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Abstract—This paper presents a depth map restoration 
scheme for both the raw and projected depth map from Kinect 
v2 sensor. Based on IR-depth consistency, erroneous depth 
readings around foreground objects are removed by an edge 
aware consistency correction method. Moreover, a joint 
adaptive kernel regression algorithm is designed to upsample 
the sparse depth map after the projection from Kinect v2 
sensor’s depth camera to its full HD video camera. The 
structural information in the high resolution color image is 
implicitly utilized to guide the upsampling of depth map. The 
effectiveness of the proposed upsampling algorithm is illustrated 
by experimental results and comparisons on both real Kinect v2 
data and Middlebury dataset.    
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I. INTRODUCTION 

Depth maps provide a totally new dimension on how 
machines sense the world besides texture and make computers 
one step closer to human beings. It has become an important 
ingredient in many real world applications under active 
research. Thus, increasing focus has been placed on acquiring 
depth maps using computer vision techniques [1] or infra-red 
(IR) based depth sensing devices [2, 3]. Computer vision 
techniques can provide high resolution depth maps, but their 
performances are limited in texture-less and occlusion areas.  
While on the other hand, conventional depth sensing devices 
are limited in terms of their resolution, range, and noise 
performance. With the introduction of Microsoft Kinect for 
Xbox360 [2] which is based on coded lighting using IR 
illumination, the resolution of depth map has significantly 
improved to 320x240 resolution with 11 bits/pixel compared 
to more expensive conventional sensors, say the SR4000 from 
Mesa imaging has a resolution of only 176x144. This has 
motivated a rapidly expanding research in using Kinect to 
assist various computer vision problems [4] as well as the 
restoration of its depth map [5]. 

An even more encouraging news is that Microsoft has 
launched a new generation of Kinect for Windows v2 sensor 
recently in 2014, generally knows as Kinect v2, with a full HD 
video camera and a depth sensor having a resolution of 
521x424.  Since ToF depth sensing is used, the occlusion area 
is significantly reduced and the depth values are more stable 

than the first generation Kinect. Kinect v2 also provides a 
wider field of view (70o horizontally and 60o vertically), a 
similar working range (0.5-8 meters) and a same frame rate 
(30 FPS) as its predecessor.   

However, Kinect v2, which is based on time-of-fight (ToF) 
depth sensing, shares the same imperfections as other ToF 
cameras which  include depth distortion, IR amplitude related 
error, lighting scattering errors, etc. [3]. Hence, depth map 
restoration is still a crucial step for most depth based 
applications. In this paper, two key restoration problems, 
namely inconsistent depth reading removal and depth map 
upsampling, are considered for Kinect v2. To be more specific, 
an edge aware IR-depth consistency correction method is 
presented to remove the light scattering errors in raster scan 
order, while a joint adaptive kernel regression algorithm is 
proposed to upsample the projected sparse depth map by using 
both the depth map and high resolution color image.  

The rest of the paper is organized as follows. We first 
introduce a raster-scan-based edge aware correction method to 
address Kinect v2 sensor’s IR-depth inconsistency issue in 
Section II. Then a joint adaptive kernel regression algorithm is 
proposed to upsample the projected depth map. Experimental 
results on both real Kinect v2 data and Middlebury dataset 
will be given in Section IV. Finally, we conclude the paper in 
Section V.  

This work was supported in part by the General Research Fund (GRF) of 
Hong Kong Research Grant Council (RGC). 
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Fig. 1. Difference between Kinect v2 and other ToF cameras. (a) The inside 
structure of Kinect v2 (extracted from www.ifixit.com) (b) Mesa Imaging AG
SwissRanger 4000. (c) PMD[Vision] CamCube 2.0. 
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II. IR-DEPTH CONSISTENCY 

Although the new Kinect v2 uses the same principle as the 
traditional ToF cameras, there exists a notable difference on 
the IR illumination scheme. Comparing to SwissRanger 4000 
(Fig. 1(b)) and CamCube 2.0 (Fig. 1(c)), the IR emitter of 
Kinect v2 is located only on one side of the IR sensor as 
shown in Fig. 1(a). Such setting may introduce undesirable 
problems due to the occlusion caused by the displacement 
between IR emitter and IR sensor.  

A.  Inconsistent Depth Values 

One major issue caused by this occlusion is the IR-depth 
inconsistency problem. Although the depth map is accurately 
aligned with the IR image, depth errors still occur around the 
foreground boundary as shown in Fig. 2(a). It can be seen that, 
the IR amplitudes are extremely low (dark blue) in the 
occlusion area, while it leads to erroneous depth value in this 
region. The 1D amplitude curves of the IR image and depth 
map given in Fig. 2(b) clearly show the problem of IR-depth 
inconsistency, i.e. foreground depth readings appear in the 
background region. 

Since Kinect v2 is new on the market, there is little 
research mentioning this issue. This may be categorized as a 
kind of light scattering errors [3] occurred in the area with low 
IR amplitude. Multiple light reflections between the camera 
lens and its sensor also produces interference between nearby 
objects. In occlusion area where the IR amplitude is low, 
depth readings may be highly affected by the neighboring 
pixel reflections [3]. It thus explains why the occlusion region 
is mistakenly assigned the depth values of its nearby 
foreground objects.  

B. Edge Aware IR-Depth Consistency Correction 

This kind of erroneous depth readings must be removed 
carefully, as it will result severe artifacts in various depth map 
based applications. A straightforward method is using low-
amplitude filtering to remove the corrupted readings [3] 
directly. However, it also removes a lot of correct depth 
readings, such as the floor region shown in Fig. 4(a).  

Considering the fact that the occlusion only occurs in 
horizontal direction, we propose an edge aware IR-depth 
consistency correction method to remove the IR-depth 
inconsistent error caused by scattering lights. From Fig. 2(a) 

and (b), it can be seen that the errors start from the depth edge 
and end at the IR edge. Therefore, we try to locate these 
jumping points on the edges according to the horizontal 
gradients ),( yxgIR  and ),( yxgd  of the IR image and depth 
map respectively along the y-th scan line, where x is the 
horizontal index. Fig. 3(c) shows a typical example of IR 
gradient (red line) and depth gradient (blue line). Then, we 
search for distinct depth local minima and IR local maxima 
located at ),( min,min, dd yx  and ),( max,max, IRIR yx  as shown in 
the blue squares and red circles in Fig. 3(c), respectively. For 
each IR local maximum, if there is a depth local minimum 
satisfying max,min, IRd xx  , the interval ],[ max,min, IRd xx  is 
denoted as the occlusion region. Hence the depth readings 
within this interval are considered as corrupted and set as 0 to 
remove the errors. The whole depth map ),(ˆ yxd  is processed 
line by line in raster scan order as follows  
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where ),( yxd  is the observed raw depth map and M is the 
height of depth map.  

 
(a)                                                   (b) 

Fig. 2. IR-depth inconsistency in Kinect v2 due to occlusion. (a) IR image
(upper) and corresponded depth map (lower). (b) 1D amplitude curves (green
and blue dashed line in (a)) of the IR image (upper) and depth map (lower)
across the boundary of the foreground board. 

 
(a)                                                        (b) 

 
(c) 

Fig. 3. Edge-aware IR-depth consistency correction. (a) and (b) are a pair of
IR image and corresponded depth map, respectively. (c) 1D IR and Depth
gradient curvs along the black dotted line in (a) and (b). Red circle and blue
squares denote the maxima in IR and depth gradients, respectively. 

 
(a)                                                       (b) 

Fig. 4. Light scattering errors in Fig. 3(b) removed by (a) IR amplitude based
thresholding and (b) the proposed edge aware IR-depth consistency correction
method. 
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An example of the depth map after error removal by the 
proposed method is shown in Fig. 4(b). Comparing with low-
amplitude filtering [3] (Fig. 4(a)), our method only remove 
those erroneous depth readings in the occlusion area, while the 
correct ones in low IR amplitude region remain unchanged.  

III. JOINT ADAPTIVE KERNEL REGRESSION FOR DEPTH 

MAP UPSAMPLING 

To utilize depth map in various applications, projection of 
the corrected raw depth map to different image space, such as 
external high resolution cameras, is usually performed. The 
Kinect SDK has provided a built-in function to map the depth 
map to its HD color camera. However, the projected depth 
map is quite sparse as shown in Fig. 5. It is mainly due to the 
difference in resolution between the depth map and color 
image. Therefore, the sparse depth map needs to be upsampled 
with the help of external high resolution cameras.  

In previous works, steering kernel regression (SKR) [6] 
and local polynomial regression (LPR) [7, 8] have shown 
promising performance on both single image upsampling and 
video/multiview super-resolution. In this paper, we would like 
to extend the kernel regression (KR) framework to jointly 
utilize the depth map and high resolution.  

A. Adpative Kernel Regression 

In SKR and LPR, the color information at location x is 
modeled locally as a polynomial. Let jy , j=1,...,p, be the 
observation within a small neighborhood )( iN x  of the 
location ix  of interest, i.e. )( ij N xx  . Ideally, the 
neighborhood )( iN x  should be chosen so that the image can 
be approximated well by the given polynomial.  It was shown 
in [6] that the local polynomial coefficients can be obtained by 
weighted least squares (WLS) fit of the given polynomial to 
the observations, which gives: 
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which puts more emphasis to observations near ix , )(uK   is 
the kernel function, h  is the bandwidth of the kernel which 
controls the size of the neighborhood, and }{vech  is the half-
vectorization operator.  The first element of ib̂  is the 
smoothed pixel value of at ix  which is given by 

iK
T
iiK

T
i

T
i ii

z yWAAWAex 1
1 )()(ˆ  , (4)

where T]0,,0,1[1 e . Note that ix  can be any location in 
the image and hence the image can be interpolated to a higher 
resolution.  Since the local structure is usually anisotropic, the 
following locally adaptive kernel has been proposed in [6], 
which can better adapt to the local gradient of the image: 
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where nC  is the inverse of the covariance matrix estimated 
from the gradients in )( nN x  and )( in N xx  . 

One of the key parameters in KR is the bandwidth h of the 
adaptive kernel in (5), which is estimated from the local image 
model. In [8], the intersection of confidence interval (ICI) rule 
was proposed to select the appropriate bandwidth h. The 
estimated pixel by this  bandwidth adaptive KR is therefore 
derived from (3) as 
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where the suboptimal bandwidth ih  is selected for each ix . 

B. Joint Depth Map Upsampling 

In our case, depth map upsampling aims to estimate a 
dense depth map from the sparse samples. The sparse depth 
map can be modeled as images blurred and down-sampled 
from a dense image, i.e. 

NDZNDHIY  , (7)

where I denotes a high-resolution (HR) image, Y denotes the 
projected sparse observations, D and H are the corresponding 
down-sampling and blurring operators respectively, N is the 
noise term, Z is the blurred HR image which is the target of 
the estimation. Combining (2) and (7), we can get the 
following formulation for the depth map upsampling problem 
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where TD  denotes the upsampling operator with zero padding. 
Therefore, (6) can be reformulated as 
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It should be noted that the depth map is viewed as a single 
image in (6), which means the information of the HD color 
camera will not be used. To utilize both the depth map and the 
high resolution color image, we select the weight matrix in (9) 
according to the color image to perform a joint adaptive kernel 
regression. In other words, two adaptive kernels )( in

d
hK xx   

and )( in
c
hK xx   are estimated on depth map and color image, 

respectively. Then the color information is incorporated in the 

 
Fig. 5. Sparse depth map projected to the HD color camera in Kinect v2. 
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depth upsampling process as 
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are the weight matrices on color and depth samples, 
respectively. Since color weight matrix c

iK
W  is estimated on 

the high resolution color image, the color structure 
information is implicitly utilized in the process of depth map 
upsampling. The effectiveness of the additional weight matrix 
will be demonstrated in the next section.  

IV. EXPERIMENTAL RESULTS 

We first evaluate the proposed upsampling algorithm using 
the images from the Middlebury dataset [9]. The disparity 
images are used as the ground truth and the original RGB 
images are utilized to calculate the color weight matrix in (10). 
To simulate real acquisition process, we use the test dataset 
modified by [13], which contain disparity dependent noise. 
Using these datasets, we compare our results with the Markov 
Random Field (MRF) based approach [10], the guided image 
filtering approach [11] and joint bilateral upsampling (JBU) 
[12]. The numerical comparison in terms of the root mean 
squared error (RMSE) is shown in Table I. The proposed 
algorithm outperforms the compared methods.  

A visual comparison on the Middlebury Art dataset is 
shown in Fig. 7, while another visual comparison on the real 
Kinect v2 data is presented in Fig. 8. It can be seen that the 
proposed algorithm produces more smooth results due to the 
nature of kernel regression. Moreover, it can also preserve the 
detailed structures, such as the cables in Fig. 8, with the help 

of the corresponded high resolution color image. 

V. CONCLUSIONS 

Solutions to two key restoration problems related to the 
recently launched Kinect v2 sensor have been presented. The 
erroneous depth readings caused by low IR amplitude and 
light scattering are removed by the proposed edge aware IR-
depth consistency correction method based on IR-depth 
consistency. Corrected depth map is further upsampled to HD 
resolution. A new joint adaptive kernel regression algorithm is 
proposed to utilize the implicit structural information in the 
HD color image to assist the process of depth map upsampling. 
The effectiveness of the proposed algorithm is illustrated by 
experimental results on both the Middlebury dataset and real 
Kinect v2 data.  
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(a)                                                   (b) 

Fig. 8. Visual evaluation on real Kinect v2 data. (a) JBU [12]. (b) Proposed
joint adaptive kernel regression. 

  

Fig. 7. Visual comparison of 4x up-sampling on the Middlebury Art dataset. 
Left and right are recovered by JBU [12] and proposed joint adaptive kernel 
regression, respectively. 

TABLE. I   RMSE (PIXELS) RESULTS ON THE MIDDLEBURY DATASET FOR 
TWO DIFFERENT MAGNIFICATION FACTORS (2X, 4X). 

Algorithms 
Moebius Books 

2x 4x 2x 4x 

Guided [10] 2.4806 2.8315 2.3748 2.7369 

MRFs [11] 2.1271 3.1054 2.0642 3.0017 

JBU [12] 1.9970 2.5773 2.1093 2.6380 

Proposed 1.9903 2.5591 1.9444 2.5828 
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