27]. The use of faster logic and

architectural blocks such as carry-lookahead adders instead of ripple-carry adders,
Wallace multipliers instead of array multipliers, etc., can be used to enable supply

voltage reduction at the expense of switched capacitance [28, 29, 30]. The use of

architectural parallelism through the replication of computational resources and the

use of pipelining [31], performance-enhancing architectural transformations [3],

and selection of efficient algorithms [32] have been used to enable supply voltage

scaling without degrading performance. The use of multiple supply voltage im­
plementations has been shown to reduce power as compared to implementations

that use a single supply voltage [29, 33, 34, 35]. The idea is to use a lower supply

voltage for circuit blocks that are not on the critical path, resulting in little or no

24 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

degradation of performance. Circuit design techniques that clamp or limit the

voltage swings at signals internal to logic gates and memories to reduce power

consumption are described in [36, 37].

The product of switching activity and physical capacitance, termed switched

capacitance, is another parameter that can be minimized to reduce power consump­

tion. Switched capacitance reduction techniques have been developed at all levels

of the design hierarchy. At the technology level, the reduction of feature sizes

and the use of low-parasitic process technologies result in a reduction of switched

capacitance. Physical design techniques such as partitioning, placement and rout­

ing, transistor and wire sizing, transistor re-ordering, and clock tree construction

can also be used to reduce switched capacitance [38]. Overviews of the various

logic-level optimization techniques to reduce switched capacitance, including two­

level and multi-level combinational circuit synthesis, technology mapping / cell
selection, state encoding, retiming, automatic synthesis of gated clock circuits, and

logic-level power management techniques are presented in [39, 40, 41] . At the

architecture level, power management, efficient data representation and encoding,

the use of multiple clocks, architectural transformations, memory segmentation,

and high-level synthesis techniques have been used to reduce switched capaci­
tance [12]. Algorithm-level optimizations, like power-driven algorithm selection,

algorithm/architecture matching, global communications and memory access opti­

mizations, and the exploitation of locality and regularity can lead to large reductions

in switched capacitance. The use of software optimization techniques such as in­

struction selection, code generation, instruction scheduling, strength reduction,

and architecture-specific compiler optimizations to reduce switched capacitance
are described in [42,43].

Reducing the clock frequency alone will result in power reductions, but it will

not affect the amount of energy consumed for performing a specific computation
and is, hence, not always a useful means of energy reduction. However, when the

circuit is idle or needs to perform very little computation for significant periods of

time, dynamically reducing the operating frequency helps eliminate unnecessary

BACKGROUND 25

power as well as energy consumption. This technique is commonly used as a
power saving strategy in microprocessors [18].

2.3 HIGH-LEVEL DESIGN TECHNIQUES

High-level (or behavioral) synthesis is the process of deriving a structural RTL
implementation of a design that implements a given behavioral (functional or

algorithmic) specification. Design metrics like area, performance, power, and
testability could either be constraints or co-objectives during the synthesis process.
Behavioral descriptions are usually written in a hardware description language

ENTITY digital_filter IS
PORT (input: IN integer;

output: OUT integer;
go: IN bit;
done: OUT bit);

END digitaUilter;

ARCHITECTURE behavior OF digitaUilter IS
BEGIN

PROCESS
TYPE coeCarr is array (integer range 1 to 10) of integer;
VARIABLE c: coeCarr := (0.1.2.3.4.5.6.7.8.9); -- coefficient array
VARIABLE sl. s2. s3. s4. s5. s6: integer := 0; -- state vars
VARIABLE xO. xl. x2. x3. x4. x5. x6: integer; -- temp vars
VARIABLE vl. v2: integer; -- common subexpression vars

BEGIN
done<= '0';
-- ready to read input. wait until input is ready
WAIT until go = • 1 ';

xO:= input;
xl := sl;
x2:= s2;
x3:= s3;
x4:= s4;
x5:= 55;
x6:= s6;
vl := x4 + x2 - (xO - xl)' c(7);

v2 := x5 • c(5) + x6 • x4;
51 := vl • c(9) + v2' c(9) + xl;
52 := x2 + x5 • c(4) - x5 • c(2);
53 := x4 • c(8) + x3;
54 := (xl - x3 - x5) • c(6) + x4;
55 := vl • c(7) + v2 • c(10) + x5;
56 := xl • c(3) - (x5 • c(l) + x6);
output <= 55;

done<= '1';
-- output is available.
-- wait until output is read
WAITuntilgo= '0';

END PROCESS;
END behavior;

Figure 2.2. Data-flow intensive design example: VHDL description of a 6th order Elliptic

Wave Filter

26 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

ARCHITECTURE algor i thm OF barcode IS
BEGIN barcode: PROCESS black := 0; flag := vh; data <= white;

ELSE BEGIN
eoe <; false; memv <= false;
data <= 0; addr <= 0;

black : = black + 1;
IF flag ::: \Ib THEN

actnum : = actnum + 1; mem.... <= false;

RESET _LOOP: LOOP ELSE
LOOP EXIT 'WHEN start; END LOOP; mem... <'" true;
LOOP END IF;

LOOP EXIT WHEN scan; END LOOP; flag := bIj hite := 0; data <= black;

flag :'" vb; actnum := 0; white := 0; black := 0; END IF;
eoe <= false: addr <= actnum;
LOOP EXIT WHEN (white = 255) OR (black ::: 255); END LOOP;

IF video = vh THEN EXIT \/HEN (actnum = nuc) AND (white = 255); END LOOP;
vhi te : = libi te + 1; mem ... <= false; aoe <= true;
IF flag = bl THEN LOOP EXIT WHEN start = false; END LOOP;

actnum := actnum + 1; mem.... <= false;
ELSE END LOOP RESET _LOOP;

<= true; END PROCESS;

END IF; END algorithm;

Figure 2.3. Control-flow intensive design example: VHDL description of a barcode pre­

processor

(HDL) such as VHDL, Verilog, or Hardware C. Tools that facilitate graphical

design entry and facilitate automatic HDL code generation such as DesignBook

from Escalade Corporation, are often useful in enhancing designers' productivity.

Behavioral descriptions may contain simple abstract data types (ADTs) (such as

integers, floating point numbers, enumerated types, etc.), arithmetic and logical

operations on ADTs, control and iteration constructs, and sub-programs. Two

example behavioral descriptions written in VHDL are shown in Figures 2.2 and

2.3. Figure 2.2 shows the specification of a 6th order Elliptic Wave Filter (EWF).

This example belongs to a class of applications that are collectively referred to as the

data-flow intensive or arithmetic intensive application domain, where most of the

computations performed in the design are arithmetic operations such as addition,

subtraction, and multiplication. Digital signal and image processing applications,

and some multimedia applications fall under this category. In contrast, there is the

control-flow intensive application domain, where designs contain significant control

flow constructs like nested loops and conditionals. The barcode pre-processor

example shown in Figure 2.3 could be classified as a control-flow intensive design.

Note that the only arithmetic operation performed in the design is increment by

BACKGROUND 27

x5 x6 x4 x2 input xl

Figure 2.4. Data flow graph of the EWF example

1. In comparison, the design contains numerous nested loops and conditionals,

and conditional data assignments. Data-flow and control-flow intensive designs

have significantly differing power, area, timing, and testability characteristics,

which are elaborated on later in this section. The behavior of the HDL description
is validated through the use of simulation and/or formal verification techniques

before proceeding with synthesis.

High-level synthesis tools typically compile a behavioral description into a

suitable intermediate format. Depending on the application domain, commonly

used intermediate representation formats are the data flow graph (DFG) and the
control flow graph (CFG) [44]. A DFG represents operations in the behavioral

description as vertices, and data dependencies between the operations as edges

between the corresponding vertices. The DFG for the EWF example is shown in

28 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

actnum++
memw<=F

flag := wh, white := 0, black := °
actnum := 0, eoc <= F

actnum++
memw<=F

flag := wh, black := °
data <= white

flag := bl white := °
data <= black

(white = 255) OR (black = 255)

(actnum = num) AND (white = 255)

memw<=F

Figure 2.5. Control flow graph of the barcode pre-processor example

Figure 2.4. The boxes labeled dl, ... , d6 are delay elements, i.e. they store results

from one iteration of the computation for use in the next iteration. In a CFG, vertices

represent operations, while edges represent control (or sequencing) dependencies

BACKGROUND 29

between operations. The CFG of the barcode pre-processor example is shown

in Figure 2.5. Composite representations such as the control-data flow graph

(CDFG) [45] have been developed to capture the control and data flow into a

single data structure.

The different sub-tasks in high-level synthesis are discussed next.

2.3.1 Module selection

Module selection refers to the process of selecting, for each operation in the

CDFG, the type of functional unit that will perform it. The decision is triv­

ial if there is only one functional unit template in the library that can perform

each operation (e.g. the only functional unit that can perform addition is rip­

ple_carry...adder). In order to fully explore the design space, however, it is nec­

essary to have a diverse library of functional unit templates where multiple tem­
plates exist that are capable of performing each operation (e.g. ripple_carry...adder,

carry_lookahead...adder, carry...select...adder for addition, arraYJ1lultiplier, wal­

lace_treeJ1lultiplier, pipelinedJ1lultiplier for multiplication, etc.). Module selec­

tion can be viewed as analogous to the technology mapping problem in logic

synthesis, where a network of logic elements is mapped to cells from a technology

library. Researchers have proposed techniques to perform area and delay trade-offs

using module selection [46,47].

2.3.2 Clock selection

Clock selection refers to the process of choosing a suitable clock period for the

controller/data path circuit. Several high-level synthesis systems do not explicitly
perform clock selection during synthesis but allow the clock period to be determined

after the complete implementation is obtained. The importance of judicious clock

selection has been demonstrated in [48, 49,50].

2.3.3 Scheduling

The process of scheduling determines the cycle-by-cYcle behavior of the CDFG,

i.e. it assigns each operation in the CDFG to one or more cycles or control

30 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

steps. Each control step corresponds to a time interval equal to the clock period.

Scheduling has been shown to affect the performance, area, power, and testability

of the resulting implementation. Scheduling techniques are, therefore, classified

based on the design metrics they accept as constraints and those that they attempt

to optimize. For example, time-constrained scheduling and resource-constrained

scheduling are two commonly used families of scheduling techniques. In time­

constrained scheduling, the total execution time required by the implementation to

process an input (often approximated as the number of control steps required) is

a user-specified constraint that must be satisfied, while any combination of other

design metrics such as power, area, or testability could be optimized. In resource­

constrained scheduling, on the other hand, the resources available to implement

the data path (e.g. the number of functional units of each type, registers, buses) are

fixed, and the number of control steps is minimized.

The simplest scheduling algorithms are as-soon-as-possible (ASAP) and as­

late-as-possible (ALAP) scheduling where operations are scheduled at the earliest

(latest) possible control steps subject to satisfaction of their data dependency con­

straints. Both of these methods result in schedules that require the minimum

number of cycles for acyclic D FGs, but these schedules typically require an

excessive amount of resources. List scheduling is a constructive method that

schedules operations one control step at a time onto a set of available functional

units. A list of currently unscheduled operations is maintained. An operation from

the list can be scheduled as soon as its data dependency constraints have been

satisfied. Since multiple operations can have their data dependency constraints

satisfied in the same control step, a priority function is used to choose among

them. For example, the mobility (the difference between the ASAP and ALAP

control steps of an operation) can be used as a priority function [51]. Sophisticated

scheduling algorithms such as force-directed scheduling [52], simulated anneal­

ing based approaches [53], iterative-improvement based scheduling [54], integer­

linear programming based approaches [55, 56, 57], path-based scheduling [58],

loop-directed scheduling [59], wave scheduling [60], and several other algorithms

BACKGROUND 31

have been proposed. Detailed descriptions of popular scheduling algorithms can
be found in [44,47].

The output of the scheduling process is a refined version of the behavioral

description where the cycle-by-cycle behavior of the design is specified. Designs

at this intermediate level are referred to as scheduled behavioral or functional RTL

designs. The functional RTL VHDL description of the EWF example is shown in

Figure 2.6. Note that there is a notion of a set of controller states and transitions

among them. Each controller state corresponds to one or more clock cycles, and

the operations in the behavioral description are assigned to the various controller
states.

2.3.4 Resource sharing

Resource sharing or hardware sharing refers to the use of the same hardware re­

source (functional unit or register) to perform different operations or store more

than one variable. The high-level synthesis tasks that perform resource sharing

are resource allocation and resource assignment. The process of allocation de­
termines the number of resources including functional units, registers and buses

needed to implement the design. Assignment or binding refers to the process of

mapping operations in the behavioral description to the allocated functional units,

variables to registers, and data transfers to buses or multiplexers. When performing
resource-constrained scheduling, resource allocation is performed before schedul­

ing. Resource assignment or binding is typically performed after scheduling, since

operations that need to be performed concurrently cannot share a functional unit,

and variables whose values need to be stored simultaneously cannot share the

same register. After functional unit and register allocation and assignment have

been performed, the communication paths among the functional units and regis­
ters are generated as a combination of dedicated multiplexer-based (point-to-point)

interconnects and shared buses. The functional units, registers, multiplexers, and

buses together constitute the data path of the implementation. The scheduling and

resource sharing information is used to construct a controller finite-state machine

32 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

PACKAGE types IS
TYPE slales IS (sO, 51, s2, 53, 54, s5, 56, 57);

END types;
USE work. types. all;

ENTITY digilal_filter IS
PORT (elk: IN bit:

input: IN integer;
output: OUT integer;
go: IN bil;
done: OUT bil);

END digitaLfilter;

ARCHITECTURE scheduled OF digitaUilter IS
BEGIN

PROCESS
TYPE coet_arr IS array (integer range 1 to 10) OF integer;
VARIABLE c: coeCarr := (0.1,2,3,4,5,6,7,8,9); - coefficient array
VARIABLE 51, s2. 53. 54, sS, 56: integer:= 0; -- state vars
VARIABLE xO. xl,)(2, x3, x4, x5, x6: integer; -. temp vars
VARIABLE v1. v2: integer; •• common subexpression vars
-- temporary intermediate vars
VARIABLE 11, 12, 13, 14, 15, 16, 17, 18, 19, 110: inleger;
VARIABLE til, 112, 113, 114, tl5, tl6, tl7, tl8: inleger;
VARIABLE tl9, 120, 121: inleger
VARIABLE state: states:= sO; -- global controller state

BEGIN
WAIT until (elk = '1' and elk'event);
CASE stale IS
WHEN 50=>

done <= '0';
-- wait until input is available
IF(go = '1') THEN
state <= 51;

ELSE
state <= sO;

END IF;
WHEN 51 =>

xO:= input; xl := sl: x2:= 52; x3:= s3:
x4 := s4; x5 := 55; x6 := s6;
11 := x4 + x2;
t2:=xO-x1;
14 := x5 • e(5);
19 := x5 • e(5):

110:= x5· e(2);
112 := x4 'e(8);
113:= xl - x3;
tl9:= xl· e(3);
120:= x5· e(1);

WHEN 52 =>
13 := 12 • e(7);
15 := 14 + x6;
til := 19 -110;
s3 := 112 + x3;
114:= tl3 - x5;
121 := t20 + x6;

WHEN s3 =>
vI := 11 - 13;
v2:= 15 - x4;
s2:=ll1 +x2;
tl5:= 114· e(6);
56:=119-121;

WHEN 54=>
16 := vi • e(9);
17 := v2 • e(9);
116:= vi· e(7);
117:= v2· e(10);
s4:= 115 + x4;

WHEN s5 =>
t8 := 16 + 17;
t18:= t16 + 117;

WHEN s6 =>
51 := 18 + xl;
s5:= 118 + x5;
outpul <= sS;
-- indicate that output is available
done <= '1';
stale <= 57;

WHEN s7 =>
-- wail until output is read
IF (go = '0') THEN

state <= sO;
ELSE

state <= 57;
END IF;

END CASE;

END PROCESS;
END scheduled;

Figure 2,6, Functional RTL VHDL description of the EWF example

that configures the data path to perfonn the appropriate computation in each clock

cycle, The data path and controller are together referred to as the structural RTL

implementation, The structural RTL implementation of the barcode pre-processor

example is shown in Figure 2,7. Techniques to optimize area, delay, and testabil­

ity during resource sharing have been investigated [44, 47]. Chapter 5 presents

resource sharing techniques that minimize power dissipation,

The structural RTL circuit that is produced as a result of high-level synthesis can

be further subjected to technology independent and dependent optimizations [46,

2x1 MUX

Decode
Log'"

~

L----~m2.

CONTROLLER

CONTROL
SIGNALS

BACKGROUND 33

Figure 2.7. Structural RTL implementation of the barcode pre-processor example

61,62] before passing the optimized RTL circuit on to logic and layout synthesis

tools. In order to drive such optimizations, RTL estimation tools for area, delay,

and power have been developed [1, 63, 64, 65, 66, 67].

2.4 HIGH-LEVEL SYNTHESIS APPLICATION
DOMAINS

The evolution of high-level synthesis techniques has been driven by specific appli­

cation domains, such as the data-flow or arithmetic intensive domain, that includes

digital signal and image processing, graphics, and several multimedia applications,

and the control-flow or decision intensive application domain, that includes net-

34 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

working/telecommunication protocols, controllers, etc. Each application domain

has several distinct characteristics that need to be considered while developing

efficient high-level synthesis techniques. Most high-level synthesis tools are well­

suited to only one application domain. However, a large number of designs, in

practice, contain a significant mix of control and data flow. Moreover, the tool

development and maintenance costs associated with having significantly different

synthesis algorithms for each domain are high. Hence, it is desirable for high-level

synthesis tools to be able to handle designs that belong to any of the application

domains as well as mixed designs.

Table 2.1 presents some distinguishing characteristics of data-flow intensive

and control-flow intensive designs. The behavioral descriptions of data-flow inten­

sive designs are dominated by arithmetic operations such as addition, subtraction,

and multiplication, while those of control-flow intensive designs are dominated by

nested conditional constructs, data-dependent loops, and comparisons, with very

few arithmetic operations. The iteration constructs present in data-flow intensive

designs are typically static, i.e. loops are either executed infinitely (as in the case of

digital filters that operate on an incoming stream of data), or executed a fixed num­

ber of times independent of the input data. On the other hand, data-dependent loops

are abundant in control-flow intensive designs, and it is difficult to statically predict

the number of times a loop body is executed. As a result, the performance (number

of clock cycles required to compute the output) of control-flow intensive designs is

highly dependent on the input data. Scheduling techniques for data-flow intensive

designs focus on extracting and exploiting the inherent parallelism or concurrency

in the algorithm, while scheduling techniques for control-flow intensive designs

must consider mutual exclusion of operations in the algorithm that arises due to the

abundance of conditional constructs. Mutually exclusive operations on different

branches of a conditional construct can never be simultaneously executed. The

area, delay, and power of structural RTL implementations of data-flow intensive

designs are dominated by arithmetic units and registers in the data path, while in

the case of control-flow intensive designs, they are dominated by non-arithmetic

BACKGROUND 35

Table 2.1. Characteristics of data-flow and control-flow intensive applications

LEVEL OF DATA-FLOW INTENSIVE CONTROL-FLOW INTENSIVE
ABSTRACTION

BEHAVIORAL Data flow dominates Control flow dominates

Arithmetic operations Data transfer. comparisons,

bit-vector manipulation

Data-independent loops, Data-dependent loops,

iterations known at compile time iterations determined dynamically

FUNCTIONAL Parallelism Mutual exclusion through nested conditionals

RTL (Scheduled) Critical path simple, Cri tical path involves data-dependent loops

known statically

STRUCTURAL Dominated by arithmetic units Dominated by multiplexers, comparators,

RTL (multipliers, adders, subtracters) counters, bit-manipulation units

units like multiplexers, bit-manipulation units, and comparators. The controllers
required for data-flow intensive designs are simple and often no more than coun­

ters. As a result, the controller has very little impact on the area, delay, and power

of the circuit. For control-flow intensive designs, on the other hand, even when the

controller itself does not account for a large portion of the total delay and power, it

can significantly affect the total circuit delay and power due to the composition of

long paths through the control logic, and the effect of glitching activity at control

signals. While most research on high-level synthesis techniques has targeted the
data-flow intensive application domain, many designs, in practice, have significant

control flow as well. Subsequent chapters present power analysis and optimization

techniques for both data-flow intensive and control-flow intensive designs.

3 ARCHITECTURE-LEVEL
POWER ESTIMATION

The register-transfer or architecture level is the design entry point for most

designs today. Power estimation at this level of the design hierarchy is extremely

important in order to (i) verify that power budgets are roughly met by the different

parts of the design and the entire design, and (ii) evaluate the effect of various high­

level optimizations, which have been shown to have a much more significant impact

on power than lower-level optimizations. Architecture-level power estimation tools

typically trade off some amount of accuracy for a drastic improvement in efficiency

compared to low-level power estimation tools. The improved efficiency is due

to the elimination of the need to obtain a gate- or transistor-level netlist, and the

reduced complexity of analysis of RTL designs as compared to lower-level netlists.

RTL design descriptions include various macroblocks like ALUs, vector logic

operators, memories, register files, multiplexers, etc., (which may be instantiated

from a component library), as well as some amount of random or control logic,

which may often be described functionally (i.e. without complete information about

structure). This chapter describes the techniques that are used in architecture-level

power estimation tools, including analytical power models, empirical activity and

power macromodeling, sampling-based estimation, and models for control logic.

37

A. Raghunathan et al., High-Level Power Analysis and Optimization
© Springer Science+Business Media New York 1998

38 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

3.1 ANAL YTICAL POWER MODELS

Analytical power modeling techniques attempt to correlate power consumption

to measures of design complexity. Such techniques typically require very little

information about the actual implementations of the macroblocks and random logic.

For example, the Chip Estimation System [68] uses the following expression to

compute the average power consumed by a macroblock:

(3.1)

where G E is the estimated gate count of the block in terms of a basic gate type
(e.g. two-input NAND), Etyp is the average energy consumed by an instance of

the basic gate type when its output is switching, CL is the estimated average load

capacitance per gate, f is the clock frequency, and Aint is the estimated average

switching activity factor. This approach is applicable to logic blocks designed
using cell-based technologies, and is not very accurate for some parts of a chip

such as the clock network, 110, and memory blocks, as well as custom-designed
macroblocks.

In [69], distinct modeling techniques were proposed for different parts of a
chip, such as memory, clock, logic, interconnect, and circuits that drive off-chip

loads. The power consumed in memories can be divided into four components
- the cell array, the row decode, the column selection logic, and the read/write

circuitry. The power consumed in a (static) six transistor memory cell array that
consists of 2n cells organized into 2n - k rows and 2k columns is given by:

Pmemcell = 2;. (Cint-lcolumn + 2n - k .ctr) .Vdd.Vswing.f (3.2)

where Cint is the wiring capacitance per unit length, [column is the bit-line (column)
length, Ctr is the transistor drain capacitance, and Vswing is the bit-line swing.

The above power represents the charging and discharging of the interconnect

and transistor drain capacitances that are associated with the bit/bit lines, which

typically forms the dominant part of the memory power. It is interesting to note

ARCHITECTURE-LEVEL POWER ESTIMATION 39

that the above component is independent of data statistics, since both the bit and

bit lines are pre-charged, and exactly one of them is discharged independent of

whether the value stored in the memory cell is 0 or l.

The clock power can be calculated from an architectural ftoorplan, by assuming

a particular clock distribution network topology (e.g. H-tree), and sizing schemes

for the clock buffer and the various branches of the clock tree.

;

.... (Dt/4, 2) ---g -----,------I---r-...,

Dt
... (DtI~,8)

.-------.~p-............. --I------------
c

t---I---t- --.....
CD

..
Dt

Figure 3.1. Estimating clock line capacitance

Example 3.1 Consider the chip jioorplan and clock tree shown in Figure 3.1. The

chip is assumed to be of dimension D t x Dt . Suppose that the width of the leaves

of the clock tree is the minimum wire width Wmin, and that the width of the wires

is reduced by a factor of two at each branching point. One segment at each level

of the clock tree in Figure 3.1 is annotated with its length and width in terms of

the chip dimension and minimum wire width, respectively (the dimensions of all

segments at the same level are identical). The capacitance of the clock distribution

40 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

network is then given by:

(
Dt D t D t D t D t)

Cclkwire = 16'2 + 8'2 + 2.4'2 + 4.2 ' 4 + 8.1. 4 .Cint = 20 . D t ,Cint

(3.3)

where Cint is the capacitance of a minimum-width wire per unit length.

The clock power consumption can be calculated as follows.

1 2 2
Pclock = 2·Ctotalclock,Vdd.j.2 = Ctotalclock 'Vdd.f (3.4)

The term Ctotalclock in the above equation refers to the equivalent total capacitance
that is associated with the clocking network, and can be computed using the

equation:

Ctotalclock = (1 + kdriver).(Cclkwire + Cclkload) (3.5)

where kdriver is the clock driver ratio, which means that the clock driver capaci­

tance is kdriver times the total capacitive loads associated with the clock network.

The value of kdriver varies depending on the performance requirements of the sys­

tem and the buffering scheme (e.g. distributed buffers, lumped buffer, etc.) used.

A typical number for a conventional system is 0.3 [69]. Cclkwire is the wiring

capacitance associated with the clock distribution network, and can be estimated

as described in Example 3.1. Cclkload is the total load capacitance driven by the

clock network, and can be estimated using the number of latches or flip-flops in

the design, and the load presented by a typical latch or flip-flop to its clock input.

Information-theoretic approaches

The analytical power estimation techniques presented above either assumed a fixed

activity factor, or relied on the user to provide an average switching activity fac­

tor. Some analytical techniques have been developed to estimate average activity

factors for logic blocks based on measures of complexity of the functions they

compute, and the signal statistics at the block inputs and outputs [70, 71]. In [71],

ARCHITECTURE-LEVEL POWER ESTIMATION 41

power consumption in a macroblock is approximated as the product of its aggregate

physical capacitance and the average switching activity of all its nodes. Consider

a logic block that consists of N gates. Ignoring the short-circuit and leakage

components, the average power dissipation can be written as

N

P ex: L Ci.Di ::::: Cagg.Davg (3.6)
i=l

where Ci and Di are the equivalent output capacitance and output switching activity

for gate i, Davg represents the average switching activity or transition density at

the outputs of the gates in the block, and Cagg represents its aggregate physical

capacitance. The area of a logic block can be used as an approximate measure of
its aggregate physical capacitance. The area of a circuit can itself be estimated,

from its functional description, using the total entropy at its outputs, Ho, when

random sequences are applied at its inputs [72, 73].

Area ex: 2nHo forn::; 10
2n

ex: -.Ho as n 00
n

(3.7)

The above model may yield significant overestimates in area for large values

of n due to the exponential dependence on n. A more accurate high-level area
estimation procedure was presented in [74], based on the use of a metric called

average cube complexity, which is the average literal count of the prime implicants

of the function, in addition to entropy. Since enumeration of the prime implicants

of a function can be highly computationally intensive, a Monte Carlo procedure

can be used to estimate the average cube complexity.

The average switching activity at the outputs of the gates in a logic block can
be approximated using the average entropy of the outputs of all the gates [71],

which can be estimated from the entropies at primary inputs and primary outputs

using the following equation:

2/3
Davg ::::: Havg ::::: N N .(HI + 2Ho)

I+ °
(3.8)

42 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

where N J and No represent the number of primary inputs and outputs, and HI

and H 0 represent the input and output entropies, respectively. The above equation

is based on the assumptions that the entropy of all the gates at a given topological

level in the circuit decreases quadratically with the level, and that the average
number of gates at a level is !VI-iNa.

The input and output entropies of each logic block in an RTL circuit can be

calculated through architectural simulation. However, in some situations, e.g. when

rapidly evaluating several candidate architectures, simulation at each step may not

always be possible. In such situations, propagation techniques for average entropy

can be used [70]. For example, for data path blocks, the input entropies can be

propagated to the outputs using the notion of information transmission coefficient

(ITC). The ITC at the output of a logic block is computed using the ITC values at

the block inputs using the following equation:

(3.9)

where NJ is the number of inputs to the logic block (some of which may be

multi-bit signals), Wi is the bit-width of input i, W = 'Li;;l Wi, and 1TCblock
is a constant that depends on the functionality of the block. 1TCblock can be

pre-derived through a characterization process for typical RTL blocks. The above

propagation technique is not well-suited to some parts of the circuit such as control

logic. In such situations, the output entropies may be computed using a scaling

factor based approach, as follows.

(3.10)

where Ie!! is a scaling factor that can be computed from a gate-level netlist of

the logic block, using the number of gates of each type or function (e.g. NAN D,

NOR, XOR, etc.), and the entropy scaling factor of each gate (e.g. XOR is entropy

preserving, NAN D is entropy decreasing by a factor of J2, etc.).

ARCHITECTURE-LEVEL POWER ESTIMATION 43

3.2 CHARACTERIZATION BASED ACTIVITY AND
POWER MACROMODELS

A popular approach for estimating power in architectural building blocks is to con­

struct a macromodel by obtaining and characterizing a lower-level implementation

(that may be already available in the case of "hard" or "firm" macroblocks, or

may need to be synthesized in the case of "soft" macroblocks 1)_ A lower-level

estimation tool is used to perform several experiments to estimate the power con­

sumption of the macroblock for various input sequences, called training sequences.

Based on the power consumption characteristics of the macroblock for the training

sequences, a macromodel or function is constructed that describes the power con­
sumption of the block as a function of various parameters, e.g. the signal statistics

of the block inputs and outputs. A similar procedure may be used to characterize

the glitching activity at the output of a macroblock. Such a characterization needs

to be done only once, and the information may be re-used when the same mac­

rob lock is encountered in the context of other designs. A typical high-level power

estimation flow that uses macromodeling is shown in Figure 3.2.

Characterization-based macromodels are best suited for bottom-up and meet­

in-the-middle design methodologies [44], where hard or firm macroblocks can
be instantiated from a component library. The characterization process, which is

used to construct the power macromodels, can be thought of as part of the library

development process, which is an effort that can potentially be re-used for several

designs. The accuracy of characterization-based macromodels stems from the fact

that a lower-level implementation is used to construct the macromodels. However,

the training sequences used to construct the macromodel cannot be exhaustive due

to efficiency considerations. Hence, a macromodel is in some sense "biased" by the

1 The hardness of a macroblock reflects the extent to which its implementation has been targeted to
a particular technology library and process. Hard macroblocks are mapped to a specific technology
library and laid out, while soft macroblocks typically refer to generic, unsynthesized HDL. Firm
macroblocks may be optimized for a generic library, or mapped to a specific technology library but
not laid out.

44 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

RTL COMPONENT LIBRARY

(a)

RTL COMPONENT LIBRARY

(b)

Macromodel template
selection
- Complexity analysis
- Variable / parameter

selection

Testbench/
RTL design input characteristics

Power analysis
- Macromodel evaluation
- Control logic modeling
- Interconnect analysis

Power estimate /
profiles

Figure 3.2. High-level power estimation flow using power macromodeling: (a) macromodel

construction, and (b) power estimation

ARCHITECTURE-LEVEL POWER ESTIMATION 45

training sequences used during the characterization process. Since characterization

is done upfront with possibly little infonnation about the environment in which

the components are going to be used, the training sequences may not very well

represent real-life input sequences. In addition to the above problem, macromodels

may introduce inaccuracies since the results of the characterization experiments are

fit into a pre-detennined function template or model, resulting in some errors due

to interpolation or extrapolation. The characterization-based approach may also

be used for soft macroblocks, by synthesizing the macroblock and using the gate­

or transistor-level netlist for characterization, with the additional restriction that

the synthesis results for the macroblock may not be the same when it is embedded

within a larger design and the synthesis options/scripts used may differ.

In the power factor approximation (PFA) technique [75], the power consump­

tion of a given type of functional block that is implemented using a given design

style and operates at frequency f is estimated using the following equation.

P = K.G.f (3.11)

where K is the PFA constant, and G is a measure of the hardware complexity of the

functional block (that may be a function of parameters such as bit-width, etc). The

PFA constant may be generated by characterizing one or a few implementations of

the functional block. For example, assuming parallel multiplication, the hardware

complexity Gmult of a multiplier is N 2 where N is the bit-width of the input

operands. The PFA constant PFAmuit for a multiplier was estimated in [75],

based on published results for several fabricated designs, to be between 10 and 20

j#~:~/jl~tt, depending on the technology. Similar models can be derived for the

other components of a chip, including the 110 buffers and memories.

3.2.1 Activity-sensitive power rnacrornodeling

The drawback of techniques such as PFA is that they do not account for the

variation of power dissipation in different instances of a macroblock due to varying

input signal statistics. In other words, they assume a fixed activity factor for the

46 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

block, which may be very different from the activity factor for an actual instance.

This can lead to very large estimation errors, as pointed out in [76]. Activity­

sensitive power models [1, 2,67,76,77,78,79] alleviate the above deficiency

by constructing and utilizing a model for power consumption that is a function of

the signal statistics at a macroblock's boundaries. Given a design that contains

instantiations of macroblocks, a typical approach is to use architectural simulation

to determine the signal statistics at the various macroblock boundaries, and feed the

signal statistics for each macroblock instance to the corresponding power model to

compute the power consumed in that instance.

For example, in the power estimation tool ESP [78], the power consumption in

the data path components is modeled as consisting of a constant component Peonst

that is incurred whenever the macroblock is activated during the architectural
simulation, and an activity-dependent component that is the product of the number

of input bit transitions and a coefficient Pehange that represents the power consumed

per input bit transition. Transitions on the output bits of a macroblock can also be

included along with input bit transitions in the model. Thus, the power P is given
by

P = Peonst + n * Pchange (3.12)

where n is the number of input/output bit transitions.

A more comprehensive activity-sensitive power analysis methodology was

presented in the tool SPA [1, 76, 77]. Data path signals are modeled using the dual

bit type (DBT) model, which is based on observations of the bit-level transition

activity in typical fixed-point two's complement data streams. Figure 3.3 shows the

bit-level transition activity (Prob(0 -+ 1)) at the various bits of a multi-bit signal

that represents a two's complement fixed-point number, for various sequences that
have different word-level temporal correlations (p). The figure illustrates that the

bits can be divided into two distinct regions .

• The least significant bits, or uniform white noise (UWN) bits, that tend to be

random in nature.

ARCHITECTURE-LEVEL POWER ESTIMATION 47

• The sign bits whose activity depends heavily on the sign transition probability

and, hence, on the (word-level) temporal correlation of the sequence of values

appearing at the signal.

In addition, there is a transition region that lies in between the sign bits and the

UWN bits. The breakpoints B Po and B PI that define the UWN and sign regions

of a multi-bit signal can be calculated from its word-level signal statistics (mean

p, standard deviation a and temporal correlation p) using the following equations.

log2 a + log2 (R + I ~ I)
log2(1 pi +3.a) (3.13)

Based on the DBT model for data path signals, black-box models can be

constructed for macroblocks to estimate the capacitance switched in the macroblock

for any desired input data statistics. The switched capacitance or power consumed

BPt BPO

I Si9~ UWN

0.50
-0.99

-0.9 -·0.8 0.40
-0.6 i
·0.4 0.30

0 -·0.2 .Q
P 0.0 0.25 0

0.2 0.20 ...
0.4 Il.
0.6
0.8 0.10
0.9

0.99
0.00

6 4 2 0
LSB

Bit

Figure 3.3. Relationship between word-level temporal correlation and bit-level transition

activity (1)

48 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

in a macroblock can be thought of as a function of its complexity, as well as

the switching activity within the macroblock. The complexity of a macroblock

is modeled through an expression that relates the total equivalent capacitance in

the block to parameters that may vary from module to module. The designer's

insight and interaction are required in order to come up with accurate complexity

models. For example, the total capacitance of an N-bit ripple-carry subtracter can

be modeled using the following equation.

CT = CEjj.N (3.14)

Cej j in the above equation refers to the effective switched capacitance per bit.

Having a constant scalar value of Cj j for all bits of the subtracter will result in

ignoring the effect of input statistics. Activity dependence can be added by treating

different bits of the subtracter differently, depending on the data statistics at the

individual input/output bits. This results in a multitude of capacitive coefficient

values, rather than a single scalar value for CEj j.

Figure 3.4.

IN1 til
til
......

IN2 til
til
......

OUT til
til

Ns

~
CIl
CIl

Nus

co
'---=---"""'---=UU=---'C/)
~--~~~~~---=~~~

~ III a U'J
...J

Module

Nu

OOT

Transition template for a 2-input subtracter with misaligned breakpoints [1]

ARCHITECTURE-LEVEL POWER ESTIMATION 49

Table 3.1. Capacitance coefficients for a 2-input subtracter [1]

Misaligned {
breakpoints

only

Transition
templates

UU/UU

55/55/55

UU/55

55/UU

C++ 1++ 1++

C++ I +_ I ++

-_.
C __ I _+ I ++

C __ I __ I ++

Coo/ ++

C++ /oo

Capacitive coefficients

Coo/oo

C++ I ++ I +_ C++ I ++ I _+ C++ I ++ I __

C++ I +_ I +_ C++ I +_ I _+ C++ I +_ I __

--- _ .. -_.
C __ I _+ I +_ C __ I _+ I _+ C __ I _+ I __

C __ I __ I +_ C __ I __ I _+ C __ I __ I __

Coo/ +_ Coo/ _+ Coo/ __

C+_ /oo C_+ /oo C- /oo

Assuming the DBT model, each of the two inputs of the subtracter can be

divided into two bit-regions, the UWN bits and the sign bits. This leads to various

possible "operating regions" for the subtracter bit-slices, as shown in the transition

template of Figure 3.4. The subtracter bit-slices where both the operand bits belong

to the UWN region are said to be operating in the VOlVO region 2, and have an

associated capacitance coefficient Cuu /UU as shown in Table 3.1. Next, consider

the bit-slices where both the input bits correspond to sign bits. In this region, the

capacitance switched per bit can significantly depend not only on the values of the

input sign bits but also on the values of the output bit, which cannot always be

determined solely based on the input sign bits (e.g. the subtraction of two positive

numbers may result in a positive number or a negative number). Hence, such

bit-slices are said to be operating in the SS/SS/SS region. Distinct capacitive

coefficients are derived for this region for all possible combinations of pairs of sign

bit values at both the input bits as well as the output bit (e.g. ++1++1+- represents

two consecutive cycles such that in the first cycle one positive number is subtracted

from another and the result is positive, and in the second cycle the two inputs are

2UU is used to indicate the transition activity, i.e. the previous and present values, at the input bits.

50 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

positive but the result is negative). In addition to the above regions, we may also

have regions where one of the input bits is a sign bit and the other is a UWN bit

(UU/SS and SS/UU). This happens when the breakpoints B Po and BPI of the

two inputs to the subtracter are not aligned. Again, separate capacitive coefficients

are calculated for distinct value pairs at the sign bits, leading to four coefficients

each for the UU/SS and SS/UU regions. In all, there are a total of 73 capacitive

coefficients for the ripple-carry subtracter. The number of capacitive coefficients

becomes larger as the number of inputs to a module increases, and for multi­

function units. The table of capacitive coefficients is constructed by generating

specific pseudo-random pattern sequences that exercise all possible sign bit and

UWN transitions, simulating a low-level implementation of the macroblock using
the generated input sequences, and extracting best -fit capacitance coefficient values

from the simulation data.

While the DBT-based modeling methodology accounts for the dependence of

power consumed in a macroblock on the functional or zero-delay signal statistics

at its inputs, it ignores the effect of glitching activity at a macroblock's inputs on
its power dissipation 3.

3.2.2 Accounting for glitching power consumption

Glitch generation and propagation through circuit components may lead to the
presence of significant glitching at data path as well as control signals. Ignoring

glitching power consumption may lead to loss of absolute as well as relative

accuracy in power estimation [67]. One approach to account for glitching power

consumption during power macromodeling involves (i) building macromodeJs to
estimate glitching activity at the outputs of various data path components (in the

presence of glitching at their inputs), and (ii) building power macromodels that

3The functional or zero-delay statistics at signals in a circuit can be derived by assuming that
all the circuit elements compute their results instantaneously. Transitions in a circuit that do not
correspond to functional or zero-delay transitions are called glitches. Glitches do not contribute to
the functionality of a circuit, and, hence, cause unnecessary power consumption.

ARCHITECTURE-LEVEL POWER ESTIMATION 51

y

ZERO X ZERO X Y

~
I--'---i DECODE

LOGIC

c11=c9+c10
contr[O] = xl + x3

contr{1} = xO

conlr(2] = xO + xl.ctt + x3.cl0

contr(3] = xO + xl.eft

contr(4] = xO + x1.ctt + x3.cl0

contr(S] = xt.m.ets + x2.c15 + x3.c1O.c15

contr{6] = xO + x4

contr(7] = xl.C'11 + x2 + x3.clO

contr(8] = x7.~ .c15 + x2.clS + x3.c1O.c15

contr(9] = xO + xl.el1.e1S + x2.clS + x3.c70.cI5 + x4 '--______

Figure 3.5. The GCD RTL circuit

depend on the glitching activity at the macroblock inputs in addition to other signal

statistics [67]. The following example motivates the need to account for glitching

power during high-level power estimation.

Example 3.2 Consider the RTL circuit shown in Figure 3.5, that computes the

greatest common divisor (GCD) of two numbers. The RTL blocks used in the GCD

data path are one subtracter, three comparators (one less-than «) and two equal­

to (=)), registers, and multiplexers. The controller is sub-divided into the state

register, the next state logic, and the decode logic that generates the control signals

for the data path. The control expressions implemented by the decode logic are

also given in Figure 3.5. Control signal contr[i] feeds the select input of the

multiplexer marked [i]. Similarly, data path signal dp[i] corresponds to the output

52 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

of the multiplexer marked [I]. The variables ;1:0 •... , .1:4 in the control expressions

represent the decoded state variables. The control expressions also involve status

signals generated from the data path like the outputs of comparators. While

the data path typically consists of several pre-designed macroblocks, the control

logic is often subject to logic synthesis optimizations before it is mapped to the

technology library. Activity profiles for some of the data path signals of the GCD

circuit, obtained by synthesizing and mapping it to NEC's CMOS6 library {SO j,

and using a simulation-based power estimation tool {SJ j are shown in Figure 3.6.

1 1200

1000 A-----

~
:~ 800 I.k------
U
~

01 600
.S
.z=
.l:!
.~

Ul

dp[2] dp[4] dp[5] dp[7] dp[8] dp[9]
Data path Signal

Figure 3.6. Activity profiles for data path signals in the GCD circuit

The activity profiles show the total switching activities (including glitching)

and zero-delay switching activities (excluding glitching) for selected data path

signals in the circuit. The significant differences between the total and zero-delay

switching activities indicate the importance of considering the effect of glitching

activity in high-level power estimation.

In order to explore the ramifications of the inaccuracies in switching activity

on macroblock power estimates, the following experiments were performed. First,

the entire GCD circuit implementation (gate-level technology-mapped netlist) was

simulated using several typical input sequences, to estimate its average power

ARCHITECTURE-LEVEL POWER ESTIMATION 53

consumption. The power consumption was reported to be 1.64mW. This figure

includes the effect of glitch propagation across RTL blocks, since the entire circuit

was used in the simulation. Next, an RTL simulation was performed using the same

input sequences, and traces were collected for the inputs of each embedded circuit

block. The RTL simulation results in zero-delay traces (that do not include glitches)

at various data path and control signals. The implementation of each RTL block in

the GCD circuit was simulated separately (the controller was considered as a single

block) using the zero-delay traces derived in the previous step, and the individual

power estimates were summed up to yield a power estimate of 1.32m W for the

entire circuit (an under-estimate of 19.5%). While the above error represents an

average over all the macroblocks in the GCD circuit, the errors in power estimates

for individual macroblocks are even higher, often as high as .50%.

Word-level glitch generation and propagation models

A word-level glitching activity macromodel relates the glitching activity at the

output of an embedded macroblock to zero-delay statistics at the input signals

(e.g. mean, standard deviation, spatial and temporal correlations in the case of

signals with numeric values), and glitching activity at the inputs themselves [67].

Glitch models can be constructed for various RTL library components through a

process of characterization shown in Figure 3.2(a). The characterization process

consists of constructing controlled experiments (simulation runs) by selectively

varying one or more of the controllable variables (input zero-delay statistics and

glitching activities), and observing the value of the dependent variable (glitching

activity at the block output). The glitching activity function can be very complex

and, hence, may not fit well into a simple expression. In such situations, the use

of one or more piecewise linear models (based on lookup tables) is a possible

macromodel template that is flexible and suited to automation.

Consider, for example, an 8-bit subtracter with inputs A and B, and output

OUT. In general, the glitching activity at OUT can be written as follows.

54 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

GIOUT = !gl(MeanA, M eanB, SDA, SDB, TCA , TCB, SCA,B, GIA , GIB)
(3.15)

The first seven parameters of !glO represent the zero-delay signal statistics at A

and B. M eanA represents the mean or expected word-level value represented by

signal A, S D A represents its standard deviation, TCA is the temporal correlation

coefficient that represents the correlation between consecutive values that appear at

signal A, SC A,B is the spatial correlation coefficient of A and B. GIA represents the

glitching activity at A. Parameters with subscripts B have a similar meaning. The

brute-force approach for building a model for !glO would involve discretizing the

range of variation of each of the parameters with a desired granularity, generating

input sequences that correspond to each possible set of values for the parameters,

and simulating the implementation of the subtracter to observe the glitching activity

at the subtracter's output for each case. Assuming that each parameter can assume

k possible values, the above approach will require kn simulations, where n is the

number of parameters or independent variables considered. In the case of the

subtracter, n = 9, and even assuming k = 5 leads to 1.95 million simulation runs!

Clearly, the brute-force approach is undesirable, in spite of the fact that building

the models is a one-time cost for a given component library.

Two techniques may be used to avoid the combinatorial explosion in the number

of simulation runs required. The first technique, called variable elimination,

attempts to reduce the number of independent variables in the glitching activity

model by identifying those variables whose variations affect the dependent variable

(output glitches) minimally. Techniques from multi-variable data analysis can be

used for this purpose. Given a set of samples (each sample consists of a set of values

for the independent variables Xl, ... , X n , and the corresponding observed value

that the dependent variable y assumes), the ANOVA test 4 is used to check whether

the null hypothesis for any given variable Xi is true, i.e. whether different values of

Xi had any impact on the observed sample values of y [82]. The second technique,

4 ANOVA (Analysis Of VAriance) is a popular technique used for statistical inference and testing.

ARCHITECTURE-LEVEL POWER ESTIMATION 55

called model decomposition, attempts to decompose the function fg/ () into multiple

sub-functions by partitioning the set of parameters into smaller groups of variables

such that the effects of variables from different groups on the dependent variable

interact minimally. Again, it is possible to use standard ANOVA techniques to

obtain a quantitative evaluation of the interaction of the effects of two independent

variables on the dependent variable from a given set of samples.

For example, in the case of the subtracter, the basic model of Equation (3.15)

can be decomposed into the following equation.

GIOUT fg/I (M eanA, M eanB) * f9 /2 (SD A, SDB) * fg/3 (TCA, TCB) *
f9 /4 (SCA,B) * fg/5(GI A, GIB) (3.16)

The independent variables have been partitioned in the above equation into the

groups, {MeanA, MeanB}, {SDA, SDB}, {TCA, TCB}, {SCA,B}, and {GIA,
GI B}. The above partition was based on the observation that variables within each

group have a significant interaction in their effect on the dependent variable, while

the variables in distinct groups are reasonably independent in their effects. As

before, assuming that the domain for each parameter is discretized into five distinct

regions, it is necessary to perform simulations for S2 + S2 + S2 + Sl + S2 = lOS

different sets of parameter values, which can be performed much more efficiently

compared to the approach of building a single huge piecewise linear model from

Equation (3.15).

The piecewise linear models that constitute the glitching activity macromodel

for the 8-bit subtracter are shown in Figure 3.7. Figure 3.7(a) models the glitching

activity at the subtracter output as a function of the means of the sequences at the

two inputs. Figures 3.7(b)-3.7(e) represent multiplicative correction factors that

account for the effects of the remaining variables. Note that in order to generate

the model for f9/5 (), it is necessary to generate input sequences to the subtracter

56 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

(a)

(c)

Figure 3.7.

w ,
8

(e)

(b)

'2r---~-----~---------'

0.8

o.

0.2

0~0--~~-~0~A--~O~.6~-~0.~8---
SPATIAL CORRELATION COEFFICIENT

(d)

Glitching activity models for an 8-bit subtracter

ARCHITECTURE-LEVEL POWER ESTIMATION 57

that have varying glitching activities, in addition to having the required zero-delay

statistics.

Bit-level glitch generation and propagation models

Bit-level modeling allows us to build more accurate glitching activity models, and

to consider the effects of bit-level statistics that may not be well-reflected by word­

level signal statistics in certain situations. Let us first consider the generation of

glitches in a multiplexer when its inputs are glitch-free. Suppose a multiplexer

bit -slice has two data input bits A i and B i, and one select input S el. The number

of distinct input vector pairs that can be applied at A i, B i , and Sel is 23 * 23 = 64.

Since the above number is small, it is possible to simulate the implementation of

a one-bit multiplexer for the exhaustive set of 64 input vector pairs, and build a

look-up table, M ux-gLgen[], that stores the glitches generated at the output for

each vector pair. For a given input vector pair, glitch generation at each bit-slice of

a multiplexer is estimated by looking up the appropriate entry of the M ux _gl_gen[]
table.

The output of a multiplexer can also be glitchy due to the propagation of glitches

from the data and select inputs. The propagation of glitches from a data input to

the multiplexer output can be modeled as being "regulated" by the probability that

the glitchy data input is selected. For a one-bit slice, assuming Ai is selected

when S el = 0, the glitching activity at the multiplexer output due to propagation

from Ai is given by Gl(Ai) * P(Sel = 0). A similar explanation holds for the

propagation of glitches from Bi . The propagation of glitches from the select signal

of a multiplexer is affected by the spatial correlation between the data inputs in

addition to the signal probabilities [67]. The model for glitch propagation from the

select signal of the multiplexer to its output is given by the following equation.

Gl(Sel) * (DOl * P(Ai = 0, Bi = 1) + DlO * P(Ai = 1, Bi = 0)

+ Dll * P(Ai = I,Bi = 1))

58 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

TheprobabilitiesP(Ai = O,Bi = 1),P(Aj = I,Ej = 0), and P(Ai = I,Bj =
1) are monitored for each multiplexer bit -slice during zero-delay simulation or

analysis. The constants Dot. D lO , and Dll depend on the exact implementation

of the multiplexer, and may be computed by performing experiments using a

circuit configuration such as the one shown in Figure 3.8. The comparator is used

x Y

Figure 3.8. Circuit used to compute the coefficients DOlo D lO , and Dll

to generate glitches at the select input to the multiplexer by feeding appropriate

vector sequences at its inputs. In order to calculate DOl , the multiplexer's data

inputs are fixed to A = 0 ... 0 and B = 1. .. 1. The glitching activity, GI(OUTj), at

the output of the ith bit-slice of the multiplexer is recorded for each i. Note that

G 1 (0 UTi) also includes the effects of glitch generation in the multiplexer. Hence,

zero-delay traces at the multiplexer inputs are used to estimate glitch generation in

the multiplexer through the look-up table based procedure described earlier. The

estimated glitch generation value is subtracted from G/(OUT;). The resulting

difference is averaged over all i, and divided by the value of G/(Sel) to obtain the

value of DOl. The coefficients DlO and Dll are calculated similarly.

In summary, the glitching activity at the output of an n-bit multiplexer with

data inputs A and B, select input S el and output 0 UT is calculated using the

following equations.

Gl(OUT)

GLGen(i)

G l_Prop_From-Ai

GlYropYrom_Bi

G lYrop_From_S el

ARCHITECTURE-LEVEL POWER ESTIMATION 59

n

l)GLGen(i) + GlYrop_From-Ai + (3.17)
i=l

GlYrop_FromJ3i + GlYrop_From_Sel)

zs accrued during zero delay simulation by looking

up the M ux_gLgen[] table.

Gl(Ai) * P(Sel = 0)

Gl(B;) * P(Sel = 1)

Gl(Sel) * (DOl * P(Ai = 0, Bi = 1) +
DlO * P(Ai = 1, Bi = 0) +
Dll * P(Ai = 1, Bi = 1))

3.2.3 Bit-level and cycle-accurate power macromodels

Bit-level modeling allows us to build more accurate power macromodels in some

situations. For instance, if a bit-vector signal b consisting of n bits is actually a

concatenation of two smaller bit-vectors b1 and b2 that consist of k and n - k bits,

respectively, it may be desirable to compute signal statistics for b1 and b2 separately.

The extra computational effort spent here is well-justified for control-flow intensive

designs where the total circuit power consumption may be dominated by power

consumption in multiplexers, registers, and bit-manipulation operators.

Aggregate power macromodels compute the power consumed in a macroblock

as a function of data statistics (e.g. mean, standard deviation, etc.) that are aggre­

gated over a large number of clock cycles. They are either inapplicable or their

accuracy tends to be very limited in predicting power on a cycle-by-cycle basis.

Cycle-accurate power estimation is important when feedback, such as which clock

cycles (or control steps) a macroblock consumes the most power in, is needed, or

to plot the power consumption distribution of the entire circuit over time.

A popular bit-level cycle-accurate power macromodeling technique is the pe­

ripheral capacitance model (also referred to as the linear regression model), where

60 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

1e+05

8e+04 r 00 - I 000 0 ..,
I 000

:!::.. 6e+04 i 00
0

>- : 0 m ; 0

G; 4e+04 i 0

s: 0

W 2e+04 ,
0

0
0 i

Oe+OO~ 0 . 1
0 10 20

1/0 Activity

Figure 3.9. Variation of energy consumption with inpuVoutput switching activity for an 8-bit

carry-Iookahead adder [2]

the power consumption in a macroblock is modeled by computing a weighted aver­

age of the transition activities at its input and output bits [2, 83, 84]. This model is

based on the observation that the variation of power consumed in a macroblock with

the total switching activity at its inputs and outputs can often be well-approximated

by a linear function, especially for arithmetic circuits. For example, Figure 3.9

shows a scatter plot of the power consumed in an 8-bit carry-Iookahead adder

with the total switching activity at its inputs and outputs, for several random input

sequences. The fact that the points on the plot are close to a straight line suggests

the use of a linear relationship to model power consumption. Consider a mac­

rob lock with m input bits iI, ... , im and n output bits 01- ... ,On' The peripheral

capacitance model for the macroblock is given by the following equation.

(3.18)

In the above equation, Ap is the switching activity at pin p, and Cp is the con­

stant associated with the pin. Cp can be thought of as an equivalent capacitance

attached to pin p. Hence, the above model approximates the power consumed in a

ARCHITECTURE-LEVEL POWER ESTIMATION 61

macroblock as a set of equivalent capacitances at the boundaries, or periphery, of

the block, as shown in Figure 3_10.

il 01 ~
Ci1
~

?' ?,C01
-"- i2 ~ ----=--

Ci2 ?'
i3

?,C02

c· ~ 03

*C03 13 ?'

MACROBLOCK

im-1 °n_1 c· -"-
*COn.1 1m-I?,

im
Ci

-'- On ---=-c
On

Figure 3.10. Peripheral capaCitance model

The values of the various constants can be derived by simulating the imple­

mentation of the macroblock using a large set of input sequences, and fitting the

data obtained (switching activity at each pin for each vector pair and the power

consumed in the macroblock under the application of the vector pair) to a linear

function . Using a linear function enables us to leverage off the well-developed

theory of linear regression to construct the model from a set of simulation data

points. However, in some situations, attempting to fit a highly non-linear function

into a linear model may result in significant errors. In particular, for macroblocks

with data inputs as well as control inputs (e.g. multi-function ALUs), while the

linear model applies well to switching activity at data inputs, it is not well-suited

to the control inputs which tend to have a much stronger influence on the power

consumption in the macroblock. In such situations, one possible approach is to

construct multiple linear power models, one for each distinct set of values assumed

by the variables representing control inputs. In situations where the inputs to a

block are not explicitly partitioned into control and data inputs, the variance of the

power values with respect to the values at each data input can be computed from

62 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

simulation data and used to identify inputs based on which the model should be
decomposed [2].

While the peripheral capacitance model offers a simple and intuitive way to

model the power consumed in a macroblock, its accuracy is limited due to the linear
relationship that is assumed between power consumption and switching activity

at the various pins. In reality, the power function may be a highly complex,

non-linear function for some macroblocks, and assuming any fixed relationship

or function template may be inaccurate. Recognizing this, a general macroblock

modeling technique called energy clustering was presented in [85]. The power
or energy consumed in a combinational macroblock is expressed as a function of

the previous and present input vectors. An exhaustive "energy table" that relates

each possible previous and present input vectors to the energy consumed by the
circuit under their application would consist of 22n entries where n is the number

of inputs to the circuit. For a sequential circuit, the initial state of the circuit before

application of the vector pair should also be considered, requiring 22n+s entries

where s is the number of storage elements (latches or flip-flops). Clearly, the size of

exhaustive energy tables is prohibitively large even for moderate n and s. In energy

clustering, the basic idea is to construct a compact representation for the energy

truth table, by combining several entries with similar energy consumption values
into single entries called energy cubes, very similar to the way in which minterms

are combined into cubes in two-level circuit optimization in logic synthesis [47].

The energy estimate for an energy cube is the average energy of all the simulation

points that it covers. The error in the energy estimate of an energy cube can be
captured by computing the average, root mean-square, or maximum deviations (or
a combination thereof) of the energy values for the individual points covered by the

cube with respect to the cube's energy estimate. Automatic heuristic procedures to

construct a clustering-based energy model for a macroblock are described in [85].

These procedures cluster the data points resulting from the simulation into energy

cubes that cover the entire Boolean space, such that the energy estimate error of

each cube is below a user-specified threshold.

ARCHITECTURE-LEVEL POWER ESTIMATION 63

3.2.4 Improving macro model efficiency with statistical sampling

While power estimation using macromodels tends to be more efficient than gate­

level power estimation, it may still be inefficient when invoked iteratively for the

purpose of manual re-design or automatic synthesis. For example, the peripheral

capacitance model requires, on a per-cycle basis, the computation of the switching

activities for each input and output bit of the macroblock.

c

inl a, b, c, prey_a, prev_b, prev_c, Imp_a, Imp_b, Imp_c;
unsigned in! bilsel;
Boolean SW_a[8J, SW_b[8J, SW_c[8];

c:= a+b; -----" simulation of the adder

Imp_a = a"prev_a;
Imp_b = b"prev_b;
Imp_c = C"prev_c;
bilsel = 1;
for (i=O; k8; i++) {

}

SW_a[iJ += Imp_a&bilsel;
SW_b[i] += Imp_b&bilsel;
SW_c[i] += Imp_c&bilsel;
bilsel = bilsel « 1;

prev_a = a;
prev_b = b;
prev_c = c;

overhead for computation
of bit-level statistics

Figure 3.11. Overhead for computing bit-level statistics

Example 3.3 Consider an adder that computes the sum of two B-bit numbers.

During RTL simulation, it is common to model the input operands of the adder as

integer variables, and use the host computer s addition operation to simulate the

execution of the adder. The extra operations required to compute the transition

activity information at the inputs of the adder for each clock cycle are indicated in

the pseudo-code shown in Figure 3.11. The extra computation required to calculate

bit-level statistics is much larger than the computation required to just simulate the

adder. As a result, the RTL simulation process may be slowed down significantly.

The idea of statistical sampling has been used in the context of logic- and

transistor-level power estimation [86]. Given user-specified confidence and error

64 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

RTL design T estbench

\ I
Architectu ral
simulator

aces Input tr
for emb
macrob

edded
locks

-- Statistical
Confidence level , sampler
error interval

S
v
elected\
ectors /

- Computation of

Power
macro-
models

bit-level statistics
- Macromodel

evaluation

1 Power estimate

Figure 3.12. Statistical sampling to improve the efficiency of high-level power estimation

levels, statistical criteria are used to determine the number of vectors that need to

be simulated. The operation of a macromodeling based power estimator with sta­

tistical sampling is illustrated in Figure 3.12. The required sample size is computed

from the user-specified confidence level and error intervals. The RTL simulator

is used to simulate the RTL circuit under the entire input sequence. However, the

computation of the signal statistics required to evaluate the power macromodel

and the evaluation of the macromodel are performed only at selected clock cycles.

If random sampling is used, the clock cycles are selected randomly among the

set of all clock cycles simulated. More sophisticated sequence compaction strate­

gies [87, 88] may also be used to obtain a reduced set of patterns for computation

of signal statistics and macromodel evaluation. This idea may be applied to both

aggregate and cycle-accurate power macromodels.

ARCHITECTURE-LEVEL POWER ESTIMATION 65

3.2.5 Improving estimation accuracy using adaptive macromodeling

The techniques described in the previous sections are based on static macromodels,

i.e. the macromodels are constructed once for a given macroblock, and not changed

from one design that uses the macroblock to another. A significant source of error

in static macromodel-based power estimation is the bias, or the dependency of the

macromodel on the set of training patterns used. Macromodels are most accurate

when the training patterns reflect well the input sequences seen by the macroblock

instance. However, the actual input sequences can vary significantly depending on

the design in which the macroblock is used, and its environment.

Adaptive macromodeling addresses the above drawback by modifying or adapt­

ing the macromodel using selected vectors from traces for the macroblock's in­

put/output signals that are derived from a simulation of the complete design being

analyzed [84] (see Figure 3.13). A gate- or transistor-level power simulator is

invoked for the selected vectors or vector sequences. Apart from providing accu­

rate power estimates for the selected vectors, the results of the lower-level power

simulator are used to correct or adapt the macromodel using regression analysis to

improve the estimation accuracy for the remaining vectors as well.

In particular, let us consider the peripheral capacitance model for a macroblock,

where power consumption is modeled as a function of the present and previous
input vectors to the macroblock. Let 5 be the set of all input vector pairs for an

embedded macroblock, derived from RTL simulation, with 151 = N. Suppose

we select a set s C 5 of input vectors pairs for gate-level power simulation, with

cardinality lsi = n. Let Xi represent the power estimate computed using the (static)

macromodel for vector pair i, i E {I, ... , N}. Let Yi represent the power estimate

obtained from the gate-level power simulator for vector pair i, i E {I, ... , n}. The

average power consumption, Yavg, for the entire input sequence can be computed

using the following equations.

66 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

Gate-level
netlists for
macroblocks

RTL design Testbench

\ I
Architectural
simulator

I nput traces
for embedded
macroblocks Power

Vector pair macro-
selection models

Sele~~~d / \ All t 7
vect07 \ vec ors /

- Computation of
Gate-level bit-level statistics
power _ Macromodel
simulator evaluation

\ I
Regression analysis
(Macromodel correction)

1 Power estimate

Figure 3.13. Adaptive macromodeling to improve the accuracy of high-level power estima­

tion

(N - n).a + J3LXi
ills

(3.19)

The values of the coefficients a and f3 can be detennined using least -square­

error linear regression analysis using the available data (Xi, Yi), where i E s.

ARCHITECTURE-LEVEL POWER ESTIMATION 67

3.3 POWER AND SWITCHING ACTIVITY
ESTIMATION TECHNIQUES FOR CONTROL
LOGIC

Architectural power estimation tools must include techniques for modeling not only

the data path components or macroblocks, but also the control or random logic parts

of a design. In addition to computing the power consumed in the control logic, it

is also very important for architectural power estimation tools to take into account

the impact of the signal statistics at control signals on the power consumption of

the rest of the design. The zero-delay statistics at the control signals are important

since values appearing at control signals may be highly correlated spatially as well

as temporally [89]. In addition, it is also important to take into account the glitching

activity at the control signals since it can have a significant impact on the power

consumption in the rest of the design [67], as illustrated by the following example.

80
I - H~Total 70

D O-Delay l
i!- 60 I-- -
.>

I-- - f- f------, r- ~
.~ 50
oct
g' 40 I- - r-- r-- r--- f-

:E
30 I-- -B - f- I-- t--

.~

20 (/)

10

0
e[O] e[l] e[2] e[3] e[4] e[5] e[6] e[7] e[8] e[9]

Control Signal

Figure 3.14. Activity profiles for control signals in the GCD circuit

Example 3.4 Consider again the GCD RTL circuit shown in Figure 3.5. The power

consumption of the gate-level technology-mapped implementation of the circuit

68 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

was evaluated for a given testbench. The activity profiles for the control signals

are shown in Figure 3.14 (eontr[i] is reduced to eli]), and show the total and

zero-delay switching activities at each control signal during the entire simulation

run. The large difference between the total and zero-delay activities in some

cases implies that control signals can have a lot of glitching activity. The impact

of this glitching activity on the power consumption of the circuit was evaluated

as follows. The implementation of the entire circuit under the given testbench

was found to be 1.64m tV, as reported earlier. In order to evaluate the effect of

glitching activity at control signals on the power consumption of the circuit, the

circuit was partitioned into the controller and the data path. RTL simulation was

used to gather traces for the interface between the controller and data path. Power

estimation was performed separately for the implementation of the controller and

data path, using their respective (zero-delay) input traces. The sum of the individual

power estimates was found to be 1.45m tV, indicating that the glitching activity

at the controller-data path interface has a significant impact on the total power

consumption.

3.3.1 Controller power consumption

In the activity-based control (ABC) approach to control logic power modeling [90],

the power consumed in the controller is estimated given the implementation style

(e.g. ROM, PLA, standard cell, etc.) of the controller and its state machine descrip­

tion, say in the form of a state table. Target-independent complexity parameters

that are used in the power model include:

• N I - the number of inputs of the combinational logic of the controller (in­

cluding the primary inputs as well as the present state lines),

• No - the number of outputs of the combinational logic (including primary

outputs as well as next state lines),

• N s - the bit-width of the state register, and

ARCHITECTURE-LEVEL POWER ESTIMATION 69

• N M - the number of minterms in a minimized implementation of the con­

troller.

N I , No, and N s can be estimated given an encoding style attribute such as minimal

binary, one-hot, etc. N M is estimated given a state assignment (or using a random

state assignment if none is provided) by performing fast logic minimization, and

using the number of min terms in the minimized implementation as an estimate

of N M. The model also uses activity parameters such as (1], 0'0, and as -
the switching activities at the inputs to the combinational logic, outputs of the

combinational logic, and the state lines, respectively. Activity parameters can be

derived from an architectural simulation of the design. For example, the switched

capacitance CT for a standard-cell based controller is given by the following

equations.

(3.20)

creg Coreg .00s.N S

C CL CoCL.O'I.NI.NM + C1CL.0'0.No.NM

The capacitance coefficients Coreg , Co CL, and C1 CL, depend on the library

and the synthesis tools being used, and are measured through a characterization

process. Controllers of varying complexities and displaying varying input and

output activities are synthesized by generating random controller state tables and

input patterns. A low-level implementation is simulated to obtain data points, that

are then used to obtain best-fit values for the capacitive coefficients.

Another approach is to perform a fast synthesis of the control logic, and

perform an architectural simulation of the design with the control logic behavior

being replaced by its fast-synthesized netlist. Activities at each signal in the control

logic can be monitored, and combined with average gate output capacitance values

to yield an estimate of the control logic power consumption. The efficiency of

architectural simulation is preserved if the control logic represents a relatively

small portion of the complete design. Since very crude or no delay information is

70 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

available during RTL simulation, however, the activity information for the control

logic is inaccurate since it does not include effects such as glitching.

3.3.2 Estimating glitching activity in the control logic

This section presents techniques to estimate glitch generation and propagation

through the controller, which can significantly affect the total power consumption

as shown in the previous section. The controller's inputs are the status signals

from the data path (typically outputs of comparators or combinations thereof),

while its outputs are the control signals that feed the data path. Clearly, glitch

generation and propagation in the control logic can be exactly estimated only if
detailed information regarding the structure of the controller implementation and

delays are provided. However, the final implementation of the controller is typ­

ically not available during high-level design iterations, since the control logic is

subject to significant logic synthesis optimizations, and completely synthesizing

the controller within each iteration, of say a high-level synthesis tool, is too com­
putationally expensive. Estimation techniques for other design metrics, e.g. area

and delay [65, 66], utilize the high-level representation used for the control logic

to derive estimates that are efficient and reasonably accurate in practice. The

switching activity at control signals is computed by combining zero-delay activity
numbers derived from RTL simulation, with glitching activity estimates derived

from control expressions, as explained next [67].

The control logic is typically represented as control expressions during the

high-level synthesis process. These control expressions are usually expressed in
the form

contT ~ ~ xi. (If Cij) (3.21)

where xi represents a decoded controller state variable (corresponding to controller

state si), cij represents a status signal, which is typically the output (or inverted
output) of a comparator from the data path, L represents the Boolean 0 R operation,

and nand. represent the Boolean AN D operation. Each product term in the control

xO 1>-==-=------,

x1

c 11 L./----,

x3 c>-=..::..:=-t~~

e10 L>---j
50.5149.5

(a)

ARCHITECTURE-LEVEL POWER ESTIMATION 71

72120

contrf2J

(b)

Figure 3.15. (a) Implementation of control signal eontr[2]. and (b) generation of glitches

at gate Gl

expression flags the occurrence of a particular combination of values at the status

signals when the controller state is si. The status signals (eij) may themselves

carry glitches, that propagate through the control logic, causing the control signals

to be glitchy. On the other hand, the control logic can also generate a significant

amount of glitches, as shown below.

Estimating glitch generation in the controller

Glitch generation in the control logic can be thought to be a product of the inter­

action of certain logic (values assumed by the gate's inputs) and temporal (timing

relationship between events at the gate's inputs) conditions, as illustrated by the

following example.

Example 3.5 Consider the RTL circuit shown in Figure 3.5 once again. Let us

focus on control signal eontr[2], which is highly glitchy according to the activity

profiles of Figure 3.14. The portion of the decode logic that implements this control

signal is shown in Figure 3. 15(a). The total and zero-delay switching activities are

indicated on each line. A 1 --+ 0 or 0 --+ 1 transition is counted as a half-transition.

Though the inputs are largely glitch-free, significant glitches are generated at AND

gates Gl and G2. After careful analysis. the generation of glitches was attributed

to two conditions:

72 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

• C 1: A rising transition on signal x 1 is frequently accompanied by a falling

transition on ell. Thus, the rising transition on :r 1 and the falling transition

on ell are highly correlated.

• C2: Transitions on signal x 1 arrive earlier than transitions on signal ell.

Condition Cl arises due to the functionality of the design: most of the times when

state 81 is entered (rising transition on .rl), the comparisons evaluated by the

comparators feeding c9 and elO evaluate to 0, changing from 1 in the previous

state. On the other hand, condition C2 is a result of the temporal characteristics

of the design. These conditions, captured graphically in Figure 3.1 5(b), lead to

the generation of glitches at gate Gl, that propagate to control signal contr[2]. A

similar explanation holds for the output of gate G2 being glitchy.

In general, the logic conditions necessary for glitch generation at a gate during

an interval of time are as follows.

• There should be at least one rising and at least one falling transition at the

gate's inputs.

• No input should assume a steady controlling logic value (e.g. 0 for AND, 1

for OR, etc.) throughout the interval under consideration.

Assuming an inertial delay model, the temporal condition for glitch generation in

an AN D gate is as follows.

• The earliest falling transition arrives after the latest rising transition by an

interval that is greater than the gate's inertial delay.

Similar conditions can be derived for glitch generation in other types of gates.

Given a control expression in a sum-of-products form, as shown in Equa­

tion (3.21), the glitching activity generated due to each product term is estimated

separately, as well as glitches generated due to the disjunctive composition of the

product terms. A useful property of control expressions that is utilized in making

the above approximation is the fact that the product terms are typically disjoint,

since they are derived to represent distinct combinations of the controller state and

condition values.

ARCHITECTURE-LEVEL POWER ESTIMATION 73

The logic conditions for glitch generation for each product term (conjunctive

or AND expression) and the disjunctive (OR) expression combining the product

terms can be easily monitored during zero-delay RTL simulation_ A distinct

glitch counter is maintained for each product term, and also for the OR expression

combining the product terms_ In each simulation cycle, the previous and current

values at the variables involved in an AND or OR expression are checked to see

whether the logic conditions for glitch generation are satisfied. If they are, the

corresponding glitch counter is incremented to indicate the possibility of glitch

generation in the current simulation cycle.

As mentioned earlier in this section, checking whether the temporal conditions

for glitch generation are satisfied in an accurate manner requires the final imple­

mentation of the control logic, which is typically not available when performing

high-level design optimizations. High-level timing analysis techniques [66, 91]

can only provide a rough estimate, or a bound on the actual time at which a signal

makes its last transition in a clock cycle. For accurately predicting the generation

of glitches at a gate, it is necessary to know the exact times at which each of the

gate's inputs makes a transition, if any, in each clock cycle. One possible approach

to tackle the lack of accurate delay information is to make a pessimistic assumption,

i.e. assume that glitches are generated at a gate whenever the logic conditions for

glitch generation are satisfied. However, in practice, this pessimistic assumption

often leads to substantial over-estimates of glitches at control signals, as shown in

the following example.

Example 3.6 Consider the control signal eontr[2] in the GCD RTL circuit of Fig­

ure 3.5. The control expressionfor eontr[2] is ;1:0 + X l.ell + x3.elO. Suppose the

aim is to estimate the glitching activity at control signal eontr[2]' given the traces

for each of the decoded state and comparator output signals that were captured

during zero-delay RTL simulation. In this case, signals el 0 and ell were found

to be glitch-free, simplifying the problem to that of estimating glitch generation at

contr[2].

74 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

For the time being, let us make pessimistic assumptions to tackle the lack

of availability of complete temporal information, i.e. we conclude that glitches

are generated whenever the logic conditions for glitch generation are satisfied.

Clearly, the first product term (xO) cannot generate any glitches. From the simu­

lation traces, the following statistics were computed for logic conditions for glitch

generation at the second and third product terms.

Case 1 : Count(x11, ell T) = 15, Case 2: Count(x1 L cU1) = 20,

Case 3: Count(x3 LelO T) = 35, Case 4: Count(x3 LelO 1) = 30

In the above equations, the symbols i and 1 denote rising andfalling transitions, re­

spectively. The expression C ount(xl 1, ell i) represents the number of instances

(consecutive pairs of cycles) in the simulation trace where x 1 makes a falling

transition, while ell simultaneously makes a rising transition. From the above

numbers, one could conclude that the glitching activity generated due to the second

and third product terms is 35 and 65, respectively. As explained previously, the

glitches generated due to each product term propagates to the output un-mitigated,

since the decoded state variables are mutually exclusive. From the given traces,

it was observed that the logic conditions for glitch generation at an OR gate were

never satisfied by the outputs of the product terms. Hence, the glitching activity

at control signal contr[2] was estimated to be 100 transitions over the entire sim­

ulation period. A comparison with the glitching activity observed for the same

input traces by a gate-level power simulator after obtaining the implementation

shows that the glitching activity at contr[2] was over-estimated by the pessimistic

approach by as much as 92.3%.

Although exact arrival time information at various signals is not available, it is

often possible to derive partial information about delays from RTL descriptions

or during high-level synthesis. For example, the outputs of comparators can
often be assumed to arrive later than the decoded present state signals, even when

knowledge of their exact arrival times is not available. In essence, partial delay

information can be thought of as a set of relationships between the arrival times at

ARCHITECTURE-LEVEL POWER ESTIMATION 75

two or more inputs of the controller. Partial delay information can be combined

with the logic conditions for glitch generation to refine the glitch estimates at

control signals as shown next. Inputs to the control logic are divided into three

groups - early arriving signals, late arriving signals, and signals whose arrival time

information is assumed to be unknown. Each controller input signal that is marked

as late-arriving is assumed to arrive significantly later than any input signal that is

marked as early-arriving. No assumption is made involving the arrival time of a

signal marked unknown. Similarly, no assumption is made about the relationship

between the arrival times of two signals that are both marked either early or late.

When the temporal conditions for glitch generation at a gate involve signals whose

arrival time relationship is unknown, the pessimistic approach of only checking
logic conditions is used.

Example 3.7 Let us revisit control signal contr[2] in the GCD circuit that was used

for the discussions in Example 3.6. Suppose the comparator output signals, elO

and ell, arrive after the decoded state variables, xO, x I and x3. Consider Case I
(x I L ell l) in the equations presented before. Since the rising transition arrives

later than the falling transition in this case, the temporal conditions for glitch

generation are not satisfiedfor this case. Similarly, it can be seen that Case 3 does

not satisfy the temporal conditions for glitch generation in the third product term.

However, they are satisfied for Case 2 and Case 4. The revised glitching activity

estimate for eontr[2] is, therefore, 50, which represents an error of only 4% with

respect to the number reported by a gate-level power simulator.

Glitch propagation through the control logic

This subsection explains the procedures for estimating glitch propagation through
the control logic, i.e. from comparator outputs to control signals. Consider again

the generic control expression given in Equation (3.21). Consider a particular

comparator output, el, that has been predicted to be glitchy based on the data path

glitching activity models.

76 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

In order for glitches at el to propagate to the control signal, at least one of the

product terms it is involved in must have non-controlling side inputs (i.e. 1), and

the result of all other product terms should evaluate to O. Hence, the following

equation can be utilized to estimate the propagation of glitches to the control signa\.

G'l. P (acontl")
(el) * ael (3.22)

In the above equation, Gl (el) represents the glitching activity at el, and EJ~fc~tr is the

Boolean difference S of the control signal with respect to c 1. The term P (i}E~;~i7')
in the above equation can be thought of as the probability that the control signal will

be "sensitized" to glitches at c 1. This probability can be computed easily during

RTL simulation. Alternatively, it is possible to use known accurate probability

propagation techniques that are applicable to two-level expressions.

Example 3.8 Consider control signal contr[.j] of the GCD RTL circuit. The control

expression for contr[S] is ,1'l.ill.el.j + ,1'2,el.j + ,c:3.elO.elS. Let us focus on

the propagation of glitches from el.j to cant r[S] through the product term ,1'2.el.5.

Using Equation (3.22), and the observation that the product terms are disjoint. the

contribution of the product term of interest can be written as Gl (elS) * P(,1'2 = 1).

From the RTL simulation traces, the value of P(,1'2 = 1) was computed to be

0.647. Combining this number with the estimated glitching activity at elS results

in an estimate of 27.3 (cumulative activity for the entire simulation run) for the

glitching activity due to the term ,1·2.elS. However, the glitching activity reported

by the gate-level power simulator for the entire simulation run was only 1.0. Upon

further investigation into this discrepancy, it was observed that the conditions for

glitch generation at signal elS were negatively correlated with the conditions for

glitch propagation through the chosen product term. In other words, in consecutive

pairs of cycles in which the controller made a state transition into state 82, the data

inputs of the comparator were such that the glitches at the comparator's output

SThe Boolean difference of a function I(x I, ... , X n) with respect to a variable x, is lx, Ii! ix, ' where
IXi = I(xl, ... , X,_I, 1, X,+I, ... , Xn) and ix, = I(xl, ... , I,_I. O. I,+I, ... , Xn).

ARCHI1ECTURE-LEVEL POWER ESTIMATION 77

were minimal, leading to almost no propagation of glitches from c15 through the

product term x2.c15.

The above problem is resolved by predicting the glitches at c15 separately for

each state. For example, in order to predict the glitch propagationfor the product

term x2.c15, the glitching activity at c15 is estimated for only those consecutive

pairs of cycles where the final controller state is 82. Since the glitches at c15 are

being decomposed into separate estimates for each state, this technique is referred

to as glitching activity decomposition. Glitching activity decomposition exposes

any correlations between the conditions required for glitch generation and those

required for glitch propagation, leading to an improvement in the accuracy of the

glitch estimates. Note that in order to compute a separate figure for glitching

activity at c15 in state 82, it is necessary to compute separate figures in state 82

for the zero-delay statistics and glitching activity at the inputs of the comparator

that generates c15. In practice, decomposition does not impose a significant

computational bottleneck, since (i) the decomposition of statistics by state is limited

to only the transitive fanins of those comparators that were found to generate

glitches, and (ii) separate statistics are computed only for those states that are

related to a glitchy comparator output through a product term. In the current

example, it was found that when the controller made a state transition to state 82,

the temporal correlation at the inputs of the comparator was very high, leading to

minimal generation of glitches in 82. The predicted glitching activity at the output

of the AND gate implementing x2.c15 now becomes 3.0, which is much closer to

the gate-level estimate.

In order to get a feel for the accuracy of the switching activity estimation

techniques for control signals, results are provided comparing the estimates to the

switching activity measured after a complete gate-level implementation using a

gate-level power simulator [81], for all distinct control signals in the GCD RTL cir­

cuit (except contr[lJ, which is not glitchy). The scatter plot shown in Figure 3.16

shows the results of this experiment. The x-coordinate represents the total switch­

ing activity reported by the gate-level simulator for the control signal, while the

78 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

90

8

*
70

~
60 w

"" :2
13 50 <{

...J
f-
a:

4

30

20 .
20 30 40 50 60 70 80

CSIM Activity

Figure 3.16. Scatter plot of switching activity at control signals: RTL estimate vs. gate-level

estimate

y-coordinate represents the switching activity estimated using the RTL activity es­

timation procedure. As a reference, the plot also shows a solid line for the equation

y = x, i.e. points in the scatter plot close to this line indicate a high accuracy in

the RTL estimates. The figure indicates that the presented control signal switching

activity estimation techniques produce estimates that are quite close to the activity

numbers obtained at the gate-level after a time-consuming implementation of the

complete GCD controller and data path.

3.4 CONCLUSIONS

This chapter presented several techniques for estimating the power consumption

at the register-transfer or architecture level. In order to obtain a high degree of

estimation accuracy and efficiency, it is necessary to use a variety of techniques,

including different modeling techniques for different parts of a design (such as

arithmetic macroblocks, control logic, memory, clock, and I/O). Sometimes it may

be desirable to use specific techniques depending on the applications. However, the

ARCHITECTURE-LEVEL POWER ESTIMATION 79

presence of this diversity of techniques makes it challenging to develop tools that

are applicable to a large class of designs by employing the appropriate technique

depending on the characteristics of the design and its environment, as well as the

part of the design being analyzed_ An important direction of future work should

be to combine the various techniques in a seamless manner_

4 POWER MANAGEMENT

Power consumption in CMOS circuits is dominated by the dynamic compo­

nent that is incurred whenever signals in the circuit undergo logic transitions. In
practice, a large portion of the signal transitions that occur in a circuit are unnec­

essary, i.e. they have no effect on the value at the circuit output. Recognizing

this fact, several techniques have been proposed to reduce power consumption
by eliminating unnecessary transitions at various signals in the circuit. The term

power management is used to collectively refer to such techniques that exploit the

fact that not all parts of a circuit are needed to function in each clock cycle. Such

techniques identify conditions under which various parts of the circuit are idle, and

shut them down to reduce power consumption. Power management is a concept

that can be applied at each level of the design hierarchy. This chapter covers

several power management techniques that can be applied during high-level de­

sign, including gated and multiple clocks, pre-computation, scheduling for power

management, operand isolation, constrained register sharing, and controller-based
power management.

81

A. Raghunathan et al., High-Level Power Analysis and Optimization
© Springer Science+Business Media New York 1998

82 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

4.1 CLOCK-BASED POWER MANAGEMENT: GATED
AND MULTIPLE CLOCKS

The technique of gating clocks is probably the most well-known and most com­

monly used form of power management. The idea is to suppress or disable tran­

sitions from propagating to parts of the clock network under specific conditions

that are determined by the clock gating circuitry. Clock gating can result in sav­

ings due to reduced capacitive switching in the clock network, that may include

clock buffers, the interconnect of the clock network, and the latches/registers that

are fed by the clock signal. In addition, gating the clock may prevent storage

elements from loading unnecessary new values, thus leading to savings in power

consumption in the logic fed by the registers.

(a)

~m
CLOCK CLOCK

x y

SCHEME 1

~TED
CLOCK CLOCK

SCHEME 2

(b)

COMPARATOR
OUTPUT

CLOCK

GATED CLOCK
(SCHEME 1)

o
GATED CLOCK I----i---.;....

(SCHEME 2)
o

1 CLOCK PERIOD

(c)

Figure 4.1 . Gating clock signals to save power

The technique of gating clocks to registers is illustrated in Figure 4.1. In the

circuit in Figure 4.1 (a), the register re-loads its previous value when the less-than

comparator's output is 0. Hence, whenever the comparator output evaluates to 0,

the transition at the clock input to the register can be suppressed. For this example,

assume that the design is based on rising edge-triggerred flip-flops. Figure 4.1 (b)

POWER MANAGEMENT 83

shows two candidate schemes, S cherne 1 and S cherne 2, to gate the clock input

to the register. The rationale behind S cherne 1 is that the register's clock input

would be forced to a 0 whenever the output of the comparator evaluates to a 0, thus

suppressing unnecessary transitions on the clock. In S cherne 2, the register clock

input is forced to a 1 whenever the comparator's output evaluates to O. Thus, an

initial analysis may suggest that both the schemes are equivalent. However, it is

also necessary that certain timing constraints be satisfied by the signal used to gate

the clock. Consider the sample waveforms shown in Figure 4.l(c) for both the

schemes. For S cherne 1 to work, we require that the comparator's output evaluate

to 0 before the clock edge rises, which is not possible to satisfy. Hence, S cherne 1

does not work when timing considerations are taken into account. On the other
hand, S cherne 2 will work as long as the gating condition stabilizes before the

clock signal makes a high-to-Iow transition.

Often, existing signals in the circuit can be used for gating a part of the clock
network. Such signals may be present in the same clock cycle as they are used, or

may be available in previous clock cycles in which case latches need to be inserted

to save them till they are used. For example, signals available in the instruction

decode stage(s) of a microprocessor pipeline may be used for clock gating in later

pipeline stages. Otherwise, circuitry needs to be added to the design in order to

generate the clock gating signals. While clock gating is a very useful technique
for saving power, there are several pitfalls and overheads incurred that need to be

considered, as follows.

• Introducing gates into the clock tree can lead to an increase in clock delay
and clock skew.

• Failure to ensure that the gating logic does not introduce glitches on the clock
signal can lead to circuit malfunction due to spurious loading of registers.

• Circuits with gated clocks present significant additional complexity to syn­

thesis and analysis tools.

84 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

4.1.1 Automatic synthesis of gated-clock circuits

Given a finite-state machine (FSM) description of a sequential circuit, it is possible

to disable the entire clock network by identifying conditions when the next state and

primary output values do not change. Gating the clock tree at its root eliminates the

clock skew problems that can be introduced when only parts of the clock tree are

gated. The circuitry added to identify all such idle conditions may incur excessive

power, delay, and area overheads. Hence, it is important to develop techniques to

detect a subset of the idle conditions at significantly reduced overheads. Automated

gated-clock FSM synthesis techniques for Moore FSMs were presented in [92],

and extended to a more general class of FSMs in [93]. This procedure assumes

FSMs with registered primary inputs, as shown in Figure 4.2, where the state and

input registers are combined into a single register. Clock gating is achieved by

synthesizing an activation/unction, Fa, which evaluates to logic 1 when the clock
needs to be stopped. The latch L, which is transparent when the clock signal is low,
ensures that glitches are not propagated onto the clock signal, and allows simpler

delay constraints to be imposed on the output of the circuit realizing Fa. The AND

gate suppresses the clock transition when the latch output is 1.

CLOCK

COMBINATIONAL
LOGIC

Figure 4.2. Gated-clock FSM architecture

The procedure for synthesizing Fa is based on the following observation.

Consider a Moore FSM, (PI, PO,S, sO, 0,).), where PI is the set of inputs, PO

POWER MANAGEMENT 85

is the set of outputs, S is the set of states, sO is the initial state, 6 is the next-state

function, and). is the output function. For Moore FSMs, the output is a function

only of the current state, and not of the input variables. A self-loop in the state

transition graph (STG) corresponds to an idle condition, i.e. a condition when the

clock to the FSM register can be suppressed. Let us define for each state si a

self-loop function, Sellsi : PI -+ {O, I} such that Sellsi(pi) = 1 if and only if

6(x, si) = si, pi E PI. Sellsi captures the set of input conditions under which

the self-loop of state si is traversed. The activation function Fa can now be written

as

Fa = L Sellsi. xi
i=0,···,151-1

(4.1)

where xi is the decoded state variable corresponding to state si, i.e. xi is 1 if and

only if the FSM is in state si. Mealy FSMs can be handled by transfonning them

into locally Moore FSMs by splitting states with self-loops that have different

output labels on their incoming edges into multiple states which have only one

output label on incoming edges, and applying the same procedure.

It is possible that the implementation of Fa may itself consume significant

power and outweigh the savings obtained by disabling the clock signal. Hence, it

may sometimes be desirable to identify a proper subset of the FSM's idle conditions

that are most probable so that the implementation complexity of Fa is reduced. This

is approximated in [93] by solving a constrained-probability minimum literal-count

covering problem where the aim is to obtain a sub-function of Fa whose probability

of evaluating to a 1 is greater than a pre-specified threshold, and the number of

literals in the implementation of the sub-function is minimal.

The above scheme of disabling the entire clock tree is well-suited to FSM

designs where the complete FSM is idle for significant amounts of time, e.g. reactive

systems that wait for long periods of time for an input event to occur before they

produce a response. In more general designs, where the complete clock network

cannot be disabled, it may still be possible to shut down smaller sub-networks

that feed idle parts of the circuit. However, the above procedure is inapplicable to

86 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

circuits or sub-circuits that cannot be efficiently represented as an FSM, e.g. data

path circuits.

4.1.2 Clock gating techniques for data path registers

For data path registers in RTL circuits, gating conditions for registers and sets

of registers may be obtained through a symbolic analysis of the combinational

circuit that feeds it [94]. The aim is to determine the conditions under which the

register retains or re-Ioads its value. It is common in manual designs as well as

designs produced by high-level synthesis to have a register fed by a multiplexer

network, where the register's output is fed back as one of the data inputs to the

multiplexer network. The conditions under which such a self-loop is logically

activated represent the conditions under which the register retains its previous

data value. These conditions are identified by traversing the path through the

multiplexer network that forms the register self-loop. The condition for this path

to be activated is computed in terms of the select signals connected to the individual

multiplexers along the path. The condition that the path is activated can be written

as the conjunction of the conditions that each multiplexer along the path selects the

on-path input. This technique could be extended to also handle self-loops that pass

through other circuit blocks, such as functional units, by symbolically analyzing

the conditions under which the self-loop propagates the register's old value.

Figure 4.3. Deriving clock gating conditions for data path registers

POWER MANAGEMENT 87

Example 4.1 Consider the register and multiplexer tree feeding it shown in Fig­

ure 4.3. Assuming that we are using Scheme 2 shown in Figure 4.1, the gating

condition for the clock input to the register is contr[O].contr[l].

Next, consider the general case, where a register in an RTL circuit has a

self-loop passing through n 2-to-1 multiplexers in a multiplexer network. Let

S eh, S e12, ... , S eln represent the conditions under which the multiplexers in the

path that forms the self-loop select the on-path inputs. S eli is either equal to the

control signal that feeds the select input of the corresponding multiplexer, or its

complement, depending on whether the on-path input is the I-input or O-input of

the multiplexer. The gating condition for the register clock can then be written as

Seh·Sel2 ... Seln .

Since the logic to compute the select signals of the various multiplexers in the
multiplexer network is already present in the circuit, the only logic that needs to be

added is that required to invert the control signals, where necessary, and compute

the conjunction of the multiplexer select signals or their complements. The above

procedure to derive gating conditions does not guarantee that the required timing

constraint (the gating condition should stabilize before the clock signal makes a
high-to-Iow transition) is met. In order to avoid slower clocking of the design or

changing the duty cycle of the clock (by delaying the falling edge of the clock),

the above procedure can be augmented as follows. If the timing constraint is

violated by the gating condition, computed as explained in the previous paragraph,
a reduced gating condition is derived using a subset of the terms used in the original

gating condition. The expression for the gating condition is first collapsed to a

two-level sum-of-products form [47], and a high-level delay estimator, such as

FEST [66], is used to determine the arrival times at the signals representing each

product term. A subset of the product terms is identified such that the largest arrival

time among the product terms plus the delay of the logic required to compute the

OR of the selected terms is less than the duty cycle. This could be performed

using procedures similar to those used for the constrained-probability minimum

literal-count covering problem [93], with the difference that the aim is to eliminate

88 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

tenus that violate the timing constraint as opposed to minimizing the power cost

required to implement the extra logic.

CLOCK GATED

~K
_ I IDLE D--f1t ~CONDTION

Figure 4.4. Clock gating at multiple levels in the clock tree

While the above procedure deri ves a separate gating condition for each data path

register, it is possible to combine the gating conditions for a group of registers into a

single gating condition that can be used to gate the clock input to all the registers in

the group. The benefit of such merging is that it is possible to suppress unnecessary

transitions in larger parts of the clock distribution network. In general, it is possible

to gate the clock signal at various points in the clock distribution network. Consider

the clock tree shown in Figure 4.4, that has disabling gates at every level in the

clock tree. The choice of gating the clock at various points in the clock tree leads to

a trade-off between the physical capacitance that is prevented from switching, and

the number of unnecessary transitions avoided. Disabling the clock signal higher

up in the clock tree implies that a larger capacitance is prevented from switching.

However, the clock transition at a point in the clock tree can be suppressed only if

all the registers fed by the sub-tree rooted at that point re-load or retain their old

value. Hence, the gating condition is satisfied fewer times, resulting in a reduction

in the number of transitions saved in the clock tree. In other words, the number

POWER MANAGEMENT 89

of transitions suppressed at the clock inputs to some of the registers, when we use

a merged gating condition, may be less than the number of transitions that could

have been suppressed by using individual gating conditions. It may sometimes be

beneficial to gate the clock tree at multiple levels, i.e. have multiple gating points

along a path.

4.1.3 Clock tree construction to facilitate clock gating

The manner in which the clock tree is constructed determines the effectiveness of

gating the clock tree at higher levels. For example, consider two candidate clock

trees constructed to feed four registers, Rl, ... , R4, as shown in Figure 4.5. Each

register is marked with the conditions under which its clock signal can be disabled.

xl, ... ,x4 represent decoded controller state variables and are hence mutually

exclusive, i.e. no two of those signals can assume a value of 1 simultaneously.
Consider the clock tree shown in Figure 4.5(a). Rl and R2 are grouped together

at the lowest level of the tree. Since the conditions under which Rl and R2 can be

gated are mutually exclusive, their conjunction can never be true. Hence, it is not
possible to gate the clock signal at the point marked A in Figure 4.5(a). A similar

argument applies to R3 and R4. Now consider the alternative clock tree shown

x 1..
-----j) Rl

[c>
Rl

.J.

x~ ----I> R2

~A x4, r----1> R3
A

CLOCK CLOCK
xl +x4 x2 B B -----j) [I> R3

T
R2

~ R4 x~ r---t> R4
x2+x~

(a) (b)

Figure 4.5. Effect of clock tree structure on clock gating possibilities

90 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

in Figure 4.5(b). The gating condition for the sub-tree rooted at point A can be

computed as

eCA = xl.(xl + x3) = xl

Similarly, the gating condition for point B can be computed to be x2. Thus, the

clock tree shown in Figure 4.5(b) is more suited to clock gating, since it groups

registers with similar or overlapping idle conditions closer together in the clock

tree. Therefore, the scope that a clock tree allows for power management is an

additional parameter that must be taken into account during clock tree construction.

Techniques for addressing this problem were presented in [95].

4.1.4 Power management using multiple non-overlapping clocks

The use of gated clocks results in the clock signals, that feed various sub-circuits,

being suppressed when the registers in the sub-circuits do not need to load a new

value. The cycles during which the clock transitions are suppressed need not follow

any regular pattern in general, since the suppression of clock signal transitions is

data-dependent. Some types of designs, however, contain sub-circuits whose idle

clock cycles follow a simple, regular pattern. For example, a component may be

active and idle in alternating clock cycles. If the cycles in which a sub-circuit is idle

follows a regular pattern, the clock generation circuitry need not be data-dependent.

For example, consider a circuit that consists of two sub-circuits A and B. A and B
are each active for one clock cycle and idle for the next clock cycle in an alternating

fashion such that exactly one of them is active in a given clock cycle. Suppressing

the unnecessary transitions on the clock inputs to A and B results in the waveforms

which can be generated by using multiple non-overlapping clocks. Thus, the use

of multiple slower clocks in a design instead of a single faster clock is in itself an

implicit method of implementing power management. Power consumption may

be reduced in the clock circuitry since each of the clock trees has a smaller activity

factor than a single clock, and the aggregate physical capacitance of the various

clock trees feeding smaller portions of the circuit is not much higher than the

capacitance of a single clock tree that feeds the entire circuit.

POWER MANAGEMENT 91

Example 4.2 Consider a circuit where all the registers are fed by a single clock

network that has physical capacitance C and switches at frequency f. Suppose

the design is partitioned into two parts fed by clock signals that have frequencies

f /2, and physical capacitances C1 and C2 respectively. Power savings in the

clock network results from the use of two separate clocks if the following condition

holds.

(4.2)

In other words, the use of multiple clocks leads to power savings in the clock

network as long as C1 + C2 < 2 * C. This condition is likely to hold if the design
is partitioned carefully so that the registers that need to be fed by each clock are

clustered close together in the layout.

While the above example illustrates how the use of multiple clock signals may

save power in the clock network, power savings may also result in the other parts

of the circuit, due to a reduction in unnecessary switching activity.

Techniques for high-level synthesis of multiple non-overlapping clock based

designs were presented in [96]. Consider the scheduled DFG shown in Fig­

ure 4.6(a). The clock cycles of the schedule, s1, ... , s5, have been assigned to

two non-overlapping clock domains, C LOC](1 and C LaC](2, in an alternating

fashion. Figure 4.6(b) shows a single clock RTL circuit, that implements the given

DFG using minimal resources, that is derived without considering the clock par­
titions shown in Figure 4.6(a). Figure 4.6(c) shows an RTL circuit that has been

implemented with the following additional resource sharing restrictions:

• An operation scheduled in a clock cycle assigned to C LOC](1 cannot share

a functional unit with an operation scheduled in a clock cycle assigned to

CLOC](2 .

• A variable that is generated in a clock cycle assigned to C LaC 10 cannot
share a functional unit with a variable that is generated in a clock cycle

assigned to C LaC](2.

92 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

The above restrictions ensure that each register in the design can be clocked by

either C LOC](l or C LOC](2. In addition, the data path can be partitioned into

two domains such that there is switching activity in the partitions or clock domains

only during their respective active clock cycles.

s1

a b

W

CLOCK 1: s1 , s3, s5
CLOCK 2: s2, s4

(a)

CLOCK 1

(b)

CLOCK2 C
r-_ ----,

(C)

Figure 4.6. High-level synthesis of multiple clock designs

POWER MANAGEMENT 93

4.2 PRE-COMPUTATION

Pre-computation [97] is a power management technique that involves selectively

computing one or more cycles in advance (or pre-computing), using much simpler

circuitry than the original circuit itself, the output values of the circuit, and using the

pre-computed values to reduce internal switching activity in the succeeding clock

cycle. Consider the circuit shown in Figure 4.7(a), that consists of a combinational

logic block A sandwiched between registers R1 and R2 that have load enable

signals LE1 and LE2. Let us assume that block A has a single output. The circuit

with pre-computation logic is shown in Figure 4.7(b). The predictor functions, g1

and g2, satisfy the following conditions:

g1 = 1 => f = 1

g2 = 1 => f = 0

During clock cycle n if either g1 or g2 evaluates to a 1, register R1 is disabled

from loading. As a result, the values at the inputs to block A do not change, resulting

in savings in power consumption. Note that the extra logic added to the circuit

LE2

(a) (b)

Figure 4.7. (a) Original circuit, and (b) circuit after applying pre-computation

94 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

incurs area, delay, and power overheads. The delay overhead can be avoided by

applying this technique to non-critical sub-circuits. The area and power overheads

can be minimized by reducing the complexity of functions g1 and g2. The goal

is to include as many input conditions as possible in g1 and g2, i.e. maximize the

signal probabilities of g1 and g2, while ensuring that g1 and g2 are significantly less

complex than the original function itself. The pre-computation architecture shown

in 4.7(b) is called the complete input disabling architecture, since all the inputs to

the combinational logic block A are disabled from changing when either g1 or g2

evaluates to a 1. The same concept can also be applied to disable a subset of the

inputs to a block, as shown in the following example.

A<n-1>
B<n-1>

A<n-2>
B<n-2>

A<O>

B<O>

LE

Figure 4.8. Input subset disabling through pre-computation

Example 4.3 Consider an n-bit comparator shown in Figure 4.8 that computes

thefunction A(n -1, ... ,0) > B(n - 1, ... ,0). The most significant bits of A and

B, when they are not equal, are sufficient to determine the result of the comparison.

Thus, we can have the predictor functions depend only on A (n - 1) and B (n - 1).
The circuit with the pre-computation logic is shown in the figure. The expressions

for the predictor functions are:

g1 A(n - l).B(n - 1)

g2 A(n - l).B(n - 1)

POWER MANAGEMENT 95

When either of the predictor functions evaluates to 1, all inputs to the comparator

except the most significant bits can be disabled. The reduced switching activity at

the inputs of the comparator leads to savings in power consumption. This scheme

can be extended by also using A(n - 2) and B (n - 2) for computing the predictor

functions, and disabling the remaining bits of A and B, and so on.

4.3 SCHEDULING TO ENABLE POWER
MANAGEMENT

Logic-level shut-off techniques, such as pre-computation, are based on disabling
the input latches of a module when the output of the module is not used, on a per­

clock-cycle basis. Such techniques are limited by the inherent logic structure of the

circuit. Looking at higher-level representations of a design, such as a behavioral
description or CDFG, makes it possible to perform power management trade-offs

that are more global in nature. For example, the result of conditional operations

in CDFGs determine which parts of the CDFG are executed and which are not. A

common performance optimization technique is to execute the operations for all the

outcomes of a conditional in parallel with the computation of the condition itself,
and choose the appropriate results based on how the condition evaluates [44]. This

strategy is, however, not well-suited to power optimization, since unnecessary

operations may be executed. For power management, it is desirable to enforce

the control dependencies between operations in the CDFG and the conditional
operations that they depend on during scheduling. This may be done in a selective

manner, in order to meet the performance constraints while minimizing the number

of unnecessary operations executed. Scheduling techniques to explore such trade­

offs were presented in [98].

Example 4.4 Consider the computation of the expression la - hi. The CDFG for

this computation is shown in Figure 4.9(a). Suppose that each of the operations (-,

» takes one clock cycle, and that the select (S e I) operation can be chained with

any of the other operations. We want to obtain an implementation that performs

96 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

a b

a b b a

-' ,

(a) (b) (c)

Figure 4.9. Scheduling to enable power management

the computation within two clock cycles. Two possible schedules that meet the

peiformance constraint are shown in Figure 4. 9(b) and Figure 4. 9(c). The schedule

of Figure 4.9(b) uses the so-called D-select conditional representation [44], where

the control dependencies from the (» operation to the (-) operations are ignored.

The computations of a - band b - a are peiformed independently of the comparison,

and the result of the comparison is used by the S el operation, which may be

implemented using a multiplexer, to select the appropriate result. Note that there

is afiexibility in scheduling the (» operation in either of the two control steps. In

general, thisfiexibility can be utilized in order to either implement the design using

fewer resources or to improve the number of clock cycles in the schedule. From

the point of view of power consumption, however, the schedule of Figure 4.9(b)

is wasteful, since both a - band b - a are computed although only one of them

is eventually used. In the RTL implementation, if the two (-) operations are

assigned to different subtracters, the inputs to both the subtracters will change,

causing unnecessary power dissipation in both. On the other hand, if both (-)

operations are assigned to the same subtracter, the inputs to the subtracter changes

POWER MANAGEMENT 97

in both the clock cycles, causing power dissipation in the subtracter in both clock

cycles. This can be avoided by scheduling operations that determine the control

flow as early as possible, and using their results to activate other resources only

when necessary. For example, in the schedule of Figure 4.9(c), the (» operation

is assigned to the first control step, and depending on its result, only a - b or b - a

is performed. In the RTL implementation, if the two (-) operations are assigned

to two different subtracters, only the inputs to one of the subtracters is allowed to

change, depending on the result of the conditional. If the two (-) operations are

assigned to the same subtracter, the subtracter s inputs do not change in the first

clock cycle, and are set appropriately in the second clock cycle depending on how

the conditional evaluates.

Techniques to decide which conditionals to apply power management to in

order to obtain maximal power savings, while meeting the specified performance,
were presented in [98].

4.4 OPERAND ISOLATION

The techniques presented in Sections 4.1 and 4.2 are only applicable to blocks of

combinational logic that are fed by registers, i.e. they are not applicable to circuit

blocks embedded within combinational logic. Operand isolation [99, 100, 101,

102] is a technique that can be used to save power consumption in idle circuit

blocks by disabling transitions at their inputs. Operand isolation is illustrated in

Figure 4.10. Transparent latches are inserted at all the inputs of an embedded logic

block, and control circuitry is added to detect the idle conditions for the block.

When the block is not required to perform any useful operation, the transparent

latches at its inputs are disabled, and retain the previous cycle's values, avoiding

unnecessary power dissipation in the idle block.

98 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

COMBINATIONAL lOGIC
Transparent latch

Figure 4.10. Operand isolation

4.4.1 Guarded evaluation

An automated technique, called guarded evaluation, that detects idle sub-circuits

on a per-clock-cycle basis, and inserts transparent latches to perform operand

isolation was presented in [100]. Let a be a signal in a combinational circuit. Let

F represent the logic that is needed to compute a and no other signal. I is the

set of inputs to F. Let 0 DC 0 refer to the set of primary input assignments to the

entire circuit such that the value of a has no influence on the values at the primary

outputs. In other words, ODeo is the observability don't care set [47] of signal

o. Let LE be any other signal in the circuit. Let te(I)LE=l represent the earliest

Guard
latches

Guard
latches

LE LE

(a) (b)

Figure 4.11. Guarded evaluation

POWER MANAGEMENT 99

time at which any of the inputs in I can change its value when LE = 1. Let

tt(LE)LE=l represent the latest time at which LE can stabilize to logic value 1.

Signal LE can be used to guard the logic block F, as shown in Figure 4.11 (a), if

the following conditions are satisfied:

• LE => ODCo , i.e. [E + ODCo == 1

The first condition ensures that the circuit does not need to compute 0 when

LE = 1. The second condition ensures that the transparent latches are disabled
in time, i.e. early enough to cut off transitions on any of the inputs in I. The

architecture shown in Figure 4.11(a) is referred to as pure guarded evaluation,

since no extra logic is added to the circuit except the transparent latches and that
required to invert signal LE, if necessary.

The above idea can be extended as shown in Figure 4.11 (b). Suppose that signal

LE satisfies the relaxed logic condition LE => (o+ODCo), i.e. LE +0+0 DCo ==
1. The temporal condition (tt(LE)LE=l < t e (I)LE=l) is the same as above. Under
the relaxed logic condition, when LE evaluates to 1, either of the following two

cases may hold: (i) 0 is not needed to compute the value at the primary outputs,
or (ii) 0 is needed to compute the primary outputs, however, 0 should evaluate to

a 1. The circuit of Figure 4.11 (a) may operate incorrectly under the second case,

since 0 will assume the previous cycle's value which mayor may not be 1. In
order to ensure correct operation, an OR gate is added that forces the output of F

to 1 when LE = 1, as shown in Figure 4.11 (b). This technique is referred to as

extended guarded evaluation. The case when L E => (jj + 0 DC 0) can be similarly
exploited by using an AND gate instead of an OR gate. The logic condition can be

verified using binary decision diagram [103, 104] based techniques, or automatic

test pattern generation [105] based techniques.

100 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

4.4.2 Operand isolation in the context of high-level synthesis

The idea of operand isolation can be easily applied to RTL circuits generated by

high-level synthesis tools [102]. Since high-level synthesis involves assigning op­

erations in a behavioral description to clock cycles or controller states (scheduling),

and mapping operations and variables to resources such as functional units and reg­

isters (resource sharing), the conditions under which a resource (e.g. a functional

unit) is not used are readily available from the scheduling and resource sharing

information. For example, consider the scheduled DFG shown in Figure 4.12, and

the corresponding RTL implementation shown in Figure 4.13. The RTL circuit

consists of functional units, registers, multiplexers, and a controller FSM. From

the schedule, the idle cycles of the functional units can be derived as:

MUL1,MUL2: s4

ADD1: s2,s3

SUB1:s1,s2

CMP1: sl,s3,s4

For functional units that have one or more idle controller states, it is possible

to insert transparent latches at the functional unit's inputs to perform operand
isolation, as shown in Figure 4.13. The latch enable signals for the latches at the

inputs of a functional unit can be derived directly from its idle controller states.
The expressions for the latch enable signals LEI, ... , LE4 in Figure 4.13 are:

LEI = LE3 = x4

LE2 = xl + x2

LE4 = x2 + x3

Latches have not been inserted at the inputs of C M PI because the values in
the registers that feed its inputs do not change in the cycles in which it is idle.

The above observation leads to an alternative method to eliminate unnecessary

activity in functional units - avoiding excessive register sharing during high-level

POWER MANAGEMENT 101

udX3x xdx
---- ---,-- --- -- ------------------- --------- -- ---- -

51

Control

Figure 4.12. Operand isolation during high-level synthesis: Scheduled DFG

RI

Transparent U
101011 ••

R.lel e1

(
vI = u· dx
v5 = vI • v2
v6 = v3· d

R2

(V7 = u - v5)
Ul = v7 - v6

R3

(
V2=3"X)
v3=3"V
v4 = U" dx

(XI = X + dX\
VI = V + V4/

(C1 = a < x~

Figure 4.13. Operand isolation during high-level synthesis: RTL circuit

synthesis, or register duplication as a post-synthesis process. However, the extra
power consumed by additional registers may be larger than the power overhead

incurred by inserting transparent latches at each functional unit's inputs.

102 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

4.5 POWER MANAGEMENT THROUGH
CONSTRAINED REGISTER SHARING

The operand isolation technique presented in the previous subsection attempts to

eliminate spurious activity at the inputs of embedded resources (e.g. functional

units) by inserting transparent latches into the RTL implementation. Apart from

incurring power and area overheads due to the addition of extra circuitry, operand

isolation also requires some delay constraints (the disabling transition at the trans­

parent latch enable input should arrive before its data input can change). Satisfac­

tion of the delay constraints may require the addition of extra circuit delay in the

critical path, which may not be acceptable for high-performance designs.

This section demonstrates that the manner in which register allocation and

variable binding (the assignment of variables to registers) are done can have a

profound impact on spurious switching activity in functional units of the RTL

implementation. Thus, an alternative to performing operand isolation after high­

level synthesis is to perform judicious assignment of variables to registers to

minimize or ensure the absence of spurious operations. Techniques to perform

constrained register sharing to significantly reduce or eliminate spurious switching

activity in the functional units of the RTL implementation are presented in [106].

While constrained register sharing may, in general, lead to an increase in the number

of registers, in practice this overhead was observed to be small, and sometimes

zero, for several designs [106].

Example 4.5 Consider the scheduled DFG shown in Figure 4.14. Each operation

in the DFG is annotated with its name (placed inside the circle representing the

operation) and the name of the functional unit instance it is mapped to (placed

outside the circle representing the operation). Each variable in the DFG is an­

notated with its name. Clock cycle boundaries are denoted by dotted lines. The

schedule has five control steps, .s1, ... , .s.5. Control step .s.5 is used to hold the

output values in the registers and communicate them to the environment that the

POWER MANAGEMENT 103

v4 v5 v15 v2 v12

51

Figure 4.14. A scheduled CDFG to illustrate execution of spurious operations

design interacts with, and to load the input values into their respective registers

Jor the next iteration.

In order to assess the impact oj variable assignment on power consumption,

consider two candidate assignments, Assignment 1 and Assignment 2, shown in

Table 4.1. The architectures obtained using these assignments were subject to

logic synthesis optimizations, and placed and routed using a 1.2 micron standard

cell library. The transistor-level netlists extracted Jrom the layouts were simulated

using a switch-level simulator with typical input traces to measure power. For

the circuit Design 1, synthesizedJrom Assignment 1, the power consumption was

30.71 m W, and Jor the circuit Design 2, synthesizedJrom Assignment 2, the power

consumption was 18.96m W.

104 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

Table 4.1. Two variable assignments for the scheduled DFG shown in Figure 4.14

Register Assignment 1 I Assignment 2

RI vI, v7, vJ1, vI3 vI, vI3
R2 v2, v8, vJO, vI4 v2
R3 v3, v5, v9 v4, v8, vJO
R4 v4, v6 v5,v7, v9
R5 vI2 vI2
R6 vI5 v3
R7 v6, vII
R8 vI4
R9 vI5

s1 vl *1 v2 v15 *3 v2 X v12 v4 .1 v5

s2 v6 - 1 v3 v7 +2 vB

s3 vl1 -2 v12 v9 +3 v10

s4 v13 *2 v14

s5

Figure 4.15. Switching activity in the functional units of Design 1

To explain the significant difference in power consumption of the two designs,

let us analyze the switching activities in the functional units that constitute Design

1 and Design 2 using Figures 4. J 5 and 4. J 6, respectively. In these figures, each

functional unit is represented by a labeled box. The vertical lines which feed

the box represent a duration equaling one iteration of execution of the DFG. Each

control step is annotated with (i) the symbolic values that appear at the inputs of the

POWER MANAGEMENT 105

81 v1 v2 v15 *3 v2 X v12 v4 v5
------------- -------- ----- -----1.,..,.·---,---'1

82 v6 -1 v3 v7 v8

83 v11 -2 v12 v9 v10

84 v13 v14

85

Figure 4.16. Switching activity in the functional units of Design 2

functional unit in the implementation, and (ii) the operation, if any, corresponding

to the computation performed by the functional unit. For example, for functional

unit M U L 1 in Figure 4.15 in control step s 1, variables v 1 and v2 appear at its left

and right inputs, respectively_ The computation performed by M U L 1 in control

step sl corresponds to operation *1 of the DFG. Cycles in which one or both inputs

of a functional unit change, causing power dissipation, are shaded in the figures.
Each variable change can be associated with the execution of a new operation.

Cycles during which spurious input transitions, which do not correspond to any

DFG operations, occur are marked with an X. The power consumption associated

with these operations can be eliminated without altering the functionality of the

design. A functional unit does not perform a spurious operation when both its

inputs are unaltered. A cycle in which an input of a functional unit does not

change is not marked with any variable. For example, in Figure 4.16, the inputs

offunctional unit MULl do not change from control step sl to control step s2.
Therefore, the inputs of M U L 1 are unmarked in control step s2. An inspection

of Figures 4.15 and 4.16 reveals that, while the functional units that constitute

Design 1 execute seven spurious operations, the functional units that constitute

Design 2 execute only one spurious operation. This explains the difference in

power consumption between the two designs.

106 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

----r ----
I
I
I
I
I
I
I
I

Iteration i
I
I
I
I •

vS

v11

----f---- -
I
I

: vS
I

: v11

Iterati~n i+ 1
I
I
I
I

----f-----
vS

Iteration i+2

-1

-2

-1

-2

-1

v3 (RS)

v12 (RS)

v3 (RS)

v12 (RS)

v3 (RS)

-2 v11 v12 (R6)

8
Figure 4.17. Eliminating spurious operations using dynamic variable rebinding

Example 4.6 The previous example illustrated that constrained register sharing

can significantly reduce the number of spurious operations in a circuit. This exam­

ple illustrates a technique, called dynamic variable rebinding which, in combina­

tion with variable assignment, can completely eliminate spurious operations [106].

Consider functional unit 5 U Bl in Design 2. An inspection of Figure 4.16 reveals

that it executes a spurious operation in control step 81 of every iteration. This

POWER MANAGEMENT 107

is because the multiplexer at its input selects register R5, to which variable v12

is assigned, from control step 83 of each iteration to control step 81 of the next

iteration. Since v12 acquires a new value in control step 81 of each iteration,

SU Bl computes vll - v12 in control step 81, which is spurious, since the value

of v 11 corresponds to the previous iteration while the value of v 12 corresponds to

the current iteration. This problem would persist even if v3 were selected at the

input of SU Bl, instead of v12. This is because v3 is generated only at the end

of control step 81, causing SU Bl to evaluate vll - v3 with the old value of v3.

Note that, in order to avoid the spurious operation, it is necessary to preserve the

old value ofv12 (from the previous iteration) at the input of SU Bl until the new

value of v3 in the current iteration is born.

In this case, the spurious operation can be eliminated, without paying a price

in terms of the number of registers used, by swapping the variables assigned to

registers R5 and R6 in alternate iterations. In even iterations, v3 is mapped to
R6 and v12 to R5, and vice versa in odd iterations. Figure 4.17 illustrates this

transformation over three iterations of execution of the design. In this figure, the
line representing the right input of SUB 1 is annotated with the register containing

the selected variable. As shown in the figure, register R6 stores variable v 12 in

iteration i, v3 in iteration i + 1, and so on. Since variable v3 is stored in register

R6 in iteration i + 1, the old value of v12 is preserved atthe input of SU Bl until
v3 is born, thus avoiding the spurious operation marked X, shown in Figure 4. 16.

4.6 CONTROLLER-BASED POWER MANAGEMENT

The operand isolation techniques presented in the previous section involve the

addition of extra circuitry, including transparent latches and possibly some logic
to generate their enable signals. This section presents a low-overhead power
management technique that does not require the addition of any extra circuitry
like transparent latches. It is based on minimally re-designing the existing control

logic in order to reconfigure the multiplexer networks and functional units in the

108 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

data path to minimize unnecessary switching activity [107]. Another distinction

of this technique is that while conventional power management techniques seek

to completely eliminate activity in the targeted sub-circuit, the controller-based

technique may significantly reduce, but may not completely eliminate, such activity.

Thus, it is frequently possible to reduce activity while avoiding the overheads

associated with conventional techniques. Controller-based power management

is well-suited to control-flow intensive designs, which pose challenges to other

techniques such as operand isolation due to the following characteristics:

• Power consumption is dominated by an abundance of smaller components
like multiplexers, while functional units may account for a small part of the

total power [108]. The power overheads due to the insertion of transparent

latches is comparable to the power savings obtained when power management
is applied to sub-circuits such as multiplexer networks.

• The signals that detect idle conditions for various sub-circuits are typically

late-arriving (for example, due to the presence of nested conditionals within

each controller state, the idle conditions may depend on outputs of compara­

tors from the data path). As a result, the timing constraints which must be

imposed in order to apply conventional power management techniques (the

enable signal to the transparent latches must settle before its data inputs can
change) are often not met.

• The presence of significant glitching activity at control as well as data path
signals needs to be accounted for in order to obtain maximal power savings.

The following example illustrates the effect of re-specifying control signals on

the activity of data path signals. Consider an RTL circuit that implements the send

process of the X. 25 telecommunication protocol [59] that is shown in Figure 4.18.
Figure4.19(a) shows an extracted part of the X. 25 data path that consists of an ALU

and the multiplexer trees that feed it. Figure 4.19(b) shows (i) the logic expressions

for the control signals that feed the ALU and its multiplexer trees (as before, xi

Reeet Decode
Logic

Se1(8)

Select func(O)

S8I(O)

SeI(1)

SeI(19)

true fillse

POWER MANAGEMENT 109

r----------L-_bX;~~~~i.:
• I
I •
; r - -r ----- '"------'===r-
• ' ------------------- ------------1

I

!
I

One I

Figure 4.18. RTL circuit implementing the s end process of the X . 25 protocol

represents a decoded state variable, i.e. xi = 1 when the controller is in state si),

and (ii) an activity graph for the ALU, that indicates the operations perfonned

by the ALU in each controller state. The vertices and arcs in the activity graph
correspond to the controller states and state transitions. Each vertex in the activity

graph is labeled with the computation perfonned by the ALU in the corresponding

controller state. For example, consider controller state s2. Control signals S el (0),
Sel(l), Sel(2) and Selectfunc(O) (function select input, 1 ~ +, 0 ~ -) assume
the logic values 1, 0, 1, and 0, respectively. From these values, it can be easily

seen that the ALU perfonns the operation bytes - byteCount in state s2.

lID HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

Count bytes

(a)

iMino Are.):
SeJ(O) = x2
SeJ(I) = x5 +.6
Se1(2) = x2 + x6 + x7
Selectfunc(O) = x5 + x6 + x7

sO

<=:) Inactive

(b)

Re-specified iMino Activity):
Sel(O) = ,0 + xl + .2 + .3
Sel(l) = x~ + ,,5 +.6
SeI(2) =.5
Selectfunc(O) = .4 + .5 + .6 + .7

(c)

Figure 4.19. Control re-specification example (a) ALU and its multiplexer tree, (b) original

control expressions and activity graph, and (c) re-specified control expressions and activity

graph

In some states, like sO, the ALU may not be required to perform any operation,
i.e. its result may be unused. Using the scheduling and assignment information

from high-level synthesis, it is possible to easily identify such idle states based

on the absence of operations assigned to the ALU. In Figure 4.19(b), idle states

are indicated by shaded vertices. The computation performed by the ALU in

idle states can be changed without affecting the functionality of the design. The

control signals Sel(O), Sel(l), Sel(2), and Selectfunc(O) were re-specified using

the techniques presented later in this section. The resulting logic expressions for

the re-specified control signals and the modified activity graph for the ALU are

shown in Figure 4.19(c). Note that the labels of the vertices in the activity graph

POWER MANAGEMENT 111

(Min. Area): R.·sp.ci~d (Min. Activily):
SeI(18) = x3 SeI(l8) = xS
SeI(19) = x3 + ,5 Sel(19) = x3 ... x5

.0

(I Zero)
Zero

,2

10
c28 Zero ()

53

(Zero)

<=) InactIVe

(a) (b) (c)

Figure 4.20. (a) Multiplexer tree feeding a register, (b) original control expressions and

activity graph for signal M(18), and (c) re-specified control expressions and activity graph

have changed. Consider two consecutive cycles in the operation of the X. 25
circuit, during which the controller makes the state transition s6 --+ s4. Under
the original control expressions, there is switching activity in the ALU since its
operands change from i (left operand), byteC ount (right operand), and 1 (function

select input) in s6 to Count, One, and 0 respectively in s4. Under the re­
specified control expressions, however, all input operands to the ALU remain
stable. Hence, we conclude that re-specification of the control signals feeding

the ALU, or equivalently, re-Iabeling of the ALU's activity graph, can affect the
switching activity, and hence power consumption, in the ALU. During the actual
operation of the circuit, controller state transitions other than s6 --+ s4 will also
occur. In general, it is necessary to consider all incoming and outgoing arcs while

deciding on how to (re-)label an idle vertex in the activity graph. We formalize

112 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

the use of state transition probabilities or transition counts in labeling the activity

graph later on in this section.

Re-specifying the controller can also lead to reduced activity within multiplexer

trees. Figure 4.20(a) shows another part of the X. 25 data path that consists of the

register that stores variable i together with the multiplexers feeding it. The original

expressions for the control signals 5 el(18) and 5 el(19) are given in Figure 4.20(b).

The activity graph for signal M (18) (the output of the shaded 2-to-1 multiplexer),

that indicates which operand (c28 or Zero) is selected at M(18), is also shown in

Figure 4.20(b). The shaded vertices in the activity graph correspond to states when

the value of signal M (18) is not used. Consider controller state transition 87 -+ 81.

Since the computation performed by the ALU changes from count + byteCount

in 87 to byte8 - byteCount in 81 (see Figure 4.19(c», the value of the operand

(c28) itself changes. Re-specifying the control signals as shown in Figure 4.20(c)

eliminates this unnecessary acti vity at signal M (18).

Re-Iabeling activity graphs using state transition counts and activity matrices

When deciding how to label an idle vertex in an activity graph, it is necessary to

keep in mind the following issues.

• Different incoming and outgoing transitions into the idle state have different

execution probabilities, and

• The values of data operands fed to multiplexer trees may themselves change.

Hence, merely selecting the same operand does not ensure that switching

activity is minimized.

Consider a less-than «) comparator and its partial activity graph shown in

Figure 4.21. Vertex 83 in the activity graph corresponds to an idle state for the

comparator. The activity graph shows all vertices that have incoming arcs from or

outgoing arcs to vertex 83. Vertices 81, 82, 84, and 85 have the labels Ll (a < b),

L2 (c < d), L2, and L3 (e < d), respectively. We wish to assign one of the

labels from the set {Ll, L2, L3} to vertex 83 such that the activity at the inputs

of the comparator, and hence its power consumption, is minimized. While this

POWER MANAGEMENT 113

discussion assumes that minimizing the average switching activity at the inputs

of a block minimizes its power consumption, it is also possible to incorporate

more sophisticated models for data path power consumption to drive controller
re-specification.

51

54

(a) (b)

Figure 4.21. (a) Comparator and its multiplexer trees, and (b) activity graph used for re­

labeling

For each arc si --+ sj in the activity graph, P(si --+ sj) is the probability of

a controller state transition from si to sj. An activity matrix AMsi-+sj for arc
si --+ sj in the activity graph stores the costs in terms of average bit transitions

incurred for various combinations of labels that can be assigned to vertices si and

sj. The rows (columns) of AMsi-+sj are indexed by the set of possible labels that

can be assigned to si (sj). For example, consider the arc from vertex sl to vertex

s3 in the activity graph shown in Figure 4.21. Since the label of sl is fixed to
Ll, the activity matrix AMs1 -+ s3 has valid entries in only one row, that is indexed

by L1. We can (re-)label the vertices in the activity graph that correspond to idle

states while attempting to minimize the Labeling Cost that is given by:

Labeling Cost = L AMsi-+sj[L(si), L(sj)].P(si --+ sj)
a/lsi-+sj

where L(si) refers to the label assigned to vertex si in the activity graph. For the

example of Figure 4.21, the cost of labeling vertex s3 with a label L * is given by:

AMs1 dLl,L*].P(sl --+ s3) + AMs2 dL2,L*].P(s2 --+ s3) +

114 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

AMs3-+ s4 [L*, L2].P(s3 -+ s4) + AMs3-+s5[L*, L3].P(s3 -+ s.5)

The objective, therefore, is to choose L* E {Ll, L2, L3} such that the labeling

cost, as given by the above equation, is minimized.

Algorithms for performing controller-based power management are described

in detail in [107]. While controller re-specification seeks to minimize zero-delay

switching activity at the inputs of idle blocks, it may have several negative side­
effects, including:

• Increase in the circuit delay, due to the formation of long paths.

• Increase in glitching power consumption, due to increased glitching activity
at control and/or data signals, which may offset the power savings.

• Formation of false combinational loops in the circuit, which may be unac­
ceptable due to the limitations imposed by lower-level design tools.

The techniques presented in [107] judiciously perform controller-based power

management, while avoiding the above negative effects.

4.7 CONCLUSIONS

Power management is one of the most popular power management techniques

employed in low power design methodologies due to its potential for delivering

large and unambiguous power savings, and since it requires minimal intrusion into
the other steps of the design flow. Hence, it is not unreasonable to expect that

a significant focus of future commercial tools for high-level power optimization

will be on power management. While several techniques for applying power

management to a given architecture exist, the effect of system-level trade-offs and

architecture synthesis or selection on power management opportunities is still not

well understood, and is an area that requires further investigation.

5 HIGH-LEVEL SYNTHESIS
FOR LOW POWER

High-level synthesis (also called behavioral synthesis or architectural synthesis)

refers to the process of transfonning a functional or behavioral specification of
a design into a structural RTL implementation. A typical high-level synthesis

process involves several sub tasks including behavioral transfonnations, module
selection, clock period selection, scheduling, and resource sharing, and RTL circuit

generation. High-level synthesis has a large impact on power consumption, which,

if properly exploited, can lead to large power savings. This chapter analyzes

the effect of various high-level synthesis subtasks on power, and presents various
techniques that can be used to optimize power consumption during high-level

synthesis.

115

A. Raghunathan et al., High-Level Power Analysis and Optimization
© Springer Science+Business Media New York 1998

116 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

5.1 BEHAVIORAL TRANSFORMATIONS

Behavioral transformations refer to changes to the computational structure of an

algorithm that preserve its input-output behavior, while resulting in an implementa­

tion that is optimized for one or more design metrics. Several high-level synthesis

systems have incorporated comprehensive sets of transformations for optimization

of area and performance [109, 110, 111, 112, 113]. Examples of transformations

that can be applied to behavioral descriptions, or CDFGs, include:

• Algebraic transformations such as associativity, commutativity, and distribu­

tivity.

• Common subexpression elimination.

• Constant propagation and dead code elimination.

• Strength reduction, such as replacement of constant multiplications with

shift-and-add operations.

• Numerical transformations, such as word-length reduction.

• Loop transformations, such as loop unrolling, winding, re-ordering, and

merging.

• Behavioral retiming and pipelining.

• Hierarchy transformations, such as procedure inlining and extraction.

Behavioral transformations have been shown to have a very significant impact

on the area and performance of the implementation. Optimizing power using

transformations has been studied more recently [3,4,5, 114].

HIGH-LEVEL SYNTHESIS FOR LOW POWER 117

5.1.1 Enabling supply voltage reduction using transformations

The quadratic influence of the supply voltage on power dissipation makes supply

voltage scaling an attractive approach for power reduction, as described in Chap­

ter 2. Reducing the supply voltage alone, however, has a negative impact on the

circuit delay, making it difficult to apply this methodology to high-performance

systems. The negative impact on delay can be overcome by using technology

optimizations such as threshold voltage reduction, multiple threshold voltages,

etc. [115]. However, other issues such as standby power and noise margins impose

limitations on the extent to which such technology optimizations can be performed.

Another approach for recovering the delay degradation due to supply voltage

reduction is to use architectural transformations that have conventionally been

shown to be very effective in performance optimization [31]. A framework for

the use of such transformations in the context of data-flow intensive applications

is presented in [3]. Given a behavioral specification and a throughput constraint,

the idea is to apply performance optimizing transformations and transformation

sequences that enhance the throughput of the design as much as possible (more

than required by the constraint), and use the slack thus generated to reduce the

supply voltage until the transformed design just meets the original throughput
constraint.

Example 5.1 Consider a first-order Infinite Impulse Response (IIR) filter, shown

in Figure 5.1 (a), that is described by the following difference equation.

(5.1)

Assuming that the addition and constant multiplication operations take one clock

cycle each, the critical path for the DFG of Figure 5.l(a) has two clock cycles.

Suppose that we can implement the DFG structure of Figure 5.l(a) such that it

just meets the required sample period 1 at a supply voltage of 5 V. The normalized

1 Sample period is the time interval between the application of two consecutive input samples to the
design. The sample period is the inverse of throughput.

118 HIGH·LEVEL POWER ANALYSIS AND OPTIMIZATION

K
Vdd = 5V
Throughput = 1 X
Power = IX

(a)

X N

YN

Loop unrolling

c=>
Vdd = 5V
Throughput = 1 X
Power = IX

X N•1

c_'" '"""'~'OO D (b) replication, distributivity,
and constant propagation

YN X N

Pipe lining
K

¢=:J
Vdd = 3.7V
Throughput = 1 X
Power = O.BX

XN·14---------.(

(d) (c)

Figure 5.1. Using transformations to enable supply voltage reduction [3]

throughput and power are indicated in Figure 5,J(a) as IX and IX, respectively.

None of the simple transformations is applicable directly to the DFG shown in

Figure 5.J(a). Applying loop unrolling results in the DFG shown in Figure 5.J(b),

which has the same performance and power characteristics. However, loop un­

rolling enables us to apply other transformations, such as common subexpression

replication, distributivity, and constant propagation, resulting in the DFG shown

in Figure 5.J(c). The critical path for the DFG of Figure 5.J(c) has three clock

cycles for computing two output samples, which is less than the original critical

HIGH-LEVEL SYNTHESIS FOR LOW POWER 119

path of two clock cycles per output sample. Exploiting this performance slack,

the supply voltage can be reduced to 3.7V while maintaining the throughput of

the original design. However, the switched capacitance per sample period for the

DFG in Figure 5.I(c) is higher than the original design, due to an increase in

the number of operations. In effect, the normalized power of the implementation

of the DFG shown in Figure 5.I(c) is O.8X. Applying pipelining to the DFG of

Figure 5.I(c) results in the DFG of Figure 5. 1 (d), which has a critical path of two

cycles for the computation of two output samples. As a result, the supply voltage

can be further reduced to 2.9V, resulting in a normalized power ofO.5X for the

implementation of the DFG shown in Figure 5.1 (c) at the same performance as the

original design.

5.1.2 Minimizing switched capacitance

It is also possible to reduce switched capacitance using one or more of the following

behavioral transformations.

• Reducing the number of operations required.

• Replacing high power consuming operations (such as multiplications) with

less power consuming operations (such as shift-and-add operations).

• Architecture re-structuring to reduce zero-delay activity at intermediate vari­

ables.

• Architectural path balancing to reduce glitching activity.

• Word-length reduction.

The application of transformations to reduce switched capacitance is illustrated

through the following examples.

Example 5.2 Consider the computation of the expression X2 + A.X + B. The

straightforward DFG that performs the computation, which is shown in Fig­

ure 5.2(a), requires two multiplications and two additions, and has a critical

120 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

X A

X c=>X
A

X
B B

X

(a) (b)

Figure 5.2. Minimizing switched capacitance by reducing the number of operations in the

DFG[3]

path of three clock cycles assuming each operation requires one clock cycle. By

applying the distributivity transformation, the expression can be re-written as

(A + X).X + B, and is represented by the DFG shown in Figure 5.2(b). The

transformed DFG requires one less multiplication than the original DFG, and has

the same critical path, leading to a significant savings in power consumption.

Example 5.3 Consider the DFG for complex number multiplication that is shown

in Figure 5.3(a). Xr and Xi represent the real and imaginary components of

the complex number X. A is a constant complex number whose real and imag­

inary components are Ar and Ai, respectively. The original DFG contains four

multiplications, one addition. and one subtraction. and requires two clock cycles

assuming each operation requires one clock cycle to execute. The application

of distributivity. common subexpression elimination, and constant propagation in

an appropriate sequence. results in the DFG shown in Figure 5.3 that contains

one more addition, but one less multiplication. Hence, a multiplication has been

replaced with an addition. which is less power consuming.

The following example shows how the computation structure of an algorithm

can be re-organized so as to minimize the word length of some of the variables and

operations involved, leading to a reduction in power consumption.

HIGH-LEVEL SYNTHESIS FOR LOW POWER 121

Xr

xr~ Ar

Ai - Ar * X;
Yr

Xr + Yi

Ai c:==> X;
Xr

Ar

X;
Yr

Ai

X;
Yi

Ai + Ar

Ar

(a) (b)

Figure 5.3. Minimizing switched capacitance by strength reduction [3]

Example 5.4 Consider an N -tap Finite Impulse Response (FIR) filter, that com­

putes the following expression.

N-I
y

J L{Pdj (5.2)
k=O

Ck.Xj-k

where Ck are constants that represent the coefficients of the filter, Xj represents

the input value at discrete time instant j, and Yj represents the output value at time

j. The DFG for the straightforward implementation of the above equation, called

the direct form, is shown in Figure 5.4(a).

Consider the expression for }j+ 1 that is given by the following equation.

N-I

L {Pk}j+I
k=O

Ck.Xj-k+1

122 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

Vi

(a) (b)

Figure 5.4. Using differential coefficients to minimize word-length of multiplication opera­

tions [4]

Each product term, {Pdj+l, except the first one (Co,Xj+IJ, can be re-written as

follows.

The second term (Ck - Ck-IJ is the first-order difference between consecutive

coefficients, and is represented as dk - 1/ k . In addition, note that the first term in

the above equation can be expressed in terms of the product terms involved in the

computation of the previous output sample, Yj, as shown below.

Ck.Xj-k, for k = 0 to N - 2,

{Pd j, for k = 0 to N - 2

Thus, the first N - 1 product terms that are used to compute }j can be stored and

re-used to compute Yj+l, along with the first-order difference terms.

The DFG for the implementation of the FIR filter that uses the first-order

difference terms is shown in Figure 5.4(b). Note that the implementation of Fig­

ure 5.4(b) requires the same number of multiplications, N more additions, and

N more delay (storage) units, as compared to the direct form implementation of

HIGH-LEVEL SYNTHESIS FOR LOW POWER 123

Figure 5A(a). However, it is often the case in practice that the magnitudes of the

differences between successive coefficients are much smaller that the magnitudes of

the coefficients themselves. As a result, the word lengths of the constant operands

in the multiplications of Figure 5A(b) are significantly smaller than those in Fig­

ure 5A(a). This leads to a significant decrease in the power consumed to compute

the multiplications, which often outweighs the aforementioned overheads, leading

to power savings [4]. The above technique can be generalized to use higher-order

differences to implement FIR filter computations, as described in [4].

The previous examples in this subsection explored the effects of behavioral

transformations on the number and types of operations required to perform the
given computation. Behavioral transformations also impact the signal statistics of

the intermediate variables involved in the computation, which can be exploited to

minimize switching activity and hence reduce power. The application of commu­

tativity and associativity transformations to minimize the switching activity of the

variables in linear DSP circuits is presented in [5]. For parallel implementations in

which no resource sharing is performed, a reduction in switching activity in DFG
variables directly translates to a reduction in switching activity in the registers

and inputs of functional units in the RTL implementation. While parallel imple­
mentations of DFGs may, in general, be inefficient, many linear DSP circuits are

implemented without resource sharing in order to use bit-serial implementations

or to enable highly pipelined designs.

In order to explore the effect of transforming the DFG structure, let us study

the average activities at intermediate variables generated by the two common
types of operations present in linear DSP circuits - constant multiplication and

addition operations. Consider a constant multiplier, which multiplies an m-bit data

value X by an m-bit constant A (X and A are represented in two's complement

form). Applying random input sequences at X and observing the average switching

activity per bit at the multiplier output for various values of A ranging from 0.0
to 1.0 results in the graph shown in Figure 5.5. As expected, when the constant

value is 0, there is no activity at the output of the multiplier. As the magnitude of

124 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

0.60.-------------,

.-----------10.50

o~--~-----~--~. o 0.50 1.0
Multiplier coefficient

Figure 5.5. Average switching activity at the output of a constant multiplier vs. constant

value [5]

the constant increases, the activity at the multiplier output increases, and becomes

equal to the switching activity at X when the constant becomes 1.0. A similar
trend is observed as the value of the constant is decreased from 0 to -1.0.

Next, consider an adder which adds two m-bit data values Xl and X 2 . As­

suming that X I and X 2 are random and uncorrelated, the variation of the average
switching activity (Sw_act(Y) at the adder output Y as a function of the input

switching activities (Sw_act(Xd and Sw_act(X2) can be shown to closely obey
the following relationship [5].

(5.3)

Example 5.5 Consider the computation of a weighted linear expression, that forms

the basis of all linear time-invariant signal processing systems.

n

Y = LAi.Xi (5.4)
i=l

A1 = 0.28 tmps
A2 = 0.91
A3 = 0.30
A4 = 0.91 y

(a)

HIGH-LEVEL SYNTHESIS FOR LOW POWER 125

tmP6 Sw_act(tmP1) = 0.254 tmP5
Sw_act(tmP2) = 0.385
Sw_act(tmP3) = 0.257
Sw_act(tmP4) = 0.385 y

(b)

Figure 5.6. Minimizing switching activity using transformations

In particular, let us consider the case where n = 4. One possible DFG for such a

computation is shown in Figure 5.6(a). The DFG is annotated with the values of

the various constants, and the average switching activities per bit at the variables

that represent the results of the constant multiplications. Utilizing the observation

described earlier about the activities at the outputs of adders, we can conclude

that the switching activities at the remaining variables in the DFG are as follows:

Sw...act(tmps)

Sw...act(tmp6)

Sw_act(Y)

max(Sw...act(tmpd, Sw..act(tmp2)) = 0.385

max(Sw...act(tmp3), Sw..act(tmp4)) = 0.385

max(Sw...act(tmps) , Sw..act(tmp6)) = 0.385

(5.5)

Now, consider the transformed DFG structure shown in Figure 5.6(b). The

computation tree has been re-structured so that the constants of the constant

multipliers are in increasing order from left to right in the figure. We compute the

activities at the remaining variables of the DFG asfollows.

Sw..act(tmps)

Sw...act(tmp6)

max(Sw..act(tmpd, Sw..act(tmp3)) = 0.257

max(Sw...act(tmp2) , Sw..act(tmp4)) = 0.385

126 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

(5.6)

It can be seen that the switching activity at intermediate variable tmps is

smaller in case of the DFGofFigure 5.6(b) than in case of the DFGofFigure 5.6(a),

and the switching activities of all other variables are equal.

y

Figure 5.7. Activity reduction in a linear chain [5J

The observations of the above example can be generalized as follows.

• Consider a balanced computation tree with n inputs that computes the expres­

sion shown in Equation (5.4). The average switching activity over all inter­

mediate variables is minimized if Al ~ A2 ... ~ An or Al ~ A2 ... ~ An·

• Consider a serial chain, shown in Figure 5.7 that computes the expression

shown in Equation (5.4). The average switching activity over all intermediate

variables is minimized if Al ~ A 2 . . . ~ An.

5.2 MODULE SELECTION

Module selection refers to the process of mapping operations from the CDFG

to component templates from the RTL library. Note that only a functional unit

template, and not a specific instance, is associated with each operation. For

example, an addition operation may be implemented using a ripple-carry adder,

HIGH-LEVEL SYNTHESIS FOR LOW POWER 127

carry-Iookahead adder, carry-select adder, etc. Each distinct implementation for the

same operation may have different area, delay, and power characteristics [116, 117].

For example, a ripple-carry adder is slower but more switched capacitance efficient,

while a carry-Iookahead adder is faster but incurs higher switched capacitance.

Similar trade-offs exist for other functional units and RTL components. These

trade-offs could be exploited during the module selection process, by considering

power together with area and delay constraints as co-objectives, as shown by the

following example.

RTL COMPONENT LIBRARY

Area ~ 2744
Delay ~ 3On$
Power _ 1199uW

~.
~ : ·4- 0
• . L~ADQ , WAl ULT

Area ~ 3959 Area - 18443
Delay _ 20n$ Delay - 40ns
Power _ 1467uW Power ~ 23545uW

(a)

,I

1 +1 .1
Cn~cal
paths

1 ~i
2~ *

./
+ +

2

T

(b) (c)

Figure 5.8. Minimizing power consumption through module selection

Example 5.6 Consider the RTL component library shown in Figure 5.8(a), and

the DFG shown in Figure 5.8(b). Each operation in the DFG of Figure 5.8(b)

has been mapped to the fastest functional unit template available in the library as

indicated by the shading, in order to meet the specified performance constraint of

85ns. However, not all the operations of the DFG need to be mapped to the fastest

128 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

possible functional units. In particular, it is sufficient to map operations on critical

paths in the DFG, which are indicated in Figure S.8(b), to fast functional units.

The slack available for the off-critical-path operations can be exploited to use

slower functional units, which also tend to be more switched capacitance efficient.

Figure S.8(c) shows such a mapping, where operation *3 has been mapped to a

slower multiplier template, that consumes less energy per multiplication.

The availability of a diverse module library, in which several implementation

choices exist for each RTL component, is critical in obtaining maximal power

reductions. Techniques and algorithms to perform module selection to minimize

power consumption are provided in [28,29, 30]. It should be noted that while the

above example illustrated the effect of module selection on switched capacitance,

module selection also affects opportunities for supply voltage scaling. The use of

faster functional units may lead to an implementation that exceeds the required

performance, and the resulting slack can be used to reduce power by scaling the

supply voltage.

Using multiple supply voltages during high-level synthesis

The use of multiple supply voltages is a promising technique to obtain low
power implementations at reduced performance overheads. This idea has been

exploited at the logic level by identifying off-critical-path sub-circuits that can be

operated at a lower supply voltage [118]. In the context of high-level synthesis, one

way to utilize multiple supply voltages is to have an RTL component library that

contains multiple versions of each component corresponding to different supply

voltages. Voltage level converters may be required to communicate between logic

blocks that operate at different voltage levels. The module selection process can

be extended to assign each CDFG operation to a library component template and a

specific supply voltage, and insert the necessary level converters during the process.

The delay models used during scheduling need to be sensitive to the dependence of

delay on supply voltage, and the resource sharing process needs to be constrained

HIGH-LEVEL SYNTHESIS FOR LOW POWER 129

to disallow sharing of a functional unit for operations that are assigned to different

supply voltages.

Figure 5.9. Using multiple supply voltages to minimize power

Example 5.7 Consider the DFG shown in Figure 5.9. The off-critical-path oper­

ation, *3, has been assigned to afunctional unit template that operates at a lower

supply voltage (3.3V) than the rest of the DFG. A level conversion operation is

inserted into the DFG to convert the result of *3 to the higher logic level. The

level conversion operation can either be implemented using a separate level con­

verter circuit such as a differential cascode voltage switch (DCVS) gate, or can be

integrated into a register to reduce its overhead [118}.

Various algorithms to perform supply voltage assignment and level converter

insertion together with module selection and scheduling, to minimize power given

performance constraints, are presented in [29, 33, 34,35].

5.3 RESOURCE SHARING

Resource sharing refers to the process of mapping the operations and variables

in the CDFG to specific structural entities such as functional units and registers,

130 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

and defining interconnection among the functional units and registers, to form

the RTL implementation. Since the resource sharing process provides the map­

ping from a design's functionality to its structure, it directly impacts the power

consumption by determining the switching activity at various signals, as well as

the physical capacitance of the macroblocks, buses, and wires that constitute the

implementation.

--\-/---\-/-----------_.
I --. *1-- *2'­
T
E
R
A

_____ "\1~-by----------------
+11

~~I
o
N . *3

1\,C1 d1/
-·-------------------~~--~:I--

+21

-fl

--\--/----\---/-----------
I --- *1 ------ *2 .------------­
T
E
R
A
T
I
o

\~ b2/ -------\-:]------------------
+12

-----------~-~-l-----------

N ---------------- *3 ----

2 ~2 d2/
-------------- .. -·---~-~-~l-----

+22
------------------------:r---------

12+

Figure 5.10. Effect of resource sharing on the switching activity in a shared resource (6)

HIGH-LEVEL SYNTHESIS FOR LOW POWER 131

5.3.1 Exploiting signal correlations to reduce switched capacitance

Resource sharing results in values of variables in the behavioral description being

time-multiplexed in the registers of the RTL implementation. Similarly, the values

that appear at input operands of operations are time-multiplexed to appear at

the inputs of functional units, and the values required to be transferred between

functional units and registers are sequenced to appear on the interconnect units,

such as buses and multiplexers, that connect them. Hence, the word-level temporal

correlations of the values that appear at various data path signals are determined

by the correlations among variables and input operands of operations that are

grouped together during resource sharing [6, 83,102,119,120, 121]. These word­

level temporal correlations in tum determine the bit-level switching activities at

the signals in the RTL circuit, as explained in Chapter 3, and hence the power

consumption in the various RTL circuit components.

Example 5.8 Consider the DFG shown in Figure 5.10. In particular. let usfocus

on the two addition operations, + 1 and + 2 that share the same adder in the RTL

implementation. Two consecutive iterations of the DFG are shown in Figure 5.10.

The sequence of operations performed by the adder is +11, +210 +lz. +22, ... ,

where the subscripts stand for the iteration number. Hence, the values seen at

the adder inputs are (aI, b1), (Cl, d1), (a2, b2), (C2' d2), ... , where aj is the value

taken on by variable a in the ith iteration of the CDFG, and so on. The switching

activity at the adder inputs is determined by:

• Intra-iteration effects: The Hamming distance between the values of al and

Cl (also b1 and dtJ in the first iteration, and a2 and C2 (also b2 and d2) in the

second iteration .

• Inter-iteration effects: The Hamming distance between the values of Cl and

a2 (also d1 and b2).

It is possible to exploit correlations between variables in the behavioral descrip­

tion to minimize the switched capacitance in the RTL implementation. Correlations

132 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

may exist between variables in a behavioral description as a result of one or more

of the following factors:

• Several applications, such as DSP applications are characterized by slow­

varying inputs, i.e. the inputs are highly temporally self-correlated, leading to

several internal variables being temporally correlated as well. These temporal

correlations are typically inter-iteration correlations. In [3], it is pointed out

that for such applications, an architecture with little or no hardware sharing

may be better than a highly hardware shared one because hardware sharing

could destroy these temporal correlations and create a lot of switching activity.

• The values of different variables in the same iteration may be correlated due

to re-convergent fanout in the CDFG.

• The value assumed by an input in an iteration may be correlated with the
value assumed by other inputs in the same iteration. For example, in high­

quality audio applications, one might have different correlated sound tracks

fed to different speakers to create a surround-sound effect.

• The functional relationship between the signals that is imposed by the com­
putation may lead to correlation. For example, the variable that represents

the result of an operation may be correlated with the variables that represent
the input operands to the operation. This is illustrated in Table 5.1, which

shows the bit-level correlation between one input operand and the output of

the operation, for various types of operations and a bit-width of 4.

Table 5.1. Bit-level correlations between input and output values of operations

op + * AND I OR I

I correlation I 0.500 I 0.617 I 0.75 I 0.75 I

HIGH-LEVEL SYNTHESIS FOR LOW POWER 133

Various resource sharing algorithms that exploit the observations presented in

this subsection to minimize switched capacitance, and hence power, are presented

in [6, 83, 102, 119, 120, 121].

5.3.2 Exploiting regularity to minimize interconnect power

The previous subsection described the effect of resource sharing on switched

capacitance in the functional units and registers of the RTL implementation. In

addition, the process of resource sharing also maps the communication patterns

of the CDFG into interconnections among functional units and registers through

multiplexers and/or buses in the data path. Ignoring the interconnect power during
resource sharing may lead to architectures that consume a lot of interconnect

power. This effect is amplified as interconnect begins to dominate the area, delay,

and power of circuits in deep submicron technologies.

Regularity in an algorithm refers to the repeated occurrence of computational

patterns within it. One way to detect such computational patterns is using the

notion of E-templates introduced in [7]. An E-template is a pattern that consists of

a pair of CDFG nodes, characterized by their types, connected by an edge. Some

examples of E-templates are: mult -+ add. left (a multiply operation that feeds
the left input of an add operation), mult -+ add. right, add -+ add. right, etc. An

instance of an E-template in a CDFG is called an E-instance.

Regularity can be exploited to reduce interconnect power by detecting instances

of repetitive patterns in the computation, and performing resource sharing in a

manner such that the same interconnect structure in the data path is re-used for as

many instances of the computation patterns as possible. This leads to a reduction

in the interconnect requirements of the architecture, as illustrated by the following

example.

Example 5.9 Consider the set ofE-instancesfor part of a DFG that is shown in Fig­

ure 5.11. The figure shows two different assignments that have the same resource

requirements with respect to the operations shown. In the case of Figure 5.ll(a),

134 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

~~LTl

AD~ .. · ..
~~LTl

AD~~
~~LTl
AD~_
---..~ ~FTl
A~

~SH~FTl

A~~

1

(a)

~~LTl

AD~ __

~~LTl

AD~~
~~LT1

AD~_:~}-~,_<_ ...

~
HIFTl

---.. »
ADD2 +

~SHlFTl

AD~8~

(b)

Figure 5.11. Exploiting regularity to minimize interconnect power: (a) non-regular assign­

ment, and (b) regular assignment [7]

resource sharing was performed without regard to preserving the regularity of the

algorithm. The output of each adder needs to communicate with the left input of

the multiplier as well as the left input of the shifter, requiring multiplexers at the

multiplier and shifter inputs. On the other hand, in the case of Figure 5.11(b),

resource sharing was performed while trying to assign the operations of all the

instances of the add -+ mult.left E-template to the same adder and multiplier.

This results in fewer multiplexers andfanouts at the outputs of the adders, leading

to a reduction in interconnect power.

HIGH-LEVEL SYNTHESIS FOR LOW POWER 135

A resource sharing algorithm to exploit regularity is presented in [7], that is

based on assigning E-templates as a whole (as opposed to individual operations) in

order to minimize the number and size of multiplexers and buses, and the fan outs

of wires or nets in the RTL implementation.

5.4 SCHEDULING

Scheduling refers to the process of assigning operations in the behavioral de­

scription to control steps or controller states in which they execute. Scheduling

determines the cycle-by-cycle behavior of the design. In addition, operations

(variables) that are active in the same control step must be assigned to different

functional units (registers). Hence, resource sharing possibilities depend on the

results of the scheduling process. Scheduling techniques can be divided into two
large classes - resource-constrained scheduling, where a fixed set of resources is

utilized during scheduling, and time-constrained scheduling where some metric of

the performance of the design, e.g. the number of clock cycles required to per­

form the computation, is fixed. In addition, scheduling techniques also require the

specification of a value for the system clock period. The choice of clock period
can significantly affect the results of scheduling. Multicycling refers to the use

of multiple cycles to execute an operation when the delay of the functional unit

template it is assigned to is larger than the clock period. Chaining refers to the

complementary situation where multiple operations with data dependencies are

scheduled in a single control step, because the clock period is large enough to

permit us to do so. The determination of an appropriate clock period to use during

scheduling is in itself an important high-level synthesis subtask [48].

The effect of scheduling on average power consumption is complex, and related

to the other high-level synthesis subtasks, including module selection and resource

sharing, as explained below.

• Scheduling determines the sequence in which the various operations of the

behavioral description are performed, and also dictates which operations and

136 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

variables can share the same functional units and registers. Thus, scheduling

can be used to enable resource sharing for low power by ensuring that cor­

related variables and operations with correlated operands are appropriately

sequenced so that they can share the same resources [30, lO2, 119] (see

Subsection 5.3.1).

• Scheduling can be performed so as to enable maximum resource sharing be­

tween operations that belong to instances of the same computational pattern,

resulting in maximal exploitation of regularity during resource sharing (see

Subsection 5.3.2).

• Scheduling can be used to distribute the slacks or mobilities of various oper­

ations in the DFG appropriately so that some operations may be performed

using slower, more energy-efficient functional units. Thus, scheduling has an
impact on the power trade-offs through module selection (see Section 5.2).

5.4.1 Effect of scheduling on peak power consumption

Scheduling determines the distribution of operations over time, and hence affects
the profile of the power consumption in the implementation over time (control steps

or clock cycles). As explained in Chapter 2, reducing peak power is important

due to packaging, cooling, and reliability considerations. The following example
illustrates the effect of scheduling on peak power.

Example 5.10 Consider the scheduled DFG shown in Figure 5.12(a). Assuming

a constant power per operation model for simplicity, the profile of the power

consumption requirements of the functional units is shown in the bar graph of

Figure 5.12(a). The peak power consumption occurs in the first clock cycle, 81.

due to the simultaneous computation of the three multiplication operations.

Figure 5.12(b) shows an alternative schedule where the slack for multiply

operation *3 has been utilized to move it to the second control step, 82. The

resulting power profile, which is also shown in Figure 5.12(b), indicates that the

HIGH-LEVEL SYNTHESIS FOR LOW POWER 137

----\.-=/.-----;-------------. ~ *2
: +1 \ s2 Q.

------------~-~~-- ------------- *1

: +2 ' 53 1-+7"1"'-'-+2-'

-----------------r---------------· 81 s2 53
CLOCK CYCLE

-\:;/---\j--------------
*1 *2 81

----\:-:/----\j----_.
*3 52

+1

----------~-:/:--------.

+2 s3

-----------------r---------------·

(~ ~)

Sl s2 s3
CLOCK CYCLE

Figure 5.12. Effect of scheduling on peak power consumption

peak power requirement of this schedule is significantly smaller than the peak

power requirement of the schedule shown in Figure 5. 12 (a).

Scheduling techniques to minimize and satisfy constraints on the peak power

consumption are described in [29]. Other high-level synthesis tasks, such as module

selection and transformations also have an impact on peak power consumption.

However, their effect has not yet been studied in detail.

5.4.2 Effect of clock period selection on power

Scheduling techniques can be employed with a target clock period for the imple­

mentation. The choice of the clock period used during scheduling affects power

consumption directly and indirectly in the following ways.

• Larger values of the clock period lead to schedules with more functional unit

chaining. Since the outputs of functional units can be highly glitchy, this

leads to a significant increase in glitching power consumption.

• Larger values of the clock period may lead to a design that requires fewer

clock cycles to process each input. This means that the clock distribution

138 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

.. ;
o
D..

I Total
/

... ---~

/

,,/

/ Logic

Clock network,
registers

Clock period selected for scheduling

Figure 5.13. Effect of varying the clock period on power consumption

network needs to be charged and discharged fewer times, leading to smaller

power consumption in the clock network and registers.

• Larger clock periods may lead to implementations with smaller controllers
(due to fewer states and state transitions), and hence a reduction in controller
power.

• The increased functional unit chaining that results from larger clock period

values serves to inhibit functional unit sharing, which may sometimes lead
to larger and more power consuming data paths.

• Larger clock period values may result in higher clock slacks due to granular­
ityeffects [48], potentially requiring faster, but more switched-capacitance­

hungry, functional units to meet the same performance or inhibiting the

application of supply voltage scaling.

HIGH-LEVEL SYNTHESIS FOR LOW POWER 139

Some of the above trade-offs are illustrated graphically in Figure 5.13, which

shows the variation of the logic, clock network and register, and total power

consumption in a typical RTL implementation as a function of the clock period used
during scheduling. For large clock periods, the large glitching power consumption

in the logic due to the excessive use of resource chaining dominates the logic

power. As the clock period is decreased, glitching power decreases, however

the clock distribution network and register power increases. At very low clock

periods, the increase in clock and register power outweighs the savings in the logic

power consumption. The effects of this trade-off can be explored at the logic level

using retiming and pipelining [122, 123]. In order to explore this trade-off during

high-level synthesis, accurate power estimation techniques for the clock network,
data path, control logic, and registers, such as those presented in Chapter 3, are

required.

5.5 SUPPLY VOLTAGE VS. SWITCHED
CAPACITANCE TRADE-OFFS

Most of the techniques presented in this chapter deal with the optimization of

switched capacitance and supply voltage separately. In general, the optimiz.ations

of switched capacitance and supply voltage are strongly correlated, leading to a
switched capacitance vs. supply voltage trade-off. Some of the factors behind this

trade-off are as follows.

• The use of performance optimizing transformations to enable supply voltage

scaling may lead to an increase in the number of operations, or the use of

more energy consuming operations.

• Faster library components, which are used to implement operations on the

critical paths of the DFG in order to enable supply voltage reduction, incur

higher switched capacitance.

140 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

• Exploitation of concurrency to reduce the supply voltage inhibits resource

sharing, and may lead to larger clock networks (due to larger chip area) which

implies an increase in the switched capacitance of the clock network.

The supply voltage vs. switched capacitance trade-off is illustrated by the

following example.

Example 5.11 Figure 5. 14(a) shows an example DFG which represents the com­

putation of the dot product of two vectors in the Cartesian form. The operations

have been mapped to the fastest available functional units. The DFG in Fig­

ure 5.14(a) is annotated with the scheduling and resource sharing information,

using dashed lines to indicate clock edges or control step boundaries, and dashed

ellipses to group operations that share the same functional units. Suppose the

Al 81 A2 82

- - - ---- - - - - ------- - - ------- 0>

30ns

-- 2

--3

, \ --- ------------------...... ---r------------ 6i

Supply voltage = 4.5V -_.J
Sw. cap. per iteratior = 1050.3pF OUT

Energy per iteration = 21269pJ

(a) (b)

Figure 5.14. Supply voltage vs. switched capacitance trade-off

HIGH-LEVEL SYNTHESIS FOR LOW POWER 141

performance constraint required is that each iteration of the DFG be completed

in 200ns. The schedule shown in Figure 5.14(a) completes in 30 * 5 = 150ns.

Since the schedule completes faster than required by the performance constraint,

the supply voltage can be reduced to 4 V while meeting the performance constraint.

An alternative implementation for the same DFG is shown in Figure 5. 14(b).

Two-stage pipelined multipliers are used to perform the multiplications and the

schedule is increased by one control step. As a result, the number of multipliers

required is reduced to two. The multiplication operations in Figure 5.14(b) have

been shaded to indicate the multiplier they are assigned to. The schedule shown

in Figure 5. 14(b) completes in 30 * 6 = 180ns. Based on the same sample period

constraint as before, the supply voltage can be reduced to 4.5 V.

Based on a comparison of the supply voltage, the implementation of Fig­

ure 5.14(a) appears to be better since it can be run at a lower supply voltage.

However, also considering the effect of switched capacitance changes the scenario.

The switched capacitance per DFG iteration for the architectures corresponding

to Figures 5.14(a) and 5. 14(b) (obtained from complete layouts of both the archi­

tectures using a 1.211 process, a switch-level simulator and pseudo-random input

sequences) are 1468.94pj and 1050.30pj, respectively. Using the switched ca­

pacitance and supply voltage numbers, the energy consumed per iteration for the

architectures of Figures 5. 14(a) and 5. 14(b) can be computed to be 23503pJ and

21269pJ, respectively. Consequently, the architecture derivedfrom Figure 5. 14(b)

has a lower power consumption, though it uses a higher supply voltage, since it

has lower switched capacitance.

As illustrated by the previous example, it is important to consider the effects

of the different high-level synthesis subtasks on both supply voltage and switched

capacitance in order to truly minimize power consumption. High-level synthesis

optimizations that simultaneously consider the effects on both switched capacitance

and supply voltage are presented in [30, 32].

142 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

5.6 OPTIMIZING MEMORY POWER CONSUMPTION
DURING HIGH-LEVEL SYNTHESIS

The power requirements of many applications, including several multimedia and

telecommunication applications, are dominated by the power consumed by storing

and retrieving data from memories. The high-level synthesis process maps arrays

in the behavioral description to physical on-chip or off-chip memories in the

implementation, and synthesizes circuitry, where necessary, to generate addresses

to access the memories. Power trade-offs involved during this process include the

following.

• Applying loop transformations to reduce the number of memory accesses and

required memory capacities (e.g. loop reordering, loop merging, nested loop

interchange, etc.) [8].

• Determining the number, types, and capacities of physical memories to
use in the implementation (e.g. shared vs. distributed memories, single-port

vs. mUlti-port memories, etc.) [124, 125].

• Defining memory hierarchies [126].

• Mapping of the arrays in the behavioral description to the physical mem­

ories, and assigning ports through which they are accessed in the case of

multiport memories (e.g. row-major mapping vs. column-major mapping,

array interleaving, etc.) [9, 127, 128].

Some of the above trade-offs are illustrated through examples below.

Example 5.12 This example illustrates how loop transformations can be used to

reduce the number of memory accesses required, and also the memory size. Con­

sider the pseudocode shown in Figure 5.15(a) that represents part of a behavioral

description that uses three arrays A, B, and C, of size N. Further, let us assume

that array B is not used anywhere else in the behavioral description. Since the

HIGH-LEVEL SYNTHESIS FOR LOW POWER 143

FOR (! := 1 TO H) DO FOR (! :- 1 TO H) DO FOR (! :~ 1 TO H) DO

B[!] := f(A[!]) ; FOR (! := 1 TO H) DO B[!] := t(A[!]); D := g(C[!],D);

END; B[!] := teAt!]); END; END;
FOR (! := 1 TO H) DO C[!] := g(B[!]); FOR (! := 1 TO H) DO FOR (! := 1 to H) DO

C[!] := g(B[!]); END; D := g(C[!],D); B[!] := fIAt!]);
END; END; END;

(a) (b) (c) (d)

Figure 5.15. Loop transformations for optimizing memory size and number of memory

accesses [8]

two loops have similar iteration patterns, they can be merged, as shown in the

pseudocode of Figure 5.I5(b). As a result of this transformation, the value of each

of the entries of array B is used immediately after it is generated. Hence, we do

not require any memory storage for array B; a register is used to store the required

value and its contents are used immediately. The number of memory accesses is

also reduced by 2 * N, since the generation and use of the entries of array B no

longer correspond to memory accesses.

Next, consider the partial behavioral description given by the pseudocode in

Figure 5.I5(c). Assume that A and B are used in the behavioral description after

the loops shown in the figure, and that C is not used later. In this case, we require

separate physical memory locations for arrays A, B, and C. The loops can be

re-ordered, as shown in the pseudocode of Figure 5.I5(d). The benefit of this

transformation is that array B can use the same physical memory locations as

array C, reducing the size of the physical memory required.

Example 5.13 This example illustrates the effect of mapping arrays to physical

memory locations on the power consumption in the memory address bus circuitry.

This optimization is especially important when the memory resides off-chip, incur-

144 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

FOR (i - 0 to 2) DO
c[i] :- a[i] + b[iJ;

END;

(a)

II:
LU
-'
-' o
II:
I­
Z
o
()

DATA PATH
Data

Address
generator

Address

(b)

0
1
2

>- 3
II:
0 4
::2;

5 LU
::2; 6

7

8

a[O]

a[l]

a[2]

b[O]

b[l]

b[2]

c[O]

c[l]

c[2]

(e)

o
1

2

3

4

5
6

7

8

a[O]

b[O]

a [1]

c[O]

b[2]

a[2]

b[l]

c [1]

c[2]

(d)

Figure 5.16. Mapping arrays to memories in order to minimize transitions on the address

bus [9]

ring power consumption in I/O drivers and large off-chip bus capacitances when

it is accessed. Consider the partial behavioral description that is given in Fig­

ure 5.16(a) that uses three arrays a, b, and e of size three. The sequence in which

the array elements are accessed is (a[O], b[O], e[O] , a[l], b[l], e[l], a[2], b[2], e[2]).
The architectural template of the RTL implementation is shown in Figure 5.16(b).

The implementation consists of a controller, a data path that contains address gen­

eration circuitry that generates the values to be written onto the memory address

bus, and the memory. Consider two candidate mappings of the arrays a, b, and e

to physical memory locations. In the case of sequential mapping, which is shown

in Figure 5.16(c), the sequence of values appearing on the memory address bus is

(0,3,6, 1,4,7,2,5,8). This results in a total of 19 transitions on the address bus,

assuming that no address bus encoding scheme is employed. On the other hand, in

the case of the mapping shown in Figure 5.16(d), the memory address bus sequence

is (0, 1,3,2,6,7,5, 4,8), which results in a total of9 transitions. Similar savings

can be achieved even when Gray code addressing is employed for the memory

address bus [9 J.

HIGH-LEVEL SYNTHESIS FOR LOW POWER 145

5.7 REDUCING GLITCHING POWER CONSUMPTION
DURING HIGH-LEVEL DESIGN

As shown in Chapter 3, glitching accounts for a significant portion of the total

power consumption, making it important to consider the effects of glitching power

while performing high-level trade-offs. For example, the extent of resource chain­

ing permitted during scheduling affects the glitching power in the data path as

mentioned in Section 5.4.2. However, a reasonably accurate analysis of glitching

power, using techniques such as those presented in Chapter 3 requires a knowledge

of some details about the circuit structure. The structural details of rhe RTL circuit

are available during the later steps of the high-level synthes:.; ~ow, e.g. during

or after resource sharing. However, complete details about the structure, e.g. the

decomposition of large multiplexers into trees of smaller (e.g. 2-to-l) multiplexers

may not be available. Transformations that can be applied to such RTL circuits to

minimize the power consumption due to the generation and propagation of glitches

are presented in [108, 129], including:

• Multiplexer decomposition and multiplexer tree structuring to eliminate the

use of glitchy control signals, and minimize glitch propagation from data and

control signals.

• Selective delay insertion to minimize glitch propagation.

• Using the clock signal to suppress glitchy transitions

• Architectural delay balancing using buffers and transparent latches.

The following example illustrates how ignoring glitches can be misleading and

result in designs that are sub-optimal in terms of their power consumption.

Example 5.14 Consider the two RTL architectures shown in Figures 5.17(a)

and 5. 17(b). Both architectures implement the simplefunction: if (x < y) then

z = c + d else z = a + b. ARCHITECTURE 2 uses more resources than AR­

CHITECTURE 1 since the former uses two adders as opposed to one adder for the

146 HIGH·LEVEL POWER ANALYSIS AND OPTIMIZATION

latter. Based on the number of operations performed, a metric that is commonly

used to estimate power consumption at the behavior and architecture levels, it seems

that A RCH ITECTU RE 2 would consume more power than ARCH ITECTU RE 1. This

conclusion is supported by power estimation results which do not take glitches into

account. However, when accurate power estimation that also considers glitches

is performed, it turns out that ARCHITECTURE 2 actually cOflSumes 17.7% less

power than ARCIiITECTU RE 1.

x Y
, , , d

•

,
ARCHITECTURE 1

Power Coosumpllon;
Wi1I>O<Jl gI~c~e$: 823.9 uW
WiIh glitches: 1650.2 uW

(a)

, , ,

x Y

,
ARCHITECTURE 2

Power Coosump1ion:
Without gJi1ches: 951.1 uW
W~h glrtd>es: 1357.7 uW

(b)

d

Figure 5.17. Alternative architectures that implement the same function: Effect of glitching

The above observation can be explained asfollows. The comparator generates

glitches at its output though its inputs are glitch-free. In the case of ARCHITEC­

TU RE 1, these glitches then propagate through the two multiplexers to the inputs

of the adder, which causes a significant increase in gtitching activity and hence

power consumption in the two multiplexers and the adder. In ARCH ITECTU RE 2,

HIGH-LEVEL SYNTHESIS FOR LOW POWER 147

though the comparator generates glitches as before, the effect of these glitches is

restricted to the single multiplexer.

The insights obtained from the previous example can be utilized during re­

source sharing when deciding whether or not to share operations whose execution

is dependent on the evaluation of a conditional within the same control step. Shar­

ing such mutually exclusive operations leads to control dependencies, as in the

case of ARCHITECTU RE 1 of Figure 5.17, potentially leading to glitching power

consumption in the shared functional unit.

Multiplexer and control logic transformations for reducing glitching power

As shown in Chapter 3, significant glitching activity can be generated at the

control signals. These glitches can propagate through the other parts of the circuit,
causing significant power dissipation. The following examples illustrate how

to stop glitches on control signals, as close to their source as possible, from

propagating further.

x y

A B

Figure 5.18. Example circuit used to illustrate the effect of data signal correlations on

control signal glitches

148 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

Ai Bi W/OGI. WithGI.
0 0 0.5 0.5
0 1 1.0 3.0
1 0 1.0 3.0
1 1 0.5 3.5

(a)

JUUs C>-__ --f--!

A . D--+--'----tllt--l
I

Ai Bi W/OGI. With GI.
0 0 0.5 0.5
0 1 1.0 3.0
1 0 1.0 3.0
1 1 0.5 0.5

(b)

Figure 5.19. (a) Effect of data correlations on select signal glitches, and (b) use of the

consensus term to reduce glitch propagation

Example 5.15 Consider the circuit shown in Figure 5.IB. A multiplexer selects

between two 8-bit data signals, A and B, depending on whether the expression

X < Y evaluates to True or False. Its output is written into a register. Suppose

that the less-than comparator generates glitches at its output, and that data inputs

to the multiplexer are not glitchy and settle to their final value well before the select

signal settles. The glitches on the select signal of the multiplexer propagate to its

output. In order to study this propagation, consider the gate-level implementation

of a bit-slice of the multiplexer that is shown in Figure 5.19(a). The table shown in

Figure 5.19(a) reports the glitches at the multiplexer output for all possible values

of the data signal bits Ai and B i. In this table, a rising or falling transition is

counted as a half-transition. In the < 0,0 > case, glitches on select signal S are

killed at AN D gates G1 and G2 due to controlling side inputs that arrive early.

When data inputs are < 0, 1 > « 1, 0 », glitches on S propagate through gates

G2 and G3 (G1 and G3). Finally, when data inputs are < 1,1 >, glitches on S

propagate through gates G1 and G2. The output of the multiplexer is glitchy as a

HIGH-LEVEL SYNTHESIS FOR LOW POWER 149

result of the interaction of the glitchy signal waveforms at G1 and G2. The exact

manner in which the waveforms interact depends on the propagation and inertial

delays of the various wires and gates in the implementation. There are many ways

of preventing the propagation of glitches for the < 1, 1 > case. One way is to

add an extra gate Gc, as shown in Figure 5. 19(b). Gc realizes Ai.Bi which is the

consensus of B.Ai and S.Bi. When data inputs are < 1,1 >, Gc effectively kills

any glitches at the other inputs of G3 that arrive after the output of Gc settles to

a 1, as shown in the table of Figure 5.19(b). Maximum benefits are derived from

the addition of the consensus term when the select signal is very glitchy, the data

inputs arrive early compared to the select signal, and the probability of the data

inputs being < 1, 1 > is high.

Note that with the addition of the consensus tenn, glitches do not propagate

from the select signal to the multiplexer output if the data values are correlated

« 0,0 > or < 1, 1 ». The next example shows how to restructure a multiplexer

tree so as to maximize data correlations and hence minimize propagation of glitches

from its select signals.

Example 5.16 Consider the 3-to-1 multiplexer network that is shown in Fig­

ure 5.20(a). Functionally, the multiplexer tree can be thought of as an abstract 3-to-

1 multiplexer, as shown in Figure 5.20(b). The conditions under which OUT PUT,

X and ZERO are selected are represented as GOUTPUT, Cx, and CZERO, re­

spectively. Note that GOUT PUT, C X, and G ZERO must be mutually exclusive. The
cumulative switching activities with and without glitches are shown for various

signals in the figure.

Given the abstract representation of the 3 -to-1 multiplexer network there are

several possible implementations which enhance correlations of the data inputs to

the multiplexers in the tree. For this example, select signal GZERO is observed

to be glitchy, leading to propagation of glitches to the output of the first 2-to-1

multiplexer in Figure 5.20(a). Note that data signals OUT PUT and ZERO are

highly correlated at the bit level. In order to minimize the propagation of glitches

150 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

Data input correlations:
<X,OUTPUT> = 0.76
<X,ZERO> = 0.77
<OUTPUT,ZERO> = 0.99

I

(a)

X ZERO OUTPUT

'<---- Cx

3-to-1 M U X CZERO

.r--- C OUTPUT

\

(e)

Figure 5.20. Multiplexer restructuring to enhance data correlations: (a) initial multiplexer

network, (b) abstract 3-to-1 multiplexer, and (c) restructured network

on C ZERO through the multiplexer tree, the multiplexer tree is transformed to

the implementation shown in Figure 5.20(c), such that the highly correlated data

signals OUT PUT and ZERO become inputs to the first 2-to-1 multiplexer. This

significantly lowers the switching activity at the output of the first 2 -to-1 multiplexer

to 26/20 from 345/20 originally.

The previous examples addressed minimizing glitch propagation from the con­

trol logic. The following examples illustrate techniques to minimize the glitch

propagation from data signals, such as outputs of functional units and multiplex­
ers.

Example 5.17 Consider the example circuit shown in Figure 5.21(a). A 2-to-1

multiplexer selects between the outputs of two adders, and the multiplexer s output

is fed to another adder. This is a situation that occurs commonly in RTL designs

that employ data chaining. The adders feeding the multiplexer generate glitches

even when their inputs are glitch-free, leading to glitch propagation through the

A

HIGH-LEVEL SYNTHESIS FOR LOW POWER 151

B C

I~-------~-----------------------"

o i JllfL GO GI i : s::: ~ G3 :
: ~ G2 :
I Tr \' I

"/ \ \ J
~/ \ \ /

/ _----------1 't-------------
// _- ---- \ \ (b)

,;' -- , \
1 /---- - -------- --' , - ----- -

E / d1 d2 '

OUT

(a)

' ~ ' ' ~ I
: D J
' _- --- - --- --- ---- ----_/

J ~ o d1+d2

L L
o d2

(c)

Figure 5.21. (a) Example circuit, (b) multiplexer bit-slice with selective delays inserted, and

(c) implementation of a rising delay block

multiplexer and then through the third adder, causing significant power dissipation.

A technique called selective delay insertion can be used to cut down the propagation

of glitches through the circuit, as explained next.

Consider the gate-level implementation of a bit-slice of the multiplexer as

shown in Figure 5.2I(b). Both the data inputs to the multiplexer are glitchy.

Consider a pair of consecutive clock cycles ql and q2 such that the select signal

to the multiplexer makes a 1 -+ 0 (falling) transition from ql to q2. If the falling

transition at S is early arriving, there will be an early rising transition at the output

of gate GO that implements S. Consequently, the side input of Gl will become

non-controlling early, allowing the data input gLitches to propagate through Gl.

This propagation can be minimized by ensuring that the side input to Gl remains

controlling as long as possible, which can be achieved by adding a "selective

rising transition delay" to the output of GO (S). Similarly, to minimize glitch

propagation through gate G2 when there is an early rising transition at S, it is

152 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

desirable to delay the rising transition on the fanout branch of 5 that feeds AND

gate G2. The selective rising delay blocks are represented by the shaded ellipses

shown in Figure 5.21(b). A possible implementation of a rising delay block, that

uses one AND gate and a delay element, is shown in Figure 5.21(c). The delay

element is constructed using either a series of buffers or inverters added to the

input. The implementation uses the fact that a falling transition at anyone input

of an AND gate is sufficient to force the output to 0, while, on the other hand, the

latest arriving rising transition among all the inputs will trigger a rising transition

at the output. Under a simplified delay model of d1 ns for the delay block and

d2 ns for the AND gate, it can be seen that a rising transition at the input is delayed

by (d1 + d2) ns, while a falling transition is delayed by only d2 ns. Since d1 is

typically large compared to d2, the slight increase in propagation of glitches due

to the additional delay of d2 ns imparted to the falling transition is far outweighed

by the savings obtained for the case of a rising transition. A selective falling delay

block is similar to the circuit shown in Figure 5.21(c), except that the AND gate

is replaced by an 0 R gate. Note that for an entire m-bit multiplexer, it suffices to

have selective rising delays at the select signal 5 and its complement S. To allow

this low-cost solution, an m-bit selector is used instead of a multiplexer (a selector

implements the function 51 .A + 52 .B). The two select signals (51 and 52) are

generated explicitly outside the selector as 5 and S. Applying the above technique
to the example circuit shown in Figure 5.21(a) results in a 15.4% decrease in

overall power consumption, estimated by a gate-level power simulator using a

technology-mapped netlist. However, in general, it is necessary to consider the

power consumed by the selective delay block itself, the probability of the relevant

transition occurring at the delay block s input, and the impact of inserting the delay

block on the circuit delay.

HIGH-LEVEL SYNTHESIS FOR LOW POWER 153

5.8 CONCLUSIONS

This chapter illustrated the effect of various high-level synthesis subtasks on power

consumption and presented techniques that can be used to minimize power con­

sumption when performing the subtasks, including behavioral transformations,

module selection, clock period selection, resource sharing to exploit data correla­

tions and regularity, scheduling, memory optimizations, and RTL circuit transfor­

mations. These techniques have been demonstrated by several researchers to yield

power savings that are much larger than those attainable using lower-level opti­

mizations. However, most of the techniques are best suited to data-flow intensive

applications, where power consumption is dominated either by the functional units

in the data path or by the memory operations. An important direction of future

work is the development of high-level synthesis for low power techniques that are

applicable to control-flow intensive designs, and designs that contain a significant

mix of data flow and control flow. Another challenge arises due to the fact that the

effects of the various high-level synthesis tasks on power are interdependent. In

order to realize maximal power savings, it is important to come up with a compre­

hensive high-level framework that performs the various optimizations in a coherent

and integrated manner.

6 CONCLUSIONS AND FUTURE
WORK

Power consumption has been elevated to become one of the most important metrics
in the design of electronic circuits and systems, for a variety of reasons that were

discussed in Chapter 1. While significant process technology improvements do

result in large power reductions, they are by no means sufficient to address the

need for low power design. As a result, power analysis and optimization tools

that operate at various levels of the design hierarchy are needed. Most research

and commercial development work to date has focussed on developing power es­

timation and minimization tools at the lower (transistor and logic) levels of the

design hierarchy that offer push-button power savings during the later steps in

a design flow. This book presented power analysis and optimization techniques

for designs represented at the higher (algorithm and architecture) levels of the

design hierarchy. The techniques and results presented in this book demonstrate

155

A. Raghunathan et al., High-Level Power Analysis and Optimization
© Springer Science+Business Media New York 1998

156 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

that various high-level and RTL transfonnations do have a significant impact on

power consumption. Further, it has been shown that efficient exploration of the

design space at the higher levels leads to large power savings, far beyond those that

can be obtained through logic and circuit optimizations. In light of the increasing

importance of power consumption as a design metric, the availability and use of

high-level power analysis and optimization tools will enable the designers to meet
very stringent power constraints, and can lead to fewer and faster design iterations.

Hence, the incorporation of high-level power analysis and optimization method­

ologies and techniques, such as those presented in this book, into commercial EDA

tools is an immediate requirement. Some of the initial work in this direction has

been incorporated into tools such as Watt Watcher from Sente, Inc. that perfonns

architectural power estimation.

There are several related issues of interest that can be explored in the future.

Each of the chapters has outlined some of the specific improvements that could be

made to the techniques presented in this book. Besides such opportunities, there
will be a need in the near future for design tools that support levels of abstrac­

tion that are even higher than those dealt with in this book. Advances in VLSI
process technology has led to the possibility of integration of entire systems, that

hitherto consisted of several chips on a board, onto a single chip. Such systems
typically consist of "embedded" programmable microprocessors running software
that interact with hardware. It is estimated that the market for system-on-a-chip

ASICs will grow from $1.1 billion or 10% of the entire ASIC market in 1996

to $14 billion or 60% of the ASIC market in 2000 (Source: DataQuest, Inc.).

There is currently a large void of design tools and techniques, in general, and
power analysis and optimization tools in particular, to aid system-level design

tasks and decisions, such as partitioning of functionality into hardware and soft­
ware, hardware/software communication strategies, the choice of operating system

and multiprocessing strategies for the software, etc. The study of previously devel­

oped lower-level power analysis and optimization techniques provided significant

insights that helped develop the techniques presented in this book. Similarly, it

CONCLUSIONS AND FUTURE WORK 157

is our hope that the insights and techniques developed in this book will aid in the

development of power-sensitive system-level design tools and methodologies.

REFERENCES

[1] P. Landman and J. M. Rabaey, "Architectural power analysis: The dual bit

type method," IEEE Trans. VLSI Systems, vol. 3, pp. 173-187, June 1995.

[2] L. Benini, A. Bogliolo, M. Favalli, and G. De Micheli, "Regression models

for behavioral power estimation," in Proc. Int. Wkshp. Power & Timing

Modeling, Optimization, and Simulation, 1996.

[3] A. P Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen,

"Optimizing power using transformations," IEEE Trans. Computer-Aided

Design, vol. 14, pp. 12-31, Jan. 1995.

[4] N. Sankarayya, K. Roy, and D. Bhattacharya, "Algorithms for low power

FIR filter realization using differential coefficients," in Proc. Int. Conf. VLSI

Design,pp. 174-178, Jan. 1997.

[5] A. Chatterjee and R. K. Roy, "Synthesis of low power DSP circuits using

activity metrics," in Proc. Int. Conf. VLSI Design, pp. 265-270, Jan. 1994.

[6] A. Raghunathan and N. K. Jha, "Behavioral synthesis for low power," in

Proc. Int. Conf. Computer Design, pp. 318-322, Oct. 1994.

159

160 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

[7] R. Mehra and J. Rabaey, "Exploiting regularity for low-power design," in

Proc. Int. Conj Computer-Aided Design, pp. 166-172, Nov. 1996.

[8] S. Wuytack, F. Catthoor, F. Franssen, L. Nachtergaele, and H. De Man,

"Global communication and memory optimizing transformations for low

power systems," in Proc. Int. Wkshp. Low Power Design, pp. 203-208, Apr.

1994.

[9] P. R. Panda and N. D. Dutt, "Reducing address bus transitions for low power

memory mapping," in Proc. European Design & Test Conj, pp. 63-67, Mar.

1996.

[10] J. Eager, "Advances in rechargeable batteries spark product innovation," in

Proc. Silicon Valley Computer Conj, pp. 243-253, Aug. 1992.

[11] D. Maliniak, "Better batteries for low-power jobs," Electronic Design,

vol. 40, p. 18, July 1992.

[12] J. Rabaey and M. Pedram (Editors), Low Power Design Methodologies.

Kluwer Academic Publishers, Norwell, MA, 1996.

[13] C. Small, "Shrinking devices put the squeeze on system packaging," Elec­

tronic Design News, vol. 39, pp. 41-46, Feb. 1994.

[14] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI.

Addison-Wesley, Menlo Park, CA, 1990.

[15] P. Yang and J. H. Chern, "Design for reliability: The major challenge for

VLSI," Proc. IEEE, vol. 81, pp. 730-744, May 1993.

[16] J.-F. Tuan and T. K. Young, "Reliability issues in power and ground on

submicron circuit," in Proc. WESCON, pp. 129-133, Nov. 1995.

[17] B. Nadel, "The green machine," PC Magazine, vol. 12, May 1993.

REFERENCES 161

[18] D. Yuen, Intel's SL Architecture - Designing Portable Applications.

McGraw-Hill, New York, NY, 1993.

[19] D. L. Perry, VHDL. McGraw-Hill, New York, NY, 1991.

[20] A. R. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design.

Kluwer Academic Publishers, Norwell, MA, 1995.

[21] J. Frenkil, "Tools and methodologies for low power design," in Proc. Design

Automation Con!, pp. 76-81, June 1997.

[22] W. Nebel, J. Sproch, and S. Malik, "Tutorial: Power analysis and optimiza­

tion: spanning the levels of abstraction," in Proc. Int. Symp. Low Power

Electronics & Design, Aug. 1997.

[23] A. Bellaouar and M.1. Elmasry, Low-Power Digital VLSI Design - Circuits

and Systems. Kluwer Academic Publishers, Norwell, MA, 1995.

[24] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI design, 2nd

edition. Addison-Wesley, Menlo Park, CA, 1994.

[25] M. Horowitz, T. Indermaur, and R. Gonzalez, "Low-power digital design,"

in Proc. Symp. Low Power Electronics, pp. 8-11, Oct. 1994.

[26] A. Stratakos, R. W. Brodersen, and S. R. Sanders, "High-efficiency low­

voltage DC-DC conversion for portable applications," in Proc. Int. Wkshp.

Low Power Design, pp. 105-110, Apr. 1994.

[27] K. Seta, H. Hara, T. Kuroda, M. Kakumu, and T. Sakurai, "50% active power

reduction saving without speed degradation using standby power reduction

(SPR) circuit," in Proc. Int. Solid-State Circuits Con!, pp. 318-319, Feb.

1996.

[28] L. Goodby, A. Orailoglu, and P. M. Chau, "Microarchitectural synthesis

of performance-constrained, low-power VLSI designs," in Proc. Int. Con!

Computer Design, pp. 323-326, Oct. 1994.

162 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

[29] R. S. Martin and J. P. Knight, "Power Profiler: Optimizing ASICs power

consumption at the behavioral level," in Proc. Design Automation Con!,

pp. 42-47, June 1995.

[30] A. Raghunathan and N. K. Jha, "An iterative improvement algorithm for

low power data path synthesis," in Proc. Int. Con! Computer-Aided Design,

pp. 597-602, Nov. 1995.

[31] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, "Low-power CMOS

digital design," IEEE 1. Solid-State Circuits, vol. 27, pp. 473-484, Apr.

1992.

[32] R. Mehra and J. Rabaey, "Behavioral level power estimation and explo­

ration," in Proc. Int. Wkshp. Low Power Design, pp. 197-202, Apr. 1994.

[33] S. Raje and M. Sarrafzadeh, "Variable voltage scheduling," in Proc. Int.

Symp. Low Power Design, pp. 9-14, Apr. 1995.

[34] J. M. Chang and M. Pedram, "Energy minimization using multiple supply

voltages," in Proc. Int. Symp. Low Power Electronics & Design, pp. 157-

162, Aug. 1996.

[35] M. Johnson and K. Roy, "Optimal selection of supply voltages and level

conversions during data path scheduling under resource constraints," in

Proc. Int. Con! Computer Design, pp. 72-77, Oct. 1996.

[36] T. Blalock and J. Jaeger, "A high-speed clamped bitline current-mode sense

amplifier," IEEE 1. Solid-State Circuits, vol. 26, pp. 542-548, Apr. 1991.

[37] D. Somasekhar and K. Roy, "Differential current switch logic: A low power

DCVS logic family," IEEE 1. Solid-State Circuits, vol. 31, pp. 981-991,
July 1996.

[38] M. Pedram and H. Vaishnav, "Power optimization in VLSI layout: A survey,"

1. VLSI Signal Processing, 1996.

REFERENCES 163

[39] S. Devadas and S. Malik, "A survey of optimization techniques targeting

low power VLSI circuits," in Proc. Design Automation Conj, pp. 242-247,

June 1995.

[40] J. Monteiro and S. Devadas, Computer-Aided Design Techniques for Low

Power Sequential Logic Circuits. Kluwer Academic Publishers, Norwell,

MA,1996.

[41] M. Pedram, "Power minimization in IC design: Principles and applications,"

ACM Trans. Design Automation Electronic Systems, vol. 1, pp. 3-S6, Jan.

1996.

[42] V. Tiwari, S. Malik, and A. Wolfe, "Compilation techniques for low energy:

An overview," in Proc. Symp. Low Power Electronics, pp. 38-39, Oct. 1994.

[43] V. Tiwari, S. Malik, A. Wolfe, and T. C. Lee, "Instruction level power

analysis and optimization of software," in Proc. Int. Conj VLSI Design,

pp. 326-328,Jan. 1996.

[44] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level Synthesis:

Introduction to Chip and System Design. Kluwer Academic Publishers,

Norwell, MA, 1992.

[4S] P. G. Paulin, J. P. Knight, and E. F. Girczyc, "HAL: A multi-paradigm

approach to automatic data path synthesis," in Proc. Design Automation

Conj, pp. 263-270, June 1986.

[46] D. E. Thomas and G. Leive, "Automatic technology relative logic synthesis

and module selection," IEEE Trans. Computer-Aided Design, vol. 2, pp. 94-

lOS, Apr. 1983.

[47] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw­

Hill, New York, NY, 1994.

164 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

[48] S. Narayanan and D. D. Gajski, "System clock estimation based on clock

slack minimization," in Proc. European Design Automation Con!, pp. 66-

71, Feb. 1992.

[49] S. Chaudhuri, S. A. Blythe, and R. A. Walker, "An exact solution methodol­

ogy for scheduling in a 3D design space," in Proc. Int. Symp. System Level

Synthesis, pp. 78-83, Sept. 1995.

[50] M. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, and J. Rabaey, "Instruction

set mapping for performance optimization," in Proc. Int. Con! Computer­

Aided Design, pp. 518-521, Oct. 1993.

[51] B. M. Pangrle and D. D. Gajski, "Design tools for intelligent silicon compi­

lation," IEEE Trans. Computer-Aided Design, vol. 6, pp. 1098-1112, June

1987.

[52] P. G. Paulin and J. P. Knight, "Force-directed scheduling for the behavioral

synthesis of ASIC's," IEEE Trans. Computer-Aided Design, vol. 8, pp. 661-

679, June 1989.

[53] S. Devadas and A. R. Newton, "Algorithms for hardware allocation in data

path synthesis," IEEE Trans. Computer-Aided Design, vol. 8, pp. 768-781,

July 1989.

[54] I. C. Park and C. M. Kyung, "FAMOS: An efficient scheduling algorithm

for high-level synthesis," IEEE Trans. Computer-Aided Design, vol. 12,

pp. 1437-1448, Oct. 1993.

[55] J. H. Lee, Y. C. Hsu, and Y. L. Lin, "A new integer linear programming

formulation for the scheduling problem in data path synthesis," in Proc. Int.

Con! Computer-Aided Design, pp. 20-23, Nov. 1989.

[56] C. H. Gebotys and M. I. Elmasry, "A global optimization approach for archi­

tectural synthesis," in Proc.lnt. Con! Computer-Aided Design, pp. 258-261,

Nov. 1990.

REFERENCES 165

[57] c. T. Hwang et al., "PLS: Scheduler for pipeline synthesis," IEEE Trans.

Computer-Aided Design, vol. 12, pp. 1279-1286, Sept. 1993.

[58] R. Camposano, "Path-based scheduling for synthesis," IEEE Trans.

Computer-Aided Design, vol. 10, pp. 85-93, Jan. 1991.

[59] S. Bhattacharya, S. Dey, and F. Brglez, "Perfonnance analysis and optimiza­

tion of schedules for conditional and loop-intensive specifications," in Proc.

Design Automation Con/., pp. 491-496, June 1994.

[60] G. Lakshminarayana, K. S. Khouri, and N. K. Jha, "Wavesched: A novel

scheduling technique for control-flow intensive behavioral descriptions," in

Proc. Int. Con/. Computer-Aided Design, Nov. 1997.

[61] S. Bhattacharya, F. Brglez, and S. Dey, "Transfonnations and resynthesis for

testability of RT-Ievel control-data path specifications," IEEE Trans. VLSI

Systems, vol. 1, pp. 304-318, Sept. 1993.

[62] E. A. Rundensteiner, D. D. Gajski, and L. Bic, "Component synthesis from

functional descriptions," IEEE Trans. Computer-Aided Design, vol. 12,

pp. 1287-1299,Sept. 1993.

[63] F. Kurdahi and A. C. Parker, "Techniques for area estimation of VLSI

layouts," IEEE Trans. Computer-Aided Design, vol. 8, pp. 81-92, Jan. 1989.

[64] P. K. Jha and N. D. Dutt, "Rapid estimation for parameterized components

in high-level synthesis," IEEE Trans. VLSI Systems, vol. 1, pp. 296-303,

Sept. 1993.

[65] C. Ramachandran and F. J. Kurdahi, "Incorporating the controller effects

during register-transfer level synthesis," in Proc. European Design & Test

Con/., pp. 308-313, Mar. 1994.

166 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

[66] S. Bhattacharya, S. Dey, and F. Brglez, "Provably correct high-level timing

analysis without path sensitization," in Proc. Int. Con! Computer-Aided

Design, pp. 736-742, Nov. 1994.

[67] A. Raghunathan, S. Dey, and N. K. Jha, "Register-transfer level estimation

techniques for switching activity and power consumption," in Proc. Int.

Con! Computer-Aided Design, pp. 158-165, Nov. 1996.

[68] K. D. Muller-Glaser, K. Kirsch, and K. Neusinger, "Estimating essential

design characteristics to support project planning for ASIC design man­

agement," in Proc. Int. Con! Computer-Aided Design, pp. 148-151, Nov.

1991.

[69] D. Liu and C. Svensson, "Power consumption estimation in CMOS VLSI

chips," IEEE 1. Solid-State Circuits, vol. 29, pp. 663-670, June 1994.

[70] D. Marculescu, R. Marculescu, and M. Pedram, "Information theoretic mea­

sures for energy consumption at the register-transfer level," in Proc. Int.

Symp. Low Power Design, pp. 81-86, Apr. 1995.

[71] F. N. Najm, "Towards a high-level power estimation capability," in Proc.

Int. Symp. Low Power Design, pp. 87-92, Apr. 1995.

[72] N. Pippinger, "Information theory and the complexity of Boolean functions,"

Mathematical Systems Theory, vol. 10, pp. 129-167, 1977.

[73] K.-T. Cheng and V. D. Agrawal, "An entropy measure for the complex­

ity of multi-output Boolean functions," in Proc. Design Automation Con!,

pp. 302-305, June 1990.

[74] M. Nemani and F. N. Najm, "High-level power estimation and the area com­

plexity of Boolean functions," in Proc. Int. Symp. Low Power Electronics &

Design, pp. 329-334, Aug. 1996.

REFERENCES 167

[75] S. R. Powell and P. M. Chau, "Estimating power dissipation of VLSI signal

processing chips: The PFA technique," in Proc. VLSI Signal Processing IV,

pp. 250-259, Sept. 1990.

[76] P. E. Landman and J. M. Rabaey, "Black-box capacitance models for archi­

tectural power analysis," in Proc. Int. Wkshp. Low Power Design, pp. 165-

170, Apr. 1994.

[77] P. Landman and J. M. Rabaey, "Activity-sensitive architectural power anal­

ysis for the control path," in Proc. Int. Symp. Low Power Design, pp. 93-98,

Apr. 1995.

[78] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago, "Evaluation of

architecture-level power estimation for CMOS RISC processors," in Proc.

Symp. Low Power Electronics, pp. 44--45, Oct. 1995.

[79] S. Gupta and F. N. Najm, "Power macromodeling for high level power

estimation," in Proc. Design Automation Coni, pp. 365-370, June 1997.

[80] CMOS6 Library Manual. NEC Electronics, Inc., Dec. 1992.

[81] CSIM Version 5 Users Manual. Systems LSI Division, NEC Corp., 1993.

[82] G. Casella and R. L. Berger, Statistical Inference. Duxbury Press, Belmont,

CA,1990.

[83] A. Raghunathan and N. K. Jha, "An ILP fonnulation for low power based

on minimizing switched capacitance during datapath allocation," in Proc.

Int. Symp. Circuits & Systems, pp. 1069-1073, May 1995.

[84] C. -T. Hsieh and Q. Wu and C. -So Ding and M. Pedram, "Statistical sampling

and regression analysis for RT-Ievel power evaluation," in Proc. Int. Coni

Computer-Aided Design, pp. 583-588, Nov. 1996.

168 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

[85] H. Mehta and R. M. Owens and M. J. Irwin, "Energy characterization based

on clustering," in Proc. Design Automation Coni, pp. 702-707, June 1996.

[86] R. Burch, F. N. Najm, P. Yang, and T. Trick, "A Monte Carlo approach for

power estimation," IEEE Trans. VLSI Systems, vol. 1, pp. 63-71, Mar. 1993.

[87] D. Marculescu, R. Marculescu, and M. Pedram, "Sequence compaction for

probabilistic analysis of finite-state machines," in Proc. Design Automation

Coni, pp. 12-15, June 1997.

[88] R. Marculescu, D. Marculescu, and M. Pedram, "Hierarchical sequence com­

paction for power estimation," in Proc. Design Automation Coni, pp. 570-
575, June 1997.

[89] D. I. Cheng and K.-T. Cheng and D. C. Wang and M. Marek-Sadowska, "A

new hybrid methodology for power estimation," in Proc. Design Automation

Coni, pp. 439-444, June 1996.

[90] P. Landman and J. M. Rabaey, "Activity-sensitive architectural power anal­

ysis," IEEE Trans. Computer-Aided Design, vol. 15, pp. 571-587, June

1996.

[91] A. Kuehlmann and R. Bergamaschi, "Timing analysis in high-level synthe­

sis," in Proc. Int. Coni Computer-Aided Design, pp. 349-354, Nov. 1992.

[92] L. Benini, P. Siegel, and G. De Micheli, "Saving power by synthesizing

gated clocks for sequential circuits," IEEE Design & Test of Computers,

pp. 32-41, Winter 1994.

[93] L. Benini and G. De Micheli, "Automatic synthesis of gated-clock sequential

circuits," IEEE Trans. Computer-Aided Design, vol. 15, pp. 630-643, June

1996.

[94] A. Raghunathan, S. Dey, and N. K. Jha, "Register-transfer level power

optimization techniques with emphasis on glitch analysis and optimization,"

REFERENCES 169

Tech. Rep. 95-C049-4-5016-3, NEC C&C Research Labs, Princeton, NJ,

Oct. 1995.

[95] G. Tellez, A. Farrahi, and M. Sarrafzadeh, "Activity driven clock design for

low power circuits," in Proc. Int. Conf. Computer-Aided Design, pp. 62-65,
Nov. 1995.

[96] c. Papachristou, M. Spining, and M. Nourani, "An effective power man­
agement scheme for RTL design based on multiple clocks," in Proc. Design

Automation Con!, pp. 337-342, June 1996.

[97] M. Aldina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
"Precomputation-based sequential logic optimization for low power," IEEE

Trans. VLSI Systems, vol. 2, pp. 426--436, Dec. 1994.

[98] J. Monteiro, P. Ashar, and S. Devadas, "Scheduling techniques to enable
power management," in Proc. Design Automation Con!, pp. 349-352, June
1996.

[99] A. Correale Jr., "Overview of the power minimization techniques employed
in the mM PowerPC 4xx embedded processors," in Proc. Int. Symp. Low

Power Design, pp. 75-80, Apr. 1995.

[100] V. Tiwari, S. Malik, and P. Ashar, "Guarded evaluation: Pushing power

management to logic synthesis/design," in Proc. Int. Symp. Low Power

Design, pp. 221-226, Apr. 1995.

[101] J. Monteiro, J. Rinderknecht, S. Devadas, and A. Ghosh, "Optimization of
combinational and sequential logic circuits for low power using precompu­
tation," in Proc. Chapel Hill Con! Advanced Research VLSI, pp. 430-444,
Mar. 1995.

[102] E. Musoll and J. Cortadella, "High-level synthesis techniques for reducing

the activity of functional units," in Proc. Int. Symp. Low Power Design,

pp. 99-104, Apr. 1995.

170 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

[103] c. Lee, "Representation of switching circuits by binary decision diagrams,"

Bell Systems Tech. J., vol. 38, pp. 985-999, July 1959.

[104] S. B. Akers, "Binary decision diagrams," IEEE Trans. Computers, vol. C-27,

pp. 509-516, June 1978.

[105] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing

and Testable Design. New York, NY: Computer Science Press, 1990.

[106] G. Lakshminarayana, A. Raghunathan, N. K. Jha, and S. Dey, "A power

management methodology for high-level synthesis," in Proc. Int. Conj VLSI

Design, Jan. 1998.

[107] A. Raghunathan, S. Dey, and N. K. Jha, "Power management techniques for

control-flow intensive designs," in Proc. Design Automation Conj, pp. 429-

434, June 1997.

[108] A. Raghunathan, S. Dey, and N. K. Jha, "Glitch analysis and reduction

in register-transfer-level power optimization," in Proc. Design Automation

Conj, pp. 331-336, June 1996.

[109] H. Trickey, "Flamel: A high-level hardware compiler," IEEE Trans.

Computer-Aided Design, vol. 6, pp. 259-269, Mar. 1987.

[110] R. A. Walker and D. E. Thomas, "Behavioral transformations for algorithmic
level IC design," IEEE Trans. Computer-Aided Design, vol. 8, pp. 1115-

1127, Oct. 1989.

[111] B. S. Haroun and M. 1. Elmasry, "Architectural synthesis for DSP silicon

compilers," IEEE Trans. Computer-Aided Design, vol. 8, pp. 431-447, Apr.
1989.

[112] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, "Fast prototyping of data

path intensive architectures," IEEE Design & Test of Computers, vol. 8,

pp. 40-51, Feb. 1991.

REFERENCES 171

[113] L. Claesen, F. Catthoor, D. Lanneer, G. Goossens, S. Note, J. V. Meerbergen,

and H. De Man, "Automatic synthesis of signal processing benchmark using

the CATHEDRAL silicon compilers," in Proc. Custom Integrated Circuits

Coni, pp. 14.17.1 - 14.7.4, May 1988.

[114] M. Mehendale, S. D. Sherlekar, and G. Venkatesh, "Coefficient optimizations

for low power realization of FIR filters," in Proc. VLSI Signal Processing

VIII,pp. 352-361, Sept. 1995.

[115] T. Sakurai, H. Kawaguchi, and T. Kuroda, "Low-power CMOS design

through VT H control and low-swing circuits," in Proc. Int. Symp. Low Power

Electronics & Design, pp. 1-6, Aug. 1997.

[116] T. Callaway and E. Swartzlander, "Optimizing arithmetic elements for signal

processing," in Proc. VLSI Signal Processing V, pp. 91-100, Sept. 1992.

[117] C. Nagendra, R. M. Owens, and M. J. Irwin, "Power-delay characteristics of

CMOS adders," IEEE Trans. VLSI Systems, vol. 2, pp. 377-381, Sept. 1994.

[118] K. Usami and M. Horowitz, "Clustered voltage scaling technique for low­

power design," in Proc. Int. Symp. Low Power Design, pp. 3-8, Apr. 1995.

[119] A. Dasgupta and R. Karri, "Simultaneous scheduling and binding for power

minimization during microarchitecture synthesis," in Proc. Int. Symp. Low

Power Design, pp. 69-74, Apr. 1995.

[120] J. M. Chang and M. Pedram, "Register allocation and binding for low

power," in Proc. Design Automation Coni, pp. 29-35, June 1995.

[121] J. M. Chang and M. Pedram, "Module assignment for low power," in Proc.

European Design Automation Coni, pp. 376-381, Sept. 1996.

[122] J. Monteiro, S. Devadas, and A. Ghosh, "Retiming sequential circuits for

low power," in Proc. Int. Coni Computer-Aided Design, pp. 398-402, Nov.

1993.

172 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

[123] J. Leijten, J. van Meerbergen, and J. Jess, "Analysis and reduction of glitches

in synchronous networks," in Proc. European Design & Test Conj, pp. 398-

403, Mar. 1995.

[124] D. Lidsky and J. Rabaey, "Low-power design of memory intensive func­

tions," in Proc. Symp. Low Power Electronics, pp. 16-17, Oct. 1994.

[125] D. Lidsky and J. Rabaey, "Low-power design of memory intensive func­

tions case study: Vector quantization," in Proc. VLSI Signal Processing VlI,

pp. 378-387, Sept. 1994.

[126] S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man, "Power explo­

ration for data dominated video applications," in Proc. Int. Symp. Low Power

Electronics & Design, pp. 359-364, Aug. 1996.

[127] P. R. Panda and N. D. Dutt, "Low power mapping of behavioral arrays to

multiple memories," in Proc. Int. Symp. Low Power Electronics & Design,

pp. 289-292, Aug. 1996.

[128] P. R. Panda and N. D. Dutt, "Behavioral array mapping into multiport mem­

ories targeting low power," in Proc. Int. Conj VLSI Design, pp. 268-272,

Jan. 1997.

[129] C. Lemonds and S. S. Mahant-Shetti, "A low power 16 by 16 multiplier

using transition reduction circuitry ," in Proc. Int. Wkshp. Low Power Design,

pp. 139-142, Apr. 1994.

INDEX

Activation function, 84-85
Activity graph, 109-113
Activity-based control, 68
Adaptive macromodeling, 65
Algebraic transformations, 116
Analytical power models, 37-38
ANOYA,54-55
Application domains, 34
Automatic test pattern generation, 99
Average cube complexity, 41

Barcode pre-processor, 8-9, 26, 29, 32
Battery-driven, 3,22
Behavioral transformations, 115-116, 119, 123
Binary decision diagram, 99
Bit-level modeling, 57, 59
Bit-line, 38
Boolean difference, 76

Capacitive switching power, 18-20
Cell selection, 24
Chaining, 135, 137-139, 145, 150
Characterization, 42-43, 45, 53, 69
Chip Estimation System, 38
Clock delay, 83
Clock period selection, 29,115,137,153
Clock power, 39-40

Clock skew, 83-84
Clock tree construction, 24, 89-90
Common subexpression elimination, 116, 120
Complete input disabling architecture, 94
Complex number multiplication, 120

Component failure rate, 3
Constant propagation, 116, 118, 120
Constrained register sharing, 102, 106
Control expressions, 51-52, 70, 72
Control flow graph, 27

Control-data flow graph, 29
Control-flow intensive, 26-27, 34-35, 59, 108,

153
Controller-based power management, 107-108,

114

Controlling logic, 72
Cyc1e-by-cyc1e behavior, 6, 9, 30-31, 135

Data flow graph, 27

Data-flow intensive, 26, 34-35,117,153
Dead code elimination, 116
Design abstraction, I, 5, 8
Differential cascode voltage switch, 129

Dual bit type, 46
Dynamic variable rebinding, 106

173

174 HIGH-LEVEL POWER ANALYSIS AND OPTIMIZATION

E-template, 133-134
Electromigration, 4
Electronic design automation, 10
Elliptic Wave Filter, 26
Energy clustering, 62
Energy cubes, 62
Energy Star,S
Entropy, 41-42
Environmental concerns,S
ESP,46

Falling delay block, 152
Finite impulse response filter, 121
Firm macroblocks, 43
Functional RTL, 9, 31

Gated clocks, 81-83, 90
Glitching activity, 35, 43, 50-55, 57-58,67-68,

70,72-77, 108, 114, 119, 146-147
Greatest common divisor, 51
Ground bounce, 4
Guarded evaluation, 98-99

H-tree,39
Hamming distance, 131
Handheld electronics, 2
Hard macroblocks, 43
Hardware C, 26
Hot-carrier effects, 4

Infinite impulse response filter, 117
Information transmission coefficient, 42
Information-theoretic approaches, 40
Intermediate format, 27

Layout synthesis, 8, 33
Leakage power, 20-21
Logic synthesis, 5-6,29,33,52, 62,70, 103
Loop transformations, 116,142

Mealy FSM, 85
Memory access, 24, 142-143

Memory power, 38, 142
Model decomposition, 55
Module selection, 29, liS, 126, 128-129,

136-137,153
Monotonicity, 14
Moore FSM, 84-85
Multicycling, 135
Multiple clocks, 24, 81-82, 91
Multiple supply voltages, 23, 128
Multiplexer decomposition, 145

Nickel-Cadmium, 3
Nickel-Metal Hydride , 3

Observability don't care, 98
Operand isolation, 81, 97-98, 100, 102,

107-108

Packaging and cooling costs, 4
Parallel implementations, 123
Partial delay information, 74-75
Peak power, 136-137
Peripheral capacitance model, 59-60, 62-63, 65
Piecewise linear models, 53, 55
Pipelining, 23, 116, 119, 139
Portable systems, 2
Power factor approximation, 45
Power macromodeling , 37, 45, 50, 59
Pre-computation, 81,93-95
Predictor functions, 93-95

Re-convergent fanout, 132
Regularity, 24,133-136,153
Relative accuracy, 14,50
Reliability issues, 4
Resistive (I-R) voltage drops, 4
Resource allocation, 31
Resource assignment, 31
Resource sharing, 31-33,91, 100, liS, 123,

128-131,133-136,140,145,147,153
Retiming, 24, 116, 139
Rising delay block, 152

Scheduling, 9,24,30-32,34--35,81,95-97,
100,110,115,128-129,135-137,
139-140, 145, 153

Selective delay insertion, 145, 151
Short-circuit power, 18,20
Sign bits, 47, 49-50
Soft macroblocks, 43 , 45
Sources of power consumption, 17-18
SPA,46
Spatial correlation, 53-54, 57
Standard deviation, 47, 53-54, 59
State encoding, 24
Static power, 18,21
Statistical sampling, 63-64
Strength reduction, 116
Structural RTL, 6, 9, 25, 32-33,35, 115
Supply voltage reduction, 22-23, 117, 139

INDEX 175

Supply voltage scaling, 23, 117, 128, 138-139

Technology mapping, 24, 29
Temporal correlation, 46-47, 53-54, 77,

131-132
Thermal considerations, 3
Training sequences, 43,45
Transparent latch, 97-102, 107-108
Two's complement, 46

Uniform white noise, 46

Variable elimination, 54
Verilog,26
VHDL, 8,26, 31
Voltage level converters, 128

Word-length reduction, 116, 119

